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Abstract 

The Cisco Visual Networking Index of 2019 reports that more than six billion 

Machine-to-Machine (M2M) connections were added in 2017 and the number 

of connections is expected to grow by more than 50% by 2022. The 

proliferation of connected devices is accompanied by rapid growth in the 

generated traffic between the edge layer and data centres, and therefore is 

expected to lead to significant increase in the power consumption of the 

network infrastructure. This calls for new architectural designs capable of 

reducing the traffic congestion and power consumption in the network. At the 

same time, vehicles are going through a huge revolution in term of their on-

board units and processing capabilities producing a new promising framework 

concept. This concept is a consequence of  the integration of vehicles and 

cloud computing, referred to as Vehicular Edge Cloud (VEC).  

This thesis investigates distributed processing in VECs, where a group of 

vehicles in a car park, at a charging station or at a road traffic intersection, 

cluster and form a temporary vehicular cloud by combining their computational 

resources in the cluster. We investigated the problem of energy efficient 

processing task allocation in VEC by developing a Mixed Integer Linear 

Programming (MILP) model to minimise power consumption by optimising the 

allocation of different processing tasks to the available network resources, 

cloud resources, fog resources and vehicular processing nodes resources. 

Three dimensions of processing allocation were investigated. The first 

dimension compared centralised processing (in the central cloud) to 

distributed processing (in the multi-layer fog nodes). The second dimension 
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introduced opportunistic processing in the vehicular nodes with low and high 

vehicular node density. The third dimension considered non-splittable tasks 

(single allocation) versus splittable tasks (distributed allocation), representing 

real-time versus non real-time applications respectively. The results revealed 

that a power savings up to 70% can be achieved by allocating processing to 

the vehicles. However, many factors have an impact on the power saving 

percentage such the vehicle capacities, vehicles density, workload size, and 

the number of generated tasks. It was observed that the power saving is 

improved by exploiting the flexibility of task splitting among the available 

vehicles. In addition to the processing allocation problem, this thesis 

investigated the software matching problem in VEC. The vehicles involved 

may not be equipped with the full set of software needed to process the tasks 

requested. Moreover, as vehicles in VEC represent processing at the edge 

layer, we studied the impact of edge processing on the propagation and 

queuing delay in a joint optimisation modelling intended to minimise both 

power consumption and delay. Our investigation showed a significant impact 

on the processing allocation decision and therefore, the power consumption, 

attributed to the location of the processing node and the service rate of the 

network controller. 
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Chapter 1 

Introduction 

The Cisco Visual Networking Index of 2019 reports that more than six billion 

M2M (Machine-to-Machine) connections were added in 2017, 28% of these 

connections are connected vehicles. This number is expected to increase by 

more than 50% by 2022. This expansion reveals exponential growth in global 

traffic estimated to exceeds 25 exabyte per month [1]. This growth is 

accompanied by a remarkable increase in energy consumption in the 

Information and Communication Technologies (ICT) sector. It is estimated that 

ICT technologies will be responsible for up to 12% of global emissions by 2030 

[2]. With the increase of IoT applications and computational hungry cloud-

based applications, emerging technologies such as distributed computing (or 

decentralised data centres) were developed. This framework is considered as 

a new extension of cloud computing, where requests are processed in a 

distributed fashion based on user location. Distributed cloud platforms can be 

composed of any available user-owned resources that allow processing, 

storage, networking and sensing. Following this concept, vehicular clouds can 

be formed of several vehicles with on-board processing, storage, and sensing 

devices. These vehicles are clustered together and act as servers in a mobile 

micro data centre at the edge of the network. Furthermore, with moving 

vehicles, the sensing capabilities of vehicles can be used as a form of mobile 

IoT platform with sensors that may include cameras, pollution sensors, traffic 

flow sensors and road surface sensors among others.  
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In this thesis we introduce a vehicular edge cloud framework (VEC) that can 

help transform edge processing, storage and sensing through the use of the 

capabilities of distributed vehicles to form intelligent vehicular based 

processing clusters at the edge of the network. These capabilities are 

expected to grow significantly with the introduction of autonomous vehicles in 

the near future. Currently, the enterprise parking lot may contain hundreds to 

thousands of vehicles that remain in the park for typically 7–8 hours per day 

[3]. If vehicles are connected in such a car park, using wireless connections 

or a fiber cable integrated with the charging cable and its plug, their processors 

(typically 2–10 processors per vehicle) can be networked, thus transforming 

the car park into a significant edge processing micro data centre. The vehicles 

may alternatively be equipped with a “processing box” that has processing, 

storage and wireless communication (WiFi for example) capabilities. Such a 

processing box can reduce security risks and eliminate the need to connect 

to the processors in the vehicle or can supplement the vehicle on-board 

processing capabilities. A set of VECs made up of the parking rows and floors 

in a car park can thus be formed. Similarly, cars in airports may be parked for 

one to two weeks, making the capabilities of such vehicles available to 

transform such car parks to processing units at the edge of the network on a 

semi-permanent basis as departing cars are replaced. On the shortest time 

scales, clusters of vehicles may be formed at traffic intersection points where 

the traffic light may own a computational problem and may assign chunks of 

such a computational problem to vehicle clusters at the intersection. The 

clusters report results before departing the intersection. At busy intersections 

in cities, typically at least one traffic stream is stationary, thus providing 
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opportunities to distribute computational tasks to nearby processors. These 

vehicles thus have the potential to form efficient short-term distributed 

computational resources at the edge of the network, much closer to the 

requesting entity. 

With vehicles availability that can range from minutes to weeks, the 

networking and computational resources are highly dynamic. Therefore, 

appropriate network architectures and network algorithms are needed to 

better utilise these new forms of dynamic distributed computational resources. 

It is also essential to consider key design features in such networks including 

energy efficiency, latency, reliability and availability. The work reported in this 

thesis focuses on energy efficiency and latency and their joint trade-offs. This 

is a vast new field and hence there is significant potential to consider other 

metrics in the future that include reliability, availability, security and more 

broadly, resilience. The envisaged new form of VEC edge processors can thus 

reduce the cost of providing the computational services needed by making 

use of underutilised resources in vehicles and can enable new services. In 

order to focus on energy efficiency and latency evaluations of the processing 

allocation in VEC, some restrictions were assumed in the considered 

architecture. Therefore, vehicles are considered as homogeneous, in static 

(and opportunistic) mode. Moreover, all the available vehicles are assumed to 

be a part of the VEC (i.e. vehicles’ owners agreed to participate as part of the 

VEC). The main contribution of this work can be highlighted in the processing 

allocation proposed model for the VEC based architecture to minimise the 

power consumption and latency considering different aspects such as, end-

to-end network, vehicles densities, application variety, and source location. 
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Main work objectives and  contribution details are explained next in Sections 

1.1 and 1.2.  

1.1 Research Objectives 

The primary research objectives of the work reported in this thesis are: 

1. To design an end-to-end network architecture for distributed VEC 

supplemented by processing at cloud, fog, and edge layers.  

2. To introduce opportunistic vehicular edge clouds at the edge layer and 

investigate their feasibility using vehicles as distributed processing 

nodes. 

3. To study and evaluate the processing allocation problem in the network 

considering the minimisation of the processing power consumption and 

the networking power consumption. 

4. To study and evaluate the software matching problem in vehicular edge 

clouds where each vehicle may not have the full set of software needed 

to process the tasks requested. 

5. To study and evaluate processing allocation problems that consider 

delay minimisation and also the joint minimisation of power 

consumption, propagation delay and queueing delay for the considered 

architecture. 

1.2 Thesis Contribution  

The main contributions of this thesis are summarised as follows: 
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1. A Mixed Integer Linear Programming (MILP) model has been 

constructed for minimising the processing power consumption and the 

networking power consumption by optimising the allocation of 

processing tasks in the architecture. The model incorporates central 

clouds, distributed fog processing nodes, and opportunistic vehicular 

edge clouds (VECs). 

2. The impact of the density of vehicles and workload volume on the 

processing allocation and power consumption was investigated 

through the developed MILP model. Three density cases were 

evaluated which are zero vehicle availability, low and high vehicle 

densities. 

3. The restriction of a task allocation to a single processor and the 

flexibility of splitting the task into multiple processing location were also 

investigated through an extension to the developed MILP model. 

4. The impact of the processing workload volume was studied through the 

MILP model. This is done by evaluating multiple approaches with low 

and high processing workloads and communication traffic that is 

related to the amount of processing, with the relationship between 

processing needs and communication needs expressed as predefined 

ratios which cover a wide range of applications. 

5. A MILP model was developed to investigate the problem of software 

matching in opportunistic VECs and to minimise the total power 

consumption, considering the popularity of the software packages. 

Four scenarios were introduced where the software availability in the 
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vehicles follow multiple known distributions or is optimised jointly with 

the processing allocation.  

6. A MILP model was constructed to jointly minimise the total power 

consumption, the propagation delay and the queueing delay. The 

average propagation delay and average queuing delay considerd the 

distances between the network entities; and the traffic and service rates 

of each network device respectively.   

1.3 Related Publications 

The following list includes publications that resulted from the work presented 

in this thesis. 

A. A. Alahmadi, A. Q. Lawey, T. E. H. El-Gorashi and J. M. H. Elmirghani, 

"Distributed processing in vehicular cloud networks," 2017 8th International 

Conference on the Network of the Future (NOF), London, 2017, pp. 22-26. 

A. A. Alahmadi, M. O. I. Musa, T. E. H. El-Gorashi and J. M. H. Elmirghani, 

"Energy Efficient Resource Allocation in Vehicular Cloud Based 

Architecture," 2019 21st International Conference on Transparent Optical 

Networks (ICTON), Angers, France, 2019, pp. 1-6. 

R. Ma, A. A. Alahmadi, T. E. H. El-Gorashi and J. M. H. Elmirghani, "Energy 

Efficient Software Matching in Vehicular Fog," 2019 21st International 

Conference on Transparent Optical Networks (ICTON), Angers, France, 

2019, pp. 1-4 
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A. A. Alahmadi, T. E. H. El-Gorashi and J. M. H. Elmirghani, "Energy 

Efficient and Delay Aware Vehicular Edge Cloud”, 2020 22nd International 

Conference on Transparent Optical Networks (ICTON), Bari, Italy, 2020. 

1.4 Thesis Structure  

Following this chapter, this thesis is organised as follows:  

Chapter 2 Provides an overview of the concept and background of vehicular 

cloud computing (VCC), explores different network designs, opportunistic 

scenarios and potential services and applications that can be provided in such 

a framework. It also overviews the reference architecture of VCC and the 

entities included in each layer, and highlights the differences between 

processing in each layer of the described architecture. Finally, the chapter is 

concluded by listing several challenges facing VCC.  

Chapter 3 provides an overview of the importance of energy efficiency in edge 

computing and how vehicles can be part of energy efficient edge processing. 

It also summarises some of the optimisation studies in vehicular clouds that 

focused on energy efficiency and delay. 

In Chapter 4, the problem of energy efficient processing allocation in vehicular 

edge clouds is tackled over the considered end-to-end architecture, including 

central cloud, distributed edge nodes and vehicular nodes.  

In Chapter 5, the problem of energy efficient processing allocation in vehicular 

edge clouds is extended given a realistic scenario by including the software 

matching allocation problem.  

Chapter 6 considers processing allocation optimisation to minimise power 

consumption, propagation delay and queuing delay.  
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Finally, this thesis is concluded in Chapter 7 which summarises the main 

contributions of this thesis and discusses some future research directions. 
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Chapter 2   

Overview of Opportunistic Vehicular Cloud 

 

2.1 Introduction  

Cloud computing has redefined the computation and communication 

environment by utilising multiple resources such as servers, storage devices, 

and other network hardware to provide on-demand services for end users. It 

has changed the way the Internet resources are used as thousands of 

computers communicate together as a cluster in the real world. This cluster 

aims to provide Internet users with high reliability and scalability, on-demand 

pay-as-you-go services at a cheaper cost. The cloud model can be broadly 

classified into three main layers: Software as a Service (SaaS), Platform as a 

Service (PaaS), and Infrastructure as a Service (IaaS). SaaS is the most 

common service for end users, where consumers can access on-demand 

services. PaaS provides the development tools to build a cloud platform to 

host web applications. IaaS is considered the basic service in any cloud-based 

network. It gives all the infrastructure details of any cloud architecture starting 

from physical components to virtual machine, including data partitioning, 

provisioning, and scheduling. Basically, IaaS refers to the capability (data 

centres) provided to the end user and the cloud resources in terms of 

processing and storage, depending on the running software.  

Usually, conventional cloud data centres are centralised and can be accessed 

through the Internet. This centralised cloud structure faces several challenges 

such as single point failure, reachability, and transmission latency. Moreover, 

the huge growth of the cloud-based applications and the significant increase 
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in the services traffic, calls for new architectures and solutions to distribute the 

processing workload at high data rates to the end user while reducing the 

computational burden in the centralised data centres, and therefore, achieve 

better application performance. As a sequence, distributed computing (or 

decentralised data centres) has become a popular solution that shifts the 

workload from the centralised cloud to the fog layer and even to the edge 

layer, closer to end users. This framework provides the same concept of on-

demand services to the end user. Thus, it is considered a new extension of 

cloud computing, where requests are processed in a distributed fashion based 

on the user location.  

Considered architectures that accommodate the concept and features of 

distributed data centres are referred to as ‘Cloudlets’ [4], ‘Fog’ [5] or ‘edge 

computing’ [6]. The term Cloudlet is used to describe any decentralised 

architecture of data centres. Such framework can provide services to end 

users independently from the centralised cloud. Fog and edge are considered 

a cloudlet framework, and both offer similar functionality in term of the services 

provided and also in term of being closer to the end user. However, the fog 

layer is usually built of fixed nano data centres with better capability compared 

to edge entities which usually comprise micro servers or opportunistic 

processors. As both clusters (fog and edge) provide cloud-based services, 

many researches refer to these two clusters as “cloud”. Figure 2.1 shows a 

simple illustration of the fog and edge layers, compared to the conventional 

centralised cloud which is considered the core layer and provides reliable 

support for the fog and edge layers. 
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Figure 2.1 Three-layer illustration of cloud, fog, and edge 

2.2 Edge Cloud Framework 

Edge Clouds were introduced as an alternative solution to the centralised 

datacentres. It is based on decentralised data processing servers to reduce 

the distance between the end-user and the provider. Hence edge cloud 

computing relies on processing entities located at the edge of the network. 

With the rapid increase in the number of connected devices, resources located 

at the edge layer become promising opportunistic processing resources 

candidates. An examples of a platforms built out of underutilised edge entities 

can be found in mobile-based edge cloud [7]. In this form, mobile phone can 

be used to store or process other users requests in the absence of enough 

storage or connection in the original user device [8]. Another form of edge 

cloud includes distributed IoT devices to work as processing units for mobile 

devices or other resource-limited IoT nodes [9]. Vehicular-based cloud is a 
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new form of edge cloud [10]. As many motor companies have announced 

commercial autonomous vehicles in 2020 [11], it is expected that the capability 

of the vehicles and their computational resources will increase tremendously 

in the near future. Vehicles continue to be used typically for two to four hours 

per day [12]. Accordingly, a significant portion of the processing capability of 

these vehicles remain unused during the day. This makes the underutilised 

connected vehicles very promising candidates as edge processing nodes 

located at the edge layer, and referred to as a vehicular cloud (VC).  

This chapter explains the vehicular cloud concept covering architectures, 

scenarios, services, potential applications, enabling technologies, and the 

challenges facing such framework. 

2.3 The Transformation From Vehicular Ad hoc Network 

(VANET) to Vehicular Cloud 

Vehicular Ad hoc Network (VANET) is one of the Intelligent Transportation 

Systems (ITS) key pillars created from the concept of establishing a network 

of vehicles for a specific need or situation [13]. These vehicles can 

communicate with each other and with infrastructure using wireless 

connections. It is different than any other ad hoc network because of its hybrid 

architecture and node movement. The main objective of VANET is to use 

information such as driving condition, vehicle specification, and street and 

traffic status to support driving safety applications. The importance of VANET 

increased recently because vehicles are now equipped with on-board smart 

embedded devices. The on-board unit (OBU) in vehicles includes computation 

processors, sensors, GPS-devices, communication devices, camera, and 
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event data recorders (EDR) [14]. All these components enable VANET 

communication and can support the ITS sector. As a result, a huge 

transformation is underway in VANET and in the ITS industry by providing 

services for cooperative driving, traffic congestion, collision avoidance, 

alternative route education, and road monitoring.  

The huge improvement in the embedded resources in vehicles made these 

vehicles a very good potential candidate that can act as a building block for 

cloud data centres. The idea of importing the cloud computing into VANET 

infrastructure started by Olariu and his colleagues in [15]. From their point of 

view, although the vehicles’ on-board capabilities are improved, these 

resources are wasted and underutilised. Vehicles are augmented with 

powerful computation, communication, positioning, storage and sensing 

resources. The computational capabilities of these vehicles can be combined 

to serve as a huge farm of mini OBUs. These resources can be a good 

infrastructure for the implementation of vehicular clouds over VANET. This 

collaboration between these two concepts resulted in three possible 

architectural frameworks, known as Vehicles using Cloud (VuC), Vehicular 

Edge Cloud (VEC), and Hybrid Vehicular Cloud (HVC). Each is described 

briefly below. 

2.2.1 Vehicles using Cloud (VuC) 

In this framework, vehicles (as end users) use the conventional cloud storage 

services to obtain traffic information. Many VANET characteristics should be 

considered such as connection reliability and vehicle velocity. In VuC, any of 

the roadside units (RSU), access points (AP), or LTE base stations can serve 
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as a gateway for vehicles to the centralised cloud. The role of vehicles in this 

architecture is to retrieve traffic information from the centralised cloud. 

Applications of VuC include vehicle system configuration, performance 

checking, traffic big data analysis, smart location-based advertisements, and 

vehicles witnesses [16], [17].  

 

2.2.2 Vehicular Edge Cloud (VEC) 

The focus in this framework is the vehicle itself, where collaborative vehicles 

act as the main computational resources replacing or complementing the 

conventional cloud. In VEC, any vehicle with a resource to share, can be part 

of this cluster after executing some initial steps based on the chosen protocol. 

The protocol facilitates how these vehicles communicate with the architecture 

controller and sets the boundaries of the cloud resource provisioning. From 

here on, these vehicles can join or leave the cloud based on predefined 

criteria. However, as the VEC is the main architecture framework in this thesis, 

more details about the VEC architecture, services, and potential applications 

will be provided further in the remaining part of this chapter. As the term VC is 

widely used in the literature to imply VEC, both terms will be used 

interchangeably in this work. 

2.2.3 Hybrid Vehicular Cloud (HVC) 

HVC is the combination of VEC and VuC where vehicles can be service 

providers and consumers in the same architecture. The applications used in 

VuC are usually Peer-to-peer (P2P) applications where the consumer vehicle 
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can communicate directly with a provider vehicle through vehicle-to-vehicle 

(V2V) protocol.  

2.4 Vehicular Cloud Architecture  

VC can be described as a layered architecture, as illustrated in Figure 2.2. 

This architecture relies on four layers, each described below. 

• Perception layer (Objects Layer): this layer consists of physical 

devices located at the edge (i.e. vehicles). The data are collected from 

objects in this layer and are aggregated to the next upper layer to be 

transferred and allocated to the available resources. Note that these 

vehicles can act as resource providers receiving requests from other 

vehicle or any other connected devices. 

• Network layer: the collected data from the object layer are sent 

through this layer to the available resources to be served. This network 

layer is responsible for the communication between the object layer 

and the service provider. It is comprised of different communication 

technologies enabling heterogeneous devices to communicate and 

transmit data. More details about the necessary standards that can be 

enabled in VC are explained in Section 2.7.3 

• Service layer: It is also called the middleware or the cloud layer. This 

layer is responsible for providing the required services for the 

aggregated data from the lower layers. It also manages the access to 

the different available resources and controls the service allocation. 
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• Application layer: This layer provides end users with services and 

applications that are processed by the lower layer. The enabled 

services are mainly based on the provided resources (IaaS), including, 

but not limited, Computing as a Service (CompaaS), Storage as a 

Service (STaaS), Sensing as a Service (SEaaS), and Networking as a 

Service (NaaS). These services are described in Section 2.6. 

Depending on the services provided, VC can offer many applications 

classified as traffic-based or cloud-based applications (explained in 

Section 2.7). 

 

Figure 2.2 Vehicular cloud layered architecture 
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2.5 Vehicular Cloud Scenarios  

The vehicular cloud architecture consists of a group of vehicles. These 

vehicles are clustered in different scenarios based on their locations and 

mobility status. Clusters can be made up of parking rows and floors in a car 

park of an urban area, shopping mall, companies, or airports. Other scenarios 

include vehicles clustered for a shorter time period compared to parking lots, 

such as at road intersections, petrol stations, and electrical charging points. 

The most challenging scenarios can be found in on-the-move vehicles where 

vehicles are treated as individual nodes or in a platooning form. This form of 

VC is challenged by vehicular mobility where its stability is dependent on the 

vehicle velocity and available connections. All VC scenarios consider these 

vehicles to be connected to the network infrastructure through a controller or 

by a connection to nearby vehicles.  

The resources of vehicles involved can be merged in a fixable and dynamic 

way to offer services to other users based on the VC scenario. Figure 2.3 

shows the different potential scenarios for VC which can be divided into two 

main categories: static VC and dynamic VC based on its location, availability 

duration, and its mobility status. These scenarios, and some related works, 

are explained and outlined next in Sections, 2.4.1 and 2.4.2. 
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Figure 2.3 Vehicular Cloud (VC) Architecture, with vehicles formed  

in static or dynamic clusters. 

 

2.4.1 Static Vehicular Cloud (SVC) 

SVC is represented by stationary vehicles that are formed and remained in a 

static status for a period of time. The static scenario started with the idea of 

parked vehicle clusters [15]. The proposed concept is based on using the 

underutilised vehicle resources in parking lots as a data centre farm. This 

scenario gives more sustained services in terms of time and space. For 

instance, in airports, vehicles may be parked for several days, making the 

capabilities of such vehicles available to transform such car parks into mini 

servers’ units at the edge of the network on a semi-permanent basis as 

departing cars are usually replaced. In such a proposal, vehicles form the data 

centre, connected to a centralised server in the airport responsible for 

assigning computation and storage tasks to these vehicles [12]. Similarly, 

short-term parked vehicles in a shopping mall [15], a company [18], or on-

street parking spaces [19] can be seen as  a small scale VC, with its available 
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resources and availability duration affected by the peak / off -peak periods of 

the day. This short-term VC can offer instant services that require less time 

and can be fulfilled with limited resources. Moreover, the vehicles in this type 

of parking lot can be good candidates to work as relay nodes to provide 

Internet connection services for nearby users [20]. As the vehicles density and 

residency duration is one of the main factors affecting the size of the resources 

and the service availability, some previous efforts were directed to analysing 

the density of the vehicles in different size parking lots and investigating its 

feasibility as a data centre [3]. Other efforts focused on the stability of the 

connection, to guarantee a reliable service provided [19]. Although the parking 

lot scenario is the main focus in SVC, other potential forms of vehicle clusters 

can be considered as opportunistic SVC. This includes vehicles at road 

intersections, vehicles stopping at petrol stations or electrical charging points 

(similar to the scenario proposed in this thesis). Vehicles in this scenario are 

available in a static mode for a short time compared to vehicles in parking lot. 

Moreover, these vehicles become a part of the edge cloud by stopping in one 

of the mentioned stops (intersection, petrol station,.. etc). This theme of SVC 

is different from the parking lot theme in its frequent arrival / departure rate 

and the varying density of vehicles over time. 

2.4.2 Dynamic Vehicular Cloud (DVC)  

DVC is formed of mobile vehicles that can be either clustered based on vehicle 

velocity or treated as individual nodes. Due to the vehicle’s dynamic 

behaviour, DVC is more challenging with regards to resource availability and 

connection stability than SVC. When vehicles are in mobile status, they need 
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to rely on multiple continuous road controllers or roadside units (RSUs) to 

keep them connected and active in the DVC. Therefore, studying the mobility  

pattern of the DVC can help with the resource management and cloud 

feasibility [21]. However, this movement is a key factor in many VANET-based 

applications which offer updated collected information for the road and the 

traffic. An example for such proposal can be found in Car4ICT [10], where a 

DVC system is introduced to allow driving vehicles to work as mobile base 

stations to enhance connection stability and to pass traffic data to road 

controllers and even to other vehicles. Using these vehicles as sensors, 

information generators, and relay nodes can play an important role in road 

safety applications [22], [23]. 

Recently, with the development of autonomous vehicles and their advanced 

on-board systems, a new form of DVC was introduced as Internet of Vehicles 

(IoV) [24], [25]. In IoV, each vehicle is considered as an intelligent object with 

full decision-making capability. Thus, it can provide the basis for a promising 

form of individual data centre [26]. Another example of IoV scenario is 

introduced in [27], [28], where moving smart vehicles are clustered as a 

platooning cloud to create a very good size moving data centre providing long-

term availability and service provision.  

The next section will discuss the most important services that can be 

introduced using vehicular clouds, proposed for both SVC and DVC scenarios. 

2.6 Vehicular Cloud Services 

The key point of VC is to complement the centralised cloud by utilising 

resources at the edge layer to provide different services to the end user or any 
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other edge devices. Accordingly, VC can offer the main three services of 

centralised cloud: IaaS, PaaS, and SaaS (which were explained earlier in 

Section 2.1). However, With the collaboration of the vehicular clustered 

resources, IaaS becomes the main service provided by VC. Thus, based on 

the contributed resources of the vehicles, different services can be introduced. 

The most common services are grouped into four main categories as follows:  

2.5.1 Computation as a Service (CompaaS) 

In this service, the computational resources (OBU processors) of a VC cluster, 

when efficiently utilised, become powerful enough to be equivalent to a 

desktop computer, or even a large processing data centre. These 

computational resources can execute certain application tasks in a distributed 

fashion instead of using the centralised conventional cloud. There is limited 

work on computation services in VC due to the challenges with evaluating 

processing allocation and completion which can affect the VC processing 

performance. However, some researchers have considered CompaaS in their 

proposed VC by evaluating the job scheduling for the processing delay [29] or 

the utilisation of parking lot space [30].  

2.5.2 Network as a Service (NaaS) 

Vehicles with connection capability can serve as an access point providing 

access to the Internet to other vehicles or end users. Therefore, connected 

VC can play an important role in providing a network as a service and in 

improving connections in urban areas. This service was introduced with 

VANET technology where the focus was to enable communication between 

vehicles and the infrastructure access points. Thus, recent studies that 
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considered NaaS have focused on the evaluation of communication protocols 

and on setting up parked vehicles as connection relay nodes [19], [20]. This 

service can also be referred to as Relaying as a Services, where vehicles act 

as access points between end-users and the main service provider. 

2.5.3 Storage as a Service (STaaS) 

Vehicle OBUs are expected to have a good and persistent storage [12], [15]. 

Although these vehicles storage resources are increasing in a tremendous 

way, they are mostly underutilised, especially in parked vehicles. These 

available resources can be used in many applications that require temporary 

storage. For example, they can be used in long-term parking lots as a 

temporary backup data centre [15]. The data centre in the airport, proposed 

in [12], can be a very promising architecture for STaaS. However, more 

studies are needed to confirm the feasibility of the storage services and to 

investigate the security and reliability with providing such service.  

2.5.4 Sensing as a Service (SEaaS) 

 According to [31], a 2013 model vehicle has on average of 70 built-in sensors 

and the number is expected to be 100 sensors in current models. The vehicles 

built-in sensors and the mobility behaviours of such vehicles can serve as a 

set of wireless sensors that collect environment and road safety information 

for many applications [32]. In addition, the mobility of the vehicle can help 

widen the geographical sensing coverage and therefore can lead to a better 

application gain. Like NaaS, sensing as a service was introduced with the 

VANET-based applications, as the involved vehicles can share the collected 

sensory data with other vehicles or the infrastructure controller [33].  
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The next section will highlight some of the potential applications that provide 

one or more of the described services. 

2.7 Vehicular Cloud Application  

Many potential VC applications were proposed and designed to deliver some 

of the previously explained services. Some of these applications were 

introduced using connected vehicles in VANET architecture, while other 

applications were introduced under the VC architecture umbrella. Currently, 

VC applications can be classified into two main categories: traffic-based and 

cloud-based applications. 

2.6.1 Traffic-based Applications  

These applications were introduced initially with VANET technology and 

gained continuous attention in the vehicular cloud context. VANET has 

received significant attention for sensing and networking based applications 

due to its communication ability in the vehicular environment. This is reflected 

also on the vehicular cloud enabled applications by employing vehicle 

resources to provide more information that can be shared with other vehicles 

or any other smart objects. Traffic signal management is one of the proposed 

application that can use vehicles to sense the congestion and send related 

information to traffic signals to optimise and re-time the signal duration based 

on the traffic density [34]. This can play an important role in releasing traffic 

congestion and can inform other vehicles about a congestion occurrence [35]. 

In addition, vehicles equipped with on-board cameras can offer on-demand 

life pictures of the road and the nearby traffic for other vehicles, which can be 
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used in road monitoring and infotainment applications [36]. More promising 

traffic-based applications are expected to arise with a major role in managing, 

predicting and processing traffic and road data. 

2.6.2 Cloud-based Applications  

Many aspects of centralised cloud-based applications have changed 

perspective since the introduction of fog distributed data centres. Likewise, 

VC are able now to utilise more vehicle resources beyond the communication 

and sensing based applications. These applications can be embedded in a 

VC architecture complemented by the centralised cloud or can work 

independent of the cloud. One of the promising scenarios in VC is the parked 

lot clustered vehicles. As introduced in Section 2.4.1, the proposed long-term 

parking VC in [12], guarantees a huge farm of vehicle resources which makes 

VC stable enough for processing and storage services. Similar scenarios with 

different parking locations and residency duration were also introduced in [19], 

[20]. With the popularity of the smart cities concept and the tremendous 

increase in the number of connected smart objects, VC can offer  additional 

resources for the mobile and IoT applications. Moreover, it becomes attractive 

to provide more advanced processing jobs for the surrounding generated 

cloud-based requests [37] such as object recognition, environmental data 

analysis, health applications, and interactive and video streaming. 

2.8 Vehicular Cloud Technologies and Key Factors 

This section highlights some of the technologies that are key in any research 

in vehicular clouds. 
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2.7.1 Smart Vehicles 

With the rapid evolution of vehicles, their OBU have become rich with a 

collection of sensors and advanced processors. The basic idea of “smart 

vehicles” started with the development of vehicles equipped with advanced 

communication and computation systems to address safety and traffic based 

applications [14]. With such advanced OBUs, vehicles can support functions 

beyond the traffic application, serving both real time and cloud-based 

applications. Moreover, with the new innovative functionalities in electrical and 

autonomous vehicles, one vehicle can work as standalone processor. This 

brings more promising potential in terms of implementing VC using such 

advance vehicular entities.  

2.7.2  Vehicles formation and clustering  

Detecting and clustering the available participating vehicles is a major part of 

establishing a vehicular cloud. Providing a stable connection and reliable 

communication is a key factor in building a stable cluster and therefore a 

reliable framework for VC applications. Such a process usually starts with 

identifying a cluster head so vehicles can communicate with such a cluster 

head in order to join or leave the cloud. This cluster head works as a 

coordinator and maintains the opportunistic behavior of the vehicles. The 

cluster head can be a fixed controller (RSU or AP) [38], or any other vehicle 

[39]. The technique that can be used to choose the head of the cluster to 

coordinate the vehicles communication has a great impact on the stability of 

the clustered vehicles [40]. Moreover, engaging the clustering techniques to 

form groups of nodes can greatly improve the performance of vehicular 
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networks [39]. Many efforts have contributed to the vehicular cloud cluster 

formation, surveyed in [41]. Regardless the executed technique, the setup of 

clustering consists of four main steps [53], as follow: 

1- Resource discovery, this is the initial step where a cluster head starts to 

identify nearby potential vehicles that can become part of the cluster. This 

includes the communication process and establishing the connection between 

the head and other vehicles. 

2- Cloud formation, when the cluster head confirms the accepted vehicles. it 

will store their information and manage allocating tasks to the participant 

vehicles. 

3- Cloud maintenance, the cluster head keep maintaining the process of 

joining and leaving of the vehicles, and reforming the cloud at different times 

when needed.  

4- Resource release, this is when the cluster head indicates the end of the 

cluster or the exit of a vehicle from this cluster. 

2.7.3 Wireless Communication  

Communication quality in edge layer entities is considered a crucial factor of 

enabling vehicular cloud. Three major design features should be considered 

in any vehicle network. First, vehicles need to integrate components of 

different ad hoc technologies such as WiFi, WiMax, Bluetooth, 5G, and LTE 

to achieve a stable and efficient communication [42]. Second, the vehicle 

network employs different positioning technologies to acquire real-time 

locations of the vehicles [43]. Lastly, data forwarding, and routing techniques 

are used in vehicular network [44]. 
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Figure 2.4 shows a communication setup that can support the vehicular based 

environment. Vehicles communication can begin for example by employing 

Dedicated Short-Range Communication (DSRC) technology, developed by 

the IEEE wireless access in vehicular environments (WAVE) working group 

as IEEE 802.11p standard. Two communications modes play part in DSRC 

communication. The first mode, vehicle-to-vehicle (V2V), operates in an 

autonomous way with other vehicles, where there is no need for a 

communication infrastructure. The other communication mode: vehicle-to-

infrastructure (V2I), where the vehicles need a static infrastructure equipped 

with a powerful device (access point, base station, or roadside unit) to help 

vehicles communicate with the infrastructure.  

 

Figure 2.4 Vehicular cloud communication modes 

However, as the IEEE 802.11p standard (WAVE) has a limited data rate, the 

increase in the number of connected vehicles or generated traffic becomes an 

issue [45]. Thus, it becomes a challenge to operates these vehicles as cloud 

resource entities with a limited data rate and unstable connection. Conversely, 
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conventional Wi-Fi (IEEE 802.11b/g/n) connection can provide the vehicle 

with the required high bandwidth at the expense of more energy. Despite this, 

conventional Wi-Fi can cope with the increased traffic and can guarantee a 

high throughput. The low power extended version of the Wi-Fi (IEEE 802.11 

ah) and low power wide area network (LPWAN) can be energy efficient 

replacements to the conventional Wi-Fi, but with lower data rates. This may 

be detrimental for such protocol, particularly with high demand in multimedia 

applications at the edge network. Currently, with the rapid improvement in 

cellular technologies and the resultant high reliability and faster data rate,  

cellular networks become a very promising medium for such framework. 

However, cellular networks have a higher power consumption influenced by 

the LTE and 5G base station [46]. 

2.7.4 Virtualisation  

Virtualisation, in essence, is the abstraction of the physical resources such as 

processors and storage in order to map different logical partitions (virtual 

machines) into a single physical resource. IaaS is considered a typical 

example of virtualisation where a service provider offers virtualised physical 

resources (e.g. processors) to its customers. Virtualisation allow vehicles to 

migrate to cloud environment by sharing their OBU resources between many 

customers including the vehicle owner in an isolated manner [47]. This helps 

in providing a privacy level in the allocated requests to the vehicle processer 

and privacy to the vehicle owner data. As one of the main reasons of using 

vehicles is to utilise their unused resources, by creating multiple virtual 

machines (VMs) in the vehicle processor, this helps in increasing the 
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utilisation of the vehicle processors and can reduce the number of physical 

resources used. However, as a single OBU has a limited resource capability 

compared to conventional cloud servers, one VM can group multiple OBU 

resources in one virtual pool to be used as one resource entity [34]. Moreover, 

due to the dynamics of vehicles and therefore the instability of the VM 

resources, virtual nodes migration was proposed to migrate the VM from one 

vehicle to another and therefore avoid processing interruptions of the 

allocated workload [48], [49].   

2.9 Vehicular Cloud Challenges    

In this section, we highlight some of the main challenges that need to be 

addressed in order to successfully implement vehicular clouds. 

1- Transport information: Current studies on vehicular clouds assume 

statistics for the arrival and departure of vehicles in certain road intersections 

and car parks. Detailed and accurate transport information is needed to 

provide realistic evaluation of multiple VC scenarios. These transport studies 

can model the flow of vehicles in cities using real city layouts and calibrated 

transport models used in vehicular flow studies and in city planning. These 

studies can be carried out at fine time scales down to milliseconds and for 

time durations in the order of hours, days and weeks. This can lead to the 

establishment of accurate statistics of the opportunities for VCs to form in 

streets, at intersections, at car parks together with the expected durations and 

capabilities of such VCs.  
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2. Dynamic nature of vehicles, VC can be formed in static or mobile 

scenarios as explained in Section 2.5. The opportunistic and dynamic 

behaviour of the vehicles brings a real challenge when establishing the 

formation of VC clusters and maintaining the stability of their communication. 

Models predicting the number of vehicles [50], their arrival and departure [51], 

and their accurate location [52], can help in estimating the amount of available 

resources and maintaining reliability of the requests scheduling. 

3. Incentive and rental cost: A major requirement when implementing VCs 

in practice is to identify mechanisms that can be used to encourage vehicle 

owners to participate and offer their vehicle’s resources. These owners need 

to be rewarded properly for the rented resources. Building a solid incentive 

model can help ensure the participation and commitment of vehicles owners. 

Moreover, setting the model to know who will pay and who will be charged for 

what can be a key factor to achieve success in establishing VCs.  

4. Security and privacy: VC services rely on using the in-vehicles resources 

in a shared mode. This includes accessing the vehicle processors and 

communication system, which may cause critical issues regarding the security 

of the processed data, privacy of owner information, and safety of vehicle 

operation. Security and privacy are very crucial and important in any 

communication system. Due to the vehicle mobility and the VC heterogeneous 

network, providing security and privacy through all these communication 

technologies is a major challenge. Examples of security and privacy 

challenges in VC include vehicles identity management, owner personal 

information, and vehicles authentication [53]. Applying virtualisation 
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techniques in vehicles will divide the physical resources into many small virtual 

resources (i.e. processors). These virtual processors will run independently of 

each other, and isolated from the main vehicle processor. Therefore, 

virtualisation may help deliver the required isolation in sharing resources to 

guarantee a level of security for both vehicle owner and request provider [54]. 

4. Reliability and dependability: Reliability is essential when VC is to be 

implemented in practice. The dynamic nature of vehicular flow implies that VC 

availability will be variable and will be dictated by factors beyond the network 

itself. This presents a new challenge as the usual communication setting 

assumes that the network resources, including computational, sensing and 

storage resources are deterministic, known and available. The availability of 

these resources is stochastic in nature in VC posing new challenges. 

Moreover, providing independent VC service provisioning is a real challenge. 

Current solutions to guarantee reliability include using fixed fog to ensure a 

minimum level of service and to provide dependant support for the VC.  

7. Standardisation: As discussed previously in Section 2.7.3, VC rely on 

heterogeneous communication infrastructure. Moreover, clustering a group of 

vehicles may include heterogeneous processors and technologies. Therefore, 

standardisation is a key challenge for the uptake of the VC concept in terms 

of network architecture, routing protocols and algorithms for the 

establishment, management and disintegration of VC. In addition, 

standardisation of usage, measurement and monitoring is essential for 

rewards and reliability. 
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2.10 Summary 

Vehicular cloud is a very promising cloud-based framework. This chapter has 

provided a detailed overview of VC as it is the main part of the architecture 

proposed in this thesis. A brief description of the different processing layers 

has been given to understand how resources differ between these layers. 

Also, the architecture of VC has been discussed with illustration of the different 

frameworks and scenarios that can shape the VC. To understand how the 

idea of VC can be effective in the edge network, a summary of  potential 

services and applications that can be provided has been given. In addition, a 

brief description of the technologies that need to be embedded in VC are 

highlighted. Finally, the chapter was concluded by listing several challenges 

facing VC. 

The focus of this thesis is to investigate the processing allocation in vehicular-

based edge cloud. Thus, the network in this work is assumed to include 

vehicles in a static form, in order to highlight the feasibility of vehicles as 

processing nodes and study the energy efficiency and delay of the proposed 

processing allocation model. Mobility of vehicles is a major challenge in such 

framework. Therefore, studying potential processing migration techniques for 

mobile can be the next step to the current study. As an alternative approach, 

the opportunism characteristic can be studied by assuming varying densities 

of available vehicles to capture different periods over the day. Other 

challenges that can be tackled in the future for the current allocation model, 

including security, privacy, mobility, and incentive award modelling.        
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Next chapter will discuss the processing allocation and the advantage of using 

edge processing to improve network energy efficiency. Moreover, some of the 

VC optimisation related work will be also reviewed.  
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Chapter 3  

Related Work in Processing Allocation and Energy 

Efficiency  

3.1 Introduction  

Resource management is the process of dealing with provisioning, 

discovering, scheduling, allocating, and monitoring data centres’ resources. 

This area is considered an important part of any cloud framework, and equally 

important, in vehicular cloud (VC). Resources in vehicles (OBU storage, 

processors, sensors, communication devices) are clustered and managed in 

the local environment of the vehicles at the edge layer. Providing resource 

management at the edge can increase the speed of decision making and can 

minimise communication costs. Moreover, one of the advantages of 

processing tasks at the edge (i.e., in VC) is that it makes it possible to deliver 

reliable and good service for the end user. Thus, it is important for research 

to focus on how to schedule tasks for potential resources and allocate these 

tasks to the resources that are available. Many previous studies have focused 

on resource management and the scheduling of processing in distributed 

clouds at the edge, which are summarised in [55], [56]. Yet, there are few 

recent efforts that have tackled this challenge in relation to the VC.  

In this chapter, we explore the research efforts that have been developed to 

study, investigate, and optimise the processing allocation in VC architecture. 

Moreover, we summarise the studies that have considered energy efficient 

allocation and delay-aware considerations. In Section 3.2, we highlight the 

importance of energy efficiency in the ICT sector and edge computing, which 

motivates us to consider energy efficiency in this thesis. In Section 0, we 
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summarise some of the optimisation efforts that have been proposed for the 

vehicular cloud, with a focus on the efforts that consider energy efficiency in 

VC. 

3.2 Energy Efficiency and Edge Computing 

The main clouds in the Internet use thousands of servers and hardware from 

several data centres to process all the application requests that come from 

users. Cloud applications that are hosted by these data centres consume a 

large amount of energy for processing and for cooling the hardware [57]. 

Power consumption has been escalating along with the rapidly increasing use 

of cloud infrastructure. It is estimated that ICT technologies will be responsible 

for up to 12% of global emissions by 2030 [2]. Accordingly, issues relating to 

greening the ICT sector have received more attention in recent years. There 

is a growing recognition of the need for more research to develop green cloud 

computing infrastructure in order to save energy and reduce the negative 

impact of this power expenditure on the environment. Providing energy 

efficient and reliable network infrastructure has been the main focus of 

attention in recent years, which has highlighted the need for more research to 

develop new architecture and solutions that will provide robust and energy 

efficient infrastructure. Previous research efforts have contributed solutions 

for reducing the power consumption of cloud data centres and core networks 

[58], and have considered many research approaches, including virtualisation 

[59], network design and optimisation [60], content distribution [61], and 

renewable energy [62].  
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Recent proposed solutions include building decentralised architectures that 

integrate distributed edge servers in order to mitigate the traffic burden on 

central data centres, and thus save more energy [63]. Moreover, as these 

distributed data centres provide access to the computational resources in 

distributed servers at the edge of the network, they provide cloud-based 

services that are in close proximity to the end user. Hence, edge computing 

offers a good solution for the conventional cloud to offload its processing 

workload to these distributed servers and therefore, save power. Thus, it is 

very important to make sure that as these mini data centres are built, it is taken 

into consideration that they should not significantly increase the power 

overhead in the ICT sector. Based on this idea, many research efforts have 

been focused on investigating different architectural and network designs. 

Moreover, efforts have been made to investigate and solve optimisation 

problems in resource management and workload allocation in order to achieve 

energy efficient data centres that are at the edge of the network. Most of the 

studies already conducted have focused on fixed distributed servers. For 

example, in the study presented in [64], the authors studied and analysed the 

energy efficiency of processing applications in nano data centres compared 

to those in the central cloud. Their study shows that there are many factors 

that affect the efficiency of the nano data centre, such as the server’s location, 

the equipment of the access network, and the number of user requests. Other 

studies, however, have focused on utilising available ICT resources, such as 

nano datacentres, considering the power consumed for such a framework. 

This research area mainly focuses on utilising distributed resources, such as 

IoT nodes [65], smartphones [66], and other mobile devices, including 
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vehicles. Many researchers have also focused on the area of mobile cloud 

computing to investigate energy consumption. The main concerns regarding 

this framework involve the limited power resources of the mobile devices and 

the ways in which they can be used as distributed processing units, given their 

limited power supply [66]. Other efforts relating to energy consumption in 

mobile cloud computing (MCC) are summarised in [67]. Fewer studies have 

focused on investigating energy efficient network proposals, including those 

using vehicles as distributed servers. In the next section, we summarise some 

of the optimisation efforts that have been proposed for the vehicular cloud, 

with a focus on those that investigate the energy efficiency relating to building 

cloud infrastructure using vehicle-based processing.  

3.3 Mixed Integer Linear Programming (MILP) modeling 

Optimisation is the concept of analyzing many complex decisions in order to 

solve a mathematical problem. In other word, it will select inputs that will result 

in the best possible outputs (i.e. deciding on the most effective allocation of 

available resources to achieve a design with the least power consumption). 

To find the answers to most optimisation problems, we need to use a special 

type of program called an optimisation algorithm (or techniques). Optimisation 

problems often involve the words maximise or minimise. They also consider 

limits or constraints on the resources involved or boundaries restricting the 

possible solutions.  In all optimisation problems, two parts are needed to solve 

a mathematical problem. The first part is the objective function, which is the 

value that the optimisation program need to optimise (minimise or maximise) 

to get the optimal value. This objective includes a decision variable (also 
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referred to as design variable) and it involves one or more value that the 

optimisation algorithm is allowed to choose or change during the optimisation 

process. The second part of the optimisation problem is the list of constraints 

that the program needs to satisfy in order to find the optimum solution for the 

objective function.  

Mixed Integer Linear programming (MILP) is the most common optimisation 

problems. A Linear programming problem is represented as linear objective 

function and linear constraints. It is commonly used because of its simple 

formulation syntax and the easiness to implement and upgrade [68]. It can 

increase problem complexity with the need of linearisation for some complex 

non-linear formulas. However, It is faster to run and get an optimal solution 

using linear solvers compared to using non-linear solvers. For all these 

reasons, linear programming is chosen in this thesis to implement the 

processing allocation problem and evaluate the energy efficiency in the 

considered architecture. 

3.3.1 General format of a linear program 

As any optimisation problem, A linear program consists of a linear objective 

function that is minimised or maximised, a set of decision variables, and a set 

of linear constraints. Each constraint is to be within a certain boundary. An 

optimum solution (feasible point) is constructed from the objective function 

satisfying all constraints. The standard form of a linear problem can be written 

as:   

Minimise (or Maximise) 
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𝐹 = 𝑐1𝑥1 +  𝑐2𝑥2 + .  .  .  . + 𝑐𝑛𝑥𝑛 

Subject to  

𝑎11𝑥1 +  𝑎12𝑥2 + .  .  .  . + 𝑎1𝑛𝑥𝑛    ≤   𝑏1 

𝑎21𝑥1 +  𝑎22𝑥2 + .  .  .  . + 𝑎2𝑛𝑥𝑛    ≤   𝑏2 

.  .  .  . 

𝑎𝑛1𝑥1 +  𝑎𝑛2𝑥2 + .  .  .  . + 𝑎𝑛𝑛𝑥𝑛    ≤   𝑏𝑛 

𝑥1  ≥   0 , 𝑥2   ≥   0 ,   .  .  .  .   , 𝑥𝑛   ≥   0 

where 𝐹 is the objective function (to be minimise or maximise, and 𝑥 

represents one or more decision variables. Looking to the objective value is 

one of the most common ways to tell how well an optimisation has worked. In 

the case where there are multiple objectives, they are usually summed, 

multiplied, or otherwise combined to form a single value. Normally, the 

decision variables are continuous. If some or all of them are constrained to 

integers, the problem, then, is called mixed integer linear programming 

(MILP). The more decision variables there are, the more difficult an 

optimisation problem becomes to solve. Constraints define limitations on the 

set of feasible solutions. Some of the essential constraints to every network 

design problem include link and node capacity constraints, and flow 

conservation constraints.  

The MILP optimisation problem uses certain software packages to implement 

and solve such problems. The most popular software is the AMPL (A 

Mathematical Programming Language) [69]. The AMPL/CPLEX solver was 

used to solve the proposed MILP models on a Intel(R) Core i5 CPU at 3.2GHz 

with 16GB RAM, or in a High Performance Computing cluster with 16 cores 

and 256 GB RAM. 
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3.3.2 Example of network modelling problems 

For more details about the MILP modelling and notations, this section will 

discuss two examples of common network design problems that were solved 

using linear programming and considered in the model proposed in this thesis.  

3.3.2.1 Link-Path Formulation 

In this example, we consider a simple network of three nodes where each 

node is connected to the other two nodes, as shown in Figure 3.1(a). A path 

between any two nodes can be defined as the sequence of links that network 

demand can travel from the source node to the destination node. Assuming 

that both demands and links are bi-directional, different paths can carry out 

demands flow in the given network, as illustrated in Figure 3.1(b).  

 

Suppose that the demand volume between any two nodes 𝑖𝑗 is assumed to 

be bi-directional, and denoted as ℎ𝑖𝑗. Thus, we consider the following three 

demand volumes: 

ℎ12 = 5,           ℎ13 = 7, ℎ23 = 8 

  Figure 3.1 Link-path formulation example for three nodes network 
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The demand volume for the demand pair (1,2) can be routed over two paths. 

The first path is the direct link route 1-2 and the second path 1-3-2 via node 

3, as shown in Figure 3.1b. Similarly, the demand volume for the other two 

pairs (1,3) and (2,3) each can be routed via two different paths. Using 𝑥 to 

denote the amount of flow traffic on each path, we can formulate the demand 

volume as :  

𝑥12 +  𝑥132 = ℎ12 =  5 

𝑥13 +  𝑥123 = ℎ13 =  7 

𝑥23 +  𝑥213 = ℎ23 =  8 

Considering the fact that the path-flows are non-negative for all paths (i.e. 𝑥 ≥

0), the demand volume should not exceed the capacity for each link. We will 

use 𝑐𝑖𝑗 to denote the capacity of each link connecting any two nodes 𝑖𝑗. 

Accordingly, the capacity formulation can be written as: 

𝑥12 +  𝑥132 +  𝑥213 ≤ 𝑐12  

𝑥132 + 𝑥13 +  𝑥213 ≤ 𝑐13  

𝑥132 +  𝑥123 +  𝑥23 ≤ 𝑐23 

Lets assume that the capacity of the first two links is 10 (𝑐12 =  𝑐13 = 10) and 

the third link is 15 (𝑐23 = 15) 

Suppose our objective function in this problem is to minimise the total routing 

cost, and the cost for each individual link is set to 1. Thus the total routing 

cost for all flow variables can be written as: 

𝐹 = 𝑥12 +   2𝑥132 +   𝑥13 +  2𝑥123 +  𝑥23 +  2𝑥213 

Finally, the minimisation problem of the path-link formulation is: 

Minimise  
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𝐹 = 𝑥12 +   2𝑥132 +   𝑥13 +  2𝑥123 +  𝑥23 +  2𝑥213 

Subject to: 

According to the giving input values, the optimal solution and optimal cost 

resulted from the above optimisation model is: 

𝑥12 = 5,     𝑥13 = 7,   𝑥23 = 8,   𝑥123 = 𝑥132 = 𝑥213 = 0,     𝐹 = 20 

3.3.2.2 Node-Link Formulation 

In this problem, the described formulation is valid when both demands and 

links are directed. Considering the demand flow in each link from a node 

perspective, the traffic flow entering a node must be equal to the traffic flow 

leaving the same node. In other word, the total outgoing traffic flow minus the 

incoming traffic, for any intermediate node, must be zero. In case of a source 

node, the total outgoing flow minus the incoming flow must be equal to the 

demand volume. For the destination node, the total incoming flow minus the 

outgoing flow must equal to the demand volume. This is referred to as flow 

conservation. For the source node, excluding the source and destination 

nodes). Figure 3.2 illustrates the flow conservation at each node in the three 

nodes network for a demand sent from node 1 to node 2. In this figure ℎ12 

represents the demand volume sent from node 1 and destined to node 2. The 

 

𝑥12   +    𝑥132                                                                    =  5 

𝑥13  +    𝑥123                                   =  7 

𝑥23  +  𝑥213   =  8 

𝑥12   +   𝑥132                                                  +  𝑥213 ≤ 10 

𝑥132 +  𝑥13                                   +  𝑥213 ≤ 10 

𝑥132                 +   𝑥123  +  𝑥23                 ≤ 15 

𝑥12, 𝑥132,𝑥13 , 𝑥123 ,𝑥23 , 𝑥213  ≥ 0 
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traffic flow of the demand (1,2) directed through the link 𝑖𝑗 is represented as 

𝑥𝑖𝑗,12. For the given three nodes network, Figure 3.2 (a) shows that the 

originating demand at source node 1 ℎ12 has two outgoing arcs: the first arc 

directed to node 2 (𝑥12,12), and the second arc directed to node 3 (𝑥13,12). The 

intermediate node 3, in Figure 3.2 (b), has one incoming directed arc from 

node 1 (𝑥13,12) and one outgoing directed arc to node 2 (𝑥32,12). Finally, the 

destination node 2 in Figure 3.2 (c), has two possible incoming arc from node 

1 and 3 represented as (𝑥12,12) and (𝑥32,12), respectively. 

 
  Figure 3.2 Flow conservation illustration for the three nodes network 

Applying the flow conservation definition described earlier, we can write the 

node-link formulation for each node as the following: 

For  node 1 (source node):          − ℎ12 − 𝑥21,12 − 𝑥31,12 +  𝑥12,12 +  𝑥13,12 = 0. 

For node 3 (intermediate node):  −𝑥13,12 − 𝑥23,12 +  𝑥31,12 +  𝑥32,12 = 0. 

For node 2 (destination node):     −𝑥12,12 − 𝑥32,12 +   ℎ12 +  𝑥21,12 +  𝑥23,12 = 0. 

Taking into consideration the assumption of directed link, the incoming traffic 

at source node 1 and outgoing traffic from destination node 2 are equal to 0. 

𝑥21,12 = 0, 𝑥31,12 = 0, 𝑥23,12 = 0 
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Using the above formulations, we can write the flow conservation equations 

for the demand (1,2) as:  

Considering available demands from node 1 to node 3 (1,3), and from node 2 

to node 3 (2,3), we can also write the flow conservation for both demands as:  

Considering the capacity of each link, the total traffic flow between any two 

node traversing a link should not exceeds the capacity of the link. This 

constraints can be written for all three links as: 

Putting together all the above explained equations, we can formulate the 

node-link problem as an optimisation problem to minimise the cost, as the 

following: 

Minimise  

𝐹 = 𝑥12,12 + 𝑥13,12 + 𝑥32,12 + 𝑥12,13 + 𝑥13,13 + 𝑥23,13 + 𝑥21,23 + 𝑥13,23 + 𝑥23,23 

Subject to 

𝑥12,12   +   𝑥13,12                        =     ℎ12 

−  𝑥13,12    +  𝑥32,12    =         0 

−𝑥12,12                      −   𝑥32,12   =  −ℎ12 

𝑥12,13   +   𝑥13,13                        =     ℎ13 

−  𝑥12,13                        +  𝑥23,13    =         0 

− 𝑥13,13   −  𝑥23,13   =  −ℎ13 

𝑥21,23                   +   𝑥23,23    =     ℎ23 

−  𝑥21,23    +  𝑥13,23                      =         0 

−𝑥13,23    −   𝑥23,23   =  −ℎ23 

𝑥21,12  +   𝑥12,13    ≤     𝑐12 

𝑥13,12   +   𝑥13,13  +    𝑥13,23  ≤     𝑐13 

𝑥13,12  +   𝑥13,13  +   𝑥13,23   ≤    𝑐32 
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3.4 Optimisation Modelling in Vehicular Clouds  

In this section, we will summarise previous research on optimisation work 

relating to the vehicular cloud. Moreover, we will highlight the efforts that have 

been made to minimise energy consumption, considering aspects such as 

service delay, vehicle density, workload volume, and application variety. 

These research studies are summarised in Table 3.1  based on the processing 

layers, the objective, and other considerations that are related to the work 

proposed in this thesis.  

 

 

 

 

𝑥12,12  +   𝑥13,12                                                                                                                                   =     ℎ12 

−  𝑥13,12   +  𝑥32,12                                                                                                                =         0 

−𝑥12,12                      −   𝑥32,12                                                                                                               =  −ℎ12 

𝑥12,13   +   𝑥13,13                                                                           =     ℎ13 

−  𝑥12,13                     + 𝑥23,13                                                       =         0 

− 𝑥13,13   −  𝑥23,13                                                      =  −ℎ13 

𝑥21,23                    +   𝑥23,23   =     ℎ23 

−  𝑥21,23    +  𝑥13,23                      =         0 

−𝑥13,23    −  𝑥23,23   =  −ℎ23 

𝑥12,12                                        +   𝑥12,13                                                                                          ≤     𝑐12 

  𝑥21,23                                          ≤     𝑐21 

𝑥13,12                                             + 𝑥13,13                                +  𝑥13,23                     ≤     𝑐13 

   𝑥23,13                          +    𝑥23,23   ≤    𝑐23 

      𝑥32,12                                                                                                              ≤    𝑐32 

Recall that all 𝑥 ≥ 0  
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Table 3.1 Summary of the surveyed literature of VC optimisation modelling 

considering the aspects investigated in this thesis.  

Study 

Processing location Modelling consideration 

Central 

cloud 

Distributed 

fog  

Vehicular 

cloud 

Energy 

minimisation  

Delay 

minimisation  

Splittable 

allocation 

Software 

allocation 

Vehicle 

density 

[70] √ - √ -     * - - √ - 

[71] - - √ -     * - - √ - 

[72] - - √ -     * - - - - 

[73] √ √ √ √ √ - - - 

[74] - √ √ √ √ - - - 

[75] √ √ √ √ √ - - - 

[76] - √ √ - √ - - √ 

[77] - - √ - √ √ - √ 

[78] - - √ - √ √ - - 

          * Generic cost minimisation 

3.3.3 Cost-based optimisation 

In any cloud system, the costs include a measurement of the amount of 

resources used to provide a service for a user. In the case of distributed 

processing that uses edge servers (i.e. vehicles) that are owned by other 

users, the resource provisioning comes with an operational cost of the network 

infrastructure and a server’s owner rental (reward) cost.  

Thus, most of the optimisation efforts in the vehicular cloud focus on providing 

a distributed system with efficient, cost-accurate models by either minimising 

the operational cost or maximising the reward cost for the servers’ owners. As 

reward cost is beyond this thesis scope, we will summarise some of the 

optimisation models that involve a proposed cost-minimisation model. In 

addition, as energy is considered one of the cost measurements, we will 

discuss the work focused in minimising network in VC. Moreover, we will 

highlight the few studies that investigate energy as an optimisation measure 
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in VC. Then, we will give a brief summary of the work that focuses on 

maximising user rental costs. 

The work in [70] proposed a generic optimisation model for storage allocation 

in parked vehicles to minimise the total communication cost. The allocation 

problem considered forwarding video-on-demand requests to vehicles that 

had the required video available. The minimised communication costs 

included request service costs and management costs. The video request was 

allocated to a vehicle based on the probability of that vehicle having the 

requested video cache available. The authors’ proposed optimisation model 

was mathematically analysed and developed through multiple management 

policies based on replicating (or not replicating) the video-cached copies 

among the available vehicles. Their results conclude that the communication 

costs are reduced by increasing the number of available vehicles, thereby 

reducing the number of downloaded cache replicas. This work only 

considered the costs of downloading the video cache into the vehicle. 

Moreover, no further details were given about the optimisation model, the 

developed algorithm, or the system’s infrastructure. 

In a similar work, the authors of [71] optimise job allocation based on the 

requested service type. The developed model minimises the job completion 

cost, which is a function of the communication and computing costs of the 

allocated task. The total cost was formulated using mixed integer non-linear 

programming (MINLP). The proposed allocation relies on choosing the 

optimum vehicle to offload the processing workload from the road-side unit 

(RSU), considering pre-defined predicted vehicle mobility algorithms. The 

proposed optimisation model was proven to have better total cost compared 
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to a conventional case, where each processing job was allocated to all 

available vehicles surrounding the RSU. This work found that in-vehicle 

processing reduces the burden of the RSU. However, the proposed system 

cannot guarantee reliable service delivery by considering processing only 

from opportunistic vehicles or the limited-resourced RSU. 

The authors of [72] also proposed a generic cost minimisation based on a 

time-scheduling optimisation model in order to satisfy task completion. They 

executed the model using binary integer programming (BIP) and included both 

processing and networking costs, taking into account two available 

communication mediums (WAVE and 3G / 4G). They consider tasks that are 

executed in independent and parallel rounds in order to capture different time 

slots and to study dynamic resource variability (i.e. vehicles’ resources). The 

model works under the assumption that each task is processed only in one 

location, which restricts the type of application that can be accommodated in 

such a system. The findings of the proposed work show that vehicles with a 

WAVE connection can offer low-cost processing. However, connection 

stability and limited capacity can be an issue in terms of service reliability.  

Few studies have investigated energy efficiency in VC-based optimisation 

models. However, in [73], the authors tackled the problem of offloading from 

smartphones to another processing node in order to reduce the computational 

overhead of the limited smartphone processors. They developed a flexible 

offloading algorithm to optimise the task-computing placement between the 

smartphone (locally), central cloud, cloudlet server, or VC. In each allocation 

placement, they assessed the energy consumed and response time with 

multiple capacities of processing locations and multiple input sizes. Their 
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proposed algorithm gives priority to processing tasks in the central cloud and 

in cloudlet locations. It offloads the task to VC only in cases where both other 

locations do not satisfy the capacity or time demands of the task. Their findings 

show that the allocation of tasks to VC creates the lowest delay in most input 

sets (except for those with very high-demand traffic) and achieves the lowest 

response time compared to the other processing locations.  

The authors in [74] presented another attempt to minimise energy 

consumption by optimising the task-offloading decision in the VC framework. 

Their proposed framework consists of distributed servers in RSU and 

collocated vehicles, with each RSU also working as a processing resource. 

The vehicles are assumed to be a user that generates requests to be 

processed locally or offloaded to an RSU or another vehicle if the request 

exceeds its limited processor capacity. The model optimises this decision by 

minimising the total energy consumed, which includes the local processing 

energy, the offload transmission energy, and the processing energy in either 

the RSU or the vehicle’s processor. In addition, the model considers the 

processing time constraints of some of the generated tasks. An extensive 

mathematical analysis was given of the offloading problem, and energy 

consumption was analysed based on the portion of the offloaded workload 

and the assumed transmission power of the RSU and vehicles’ access point. 

Using a different approach, some researchers developed a joint optimisation 

model that has more than one objective. For example, the authors in [75] 

proposed a fitness estimation model to allocate tasks to a network of three 

layers, which include the central cloud, cloudlet nodes, and VC. This model 

was designed using three objectives to minimise network delay, minimise 
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power consumption, and maximise the availability of the processing resources 

(as virtual machines). The total network delay is calculated from the 

propagation, queuing, transmission, and processing delay. The queuing delay 

considered is based on the waiting time of the processing tasks in each 

processor and is calculated from the total execution time. This is the same for 

the power consumption, which is calculated only based on the power needed 

to execute each allocated task. The study mainly focused on the proposed 

fitness estimation model, which studied the capability of the available 

resources and their availability, a problem that is considered a challenge due 

to the vehicles’ mobility.  

3.3.4 Delay-based optimisation  

In this section, we explore some optimisation efforts that have been carried 

out in order to minimise service delay. These efforts exist in the context of time 

or delay for workload processing, response, transmission, propagation, and 

queuing.  

The work in [76] proposed a joint optimisation model for task allocation, to 

minimise service delay and quality loss. The optimisation model considered 

the presence and absence of a fog node and its capacity within the studied 

area. They minimised the maximum service delay which is composed of the 

time needed for transmission and processing, considering the maximum 

tolerable delay for video streaming applications. The authors investigated the 

trade-off between the service delay and the computing quality loss ratio and 

achieved a balanced optimisation between the two objectives. Due to the 

model complexity in testing real time traffic, they based their evaluation on an 
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optimisation-based heuristic algorithm considering two periods with different 

vehicle densities. Their results found that the developed algorithm reduced 

the service delay by up to 27% and enhanced the quality loss ratio by 56%. 

The study in [77] proposed a reliable task scheduling model in the vehicular 

cloud in order to minimise the execution time and satisfy job deadline using 

mixed integer linear programming (MILP). They considered the MapReduce 

execution model to distribute big data processing jobs among the available 

vehicles without considering any fixed node. This allocation was made by the 

VC cluster head, which is a selective vehicle located around the participant 

vehicles. As these vehicles are in a dynamic mode, the quality of the provided 

service depends on how reliable the connection is with the cluster head, and 

how much time is needed to process and send the output back to this cluster 

head. These two factors were investigated by minimising the response delay 

and maximising the success probability. The optimised model was also 

developed using a simulation-based algorithm to test the solution, one that 

considered vehicle density and an increase in the level of collision in order to 

study the system’s reliability. It was found that the increased number of 

vehicles reduced the job execution time and increased the percentage of 

successful job execution. In conclusion, the proposed scheduling solution 

achieved a faster time and satisfied the required level of reliability.  

In another study in [78], the authors proposed an efficient task-scheduling 

model in the vehicular cloud to minimise the average completion time. In the 

proposed VC scenario, a fixed fog node offloaded a job (divided into many 

tasks) to the available surrounded VC cluster. The tasks are offloaded 

simultaneously and processed in parallel, where each vehicle executes a task, 
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sends the generated output to the vehicle executing the next task, and so on. 

The minimised delay in the proposed model consists of processing time, 

communication time and queuing time. The latter time is calculated based on 

the generation time of the first task, the processing time, and the completion 

time of the last task. The evaluated results are based on a comparison 

between the optimisation-based developed algorithm and the previous 

algorithm from their literature (greedy algorithm). It is found that their 

developed algorithm can reduce the average response time by 12% compared 

to the greedy algorithm. 

3.5 Summary 

This chapter has provided a brief overview of resource management and 

processing allocation in distributed data centres. Moreover, it highlighted the 

importance of energy efficiency in the ICT sector and how efforts have evolved 

in edge computing architecture generally, and in the vehicular cloud, 

specifically. The chapter also presented a summary of some of the previous 

work that has been proposed in the area of allocation optimisation models in 

the vehicular cloud. Two aspects of optimisation problems were highlighted 

that offer a minimisation of power consumption or service delay. With this 

background, Chapter 4 considers our vehicular edge cloud architecture and 

the optimum allocation of processing tasks to minimise power consumption.  
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Chapter 4  

Energy Efficient Processing Allocation in Opportunistic 

Vehicular Edge Clouds 

4.1 Introduction 

The huge growth in increasingly connected edge devices and resource hungry 

applications calls for more proposals in distributed processing systems to 

offload the computational burden in the centralized data centres, and to 

improve the performance of applications. Distributed cloud platforms can be 

composed from any available user-owned resources that allow processing, 

storage, networking and sensing. Following this concept, vehicular clouds can 

be formed if the vehicle on-board processing, storage, and sensing devices 

are clustered together to form short-term cloud units composed of many 

vehicles (each vehicle effectively acting as a server in a mobile micro data 

centre) at the edge of the network [3]. Furthermore, considering these edge 

entities as a Computing as a Service (CompaaS) providers can help in turning 

these vehicles from service consumer to cloud-based provider for many 

applications that are generated from the surrounding connected entities. 

In this chapter, we consider a Vehicular Edge Cloud (VEC) based architecture, 

where a group of vehicles in a car park, at a charging station or at a traffic 

signals intersection, cluster and form a temporal vehicular cloud by combining 

their computational resources in the cluster, as illustrated in Figure 4.1. The 

aim of the VEC is to exploit the underutilised computational resources in 

vehicles’ on-board units (OBUs) and to increase the distributed processing 

resources to serve the demands required by a smart city environment. This 

architecture is integrated into a multi-layer fog mini data centre and supported 
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by a central cloud data centre. All the considered cloud-fog-edge resources, 

referred to as processing nodes (PNs), act as a service provider for smart 

cities’ demands. These processing demands are assumed to be generated 

from IoT sensor nodes distributed across the street and in the city near car 

parks, charging stations or road intersections. The main contribution in this 

work is to find the optimum placement to allocate and process the generated 

tasks in order to minimise the total power consumption of the end-to-end 

architecture, taking into account realistic network devices parameters. This 

work studies the joint energy efficiency of network and processing along three 

dimensions. The first dimension compares the centralised processing (in the 

central cloud) to distributed processing (in the multi-layer fog nodes). The 

second dimension introduces opportunistic processing in the vehicular nodes. 

The third dimension considers non-splittable tasks (single allocation) versus 

splittable tasks (distributed allocation), representing real-time versus non real-

time applications. 
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Figure 4.1 Cloud-Fog-Vehicular Edge Cloud Architecture 

 

4.2 Energy Efficient Cloud-Fog-Vehicular edge cloud 

Architecture 

The considered integrated cloud-fog-VEC end-to-end architecture is shown in 

Figure 4.2. It is composed of four distinct layers with four processing locations 

at core, metro, access, and edge layers.  
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Figure 4.2 End-to-End Cloud-Fog-VEC Architecture  

Edge network 

This network forms the bottom-most layer and represents a snapshot of a 

smart city layout. Two types of edge entities are defined in this layer, namely 

Zone #1

AP

Core router

OLT

Metro router

Aggregation switch

    

OLT fog 
(LF) node 

Fog 
router

Fog 
switch

Metro fog 
(MF) node 

    

Fog 
router

Fog 
switch

C
o

re
 n

e
tw

o
rk

Central 
cloud (CC)

Server

 

Cloud 
routerCloud 

switch

Cloud 
servers

M
e

tr
o

 n
e

tw
o

rk
A

cc
e

ss
 n

e
tw

o
rk

Ed
ge

 n
e

tw
o

rk

VEC VEC

ONUONU fog 
 (NF) node 

ONUONU fog 
 (NF) node 

Zone #2

VEC VEC

Splitter



 

57 

 

source nodes (SNs) and vehicular nodes (VNs). SNs are distributed IoT nodes 

(for example wireless sensors) which are usually responsible for collecting 

multimedia and environmental data to generate information used by security 

and environmental monitoring applications. The edge network also includes 

one or more temporal VNs clustered in car parks, charging stations or road 

intersections forming a VEC. These vehicles are equipped with OBUs and can 

work as a processing node to process and analyse the collected data. Both 

IoT SNs and VNs are connected to the wired infrastructure through an Access 

Point (AP). The AP acts as a controller of the network. It starts by collecting 

the generated tasks from nearby IoT nodes. Then, AP executes the 

optimisation model to choose the optimum location to process the task. 

Finally, AP executes the actual allocation by forwarding the task to the 

optimum location of the available PNs in cloud, fog, and edge layers. The 

communication medium between the AP and edge nodes (IoTs and VNs) is 

selected according to the controller unit (AP) and the communication protocol 

in the edge nodes (i.e. wireless connection). This AP is assumed to have full 

knowledge of the available resources. It is also assumed that the AP is 

attached to a computational unit with enough capability to execute the 

processing allocation algorithm and fulfil its coordination and allocation roles.  

As seen in Figure 4.2, the design of the edge layer is based on multiple zones, 

where each zone represents one geographical area. Each zone may also 

include one or more VEC. Every VEC is represented by VNs clustered in a 

car park, at a charging station or at an intersection and an AP. VNs within the 

same VEC can communicate only with one local AP. As the AP has the role 

of collecting and allocating tasks, it can communicate with other VEC clusters 
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through the access network via an Optical Network Unit (ONU). Moreover, 

tasks generated from one zone can also be allocated to other zones, through 

a Passive Optical Network (PON) and via an Optical Line Terminal (OLT). The 

PON design, including access layer entities, will be explained next. 

Access network 

This layer consists of a PON with several ONU devices, each connected to 

the AP devices distributed in the same zone. These ONUs are connected to 

an OLT via a fibre link using a passive optical splitter. Fixed fog processing 

nodes can be deployed at both ONUs and the OLT, named as ONU fog (NF) 

and OLT fog (LF), respectively. Processing nodes located at the ONU are 

small and limited in their processing capability, but provide a closer processing 

opportunity to the edge source nodes. The former nodes also provide more 

reliable processing nodes that serve processing demands which cannot be 

satisfied by the VEC. On the other hand, a processing node located at the 

OLT has more processing capability compared to the NF and VEC, and is 

considered as a supportive processing layer for the generated demands to 

guarantee a reliable service provision. 

Metro network 

The metro layer is an intermediate network between the access layer and the 

core layer. It consists of a switch, which aggregates collected data from the 

edge and access layers, and a metro router, while simultaneously serving as 

a gateway between the access layer and core layer. Another fixed fog is 

included in this layer and connected to the aggregation switch. This metro fog 
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(MF) node is equipped with a server that has higher computational capabilities 

compared to the previously-explained processing nodes. 

Core network 

This layer includes core routers integrated into it is the central cloud which has 

its own cloud routers, cloud switches, and cloud servers. The central cloud 

supports the architecture with sustainable high-processing servers to execute 

tasks that cannot be executed in the lower processing nodes. 

It is worth mentioning that all four layers are scalable. For model complexity 

runtime, we assumed one PN in each cloud and fog layer, except NF (in some 

scenarios) and VEC (as we are assessing the opportunistic behaviour of the 

VNs through VNs density). 

4.3 Power Profile of Processing and Networking Equipment 

for the Considered Architecture 

The main objective of the proposed model is to minimise the total power 

consumption of all devices involved in processing the demands or networking 

the associated traffic. Therefore, it is necessary to describe the power profile 

of these devices and how it is related to the generated processing/traffic 

demands. The power profile considered in this work is based on a linear power 

profile calculated for both servers and network devices based in equation (4.1) 

[59], [79]. Hence, the power consumption of all network equipment, including 

processing nodes, consists of a linear proportional part (dynamic power) and 

an idle part (static power), as shown in Figure 4.3. It is very important to 

consider the idle power consumption (𝑃𝑖𝑑𝑙𝑒), as it can represent a large 
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percentage (up to 95%) of the maximum power consumption (𝑃𝑚𝑎𝑥) [80], [81]. 

Hence, the total power consumption calculated in the model considers these 

values to calculate the power per processor MIPS and the power per bit/sec, 

using: 

𝑃𝐿 =   𝑃𝑖𝑑𝑙𝑒 + 𝐿 (
𝑃𝑚𝑎𝑥− 𝑃𝑖𝑑𝑙𝑒

𝐶𝑚𝑎𝑥
)                                   (4.1) 

where 𝐶𝑚𝑎𝑥 is the maximum workload the device can handle, 𝐿 is the workload 

allocated to the processing or networking device, 𝑃𝑖𝑑𝑙𝑒 is the idle power of the 

device when, 𝐿 = 0, and 𝑃𝑚𝑎𝑥 is the power consumption when the workload 

𝐿 = 𝐶𝑚𝑎𝑥.  

 

Figure 4.3 Power consumption profile for (a) Networking nodes, and (b) 
Processing devices 

4.4 MILP Model for Energy Efficient Processing Allocation in 

Cloud-Fog-Vehicular edge cloud.   

This section introduces the Mixed Integer Linear Programming (MILP) model 

that has been developed to minimise the total power consumption by 

optimising the processing allocation of different demands into the available 
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processing locations in the integrated cloud-fog-VEC architecture. We will 

start with declaring the sets, parameters and variables that will be used in the 

MILP model equations. To simplify the reading of these notation, below are 

some clarification points regarding the naming conventions: 

- Sets are in capital letters.  

- Variable of any power calculation (The right hand side of equation) is 

in three capital letters with a capital superscript. 

- Uppercase superscripts, in the parameters, are a part of the name and 

not an index. 

- Lowercase superscripts and subscripts are parts of the parameters and 

variables values (indices)   

The sets, parameters, and variables are declared as follows: 

Sets: 

𝑁  Set of all nodes. 

𝑁𝑁𝑖  Set of neighbours of node 𝑖, ∀  𝑖 ∈ 𝑁. 

𝑃𝑁  Set of processing nodes, where 𝑃𝑁 ⊂ 𝑁. 

𝑆𝑁 Set of source nodes, where 𝑆𝑁 ⊂ 𝑁. 

𝑅𝑅 Set of core router ports, where 𝑅𝑅 ⊂ 𝑁. 

𝑀𝑅 Set of metro router ports, where 𝑀𝑅 ⊂ 𝑁. 

𝑀𝑆 Set of metro switches, where 𝑀𝑆 ⊂ 𝑁. 

𝑂 Set of OLT nodes, where 𝑂 ⊂ 𝑁. 

𝑈 Set of ONU nodes, where 𝑈 ⊂ 𝑁. 

𝐴 Set of AP nodes, where 𝐴 ⊂ 𝑁. 



 

62 

 

𝐶𝐶  Set of central cloud servers, where 𝐶𝐶 ⊂ 𝑃𝑁. 

𝐶𝑅 Set of CC router ports, where 𝐶𝑅 ⊂ 𝑁. 

𝐶𝑆 Set of CC switches, where 𝐶𝑆 ⊂ 𝑁. 

𝑀𝐹 Set of Metro fog servers, where 𝑀𝐹 ⊂ 𝑃𝑁. 

𝑀𝐹𝑅 Set of MF router ports, where 𝑀𝐹𝑅 ⊂ 𝑁. 

𝑀𝐹𝑆 Set of MF switches, where 𝑀𝐹𝑆 ⊂ 𝑁. 

𝐿𝐹 Set of OLT fog servers, where 𝐿𝐹 ⊂ 𝑃𝑁. 

𝐿𝐹𝑅 Set of LF router ports, where 𝐿𝐹𝑅 ⊂ 𝑁. 

𝐿𝐹𝑆 Set of LF switches, where 𝐿𝐹𝑆 ⊂ 𝑁. 

𝑁𝐹 Set of ONU fog processors, where 𝑁𝐹 ⊂ 𝑃𝑁. 

𝑉𝑁  Set of vehicular nodes processors, where 𝑉𝑁 ⊂ 𝑃𝑁. 

Parameters: 

𝜔𝑠 Processing requirement of the task generated from source node 

𝑠 ∈ 𝑆𝑁, in Million Instructions per Seconds (MIPS). 

ℱ𝑠  Traffic flow demand generated from source node 𝑠 ∈ 𝑆𝑁 (in Mb/s). 

𝐹𝑠 Traffic flow to processing demand ratio for source node 𝑠 ∈ 𝑆𝑁, 

where  𝐹𝒔 =
ℱ𝑠

𝝎𝒔
. 

𝐶𝑑 Maximum capacity of processing node 𝑑 ∈ 𝑃𝑁 (in MIPS). 

𝐿𝑖𝑗 Maximum capacity of the link between nodes (𝑖, 𝑗) (in Mb/s), where 

𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁𝑁𝑖. 

𝑃𝑚𝑎𝑥
𝑛  Maximum power consumption (W) of each node 𝑛 ∈ 𝑁. 

𝑃𝑖𝑑𝑙𝑒
𝑛  Idle power consumption (W) of each node 𝑛 ∈ 𝑁. 

Ω𝑚𝑎𝑥
𝑛  Maximum capacity (Mb/s or MIPS) of each node 𝑛 ∈ 𝑁. 

ρ𝐶𝐶 Central cloud PUE. 

ρ𝑀𝐹 Metro fog node PUE. 
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ρ𝐿𝐹 OLT fog node PUE. 

ρ𝑁𝐸𝑇 Network devices PUE. 

 𝜏  Portion of the network devices idle power attributed to the 

application. 

 𝜐 Number of splits a task can be divided into. 

 

Variables: 

X𝑠𝑑 Processing workload, in MIPS, generated from source node 𝑠 ∈ 𝑆𝑁 

and allocated to processing node 𝑑 ∈ 𝑃𝑁. 

δ𝑠𝑑  Binary variable, δ𝑠𝑑 = 1 if workload generated from source node 

𝑠 ∈ 𝑆𝑁, is allocated to processing node 𝑑 ∈ 𝑃𝑁, 0 otherwise.  

δ𝑑 Binary variable, δ𝑑 = 1 if any workload is allocated to processing 

node 𝑑 ∈ 𝑃𝑁 , 0 otherwise. 

𝜆𝑠𝑑   Traffic flow sent from source node 𝑠 ∈ 𝑆𝑁 to processing node 𝑑 ∈

𝑃𝑁. 

𝜆𝑗   Total traffic in node 𝑗 ∈ 𝑁 

λ𝑖𝑗
𝑠𝑑  Traffic flow sent from source node 𝑠 ∈ 𝑆𝑁 to processing node 𝑑 ∈

P𝑁 through physical link nodes (𝑖, 𝑗) (in Mb/s), where 𝑠 ∈ 𝑆𝑁 , 𝑑 ∈

𝑃𝑁 , 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁𝑁𝑖. 

Ψ𝑖 Binary variable, 𝛽𝑖 = 1 if any traffic traverses network node 𝑖 ∈ 𝑁, 0 

otherwise. 

𝑀1 Large enough number with unit of MIPS. 

𝑀2  Large enough number with unit of MIPS. 

𝑀3 Large enough number with unit of Mb/s. 

𝑇𝑃𝐶𝐶𝐶 Total power consumption of CC. 

𝑃𝑃𝐶𝐶𝐶 Processing power consumption of CC. 

𝑁𝑃𝐶𝐶𝑅 Networking power consumption of CR. 
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𝑁𝑃𝐶𝐶𝑆 Networking power consumption of CS. 

𝑇𝑃𝐶𝑀𝐹 Total power consumption of MF. 

𝑃𝑃𝐶𝑀𝐹 Processing power consumption of MF. 

𝑁𝑃𝐶𝑀𝐹𝑅 Networking power consumption of MFR. 

𝑁𝑃𝐶𝑀𝐹𝑆 Networking power consumption of MFS. 

𝑇𝑃𝐶𝐿𝐹  Total power consumption of LF. 

𝑃𝑃𝐶𝐿𝐹  Processing power consumption of LF. 

𝑁𝑃𝐶𝐿𝐹𝑅 Networking power consumption of LFR. 

𝑁𝑃𝐶𝐿𝐹𝑆 Networking power consumption of LFS. 

𝑇𝑃𝐶𝑁𝐹  Total power consumption of NF. 

𝑇𝑃𝐶𝑉𝑁 Total power consumption of VN. 

𝑃𝑃𝐶𝑉𝑁 Processing power consumption of VN processor. 

𝑁𝑃𝐶𝑉𝑁 Networking power consumption of VN wireless adapter. 

𝑇𝑃𝐶𝑁𝐸𝑇 Total power consumption of the infrastructure network. 

𝑇𝑃𝐶𝑅𝑅 Total power consumption of core router. 

𝑇𝑃𝐶𝑀𝑅 Total power consumption of metro router. 

𝑇𝑃𝐶𝑀𝑆 Total power consumption of metro switch. 

𝑇𝑃𝐶𝑂 Total power consumption of OLT. 

𝑇𝑃𝐶𝑈  Total power consumption of ONU. 

𝑇𝑃𝐶𝐴 Total power consumption of AP. 

 

The total power consumption is composed of the following: 

1) The total power consumption of CC (TPC𝐶𝐶), which is composed of the 

processing power consumption (𝑃𝑃𝐶𝐶𝐶) and the networking power 

consumption of the CC router and switch (𝑁𝑃𝐶𝐶𝑅) and (𝑁𝑃𝐶𝐶𝑆), given as:  
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TPC𝐶𝐶 = (𝑃𝑃𝐶𝐶𝐶 +  𝑁𝑃𝐶𝐶𝑅 + 𝑁𝑃𝐶𝐶𝑆)  ρ𝐶𝐶                               (4.2)                                     

where ρ𝐶𝐶 is the PUE of the central cloud data centre.  

    𝑃𝑃𝐶𝐶𝐶 =   [𝑃𝑖𝑑𝑙𝑒
𝑛 ∑  𝛿𝑑

𝑑∈𝐶𝐶

   +    
𝑃𝑚𝑎𝑥

𝑛 − 𝑃𝑖𝑑𝑙𝑒
𝑛

Ω𝑚𝑎𝑥
𝑛   ( ∑ ∑ 𝑋𝑠𝑑

𝑑∈𝐶𝐶𝑠∈𝑆𝑁

)]    , 𝑛 ∈ 𝐶𝐶     (4.3) 

   𝑁𝑃𝐶𝐶𝑅 =  [ 𝜏 𝑃𝑖𝑑𝑙𝑒
𝑛   ∑  Ψ𝑖

𝑖∈𝐶𝑅

 +  (
𝑃𝑚𝑎𝑥

𝑛 − 𝑃𝑖𝑑𝑙𝑒
𝑛

Ω𝑚𝑎𝑥
𝑛

)  ( ∑ 𝜆𝑖

𝑖∈𝐶𝑅

 )]       , 𝑛 ∈ 𝐶𝑅     (4.4) 

   𝑁𝑃𝐶𝐶𝑆 =  [ 𝜏 𝑃𝑖𝑑𝑙𝑒
𝑛   ∑  Ψ𝑖

𝑖∈𝐶𝑆

 +  (
𝑃𝑚𝑎𝑥

𝑛 −  𝑃𝑖𝑑𝑙𝑒
𝑛

Ω𝑚𝑎𝑥
𝑛

)  ( ∑ 𝜆𝑖

𝑖∈𝐶𝑆

 )]        , 𝑛 ∈ 𝐶𝑆     (4.5) 

 

Equation (4.3) shows the calculation of the processing power consumption of 

CC servers. Equations (4.4) and (4.5) depict the calculations of the networking 

power consumption which is composed of the power consumption of the 

routers (CR) and switches (CS) of the CC network. Note that 𝜏 here represents 

the portion of the idle power attributed to the considered application traffic, 

which is equal to 6% [82]. More details will be given later in Section 4.5.1.  

2) The total power consumption of the MF (TPC𝑀𝐹), which is composed of 

the processing power consumption (𝑃𝑃𝐶𝑀𝐹) and the networking power 

consumption of the metro fog router and switch (𝑁𝑃𝐶𝑀𝐹𝑅) and (𝑁𝑃𝐶𝑀𝐹𝑆),  

given as:  

TPC𝑴𝑭 = (𝑃𝑃𝐶𝑀𝐹 +  𝑁𝑃𝐶𝑀𝐹𝑅 +  𝑁𝑃𝐶𝑀𝐹𝑆)  ρ𝑀𝐹                                 (4.6)                                     

where ρ𝑀𝐹 is the PUE of the Metro Fog node.  

 𝑃𝑃𝐶𝑀𝐹 =  [𝑃𝑖𝑑𝑙𝑒
𝑛 ∑  𝛿𝑑

𝑑∈𝑀𝐹

+ (
𝑃𝑚𝑎𝑥

𝑛 − 𝑃𝑖𝑑𝑙𝑒
𝑛

Ω𝑚𝑎𝑥
𝑛

) ( ∑ ∑ 𝑋𝑠𝑑

𝑑∈𝑀𝐹𝑠∈𝑆𝑁

)]      , 𝑛 ∈ 𝑀𝐹   (4.7) 
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𝑁𝑃𝐶𝑀𝐹𝑅  =   [𝜏 𝑃𝑖𝑑𝑙𝑒
𝑛   ∑  Ψ𝑖

𝑖∈𝑀𝐹𝑅

+  (
𝑃𝑚𝑎𝑥

𝑛 −  𝑃𝑖𝑑𝑙𝑒
𝑛

Ω𝑚𝑎𝑥
𝑛

) ( ∑ 𝜆𝑖

𝑖∈𝑀𝐹𝑅

 )]  , 𝑛 ∈ 𝑀𝐹𝑅  (4.8) 

𝑁𝑃𝐶𝑀𝐹𝑆  =   [𝜏 𝑃𝑖𝑑𝑙𝑒
𝑛   ∑  Ψ𝑖

𝑖∈𝑀𝐹𝑆

+  (
𝑃𝑚𝑎𝑥

𝑛 − 𝑃𝑖𝑑𝑙𝑒
𝑛

Ω𝑚𝑎𝑥
𝑛

)  ( ∑ 𝜆𝑖

𝑖∈𝑀𝐹𝑆

 )]   , 𝑛 ∈ 𝑀𝐹𝑆 (4.9) 

Equation (4.7) shows the calculation of the processing power consumption of 

the MF server. Equations (4.8) and (4.9) depict the calculations of the 

networking power consumption which is composed of the power consumption 

of the routers (MFR) and switches (MFS) of the MF network.  

3) The total power consumption of the LF (TPC𝐿𝐹), which is composed of 

the processing power consumption (𝑃𝑃𝐶𝐿𝐹) and the networking power 

consumption of the router and switch of the OLT fog (𝑁𝑃𝐶𝐿𝐹𝑅) and (𝑁𝑃𝐶𝐿𝐹𝑆), 

given as:  

TPC𝐿𝐹 = (𝑃𝑃𝐶𝐿𝐹 +  𝑁𝑃𝐶𝐿𝐹𝑅 +  𝑁𝑃𝐶𝐿𝐹𝑆)  ρ𝐿𝐹                           (4.10)  

𝑃𝑃𝐶𝐿𝐹 =  [𝑃𝑖𝑑𝑙𝑒
𝑛 ∑  𝛿𝑑

𝑑∈𝐿𝐹

 + (
𝑃𝑚𝑎𝑥

𝑛 − 𝑃𝑖𝑑𝑙𝑒
𝑛

Ω𝑚𝑎𝑥
𝑛

) ( ∑ ∑ 𝑋𝑠𝑑

𝑑∈𝐿𝐹𝑠∈𝑆𝑁

)]        , 𝑛 ∈ 𝐿𝐹   (4.11) 

 𝑁𝑃𝐶𝐿𝐹𝑅 =  [𝜏 𝑃𝑖𝑑𝑙𝑒
𝑛   ∑  Ψ𝑖

𝑖∈𝐿𝐹𝑅

+  (
𝑃𝑚𝑎𝑥

𝑛 − 𝑃𝑖𝑑𝑙𝑒
𝑛

Ω𝑚𝑎𝑥
𝑛

) ( ∑ 𝜆𝑖

𝑖∈𝐿𝐹𝑅

 )]      , 𝑛 ∈ 𝐿𝐹𝑅   (4.12) 

𝑁𝑃𝐶𝐿𝐹𝑆 =  [𝜏 𝑃𝑖𝑑𝑙𝑒
𝑛  ∑  Ψ𝑖

𝑖∈𝐿𝐹𝑆

+  (
𝑃𝑚𝑎𝑥

𝑛 − 𝑃𝑖𝑑𝑙𝑒
𝑛

Ω𝑚𝑎𝑥
𝑛

)  ( ∑ 𝜆𝑖

𝑖∈𝐿𝐹𝑆

 )]       , 𝑛 ∈ 𝐿𝐹𝑆   (4.13) 

Equation (4.11) shows the calculation of the processing power consumption 

of the LF server. Equations (4.12) and (4.13) depict the calculation of the 

networking power consumption which is composed of the power consumption 

of the routers (LFR) and switches (LFS) of the LF network. 
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4) The total power consumption of the NF (TPC𝑁𝐹), which consists of the 

processing power consumption of NF processor and given as: 

 TPC𝑁𝐹 =  [𝑃𝑖𝑑𝑙𝑒
𝑛 ∑  𝛿𝑑

𝑑∈𝑁𝐹

  +  (
𝑃𝑚𝑎𝑥

𝑛 − 𝑃𝑖𝑑𝑙𝑒
𝑛

Ω𝑚𝑎𝑥
𝑛

)  ( ∑ ∑ 𝑋𝑠𝑑

𝑑∈𝑁𝐹𝑠∈𝑆𝑁

)]  , 𝑛 ∈ 𝑁𝐹   (4.14) 

It is worth mentioning that for NF, neither PUE nor networking power 

consumption is considered. This is attributed to the architecture of the NF as 

we assume that the processor is a Raspberry Pi board attached to an outdoor 

ONU. Hence, networking the incoming traffic to NF processor will be handled 

by the ONU and the networking power consumption of ONU will be calculated 

using Equation (4.23). Note that the ONU is assumed to be dedicated to the 

considered application. Therefore, the 6% fraction of ONU idle power was not 

included in Equation (4.14). 

5) The total power consumption of the VN  (TPC𝑉𝑁), which is composed of 

the processing power consumption (𝑃𝑃𝐶𝑉𝑁) and the networking power 

consumption (𝑁𝑃𝐶𝑉𝑁), and given as:  

TPC𝑽𝑵 = (𝑃𝑃𝐶𝑉𝑁 +  𝑁𝑃𝐶𝑉𝑁)                                                  (4.15)  

where 

 𝑃𝑃𝐶𝑉𝑁 =   (
𝑃𝑚𝑎𝑥

𝑛 − 𝑃𝑖𝑑𝑙𝑒
𝑛

Ω𝑚𝑎𝑥
𝑛

)   ( ∑ ∑ 𝑋𝑠𝑑

𝑑∈𝑉𝑁𝑠∈𝑆𝑁

)                                    , 𝑛 ∈ 𝑉𝑁    (4.16) 

𝑁𝑃𝐶𝑉𝑁 =  𝑃𝑖𝑑𝑙𝑒
𝑛 ∑  𝛿𝑑

𝑑∈𝑉𝑁

  + (
𝑃𝑚𝑎𝑥

𝑛 − 𝑃𝑖𝑑𝑙𝑒
𝑛

Ω𝑚𝑎𝑥
𝑛

)  ( ∑ ∑ 𝜆𝑠𝑑

𝑑∈𝑉𝑁𝑠∈𝑆𝑁

)    , 𝑛 ∈ 𝑉𝑊     (4.17) 

Equation (4.16) shows the calculation of the processing power consumption 

of the VN processor. Note that the idle power of the VN power profile is not 

represented in this equation. This is because the vehicles may spend short 
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time periods in a car park, at a charging station or at road intersections. 

Therefore, processors have to be ON to utilise their processing capability 

immediately as soon as a vehicle has stopped (at the intersection or in other 

car parks, more generally). Hence, allocating workload to the VN processor 

will not consume extra power as a result of activating the processor. Equation 

(4.17) describes the networking power consumption of the VN wireless 

adapter (VW). This adapter is assumed to be dedicated for the traffic required 

by the IoT source nodes. Hence, allocating traffic to this adapter will consume 

extra power (𝑃𝑖𝑑𝑙𝑒
𝑉𝑊) as a result of activating the adapter. Similar to the ONU, 

the VN WiFi adapter is assumed to be installed in the VN and dedicated for 

the generated task traffic. Hence, activating the wireless adapter will consume 

the full idle power. 

6) The total power consumption of the infrastructure network  (TPC𝑁𝐸𝑇), 

which is composed of the power consumption of core routers (𝑇𝑃𝐶𝑅𝑅), metro 

router (𝑇𝑃𝐶𝑀𝑅), metro aggregation switch (𝑇𝑃𝐶𝑀𝑆), OLT (𝑇𝑃𝐶𝑂), 

ONU (𝑇𝑃𝐶𝑈), and AP (𝑇𝑃𝐶𝐴), and given as:  

TPC𝑁𝐸𝑇 = (𝑇𝑃𝐶𝑅𝑅 +  𝑇𝑃𝐶𝑀𝑅 +  𝑇𝑃𝐶𝑀𝑆 +  𝑇𝑃𝐶𝑂 + 𝑇𝑃𝐶𝑈 +  𝑇𝑃𝐶𝐴 )        (4.18)  

where 

  𝑇𝑃𝐶𝑅𝑅 =  𝜌𝑁𝐸𝑇   [𝜏 𝑃𝑖𝑑𝑙𝑒
𝑛   ∑ Ψ𝑖  

𝑖∈𝑅𝑅

+ (
𝑃𝑚𝑎𝑥

𝑛 − 𝑃𝑖𝑑𝑙𝑒
𝑛

Ω𝑚𝑎𝑥
𝑛

) ( ∑ 𝜆𝑖

𝑖∈𝑅𝑅

)]  , 𝑛 ∈ 𝑅𝑅  (4.19) 

   𝑇𝑃𝐶𝑀𝑅 =  𝜌𝑁𝐸𝑇  [𝜏 𝑃𝑖𝑑𝑙𝑒
𝑛  ∑ Ψ𝑖  

𝑖∈𝑀𝑅

+ (
𝑃𝑚𝑎𝑥

𝑛 − 𝑃𝑖𝑑𝑙𝑒
𝑛

Ω𝑚𝑎𝑥
𝑛

) ( ∑ 𝜆𝑖

𝑖∈𝑀𝑅

)]  , 𝑛 ∈ 𝑀𝑅  (4.20) 

    𝑇𝑃𝐶𝑀𝑆 =   𝜌𝑁𝐸𝑇  [𝜏 𝑃𝑖𝑑𝑙𝑒
𝑛  ∑ Ψ𝑖  

𝑖∈𝑀𝑆

+ (
𝑃𝑚𝑎𝑥

𝑛 − 𝑃𝑖𝑑𝑙𝑒
𝑛

Ω𝑚𝑎𝑥
𝑛

)( ∑ 𝜆𝑖

𝑖∈𝑀𝑆

)]  , 𝑛 ∈ 𝑀𝑆  (4.21) 
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       𝑇𝑃𝐶𝑂 =  𝜌𝑁𝐸𝑇    [𝜏 𝑃𝑖𝑑𝑙𝑒
𝑛   ∑ Ψ𝑖  

𝑖∈𝑂

+  (
𝑃𝑚𝑎𝑥

𝑛 − 𝑃𝑖𝑑𝑙𝑒
𝑛

Ω𝑚𝑎𝑥
𝑛

)  (∑ 𝜆𝑖  

𝑖∈𝑂

)]   , 𝑛 ∈ 𝑂  (4.22) 

 𝑇𝑃𝐶𝑈 =  [ 𝑃𝑖𝑑𝑙𝑒
𝑛   ∑ Ψ𝑖  

𝑖∈𝑈

+  (
𝑃𝑚𝑎𝑥

𝑛 − 𝑃𝑖𝑑𝑙𝑒
𝑛

Ω𝑚𝑎𝑥
𝑛

)  (∑ 𝜆𝑖  

𝑖∈𝑈

)]           , 𝑛 ∈ 𝑈       (4.23) 

𝑇𝑃𝐶𝐴 =   [𝑃𝑖𝑑𝑙𝑒
𝑛   ∑ Ψ𝑖  

𝑖∈𝐴

+  (
𝑃𝑚𝑎𝑥

𝑛 − 𝑃𝑖𝑑𝑙𝑒
𝑛

Ω𝑚𝑎𝑥
𝑛

)  (∑ 𝜆𝑖  

𝑖∈𝐴

)]           , 𝑛 ∈ 𝐴       (4.24) 

The PUE of the network devices, 𝜌𝑁𝐸𝑇, in the Equations (4.19)–(4.22), defines 

the added power consumption of network devices such as core routers, metro 

routers, metro switches, and OLTs attributed to cooling and lighting typically. 

A PUE=1 is considered for ONU and AP as both are small outdoor devices 

and no additional cooling installation is required for both of them. In addition, 

the 6% fraction of the idle power is not calculated for the AP as it is assumed 

to be dedicated for the considered architecture and the application 

considered. 

The objective of the model is defined as follows: 

Objective:  

Minimise the total power consumption of all processing nodes and their 

interconnecting networks and the infrastructure network devices, given as: 

𝑇𝑃𝐶𝐶𝐶 +  𝑇𝑃𝐶𝑀𝐹 +  𝑇𝑃𝐶𝐿𝐹 +  𝑇𝑃𝐶𝑁𝐹 +  𝑇𝑃𝐶𝑉𝑁 +  𝑇𝑃𝐶𝑁𝐸𝑇 .           (4.25)  

Subject to the following constraints: 

1) Flow conservation of the network: 
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∑ 𝜆𝑖𝑗
𝑠𝑑

𝑗∈𝑁𝑁𝑖
𝑖≠𝑗

 − ∑ 𝜆𝑗𝑖
𝑠𝑑

𝑗∈𝑁𝑁𝑖
𝑖≠𝑗

 =  {
𝜆𝑠𝑑           𝑖𝑓 𝑖 = 𝑠 

−𝜆𝑠𝑑      𝑖𝑓 𝑖 = 𝑑
    0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                          (4.26)   

∀ 𝑠 ∈ 𝑆𝑁, 𝑑 ∈ 𝑃𝑁, 𝑖, 𝑗 ∈ 𝑁.                                                      

Constraint (4.26), ensures that the total incoming traffic is equal to the total 

outgoing traffic for all nodes in the network, excluding the source and 

destination nodes. 

2) Processing allocation: 

∑   𝑋𝑠𝑑

𝑑 𝜖 𝑃𝑁

 =  𝜔𝑠               ∀   𝑠 ∈ 𝑆𝑁                                                             (4.27) 

 𝑋𝑠𝑑   ≥  𝛿𝑠𝑑                         ∀   𝑠 ∈ 𝑆𝑁, 𝑑 ∈ 𝑃𝑁                                             (4.28) 

𝑋𝑠𝑑   ≤  𝑀1  𝛿𝑠𝑑                    ∀   𝑠 ∈ 𝑆𝑁, 𝑑 ∈ 𝑃𝑁                                             (4.29) 

∑   𝛿𝑠𝑑

𝑠 𝜖 𝑆𝑁

 ≥  𝛿𝑑                 ∀   𝑑 ∈ 𝑃𝑁                                                            (4.30) 

∑   𝛿𝑠𝑑

𝑠 𝜖 𝑆𝑁

  ≤  𝑀2  𝛿𝑑            ∀    𝑑 ∈ 𝑃𝑁.                                                          (4.31) 

Constraint (4.27) ensures that the total processing workload sent from source 

node 𝑠, allocated to a processing node 𝑑 is equal to the workload demand 𝜔𝑠 

generated from source node 𝑠. Constraints (4.28) and (4.29) are used in the 

conversion of  𝑋𝑠𝑑  to its equivalent binary variable. When δ𝑠𝑑 = 1, the task 

generated from source node 𝑠 is allocated to processing node 𝑑. Constraints 

(4.30) and (4.31) are used to ensure that the binary variable δ𝑑 = 1 if 

processing node 𝑑 is allocated any processing workload. 
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3) Total aggregated traffic traversing a node: 

∑   

𝑠 𝜖 𝑆𝑁

∑   ∑   𝜆𝑖𝑗
𝑠𝑑

𝑖 𝜖 𝑁𝑁𝑗𝑑 𝜖 𝑃𝑁

 =  𝜆𝑗                  ∀  𝑗 ∈ 𝑁                                   (4.32) 

 

𝜆𝑖   ≥  Ψ𝑖                                                     ∀  𝑖 ∈ 𝑁                                  (4.33) 

𝜆𝑖   ≤  𝑀3  Ψ𝑖                                              ∀  𝑖 ∈ 𝑁                                   (4.34) 

Constraint (4.32) calculates the total aggregated traffic traversing node 𝑗 ∈ 𝑁. 

Constraints (4.33) and (4.34) are used in the conversion of 𝜆𝑖  into its 

equivalent binary variable. When 𝛽𝑖 = 1, the node 𝑖 is activated and traffic is 

travels through this node. 

4) Flow allocation: 

𝜆𝑠𝑑  =  𝐹𝑠  𝑋𝑠𝑑                      ∀ 𝑠 ∈ 𝑆𝑁, 𝑑 ∈ 𝑃𝑁.                                     (4.35) 

Constraint (4.35), ensures that the traffic from source node 𝑠 to processing 

node 𝑑 is equal to the data rate of the workload generated from source 𝑠, 

where 𝐹𝑠 is the ratio of the traffic to processing workload of the demand 

generated from source node 𝑠. 

5) Processing node capacity: 

∑  𝑋𝑠𝑑  

𝑠 𝜖 𝑆𝑁

  ≤  𝐶𝑑                         ∀  𝑑 ∈ 𝑃𝑁                                                     (4.36) 

Constraint (4.36) ensures that each demand generated from source node 𝑠 

allocated to a processing node 𝑑 does not exceed the processing capacity of 

this processing node 𝑑. 
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6) Link capacity:                                                    

∑   

𝑠 𝜖 𝑆𝑁

∑   𝜆𝑖𝑗
𝑠𝑑

𝑑 𝜖 𝑃𝑁

  ≤  𝐿𝑖𝑗           ∀  𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁𝑁𝑖  , 𝑖 ≠ 𝑗                         (4.37) 

Constraint (4.37), ensures that the traffic generated from source 𝑠 to 

processing node 𝑑 does not exceed the capacity of the link between any two 

nodes (𝑖, 𝑗). 

7) AP aggregated capacity limit: 

∑   

𝑠 𝜖 𝑆𝑁

∑   ∑   𝜆𝑖𝑗
𝑠𝑑

𝑗 𝜖𝑁𝑁𝑖 ∩ 𝑉𝑁𝑑 𝜖 𝑃𝑁

  ≤  Ω𝑚𝑎𝑥
𝐴              ∀  𝑖 ∈ 𝐴                               (4.38) 

Constraint (4.38) ensures that the total traffic traversing AP does not exceeds 

the capacity of the AP. 

8) Single assignment (no splitting): 

∑   𝛿𝑠𝑑

𝑑 𝜖 𝑃𝑁

 ≤  𝜐                ∀   𝑠 ∈ 𝑆𝑁                                                                  (4.39) 

Constraint (4.39) ensures that the processing task is not split. This may be 

essential in real time applications where there is no time to assemble partial 

results from partial processing locations. Removing this equation (instead of 

setting the right-hand side of the equation to 𝜐 splits) allows the optimisation 

to select the best number of splits to minimise the total power consumption. 

This is the other extreme compared to no splitting. Future work can consider 

partial splitting (different values of 𝜐) and hence inter processors 

communication where parts of the tasks are processed. 

It is worth mentioning that the objective function and the all the constraints in 

this model are originally in a linear form. Therefore, no further linerisation was 
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needed to execute the developed model and obtain the optimum location. 

However, some linerisation is introduced later, in Chapter 6, in an extended 

version of this model.  

The processing allocation problem considers different evaluations with the 

availability of some or all processing nodes. For the VEC, multiple cases are 

considered (as well) to capture different vehicle densities. As mentioned 

previously, these VNs are clustered in a car park, at a charging station or by 

a road intersection within the coverage of an AP. Each vehicle is equipped 

with an OBU which defines the processing capability of the vehicle, and a 

wireless communication adapter to communicate with the AP. All VNs need 

to communicate with the AP, as no direct communication is allowed between 

VNs. All VNs are assumed to be homogeneous with the same processor 

capabilities. The vehicles thus work as a service provider for some of the 

collected data from applications related to IoT source nodes (SNs). These 

application tasks range from small-scale applications (with low demands), 

which do not require much processing capacity, to large-scale applications 

(high demands), which require a powerful processing node and sufficient 

communication link capacities to send and process the tasks. Additionally, 

various cases were evaluated with different ratios between processing 

demand and data rate demand to cover a wider range of applications. 

However, we assume that the tasks generated in each instance have the 

same processing and data rate requirements.  

The allocation flow process of any generated task follows six phases:  
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1- A task is generated by a nearby IoT SN and is sent to an AP located in the 

same geographical zone. AP has full knowledge of the available resources. 

This task includes the required processing and data rate per task. 

2- The AP sends a positive acknowledgment to the task SN.  

These two phases are not evaluated in the model, as they are considered 

control signals and, therefore, generate negligible traffic that consumes little 

power. 

3- The data to be processed are sent from the SN to the AP through the 

wireless channel. This phase is also not considered in the model, as it is a 

common phase for all tasks and will not affect the task allocation decision.  

4- The data to be processed are offloaded from the AP to one or more of the 

available PNs (VN, NF, LF, MF, CC). As this phase carries the main data, it 

will affect the power consumption and the task allocation decision. Therefore, 

it is treated as the main component of the model.  

5- The extracted knowledge resulting from the processed data is sent back 

from the processing PNs to the AP.  

6- The extracted knowledge is reassembled and sent from the AP to the 

source node that requested the service.   

As we assume that the extracted knowledge has a small volume compared to 

the main data, the last two phases are not included in the optimisation model.  
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4.5 Input data for MILP Model 

The proposed MILP model was developed using the network in Figure 4.2. All 

devices parameters are obtained from data sheets to reflect a realistic values 

for the capacity and power values. Also, the parameters each layer servers 

were chosen based on the fact that the central cloud (CC) has the largest 

processing capacity and best processing power efficiency and PUE, followed 

by the other bottom layers. This is to reflect the fact that the larger the data 

centre is, the most efficient its servers are [82]. The network devices also are 

chosen to ensure that its capacity can serves all the generated traffic, specially 

those located at the bottleneck of the network (i.e. OLT). Finally, the generated 

requests vary from low to high parameters to ensure the robustness of the 

architecture with high processing and networking demands. 

This section will explain in details the input data considered for the model 

parameters, including the processing node capacities and efficiencies, the 

capacities of network devices and the power efficiencies, PUE, link capacities, 

and generated workload.  

4.5.1 Idle power consumption  

Accurate values for the idle power consumption of each device are not easy 

to obtain in data sheets all the time. Accordingly, we based our idle power 

consumption values on multiple frameworks driven from the literature. First, 

according to [80], [81], up to 95% of the maximum power consumption for 

network devices (routers and switches) is attributed to idle power (90% is 

assumed in this thesis). Therefore, this figure will be quoted in describing the 

network device’s power consumption in the present work. Second, based on 
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[83], a processing node consumes 60% of the maximum power. Thirdly, in 

high-power-capacity network equipment, IoT applications account for a small 

portion of the idle power consumption. Therefore, it would be unjust to ascribe 

the total power consumption to a specific application. For this reason, we 

elected, instead, to use the 2017–2022 Cisco Visual Networking Index (VNI) 

[1] to express the traffic of IoT applications as a fraction of the total traffic in 

smart cities, such as the smart city scenario in this work. In particular, the work 

in [1] reported that, by 2022, IoT traffic will constitute around 6% of all global 

IP traffic on the Internet. Therefore, we used this number (6%) to attribute part 

of the idle power to these types of applications. 

4.5.2 PUE 

The power usage effectiveness (PUE) is a factor used to measure the power 

efficiency of any network or data centre. It estimates how much power is used 

for the actual computing and communication, in relation to the total power 

resulting from computing and communication equipment plus non-IT 

equipment such as cooling, lighting, ventilation, etc. The PUE values of the 

network infrastructure and each processing node are listed in Table 4.1. 

According to Google’s report in [82], PUE values have an inverse relationship 

to the “Space Type” of the data centre. PUE decreases with increase in the 

data centre size and geographical location. We assumed that PUE, at any 

layer, is indicative of both structure (network equipment) and function 

(processing). As the central cloud (CC) is a large data centre that uses 

sophisticated liquid and air cooling, it typically has lower PUE values 

compared to other processing nodes. 
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The telecom infrastructure is owned typically by a carrier (e.g. BT Openreach). 

This gives the telecom infrastructure one PUE. On the other hand, the cloud 

infrastructure is typically owned and operated by a cloud services provider 

(e.g. Amazon), which may or may not share the same building with the 

telecom carrier (BT Openreach), depending typically on the size of the cloud 

service provider and the number of racks and servers they own. This may 

result in a different PUE for the network devices and fog processing nodes (for 

example, metro switch and metro fog). 

Table 4.1 PUE values for the network devices and processing nodes 

Processing node  PUE value 

Central cloud PUE (𝛒𝑪𝑪). 1.1 [82] 

Metro fog PUE (𝛒𝑴𝑭). 1.4 [82] 

OLT fog PUE (𝛒𝑳𝑭). 1.5 [82] 

Network devices PUE (𝛒𝑵𝑬𝑻). 1.5 [61] 

 

4.5.3 Capacity and power consumption of network devices 

In our evaluation, we have chosen our processing devices based on the fact 

that the top-most layer PN (CC) has the largest processing capacity and best 

processing power efficiency. Conversely, the bottom-most PN (VN) has the 

lowest capacity and power efficiency. Moreover, all the vehicles are assumed 

to have homogenous processors. These processors are chosen with 

advanced OBU that are capable to be shared as edge nodes and to highlight 

these vehicles, as smart vehicles, from ordinary vehicles with old processors. 

The capacities and efficiencies of the processors of the other fog nodes vary 
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between the CC and VN. In this model, the top-layer processor is the best in 

terms of capacity and efficiency. 

It is worth mentioning that only one CC is considered as a local data centre. 

This CC is assumed to have servers that are sufficient to process all of the 

generated tasks. The other three fog layers (MF, LF, and NF), each has only 

one processor (one server in each of MF/LF, and one Raspberry Pi chip in the 

NF). The number of vehicles in the VEC varies based on the scenario 

considered. However, all VNs are assumed to be homogeneous, with the 

same processing capability. For security purposes, we assumed that the VN 

processor and its wireless communication transmitter and receiver are 

combined in a separate “box” which is not linked to the vehicle CAN bus. In 

time, the entertainment or other less critical processors in the vehicle may 

participate, and security must be considered if these processors of the vehicle 

main processors (e.g. controlling engine, windows, wipers, etc.) are used. The 

development of security and trust frameworks for the opportunistic vehicular 

clouds is outside the scope of the current work, but can build on existing cloud 

security and vehicle security frameworks. 

The capacity of each PN is defined in terms of the Instructions per Second 

(IPS) it can provide. Based on device datasheets, IPS is not considered when 

defining CPU capability. Hence, according to [84], this value is estimated 

using:  

𝐼𝑃𝑆 =  𝐶𝑂𝑅  ×    𝐶𝑃𝑆   ×    𝐼𝑃𝐶                                          (4.40) 

where 𝐶𝑂𝑅 is the number of cores in a processor, 𝐶𝑃𝑆 is the processor clock 

rate in GHz. Both values can be extracted from the server datasheets. 𝐼𝑃𝐶 is 
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defined as the number of instructions per cycle, and is estimated for each 

processing node based on the fact that a high performance processor can 

execute four IPCs [85].  

Table 4.2 lists all values used in Equation (4.40) with the resultant capacity, in 

million instructions per second (MIPS), for each PN. In addition, the same 

table shows the power efficiency, in W/MIPS, calculated using the linear 

power profile method explained earlier in Section 4.3.  

Table 4.2 Processing node power, capacity, and efficiency parameters. 

PN Model 
Pmax 

(W) 

Pidle 

(W) 
Cores 

GHz 

(cycle/sec) 

IPC 

(Ins/cycle) 

Capacity 

(MIPS) 

Efficiency 

(W/MIPS) 

CC 
Intel Xeon 
E5-2680 

[86] 
115 69 10 3.6 4 144k 0.00032 

MF 
Intel Xeon 
E5-2630 

[87] 
85 51 10 2.2 4 88k 0.00039 

LF 
Intel Xeon  
E5-2609 

[88] 
85 51 8 1.7 4 54.4k 0.00063 

NF 
RPI 4 

Model B 
[89] 

15 9 4 1.5 1 6k 0.001 

VN 
MobiWAVE 
iMX6 [90] 

10 6 2 0.8 2 3.2k 0.00125 

 

For the other network devices, Table 4.3 shows the power consumption and 

capacity values. Comparing the network devices’ power values in this table, 

we can see that the core router port consumes a maximum of 638 W at 40 

Gb/s. On the other hand, the metro aggregation router consumes 25 W, at the 

same port data rate. This gap between the power consumption values of the 

two infrastructure routers is due to the devices’ different operating functions. 

The core router has many more functions, including traffic engineering, layer 

lookup tables, etc. On the other hand, the metro router has to do much less 
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than the core router in terms of traffic engineering and number of other nodes 

to interface with. Therefore, in general, metro routers consume less power at 

a given data rate compared to the more sophisticated core router operating at 

the same data rate. Moreover, the metro layer relies more on layer 2 metro 

switches and, therefore, the metro switch has a higher power consumption, 

as shown in Table 4.3. As such, at 40 Gb/s, in our scenario, the metro layer 

consumes 500 W + 25 W peak power versus 638 W at the core layer. 

Table 4.3 Network devices power and capacity parameters 

Network device parameter Value 

C
o

re
 l
a
y
e
r 

Core router port maximum power consumption  638 W [91] 

Core router port idle power consumption  574.2 W [91] 

Core router port maximum capacity  40 Gb/s [91] 

M
e
tr

o
 l
a
y
e
r 

Metro router port maximum power consumption  25 W [92] 

Metro router port idle power consumption  20 W [92] 

Metro router port maximum capacity  40 Gb/s [92] 

Metro switch maximum power consumption  500 W [93]  

Metro switch idle power consumption  450 W [93] 

Metro switch maximum capacity  1800 Gb/s [93] 

A
c
c
e
s
s
 l
a
y
e
r 

OLT maximum power consumption  50 W [94] 

OLT idle power consumption  45 W [94] 

OLT maximum capacity  1920 Gb/s [94] 

ONU maximum power consumption  15 W [95] 
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ONU idle power consumption  13.5 W [95] 

ONU maximum capacity  10 Gb/s [95] 

E
d

g
e
 l
a
y
e
r 

AP maximum power consumption  11 W [96] 

AP idle power consumption  4.8 W [96] 

AP maximum capacity  1.167 Gb/s [96] 

C
C

 n
e
tw

o
rk

 

CC router port maximum power consumption  25 W [92] 

CC router port idle power consumption  20 W [92] 

CC router port maximum capacity  40 Gb/s [92] 

CC switch maximum power consumption  460 W [97] 

CC switch idle power consumption  368 W [97] 

CC switch maximum capacity  600 Gb/s [97] 

M
F

 &
 L

F
 N

e
tw

o
rk

 

MF/LF router port maximum power consumption  13 W [98] 

MF/LF router port idle power consumption  11.7 W [98] 

MF/LF router port maximum capacity  40 Gb/s [98] 

MF/LF switch maximum power consumption  245 W [99] 

MF/LF switch idle power consumption  220.5 W [99] 

MF/LF switch maximum capacity  200 Gb/s [99] 

V
E

C
 N

e
tw

o
rk

 A
d

a
p

te
r Vehicle wireless adapter maximum power consumption  2.5 W [100] 

Vehicle wireless adapter idle power consumption  1.5 W [100] 

Vehicle wireless unit maximum capacity   
72.2 Mb/s 

[100] 

 

As seen, Table 4.3 shows the power consumption and capacity values as 

required and represented by Equations (4.2)–(4.24). In contrast, Table 4.4 

provides direct comparison between the power consumption in the different 
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layers, taking into account the percentage of idle power attributable to cloud 

and fog traffic. In addition, Table 4.4 shows energy efficiency values for 

network devices. For example, the core router idle power consumption is 

34.45 W at 40 Gb/s per port and with 6% utilisation attributed to cloud and fog 

IoT traffic. The corresponding idle power consumption in the metro layer is 

27+1.35=28.35 W. Moreover, the corresponding energy efficiency figures (i.e. 

the slope of the linear part of Figure 4.3) are 1.595 W/Gb/s and 0.091 W/Gb/s. 

Table 4.4 Network devices power, capacity and efficiency parameters. 

Network 

Layer 
Device Pmax (W) 

Pidle 

(W) 

(90%) 

Pidle (W) 

(6%) 

Cmax  

(Gb/s) 

Efficiency  

(W/Gb/s) 

Core 

layer 
Core router port [91] 638 574.2 34.452 40 1.595 

Metro 

layer 

Metro router [92] 25 22.5 1.35 40 0.063 

Metro switch [93] 500 450 27 1800 0.028 

Access 

layer 

OLT [94] 50 45 2.7 1920 0.003 

ONU [95] 15 13.5 -     * 10 0.150 

Edge  

layer 
AP [96] 11 4.8 -     * 1.167 5.313 

CC 

network 

CC Router port [92] 25 22.5 1.35 40 0.063 

CC Switch [97] 460 414 24.84 600 0.077 

MF 

network 

MF Router port [98] 13 11.7 0.702 40 0.033 

MF Switch [99] 245 220.5 13.23 200 0.123 

LF 

network 

LF Router port [98] 13 11.7 0.702 40 0.033 

LF Switch [99] 245 220.5 13.23 200 0.123 

VN 

network 
 VN Wi-Fi adapter [100] 2.5 1.5 -     * 0.0722 13.850 

         *  the device is assumed to be fully dedicated to the application considered 

4.5.4 Processing and data rate requirements  

In our evaluation, as explained in Section 4.5.3, we define the CPU capacity 

in MIPS. Taking inspiration from [101], one of the analysed IoT sensors was 
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a smart city-based sensor designed to detect environmental events using an 

earthquake prediction algorithm. It is reported that a job with a size of 11.72 

kB (0.09 Mb/s data rate) needs 78 MIPS to be processed. Through simple 

calculations, we derived the processing requirement. We assumed a minimum 

required data rate equal to 1 Mb/s, and calculated the required MIPS to 

execute 1 Mb of data as follows:  

Φ =  
78𝑀𝐼𝑃𝑆

0.09𝑀𝑏/𝑠
= 866 ≅

1000 𝑀𝐼𝑃𝑆

𝑀𝑏
𝑠

                                    (4.38) 

Based on the above calculation, and as we assumed a futuristic increase of 

the traffic demands, we selected the 1,000 MIPS as the minimum required 

processing demand per task and examined a range of settings where we 

increased this demand up to 10,000 MIPS per task.  

We assumed that the data rate of any task rises with increase in the 

processing workload. Therefore, in Equation (4.41), we introduce a 

relationship between the processing workload demand and the data rate 

demand for each requested task as a ratio, termed as ‘data rate ratio’ (DRR). 

Fixed DRR, equal to 0.001, is considered for the evaluations in Sections 0 and 

4.6.3. Therefore, the required data rate ranged from 1 Mb/s to 10 Mb/s. On 

the other hand, different DRR values were assessed in Section 4.6.4. 

𝐷𝑅𝑅 =
𝑡𝑟𝑎𝑓𝑓𝑖𝑐 (𝑀𝑏/𝑠)

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 (𝑀𝐼𝑃𝑆)
                                                              (4.41)  

It should be noted that small DRR value represents an (IoT) application where 

small data volumes are generated, for example by measuring a physical 

quantity, followed by extensive processing of the data. Large DRR values may 

represent situations where large data volumes are generated followed by 
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limited processing, for example as in video streaming or some forms of 

gaming. 

4.6 Power Consumption and Processing Allocation Results 

4.6.1 Scenarios considered 

This section describes the scenarios and the architecture considered in the 

proposed processing allocation MILP model. As mentioned earlier in this 

chapter, three main dimensions were studied, summarised as follows: 

1) Centralised versus distributed processing (in CC, MF, LF, and NF) 

2) Opportunistic processing (in VEC) 

3) Single versus distributed task allocation (non-splittable versus 

splittable demands)  

Two different architectural designs, inherited from Figure 4.2, were assessed 

based on the design of the edge network. The first architecture considers one 

zone, with multiple VEC clusters. This design captures an urban area where 

many car parks, charging stations or road intersections are available. It also 

depicts VEC clusters, each consisting of VNs parked in a car park, at a 

charging station or stopping at a road intersection and connected to an AP 

located in the same cluster. With different potential locations for the source 

generation and with different APs in each cluster, we can assess the effect of 

different realistic scenarios. In the second architecture, we expanded the 

PON network to include multiple zones, with numerous ONUs, each with one 

or more AP (VEC cluster). Considering different zones in this architecture 

allowed us to mimic an expanded urban area (a city, for example), where the 
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infrastructure can connect multiple VECs located in different zones within the 

city.  

In each architecture, four cases were evaluated to capture the main task 

allocation dimensions, as follows: 

➢ Central Cloud Allocation (CCA). In this case, centralised processing 

was evaluated by allocating all tasks to the central cloud servers. This 

represents a baseline approach to which other cases (considering the 

VEC) are compared.  

➢ Cloud-Fog Allocation (CFA): In this case, we considered a cloud-fog 

architecture, with available cloud and fixed fog PNs, but with no available 

VNs. This case introduces processing over distributed locations. It also 

represents off-peak periods over the day where no vehicles are in the 

city car parks and charging stations (and at intersections) or situations 

where vehicles are not participating in the resource provisioning service. 

➢ Cloud-Fog-VEC Allocation with low vehicular nodes density (CFVA-

L): In this case, VNs are introduced at a low density. Each VEC within a 

cluster includes two VNs, with the total number of available VNs equal to 

eight. This choice limits the size of the problem to a size that can be 

handled efficiently by the MILP given that the allocation problem is known 

to be NP hard. This case represents low peak periods with a limited 

number of vehicles.   

➢ Cloud-Fog-VEC Allocation with high vehicular nodes density 

(CFVA-H): In this case, the number of VNs is increased to 15 VNs per 

VEC, with a total of 60 available VNs over four VEC clusters/zones. This 
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case represents a high density of VNs, as experienced in the peak 

periods during the day.   

The last two cases, CFVA-L and CFVA-H are evaluated to highlight the 

dynamic of vehicles in the model, specifically as reflected in the number of 

vehicles available to take part in the opportunistic task allocation at any point 

in time. The different vehicle densities represent different periods of time that 

the car park, road intersection,  .. etc. is affected by the mobility of the vehicles 

and therefore the location of interest has a varied number of vehicles over the 

day. Also these two cases, CFVA-L and CFVA-H, are assessed with single 

and distributed (non-splittable and splittable) allocation to capture different 

real-time demands.  

With each architecture, four scenarios are evaluated to capture the impact of 

the number of generated tasks and the location of these tasks, as follows: 

- Scenario 1: one task generated from one cluster/zone. 

- Scenario 2: one task generated from each cluster/zone. 

- Scenario 3: Five tasks generated from one cluster/zone. 

- Scenario 4: Five tasks generated from each cluster/zone. 

Scenario 1 and scenario 4  capture the extreme ends of the generated tasks. 

On the other hand, scenario 2 and scenario 3 capture the in-between cases 

where the number of tasks varies between one task, in scenario 1, and 20 

tasks in scenario 4. Moreover, in scenarios 1 and 3, the tasks are generated 

from one end of the architecture. This aims to capture the need of allocating 

takes to other network clusters (non-neighbours VEC), and therefore, the 

benefit of the expanded architecture. Scenarios 2 and 4 aimed to evaluate the 
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processing allocation in case of congested network, where all clusters/zones 

are congested with the generated tasks. 

The two architectures and their results are explained next in Sections 4.6.2 

and 4.6.3 As the evaluations in these two sections considered a fixed DRR 

value, with DRR=0.001, Section 4.6.4 presents a comparison study at 

different DRR values, to evaluate the impact of the different processing and 

traffic volume on the processing allocation and the total power consumption. 

4.6.2 Processing Allocation in Cloud-Fog-VEC Architecture with 

One Zone and Multiple VEC Clusters 

The end-to-end architecture considered in this evaluation is similar to the 

architecture presented in Figure 4.2. However, the edge network evaluated in 

this section includes only one zone (with one ONU), as shown in Figure 4.4. 

This zone consists of one ONU (as mentioned above) and four clusters. Each 

cluster represents a car park, a charging station or road intersection with an 

AP and connected VNs. Tasks are generated from nearby IoT SNs located in 

the same cluster. These SNs are assumed to have connection only with their 

local AP and cannot communicate with any AP located in a different cluster. 

Therefore, different tasks can be allocated by each AP. In this section, four 

scenarios are defined to capture different situations based on the number of 

generated tasks and the location of the source node. In all evaluated 

scenarios, the tasks processing requirements ranged from 1,000 MIPS to 

10,000 MIPS. The required data rate for the tasks increased, based on 

DRR=0.001, from 1 Mb/s to 10 Mb/s. 
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Furthermore, four cases were assessed, as explained in Section 4.6.1, 

referred to as Central Cloud Allocation (CCA), Cloud-Fog Allocation (CFA), 

Cloud-Fog-VEC Allocation with Low VN (CFVA-L) and Cloud-Fog-VEC 

Allocation with high VN (CFVA-H), both with single (SA) and distributed (DA) 

allocation strategies. 

Zone

VEC2 VEC3

Cluster1 Cluster2

VEC1 VEC4

ONU
ONU fog 

 (NF) node 

Cluster3 Cluster4

SN SN SN SN

VNs VNs VNs VNs

 

Figure 4.4 Edge network design with one zone 

 

4.6.2.1 Scenario 1: One task generated from one cluster 

In this scenario, we assumed that, in any time instance, one task is generated 

from a source node located in one of the four clusters. Figure 4.5 shows the 

total power consumption of the different cases considered. As the power 

consumed is a function of the networking and processing power consumption, 

the processing placement becomes a result of a trade-off between networking 

and processing power values to achieve the optimum processing allocation. 

This optimised allocation at each processing node (PN) of the CC, Metro Fog 

(MF), OLT Fog (LF), ONU Fog (NF), and Vehicular Edge Cloud (VEC) is 

summarised in Figure 4.6.  
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Figure 4.5 shows that allocating all tasks to CC consumes the highest power 

with a linear increase in relation to the size of the generated tasks. Given the 

absence of VNs in CFA, tasks are allocated to the most efficient fixed PN, until 

it is fully exhausted or becomes too thin to accommodate the task. For 

example, with low workload demands, NF is the most efficient PN, as seen in 

Figure 4.6. This is because it is closer to the edge and therefore consumes 

less networking power, achieving up to 87% power saving, compared to CAA. 

However, at 7000 MIPS, NF becomes too thin to allocate tasks with high 

demands. Hence, tasks are allocated to the next most efficient fixed fog node 

(LF). This explains the jump in the power consumption where the power 

saving is reduced to 44%, (also compared to CCA).  

When vehicular nodes become available, both single and distributed 

allocation strategies were assessed with low and high VN density. In the case 

of single allocation (CFVA-L and CFVA-H), and as shown in Figure 4.5, the 

model achieves an early power saving of, on average, 70%, compared to 

CFA. This saving is caused by allocating the tasks to the available VN (as in 

Figure 4.6) thus, avoiding the activation of the ONU and its fog server. 

However, this saving is limited to cases where demands are within the VN 

processor’s capacity. This explains the increase in power consumption, at 

4000 MIPS, where all tasks are allocated to NF, and therefore in this case the 

power consumption is the same as that of the CFA. It is also observed that, in 

single allocation, the VN density has no effect on the allocation decision, and 

therefore, has no influence on the power consumption. This is because, with 

the no-splitting constraint, only one VN is needed to serve the generated task.  
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In distributed allocation, Figure 4.5 shows that, with low demands, the same 

power saving as that seen in the single allocation is achieved. This is because 

one VN was enough to serve the generated task, and therefore the splitting 

flexibility was not needed. However, a continuous power saving is observed 

regardless of the VN capacity limitation (i.e. beyond the 3000 MIPS), 

achieving up to 71% power saving, in comparison to single allocation. This is 

attributed to the splitting ability of the model and bin-backing the split task into 

the available VNs, therefore achieving better power saving. Moreover, it was 

observed that when the available VNs are not sufficient to serve the full task, 

the model initially allocates a major part of the task to the most efficient fixed 

PN until it is fully utilised, and then allocates the remaining part of the task to 

the available VN. For instance, in Figure 4.6 (in CFVA-L and at 7000 MIPS), 

it can be seen that the available VNs (with a total of 6400 MIPS capacity) are 

not able to serve the whole task. Hence, the model activates NF with 6000 

MIPS allocation, and then allocates the remaining sub-task to the local VEC. 

This causes the majority of the task to be allocated to NF, as it has a more 

efficient processor than the VN. In contrast with single allocation, VN density 

shows an impact on the task allocation and the power consumption. The high 

density VN increased the capacity of the VEC and, therefore, more tasks were 

allocated to the available VNs and ONU activation was avoided. Thus, further 

power saving of up to 50% were achieved, compared to the low VN density 

(CFVA-L (DA)).   
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Figure 4.5 Total power consumption, in Scenario 1 with one zone. 

 

 

Figure 4.6 Processing allocation in each PN, in Scenario 1 with one zone. 

 

Part of the aim of this work is to design a VEC architecture that is able to 

expand and connect many VEC clusters together in a cloud-supported 

architecture. Accordingly, it is very important to study the allocation behaviour 

among the VEC clusters considered. Figure 4.7 summarises the processing 

0

50

100

150

200

250

300

350

400

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

To
ta

l p
o

w
er

 c
o

ns
u

m
p

ti
on

 (W
)

Workload per demand (MIPS)

CCA
CFA
CFVA-L  (SA)
CFVA-H (SA)
CFVA-L  (DA)
CFVA-H (DA)



 

92 

 

allocation in each individual VEC, taking into account the fact that the task 

was generated from VEC1 (this will be referred to as local VEC). 

The single allocation results show that, regardless of the VNs’ density, the 

tasks allocated to VECs were limited to the 1000–3000 MIPS range. This is 

due to the VN limited capacity. Hence, all tasks were allocated to one VN in 

the local VEC, as the model was constrained by the “no splitting” condition. 

Similarly, in distributed allocation, a single task with high demand was split 

and allocated to VNs located in the local VEC. No splittable tasks were 

allocated to the other VEC clusters, even when the VNs in the local VEC were 

exhausted. This is because allocating sub-tasks to a non-local VEC will 

activate another ONU. Hence, it is more efficient to utilise the NF, with its 

efficient processor, rather than allocating the sub-task to a non-local VEC. On 

the other hand, the same figure shows that, as the VNs’ density increased to 

15 VNs per VEC, the local VEC became enough to allocate the whole task, 

even with the increasing processing demand. 

 

Figure 4.7 Processing allocation in each VEC in CFVA (SA) and  
CFVA (DA), in Scenario 1 with one zone. 
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4.6.2.2 Scenario 2: One task generated from each cluster 

In this scenario, we aimed to investigate the increase of the tasks and the 

activation of multiple APs, by generating one task from each cluster with a 

total of four tasks. Figures 4.8 and 4.9 show the total power consumption and 

the processing allocation in each PN, respectively.  

In this scenario, we observed less power saving, as shown in Figure 4.8, 

compared to Scenario 1. This is attributed to the increase in the generated 

tasks. In addition, Figure 4.9 shows an allocation behaviour which is relatively 

comparable to scenario 1. The bottom-most processing nodes have the most 

efficient total power consumption due to their associated low networking 

power consumption. Hence, tasks are allocated first to these nodes if they can 

satisfy the processing workload. Moreover, when the most efficient PN cannot 

accommodate all of the generated tasks, an upper PN becomes the most 

efficient location, and is fully utilised first. For example, in CFA, with 2000 

MIPS or more, NF cannot allocate all of the four tasks (with a total of 8000 

MIPS), as this exceeds the NF capacity. Although NF can accommodate three 

out of the four tasks, all tasks were allocated to the LF, as seen in Figure 4.9. 

This behaviour is attributed to two factors. First, activating one PN is more 

efficient than activating both NF and LF. This is due to the power overhead 

and idle power resulting from activating two PNs. Second, once the OLT and 

its fog server are activated, it is more efficient to allocate all tasks to this PN, 

as its processor has better efficiency compared to the NF processor. Despite 

the NF limitation, allocating tasks to LF yields up to 41% power saving, 

compared to CCA.  
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Similar to Scenario 1, VN density has no effect on the single allocation cases 

(CFVA-L and CFVA-H), as the number of generated tasks is small enough to 

be satisfied by the available VNs when the demands of the (four tasks) are 

within the VN processor’s capacity. However, in CFVA-L(SA), we observed 

an allocation in LF; specifically, when the VNs were exhausted. The tasks 

were allocated to LF rather than NF. This is, again, due to the same reason of  

avoiding the overhead resulting from activating two PNs. This explains the 

jump in the power resulting at 4000 MIPS, as seen in Figure 4.8. Moreover, 

CFVA-L and CFVA-H, with distributed allocation, have comparable allocation 

results to Scenario 1, except that with increasing demands beyond 7000 

MIPS. Here, all tasks were allocated to the LF, as both NF and VEC combined 

cannot satisfy the required demands. Despite the small power saving 

achieved in this scenario, CFVA (in both allocation strategies and with both 

VN densities) can still save power by up to 87% and 61%, compared to CCA 

and CFA respectively. Moreover, splitting tasks in distributed allocation 

guarantees a continuous power saving, with high demands, of, on average, 

59%, compared to single allocation. 
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Figure 4.8 Total power consumption, in Scenario 2 with one zone. 

 

 

Figure 4.9 Processing allocation in each PN, in Scenario 2 with one zone. 
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the VEC was unequally utilised, as the insufficient capacity of the available 

VNs caused the activation of the ONU and NF processor. Thus, it was more 

efficient to fully utilise the NF and then allocate the remaining processing from 

each task to its local VEC.   

 

Figure 4.10 Processing allocation in each VEC in CFVA (SA) and  
CFVA (DA), in Scenario 2 with one zone. 
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The results illustrate that, despite the increase in the number of generated 

tasks, the VEC is still attractive, and efficient, when it comes to serving the 

generated tasks. Moreover, unlike the previous two scenarios, increasing the 

VNs’ density affected the single allocation (SA) results in CFVA-H, with up to 

42% power saving compared to CFVA-L. This is because, with low density, 

the local VEC was not enough to serve the five tasks generated (with 2000 

and 3000 MIPS). Thus, allocating tasks to NF was more efficient than sending 

these tasks to a non-local VEC, as observed in Scenario 1. Moreover, 

increasing the number of VNs in each cluster, in CFVA-H (SA), enables the 

optimisation to allocate all generated tasks to the local VEC, whenever this is 

sufficient.  

In distributed allocation (DA), CFVA-L shows an early increase in the power 

consumption, as seen in Figure 4.11. This is attributed to a new allocation 

behaviour where the optimisation allocates tasks to a non-local VEC, as seen 

in Figure 4.13 (at 3000–6000 MIPS). The non-local VEC in this case became 

an efficient location combined with the NF and local VEC. Moreover, utilising 

these two locations (NF and VEC) is more efficient than activating the OLT 

and its fog server (LF). However, this allocation causes an increase in the 

power consumption, which explains the early and continuous power saving in 

CFVA-H(DA) with 34%–48% power saving compared CFVA-L (DA).     
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Figure 4.11 Total power consumption, in Scenario 3 with one zone. 

 

 

Figure 4.12 Processing allocation in each PN, in Scenario 3 with one zone. 
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Figure 4.13 Processing allocation in each VEC in CFVA (SA) and  
CFVA (DA), in Scenario 3 with one zone. 
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of number of MIPS needed) tasks cannot be satisfied by the access layer PNs, 

which are the most efficient location (i.e. LF and NF). Second, although MF 

and LF servers, combined, can serve the required generated workload, it is 

more efficient to activate one server in the CC instead of activating two MF 

and LF servers. For example, activating MF and LF consumes a combined 

idle power of 102 W. On the contrary, activating one server in the CC 

consumes only 69 W. Moreover, the CC has a very low PUE of 1.1, compared 

to 1.4 and 1.5 PUE in MF and LF, respectively. As a result, CC becomes the 

optimum placement to process the generated tasks.  

In CFVA-L (SA), similar behaviour is observed with less VEC utilisation and 

early activation for the CC server. In CFVA-H (SA), the increase of VNs 

density (with low demands) has a clearer effect on the power consumption, 

compared to the low density case. As seen in Figure 4.14, a 36%–42% power 

saving is achieved by CFVA-H (SA) compared to CFVA-L (SA). Although this 

power saving is limited to two cases with low demands, this can show that the 

total capacity of the available VNs processor is crucial in the allocation 

decision. The impact is confirmed in the distributed allocation (CFVA-L and 

CFVA-D), where more tasks are allocated to the VEC, as seen in Figure 4.15. 

Moreover, the splitting and bin-packing flexibility of the model increase the 

VEC utilisation in, and show the impact on, the power saving.  

Despite the common behaviour of allocating the high-demand tasks to CC, 

one feature was noticed, namely that in some cases the optimisation allocated 

a portion of processing to VEC. For instance, in CFVA-L (DA) at 7000 MIPS, 

the MILP solution allocated all tasks to CC, but at 8000 MIPS, a portion was 
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allocated to the VEC. This can be justified through two observations. The first 

is the common behaviour of selecting the PN with the smallest spare capacity 

that is enough to allocate the tasks, and then allocating the remaining portion 

to the bottom most sufficient PN (VEC in this case). The second reason is that 

activating each server in CC consumes a power overhead resulting from the 

idle and PUE values. Thus, it is more efficient to allocate the remaining 

processing (16000 MIPS) to VEC rather than activating a new CC server. 

Figure 4.16, shows that both VNs’ density and the distributed allocation 

strategy have a substantial impact on the processing allocation in VEC. 

Moreover, the source of the generated demands is another factor which helps 

to maintain an equal utilisation for all VEC clusters, despite the increase in the 

processing demands. 

 

Figure 4.14 Total power consumption in Scenario 4, with one zone. 
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Figure 4.15 Processing allocation in each PN, in Scenario 4, with one zone. 

 

 

Figure 4.16 Processing allocation in each VEC in CFVA (SA) and  
CFVA (DA), in Scenario 4 with one zone. 

 

4.6.3 Processing Allocation in Cloud-Fog-VEC Architecture with 

Multiple Zones 

In this section, similar to the previous section, we based our evaluation on the 

architecture shown in Figure 4.2. However, instead of having one zone in the 

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

L 
 (S

A
)

H
 (

SA
)

L 
 (D

A
)

H
 (

D
A

)

L 
 (S

A
)

H
 (

SA
)

L 
 (D

A
)

H
 (

D
A

)

L 
 (S

A
)

H
 (

SA
)

L 
 (D

A
)

H
 (

D
A

)

L 
 (S

A
)

H
 (

SA
)

L 
 (D

A
)

H
 (

D
A

)

L 
 (S

A
)

H
 (

SA
)

L 
 (D

A
)

H
 (

D
A

)

L 
 (S

A
)

H
 (

SA
)

L 
 (D

A
)

H
 (

D
A

)

L 
 (S

A
)

H
 (

SA
)

L 
 (D

A
)

H
 (

D
A

)

L 
 (S

A
)

H
 (

SA
)

L 
 (D

A
)

H
 (

D
A

)

L 
 (S

A
)

H
 (

SA
)

L 
 (D

A
)

H
 (

D
A

)

L 
 (S

A
)

H
 (

SA
)

L 
 (D

A
)

H
 (

D
A

)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
ro

ce
ss

in
g 

a
llo

ca
ti

o
n

 (M
IP

S)

Workload per demand (MIPS)

VEC4
VEC3
VEC2
VEC1



 

103 

 

edge network, we considered four zones representing different geographical 

areas, illustrated in Figure 4.17. The access network has also expanded, with 

four ONUs, each allocated a fog unit (NF) with a total of four NF nodes (instead 

of one NF node in Section 4.6.2). To reduce the model’s complexity, i.e. its 

runtime, and to be able to examine scenarios with high VNs density, we 

considered a setting where each zone includes only one cluster (with one VEC 

and one AP). The aim of this expanded design is to evaluate the processing 

allocation with multiple VEC clusters located in different zones. Similar to the 

evaluation scenarios described in Section 4.6.1, four scenarios were 

considered, with the same highlighted cases and tasks requirements.  

OLT

Splitter

Zone 1

VEC

Cluster

ONUNF

SN

Zone 3

VEC

Cluster

ONUNF

SN

Zone 4

VEC

Cluster

ONUNF

SN

VEC

ONUNF
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SN

 

Figure 4.17 Edge network design with four zones 

 

The results of the power consumption, allocation decision, and VEC 

utilisations are provided in Figures 1 to 12 in Appendix A. 

The fours scenarios confirm a minimum effect of expanding the architecture 

on the power consumption and the processing allocation.  Scenario 1 

produced identical results to the same scenario with one zone (in Section 
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4.6.2.1). the other three scenarios produced a comparable results compared 

to the same results with one zone. The effect of the expanded architecture 

can be highlighted with increase of the number of active ONUs (this is because 

each zone is centralised by an ONU). Increasing the number of ONUs (and 

NF nodes) increases the power consumption whenever tasks are generated 

from each zone. This is due to the need of activating the ONUs to process or 

forward the tasks to upper PNs. On the other hand, increasing the ONUs can  

save more power whenever they can fulfil the generated tasks and therefore, 

avoid activating upper layer NFs (i.e. LF). Other than this effect, the power 

consumption results follow the same trends observed in the one zone 

architecture. 

 

4.6.4 The effect of demands variety on the processing allocation 

in Cloud-Fog-VEC Architecture with One Zone 

The evaluations in the previous two sections (4.6.2 and 4.6.3) were conducted 

with fixed demands requirements for the processing (MIPS) and data rate 

(Mb/s). As explained in Section 4.5.4, we considered a generated demand 

with minimum of 1000 MIPS requirement per task. Moreover, the relation 

between the required processing and data rate is based on a defined value 

referred to as Data Rate Ratio (DRR). Thus, the increased processing 

demands in the previous evaluations were accompanied by a fixed increase 

in the required data rate based on a DRR value equal to 0.001. In this section, 

we aim to explore different ranges of DRR values that create varied ranges of 

generated demands which can represent multiple applications. The goal of 
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exploring these ranges is to examine a vast array of input sets to assess the 

considered architecture and the developed model with different types of 

potential applications. 

We considered two sets of processing demands (high and low) to capture 

tasks needs in terms of processing workload. The high demands input set 

varied from 1000 MIPS to 10000 MIPS requirement per task. On the other 

hand, the low demand set varied between 100 and 1000 MIPS per task. 

Moreover, we considered increasing the required data rate per task, for both 

processing demand sets. Different DRR values were defined, varying between 

0.001 and 0.8 to consider different scenarios with low and high data rates. 

These DRR values were chosen from a wide range of possible values where 

different behaviours of the processing allocation were observed. It is worth 

mentioning that results with a DRR value below 0.001 were not presented, as 

they proved to have the same model behaviour and allocation decisions as 

the results of 0.001. The same was true for values higher than 0.8, where 

comparable results were observed to the DRR=0.8 results. The former 

(DRR<0.001) indicates that traffic is very low and processing power 

consumption dominates the allocation decisions leading to the use of the most 

energy efficient processor. The converse is true at DRR>0.8, where traffic 

power consumption dominates, leading to the use of the nearest processor. 

The following are the values considered for DRR: 0.001, 0.04, 0.08, 0.1, 0.2, 

0.4, and 0.8. As examples of the types of applications represented by these 

DRR values, a DRR value of 0.001 represents a task that is intensive in 

processing and light in communication, for example sensing simple data and 
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then processing it intensively. At the other extreme, the DRR of 0.8 may 

represent processing video streams, which is intensive in communication and 

processing. Other applications could include video streaming, images or large 

sensor files.  

In this evaluation, we considered end-to-end architecture, where the edge 

network consists of one zone and four VEC clusters, as illustrated earlier in 

Figure 4.4. We evaluated the scenario where one task is generated from one 

cluster. It is worth mentioning that, as we challenge the network with high DRR 

values, and therefore high traffic, the source node generating the task is 

assumed to have a wired connection to the AP to accommodate the large 

amount of generated traffic. For example, with a processing demand of 1000 

MIPS at DRR of 0.8, the generated traffic is equal to 800 Mb/s, which can be 

sent through the wireless 1 Gb/s connection of the AP. However, with a 10000 

MIPS generated task, the traffic is equal to 8 Gb/s. This traffic can be 

accommodated by the wired connection while the AP, in this case, consumes 

power to act as a coordinator.  

The next section will explain the results at different DRR values with high and 

low demands for one generated task. Both data sets are tested with single 

and distributed allocation strategies. A case was considered where all the 

processing nodes (CC, MF, LF, NF, and VN) are available, and the vehicular 

nodes exist with low density (CFVA-L).  

4.6.4.1 Scenario 1: One generated task with high processing demand 
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This section describes the results (for both single and distributed allocation 

strategies) when one generated task is under increasing demand from 1000 

to 10000 MIPS. 

First, Figures 4.18 and 4.19 show the total power consumption and processing 

allocation in each PN, respectively, with single allocation strategy. 

Figure 4.18 illustrates that the total power consumption for single allocation 

strategy has relatively comparable behaviours for all DRR values. Moreover, 

Figure 4.19 displays that the processing allocation in all PNs remains the 

same for all DRR values between 0.8 and 0.08. This is due to the high data 

rate associated with these DRR values and with the high processing 

demands. As a result, no processing was allocated to the VEC despite the 

fact that a VN can process a single task up to 3200 MIPS. This is because the 

minimum processing demand for the single task (1000 MIPS) requires a 

minimum data rate of 80 Mb/s, which exceeds the connection capability of a 

VN. Consequently, tasks were accommodated by NF and LF for all these DRR 

values (0.8 – 0.08).   

With low DRR values, 0.04 and 0.02, the required data rate associated with 

low processing demands fit within the capacity of the VN connection. 

Therefore, tasks with 1000 MIPS, in DRR=0.04, and with 1000–3000 MIPS, 

in DRR=0.02, were allocated to the VEC, as shown in Figure 4.19. This 

explains the drop in power consumption for both ratios, saving up to 75% 

power compared to DRR=0.8, as depicted in Figure 4.18. However, the VEC 

allocation was terminated afterwards and the model followed the same 

allocation behaviour observed with other DRR values. This could be due to 
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the VN connection limitation (in 0.04), or due to connection and processing 

capacity limitation (in 0.02). Yet, a saving of up to 42% is achieved, compared 

to DRR=0.8, as both ratios (0.02 and 0.04) result in a low data rate 

requirement and, therefore, less power consumption.  

 

 

Figure 4.18 Total power consumption in single allocation with high 
processing requirements 

 

 

Figure 4.19 Processing allocation in each PN in single allocation with high 
processing requirements 
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Figures 4.20 and 4.21 show the total power consumption and processing 

allocation in each PN, respectively, for the distributed allocation strategy. We 

observed that splitting the task can solve the VN connection limitation, as the 

required flow will be split proportionally with the given workload. Therefore, 

the optimisation was able to achieve better utilisation of the VEC with medium 

DRR values (0.2 – 0.08) and the low DRR values (0.04 and 0.02), as seen in 

Figure 4.21. For instance, with a DRR value of 0.2, the 200 Mb/s required data 

rate, accompanied by the 1000 MIPS task, was split among three VNs. 

Similarly, tasks with DRR equal to 0.1 (up to 2000 MIPS) and 0.08 (up to 3000 

MIPS) were allocated to VEC by splitting the processing allocation among the 

available VNs. According to these results, and as shown by Figure 4.20, 

distributed allocation was able to achieve up to 63% power saving with 

medium DRR values, compared to single allocation. This saving increased to 

63% – 68% in some cases in the three medium DRR values, as the optimum 

solution resulted in the use of the VEC with NF full utilisation. This is a result 

of the higher power consumption which results from activating OLT and LF. 

The above matches the model behaviour with expanded architecture, as 

confirmed in Sections 4.6.2 and 4.6.3. With low DRR values (0.02 and 0.04), 

an improvement in VEC utilisation and power savings is achieved. This is 

attributed to the low-demanding data rate per task in relation to the required 

processing workload and the low DRR values. The low data rate resulted in 

the optimisation splitting the task among the available four VNs without 

exceeding the capacity of the VN connection. By this allocation, the model 

saved power of 34% – 81% (with DRR 0.04), compared to single allocation. 
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This saving percentage is based on the amount of extra workload allocated to 

VEC after utilising the NF. With DRR=0.02, the power consumption saving 

increased further to up to 84%, as all tasks were allocated to the VEC. 

 

Figure 4.20 Total power consumption in distributed allocation with high 
processing requirements 

 

 

Figure 4.21 Processing allocation in each PN in distributed allocation with 
high processing requirements  
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4.22 and 4.23, the results showed similar processing allocation behaviours to 

Scenario 1.  However, as the low processing workload decreased the data 

rate requirement, a huge power saving is expected, and was confirmed, as 

seen in Figure 4.22. Figure 4.23 shows that DRR=0.8 caused a data rate 

bottleneck even with the lowest possible demand (i.e. 100 MIPS). However, 

with DRR=0.4, the VEC had a task allocation even with the lowest generated 

demand. In the same figure, we observe that the VEC utilisation increased for 

medium DRR values (0.2–0.04), compared to Scenario 1. This is due to the 

low processing workload that can be satisfied by one VN processor. This VEC 

utilisation stopped when the data rate exceeded the VN connection capacity, 

based on the DRR value. In both low DRR values (0.04 and 0.02), a full tasks 

allocation was achieved by the available VNs. This confirms that, regardless 

of the processing demand, VEC represents the most efficient PN, as long as 

its VNs and their connection can satisfy the tasks’ requirements. 

The results for the distributed allocation in Figure 4.24 and Figure 4.25 show 

comparable improvement values in the power consumption and allocation to 

that achieved by Scenario 1 under high demands. 
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Figure 4.22 Total power consumption in single allocation with low 
processing requirements 

 

 

Figure 4.23 Processing allocation in each PN in single allocation with low  
processing requirements 
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Figure 4.24 Total power consumption in distributed allocation with low 
processing requirements 

 

 

Figure 4.25 Processing allocation in each PN in distributed allocation with 
low processing requirements 
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4.7 MILP Model Validation  

In this section, we provide an analysis of the results in order to verify the MILP 

model and provide confidence in the model results provided in this chapter. 

The validation is conducted through checkpoints with multiple cases obtained 

from the provided scenarios. Table 4.5 shows that if the allocation is correct, 

the MILP calculated power consumption is correct as well. Two potential 

solutions were tested with one solution matching the MILP allocation. On the 

other hand, Table 4.6 shows that the allocation and the calculated power are 

correct by examining all the possible allocation solutions and hence shows 

that the MILP resulted in the optimum allocation and the minimum total power 

consumption. 

In each tables, the following attributes are added to achieved the model 

validation: 

• A reference is added, at the top of the table, to the scenario that is 

evaluated.  

• The columns titled as 1, 2, 3, .. etc, represent the different tested cases 

(potential solutions with the potential allocation decisions) where one 

of them should match the MILP model solution in order to validate its 

result. 

• The rest of the table is divided into two sections to calculate and 

validate the power consumption of processing and networking. This is 

done using the same devices parameters used in the MILP model 

,W/MILPS, W/Mb/s, idle power, and PUE, which summarised in Tables 

4.1, 4.2, and 4.4. 
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• The first section (with blue border) calculates the processing power 

consumption of each processing node based on the allocated 

processing to this node, in all potential cases. Accordingly, the total 

processing power consumption is calculated and compared to the 

MILP to find the case that matches the model result (coloured in Red).  

• The second section of the table (with green border) calculates the 

networking power consumption of each networking device based on 

the traffic traversing this node in potential case. Similarly to the 

processing power, the total networking power consumption is 

calculated and compared to the MILP to find the case that matches the 

model result (coloured in Red).  

• Finally, the total power consumption is summed out of the processing 

and networking power consumption. The final result, in the tail of the 

table is compared to the MILP model result to validate it with a 

reference to the associated figure in Section 4.6. 
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Table 4.5 Analytic verification of the optimal choice in Scenario 2 with one 
zone network. 

Checkpoint 1 
Edge network design: one zone with 4 clusters (CFA) 

Scenario 2: one generated task per cluster, each with 3000 MIPS and 3Mb/s  

Two potential Solutions           →  1 2 

Allocation decision              →  
All tasks in LF 2 tasks allocated to 

NF and 2 tasks 
allocated to LF 

Processing Nodes 
Processing Power (W) 

 W/MIPS Idle(W) PUE 

CC 0.00032 96 1.1   

MF 0.00039 51 1.4   

LF 0.00063 51 1.5 [(12000 * 0.00063 ) 

+ 51 ] * 1.5 = 87.84  

[(6000 * 0.00063 ) + 

51 ] * 1.5 =  82.17 

NF  0.001 9 -  (6000 * 0.001 ) + 9 = 

15  

VN 0.00125 6 -   

Total Processing Power (W)       →  87.8 97.1 

MILP Result                      →  87.8 W  
 

Network Devices 
Networking Power (W) 

 W/Mb/s Idle(W) PUE 

CC Switch 0.00008 24.8 1.5 - - 

CC Router 0.00006 1.35 1.5 - - 

Core 
Router 0.0016 34.5 

1.5 - - 

Metro 

Router 
0.00006 1.35 1.5 

- - 

MF Switch 0.00012 13.23 1.4 - - 

MF Router 0.00003 0.7 1.4 - - 

Metro 
Switch 

0.00003 27 1.5 
- - 

LF Switch 0.00012 13.23 1.5 
[(12 * 0.00012) + 

13.23] *1.5= 19.847 

[(6 * 0.000003) + 2.7] 

* 1.5 = 19.846 

LF Router 0.00003 0.7 1.5 
[(12 * 0.00003) + 

0.7] * 1.5 = 1.0505 

[(6 * 0.000003) + 2.7] 

* 1.5 = 1.0503 

OLT 0.000003 2.7 1.5 
[(12 * 0.000003) + 

2.7] * 1.5 = 4.0501 

[(10 * 0.000003) + 

2.7] * 1.5 = 4.05 

ONU 0.00015 13.5 - 
(12 * 0.00015) + 

13.5 = 13.502 

(16 * 0.00015) + 13.5 

= 13.502 

VN WIFI  0.0139 1.5 - - - 

AP 0.0053 4.8 - 
(3 * 0.0053) + 4.8 = 

4.837 * 4† = 9.6 
† 
4 APs 

(4 * 0.0053) + 4.8 = 

4.837 * 4 = 9.6 

Total Networking Power (W)      →  57.7 57.7 

MILP Result                  →  57.7W  

Total Power Consumption (W) 145.55  154.88  
MILP Result                  →  145.55 W →  refer to Figure 4.8 
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Table 4.6 Analytic verification of the optimal choice in Scenario 1 with one 
zone network. 

Checkpoint 2 
Architecture#1: one zone with four clusters [CFVA-L (SA)] 

Scenario 1: one task generated from one cluster, with 3000 MIPS and 
3Mb/s  

All possible solutions       →  1 2 3 4 5 

Allocation decision         →  CC MF LF NF VN 

Processing Nodes 
Processing Power (W) 

PN W/MIPS 
Idle 
(W) 

PUE 

CC 0.00032 69 1.1 [(3000 * 0.00032 ) 
+ 69 ] * 1.1 = 

76.956 

    

MF 0.00039 51 1.4  [(3000 * 
0.00039 ) + 51 ] 
* 1.4 = 73.038 

   

LF 0.00063 51 1.5   [(3000 * 0.00063 
) + 51 ] * 1.5 = 
79.335 

  

NF  0.001 9 -    (3000 * 
0.001 ) + 9   
=  12 

 

VN 0.00125 - -     3000 * 
0.00125 = 
3.75 

Total Processing Power (W)    →  76.956 73.038 79.335 12 3.75 

MILP Result               →     3.75 W 
      

Network Devices 
Networking Power (W)  W/Mb/s 

Idle 
(W) 

PUE 

CC 
Switch 

0.00008 24.8 1.1 
[(3 * 0.00008) + 
24.8] *1.1= 27.28 

   - 

CC 
Router 

0.00006 1.35 1.1 
[(3 * 0.00006) + 
1.35] *1.1= 1.485 

   - 

Core 
Router 

0.0016 34.5 1.5 
[(3 * 0.0016) + 
34.5] *1.5= 51.757 

   - 

Metro 
Router 

0.00006 1.35 1.5 
[(3 * 0.00006) + 
1.35] *1.5= 2.025 

   - 

MF 
Switch 

0.00012 
13.2
3 

1.4 
- [(3 * 0.00012) + 

13.23] *1.4= 
18.52 

  - 

MF 
Router 

0.00003 0.7 1.4 
- [(3 * 0.00003) + 

0.7] *1.5= 1.05 
  - 

Metro 
Switch 

0.00003 27 1.5 
[(3 * 0.00003) + 
27] *1.5= 40.5 

[(3 * 0.00003) + 
27] *1.5= 40.5 

  - 

LF 
Switch 

0.00012 
13.2
3 

1.5 
  [(3 * 0.00012) + 

13.23] *1.5= 
19.85 

   

LF 
Router 

0.00003 0.7 1.5 
  [(3 * 0.00003) + 

0.7] * 1.5 = 
1.501 

   

OLT 0.000003 2.7 1.5 
[(3 * 0.000003) + 
2.7] * 1.5 = 4.05 

[(3 * 0.000003) 
+ 2.7] * 1.5 = 
4.05 

[(3 * 0.000003) 
+ 2.7] * 1.5 = 
4.05 

    

ONU 0.00015 13.5 - 

(3 * 0.00015) + 
13.5 = 13.5005 

(3 * 0.00015) + 
13.5 = 13.5005 

(3 * 0.00015) + 
13.5 = 13.5005 

(3 * 
0.00015) + 
13.5 = 

13.5005 

  

VN 
WIFI  

0.0139 1.5 - 
-    (3 * 0.0139) 

+ 1.5 =  
1.5417 

AP 0.0053 4.8 - 
(3 * 0.0053) + 4.8 
=  4.8159 

(3 * 0.0053) + 
4.8 =  4.8159 

(3 * 0.0053) + 
4.8 =  4.8159 

(3 * 0.0053) 
+ 4.8 =  
4.8159 

(3 * 0.0053) 
+ 4.8 =  
4.8159 

Total Networking Power (W)    → 145.4 82.4 43.7 18.3 6.36 

MILP Result               →     6.36 W 
Total Power Consumption (W) 145.55  155.4 123 30.3  10.11 

MILP Result                →  10.11 W →  refer to Figure 4.5 
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4.8 Summary 

In this chapter, we have investigated the processing allocation optimisation 

problem in vehicular edge cloud integrated with central cloud and distributed 

fog processors. This architecture was evaluated through a MILP optimisation 

model to minimise the total power consumption. The evaluation considered 

multiple cases to study the impact of workload volume, task generation 

density, vehicles density, and task allocation strategy (single and distributed). 

Two architectural designs were evaluated with a single or multiple VEC 

clusters. The results of the investigation showed that vehicles with enough 

capacity turn out to be a very attractive option for processing the generated 

workload and saving power. As a result, a power savings up to 70% is 

achieved by allocating processing to the vehicles. This percentage varied 

based on the assessed scenario. Moreover, splitting the tasks between 

multiple vehicles achieved potentially power saving compared to the scenario 

with single allocation. The overhead power (idle power and PUE) of each 

processing servers is a key factor affecting the allocation decision. 

Accordingly, with high generated tasks associated with high required 

demands, the central cloud becomes more efficient. It was also shown that 

expanding the access layer with multiple ONUs has minor effect on the 

allocation decisions, as the local VEC is always more efficient than the non-

local VEC. 

The evaluated scenarios in this chapter represented idealistic situations in 

which all vehicles are assumed to have all the required software packages to 

process the generated tasks. In the next chapter, we will investigate a realistic 
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situation where not all vehicles have all the required software. Moreover, this 

realistic evaluation will consider the assumption that tasks will be generated 

based on the popularity of each software package. 
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Chapter 5  

Software Matching in Vehicular Edge Clouds 

5.1 Introduction 

Smart vehicles, with their underutilised resources, can be used as an 

Infrastructure as a Service (IaaS) platform to provide different services. 

Computation as a Service (CompaaS), presented in Chapter 4, is one of the 

main services needed to build a conventional cloud-like system out of the 

underutilised computational capabilities of vehicles. In the main model 

(developed in Chapter 4), an ‘idealistic’ assumption was made that all the 

available vehicles are already provided with all types of possible IoT data 

processing software packages. Therefore, these vehicles are assumed to 

process all types of generated tasks. However, this assumption is not a reality, 

as these vehicles may come with limited processing software packages 

capability compared to a conventional data centre. Moreover, the software 

packages may generally be factory-fitted and limited [102]. In this chapter, we 

take the model developed in Chapter 4 a step further, towards a realistic 

situation where the required software packages needed to serve certain tasks 

may not always be available in the clustered vehicles. The aim of this chapter 

is to emphasize the optimum processing allocation results from the original 

idealistic model, in Chapter 4, with a realistic aspect (vehicles heterogeneity). 

One level of heterogeneity is assumed where not all vehicles have the same 

processors that support same software packages. Moreover, this chapter 

evaluates different situations of packages availability among all participating 

vehicles (VEC) through considering different distribution of the software 
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availability. This is to highlight the effect of possible criteria of clustering 

vehicles based on the available software packages.  

We assessed the impact of the availability of software packages in vehicular 

edge clouds (VEC) on the processing allocation, the number of tasks allocated 

to the VEC and the overall power consumption. The evaluated problem is 

summarised as follows:  

1. Certain vehicles have their own particular software packages, and we 

will therefore need to optimise the processing allocation accordingly, 

by matching the software required by a task to the available software 

in the vehicular nodes (VN), as illustrated in Figure 5.1, in order to 

minimise the total power consumption. 

2.  With the limited availability of software in the available vehicles, we will 

optimise the allocation of the software packages in these vehicles and 

optimise the processing allocation, accordingly. 

3. Demands are generated based on the popularity of the software 

packages. The popularity is assumed to follow a Zipf distribution, which 

is typical [103]. Based on this, we will study the effect of this popularity 

on the software and processing allocation in the vehicles.  

The evaluation was carried out by examining two possible sets of scenarios. 

The first set (three scenarios) considered a situation where each VN came 

with one or more pre-allocated software packages in its processor attached 

memory. In the second set of scenarios, each VN is allocated the required 

software along with the task allocation. More details about the evaluation 

scenarios and the considered situations is given in detail in Section 5.4.  
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Figure 5.1 Software matching illustration 

 

 
 

5.2 Energy Efficient Software Matching in vehicular edge 

clouds 

In this model, the architecture used is shown in Figure 5.2. The architecture 

consists of one central cloud (CC) and one vehicular edge cloud (VEC). No 

fog processing nodes were considered in the metro or access layer, in order 

to reduce the time needed to run the MILP and to focus on the allocation 

between the central cloud and the distributed vehicles, which are the two ends 

where processing tasks can be allocated. As CC provides a reliable support 

for the considered architecture, it hosts all the required software packages. 

The VEC cluster has varying number of vehicular nodes (VN) which ranged 

between 8 and 20 VNs in the settings we considered. Ten dif ferent software 

packages are assumed, each with a popularity calculated using Zipf 

distribution, with popularities between 34% and 3%. As the tasks, in reality, 

might be generated from different source nodes, we assume that each SN 

works for a specific purpose and therefore, requires a certain software 

package. The downloaded version  of this software is available in the SN, 
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which has the ability to send this downloaded package to any nearby VN to 

accommodate the required tasks of this SN. 

 

Figure 5.2 Cloud-VEC based architecture for software matching model 

5.3 MILP Model   

In order to evaluate the software matching problem, the MILP model 

introduced in Chapter 4 is considered. The model is modified to include the 

additional sets and parameters that need to be incorporated to describe the 

software matching problem.  

The additional sets are as follows: 

𝑆𝑊  Set of software packages. 

The following parameters are introduced as: 
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Ψ𝑑𝑖
𝑉𝑁 Indicator of the availability of software package 𝑖, 𝑖 ∈ 𝑆𝑊 , in vehicular 

node 𝑑 ∈ 𝑉𝑁 .  Ψ𝑑𝑖
𝑉𝑁 = 1  if the software package 𝑖, 𝑖 ∈ 𝑆𝑊, is available 

in vehicular node 𝑑 ∈ 𝑉𝑁  , it is 0 otherwise.  

Ψ𝑠𝑖
𝑆𝑁 Indicator of source node 𝑠 ∈ S𝑁, requiring software package 𝑖, 𝑖 ∈ 𝑆𝑊. 

Ψ𝑠𝑖
𝑆𝑁 = 1  if source node 𝑠 ∈ 𝑆𝑁 requires software 𝑖 ∈ 𝑆𝑊, it is 0 

otherwise. 

𝑘 
Maximum number of software packages allowed in each vehicular 

node. 

𝑟𝑖  Maximum number of vehicular nodes hosting each software packages 

𝑖 ∈ 𝑆𝑊 (Software replicas). 

Φ𝑖 Data rate needed to download software package 𝑖 ∈ 𝑆𝑊. 

The total power consumption required to download the software package in 

the AP and the VN communication adapter is calculated as follows: 

𝐷𝑃𝐶𝐴 =     [ ∑  ∑  ∑  Ψ𝑖

𝑑 𝜖 𝑉𝑁𝑗 𝜖 𝐴𝑖 𝜖 𝑆𝑊

.  Ψ𝑑𝑖
𝑉𝑁 . Φ𝑖  .  (

𝑃𝑚𝑎𝑥
𝐴 − 𝑃𝑖𝑑𝑙𝑒

𝐴

Ω𝑚𝑎𝑥
𝐴

)]                             (5.1) 

𝐷𝑃𝐶𝑉𝑁 =    [ ∑  ∑  Ψ𝑑𝑖
𝑉𝑁

𝑑 𝜖 𝑉𝑁𝑖 𝜖 𝑆𝑊

.  Φ𝑖  .  (
𝑃𝑚𝑎𝑥

𝑉𝑊 − 𝑃𝑖𝑑𝑙𝑒
𝑉𝑊

Ω𝑚𝑎𝑥
𝑉𝑊

)]                                         (5.2)  

Equation (5.1) calculates the power consumed by the AP to download and 

forward the required software from the SN to VN, where Φ𝑖  is the required 

data rate to download software 𝑖. Equation (5.2) calculates the power 

consumed by the VN downloading the software package 𝑖. 

Objective:  

To minimise the total power consumption of all the processing nodes and their 

networks, and the infrastructure network devices, as explained in Chapter 4, 
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including the two power consumption components calculated in Equation (5.1) 

and (5.2), given as: 

Minimise: 

𝑇𝑃𝐶 𝐶𝐶 +  𝑇𝑃𝐶 𝑀𝐹 +  𝑇𝑃𝐶 𝐿𝐹 +  𝑇𝑃𝐶 𝑁𝐹 + 𝑇𝑃𝐶 𝑉𝑁 + 𝑇𝑃𝐶 𝑁𝐸𝑇 +  𝐷𝑃𝐶 𝐴 + 𝐷𝑃𝐶𝑉𝑁  (5.3)  

where 𝑇𝑃𝐶𝐶𝐶 , 𝑇𝑃𝐶𝑀𝐹 ,𝑇𝑃𝐶𝐿𝐹 , 𝑇𝑃𝐶𝑁𝐹 , 𝑇𝑃𝐶𝑉𝑁  and  𝑇𝑃𝐶𝑁𝐸𝑇 are the total power 

consumption of CC, MF, LF, NF, VN and the network infrastructure, 

respectively. 𝐷𝑃𝐶𝐴  and 𝐷𝑃𝐶𝑉𝑁 are the power consumption attributed to 

downloading the software packages in AP and VN, respectively. 

The objective function is subject to all of the constraints introduced in Chapter 

4, and the following additional constraints:  

1) Task allocation based on software matching:   

  𝛿𝑠𝑑  ≤  ∑   Ψ𝑠𝑖
𝑆𝑁

𝑖 𝜖 𝑆𝑊

  .  Ψ𝑑𝑖
𝑉𝑁                    ∀  𝑠 ∈ 𝑆𝑁, 𝑑 ∈ 𝑉𝑁.                         (5.4)  

Constraint (5.4) ensures that tasks generated from source node 𝑠, which 

require software package 𝑖, can be allocated at vehicular node 𝑑, if 𝑑 hosts 

the required software 𝑖. The binary variable  𝛿𝑠𝑑 , is set to zero, if the source 

node does not require the software package 𝑖, and/or the processing node 

does not have the software package for all required software packages. 

Moreover, 𝛿𝑠𝑑 in Equation (4.25) and (4.26) in Chapter 4, is set to one, as 

appropriate.  

2) The number of software packages allowed in each VN: 

∑   Ψ𝑑𝑖
𝑉𝑁

𝑖 𝜖 𝑆𝑊

 ≤  𝑘                ∀   𝑑 ∈ 𝑉𝑁                                                               (5.5)  
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Constraint (5.5) defines the different cases where the maximum number of 

allowed software packages per VN ranges from 0 to 10 software packages 

per VN, where 𝑘 is the maximum number of hosted software.  

3) The number of VNs hosting each software package (Scenario 3):   

∑   Ψ𝑑𝑖
𝑉𝑁

𝑑 𝜖 𝑉𝑁

 ≤  𝑟𝑖                 ∀   𝑖 ∈ 𝑆𝑊                                                               (5.6)  

Constraint (5.6) defines the maximum number of VNs that can host each 

software package. Note that this constraint is defined only in Scenario 3, 

where the value of 𝑟𝑖 is given. Scenario 4 does not consider this constraint as 

the parameter Ψ𝑑𝑖
𝑉𝑁 becomes an optimisation variable.  

5.4 Power Consumption and Software Matching Scenarios 

This section discusses the evaluated scenarios in the energy efficient software 

matching optimisation, using the architecture illustrated in Figure 5.2. Four 

scenarios were assessed based on the availability of the software replicas in 

the available VNs, as explained next in Section. The results are summarised 

in Section 5.4.2. All of the four scenarios were assessed with different 

densities of VNs (8, 10, and 20 VNs) and with both of the allocation strategies 

that were considered in Chapter 4 (single and distributed). Three scenarios 

were conducted where we assume that the participant vehicles have already 

one or more software packages installed in their processor, based on vehicle 

manufacture or user-based software preference. In these scenarios, installing 

any software packages prior allocating tasks is not possible. If the available 

vehicles don’t have the required package to process the tasks, these tasks 
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will be allocated to the central cloud which fulfils all the required software 

types. In the fourth scenario, the vehicles are assumed to have no software 

packages and, hence, cannot process the generated tasks immediately. 

However, these vehicles are able to communicate with the source node to 

download any required packages and ,therefore, process the their associated 

tasks. 

As explained in the previous section, the tasks generated are assumed to 

follow Zipf distribution, based on ten potential types of software packages. To 

ensure that all the software packages considered are required in the total of 

the generated tasks, we fixed the number of tasks to 25, each generated with 

1000 MIPS, 1 Mb/s and a software requirement based on the software type 

popularity. Table 5.1 summarises the software package required for each 

generated task, based on Zipf distribution. 

Table 5.1 Popularity percentage and generated tasks for each software 
package (for a total of 25 tasks). 

Software 
package ID 

A B C D E F G H I J 

Popularity 

percentage 
34% 17% 11% 9% 7% 6% 5% 4% 4% 3% 

Number of 
generated tasks 9 4 3 2 2 1 1 1 1 1 

 

The optimisation results allocated the generated tasks to the available 

vehicular nodes based on three factors: a matching scheme between the 

task’s required software and the software compatible VNs, the VNs 

processors’ capacities and the communication medium capacity. To evaluate 

the energy efficient software matching model, four scenarios were evaluated, 
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each scenario had different cases where the number of allowed software 

packages in each VN ranged from 0 to 10 software per VN.  

In Scenario 1, each VN was assumed to have a deterministic (pre-allocated) 

software package that served one or more of the considered software 

packages. This assumption was based on the situation that VNs come with 

an advanced processor that can handle many different IoT applications 

available in smart cities; therefore, no software downloading was considered 

for the available VNs. The number of allowed packages per VNs varied 

between zero and ten software packages per VN (SW/VN). The availability of 

the software replicas in the clustered VNs was assumed to have a uniform 

distribution; thus, with 1 SW/VN, one copy of a software was available in each 

VN, and with 2 SW/VN, two copies of the software were available in each VN, 

and so on. Accordingly, all the software packages considered were available 

in VEC, in each case. It is worth mentioning that uniform placement of software 

packages is not ideal given that the demands follow a heavy tail Zipf 

distribution. 

In Scenario 2, the same details as Scenario 1 are applied, except that the 

availability of the software replicas in the clustered VNs was assumed to have 

a random and uniform distribution. We considered such a scenario as a more 

realistic situation of the available VNs distributed with specific available 

software. Therefore, this distribution was worse than the uniform distribution 

in Scenario 1, as some software packages may be missing in the available 

vehicles, and therefore, in the VEC. Ideally, this distribution should be an 
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average over many runs, however, the difference between this scenario and 

scenario 1 was small. Therefore, a single realisation is reported.  

Scenario 3 was similar to the first scenario. The software available in each VN 

remained deterministic as an input to the model. However, the number of VNs 

hosting each software package was calculated based on Zipf distribution. The 

number of allocated software replicas was added as a constraint to the model. 

In this scenario, we wanted to evaluate an ideal case where these VNs with 

their pre-allocated software were clustered based on the software popularity 

to serve the requested tasks. 

On the contrary to scenarios 1, 2, and 3, in Scenario 4, the number of VNs 

hosting each software package was optimised. Therefore, the model allocated 

each software in the available VNs and optimised the tasks allocation based 

on this decision. This scenario was applied to a case where the architecture 

controlled (AP) had no pre-knowledge of the software popularity, and 

therefore, an instant knowledge was created based on the collected tasks. In 

this case, the downloading overhead was introduced as the power consumed 

due to downloading the software package from the source node to the hosting 

VN, through the AP. This assumption accounts for situations where the vehicle 

participating in the edge cloud lacks the required package to serve certain 

tasks using the required software. 

5.5 Power Consumption and Software Matching Results 

This section discusses the results of the energy efficient software matching 

optimisation; the effect of VN density; software popularity; and the number of 
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software replicas in the available vehicular nodes, using the scenarios 

described in the previous section. 

5.5.1 Scenario 1: Software Matching with Software Packages 

Based on Uniform Distribution 

Figures 5.3 and 5.4 show the total power consumption and the percentage of 

allocated processing in VEC, for single and distributed allocation strategies, 

respectively. All the results are represented for cases with 8, 10, and 20 

available VNs, and with different sets of software in each VN, based on 

uniform distribution. In addition, a certain number of available packages per 

VN was considered. This number varied between zero software per VN 

(0SW/NV) and ten software packages per VN (10SW/VN). The case of 

0SW/VN represents a baseline case where all tasks are allocated to the 

central cloud (CC), as vehicular nodes have no pre-allocated software 

packages in their on-board unit (OBU), and therefore, cannot serve the 

demands presented by the tasks. On the other hand, 10SW/VN represents a 

case where smart vehicles with advanced OBU and many pre-allocated 

software packages are present and can meet the software requirements of 

the tasks . 

It was observed that for the single allocation (Figure 5.3) with a low and 

medium number of vehicular nodes (8–10VNs) and a low number of available 

packages per VN (1–3SW/VNs), all the tasks were allocated to the CC. 

Although VEC capacity with 8VNs and 10VNs was enough to allocate 96% 

and 100% of the generated tasks, respectively, the limited software replicas 

in these VNs limited the allocation to the VNs with the required software 

packages. Based on the results in Chapter 4, it was noted that allocating all 
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tasks to one processing location was more efficient. This was observed in the 

results, as activating the CC consumes a high network power due to switching 

all the devices in the route to the CC. Therefore, avoiding activation of the VN 

connection for partial allocation saves power, and is the reason that all the 

tasks are allocated to the CC, despite the VEC being able to serve part of 

these tasks. For the case with 8VNs, the VEC was not efficient enough to 

allocate the generated tasks, regardless of the increased number of available 

software replicas in each VN. However, with 10VNs, increasing the available 

package replicas to 4SW/VN was enough to accommodate all generated 

tasks in order to satisfy the required software. When increasing the number of 

vehicles to 20 VNs, the VEC becomes rich with resources and variety of 

software. Therefore, VEC was large enough to satisfy all the generated tasks, 

with only 2SW/VN in each vehicle.  

The same results were observed for the distributed allocation strategy (Figure 

5.4), with 10 and 20 available VNs. For the 8 VNs, the splitting flexibility 

introduced in the distribution strategy achieved better power efficiency, as 

VEC was able to allocate all the generated tasks by having at least 6SW/VNs, 

due to the variety of available packages per vehicular node, and the ability to 

bin-pack the split tasks among the remaining processing capacity of VNs. 
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Figure 5.3 Total power consumption and VEC processing allocation 
percentage in single allocation strategy with uniformaly distributed  

software packages over the available VNs (Scenario 1) 

 

 

Figure 5.4 Total power consumption and VEC processing allocation 
percentage in distributed allocation strategy with uniformly distributed 

software packages over the available VNs (Scenario1) 

 

As noted earlier (Table 5.1), the generated tasks followed a Zipf popularity 

distribution, however, in this scenario, the software packages available in the 

VNs followed a uniform distribution. Table 5.2 lists the number of VNs utilised 

and the number of individual replicas used in the VEC, for both single and 

distributed allocation strategies. This table helps to analyse how the number 

of available software packages in each VN can affect the allocation decision, 

and if the allocation strategy has an effect on the number of software packages 
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used in each VN, as well as the total number of replicas used among the VEC. 

As the available VNs were hosting pre-allocated software packages, there 

was no download overhead caused by using the available software replicas. 

This allowed the model to use many replicas to satisfy the generated tasks, 

as long as the minimum VNs were utilised and no extra VN was used by the 

extra software replicas. We can also observe that the number of replicas used 

increased in the distributed allocation strategy, but at the same time, the 

number of utilised VNs decreased, as the splitting allowed the model to use 

more replicas in each VN, by allocating less processing. It is worth mentioning 

that in the single allocation, the total number of used replicas cannot exceed 

27 replicas in VEC, due to the limited processing capacity of each VN (3200 

MIPS). As a consequence, and with the task requirement considered (1000 

MIPS), no more than three tasks with different software requirements can be 

allocated to any VN. Therefore, no more than three software replicas can be 

used in each VN, regardless of the number of available packages. This 

explains the increase in the number of replicas used in the distributed 

allocation strategy, as some VNs were allocated tasks belonging to more than 

3 software packages. 

Table 5.2 Number of VNs utilised and software replicas used in single and 
distributed allocation strategies (Scenario 1). 

N
u
m

b
e
r 
o
f 

a
v
a
ila

b
le

 
V

N
s
 

Single Allocation Distributed Allocation 

Number of VNs 
utilised  

Number of 
individual 

sof tware replicas 
used in VEC 

Number of VNs 
utilised  

Number of 
individual 

sof tware replicas 
used in VEC 

8 VNs 0 0 8 15–23 

10 VNs 9 14–20 8 18–24 

20 VNs 9 14–17 8 15–30 
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As part of the evaluation, we wanted to test if the processing allocation, based 

on task software types and the available packages in VNs, would follow the 

same distribution. In other words, we wanted to test if the popularity of 

generated tasks was reflected in the number of software replicas used in the 

available VNs, after the optimisation. Figures 5.5 and 5.6 show how the 

processing allocation and the replicas used affected the available VNs. We 

observed that software popularity was not always reflected in the number of 

each software replicas used. The results circled in red show some cases 

where a more popular software was represented by a fewer number of 

replicas in the available VNs. For instance, in the single allocation strategy 

(Figure 5.5) with 10VNs and 5SW/VN, 6% of the software replicas used 

belonged to software D, while 12% belonged to software E, which was less 

popular than D. Most of these cases existed in the distributed allocation 

strategy (Figure 5.6), as the optimisation splitted more tasks and used more 

replicas, in order to use less VNs, regardless of the popularity of the software 

required by the tasks in order to save power consumption.   

 

Figure 5.5 processing allocation based on software packages in single 
allocation strategy (Scenario 1). 
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Figure 5.6 processing allocation based on software packages in distributed 
allocation strategy (Scenario 1). 
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5SW/VN was not enough, and all the tasks were allocated to the CC, because 

with random and uniform distribution, some replicas could be available more 

than others. If it happened that these replicas belonged to high popularity 

software, more tasks would be allocated to the VN and therefore, the VEC 

utilisation increased.  

 

Figure 5.7 Total power consumption and VEC processing allocation 
percentage in single allocation strategy with randomly distributed 

 software packages over the available VNs (Scenario 2). 

 

Figure 5.8 Total power consumption and VEC processing allocation 
percentage in distributed allocation strategy with randomly distributed 

software packages over the available VNs (Scenario 2). 
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no extra power overhead to be consumed by using specific replicas in the VN, 

it did not matter how many replicas were used in each VN, as long as the 

number of activated VN communication units was minimised. This was 

confirmed by the similarity of the number of utilised VNs in both scenarios (1 

and 2). In addition, Figure 5.9 and 5.10 confirm that the allocation did not 

necessarily follow the Zipf distribution of the generated software tasks. 

Table 5.3 Number of utilisedVNs utilised and software replicas used in 
single and distributed allocation strategies (Scenario 2). 

N
u
m

b
e
r 
o
f 

a
v
a
ila

b
le

 
V

N
s
 

Single Allocation Distributed Allocation 

Number of VNs 
utilised  

Number of 
individual 

sof tware replicas 
used in VEC 

Number of VNs 
utilised  

Number of 
individual 

sof tware replicas 
used in VEC 

8 VNs 0 0 8 17–22 

10 VNs 9 16–21 8 17–22 

20 VNs 9 15–21 8 15–32 

 

 

Figure 5.9 processing allocation based on software packages in single 
allocation strategy (Scenario 2). 
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Figure 5.10 processing allocation based on software packages in distributed 
allocation strategy (Scenario 2). 
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highest popularity software would be hosted by a maximum of 8, 10, or 20 

VNs, based on the total number of available VNs). 

Table 5.4 maximum number of VNs hosting each pre-allocated software 
package. 
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34% 17% 11% 9% 7% 6% 5% 4% 4% 3% 

M
ax

im
u

m
 n

u
m

b
e

r 
o

f 
V

N
s 

th
at

 

ca
n

 h
o

st
 e

ac
h

 s
o

ft
w

ar
e

 p
ac

ka
ge

 

8
V

N
s 1 SW/VN 1 1 1 1 1 1 1 1 0 0 

2 SW/VN 4 3 2 1 1 1 1 1 1 1 

3-10 SW/VN 8 4 3 2 2 1 1 1 1 1 

1
0

V
N

s 1 SW/VN 1 1 1 1 1 1 1 1 1 1 

2 SW/VN 7 3 2 2 1 1 1 1 1 1 

3-10 SW/VN 10 5 3 3 2 2 2 1 1 1 

2
0

V
N

s 1 SW/VN 7 3 2 2  1 1 1 1 1 1 

2 SW/VN 14 7 4 4 3 2 2 2 2 1 

3-10 SW/VN 20 10 7 6 5 4 3 2 2 1 

 

Figures 5.11 and 5.12 show the results of the total power consumption and 

the processing allocation in the single and distributed allocation strategies. 

Compared to Scenarios 1 and 2, Scenario 3 showed a general improvement 

with lower power consumption and improved VEC utilisation, in both allocation 

strategies. Similar to Scenario 1, Figure 5.11 shows that in the single 

allocation strategy, the VEC with 8VNs was incapable of accommodating any 

task, regardless of the increase in the number of software packages per VN. 

This is attributed to the limited capacity of the VEC and that each VN could 

serve only three (1000 MIPS) tasks, with a total of 24 tasks that could be 

served in the VEC. Therefore, all the tasks were sent to the CC as the optimum 

location. With the number of vehicles increasing to 10 and 20 VNs, all tasks 

were allocated to the VEC by at least 2SW/VN and 1SW/VN, respectively. 

Hence, taking into consideration the popularity of the software replicas hosted 
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by the available VNs can reduce the VEC resources needed in order to satisfy 

the software demand, and therefore, the generated tasks. Figure 5.12 shows 

that in the distributed allocation strategy, further improvement was observed 

with 8 VNs, where tasks were allocated to the VEC with at least two software 

packages available per VN. 

 

Figure 5.11 Total power consumption and VEC processing allocation 
percentage in single allocation strategy with Zipf distributed software 

packages over the available VNs (Scenario 3) 

 

 

Figure 5.12 Total power consumption and VEC processing allocation 
percentage in distributed allocation strategy with Zipf distributed software 

packages over the available VNs (Scenario 3) 
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Table 5.5 shows that the optimisation results still utilised the same number of 

VNs in both allocation strategies. However, one of the highlighted 

improvements in this scenario was utilising the available VNs with the least 

number of available software in each VN (1SW/VN). Hence, in this case,  

13 VNs were utilised (equal to the minimum number of required software 

replicas) in both the single and distributed allocation strategies. This explains 

the increase in power consumption with 1SW/VN, observed in Figures 5.13 

and 5.14, compared to the other cases where VEC was fully utilised (2–10 

SW/VN). As seen previously in Scenario 1, the number of total replicas in the 

single allocation could not exceed 27 replicas, and this number increased in 

the distribution allocation for the splitting case. 

Similarly, it was observed that the actual allocation did not always follow the 

popularity. However, the allocation of tasks over 8VNs, followed the popularity 

for all cases and all software packages. 

Table 5.5 Number of VNs utilised and software replicas used in single and 
distributed allocation strategies (Scenario 3). 
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Single Allocation Distributed Allocation 

Number of VNs 
utilised  

Number of 
individual 

sof tware replicas 
used in VEC 

Number of VNs 
utilised  

Number of 
individual 

sof tware replicas 
used in VEC 

8 VNs 0 0 8 15–24 

10 VNs 9 15–21 8 16–24 

20 VNs 
13 (1SW/VN) 

9 (other cases) 
13–18 

13 (1SW/VN) 
8 (other cases) 

13–27 
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Figure 5.13 processing allocation based on software packages in single 
allocation strategy (Scenario 3). 

 

 

Figure 5.14 processing allocation based on software packages in distributed 
allocation strategy (Scenario 3). 
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needed to download the software packages to be able to process the 

requested demands. Based on these assumptions, instead of having 𝒓𝒊 as a 

predefined number of software replicas in each VN, the parameter 

Ψ𝑑𝑖
𝑉𝑁 became a decision variable used by the optimisation. Therefore, the 

optimisation decided how many VNs would download, host each software 

package and optimise the tasks allocation based on this decision. In this case, 

the downloading overhead was introduced as the power consumed due to 

downloading the software package from the source node, and therefore AP, 

to the utilised VN. All the software packages were assumed to have a size of 

10Mb, which was equal to the maximum generated traffic per task in the data 

set used in Chapter 4. It is worth noting that other cases were tested with a 

different download size for each package (10–50 Mb). However, it was shown 

that the size of the download had very minor effect on the allocation decision 

and therefore, the power consumption. For this reason, we fixed the download 

size for all packages to 10 Mb.  

Figures 5.15 and 5.16 show the results for the single and distributed allocation 

strategies. Both figures show comparable processing allocation behaviour, 

compared to Scenarios 1 and 2. However, there was a small increase in the 

power consumption resulting from the download overhead of the software 

package. The results suggest that the model followed the software popularity, 

with the software allocation among the available VNs, and caused the same 

VEC utilisation for the same cases, as seen in Scenarios 1 and 2.  
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Figure 5.15 Total power consumption and VEC processing allocation 
percentage in single allocation strategy with optimised number of software 

packages over the available VNs (Scenario 4). 

 

 

Figure 5.16 Total power consumption and VEC processing allocation 
percentage in distributed allocation strategy with optimised number of 

software packages over the available VNs (Scenario 4). 

 

As shown in Table 5.6, the number of software replicas was fixed for all cases, 

except for 1SW/VN, with 13 and 14 replicas in single and distributed allocation 

strategies, respectively. This was attributed to the fact that each replica 

represented a software download to one of the available VNs, hence, the 

model optimised the number of downloads and the number of VNs utilised in 
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order to minimise the total power consumption. Therefore, the number of 

replicas was minimised and remained fixed for all cases.  

Table 5.6 Number of VNs utilised and software replicas used in single and 
distributed allocation strategies (Scenario 4). 

N
u
m

b
e
r 
o
f 

a
v
a
ila

b
le

 
V

N
s
 

Single Allocation Distributed Allocation 

Number of VNs 
utilised  

Number of 
individual 

sof tware replicas 
used in VEC 

Number of VNs 
utilised  

Number of 
individual 

sof tware replicas 
used in VEC 

8 VNs 0 0 8 14 

10 VNs 9 13 8 14 

20 VNs 
13 (1SW/VN) 

9 (other cases) 
13 

13 (1SW/VN) 
8 (other cases) 

13 (1SW/VN) 
14 (other cases) 

 

The Software allocation results in Figures 5.17 and 5.18 summarise the 

software allocation among the available VN. It is shown that, in the single 

allocation, each software package was downloaded and allocated by the 

same number of VNs, regardless of the number of allowed software for each 

VN. It was also observed that all software allocations followed the software 

popularity of the generated tasks. However, as seen in Figure 5.18, in the 

distributed allocation strategy, not all software allocations followed the 

popularity of demands, although these cases were minor compared to the 

other scenarios. The reason that the model did not follow popularity is that 

downloading extra replicas of a particular software to more VNs, for the sake 

of decreasing the number of VNs utilised, causes more power consumption 

than the power saved by eliminating the use of extra VNs.  
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Figure 5.17 processing allocation based on software packages in single 
allocation strategy (Scenario 4). 

 

 

Figure 5.18 processing allocation based on software packages in distributed 
allocation strategy (Scenario 4). 

 

5.6 Summary 

In this chapter, we have investigated a realistic aspect of processing allocation 

in VEC, by assuming that vehicles do not have all the required software 

packages to satisfy the work demand. The developed MILP model, described 

in Chapter 4, was extended to study the software matching problem in VEC, 
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considering only two layers of processing (at the central cloud and at the 

vehicular edge cloud). Four scenarios were developed to evaluate three 

situations. Firstly, each vehicle has its own pre-allocated software packages 

based on different software package popularity probability distributions 

(uniform, random, and Zipf distributions). Secondly, vehicles have no pre-

allocated software packages in their OBU, but the optimisation determines the 

best software to install in each node. Thirdly, each software type has a given 

request probability based on its popularity, where the popularities follow a  Zipf 

Distribution. Accordingly, and depending on the software popularity, 

processing tasks were generated with the requested software type. The 

software matching problem was evaluated in terms of power consumption and 

popularity of the allocated tasks for multiple vehicle densities and with single 

and distributed strategies. This study has found that in general, increasing the 

number of vehicles increases the number of software replicas, and therefore 

this increases the allocation of tasks in VEC. It was also shown that with pre-

allocated software packages, the number of replicas used does not affect the 

power or the allocation decisions. On the other hand, by optimising the 

software allocation, the optimisation minimises the number of installed 

replicas in each vehicle due to the download overhead. 

The next chapter will investigate another realistic aspect of the proposed 

model to optimise the delay alongside the p 

ower consumption for the cloud-fog-VEC architecture. 
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Chapter 6  

Energy Efficient and Delay Aware Vehicular Edge Cloud 

6.1 Introduction 

One of the promising advantages of fog and edge computing is their ability to 

reduce the delay experienced by traffic and processing tasks in general, by 

placing tasks at processing units close to the end-user and thus, improving 

the quality of the delivered services. With the rapid increase in the number of 

connected devices in the edge layer and the exponential rise in real-time 

based traffic, research needs to focus on optimising processing and routing in 

cloud-fog architectures to minimise delay.  

In the previous chapters, we have considered minimising the energy 

consumption of processing and networking by optimising the allocation of the 

processing resources in the cloud-fog-VEC architecture. In this chapter, we 

study the trade-off between power consumption and delay. We consider 

queuing delay at different network nodes as the traffic in the network nodes is 

routed via multi-hop routes and is affected by the service rate of each node. 

In addition to queuing delay at the different network nodes, propagation delay 

needs to be taken into account as the considered end-to-end architecture 

covers a large geographical area from the edge to the core. We optimise the 

allocation of the processing resources in a multi-objective MILP optimisation 

model to minimise the power consumption and delay equally.  

 

6.2 Propagation Delay and Queuing Delay Calculation  

We consider the architecture shown in Figure 6.1 with processing resources 

at central cloud (CC), metro fog (MF), OLT fog (LF), ONU fog (NF) and 
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vehicular edge cloud (VEC). The edge layer consists of only one zone, with 

one VEC cluster and multiple source nodes.  
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Figure 6.1 The Cloud-Fog-VEC architecture, with estimated distances (in 

red) and network devices service rate (in green).  
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We study the propagation and queuing delay. The distances illustrated in  

Figure 6.1 (coloured in red) are used to estimate the propagation delay. The 

distances are based on the following assumptions: 

1. The distance between the AP and surrounding VNs is set to the 

standard coverage range of IEEE 802.11, namely 100 m [104]. 

2. The distance between the AP and ONU is estimated based on an 

assumption that one ONU can connect to multiple APs in a wired local 

area network (LAN) with a maximum of 100 m distance [105]. 

3. The distance between the ONU and OLT is based on typical PON 

designs in the field [106]. Here, we considered a design where the OLT 

is located in the telecom main office in the centre of the city. ONUs 

usually represent devices located at the end-users location (i.e., at 

home); usually such distance are around 5–20 km [106] so we 

assumed a distance equal to 10 km.  

4. The distance between the OLT and metro node (router and switch) was 

estimated based on the metro network design. The metro network 

usually has a radius of 20–120 km [107]. The OLT can be either 

collocated with the metro node in the same telecom office or located 

somewhere else in the local area of the metro node (1–10 km away). 

We based our estimation on the latter scenario with an approximate 

distance equal to 5 km between the OLT and metro node. The MF node 

here is assumed to be located within few kilometres of the metro node. 

Same distance is assumed to exist between OLT and LF. 

5. The distance between the metro node and the core node (including the 

associated CC), is given as the distance between two large cities, 
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assuming the current city does not have a large central cloud. An 

example of such a distance is taken as the distance between Leeds 

and a large data centre in London, a 300 km distance.  

The queuing delay was modelled for each networking node as an M/M/1 

queue with one server, where arrivals follow a Poisson process and the 

service rate is negative exponentially distributed, summarised in Figure 6.2. 

The propagation delay was calculated for each network location. The 

queueing delay was calculated based on traffic and the capacity of the nodes. 

Here the aggregated traffic delivered and the node or device maximum service 

rate defined the arrival rate and service rate, respectively, and are used to 

determine the queueing delay as given below  

𝑄𝑢𝑒𝑢𝑖𝑛𝑔 𝐷𝑒𝑙𝑎𝑦 =  
1

𝜇 − 𝜆
                                                        (6.1) 

where 𝜇 is the service rate, and 𝜆 is the arrival rate (summation of the traffic 

delivered assuming a Poisson process) in the network device. We have 

considered in this work delay at the packet level. We used the Ethernet 

maximum packet size of 1500 bytes and therefore expressed the arrival data 

rates as packets per second and expressed the service rates (transmission 

rates) in packets per second. 

It is worth noting that, based on our considered architecture, the AP should 

work as a network coordinator to connect the edge layer to the wired 

infrastructure, and therefore, deliver the processing tasks to the optimum PN. 

Accordingly, we assumed that the AP works at two different service rates 

based on the interface used; either the wired fiber infrastructure (with a 10 
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Gb/s service rate), or wireless medium (with 1 Gb/s service rate). Moreover, 

the core node, with the associated data centre, was assumed to work at 40 

Gb/s, as they are part of the IP/WDM network. Other network devices were 

assumed to have a 10 Gb/s service rate based on GPON. The services rate 

values are defined in Figure 6.1, (coloured in green). 

 

Figure 6.2 M/M/1 Queueing model. 

 

6.3 Modification to the MILP Model 

The MILP model introduced in Chapter 4 was extended to jointly minimise 

power consumption and delay. To continue to use linear programming, 

Equation (6.1) was converted to a linear form using lookup table [108]. The 

lookup table is predefined with all the possible generated traffic combinations 

(arrival rates indicator), indexed with the calculated queuing delay based on a 

fixed service rate. As we have three different service rate values in our 

designed network, a separate lookup table was defined for each. Based on 

this arrival rate indicator, the queuing delay for a node was given as the value 

corresponding to the indicator in the lookup table. Moreover, as we evaluated 

the model with increasing total generated traffic (100Mb/s-1000Mb/s), ten 

lookup tables were built as a part of the input file for each service rate. All the 

pre-defined lookup tables are provided in Appendix B. the increase of the 
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lookup table in the input file affect the complexity of the model and therefore, 

increase the running time due to increase the searching time for the 

associated delay to the generated traffic. However, this linerisation is essential 

to solve the processing allocation problem with the queuing delay 

minimisation. Without this process, solving such model in MILP is not possible. 

The modified MILP defines the following additional sets, parameters, and 

variables: 

Sets: 

𝐴 Set of AP nodes considering the wired interface, where 𝐴 ⊂ 𝑁. 

𝐴𝐿 Set of AP nodes considering the wireless interface, where 𝐴𝐿 ⊂ 𝑁. 

𝐴𝑅  Set of arrival rates. 

𝑆𝑅  Set of service rates. 

  Parameters: 

Η𝑎𝑠 Queuing delay at arrival rate 𝑎 ∈ 𝐴𝑅  and service rate ∈ 𝑆𝑅, in the 

lookup table.  

𝐺1 Large enough number with units of Mb/s. 

𝐺2 Large enough number with units of ms. 

𝐷𝑖𝑗 Distance between any two nodes (𝑖, 𝑗), where 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁𝑁𝑖 . 

ℂ  Speed of light,  ℂ =  299,792
𝑘𝑚

𝑠
. 

Δ𝑅𝐼 Refractive index of fibre, it defines the ratio of the speed of light 

in fibre to speed of light in free space; Δ𝑅𝐼 =
2

3
. 
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Variable 

ζ𝑖𝑗
𝑠𝑑

 Binary variable ζ𝑖𝑗
𝑠𝑑 = 1 if traffic flow sent from source node 𝑠 to 

processing node 𝑑 traverses physical link (𝑖, 𝑗), where 𝑠 ∈ 𝑆𝑁 , 

𝑑 ∈ 𝑃𝑁 , and 𝑖 , 𝑗 ∈ 𝑁. 

Q𝑖𝑗
𝑠𝑑 

 

Queuing delay at node 𝑗 experienced by the traffic from source 

node 𝑠 to processing node 𝑑 traversing physical link (𝑖, 𝑗), where 

𝑠 ∈ 𝑆𝑁 , 𝑑 ∈ 𝑃𝑁 and 𝑖 , 𝑗 ∈ 𝑁. 

Q𝑖  Queuing delay experienced by traffic aggregated at node 𝑖 ∈ 𝑁. 

Q𝑠𝑑 Queuing delay of the traffic sent from source node 𝑠 ∈ 𝑆𝑁 to 

processing node 𝑑 ∈ 𝑃𝑁. 

Q Total queuing delay of the network. 

R𝑠𝑑 Propagation delay of the traffic sent from source node 𝑠 ∈ 𝑆𝑁 to 

processing node 𝑑 ∈ 𝑃𝑁. 

R Total propagation delay of the network. 

𝜆i   Arrival rate (total traffic) at each node 𝑖 ∈  𝑁.  

σ𝑖𝑗 Arrival rate indicator for node 𝑖 ∈ 𝑁, σ𝑖𝑗 = 1 if the arrival rate of 

node 𝑖 matches rate 𝑗 ∈ 𝐴𝑅 , it is 0 otherwise. 

All the power consumption equations in Chapter 4, Equations (4.2) to (4.21), 

were considered in this model. The total power resulted from adding all these 

power consumption components is as follows; 

𝑃 =  𝑇𝑃𝐶𝐶𝐶 +  𝑇𝑃𝐶𝑀𝐹 +  𝑇𝑃𝐶𝐿𝐹 +  𝑇𝑃𝐶𝑁𝐹 +  𝑇𝑃𝐶𝑉𝑁 +  𝑇𝑃𝐶𝑁𝐸𝑇   .                 (6.2) 

Additionally, the following equations are used to calculate the propagation and 

queuing delay for the network. 
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1) The total propagation delay (R), is calculated based on the propagation 

delay between all source node and processing node pairs and is given as  

R =  ∑ ∑ R𝑠𝑑

𝑑 ∈𝑃𝑁𝑠 ∈𝑆𝑁

                                          ∀   𝑠 ∈ 𝑆𝑁, 𝑑 ∈ 𝑃𝑁        (6.3) 

where R𝑠𝑑 is is the propagation delay of the path traversed by traffic sent from 

each source node 𝑠 ∈ 𝑆𝑁 to the processing node 𝑑 ∈ 𝑃𝑁, and is calculated as 

follows; 

R𝑠𝑑 =  ∑ ∑ ζ𝑖𝑗
𝑠𝑑

𝑗 ∈𝑁𝑚𝑖
𝑗 ∉𝑉𝑁

𝑖 ∈𝑁
𝑖 ∉𝐴𝐿

   
𝐷𝑖𝑗

Δ𝑅𝐼  ℂ
                ∀   𝑠 ∈ 𝑆𝑁, 𝑑 ∈ 𝑃𝑁, 𝑑 ∉  𝑉𝑁       (6.4) 

R𝑠𝑑 =  ∑ ∑ ζ𝑖𝑗
𝑠𝑑

𝑗 ∈𝑁𝑚𝑖
𝑗 ∈𝑉𝑁

𝑖 ∈𝑁
𝑖 ∈𝐴𝐿

   
𝐷𝑖𝑗

ℂ
                    ∀   𝑠 ∈ 𝑆𝑁, 𝑑 ∈ 𝑉𝑁.                        (6.5) 

Equation (6.4) and (6.5) calculate the propagation delay for the traffic sent to 

the processing nodes via fibre or wireless links, respectively. A refractive index 

Δ𝑅𝐼 with the value of 
2

3
 is added to Equation (6.4) to define the ratio of the 

speed of light in fibre to the speed of light in free space.  

2) The total queuing delay (Q), which is calculated based on the queuing delay 

experienced by traffic between all the source node and processing node pairs, 

and is given as  

Q =  ∑ ∑ Q𝑠𝑑

𝑑 ∈𝑃𝑁𝑠 ∈𝑆𝑁

                                          ∀   𝑠 ∈ 𝑆𝑁, 𝑑 ∈ 𝑃𝑁        (6.6) 

where Q𝑠𝑑 is the queuing delay of the path traversed by traffic sent from each 

source node 𝑠 ∈ 𝑆𝑁 to processing node 𝑑 ∈ 𝑃𝑁, and is calculated as  
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Q𝑠𝑑 =  ∑ ∑ Q𝑖𝑗
𝑠𝑑

𝑗 ∈𝑁𝑚𝑖𝑖 ∈𝑁
𝑖 ∉𝑆𝑁∪𝐴𝐿

                   ∀   𝑠 ∈ 𝑆𝑁, 𝑑 ∈ 𝑃𝑁, 𝑑 ∉  𝑉𝑁     (6.7) 

Q𝑠𝑑 =  ∑ ∑ Q𝑖𝑗
𝑠𝑑

𝑗 ∈𝑁𝑚𝑖𝑖 ∈𝑁
𝑖 ∉𝑆𝑁∪𝐴

                                     ∀   𝑠 ∈ 𝑆𝑁, 𝑑 ∈ 𝑉𝑁.      (6.8) 

Equations (6.7) and (6.8) calculate the queuing delay for a traffic demand by 

summing the queuing delay experinced by the demand at each node. As 

mentioned earlier, the traffic handled by the AP can be sent via one of two 

interfaces; wired interface at 10 Gb/s and wirless interface at 1 Gb/s; thus, 

Equation (6.7) considers the traffic sent via the wired interface of the AP while 

Equation (6.8) considers the traffic sent to the vehicular nodes via the 1G 

wireless interface.  

The joint objective is defined as:  

Minimise  

 𝛼 𝑃  +   𝛽 𝑅  +   𝛾 𝑄                                              (6.9)  

 
where 𝛼, 𝛽, and 𝛾 are weight factors used for the following purposes: (i) to 

scale the terms so that they are comparable in magnitude; (ii) to emphasise 

and de-emphasise terms (power, queuing delay and propagation delay); and 

(iii) to accommodate the units in the objective function. Therefore, 𝛼 is a 

unitless factor, and 𝛽  &  𝛾 have units of 
𝑊𝑎𝑡𝑡

𝑠𝑒𝑐
.   

In addition to the constraints in Chapter 4, the model is subject to the following 

additional constraints: 

1) The traffic estimation at each node: 

 



 

157 

 

∑ ∑ ∑ λ𝑖𝑗
𝑠𝑑

𝑗 ∈𝑁𝑚𝑖𝑑∈𝑃𝑁𝑠∈𝑆𝑁

=  λ𝑖                                   ∀   𝑖 ∈ 𝑁, 𝑖 ∉ 𝐴 ∪ 𝐴𝐿     (6.10) 

∑ ∑ ∑ λ𝑖𝑗
𝑠𝑑

𝑗 ∈𝑁𝑚𝑖 ∩ 𝑈𝑑∈𝑃𝑁𝑠∈𝑆𝑁

=  λ𝑖                                                 ∀   𝑖 ∈ 𝐴     (6.11)  

∑ ∑ ∑ λ𝑖𝑗
𝑠𝑑

𝑗 ∈𝑁𝑚𝑖 ∩ 𝑉𝑁𝑑∈𝑃𝑁𝑠∈𝑆𝑁

=  λ𝑖                                             ∀   𝑖 ∈ 𝐴𝐿     (6.12) 

Constraint (6.10) calculates the traffic arrival at each node in the network 

except APs. Constraint (6.11) and (6.12) estimate the arrival traffic wired and 

wireless AP interfaces, respectively.  

2) The arrival rate indicator: 

 

∑ Η𝑖𝑗

𝑗∈𝐴𝑅

   𝑗 =  λ𝑖                                                 ∀   𝑖 ∈ 𝑁, 𝑖 ∉ 𝐴 ∪ 𝐴𝐿     (6.13) 

 

∑ Η𝑖𝑗

𝑗∈𝐴𝑅

 𝑗 =  λ𝑖                                                                         ∀   𝑖 ∈ 𝐴     (6.14) 

∑ Η𝑖𝑗

𝑗∈𝐴𝑅

 𝑗 =  λ𝑖                                                                       ∀   𝑖 ∈ 𝐴𝐿     (6.15) 

 

Constraints (6.13) to (6.15) create indicators of the arrival rate for each node. 

This is equal to 1 if the arrival rate is equal to 𝑗: 

∑ Η𝑖𝑗

𝑗∈𝐴𝑅

 ≤ 1                                              ∀   𝑖 ∈ 𝑁, 𝑖 ∉ 𝐴 ∪ 𝐴𝐿     (6.16)  

 

∑ Η𝑖𝑗

𝑗∈𝐴𝑅

≤ 1                                                                     ∀   𝑖 ∈ 𝐴     (6.17) 

∑ Η𝑖𝑗

𝑗∈𝐴𝑅

≤ 1                                                                   ∀   𝑖 ∈ 𝐴𝐿     (6.18) 
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Constraints (6.16) to (6.18) ensure that each node has no more than one 

arrival rate indicator for a given service rate. 

3) Queuing delay estimation:  

∑ Η𝑖𝑗

𝑗∈𝐴𝑅

 .  η𝑗𝑠 =  Q𝑖                  ∀   𝑖 ∈ 𝑅𝑅 ∪ 𝐶𝑅 ∪ 𝐶𝑆 ,   𝑠 =
40𝐺𝑏

𝑠
    (6.19) 

 

∑ Η𝑖𝑗

𝑗∈𝐴𝑅

 .  η𝑗𝑠 =  Q𝑖                                                                                                  

 ∀   𝑖 ∈ 𝑁 , 𝑖 ∉ 𝑅𝑅 ∪ 𝐶𝑅 ∪ 𝐶𝑆 ∪ 𝐴 ∪ 𝐴𝐿,     𝑠 =
10𝐺𝑏

𝑠
    (6.20) 

∑ Η𝑖𝑗

𝑗∈𝐴𝑅

 .  η𝑗𝑠    =  Q𝑖                                        ∀   𝑖 ∈ 𝐴 ,   𝑠 =
10𝐺𝑏

𝑠
    (6.21)  

∑ Η𝑖𝑗

𝑗∈𝐴𝑅

 .  η𝑗𝑠  =  Q𝑖                                     ∀   𝑖 ∈ 𝐴𝐿 , 𝑠 =
1𝐺𝑏

𝑠
   (6.22) 

 

Constraints (6.19) and (6.20) estimate the traffic delay for each node that 

operates at 40 Gb/s or 10 Gb/s, respectively. Constraints (6.21) and (6.22) 

estimate the delay for the AP wired and wireless interfaces, respectively. 

λ𝑖𝑗
𝑠𝑑   ≥  ζ𝑖𝑗

𝑠𝑑                                                         ∀   𝑠 ∈ 𝑆𝑁, 𝑛 ∈ 𝑃𝑁     (6.23)  

λ𝑖𝑗
𝑠𝑑   ≤  𝐺1  ζ𝑖𝑗

𝑠𝑑                                                   ∀   𝑠 ∈ 𝑆𝑁, 𝑛 ∈ 𝑃𝑁     (6.24) 

Constraints (6.23) and (6.24) set ζ𝑖𝑗
𝑠𝑑 = 1 if the traffic demand between the 

source node 𝑠 ∈ 𝑆𝑁 and the processing node 𝑑 ∈ 𝑃𝑁  is routed throughlink 

(𝑖, 𝑗) ∈ 𝑁. 

 

Q𝑖𝑗
𝑠𝑑  =    Q𝑖    ζ𝑖𝑗

𝑠𝑑                                               ∀   𝑠 ∈ 𝑆𝑁, 𝑑 ∈ 𝑃𝑁      (6.25) 

 

Q𝑖𝑗
𝑠𝑑   ≤    𝐺2   ζ𝑖𝑗

𝑠𝑑                                               ∀   𝑠 ∈ 𝑆𝑁, 𝑑 ∈ 𝑃𝑁      (6.26) 
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Q𝑖𝑗
𝑠𝑑   ≤  Q𝑖                                                            ∀   𝑠 ∈ 𝑆𝑁, 𝑑 ∈ 𝑃𝑁      (6.27) 

Q𝑖𝑗
𝑠𝑑   ≥  Q𝑖   −  𝐺2 (1 −   ζ𝑖𝑗

𝑠𝑑 )                       ∀   𝑠 ∈ 𝑆𝑁, 𝑑 ∈ 𝑃𝑁      (6.28) 

Equation (6.25) calculates the queuing delay at node 𝑗 for the traffic sent from 

source node 𝑠 to processing node 𝑑, through node 𝑖. As Equation (6.25) 

involves the multiplication of two variables, Q𝑖𝑗
𝑠𝑑 and Q𝑖, it is cannot be included 

in the model with its original non-linear form, and thus, the problem cannot be 

solved in MILP. Therefore, Equation (6.25) is converted to constraints (6.26) 

to (6.28) to remove the nonlinearity and replace the relationship with an 

equivalent linear relationship. 

6.4 Scenarios and Results 

The model presented in the previous section is considered with the following 

variations cases of the objective function: 

1) Minimising the total power consumption only, by setting 𝛼 to 1; and 𝛽 and 

𝛾 to zero in Equation (6.9). 

2) Minimising the traffic propagation delay only, by setting the values of 𝛽 to 

1; and 𝛼 and 𝛾 to zero in Equation (6.9). 

3) Minimising the power consumption and traffic propagation delay jointly, by 

setting the values of 𝛼 to 1, 𝛾 to zero, and 𝛽 to a value that ensures equal 

importance of the power consumption and propagation delay. This was done 

as follows: 

a) Running the MILP model with the minimising power consumption 

objective. 
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b) Running the MILP model with the minimising propagation delay 

objective.  

c) Calculating 𝛽 =
𝑃

𝑅
 such that 𝛼 𝑃 =  𝛽 𝑅, where 𝑃 is the power 

consumption and 𝑅 is the propagation delay. 

d) Runing the MILP model with the objective of minimising both the power 

consumption and propagation delay and comparing the 𝛼 𝑃 and 𝛽 𝑅 

values. 

e) Adjusting the value of 𝛽 again, so that the joint objective function 

produced the required equality ie 𝛼 𝑃 =  𝛽 𝑅. 

4) Minimising the traffic queuing delay, by setting the values of 𝛼 and 𝛽 in 

Equation (6.9) to zero, and the value of 𝛾 to 1. 

5) Minimising the power consumption and traffic queuing delay jointly, by 

setting the values of 𝛼 to 1 and 𝛽 to zero, and 𝛾 to a value that ensures equal 

importance of the power consumption and queuing delay. This was done by 

repeating the same steps mentioned previously in 3), replacing 𝛽 and 𝑅 with 

𝛾 and 𝑄, respectively. This was carried out to ensure that the following equality 

𝛼 𝑃 =  𝛾 𝑄 was achieved. 

6) Minimising the power consumption, traffic propagation and queuing delay 

jointly, by setting the values of 𝛼 to 1, and the values of  𝛽 and 𝛾 to two ratios, 

to ensure that 𝛼 𝑃 = 𝛽 𝑅 =  𝛾 𝑄, using, again, the same steps described in 3). 

The previously described objective functions were combined into four 

scenarios that highlight the individual effects of the propagation and queuing 

delay, combined with the power consumption on the processing allocation 
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decision, and both power and delay values. These scenarios are summarised 

as the following: 

- Scenario 1: where three objective functions were considered to 

minimise total power consumption (case 1), minimising propagation 

delay (case 2), and minimising both, jointly (case 3). 

- Scenario 2: where three objective functions were considered to 

minimise total power consumption (case 1), minimising queuing delay 

(case 4), and minimising both, jointly (case 5). 

- Scenario 3: with one objective function (minimising queuing delay only), 

considering different service rate for the AP. 

- Scenario 4: where three objective functions were considered to 

minimise power and propagation delay (case 3), minimising power and 

queuing delay (case 5), and minimising power, propagation, and 

queuing delay (case 6). 

 All the above scenarios considered a cloud-fog-VEC allocation (CFVA) with 

low-density VNs (8VNs) and single allocation (no task splitting). We assessed 

the allocation problem with ten generated tasks having low processing 

demands (100–1000 MIPS) and a fixed data rate ratio (DRR) of 0.1. The 

reason for choosing a low demand with a high DRR was to generate intensive 

traffic (10–100 Mb/s) per task, in order to study the delay results on such a 

congested network. It worth mentioning that the queuing delay value is 

expressed in sec/packet as given in (6.1), where we used the Ethernet MTU 

packet size of 1500 Byte. 
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6.4.1 Scenario 1: Power and Propagation Delay Minimisation 

In this scenario, we study the joint minimisation of the power consumption and 

the propagation delay (objective function case 3), and compare the results to 

the two cases where only the power (objective function case 1) or propagation 

delay (objective function case 2) are minimised. Figures 6.3 and 6.4 illustrate 

the total power consumption and the average propagation delay for the three 

cases considered in the objective function versus the total traffic generated 

from the ten tasks, each 100–1000 Mb/s.  

Figure 6.3 shows that the power minimised case produced the lowest power 

consumption. The jumps in the curves in the three minimisation functions are 

due to moving the allocation at higher traffic to a less efficient PN that can 

support the traffic. For example, in the power minimised case, the small jumps 

at 400 Mb/s were caused by moving the allocation from VN to NF, as seen in 

Figure 6.5. The optimisation did this because of the limited VN connection 

data rate (72.2 Mb/s per VN) cannot serve more than one task with the 40 

Mb/s required data rate. Activating the ONU and its processor (NF) caused all 

tasks to be allocated to the NF instead of activating two locations (as seen 

and confirmed from the results shown in Chapter 4). Another power rise 

occurred at 800 Mb/s, when all tasks were allocated to the LF. The delay 

minimised objective led to higher power consumption (by up to 35%) 

compared to the power minimised case (Figure 6.3). This is due to all (or the 

majority of) tasks being allocated in VNs, even with the NF being activated 

(Figure 6.5), which is not a power-efficient allocation decision. With the joint 

minimisation of the power and delay, MILP results (at 100–700 Mb/s) led to a 
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power consumption comparable to the power minimised optimisation, due to 

the fact that minimising delay required poor energy-efficiency choices, i.e., the 

placement of tasks in two PN (NF & VN), which was not allowed by a MILP 

that weighs power and delay equally. However, the power consumption 

results beyond 700 Mb/s became comparable with the delay minimised 

optimisation, as the propagation delay became a limiting factor which cause 

the model to allocate tasks to both locations (NF and LF) in order to achieve 

a lower average delay over all of the tasks. It is worth mentioning that the 

power consumption resulting from the joint optimisation (the green curve in 

Figure 6.3) is not exactly in the middle of the power minimised and delay 

minimised curves, as might be expected, because the number of placement 

options (PNs) was finite and discrete. Practical systems will typically have a 

similar number of processing locations (PNs) or even fewer as building fog 

processing nodes at a higher granularity (e.g. few hundred meters) is not 

practical. 

 

Figure 6.3 Total power consumption (Scenario 1) 
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Figure 6.4 displays the average propagation delay for the same three 

objective function cases. For the power minimised case, it can be seen that 

the low power consumption in Figure 6.3 has resulted in the high level of 

propagation delay in Figure 6.4. The delay starts low (similar to the other two 

optimisation cases), as the tasks are allocated in the three cases to VN, as 

VNs are the most efficient PN for both power and propagation delay 

minimisation. However, the delay increases with increase in the traffic as the 

tasks are allocated to further locations (i.e., NF and LF). It can also be seen 

from the zoomed-in figure (in Figure 6.4) that tasks allocated to NF (at 300–

700 Mb/s) experienced more propagation delay compared to the VN 

allocation, despite the fact that both the PNs were 100 m away from the AP 

(as mentioned in Section 6.2). This disparity is attributed to the fact that the 

speed of light in fibre, connecting the AP to NF, is affected by a refractive 

index of 
2

3
, as defined in Equation (6.4), which causes an increase in the 

propagation delay of the NF compared to VN. Thereafter, the delay jumps 

from 0.5 µs to 50 µs when the allocation changed from NF to LF (beyond 700 

Mb/s), as the LF is located 10 km away from the ONU. This shows the effect 

of the PN location on the propagation delay and therefore, on the allocation 

decision. This effect was confirmed when minimising the propagation delay, 

as seen in Figure 6.4, when the model allocated more tasks to the available 

VNs even if other PNs nodes were activated (as seen in Figure 6.5). Similar 

to the power results shown in Figure 6.3, minimising both the power and delay 

showed an average delay relatively comparable to the case of minimised 

power at 100–700 Mb/s, and to the case of minimised delay beyond 700 Mb/s. 

This is due to the same reason mentioned previously, as the finite number of 
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available processing locations causes comparable results to either one of the 

other cases rather than having results in between the two other cases.  

 

Figure 6.4 Average propagation delay (Scenario 1), enclosed zoom-in figure 
shows the result in 100–700 Mb/s range. 

 

 

Figure 6.5 Processing allocation in each PN (Scenario 1) 
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objective function (objective function case 4). Figure 6.6 shows the total power 

consumption for the three cases. Relatively comparable power consumption 

results can be observed for the three optimisation objectives. The power 

consumption minimised case demonstrated an increase in the power 

consumption whenever the allocation is changed to a less efficient location 

(similar to the previous result shown in Figure 6.3). When minimising the 

queuing delay, the results showed an early increase in the total power 

consumption as the VNs were avoided and the tasks were allocated to the 

NF, as seen in Figure 6.8. This allocation decision is attributed to the bad 

service rate of the AP wireless interface, which causes a very high queuing 

delay at this interface and therefore, the VN becomes an inefficient location in 

terms of the average queuing delay. This allocation explains the comparable 

power consumption, in this case, to the power minimised case (at 400–600 

Mb/s), as the tasks in both cases were allocated to NF. However, as the 

generated traffic increases (beyond 600 Mb/s), the power consumption jumps 

to 140 W an increase by 70%, compared to the power minimised case. At this 

point, the NF became exhausted and was unable to accommodate all the 

generated tasks, and thus, the LF was activated to accommodate the 

remaining workload. This explains the continued and saturated increase in the 

power consumption (by 7%) compared to power minimised case (at 800–1000 

Mb/s). In the latter case, activating one PN to serve all the generated tasks is 

more efficient than activating two or more PNs. Recalling the reason from 

Chapter 4, activating each fixed fog node consumes extra power overhead 

due to the idle power and PUE of the network devices and servers. In the case 

of the joint minimisation of both the power consumption and queuing delay, 
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the power consumption results were very comparable to the queuing delay  

minimised case. Including the queuing delay in the objective function avoids 

allocating any tasks to VN, as it causes a significant increase in the delay. 

One case resulted in the allocation of a portion of the processing workload to 

VNs, at 700 Mb/s, where the model achieved a balance between the power 

and the delay by allocating a small portion of the workload to VNs (140 Mb/s) 

with the majority of the workload allocated to NF (560 Mb/s). This occurred 

when the NF became exhausted (with 5600 MIPS allocation) and was not able 

to bin-pack any more workload to achieve full utilisation; hence, the 

optimisation allocated the remaining 1400 MIPS to VN, as activating the LF 

would cause a significant increase in the power consumption and therefore, 

the objective function balance might not be achieved. 

 

Figure 6.6 Total power consumption (Scenario 2) 
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to the wireless-based VNs, due to the low service rate of the wireless devices 

(i.e., AP). For example, in the power minimised case (in Figure 6.7), low 

demand tasks were allocated to VNs (as seen in Figure 6.8). This caused a 

high average queuing delay (13–17 µs) due to the low AP service rate (1 

Gb/s). As soon as the traffic increased and the tasks were allocated to NF (as 

VN became insufficient), the average queuing delay dropped by 85% (from 17 

µs to 2.5 µs) and saturates at this value as long as the NF remains the most 

power efficient placement. The queuing delay experienced a continued 

increase due to the increase in the number of hops to the optimum allocation 

at the LF. With the queuing delay minimised objective, the delay was reduced 

by an average of 84%, compared to the power minimised case at low 

generated traffic. This reduction was due to the allocation of tasks to the fixed 

fog (NF), with a better service rate (10 Gb/s). The model maintained a 

continuous low average queuing delay with increase in the total traffic, which 

became comparable with the power minimised case, and then increased 

slightly due to part of the task being allocated to an extra PN. However, the 

model yielded up to 43% lower average queuing delay with high traffic, 

compared to the power minimisation case. The case where both the power 

and delay were minimised produced a comparable average delay to the delay 

minimised case. As mentioned previously with the power consumption results, 

the queuing delay became a limiting factor that constrained the optimisation 

and resulted in the tasks being allocated to VNs, due to the bad service rate 

of the AP wireless interface, which caused a huge increase in the queuing 

delay. One exception occurred at 700 Mb/s, where the balance was achieved 
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by allocating the tasks to two PNs (i.e. NF and VN) due to NF insufficient 

capacity, as seen in Figure 6.8. 

 

Figure 6.7 Average queuing delay (Scenario 2) 

 

Figure 6.8 Processing allocation in each PN (Scenario 2) 
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control gate for VNs, it is thus important to investigate the effect of the multiple 

service rates on the VNs allocation and the average queuing delay. Two 

objective functions were examined: minimising the queuing delay (Figures 

6.9–6.11) and minimising the power and queuing delay, jointly (Figures  6.12–

6.14). In each optimisation function setting, three cases were investigated 

where the AP wireless interface was set to 1, 5 and 10 Gb/s service rate. The 

case where the AP operated at 1 Gb/s was the default service rate, and its 

related results were discussed earlier in Scenario 2 (Figures 6.6–6.7) and are 

provided in this scenario as a baseline case. The case where the AP operated 

at 10 Gb/s represented the other extreme where the AP has a high service 

rate equivalent to the service rate of the wired interface. The third case where 

the AP service rate was 5 Gb/s provided an average service rate between the 

other two cases. This helps in the determination of the impact of the service 

rate, and in particular if a higher service rate is not required to achieve a better 

queuing delay. 

Figures 6.9 and 6.10 show the total power consumption and average queuing 

delay when the queuing delay was minimised at the three defined service 

rates for the AP wireless interface. The results show that with an increased 

service rate, the queuing delay is reduced and the VN allocation increased. 

This may increase or decrease the power consumption based on the number 

of activated PNs. For example, at 5 Gb/s service rate, the restriction in the 

VNs allocation was relaxed, and the tasks were allocated to the VN alongside 

the NF (as in Figure 6.11), which justifies the small increase in power 

consumption (an average of 14%), compared to the 1 Gb/s case. However, a 

power consumption saving of 67% was observed at 5 Gb/s service rate at a 
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700 Mb/s incoming traffic rate, as some tasks were allocated to VN instead of 

LF in the 1 Gb/s case, at the same 700 Mb/s traffic. On the other hand, the 

average queuing delay in the 5 Gb/s service rate case (in Figure 6.10) did not 

achieve a significant improvement up to an incoming traffic rate of 600 Mb/s 

despite the increase in the AP service rate. This is attributed to the 

accumulated queuing delay based on the number of hops in the route leading 

to the PN. 

 

Figure 6.9 Total power consumption, under average queuing delay 
minimisation objective, with multiple AP service rates (Scenario 3). 
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resulted in a comparable queuing delay of the two hop route to the NF (AP 

and ONU). By increasing the AP wireless service rate to 10 Gb/s, we saw an 

early reduction in the power consumption (Figure 6.9) as all the tasks were 

fully allocated to VN (as shown in Figure 6.11). However, the power 

consumption increased aftward because of two reasons: Firstly due to the 

activation of two PNs located at the NF and VN, and secondly due to the 

utilisation of more VNs, which caused extra power overhead resulting from 

activating the VN communication adapter. This resulted in the increase in 

power consumption by 34% and 21%, compared to the cases with 1 and 5 

Gb/s service rates. However, the average queuing delay (Figure 6.10) shows 

significant reduction by an average of 48% compared to the 1 Gb/s case, 

because the service rate of both the AP interfaces became equivalent. Hence, 

the VN which is one hop away from the AP became more efficient than the 

PN that is two hops away (i.e., the NF). 

 

Figure 6.10 Average queuing delay, under average queuing delay 
minimisation objective, with multiple AP service rates (Scenario 3). 
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Figure 6.11 Processing allocation in each PN, under average queuing delay 
minimisation objective, with multiple AP service rates (Scenario 3). 
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case. This confirmed that the increase in the AP service rate had a small effect 

on the allocation decision in the power and delay joint optimisation. 

 

Figure 6.12 Total power consumption, under power consumption and 
average queueing delay minimisation objective, with multiple AP 

service rates (Scenario 3). 

 

 

Figure 6.13 Average queuing delay, under power consumption and average 
queueing delay minimisation objective, with multiple AP service rates 

(Scenario 3). 
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Figure 6.14 Processing allocation in each PN, under power consumption 
and average queueing delay minimisation objective, with multiple AP 

service rates (Scenario 3). 
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of the power minimised objective and the queuing delay objective when 

considering the average propagation delay and the average queuing delay 

results (Figure 6.16 and 6.17).  

 

Figure 6.15 Total power consumption (Scenario 4) 

 

 

Figure 6.16 Average propagation delay (Scenario 4) 
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Figure 6.17 Average queuing delay (Scenario 4) 

 

 

Figure 6.18 Processing allocation in each PN (Scenario 4) 
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objective function where power consumption, propagation delay and queueing 

delay are examined separately or together.  

Our results show that the closer the PN is to the AP, the lower the power 

consumption and delay, as the distance and number of hops affect the 

propagation delay and queuing delay. However, the queuing delay at the AP 

becomes a limiting factor when it operates at a low service rate compared to 

the traffic arrival rate. Thus, processing task allocation at the VN was avoided 

whenever the objective function included queueing delay and the AP operated 

at a low service rate. Increase in the AP service rate result in a lower queuing 

delay and better VN utilisation.   

Future work can introduce additional optimisation components to the delay 

such as processing and transmission delay alongside propagation and 

queuing delay. It will also consider more detailed AP queueing models such 

as models that have finite buffer size (M/M/1/N), (N is the buffer size), models 

that include multiple servers (c servers), M/M/c/N and potentially a finite 

population of sensor nodes, where S sensor nodes are considered, namely 

M/M/c/N/S models. This can modify the limiting factors and highlight different 

aspects that need to be improved to reduce the delay in the considered 

architechire and allocation mode. 

  



 

179 

 

Chapter 7                                                                   

Conclusions and Future Directions 

This chapter provides the conclusions of the work presented in this thesis. It 

also provides some potential directions for future research in vehicular edge 

cloud networks. 

7.1 Conclusions 

The purpose of this thesis was to address the energy efficiency of processing 

in opportunistic vehicular edge clouds. Vehicles with advanced OBU 

processors, parked in parking lots, charging points, gas stations, or stationary 

at intersections can be clustered and can form a processing pool or a mini 

data centre. With the support of the central cloud and multiple distributed fixed 

fog servers, the processing nodes can deliver reliable services to the edge 

based IoT applications. Multiple optimisation problems were investigated 

including processing allocation and software matching, in order to address the 

energy efficiency and delay challenges in the network architectures 

considered. Mixed Integer Linear Programming (MILP) models were 

developed to minimise the total power consumption of the considered 

architectures.  

In Chapter 4, four possible processing layers  were introduced: the core layer 

(central cloud), the metro layer (metro fog nodes), the access layer (OLT and 

ONU fog nodes), and the edge layer (vehicular nodes). The considered cloud-

fog-VEC architecture was described in term of realistic values of the 

processing and networking devices capacities and efficiencies. This 
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architecture was evaluated through a MILP optimisation model whose 

objective is to minimise the total power consumption by optimising the 

processing allocation decision. The evaluation considered multiple cases to 

study the impact of workload volume, task generation density, vehicles 

density, and task allocation strategy (single and distribution). Two architectural 

designs were assessed where the edge layer consist of either a single VEC 

cluster (one ONU) or multiple VEC clusters (each with an individual ONU). 

Moreover, tasks were generated from different clusters (through different AP), 

and allocating these tasks to local and non-local VEC was evaluated. The 

results of this investigation show that the bottom-most processing nodes are 

the optimum allocation to process the generated tasks. Vehicles become a 

very attractive option to process the generated workload and save power, if 

the total capacity of the clustered vehicles are enough to serve the whole 

workload. Thus, the vehicle capacity and the number of available vehicles play 

an important role in the allocation decision. Another key factor of the allocation 

decision is the overhead power (idle power and PUE) of each processing 

server. Accordingly, with high generated tasks and high processing demands, 

the central cloud becomes more efficient than activating multiple vehicles and 

multiple fog nodes. When processing task splitting is allowed, the results show 

power saving between 40%-70% compared to no splitting (based on the 

scenario). Moreover, the results show that splitting tasks between processing 

layers is to be avoided unless this will avert activating less efficient processing 

nodes. It was also shown that expanding the access layer with multiple ONUs 

has minor effect on the allocation decisions, as the local VEC is always more 

efficient than the non-local VEC. 
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In Chapter 5, the MILP model was extended to study the software matching 

problem in VEC. To help focus on this problem, we considered only two layers 

of processing (at the central cloud and at the vehicular edge cloud). The study 

included three more considerations. Firstly, each vehicle has its own pre-

installed software packages, and the model allocates processing accordingly. 

Based on this, different probability distributions (uniform, random, and Zipf 

distributions) were considered for the software availability. Secondly, 

consideration was given to a setting where vehicles have no pre-installed 

software packages in their OBU, but the optimisation determines the best 

software to install in each node. Thus, the model optimises the software 

allocation jointly with the processing allocation. Thirdly, consideration was 

given to a setting where each software type follows a certain popularity based 

on Zipf Distribution. Accordingly, processing tasks are generated with the 

requested software type, based on the software popularity. The software 

matching problem was evaluated in term of the power consumption and the 

popularity of the allocated tasks, for multiple vehicle densities and with single 

and distributed strategies. This study has found that in general, increasing the 

number of vehicles increases the number of software replicas, and therefore 

this increases the allocation of tasks in VEC. It is also shown that with pre-

allocated software packages, the number of replicas used does not affect the 

power or the allocation decisions. On the other hand, by optimising the 

software allocation, the model minimises the number of installed replicas in 

each vehicle due to the download overhead. 

In Chapter 6, the MILP model developed in Chapter 4 was extended to 

investigate the joint optimisation of power consumption, propagation delay 
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and queueing delay. All the processing layeres introduced in the architecture 

in Chapter 4 were considered in this chapter. More details were given 

regarding the estimated distances between network devices and the 

maximum service rate of each device. These formed inputs which were 

considered in the evaluation of the propagation and queuing delay. The 

evaluation was undertaken in different cases reflected in the objective function 

where power consumption, propagation delay and queueing delay were 

examined separately or together. The results revealed that the closer the PN 

is to the AP, the lower the power consumption and delay is, as the distance 

and number of hops affect the propagation delay and queuing delay. It was 

also found that the queuing delay at the AP becomes a limiting factor when it 

operates at a low service rate compared to the traffic arrival rate. Thus, the 

allocation of processing tasks at the VN was avoided whenever the objective 

function included queueing delay and the AP operated at a low service rate. 

Increase in the AP service rate resulted in a lower queuing delay and better 

VN utilisation. 

7.2 Future Research Directions 

In the following we list some of the general future research directions and their 

relation to the work presented in this thesis: 

1- It is of interest to develop heuristic algorithms and simulation-based 

experiments to approximate the constructed MILP models and scale 

up the current architecture with increased  number of processing nodes 

and vehicular nodes. This can also validate the developed MILP 
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models in a realistic scaled architecture and therefore present results 

that can relate directly to potential implementations in a smart city. 

2- Modelling the vehicle mobility and using prediction mechanisms rather 

than considering deterministic varied number  of vehicles is of interest. 

This can mimic the dynamic behaviour of vehicles and can help 

evaluate the effect of dynamic arrival and departure of vehicles in the 

car parks and their impact on the reliability of the processing at 

vehicular nodes and the task completion success. This can incorporate 

task migration to other available vehicles or to fixed nodes. 

3- Extending the joint optimisation of delay minimisation to include 

processing delay, packet transmission delay and packet reception 

delay alongside propagation delay and queuing delay. Thus, the delay 

evaluation extends to the total service delivery not only to the 

propagation delay. This will probably give more accurate evaluation of 

the completion time and thus can assess the validity of applications that 

require intensive processing, for example. The optimisation can also 

consider other queuing delay models for the AP such as (M/M/1/N) with 

a finite buffer of size N, (M/M/c/N) with c servers and (M/M/c/N/S) with 

finite population of S sensor nodes. This can modify the limiting factors 

and highlight different aspects that need to be improved to reduce the 

delay in the considered architechire and can influence the processing 

allocation decisions. 

4- Evaluating the link and node resilience of the vehicles and their 

connection to network controller. Since these vehicles base their 
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connection on wireless protocols, the stability of the connection and the 

opportunistic availability of vehicles can be intensively tested through 

resilience-based modelling.  

5- A promising future direction is to investigate caches embedded in 

vehicles for Video-on-Demand applications by considering these 

vehicles as a mobile cache point to deliver video streaming to end 

users (for example, cache points in buses).  
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APPENDIX A                                                                          

Power Consumption and Processing Allocation Results 

This Appendix includes extra scenarios to support the results of the Cloud-

Fog-VEC architecture with multiple zones, explained in Section 4.64.6.3 

(Chapter 4). 

A.1 Scenario1: One task generated from one zone 

 

Figure A.1 Total power consumption, in Scenario 1 with multiple zones. 
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Figure A.2 Processing allocation in each PN, in Scenario1 with multiple 
zones 

 

 

Figure A.3 Processing allocation in each VEC in CFVA (SA) and  
CFVA (DA), in Scenario 1 with multiple zones. 
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A.2 Scenario2: One task generated from each zone 

 

Figure A.4 Total power consumption, in Scenario 2 with multiple zones. 

 

 

Figure A.5 Processing allocation in each PN, in Scenario 2, with multiple 
zones 
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Figure A.6 Processing allocation in each VEC in CFVA (SA) and  
CFVA (DA), in Scenario 2 with multiple zones. 

 

A.3 Scenario3: Five tasks generated from one zone 

 

Figure A.7 Total power consumption, in Scenario 3 with multiple zones. 
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Figure A.8 Processing allocation in each PN, in Scenario 3 with multiple 
zones. 

 

 

Figure A.9 Processing allocation in each VEC in CFVA (SA) and  
CFVA (DA), in Scenario 3 with multiple zones. 
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A.4 Scenario4: Five tasks generated from each zone 

 

Figure A.10 Total power consumption, in Scenario 4 with multiple zones. 

 

 

Figure A.11 Processing allocation in each PN, in Scenario 4 with multiple 
zones. 
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Figure A.12 Processing allocation in each VEC in CFVA (SA) and  
CFVA (DA), in Scenario 4 with multiple zones. 
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APPENDIX B  

Lookup Tables for The Queuing Delay Linerisation 

This Appendix includes the pre-defined lookup tables used in the delay-based 

MILP model in Chapter 6. 

B.1 Lookup tables for the 100 Mb/s generated traffic  

Possible 

allocated traffic 
Mb/s 

Calculated delay (ms) at each service rate 

40 Mb/s 40 Mb/s 40 Mb/s 

10 0.0250063 0.1001001 0.2004 

20 0.0250125 0.1002004 0.2008 

30 0.0250188 0.1003009 0.2012 

40 0.0250250 0.1004016 0.2016 

50 0.0250313 0.1005025 0.2020 

60 0.0250376 0.1006036 0.2024 

70 0.0250438 0.1007049 0.2028 

80 0.0250501 0.1008065 0.2033 

90 0.0250564 0.1009082 0.2037 

100 0.0250627 0.1010101 0.2041 

 

B.2 Lookup tables for the 200 Mb/s generated traffic 

Possible 

allocated traffic 
Mb/s 

Calculated delay (ms) at each service rate 

40 Mb/s 40 Mb/s 40 Mb/s 

20 0.0250125 0.1002004 1.0204 

40 0.0250250 0.1004016 1.0417 

60 0.0250376 0.1006036 1.0638 

80 0.0250501 0.1008065 1.0870 

100 0.0250627 0.1010101 1.1111 

120 0.0250752 0.1012146 1.1364 

140 0.0250878 0.1014199 1.1628 

160 0.0251004 0.1016260 1.1905 

180 0.0251130 0.1018330 1.2195 

200 0.0251256 0.1020408 1.2500 
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B.3 Lookup tables for the 300 Mb/s generated traffic 

Possible 
allocated traffic 

Mb/s 

Calculated delay (ms) at each service rate 

40 Mb/s 40 Mb/s 40 Mb/s 

30 0.0250188 0.1003009 1.0309 

60 0.0250376 0.1006036 1.0638 

90 0.0250564 0.1009082 1.0989 

120 0.0250752 0.1012146 1.1364 

150 0.0250941 0.1015228 1.1765 

180 0.0251130 0.1018330 1.2195 

210 0.0251319 0.1021450 1.2658 

240 0.0251509 0.1024590 1.3158 

270 0.0251699 0.1027749 1.3699 

300 0.0251889 0.1030928 1.4286 

 

 

B.4 Lookup tables for the 400 Mb/s generated traffic 

Possible 
allocated traffic 

Mb/s 

Calculated delay (ms) at each service rate 

40 Mb/s 40 Mb/s 40 Mb/s 

40 0.0250250 0.1004016 1.0417 

80 0.0250501 0.1008065 1.0870 

120 0.0250752 0.1012146 1.1364 

160 0.0251004 0.1016260 1.1905 

200 0.0251256 0.1020408 1.2500 

240 0.0251509 0.1024590 1.3158 

280 0.0251762 0.1028807 1.3889 

320 0.0252016 0.1033058 1.4706 

360 0.0252270 0.1037344 1.5625 

400 0.0252525 0.1041667 1.6667 
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B.5 Lookup tables for the 500 Mb/s generated traffic 

Possible 
allocated traffic 

Mb/s 

Calculated delay (ms) at each service rate 

40 Mb/s 40 Mb/s 40 Mb/s 

50 0.0250313 0.1005025 1.0526 

100 0.0250627 0.1010101 1.1111 

150 0.0250941 0.1015228 1.1765 

200 0.0251256 0.1020408 1.2500 

250 0.0251572 0.1025641 1.3333 

300 0.0251889 0.1030928 1.4286 

350 0.0252207 0.1036269 1.5385 

400 0.0252525 0.1041667 1.6667 

450 0.0252845 0.1047120 1.8182 

500 0.0253165 0.1052632 2.0000 

 

 

B.6 Lookup tables for the 600 Mb/s generated traffic 

Possible 
allocated traffic 

Mb/s 

Calculated delay (ms) at each service rate 

40 Mb/s 40 Mb/s 40 Mb/s 

60 0.0250376 0.1006036 1.0638 

120 0.0250752 0.1012146 1.1364 

180 0.0251130 0.1018330 1.2195 

240 0.0251509 0.1024590 1.3158 

300 0.0251889 0.1030928 1.4286 

360 0.0252270 0.1037344 1.5625 

420 0.0252653 0.1043841 1.7241 

480 0.0253036 0.1050420 1.9231 

540 0.0253421 0.1057082 2.1739 

600 0.0253807 0.1063830 2.5000 
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B.7 Lookup tables for the 700 Mb/s generated traffic 

Possible 
allocated traffic 

Mb/s 

Calculated delay (ms) at each service rate 

40 Mb/s 10 40 Mb/s 

70 0.0250438 0.1007049 1.0753 

140 0.0250878 0.1014199 1.1628 

210 0.0251319 0.1021450 1.2658 

280 0.0251762 0.1028807 1.3889 

350 0.0252207 0.1036269 1.5385 

420 0.0252653 0.1043841 1.7241 

490 0.0253100 0.1051525 1.9608 

560 0.0253550 0.1059322 2.2727 

630 0.0254001 0.1067236 2.7027 

700 0.0254453 0.1075269 3.3333 

 

 

B.8 Lookup tables for the 800 Mb/s generated traffic 

Possible 
allocated traffic 

Mb/s 

Calculated delay (ms) at each service rate 

40 Mb/s 40 Mb/s 40 Mb/s 

80 0.0250501 0.1008065 1.0870 

160 0.0251004 0.1016260 1.1905 

240 0.0251509 0.1024590 1.3158 

320 0.0252016 0.1033058 1.4706 

400 0.0252525 0.1041667 1.6667 

480 0.0253036 0.1050420 1.9231 

560 0.0253550 0.1059322 2.2727 

640 0.0254065 0.1068376 2.7778 

720 0.0254582 0.1077586 3.5714 

800 0.0255102 0.1086957 5.0000 
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B.9 Lookup tables for the 900 Mb/s generated traffic 

Possible 
allocated traffic 

Mb/s 

Calculated delay (ms) at each service rate 

40 Mb/s 40 Mb/s 40 Mb/s 

90 0.0250564 0.1009082 1.0989 

180 0.0251130 0.1018330 1.2195 

270 0.0251699 0.1027749 1.3699 

360 0.0252270 0.1037344 1.5625 

450 0.0252845 0.1047120 1.8182 

540 0.0253421 0.1057082 2.1739 

630 0.0254001 0.1067236 2.7027 

720 0.0254582 0.1077586 3.5714 

810 0.0255167 0.1088139 5.2632 

900 0.0255754 0.1098901 10.0000 

 

 

B.10 Lookup tables for the 1000 Mb/s generated traffic 

Possible 
allocated traffic 

Mb/s 

Calculated delay (ms) at each service rate 

40 Mb/s 10 Mb/s 1 Mb/s 

100 0.0250627 0.1010101 1.1111 

200 0.0251256 0.1020408 1.2500 

300 0.0251889 0.1030928 1.4286 

400 0.0252525 0.1041667 1.6667 

500 0.0253165 0.1052632 2.0000 

600 0.0253807 0.1063830 2.5000 

700 0.0254453 0.1075269 3.3333 

800 0.0255102 0.1086957 5.0000 

900 0.0255754 0.1098901 10.0000 

1000 0.0256410 0.1111111 1000.0000 
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