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Abstract

Presented in this thesis are the results from a measurement of the mass of the Higgs
Boson in the H — ZZ* — 44 (¢ = e, u) channel using ATLAS data from pp collisions
at a centre of mass energy of 13 TeV corresponding to an integrated luminosity of
139 fb~!. This measurement uses a Double-sided Crystal Ball function as an analytic
signal model, incorporating per-event uncertainties as estimated using a quantile
regression neural network. The mass of the Higgs boson is determined to be 124.92 +
0.19 (stat.) *o0e (syst.) GeV, in line with the previous LHC Run 1 combined result
from the ATLAS and CMS collaborations of 125.09 + 0.21 (stat.) £+ 0.11 (syst.) GeV
and the previous ATLAS measurement, which used 36 fb~! of 13 TeV pp collision data,
of 124.97 £+ 0.18 (stat.) + 0.20 (syst.) GeV.

Also presented are results from a method to validate the ATLAS photon energy
calibration procedure by calibrating electrons from Z — ee events as photons. This
technique is also used to calibrate unconverted photons as converted and vice versa to
investigate the effect of misidentifying photon conversions. From this it is found that
misidentifying all unconverted photons as converted photons which leave either one or
two tracks in the transition radiation tracker (single/double TRT converted photons)
leads to an n-independent bias in calibrated energy of approximately 1%. It is also
found that misidentifying all single/double TRT converted photons as unconverted
leads to a smaller bias, which is around 1% in the pseudorapidity region 0.8 < |n| <
1.37.

Results from the application of shift and width adjustments to simulated electron
shower shapes to correct for mismodelling are presented and a new method for per-
forming such corrections using a Gaussian convolution technique is demonstrated. This
new method is found to reduce the amount of over-correction in the application of

corrections to electron shower shapes.
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Chapter 1
Introduction

Electroweak symmetry breaking and the Higgs mechanism were proposed in 1964 as a
method by which the W and Z bosons of the Standard Model (SM) could acquire mass
[1, 2, 3]. In doing so, this predicted the existence of a boson which came to be known
as the Higgs Boson. The Large Hadron Collider (LHC), currently the largest particle
collider in operation, was built in order to search for this boson by colliding protons at
energies up to 14 TeV. In 2012, the ATLAS and CMS experiments, using data from
LHC collisions, successfully verified the existence of the Higgs Boson [4, 5|. Following
the verification of its existence, work has since moved to measuring its properties to
determine whether it is exactly the boson predicted by the Standard Model.

Presented here are studies to determine one of these properties, the mass, my, using
data from the ATLAS experiment. Whilst the mass is a free parameter in the SM, it
is nonetheless an important parameter to measure. The reason for this is that other
parameters such as the branching ratio of various decay modes depend on the mass, a
dependence which is specified by the SM. So, by measuring the mass along with other
parameters, the SM can be tested.

Measuring my requires the decay products to be reconstructed accurately. For this
reason, the decay of a Higgs Boson to a pair of Z bosons which themselves decay to
either electrons or muons (denoted H — ZZ* — 4/), is particularly suited to such a
measurement. Whilst the branching ratio to this decay mode is considerably lower
than that of dominant decay modes, this decay is particularly suited for two reasons.
Firstly, the decay products (electrons and muons) are precisely reconstructed by the
ATLAS detector. Secondly, the signal is a sharp peak atop a smooth background,
allowing precise measurement of the Higgs Boson properties.

The previous measurement of the mass of the Higgs boson by ATLAS in the
H — Z7* — 40 channel used proton-proton collision data collected during the LHC
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early Run 2 data taking period in 2015 and 2016, corresponding to an integrated
luminosity of 36.1 fb~! and a centre of mass energy of 13 TeV. The mass of the Higgs
boson was determined to be 124.79 + 0.37 GeV [6]. This measurement was obtained
using a per-event response signal model which describes the individual lepton energy
and momentum responses by the weighted sum of Gaussians (described in Section 5.7).
A measurement using ATLAS early Run 2 data was also performed in the H — v
channel, for which an analytic signal model was used. The result from this measurement
was 124.93 £+ 0.40 GeV. The current most precise measurement of the mass of the
Higgs boson from ATLAS, using results from both the H — ZZ* — 4¢ and H — vy
channels from full Run 1 and early Run 2 data is 124.97 £+ 0.24 GeV [6]. CMS also
measured the mass in the H — ZZ* — 4/ channel using data collected during early
Run 2, corresponding to an integrated luminosity of 35.9 fb~!. This returned a value of
125.26 £ 0.21 GeV [7], in agreement with those determined by ATLAS. The current most
precise measurement of the mass comes from the combination of the results from CMS
using data collected during LHC Run 1 and early Run 2 from both the H — ZZ* — 4¢
and H — v channels. The result of this is my = 125.38 £ 0.14 GeV [8].

For the measurement of my using the full ATLAS LHC Run 2 dataset, a new
signal model is used, the results from which are presented here. The ATLAS full
Run 2 dataset contains data from 13 TeV pp collisions corresponding to an integrated
luminosity of 139 fb~! collected between 2015-2018. This new method aims to describe
the four-lepton invariant mass distribution using an analytic function. This method
is less computationally intensive than the per-event response approach and allows
additional parameters of interest to be added more easily than in the case of a template
method.

Chapter 2 provides an overview of the theoretical background for the work presented
here, describing each of the fundamental forces and showing the need for electroweak
symmetry breaking and the Higgs mechanism and how this predicts the existence of
the Higgs boson.

Chapter 3 describes the experimental apparatus used to collect the data for all the
results presented. Each of the subsystems of the ATLAS detector are described and a
brief overview of the ATLAS trigger system is provided.

Chapter 4 describes how electrons and photons are reconstructed and calibrated
in the detector. Shown also are results from a study by the author to verify the
procedure for the calibration of photon energy and an investigation into the effect of
misidentifying photon conversions. The procedure to identify electrons is also described,

as well as results from the application of corrections to account for the mismodelling



of electron shower shapes in the ATLAS calorimeters as performed by the author.
Preliminary results from the development by the author of a new method to determine
such corrections using a method of Gaussian convolution are also presented.

Chapter 5 gives an overview of the ATLAS measurement of the mass of the
Higgs boson in the H — ZZ* — 4{ channel using ATLAS data from early Run 2
corresponding to an integrated luminosity of 36 fb=! from pp collisions at a centre of
mass energy of 13 TeV.

Chapter 6 describes the most recent measurement of the Higgs boson mass in the
H — Z7Z* — 40 channel using the full ATLAS Run 2 dataset corresponding to an
integrated luminosity of 139 fb~! from pp collisions at a centre of mass energy of
13 TeV to which the author made significant contributions. For this measurement,
an analytic description of the signal lineshape is used in the form of a Double-sided
Crystal Ball function. Also incorporated into this is a per-event resolution, calculated
using machine learning techniques.

Chapter 7 details the results from this mass measurement, providing both expected

and observed results and Chapter 8 summarises all the work presented.






Chapter 2

Theory

This chapter gives a brief overview of the Standard Model of particle physics (SM) and
draws particular attention to the Higgs mechanism and its predictions. The content
here is based upon references [9], [10], [11] and [12].

The SM is a quantum field theory which describes all fundamental particles and
their interactions via the strong, weak and electromagnetic forces. So far, it has
been very successful in its predictions which have been verified experimentally. 2012
saw the experimental verification of the Higgs Boson, which was until then, the only
fundamental particle predicted by the SM that had not been observed [4, 5].

Each of the three fundamental interactions described by the SM will be introduced
individually, as well as the unification of the electromagnetic and weak forces into a

single electroweak force and the Higgs mechanism.

2.1 Particle content of the Standard Model

The particles of the standard model can be classified into two distinct classes depending
on their intrinsic angular momentum or spin. These are bosons which, in units of A,
have integer spin and fermions with half-integer spin. All Standard Model bosons are
listed in Table 2.1.

The fermions are subdivided into quarks and leptons. The quarks are the only
fermions that interact via the strong force and are further subdivided into the “up
type” and “down type”, which have charges of +§e and —%e respectively. As well as
interacting via the strong force, all quarks additionally interact via both the weak and
electromagnetic forces. The leptons are subdivided into the charged leptons and the
neutrinos. The charged leptons interact both electromagnetically and weakly, whereas

the neutrinos only interact weakly. Each of these lowest subdivisions of fermions
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Name Symbol | Spin (&) | Charge (e) Mass GeV
Photon 0 1 0
Gluon g 1 0
W boson W= 1 +1 80.379 + 0.012
7 boson A 1 91.1876 £+ 0.0021
Higgs boson H 0 125.10 £ 0.14

Table 2.1 A list of all of the standard model bosons [13].

Quarks
Type Name Symbol | Spin (&) | Charge (e) Mass MeV
Up quark Uu 1/2 +2/3 2.16"_‘8:32
Up-type Charm quark c 1/2 +2/3 (1.270 £ 0.20) x 103
Top quark t 1/2 +2/3 (172.9 4+ 0.4) x 10°
Down quark d 1/2 —1/3 4.671_8:11?
Down-type Strange quark s 1/2 -1/3 93:1)1
Bottom quark b 1/2 -1/3 (4.18%5:05) x 103
Leptons
Type Name Symbol | Spin (&) | Charge (e) Mass MeV
Electron e 1/2 —1 0.511
(fe};rogfj Muon [ 1/2 —1 105.66
Tau T 1/2 -1 1776.86 + 0.12
Electron neutrino v, 1/2 0 <1.1x10°
Neutrinos Muon neutrino Vy 1 / 2 0 < 0.19
Tau neutrino v, 1/2 0 < 18.2

Table 2.2 A list of all the Standard model fermions. All fermions have an intrinsic
spin of 1/2 and are differentiated from one another by their charges, masses and
their interactions with the three forces [13, 14]. Note that the values for the neutrino
masses are direct limits, stronger limits are achieved from indirect measurements
neutrino oscillation measurements. Also note that in the case of the neutrinos, the
mass eigenstates are different from the flavour eigenstates.

contains three particles, which differ only by their mass. These are referred to as the

generations, the first generation referring to the lightest fermion in the subdivision and

the third generation referring to the heaviest. All the standard model fermions are

summarised in Table 2.2.
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2.2 Quantum electrodynamics (QED)

Quantum electrodynamics (QED) is a quantum field theory, formed from the Abelian
U(1)g group, that provides a description of the electromagnetic interaction. This
interaction affects all charged particles, i.e. all quarks, the charged leptons e, p and 7
as well as the W¥ bosons. The dynamics of particles and their corresponding fields
will be described in the context of Lagrangians. The Lagrangian of a discrete system
is given by

L=T-YV, (2.1)

where T" and V' are the kinetic and potential energies of all the particles in the system.
When describing the dynamics of fields, it is necessary to use Lagrangian densities, L,

which are related to the discrete form by
L= /£d3x, (2.2)

where d3x is a volume element. For convenience, Lagrangian densities from here on
will be referred to simply as Lagrangians.
The motion of a free, spin-half particle in the absence of an external field is described

by the Dirac equation, for which the corresponding Lagrangian is

£Dirac = w(zf)ﬂua,u - m)wa (2?))

where 1) is the Dirac spinor for the particle and 1) is the corresponding adjoint spinor,
~# are the Dirac gamma matrices and m is the mass of the particle. It is easy to see

that 2.3 is invariant under U(1) global phase transformations of the form

Y(z) = ¢/(z) = €P(z), (2.4)

where « is a real constant. Applying local phase transformations of the form

Y(z) = ¢'(x) = Dy (a), (2.5)
to Equation 2.3 yields the Lagrangian

;Dirac = 'CDiraC - @Zv“(@a(ﬂc))w (26)
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Thus, the Dirac Lagrangian is not invariant under local U(1) phase transformations.

This can be fixed by replacing the derivative 0, with a covariant derivative
D, =0, —ieA,, (2.7)
where e is the charge of the particle and A, is a vector field that transforms as
Ay — A=A+ é(‘?ﬂa(x). (2.8)

Thus the field A, couples to a Dirac particle of charge —e. This is the photon field
of QED. The Dirac Lagrangian is now invariant under local phase transformations.
However, kinetic energy and mass terms must be added if this is to represent a real

field. Adding these to the Lagrangian gives

L = ("D, —m)p — %FH,,F“” + %miAHA“, (2.9)
where F' = Ot AY — 9V A" is known as the field strength tensor and m 4 is the mass of
the photon. Under local phase transformations of the form given in Equation 2.5, the
first term of Equation 2.9 has already been made invariant, the second is also invariant,
however the third term is not. For this Lagrangian to be invariant under U(1) local
phase transformations, it is required that m, = 0. As the photon is observed to be

massless, this is not a problem. The QED Lagrangian is therefore

_ _ 1 V
Lqep = Y(iy"0, — m)y + ey A, — ZFWF“ ) (2.10)

2.3 Quantum chromodynamics (QCD)

Quantum chromodynamics (QCD) describes the strong interaction between quarks
and gluons and is based on the non-Abelian SU(3)¢c symmetry group. The description
will follow the same as that used for QED, but using SU(3) symmetries in the place of
U(1) due to the fact in QCD there are three colour charges as opposed to the single
charge of QED. The free Lagrangian for quarks is

Efree = ij(i’)/ua,u - m)Qj for j = 17 27 3 ) (211>
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where each ¢; is the spinor field for a colour j. In the case of SU(3) symmetries, the

Lagrangian is required to be invariant under transformations of the type
q(z) — e @Teg(g) for k=1,2,...,8 , (2.12)

where ay(x) are the parameters of the group and 7T are a set of traceless, linearly

independent, 3 x 3 matrices. As previously, a covariant derivative is introduced
Dy, = 8, +igTGY, (2.13)

where ¢ is the colour charge and Gl’j is the gluon field for colour k. In order that local

gauge invariance is satisfied, G’; must transform as

GZ — GZ“ = Gﬁ — 0,0, — gfijkaiGi, (2.14)
where f;j; are the structure constants of the group defined by the commutator
T3, Ty] = i fiju Ty (2.15)
The field strength tensor for QCD takes the form
G = 0"GYy — 0"GY — gfi Gl GY. (2.16)

The final term in Equation 2.16 is required by gauge invariance and accounts for gluon
self interaction, i.e. requiring gauge invariance implies that gluons must self-interact,
which is observed to be true in nature. Adding the kinetic energy term from the field

strength tensor to Equation 2.11 gives the QCD Lagrangian

Lo G, (2.17)

Lacp = 4((7"0, —m)q — 9@V Tig) G, — 7 Gl

Note that a term to account for the gluon mass can also be added as in Equation 2.9,

but as previously, requiring gauge invariance implies that the gluon must be massless.

2.4 The weak interaction

The weak interaction is based on the non-Abelian SU(2); symmetry group, with the
L denoting that the corresponding vector field couples only to the left-handed chiral

fermions and right-handed chiral antifermions. The left handed fermions are placed in
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weak-isospin, Iy = %7 doublets

() GGG () e

where the quark states denoted ¢ refer to the weak eigenstates of the respective quarks.
These eigenstates are mixtures of the mass eigenstates, with the mixing specified by
the CKM matrix. The upper field of each doublet corresponds to the third component
of weak-isospin, I3, = +1/2 and the lower to I3, = —1/2. The right-handed fermions

are placed in weak-isospin singlets with Iy =0

eI_Q’M]_??T}g?deuRﬂSRaCRubR»tR- (219)

The same procedure as in Section 2.3 can be followed using the SU(2) symmetry
Wj and Ws’ This can be used to obtain the locally

gauge invariant Lagrangian for the weak interaction

producing 3 gauge fields, W}

o

T 7. 1 1 ) v
Lweak — 1/}(27“8# - m)¢ - QW(l/JTﬂ/J)Wu - ZWHVI/Viu ) (220)

where ¢ = 1,2, 3, g is a constant, T; are a set of 2 x 2, linearly independent, traceless

matrices and

Wilw _ 8MWiV _ aVVVZH _ ggijkW]HWkVa (221)

where ¢;;;, is the Levi-Civita tensor. As before, adding a mass term to the Lagrangian
would violate the local gauge symmetry. However, this poses a problem as the bosons

corresponding to the weak interaction are known to be massive.

2.5 Spontaneous symmetry breaking and the Higgs

mechanism

The problem of the masses of the weak bosons is solved by a process known as
spontaneous symmetry breaking, the process by which massless particles can obtain

mass. To demonstrate this using a simple example, consider a real scalar field, ¢ with
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a Lagrangian

£=2(0:0)@"6) ~ V() (2.22)
V(9) = 36 + A (2.23)

where p and A are the mass and self interaction terms respectively. In the nominal

V(d)

N 4

Fig. 2.1 The potential of Equation 2.23 for the cases p? > 0 (left) and p* < 0 (right).

case where p? > 0, the potential is the shape given in Figure 2.1 (left), i.e. a scalar
boson with mass . In the case where p? < 0, the minimum of the potential is no
longer at ¢ = 0 as shown in Figure 2.1 (right). There are now two possible vacuum
states given by ¢ = 4w, spontaneously breaking the symmetry of the Lagrangian. The
quantity v is known as the vacuum expectation value, and it is trivial to deduce that
v = \/TZ/)\ The potential can now be expanded about one of the minima. Choosing
¢ = +wv, a scalar field 7 is introduced

o(x) =v+n(z). (2.24)

The Lagrangian of Equation 2.22 therefore becomes

1 1 1
L= 5(8#77)(8“77) — M*n® = don® — Z)\?]4 - Z)\v4. (2.25)

The second term accounts for the mass of the boson associated with this field and
the third and fourth terms, its self interaction. Thus a massive scalar field has been
generated by the process of spontaneous symmetry breaking. To generalise to the case

of a complex scalar field, now consider a complex scalar field of the form

o= %(@ T idy). (2.26)
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which is described by the U(1) globally gauge invariant Lagrangian

L = (0u0)"(0"9) — 1*¢" ¢ — M¢"9)". (2.27)

The same procedure as above for the case u? < 0 can be performed here by expanding
about the point ¢; = v, ¢ by making the substitutions ¢(x) = n(z) + v and
¢o(x) = £(x). The field can therefore be expressed as

1
x) = —F=+n(r)+i&(x)). 2.28
() \/5( n(x) 4 i€(x)) (2.28)
Substituting this into the Lagrangian of Equation 2.27 yields

L= %@n)(@“n) - %(@E)(&“g) + MWP? = Vi (1, €), (2.29)

where Vi (n,€) contains all the interaction terms. This represents two scalar fields,
one massive, 1, with a mass of vv/2X and one massless, £. Note that this Lagrangian is
not invariant under a local phase transformation of the type given in Equation 2.5. As

in the case of QED, a covariant derivative, D,,, is introduced, defined as
D, = 0, —ieA,, (2.30)
where the gauge field A, transforms as
Ay — A=A+ é@ua. (2.31)

Inserting these definitions into Equation 2.29 and adding the kinetic energy term for
the field A, yields

1 1 1 L1
L= 5(8;”7) (0F'n) — )‘U2772 =+ 5((9“5) (0€) — ZFWFM + 562@2“4#/4“ —Vine (7, 5)_67)14#8”5-
massivgz boson masslessﬂrg boson massive g‘azge boson

(2.32)
Thus, from adding a scalar field with a spontaneously broken symmetry, the boson
corresponding to the gauge field A, can have a mass without breaking local gauge
invariance. In doing so, a massive 1 boson and a massless £ boson, known as a Goldstone
boson have been created. The final term in Equation 2.32, describing the interaction

between the gauge field and the Goldstone boson is unphysical. This term can be
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removed by making the gauge transformation
, 1
Ay = A, =A,+ aaug. (2.33)

Applying this change to Equation 2.32 and expanding the interaction terms results in

the Lagrangian

1 1 1
L= 5((%77)(8“7}) — \vinp? — ZFWFW + 5621)214“14“
massiV;;y boson massive g;,uge boson
X X (2.34)
—*vA, Ay + 56214“14‘“7]2 —on® — 4_1)\7]4 .
A-n int;;actions n self ir:t,eraction

Note that this result is the equivalent of taking Equation 2.28 to be ¢ = \%(v +n(z)).
To summarise, by introducing a complex scalar field with a spontaneously broken
symmetry that couples to a locally gauge invariant field, A, the mass for the gauge
boson is generated along with a massive boson for the scalar field, n. These bosons
have masses of ev and v/2\v respectively. This is known as the Higgs mechanism, with

the massive boson, 7, being analogous to the Higgs boson.

2.6 Electroweak symmetry breaking in the Standard
Model

To generate mass terms for the bosons of the weak interaction, the symmetry U(1)y
must first be introduced. This is the U(1)g symmetry of QED, replacing charge @
with the quantity Y known as the weak hypercharge. This is defined as

Y =2(Q — I})). (2.35)

This symmetry has a corresponding field B,, which behaves in an analogous way to the
A, field of QED. The Standard Model Higgs boson is generated by the breaking of
the U(1)y x SU(2). symmetry, known as the electroweak symmetry, in the manner
described in the previous section. The entire procedure for the U(1)y x SU(2), case

will not be shown in the same detail given above, but a summary is as follows. A
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doublet of complex scalar fields is introduced

® = < ‘ZX ) : (2.36)

the Lagrangian for this field is given by

L= (0"®)1(0,9) — V(), (2.37)
V(®) = 1 *®Td + \(dTd)2. (2.38)

® is expanded about the vacuum expectation value, v as

1 0
@:E<U+H<x>>, (2.39)

where H(x) is a real scalar field, namely the Standard Model Higgs field. The covariant
derivative for the U(1)y x SU(2), symmetry is

Y
Dy =0, +igwTW) + z’g’EBu. (2.40)
Expanding the kinetic term of Equation 2.37 yields

1 1 1
|D,®” = 5(8HH)2+§912V(U+H)2 W, + ¢W3]2+§(U+H)2 lgwW? —¢'B,|*. (2.41)
From this, the mass terms are mixtures of Wﬁ and B, and thus the Wﬁ and B, do not

correspond to the physical fields. These are obtained through the linear combinations

W, = %(W; TFiWy), (2.42)
= 2.3
w
and
4, = Waow + 9By (2.44)

where VV#jE and Z,, are the fields giving rise to the massive W and Z bosons respectively
and A, is the massless photon field of QED.
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From expanding the terms of Equation 2.41, the masses of the bosons can be
identified as )

my+ = EQWUa

_ 1 2 2
mz =50\ gw T 97 (2.45)

ma = 07
myg = vV 2.

The Higgs mechanism applied to the U(1)y x SU(2), symmetry successfully generates
masses for the W and Z bosons as well as leaving the photon massless. It also predicts
the existence of a massive scalar boson, known as the Higgs boson, the existence of
which was verified by the ATLAS and CMS collaborations in 2012 [4, 5|.

As well as generating the masses of the gauge bosons, the Higgs mechanism is also
able to generate the masses of the fermions via the addition of Yukawa terms to the

relevant Lagrangians. As with the cases of the gauge bosons, adding a term

— mp = —m(Vpipr + Vrr), (2.46)

to a Lagrangian violates the local gauge invariance. To account for this, a gauge

invariant term is introduced, which is for the case of the SU(2) e-v, doublet

(Ze €)1 ( (ZZ ) er + er(o™ ¢*) < Vee ) ] ; (2.47)

where G, is a constant known as a Yukawa coupling constant. Using the choice of

L. =-G,

Higgs potential given in Equation 2.39, Equation 2.47 becomes

Ge e /_ _
ﬁe = ——v(éLeR -+ éReL) — E(GLER -+ GRGL)H, (248)

V2

from which the electron mass can be identified as

G.v
ok

Thus the Higgs mechanism can also generate masses for the fermions. It is also

(2.49)

me =

noteworthy from the second term of Equation 2.48, that the strength of the coupling
between the Higgs field and the electron field is in direct proportion to the mass of the

electron. This same procedure can be repeated to also generate masses for the quarks.
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It should also be noted in Equation 2.45 that my, being the only mass which depends
on ), is a free parameter in the Standard Model. However, whilst a measurement of myg
is not a direct test of SM predictions, the production cross-sections of the Higgs boson,
as well as its branching ratios to various decay modes depend on my. So by measuring
mass of the Higgs boson, as well as its production cross sections and branching ratios,

a test of the SM can be performed.

2.7 Production of Higgs bosons in hadronic collisions

In a hadronic collider, such as the LHC, the production of Higgs bosons must be
initiated by interactions between quarks or gluons. As mentioned previously, the Higgs
boson couples more strongly to more massive particles, so dominant production modes
will involve heavier particles. The four most dominant production modes for Standard

Model Higgs bosons are as follows

Gluon-gluon fusion (ggF) Whilst the gluon, being massless, does not directly in-
teract with the Higgs boson, two gluons can interact via a virtual top quark loop,
with the massive top quarks sharing a vertex with a Higgs boson, as shown in
Figure 2.2a. This is the dominant production mode. Higgs boson production via
this process is an order of magnitude more common than the next most dominant

production mode.

Vector boson fusion (VBF) This is the next most dominant production mode,
occurring when two W or Z bosons are radiated by quarks in a collision and

then fuse to create a Higgs, shown in Figure 2.2b.

Vector boson associated production (VH) A pair of quarks can fuse to create a

W or Z boson, which can then radiate a Higgs boson, Figure 2.2c.

ttH and bbH production Similarly to the V H case, top and bottom quark pairs can

also radiate a Higgs boson, see Figure 2.2e

tH production This is the rarest production mode considered, shown in Figure 2.2d.
This occurs when a single top quark radiates a Higgs boson. It is an extremely

rare process, occurring 100 times less often than ggF.

The cross sections for each production mode in pp collisions for a centre of mass
energy of /s = 13 TeV are shown in Figure 2.3. These are calculated using parton

distribution functions and perturbative calculations on the strong and electroweak
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couplings. NLO refers to these calculations being nezt to leading order, NNLO next
to next to leading order and N3LO being one order higher NNLO. As shown, the ggF
process (denoted pp — H here) is far more common than the next most common mode,
VBF (denoted pp — qqH).

q q

(a) Gluon-gluon fusion (ggF)

(¢) Vector boson associated production (d) tH production
(VH)
H

L4

(e) ttH /bbH production

Fig. 2.2 The dominant processes for Higgs boson production in proton-proton collisions.
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Fig. 2.3 Higgs boson production cross section vs my for pp collisions with a centre of
mass energy of 13 TeV. [15]

2.8 Four-lepton decays of Higgs bosons

Due to the Higgs coupling to mass, it will favour decays via heavier particles, provided
the combined mass of the decay products is < my. Figure 2.4 shows the branching
ratio for the leading decay modes of the Higgs vs its mass. Note that the decays to the
massless photons and gluons are allowed as these can happen via top quark loops, i.e.
the reverse of Figure 2.2a. Also note that decays to heavy gauge bosons are allowed
despite the fact that myg < 2my, 2mz as one of the W’s or Z’s is produced off-shell.
Clearly, the most probable decay mode is H — bb. However, this is not the easiest
channel to use for performing a mass measurement for two reasons. Firstly b quarks
produced hadronise, radiating gluons, which themselves generate more hadrons creating
hadronic “jets” which are difficult to resolve accurately in a detector. Secondly, this
process has a large background from W+ jets and top quark processes. The next most
dominant decay mode is H — W*W~. Whilst the W’s can decay without producing
quarks, leptonic decays of WW’s produce neutrinos, which escape the detector without

detection. The decay H — 777~ is also unsuitable, as 7’s have a lifetime of ~ 10713
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Fig. 2.4 SM Higgs boson branching ratio of various decay modes vs my. [15]

they decay before interacting with the detector, producing neutrinos as well as jets
in most instances. The only remaining decay modes in order of branching ratio at
my =125 GeVare H - ZZ, H — vy, H — Zv and H — pu. As Z bosons can decay
into electron/muon pairs, these can all produce final states containing only photons,
muons and electrons which are well reconstructed by ATLAS. The latter two however
are unsuitable as these decays are very rare, have a large background and to date have
not been observed. Although the branching ratio of the Higgs decay to two Z bosons
is much larger than that of the decay to two photons, the branching ratio for the decay
to two Z’s where these then decay to either electrons or muons is around 0.1 that of
H — ~7. Although, this decay is relatively rare, it has a small background associated
with it, which makes it a suitable channel for which to perform a measurement of my.
The Feynman diagram for this decay is shown in Figure 2.5. H — 7y can also be used
to perform a mass measurement. Although the number of events expected is larger
than that of H — ZZ* — 4/, the background contribution is larger and photons are
less precisely resolved in ATLAS than muons. For this reason, the H — ZZ* — 4/

channel provides the most precise measurement of my.
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Fig. 2.5 The Feynman diagram for the Higgs decay to four leptons (H — ZZ* — 4/)
(for [ = e, p). The “*” indicates the off-shell Z.



Chapter 3

The Large Hadron Collider and the
ATLAS experiment

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research
(CERN) is currently the largest particle accelerator in operation. The primary purpose
for its construction was the discovery of the Higgs boson, which was achieved in 2012.
It is currently being used to study the Higgs boson as well as conduct precision tests
on the SM and search for new physics. It is a circular collider, designed to collide
bunches of 10! protons 40 million times per second at centre of mass energies up to
v/$ =14 TeV and an instantaneous luminosity of 10** cm™2 s [16]. At four points
around the circumference of the LHC, the protons are collided. The ATLAS experiment
is located at one of these points and is the experiment used to collect the data presented

here.

3.2 The ATLAS detector

The ATLAS experiment is a general purpose detector optimised to detect previously
unseen particles directly and perform precision tests on the Standard Model [17].
ATLAS uses a cylindrical coordinate system, with the nominal interaction point as the
origin with the z direction being that of the beam-pipe. The x — y is transverse to the
z axis, the = axis points from the interaction point to the centre of the LHC ring and

y axis points upwards. The azimuthal angle, ¢, is measured around the beam axis and
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Fig. 3.1 Cutaway diagram of the ATLAS detector. [17]

the polar angle, #, is measured from the beam axis. Pseudorapidity, 7, is defined as

6
n= —lntanﬁ. (3.1)

The angular separation between two objects is given by

AR = /Ap? + Ag2, (3.2)

where An and A¢ are the differences in 1 and ¢ between the two objects. The detector
is constructed in a concentric fashion with the LHC beam-pipe in the centre, providing
full coverage in the azimuthal ¢ direction and in the pseudorapidity range |n| < 2.5. A
diagram of the detector is shown in Figure 3.1. The innermost component, surrounding
the beam-pipe, is the tracker system, used to measure the transverse momenta (pr) of
charged particles by tracking their path in a 2 T solenoidal magnetic field. Surrounding
this are the electromagnetic (EM) and hadronic calorimeters. The former is used to
measure the energies of electrons and photons and the latter, the energy of hadrons.
The outermost component is the muon system, used to determine the transverse
momenta of muons by tracking their paths in a toroidal magnetic field. ATLAS also

relies on a trigger system to select, in real time, events of interest.

3.2.1 Inner detector

As shown in Figure 3.2, the ATLAS tracking system is composed of three components.

As with the other parts of the detector, these are arranged in a concentric fashion.
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Fig. 3.2 Diagram showing the elements of ATLAS tracking system. [18]

From inside to outside, these are the silicon pixel trackers (pixel), silicon microstrip
trackers (SCT) and transition radiation trackers (TRT). The pixel consists of sensors of
size 50x400 pm? and the SCT of stereo pairs of silicon microstrips, with one microstrip
in each pair parallel to the beam-pipe and the other at an angle of 40 mrad. These two
components provide the highest resolution tracking information in the range |n| < 2.5.
The TRT consists of straw tubes filled with a gaseous Xe/CO4/O9 mixture and provide
tracking information in r — ¢ space within a pseudorapidity coverage of |n| < 2.0. A
track in this range with pp > 0.5 GeV will cross a minimum of 36 straws, the exception
being in the region 0.8 < |n| < 1.0 where the minimum number of straws crossed can
be as low as 22. These components are ordered by the granularity they provide with
the pixel detector providing the highest. This ordering reflects the fact that the density
of particle tracks is higher nearer the interaction point, thus a higher granularity is
required. The inner dector is immersed in a 2 T solenoidal magnetic field, deflecting
the charged particles, allowing their transverse momentum to be measured from the

curvature of their tracks.
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3.2.2 Calorimetry
Electromagnetic showers and calorimetry

To measure the energies of electrons and photons at GeV scales, their behaviour must
be understood at the sub-MeV scale. The measurement of electron/photon energies
is performed by measuring the products of electromagnetic showers (EM showers).
In the case of electrons, the process of showering starts with the electron interacting
with the nuclei of the detector material and radiating a photon in a process known
as Bremsstrahlung [19]. For photons, an interaction with a nucleus can cause the
photon to produce an electron-positron pair in a process known as pair production.
Subsequent electrons (photons) produced then proceed to radiate photons (pair produce)

themselves causing a “cascade” of electrons and photons. A diagram of the beginning

Fig. 3.3 Schematic diagram of an electromagnetic shower initiated by an electron. The
incident electron radiates a Bremsstrahlung photon, which itself creates an electron
positron pair through the process of pair production. Note that each of these vertices
is initiated by the exchange of a photon with an atom of the detector material, which
is not shown.

of an electromagnetic shower from an electron is shown in Figure 3.3. The processes of
Bremsstrahlung and pair production are the dominant ways in which electrons and
photons respectively interact with the detector material at high energies. At lower

energies, electrons may also interact with the detector via ionisation (Figure 3.4a).
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The critical energy at which Bremsstrahlung and ionisation occur at an equal rate is

given by
610 MeV

Tz i1

where Z is the atomic number of the material [19]. The dominant process by which

(3.3)

photons interact at low energies is the photoelectric effect (Figure 3.4b) and by Compton

scattering at intermediate energies (Figure 3.4c). The cross sections in lead for each of

(a) Ionisation (b) The photoelectric effect (¢) Compton scattering

Fig. 3.4 The three dominant processes by which electrons and photons lose energy at
medium to low energies (g 10 MeV).

these processes vs photon energy are shown in Figure 3.5. Here, the photoelectric effect
is the dominant process up to approximately 1 MeV, where Compton scattering becomes
dominant. Above these energies, pair production dominates. It is also important to
note that the angular distribution for the former two processes is approximately
isotropic, whereas that of pair production is highly directional. This has consequences
in the design of calorimeters as these low energy particles are the ones which cause
the signal in the detector. As these happen isotropically, structures other than the
traditional “sandwich” can be used. As a shower progresses through a material it
will tend to spread laterally. At the start of an electron shower, this will be due to
multiple scattering of electrons, as these will move away from the shower axis. Near
the end of the shower in the lower energy regime, this will tend to be due to the
isotropic nature of the processes producing lower energy electrons and photons. The
longitudinal depth a shower penetrates and its lateral spread depend on the material
in which the showering occurs. For convenience, these are parameterised in terms of
two approximately material-independent quantities. These are the radiation length
(Xo), which describes the longitudinal depth of the shower, and the Moliere radius
(par), which describes the lateral spread of the shower. Xj is the distance over which
an electron will on average lose 1 — e~! of its original energy. py, is proportional to
the ratio of Xy with the critical energy. p); scales with A/Z, therefore its value does

not change significantly between different materials. However, X, scales with A/Z?%) so
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Fig. 3.5 The cross sections for each of the processes that contribute to photon scattering
vs incident 