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Abstract 
 

Synthetic glucocorticoids (Gc) are anti-inflammatory agents, which are commonly used 

in cancer treatment. Glioblastoma (GBM) is an aggressive form of brain cancer with a 

median survival of 15 months. Dexamethasone, a potent Gc, is used to reduce oedema, 

however, patients prescribed high doses of Dexamethasone have reduced survival 

times. Despite the widespread use of Gc, much of their mechanism of action is still 

unclear, and their effects are tissue-specific. This project has therefore aimed to 

investigate Gc function in the context of GBM.  

 

Gc activate the glucocorticoid receptor (GR), a ligand activated transcription factor. 

Through RNA sequencing, Gc were predicted to affect DNA repair pathways in GBM, 

through control of p53 effectors. We demonstrated that Gc treatment increased DNA 

repair within GBM cells. This is relevant in the context of GBM treatment, as radiotherapy 

and chemotherapy both rely on the induction of DNA damage to induce GBM cell death. 

Screening selective steroids which fail to induce these transcriptional targets shows 

promise in maintaining beneficial anti-inflammatory effects while maintaining efficacy of 

standard treatments. 

 

Evidence is emerging that tumour cell populations show plasticity and can therefore 

adapt their response over time, and evade cancer treatment. Understanding the 

underlying mechanisms that control Gc responses at the single cell level is therefore 

essential to understand Gc action in vivo. Single cell RNA sequencing revealed that even 

within a clonal cell population, gene expression was variable. While the expression of 

GR correlated with the expression of GR target genes, there was less correlation 

between GR target genes suggesting importance of other unidentified factors.  

 

This work uncovered a new mechanism of GR action through DNA repair, and revealed 

for the first time how Gc responses are controlled at a single cell level. These insights  

will lead to improved treatment strategies for GBM and allow for the further study of 

factors which modulate the Gc response in individual cells. 
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Chapter 1 Introduction 

 

1.1 Glucocorticoids 

Homeostasis is defined as the maintenance of multiple processes within the body 

within a defined optimal range. This can include maintaining glucose levels, salt 

concentrations, and temperature (1). Constraining physiology within these 

optimal ranges safeguards against extremes, and is a highly regulated process. 

Tissue homeostasis requires the coordination and integration of a complex 

network of cues that range from individual signalling pathways, intracellular 

responses, autocrine and paracrine signals and endocrine systems. 

Glucocorticoids (Gc) are a class of steroid hormones discovered in the 1940s, 

which play a key role in the maintenance of homeostasis (1). They were originally 

named for their role in gluconeogenesis, and thus in controlling glucose levels, 

but in the decades that followed, their effects have been shown to be wide-

ranging and complex. Indeed, we now know they affect every tissue within the 

body, often driving variable effects depending on the tissue in question, and the 

tissue microenvironment. Cortisol is the endogenous Gc found within humans, 

and its circulating levels rise and fall within a 24-hour cycle. As this cycle is 

synchronised to the day/night cycle, this is known as a diurnal rhythm. Peak 

cortisol occurs at the onset of waking, and so peak cortisol is measured in the 

morning in humans, and late evening in rodents (2). Cortisol regulates various 

aspects of physiology including mood, sleep, vascular tone, feeding, energy 

metabolism and immune function. Diurnal changes in circulating cortisol drive 

diurnal rhythms in these process, which underlies the circadian rhythm observed 
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across many tissues. Cortisol is also released under conditions of psychological 

or physical stress. While the magnitude of this response is greater, the purpose 

is the same, to mobilise energy, coordinate (and constrain) the immune response 

and restore balance. For over 60 years, these potent anti-inflammatory effects 

have been harnessed through the development of synthetic Gc which are a 

common first-line treatment for many inflammatory conditions. A range of 

synthetic Gc are in widespread clinical use, depending on their delivery, efficacy 

and side effect profiles, and several are listed within the World Health 

Organisation’s list of Essential Medicines (3).  

  

1.1.1 Hypothalamic–pituitary–adrenal axis  

Due to the broad effects of cortisol on multiple tissues, production is tightly 

controlled at multiple levels of regulation. Much of this regulation is controlled by 

the hypothalamic–pituitary–adrenal (HPA) axis (Fig. 1.1). The first step of cortisol 

production requires either the uptake of cholesterol in the adrenal glands from 

dietary cholesterol, transported via low-density lipoproteins, or the de novo 

production of cholesterol within the adrenal cortex (4). The suprachiasmatic 

nucleus (SCN), the central circadian pacemaker in the brain, is capable of 

stimulating the paraventricular nucleus (PVN) within the hypothalamus. The PVN 

is stimulated to release both corticotrophin-releasing hormone (CRH) and 

arginine vasopressin (5). Both hormones then act on the anterior pituitary to 

release adrenocorticotrophin hormone (ACTH), the key regulator of cortisol 

production. Finally, within the adrenal cortex, ACTH stimulates cortisol production 

from cholesterol within the zona fasciculata via a series of stepwise enzymatic 

reactions (6, 7). Cortisol cannot be stored prior to activation, and so upon 

synthesis, is immediately released into the circulation. Once in the circulation, 
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cortisol then acts upon multiple tissues to modulate physiology and also switches 

off its own production by targeting the HPA axis, as part of a negative feedback 

loop. Cortisol inhibits release of both CRH and ACTH, preventing excessive 

cortisol production and resulting in a pulsatile pattern of cortisol release (8). Once 

in the circulation there is another level of control as cortisol availability to tissues 

is further determined by levels of corticosteroid binding globulin and albumin, 

which bind to approximately around 95% of circulating cortisol, restricting its 

uptake into target cells (9). 

 

 

Figure 1.1: Cortisol production is controlled by the HPA axis. Signals converge 
within the hypothalamus to increase production of CRH and arginine vasopressin, which 
in turn induce ACTH production from the anterior pituitary. ACTH then stimulates cortisol 
production from the adrenal glands, which then inhibits multiple steps within the HPA 
axis. Information obtained from (1, 8, 10). 

 

As previously mentioned, cortisol levels fluctuate with a diurnal rhythm, however, 

they are also under dynamic control, and can rapidly increase following a 

stressor, whether physical or psychological. Cortisol is therefore a primary 

mediator of the stress response. Stress can be defined as a factor, internal or 

external, which poses a threat to homeostasis, for example, infection, extreme 
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temperature, or injury (8, 11). These signals are interpreted at the level of the 

hypothalamus, activating the HPA axis, leading to increased cortisol production. 

As cortisol must first be synthesised prior to release, this causes a time delay, 

meaning that cortisol levels peak relatively late in the stress response. In this 

context cortisol plays an essential role to limit the physiological response to the 

stressor and facilitate tissue repair, i.e. to restore tissue homeostasis.  

 

1.1.2 Synthetic Gc in clinical applications 

As previously mentioned, Gc are widely used within the clinic. These have 

revolutionised the treatment of a multitude of inflammatory conditions, and 

studies have shown that 0.9% of the UK population were prescribed a Gc 

treatment in a single year (12). Synthetic Gc are capable of rapidly reducing 

inflammation in a range of inflammatory disorders, however, they are not 

controlled in the same manner as endogenous cortisol. Cortisol, for instance, has 

a biological half-life of 8 - 12 hours, whereas for Dexamethasone (Dex), a potent 

synthetic Gc, this is increased to 36 – 72 hours (13, 14). Whilst cortisol levels are 

therefore capable of fluctuating throughout a 24 hour cycle, synthetic Gc 

administration can lead to constitutive activation of the Gc response, and its 

downstream functions. Synthetic Gc administration is also not under the control 

of the HPA axis. This means that the homeostasis of the system is removed, 

resulting in hyperactivation of Gc functions.  

 
For this reason, many of the side effects of Gc treatment are extremes of 

homeostatic cortisol functions. For instance, hyperactivation of the wake/sleep 

cycle leads to insomnia in Gc-administered patients, and neural effects result in 

mood disorders, such as depression and psychosis (15). Effects on vascular tone 
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result in side effects of hypertension and glaucoma (16, 17). Finally, even when 

the suppression of inflammation is the reason for Gc prescription, this can also 

lead to unwanted side effects. Immune system suppression increases risk of 

secondary infections for chronic Gc patients, and wound healing is impaired (18). 

In order to understand these side effects, it is necessary to understand the effects 

of cortisol within homeostatic conditions.  

 

1.1.3 Effects of Gc on metabolism  

Glucocorticoids were originally named based on their effects on glucose 

metabolism, and they form a key level of control on circulating glucose levels. 

Cortisol levels are increased under conditions of physiological stress, such as 

fasting, and its effects lead to the production of glucose, and changes to glucose 

uptake within tissues in order to preserve energy (19). 

 
Within the liver, GR activation leads to gluconeogenesis through upregulation of 

key glucose metabolism genes, increasing the conversion of precursors such as 

lactate to glucose via the production of pyruvate (10, 20). This increase in glucose 

production results in increased plasma glucose levels, preventing 

hypoglycaemia. These increased glucose levels are maintained through the 

effects of cortisol in peripheral tissue. Glucose uptake is reduced within skeletal 

muscle and adipose tissue (21, 22). These tissues may use alternative energy 

sources, whereas the brain can only utilise glucose for metabolism. By tipping 

these balances, cortisol may keep safeguard the glucose supply for the brain. In 

addition, Gc can also exert effects on lipid metabolism through multiple 

mechanisms. Gc increase lipid mobilization within skeletal muscle, and increase 
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expression of fatty acid synthase in hepatocytes, resulting in de novo lipid 

production (23, 24).  

 
Another important mechanism by which Gc can alter metabolism is through 

effects on mitochondrial function. The glucocorticoid receptor (GR), the receptor 

by which Gc modulate the majority of their effects, is capable of translocation to 

the mitochondria (25, 26). Human mitochondrial genes have been shown to 

contain sequences similar to nuclear Gc response elements, suggesting GR is 

capable of controlling mitochondrial gene expression (27). Indeed expression of 

GRγ, an isoform of GR, has been shown to increase mitochondrial mass, 

suggesting GR may play a key role in determining ATP production and 

metabolism (28). Through these complex mechanisms, Gc are capable of 

increasing energy supplies to tissue, in order to ensure metabolic demands can 

be met. 

 

1.1.4 Immune effects of Gc 

One of the hallmarks of the immune response is the multiple, redundant 

mechanisms by which the immune system may be activated. These mechanisms 

include the direct recognition of foreign organisms, recognition of infected cells, 

or cells undergoing other forms of stress. These varied signals are recognised by 

a spectrum of receptors, such as Toll-like receptors, and NOD-like receptors. The 

activation of these receptors leads to the eventual activation of proinflammatory 

transcription factors, such as Nuclear Factor κB (NFκB) and mitogen/stress 

activated protein (MAP/SAP) kinases, such as ERK and JNK (29). These 

transcription factors ultimately drive the production of proinflammatory mediators, 

such as interferons chemokines and cytokines. These mediators lead to the 
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recruitment and activation of both innate and adaptive immune cells, and 

destruction of the pathogen. Whilst this system protects the body from potentially 

dangerous infections, an inflammatory response, when out of control, can lead to 

the destruction of tissue, and the development of autoimmune conditions or 

chronic inflammatory disease. It is therefore imperative that this inflammation can 

be quickly and effectively controlled. Gc are a robust, conserved mechanism by 

which inflammation can be limited, and homeostatic balance restored.  

 
The effects of Gc in inhibiting proinflammatory gene expression through the 

inhibition of NFκB and Activator Protein-1 (AP-1) have been well documented, 

and are a major point of control within many tissues (30). Glucocorticoids also 

affect immune cells directly to inhibit or alter their function.  

 
Within the innate immune system, glucocorticoids inhibit the recruitment of 

macrophages and neutrophils to the site of inflammation, by inhibiting the 

expression of chemokines, such as CXCL-1 and CXCL-2 (31, 32). At the site of 

injury, the functions of macrophages and neutrophils are inhibited through 

increased expression of Annexin A1 and GILZ, resulting in inhibition of 

macrophage cytokine secretion, and inhibition of neutrophil degranulation (33, 

34). In turn, this reduction in expression of inflammatory mediators reduces the 

activation of adaptive immunity, and drives the immune system towards a 

reparative, tolerant phenotype. 

 

1.1.5 Effects of Gc in the brain 

GR expression is relatively abundant in the brain, however, its expression does 

vary between regions. GR expression is high within the hypothalamus as part of 
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the feedback loops required to restrict activation of the HPA axis (Section 1.1.1). 

GR also plays a critical role in controlling memory and learning through its 

expression in the limbic system. Within the amygdala, for instance, Gc treatment 

has been shown to lead to neuronal hypertrophy, a phenomenon usually 

associated with a reduction in memory and increased stress (35). These effects, 

however, appear to be dose- and time-dependent, as a timed, low dose of 

corticosterone reduced anxiety in rats, and treatment of patients with Gc within 

an hour of traffic accidents was correlated with reduced PTSD symptoms (36, 

37).  

 
In addition, patients with Cushing’s syndrome, who have elevated circulating 

cortisol experience psychiatric symptoms such as anxiety and depression, and 

hyperactivation of GR has been linked to the development of mood disorders (38, 

39). This is also a side effect of patients taking synthetic Gc long term. This can 

be alleviated through treatment with mifepristone, a GR antagonist, highlighting 

the direct importance of Gc in maintaining homeostasis within the brain.  

 
In contrast, Addison’s disease, also known as primary adrenal insufficiency, is 

characterised as a disease caused by adrenal failure, commonly caused through 

the production of autoantibodies against 21-hydoxylase, an enzyme required for 

cortisol production (40). This results in reduction of cortisol production, ultimately 

resulting in adrenal failure. Symptoms are often non-specific, but commonly 

include fatigue, hypotension and weight loss (41). These symptoms highlight the 

complex and wide-ranging effects of Gc.  
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Highest expression of GR is found within the cerebellum within both the human 

and mouse brain, and this appears to be critical for brain development. In 

particular, Gc administration within pre-term babies leads to a stunting of 

cerebellum development (42). Further study is required to fully elucidate the 

complex roles of GR within different regions of the brain. 

 

1.1.6 Nuclear receptor superfamily 

As previously mentioned, Gc exert their effects through binding to GR. GR is a 

member of the nuclear receptor (NR) superfamily of 48 ligand-activated 

transcription factors (TF). NR ligands include various classes of steroid 

hormones, such as progesterone and oestrogen, and vitamins including vitamin 

D3 and retinoids, and lipid soluble metabolites such as oxysterols (43). The NR 

family can be classified into subfamilies (NR0-NR6), depending on structural 

homology (Fig 1.2). GR (NR designation NR3C1), is part of NR subfamily 3 or 

NR3, a closely related group of NRs that respond to steroid hormones and 

includes receptors that respond to circulating mineralocorticoids, progestins, 

oestrogens, and androgens. 

 

1.1.7 GR isoforms  

The GR gene is located on chromosome 5, and consists of 9 exons (44). The first 

of these exons is not translated, whilst exons 2 – 9 form the GR protein. 

Alterations in the translation of exon 9 result in several splice variants (Fig. 1.3). 

GRα and GRβ are highly homologous, however, GRα, the most common splice 

variant, considered full length GR, contains an additional 50 amino acids.  
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Figure 1.2: Diagram of the nuclear receptor superfamily. Hierarchical illustration of 
the nuclear receptor superfamily within humans, and its subfamilies. Subfamilies, namely 
NR0 – NR3, can then be further divided into groups, such as NR3A – NR3C. Individual 
receptors within these groups are then shown. Information drawn from (43, 45, 46). 

 

These amino acids form the full length ligand binding domain (LBD), allowing it 

to bind Gc. GRβ, however, contains 15 nonhomologous amino acids, which do 

not confer ligand binding properties (5). These differences in structure predict 

differences in protein function. Whilst GRα is largely sequestered to the 

cytoplasm in the absence of ligand, GRβ is found predominantly within the 

nucleus (47). GRβ is also unable to bind to and regulate expression of traditional 

GR target genes through direct binding at GREs. It is able to regulate 

transcription, however, as an inhibitor of GRα and through the recruitment of 

histone deacetylases to repress selected genes (48). Due to its ability to inhibit 
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GRα function, the ratio of GRα:GRβ expression has been linked to Gc resistance 

(49). Further research is required to fully understand the effects of GRβ. 

 
GRγ, another splice variant, contains an additional arginine residue within the 

DNA binding domain (DBD), altering its specificity and resulting in the capability 

to bind to a smaller subset of GR target genes (50). Two further isoforms also 

exist, GR-A and GR-P. Both lack functional ligand binding domains, and are 

commonly found within cancer cells (51). The relative abundance of both GRγ 

and GR-P have been linked to Gc resistance in several malignancies, however, 

their functional relevance is still unlear(52-54).  

 

1.1.8 GR structure 

All NRs share a common modular structure and contain three functional domains; 

an N-terminal regulatory domain (NTD), and a C-terminal ligand binding domain 

(LBD), joined to the central DNA binding domain (DBD) by a flexible linker or 

hinge region (HR).  
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Figure 1.3: Splice variants of the GR gene result in several different isoforms. All 
slice variants share a close structural homology, with several key differences. GRβ does 
not share the same final 50 amino acids as GRα, but contains an additional 15 non-
homologous amino acids, indicated in purple. GRγ is highly homologous to GRα, but 
contains an additional arginine residue within the DBD. GR-A is missing a 184 amino 
acid portion comprising the hinge region and part of the LBD. GR-P does not contain the 
8th and 9th exons of the LBD. N and C denote N- and C- terminal domains. Key - NTD- 
N-terminal domain; DBD – DNA binding domain; H – hinge region; LBD – Ligand binding 
domain. Data obtained from (55).  

 

The LBD contains 12 α-helices and 4 β-sheets, which form a central hydrophobic 

pocket capable of binding ligand. Within GR, this pocket is highly adaptable 

compared with other nuclear receptors, and can bind to a wide variety of ligands, 

both steroidal and non-steroidal (43). It is also capable of binding hsp90, allowing 

the pocket to maintain its conformation in the absence of ligand (56). The DBD 

also contains activation function-2 (AF-2), which enhances protein-protein 
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interactions with coregulators and other transcription factors following ligand 

binding (Fig. 1.4A) (57). Whilst AF-2 is around 5 – 10 times less active than AF-

1, its structure is more defined, suggesting it may be responsible for binding a 

select group of ligands with higher affinity (58, 59). The DBD is linked to the LBD 

via a short hinge region (HR). The HR allows for flexibility within the protein, 

aiding dimerization and DNA binding.  

 
The DBD is highly conserved between NRs, and consists of two zinc finger 

domains (29). The first of these zinc finger motifs is critical for recognising target 

sequences, or response elements, within DNA, whilst the second stabilises 

interactions between the protein and DNA (60). The DBD is also required for other 

GR functions, such as dimerization of the receptor, and repression of other 

transcription factors, such as NFκB (61).  

 
The NTD is the least conserved region amongst nuclear receptors, allowing for 

large variations in both size and function (62). The NTD region is intrinsically 

disordered, where the conformational changes induced in the LBD by ligand 

engagement recruits transcriptional cofactors, such as NCoA-2, with low binding 

affinity, which modulate GR function (63). Some NRs, including GR, contain an 

additional domain within the NTD, known as activation function-1 (AF-1) (Fig. 

1.4A). AF-1 is capable of binding multiple GR coactivators, resulting in maximal 

activation of the receptor (29). It is also required for docking of the basal 

transcriptional machinery, for example, the TATA box, and is a common site for 

regulation by post-translational modifications, such as phosphorylation at Ser-

203 and Ser-211 in response to ligand binding (Fig. 1.4B) (64, 65). 
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Figure 1.4: Key regions of GRα, and the post-translational modifications which 
can alter its function. The key sequences which alter GR structure and function, and 
their location within GRα. GR is also subject to a high number of post-translational 
modifications (PTM), and these modifications can alter its affinity for localisation and for 
binding other proteins, such as corepressors and coactivators. It is subject to several 
types of PTM, most commonly phosphorylation (B), but also ubiquitylation, sumolyation, 
methylation and acetylation (C). AF – Activation Function 1, NLS – Nuclear Localisation 
Sequence, NTD – N terminal domain, DBD – DNA binding domain, H – hinge region, 
LBD – ligand binding domain. Data obtained from (62, 66, 67). 
 

Finally, GR also contains several sequences which determine its localisation. 

These include nuclear localisation sequences (NLS), NLS1 and NLS2, which 

drive nuclear translocation (Fig. 1.4A). NLS1 is contained between the DBD and 

LBD, whilst NLS2 is located within the LBD. These sequences enable nuclear 

localization, and are therefore critical for GR function (68). GR also contains a 

nuclear retention signal (NRS), which overlaps with NLS1 within the hinge region 

of the DBD. This sequence prevents nuclear export whilst GR mediates 
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transcription (69). The combination of these domains enables the GR to bring 

together a wide range of signals, from Gc along with a range of cofactors, and 

exert their effects on gene expression. 

 

1.1.9 Mechanism of cortisol action 

It is important to note that cortisol does not function only through GR. Cortisol can 

also bind to the mineralocorticoid receptor (MR). Depending on the tissue, cortisol 

can function through one or both of these receptors. MR, for instance, is 

expressed by neurons within the hippocampus, but is absent from other brain 

regions (70). The endogenous ligand of MR is aldosterone, however, MR also 

has a higher affinity for cortisol, approximately 10-fold greater than GR (71). It 

should be noted, however, that some synthetic Gc, such as Dex, are not capable 

of activating MR, and thus their effects may be considered MR-independent, even 

in MR-positive tissues (70). The primary role of MR is in the control of fluid and 

electrolyte homeostasis, ultimately controlling blood pressure.  

 
Due to the higher circulating concentrations of cortisol, however, MR in the brain 

is also commonly activated by circulating cortisol. Within the brain, GR and MR 

have closely related effects, and MR is capable of binding to glucocorticoid 

response elements (GREs) within the genome, although its effects are distinct 

due to the differential recruitment of corepressors and coactivators (72). 

Together, the receptors are believed to play a key role in orchestrating the stress 

response within the brain, and thus the rest of the body. 
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1.1.10 Mechanisms of GR Action 

GR is both an intracellular receptor and transcription factor, expressed in virtually 

all tissues within the body. In its unliganded state, GR is localised in the 

cytoplasm, bound to a chaperone complex, which maintain it in a ligand-ready 

conformation but also maintain its inactive state. These chaperones include 

Hsp70, Hsp40 and Hsp90, and when bound to GR, this forms the GR foldosome 

(73). Formation of the GR foldosome is also critically dependent on interactions 

with several other cochaperones, including histone deacetylase 6 (HDAC6), 

resulting in a stable complex in which GR is stable and ready to bind Gc (74). In 

order to activate GR, ATP hydrolysis by Hsp90 leads to the dissociation of Hsp70, 

allowing the ligand binding pocket to open and bind the ligand (75).  

 

1.1.10.1 Non-genomic effects of GR  

GR is capable of exerting profound changes on the transcriptome of cells. These 

transcriptional effects, however, often take hours before they are observed (76). 

This seems at odds with previous observations that some Gc responses can be 

observed within minutes and do not require new transcription. These effects are 

termed non-genomic GR effects (Fig. 1.5).  

 
In contrast to genomic GR effects, the rapid non-genomic effects are much less 

clearly understood. These effects include increases in intracellular calcium levels, 

increased reactive oxygen species production in breast cancer and increased 

nitric oxide production in endothelial cells, resulting in vasodilation (77-79). They 

may also directly affect inflammation through a number of key mechanisms. 
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Within immune cells, GR was shown to inhibit neutrophil degranulation within 

minutes of Gc treatment (80). NFκB activation was also inhibited in macrophages, 

just 30 minutes after Dexamethasone (Dex) treatment (81). In A549 

adenocarcinoma cells, epidermal growth factor receptor (EGFR) signalling was 

rapidly inhibited following GR activation (82). These effects appear to be due to 

GR inhibition of kinase activation, such as MAPK, within these inflammatory 

signalling pathways (83). GR has also been shown to be interact directly with 

calveolin-1, a membrane protein which serves as a component of caveolae lipid 

rafts within many cell types. The interaction of GR with caveolin has downstream 

effects on the immune response within a lung inflammation model (84). In 

addition, in the presence of caveolin, GR has been shown to colocalize with c-

src. Following GR activation, c-src is released from this complex, and is capable 

of exerting its effects, including the activation of protein kinase B (PKB) (85). PKB 

activation can result in a range of cellular effects, including effects on apoptosis, 

proliferation, and cell growth (86). Through rapid PKB activation, within 5 minutes 

of Dex addition, GR is thus able to affect a wide range of cellular process before 

it has begun affecting transcription.  

 
In addition, Dex has been shown to activate both protein kinase A (PKA) and 

protein kinase C (PKC) rapidly following Dex treatment (87). This results in a 

rapid inhibition of calcium signalling within airway epithelial cells.  



 

 

18 

 

 

Figure 1.5: GR affects cell function through both genomic and non-genomic 
mechanisms. Upon Gc entry to the cell, GR binds to Gc and becomes activated. Within 
the cytoplasm, GR can modulate the activation of multiple kinases, resulting in complex, 
rapid signalling cascades. GR activation also allows for the exposure of nuclear 
localisation sequences, enabling GR translocation to the nucleus through the nuclear 
pore complex. Within the nucleus, GR can transactive or transrepress expression of 
individual genes. Gc – glucocorticoid, GR – glucocorticoid receptor. Data from (76, 83). 
Diagram created using Biorender.com. 

 
 

1.1.10.2 Genomic mechanism of GR action 

Following ligand binding, GR undergoes a conformational change which leads to 

the exposure of the bipartite nuclear localisation signal (NLS1 and NLS2) on the 

outside surface. These domains enable rapid nuclear translocation through the 

nuclear pore complex (88, 89) (Fig. 1.5). Once in the nucleus, liganded GR can 

bind to DNA directly to modulate transcription, or to other DNA bound 

transcription factors to modulate their function. With increasing numbers of high 

throughput sequencing studies, literature has shown that GR can activate or 

inhibit gene transcription via either mechanism – although there is a bias which 

will be discussed later. 
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GR binds DNA directly at sites containing GREs. GREs were originally thought 

to consist of 2 hexamer palindromic sequences, joined by a three-nucleotide 

spacer. Recent genomic analysis, however, has shown that relatively few GREs 

consist of this sequence, and sequences show much more variation than was 

originally expected (90). It may be that these differences in GRE may alter the 

affinity of GR to bind particular sites, residence time on chromatin, or the 

recruitment of coregulators, ultimately regulating the type and strength of the 

response (65). The GR binding site may also dictate the recruitment of other 

complex proteins, as negative GREs (nGREs) have been shown to lead to the 

specific recruitment of corepressors and histone deacetylases, resulting in 

chromatin modification and gene repression (91). Therefore, the specific 

sequence of the binding site, or DNA motif, is thought to have a key role in 

determining GR function.  

 

1.1.10.3 GR effects on transcription 

GR can modulate transcription by both inducing expression of target genes 

(transactivation), and repressing expression of others (transrepression) (Fig. 1.6). 

These effects often work synergistically to create the same phenotype. For 

instance, GR can increase the expression of anti-inflammatory and pro-repair 

genes, while simultaneously repressing the expression of pro-inflammatory 

mediators and injurious genes.  

 
GR can also affect transcription without directly binding to DNA via a process 

known as tethering. GR may bind a range of transcription factors, such as NFκB, 

and AP-1, and modulate their effects (5). In many cases, this allows GR to target 

the same pathway in multiple, redundant ways; for instance, in the case of NFκB, 
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GR can transactivate and increase the expression of IκBa, an NFκB inhibitor, 

bind to DNA at the promoter region of NFκB target genes directly to suppress 

expression, and bind to NFκB directly whilst it is bound to DNA to inhibit its 

function (92). These effects are complex, complementary, and difficult to 

understand independently of each other. 

 

Figure 1.6: GR can modulate transcription through multiple mechanisms. GR can 
bind to DNA as a monomer or a dimer, or can modulate transcription indirectly through 
tethering to other transcription factors. Each of these forms can either activate or repress 
transcription of the bound gene, depending on the response element, and the 
recruitment of other cofactors. Green arrows indicate increased gene expression, whilst 
red arrows represent gene inhibition. CBP – CREB binding protein, GRE - glucocorticoid 
response element, GRIP1 – Glucocorticoid receptor interacting protein, HDAC – histone 
deacetylase, HNF – Hepatocyte nuclear factor, NCoR – nuclear receptor corepressor, 
NFκB – nuclear factor kappa B, nGRE - negative Gc response element, NRE - NFκB 
response element, RNA Pol II – RNA polymerase II, SMRT – silencing mediator for 
retinoid or thyroid-hormone receptors, SRC - steroid receptor coactivator, TBP – TATA 
binding protein, TFIIB – Transcription factor II B. Data from (51, 93-95). Created using 
Biorender.com. 

 

GR may also bind as a monomer at “half-site” GREs, which do not contain the 

the 3 nucleotide spacer, or the second palindromic sequence found within a full 

GRE, as explained above (96). GR can bind at these sites alongside other 

transcription factors, such as NFκB and AP-1 which are themselves bound to a 
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nearby target sequence. From these half-sites, GR can either activate or repress 

transcription. This is a relatively novel mechanism of GR action, and its 

abundance and clinical significance is as yet unclear (65, 97). 

 

For many years, dogma stipulated that GR dimerization and the DNA binding 

mechanism dictated the effect of GR activation on the transcriptional response. 

Tethering of monomeric GR was believed to be largely responsible for 

transrepression of inflammatory genes, therefore orchestrating the beneficial 

effects of Gc therapy. In contrast, direct DNA binding of dimerized GR was 

believed to be responsible for transactivation of genes, such as those involved in 

gluconeogenesis, and many of those responsible for the damaging side effects 

of Gc therapy. This hypothesis appeared to be confirmed by in vitro studies using 

GR mutants incapable of forming dimers, however, in vivo work using GR mutant 

mice containing the same point mutation showed that GR dimerization is 

essential for a full anti-inflammatory response (98, 99). In addition, other side 

effects, such as osteoporosis, have since been shown to be caused 

independently of dimerization (100). As research has progressed, this clean 

monomer/dimer model of activation/repression has been shown to be overly 

simplistic, and the positive and negative effects of Gc therapy are much more 

inextricably linked than initially believed.  

 

1.1.11 Selective GR modulators (SEGRMs) 

Based on the traditional dogma of transactivation/transrepression, it was 

hypothesised that if GR ligands could be designed which retained the 

transrepressive effects of Gc, but limited transactivation, it would be possible to 

produce ligands with efficacy in reducing inflammation, whilst minimising side 
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effects (101). It was hoped that these ligands, referred to as SEGRM, would 

revolutionise the treatment of inflammatory conditions, by providing effective 

control of inflammation, but without affecting metabolism, and other side effects. 

There have been many of these ligands designed over the past several decades, 

however, none have lived up to their original promise. 

 
Several SEGRMs which showed initial promise in vitro and in vivo have 

undergone clinical trials, and some have even reached Phase II trials (102). 

None, however, have been approved for oral use. It is probable that this lack of 

success at the clinical trial stage, at least in part, is due to the complexity of GR 

function. As discussed above, GR function goes beyond the original dichotomy, 

and there are multiple layers of complexity of GR signalling which are not yet 

understood. It may therefore be necessary to further understand Gc function 

more thoroughly before selective ligands can be used successfully. 

 

1.2 Glioblastoma Multiforme 

 Glioblastoma multiforme (GBM) accounts for 15.6% of primary brain tumours, 

and is the most lethal brain tumour in adults (103). Median survival time remains 

less than 15 months with standard treatment, and the 5-year survival rate is just 

5% (103, 104). After diagnosis, standard treatment consists of tumour resection, 

followed by 6 weeks of concomitant radiotherapy and Temozolomide (TMZ), the 

most effective chemotherapeutic drug used for GBM. This is followed by a period 

of adjuvant TMZ. This treatment is aggressive, often with severe side effects, and 

on average only extends life by approximately 3 months (104). Despite advances 

in our understanding of the molecular mechanisms underlying glioblastoma in the 
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past 15 years, this has not transferred to new standard treatments since the 

current standards were published in 2005 (105).  

 

1.2.1 Classification 

Gliomas are defined as tumours arising from glial cells, or glial precursors, and 

can be further divided into Grades I – IV according to both histological and 

morphological features. Using the World Health Organisation nomenclature, all 

Grade IV gliomas are classified as GBM (106). Within this broad classification, 

molecular profiling has allowed us to further define subtypes according to 

common mutations and epigenetic changes. Some of the most common of these 

include mutations in telomere length genes, such as TERT, and RB pathway 

genes, such as CDKN2A, and the DNA repair effector, p53 (107-109). The most 

commonly used prognostic marker, however, has arguably been O6-

methylguanine–DNA methyltransferase (MGMT) methylation. Methylation of the 

MGMT gene, resulting in gene silencing, is associated with increased efficacy of 

chemotherapy, and in turn, increased survival times (110).  

 

1.2.2 Current Treatments  

As previously mentioned, the current standard of care for GBM consists of 

surgical resection, followed by radiotherapy and chemotherapy. Due to the often 

diffuse nature of the tumour, and its sensitive location within the brain, the 

maximum possible resection is carried out, depending on factors such as health 

status, age, and precise location within the brain (111). The remaining tumour will 

be targeted by radiotherapy, at a dose advised at 60Gy, divided into doses of 

2Gy/day for 5 days per week alongside concomitant, daily Temozolomide 
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(75mg/m2) for 6 weeks, followed by Temozolomide alone (150 – 200mg/m2) for 

up to six four-week cycles. This schedule, originally described by Stupp et al, may 

be deemed unsuitable for many patients due to severe side effects, but was 

shown to increase survival to 14.6 months, compared with 12.1 months with 

radiotherapy alone (104).  

 

1.2.3 Therapeutic mechanism of action  

Radiotherapy has long been a stalwart of treatment in a broad range of cancers, 

and despite many therapeutic advances, it still remains a first-line treatment for 

many. Radiotherapy is effective in many cancer types due to its broad mechanism 

of action; namely through the induction of DNA damage, which, when unrepaired, 

leads to apoptosis of cells, resulting in tumour shrinkage and in some cases 

elimination. However, cell destruction by radiotherapy is not specific to cancer 

cells. Instead, it is more effective in rapidly dividing cells. This includes cancer 

cells, but also a range of other healthy cells. The efficacy within certain cancers, 

including GBM, is also limited by the development of radioresistance, meaning 

the best-case scenario is the shrinkage of tumour, allowing only for extension of 

life span until inevitable tumour recurrence or regrowth.  

 
IR produces a number of different types of lesions within DNA, such as single-

stranded breaks (SSBs), nucleotide damage, and double stranded breaks 

(DSBs) (112). It is estimated that IR leads to approximately 25 times more SSBs 

than DSB, however, DSBs are much more damaging, and require more complex 

repair mechanisms (113). The main mechanisms of DSB repair are outlined in 

Figure 1.7.   
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Figure 1.7: Double strand breaks are repaired by multiple mechanisms, including 
NHEJ and HR. Double stranded breaks are incurred by agents such as irradiation, then 
immediately sensed by yH2AX. Damage can then be repaired by two main mechanisms: 
non-homologous end joining (NHEJ), or homologous recombination (HR). NHEJ 
required DNA-PKcs, which enables the recruitment of the MRN complex, enabling 
ligation proteins such as DNA ligase IV to enter the break and ligate the ends. 
Alternatively, HR required the presence of a sister chromatid, which can be used as a 
template by Rad51 to ensure accurate repair. ATM - ataxia telangiectasia mutated, ATR 
- ataxia telangiectasia Rad3-related, BRCA1 – breast cancer type 1 susceptibility protein, 
BRCA2 – breast cancer type 2 susceptibility protein, CtIP – C terminal binding protein 1 
interacting protein, DNA-PKcs - DNA-PK catalytic subunit, DNA pol – DNA polymerase, 
HR – homologous recombination, MRN complex - MRE11-Rad50-NBS1 complex, NHEJ 
– non homologous end joining, WRN – Werner syndrome ATP-dependent helicase, XLF 
– XRCC4-like factor, XRCC4 - X-Ray Repair Cross Complementing 4. Data adapted 
from (114-117). Created using Biorender.com 
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1.2.4 Non-homologous end joining 

The most common mechanism of DSB repair is non-homologous end joining 

(NHEJ), which is responsible for repairing up to 85% of DSB caused by IR (118). 

This mechanism is rapid, but more error-prone than homologous recombination 

(HR), the other common mechanism of DSB repair. NHEJ requires a number of 

key DNA repair proteins, and the most critical comprise the DNA-dependent 

protein kinase (DNA-PK) complex. This complex is made up of 3 subunits; DNA-

PK catalytic subunit (DNA-PKcs), and Ku70 and Ku80. DNA-PKcs is a PI3K-

related protein kinase (PIKK), whilst the Ku70/80 heterodimer is capable of 

binding DNA directly (119). Together, DNA-PKcs, Ku70/80 and DNA form a 

sequence-independent complex, known as the DNA-PK complex, or DNA-PK. It 

has been shown that Ku70/80 binds to ends of DNA at sites of DSB, recruiting 

DNA-PKcs, and activating its kinase activity (120). DNA-PKcs is then capable of 

phosphorylating many components of the DNA repair machinery, such as H2A 

family member X (H2AX), Artemis, and itself (121). Activation of DNA-PK also 

results in the recruitment of a complex comprised of DNA ligase IV, along with 

XRCC4, and XRCC4-like factor (XLF) (122). This complex is required for ligation 

of broken ends, resulting in the repair of DSB (123). This process leads to rapid, 

efficient DNA repair, and DNA-PKcs inhibition results in increased sensitivity to 

radiation within GBM cells (124). The functional impact of this is emphasised by 

the correlation of increased DNA-PK expression with reduced overall survival in 

GBM patients (125). Given the clear importance of DNA-PK, and NHEJ in general 

in rendering cells radioresistant, inhibition of DNA-PK is a potential new target for 

cancer therapy. For instance, a phase Ib/II trial is currently being planned using 

a DNA-PK small molecule inhibitor, CC-115, to increase radiation efficacy in GBM 

(126).  
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1.2.4.1 Alternative roles of DNA-PK 

The function of DNA-PK is not just limited to the repair of damage caused by IR; 

DNA-PKcs deficient mice are severe combined immune deficient (SCID), due to 

the critical role of DNA-PK in V(D)J recombination, the process by which a wide 

repertoire of B and T cell receptors are formed during the development of 

lymphocytes (127-129). Aside from these critical roles, however, DNA-PK may 

have even more wide-ranging effects. For instance, DNA-PK has been suggested 

to play a role in inflammation. Induction of NFκB target genes, such as VCAM-1, 

IL7 and IL-1β was inhibited in GBM cells lacking DNA-PKcs (in the M059J cell 

line) following TNF treatment (130). Within immune cells, DNA-PK inhibition was 

shown to block IL2 production from T cells, potentially limiting the adaptive 

immune response (131). This may translate to a functional impact, as DNA-PK 

inhibition was shown to inhibit the development of murine asthma models, without 

affecting lymphocyte maturation (132). Finally, M059J cells were unable to form 

tumours within SCID mice, unlike their DNA-PK proficient counterpart cell line 

(M059K) (133). DNA-PKcs knockdown within melanoma cells was also shown to 

inhibit their ability to form tumours in vivo, and knockdown in vitro inhibited their 

ability to migrate within transwell assays (133). Together, these results suggest 

that DNA-PK may have complex roles outside DNA repair which must be further 

understood before it can be considered as a cancer therapy target.  

 

1.2.5 Homologous recombination 

The other common mechanism used to repair DSB induced by IR is HR. HR is a 

slow, but more accurate mechanism of repair, however, due to the requirement 

of a template DNA strand, its usage is limited to S and G2 phases of the cell cycle 

(134). HR also requires single-strand DNA (ssDNA) ends. DSB result in blunt 
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DNA ends, so the first stage of HR requires the processing of the blunt 5’ ends 

of DSB to produce ssDNA ends, a process known as DSB end resection. This 

process is carried out by the MRE11-Rad50-NBS1 (MRN) complex (135). This 

complex is sensed by replication protein A (RPA), which orchestrates the 

recruitment of other DNA repair-related proteins, including BRCA2. BRCA2 

enables the loading of RAD51 onto the broken DNA ends, replacing RPA, which 

in turn leads to strand invasion of the sister chromatid (117, 136). Using this sister 

chromatid as a template, the broken DNA is repaired. The choice between the 

use of HR or NHEJ is complex, and depends on factors such as cell cycle phase, 

as discussed, and the relative abundance of factors such as BRCA1 and 53BP1 

(116). A key determinant of repair fate is the resection of DSB ends, and Ku70/80 

binding to DSB ends prevents the binding of the MRN complex, and vice versa 

(137). 

 

1.2.6 ATM, ATR and the wider effects of DNA damage 

In addition to the direct mechanisms of repair described above, both NHEJ and 

HR lead to the activation of a number of other PI3K enzymes; namely, ataxia 

telangiectasia mutated (ATM) and ataxia telangiectasia Rad3-related (ATR). Both 

enzymes are phosphorylated in response to DNA damage: ATM is activated in 

the presence of DSB, whilst ATR is activated by ssDNA, and in particular, ssDNA 

with an RPA coating (134). This means that within the context of DSB, ATM is 

preferentially activated in response to NHEJ, and ATR is activated predominantly 

in HR. Their roles, however, are not fully independent; it has been suggested, for 

instance, that ATM is activated by the MRN complex, and that ATR may be 

capable of phosphorylating ATM in the context of UV damage (138-140).  
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ATM is capable of phosphorylating hundreds of substrates in response to DNA 

damage. Some of these substrates, in turn, may phosphorylate other targets, 

resulting in a wide-ranging signalling cascade. For instance, ATM may directly 

phosphorylate H2AX, a key DNA damage sensor, Checkpoint Kinase 2 (Chk2), 

and p53 (141). ATR, meanwhile, phosphorylates a related, but distinct, group of 

substrates (141). ssDNA is formed in response to a broad range of genotoxic 

stressors, and also at sites of stalled replication forks. The substrates of ATR 

include many proteins involved in pathways which lead to the repair of replication 

forks, and substrates which result in the stalling of cell cycle phase (142). The 

phosphorylation of Checkpoint Kinase 1 (Chk1) is key to the induction of cell cycle 

arrest, allowing cells time to repair DNA before replication occurs.  

 
Through the activation of ATM and ATR, DNA damage leads to a comprehensive, 

robust response, resulting in cell cycle arrest to allow DNA repair to occur, and 

activation of multiple other pathways, including p53 and the Fanconi Anaemia 

pathway of DNA repair (143, 144). The importance of this system in preventing 

the formation of cancer is underlined by the redundancy found within these 

pathways, as multiple substrates lead to the same cellular effects. Even within 

this redundancy, however, certain proteins are critical, as evidenced by the high 

incidence of p53 mutations within a broad range of cancers. 

 

1.2.7 Effects of p53 within DNA repair 

p53 is a transcription factor which is activated downstream of many DNA repair 

pathways. P53 activation is essential in the safeguarding against the survival of 

mutations, and for this reason, mutations of the p53 gene has been reported in 

close to every cancer type (145, 146). Within GBM, p53 itself is mutated in 27.3% 
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of tumours, but the wider p53 pathway was mutated in 85% of tumours (147). 

This suggests that p53, and DNA repair as a whole, are a key pathway 

dysregulated within GBM. Following activation of either NHEJ or HR, ATM and 

ATR both induce p53 activation. Both ATM and ATR can directly phosphorylate 

p53 at serine-15, resulting in increased p53-mediated gene transcription (148). 

In addition, ATM can also phosphorylate and repress MDM2, a key p53 

repressor, and both mitotic checkpoint genes Chk1 and Chk2 can phosphorylate 

p53 at multiple sites (149, 150).   

 
Once activated, p53 can affect the transcription of thousands of genes through 

both direct and indirect mechanisms. Upon activation, p53 may directly induce 

cell cycle arrest through the upregulation of genes such as p21 (151). This allows 

the cell time to repair DNA damage within the cell, before progressing through 

cell division. Alternatively, p53 also upregulates various apoptosis-related genes, 

including Bad and Bax, caspase 6 and Fas (152, 153). This means that in cells 

with catastrophic DNA damage, apoptosis will be induced to prevent the 

propagation of potentially dangerous DNA mutations.  

 

1.2.8 Temozolomide 

TMZ is the current standard chemotherapeutic used to treat GBM. TMZ is a 

lipophillic prodrug which is metabolised to its active form at a pH of 7 – 9 (154). 

This allows TMZ to act with a modicum of specificity; due to its lipophilic 

properties, it may cross the blood brain barrier (BBB), and as brain tissue is more 

alkaline than surrounding tissue, TMZ is broken down within the brain to form 5-

aminoimidazole-4-carboxamide (AIC) and methyldiazonium cation (155, 156). 

This cation is then capable of methylating DNA at numerous residues, including 
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O6 guanine residues (O6-MeG). The addition of this methyl group may be repaired 

quickly and directly by O6-methylguanine DNA methyltransferase (MGMT). The 

methyl group is transferred from the guanine base to the MGMT molecule, which 

results in the degradation of MGMT, and the DNA strand is repaired. If MGMT is 

not present, the O6-methylguanine adduct leads to the mispairing of guanine with 

thymine instead of cystine during DNA replication (113, 157). This mispairing is 

recognised by conserved DNA repair mechanisms, and in particular the 

mismatch repair (MMR) system. MMR attempts to repair this damage through the 

removal of the thymine base, but the original alkylated guanine residue is left 

intact. Through multiple failed rounds of MMR during replication, DSBs are 

eventually formed, which are repaired by the mechanisms listed previously (158). 

If these mechanisms are unsuccessful, GBM cells eventually undergo apoptosis 

(159). Therefore, reduced MGMT activity results in increased DSB formation, and 

can therefore lead to increased GBM cell apoptosis. Whilst the Stupp protocol is 

undoubtedly the most effective current treatment, and can increase survival times 

as a whole, there is a high level of variability in the response rate within individual 

patients. Differences in response can, in part, be explained by differences in 

MGMT methylation. In patients with methylated MGMT, median survival was 21.7 

months for patients receiving IR and TMZ, compared with just 12.7 months for 

patients with unmethylated MGMT receiving the same treatment (160, 161).  

 

1.2.9 MGMT methylation as a prognostic marker  

As described above, MGMT comprises a one-step repair mechanism for the most 

damaging lesions caused by TMZ. Methylation of the promoter region of the 

MGMT gene results in epigenetic silencing, preventing transcription of the MGMT 

protein. Without MGMT, TMZ-treated GBM cells are forced to undertake MMR, 
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leading to the production of DSB. When these breaks cannot be repaired, cells 

undergo apoptosis. As expected, therefore, increased MGMT methylation has 

been repeatedly correlated with improved TMZ treatment efficacy within GBM, 

resulting in reduced survival times within patients (162-164). In fact, this is 

considered such a strong indicator of prognosis that MGMT gene methylation has 

been used as a stratification tool within clinical trials (165).  

 
Interestingly, there has been previous literature suggesting that Dex is capable 

of inducing MGMT methylation, and this has been hypothesised as a mechanism 

of Dex reducing therapeutic efficacy. This was due to the discovery that the 

MGMT gene contains multiple GRE sites, along with NFκB and AP-1 binding 

sites, suggesting that the gene is under some form of inflammatory control (166-

168). This was furthered by a study which demonstrated that MGMT mRNA was 

induced following Dex treatment (169). This work, however, has been limited by 

several methodological problems. Most importantly, the Dex dosage used within 

the work was 10μM, many times higher than physiological levels, and 100 times 

what is commonly used in vitro. Similarly, Dex was shown to inhibit apoptosis 

following TMZ treatment in GBM cells, but this was shown at doses of 100μM 

and 200μM Dex, once again far higher than would be physiologically relevant 

(170).  

 
Recently, however, using doses of 100nM Dex, MGMT transcriptional activity 

was increased in several GBM cell lines, assessed using MGMT cloned into GBM 

cells, using the dual luciferase reporter assay (171). Whilst this demonstrates the 

ability of GR to bind and regulate MGMT under synthetic conditions, this does not 
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confirm the ability of Dex to regulate the endogenous MGMT gene within GBM 

cells, particularly given the complex nature of epigenetic GR regulation. 

 
Further evidence of GR effects on TMZ efficacy comes from work with a GR 

antagonist, mifepristone. Mifepristone is used to induce abortion due to its ability 

to antagonise both glucocorticoid and progesterone actions through their 

respective receptors (172). Recent work, however, has demonstrated that 

mifepristone administration alongside TMZ and radiation is capable of increasing 

survival in several rat models of GBM (173, 174). In addition, mifepristone usage 

was shown to decrease levels of MGMT expression within tumour cells (173). 

These effects are presumably mediated through effects on either GR or 

progesterone receptor (PR), but further work is required to determine a specific 

mechanism of action.  

 

1.2.10 Use of Dexamethasone 

Treatment with Gc is considered the gold standard in the control of cerebral 

oedema caused by brain tumours (175). Dex is a high affinity, highly potent Gc, 

which was first synthesised in 1958. Dex is routinely administered for relatively 

few conditions due to the high risks of severe side effects, however, it is the 

preferred corticosteroid in treating cerebral oedema, due to its low 

mineralocorticoid activity and high efficacy (176). Dex usage within patients with 

cerebral metastases and primary tumours reduced symptoms in over 70% of 

patients, across multiple Phase III trials (175, 177). Despite this high efficacy, and 

common usage, the mechanisms by which Dex reduces cerebral oedema have 

not been fully explored. Importantly, however, Gc have failed to show similar 

efficacy in the treatment of oedema caused by stroke, suggesting that they repair 
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specific dysregulated mechanisms within brain tumours (178). In particular, it has 

previously been demonstrated that the BBB is dysregulated within GBM, which 

leads to the influx of fluid into the brain, causing oedema and symptoms such as 

migraine and nausea. This can often lead to more severe neurological symptoms, 

such as confusion and increase the risk of stroke. This dysregulation of the BBB 

is due in part to an upregulation of inflammatory mediators, released from 

immune cells within the tumour microenvironment, resulting in immune cell 

infiltration, and tumour-associated factors such as vascular endothelial growth 

factor (VEGF), which lead to the breakdown of tight junctions between cells (179). 

Gc lead to an upregulation of tight junction components within endothelial cells in 

the BBB, and dampen the damaging effects of inflammation (179, 180). Both of 

these effects lead to improved BBB function through increased junctional 

integrity, resulting in the reduction of fluid and immune cell influx (181). Whilst 

these effects of Dex on endothelial cells have been relatively well-described, the 

effects of Dex on GBM cells has been less well characterised. This has become 

particularly controversial, as the effects on GBM cell survival have recently 

gained attention (182). 

 

1.2.11 Effects of Dex on GBM patient survival 

There has been an increasing awareness of Dex as a potential confounding 

factor within clinical trials for novel treatments within GBM. As previously 

discussed by Millar et al, this is complicated by the fact that, due to an 

underestimation of Dex effects, previous studies have often omitted steroid usage 

and dosage entirely from published results, making it impossible to determine 

whether steroids may have caused differences in response (183). This was 

discussed by Millar et al in the context of metastatic brain disease, but within our 
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experience, the same is also true within GBM trial results. Whilst it is 

recommended to taper Dex usage following surgery, and prior to radiotherapy, 

chemotherapy, and other novel treatments, the efficacy of Dex in reducing 

treatment-related side effects such as nausea mean that Dex is often continued 

at a maintenance dose throughout chemotherapy and radiotherapy, however, this 

is often unreported within clinical trial data (182). Within trials that have reported 

Dex usage, Dex has been shown to interfere with the efficacy of 

immunotherapies, such as ipilimumab, an immune checkpoint inhibitor (184). 

This may be expected, due to the well-known immunosuppressive effects of Gc, 

however, Dex has also been shown to interfere with other therapies, such as 

tumour-treating alternating fields (TTFields) and standard chemotherapy (185). 

Given that the effects of standard chemotherapy, such as TMZ, are not primarily 

mediated by an immune response, this would suggest that it may be reducing 

survival through other mechanisms.  

 
In light of these growing concerns within the GBM community, Pitter et al 

demonstrated that higher Dex usage within GBM patients is associated with 

reduced survival time, independent of other factors, such as tumour size and 

other therapies (182). Their work suggested that within a mouse model of glioma, 

Dex was capable of reducing tumour cell proliferation, which may render cells 

more radioresistant, however, their work did not confirm if similar effects were 

found within human tissue or cells. Similar effects of Dex on survival were 

reported in a retrospective analysis by Shields et al, who showed Dex usage was 

a significant predictor of reduced survival (186). A consistent criticism of these 

studies has been the relationship between severity of disease and Dex 

dependency; cases which require consistent Dex usage are more likely to consist 
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of more severe disease. Therefore, it is essential we understand the mechanisms 

of Dex action, both positive and negative, within GBM to ensure their safe usage.  

 

1.3 Stochasticity in the Transcriptional Response  

When a population of cells are treated with Gc, the expression of GR target genes 

is altered. This can be measured by qPCR or bulk RNA sequencing, which can 

be used to compare the population average of an untreated and treated 

population. What this does not describe, however, is the variation of response 

between cells within each population. It has therefore been hypothesised that 

there may be an inherent level of heterogeneity within responses. 

 
The process of transcription is complex and therefore inherently noisy or 

‘stochastic’. This property is beneficial from an evolutionary perspective, as 

identical cells do not respond in exactly the same way, which increases the 

robustness of the signal across a cell population. 

 
In order to understand how factors can alter the variability within a response, 

these differences can be modelled mathematically. A large degree of variation 

comes from the inherent complexity of the transcriptional response. For instance, 

in the glucocorticoid response, GR translocates to the nucleus, then must bind to 

the appropriate GRE and recruit the appropriate corepressors or coactivators, 

then recruit factors such as RNA polymerase II to the promoter region of the gene 

(187). A pre-initiation complex is formed, allowing transcription to begin. These 

steps, each relying on the interaction of multiple proteins, must all occur 

sequentially before transcription can occur. It is therefore not surprising that even 
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within a clonal population, each stage will occur at different rates in different cells 

(62, 188). We must then consider the added complexity of cells at different stages 

in the cell cycle, which will alter transcriptional output, the rates of promoter 

transition, and the chromatin landscape of individual cells (189, 190). For 

instance, if the chromatin state must change from closed to open before a gene 

may be transcribed, this will further delay transcription and increase the 

stochasticity of the system. Factors such as these, when multiplied across a large 

population, can theoretically lead to vast differences between individual cells.  

 
The concept of transcriptional heterogeneity is not a new one – many studies 

have shown this heterogeneity between cells within a population, using 

fluorescent reporters tagged to promoters within bacterial cells (191, 192). 

Fluorescence can be used as a readout of transcription, however, this synthetic 

system lacks the complexity of in vivo regulation and cell state. Even within a 

relatively simple, artificial system such as this, however, different promoters were 

shown to result in different levels of stochasticity. For instance, the activation of 

stress-related promoters was more heterogenous than those promoters found in 

“essential” genes, for example, those genes involved in cellular structure (193). 

This suggests that heterogeneity, rather than an unavoidable result of complex 

systems, may be an additional layer of regulation for gene responses (194).  

 
With the advent of single cell technologies, it is now beginning to be possible to 

study differences at a single cell level in more realistic systems. Specifically, 

single cell RNA-seq allows us to measure expression of individual genes in single 

cells without the need for fluorescent tags or insertion of genes. So far, single cell 

RNA-seq has been used within a large variety of lineage studies, and to highlight 
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inherent heterogeneity within populations (195, 196). Notably, this has included 

studies within primary GBM tissue, which has further highlighted the 

heterogeneity within individual tumours, and has increased knowledge of the 

development of subtypes, including the presence of GBM stem cells, within 

tumours (197-200).  

 
Thus far, however, there has been little study of how this underlying 

heterogeneity in gene expression is changed following the addition of a ligand, 

such as Gc. Through understanding cell-specific heterogeneity in response to a 

ligand, we aim to understand how the response may be controlled, either at a 

cell- or gene-specific level. Through this, we aim to shed new light on how 

resistance to Gc may develop. 

 

1.3.1 Modelling stochasticity within the transcriptional response 

Until relatively recently, technological limitations mean it was necessary to infer 

single cell responses from the population response, however, with the advent of 

single cell technologies, it has become possible to analyse the transcriptional 

output and phenotype of individual cells within a population. This technology also 

allows us to validate mathematic modelling of single cell responses in the most 

physiologically relevant ways yet. 

 
Two models have been proposed for eukaryotic gene expression within individual 

cells across time: these are binary and rheostat, or graded, responses (188). 

Binary models dictate that promoter regions of genes can be in either an active 

or inactive state (201). Both are discrete and defined states, with no points in 

between. In the inactive state, gene expression is completely repressed, whilst in 
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the active state, the gene is expressed at a single, constant level between cells 

(Fig. 1.8A). Thus, within a population of cells, it may be possible that some cells 

will contain promoters in the inactive state, and not express the gene, whilst 

others will be active, and exhibit a relatively consistent level of expression. In the 

case of a transcription factor, such as GR, by increasing the ligand , or inducer, 

concentration, for a GR-induced gene, we would expect that more cells would be 

“switched” from an inactive promoter to an active promoter. This would increase 

the proportion of cells exhibiting high expression of the gene, at the same 

maximal level of expression (Fig. 1.8A-B).  

 
Alternatively, graded responses theorise that there is a spectrum of activation for 

promoter regions, resulting in a broad spectrum of mRNA expression. With little 

to no activation, expression within a population of cells would be clustered around 

the low end of the expression spectrum. Upon ligand addition, however, TF 

binding would increase expression beyond the original maximum expression. 

Therefore, the entire population of cells would shift upwards in expression 

towards this new maximum (Fig. 1.8C-D).  
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Figure 1.8: Binary and graded models show different patterns of gene expression 
within a cell population. As the concentration of the inducer, such as a Gc, increases, 
the population level response has been modelled to increase in two distinct methods. A) 
In a binary response, as the concentration of the inducer increases, individual cells begin 
to respond through expression of the gene (strong gene expression indicated in red), 
within a population of cells. As the inducer concentration increases, more cells within 
that population respond to the same level. B) When expression for individual cells was 
shown in graph form, 2 distinct peaks form, corresponding to cells which either express 
or do not express the gene. C) In a graded response, expression between individual cells 
is more homogeneous. Instead, as the inducer concentration is increased, the 
expression within individual cells increased in a graded manner. D) When expression is 
quantified, this is seen as a single peak, which shifts as the inducer concentration 
increases. Figure includes components from Zhang et al (201).  
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Importantly, both models have been well modelled mathematically, and have 

been validated, as well as possible, within transfected model systems (188, 202). 

Several technical problems, however, have limited the usefulness of these 

results. Firstly, using transfected reporter systems relies on the activation of an 

artificially inserted promoter. These assays also rely on the induction of 

expression of a reporter protein, and results have been shown to vary according 

to the reporter gene chosen, such as luciferase and β-galactosidase (201). This 

is critical as it relies on the accumulation of a protein, which can be altered by 

factors such as protein half-life, or translational efficiency. This therefore confers 

very little information on the original transcription event. Further, by analysing 

accumulation of protein at a defined end point on a bulk level, this gives no 

information on single cell responses (203).  

 
Some research has hinted at the complexity of inflammatory signalling using 

population-level techniques. For instance, Reddy et al demonstrated using ChIP-

seq analysis that the sensitivity of GR binding at GR-responsive genes was highly 

variable (204). For instance, genes such as PER1 showed GR binding at Dex 

doses as low as 0.5nM, whilst the majority of GR-responsive genes (75.5%) were 

bound only at higher doses of 50nM. This work has suggested that multiple 

factors determine this variability in GR binding between genes, including 

chromatin state, and the presence of other binding factors. This suggests a 

further level of complexity in the GR response, at the point of GR control of a 

single gene.  
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Through the use of single cell RNA-seq, it is now possible to investigate both 

binary and rheostat models in single cells at the mRNA level, without the 

confounding factors related to translation and protein half-life. It is also possible 

to investigate gene expression at a single cell resolution, across thousands of 

genes. One of the aims of this research project is therefore to investigate which 

model, if either, can be used to predict the response to Gc addition within GR 

target genes. This will be the first time single cell RNA-seq technologies have 

been used to investigate the mechanics of the nuclear receptor response. 
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Chapter 2 Aims and Objectives 

 

2.1 Summary 

The role of Gc in the treatment of GBM is without question essential, but remains 

controversial. Studies that have investigated Gc responses at the transcriptional 

level in GBM to date have been over long time courses, and so the primary 

underlying mechanism explaining adverse effects of Gc are still unclear. Defining 

these, and screening for better alternatives provides an essential route to improve 

patient outcome in GBM. 

 

2.2 Hypothesis 

Defining acute effects of Gc on gene transcription will identify primary GR targets 

that influence the efficacy of chemotherapy and radiotherapy which can be used 

as screening tool for alternative drugs. Exploring transcriptional effects, and the 

influence of inflammatory cues present in the inflammatory tumour environment 

at the single cell level will be important in defining how the efficient use of Gc can 

be maximised in vivo.  

 

2.3 Aims and Objectives 

1. To characterise a GBM cell line to explore GR function: 

a. Quantify GR expression and posttranslational activation in response to 

ligand in a panel of GBM cell lines 

b. Confirm nuclear GR translocation upon ligand binding, as a marker of 

activation  
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c. Determine whether there is a GR-dependent transcriptional effect in 

response to ligand binding  

d. Complete endpoint assays to compare Gc effects in different cell lines 

and select a single cell line to take forward 

  
2. To determine the effects of Gc on GBM cell function: 

a. Complete bulk RNA-seq using different doses and affinities of GR 

ligands in the selected GBM cell line 

b. Analyse differentially expressed genes, to identify pathways regulated 

by steroids in GBM cells relevant to cancer progression and treatment 

c. Determine how Gc can affect GBM cell function, and possible effects 

on the response to chemotherapy and radiotherapy 

d. Test whether selective steroids mediate the same effects as 

conventional steroids to identify safer alternatives 

 
3. To identify the heterogeneity of the steroid response in GBM cells  

a. Complete single cell RNA-seq using different doses and affinities of GR 

ligands in the selected GBM cell line 

b. Analyse differentially expressed genes, to identify pathways regulated 

by steroids in GBM cells relevant to cancer progression and treatment 

c. Define the type of transcriptional response for individual genes, and 

define heterogeneity in the transcriptional response 

d. Develop an optimal assay to validate findings from the scRNA-seq, and 

explore the effects of inflammatory cues at single cell level 

 

  



Chapter 3 Materials and Methods 

 

3.1 Preparation of stock solutions 

Dexamethasone, progesterone and RU486 were stored as a 20mM stock 

solution using dimethyl sulfoxide (DMSO). Hydrocortisone (HC) was stored as a 

100mM stock solution, also solubilised in DMSO. Compound A (CpA), 

Deflazacort and Loteprednol etabonate (LE) were made up to a 10mM stock in 

DMSO, and all were stored at -20°C until required. Temozolomide (TMZ) was 

resuspended in DMSO to prepare a 50mM stock solution. Stocks were stored at 

-20ºC. TNFα was resuspended in high purity water to a final concentration of 

10ng/ml. Stocks were stored at -80ºC. Catalogue numbers for each reagent are 

listed in Table 3.1. 

Table 3.1: Reagents prepared for stock solutions. Compounds are listed below, 
alongside catalogue numbers and preferred suppliers. Solutions were prepared 
according to manufacturer’s recommendations. 

Reagent Supplier Catalogue No. 

Compound A Abcam ab144525 

Deflazacort Selleck S1888-SEL 

Dexamethasone Sigma-Aldrich D4902 

Human TNFα Peprotech 300-01A 

Hydrocortisone Sigma-Aldrich H0888 

Loteprednol etabonate Sigma-Aldrich SML0547 

Progesterone Sigma-Aldrich P8783 

RU486 Sigma-Aldrich M8046 

Temozolomide (TMZ) Selleck chemicals S1237-SEL 
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3.2 Cell Culture 

3.2.1 Cell passage 

Cells were routinely passaged before reaching 80% confluency. Cells were 

washed using 3ml sterile Dulbecco’s phosphate buffered saline (DPBS), then 

Trypsin-EDTA solution was added (1ml/75cm2 flask). Cell culture reagents are 

shown in Table 3.2. Cells were incubated until detached, then trypsin neutralised 

with appropriate media and centrifuged at 300g x 5mins. Cells were split as 

appropriate and reseeded in 75cm2 or 150cm2 flasks, or into dishes or plates for 

experiments. Cell lines and their culture requirements are summarised (Table 

3.3). Representative images of each cell line are shown (Fig. 3.1). 

 

Table 3.2: List of reagents used within cell culture procedures. Reagents used 
during cell culture procedures, and their catalogue numbers are provided.  

Reagent Supplier Catalogue No. 

Charcoal stripped serum (CSS) Gibco 12676029 

DMSO Honeywell D5879 

DPBS Sigma-Aldrich D8662 

Dulbecco’s modified eagle medium 
(DMEM) 

Sigma-Aldrich D6429 

DMEM/Nutrient Mixture F12 Ham 
(DMEM/F12)  

Sigma-Aldrich D8437 

Foetal calf serum (FCS) Gibco 10500064 

Non-essential amino acids  Thermo Fisher 11140035 

Sodium pyruvate Thermo Fisher 11360039 

Trypan blue Sigma-Aldrich T8154 

10x Trypsin-EDTA solution Sigma-Aldrich T4174 
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Table 3.3: Cell lines used within this work, and their required growth conditions. 
Suppliers for cell lines are shown, and the basal media used for cell culture conditions 
was used, according to supplier recommendations. For experimental conditions, FCS 
was replaced with charcoal stripped serum. All other supplements were unchanged. 

Cell 
Line 

Catalogue 
No. 

Supplier Basal Media Supplier Supplements 

A172 CRL-1620 ATCC DMEM, high 
glucose 

Sigma 10% FCS 

M059J CRL-2366 ATCC DMEM/F12 (1:1) Gibco 10% FCS 
Sodium pyruvate 
(1mM) 
Non-essential 
amino acids 
(1mM) 

M059K CRL-2365 ATCC DMEM/F12 (1:1) Gibco 10% FCS 
Sodium pyruvate 
(1mM) 
Non-essential 
amino acids 
(1mM) 

U87 HTB-14 ATCC DMEM, high 
glucose 

Sigma 10% FCS 

U251 09063001 Merck DMEM, high 
glucose 

Sigma 10% FCS 

 
 

 

Figure 3.1: Morphology of GBM cell lines used within this thesis. Cells were 
untreated, cultured in a 6 well plate and imaged at a 10x objective on an Evos 
microscope. Scale bar denotes 200μm.  
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3.2.2 Cell freezing and thawing 

Cells were frozen in media containing 10% DMSO. Cells were frozen at a density 

of 1 x 106 cells/ml, and 1 ml was added to each cryovial. Vials were frozen in a 

Mr Frosty freezing container in a -80ºC freezer, then transferred to liquid nitrogen 

for long term storage. 

 
To thaw cells, vials were warmed slightly in a 37ºC water bath, then contents 

were added to 12ml prewarmed media. Cells were then centrifuged at 300g for 5 

minutes, media aspirated and replaced with 10ml fresh media. This cell 

suspension was then added to a T75. Media was replaced after 24 hours, then 

cultured as described above.  

 

3.2.3 Cell counting 

In order to determine cell number, 20μl of cell suspension was mixed with 20μl 

Trypan Blue solution. 10μl of this mixture was added to a haemocytometer and 

counted. The number of cells in the 4 outer corners of the haemocytometer were 

counted and concentration was calculated as follows: 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =
𝐶𝑒𝑙𝑙	𝑐𝑜𝑢𝑛𝑡

4 	𝑥	2	𝑥	103	𝑐𝑒𝑙𝑙𝑠/𝑚𝑙 

In order to determine the dilution required for experiments, the dilution factor was 

calculated: 

𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛	𝑓𝑎𝑐𝑡𝑜𝑟 = 	
𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑	𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 

Finally, the dilution factor was used to calculate the volume of cell suspension 

required: 
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𝑉𝑜𝑙𝑢𝑚𝑒	𝑜𝑓	𝑐𝑒𝑙𝑙	𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 = 	
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑	𝑣𝑜𝑙𝑢𝑚𝑒
𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛	𝑓𝑎𝑐𝑡𝑜𝑟  

Fresh media was then added to make up the required volume.  

 

3.3 Cell treatment  

For all experiments, cells were cultured overnight in steroid depleted media prior 

to experiments (growth media supplemented with 10% CSS). Dex, progesterone, 

and RU486 were diluted to 1mM in DMSO, and HC was diluted to 5mM. CpA, 

Deflazacort and LE were diluted to 100μM in DMSO. All of these solutions were 

then diluted as required in steroid depleted media. TMZ was diluted from the 

50mM stock in steroid depleted media as required before addition. TNF-α was 

diluted to a concentration of 1μg/ml in steroid depleted media and added to cells 

as required. All solutions were prepared immediately before addition. For IR 

treatments, cells were irradiated using a RADSOURCE RS-2000 X-ray irradiator, 

and irradiation was delivered at a dose of 0.11Gy/minute. 

 

3.4 Cell growth assay 

Cells were plated in 6 well plates at a density of 1 x 105 cells/well and treated as 

described in the results. Media and treatments were replaced every 24 hours, 

and cell counts were carried out at 24 hour intervals. Cell number was calculated 

as follows: 

𝑇𝑜𝑡𝑎𝑙	𝑐𝑒𝑙𝑙	𝑛𝑢𝑚𝑏𝑒𝑟 = 𝐶𝑒𝑙𝑙	𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛	𝑣𝑜𝑙𝑢𝑚𝑒	(𝑚𝑙) 	× 	𝐿𝑖𝑣𝑒	𝑐𝑒𝑙𝑙	𝑐𝑜𝑢𝑛𝑡	(
𝑐𝑒𝑙𝑙𝑠
𝑚𝑙 ) 

 

 



 

 

50 

3.5 MTT assays 

Cells were plated at a density of 1 x 103 cells/well in a 96 well plate. Cells were 

incubated overnight, then treated with Gc and incubated overnight once again. 

Cells were then subjected to irradiation or Temozolomide as described. Cells 

were incubated for a further 5 days, then incubated with 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) (cat. no. 6494, Thermo Fisher) at a 

final concentration of 0.5mg/ml for 4 hours. Media was removed and replaced 

with 100μl DMSO. Colour change was measured using a plate reader at 540nm 

and the average blank value was subtracted from each well. For Gc treatments, 

survival was calculated relative to each Gc treatment at 0Gy/0μM TMZ.  

 

3.6 qPCR 

3.6.1 RNA extraction 

Cells were cultured in 10cm dishes until confluent, and treated as indicated. 

RNeasy kits were used to extract RNA, according to manufacturer’s instructions 

(cat. no. 74104, Qiagen). Briefly, media was removed, and dishes were washed 

twice using 5ml PBS. PBS was removed, then 600μl of Buffer RLT containing 1% 

β-mercaptoethanol was added to each dish. Cell scrapers were used to remove 

lysate, and lysates were transferred to Qiashredders, then centrifuged at 12000g 

for 15 seconds (cat no. 79654, Qiagen). 600μl 70% ethanol was added to each 

sample, mixed thoroughly, and mixture was added to RNeasy spin columns. 

Columns were centrifuged at 12000g for 15 seconds. Supernatant was 

discarded, 350μl Buffer RW1 was added to each column, and centrifuged as 

described. On column DNase digestion was carried out, and 10μl DNase was 

added to each column, diluted in 70μl Buffer RDD (cat. no. 79254, Qiagen). 
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Columns were incubated at room temperature for 15 minutes, then 350μl Buffer 

RW1 was added, and centrifuged. 700μl Buffer RPE added to each sample, 

centrifuged at 12000g for 15 seconds, then 500μl Buffer RPE was added and 

centrifuged. 500μl Buffer RPE was again added, and centrifuged at 12000g for 2 

minutes. Columns were transferred to fresh collection tubes, then centrifuged at 

12000g for 1 minute. Columns were finally transferred to 1.5ml Eppendorf tubes, 

30μl RNase free water was added, and centrifuged at 12000g for 1 minute. The 

elute was then transferred to the column and centrifuged again. Samples were 

then stored at -80ºC until required. 

 

3.6.2 cDNA synthesis 

1μl of each sample was used to estimate RNA concentration using a Nanodrop 

spectrophotometer (Thermo Fisher). 2μg of each sample was diluted to a final 

volume of 9μl in RNase free water. 10μl of reverse transcriptase (RT) buffer mix, 

and 1μl of RT Enzyme mix were added to each sample (both high capacity RNA 

to cDNA kit, cat no. 4387406, Applied Biosystems). Samples were added to a 

thermal cycler, and incubated at 37ºC for 1 hour, then heated to 95ºC for 5 

minutes, before being held at 4 ºC until required. 180μl of RNase free water was 

added to each sample, then transferred to storage at -20 ºC. 

 

3.6.3 qPCR 

qPCR was carried out using Taqman Advanced Master Mix (Thermo Fisher) and 

Taqman assay probes, according to manufacturer’s instructions. 10μl Taqman 

Advanced Master Mix, 7μl of RNase free water, and 1μl of the appropriate 

Taqman probe was added to each well of a 96 well plate (Table 3.4). 2μl of cDNA 
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was then added, to give a final cDNA concentration of 1μg/μl. Plates were run on 

a QS5 machine (Applied Biosystems) with an initial 2 minute incubation at 50ºC, 

then 95ºC for 20 seconds. 40 cycles of 1 second at 95ºC, followed by 20 seconds 

at 60ºC, were used to detect gene expression. Relative gene expression was 

quantified using the 2-∆∆CT method, and target gene expression was calculated 

relative to GAPDH. Samples were then normalised to the vehicle control. 

Table 3.4 qPCR probes used for RNA-seq validation. qPCR probes were purchased 
from Thermo Fisher. All probes were specific to the human gene of interest.  

Gene target Catalogue number Supplier 

CDKN1A Hs00355782_m1 Thermo Fisher 

DDIT4 Hs01111686_g1 Thermo Fisher 

DUSP1 Hs00610256_g1 Thermo Fisher 

FKBP5 Hs01561006_m1 Thermo Fisher 

GAPDH Hs02786624_g1 Thermo Fisher 

GILZ Hs00608272_m1 Thermo Fisher 

IL6 Hs00174131_m1 Thermo Fisher 

IL8 Hs00174103_m1  Thermo Fisher 

PER1 Hs00242988_m1 Thermo Fisher 

 

3.7 Western blotting 

3.7.1 Protein extraction 

 Cells were cultured in 10cm dishes until confluent, and treated as indicated. Cells 

were lysed in Radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris-HCl pH 

7.4, 1% NP40 (Igepal), 0.25% Na-deoxycholate 150 mM NaCl, 1 mM EDTA), 

supplemented with protease (cat. no. 539134, Merck) and phosphatase inhibitors 

(cat. no. P5726 and P0044, both Sigma). Insoluble cellular debris was pelleted 
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by centrifugation at 12,000g at 4°C for 20 minutes and the cleared supernatant 

retained for protein quantification. 10μl of each sample was added, in triplicate, 

to a 96 well plate, alongside known bovine serum albumin (BSA) protein 

standards. 190μl of bicinchonic acid (BCA) reagent was added to each well, and 

incubated at 37 ºC for 30 minutes (cat. no. 23227, Thermo Fisher). The 

colorimetric change was measured using a plate reader at a wavelength of 

540nm. BSA standards were used to produce a line of best fit, and the equation 

for this line was used to estimate the protein concentration of the samples. All 

lysates were diluted using PBS and sodium dodecyl sulfate (SDS) loading dye 

(250mM TrisHCl, 10% SDS, 30% glycerol, 5% b-mercaptoethanol, 0.02% 

bromophenol blue) to give a final concentration of 0.5μg/μl. Samples were boiled 

at 95°C for 5 mins, and then stored at -20°C until required.  

 

3.7.2 Western blotting  

A minimum of 5μg protein were electrophoresed on 4–15% polyacrylamide gels 

(cat. no. 4561086, Bio-Rad Laboratories) and transferred to 0.45µm 

nitrocellulose membranes (cat. no. 10600002, GE Healthcare) overnight at 4°C. 

Membranes were blocked for 6 hours (0.15 M NaCl, 1% skimmed milk powder, 

0.1% Tween 20) and incubated with primary antibodies (1:1000, diluted in TBST 

containing 5% BSA) overnight at 4°C with agitation (primary antibodies listed in 

Table 3.5). After three 10 minute washes (88 mM Tris pH 7.8, 0.1% Tween 20), 

membranes were incubated with a species-specific horseradish peroxidase 

(HRP)-conjugated secondary antibody (1:5,000, diluted in wash buffer) for 1 hour 

at RT, and washed a further three times, each for 10 minutes. Immunoreactive 

proteins were visualised using enhanced chemiluminescence Super Signal Kit 
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(cat. no. 34087, Thermo Fisher). ImageJ was used to quantify densitometry 

compared to loading control. 

Table 3.5: Antibodies used for western blotting. Primary and secondary antibodies 
used for western blotting, and their supplier. Dilutions used are listed, and the species 
each antibody was produced within. Secondary antibodies for both rabbit and mouse 
were used depending on the species of the primary antibody. CST – Cell Signalling 
Technology. 

Target Species Specificity Dilution Supplier Catalogue 
No. 

Β-actin Mouse Monoclonal 1:10,000 Sigma-Aldrich A5441 

DNA-PKcs (3H6) Mouse Monoclonal 1:1,000 CST 12311 

Mineralocorticoid 
receptor (MR) Mouse Monoclonal 1:1,000 Santa Cruz 

Biotechnology sc-53000 

Glucocorticoid 
receptor (GR) Rabbit Monoclonal 1:1,000 Sigma-Aldrich 3660 

p53 Rabbit Polyclonal 1:1,000 Santa Cruz 
Biotechnology sc6243 

Phospho-ATM 
(Ser1981) Rabbit Monoclonal 1:1,000 CST 5883 

Phospho-ATR 
(Ser428) Rabbit Polyclonal 1:1,000 CST 2853 

Phospho-BRCA1 
(Ser1524) Rabbit Polyclonal 1:1,000 CST 9009 

Phospho-Chk1 
(Ser345) Rabbit Monoclonal 1:1,000 CST 2348 

Phospho-Chk2 
(Thr68) Rabbit Monoclonal 1:1,000 CST 2197 

Phospho-p53 Mouse Monoclonal 1:1,000 CST 9286 

Progesterone 
receptor (PR) Rabbit Monoclonal 1:1,000 CST 8757 

Rad51 Mouse Monoclonal 1:1,000 Invitrogen MA123271 

Rad51 Rabbit Monoclonal 1:1,000 CST 8875 

Rad51 Rabbit Polyclonal 1:1,000 Abcam ab63801 

Anti-rabbit HRP-
linked  Donkey Monoclonal 1:5,000 GE Healthcare NA934 

Anti-mouse HRP-
linked Sheep Monoclonal 1:5,000 GE Healthcare NA931 
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3.7.3 Densitometry analysis 

Scanned images of western blots were opened in ImageJ. For each antibody, a 

box was drawn around the first lane of the blot (Fig. 3.2A). The gel tool was used 

to mark the first lane of the blot, then the box was copied to the second lane, and 

so on. The final lane was marked using the tool, allowing the histograms of each 

lane to be visualised. The “draw line” tool was used to mark off each side of the 

histogram (Fig. 3.2B). The “wand” tool was then used to measure the size of the 

area under the histogram. This enables the quantification of the intensity of the 

band as a numerical value (Fig. 3.2C). This process was repeated for each band, 

for each antibody. The value for each target antibody was then divided by the β-

actin value for each lane, to normalise for variations in gel loading. Values were 

then normalised to the vehicle control for each experiment.  

 

3.8 Immunofluorescence 

3.8.1 Slide preparation 

Cells were plated into 12 well plates containing 13mm coverslips overnight, and 

treated as indicated in the results section. Cells were washed twice with 1ml PBS, 

and fixed in 1ml 4% paraformaldehyde for 1 hour at room temperature. Cells were 

washed twice with PBS, then blocked for 4 hours in 1ml blocking buffer (1% FCS 

and 0.1% Triton-X in DPBS). 220μl primary antibody (diluted 1:200 in blocking 

buffer) was added to each well, and incubated overnight at room temperature 

with agitation. Coverslips were washed three times with 1ml DPBS. Wells were 

treated with 220μl secondary antibody (diluted 1:500) and Alexa647-phalloidin 

(diluted 1:1000, both in blocking buffer) for a further 2 hours in the dark with 

agitation. 
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Figure 3.2: Densitometry analysis of western blot images. A) Images of western blot 
bands were opened in ImageJ. B) The gel tool was used to add a rectangle around the 
first band. This rectangle was copied to each band, and final band marked. C – D) After 
marking the final band, the histograms for each band were opened, and the line tool was 
used to fill in the bottom of the peak. E) The wand tool was used to measure the area of 
the histogram. F) This result can then be copied to Excel. The value for each target of 
interest can then be divided by the housekeeping control for the same sample.  
 

 

 

 

 

 



 

 

57 

Solution was removed and coverslips were washed with 1ml PBS, then incubated 

with 1ml Hoescht (diluted 1:10,000 in PBS) for 10 mins. Hoescht was then 

removed, and coverslips were washed three times in 1ml PBS, then mounted 

onto slides using hard set aqueous mountant (Vectamount, Vectashield).  

 

3.8.2 Imaging  

For GR translocation, and Rad51, 53BP1 and γH2AX staining, slides were 

imaged using Nikon Widefield at 40x objective. Z-stacks were taken, with a 

minimum of 4 slices, and 10 fields of view were captured for each condition. 

Imaging conditions were kept consistent between experiments. 

 

3.8.3 Quantification of γH2AX, Rad51 and 53BP1 staining 

Z-stacks of images were opened in ImageJ, and the most in-focus slice was 

chosen for analysis. Images were converted to greyscale, and the Hoescht 

channel was used to apply a threshold around nuclei, and the Analyse Particle 

tool was used to create nuclear masks (Fig. 3.3A). This mask was applied to the 

channels of γH2AX, Rad51 and 53BP1 staining. The mean grey value of each 

mask was measured using the Region of Interest (ROI) Manager to indicate the 

mean staining across the nucleus of each cell (Fig. 3.3B). The Find Maxima tool 

was then used to determine points within the nucleus which reached saturation, 

seen as foci (Fig. 3.3C). The mask was then applied to this maxima map, to count 

the number of foci within each nucleus. A minimum of 50 cells were analysed for 

each condition. 
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Figure 3.3: Quantification of nuclear staining using ImageJ. A) The Hoescht channel 
was opened, and the thresholding tool used to create a mask over each nucleus. The 
analyse particle tool was then used to create a mask to add ROI manager for each 
nucleus. B) The measure function of the ROI manager was used to measure the mean 
grey value (staining intensity) within each nucleus. C) The find maxima tool was used to 
identify foci of staining within each nucleus. The raw integrated density value can be 
divided by 255 to determine the number of foci. 
 

 

3.8.4 GR translocation quantification 

To determine GR translocation to the nucleus from the cytoplasm, images were 

converted to greyscale, then thresholded using the nuclear (Hoechst) and 

cytoplasmic (phalloidin) channels to create nuclear and cytoplasmic masks (Fig. 

3.4A). 3 random points were selected within the nucleus or the cytoplasm on the 

GR (FITC) channel, and added to the ROI manager (Fig. 3.4B). The mean grey 
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value of the 3 nuclear and cytoplasmic regions was calculated, and the 

nuclear/cytoplasmic staining ratio was calculated, then expressed as a 

percentage (Fig. 3.4C). 5 cells were selected at random for each field of view, 

and 6 fields of view were analysed for each condition. The results of 3 

independent experiments were pooled. 

 

 

Figure 3.4: Measurement of GR translocation using ImageJ. A) Images were opened 
in ImageJ, and nuclear masks created using the thresholding tool in the Hoescht 
channel. B) Within the GR channel, 3 circles were created in a random pattern within the 
nucleus, following the demarcation of the nuclear masks. Three random points were also 
selected within the cytoplasm, following the demarcation of the cytoplasmic mask. C) 
The mean grey value of each three points is calculated, and the translocation to the 
nucleus is calculated using the equation above.  
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3.9 Flow Cytometry 

3.9.1 Cell viability 

Samples were treated as required, then trypsinised and centrifuged at 300g for 5 

mins. Cell pellets were resuspended in media and cell counts carried out to 

ensure equal cell numbers within each cell number. Samples were then 

transferred to fluorescence activated cell sorting (FACS) tubes, and centrifuged 

at 300g for 5 mins. Supernatant was removed, and cells were resuspended in 

1ml DPBS. Cells were washed once, resuspended in 100μl Zombie NIR viability 

dye (1:500, cat. no 423105, Biolegend) and incubated for 15 mins, before 

neutralisation in 2ml FACS buffer (0.5% bovine serum albumin). Cells were 

washed, resuspended in 100μl FACS buffer, then processed on a Cytoflex 

(Beckman Coulter), and analysed using CytExpert software (Beckman Coulter). 

Cells were not gated for single/doublets/viability to test the conditions of single 

cell RNA-seq (scRNA-seq). 

 

3.9.2 Cell cycle 

Samples were cultured in 6 well plates in media supplemented with CSS. Cells 

were treated for 24 or 48 hours, as required, using Dex and HC. Cells were then 

trypsinised, resuspended in PBS and counted. 1 x 105 cells were transferred to a 

FACS tube and analysed for each condition. Samples were washed twice using 

PBS, then resuspended in 1ml 70% ethanol overnight at 4°C. Cells were then 

washed twice using PBS, then stained with 5μg RNase A (cat. no. EN0531, 

Thermo Fisher) and 50μg propidium iodide (PI) (cat. no. P4864, Sigma). Samples 

were incubated for 1 hour, then analysed by flow cytometry. Signal was 
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thresholded using an unstained control. Results were analysed using Modfit 

Software v3.2 (Verity Software House).  

 

3.10  Cell straining and cell counting 

Cells were plated into 10cm dishes overnight. Cells were trypsinised and 

resuspended in 5ml media. Cells were passed through a 70μm cell strainer, and 

cell counts were carried out before and after straining. Cell counts were carried 

out using Trypan Blue, as described above. Cell counts were normalised relative 

to unstrained cell number for each sample. Samples were processed for flow 

cytometry as described above, and gated for doublet discrimination using side 

scatter height and area. Gating strategies were kept consistent throughout 

samples. 

 

3.11  Metaphase Spread Assay 

3.11.1 Cell preparation  

Cells were plated in 10cm dishes overnight to reach 70 – 80% confluency. Fresh 

media was added, containing colcemid (cat. no. 234109, Merck) at a final 

concentration of 100ng/ml. Cells were incubated for 90 minutes at 37°C, then 

harvested by typsinisation and centrifuged at 250g for 5 minutes. Cells were 

resuspended in 100μl media, then 4ml pre-warmed 75mM potassium chloride 

was added in a dropwise manner. Following incubation for 20 minutes at 37°C, 

cells were centrifuged at 250g for 5 minutes and resuspended in a dropwise 

manner in 4ml pre-chilled fixative (3:1 methanol:acetic acid). Cells were then 

centrifuged again at 300 g for 5 minutes and resuspended again in 4ml fixative. 
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Cells were centrifuged, then supernatant was aspirated until approximately 200μl 

remained. Samples were then stored at -20ºC.  

 

3.11.2 Metaphase drop  

Samples were thawed on ice and tapped to resuspend. Slides were breathed on 

to create moisture, and 7.5μl cell suspension was immediately pipetted from a 

30cm height onto slide. 2 drops were added to each per slide, then dried at room 

temperature for 1 hour. Hoescht was diluted in mounting solution 1:1000, and 

add 100μl of this solution was added to each spread before adding coverslip. 

 

3.11.3 Imaging and quantification  

Slides were imaged using Nikon Widefield at a 60x objective and processed using 

ImageJ. The counting tool was used to manually count the chromosome number 

within each metaphase spread. 20 spreads were quantified for each cell line per 

replicate.  

 

3.12  Comet assays 

3.12.1 Sample preparation 

M059K cells were plated in 10cm dishes and treated overnight using Gc as 

described. Cells were irradiated or treated with TMZ, then incubated for 24 hours. 

Trevigen Comet Assay Kit (cat. no. 4250-050-K, Trevigen) was used, with a 

modified alkaline electrophoresis protocol as described below.  
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3.12.2 Comet assay 

Slides were prepared by adding 50μl molten agarose to each well, then stored at 

4ºC while samples were prepared. 10cm dishes were scraped using a cell 

scraper, then contents transferred to centrifuge tubes and centrifuged at 700g for 

5 minutes. Cell pellets were resuspended in 5ml chilled DPBS, then centrifuged 

again. Samples were resuspended in 100μl DPBS, then passed through 70μm 

cell strainers to limit doublets. Cell counts were performed and cells were 

resuspended at 2.25 x 105 cells/ml. 10μl of each sample was mixed with 90μl 

agarose, and 75μl added to each well of the slides. Care was taken not to disturb 

the base layer of agarose. Slides were incubated at 4ºC to set the agarose. Slides 

were then immersed in chilled lysis solution at 4ºC for 3 hours, then transferred 

to chilled alkaline electrophoresis solution (300mM NaOH, 1mM EDTA) for 30 

minutes in the dark at room temperature. Slides were transferred to the comet 

tank in the cold room and alkaline electrophoresis solution was added to cover 

the slides. Voltage was set to 25V and buffer volume adjusted to reach a current 

of 300mA. Slides were run for 1 hour, submerged twice within chilled distilled 

water, then immersed in chilled 70% ethanol for 5 minutes. Ethanol was removed 

and slides left to dry. 100μl of SYBR green DNA dye solution was added to each 

well for 15 minutes in the dark at room temperature. Slides were then stored 

overnight at 4°C prior to imaging. 

 

3.12.3 Imaging 

Slides were imaged using a Nikon Widefield. Slides were imaged at a 10x 

objective, and Z-stack images were acquired for each field of view. Z-stacks 

contained a minimum of 30 slices, at a slice size of 1μm. A minimum of 10 fields 

of view were captured for each condition. Exposure time was kept consistent 
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between repeats of the same experiments. Images were all acquired within 48 

hours of staining. 

 

3.12.4 Quantification 

OpenComet (v 1.3.1), an ImageJ plugin, was used to quantify comets (205). 

Maximum intensity projections were created from each z-stack image (Fig. 3.5A). 

These projections were added to OpenComet, and analysed using background 

correction and auto head finding (Fig. 3.5B). Output images were analysed 

manually for outliers, such as doublets, and outliers removed from analysis (Fig. 

3.5C). A minimum of 50 cells were analysed for each condition per replicate. Tail 

moment and olive moment were automatically calculated by the software.  

 

Figure 3.5: Comet assay analysis using OpenComet software. A) Maximum 
projections of each image were created in ImageJ. B) These projections were uploaded 
to the OpenComet plugin within ImageJ, and auto head finding option selected. C - D) 
An output file of detected comets, and a spreadsheet of quantification of individual 
comets were created. Outliers identified within the images were removed from further 
analysis.  
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3.13  siRNA knockdown 

3.13.1 Western blotting to assess siRNA knockdown efficiency 

M059K cells were plated at a density of 1.15 x 105 cells/well of a 6 well plate. 1 

well was plated for each small interfering RNA (siRNA). Plates were incubated 

for 4 hours to allow cells to attach, then transfected using RNAiMAX (cat. no. 

13778075, Thermo Fisher). For each well, 150μl serum-free RPMI was mixed 

with 9μl RNAiMAX. Each siRNA was also added to another 150μl serum-free 

media to a final concentration of 200nM (Table 3.6). The RNAiMAX and siRNA 

mixtures were combined, and incubated for 5 minutes. 250μl of this mixture was 

added to each well. Cells were incubated for 48 hours, then lysed in 100μl RIPA 

buffer. Western blotting was carried out as described above. 

 

3.13.2 siRNA knockdown for MTT assay 

Cells were plated at a concentration of 1 x 103 cells/well of 5 96 well plates, then 

incubated for 4 hours to allow cells to attach. 12 wells were transfected with each 

siRNA in each plate. For each siRNA, 120μl RNAiMAX was added to 400μl 

serum-free RPMI. Each siRNA was diluted in 400μl serum-free RPMI to a final 

concentration of 200nM (Table 3.6). The RNAiMAX and siRNA mixtures were 

combined, then incubated for 5 minutes. 10μl of this mixture was added to each 

well. Plates were incubated for 24 hours, then treated with Gc. 6 wells of each 

knockdown were treated with a vehicle control, and 6 were treated with 100nM 

Dex. Cells were incubated overnight, then treated with 0, 0.25, 1, 5, or 10Gy 

irradiation. Cells were incubated for 5 days, then MTT assay carried out as 

described above. Relative survival was analysed relative to the 0Gy value for 

each siRNA.  
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Table 3.6: siRNA used within the scope of this thesis. siRNA probes are listed, 
alongside catalogue numbers. For DNA-PKcs, Rad51 and p53, Flexitube products were 
purchased, containing each of the listed probes. Within the results section, probes are 
referred to by the clone numbers listed.  

Target Clone No. Manufacturer Catalogue No. 
DNA-PKcs 5 Qiagen SI0222423  
DNA-PKcs 6 Qiagen SI02224229 
DNA-PKcs 8 Qiagen SI02663633 
DNA-PKcs 14 Qiagen SI04436705 
GR 3 Qiagen SI00003759 
GR 4 Qiagen SI02654757 
Non-targeting control N/A Qiagen SI03650318 
Rad51 6 Qiagen SI02629837 
Rad51 7 Qiagen SI02663682 
Rad51 8 Qiagen SI03061338 
Rad51 9 Qiagen SI03072272 
TP53  7 Qiagen SI02623747 
TP53  8 Qiagen SI02623754 
TP53  9 Qiagen SI02655170 
TP53  13 Qiagen SI04384079 

 

3.14  Luciferase assays 

3.14.1 Plasmid transfection 

M059K cells were plated in 10cm dishes in media supplemented with 10% FCS 

and incubated overnight. For each 10cm dish, 3.75μl of Fugene transfection 

reagent was added to 100μl of serum-free RPMI media and incubated for 2 

minutes (Cat no. E2691, Promega). All plasmids had previously been prepared 

within the Matthews group (85, 206). 1μg of either the TAT3-luc or NFκB-luc 

plasmid, and 0.25μg Renilla plasmid were combined in a separate tube, then 

added to the Fugene mix. This mixture was incubated at room temperature for 
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15 minutes, then 100μl was added in a dropwise fashion to the 10cm dish. Cell 

were incubated overnight to enable efficient transfection. 

 

3.14.2 Cell treatment 

10cm dishes were trypsinised and centrifuged at 300g for 5 minutes. If multiple 

dishes were transfected with the sample plasmid, dishes were pooled. Each dish 

was resuspended in 25ml of CSS media, and 500μl of cell suspension was added 

to each well of 2 24-well plates. These plates were incubated for 1 hour, then 

treated with GR ligands, or a vehicle control for 4 hours. Cells were then treated 

with TNF, if required, and incubated overnight. Conditions were carried out in 

triplicate.  

 

3.14.3 Luciferase assay 

Wells were washed twice using DPBS, then 100μl passive lysis buffer (included 

with dual luciferase kit, cat. no. E1910, Promega) was added to each well. Plates 

were incubated at room temperature on a rocker for 30 minutes. 95μl of lysate 

from each well was transferred to a white bottomed 96-well plate (cat. 

no. 655074, Grenier). A dual injector luminometer (Berthold) was used. The 

luminometer was programmed to dispense 25μl of LARII into each well, followed 

by a 2 second shake, then 2 second wait time, followed by a 10 second read time. 

25μl of Stop & Glo reagent was then dispensed, with a 2 second shake, a 2 

second wait time, and a 5 second read time. The LARII (NRE-luc, or TAT3-luc) 

value for each well was divided by the Stop & Glo (Renilla value) to create a ratio. 

A mean for the triplicate of each condition was then calculated. This ratio was 

then normalised to the vehicle control, with no TNF.  
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3.15 Bulk RNA-seq preparation and analysis 

3.15.1 Preparation of samples for bulk RNA-seq 

Samples were treated in parallel with single cell RNA-seq samples. RNA was 

extracted as previously described for qPCR preparation, and an ethanol clean-

up kit was used to maximise RNA quality. Samples were prepared in triplicate for 

each treatment and transferred to sequencing staff at the University of 

Manchester. Samples were run on a single lane, and a read depth of 300 million 

reads was used for the 12 samples processed. 

 

3.15.2 Analysis of bulk RNA-seq 

Analysis was carried out by Syed Murtaza Baker at the University of Manchester. 

Trimmomatic 0.36 was used to carry out quality and adapter trimming to fastq 

files (207). Star 2.5.1a was then used to map the reads to the GRCh38 human 

genome (208). Following this, HTSeq was used to quantify read counts for each 

gene (209). Differential expression was determined using DEseq2 (210). During 

this analysis, sample LM18_S44, one of the high HC replicates, was analysed as 

an outlier using principal component analysis. Due to this, this sample was 

removed from downstream analysis. Using DEseq2, differentially expressed (DE) 

gene lists were created for each Gc treatment relative to the vehicle control. 

Genes were selected with a log2fold change of 1.5, and a False Discovery Rate 

(FDR) of <0.05 was used to signify significantly differentially expressed genes. 

Variation was tested between vehicle and Dex treated samples. BCV analysis 

was used within EdgeR (211).  
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3.16  Single cell RNA-seq preparation and analysis 

3.16.1 Preparation of samples for single cell RNA-seq 

Cells were plated into 10cm dishes and left to adhere overnight. The media was 

changed to steroid depleted media and cells left overnight. Cells were treated for 

4 hours, then trypsinised using TrypLE Express (Gibco), and centrifuged at 95g 

for 5 minutes. Cell counts were completed using a BioRad TC20 automated cell 

counter and the cell concentration was adjusted to 1.0 x 106 cells/ml in culture 

media. 1ml cell suspension for each sample was stained using 160µl Hoescht 

and PI solution, mixed 1:1 (Wafergen) and cells incubated for 20mins at 37°C. 

Solution was neutralised using 1ml warmed PBS. Cells were centrifuged at 95g 

for 5 minutes and resuspended in 1ml warmed PBS. Cell counts were repeated 

and adjusted to 5 x 105 cells/ml and 1ml was given to the Genomic Technologies 

Core Facility at the University of Manchester. Staff transferred equal volumes of 

samples into each well of the 5,000 well barcoded plate (ICell8, Wafergen). Tiled 

images were captured and wells containing single, live cells determined using 

Hoescht to mark all cells, and PI to mark dead cells. A plate map was determined 

from this data, and 1,000 wells containing live, single cells selected for library 

preparation and sequencing. 

 

3.16.2 Single cell RNA-seq analysis 

Analysis was carried out by Syed Murtaza Baker at the University of Manchester. 

Sequence files were mapped to GRChg38 genome using STAR-2.5.1a. The 

uniquely mapped read counts were quantified using htseq-0.6.1. Methods for cell 

filtering, normalisation and classification of cell cycle phase are described within 

Chapter 5. DE analysis was carried out using edgeR. Cells were grouped into 
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their respective samples, then data was normalised using trimmed means of m 

values (212). An exact test was used to identify differentially expressed genes 

between each Gc treatment, and the vehicle control. Genes with an FDR of <0.01 

were considered differentially expressed.  

 

3.17  Gene ontology analysis 

Differentially expressed gene lists were uploaded to Enrichr 

(https://amp.pharm.mssm.edu/Enrichr), a free-to-use gene ontology analysis 

tool. The pathways tool was used to predict pathways affected by the differentially 

expressed genes. KEGG 2019 Human and NCI-Nature 2016 databases were 

analysed to determine pathways affected by DE genes. Combined z-score was 

used to determine significance. 

 

3.18  ChIP-seq analysis  

Publicly available datasets were accessed using Cistrome DB 

(http://cistrome.org/db/). Datasets were downloaded and the top 5,000 hits were 

analysed. An online venn diagram tool 

(http://bioinformatics.psb.ugent.be/webtools/Venn) was used to compare lists 

and gene tracks were also imported into UCSC genome browser to visualise 

binding peaks. ChIP-seq datasets accessed are listed in Table 3.7.  
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Table 3.7: ChIP-seq databases accessed for this thesis. ChIP-seq databases were 
accessed via Cistrome DB. Data was downloaded for further analysis, and peaks were 
visualised using UCSC browser to compare peaks between transcription factors.  

Cell line Treatment Transcription 
factor 

GEO accession 
number 

CistromeDB 
ID 

A549  100nM Dex for 
4 hours 

GR ENCSR660RYY 64155 

MDA-
MB-231 

100nM Dex for 
1 hour 

GR GSM1350529 56103 

MDA-
MB-231 

Untreated P53 GSM2501568 75042 

U20S 100nM Dex for 
1 hour 

GR GSM1607528 58057 

U20S Untreated P53 GSM545807 2796 

 

 

3.19  Single Molecule Fluorescence In Situ Hybridization 
(smFISH) 

3.19.1 Sample preparation  

Cells were plated in glass-bottomed 96 well plates at a density of 6 x 103 cells/well 

and incubated overnight. Samples were treated using 10ng/ml TNF-α for 1 hour 

or 20 hours, then treated for 4 hours with a vehicle control, 50nM HC, 500nM HC 

or 100nM Dex. Cells were then stained using the ViewRNA Plus smFISH assay 

kit (cat. no. 88-19000-99, Thermo Fisher). Media was removed from wells, and 

replaced with 50μl permeabilization/fixation solution. The plate was incubated for 

30 minutes at room temperature in a humidified chamber. Wells were then 

washed 3 times using 100μl/well of PBS containing RNase inhibitor. Care was 

taken to ensure that no more than 2 wells were aspirated at a time. After 

aspirating the third wash, 50μl fixation solution was added to each well. The plate 

was incubated for 1 hour at room temperature in a humidified chamber. Probes 
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were diluted 1:100 in probe diluent, and wells were washed 3 times using PBS, 

as described previously (probes listed in Table 3.8). 50μl of probe mixture was 

then added to each well, and incubated within a humidified chamber for 1 hour in 

a 40°C incubator. Wells were then washed 5 times using 100μl wash buffer. After 

adding the final wash, the plate was stored at 4°C overnight.  

 

Diluents were pre-warmed at 40°C for 30 minutes, then preamplifier mix was 

diluted 1:25 in amplifier diluent. Wash buffer was removed and 50μl of this 

mixture was added to each well. The plate was incubated at 40°C for 1 hour in a 

humidified chamber. Amplifier mix was then diluted 1:25 in preamplifier diluent. 

Wells were then washed 5 times using 100μl wash buffer, before adding 50μl 

amplifier mix. The plate was then incubated in a humidified chamber at 40°C for 

1 hour. Wells were washed again 5 times using 100μl wash buffer. 50μl probe 

label mix was then added, diluted 1:25 in label probe diluent. The plate was then 

incubated for 1 hour at 40°C in a humidified chamber. Wells were washed five 

times with 100μl wash buffer. Following washes, 50μl Dapi, diluted 1:100 in PBS 

was added to each well. The plate was then incubated in the dark at room 

temperature for 5 minutes. Wells were washed with 100μl/well of PBS, then 

replaced with 150μl/well of PBS for imaging.  
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Table 3.8: smFISH probes used for single cell RNA-seq validation. Table 
summarises details of smFISH probes used. Catalogue number, type (defined by 
excitation wavelength), and optimal detection wavelength, as shown for each probe. 

Target Species Catalogue 
number Type Detection 

Wavelength 

B-actin Human VA4-10293-VCP 4 488 

DUSP1 Human VA4-3083868-VC  4 488 

GILZ Human VA1-20469-VC 1 546 

GR Human VA6-3169256-VC 6 647 

IL6 Human VA4-15969-VC 4 488 

IL8 Human VA1-13103-VC 1 546 

 

3.19.2 Imaging 

All images were taken within 24 hours of staining in order to prevent loss of signal. 

For images taken on Nikon widefield, images were taken a 40x magnification. Z-

stacks were taken with a minimum of 6 slices, with slices of 1μm. A minimum of 

20 fields of view were taken for each condition. When using Operetta High 

Content Imaging System (Perkin Elmer), 15 fields of view were taken within each 

well, and 10 planes were taken within each z-stack. For confocal imaging, z-

stacks were taken at 40x magnification of slices of 0.25μm, using an A1R 

confocal microscope (Nikon). 10 z-stacks were taken for each well. Imaging 

conditions were kept consistent between experiments.  
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3.19.3 Quantification using ImageJ  

Z-stack images were opened within ImageJ, and maximum projections were 

created for each channel. Initially, cytoplasmic thresholding was attempted using 

the mRNA staining, and brightfield images of the field of view, however, neither 

method provided widespread enough staining to create a cytoplasmic mask. 

Instead, the freehand tool was used using brightfield imaging to manually draw 

around each cell. The find maxima tool was then used to detect foci, and the 

number of foci was quantified within each cell. A minimum of 50 cells were 

analysed for each condition.  

 

3.19.4 Quantification using FishQuant 

In order to provide unbiased analysis of foci, FishQuant software (v3) was used 

on the Matlab platform (version R2019a). The FQ segmentation tool (opened 

through the FQ_seg command in Matlab) was used to create maximum 

projections of both the Dapi and FITC channels to provide a reference point for 

nuclear and cytoplasmic masks respectively. These maximum projections were 

then imported to CellProfiler (v 2.1.1), using the pipeline provided within the 

FishQuant software package. This pipeline was used to create segmentation 

masks for each field of view, for all required channels (Fig. 3.6A). The batch 

processing tool within FishQuant was then used to detect foci throughout the z-

stack for each cell in each field of view (Fig. 3.6B). Each mask was manually 

examined to ensure cells were accurately segregated (Fig. 3.6C). Inaccurate 

masks were removed from further analysis. 5 fields of view were analysed for 

each condition, and the experiment was repeated 3 times.  
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Figure 3.6: Analysis of smFISH staining using FishQuant. A) Z-stacks of individual 
channels were uploaded to the FQ segmentation tool, and maximum projections were 
created for each image. These maximum projections were uploaded to CellProfiler, and 
masks for both nuclei and cytoplasm were created using the pipeline found within the 
FishQuant software package. B) These masks were added to each channel of each 
image using the FQ segmentation tool to create both nuclear and cytoplasmic outlines 
for each. These outlines were then added to the batch processing tool in the FishQuant 
software, and processed. C) Outliers were removed through removing cells with low 
quality scores, and by manually analysing images.  
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3.19.5 Correlation analysis for smFISH 

Expression of each mRNA was correlated within individual cells, for each 

condition. Line of best fit for each graph was calculated using simple linear 

regression, and correlation was tested using a Pearson’s correlation coefficient. 

R2 value is shown for each correlation.  

 

3.20  Statistics 

Statistical analysis was carried out using Prism (version 8.4.1). GR and gH2AX 

immunofluorescence results were analysed using a 1-way analysis of variance 

(ANOVA) with Tukey’s multiple comparisons test. Comet assays, growth assays, 

smFISH, qPCR and MTT results were analysed using a 2-way ANOVA with 

Dunnett’s multiple comparisons test. All results were analysed compared to 

vehicle control. Results of p < 0.05 were considered statistically significant. All 

error bars indicate ± standard error of the mean (SEM). All experiments were 

carried out 3 times, unless otherwise stated. 

 



Chapter 4 – Glucocorticoid effects on therapeutic efficacy in 
glioblastoma 

4.1 Introduction 

Gc are potent anti-inflammatory drugs, prescribed to patients with GBM to reduce 

oedema and inflammation (156, 181). Recent reports suggest that high doses of 

Gc can be detrimental, thus reducing survival times of patients (182, 186). 

Despite their wide clinical use, the specific effects that Gc have directly on GBM 

cells are not well characterised. This is particularly important given that Gc effects 

are tissue-specific. In some leukemias for example, Gc are prescribed as a 

chemotherapeutic agent, and can be very potent inducers of apoptosis (213, 

214). In small cell lung cancer, the GR promoter is hypermethylated, resulting in 

reduced GR expression, and restoring GR expression is strongly apoptotic (215-

217). In contrast, in non-small cell lung cancers such as adenocarcinomas, which 

comprise more than 80% of lung cancers, Gc induce cell cycle arrest (216, 218). 

This potential effect is particularly important in the context of GBM, as 

radiotherapy and some chemotherapeutics, such as TMZ, rely on the targeting of 

rapidly dividing cells, and therefore induction of cell cycle arrest may reduce the 

efficacy of cancer treatment (219).  

 

The aims of this chapter were therefore two-fold: 

1) To characterise GR expression, activation and modulation of cell function 

in a panel of GBM cell lines. 

2) To determine how Gc treatment reduces the efficacy of radiotherapy and 

chemotherapy in GBM cells. 
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4.2 Results 

 

4.2.1 GR expression within GBM 

Firstly the expression of GR within GBM tumours was investigated by accessing 

The Cancer Genome Atlas (TCGA) RNA-seq data from primary GBM tissue, 

various low grade glioma subtypes, or normal brain tissue, accessed through the 

GlioVis database (220). This data is derived from tumour tissue, however, an 

important caveat is that there is no data provided for whether patients had been 

treated with Dexamethasone prior to surgery. GR expression showed no 

significant difference between GBM tissue and normal brain (Fig. 4.1A), however, 

expression was significantly lower in GBM tissue when compared with the low 

grade glioma subtypes of oligodendroma, oligoastrocytoma and astrocytoma 

(Fig. 4.1B). In addition, within astrocytoma and GBM tumours, low GR expression 

was associated with significantly reduced survival (Fig. 4.1C). For astrocytoma 

patients, at 75 months, survival for patients with low GR expression was 25%, 

whilst for patients with high GR expression, survival was 55%. GBM patients 

show a markedly reduced survival due to the aggressive nature of the tumour, 

however, a similar pattern is also seen. At 25 months, survival for patients with 

high GR expression was 30%, whilst this was reduced to 9% in patients with low 

GR expression. As previously mentioned, information regarding Dex treatment is 

not recorded, and it has previously been well demonstrated that Gc treatment 

leads to a reduction in GR expression – through protein turnover, but also at the 

transcriptional level (221). It is therefore possible that reduced GR expression 

within GBM patients is caused by Dex treatment itself, and patients with low GR 

expression indicate those receiving the highest doses of Dex, thus correlating 

with reduced survival.  
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Figure 4.1: NR3C1 (GR) expression was significantly decreased in GBM tissue, 
and reduced expression correlates with shorter survival. GR expression within 
primary brain tumour tissue were analysed using GlioVis, with publicly available RNA-
seq data from The Cancer Genome Atlas. Expression of GR within GBM was compared 
with normal brain tissue (A), and types of low grade glioma (B). C) Patient survival was 
plotted, correlated with high and low NR3C1 expression. D) Expression of GR transcript 
within multiple GBM cell lines is shown. Data was provided by GSK  as part of  a previous 
group collaboration. E) Protein expression of GR was analysed within 5 selected GBM 
cell lines, compared with β-actin as a housekeeping control. F) Expression was 
quantified, relative to MCF7, and normalised to b-actin. Western blot images are 
representative of n=2, and quantification indicated the mean of n=2. Error bars denote 
SEM. Significance for A) and B) was tested using Tukey’s Honest Significant Difference 
test.  Significance for C) was tested using the log rank p value. * = p ≤ 0.05, and *** = p 
≤ 0.001.  

  

A.

D.

Figure 3.1: NR3C1 (GR) expression was significantly decreased in significantly GBM tissue, and reduced
expression correlates with shorter survival. NR3C1 within primary brain tumour tissue were analysed using
GlioVis, with publicly available RNA-seq data. Expression of GR within GBM was compared with normal brain
tissue (A), and types of low grade glioma (B). Patient survival was plotted, correlated with high and low NR3C1
expression (B). Expression of GR transcript within multiple GBM cell lines is shown (C). Data was provided by
GSK. Protein expression of GR was analysed within 5 selected GBM cell lines, compared with b-actin as a
housekeeping control. Expression was quantified, relative to MCF7, and normalised to b-actin (E). Western
blot images are representative of n=2, and quantification indicated the mean of n=2. Error bars denote SEM.
Significance within GlioVis was tested using Tukey’s Honest Significant Difference test.
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After confirming that GR was expressed within GBM primary tissue, expression 

was then investigated in a panel of GBM cell lines. Gene expression data was 

first analysed, which indicated GR RNA transcript expression within ten well-

characterised GBM cell lines (Fig. 4.1D). The expression between cell lines was 

highly variable. Five cell lines were identified for further analysis – A172 cells 

which showed low expression, and U87, U251, M059J and M059K cells, which 

showed higher expression.  

 
A172 cells have been used in previous papers used to investigate the effects of 

Dex within GBM (222, 223). U87 and U251 cell lines have often been described 

as the most commonly used GBM cell lines. A PubMed search for U87 and U251 

retrieved 3,546 and 2,477 results respectively (224). Therefore, through the use 

of these cell lines, this work will fit into the existing field of GBM research. Two 

further GBM cell lines, both derived from single cell clones from within the same 

GBM tumour were also utilised for this research; M059J and M059K cells. As 

mentioned within Section 1.2.4.1, M059J cells are commonly used, not just within 

GBM research, but more broadly as a model for understanding DNA-PK effects 

due to its effective DNA-PKcs deletion (225). This renders the M059J cell line 

radiosensitive, whilst M059K cells remain relatively radioresistant (226). These 5 

GBM cell lines were therefore chosen to reflect the heterogeneity of GR 

expression between GBM tumours.  

 
GR protein expression within the five selected cell lines was next analysed using 

western blotting (Fig. 4.1E). Following labelling with the GR antibody, two bands 

of a similar size were seen. The antibody used was capable of binding to both 

GRα and GRβ, two isoforms of GR. GRα is known to have a molecular weight of 
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94kDa, and may represent the larger band, whilst the smaller, lighter band may 

represent GRβ, which has a molecular weight of 90kDa. This expression of both 

bands was quantified, relative to β-actin as an internal housekeeping protein 

control (Fig. 4.1F). All five cell lines showed GR expression, and differences in 

protein expression were not as marked as those seen in transcript expression. 

All five cell lines were therefore taken forward for further analysis. 

 

4.2.2 Gc increase GBM cell survival following IR and TMZ 

As Dex has been shown to reduce GBM patient survival, it was hypothesised that 

this may be due to a reduction in therapeutic efficacy. Therefore the effect of Gc 

on GBM cell survival following irradiation (IR) and Temozolomide (TMZ), the 

standard chemotherapeutic drug used in the treatment of GBM, was analysed. 

Previous work has estimated that Dex concentration within the brain tissue of 

GBM patients may reach up to 530 - 573nM, although values were highly variable 

(227, 228). An important caveat is that these studies contained patients receiving 

Dex doses of between 12–32mg daily. Recent guidelines have advised a dose of 

16mg/day, divided into 4 doses of 4mg (229). These values are far higher than 

concentrations commonly used within mechanistic studies of Gc action. 

Therefore a dose of 100nM Dex has been utilised in this study, which is in line 

with doses used in the study of GR, and should well exceed the saturating dose 

for in vitro studies. The effects of endogenous cortisol within GBM cells was 

investigated through the use of hydrocortisone (HC), the synthetic equivalent of 

cortisol in order to understand what effects synthetic and endogenous Gc could 

have on GBM cells. A high and low dose of HC was selected to represent 

maximum and minimum circulating levels. 
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Cells were pre-treated overnight with either a vehicle control, 50nM HC, 500nM 

HC, or 100nM Dex. Cells were then subjected to IR doses of 0.25Gy – 10Gy, 

TMZ doses of 0.3μM – 300μM, or a combination of 5Gy irradiation, and increasing 

doses of TMZ. Cells were incubated for 5 days following treatment to reach 

confluence, then MTT cell viability assays were performed. MTT is converted by 

living, metabolising cells to formazan, a purple substrate. By measuring the 

colorimetric change, it is possible to gain a relative estimate of the number of 

metabolising (live) cells for each condition. The number of surviving cells were 

calculated relative to untreated cells.  

 
A172 cells showed high levels of resistance to both IR and TMZ treatment (Fig. 

4.2A). After 10Gy IR and 300μM TMZ, survival was still approximately 50%. 

There was also no discernible effect of Gc addition. When the treatments were 

combined, however, Dex caused a significant increase in cell survival following 

5Gy IR and both 30μM and 300μM TMZ. This may be of interest as previous 

research has shown that doses of TMZ within patient brain reached 

approximately 30μM, and treatment regimens usually consist of concurrent 

radiotherapy and TMZ, so the protective effect seen at this dose is physiologically 

relevant (230). 

 
As previously reported, M059J cells demonstrated high radiosensitivity, with a 

significant reduction in survival with radiation doses as low as 1Gy (Fig. 4.2B). 

M059K cells, meanwhile, show higher survival even at higher doses of irradiation 

(Fig. 4.2C). Both cell lines, however, show significantly increased survival when 

cells were pre-treated with Gc compared with the vehicle control. This response 

appears to be both dose- and affinity-dependent. A small increase in survival is 
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seen with a dose of 50nM HC, reaching significance in M059J cells, but not 

M059K cells. 500nM HC led to increased survival in both cell lines at a dose of 

5Gy, whilst pre-treatment with 100nM Dex led to a significant increase in cell 

survival with all 4 irradiation doses. M059K cells showed 20.98% survival in 

vehicle treated samples, but with Dex treatment this rose to 39.98%, resulting in 

an almost doubling of cell survival. Similarly, M059J cells had a survival of 

15.27% with 10Gy irradiation, but this rose to 27.78% with Dex addition. 

 
Following TMZ treatment, for both M059J and M059K cells, there appeared to be 

a dose- and affinity- dependent protective effect when pre-treated using Gc. This 

effect was small with 50nM HC, and only reached significance with a dose of 3μM 

TMZ in M059K cells, and 30μM TMZ in M059J cells. When pre-treated with 

500nM HC, once again this effect was larger, and reached significance at doses 

of 0.3μM – 30μM in M059J cells, and at 30μM in M059K cells. A similar effect 

was seen with 100nM Dex addition, reaching significance in M059J cells at doses 

of 3 and 30μM TMZ, and 30μM and 300μM in M059K cells.  

 
When the treatments were combined, both cell lines showed a significant 

increase in cell number following both 500nM HC and 100nM Dex when 

subjected to 5Gy IR and 30μM TMZ, as was seen for A172 cells. 
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Figure 4.2: Dex treatment increases GBM cell survival following both irradiation 
and chemotherapy. A172, M059J, and M059K cells were pre-treated overnight with 
50nM HC, 500nM HC, 100nM Dex or a vehicle control. Cells were then subjected to 
increasing doses of irradiation, the chemotherapeutic Temozolomide, or a combined 
dose of irradiation (5Gy), and increasing doses of Temozolomide. Cells were incubated 
for 5 days, then metabolic activity was analysed using MTT. Survival was quantified 
relative to untreated control. Results shown are the mean of 3 independent experiments. 
Error bars denote SEM. Statistical significance was tested using 2-way ANOVA with 
Dunnett’s multiple comparison test. Stars denote significance between Dex treated 
samples and the vehicle control. For simplicity, significance is not shown for 50nM and 
500nM HC doses. * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001, and **** = p ≤ 0.0001. 

  

Figure 3.2: Dex treatment increases GBM cell survival following both irradiation and chemotherapy.
A172, M059J, and M059K cells were pre-treated overnight with 50nM HC, 500nM HC, 100nM Dex or a

vehicle control. Cells were then subjected to increasing doses of irradiation, the chemotherapeutic

Temozolomide, or a combined dose of irradiation (5Gy), and increasing doses of Temozolomide. Cells were

incubated for 6 days, then metabolic activity was analysed using MTT. Survival was quantified relative to

untreated control. Results shown are the mean of 3 independent experiments. Error bars denote SEM.

Statistical significance was tested using 2-way ANOVA with Dunnett’s multiple comparison test.
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U251 cells were also highly resistant to both treatments in isolation, however, 

Dex treatment did lead to significantly higher survival when cells were subjected 

to 5Gy IR alongside 0.3 – 30μM TMZ (Fig. 4.3A). Finally, Gc addition appeared 

to exhibit no effect on cell survival in U87 cells, however, Dex addition caused 

noticeable changes to cell morphology (Fig. 4.3B - C). Images in Fig. 4.3C show 

cells following MTT addition at endpoint at doses of 0Gy and 10Gy. Dex treated 

wells showed similar large spheroid-like structures at all IR and TMZ doses. 

These changes to cell morphology may suggest that Dex is exerting different 

effects within U87 cells compared to A172, M059J, M059K and U251 cells. 

Previous research has demonstrated 512 homozygous mutations within the U87 

cell genome, and many of these genes were linked to cell adhesion (231). This 

mutational signature may result in the altered Gc response seen within U87 cells.  

 
Overall, four out of five GBM cell lines tested showed that Dex was able to 

increase cell survival following therapy. This increase in cell survival in vitro may 

suggest a mechanism by which Gc could render GBM cells more radio- and 

chemo-resistant within patients. This could in turn allow a larger proportion of the 

tumour to survive following therapy, allowing the tumour mass to regrow more 

quickly, ultimately resulting in the reduced survival times seen in previous 

research.  
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Figure 4.3: Dex treatment increases GBM cell survival in some, but not all, GBM 
cell lines. U251 (A) and U87 (B) cells were pre-treated overnight with 50nM HC, 500nM 
HC, 100nM Dex or a vehicle control. Cells were then subjected to increasing doses of 
irradiation, the chemotherapeutic Temozolomide, or a combined dose of irradiation 
(5Gy), and increasing doses of Temozolomide. Cells were incubated for 6 days, then 
metabolic activity was analysed using MTT. Survival was quantified relative to untreated 
control. Images of U87 cells at the end of the experiment are also shown (C). Scale bar 
denotes 1mm. Results shown are the mean of 3 independent experiments. Error bars 
denote SEM. Statistical significance was tested using 2-way ANOVA with Dunnett’s 
multiple comparison test, Stars denote significance between Dex treated samples and 
the vehicle control. For simplicity, significance is not shown for 50nM and 500nM HC 
doses. * = p ≤ 0.05, and ** = p ≤ 0.01.  
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4.2.3 GR antagonist RU486 restores radiosensitivity and 
chemosensitivity 

M059K cells were then pre-treated for 1 hour with 100nM RU486, an antagonist 

for GR, and treated with either 100nM Dex or a vehicle control, then subjected to 

IR or TMZ (Fig. 4.4A & B). Once again, 100nM Dex led to a significant increase 

in cell survival following both 10Gy IR and 30μM TMZ, compared with the vehicle 

control. Pre-treatment with RU486 abrogated this increase in survival, as cells 

treated with RU486 and 100nM Dex showed no significant difference in survival 

compared with the vehicle control.  

 
RU486 is also able to bind and modulate the activity of a related steroid receptor, 

progesterone receptor (PR). To exclude a possible effect through PR expression 

in GBM was examined using data from the human protein atlas (232), which 

suggested that PR was not expressed in GBM tissue (Fig. 4.4C). 

 
PR expression levels were therefore quantified by western blotting relative to 

MCF7, a breast cancer cell line known to express both GR and PR. MDA-MB-

231, a triple negative breast cancer cell line, was included as a negative control 

for PR expression (Fig. 4.4D). PR was expressed in MCF7 cells, but was not 

expressed in any of the GBM cell lines, suggesting that modulation of the Dex 

response in the MTT assays was due to antagonism of GR. 

 
  



 

 

88 

 

Figure 4.4: GR antagonist RU486 restores radiosensitivity and chemosensitivity, 
suggesting GR specificity. M059K cells were pre-treated for 1 hour with RU486, then 
treated overnight with 100nM Dex or a vehicle control, then subjected to IR (A), or TMZ 
(B). Cells were incubated for 6 days, and survival was analysed by MTT assay. (C) PR 
expression was analysed using The Human Protein Atlas. (D) Expression of PR was 
analysed in GBM cell lines by western blotting, and results were quantified normalised 
to β-actin control. M059K cells were pre-treated overnight with various doses of 
progesterone or a vehicle control, then subjected to increasing doses of IR (E), or TMZ 
(F). All experiments are n=3, and error bars denote SEM. Statistical significance was 
tested using 2-way ANOVA with Dunnett’s multiple comparison test, where * = p ≤ 0.05, 
and ** = p ≤ 0.01. 
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Figure 3.4: PR is not expressed in GBM cells, and progesterone treatment does not affect GBM survival.M059K
cells were pre-treated for 1 hour with RU486, treated overnight with 100nM Dex or a vehicle control, then
subjected to IR (A), or TMZ (B). Cells were incubated for 6 days, and survival was analysed by MTT assay. (C) PR
expression was analysed using The Human Protein Atlas. (D) Expression of PR was analysed in GBM cell lines by
western blotting, and results were quantified normalised to actin control. M059K cells were pre-treated
overnight with various doses of progesterone or a vehicle control, then subjected to increasing doses of IR (E), or
TMZ (F). All experiments are n=3, and error bars denote SEM. Statistical significance was tested using 2-way
ANOVA with Dunnett’s multiple comparison test.
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4.2.4 Progesterone does not affect GBM cell survival following 
therapy 

As an additional control, the role of progesterone in GBM cell survival was 

analysed as part of an undergraduate research project of which I was co-

supervisor, and which was completed by Alexandra Schofield. As PR was not 

expressed in either primary tissue, or the cell lines tested, it was unlikely that 

progesterone could exert protective effects on GBM cell survival. This was 

confirmed using doses of 100nM – 10μM progesterone prior to both IR and TMZ. 

M059K cell survival was analysed using MTT assay, as previously discussed for 

Gc addition (Fig. 4.4E & F). There was no significant difference in GBM cell 

survival with the addition of any progesterone doses then treatment with either IR 

or TMZ. This confirmed that progesterone addition could not mimic the protective 

effects of Gc addition within M059K GBM cells.  

 
Another possible confounder is that HC can also bind another steroid receptor, 

the mineralocorticoid receptor (MR). As previously discussed (section 1.1.9), low 

affinity GR ligands, such as hydrocortisone, bind MR with higher affinity than GR 

at low concentrations, however, Dex can bind to GR with high affinity, and has 

no binding affinity for MR. Data from the human protein atlas suggests both GR 

and MR were likely expressed in GBM (Fig. 4.5 A & B). MR was quantified using 

western blotting relative to Caco2, a colorectal adenocarcinoma cell line, as colon 

tissue is known to express high levels of MR (Fig. 4.5C). MR was highly 

expressed across all five GBM cell lines, exceeding the positive control, and 

correlating with the expression data from within primary tumour tissue (Fig. 4.5B).  
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Figure 4.5 : Glioma tissue and cell lines express GR and MR. (A) GR and (B) MR 
expression were analysed in cancer tissues using Human Protein Atlas data. (C) MR 
expression in 5 GBM cell lines was analysed compared with a positive control cell line 
(CACO2). MR expression was quantified, relative to CACO2, normalised to b-actin 
expression. Western blots are representative of n=2, and quantification shows the mean 
of n=2. Error bars denote SEM. 

 

This data suggested that MR expression could be a confounding factor in HC 

treatment. It is important to note that the protective effects seen with Dex were 

MR-independent, however, further steps were taken to ensure these effects were 

GR specific. The next step would therefore be to demonstrate loss of the Gc effect 

following specific knockdown of GR using siRNA. For further analysis, it was 

necessary to reduce the number of cell lines used. Cell lines were required which 

were sensitive to both radiation and chemotherapy in order to model differences 

in therapeutic efficacy, and both A172 and U251 cells were almost completely 

resistant to both treatments in isolation. This is not representative of patient 

response. U87 cells were also problematic due to the differences in morphology 
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Figure 3.5: MR is expressed in GBM tissue, and in GBM cell lines. A) GR and B) MR expression were
analysed in cancer tissues using Human Protein Atlas data. C) MR protein expression was also analysed
in GBM cell lines, and expression was quantified relative to Caco2.
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seen following Dex treatment, and the difference in response seen compared with 

the other cell lines. Both M059J and M059K cells were shown to be Gc-

responsive, and in addition, the use of both cell lines in parallel enables the study 

of potential interaction of DNA-PKcs and GR function. These cell lines were 

therefore used for further analysis, and the results were also compared with the 

broader panel of cell lines whenever this was feasible.  

 

4.2.5 Effects of Gc on GBM cell survival is GR-dependent 

GR was knocked down using two well-characterised GR specific siRNAs, 

previously used within the Matthews group (233). Transfection with either GR 

targeting siRNA reduced M059K cell survival relative to the negative control (Fig. 

4.6A). Cells were treated with siRNA overnight, then plated for MTT assays, 

treated overnight with Dex, or a vehicle control, and subjected to increasing 

doses of IR. Cells were then incubated for 5 days before an MTT assay 

performed. When treated with a non-targeting siRNA (siNT) control, Dex pre-

treatment resulted in significantly increased survival compared with the vehicle 

control, at both 5Gy and 10Gy (Fig. 4.6B). Alternatively, when treated with a GR 

targeting siRNA, there was no significant difference in survival between Dex and 

vehicle-treated cells at any IR dosage (Fig. 4.6C & D). It is important to note that 

according to manufacturer’s instructions, this siRNA knockdown is transient, and 

expression can be expected to increase again approximately 72 – 96 hours 

following treatment. Therefore, during the course of the MTT assays, GR can be 

assumed to be re-expressed approximately 2 days after IR was performed. This 

suggests that GR is required at the point of IR to increase survival, and 

expression after this point is not sufficient to increase survival. These results 

confirm that the protective effect of Dex treatment prior to IR is dependent on GR. 
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Figure 4.6: GR knockdown reverses the protective effect of Dex upon irradiation. 
The effect of 2 GR siRNA on M059K cell survival was analysed by MTT assay, compared 
with a negative control (siNT), at 6 days following treatment. B) M059K cells were treated 
for 24 hours using siRNA, then treated overnight with Dex or vehicle. Cells were then 
subjected to IR, and survival analysed by MTT assay. Cells were treated with a not 
targeting (NT) siRNA control (B), siGR 3 (C), or siGR 4 (D). Results shown are n=3, and 
error bars denote SEM. Statistical significance was tested using 2-way ANOVA with 
Dunnett’s multiple comparison test. * = p ≤ 0.05 ** = p ≤ 0.01.  
 

4.2.6 Glucocorticoids control an anti-inflammatory phenotype in 
GBM cells 

To understand the transcriptional targets regulated by GR in GBM, cells were 

analysed by transcriptome profiling. M059K cells were treated for 4 hours with a 

vehicle control or the 3 Gc doses as previously described. Cells were treated in 

parallel for single cell RNA-seq in triplicate, then lysed and RNA extracted.  

 

Figure 3.6: GR knockdown reverses the protective effect of Dex upon irradiation. A) The effect of 2 GR siRNA
on M059K cell survival was analysed by MTT assay, compared with a negative control (siSCR), at 6 days
following treatment. B) M059K cells were treated for 24 hours using siRNA, then treated overnight with Dex
or vehicle. Cells were then subjected to IR, and survival analysed by MTT assay. Cells were treated with siScr, a
scrambled siRNA control (B), siGR 3 (C), or siGR 4 (D). Results shown are n=3, and error bars denote SEM.
Statistical significance was tested using 2-way ANOVA with Dunnett’s multiple comparison test.
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Using a False Discovery Rate of 0.05, as this has commonly been used within 

the literature, 266 genes were differentially expressed across all 3 treatment 

groups, relative to the vehicle control (Fig. 4.7A) (234, 235). 37 genes were 

differentially expressed across all 3 treatment groups. 1 gene was expressed in 

response to both HC doses, whilst 16 were expressed in response 500nM HC 

only. A large proportion, 72 genes, were differentially expressed following both 

500nM HC and 100nM Dex. These results suggest a robust response within 

M059K cells in response to endogenous or synthetic Gc. The largest proportion 

of genes, however, was expressed only following Dex treatment, suggesting that 

a high affinity ligand leads to a defined gene signature, even when potency 

matched to a lower affinity Gc. Interestingly, when compared with a dataset 

analysing A549 adenocarcinoma cells in response to an equivalent dose of Dex, 

there are only 43 genes which overlap (Fig. 4.7B) (235). This suggests that Gc 

may regulate different subsets of genes within both tissues. This is to be 

expected, as GR effects are known to be highly tissue specific.  

 
The response was strongest using Dex, which is to be expected, as this is the 

highest affinity ligand. What is interesting, however, is that with the 50nM HC 

dose a distinct, MR-specific response was not observed. Instead, all but one of 

the genes differentially expressed in response to 50nM HC were also regulated 

by 500nM HC and 100nM Dex (Fig. 4.7A).  
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Figure 4.7: Gc regulate expression of target genes in a dose- and affinity-
dependent manner. M059K cells were treated for 4 hours using 50nM HC, 500nM HC, 
100nM Dex, or a vehicle control. RNA was extracted and libraries were prepared for bulk 
RNA-seq. Genes differentially expressed in response to each Gc treatment, relative to 
the vehicle control, were analysed. DE genes were compared between Gc treatment 
groups (A). DE genes in response to 100nM Dex were compared with DE genes in A549 
cells following 100nM Dex (B). Results were validated by analysing expression of 4 DE 
genes, in both M059J and M059K cells (C). Cells were pre-treated for 4 hours with Gc, 
or a vehicle control, then RNA extracted and qPCR carried out using Taqman probes for 
the genes listed. Gene expression was normalised to GAPDH and analysed relative to 
the vehicle control. For qPCR, results shown are the mean of 3 independent 
experiments, and error bars denote SEM. Statistical significance was tested using a 2-
way ANOVA with a Dunnett’s multiple comparison test. ** = p ≤ 0.01, *** = p ≤ 0.001, **** 
= p ≤ 0.0001. 

 

In order to validate these results, qPCR was used to analyse expression of four 

genes which were significantly upregulated in response to all 3 Gc treatments. 

Figure 3.7: Gc regulate expression of target genes in a dose- and affinity-dependent manner. M059K cells
were treated for 4 hours using 50nM HC, 500nM HC, 100nM Dex, or a vehicle control. RNA was extracted and
libraries were prepared for bulk RNA-seq. Genes differentially expressed in response to each Gc treatment,
relative to the vehicle control, were analysed. DE genes were compared between Gc treatment groups (A). DE
genes in response to 100nM Dex were compared with DE genes in A549 cells following 100nM Dex (B). Results
were validated by analysing expression of 4 DE genes, in both M059J and M059K cells. Cells were pre-treated for
4 hours with Gc, or a vehicle control, then RNA extracted and qPCR carried out using Taqman probes for the
genes listed. Gene expression was normalised to GAPDH and analysed relative to the vehicle control. For qPCR,
results shown are the mean of 3 independent experiments, and error bars denote SEM. Statistical significance
was tested using a 2-way ANOVA with a Dunnett’s multiple comparison test. ** = p ≤ 0.01, *** = p ≤ 0.001, ****
= p ≤ 0.0001.
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These genes were DUSP1, PER1, FKBP5 and GILZ (Fig. 4.7C). All 4 genes are 

well-characterised GR target genes within the literature, and were in the top 25 

most highly upregulated genes within our dataset (204, 236-238). This was 

completed in M059K cells as a direct repeat of the RNA-seq conditions, and also 

in M059J cells in parallel. Both cell lines were treated for 4 hours with a vehicle 

control, 50nM HC, 500nM HC and 100nM Dex. RNA was extracted and qPCR 

was performed. Optimisation experiments showed both GAPDH and β-actin, two 

common housekeeping genes, were both expressed to similar levels within 

samples, and GAPDH was therefore taken forward for normalisation for the target 

genes. Values were  displayed as relative quantification (RQ) values, normalised 

to the vehicle control.  

 
All four genes show an upregulation in expression following Gc addition, and this 

response is dose- and affinity- dependent. A small increase in expression is seen 

following 50nM HC, with a larger response following 500nM HC. The largest 

response is seen with a dose of 100nM Dex for all 4 GR target genes. Whilst the 

doses of 500nM HC and 100nM Dex are potency matched, the response appears 

to be more pronounced with Dex addition. This correlates with the response seen 

within the RNA-seq, in which both doses appeared to regulate a similar gene 

signature, as seen by the large overlap between the treatments, however, more 

genes were regulated by Dex. This response was similar in both M059J and 

M059K cells, suggesting that DNA-PK deficiency has no inherent effect on the 

GR transcriptional response.  

 

4.2.7 Pathway analysis reveals anti-inflammatory, cell cycle, and 
DNA repair gene signatures 
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Through pathway analysis software, it is possible to predict the cellular effects of 

a group of differentially expressed genes. Using two example pathway analysis 

databases from Enrichr, this identified a large number of anti-inflammatory 

related pathways which were upregulated in M059K cells (Table 4.1 and 4.2, 

pathways indicated in green, DE genes indicated in the final column). Many of 

these pathways contain common GR target genes, such as NFKBIA, JUN, IL6 

and IL1B. These results may indicate a direct anti-inflammatory effect of Gc on 

GBM cells. This is interesting, as the Gc are presumed to act through anti-

inflammatory effects on immune cells within the tumour microenvironment. In 

addition, dysregulation of the inflammatory response has been widely 

investigated within GBM progression. 

 
The pathway analysis also revealed several other pathways which were 

differentially expressed in response to Gc (Table 4.1 and 4.2, pathways indicated 

in blue, DE genes indicated in the final column). These pathways included p53 

effectors, and transcriptional misregulation in cancer. Again, several genes are 

common to both of these pathways, such as CDKN1A, BCL2L1 and BIRC3. The 

p53 effector pathway (Table 4.2) also highlighted some unique but interesting 

genes, such as DDIT4, and RGCC. These genes have all been previously 

identified as Gc-regulated, but there has been no previous research suggesting 

that these genes in combination could drive a phenotype. Many of these genes, 

such as DDIT4 and CDKN1A are directly involved in the repair of DNA damage, 

whilst others, such as RGCC, BIRC3 and BCL2L1 are known to control cell cycle 

and apoptosis. Therefore, the regulation of these genes could lead to functional 

effects on cell survival following therapy-induced DNA damage.  
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Table 4.1: KEGG 2016 pathway analysis indicates a strong anti-inflammatory 
phenotype, and cancer-relevant gene expression. Using the total differentially 
expressed gene lists across all 3 Gc treatment groups from the RNA-seq results, 
predicted pathways were analysed by Enrichr. KEGG database gene ontology analysis 
is used as a representative database, and the 15 most significantly affected pathways 
are shown. The majority of pathways are related to the differential expression of 
inflammatory genes (green), however, several cancer-related pathways were also 
affected (blue).  

 
  



 

 

98 

Table 4.2: NCI-Nature pathway analysis indicates a strong anti-inflammatory 
phenotype, and DNA damage related genes. Using the total differentially expressed 
gene lists across all 3 Gc treatment groups from the RNA-seq results, predicted 
pathways were analysed by Enrichr. NCI-Nature 2016 gene ontology analysis is used as 
a representative database, and the 15 most significantly affected pathways are shown. 
The majority of pathways are related to the differential expression of inflammatory genes 
(green), however, several cancer-related pathways were also affected (blue).  
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4.2.8 Genes regulated by Gc appear to show differential expression 
in GBM tissue 

In order to investigate the possible clinical relevance of these genes within GBM 

patients, expression of a selection of GR target genes was analysed using 

transcriptional data from patient samples. Data from TCGA was analysed using 

the GlioVis database, as used previously (220). Only transcriptome data obtained 

through RNA-seq was analysed.  

 
Firstly expression of genes upregulated in response to Gc treatment was 

analysed (Fig. 4.8). These genes were selected due to their established link to 

DNA repair, and were linked to this phenotype in the previous Enrichr analysis. 

All four genes showed a trend towards increased expression in GBM, compared 

with normal brain tissue, reaching significance for DDIT4, BCL2L1 and CDKN1A. 

This did not correlate with a difference in survival depending on expression of 

these genes as high BIRC3 expression was associated with significantly shorter 

patient survival.  

 
The expression of four genes downregulated in response to Gc treatment were 

then analysed (Fig. 4.9). IL1B expression was significantly reduced in GBM tissue 

compared with normal tissue, however, there was no significant difference in 

expression of IL6, IL11, or CXC L12. High expression of IL11 was associated with 

reduced survival of GBM patients, however, none of the other genes rendered an 

effect on patient survival. 
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Figure 4.8: Genes upregulated in response to Dex treatment are also upregulated 
in GBM primary tissue. TCGA-GBM expression data was analysed compared with 
normal brain tissue using GlioVis. Expression levels are shown, and survival for patients 
with high and low expression are shown. Differences in expression were analysed with 
Tukey’s Honest Significant Difference Test, and survival was analysed using a Hazard 
Ratio, and log p-value. * = p ≤ 0.05, ** = p ≤ 0.01.  
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Figure 3.8: Genes upregulated in response to Dex treatment are also upregulated in GBM primary tissue. TCGA-
GBM expression data was analysed compared with normal brain tissue using GlioVis. Expression levels are shown
(A), and survival for patients with high and low expression are shown. Differences in expression were analysed
with Tukey’s Honest Significant Difference Test, and survival was analysed using a Hazard Ratio, and log p-value.
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Figure 4.9: Genes downregulated in response to Dex are also downregulated in 
GBM primary tissue. TCGA-GBM expression data was analysed compared with normal 
brain tissue using GlioVis. Expression levels are shown, and patient survival for patients 
with high and low expression are shown. Differences in expression were analysed with 
Tukey’s Honest Significant Difference Test, and survival was analysed using a Hazard 
Ratio, and log p-value. * = p ≤ 0.05, ** = p ≤ 0.01.  
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Figure 3.9: Genes downregulated in response to Dex are also downregulated in GBM primary tissue. TCGA-GBM
expression data was analysed compared with normal brain tissue using GlioVis. Expression levels are shown (A),
and patient survival for patients with high and low expression are shown. Differences in expression were analysed
with Tukey’s Honest Significant Difference Test, and survival was analaysed using a Hazard Ratio, and log p-value.
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Whilst these results are only dependent on a small selection of genes, it does 

suggest that Gc driven gene signatures could lead to changes in GBM 

transcriptional outcome. As the data is from a publicly available source, there is 

no information provided regarding treatment prior to sampling, however, given 

the prevalence of Dex usage, it is likely that many of the patients were treated 

with Dex.  

 
There were relatively few genes which showed direct correlation with expression 

and survival, however, it is possible that, if a Gc-mediated, multi-gene signature 

was analysed, this could show a predictive effect on patient outcome. This 

analysis was not carried out within the scope of this thesis, but would be an 

important component of any future work. 

 

4.2.9 Gc partially reduces cell proliferation 

Based on the results from the RNA-seq data, multiple mechanisms by which Gc 

could be reducing therapeutic efficacy, through DE genes were identified, 

namely; 

• Inhibition of cell proliferation 

• Cell cycle arrest 

• Direct effects on DNA repair 

The aim was therefore to investigate each of these effects in turn through a 

number of endpoint assays.  
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Figure 4.10: Gc do affect cell growth in some, but not all, GBM cell lines. GBM cell 
lines were incubated with 50nM HC, 500nM HC, 100nM Dexamethasone or a vehicle 
control. Cell counts were taken every 24 hours for 4 days. Results shown are n=3, and 
error bars denote SEM. Statistical significance was tested using 2-way ANOVA with 
Dunnett’s multiple comparison test. Stars denote significance between Dex treated 
samples and the vehicle control. For simplicity, significance is not shown for 50nM and 
500nM HC doses. * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001. 
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Previous literature has suggested that Gc may affect therapeutic efficacy within 

GBM through the induction of growth arrest. Gc are known to induce cell cycle 

arrest and slow growth in other cancer types, such as lung cancer, however, this 

effect is controversial within GBM cells. To assess whether Gc were capable of 

reducing cell proliferation, A172, M059J, M059K, U87 and U251 cells were 

treated with a vehicle control, 50nM HC, 500nM HC, or 100nM Dex. Cell counts 

were performed every 24 hours for 4 days (Fig. 4.10). Growth rates were highly 

variable between cell lines. M059K cells had the largest increase in cell number, 

and the smallest increase was seen in U251 cells. A172, M059K, and U251 cells 

showed a significant inhibition of growth following Dex treatment, however, there 

was no significant difference in proliferation in the other three cell lines tested. 

 

4.2.10 Gcs do not induce cell cycle arrest within GBM cells 

To confirm if Gc could affect cell growth through cell cycle arrest, the cell lines 

were treated for 24 or 48 hours with Gc, then stained using propidium iodide as 

a marker for DNA content. Cells were analysed by flow cytometry (Fig. 4.11A), 

and Modfit software was used to calculate the proportion of cells in each cycle 

phase (Fig. 4.11B). None of the cell lines showed a significant accumulation of 

cells within any cell cycle phase following Gc treatment, confirming that Gc do 

not mediate their effects in GBM through induction of cell cycle arrest.  

 
Within the M059J cell line, however, there was a robust and reproducible 

population which consisted of cells labelled as Sub-G0. When analysing the 

propidium iodide staining, the fluorescence intensity of this population was half 

that of G1 cells, suggesting that this population contained 50% of the DNA 

content of G0/G1 cells.   
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Figure 4.11: Gc treatment does not induce cell cycle arrest in GBM cells. GBM cells 
were treated for 24 or 48 hours with 50nM HC, 500nM HC, 100nM Dex or a vehicle 
control. Cells were fixed, then treated with propidium iodide. Propidium iodide staining 
was analysed by flow cytometry. Gating was used to remove debris, and remove 
doublets from further analysis. Modfit software was used to quantify each cell cycle 
phase according to PI staining, as a marker of total DNA content. A) Representative 
images of gating and Modfit software are shown. B) The cell cycle phase of each cell 
line was analysed. Results shown are n=3, and error bars denote SEM. Statistical 
significance was tested using 2-way ANOVA with Dunnett’s multiple comparison test. 

  

Figure 3.11: Gc treatment does not induce cell cycle arrest in GBM cells. GBM cells were treated for 24 or 48
hours with 50nM HC, 500nM HC, 100nM Dex or a vehicle control. Cells were fixed, then treated with
propidium iodide. Propidium iodide staining was analysed by flow cytometry. Gating was used to remove
debris, and remove doublets from further analysis. Modfit software was used to quantify each cell cycle
phase according to PI staining, as a marker of total DNA content. A) Representative images of gating and
Modfit software are shown. B) The cell cycle phase of each cell line was analysed. Results shown are n=3, and
error bars denote SEM. Statistical significance was tested using 2-way ANOVA with Dunnett’s multiple
comparison test.
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Work by others has also identified a similar population within this cell line, and 

has assumed the cells to be apoptotic. Cells undergoing apoptosis will present 

with reduced DNA, however, as the mean fluorescence intensity of these cells 

was consistently half of what was seen in the G0/G1 cells, it could be 

hypothesised that these cells were instead a haploid population.  

 
Imaging of M059J cells throughout the work had not indicated a high proportion 

of apoptotic cells. In addition, as previously discussed, M059J cells contain a 

mutation within DNA-PKcs, a key component of the DNA repair machinery 

resulting in deletion. This was confirmed through western blotting and 

immunostaining of both M059J and M059K. DNA-PKcs was clearly expressed in 

M059K cells, but absent within M059J cells, and its expression was not induced 

through either IR or TMZ (Fig. 4.12A - B). Previous work has shown that DNA-

PKcs is phosphorylated during mitosis, and DNA-PKcs siRNA knockdown leads 

to an increase in chromosome misalignment, and multipolarity during mitosis 

(239). It is therefore possible, that as a consequence of these aberrations, cells 

exiting mitosis may contain a haploid proportion of chromosomes. To test this, 

cells were treated with colcemid to increase the proportion of cells in metaphase. 

Metaphase spreads were carried out to visualise chromosomes and imaged. 

Example images are shown (Fig. 4.12C). The number of chromosomes in each 

cell was quantified for both M059J and M059K cells (Fig. 4.12D). M059J cells 

contained a mean of 79.85 chromosomes, and M059K cells contained a mean of 

73.10 chromosomes. This is in line with previous ATCC data which has estimated 

the mean chromosome number in M059K cells as 75, however, there is no 

previous data to determine the mean chromosome number in M059J cells 

(ATCC). 
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Figure 4.12: M059J cells contain a heterogenous number of chromosomes, and 
display multiple nuclear abnormalities. DNA-PK deletion was confirmed in M059J 
cells, but not M059K cells using western blot (A), and ouluorescent staining (B). M059J 
and M059K cells were treated with colcemid to induce metaphase arrest, then harvested, 
and dropped onto slides to produce metaphase drops. These were stained with Hoescht, 
coverslips added, and imaged. A selection of representative images are shown (C), and 
total chromosomes counted (D). Untreated cells were fixed and stained with Hoescht, 
and cells were quantified for micronuclei, multiple nuclei, and multiple nuclear lobes (E). 
Scale bar denotes 20μm. Results shown are n=3, and error bars denote SEM.  
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Whilst there was no significant difference in mean chromosome number between 

the cell lines, there was a marked difference in distribution. M059K cells showed 

very little aberration from the mean chromosome number, however, M059J cells 

varied widely from the mean, with chromosome content ranging from 17 to 259 

chromosomes per cell. There also appeared to be a defined second cluster of 

M059J cells containing approximately 40 chromosomes. This population 

correlated with the sub-G0 peak seen in the cell cycle analysis, and confirmed 

this as a haploid population of cells, presumably produced through aberrant 

chromosome segregation during mitosis.  

 
Further aberrations, such as micronuclei and multiple nuclei were analysed in 

M059J and M059K cells (Fig. 4.12E). Whilst there was no significant difference 

in the number of micronuclei between both cell lines, M059J showed a trend 

towards an increased number of cells with micronuclei, and more micronuclei in 

cells in which they were present. M059J cells also showed an increased number 

of cells containing multiple nuclei. Together, these results confirm that M059J 

cells exhibit aberrant chromosome numbers, and multiple nuclear abnormalities, 

presumably due to the DNA-PK deficiency previously reported.  

 
Based on the cell growth and cell cycle analysis, it is possible that Dex is inducing 

a reduction in cell proliferation with long-term Gc treatment, however, on a short-

term basis of up to 48 hours, there is no effect on cell cycle. This would suggest 

that the initial transcriptional response is not inducing an immediate cell cycle 

arrest, which is then reducing therapeutic efficacy.  
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The final option of DE genes from the RNA sequencing data was then 

investigated; namely, whether Gc could induce differences in the DNA repair 

response. 

 

4.2.11 Gc treatment results in less DNA damage within GBM 
cells following treatment 

It is clear that Gc could be reducing cell proliferation on a long-term basis, 

however, comet assays were used to investigate whether Gc could also be 

affecting DNA repair following more acute Gc treatments, through the 

upregulation of DNA repair genes seen within the RNA-seq data. Comet assays 

were used to measure the extent of DNA damage within individual cells, to 

investigate if less DNA damage was present within Dex-treated cells 24 hours 

after treatment. Comet assays, also known as single cell electrophoresis, allow 

the visualisation of shorter, broken lengths of DNA, relative to the nucleus as a 

whole. Representative images are shown in Fig. 4.13A. This “tail” of broken DNA 

can be quantified as a relative marker of DNA damage (Fig. 4.13B). The tail 

length, multiplied by the DNA content of the tail, relative to the head, is known as 

the tail moment. OpenComet, a freely-available plug-in for ImageJ, was used to 

quantify the tail moment in an unbiased manner (Fig. 4.13C). 24 hours after both 

irradiation and TMZ, and a combination of both, both M059J and M059K cells 

treated with a vehicle control exhibit increased tail moment compared with those 

not subjected to either treatment. This confirms that both IR and TMZ resulted in 

increased DNA damage, 24 hours after treatment. 



 

 

110 

 

Figure 4.13: Dex induces active DNA repair in GBM cells following IR and TMZ, as 
measured by comet assay. A) M059J and M059K cells were subjected to irradiation 
(5Gy), TMZ (30μM), both, or left untreated, then incubated for 24 hours. B) DNA damage 
was quantified using a comet assay. Tail moment was used as a measure of DNA 
damage on a single cell basis. Average DNA damage for each treatment, measured as 
the tail moment, is shown in C). Scale bar denotes 100μm. Results shown are n=3, and 
error bars denote SEM. Statistical significance was tested using 2-way ANOVA with 
Dunnett’s multiple comparison test. * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001. 
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Figure 3.13: Dex induces active DNA repair in GBM cells following IR and TMZ, as measured by
comet assay. M059J and M059K cells were subjected to irradiation (5Gy), TMZ (30uM), both, or left
untreated, then incubated for 24 hours. DNA damage was quantified using a comet assay. Tail
moment was used as a measure of DNA damage on a single cell basis. Average DNA damage for
each treatment is shown in C). Scale bar denotes 100um. Results shown are n=3, and error bars
denote SEM. Statistical significance was tested using 2-way ANOVA with Dunnett’s multiple
comparison test.

A.

B.

DNA



 

 

111 

The largest amount of DNA damage was seen in cells treated with the 

combination therapy, which is to be expected. When cells were pre-treated 

overnight with Dex, however, there was a significant decrease in tail moment 

compared with the vehicle control across all treatments and across both cell lines. 

Further, there was no significant difference between the untreated Dex samples, 

and Dex samples following IR, TMZ or both. This suggests that, by 24 hours after 

IR or TMZ, cells pre-treated with Dex have significantly reduced DNA damage 

compared to those not pre-treated with Dex.  

 
This effect could occur through either a reduction in the damage incurred 

following IR or TMZ, through some sort of protective mechanism, or through an 

increase in DNA repair following induction of DNA damage. 

 

4.2.12 Selection of a robust, rapidly induced DNA damage 
marker 

In order to test the first possibility, that Gc were reducing the amount of DNA 

damage induced by IR or TMZ treatment, a reliable, rapidly induced marker of 

DNA damage was required. Three common markers include increased intensity 

and presence of nuclear foci for RAD51, 53BP1 and phosphorylation of H2AX 

(gH2AX) (240-245). Each three of these markers were tested to determine which 

would produce the most robust signal after a short 2hr treatment. 

 
As presented in Fig. 4.14 and 4.15, staining for all three markers was present. 

Staining for RAD51 was predominantly nuclear, with punctate staining evident in 

the absence of IR treatment (Fig. 4.14). Few cells stained for phosphorylated 

H2AX in the absence of IR, but there was a marked increase in staining intensity 
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in all cells following IR treatment (Fig. 4.14 and 4.15). 53BP1 staining, like RAD51 

was present in control and IR treated cells (Fig. 4.15), however, staining 

appeared to localise to foci following IR treatment. These observations were 

supported by quantification of the images (Fig. 4.16). Based on its specificity, it 

was decided that gH2AX was the most reliable marker for rapidly induced DNA 

damage. 

 

 

Figure 4.14: H2AX phosphorylation increases following IR within M059K cells. 
M059K cells were pre-treated overnight with 100nM Dex or a vehicle control, then 
subjected to 10Gy IR. After 2 hours, cells were fixed and stained for Rad51 (green) and 
gH2AX (red), and merged with Hoescht. Images shown are representative of one 
experiment.  
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Figure 4.15: 53BP1 accumulates at nuclear foci following IR within M059K cells. 
M059K cells were pre-treated overnight with 100nM Dex or a vehicle control, then 
subjected to 10Gy IR. After 2 hours, cells were fixed and stained for 53BP1 (green) and 
gH2AX (red), and merged with Hoescht. Scale bar denotes 20μm. Images shown are 
representative of two independent experiments.  
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Figure 4.16: Phosphorylation of H2AX is a robust, rapid marker of DNA damage. 
M059K cells were pre-treated overnight with 100nM Dex or a vehicle control, then 
subjected to 10Gy IR. After 2 hours, cells were fixed and stained for Rad51 and gH2AX 
(A), or 53BP1 and yH2AX (B). Total intensity mean grey value (left) and number of foci 
(right) were quantified. 10 randomly selected fields of view were analysed for each 
condition. Results shown are the mean of 1 (A) or 2 (B) experiments. Error bars denote 
SEM.  

Figure 3.17: Phosphorylation of H2AX is a robust, rapid marker of DNA damage. M059K cells were pre-treated
overnight with 100nM Dex or a vehicle control, then subjected to 10Gy IR. After 2 hours, cells were fixed and
stained for Rad51 and yH2AX (A), or 53BP1 and yH2AX (B). Foci and mean grey value were quantified. Results
shown are the mean of 1 experiment. Error bars denote SEM. 10 fields of view were analysed for each condition.
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4.2.13  Gc do not prevent induction of DNA damage within GBM 
cells 

M059J (Fig 4.17) and M059K (Fig 4.18) cells were pre-treated with Gc, then 

subjected to 5Gy IR or 30μM TMZ, or a combination of both. Cells were fixed 2 

hours after therapy, and stained using the antibody specific to phosphorylated 

H2AX, gH2AX. As one of the first responses to DNA damage, foci of gH2AX can 

be counted and used as an approximate readout for the number of breaks within 

the DNA of a cell. Representative images are shown (Fig 4.17A, 4.18A), and 

quantification of images have also been analysed (Fig. 4.17B, 4.18B). I carried 

out cell plating and treatment, and under my supervision, Sophie Williams fixed, 

stained and imaged samples as part of her undergraduate research project.  
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Figure 4.17: Dex pre-treatment does not alter gH2AX foci formation in M059J cells 
following IR, TMZ or both. M059J cells were pre-treated overnight with 100nM Dex or 
a vehicle control, then subjected to 5Gy IR, 30μM TMZ, or both combined. After 2 hours, 
cells were fixed and stained for YH2AX (green). Representative images are shown (A). 
The number of nuclear foci (B), and mean fluorescence intensity (C) were quantified. 
Scale bar denotes 20μm. Graphs show the average of 3 independent experiments, and 
error bars denote SEM. 5 fields of view were analysed within each experiment for each 
condition. 
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Figure 3.18: Dex pre-treatment does not alter yH2AX foci formation following IR, TMZ or both. M059J cells
were pre-treated overnight with 100nM Dex or a vehicle control, then subjected to 5Gy IR, 30uM TMZ, or both
combined. After 2 hours, cells were fixed and stained for YH2AX (green). Representative images are shown (A).
The number of nuclear foci (B), and mean fluorescence intensity (C) were analysed. Graphs show the average of 3
independent experiments. 5 fields of view were analysed within each experiment for each condition.
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Figure 4.18: Dex pre-treatment does not alter gH2AX foci formation in M059K cells 
following IR, TMZ or both. M059K cells were pre-treated overnight with 100nM Dex or 
a vehicle control, then subjected to 5Gy IR, 30μM TMZ, or both combined. After 2 hours, 
cells were fixed and stained for YH2AX (green). Representative images are shown (A). 
The number of nuclear foci (B), and mean fluorescence intensity (C) were quantified. 
Scale bar denotes 20μm. Graphs show the average of 3 independent experiments, and 
error bars denote SEM. 5 fields of view were analysed within each experiment for each 
condition. 
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Figure 3.19: Dex pre-treatment does not alter yH2AX foci formation following IR, TMZ or both. M059K cells
were pre-treated overnight with 100nM Dex or a vehicle control, then subjected to 5Gy IR, 30uM TMZ, or both
combined. After 2 hours, cells were fixed and stained for YH2AX (green). Representative images are shown (A).
The number of nuclear foci (B), and mean fluorescence intensity (C) were analysed. Graphs show the average of 3
independent experiments. 5 fields of view were analysed within each experiment for each condition.
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stranded breaks within DNA, however, TMZ primarily damages DNA through the 

addition of methyl groups. If unrepaired, this may ultimately result in formation of 

double stranded breaks after several rounds of unsuccessful cell division, but this 

damage would be expected to manifest later than the double stranded breaks 

directly caused by IR.  

 

gH2AX staining was therefore repeated 24 hours following TMZ treatment to 

confirm that double stranded breaks were formed, albeit at a later time point (Fig. 

4.19). 24 hours following 30μM TMZ treatment, there was an increase in both the 

number of foci, and the mean nuclear staining intensity of gH2AX. This confirmed 

that TMZ treatment did induce double stranded breaks, but at a later point than 2 

hours. Similarly to the IR results at 2 hours, there was no difference in the number 

of gH2AX foci following either vehicle or Dex treatment. The mean fluorescence 

intensity of the nuclei, however, was significantly reduced in M059K cells 

following Dex treatment. There was also a trend towards a reduction in the mean 

fluorescence intensity of M059J cells however, this difference did not reach 

significance within this cell line. It may be possible that by 24 hours, a reduction 

in cells displaying pan-nuclear gH2AX staining could be seen, suggesting that 

cells with catastrophic DNA damage have been reduced following Dex treatment 

with TMZ, although the longer timepoint would also allow for a transcriptional 

response and subsequent DNA repair.  
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Figure 4.19: Dex pre-treatment does not alter yH2AX foci formation following TMZ 
treatment. M059J and M059K cells were pre-treated overnight with 100nM Dex or a 
vehicle control, then subjected to 30uM TMZ. After 24 hours, cells were fixed and stained 
for YH2AX (green). Representative images are shown (A). The number of nuclear foci, 
and mean fluorescence intensity were analysed for M059J (B) and M059K (C) cells. 
Scale bar denotes 20μm. Graphs show the average of 3 independent experiments, and 
error bars denote SEM. 5 fields of view were analysed within each experiment for each 
condition. * = p ≤ 0.05. 

Figure 3.20: Dex pre-treatment does not alter yH2AX foci formation following TMZ treatment. M059J and
M059K cells were pre-treated overnight with 100nM Dex or a vehicle control, then subjected to 30uM TMZ. After
24 hours, cells were fixed and stained for YH2AX (green). Representative images are shown (A). The number of
nuclear foci, and mean fluorescence intensity were analysed for M059J (B) and M059K (C) cells. Graphs show the
average of 3 independent experiments. 5 fields of view were analysed within each experiment for each condition.
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Taken together, these results indicate that Gc do not prevent both IR and TMZ 

from inducing DNA damage, but instead increase activity of DNA repair 

pathways, resulting in significantly increased DNA repair by 24 hours following IR 

or TMZ. There has previously been no publications to link Gc treatment and 

effects on DNA repair, so multiple pathways were investigated to determine how 

Gc may function.  

 

4.2.14 Both GR and p53 regulate common genes 

The original RNA-seq pathway analysis highlighted a possible role in coregulating 

p53 effectors. P53 is considered the key regulator of DNA repair, as it is activated 

downstream of multiple DNA repair pathways (246). As a transcription factor, it 

can induce cell cycle arrest, and prevent apoptosis whilst damage is repaired. It 

is possible that GR may modulate p53 effects directly through tethering, or 

through modulation of p53-mediated genes. In addition, p53 has been suggested 

to increase GR repression of NFkB, potentially through increased recruitment of 

cofactors (247). By accessing publicly available ChIP-seq data, the aim was to 

assess the overlap between p53- and GR-bound genes. One of the limitations of 

using publicly available data is that it was limited to the use of data that has been 

made available from other researchers. Therefore, it was not possible to directly 

compare GR and p53 binding within a GBM, or indeed a brain cell line. Instead, 

data pertaining to cell lines for bone, an osteosarcoma cell line (U20S), and MDA-

MB-231, the triple-negative breast cancer cell line, were available. GR ChIP-seq 

data for both cell lines were acquired following treatment with 100nM Dex, for 

U2OS cells the treatment was for 1 hour, and MDA-MB-231 cells for 2 hours (234, 

248). For p53 ChIP-seq data, both cell lines were untreated (249, 250).  
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Figure 4.20: p53 and GR bind some common genes, based on ChIP-seq data. Using 
publicly available ChIP-seq data, GR and p53 binding sites were analysed within U20S 
cells (A-B), a bone cancer cell line, and MDA-MB-231 cells, a triple negative breast 
cancer cell line (C-D). GR and p53 genes were compared to find commonly bound genes 
(A & C).The genes identified within each subset were analysed for potential effects 
through Enrichr pathway analysis. The top 3 pathways for each common subset are 
shown. GR and p53 binding at commonly bound genes were visualised using the UCSC 
browser, and show GR and p53 are bound at different sites within the gene (B & D). 
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Within both cell lines, there was some overlap between GR and p53 bound genes 

(Fig. 4.20A &C). When GR and p53-bound genes were analysed using Enrichr 

pathway analysis, these genes were enriched for p53 effectors within both cell 

lines. This indicates that, rather than p53 regulating a small subset of anti-

inflammatory or metabolic genes which are primarily regulated by GR, instead 

GR is binding a subset of p53, DNA repair-related genes. In both cell lines, these 

commonly bound genes include DDIT4 and CDKN1A, which were both 

upregulated by Dex within M059K cells (section 4.2.7). Visualising gene tracks in 

UCSC for co-bound genes indicated that the two transcription factors were likely 

working independently at different regulatory regions (Fig. 4.20B & D). This 

suggested that GR perhaps is not working directly in cooperation with p53, but 

rather they are both regulating the same subset of genes independently. 

 

4.2.15 GR effects on radioresistance and chemoresistance are 
not p53 dependent  

It is clear that GR and p53 are both capable of altering expression of a common 

subset of genes. To test whether p53 expression is required to mediate the Gc 

effect on DNA repair, p53 was knocked down using 4 different targeting siRNAs 

(section 3.13), compared with the AllStars siNT control. Efficiency of the 

knockdown was evaluated using western blotting (Fig. 4.21A), alongside siRNAs 

to target DNA-PKcs and Rad51. These results were quantified (Fig. 4.21B). All 4 

p53 siRNAs showed high level of knockdown, with expression ranging between 

10.4% and 14.4% normalised against p53 expression in the siNT treated control 

cells.  
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Figure 4.21: p53 knockdown does not remove the protective effect of Dex upon 
irradiation. Efficiency of knockdown was analysed using western blot (A). These results 
were quantified to determine efficiency (B). M059K cells were treated for 6 days using 
each siRNA then survival analysed by MTT assay (C). M059K cells were treated for 24 
hours using siRNA, then treated overnight with Dex or vehicle. Cells were then subjected 
to IR, and survival analysed by MTT assay (D - E). Western blot images are 
representative of 2 independent experiments, and quantification indicates the mean of 2 
independent experiments. MTT results for p53 7 and 8 are the mean of 3 independent 
experiments, and p53 9 and 13 are the results of 2 independent experiments. Statistical 
significance was tested using 2-way ANOVA with Dunnett’s multiple comparison test. * 
= p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001. 
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Figure 3.22: p53 knockdown does not remove the protective effect of Dex upon irradiation. p53 was
knocked down using 4 targeting siRNA. Efficiency of knockdown was analysed using western blot (A). These
results were quantified to determine efficiency (B). M059K cells were treated for 6 days using each siRNA then
survival analysed by MTT assay (C). M059K cells were treated for 24 hours using siRNA, then treated overnight
with Dex or vehicle. Cells were then subjected to IR, and survival analysed by MTT assay (D - E). Western blot
results are representative of 2 independent experiments, and MTT results for p53 7 and 8 are the mean of 3
independent experiments, and p53 9 and 13 are the results of 2 independent experiments. Statistical
significance was tested using 2-way ANOVA with Dunnett’s multiple comparison test.
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Whilst the level of knockdown was consistent, survival of cells following treatment 

was variable between siRNAs. Both siRNA 7 and 13 led to low cell number 

survival, whilst treatment with siRNA 8 and 9 led to no difference in survival (Fig. 

4.21C). Each siRNA was used to knock down p53 in M059K cells, cells irradiated, 

then survival was measured using MTT assay. P53 knockdown did not abrogate 

the protective effect of Dex, as Dex addition led to significantly increased survival 

following doses of 5 and 10Gy when treated with p53 7 and 8 (Fig. 4.21D – E). 

P53 9 and 13 siRNA were only tested twice, but siRNA 9 demonstrated a similar 

effect as siRNAs 7 and 8. This suggests p53 is not required for Gc to regulate 

DNA repair.  

 
Therefore, the increase in survival caused by Dex addition was dependent on 

GR, but independent of p53. The genes regulated by both p53 and GR may 

contribute to a DNA repair phenotype, however, p53 is not required for this effect, 

suggesting GR does not affect transcription through tethering to p53 at gene 

promoters. Instead, based on the ChIP-seq data, it was hypothesised that GR 

was capable of directly binding to, and altering expression of DNA repair genes, 

which may also be modulated by p53 through independent mechanisms. By 

increasing expression of these genes, Gc may ‘prime’ cells to respond to DNA 

damage, allowing this damage to be repaired more quickly, and more effectively. 
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4.2.16 GR effects on radioresistance and chemoresistance are 
not DNA-PK dependent  

The two main pathways of double strand break repair are NHEJ and HR. If, as 

shown, GR is able to increase active DNA repair within GBM cells, it may act 

through upregulation of one of these pathways. As a critical component of the 

NHEJ pathway, increased DNA-PK activity may lead to the increase in DNA 

repair seen with Gc addition. In contrast to this however, M059J cells showed the 

same protective effect of Dex treatment, suggesting DNA-PK was not required 

for Dex to increase survival. As single cell clones derived from the same tumour, 

M059J and M059K cells are suggested to be genetically identical except for the 

frameshift mutation within the DNA-PKcs gene, however, it is likely that through 

continued culture, one or both cell lines may have picked up other, unpublished 

mutations. In order to confirm that the protective effect of Dex is DNA-PK 

independent, siRNA was used to knock down DNA-PKcs expression within 

M059K cells. Four siRNA were used to knockdown DNA-PKcs, for 48 hours, and 

the efficacy of knockdown was analysed by western blot (Fig. 4.22A).  

 
When targeting DNA-PKcs, siRNA 6 and 8 showed the highest knockdown 

efficiency (Fig. 4.22 A &B). Treatment with both siDNA-PKcs 6 and 8 lead to a 

reduction in M059K cell survival (Fig. 4.22C). Both DNA-PK siRNA-treated 

samples showed a similar pattern to the siNT control, with Dex leading to 

significantly increased survival (Fig. 4.22D - E). These results therefore confirm 

the results seen within M059J cells, that DNA-PK is not critical for Gc-controlled 

DNA repair. 
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Figure 4.22: DNA-PKcs knockdown does not affect the protective effect of Dex 
upon irradiation. DNA-PKcs was knocked down using 4 targeting siRNA. Efficiency of 
knockdown was analysed using western blot (A). These results were quantified to 
determine efficiency (B). M059K cells were treated for 6 days using each siRNA then 
survival analysed by MTT assay (C). M059K cells were treated for 24 hours using siRNA, 
then treated overnight with Dex or vehicle. Cells were then subjected to IR, and survival 
analysed by MTT assay (D - E). Western blot images are representative of 2 independent 
experiments, and quantification indicates the mean of 2 independent experiments. MTT 
results shown are the average of 3 independent experiments. Statistical significance was 
tested using 2-way ANOVA with Dunnett’s multiple comparison test. * = p ≤ 0.05, ** = p 
≤ 0.01, *** = p ≤ 0.001. 
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Figure 3.23: DNA-PKcs knockdown does not affect the protective effect of Dex upon irradiation. DNA-PKcs
was knocked down using 4 targeting siRNA. Efficiency of knockdown was analysed using western blot (A).
These results were quantified to determine efficiency (B). M059K cells were treated for 6 days using each
siRNA then survival analysed by MTT assay (C). M059K cells were treated for 24 hours using siRNA, then
treated overnight with Dex or vehicle. Cells were then subjected to IR, and survival analysed by MTT assay (D -
E). Western blot results are representative of 2 independent experiments, and MTT results shown are the
average of 3 independent experiments. Statistical significance was tested using 2-way ANOVA with Dunnett’s
multiple comparison test.
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4.2.17 Rad51 knockdown may affect radiosensitivity following 
Gc treatment 

As the protective effects of Gc are unlikely to act through increased NHEJ, the 

next aim was to ascertain whether GR could act through HR, the other commonly 

used DNA repair pathway for double stranded breaks. To test this, siRNA was 

once again used to knock down Rad51, a key component of the HR pathway (Fig. 

4.23). Several Rad51 antibodies were used to attempt to assess the efficacy of 4 

Rad51 siRNA using western blotting, however, none of the antibodies tested 

produced a signal to quantify the efficacy (Fig. 4.23A). Therefore, all 4 siRNA 

were tested for an effect on survival following IR with and without Dex. All 4 siRNA 

produced a reduction in cell survival when compared with the siNT control (Fig. 

4.23B). siRNA 8 treatment led to a survival of just 5.5% compared with control 

without IR. siRNA 7 and 9 reduced survival to 12.2% and 14.3% respectively. 

siRNA 6 had a survival of 40.7%, and, when Rad51 was knocked down with this 

siRNA, Dex did show a protective effect, however, this did not reach significance 

(Fig. 4.23D). This effect was not seen with the other siRNA tested, however, given 

the significant reduction in cell survival, it is not possible to determine if the lack 

of protective effect is due to affecting GR function, or due to the low proportion of 

surviving cells (Fig. 4.23B). 
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Figure 4.23: Rad51 knockdown does not affect the protective effect of Dex upon 
irradiation. Rad51 was knocked down using 4 targeting siRNA. Efficiency of knockdown 
was analysed using western blot (A). M059K cells were treated for 6 days using each 
siRNA then survival analysed by MTT assay (B). M059K cells were treated for 24 hours 
using siRNA, then treated overnight with Dex or vehicle. Cells were then subjected to IR, 
and survival analysed by MTT assay (C – D). Western blot results are representative of 
2 independent experiments, and MTT results shown are the average of 3 independent 
experiments. Statistical significance was tested using 2-way ANOVA with Dunnett’s 
multiple comparison test. * = p ≤ 0.05, ** = p ≤ 0.01. 
  

Figure 3.24: Rad51 knockdown does not affect the protective effect of Dex upon irradiation. Rad51 was
knocked down using 4 targeting siRNA. Efficiency of knockdown was analysed using western blot (A). M059K
cells were treated for 6 days using each siRNA then survival analysed by MTT assay (B). M059K cells were
treated for 24 hours using siRNA, then treated overnight with Dex or vehicle. Cells were then subjected to IR,
and survival analysed by MTT assay (C – D). Western blot results are representative of 2 independent
experiments, and MTT results shown are the average of 3 independent experiments.
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Based on these results, it is possible that Rad51 may be involved in the effects 

of Gc treatment, however, the results are not reliable enough to confirm this. 

Further work is therefore required to investigate a potential relationship between 

GR and Rad51. A key limitation, however, has been the lack of a specific antibody 

for Rad51, so it will be necessary to use other mechanisms to try to investigate 

this. 

 

4.2.18 Exploring non-transcriptional effects of Gc on DNA 
repair mechanisms 

As previously discussed, GR is capable of altering cell phenotype through both 

genomic mechanisms, which require new transcription and non-genomic 

mechanisms which occur rapidly through direct protein-protein interactions. 

Previous work has investigated GR binding to other proteins using proteomics 

analysis (28). A549 cells were treated for 10 minutes with 100nM Dex, GR-protein 

complexes isolated and then analysed by mass spectrometry. Several DNA 

binding and repair pathways were highlighted within the analysis (Table 4.3). Of 

particular interest was the fact that GR can bind directly to DNA-PKcs, H2AX, and 

TRIM28, amongst other DNA repair related proteins. This suggests that GR is 

capable of binding in complex with proteins from DNA repair pathways.  
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Table 4.3: GR is capable of binding proteins relevant to DNA repair. Proteins bound 
to GR within proteomics analysis of A549 cells were entered into Enrichr. The proteins 
relevant to DNA repair are listed below.   
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To investigate whether these protein-protein interactions were related to the DNA 

repair genes indicated within the RNA-seq, GR interacting proteins, and GR 

target genes from the DNA damage/repair ontology were uploaded into String, a 

software tool which maps interactions between proteins (Fig. 4.24A) (251). There 

was no direct overlap between the genes regulated by GR and GR bound 

proteins, however, they did regulate closely related proteins. Both the 

transcriptomics and proteomics confirmed GR can increase expression of DNA 

repair genes, and may directly interact with DNA repair proteins. This may allow 

GR to alter DNA repair through a combination of rapid non-genomic mechanisms, 

and slower, but longer lasting genomic mechanisms. 

 
As Rad51 was highlighted as a possible effector in Gc induced radioresistance, 

the DNA repair-related GR transcriptome and interactome were compared with 

the previously published RAD51 interactome (Fig. 4.24B). RAD51 itself was not 

bound by GR, and there were no overlaps between the RAD51 interactome and 

GR. Interestingly, however, the DNA-PK complex, of which all 3 components 

were bound by GR, can antagonise the action of Rad51. If GR were capable of 

using post-translational modifications to alter DNA-PK function, this would drive 

cells towards Rad51, and thus HR for DNA repair. Previously published work has 

indicated that DNA-PK inhibition can lead to an increase in Rad51 function (252). 

The possible interaction between Rad51 and GR therefore requires further 

investigation. 
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Figure 4.24: GR binds to, and alters expression of, 2 distinct subsets of proteins. 
A) Proteins bound by GR in A549 cells (white), and DE genes related to DNA repair 
(black), form 2 distinct clusters when analysed using String, a database which can map 
protein-protein interactions. Many of these proteins are closely related, shown as 
multiple joining lines. B) Both gene lists were then overlaid with the Rad51 interactome 
(grey). 
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4.2.19 Assessing the effects of selective GR modulators on 
GBM cell survival 

For many years, there has been a popular concept that positive effects of Gc are 

mediated through repression of inflammatory genes, whilst activation of genes is 

responsible for potentially damaging side effects, such as metabolic effects. 

Through designing GR ligands which could maintain transrepressive effects, but 

limit transactivation, it would be possible to develop effective Gc, but with reduced 

side effects. This is, of course, a simplification of a complex signalling system, 

and selective GR ligands have yet to fulfil their initial promise. Within the context 

of DNA repair as a side effect, however, these ligands have not been tested.  

 
Selective GR ligands were screened to determine if they could retain 

radiosensitivity in GBM, but still retain the anti-inflammatory effects. Three ligands 

were selected to test alongside Dex; these ligands were Compound A, 

Deflazacort and Loteprednol Etabonate.  

 
The structures of each ligand are shown (Fig. 4.25A). CpA is perhaps the most 

well-characterised selective GR ligand. A synthetic analogue of a plant-derived 

compound, CpA has previously been shown to bind GR, and induce DNA binding, 

however CpA addition did not induce GR dimerization, and was shown to have a 

reduced ability to transactivate key GR target genes (253-255).  

 
Deflazacort is similar in structure to prednisolone. In vitro studies have shown 

effective inhibition of cytokine release from immune cells, and efficacy has been 

shown in chronic inflammatory conditions, such as rheumatoid arthritis (256-258). 

On the other hand, Deflazacort has been shown to exhibit reduced effects on 

calcium and carbohydrate metabolism, suggesting specificity of its effects on GR 
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function (259, 260). Its precise mechanism of action, however, has not been 

studied to the same extent as CpA. 

 
Finally, Loteprednol etabonate (LE) contains an ester at carbon-20, instead of the 

ketone found in prednisolone (261). This results in rapid de-esterification 

following application, resulting in a much lower half life. Within the clinic, LE is 

commonly used in the treatment of ophthalmic inflammatory conditions, due to its 

high efficacy, and low effects on circulating Gc levels (262).  

 
The premise of selective ligands is to reduce the activation of GREs, such as 

TAT3-luciferase, whilst retaining the tethering effects of GR, such as reduction of 

NFκB binding sites, for example NRE-luciferase. Therefore, cells were 

transfected with a TAT3-luciferase, or NRE-luciferase, alongside Renilla as a 

housekeeping control.  

 
Dex was included in both experiments as a positive control, and even at low 

doses of Dex treatment, there were large increases in TAT3 activation, indicating 

that GR is binding directly to DNA at the GRE, resulting in activation of GR target 

genes (Fig. 4.25B). This response was markedly reduced with Compound A 

addition, slightly reduced with Deflazacort, however, the response following LE 

addition was comparable to the Dex response. This suggested that Compound A 

was the most selective ligand, followed by Deflazacort.  
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Figure 4.25: Selective GR ligands exhibit variable selective effects. A) Structures of 
3 commercially available selective GR ligands (A). B) M059K cells were transfected with 
TAT3-luciferase and Renilla, then treated overnight with increasing doses of each ligand. 
TAT3 activation, measured as luciferase activity was analysed, relative to Renilla. C) 
Cells were pre-treated with selective ligands, then treated overnight with TNF to induce 
NRE activation. Luciferase activity was quantified, relative to Renilla. (C). Results shown 
are the mean of 3 independent experiments. Error bars denote SEM.   

Figure 3.29: Selective GR ligands exhibit variable selective effects. Structures of 3 commercially available
selective GR ligands (A). M059K cells were transfected with TAT3-luciferase and Renilla, then treated
overnight with increasing doses of each ligand. TAT3 activation, measured as luciferase activity was analysed,
relative to Renilla (B). Cells were pre-treated with selective ligands, then treated overnight with TNF to induce
NRE activation. Luciferase activity was quantified, relative to Renilla. (C). Results shown are the mean of 3
independent experiments. Error bars denote SEM.
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It was also important, however, to determine if the selective ligands also retained 

their transrepressive effects. Therefore, NFkB was activated through TNF 

addition, and cells were treated with selective ligands. As shown for Dex, the 

activation of NRE was reduced, suggesting that activated GR was capable of 

repressing NFκB activity (Fig. 4.25C). NFκB was activity was reduced following 

addition of each selective ligands, although higher doses were required of 

Compound A to supress NRE activity.  

 
This system is clearly more basic than transcription under physiological 

conditions, as GR binding sites are under the control of multiple factors, such as 

chromatin availability, availability of transcriptional machinery, and the relative 

abundance of other transcription factors. As a broad initial assay, however, it 

does suggest that the selective ligands do show variability in the activation of 

TAT3, but all three ligands showed effective repression of NRE activation. 

 

4.2.20 Compound A does not induce radioresistance within 
M059K cells  

In order to determine if a reduction in transactivation could prevent the protective 

effects of Gc, M059K cells were treated with various doses of each selective 

ligand, alongside Dex as a positive control. Cells were then treated with 5Gy or 

10Gy IR, and survival was analysed by MTT assay as previously described. Dex 

treatment led to significantly increased cell survival at doses of between 100nM 

and 10μM following 10Gy IR (Fig. 4.26A). Similarly, LE pre-treatment also 

resulted in increased cell survival, at each tested dosage (Fig. 4.26B), confirming 

it is not selective and would not be an appropriate ligand for future use.  
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Figure 4.26: Selective GR ligands have variable effects on GBM cell survival 
following IR. M059K cell survival was analysed following treatment with doses of 10nM 
– 10μM of Dexamethasone (A), Loteprednol Etabonate (B), Deflazacort(C) and 
Compound A (D). Survival was assessed following doses of 0Gy, 5Gy and 10Gy IR. 
Results shown are the mean of 3 independent experiments. Error bars denote SEM. 
Statistical significance was tested using 2-way ANOVA with Dunnett’s multiple 
comparison test. * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001, and **** = p ≤ 0.0001.  
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Deflazacort also showed increased survival, however, this occurred only at higher 

concentrations, above 1μM, suggesting it is weakly selective and does not induce 

radioresistance to the same extent (Fig. 4.26C). Finally, however, Compound A 

did not increase cell survival at any concentration, at either dosage of IR (Fig. 

4.26D). This suggests that by reducing GR’s transactivation function it is possible 

to prevent the resistance seen with Dex treatment. This is encouraging, 

suggesting that selective ligands may be a viable alternative to Dex treatment 

within patients.  

 

4.2.21 Compound A does not induce resistance to TMZ in 
M059K cells 

After determining how the selective ligands alter the response to radiation, it was 

then necessary to determine if they altered the response to TMZ. Cells were once 

again pre-treated with increasing doses of Dex as a positive control, and as 

expected, Dex pre-treatment led to significantly increased survival following both 

30μM and 300μM TMZ (Fig. 4.27A). Once again, LE exhibited a very similar 

response to Dex, and increased survival with doses of both 30μM and 300μM 

TMZ (Fig. 4.27B). Pre-treatment of 100nM and 300nM Deflazacort resulted in 

significantly increased survival when treated with 30μM TMZ, however the effect 

was much more reduced than that seen with Dex and LE (Fig. 4.27C). Compound 

A resulted in no significant increase in cell survival, suggesting it does not exert 

chemoresistance (Fig. 4.27D). 
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Figure 4.27: Selective GR ligands have variable effects on GBM cell survival 
following TMZ. M059K cell survival was analysed following treatment with doses of 
10nM – 10μM of Dexamethasone (A), Loteprednol Etabonate (B), Deflazacort (C), and 
Compound A (D). Survival was assessed following doses of 30μM and 300μM. Results 
shown are the mean of 3 independent experiments. Error bars denote SEM. Statistical 
significance was tested using 2-way ANOVA with Dunnett’s multiple comparison test. * 
= p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001.  
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4.2.22 Selective ligands do not transactivate expression of DNA 
repair genes, but reduce expression of proinflammatory genes 

The effects of selective ligands on expression of a number of GR target genes 

was then analysed through qPCR (Fig. 4.28). As LE had shown a protective effect 

on M059K cell survival, similar to that seen using Dex, it was not taken forward 

for further analysis. M059K were treated with doses of 100nM and 1μM of Dex, 

CpA, or Deflazacort, or a vehicle control, for 4 hours. Expression of DDIT4 and 

CDKN1A was analysed, as both genes were upregulated within the RNA-seq 

data, and have both been linked to therapeutic resistance in GBM (Fig. 4.28A). 

Dex treatment led to an increase in expression of both genes, reaching 

significance at a dose of 1μM. CDKN1A expression was not increased compared 

to the vehicle control, following either CpA or Deflazacort treatment. DDIT4 

expression was increased following Dex treatment, however, this did not reach 

significance. Expression was also not significantly increased following either CpA 

or Deflazacort. A repeat of this experiment over a longer 6 or 8hr timepoint might 

generate more robust induction by Dex and therefore be a better comparison. 

 
The ability of selective ligands to repress transcription was also tested through 

analysis of IL6 and IL8, two genes previously demonstrated as being 

downregulated within the RNA-seq data. Expression of both IL6 and IL8 were not 

highly expressed, when CT values were analysed (data not shown). There was 

also little difference between the vehicle treated, and Dex treated samples when 

the samples were normalised (Fig. 4.28B). In order to induce sufficient 

expression in vehicle treated samples, cells were treated with TNF for 1 hour prior 

to ligand addition (Fig. 4.28C). Expression of both IL6 and IL8 were markedly 

increased following TNF addition. Expression was repressed following Dex 
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addition, and this reached significance for IL6. Both CpA and Delfazacort 

repressed expression of IL6 and IL8, however, this did not reach significance. It 

is possible, however, that higher doses could reach significance. 

 

Figure 4.28: Selective GR ligands do not induce expression of DNA repair genes, 
but repress expression of TNF-induced IL6 and IL8. M059K cells were treated for 4 
hours with 100nM or 1μM of Dex, CpA, or Deflazacort, or a vehicle control. RNA was 
extracted and expression of upregulated (A), and downregulated (B) GR genes was 
analysed, relative to GAPDH. C) M059K cells were treated for 1 hour with TNF (10ng/ml) 
then treated for 4 hours with 100nM or 1μM of each ligand, or a vehicle control. Results 
shown are the mean of 3 independent experiments. Error bars denote SEM. Statistical 
significance was tested using 2-way ANOVA with Dunnett’s multiple comparison test. * 
= p ≤ 0.05.  

Figure 3.32: Selective GR ligands do not induce expression of DNA repair genes, but repress expression of TNF-
induced IL6 and IL8. M059K cells were treated for 4 hours with 100nM or 1uM of Dex, CpA, or Deflazacort, or a
vehicle control. RNA was extracted and expression of upregulated (A), and downregulated (B) GR genes was
analysed, relative to GAPDH. C) M059K cells were treated for 1 hour with TNF (10ng/ml) then treated for 4 hours
with 100nM or 1uM of each ligand, or a vehicle control. Results shown are the mean of 3 independent
experiments. Error bars denote SEM. Statistical significance was tested using 2-way ANOVA with Dunnett’s
multiple comparison test.
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The action of the selective ligands appear promising, as they appear to reduce 

expression of transactivation genes, many of which may be affecting treatment 

resistance, but appear to function similarly to Dex in repressing expression of pro-

inflammatory genes. Clearly, these results are based on analysis of only 4 genes, 

and a much larger panel of genes would need to be analysed to confirm these 

effects. An RNA-seq experiment comparing genome wide responses is planned 

for future work. In addition, research will be required to investigate the effects of 

selective ligands on the tumour microenvironment as a whole to determine their 

efficacy in reducing oedema. Overall, however, this work has identified a novel 

mechanism of Gc action, and emphasises the complex mechanisms by which Gc 

can exert effects. Caution must therefore be taken with their use, until these 

effects can be fully understood.  
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4.3 Discussion 

Within GBM, Gc have long been assumed to reduce inflammation through effects 

on the tumour microenvironment, and on the endothelial cells comprising the 

blood brain barrier (181). In light of this, the direct effects of Gc on the GBM cells 

themselves have perhaps been underestimated. Therefore, the aim of this 

research was to study the tissue-specific effects of Gc within GBM cells. To 

achieve this, a number of GBM cell lines were utilised. The use of cell lines within 

the study of GBM has been controversial, as GBM is, in itself, a highly 

heterogenous disease (263, 264). There is also an inevitable genetic and 

phenotypic drift when cells are maintained in culture over long periods. Within the 

context of our work, the aim was to investigate effects between Gc treatments, 

so a homogenous population was necessary to make differences between 

treatments clear. Any conclusions which appeared to suggest a functional effect 

could then be investigated using primary GBM cell lines, and primary tissue. The 

aim was to investigate the basic cellular biology of Gc within GBM cell lines, and 

given that Gc primarily affect cell function through the regulation of transcription, 

RNA-seq was used as an unbiased approach to identify pathways regulated by 

Gc within GBM.  

 
The initial work confirmed that GR is expressed within both primary GBM tissue, 

and the GBM cell lines tested. Further, GR expression also appears to have a 

significant effect on cell survival within GBM, further confirming the importance of 

understanding GR function within GBM. 

 
To elucidate the effects of Gc on GBM cell function, it was determined that within 

four of the five cell lines tested, Gc pre-treatment was able to induce resistance 
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to either IR, TMZ, or a combination of both. The effect was most pronounced 

within M059J and M059K cells, as the other three cell lines tested showed higher 

resistance to both radiotherapy and TMZ treatment, which made it difficult to 

identify any potential differences in survival. This protective effect has never 

previously been reported within GBM.  

 
Within other cancer types, Gc have been suggested both as a radiosensitiser and 

a mechanism of inducing resistance (265). Many of these results may be due to 

differences in effects between tissues, but some conflict even within the same 

cancer type. Indeed, previous work within three murine astrocytoma cell lines 

suggested Dex increased cell death following IR, and increased γH2AX staining 

30 minutes after 5Gy IR (266). Alternatively, however, earlier manuscripts had 

shown that within a human astroctyoma cell line, prior treatment with 100nM Dex 

for 8 hours was sufficient to reduce cell death caused by a variety of 

chemotherapeutics, although this did not include TMZ. This was suggested to act 

through upregulation of BCL-xL (267).  

 
Once it was confirmed that Dex was having a protective effect, it was necessary 

to determine how these effects were being exerted. As previously mentioned, 

there is a complex network between nuclear receptors, and it cannot always be 

assumed that ligands are acting through their primary receptor. It was determined 

that MR, but not PR, was expressed within GBM cells. In light of the potentially 

harmful effects of Dex within GBM patients, recent research has been focused 

on investigating the effects of progesterone, and its receptor, PR (268, 269). 

Therefore, PR expression within glioma tumours and GBM cell lines was also 

assessed. Both glioma tissue, and all GBM cell lines tested, were uniformly 
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negative for PR expression. This does not rule out progesterone as a potential 

therapeutic; lack of expression on GBM cells may rule out potential side-effects 

on tumour cells, but expression within immune cells in the tumour 

microenvironment could allow for similar anti-inflammatory effects as seen with 

Gc treatment. Further work is ongoing to characterise the response of GBM 

tumours to progesterone treatment as part of an ongoing collaboration. 

 
MR, meanwhile, is capable of binding some Gc, such as cortisol, with higher 

affinity than GR. Therefore, in studying GR action, it is necessary to identify any 

effects which may be mediated through MR binding. Both glioma tissue and all 

five GBM cell lines showed MR expression. Overall, this work suggests that 

glioma tissue, and our cell lines, may be classified as GR and MR positive, and 

PR negative.  

 
RU486 was used to determine which nuclear receptors were necessary for Dex 

function within GBM. RU486 is an agonist for PR and antagonist for GR. As PR 

was not expressed within M059K cells, and progesterone treatment did not affect 

GBM cell survival, any effects of RU486 will likely be due to its antagonism of 

GR. Pre-treatment with RU486 reduced Dex-mediated survival, and it can 

therefore be concluded that the effects of Gc on GBM cell survival were GR-

mediated. This was confirmed through the knockdown of GR expression through 

siRNA, which showed that GR expression was required for Dex to increase GBM 

cell survival.  

 
As a final control, it would be important to antagonise MR action as a final 

confirmation that MR was not necessary for Gc-mediated therapeutic resistance. 
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This could be achieved through the use of spironolactone, an MR antagonist, 

which could be used as a pre-treatment in the same method as RU486.  

 
It was necessary to narrow the 5 cell lines used until this point to one cell line for 

the RNA sequencing. M059K cells were chosen, as this cell line seemed 

representative of the other cell lines used, and by carrying out other experiments 

in parallel with M059J cells, it was still possible to continue work to investigate a 

possible role of DNA-PK in the GR response. 

 
DNA-PKcs has also been shown to have functional relationships with a number 

of nuclear receptors. Androgen receptor (AR) can induce expression of DNA-

PKcs following IR, and DNA-PKcs depletion led to a decrease in AR 

transcriptional activity (122, 270). Androgens also increased DNA-PK activity, 

allowing for a direct relationship between a nuclear receptor and DNA repair. 

DNA-PK also appears to have a relationship with the oestrogen receptor, initially 

indicated by the observation that DNA-PK was capable of phosphorylating ERα, 

resulting in increased ER activation (271). There is very limited evidence for a 

possible relationship between GR and DNA-PKcs, except that DNA-PK was 

shown to phosphorylate rat GR over 20 years ago (272). It is therefore entirely 

possible that a functional relationship may exist between the 2 proteins, however, 

this has yet to be investigated.  

 
Bulk RNA-seq was originally intended to provide a population control for the 

single cell RNA-seq work described in the next chapter, but also to gain an 

unbiased overview of GR transcriptional function within GBM cells. There are a 

multitude of freely-available datasets analysing the genome-wide GR response 

within a large range of both primary tissue and cancer cell lines, however, none 
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yet exist within a GBM cell line. Given that GR function within cells is determined 

by the chromatin architecture of the tissue in question, and effects can be vastly 

different depending on the cell type, it was critical to investigate GR effects within 

GBM cells.  

 
 The bulk RNA-seq results were validated using qPCR for four Gc regulated 

genes. All four genes showed a dose- and affinity-dependent increase in 

expression following Gc treatment. Interestingly, although the 500nM HC and 

100nM Dex doses were matched by potency, Dex still led to a larger increase in 

expression, suggesting that even when doses were matched, the higher affinity 

ligand still increased expression to a higher degree. Expression was tested in 

M059K cells, to validate the RNA-seq, but was also tested in M059J cells in 

parallel. Lack of DNA-PKcs expression does not appear to affect expression of 

GR target genes, suggesting that it is not required for genomic GR actions. 

 
From the RNA-seq results, and the associated pathway analysis, it is clear that 

Gc induce a robust anti-inflammatory phenotype, through the downregulation of 

proinflammatory mediators, such as IL6, IL11 and IL1B, and the upregulation of 

anti-inflammatory genes, such as NFKBIA, IL6R, and GILZ. These alterations in 

the cytokine milieu may result in the suppression of damage to the blood brain 

barrier. The literature surrounding the role of the immune system within GBM is 

plentiful, and beyond the scope of this thesis, however, IL6 and IL1β have both 

been associated with poor survival within GBM (273). IL6 expression is 

associated with increased macrophage activation within GBM, and a selective 

IL6 knockout within endothelial cells led to increased survival in vivo (274). IL6 is 

also thought to support a cancer stem cell phenotype within GBM. Therefore, the 
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downregulation of these cytokines, and an upregulation of anti-inflammatory 

mediators may be considered beneficial within the GBM tumour (275). It is 

possible that Gc may reduce oedema within the tumour through direct action on 

GBM cells, alongside possible anti-inflammatory effects on immune cells within 

the tumour microenvironment and effects on the endothelial cells within the 

blood-brain barrier. Further work is clearly required in a more physiologically 

relevant system which can include the wider microenvironment, including 

endothelial cells and macrophages/microglia in order to ascertain the importance 

of these anti-inflammatory effects on the tumour cells themselves. It is possible 

that these effects are swamped by the effects on Gc on the other cell types, or 

indeed they may work in synergy to reduce inflammation and decrease the 

permeability of the blood-brain barrier.  

 
The effects of Gc on the immune response within GBM are not surprising, 

however, the p53 effectors and prevalence of DNA repair and anti-apoptosis 

pathways were unexpected. All of the genes which made up this signature had 

previously been identified as differentially expressed in response to Gc, however, 

because of the complex levels of GR regulation, this does not necessarily mean 

that the gene is expressed within any particular tissue in response to Gc. A 

literature search did not indicate that this DNA repair signature had previously 

been identified within any other cancer cell line. The upregulation of these genes 

had a clear link to treatment sensitivity, and the role of these genes was therefore 

investigated further. 

 
The expression of a number of the identified GR target genes was analysed using 

the GlioVis database, a freely available tool to analyse expression data from a 
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number of large datasets (220). Data from TCGA datasets was used, but limited 

to RNA-seq, rather than microarray data. This was used to limit samples to those 

with as high-quality data as possible, however, this was offset by a lower number 

of samples, particularly for the normal brain tissue. This is an important caveat 

for comparing expression data. It is also important to note that this expression 

data was derived from RNA from tumour sections, which may contain a variety of 

cells, including tumour cells, but also endothelial cells and immune infiltrates. This 

means it is not possible to determine if, for instance, the increased NFKBIA 

expression is within tumour cells, or within another population. Nonetheless, this 

analysis can indicate a potential protective or damaging effect. 

 
Many of the genes analysed showed expression in line with the up- or down-

regulation induced by Gc treatment. As mentioned, it was not possible to 

determine which patient samples had been treated with Dex before surgery, but 

it would suggest that Dex treatment may have induced a Gc-mediated gene 

signature. It is also important to note that whilst there was no significant difference 

in survival when each gene was looked at in isolation, a multi-gene signature, 

regulated by Gc, could ultimately result in altered survival. Such multi-gene 

signatures have previously been shown within GBM (276-278). This analysis was 

not possible using GlioVis software but could be an important aspect of future 

work.  

 
Based on these results, Gc could be affecting treatment efficacy through a 

number of different mechanisms. Firstly, it could be acting through the induction 

of cell cycle arrest and inhibition of proliferation, as suggested by upregulated 

genes such as RGCC and CDKN1A. Alternatively, Gc could be altering the DNA 
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repair response following treatment, as suggested by upregulation of genes such 

as DDIT4 and BCL2L1. Cell proliferation assays indicated variable effects of Gc 

on GBM cells. A172 and M059K cells both showed significantly reduced 

proliferation following Gc treatment, however, this effect was not seen in M059J, 

U87 or U251 cell lines.  

 
As previously mentioned, A172 cells have been widely used previously to 

investigate effects of Dex on cell growth. Previous research has shown an 

inhibition of cell growth with continuous doses of 100nM - 100μM Dex for 3 - 5 

days (223). Similarly, Kaup et al showed a significant decrease in cell proliferation 

in A172 cells after 4 days of treatment with 50nM Dex (222). Both of these studies 

showed no effect of Dex treatment on other cell lines, including U251 cells. 

Several papers have suggested that GBM cell growth is inhibited by Dex addition 

in vitro, however, many of these papers have used Dex dosages of up to 10μM 

Dex (222, 223). On the other hand, however, Fan et al suggested Dex could 

increase GBM cell growth in U251 cells, but inhibit growth in U87 cells (279). It 

should be noted, however, that this study used dose of between 1μg/ml to 

200μg/ml, equivalent to 2.5μM – 509μM Dex. This is clearly far higher than the 

doses used within this work, and beyond the maximum 500nM found in GBM 

brain tissue. These results have therefore little relevance for clinical practice, and 

for understanding a mechanism of action for Dex function.  

 
Our work showed a significant reduction in proliferation in A172 cells, and M059K 

cells, but not in the other 3 cell lines tested. Interestingly, however, this did not 

correlate with the induction of cell cycle arrest by 48 hours of Dex treatment in 

any of the 5 cell lines. Whilst the growth was inhibited by 4 days, it would be 
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expected that these effects should have manifested in cell cycle arrest by 48 

hours. It is therefore likely, that whilst the induction of cell cycle arrest may 

contribute to the protective effects, this does not appear to be the primary 

mechanism of action. 

 
Within M059J cells, a robust population of sub-G0 cells was apparent within each 

cell cycle experiment. This population has been previously noted within the 

literature, however, it has never been fully investigated. Previous work has 

identified that a stable DNA-PK inactivation within HeLa cells resulted in an 

increase in the number of cells with multipolar spindles during mitosis, and an 

increase in multinucleated cells (239). It stands to reason, then, that due to these 

dysregulations during mitosis, the result would be cells with an aberrant number 

of chromosomes. Indeed, this is what was observed within M059J cells, and this 

dysregulation of chromosome number may explain the third, haploid population 

seen within propidium iodide staining. This is an important factor to be considered 

for future work using M059J cells. 

 
Given these results, it seemed unlikely that the effects on GBM cell survival were 

primarily driven by this difference in proliferation, especially given that this 

appeared to have manifested at some point between 48 hours, the timepoint of 

the cell cycle analysis, and 5 days, at which point the proliferation assays were 

carried out. Given the chronic nature of this effect, it seemed unlikely to be a 

primary transcriptional response. This made it likely to be a downstream effect 

on the DNA repair response. 
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Comet assays are a well-established, reproducible method of measuring the 

extent of DNA damage following exposure to a DNA damaging agent. They are 

extensively used within the literature to quantify damage induced by DNA 

damaging agents in a range of settings. In particular, it has the advantage of 

being a sensitive mechanism of measuring damage on a single cell basis. Tail 

moment is a commonly used measurement of quantifying DNA damage shown 

in comet assays (280). The tail moment incorporates both the length of the tail 

and the relative amount of damaged DNA. Both M059J and M059K cells showed 

increased damaged 24 hours after treatment with IR, TMZ or both combined, 

however, this damage was significantly reduced following Dex pre-treatment. 

Such a reduction in DNA damage suggests that DNA damage is either being 

repaired, or prevented from occurring. 

 
Rapid phosphorylation of H2AX following the induction of double stranded breaks 

allows it to be used as a timely readout of points of DNA damage. Following IR 

there was no difference in DNA damage incurred following vehicle or Dex pre-

treatment. As there was no significant increase in gH2AX foci following TMZ 

treatment at 4 hours, the gH2AX staining was repeated at 24 hours following TMZ 

addition. These results were conflicting, as there was no significant difference in 

the number of defined gH2AX foci, however, there was a significant reduction in 

the mean gH2AX staining in M059K cells. gH2AX staining is considered a 

standard, reliable marker of the induction of DSB, and is commonly used as a 

readout of both radio- and chemotherapeutic efficacy within clinical research. It 

can be considered a relatively direct functional readout, as it implies the activation 

of ATM, and downstream activation of the DNA repair pathways. In particular, 

immunofluorescence methods are preferred due to the ability to study the 
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formation of foci and nuclear localisation of staining (281). In particular, recent 

research has begun to differentiate between foci number and “pan-nuclear” 

gH2AX staining, such as that represented by the mean nuclear staining. As 

previously discussed, foci of phosphorylated H2AX occur at the sites of DSB, 

whereas this pan-nuclear staining occurs throughout the genome, even at sites 

of undamaged chromatin (282). This phenomenon has been observed in 

apoptotic cells, suggesting that DNA damage has resulted in mitotic catastrophe, 

which cannot be repaired and ultimately results in cell death (283). However, this 

phenomenon has also been observed in response to IR in cells which did not 

result in apoptosis. It has been suggested that this staining pattern may be 

associated with the activation of multiple kinases, including ATM, JNK and DNA-

PK, however, the functional significance of this pan-nuclear staining is still very 

much under investigation. Overall, therefore Gc are not preventing DNA damage 

from being induced, however, a robust decrease in DNA damage at 24 hours 

post-treatment was observed. This would suggest that, at least following IR, Gc 

have induced active DNA repair within GBM cells. 

 
When considering DNA repair, one of the most critical and common components 

of DNA repair pathways is p53 activation (148). P53 had been indicated in the 

pathway analysis from the RNA-seq work, and a relationship between GR and 

p53 could explain the increased treatment resistance within GBM cells following 

Dex treatment. ChIP-seq analysis of both GR and p53 binding indicated a 

common subset of genes bound by both transcription factors, however, 

visualisation of binding peaks indicate that GR and p53 were not bound at the 

same sites on commonly bound genes. This was therefore not conclusive 

evidence of a functional relationship. It could instead indicate two independent 
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pathways, resulting in expression of similar genes. Indeed, this appeared to be 

confirmed by p53 siRNA knockdowns, which indicated that knocked down p53 

expression did not prevent the increased survival seen with Dex addition. 

Therefore, it seemed unlikely that there was any interaction between the two 

transcription factors.  

 
Knockdown of several DNA repair proteins using siRNA was used to narrow down 

any potential interactions between the DNA repair pathways and GR. An effect 

on NHEJ was ruled out through the knockdown of DNA-PKcs, and previous work 

using M059J cells. An involvement of Rad51 could not be ruled out, due to 

differences in results seen with Rad51 knockdown. The efficiency of the 

knockdowns could not be determined using western blotting or IF due to poor 

signal from several Rad51 antibodies.  

 
Both NHEJ and HR lead to the repair of DSB through different mechanisms. The 

interplay between the pathways is complex, as some proteins, such as ATM, the 

MRN complex and BRCA1 function within both pathways, whilst others, such as 

DNA-PK and RAD51 are pathway specific (284). Previous work has indicated 

that pathway choice is decided early within the repair process. The choice of 

pathway is highly dependent on cellular factors, the most obvious being cell cycle 

phase. An arrest in cell cycle phase within S or G2 phases may indirectly increase 

the proportion of HR repair, however, this was not seen within any of our GBM 

cell lines (135). Alternatively, relative abundance of 53BP1 and Rad51 are 

believed to drive cells towards NHEJ or HR respectively (285). 53BP1 prevents 

the DNA strand invasion, thus preventing end resection, which ultimately directs 

cells towards HR. M059K cells were stained for 53BP1 using IF techniques and 
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western blotting, however, neither yielded positive results due to lack of specificity 

in staining.  

 
To investigate whether these effects on DNA repair may be due to direct 

interaction of GR with DNA repair proteins, proteomics data previously generated 

within the Matthews group was analysed. Direct protein-protein interactions, 

illustrated through proteomics data, would allow for rapid increase in DNA repair, 

without the requirement for genomic effects. For instance, GR can itself interact 

with H2AX, so by a theoretical increase in H2AX phosphorylation, it would be 

possible for GR to alter the subsequent downstream phosphorylation of DNA 

repair proteins, such as Chk1/2. This proteomics data suggests a previously 

unknown relationship between GR and DNA repair proteins, within minutes of 

Dex addition.  

 
Comet assays showed that Dex pre-treatment led to a reduction in DNA damage 

by 24 hours after IR and TMZ. It is possible, however, that this resistance is 

mediated by different mechanisms. For IR damage repair, DNA is immediately 

damaged, then repair will begin. Alternatively, as TMZ required failed DNA 

replication, DSB formation is much slower. This is unlikely to have happened, and 

been repaired, by 24 hours following treatment. It was therefore possible that Gc 

increased repair before reaching the stage of DSB formation following TMZ 

treatment. 

 
A previous publication has shown that Dex treatment led to the upregulation of 

MGMT expression within GBM cells (169). MGMT is a DNA repair enzyme which 

can rapidly repair damage caused by alkylating agents such as TMZ, thus 
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reducing treatment efficacy (156). Increased MGMT expression is a prognostic 

marker of poorer survival within patients (163). MGMT expression was tested 

within M059K cells at 4 and 24 hours post-TMZ treatment with and without Dex 

treatment, however, MGMT could not be detected in any of the samples tested. 

It is possible that MGMT expression may be aberrant within M059K cells, and 

further work is therefore necessary to confirm whether the Dex protective effects 

on GBM cell survival following TMZ treatment are related to MGMT gene 

expression. 

 
As future work, it would be beneficial to knock out transcriptional targets of GR 

such as BCL2, to confirm that GR transcriptional effects are required for the 

protective effects. Such knockdowns are limited for many GR target genes, such 

as RGCC and CDKN1A, as knockdown is known to affect cell cycle and would 

therefore affect treatment sensitivity through a multitude of GR independent 

mechanisms. Alternatively, investigations could be carried out using stable 

transduction of GR containing a mutation within the DBD, or lacking the AF1 

transactivation domain, allowing GR to continue its protein-protein interactions 

but preventing DNA binding. It would be important to test the response to both IR 

and TMZ to confirm if GR-mediated transcription is required for protection to one 

or both treatments.  

 
Through the use of selective GR ligands, it is possible to retain the 

transrepressive effects of GR action within GBM, without retaining the potentially 

dangerous transactivation function. The more selective ligands, in particular CpA, 

did not show a protective effect on cell survival, following either IR or TMZ. It can 

be predicted, firstly, that the DNA repair effects are mediated through upregulated 
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genes, those such as DDIT4 and CDKN1A. Secondly, this could raise a potential 

avenue of treatment, whereby a selective ligand could be used to maintain the 

anti-oedemic effects of Dex, but potentially without the side effects. Clearly, this 

would require a significant amount of work to determine appropriate dosages and 

safety.  

 
Through the work described in this chapter, a previously unknown effect of Gc in 

GBM cells has been identified, which may add to previous work showing reduced 

survival in GBM patients receiving high doses of Dex. Our research has narrowed 

down the mechanism by which this increase in GBM cell survival is occurring to 

an increase in DNA repair, thus reducing the efficacy of both of the first-line 

treatments used within GBM. Further work is required to fully elucidate the 

precise method by which this occurs, but this should be carefully considered 

within the context of Gc administration in patients, and should further advance 

the case for alternative anti-oedemic treatments within GBM. 
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Chapter 5 Single cell RNA-seq unveils complex GR signalling 
within GBM cells 

 

5.1 Introduction 

For many years, transcriptional responses have been recognised as complex, 

highly regulated processes (286). Each stage of this process, is controlled by a 

multitude of factors, including abundance of transcription factors and cofactors, 

chromatin availability, and the recruitment of the basal transcriptional machinery. 

As our understanding of the transcriptional process becomes more layered and 

complex, attention has turned to understanding how this process occurs within 

individual cells. Mathematical modelling of transcription has highlighted that the 

process is inherently stochastic, meaning that it will occur at different rates within 

individual cells (188).  

 
When we consider the response of specific transcription factors, biological 

context becomes more relevant, as it can further contribute to the heterogeneity 

seen within the system. Factors known to affect the transcriptional response at a 

cell population level, such as cell cycle phase, or inflammation, must also 

contribute to heterogeneity between individual cells in a population. Thanks to 

the emergence of single cell RNA-seq technologies, it is now possible to compare 

the transcriptional response within individual cells within a population, under 

different conditions. This technology has transformed many facets of basic 

science research, and has been particularly advantageous when attempting to 

identify small subpopulations based on their transcriptional output, notably within 

the fields of neurogenesis and immunology (196, 287-289). Single cell RNA-seq 



 

 

159 

(scRNA-seq) is far more sensitive than more traditional methods, such as 

fluorescence activated cell sorting (FACS), followed by bulk RNA-seq on the pre-

sorted populations. These populations were sorted based on a selection of 

markers, then assumed to be homogenous. Instead, single cell RNA-seq may 

identify even a single cell with a different phenotype within a larger population. 

 
Due to the relative novelty of these techniques, their use within the study of 

transcription factor dynamics has been limited. At the beginning of this project, 

there were no datasets investigating the glucocorticoid responses at a single cell 

level. We therefore aimed to use single cell RNA-seq to identify factors which 

affected GR transcriptional dynamics at a single cell level. These factors may be 

similar to those seen at a population level, such as cell cycle phase, or the 

activation of other transcription factors by inflammatory cues.  

 
The aims of this chapter were therefore two-fold: 

1) To complete single cell RNA-seq to examine heterogeneity in Gc 

responses in GBM cells. 

2) To develop a high throughput assay to quantify transcript levels of a panel 

of genes and determine the effect of inflammation. 
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5.2 Results 
 

5.2.1 Optimising conditions for single cell RNA-seq sample 
preparation 

Single cell RNA-seq is a cutting edge technique, and as such, each experiment 

is costly, and it is therefore not possible to repeat. For this reason, appropriate 

steps were taken to confirm that cells were suitable for processing, and would 

remain viable following the possible lengthy preparation process. It is important 

to note that these optimisation experiments were only completed once, as we 

prepared for the single cell RNA-seq.  

 
The single cell RNA-seq was carried out using an iCell 8 (Wafergen Biosystems). 

The iCell8 platform utilises a 5,184 well chip to potentially sequence thousands 

of cells within a single experiment (290-293).The system uses droplet technology, 

whereby cells stained with propidium iodide and Hoescht are diluted out such that 

a single droplet may contain a single cell. Each droplet is added to a well of a 

chip, then imaged to identify wells containing a single, live cell (propidium iodide 

positive and Hoescht negative). Individual wells can therefore be selected for 

library preparation and sequencing. This provides control in selecting equal 

numbers of cells between different conditions.  

 
Success of using this platform requires an accurate estimation of cell number in 

the suspension, and that over 60% are single viable cells in order to maximise 

the number of droplets containing a single live cell (Fig. 5.1A). Using a cell 

strainer to remove potential doublets and larger clumps of cells was considered 

as part of the cell preparation process. This straining process, however, may 

significantly reduce the number of cells within the suspension, which is also very 
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important to optimally use the platform. To test the effects of cell straining on cell 

number, M059K cells were plated overnight, then trypsinised and counted before 

and after straining using either 40μm or 70μm strainers (Fig. 5.1B). Whilst the 

literature has not published a precise size for M059K cells, U87 cells, another 

GBM cell line, are estimated to be 12 – 14 μm when trypsinised (Merck). We 

would therefore expect M059K cells to pass easily through both of these strainer 

sizes. There was minimal difference in cell number both before and after 

straining, suggesting this does not have an effect on cell number. We also used 

flow cytometry to analyse the proportion of single cells compared with doublets 

(Fig. 5.1C). Cells were resuspended in FACS buffer following straining, then 

gated using forward and side scatter to identify a single cell population. There 

was no apparent effect of straining on the proportion of single cells within the 

suspension, and we therefore did not include a straining step within our protocol.  

 
Secondly, we were made aware that, during the sample preparation process, 

samples may be required to be stored in PBS for up to 2 hours. We therefore 

tested the viability of M059K cells under these conditions, and samples were 

incubated at room temperature in either media or PBS for either 2 hours, then 

cell viability was analysed using flow cytometry (Fig. 5.1D – vehicle labelled 

samples). In order to test whether steroid treatment may alter viability, samples 

were also treated for 4 hours, then stored in either media or PBS under the same 

conditions. The results showed that storage within PBS led to a marked reduction 

in viability compared with cells stored in media, however, it does not appear that 

Gc treatment prior to sample processing led to any differences in cell viability.  
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Figure 5.1: Cell number is not affected by cell straining, but cell viability is affected 
by incubation with PBS. Filtration method for the creation of a viable single cell 
suspension through the iCell8 platform. B) M059K cells were counted before and after 
straining through a 40μm filter, or a 70μm filter. C) Cells were analysed  by flow cytometry 
and forward and side scatter were used to identify a population of single cells. The 
percentage of cells as single cells rather than doublets were quantified. D) M059K cells 
were treated for either 4 or 24 hours using a vehicle control, 100nM Dex, or 500nM HC. 
Cells were then incubated at room temperature in either culture media or PBS for 2 
hours, then fixed. Cells were then stained with Zombie viability dye to quantify the relative 
number of live cells. HC – hydrocortisone; Dex – Dexamethasone. 
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Overall, our results raised concerns that sample storage in PBS during the 

preparation process could significantly affect viability. This was discussed with 

the core facility staff, and it was decided that samples would be stained in media, 

and only the final cell counting step prior to loading onto the machine in the core 

facility completed in PBS. As long term incubation in PBS was a concern, the 

core facility staff assured us that samples would be processed immediately to 

reduce sample storage time. As this would be the first experiment run on the 

iCell8 which was a new platform in the Manchester genomics facility, we were 

given the opportunity to complete a trial run. These samples would not be 

sequenced, but would be prepared as planned, then loaded onto the chip, and 

imaged to determine how many live, single cells could be detected.  

 

5.2.2 Sample preparation for single cell RNA-seq 

M059K cells were treated for 4 hours with a vehicle control, 50nM HC, 500nM 

HC or 100nM Dex. Cells were trypsinised, counted, then stained using propidium 

iodide and Hoescht. Cells were centrifuged and resuspended in PBS, and 

transferred to the Genomic Technologies Core Facility for a second cell count 

and then loading onto a chip for the iCell8. Optimally it is possible to generate 

1,800 single viable cells, but realistically we expected that around 1,000 – 1,500 

of the 5,184 wells should contain a single cell. For the 4 conditions, it was hoped 

that 200-250 cells could be sequenced for each condition.  

 
In order to determine cell presence and viability, wells containing a single, 

Hoescht-positive, propidium iodide-negative cell are automatically identified 

using CellSelect software and taken forward for processing (Fig. 5.2A). This 
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enables sequencing only of wells containing live single cells, preventing potential 

doublets or dead cells from skewing the sequencing data. For the initial trial run, 

cells would be treated, stained and loaded onto a chip, then the number of viable 

candidate cells could be determined. Depending on the results, changes may 

then be made to the density of the cell suspension, or if capture rate was low, it 

may be necessary to reduce the number of conditions. 

 
Following analysis of the results from the trial run, the chip contained over 250 

viable candidate cells for the vehicle, 50nM and 500nM HC conditions, which was 

ideal for sequencing (Fig. 5.2B). For the 100nM Dex condition, however, we 

retained only 113 viable candidates. The previous work has indicated that Dex 

treatment is not capable of reducing cell viability, so we predicted that the 

difference in cell number must have been due to operational error during 

processing. As it was not possible to run another trial, we carried out the final run 

using the same protocol, but taking greater care over preparation of samples. 

 

5.2.3 Single cell RNA-seq preparations enabled sequencing of 1000 
cells  

The single cell RNA-seq experiment was then carried out using the same 

protocol. All 4 treatment conditions resulted in over 250 wells containing viable 

candidates, and 250 cells were randomly selected from each condition for 

sequencing (Fig. 5.2C). Library preparation, quality control and bioinformatics 

analysis, as described below, were carried out by Syed Murtuza Baker at the 

University of Manchester, with input from myself and Laura Matthews regarding 

the biological interpretation of results, and what analysis would be appropriate 

given the biological context. 
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Figure 5.2: A trial of single cell RNA-seq preparation showed an appropriate 
number of wells containing live, single cells. M059K cells were treated for 4 hours 
with a vehicle control, 50nM HC, 500nM HC, or 100nM Dex. Cells were stained using 
propidium iodide and Hoescht to identify live, single cells. Cells were dispensed onto an 
iCell8 chip, and imaged. Representative images for each condition are shown, alongside 
example images of positive and negative wells (A). Based on the PI and Hoescht 
staining, the number of wells containing viable candidates was then quantified for the 
trial (B), and also the sequencing run (C).  
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5.2.4 Quality control of single cell RNA-seq data 

Initial quality control (QC) was carried out to remove any low quality cells from 

further analysis, as described below (Fig. 5.3). Initially, the total number of reads 

for each cell, known as the library size, were analysed. Cells in which RNA has 

not been efficiently converted to cDNA will contain a low number of reads, and 

should therefore be removed from further analysis. Any cells where the library 

size fell below the cut off (Fig. 5.3A, dashed line) would yield low quality data. 

These reads can be analysed further as an indicator of library quality. Uniquely 

mapped reads indicate reads which only map to a single gene of the reference 

genome, as a marker of the quality of the read. For most of the cells analysed, 

around 90% of the reads mapped to a single gene, indicating the data is of high 

quality (Fig. 5.3B). 

 
Most of the cells sequenced also contained a high number of genes detected 

(Fig. 5.3C), suggesting that a large range of mRNA have been captured, rather 

than high volumes of the same transcript. This suggests that this data should 

more closely reflect the total transcriptome of the cell. Cells with few expressed 

genes again would reduce the quality of the data (Fig. 5.3C, dashed line).  

 
Another commonly used method of determining the quality of the data is by 

analysing the percentage of genes which map to mitochondrial genes. The 

relative abundance of mitochondrial gene expression is variable between tissue 

types, but is also increased upon cellular stress (294). Therefore, if values are 

higher than expected, this may indicate that cell preparation has increased 

cellular stress prior to sequencing, or that the integrity of the cell was lost prior to 

lysis thus limiting the physiological relevance of the data. Within our data, our 
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cells showed around 10% of genes expressed to be mitochondrial in origin (Fig. 

5.3D). Mitochondrial gene expression varies between 5% - 30% depending on 

the tissue, and previous data has indicated that mitochondrial contribution within 

normal brain tissue is 10 – 15% (295). These results again indicate the data is of 

good quality. 

 

 

Figure 5.3: Single cell RNA-seq data indicated high quality reads. Following cell 
isolation and sequencing, a number of quality control matrices were analysed to confirm 
the quality of the reads from the sequencing. The number of total reads were quantified 
per cell (A). A high proportion of these reads correlated with a single gene (B), and most 
cells contain a high number of genes (C). The proportion of genes which were 
mitochondrial in origin were also quantified (D). 
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5.2.5 Filtering out low quality cells from further analysis 

The library size, and the number of genes expressed, can both be used to 

estimate the quality of the reads, and can be used to filter out low quality cells 

from downstream analysis. Based on the distribution of cells using these features, 

Syed advised the following cutoffs. Cells which had a library size of below 3 

Median Absolute Deviations (MAD) lower than the median log library size, or cells 

which expressed 3MAD fewer genes than the median number were filtered out. 

In short, this amounted to the removal of cells which had a library size below 

3,321 reads, or fewer than 1,800 genes. As a further filtering mechanism, cells 

found to have over 16% mitochondrial gene expression were also removed. The 

number of cells filtered out from each treatment group are shown in Table 5.1. It 

is important to note that some cells were filtered out based on failing multiple 

thresholds. Overall, the number of cells filtered out within each treatment was 

consistent, with no major outliers. In addition, Gc are known to increase 

mitochondrial gene expression, however, there was no increase in cells filtered 

out based on high mitochondrial gene expression within Gc treated cells. The 

population before and after filtering are shown (Fig. 5.4 A – B).  
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Table 5.1: Cells removed from each treatment group based on filtering. Cells were 
filtered out from which fewer than 3,321 reads were gathered, in which fewer than 1,800 
genes were detected, or in which over 16% of genes were mitochondrial in origin. The 
number of cells from each treatment group which failed these thresholds are shown, and 
the number of cells taken forward for further analysis. 

Treatment Removed by 
library size 

Removed by 
total features 

Removed by 
mitochondrial 

gene expression 
Cells 

remaining 

Vehicle 26 36 14 203 

50nM HC 29 31 18 207 

500nM HC 37 39 20 194 

100nM HC 19 22 14 215 

 

5.2.6 Library size and mitochondrial RNA proportion are unchanged 
across Gc treatment groups 

The previous analysis had considered all 1,000 sequenced cells as a single 

group. Following filtering, we aimed to analyse the quality of data between the 4 

treatment groups. The library size for each cell across all 4 conditions were 

plotted (Fig. 5.5A). There is a trend of decreasing library size across the treatment 

groups, however, this will be normalised during the following stages of analysis. 

The percentage of genes which were mitochondrial for each condition (Fig. 5.5B) 

were also quantified. There were no clear outliers, and the populations look 

similar for each condition. This suggested that Gc treatment had not induced 

stress within our cell populations, and thus could not account for any difference 

in response seen within our dataset. 
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Figure 5.4: Low quality cells were filtered out from further analysis of single cell 
RNA-seq data. Low quality cells, were visualised by the number of genes expressed, 
and the total library size (A). Cells which expressed fewer than 1,800 genes, or which 
had a library size of 3,321 reads were filtered out, as these factors indicated low quality 
data from that cell. The distribution of cells which passed this quality control step are 
shown (B). 
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Figure 5.5: Gene analysis shows a consistent library size, and a similarly high 
proportion of mitochondrial genes, across the treatment groups. To confirm the 
quality of data for each cell, cells were divided into the 4 Gc treatment groups and plotted 
based on library size (A), and the percentage of mitochondrial gene expression (B).  
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Following filtering, of the 1,000 cells sequenced, data from 819 cells remained. 

The top 50 highly-expressed genes within the data were plotted (Fig. 5.6A). Many 

of these genes were mitochondrial in origin (indicated by the MT. prefix within 

gene name), or ribosomal proteins (indicated by the RP. prefix). High abundance 

of mitochondrial and ribosomal genes is expected, due to their relative 

abundance in within the transcriptome. Consistent with this GAPDH and ACTB, 

two well characterised high abundance, genes also featured in the top 50. 

Therefore, their high expression within this data indicated that the data reflects 

what is seen in a healthy cell population. 

 
It was then necessary to determine the cut off to determine which genes were 

expressed. For single cell RNA-seq data, counts for genes are understandably 

low. It is therefore necessary to filter out genes with very low expression, as this 

could indicate poor capture efficiency, and lead to unreliable conclusions. It is 

important to consider, however, that genes which are downregulated by Gc 

treatment could show low expression in 3 of our 4 treatment groups (i.e. 

downregulated by Gc). This would skew results, and lead to the exclusion of 

many downregulated genes.  

 
We then analysed how many genes were expressed (Fig. 5.6B). 43% of genes 

(4,312 genes) were expressed in at least 50% of cells. These included genes 

whose expression is required for basic cellular processes, such as so-called 

housekeeping genes, along with genes whose expression was upregulated by 

Gc treatment, which will be upregulated in 3 of 4 treatment groups. 72% of genes 

(7,914 genes) were expressed in at least 25% of cells. These may include genes 

which were downregulated by Gc addition. 
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Figure 5.6: Gene analysis shows a high proportion of mitochondrial genes, and 
many genes with uniform expression across the population. A) The top 50 genes 
expressed across all 4 treatment groups within the single cell RNA-seq data were listed. 
Genes marked MT indicate mitochondrial genes, and RP indicated mRNA of ribosomal 
origin. B) The distribution of genes expressed within the population are shown to 
determine capture efficiency. 
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As we would be using scDE-seq2 to determine fold changes dependent on Gc 

treatment, a less stringent threshold for confirming expression of each gene was 

chosen. Initially, genes were removed which had a read count of less than 0.1 in 

less than 10% of cells. This filtering left 11,010 genes expressed in over 10% of 

cells.  

 

5.2.7 Cell cycle phase of cells correlates with previous data 

One of the possible factors which may contribute to heterogeneity in the GR 

response could be cell cycle phase. To investigate this, it was necessary to 

identify the position in the cell cycle of each individual cell, and determine if there 

were any differences between treatment groups. A previously described method 

was used (296), by which expression of cell phase-specific genes are used to 

estimate the phase of each cell within the dataset (Fig. 5.7A). This method utilises 

pairs of markers, one for G1M and one for G2. The score of each pair indicates 

whether the cell falls into one phase or the other, and by combining the results of 

multiple pairs, it is possible to build an effective marker profile and score for each 

individual cell. If the score for either G1M or G2 is above 0.5, the cell is considered 

to fall into this cycle phase. If the score is below 0.5 for both, the cell is clustered 

into S phase. This method is known to effectively sort G1M from G2 cells, 

however, S phase identification relies on, effectively, the absence of G1 and G2 

markers. The phase of each cell was then quantified by treatment group (Fig. 

5.7B). As discussed in Chapter 4, previous work has analysed the cell cycle 

phase of M059K cells at 24 and 48 hours following Gc treatment using propidium 

iodide staining to stain DNA content. Cells were analysed by flow cytometry, and 

Modfit software was used to quantify proportions of cells in each cell cycle phase.  
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Figure 5.7: Cell cycle phase is unchanged with Gc treatment in scRNA-seq data, 
and correlates with previous data. A) Cell cycle phase was analysed in single cells 
through the expression of G1 and G2-specific markers. B) The number of cells within 
each cell cycle phase is shown for each Gc treatment. C) The proportion of cells in each 
phase was compared between the single cell RNA-seq data and propidium iodide 
staining previously shown in Figure 4.11 
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Cell cycle phase estimated through the bioinformatics analysis was compared 

with the cell cycle proportions seen at 24 hours following Gc treatment (Fig. 5.7C). 

The single cell RNA-seq did not show any difference in cell cycle phase following 

Gc treatment. This correlated with what was seen within the propidium iodide 

experiments, which also demonstrated that Gc treatment did not lead to cell cycle 

arrest, and that a representative population of cells had been analysed.  

 
The main aim of classifying the cell cycle phase was to determine whether this 

was a major driver for heterogeneity within populations, and whether cell cycle 

phase was a determinant of the Gc response. Principal component analysis 

(PCA) was therefore used to visualise variation of the cell population (Fig. 5.8A). 

PCA analysis entails identifying sets of genes which contribute to the variation 

between different cells. These genes can then be combined into a larger gene 

subset, known as a principal component. The subset of genes which contribute 

the most to the variation in the population are assigned as PC1. PC2 is then 

assigned as the gene subset which has the second largest contribution to the 

variance of the population, and so on. PCA has been used commonly within 

single cell RNA-seq analysis as a tool to simplify the visualisation of large 

amounts of data, in order to make patterns of data more obvious, for instance in 

the study of cell lineage (195, 196, 297).  
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Figure 5.8: Cell cycle does not contribute to the variance between cells within 
single cell RNA-seq data. A) Principal component analysis shows slight clustering of 
cells according to cell cycle phase, however, this does not correlate with Gc treatment. 
B) Cells show a strong correlation between the computed size factor and the library size 
for each cell. C) The contribution of total features, UMI, total counts, sample type and 
cell cycle phase to the overall variance of the population was measured. 
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Cells were clustered, then visualised according to cell cycle phase (different 

colours) and Gc treatment (different shapes). There is some clustering of cells 

according to cell cycle phase, as seen by the clustering of G1(blue), and G2/M 

(orange) cells, with S phase cells (green) falling more broadly throughout G1 and 

G2/M populations (Fig. 5.8A). This suggested that cell cycle phase may 

contribute to variance within the population, however, there does not appear to 

be correlation between cell cycle phase and Gc treatment. For instance, vehicle 

treated cells (crosses), are broadly dispersed throughout the cell cycle phase 

clusters.  

 

5.2.8 Normalisation to remove read depth bias 

Previous research using single cell data has identified that differences in 

sequencing depth and the efficiency of library preparation within individual cells 

may lead to false results and inaccurate differential expression data (298). For 

instance, if one cell has twice the number of total transcripts than another, a gene 

may be considered differentially expressed, even if the relative number of 

transcripts compared with library size is the same. Therefore, it is necessary to 

normalise data from each cell and ensure the library size was as equal as 

possible between cells (212). To do this, a size factor is computed for each cell 

and applied. This factor is produced by assuming that differences in expression 

of a gene between cells are due to technical differences, rather than biological 

differences. Unfortunately, due to the low amount of starting material, scRNA-seq 

data contains many zero counts, which can reduce the accuracy of the size factor 

for each cell. Therefore, the size factor is computed by pooling data from across 

the population, and computing a mean size factor (299). This can then be 

deconvolved to produce an individual size factor for each cell.   
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Once a size factor has been computed for each cell, it is then possible to plot this 

size factor against the total number of reads, or library size, for each individual 

cell (Fig. 5.8B). If a cell has a high number of genes differentially expressed 

compared with the overall average across the population, the library size will not 

correlate with the size factor, and would sit as an outlier. Instead, we see a strong 

correlation between the library size and size factor, indicating that the cells are, 

overall, similar in expression for the majority of genes. This would suggest that 

the library size is the main driver of differences in expression. Through applying 

the size factor-based normalisation, we aim to limit the effect of the library size 

on differential expression. 

 
As a final QC control, different features within the data were analysed, and their 

contribution to the heterogeneity within the data was quantified (Fig. 4.8C). 

Firstly, cell cycle phase does not contribute largely to variance within the data. 

The factor which appears to affect variance the most is the total features. This 

indicates that even after read depth normalisation, simply the number of genes 

detected within a cell contributed to the variance between cells. This is 

concerning, as this could enable false positives, wherein differences in the library 

sizes between cells could result in variability within expression, and therefore 

result in heterogeneity as an artefact of the system. Both number of uniquely 

mapped identifiers (UMI) and total counts also appear to contribute to the 

variance, however this also confirms that cell cycle does not contribute to the 

variance. By using the bulk RNA-sequencing data, we can limit analysis to genes 

which are variable due to Gc treatment.   
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5.2.9 The GR response leads to a distinct shift in phenotype 

Before considering individual cells, it was first necessary to determine how large 

an effect Gc treatment may have on the phenotype of the population. Pooling all 

treatment groups together, the genes with the largest amount of variation 

between individual cells, known as the highly variable genes (HVG) were plotted 

(Fig. 5.9A). The top 15 HVG are shown. Of the 15 highest HVG genes, 8 genes 

(PER1, FKBP5, CEBPD, DUSP1, GILZ, BIRC3, SNAI2 and ANKRD1) were also 

present in the top 25 most strongly regulated Gc responsive genes from the bulk 

RNA-seq data discussed in the previous chapter (indicated in bold in Fig. 5.9A). 

 
While treatment group did not correlate with a shift in PCA, when the entire 

genome was considered, we next examined if using only the Gc responsive 

genes could distinguish treatment groups. Firstly, differences in the overall 

transcriptome of individual cells within each condition were analysed using PCA 

(Fig. 5.9B). scDE-seq2 was used to define differentially expressed genes 

between vehicle control and any of the three other treatment groups. Using this 

smaller gene set, after plotting PC1 and PC2, clustering of cells by condition can 

be observed. Interestingly, the clusters appear to move in a dose dependent 

manner, observed as a shift from left to right, from vehicle, to 50nM HC, followed 

by 500nM HC, and finally by 100nM Dex. This correlates with how the 

transcriptome would be expected to change, as the bulk RNA-seq showed the 

largest number of DE genes were seen with Dex treatment, compared with the 

vehicle control.  
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Figure 5.9: Gc treatment has a profound impact on phenotype within single cell 
RNA-seq. A) The top 15 most highly variable genes across all 4 Gc treatment conditions. 
Genes identified as DE in bulk RNA-seq analysis in response to Gc are indicated in bold. 
B) Cells clustered by the 4 largest principal component analyses show clustering 
according to Gc treatment. C) t-SNE analysis shows distinct clustering of cells according 
to Gc treatment. 
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PCA is a useful tool in plotting large differences within the population, however, 

it is often limited to large, very different clusters. Therefore, other mechanisms, 

may be used to visualise clustering within transcriptomic data. t-distributed 

stochastic neighbourhood embedding (t-SNE) is a commonly used mechanism 

of visualisation of single cell RNA-seq data. It allows for more subtle clustering of 

cells by pairing cells with their closest neighbours according to their 

transcriptional profiles (300, 301). When the data is analysed through t-SNE, the 

cells cluster more clearly according to treatment group (Fig. 5.9C). Once again, 

the 2 most distinct clusters comprise the vehicle and Dex treated cells, with HC-

treated cells falling between these two extremes. These results suggest that even 

at a single cell level, Gc addition cause a robust change in transcriptome. 

 

5.2.10 Using bulk RNA-seq to guide scRNA-seq analysis 

Lists of DE genes for each Gc condition were created, relative to the vehicle 

control (Fig. 5.10A). A high degree of overlap between conditions was seen, but 

a higher number of genes which appear to be specific to each individual condition 

were observed in the scRNA-seq data, compared with those seen in the bulk 

RNA-seq. This is often seen within scRNA-seq data, as the data can be viewed 

as 200 replicates for each condition, compared with the triplicates run for bulk 

RNA-seq. This makes scRNA-seq on one hand more sensitive to small changes, 

but also more likely to identify noise as false positives (302, 303).  

 
As the next stage would be to identify robust genes to develop a high throughput 

RNA FiSH assay, it was decided to only consider DE genes that appeared in both 

the single cell RNA-seq and bulk RNA-seq (Fig. 5.10B). There is an overlap of 

99 genes between both datasets. This population contains many of the previously 
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analysed Gc-regulated genes, including FKBP5, DUSP1, GILZ, PER1, CEBPB 

and CEBPD. It is important to note that 76 Gc regulated DE genes from the bulk 

gene list were not present within the single cell data. VCAM, which is a well 

characterised Gc target gene provides a good example. VCAM has very low 

baseline expression, and is strongly downregulated by Gc which meant this gene 

was not included as an expressed gene during the early QC process.  

 
Enrichr analysis of the pathways predicted to be controlled by the 99 Gc regulated 

genes showed inflammatory related terms, such as AP-1 transcription factor 

network, IL6 signalling, and response to cytokines. Direct p53 effectors and 

transcriptional misregulation in cancer was also identified (Fig. 5.10C). Finally, 

the Elsevier Pathway identified a signature entitled ‘proteins in glioma’. These 

genes were then analysed using String to identify any possible protein-protein 

interactions between these targets and GR, labelled NR3C1 (Fig. 5.10C).  
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Figure 5.10: Overlaying single cell RNA-seq and bulk RNA-seq identifies a robust 
population of differentially expressed genes. A) Genes differentially expressed within 
the single cell RNA-seq between the vehicle control, and 50nM HC, 500nM HC and 
100nM Dex. B) DE genes common between singe cell RNA-seq and bulk RNA-seq. 
Shown are the Enrichr predicted pathways for genes common to both datasets, and a 
string network showing protein interactions between proteins identified in glioma from 
the Elsevier Pathways collection, and GR (labelled NR3C1).  
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5.2.11 GR expression is variable 

Our first gene of interest for further analysis is GR itself, gene name NR3C1. For 

simplification, NR3C1 is referred to herein as GR. GR transcript expression is 

shown for all 4 conditions as a violin plot (Fig. 5.11A), and as a density plot (Fig. 

5.11B). There is no significant difference in expression between conditions, which 

mirrors findings from the bulk sequencing. However, there is significant variability 

in GR expression within each sample. Differences in capture efficiency between 

cells may explain this variation, and so expression of GR was compared against 

two highly expressed, commonly used housekeeping genes, GAPDH and ACTB 

(Fig. 5.11C & D). It is clear that the variability of GR, plotted on the Y axis, has 

no correlation with expression of either GAPDH or ACTB. Lack of correlation 

between expression of either of the two housekeeping genes and GR, suggests 

that capture efficiency, or the total volume of RNA from each cell, cannot account 

for GR variability. Instead this suggests that biological factors must be 

responsible for the variation in GR expression. Immunofluorescent staining 

shows that GR protein expression and translocation show a high level of 

variability even within a clonal cell population (Fig. 5.12). Importantly, variation in 

GR expression may be a factor which determines the heterogeneity in expression 

of genes controlled by GR in response to Gc. 
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Figure 5.11: GR mRNA expression is variable between cells, but is unchanged 
following Gc treatment. A) Violin plot showing GR expression (log counts) across Gc 
treatment groups. Each individual dot represents expression within an individual cell. (B) 
Data is also represented as density plots, which enables better visualisation of cells 
lacking GR expression. GR expression was plotted against expression of ACTB (C), and 
GAPDH (D). Colour indicate treatment group. 
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Figure 5.12: GR translocation is heterogenous across each condition. M059K cells 
were treated for 1 hour with a vehicle control, 50nM HC, 500nM HC or 100nM Dex. Cells 
were fixed and stained for GR (A). Images were analysed using ImageJ and GR 
expression within individual cells was quantified as the average signal intensity (mean 
grey value) within individual cells (B). Hoescht was used to demarcate the nucleus, and 
phalloidin for cytoplasmic area. The signal intensity in the nucleus, compared with the 
cytoplasm, was used to calculate the percentage of GR found within the nucleus (C). 
Scale bar denotes 20μm. Results shown are the mean of 3 independent experiments. A 
one-way ANOVA was carried out with a Dunn’s multiple comparisons test. **** = p ≤ 
0.0001. 
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5.2.12 Expression of GR target genes is also highly variable 

Next, it was explored how treatments influence the expression of Gc responsive 

target genes. A panel of genes where expression increased in a dose dependent 

manner following Gc addition is shown in Fig. 5.13. Some genes, such as GILZ 

showed a dose dependent increase in the maximum response as the dose and 

affinity of ligand increased. Alternatively, for other genes, such as DUSP1 and 

FKBP5, the maximum response was unchanged, but more cells appeared to 

cluster toward the maximum response. Interestingly, across all genes, and all 

treatments, there was a high degree of variability. For DUSP1, for instance, there 

were some cells within the vehicle treated samples with the maximum expression 

level, whilst even with Dex treatment, there were still cells with no detectable 

expression of the analysed genes. Therefore, there must be cell intrinsic factors 

which determine the size of the response within individual cells within a 

population.  

 
A similar picture emerged when examining downregulated genes (Fig. 5.14). IL6 

and E2F7 both show a stepwise reduction in expression following Gc addition. 

While IL6 was still expressed to the highest level in some cells, addition of Gc 

narrowed this population. For E2F7 however, the entire population remained 

constant but shifted downward. Further work is needed to understand what 

factors could determine the strength of the Gc response in individual cells, and 

also how the population as a whole changes with Gc. 

 

FKBP5 
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Figure 5.13: GR-dependent genes upregulated by Gc addition show a population-
level increase in expression following Gc treatment, with high variability between 
cells. Violin plots to show expression of 8 genes significantly upregulated following Gc 
treatment, as determined by both bulk and single cell RNA-seq. Each individual dot 
represents a single cell.  
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Figure 5.14: GR-dependent genes downregulated by Gc addition show a 
population-level decrease in expression following Gc treatment, with high 
variability between cells. Violin plots to show expression of 8 genes significantly 
downregulated following Gc treatment, as determined by both bulk and single cell RNA-
seq. Each individual dot represents a single cell.  
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5.2.13 Gene expression patterns differ according to individual 
genes 

We looked more closely at the expression pattern of each gene between 

individual cells within each condition. We initially predicted that we may see 

genes falling into two distinct populations – which could be explained by binary 

or rheostat-like responses.  

 
To visualise the response more clearly, we plotted the expression data for each 

gene as density plots, rather than violin plots. This allows us to see distinct 

clusters of cells more clearly, as number of cells vs levels of gene expression. 

The x-axis shows the strength of the response, whilst the y-axis represents the 

relative proportion of cells responding at that level. For some genes, such as 

ANKRD1, which is upregulated by Gc, expression fits closely with what we would 

expect from a rheostat response (Fig. 5.15A). There is a single peak which simply 

shifts to the right in response to Gc, suggesting all of the cells respond to some 

degree. For some genes, such as DNAJB4, which is also upregulated by Gc, 

expression fits closely with what we expected to see from a binary response (Fig. 

5.15A). Cells separate into a population of low expressing cells (left peak), and a 

second population of high expression cells (right peak). There are two distinct 

populations within the vehicle treated cells (blue line). Both doses of HC (yellow 

and green lines) increase the number of cells present in the higher expression 

population. This is even more prominent in Dex treated cells (red line). 

Expression of GILZ seems to be intermediate (Fig. 5.15A). There is a clear, 

narrow left peak of low expressing cells in the vehicle treated group. This is 

largely lost upon Gc treatment, but the higher expression peak is very broad, and 

right shifts with increasing dose or affinity. 
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Figure 5.15: Single cell RNA-seq shows expression of GR target genes follow a 
binary or rheostat-type response following Gc treatment. Examples of upregulated 
(A) and downregulated (B) GR target genes, with expression shown as density plots. 
Expression is shown for each Gc treatment. Cells show a population of low-expressing 
cells (first peak), and a population of highly expressing cells (second peak). Differences 
in population expression are driven by changes in the number of cells in each peak. 
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This complex picture is also replicated in genes downregulated by Gc (Fig. 

5.15B). E2F7 for example shows binary expression, as evidenced by two cell 

peaks. However in this instance, Dex treatment reduces the number of high 

expressing cells, and increases the proportion of low expressing cells (Fig. 

5.15B). The profile for IL6, is more comparable with GILZ expression, but 

inverted. Vehicle treated cells have a very broad range of IL6 expression, which 

left shifts in response to HC. Dex treatment pushes expression towards zero 

which is evidence as a large left peak (Fig. 5.15B).  

 
These results suggest that both binary and graded responses can be seen within 

the Gc response. Mathematical modelling has focused on modelling either one 

type of response or the other, but this data instead illustrates a mixture of the two 

responses, depending on the gene in question.  

 
It was noted that genes with lower expression tended to divide into two clear 

peaks. As the scRNA-seq results in relatively low read counts, then low 

expressed genes have a large proportion of cells where the gene is undetectable. 

This is also true of genes that are expressed to a higher level, but are 

downregulated by Gc to undetectable levels. Examples of genes with variant 

baseline expression have been shown (Fig. 5.15) in order to reflect this 

observation. 

 

5.2.14 Gene regulation by Gc correlates with baseline gene 
expression 

It was then necessary to examine other factors which might influence the 

magnitude of response, by separating the 99 genes into three groups – regulated 

by Dex alone (1 treatment), regulated by Dex and High HC (2 treatments), or 
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regulated by Dex, High HC and low HC (3 treatments). Given that baseline gene 

expression appeared to be a limitation in determining the type of response, base 

mean expression and transcript length were first analysed for each of the genes 

(Fig. 5.16A). While transcript length did not vary between genes regulated by low 

dose, low affinity HC or Dex, baseline expression did. Genes which were 

regulated by all three treatments – and therefore the most sensitive Gc target 

genes also had a higher baseline expression. The most obvious interpretation of 

this finding is not that Gc more reliably regulates highly expressed genes, but 

instead that the scRNA-seq platform is limited in detecting modest responses in 

genes expressed just at the limit of detection. It would be expected that Dex would 

induce the greatest response, and so this could explain why we would be able to 

detect a change in gene expression relative to a more modest response to low 

HC for example. 

 
Another approach was to determine if the number of GR binding sites within 

genes could determine sensitivity to Gc. To investigate this, public GR ChIP-seq 

data from the cistrome database was analysed, using a dataset based on A549 

cells, following treatment for 4 hours with 100nM Dex (304-306). The number of 

GR peaks, and the size of the peaks (peak score) was analysed for each of the 

99 genes. Again, the genes were split into three groups dependent on whether 

they were regulated by one, two or all three treatments (Fig. 5.16B). There was 

no clear correlation between either the number or size of GR binding sites that 

could predict, or explain sensitivity to, low doses of Gc. Example of some gene 

tracks are shown in Fig. 5.16C. The ChIP-seq dataset used was based on a set 

of experiments, in which multiple doses of Dex were used to assess sensitivity of 

GR binding to GR target genes. Gene tracks with each dosage are shown for 
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both IL6R and CDKN1A. Binding is clearly increased in a dose-dependent 

manner, suggesting Gc dose determines strength of GR-DNA binding. 

 

Figure 5.16: The baseline gene expression, but not number of GR binding sites, 
within GR responsive genes appears to correlate with sensitivity to Gc. A) Genes 
identified as differentially expressed in both the scRNA-seq and bulk RNA-seq were 
divided into categories, based on whether they were significantly differentially expressed 
in response to 1, 2 or all 3 Gc treatments. The baseline expression and transcript length 
were then analysed for each gene, according to their Gc sensitivity. B) Based on publicly 
available ChIP-seq data using A549 cells, the number of GR binding sites, and peak 
score were determined for each gene. These were then quantified according to treatment 
sensitivity. C) Example gene tracks for 2 genes (IL6R and CDKN1A) were analysed, at 
increasing concentrations of Dex, within the ChIP-seq dataset. Significance was tested 
using a one-way ANOVA with a Dunn’s multiple comparison test. ** = p ≤ 0.01. 
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As a complementary approach, these factors were also analysed to determine if 

they could explain any heterogeneity in the Gc response. The change in the 

coefficient of variation between vehicle and Dex treated cells was analysed for all 

99 genes. A value that was between 0.75 and 1.25, suggested no change in 

heterogeneity in gene expression; if the value for the gene was greater than 1.25, 

this suggested reduced heterogeneity i.e. a stretching of the cell population 

following Gc treatment. Where the value was below 0.75, this suggested Gc 

increased heterogeneity in gene expression i.e. a contraction of the distribution 

of gene distribution. Genes with reduced heterogeneity following Dex addition (37 

genes) included only upregulated genes, such as GILZ. Genes with increased 

heterogeneity (6 genes) included only downregulated genes, such as IL6. Genes 

with unchanged heterogeneity (56 genes) included a mix of upregulated and 

downregulated genes, such as IL6R and E2F7.  

 
Higher baseline gene expression also correlated with a reduction of 

heterogeneity (Fig. 5.17A), but there was no effect on either the number of GR 

binding sites or strength of GR binding between groups (Fig. 5.17B). It should be 

noted that there is a trend towards more GR binding sites reducing heterogeneity, 

and fewer GR binding sites increasing heterogeneity but as so few genes fell into 

the increased heterogeneity group this did not reach significance (Fig. 5.17B). 

The small number of genes in the increased heterogeneity group is likely because 

many of the genes downregulated by Gc did not reach threshold of expression 

for inclusion during the QC stage. Given the clear divide between upregulated 

and downregulated genes to distinct groups, the number of binding sites could 

also reflect the mechanism of regulation, rather than inherent variability in 

response. Some example gene tracks are shown in (Fig. 4.17C). 
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Figure 5.17: The baseline gene expression, but not number of GR binding sites, 
within GR responsive genes appears to correlate with heterogeneity in the Gc 
response. A) Genes identified as differentially expressed in both the scRNA-seq and 
bulk RNA-seq were divided into categories, based on the biological coefficient of 
variation. This was used to determine if the heterogeneity in response between cells was 
increased, decreased or unchanged upon Gc addition. This was compared with the 
baseline expression and transcript length of the mRNA produced. B) Based on publicly 
available ChIP-seq data using A549 cells, the number of GR binding sites, and peak 
score were determined for each gene. These were then quantified according to 
heterogeneity. C) Example gene tracks for genes which fell into each heterogeneity 
category, using the ChIP-seq dataset used within part B). Significance was tested using 
a one-way ANOVA with Dunn’s multiple comparison test. ** = p ≤ 0.01. 
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5.2.15 smFISH was validated to ensure optimal quantification 

Given the novelty of the technology used, it is necessary to confirm the results 

seen within scRNA-seq. The results correlate well with the bulk RNA-seq, which 

confirms the population level response, however, it was also necessary to confirm 

the patterns of expression seen within individual cells. To validate this, single 

molecule Fluorescence In Situ Hybridisation (smFISH) was utilised. smFISH is a 

ground-breaking technique which enables the visualisation of single mRNA 

molecules within individual cells, using either flow cytometry or 

immunofluorescence. The visualisation of mRNA expression through 

immunofluorescence was chosen, as it enables high sensitivity to count individual 

transcripts and also allows the simultaneous capture of other information, such 

as colocalization of transcripts. Each probe set, for a single mRNA, contains 

around 20 oligonucleotide pairs. These pairs bind to the target mRNA, and are 

then amplified through multiple steps, allowing the signal to be amplified enough 

to visualise a single bright dot, indicating a single mRNA molecule. These can 

then be imaged using microscopy.  

 
The ViewRNA Cell Plus Assay (Thermo Fisher) was selected as the kit had been 

extensively validated, and probes were available for a wide range of genes (307). 

Initial testing focused on expression of DUSP1, GILZ and GR within M059K cells, 

following a 4 hour treatment using a vehicle control, or 100nM Dex, including 

ACTB as a positive control due to high expression and imaged using a widefield 

microscope.  
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As shown in (Fig. 5.18A), there was clear staining for ACTB (green) 

demonstrating the assay was working. DUSP1 (green), GILZ (red) and GR 

(magenta) were also detected, and the expression of both DUSP1 and GILZ 

appeared to increase after Dex treatment (Fig. 5.18B). No staining was evident 

when probes were not included suggesting specificity of the assay. A major 

concern however was the quality of the images, as it was difficult to identify (and 

therefore count) single transcripts. This was particularly evident in the GR 

labelled transcripts which appeared in large foci in the cells (Fig. 5.18B). 

 

Figure 5.18: Widefield images were captured for smFISH. A) M059K cells were 
fixed and stained for b-actin mRNA using the smFISH assay. B) Cells were 
treated for 4 hours with a vehicle control or Dex, then stained for DUSP2, GILZ 
and GR mRNA, alongside Dapi to stain nuclei. Wells were imaged at x60 
magnification. Scale bar denotes 20μm. 
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As an alternative, the Operetta system was tested, which uses widefield 

microscopy but also includes the option of image deconvolution to remove out of 

focus light (Fig. 5.19). An added advantage can is that this system can be 

programmed to take images at multiple sites within a well and also between wells 

and so offered a higher throughput option. 

 

Figure 5.19: M059K cells were probed for DUSP1, GILZ and GR mRNA using 
smFISH following Gc treatment and imaged using the Operetta microscope. Cells 
were treated for 4 hours using 100nM Dex, then prepared for smFISH according 
to manufacturer’s protocol. A) Cells were imaged using an Operetta widefield 
microscope. B) Images were quantified using FishQuant software. Scale bar 
denotes 20μm.  
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Images taken prior to deconvolution are shown in (Fig. 5.19A), in which two 

intensity settings were compared to determine if brightness influenced detection 

of transcript numbers. Again, there is some out of focus light, but individual spots 

can be identified. Quantification of the number of transcripts (spots) using the 

automated FiSHQuant software demonstrated that image intensity did not 

significantly affect the number of transcripts identified in each cell (Fig. 5.19B). 

 
The assay was then repeated, labelling M059K cells treated with vehicle, 50nM 

HC, 500nM HC or 100nM Dex for four hours (Fig. 5.20A). The number of 

transcripts were then quantified using FiSHQuant software (Fig. 4.20B). 

Unfortunately, using this platform it was not possible to detect an increase in GILZ 

expression in response to Gc treatment, and the expression of GR was regulated 

by Gc, which does not reflect observations from the scRNA-seq. It is unclear what 

the underlying cause is, but it is possible that the Operetta is not sensitive enough 

to detect the low expression of GILZ and GR. Large foci could also still be seen 

in some images, suggesting the Operetta could still not effectively demarcate 

individual foci.  
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Figure 5.20: M059K cells were probed for DUSP1, GILZ and GR mRNA using 
smFISH following Gc treatment and imaged using widefield microscopy. Cells were 
treated for 4 hours using a vehicle control, 50nM HC, 500nM HC, or 100nM Dex, then 
prepared for smFISH according to manufacturer’s protocol. A) Cells were imaged for 
each condition using an Operetta widefield microscope. B) Images were quantified using 
FishQuant software. Graphs show mean expression for each condition, and expression 
within individual cells was also shown. Error bars denote SEM, and scale bar denotes 
20μm.  
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It was decided therefore to test using a confocal microscope, which although 

slower to acquire images and significantly more expensive to use might be the 

best option to enable this analysis. A pilot experiment testing imaging using the 

confocal in cells labelled either with actin, or without probe demonstrated that 

the quality of the images obtained were significantly better, with improved 

sensitivity and resolution (Fig. 5.21). 

 

 

Figure 5.21: Confocal microscopy was tested using a no probe control and b-actin 
stained cells as a negative and positive control respectively. Cells were untreated 
with Gc, then stained without any probe sets (A), or for ACTB alone (B) and imaged in 
all four channels. Images were acquired using a Nikon confocal microscope at a 40x 
magnification. Sale bar denotes 50μm. 
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The confocal microscope was clearly the best imaging tool, and this also offered 

the option of taking a brightfield image to identify cell edges. This cannot be used 

to guide finding cells using FiSHQuant and so this was tested using ImageJ, using 

the brightfield to define the cells to determine if that was robust. Cells were treated 

with Gc for 4 hours, labelled with Dapi and the probes for DUSP1, GILZ and GR, 

then all 4 colour channels were imaged alongside a brightfield image (Fig. 5.22A). 

Unfortunately, the cell outlines were not detected reliably using the brightfield 

image and cell outlines were defined by freehand drawing around outlines (Fig. 

5.22B). The find maxima tool was used to detect points of maximum staining 

compared with the background, and the number of these bright points within each 

outline was quantified for each condition (Fig. 5.22C). The number of spots did 

appear to increase for both DUSP1 and GILZ, however, drawing around cell 

outlines did not appear to be a reliable method of analysis. In addition, image 

acquistion and analysis required approximately 16 hours of imaging when only 

imaging 5 images per condition. I therefore developed a program to enable 

automated image acquisition on the confocal microscope, and reverted to a 

modified pipeline for FiSHQuant analysis to quantify the confocal imaging data. 

 
FishQuant is a free-to-use Matlab toolbox which can be used to automate 

analysis of smFISH images in an unbiased manner (308). FishQuant used the 

localisation of smFISH spots to predict a cytoplasmic mask for each cell. This 

software aims to detect mRNA across all 3 dimensions of the cell. It is also able 

to provide a quality score for each detected spot. This score indicates the 

certainty of the system that the foci indicates a positive signal, as opposed to 

autofluorescence or debris. FishQuant also includes a tool to create masks for 
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both the nuclear and cytoplasmic areas, based on the staining for Dapi and GR 

staining respectively.  

 

 

Figure 5.22: M059K cells were probed for DUSP1, GILZ and GR mRNA using 
smFISH following Gc treatment and imaged using confocal microscopy. M059K 
cells were treated for 4 hours using a vehicle control, 50nM HC, 500nM HC, or 100nM 
Dex, then prepared for smFISH according to manufacturer’s protocol. A) Wells were 
imaged using a confocal microscope for each channel and a brightfield image. B) Cell 
outlines were drawn freehand using ImageJ. C) Spots were quantified using the find 
maxima tool to find points of maximum saturation. Images were acquired using a Nikon 
confocal microscope at a 40x magnification. 
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This entailed using a maximum projection of each image within a CellProfiler 

pipeline. These masks can then be added to the z-stack for each channel within 

each field of view. Based on this, the number of foci per cell may then be 

quantified, and each image can be manually checked for poor quality cell masks. 

By filtering out low quality cells and through the quality score for each mRNA, this 

allows for relative confidence in the system.  

 
This system allows for high-throughput, unbiased quantification of foci, however 

a concern was whether the automated software was unable to distinguish 

between neighbouring cells or detect cell edges which may have lower numbers 

of GR transcript. A simple analysis was completed, subsampling across six 

different positions within 10 different cells to determine if variation in transcript 

numbers dependent on subcellular localisation (Fig. 5.23). While there was some 

variability in absolute transcript number from different regions within any cell, the 

largest variability came from differences in transcript abundance between cells. 

It was therefore determined that using automated confocal imaging coupled with 

the combined CellProfiler/FiSHQuant analysis was the most robust way to 

analyse the assay.  
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Figure 5.23: Subcellular sampling reveals heterogeneity between individual cells. 
Expression of mRNA transcripts were measured across 6 points within each cell, and 
normalised to area size. Variability within ACTB expression in untreated cells (A), and 
expression of DUSP1, GILZ and GR within Dex treated cells (B-D). Images show 
representative sampling. Dotted lines on graphs indicates mean expression. Scale bar 
denotes 50μm. 
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5.2.16 smFISH results show similar patterns to the scRNA-seq 
data 

For each of the 4 experimental conditions, 5 fields of view were imaged at a 40x 

objective on an A1R confocal microscope, and images processed using 

CellProfiler and quantified using FishQuant. Example images for each condition 

are shown (Fig. 5.24). GR expression appeared relatively consistent across all 4 

treatment groups, whilst both DUSP1 and GILZ showed a dose-dependent 

increase in expression following Gc treatment. 

 
The expression was quantified using FishQuant software. As was seen within the 

images, mean expression of DUSP1 and GILZ showed significantly increased 

following Gc treatment (Fig. 5.25, upper). The number of mRNA molecules in 

each individual cell is presented as violin plots (Fig. 5.25, middle), which enable 

better comparison with the scRNA-seq data (Fig. 5.25, lower). The smFISH 

results do not correlate precisely with the scRNA-seq data, but the general outline 

of the data is very similar. For instance, for DUSP1, the maximal response did 

increase slightly in a small number of cells in response to the 100nM Dex. What 

is clear, however, is the increase in maximum response is much more 

pronounced for GILZ. GILZ expression within vehicle-treated cells is very low, 

and this entire population shifts upwards strongly in response to the 3 Gc doses. 

This highlights how the smFISH is so much more sensitive than the scRNA-seq 

and should be used as validation to ensure that limits of transcript detection are 

not interpreted as biological phenomena. 
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Figure 5.24: smFISH shows increased expression of DUSP1 and GILZ following 
Gc treatment. M059K cells were treated for 4 hours with a vehicle control, 50nM HC, 
500nM HC, or 100nM, then probed in parallel for DUSP1, GILZ, and GR. Wells were 
imaged using a Nikon A1R confocal microscope at 40x objective. Images shown are 
representative of 3 independent experiments. Scale bar denotes 50um.  
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Figure 5.25: smFISH shows increased expression of DUSP1 and GILZ mRNA 
following Gc treatment. M059K cells were treated for 4 hours using a vehicle control, 
50nM HC, 500nM HC, or 100nM Dex. Cells were stained for DUSP1, GILZ and GR 
mRNA, then imaged using confocal microscopy and quantified using FishQuant. A) 
Average expression for each mRNA probe is shown. B) Variability between expression 
within each gene is also shown as violin plots. Each dot represents expression within a 
single cell. C) This is compared to the expression data from the single cell RNA-seq data 
previously shown. Results shown are the average of 3 independent experiments. Shown 
are the mean +/- SEM.  
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5.2.17 smFISH suggests a correlation between expression of 
GR and Gc regulation of target genes  

Given that GR expression shows such high variability between cells, it would 

therefore follow that cells with highest levels of GR expression would be the cells 

that show the greatest induction of Gc regulated genes. Expression of GR 

compared with either DUSP1 (Fig. 5.26, left), or GILZ (Fig. 5.26, middle) from the 

smFiSH data is shown for each treatment condition. For vehicle treated cells, 

expression of DUSP1 and GILZ was low, and showed very little correlation with 

GR expression. There was a dose/affinity dependent increase expression of both 

genes following Gc treatment, and the stepwise increase in DUSP1 and GILZ 

expression also increased correlation with GR expression in individual cells. 

Correlation between expression was quantified using a correlation coefficient, 

from which the R2 value was calculated. An R2 value of 1.0 would indicate that all 

of the variance of DUSP1 expression, for instance, was explained by variation in 

GR expression. An R2 value of 0, on the other hand, would indicate that variation 

in one variable was not related to variation in the other. For DUSP1 and GR, R2 

was 0.1261 in vehicle treated cells, which increased to 0.4334 in Dex treated 

cells, and for GILZ and GR, R2 was 0.1396 in vehicle treated cells, which 

increased to 0.3967 in Dex treated cells.  

 
While this moderate positive correlation makes sense, it was surprising that the 

correlation was not stronger, suggesting other intrinsic factors that modulate the 

Gc response independently of GR expression. In support of this, despite good 

correlation of GR expression with DUSP1 and GILZ, there was very little 

correlation between the expression between DUSP1 and GILZ expression, even 

in the presence of Dex, with R2 of 0.172. 
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This suggests that while GR expression is an important determinant in Gc 

sensitivity, which can account for some variability between cells, there are other 

factors that are important in modulating the Gc response on a gene by gene 

basis. 

 

Figure 5.26: smFISH results show correlation between gene expression. 
Expression of DUSP1 and GR, GILZ and GR, and GILZ and DUSP1. Correlation is 
shown between expression in the same cells for each of the 4 conditions; vehicle-treated 
cells, 50nM HC, 500nM HC, and 100nM Dex. Shown are the accumulated results across 
3 independent experiments. R2 value indicates the Pearson’s coefficient to indicate 
correlation for each cell.  
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5.2.18 smFISH helps to elucidate effects of Gc on inflammation 

In addition to providing further validation for the scRNA-seq results, 

downregulated GR target genes identified by the scRNA-seq were also analysed 

using smFISH, but in this case their expression was analysed within the context 

of an inflammatory cue, TNFα. To do this, two well characterised Gc target genes, 

IL6 and IL8 (CXCL8), were chosen. Both are pro-inflammatory cytokines, are 

induced by TNFα and downregulated by Gc treatment.  

 
Cells were pre-treated with TNFα for 1 hour prior to Dex addition, or pre-treated 

for 20 hours, to mimic the effects of acute and chronic inflammation respectively. 

Cells were then treated for 4 hours with a vehicle control, or 100nM Dex, then 

fixed and processed for smFiSH. Cells were then stained with probes for IL6, IL8 

and GR. Representative images are shown (Fig. 5.27). Images were then 

analysed using FishQuant to quantify transcript expression. Both IL6 (Fig. 5.28A) 

and IL8 (Fig. 5.28B) were increased following TNFα addition. Although, IL6 

showed a marked decrease in expression when then treated with Dex, this was 

not seen for IL8, which showed a marked increase in expression following Dex 

combined with acute TNF treatment. This response was not seen with chronic 

TNF treatment. It is important to note that these results are the mean of only two 

independent experiments. It is possible that these results may highlight the 

complex effects of Gc within the context of inflammation – Gc treatment can be 

proinflammatory in mild inflammation. This does, however, requires further 

validation.  
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Figure 5.27: TNF treatment induces expression of IL6 and IL8, and this is 
abrogated by Dex treatment. M059K cells were pre-treated with 10ng/ml TNFα  for 1 
hour (acute TNF) or 20 hours (chronic TNF). Cells were then treated with a vehicle 
control, or 100nM Dex for 4 hours. smFISH was then used to probe for IL6, IL8 and GR 
mRNA. Wells were imaged using a Nikon A1R confocal microscope at 40x objective. 
Scale bar denotes 50μm. Images shown are representative of 2 independent 
experiments. 
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Figure 5.28: TNF treatment induces expression of IL6 and IL8, and this is 
abrogated by Dex treatment. M059K cells were pre-treated with TNF for 1 hour 
(acute) or 20 hours (chronic), then treated for 4 hours with a vehicle control (blue), 
or 100nM Dex (red). Cells were probed for IL6, IL8 or GR transcripts. Average 
expression for each gene is shown (left), and violin plots of individual gene 
expression (right). For IL6 and IL8, results are the sum of 2 independent 
experiments. For GR, results are the sum of 1 independent experiment. Error 
bars denote mean +/- SEM. 
 

In contrast to observations with upregulated genes which showed positive 

correlation with GR expression, there was no negative correlation between GR 

and IL6 expression (Fig. 5.29). This likely reflects the interaction of GR with other 

transcription factors such as AP-1 or NFkB in order to suppress IL-6. 
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Figure 5.29: Expression of IL6 and GR shows no correlation in single cells. Cells 
pre-treated with TNF for 1 hour (acute) or 20 hours (chronic), then treated for 4 
hours with a vehicle control, or 100nM Dex were probed for IL6, IL8 or GR mRNA. 
Genes were paired, and correlation was tested using Pearson’s tests, and the R2 
value was calculated. For IL6 and IL8 correlation, results are the sum of 2 
independent experiments. For GR correlations, results are the sum of 1 
independent experiment. At least 50 cells were analysed within each experiment. 
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The effect of acute and chronic TNFα treatment on Gc induction of DUSP1 and 

GILZ was also analysed (Fig. 5.30 & 5.31). There was an increase in expression 

following Dex addition, and number of detected mRNA were consistent with 

previous experiments. The Dex-dependent increase in DUSP1 expression was 

completely unaffected by TNFα pre-treatment (Fig. 5.31A), however, the Gc 

induced GILZ expression was abrogated following either acute or chronic TNF 

treatment, suggesting impaired Gc sensitivity (Fig. 5.31B).  

 
This was also demonstrated by reduced correlation following Dex treatment, 

between GR and GILZ expression from R2 in control treated cells of 0.6124, 

compared with R2 of 0.1192 in acute TNF treated cells and R2 of 0.2764 following 

chronic TNF treatment (Fig. 5.32). However, these experiments require additional 

repeats to enable statistical analysis. 

 
Overall, further analysis of additional upregulated and downregulated genes will 

be required to determine whether the patterns seen within these genes are 

common within Gc-mediated transcription. Based on these results, however, the 

single cell RNA-seq data appears to provide a reliable measure of the 

heterogeneity within the GR response. Further analysis will aim to investigate 

other factors which could contribute to this heterogeneity, and could alter the GR 

response as a whole. 
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Figure 5.30: Effect of TNF treatment on Gc induction of DUSP1 and GILZ 
expression. M059K cells were pre-treated with 10ng/ml TNFα for either 1 hour (acute), 
or 20 hours (chronic), or left untreated. Cells were then treated for 4 hours with a vehicle 
control, or 100nM Dex. Cells were then probed using smFISH for DUSP1, GILZ and GR 
mRNA. Wells were imaged using a Nikon A1R confocal microscope at 40x objective. 
Images shown are representative of 2 independent experiments. 
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Figure 5.31: TNF treatment impairs Gc induction of GILZ but not DUSP1. M059K 
cells were pre-treated with TNF for 1 hour (acute) or 20 hours (chronic), then treated for 
4 hours with a vehicle control (blue), or 100nM Dex (red). Cells were probed for DUSP1, 
GILZ or GR transcripts. Average expression for each gene is shown (left), and violin plots 
of individual gene expression (right). Results shown are the mean of 2 independent 
experiments. Error bars denote mean +/- SEM. 
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Figure 5.32: Expression of DUSP1, GILZ and GR do correlate, but this does not 
completely explain the heterogeneity in response. Cells were pre-treated with 
TNF for 1 hour (acute) or 20 hours (chronic), then treated for 4 hours with a 
vehicle control, or 100nM Dex. Cells were probed for IL6, IL8 or GR mRNA. 
Expression of these genes were graphed, and correlation was tested using 
Pearson’s tests, and the R2 value was calculated. For DUSP1 and GILZ 
correlation, results are the sum of 2 independent experiments. For GR 
correlations, results are the sum of 1 independent experiment. At least 50 cells 
were analysed within each experiment. 
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5.3 Discussion 

 

Single cell RNA-seq is an exciting new technology which promises to unveil 

complex mechanisms of regulation within gene expression (303, 309). This 

technology has been used to increase understanding of the mechanisms by 

which the binding of Gc to its ligand leads to the transcription of GR target genes, 

and how this process can vary between individual cells.  

 
The single cell RNA-seq preparation yielded a high number of viable single cells 

for each of the four conditions and the sequencing process was successful, as 

seen through the QC data. This has shown a large library size for each cell, with 

relatively few outliers. Cells with low number of transcripts can be indicative of 

cell death, or ruptured cells, resulting in low capture (294). It is therefore common 

to enforce a cutoff, such as that seen here (310, 311). The specific cutoff of 3 

MAD has also been previously used within the literature (312). In addition, 

features such as the relatively low expression of mitochondrial genes indicates 

that cells were not under physiological stress (313). As a further control, cells with 

high mitochondrial gene expression were also filtered out. In addition, these 

quality matrices are unchanged across treatment groups, suggesting that Gc 

treatment does not affect the viability or stress of the cell population. Overall, 

these factors lend confidence to the quality of the data, and the conclusions 

drawn from it. 

 
The first, and perhaps most obvious cellular feature to examine regarding 

variation in Gc responses was the cell cycle phase of individual cells. Using the 

transcriptional output to divide cells into estimated cell cycle phases has been 
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widely used within single cell RNA-seq analysis (292, 314, 315). Cell cycle phase 

has been shown to affect phenotypes within multiple single cell RNA-seq 

analyses of developmental populations (296, 316, 317). While cells in distinct cell 

cycle phases separate by PCA analysis, there appeared to be no relationship 

between the GR response and cell cycle phase. We had initially predicted that 

due to differences in chromatin condensation within cell cycle phase, GR binding 

might be altered, thus affecting the transcriptional output. This was not the case, 

and there appeared to be no significant difference in transcriptional output. This 

is confirmed by recent data, predicated on providing a model to combine single 

cell RNA-seq with a method of timing mRNA production. The assay consisted of 

A549 cells treated with Dexamethasone for time periods from 0 – 10 hours (318). 

4-thiorudine was used to label newly synthesised mRNA for the final 2 hours of 

treatment. Cells were then prepared for single cell RNA-seq. When analysing the 

newly synthesised mRNA, rather than total mRNA content, overall mRNA output 

was reduced in early G1 and late G2M phases, however, there was no correlation 

between cell cycle phase and GR response. Applying this to our data, this may 

suggest that cells within these cell cycle phases would respond to a slightly lower 

level, but fall within the same population.  

 
When comparing the single cell RNA-seq cell cycle phase data with the propidium 

iodide staining, the data correlated but did not precisely match. The single cell 

RNA-seq showed a much higher proportion of cells within G0/G1 compared with 

the PI staining. This may be due to differences in experimental procedure; the 

classification procedure may not be as effective as expected at identifying cells 

within G2. Alternatively, differences in experimental procedure may have altered 

the number of cells entering mitosis. Further, there also does not appear to be 
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any effect of Gc treatment on cell cycle phase within the single cell data, which 

further confirms the work in the previous chapter, which suggested that Gc do not 

affect GBM cells through the induction of cell cycle arrest.  

 
At a population level, differential expression of genes in response to Gc treatment 

is well established, however, how this response manifests in individual cells is 

still unknown. More broadly, inherent variability in response to transcription factor 

activation has long been presumed, but the advent of technologies which allow 

us to analyse the response at a single cell resolution have finally allowed us to 

explore factors determining this variability (319, 320). Using PCA and t-SNE 

analysis, it was clear that Gc treatment led to a profound change in phenotype 

across the cell populations, however, there was also variability within this.  

 
Bulk RNA-seq analysis was used to inform the downstream analysis of the data. 

As the bulk sequencing is limited to 3 technical repeats for each condition, and 

uses a larger volume of RNA for library preparation, results are more robust, with 

less noise within the system. This approach does have its disadvantages; 

principally, that by limiting analysis to genes which had sufficient differential 

expression to be found at a population level, we may be ruling out genes with 

more subtle differential expression between conditions, or for which high levels 

of heterogeneity within each condition could prevent differences between 

conditions from becoming significant at a population level. We concluded, 

however, that it was the only way to definitively confirm that the genes chosen for 

analysis further down the pipeline were not noise-induced artefacts within the 

system.  
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As previously discussed, we had predicted to see one of two types of response, 

either a binary or a rheostat response. Both models have been modelled within 

the literature, and are believed to show distinct transcriptional signatures. A 

binary response would indicate that expression of a gene could either be turned 

on or off. This means that the population would consist of two types of response, 

one with expression turned off, and one with expression turned on. These cells 

with expression turned on would all respond at the same maximal level. 

Alternatively, for rheostat genes, expression would form more of a spectrum, or 

graded, response. The population would gradually move up with increasing 

doses of ligand. Both types of response have been previously been modelled 

using fluorescent reporter genes, however the relevance of their results have 

been questioned. Such assays rely on the quantification of protein (e.g. GFP), 

rather than the quantification of mRNA levels. Models have shown that 

differences in mRNA and protein half-lives and translational efficiency can have 

marked effects on the model of response seen at a protein level (201). Therefore, 

by analysing the response at an mRNA level on a single gene basis, it is possible 

to determine which model fits the gene expression seen following GR activation. 

 
Somewhat surprisingly, however, we found evidence for both types of response. 

Some of the density plots appeared to show that some genes consisted of a 

“binary” type response, whereby we saw two distinct populations of expression, 

and differences in proportions within these populations led to differences in the 

strength of the response at a population level. Alternatively, other genes 

consisted of a more graded response, whereby the entire population of cells 

showed a shift in expression in response to a ligand. We also saw a third 

response, which consisted of a widening of the response peak in response to 
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ligand, thus increasing the variability of the response. This population may consist 

of genes which fit somewhere between both responses, however, further work 

would be required to confirm this. 

 
Analysis of GR binding in relation to sensitivity to Gc revealed that the number of 

binding sites did not reflect whether genes were responsive to low or high affinity 

Gc. It is important to note however, that genes that were downregulated tended 

to have fewer binding sites that upregulated genes, a difference that could be 

explained by mechanism of regulation – direct DNA binding versus tethering. The 

most important caveat to this work is that the ChIP-seq data is from a different 

cell line, which could potentially have a very different Gc response. Given how 

specific the Gc response is, depending on cellular clues and the 

microenvironment, it is probable that there are stark differences between A549 

and M059K cells. Therefore, to fully relate the single cell data with GR binding 

data, it would be necessary to complete ChIP-seq analysis within M059K cells.  

 
Further than this, GR binding sites are complex, and many of them may be found 

thousands of base pairs from the gene they regulate (321). Through the 3 

dimensional architecture of the chromatin landscape, this binding site may be 

brought close to the gene, however, this information is not capable of being 

deduced through ChIP-seq analysis (322). Other new technologies, such as HiC, 

have begun to address these questions, and will hopefully be combined in the 

future with sequencing technologies. 

 
Due to the novelty of single cell RNA-seq technology, it is still necessary to 

validate the results to confirm differences in response are not simply artefacts 
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introduced during sample preparation, or due to limits of detection sequencing 

technology. smFISH has been previously used within the literature to validate 

single cell RNA-seq data (323, 324). Our initial target genes consisted of GR, 

DUSP1 and GILZ. Through the simultaneous use of three probes to these genes, 

we could confirm GR expression as relatively consistent across treatment groups, 

and could also directly compare expression of the two DE genes within the same 

cells. Once validated, this would provide a platform to test different drug 

treatments such as inflammatory cues, or chemotherapy to investigate how 

responses are altered. 

 
smFISH staining required several stages of optimisation. Firstly, it was necessary 

to use an unbiased method of quantification of staining. Due to the use of three 

probe sets, it was not possible to include an additional cytoplasmic stain. 

Therefore, to create masks to analyse individual cells, it was initially necessary 

to manually demarcate each cell using freehand masks in ImageJ. This method 

is clearly not precise enough, and potentially subject to user bias. Therefore, 

FishQuant was identified as a promising tool for automated quantification of 

staining (325, 326). FishQuant allows the quantification of multiple colours within 

the same cell. In addition, it allows for the analysis across three dimensions to 

distinguish between debris and spots.  

 
The second point of optimisation was image acquisition. Ideally, an automated 

system would be used in order to acquire an appropriate number of z-stack 

images for quantification. Unfortunately, the only fully automated system 

available was the Operetta, which employs a widefield microscopy system. 

Widefield microscopy conveys images of a lower resolution, and with a higher 
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risk of bleed through between planes within a z-stack of images. This leads to a 

reduction in the resolution of final images. When considering techniques, such as 

smFISH, which require high resolution to visualise small, defined spots, the 

resolution seen with the Operetta system was not sufficient. Therefore, it was 

necessary to use a confocal microscope system. Using confocal imaging, it is 

also possible to take z-stacks with slices much closer together, allowing the spots 

of staining to be more obvious. This process can also be partly automated, using 

Nikon software to automatically image several fields of view within each well.  

 
The results from smFISH indicated that expression of GILZ and DUSP1 genes 

was increased following Gc addition, and that the response was variable, in line 

with scRNA-seq data. The correlation seen between expression of Gc responsive 

genes and GR suggests that GR expression accounts for some of the variability 

observed, but that there must be additional regulatory factors involved. 

Consistent with this, there was weaker correlation between the two Gc target 

genes. Therefore, while GR expression imparts some effect on the magnitude of 

the response, GR can induce GILZ with little impact on DUSP1 expression in the 

same cell. It can therefore be concluded that gene expression changes in 

response to Gc are controlled in both a cell-specific and a gene-specific manner. 

As a critical next step Dex treated cell populations from the scRNA-seq data could 

be separated into cell populations based on either high or low GILZ expression 

and determine which other genes/gene sets could predict a stronger GILZ 

response. This could also be repeated using DUSP1 as a marker gene, and 

possibly others to identify master regulators of the Gc response. Of particular 

interest would be genes that predict good or poor responses, that were not 

themselves regulated by Gc. Once identified, these sensitivity marker genes 
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could be analysed alongside Gc responsive genes using the smFiSH assay to 

determine correlation and identify inherent, cell specific markers of Gc sensitivity.  

 
In contrast to the Gc induced genes GILZ and DUSP1, there was no correlation 

between suppression of IL6 and high GR expression. This is an interesting 

finding, since the mechanism by which GR regulates GILZ and IL6 are different. 

While GR binds directly to regulatory sites to increase GILZ expression, GR 

tethers to NFkB and AP1 proinflammatory transcription factors and inhibits their 

function. In this context perhaps the expression of NFkB and AP1 in driving 

expression of IL6 is the most important factor. It would therefore be interesting to 

correlate IL6 regulation in smFiSH assays alongside expression of GR in 

combination with p65 or AP1 gene expression. With this in mind, it would also be 

interesting to also analyse genes which are induced the proinflammatory 

transcription factors and potentially inhibited by Gc through direct DNA binding of 

GR, such as PLAU, E2F7 or AMIGO2.  

 
The work herein has described complex mechanisms of gene regulation, 

however, we have not discussed the levels of regulation at translation. Therefore, 

as an important piece of future work, it would be important to correlate mRNA 

and protein expression, for both GR, other transcription factors and for GR target 

genes. This could be achieved using the ViewRNA ISH kit used for the smFISH. 

Whilst the kit was used herein only to examine mRNA expression, it can also be 

used to compare mRNA and protein expression using an antibody specific to the 

protein of interest. Ideally, GR protein expression could be compared with GR 

gene expression, but also DE gene expression, to confirm a correlation.  
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Another interesting finding from the smFISH assay was that Gc induction of GILZ 

was impaired following acute or chronic Dex treatment. This experiment needs to 

be repeated, but the fact that the Gc induction of DUSP1 was not impaired in the 

same cells, and under the same experiment conditions, suggests a technical 

issue is unlikely to account for this. Reports suggests that DUSP1 is 

transactivated through a mechanism of tethering, and the different effects of TNF 

may again reflect different mechanisms of GR action (238, 327). It would 

therefore be interesting to repeat this experiment including a broader panel of 

transactivated genes such as PER1, FKBP5 or SNAI2. The use of GR modulators 

which favour transactivation or transrepression would provide interesting tools to 

interrogate this further pharmacologically. 

 
The gene ontology analysis for the scRNA-seq, in addition to the bulk RNA-seq 

presented in the previous chapter, identified transcriptional misregulation in 

cancer and p53 effector pathways as terms, which includes genes that control 

DNA repair and stemness. While the smFiSH assay is useful to understand Gc 

responses at the single cell level in clonal cell populations, it also provides a cost 

effective way to explore how Gc may drive tumour evolution in more complex 

primary cultures and tissue sections. TNF treatment reflects one of the 

inflammatory cues in the brain tumour environment, but combining the 96 well 

smFiSH assay with transwell assays to coculture GBM cells with immune or stem 

cells could provide additional information on how Gc function within GBM.  

 
In addition to examining how cells crosstalk within the tumour environment, it 

would also be important to track how Gc signatures change over time, and the 

impact of chemotherapy. Gc are known to be important regulators of epithelial-

mesenchymal transition and so could link to cancer cell dormancy in addition to 
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chemoresistance. Repeating the smFiSH assays in cells that have been cultured 

for longer periods in Dex would be informative, although ideally another round of 

scRNA-seq would be preferable as the Gc response will likely evolve over time, 

and the previous scRNA-seq was only completed after 4hrs. The key limitation of 

single cell RNA-seq is that it captures a single snapshot of the Gc responses at 

one time. Analysing a time series would be a good option, but in addition access 

to new technology such as a nanobiopsy would permit longitudinal tracking of 

individual cells over time. 

 
Through the combined scRNA-seq and bulk RNA-seq analysis, I have identified 

a panel of 99 genes that have been identified as robust markers of Gc action in 

GBM cells. A limitation of current sequencing data from GBM patients is that 

often, information relating to dose or even administration of Gc are not included. 

Moving forward it would be interesting to access public RNA-seq data from brain 

tumour patients and retrospectively identify tumours with high prevalence of Gc 

signatures and correlate this with patient outcome. This would be done by 

stratifying tumours into clusters based on the expression of the 99 genes (or 

possibly dividing into two signatures, one for upregulated genes and one for 

downregulated genes). A similar approach has been used by my supervisor to 

stratify triple negative breast cancer subtypes based on nuclear receptor 

expression. 

 
This pilot dataset therefore provides some insight into how Gc responses of 

individual genes vary at the single cell level and provides exciting opportunities 

for further study. Already there are possible hints as to how the different 

mechanisms by which GR regulated genes might determine the robustness of 

the response, with distinct points for control. More work, using equally cutting-
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edge technologies, and application to clinically relevant samples are needed. In 

addition to better understanding how Gc work, it is also hoped that this can feed 

into work presented in the previous results chapter to identify safer Gc to treat 

GBM.  
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Chapter 6 Discussion and Future Perspectives 

 
Gcs are first line treatments for many inflammatory conditions. They are an 

essential means to limit the potentially damaging effects of inflammation, which if 

not properly controlled can cause serious long term consequences or even death 

(5). This is particularly important in the context of GBM, a highly aggressive form 

of brain cancer. Gc are used throughout GBM treatment, often from the point of 

diagnosis, to reduce oedema and its secondary side effects (328). Their use not 

only improves quality of life for patients, but also effectively reduces the risk of 

stroke. Unfortunately, patients prescribed higher doses of the potent synthetic Gc 

Dex also have reduced survival times (182). The reason for this remains 

controversial. Some believe that as the patients with most severe symptoms by 

definition also receive the highest doses of Gc, the corresponding correlation is 

merely a reflection of disease severity. However, growing evidence suggests that 

Gc directly reduce the efficacy of standard radiotherapy and chemotherapy (182, 

185). Fully understanding the mechanism of Gc function in the context of GBM is 

critical to improve therapeutic options and help people live longer, with improved 

quality of life. 

 
Despite over 60 years in clinical use, it is only over the last decade that we have 

gained real insight into mechanisms underlying Gc action. We now know that Gc 

responses are under multiple levels of control, which enables tissue and context 

specific responses. This is dependent on factors such as the chromatin 

availability, the presence of other transcription factors, and changes to the tissue 

microenvironment, such as the presence of inflammation (51, 329, 330). On one 

hand, this underlies their adaptability and consequently broad application to a 
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range of conditions as Gc exert effects on almost every cell type in the body. 

However, it also means that extrapolating information from, for example, a lung 

inflammation model, to make predictions for Gc action in GBM more challenging. 

 
There are now an increasing number of studies investigating Gc action using in 

vivo models of GBM or in GBM cell lines (182, 331). These studies have been 

valuable in suggesting that Gc treatment does in fact increase either recurrence 

and aggressiveness of GBM and/or promotes treatment resistance. The 

mechanisms responsible, however, have not been clearly investigated. This is a 

major limitation of current studies and can be attributed, at least in part to the 

duration of Gc treatment which are typically longer and therefore identify 

secondary effects. These studies aim to recapitulate in vivo environment by using 

repeated, high doses of Gc over a period of several days. This approach has its 

merits, however, in this context cell cycle arrest (and little else) appears 

prominently in sequencing studies as the mechanism (222, 279). However, it is 

possible that in these conditions, with high doses and prolonged treatments, more 

subtle cellular effects, which occur earlier, may have been masked. 

 

6.1 Primary Gc effects in GBM cells 

To identify primary effects, GBM cells were subjected to an acute Gc challenge 

with Gc of different affinities and potencies and gene expression changes were 

analysed. This revealed a number of potential effectors – including other 

transcription factors known to regulate cancer, DNA repair pathways and stem 

cell regulators. Given that the two primary therapies used within GBM, namely 

radiotherapy and Temozolomide, rely on the induction of DNA damage, it was 
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hypothesised that Gc reduces the efficacy of both therapies by influencing the 

rate of DNA repair (104, 160).  

 
Cell viability assays demonstrated that pre-treatment with Gc 24 hours prior to 

irradiation or chemotherapy treatment led to increased survival of GBM cells over 

the next few days. It is important to note, that Gc at these doses in the same cell 

line did not induce cell cycle arrest at the same timepoint, suggesting cell cycle 

effects at the time of radiotherapy or chemotherapy are unlikely to be a major 

determining factor in this context. Moreover, Gc treatment did not influence the 

amount of damage induced by chemotherapy or radiotherapy treatment, but 

instead reduced the level of damage over time. Overall, this suggests that the 

treatment of GBM cells with Dex leads to an increase in DNA repair responses, 

which in turn reduces therapeutic efficacy of radiotherapy and chemotherapy. 

  
MGMT expression has been well-characterised as an indicator of treatment 

response in GBM. There has been previous research showing that Dex treatment 

is capable of increasing MGMT expression within GBM cells, including M059K 

cells, however, within our research, we were unable to detect MGMT expression 

within M059K cells using qPCR (171). MGMT has also previously been detected 

in M059K cells using western blotting, and a key priority of future work will be to 

test MGMT expression in M059K using this method, and in other cell lines, to 

determine if we can replicate these previously published results.  

 
Further work will also be required to further investigate the roles of both Rad51 

and p53 in relation to Gc-mediated therapeutic resistance. In particular, Rad51 

knockdown showed mixed effects on GBM cell survival. It would therefore be 
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beneficial to quantify Rad51 foci formation following IR and TMZ, in order to 

determine if Dex could affect Rad51 activation, and thus lead to an increase in 

homologous recombination. To date, there has been no literature to suggest a 

functional relationship between Rad51 and GR, and these results could have 

implications in a wide range of conditions for which Gc are routinely prescribed.  

 
GR is known to bind to tens of thousands of sites along the genome, recruiting 

large transcriptional regulatory complexes. Sites of active transcription 

accumulate damage and so given the role of GR in regulating transcription it is 

perhaps not surprising that GR can increase the expression of both DNA repair 

and cell cycle arrest genes as a safeguarding mechanism. Conceptually, this 

would buy time for any potential damage induced by the act of transcription to be 

actively repaired, and prevent any potentially damaging mutations from being 

replicated within the cell population. In the context of ‘normal’ biology this is an 

important feature. However, within the context of cancer therapeutics, which rely 

on inducing DNA damage and cell death it can lead to the unwanted reduction in 

efficacy seen within GBM cells. Alternative, more targeted therapeutics are 

therefore needed. 

 

6.2 Increased safety using selective GR modulators 

Despite these potentially damaging effects on therapeutic efficacy, care must still 

be taken when considering withdrawing Gc use within patients with severe 

inflammation. For many, Dex treatment leads to an invaluable increase in quality 

of life, and oedema itself may lead to premature death if not quickly and efficiently 

controlled (331, 332). Current guidelines recommend tapering of Dex following 

surgery, and prior to treatment with radiotherapy and chemotherapy (333, 334). 
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However, this is not always possible, as for some patients, removal of Dex 

treatment may lead to a recurrence in potentially fatal symptoms (335). For these 

reasons, care is needed to ensure that any alternatives are as rapid and effective 

as Dex, whilst reducing the possibility of the potentially damaging side effects on 

therapeutic efficacy. A selective GR ligand could be a promising alternative to 

Dex usage in GBM. 

 
Gc are potent modulators of inflammation, but also control aspects of normal 

homeostasis, most notably metabolic functions. This means that patients taking 

Gc long term for rheumatic disease for example also develop a range of 

undesirable side effects such as osteoporosis and type 2 diabetes. There have 

been huge efforts by the pharmaceutical industry to develop a new generation of 

Gc that are equally efficacious to reduce inflammation, but have less impact on 

metabolic function (336). This has been challenging and has required innovative 

approaches to develop drugs with unique pharmacology and iteratively test them. 

The major premise for screening these novel compounds is based on theory that 

GR transactivation of genes leads to damaging side effects, such as effects on 

metabolism, and also potentially the effects on DNA repair reported herein (5, 

337). Meanwhile, the transrepressive effects of GR primarily lead to the beneficial 

effects on reducing inflammation (338). By creating GR ligands which 

preferentially led to transrepression, with limited transactivation, many 

pharmaceutical companies had hoped to create effective Gc with reduced side 

effect profiles.  

 
Needless to say, this has been to some extent an overly simplistic approach. 

Many of these ligands have not fulfilled their initial promise in initial laboratory 
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testing or within clinical trials. Despite several phase II and phase III trials of 

ligands such as Maprocorat and Fosdagrocorat, results have not been released, 

suggesting results may not have been positive (336). This is, in part, due to the 

unexpected complexity of genomic effects, which do not correspond to the 

simplistic dichotomy of transactivation/transrepression (336, 339). The work 

within this thesis, however, has suggested that within GBM, there is potential that 

some commercially available selective GR ligands repress expression of 

proinflammatory genes, without reducing the efficacy of IR or TMZ. This would 

suggest that these selective ligands may be a possible avenue of investigation 

for replacing Dex within the clinic.  

 
Compound A, in particular, showed high efficacy in the reduction of inflammation, 

but did not increase GBM cell survival following IR. This is encouraging; however, 

previous research has indicated that its therapeutic window is limited, and high 

doses are toxic in mouse models, and due to these concerns, it is  not approved 

for use in humans (336, 340). Therefore, whilst CpA has been beneficial as a 

proof of concept, other selective ligands must be investigated for potential 

therapeutic use. Many of these selective ligands have been through Phase I and 

II clinical trials as therapies for other conditions, so could be quickly repurposed. 

The next steps will be to expand the panel of compounds in testing to determine 

which have potential to reduce inflammation, but not impact efficacy of 

radiotherapy or chemotherapy, specifically using comet assays and уH2AX 

staining. Further work, using these assays, developed as part of this PhD, will 

clearly be required in collaboration with pharmaceutical companies before this 

can be trialled within patients.  
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Despite promise of testing compounds for effect on DNA repair and cell survival 

outcomes, it remains unclear exactly how this might occur. It is of critical 

importance to determine the underlying mechanism, both in order to characterise 

this novel mechanism of Gc action, but also to develop more specialised high 

throughput assays that could be used to screen compound libraries. As a 

continuation to this project M059K cells will be treated with radiotherapy and 

chemotherapy following 24hrs pre-treatment with either vehicle, Dex or 

compound A, then analysed by RNAseq. Genes differentially expressed between 

Dex or Compound A compared with vehicle will be identified, and those regulated 

by Dex, but not by compound A, will be a particular focus. Although compound A 

is a ‘tool’ compound and not a possible therapeutic, its use in this context provides 

the opportunity to determine mechanistically how differences in the cellular 

response to Dex and Compound A are determined at a transcriptional level, to 

guide new therapeutic screens. 

 
The most likely candidate mechanism would be the transcription of DNA repair 

effectors CDKN1A, BCL2L1 and DDIT4, but others such as SNAI2, TBX2 and 

CEBPB are also plausible candidates. CDKN1A plays a key role in the regulation 

of cell cycle progression and apoptosis. Its roles are complex; for instance, 

through cell cycle arrest, CDKN1A may allow DNA repair to occur, however, 

nuclear CDKN1A is also known to induce apoptosis of damaged cells (341). 

Increased CDKN1A expression has been shown to increase resistance to both 

IR and TMZ within GBM (342, 343). DDIT4 also affects cell growth and apoptosis, 

in its role as an inhibitor of the mTOR signalling pathway (344). Increased DDIT4 

expression has been shown to increase resistance to both IR and TMZ resistance 

in GBM, possibly due to its role in inhibiting hypoxia-induced cell death (345). 
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BCL2L1 prevents apoptosis directly through its binding of apoptotic pore-forming 

proteins, inhibiting their function (346). Therefore, through the upregulation of 

genes such as these, Gc can directly alter therapeutic efficacy.  

 
In addition, our dataset also showed Gc upregulated stem cell-related factors, 

such as SNAI2, DKK1 and EFNB2. Stemness is another route by which cells can 

evade treatments, and this relates to tumour cell plasticity in vivo (347). Stem 

cells are key in GBM recurrence; these cells are more resistant to treatment, and 

are capable of reconstituting the tumour once treatment has been completed. 

Therefore, an upregulation of these genes may increase the proportion of stem 

cells within the tumour environment, rendering a larger portion of the tumour 

resistant. This may also be linked to the changes in morphology seen within U87 

cells following Dex treatment.  

 
Looking to the future, it is also important to consider broader application. The 

majority of this work has been completed in one cell line. Of course, the 

reductionist approach of using monolayer cultures of cell lines has advantages 

as it permits controlled analysis of relatively homogeneous populations to 

determine direct action of Gc on GBM cells, and this system is also amenable to 

high throughput screening approaches for the same reason.  

 
Firstly, it is still necessary to extend our findings to analyse a panel of primary 

cells, organoids or even tissue explants. GBM is a highly heterogenous disease, 

both between patients, and within the same tumour. Subpopulations can exist 

harbouring differing mutations and different resistances to therapy. It is therefore 

essential that this heterogeneity is reflected within our model systems. Our 
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analysis of Gc action in a clonal cell line provides the platform for this, as we 

identify a core module of Gc targets that can be specifically analysed in more 

complex systems.  

 
Secondly, with the popularisation of organoid cell models has come an 

appreciation for the role of the surrounding tumour microenvironment in affecting 

tumour cell function (348, 349), and specifically the tissue microenvironment 

(350, 351). Communications between cells, both through direct cell-cell contacts, 

or through secreted factors, such as cytokines, can have a large impact on cell 

function and phenotype. It would therefore be important to identify cell types 

within tumour sections, in order to effectively recapitulate these cell types within 

an in vitro system. Through the use of tissue sections, it will also be possible to 

determine if other nuclear receptors, such as PR and MR, are expressed within 

the tissue microenvironment, and if they are expressed, what cells they are 

expressed within. It has previously been shown, for instance, that neurons exhibit 

high PR expression, compared with cells of glial origins (352, 353), and so PR 

modulators might represent an alternative therapeutic option.  

 

6.3 Heterogeneity in Gc responses in GBM cells 

The original RNA-seq analysis discussed in Chapter 4 investigated average Gc 

responses across large populations of cells. This type of data assumes that Gc 

addition results in identical responses in each cell within these populations. As 

our knowledge of single cell dynamics has broadened, it has seemed increasingly 

unlikely that this would be the case. If we start to consider how Gc might induce 

distinct transcriptional responses in heterogeneous cell populations, we first need 
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to consider how variable Gc responses are in homogeneous populations. In 

reality, Gc needs only to induce treatment resistance in a relatively small 

population of cells to evade death. Over time, these cells could expand, and 

cause the tumour to regrow. 

 
Within the tumour environment there are multiple cell types present, but even 

within the tumour there are also potentially multiple clones. These tumour clones 

can expand and switch phenotype and therefore change tumour responses over 

time. Single cell RNA sequencing has enabled such concepts to come to the 

forefront of cancer research. Huge numbers of studies are revealing complex and 

dynamic changes to tumour populations. To date the majority of studies are 

defining different cell phenotypes, but is it possible to look at acute cell treatments 

in this context also? The disadvantage of single cell approaches is that the 

untreated and treated cells are – by definition - from different populations, so how 

can you determine which individual cells have responded or not? In addition what 

proportion of cells respond to Gc? We know that across the population level it is 

easy to observe transcriptional changes, but it is not clear whether this is 

represented by the majority with relatively modest and homogeneous response, 

or instead a large response by fewer cells.   

  
To answer this question, single cell RNA-seq was completed on the M059K cell 

line, using the same concentrations and duration of Gc treatment as used in the 

bulk RNA-seq from the previous chapter. Using the same experimental system 

provides a means to compare single cell responses with population means, and 

also as the cell population is theoretically identical, provides the opportunity to 

determine variability in the Gc response without the confounding possibility of 
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multiple different cell types as might be predicted in vivo. Based on previous 

studies that employed mathematical modelling to predict transcriptional 

responses, we had hypothesised that the response would follow either a binary 

or graded response (188, 202). The binary response explains the average as a 

simple model where there are two thresholds of expression, and Gc treatment 

induces a proportion of cells to shift from the lower to the upper threshold of 

expression. The graded response is more complex, whereby expression of a 

gene has no lower threshold, and activation by Gc is variable in all cells which 

contribute to the population mean. The data showed that both responses could 

be observed to some degree, in a gene specific manner. Most genes such as 

DUSP1 and DNAJB4 appeared to exhibit a binary-type response, whilst others, 

such as ANKRD1 and MT2A appeared to show a graded response. This seemed 

to be more of a reflection of baseline expression of the gene rather than a special 

mechanism of Gc action. 

 
A limitation of the single cell RNA-seq was lack of read depth limiting detection of 

core Gc regulated genes. Genes with low baseline expression were not present 

in our dataset and so could not be explored – this was particularly evident with 

low expressed genes that were robustly downregulated by Gc such as ICAM and 

VCAM. Some of the genes previously linked to treatment resistance in GBM, such 

as SNAI2, DDIT4, CEBPB, and CEBPD were differentially regulated in the single 

cell dataset. Future work would further explore how these genes are changed 

within the population. For instance, are these genes upregulated within a small 

population of cells, corresponding to the creation of a treatment resistance 

subpopulation, which account for increased survival at a population level? 
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Aside from demonstrating that GR expression was a driving factor in the 

magnitude of response in an individual cell, the mechanism underlying the reason 

for a binary or graded response remains unclear. A pilot analysis indicated that 

there may be a link between the type of response and the baseline expression 

within the target gene. A major limitation was that some of these observations 

were based on the use of publicly available ChIP-seq data, which was carried out 

in an unrelated cell line – A549. Whilst the sequence of GR binding sites is 

unchanged between different cell types, the cellular context is crucial in 

determining which of these sites GR will bind under either resting conditions or 

following ligand addition, and this is dictated by chromatin architecture. It is 

therefore a priority that further unbiased, large scale ChIP-seq analysis is 

performed to confirm these observations and to try to determine what other 

cellular features, if any, could predict the strength of the response within 

individual cells.  

 
As part of the validation process, single molecule FISH assays were optimised, 

and a high throughput image analysis pipeline was developed to quantify single 

transcripts in individual cells. Using a small gene panel with these assays, similar 

transcriptional signatures were shown compared with the single cell RNA-

sequencing – in fact with greater sensitivity. These experiments also 

demonstrated that an inflammatory stimulus led to a robust increase in 

proinflammatory mediators across the cell population, and this was abrogated 

through Gc addition. This assay can therefore be used to analyse the effect of 

the selective GR modulators – to determine if there is a small response in a few 

cells or if they are truly selective across the entire cell population. This also allows 
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further investigation of potential environmental modifiers of the Gc response, both 

investigating further genes, and under different cellular contexts. 

 
The benefit of the smFISH assay is that it can be applied to primary cell lines, 

spheroids or even cultured tissue sections to permit analysis of different cell 

populations in architectural context – for example analysing Gc responses in cells 

contacting other tumour cells vs immune cell populations, or adjacent to regions 

of necrosis. Additionally, expanding the panel to investigate some of the GR 

transcriptional targets implicated in stemness would be of particular interest. 

Evidence suggests that stem cell features induce dormancy for cells to evade 

treatment, and single cell RNA-seq has previously highlighted a continuum of 

expression of stem cell markers within GBM cells (197, 198). 

  
One limitation to conducting single cell RNA-seq or indeed smFISH assays is that 

it only provides a snapshot in time. The vehicle and Gc treated cells are entirely 

separate, and so while we can evaluate treatment differences in clonal 

populations, this becomes more challenging in heterogeneous cell populations. 

Ideally, future work would track Gc responses longitudinally from individual cells 

over long periods of time to determine whether Gc can promote phenotypic 

switching and whether this could impact efficacy of radiotherapy or 

chemotherapy. A possible route to achieve this would be use of nanopipette 

technology. Nanopipettes are an exciting new technology, which will allow the 

sampling of mRNA from the same cell across multiple timepoints (354, 355), and 

will allow direct identification of a shifting phenotype within the same cell over 

time (356). These technologies are still in their infancy, but could revolutionise 

our understanding of how the Gc response changes over time within individual 
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cells, and in turn how this affects the population response as a whole. This is 

applicable not only to tumour evolution in the context of GBM, but also treatment 

resistance in inflammatory disease. 

 
This project, like others, has highlighted even further levels of complexity in the 

GR response than had been predicted. As the technologies available to analyse 

genome wide responses are continuously improving, we would hope that they 

can be utilised for increasingly physiologically relevant observations. Overall, the 

work within this thesis has added to the understanding of Gc action, both from a 

basic science and a clinically relevant perspective. It is hoped that the discoveries 

of this project - relating to Gc selectivity and heterogeneity in Gc responses - will 

be the basis of future work to fully characterise Gc function, in order to ensure 

their safe usage, both within GBM and other inflammatory conditions.  
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Chapter 7 Summary 

 
The data presented in this thesis explores how Gc, a main part of GBM standard 

therapy, influences GBM cell function, and efficacy of standard treatments. Through 

this, this work has identified a role in reducing the efficacy of chemotherapy and 

radiotherapy that cannot be explained simply through direct cell cycle effects, as 

others have reported. The role of Gc in controlling DNA repair is novel, and provides 

a platform to screen other selective Gc. Indeed, this work has identified a tool 

compound, compound A, which promotes beneficial anti-inflammatory effects 

without activating DNA repair.  

 
This work has also considered how sensitivity to Gc might be altered in tumour cell 

populations, which are inherently heterogeneous. As a critical first step, Gc 

responses were examined at a single cell level to reveal heterogeneity of GR action 

in a clonal cell line. Core gene modules were identified in individual cells that could 

help stratify Gc responses in these systems. This analysis also identified that GR 

expression is highly variable even in clonal cell lines, and is the major driver of Gc 

sensitivity. While unravelling Gc actions in more complex heterogeneous tissues will 

be more challenging, a panel of genes could provide a benchmark to dissect future 

transcriptome data.  

 
Future studies will build on this work to screen larger panels of selective GR 

modulators that have improved safety profiles in GBM. Tracking individual cells over 

time using nanopipette technology will provide much needed information on how Gc 

sensitivity, and the efficacy of radiotherapy and chemotherapy might evolve over 

time. It is hoped that this work can be used to improve therapeutic strategies within 

GBM. 
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