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Abstract

In this thesis we consider the interaction between extra structures present
in category of rational free G-spectra, namely the monoidal structure and
the change of groups adjunctions, and the passage to the algebraic model.
We prove that the category of rational cofree G-spectra admits a monoidal
algebraic model in terms of L-complete modules. In order to prove this, we
develop the Left Localization Principle which gives mild conditions under
which a Quillen adjunction descends to a Quillen equivalence between left
Bousfield localizations.

We give a model categorical argument showing that the induction, restric-
tion and coinduction functors between categories of (co)free rational equivari-
ant spectra correspond to functors between the algebraic models for connected
compact Lie groups. In order to do this, we provide general tools to check
whether Quillen functors correspond. Since the construction of algebraic mod-
els relies upon the fact that polynomial rings are strongly intrinsically formal
as commutative DGAs, we pay careful attention to the interaction of model
structures on commutative algebras and modules. In particular, we prove that
Shipley’s algebraicization theorem respects the extra compatibility between
commutative algebras and modules in the flat model structure on spectra.
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Introduction

8



1. Rational equivariant cohomology theories

The field of algebraic topology is concerned with the classification of spaces up to a weak notion
of equivalence which disregards information about distance. Instead, this notion of ‘homotopy
equivalence’ records information about holes. In order to distinguish spaces (up to homotopy
equivalence), one creates rigid algebraic information from the slippery topological data, using
invariants.
Cohomology theories are powerful invariants for topological spaces. A cohomology theory is
a contravariant functor from spaces to graded abelian groups, satisfying several axioms which
enable effective computation. Cohomology theories are represented by objects called spectra, in
the sense that given a cohomology theory E∗(−), there is a spectrum E such that for all spaces
X,

E∗(X) = [X,E]∗

where [−,−]∗ denotes the graded set of homotopy classes of maps. Similarly, given a spectrum
one may define a cohomology theory in this way.
We can mimic this result for spaces with the action of a (compact Lie) group G. Equivariant
cohomology theories are powerful invariants which take into account the action of G. There are
countless examples, such as equivariant K-theory, equivariant cobordism and Borel cohomology.
As in the non-equivariant setting, G-equivariant cohomology theories are represented by objects
called G-spectra.
If one seeks to find good invariants, it is important to be able to look at all invariants and choose
those that are particularly well structured, or which capture the properties one cares about.
Therefore, studying the collection of all cohomology theories provides crucial information about
invariants. From this point of view, it is valuable to package the category of G-spectra into a
rigid format which is well understood. In other words, we would like to find an algebraic model
for G-spectra.
A priori, this goal is unreasonably difficult. Indeed, even in the non-equivariant case, the
endomorphism ring of the unit object in the category of spectra is the ring of stable homotopy
groups of spheres. This is a notoriously complicated ring, and therefore one must reassess the
goal. Instead of seeking a full integral understanding, one might ask for a classification modulo
torsion. In other words, we would aim to classify all G-equivariant cohomology theories which
take values in rational vector spaces. This idea takes its cue from the unstable rational homotopy
theory pioneered by Quillen and Sullivan, where the goal was to classify spaces (under finiteness
conditions) up to rational homotopy type. Sullivan [19] proved that the rational homotopy type
of a simply connected space of finite type is determined by a Sullivan model which is a certain
type of commutative DGA.
In order to classify rational spaces, Quillen developed the framework of model categories [12]. A
model category C is a category with a notion of a homotopy theory. It is a category with a class
of maps called weak equivalences, along with additional structure and axioms which allow the
construction of a homotopy category hC. A map is an isomorphism in the homotopy category
if and only if it is represented by a weak equivalence in the model category. For example, for
a commutative ring R, the category of chain complexes of R-modules with weak equivalences
given by quasi-isomorphisms can be made into a model category, and has homotopy category
equivalent to the derived category D(R). A Quillen equivalence between model categories C and
D, is the correct formalism of the fact that C and D present the same homotopy theory. In
particular, a Quillen equivalence C 'Q D implies that their homotopy categories hC and hD are
equivalent. Modern introductions to the theory of model categories can be found in [9] and [8].
The following conjecture of Greenlees seeks to extend the programme of classifying rational
homotopy type into the equivariant and stable setting.
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Conjecture (Greenlees). For every compact Lie group G, there is a (graded) abelian category
A(G) and a Quillen equivalence

SpG/Q 'Q dA(G)
where dA(G) denotes objects in A(G) with a differential. Furthermore, the algebraic model
comes equipped with an Adams spectral sequence converging to the set of equivariant stable
maps [X,Y ]G∗ .

For the rest of this introduction, everything is implicitly rationalized without comment. For
example, SpG now denotes the category of rational G-spectra and S0 denotes the rational sphere
spectrum.
Considering the case where G is the trivial group shows that the goal of classifying rational
equivariant cohomology theories algebraically is now more achievable. Indeed, Serre’s calculation
of the homotopy groups of spheres shows that the rational sphere spectrum has homotopy Q,
concentrated in degree zero. Combining this with Morita theory [15], one can conclude that
Sp 'Q ChQ, so that rational cohomology theories are determined by graded Q-modules.
This conjecture has been proved in many cases: G finite [1], G = SO(2) [16], G = O(2) [2],
G = SO(3) [10] and G a torus of any rank [7]. Throughout this thesis, we will mainly be
interested in certain classes of G-spectra, rather than in certain groups. In particular, we will
focus on the classes of free and cofree G-spectra, see below for definitions.
One can also strengthen this conjecture to ask for more structure. For example, one could
ask that the zig-zag of Quillen equivalences is monoidal, so that it gives rise to an algebraic
model for ring G-spectra and module spectra. The consideration of extra structure with the
zig-zag of Quillen equivalences is a key theme in this thesis. Firstly, we will deal with monoidal
considerations for equivariant cohomology theories on free G-spaces, and then we turn to studying
algebraic counterparts of change of groups functors.

2. Free and cofree equivariant spectra

For a compact Lie group G, we write EG for a contractible space with a free G-action. It is
characterized by the fact that the fixed point space (EG)H is contractible for H = 1 and is
empty otherwise. Collapsing EG to a point gives rise to the isotropy separation cofibre sequence

EG+ → S0 → ẼG.

A G-spectrum X is said to be free if the natural map EG+ ∧X → X is an equivalence, and is
said to be cofree if the natural map X → F (EG+, X) is an equivalence.
Free and cofree G-spectra are interesting for several reasons. Firstly, they represent cohomology
theories on free G-spaces. Secondly, the understanding of the free case is an important step
towards understanding the general case, since the algebraic models for general compact Lie
groups G should be built up from information at each closed subgroup, where the model resembles
that of free spectra.
Greenlees-Shipley [4, 6] have given an algebraic model for free G-spectra for G any compact
Lie group. Write N for the identity component of G and W = G/N for the component group.
There is a zig-zag of Quillen equivalences

Spfree
G 'Q Modtorsion

H∗B̃N [W ]

between the categories of rational free G-spectra and torsion dg-modules over the skewed group
ring H∗B̃N [W ]. The category of torsion modules has no tensor unit and therefore this Quillen
equivalence cannot be refined to a monoidal algebraic model. Providing a solution to the lack of
monoidality is the first goal of this thesis.
The full subcategories of the homotopy category of G-spectra of free and cofree G-spectra are
equivalent. This suggests an alternative approach to modelling rational equivariant cohomology
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theories on free G-spaces, via the category of cofree G-spectra. In order to describe the algebraic
model for cofree G-spectra, we firstly need to set the algebraic backdrop. Given an ideal I in
a graded commutative ring R, the I-adic completion functor is neither left nor right exact in
general. We therefore regard its zeroth left derived functor LI0 to be the correct homological
notion of completion. Note that the right exactness of a functor F is not needed to construct
the left derived functors LiF . It is only used to prove that L0F is isomorphic to F , which is not
true in our case of interest, where F is the adic completion functor.
We say that a module is L-complete if the natural map M → LI0M is an isomorphism, and
is derived complete if the natural map M → L(−)∧I (M) is a quasi-isomorphism, where L(−)∧I
denotes the total left derived functor of I-adic completion.
The following is the first main result of this thesis, which appears in Chapter 2 and was proved
in joint work with Luca Pol [11].

Theorem. Let G be a compact Lie group with identity component N and component group W .
There is zig-zag of symmetric monoidal Quillen equivalences

Spcofree
G 'Q ModL-complete

H∗B̃N [W ]

between the categories of rational cofree G-spectra and L-complete dg-modules over the skewed
group ring H∗B̃N [W ] with respect to the augmentation ideal.

We restrict to connected groups for simplicity in the following discussion, and write I for the
augmentation ideal of H∗BG. A Quillen equivalence between rational cofree G-spectra and
derived complete H∗BG-modules was already known by passing through free G-spectra in the
following way:

free G-spectra I-power torsion-H∗BG-modules

cofree G-spectra derived complete-H∗BG-modules.

'Q

'Q'Q

The horizontal Quillen equivalence is the algebraic model for free G-spectra of Greenlees-
Shipley [4] and the right vertical Quillen equivalence follows from Morita theory [3] (also known
as the MGM equivalence), together with the identification of I-power torsion modules as an
abelian model for derived torsion modules [5, §5]. However this approach is unsatisfactory for
two main reasons. Firstly, it does not give rise to a symmetric monoidal Quillen equivalence
since the category of I-power torsion modules has no tensor unit. Secondly, it does not give
an abelian model as desired in the conjecture of Greenlees. In light of this, our contribution is
threefold: we prove the algebraic model for rational cofree G-spectra directly, we upgrade it to a
symmetric monoidal Quillen equivalence, and we give an abelian model for derived complete
modules.

3. Change of groups functors

Let i : H → G be the inclusion of a closed subgroup H into a compact Lie group G. This induces
an adjoint triple of Quillen functors

SpG SpHi∗
i∗

i!

where i∗ = G+ ∧H −, i∗ is the forgetful functor and i! = FH(G+,−).
If algebraic models for G-spectra and H-spectra are known, one could ask for functors between
the algebraic models corresponding to this adjoint triple. Diagrammatically, we can try to find
functors
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SpG dA(G)

SpH dA(H)

'Q

i∗ ?

'Q

i∗ i! ? ?

which model those in topology.
In this thesis we consider this question for the cases of free and cofree equivariant spectra for
connected compact Lie groups. Recall that the algebraic model for free G-spectra (where G
is connected) is torsion modules over H∗BG. The inclusion i : H → G induces a ring map
θ : H∗BG→ H∗BH, and hence an adjoint triple

ModH∗BG ModH∗BH
θ∗

θ!
θ∗

where θ∗ = H∗BH ⊗H∗BG − is extension of scalars, θ∗ is restriction of scalars, and θ! =
HomH∗BG(H∗BH,−) is coextension of scalars. Comparing the two adjoint triples, one notices
that there is a mismatch. In topology, two of the functors go from H-spectra to G-spectra,
but in algebra only one functor goes in this direction. Therefore one must construct additional
functors in algebra to model the functors in topology.
The following is the main result of the thesis which appears in the preprint [20]. We will not
state precisely what we mean by a ‘correspondence of Quillen functors’ in this introduction.
Instead we direct the reader to Chapter 4 for more details. Recall that the restriction functor
i∗ is both left and right Quillen. Therefore, there are two functors which correspond to it in
algebra; one as a left Quillen functor and one as a right Quillen functor. This can be seen in the
diagram below where there are four functors in algebra rather than the three in topology.
Theorem. Let i : H → G be the inclusion of a connected subgroup into a connected compact
Lie group. We have the following correspondence of Quillen functors

free G-spectra derived torsion H∗BG-modules

free H-spectra derived torsion QH∗BH-modules

'Q

i∗ Σ−aθ! θ∗

'Q

i∗ i! Σaθ∗ θ∗

where a = dim(G/H) and QH∗BH is a cofibrant replacement of H∗BH as a commutative
H∗BG-algebra. In other words, (i∗, i∗) corresponds to (Σaθ∗,Σ−aθ!) and (i∗, i!) corresponds to
(θ∗, θ∗). Similarly, when the induction, forgetful functor and coinduction functors are viewed as
functors between the categories of cofree spectra, they correspond to the same functors as in the
free case, now viewed as functors between the categories of derived complete modules.

If the ranks of G and H are equal there is a stronger statement. In this case, the restriction of
scalars along H∗BG→ H∗BH is both left and right adjoint to the extension of scalars functor.
Theorem. Let i : H → G be the inclusion of a connected subgroup into a connected compact
Lie group and assume that rkG = rkH. Then we have the correspondence of functors

free G-spectra I-power torsion H∗BG-modules

free H-spectra J-power torsion H∗BH-modules

'Q

i∗ θ∗

'Q

i∗ i! θ∗ θ∗
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where I and J are the augmentation ideals of H∗BG and H∗BH respectively. Similarly, when
the induction, forgetful functor and coinduction are viewed as functors between the categories of
cofree spectra, they correspond to θ∗, θ∗ and θ∗ respectively, between the categories of L-complete
modules.

We take a moment to discuss the model categorical underpinnings of this result. Given a monoid
in a monoidal model category, we equip the category of modules with the projective model
structure in which weak equivalences and fibrations are created by the forgetful functor. If we
have a map of monoids θ : S → R in a monoidal model category, the extension-restriction of
scalars adjunction θ∗ a θ∗ is always a Quillen adjunction. However, the restriction-coextension
of scalars adjunction θ∗ a θ! need not be a Quillen adjunction in general. If the unit of the
underlying monoidal model category is cofibrant, then θ∗ a θ! is Quillen if and only if R is
cofibrant as an S-module. For more details, see Proposition 3.8 in Chapter 4. Providing a
context appropriate for our goal in which one can force this condition is subtle. One might expect
that a cofibrant replacement of R as an S-algebra would suffice here since Schwede-Shipley [14,
4.1] have proved that if the unit of the underlying monoidal model category is cofibrant, a
cofibrant S-algebra is cofibrant as an S-module. However, this breaks another step in the proof,
the formality step, as we now describe.
In order to provide the necessary context to describe this issue, we recall the general procedure for
constructing algebraic models. We do so in the case of free G-spectra for G a connected compact
Lie group, since this is the main case of interest in this thesis. Firstly, one notices that every
free G-spectrum is a module over the commutative ring G-spectrum DEG+ = F (EG+, S0), the
G-spectrum representing Borel cohomology. Change of rings along the ring map S0 → DEG+
yields a Quillen equivalence after a suitable cellularization of the model structures. Taking
G-fixed points produces a Quillen equivalence to (a cellularization of) the category of modules
over the commutative ring spectrum DBG+. Since DBG+ is a commutative HQ-algebra, we
can apply Shipley’s algebraicization theorem [18] which gives a Quillen equivalence

ModDBG+ 'Q ModΘDBG+

where ΘDBG+ is a commutative DGA. Moreover we know that

H∗(ΘDBG+) = π∗DBG+ = H∗BG = Q[x1, . . . , xr]

where r is the rank of G. The next step is to apply a formality argument. The necessary
formality statement is that polynomial rings are strongly intrinsically formal as commutative
DGAs. This means that given a commutative DGA X with polynomial homology, there is a
quasi-isomorphism H∗X

∼−→ X. One can see this by choosing cocycle representatives for the
polynomial generators and noting that this is a quasi-isomorphism by construction. Change of
rings along the quasi-isomorphism H∗BG ∼−→ ΘDBG+ gives a Quillen equivalence between the
category of modules over ΘDBG+ and the category of modules over H∗BG. The commutativity
assumption is crucial for the formality step; polynomial rings are strongly intrinsically formal as
commutative DGAs but not as DGAs.
Let H be a connected subgroup of G. There is a ring map θ : DBG+ → DBH+ but DBH+ need
not be cofibrant as a DBG+-module and therefore θ∗ will not be left Quillen. In order to force
this, we must replace DBH+. In light of the formality step described above, any replacements we
perform must be as commutative objects. From this point of view, it seems sensible to cofibrantly
replace DBH+ as a commutative DBG+-algebra. However, the analogue of [14, 4.1] is not
true in general anymore. In particular, in the stable model structure on spectra, a cofibrant
commutative algebra need not be cofibrant as a module. Shipley [17] constructed a model
structure on spectra called the flat model structure which does satisfy this extra compatibility.
This model structure is vital for our proof of the correspondence for change of groups functors.
However, we therefore must also show that all the necessary Quillen equivalences still hold in
the flat model structure.
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4. Shipley’s algebraicization theorem

As described above, the flat model structure is crucial for our approach to finding counterparts
of the change of groups functors. Given a commutative HQ-algebra S, Shipley [18] has proved
that there is a commutative DGA ΘS and a zig-zag of Quillen equivalences

ModS 'Q ModΘS

using the stable model structure on spectra. This is a key step in the zig-zag of Quillen
equivalences in the construction of algebraic models. Therefore, we require the zig-zag of Quillen
equivalences given by Shipley to still hold in the flat model structure.
In Chapter 3 we prove the following result, which appears in the preprint [21].

Theorem. There is a zig-zag of symmetric monoidal Quillen equivalences
Modflat

HQ 'Q ChQ

where the intermediate categories have the flat model structure. It follows that for A a commutative
HQ-algebra, there is a zig-zag of symmetric monoidal Quillen equivalences

Modflat
A 'Q ModΘA

where ΘA is a commutative DGA and the intermediate categories have the flat model structure.

In addition to providing the correct formal context for studying change of groups functors,
the use of the flat model structure also has benefits in the algebraic model for commutative
HQ-algebras. Richter-Shipley [13] have showed that there is a zig-zag of Quillen equivalences

commutative HR-algebras 'Q E∞-dg-R-algebras
where R is any commutative ring. In the case that R = Q, E∞-algebras can be rectified to
strictly commutative ones, and therefore one obtains a zig-zag of six Quillen equivalences

commutative HQ-algebras 'Q commutative dg-Q-algebras.
Using the flat model structure instead gives a zig-zag of only three Quillen equivalences between
the category of commutative HQ-algebras and the category of commutative dg-Q-algebras.
Moreover, this zig-zag of Quillen equivalences does not use the rectification step and therefore
provides a more concrete approach.

5. Structure of the thesis

As described above, this thesis is in ‘publication format’. Chapter 2 consists of a joint paper
with Luca Pol which has been accepted for publication in the Journal of Pure and Applied
Algebra [11]. Chapter 3 is a revised version of the preprint [21] and Chapter 4 comprises the
preprint [20], both of which have been submitted for publication. Finally, Chapter 5 contains a
discussion of possible future directions of research related to the work in this thesis.
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THE LEFT LOCALIZATION PRINCIPLE, COMPLETIONS, AND COFREE
G-SPECTRA

LUCA POL AND JORDAN WILLIAMSON

Abstract. We show under mild hypotheses that a Quillen adjunction between stable model categories
induces another Quillen adjunction between their left localizations, and we provide conditions under which
the localized adjunction is a Quillen equivalence. Moreover, we show that in many cases the induced Quillen
equivalence is symmetric monoidal. Using our results we construct a symmetric monoidal algebraic model
for rational cofree G-spectra. In the process, we also show that L-complete modules provide an abelian
model for derived complete modules.
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1. Introduction

In this paper we investigate the interplay between adjoint pairs and localizations. In homotopy theory there
are two versions of localizations available: the left and right Bousfield localization. The former is ubiquitous
in chromatic stable homotopy theory, while the latter has seen interesting applications in the study of torsion
objects in algebraic categories, see [24, §5]. Often in the literature the right Bousfield localization is called
cellularization since in the stable setting it picks out the localizing subcategory on the set of cells (if they
are stable).
We now give an informal overview of our results and refer to the main body of the paper for the precise
statements.

2010 Mathematics Subject Classification. 55P42, 55P60, 55P91, 13B35.
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The Cellularization Principle. Let C be a stable model category, and let K be a set of objects of C.
The Cellularization Principle of Greenlees-Shipley [24] provides conditions under which a Quillen adjunction
F : C � D : G descends to a Quillen equivalence

F : CellKC � CellFKD : G
between the cellularizations. The Cellularization Principle is a crucial ingredient in the construction of
algebraic models for rational equivariant spectra, see for instance [27]. There is also a version of the Principle
where the cells are passed along the right adjoint, and a variant [9, §5.1] in which symmetric monoidal
structures are taken into account. The main limitation of the Cellularization Principle is that the preservation
of symmetric monoidal structures is not automatic.
Since the symmetric monoidal structure need not be preserved by cellularization, the symmetric monoidal
version of the Cellularization Principle requires stronger assumptions. For instance, when passing cells along
the right adjoint, the Cellularization Principle gives a symmetric monoidal Quillen equivalence between the
cellularizations if the original adjunction was already a symmetric monoidal Quillen equivalence [9, 5.1.7].
On the other hand, the monoidal structure is often preserved by left Bousfield localization.

The Left Localization Principle. The Left Localization Principle which we develop, gives mild conditions
under which a symmetric monoidal Quillen adjunction F : C � D : G descends to a symmetric monoidal
Quillen equivalence between the homological localizations. For an object E of a stable, symmetric monoidal
model category C, the homological localization LEC is the localization of C at the class of E-equivalences,
that is those morphisms that become equivalences after tensoring with E.

Theorem (3.15). Let C and D be stable, symmetric monoidal model categories, E an object of C and
F : C � D : G be a symmetric monoidal Quillen adjunction. Suppose that C is homotopically compactly
generated by a set K of objects and that D is homotopically compactly generated by FK. Suppose that:

(i) The derived unit map K → GFK is an E-equivalence for all K ∈ K;
(ii) G sends FE-equivalences to E-equivalences.

Then the induced Quillen adjunction
F : LEC � LFED : G

is a symmetric monoidal Quillen equivalence.

The major advantage of the Left Localization Principle over the Cellularization Principle is that the sym-
metric monoidal structure is preserved automatically. There are several variations of the Principle that we
do not include in this introduction. Of particular note is the Compactly Generated Localization Principle,
see Theorem 3.16. Although the assumptions of this last Principle are quite restrictive, there are interesting
examples where it applies, as we show in our applications.
We now turn to the applications of the Left Localization Principle. The main motivation of the authors for
developing the Left Localization Principle comes from rational equivariant stable homotopy theory.

Algebraic models. The programme of finding algebraic models for rational G-spectra was begun by Green-
lees, who conjectured that for every compact Lie group G, there is an abelian category A(G), together with
a Quillen equivalence between the category of rational G-spectra and the category of differential objects in
A(G). The programme looks for abelian categories with finite homological dimension so that calculations can
easily be performed, and equipped with an Adams spectral sequence to calculate homotopy classes of maps
between G-spectra. This programme has so far been successful in the cases of G finite [6], G = SO(2) [43, 9]
G = O(2) [7], G = SO(3) [32], G a torus of any rank [27], the toral part of G-spectra [8], and free G-spectra
for G a compact Lie group [23, 25]. One can also ask for equivalences with extra structure such as being
monoidal, so that the equivalence passes to ring and module spectra.
When attempting to find algebraic models for categories of interest, there are several techniques we can apply.
One approach is to use Morita theory [42] which gives an equivalence with modules over the endomorphism
ring of a generator. However, the endomorphism ring need not be commutative so that formality arguments
are inaccessible, and the module category often has infinite homological dimension. Another alternative is
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to use the Cellularization Principle to reduce the problem to checking conditions on generating cells. In
this paper, we show that the Left Localization Principle is another technique that we can use. Balchin-
Greenlees [4] show that stable model categories can be split into pieces determined by left localizations in
an adelic fashion, by proving that the stable model category is a homotopy pullback of an ‘adelic cube’. We
hope that the Left Localization Principle may be applied in these situations as well, to simplify the adelic
cube.

Completions. In order to verify the conjecture of Greenlees in our case of interest, we discuss some homo-
topical aspects of completion. We briefly recall the relevant results about the different types of completions
in algebra and we refer the reader to Section 5 for a more detailed exposition and references.
Let I be a finitely generated ideal in a commutative ring R. The I-adic completion functor is a fundamental
tool in algebra, but has poor homological properties as it is neither left nor right exact. Our approach is
to work with its zeroth left derived functor which we denote by LI0. We say that an R-module M is LI0-
complete if the canonical mapM → LI0M is an isomorphism. The full subcategory of LI0-complete modules is
a symmetric monoidal abelian category which supports a projective model structure under a mild condition
on the ideal considered. This condition is called weak pro-regularity and holds in many cases; for example,
any ideal in a Noetherian ring is weakly pro-regular.
For homotopical purposes it is often convenient to consider the derived I-completion functor. This is defined
in terms of the stable Koszul complex whose filtration provides a spectral sequence making the derived
completion accessible. Under the weak pro-regularity hypothesis on the ideal I, the derived I-completion
functor is equivalent to the total left derived functor of I-adic completion, and therefore calculates the local
homology modules, see [20, 36].
We give a proof using the language of model categories that derived I-complete modules can be modelled
via the abelian category of LI0-complete modules, see Theorem 6.11. It follows that a dg-module is derived
I-complete if and only if its homology is LI0-complete. This generalises a result of Dwyer-Greenlees [16, 6.15]
and clarifies an observation of Porta-Shaul-Yekutieli [36, 4.33] that derived I-complete modules need not
have I-adically complete homology. We note the related work of Barthel-Heard-Valenzuela who have given
an∞-categorical approach to derived completion in the general setup of comodules over Hopf algebroids [12].

Rational cofree G-spectra. The equivariant stable homotopy category contains two classes of objects of
particular note: the free and cofree G-spectra. An algebraic model for rational free G-spectra was constructed
by Greenlees-Shipley [23, 25] in terms of torsion modules over the group cohomology ring. However, the
abelian category of torsion modules is not monoidal as it has no tensor unit and therefore the Quillen
equivalence in the free case cannot be refined to a symmetric monoidal Quillen equivalence.
By exploiting the equivalence between free and cofree G-spectra, we give a symmetric monoidal algebraic
model for the category of rational cofree G-spectra. For convenience, we only state the result for the
connected case in this introduction. See Theorem 9.6 for the general case.

Theorem (8.4). Let G be a connected compact Lie group and I be the augmentation ideal of H∗BG. Then
there is a symmetric monoidal Quillen equivalence

Spcofree
G 'Q Mod∧H∗BG

between rational cofree G-spectra and LI0-complete dg-H∗BG-modules. In particular, there is a tensor-
triangulated equivalence

cofree G-spectra '4 D(LI0-complete H∗BG-modules).

In this application, the Left Localization Principle manifests its advantages over the Cellularization Principle.
Firstly, the proof of the equivalence is formal as it only requires a few elementary iterations of the Left
Localization Principle and some formality arguments in algebra. In particular we avoid any “topological”
formality argument using the Adams spectral sequence. Secondly, it gives a tensor-triangulated equivalence
of the homotopy categories.
Free and cofree G-spectra are interesting for three particular reasons. Firstly, they represent cohomology
theories on freeG-spaces, the most prominent example of which is Borel cohomology. Secondly, the techniques
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employed in the construction of the algebraic models for free and cofree G-spectra are instructive for more
general cases, such as that of torus-equivariant spectra [27]. Finally, the algebraic models for free and
cofree G-spectra fit in the general picture of a local duality context in the sense of [11]. This means that
the equivalence between free and cofree G-spectra in equivariant stable homotopy theory translates to the
equivalence between torsion and complete modules in algebra.

Contribution of this paper and related work. Let us restrict to connected groups for simplicity, and
continue to write I for the augmentation ideal. A Quillen equivalence between rational cofree G-spectra
and derived complete H∗BG-modules was already known by passing through free G-spectra in the following
way:

free G-spectra I-power torsion-H∗BG-modules

cofree G-spectra derived I-complete-H∗BG-modules.

'Q

'Q'Q

The horizontal Quillen equivalence is the algebraic model for free G-spectra of Greenlees-Shipley [23] and
the right vertical follows from Dwyer-Greenlees’ Morita theory [16] together with [24, §5]. However this is
unsatisfactory for two main reasons. Firstly, it cannot be refined to a symmetric monoidal Quillen equivalence
since the category of I-power torsion modules has no tensor unit. Secondly, it does not give an abelian model
as desired in the conjecture of Greenlees. In light of this, our contribution is threefold: we prove the algebraic
model for rational cofree G-spectra directly, we upgrade it to a symmetric monoidal Quillen equivalence,
and we give an abelian model for derived complete modules. In addition, we collect several results about
homotopical aspects of algebraic completions which we believe will be of independent interest.
Although our strategy is analogous to that employed by Greenlees-Shipley in the study of free G-spectra,
the tools we use differ. In particular, the Left Localization Principle which we develop is a new and key
ingredient in our proof.

Outline of the paper. The paper is divided into two main parts.
In the first part we give some necessary background on left Bousfield localizations and then state and prove
the Left Localization Principle. We then investigate the implications in the case of homological localizations,
which provide many key examples.
In the second part of the paper we focus on the applications of the Left Localization Principle. We apply the
Left Localization Principle to understand completions of module categories and to construct a symmetric
monoidal algebraic model for rational cofree G-spectra. We have decided to first construct the algebraic
model for a connected compact Lie group and then show how to generalize our proofs to the non-connected
case. In the final section, we construct a strongly convergent Adams spectral sequence to calculate homotopy
classes of maps between cofree G-spectra.

Conventions. We shall follow the convention of writing the left adjoint above the right adjoint in an
adjoint pair. We will use q : QX → X and r : X → RX to denote cofibrant and fibrant replacements of X
respectively.

Acknowledgements. We are extremely grateful to John Greenlees for many helpful discussions and sug-
gestions. We would also like to thank Scott Balchin, Magdalena Kędziorek and Gabriel Valenzuela for their
interest and comments.

Part 1. The Left Localization Principle

2. Left Bousfield localization of model categories

In this section we recall some necessary background on left Bousfield localizations following [28] and [10].

Definition 2.1. Let C be a model category and let S be a collection of maps in C.
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• An object W in C is S-local if it is fibrant in C and for every s : A → B in S, the natural map
Map(B,W )→ Map(A,W ) is a weak equivalence of homotopy function complexes.

• A map f : X → Y in C is an S-local equivalence if for every S-local object W , the natural map
Map(Y,W )→ Map(X,W ) is a weak equivalence of homotopy function complexes.

Remark 2.2. If the model category is stable, then the homotopy function complexes in the previous Defi-
nition can be replaced with the graded set of maps in the homotopy category, see [10, 4.5].

In many cases, we can endow the model category C with a new model structure, the left Bousfield localization
of C, in which the weak equivalences are the S-local equivalences, the cofibrations are unchanged, and the
fibrant objects are the S-local objects. If it exists, we denote this model category by LSC.
Hypothesis 2.3. Throughout this paper we assume that all the required left Bousfield localizations exist.
Remark 2.4. The left Bousfield localization exists under mild conditions on the model category C. For
example, when C is left proper, cellular and S is a set [28, 4.1.1], or when C is left proper, combinatorial
and S is a set [14, 4.7]. In particular, left Bousfield localizations (at sets of morphisms) exist for the stable
model structure on spectra [34, 9.1], the stable model structure on equivariant spectra for any compact Lie
group [33, III.4.2] and the projective model structure on dg-modules [13, 3.3].

Recall that a model category is symmetric monoidal if it is a closed symmetric monoidal category and it
satisfies the pushout-product axiom: if f : A→ B and g : X → Y are cofibrations, then the pushout-product
map

f�g : A⊗ Y
⋃

A⊗X
B ⊗X → B ⊗ Y

is a cofibration, which is acyclic if either f or g is acyclic; and the unit axiom: the natural map Q1⊗X →
1⊗X ∼= X is a weak equivalence for all cofibrant X. We denote the internal hom functor by F (−,−).
Definition 2.5. We say that a stable model category C is homotopically compactly generated by a set K of
objects if its homotopy category hC is compactly generated by K:

• for all K ∈ K and collections {Mi} of objects of C, the natural map
⊕

hC(K,Mi) → hC(K,
⊕
Mi)

is an isomorphism;
• an object X of hC is trivial if and only if hC(ΣnK,X) = 0 for all K ∈ K and n ∈ Z.

Next we recall the definition of a monoidal Quillen adjunction from [41].
Definition 2.6. Let F : C � D : G be a Quillen adjunction between symmetric monoidal model categories.

(1) We say that (F,G) is a weak symmetric monoidal Quillen adjunction if the right adjoint G is
lax monoidal (which gives the left adjoint F an oplax monoidal structure) and the following two
conditions hold:
(a) for cofibrant A and B in C, the oplax monoidal structure map φ : F (A⊗B)→ F (A)⊗ F (B) is

a weak equivalence in D

(b) for a cofibrant replacement Q1C of the unit in C, the map φ0 : F (Q1C) → 1D is a weak
equivalence in D.

(2) If the oplax monoidal structure maps φ and φ0 are isomorphisms, then we say that (F,G) is a strong
symmetric monoidal Quillen pair.

(3) We say that the adjunction (F,G) is symmetric monoidal if it is a weak symmetric monoidal Quillen
adjunction.

(4) We say that the adjucntion (F,G) is a symmetric monoidal Quillen equivalence if it is a symmetric
monoidal adjunction and a Quillen equivalence.

Remark 2.7. A Quillen adjunction is symmetric monoidal if the left adjoint is strong monoidal and the
unit object of C is cofibrant.
Definition 2.8. A set of morphisms S of a stable model category C is said to be stable if the collection
of S-local objects is closed under (de)suspensions. We say that a stable set of cofibrations S of a stable,
cellular, symmetric monoidal model category C is monoidal if S�I = {s�i | s ∈ S, i ∈ I} is contained in
the class of S-equivalences, where I is the set of generating cofibrations for C.
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We will need the following result.
Proposition 2.9 ([10, 5.1]). Let C be a proper, cellular, stable, symmetric monoidal model category and let
S be a stable set of cofibrations between cofibrant objects. Then the localization LSC is a symmetric monoidal
model category if and only if S is monoidal.
Remark 2.10. Any map in a model category can be replaced up to weak equivalence by a cofibration
between cofibrant objects: first cofibrantly replacing the source and then factoring the composite into a
cofibration followed by an acyclic fibration. Since left Bousfield localization depends only on the homotopy
type of the class of maps, we can assume without loss of generality that S consists of cofibrations between
cofibrant objects.
Remark 2.11. Since we work with stable model categories throughout this paper, one could formulate
the Bousfield localizations differently. In particular, given a collection of objects A in hC one can take
S = {f | cofibre(f) ∈ A}. The objects of A then become acyclic in the localized model structure. In order
to be consistent with the model categorical literature, for example [28], we will always take a set of maps S
in the stable model category C.

3. The Left Localization Principle

We are now ready to work towards the Left Localization Principle. Before we can prove an induced Quillen
equivalence, we must check that the Quillen adjunction descends to the localizations. Recall that Q and R
denote cofibrant and fibrant replacement in the original model structures on C and D respectively.
Proposition 3.1. Let F : C � D : G be a Quillen adjunction between stable model categories satisfying
Hypothesis 2.3. Let S and T be stable sets of morphisms in C and D respectively, and suppose that F sends
S-equivalences between cofibrant objects to T -equivalences. Then the adjunction

F : LSC � LTD : G
is a Quillen adjunction. Furthermore, it is a symmetric monoidal Quillen adjunction if F : C � D : G is a
symmetric monoidal Quillen adjunction and S and T are monoidal.

Proof. By Hirschhorn [28, 3.3.18], to prove that LSC � LTD is a Quillen adjunction, it is sufficient to check
that F sends S-equivalences between cofibrant objects to T -equivalences, which was our hypothesis. The
claim about the monoidality follows from the fact that the cofibrations in a left Bousfield localization are
the same as in the original category, and the local equivalences contain the original weak equivalences. �
Remark 3.2. If we apply the previous Proposition with S = GRT , then the hypothesis that F sends GRT -
equivalences between cofibrant objects to T -equivalences may seem hard to verify in practice. However,
we show in Lemma 3.14 that in the case of homological localization, this hypothesis can be replaced by a
condition which is much easier to verify.
Remark 3.3. If S is monoidal, it often happens that FQS is also monoidal. Write IC and ID for the
sets of generating cofibrations in C and D respectively. For instance, one can easily check that FQS is
monoidal when (F,G) is a strong symmetric monoidal Quillen pair and ID ⊆ F (IC), or, when (F,G) is a
weak symmetric monoidal Quillen pair, the domains of IC are cofibrant and ID ⊆ F (IC). Note that the
condition that ID ⊆ F (IC) is satisfied in the case when the model structure on D is right induced from C.

We can now state and prove the Left Localization Principle. We note that as the cofibrations are the same
in the left Bousfield localization as in the original model structure, we continue to write Q for the cofibrant
replacement in the localization. However, since being fibrant in the localization is a stronger condition than
being fibrant in the original model structure, we write R for the fibrant replacement in the localization.
Theorem 3.4 (Left Localization Principle). Let C and D be stable model categories satisfying Hypothesis 2.3
and let F : C � D : G be a Quillen adjunction.

(1) Suppose that C is homotopically compactly generated by a set K and that D is homotopically compactly
generated by FQK. Let S and T be stable sets of morphisms in C and D respectively. Suppose that
the following conditions hold:
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(i) The derived unit map ηK : QK → GRFQK is an S-equivalence for all K ∈ K;
(ii) G sends T -equivalences between fibrant objects in D to S-equivalences.
(iii) F sends S-equivalences between cofibrant objects to T -equivalences.
Then the induced Quillen adjunction

F : LSC � LTD : G
is a Quillen equivalence. Moreover, if F : C � D : G is a symmetric monoidal Quillen adjunction
and S and T are monoidal, then F : LSC � LTD : G is a symmetric monoidal Quillen equivalence.

(2) Suppose that D is homotopically compactly generated by a set L and that C is homotopically compactly
generated by GRL. Let T be a stable set of morphisms in D. Suppose that the following conditions
hold:
(i) The derived counit map εL : FQGRL→ RL is a weak equivalence in D for all L ∈ L;
(ii) G sends T -equivalences between fibrant objects in D to GRT -equivalences;
(iii) F sends GRT -equivalences between cofibrant objects to T -equivalences.
Then the induced Quillen adjunction

F : LGRTC � LTD : G
is a Quillen equivalence. Moreover, if F : C � D : G is a symmetric monoidal Quillen adjunction
and T and GRT are monoidal, then F : LGRTC � LTD : G is a symmetric monoidal Quillen
equivalence.

Proof. Let us prove (1). Note that condition (iii) ensures that the Quillen adjunction descends to the
localizations, see Proposition 3.1. We now show that the derived functor GR preserves sums, so that the
subcategories

A = {X ∈ hC | ηX : QX ∼S−−→ GRFQX} and A′ = {Y ∈ hD | εY : FQGRY ∼T−−→ RY }
are localizing. Let (Xi)i∈I be a collection of objects in hD. Using compactness we see that for all K ∈ K
hC(K,GR(

⊕

i∈I
Xi)) ∼= hD(FQK,

⊕

i∈I
Xi) ∼=

⊕

i∈I
hD(FQK,Xi) ∼=

⊕

i∈I
hC(K,GR(Xi)) ∼= hC(K,

⊕

i∈I
GR(Xi)).

Since K generates hC we conclude that GR preserves arbitrary sums.
By assumption (i), we know that K ⊂ A thus A = hC as K generates hC. Note that FQηK is a T -equivalence
by condition (iii). Using the triangular identity of the derived adjunction

FQK FQGRFQK

RFQK

FQηK

r
εF QK

and 2-out-of-3, we obtain that FQK ∈ A′ and hence A′ = hD as FQK generates hD.
We must prove that ηX : QX → GRFQX is an S-equivalence for all X ∈ hC and that εY : FQGRY → RY
is a T -equivalence for all Y ∈ hD. Note that the canonical map GRFQX → GRFQX is an S-equivalence
by condition (ii). Therefore the derived unit

ηX : QX ∼S−−→ GRFQX
∼S−−→ GRFQX

is an S-equivalence. For the derived counit, note that the canonical map GRY → GRY is an S-equivalence
and therefore FQGRY → FQGRY is a T -equivalence by condition (iii). By considering the diagram

FQGRY RY

FQGRY RY

εY

∼T ∼T

εY

we see that εY is a T -equivalence if and only if εY is so. Since A′ = hD the claim follows.
The proof of part (2) follows from (1) by taking S = GRT . �
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Remark 3.5. Notice that the conditions in (1) imply that the derived functor FQ preserves all compact
objects. Moreover, in the proof we showed that GR preserves sums so it also follows that under the conditions
in (2) the derived functor GR preserves all compact objects.

Remark 3.6. In [29, 2.3] Hovey gives criteria for when left Bousfield localization preserves Quillen equiva-
lences. His result does not assume stability but does not treat the case where the original adjunction is not
a Quillen equivalence.

In the Left Localization Principle we assumed that C and D are homotopically compactly generated whereas
in the following we assume that the localizations are homotopically compactly generated. This is a stronger
condition but holds in certain cases when the localization is homological, see Remark 3.18.

Theorem 3.7 (Compactly Generated Localization Principle). Let C and D be stable model categories sat-
isfying Hypothesis 2.3 and let F : C � D : G be a Quillen adjunction. Consider stable sets S and T of
morphisms in C and D respectively.

(1) Suppose that LSC is homotopically compactly generated by a set K and that LTD is homotopically
compactly generated by FQK. Suppose that the derived unit map ηK : QK → GRFQK is an S-
equivalence for all K ∈ K and that F sends S-equivalences between cofibrant objects to T -equivalences.
Then the induced Quillen adjunction

F : LSC � LTD : G
is a Quillen equivalence. Moreover, if F : C � D : G is a symmetric monoidal Quillen adjunction
and S and T are monoidal, then F : LSC � LTD : G is a symmetric monoidal Quillen equivalence.

(2) Suppose that LTD is homotopically compactly generated by a set L and that LSC is homotopically
compactly generated by GRL. Suppose that the derived counit εL : FQGRL→ RL is a T -equivalence
for all L ∈ L and that F sends S-equivalences between cofibrant objects to T -equivalences. Then the
induced Quillen adjunction

F : LSC � LTD : G
is a Quillen equivalence. Moreover, if F : C � D : G is a symmetric monoidal Quillen adjunction
and S and T are monoidal, then F : LSC � LTD : G is a symmetric monoidal Quillen equivalence.

Proof. Apply the Cellularization Principle [24, 2.7] to the Quillen adjunction F : LSC � LTD : G obtained
from Proposition 3.1. �

3.1. Homological localization. We now rephrase the Left Localization Principle for homological Bousfield
localizations. This setting provides a large family of examples in which our result simplifies.

Definition 3.8. Let C be a symmetric monoidal model category. We say that an object E ∈ C is flat if
E ⊗− preserves weak equivalences.

Remark 3.9. If E is a cofibrant object in a symmetric monoidal model category C, then E ⊗ − preserves
weak equivalences between cofibrant objects by Ken Brown’s lemma. However, in many cases of interest all
cofibrant objects are in fact flat:

(i) The cofibrant objects in the projective model structure on dg-modules are the dg-projective modules.
Any dg-projective module P has the property that P ⊗ − preserves quasiisomorphisms [3, 11.1.6,
11.2.1] and so any cofibrant object is flat in the projective model structure on dg-modules.

(ii) Any cofibrant object in the stable model structure on modules over a ring spectrum is flat [34,
12.3, 12.7]. Similarly, any cofibrant object in the stable model structure on modules over a ring
G-spectrum is flat [33, 7.3, 7.7].

Definition 3.10. Let C be a stable and symmetric monoidal model category, and let E be a flat cofibrant
object of C. We say that f : X → Y is an E-equivalence if E ⊗ f : E ⊗X → E ⊗ Y is a weak equivalence.

When it exists, localizing at the E-equivalences produces a model structure on C in which the weak equiva-
lences are the E-equivalences, the cofibrations are unchanged and the fibrant objects are the E-local objects.
We call this new model category the homological localization of C at E and write LEC. One can prove that
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the weak equivalences in LEC are the E-equivalences as follows. Write S for the collection of E-equivalences.
It is immediate that any E-equivalence is an S-equivalence, so it remains to show the converse. This follows
from the universal property of hC[S−1] applied to the functor E ∧ − : hC→ hC.

Hypothesis 3.11. From now on we assume that the required homological localizations exist.

Remark 3.12. The homological localization exists if C is a stable, symmetric monoidal, proper and com-
pactly generated model category in the sense of [45, 1.2.3.4]; see [17, §VIII.1] for the special case of spectra,
and [4, §6.A] for the general case.

Proposition 3.13. Let C be a symmetric monoidal model category satisfying Hypothesis 3.11, and let E be
a flat cofibrant object of C. Then the homological localization LEC is a symmetric monoidal model category.

Proof. Take two cofibrations i and j. Since the cofibrations in LEC are the same as in C, the pushout-product
map i�j is a cofibration since C satisfies the pushout-product axiom. Now suppose that i is an E-equivalence
also. We have that E⊗(i�j) = (E⊗i)�(E⊗j) since E⊗− is a left adjoint. The functor E⊗− is left Quillen
since E is cofibrant, so E ⊗ i is an acyclic cofibration and E ⊗ j is a cofibration. Therefore, E ⊗ (i�j) is a
weak equivalence by the pushout-product axiom for C. In other words, i�j is an E-equivalence as required.
The unit axiom follows immediately from the unit axiom for C, since the cofibrations are the same in the
left Bousfield localization as in the original model category. �

Lemma 3.14. Let F : C � D : G be a symmetric monoidal Quillen adjunction between stable symmetric
monoidal model categories and let E′ be a flat bifibrant object in D. If εE : FQGE′ → E′ is a weak equivalence
in D, then F sends QGE′-equivalences between cofibrant objects to E′-equivalences.

Proof. Let X → Y be a QGE′-equivalence between cofibrant objects. By Ken Brown’s lemma, F (QGE′ ⊗
X)→ F (QGE′ ⊗ Y ) is a weak equivalence. We have the commutative diagram

F (QGE′ ⊗X) FQGE′ ⊗ FX E′ ⊗ FX

F (QGE′ ⊗ Y ) FQGE′ ⊗ FY E′ ⊗ FY
∼

∼ ∼

∼ ∼

in which the first horizontal maps are equivalences by definition of a symmetric monoidal Quillen pair, and
the second horizontal maps are equivalences since εE : FQGE′ → E′ is a weak equivalence and tensoring
with a cofibrant object preserves weak equivalences between cofibrants by Ken Brown’s lemma. Hence by
two-out-of-three, E′ ⊗ FX → E′ ⊗ FY is a weak equivalence as required. �

Recall that the homological localization at an object E is a special case of left Bousfield localization which
inverts the E-equivalences. Therefore we can combine this Lemma with the Left Localization Principle to
obtain our version for homological localizations.

Theorem 3.15 (Left Localization Principle). Let C and D be stable, symmetric monoidal model categories
satisfying Hypothesis 3.11 and let F : C � D : G be a symmetric monoidal Quillen adjunction.

(1) Suppose that C is homotopically compactly generated by a set K and that D is homotopically compactly
generated by FQK. Let E ∈ C be a flat cofibrant object. Suppose that the following conditions hold:
(i) The derived unit map QK → GRFQK is an E-equivalence for all K ∈ K;
(ii) G sends FE-equivalences between fibrant objects in D to E-equivalences.
Then the induced Quillen adjunction

F : LEC � LFED : G
is a symmetric monoidal Quillen equivalence.

(2) Suppose that D is homotopically compactly generated by a set L and that C is homotopically compactly
generated by GRL. Let E′ ∈ D be a flat bifibrant object. Suppose that the following conditions hold:
(i) The derived counit map FQGRL→ RL is a weak equivalence in D for all L ∈ L;
(ii) G sends E′-equivalences between fibrant objects in D to QGE′-equivalences.
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(iii) The map FQGE′ → E′ is a weak equivalence in D;
Then the induced Quillen adjunction

F : LQGE′C � LE′D : G
is a symmetric monoidal Quillen equivalence.

We now give a mixing of the Left Localization Principle and the Cellularization Principle. Note that we
again write R for a fibrant replacement in the Bousfield localization.

Theorem 3.16 (Compactly Generated Localization Principle). Let C and D be stable, symmetric monoidal
model categories satisfying Hypothesis 3.11 and let F : C � D : G be a symmetric monoidal Quillen
adjunction.

(1) Let E be a flat cofibrant object of C. Suppose that LEC is homotopically compactly generated by
a set K and that LFED is homotopically compactly generated by FQK. If the derived unit map
QηK : K → GRFQK is an E-equivalence for all K ∈ K then the induced Quillen adjunction

F : LEC � LFED : G
is a symmetric monoidal Quillen equivalence.

(2) Let E′ be a flat bifibrant object of D. Suppose that LE′D is homotopically compactly generated by
a set L and that LQGE′C is homotopically compactly generated by GRL. Suppose that the derived
counit εL : FQGRL → RL is an E′-equivalence for all L ∈ L and that FQGE′ → E′ is a weak
equivalence in D. Then the induced Quillen adjunction

F : LQGE′C � LE′D : G
is a symmetric monoidal Quillen equivalence.

Remark 3.17. Barnes-Roitzheim have compared left and right Bousfield localizations of stable model
categories at dualizable objects [10, 9.6]. More precisely, they proved that the identity functors

LAC � CellDAC
give a Quillen equivalence, where D = F (−,1) is the dual functor and A is dualizable. Accordingly, in some
cases the Left Localization Principle can be replaced by the Cellularization Principle and vice versa. However,
there are some subtleties that need to be considered. Firstly, the two principles are “exchangeable” only if
the functors interact well with taking duals and we localize at dualizable objects. This a big disadvantage for
instance in global stable homotopy theory where almost no compact objects are dualizable. This was one of
the main motivations of the authors to develop the Left Localization Principle. Secondly, the two principles
have quite different behaviour when we take into account the symmetric monoidal structure. While the Left
Localization Principle for homological localization automatically yields a monoidal Quillen equivalence, the
Cellularization Principle requires strong conditions, in particular when passing cells along the right adjoint,
see [9, 5.1.7].

Remark 3.18. If we want to apply the Compactly Generated Localization Principle we need to know that
the category of local objects is compactly generated. This holds for instance, when we localize at dualizable
objects. More precisely, let C be a stable, symmetric monoidal model category, and let A be a dualizable
object of C. It is not difficult to see that if C is homotopically compactly generated by a set K then the
homological localization LAC is homotopically compactly generated by DA⊗K. Firstly, DA⊗K is A-local
for all K ∈ K since if A⊗Z ' 0, then hC(Z,DA⊗K) = hC(Z,F (A,K)) = hC(Z⊗A,K) = 0. Compactness
follows from the fact that A ⊗ − : hLAC → hC preserves colimits, and the generation is an immediate
consequence of the duality adjunction. For more details, see for instance [35, 2.27].

4. Completion of module categories

In this section we apply the Left Localization Principle to obtain symmetric monoidal Quillen equivalences
relating a ring to its completion. We provide a general statement and then give several concrete examples
of interest.
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Notation 4.1. Given a commutative monoid R in a symmetric monoidal model category C, we denote by
ModR(C) the category of R-modules equipped with the projective model structure (if it exists) in which
the weak equivalences and fibrations are created by the forgetful functor ModR(C) → C. If the underlying
category is clear, we will often write ModR.

Hypothesis 4.2. Throughout this paper we assume that the projective model structure on ModR(C) exists
and that it is left proper, so that left Bousfield localizations exist.

Remark 4.3. Note that the projective model structure exists if C satisfies the monoid axiom [40, 4.1], and
it is left proper in many cases: for instance in categories of (equivariant) spectra [34, 12.1(i)] and [33, III.7.6],
and in dg-modules [13, 3.3].

Proposition 4.4. Let C be a stable, symmetric monoidal model category with cofibrant monoidal unit, which
is homotopically compactly generated by a set K.

(i) Let S be a stable, monoidal set of maps in ModR(C) and θ : R → R′ be a map of commutative
monoids in C which is an S-equivalence. The map θ induces an extension-restriction of scalars
Quillen adjunction

R′ ⊗R − : ModR(C) � ModR′(C) : θ∗

and if θ∗ sends R′⊗RQS-equivalences between fibrant objects to S-equivalences, the Left Localization
Principle applies to give a symmetric monoidal Quillen equivalence

LSModR(C) 'Q LR′⊗RQSModR′(C).
(ii) Let E be a flat cofibrant R-module and θ : R → R′ be a map of commutative monoids in C which is

an E-equivalence. The map θ induces a symmetric monoidal extension-restriction of scalars Quillen
adjunction

R′ ⊗R − : ModR(C) � ModR′(C) : θ∗

between the categories of modules, and the Left Localization Principle applies to give a symmetric
monoidal Quillen equivalence

LEModR(C) 'Q LEModR′(C).

Remark 4.5. Note that there is an abuse of notation in the second part of the proposition above since in
general there is no natural R′-module structure on E at the model category level. More precisely, on the
right hand side of the Quillen equivalence above we should have localized at R′⊗RE instead of E. However,
this abuse of notation does no harm since there is a natural weak equivalence E ∼−→ R′ ⊗R E in C and the
class of R′ ⊗R E-equivalences is detected in the homotopy category of C.

Proof. Without loss of generality we may assume that K consists of cofibrant objects. The set R⊗K provides
a set of compact generators for hModR(C). The left adjoint is strong monoidal and maps compact generators
to compact generators since R′ ⊗R (R⊗K) ∼= R′ ⊗K.
Since S is a monoidal set, the class of S-equivalences is closed under tensor product with cofibrant objects.
Let K ∈ K and consider the diagram

QR⊗K R′ ⊗R (QR⊗K)

R⊗K R′ ⊗K
∼S ∼S

∼S

in which the top horizontal arrow is the derived unit. Since QR→ R is an S-equivalence and K is cofibrant,
the left vertical is an S-equivalence. As R → R′ is an S-equivalence, the bottom horizontal is also an
S-equivalence since K is cofibrant. By Ken’s Brown’s lemma, it follows that the right hand vertical is also
an S-equivalence. Therefore, the derived unit is an S-equivalence for K ∈ K. Therefore, Part (i) of the
statement follows from the Left Localization Principle.
Part (ii) is a consequence of Part (i), once we show that the right adjoint θ∗ automatically preserves E-
equivalences between fibrant objects. Note that there is a natural map E ⊗R θ∗M → θ∗(E ⊗R′ M) of
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R-modules, which is a weak equivalence as E ' R′ ⊗R E. Now suppose that M → N is an E-equivalence
between fibrant R′-modules. By considering the diagram

E ⊗R θ∗M E ⊗R θ∗N

θ∗(E ⊗R′ M) θ∗(E ⊗R′ N)

∼ ∼

we see that θ∗M → θ∗N is an E-equivalence of R-modules. �

Example 4.6. Let Zp denote the p-adic integers and consider the ring map θ : Z → Zp which induces a
symmetric monoidal Quillen adjunction between the categories of chain complexes

Zp ⊗Z − : ModZ � ModZp : θ∗

via extension and restriction of scalars. We can apply Proposition 4.4 to obtain a symmetric monoidal
Quillen equivalence

LZ/pModZ 'Q LZ/pModZp
.

By [21, 4.2], we can identify the homotopy categories of the two localizations with the subcategories of the
derived categories consisting of derived p-complete modules which we denote ΛZ/pModZ and ΛZ/pModZp

respectively. Putting everything together we get a tensor-triangulated equivalence
ΛZ/pModZ '4 ΛZ/pModZp

.

Before stating the next example, we discuss the construction of a commutative ring orthogonal G-spectrum
which presents the homotopy type of the functional dual of EF+, for F a family of subgroups of a compact
Lie group G.

Construction 4.7. Let G be a compact Lie group, and F a family of subgroups of G. We briefly discuss
the construction of an orthogonal G-spectrum modelling the homotopy theory of the functional dual DEF+.
Since S0 is not a fibrant G-spectrum, the point-set object F (EF+, S

0) does not have the same homotopy
type as the derived hom. Since we desire a model for DEF+ which is a commutative ring G-spectrum, the
construction requires some care.
Let fS0 be a fibrant replacement of S0 as a commutative ring G-spectrum. This will be positive fibrant as
a G-spectrum but need not be fibrant. Write fS0 → f̂S0 for a fibrant replacement of fS0 as a G-spectrum.
We claim that if i : A → B is cofibration and p : X → Y is a positive fibration, that the pullback-product
map

F (B,X)→ F (A,X)×F (A,Y ) F (B, Y )
is a positive fibration. To prove this, by adjunction it is sufficient to show that the pushout-product of a
cofibration with a positive cofibration is a positive cofibration. Recall that a map is a positive cofibration if
and only if it is a cofibration which is an isomorphism in all levels V with V G = 0, see [33, III.2.10]. Since
G-spectra is a monoidal model category, it remains to check that the pushout-product of a cofibration with
a positive cofibration is an isomorphism for all levels V with V G = 0. This follows from the definitions of
the generating cofibrations. It follows by Ken Brown’s lemma that if A is cofibrant and p : X → Y is a weak
equivalence between positively fibrant objects, then F (A,X)→ F (A, Y ) is a weak equivalence.
Note that EF+ is a cofibrant G-spectrum, and since fibrant G-spectra are also positively fibrant, this shows
that the natural map F (EF+, fS

0)→ F (EF+, f̂S
0) is a weak equivalence. Since EF+ is cofibrant and f̂S0

is fibrant, the mapping spectrum F (EF+, f̂S
0) has the homotopy type of the derived mapping spectrum,

and hence so does F (EF+, fS
0). Since fS0 is a commutative ring G-spectrum we note that F (EF+, fS

0)
is a commutative ring G-spectrum via the diagonal 4 : EF+ → EF+ ∧ EF+.
If we work rationally, then more concretely one can take F (EF+, infHQ) as a model for DEF+ since the
inflated Eilenberg-MacLane spectrum is a commutative ring G-spectrum (as inflation is strong monoidal)
and is fibrant (as inflation is right Quillen). This spectrum will play an important role in the second part of
this paper for the family of subgroups consisting of only the trivial subgroup. In this case we write DEG+
for this mapping spectrum.
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Example 4.8. Let G be a compact Lie group and F a family of subgroups of G. Note that the G-spectrum
DEF+ is a commutative ring G-spectrum as discussed in Construction 4.7. It is easy to check that the
unit map η : S0 → DEF+ is a EF+-equivalence. We can then apply Proposition 4.4 to obtain a symmetric
monoidal Quillen equivalence

LEF+SpG 'Q LEF+ModDEF+(SpG).

Example 4.9. Let G be the global family of compact Lie groups. Denote by SpG the category of orthogonal
spectra with the G-global model structure which is proper [39, 4.3.17]. By [39, 4.5.21, 4.5.22(ii)], there
exists a morphism of ultracommutative ring spectra iS : S→ bS between the global sphere spectrum and the
global Borel construction which exhibits bS as a localization of the global sphere spectrum at the class of
non-equivariant equivalences. Note that the projective model structure on ModbS(SpG) exists by [39, 4.3.29]
and it is proper by a similar argument as in [34, 12.1(i)] so that we can perform left Bousfield localizations.
Since i∗S preserves non-equivariant equivalences, it follows from Proposition 4.4 that by localizing at the class
1 of non-equivariant equivalences (see Remark 4.10 for justification of its existence), we obtain a symmetric
monoidal Quillen equivalence

L1SpG 'Q L1ModbS(SpG).
We note that this is a symmetric monoidal Quillen equivalence using Remark 3.3, since the model structure
on ModbS(SpG) is right induced from the G-global model structure on SpG. Finally using the language of [39]
we can identify the homotopy category of L1SpG with the full subcategory of the global stable homotopy
category consisting of those global spectra which are right induced from the trivial family.

Remark 4.10. It is not immediate that the left Bousfield localization of SpG at the class of non-equivariant
equivalence actually exists. This localization cannot be constructed as a homological localization since
in global stable homotopy theory an analogue of the free G-space EG does not exist. Instead we apply
Bousfield-Friedlander localization [15, 9.3] to the natural transformation iX : X → bX which is a non-
equivariant equivalence. By construction, the global Borel functor b has the property that for all G ∈ G,
the underlying G-spectrum of bX is cofree, see [39, 4.5.16, 4.5.22]. In particular this shows that f : X → Y
is a non-equivariant equivalence if and only if bf : bX → bY is a global equivalence. The conditions (A1)
and (A2) from [15, 9.2] easily follow from this observation. The final condition (A3) follows from the right
properness of SpF for the trivial family F = {1}, together with the fact that any G-global fibration is a
F-global fibration. The argument for ModbS(SpG) is similar as the weak equivalences and fibrations are
created by the forgetful functor ModbS(SpG)→ SpG.

Part 2. Rational cofree G-spectra

We give a symmetric monoidal algebraic model for the category of rational cofree G-spectra for G a compact
Lie group, in the sense of [18]. We will initially prove the result for G connected and then show how to
extend our proofs to any compact Lie group. In the final section we construct a strongly convergent Adams
spectral sequence calculating homotopy classes of maps between cofree G-spectra.

5. Completions in algebra

We now recall some results about complete modules following [20].
Let R be a graded commutative ring and let I be a finitely generated homogeneous ideal. The I-adic
completion of a module M is defined by

M∧I = limnM/InM.

We say that a moduleM is I-adically complete if the natural mapM →M∧I is an isomorphism. A dg-module
is said to be I-adically complete if its underlying graded module is.
Since the I-adic completion functor is neither left nor right exact in general, our approach is to consider the
zeroth left derived functor LI0 of I-adic completion as the ‘correct’ notion.

Definition 5.1.
• We say that a module M is LI0-complete if the natural map M → LI0M is an isomorphism.
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• We say that a dg-module N is LI0-complete if its underlying graded module is LI0-complete.

We write ModR for the category of dg-R-modules, and Mod∧R for the full subcategory of LI0-complete dg-
modules. We denote the internal hom of R-modules by HomR(−,−).

Lemma 5.2.

(a) The category Mod∧R is abelian, and the inclusion functor i : Mod∧R → ModR is exact. In particular,
the homology of an LI0-complete dg-module is LI0-complete.

(b) The inclusion functor is right adjoint to the L-completion functor LI0.
(c) The category Mod∧R has all limits and colimits.

Proof. The proofs of (a) and (b) can be found in [30, A.6(e), A.6(f)]. Their proofs depend only upon the
fact that LI0 is right exact and the existence of a long exact sequence of derived functors. Therefore, the
restriction to local rings and regular ideals made in [30] does not affect the stated results. It follows from
(b) that limits of LI0-complete modules are calculated in ModR, and that colimits of LI0-complete modules
are calculated by LI0-completion of the colimit in ModR. �

Proposition 5.3.

(a) If N is LI0-complete, then HomR(M,N) is LI0-complete.
(b) The category Mod∧R is closed symmetric monoidal with tensor product LI0(M ⊗R N) and internal

hom HomR(M,N).

Proof. By taking a free presentation RJ1 → RJ0 →M → 0, we obtain an exact sequence

0→ HomR(M,N)→
∏

J0

N →
∏

J1

N

which proves (a), since LI0-complete modules are closed under products and kernels.
For (b) we follow the argument of Rezk [37, 6.2]. We first prove that the map LI0(M⊗RN)→ LI0(LI0M⊗RN)
induced by ηM : M → LI0M is an isomorphism. It is enough to check that for any LI0-complete module C,
the map

HomR(LI0(LI0M ⊗R N), C)→ HomR(LI0(M ⊗R N), C)
is an isomorphism. By adjunction, it is an isomorphism if and only if the induced map

HomR(LI0M,HomR(N,C))→ HomR(M,HomR(N,C))

is. This now follows as HomR(N,C) is LI0-complete by part (a). Therefore LI0(M ⊗R N)→ LI0(LI0M ⊗R N)
is an isomorphism. By symmetry, we also have that LI0(M ⊗RN)→ LI0(M ⊗RLI0N) is an isomorphism, and
therefore so is LI0(M ⊗R N)→ LI0(LI0M ⊗R LI0N). This completes the proof of (b). �

We will also be concerned with a homotopical version of completion that we shall now recall. For any x ∈ R,
we define the unstable Koszul complex

K(x) = fib(Σ|x|R ·x−→ R),

and the stable Koszul complex
K∞(x) = fib(R→ R[1/x])

where the fibre is taken in the category of dg-modules. For an ideal I = (x1, . . . , xn) we put

K(I) = K(x1)⊗R · · · ⊗R K(xn) and K∞(I) = K∞(x1)⊗R · · · ⊗R K∞(xn).

If no confusion is likely to arise, we suppress notation for the ideal and write K for the unstable Koszul
complex and K∞ for the stable Koszul complex. We will also write HomR(−,−) for the derived internal hom
functor. We say that a dg-module M is derived complete if the natural map M → HomR(K∞,M) =: ΛIM
is a quasi-isomorphism. Then the nth local homology of M is defined to be HI

n(M) = Hn(ΛIM).
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Definition 5.4. Let I = (x1, . . . , xn) be a finitely generated homogeneous ideal. For all s ∈ N and x ∈ R,
we put

Ks(x) = fib(Σs|x|R ·xs

−−→ R) and Ks(I) = Ks(x1)⊗R · · · ⊗R Ks(xn).
We say that I is generated by the weakly pro-regular sequence (x1 . . . , xn) if the inverse system (Hk(Ks(I)))s
is pro-zero for all k 6= 0. That is, for each s ∈ N there is m ≥ s such that the natural map

Hk(Km(I))→ Hk(Ks(I))

is zero.

Note that if R is Noetherian then any finitely generated ideal is weakly pro-regular [36, 4.34]. Indeed this is
true even when weakly pro-regular is replaced by pro-regular [20].

Theorem 5.5. Let R be a graded commutative ring and let I be a finitely generated homogeneous ideal that is
generated by a weakly pro-regular sequence. Then for all dg-modules M , there is a natural quasi-isomorphism

telLI,M : ΛI(M) ∼−→ L(−)∧I (M)

between the derived completion functor and the total left derived functor of I-adic completion, making the
diagram

M

ΛIM L(−)∧I (M)
telLI,M

commute. Moreover, taking homology on both sides we get

HI
∗ (M) ∼= LI∗(M).

Proof. Greenlees-May proved that if R has bounded torsion and I is pro-regular then HI
∗M ∼= LI∗M , see [20,

2.5]. Schenzel [38, 1.1] proved the above result for ideals generated by weakly pro-regular sequences and
bounded complexes with R bounded torsion. Finally, Porta-Shaul-Yekutieli [36, 5.25] removed the hypothesis
that R has bounded torsion and extended the result to unbounded complexes. �

As an application, we prove the following result which we will use in the construction of an Adams spectral
sequence, see Theorem 10.8.

Proposition 5.6. Let R be a graded commutative ring and let I be a finitely generated homogeneous ideal
that is generated by a weakly pro-regular sequence.

(a) If M is an LI0-complete module and P• → M is a projective resolution of M , then LI0P• → M is a
projective resolution in LI0-complete modules.

(b) Write ÊxtR for the Ext-groups in the abelian category of LI0-complete modules. Then

ÊxtR(M,N) ∼= ExtR(M,N)

for all LI0-complete modules M and N .

Proof. Given an LI0-complete module M , choose a projective resolution P• → M in R-modules. Since
LI0 is left adjoint to the inclusion, LI0P• is a complex of projective LI0-complete modules. We now show
that LI0P• → M is a projective resolution in LI0-complete modules. Note that ΛIP• → ΛIM is a quasi-
isomorphism. Using Theorem 5.5 and [20, 4.1] we have that LI0P• ' ΛIP• and M ' ΛIM . Therefore
LI0P• → M is a projective resolution in LI0-complete modules. By adjunction we deduce that for all LI0-
complete modules M and N we have

ÊxtR(M,N) = H∗(HomR(LI0P•, N)) ∼= H∗(HomR(P•, N)) = ExtR(M,N).

�
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6. An abelian model for derived completion

In this section we use the language of model categories to show that the category of LI0-complete modules
forms an abelian model for derived complete modules, see Theorem 6.11. Our result can be thought as
“dual” to the fact that I-power torsion modules forms an abelian model for derived torsion modules [24, §5].
We will be working under the following:

Hypothesis 6.1. We will assume our ideal I to be generated by a weakly pro-regular sequence and we
continue to write K for its associated unstable Koszul complex.

In order to prove our main result we need to consider model structures on the categories of interest. Recall
that the category of dg-modules ModR has a projective model structure in which the weak equivalences are
the quasi-isomorphisms, the fibrations are the epimorphisms and the cofibrations are the monomorphisms
which have dg-projective cokernel and are split on the underlying graded modules, see [13, 3.3] and [1, 3.15].
A dg-module M is said to be dg-projective if HomR(P,−) preserves surjective quasi-isomorphisms. It is
important to note that any dg-projective module is (graded) projective, but the converse is not generally
true. For example, the complex

X = · · · → Z/4 2−→ Z/4 2−→ Z/4→ · · ·
of free Z/4-modules with each differential given by multiplication by 2 is not dg-projective, since the surjective
quasi-isomorphism X → 0 is not preserved by HomZ/4(X,−). For more details on dg-projectivity see [3, §9].

Lemma 6.2. If P is dg-projective, then there is a natural quasi-isomorphism ΛIP
∼−→ LI0P .

Proof. This is the trivial case of Theorem 5.5. �

Lemma 6.3. Consider a dg-module M .

(a) If the map M → LI0M is a quasi-isomorphism, then LIn(M) = 0 for all n > 0.
(b) If H∗(M) is LI0-complete, then M is derived complete.

Proof. Part (a) follows from the fact that LIn(M) = LIn(LI0M) = 0 for n > 0 by [20, 4.1]. For part (b) we
consider the spectral sequence [21, 3.3]

E2
p,q = (LIpH∗M)q =⇒ Hp+q(ΛIM)

which collapses by part (a), hence showing that M → ΛIM is a quasi-isomorphism. �

We will now put a projective model structure on LI0-complete modules following Rezk’s unpublished note [37,
10.2].

Lemma 6.4.

(a) The functor LI0 takes cofibrations in ModR to morphisms which have the left lifting property with
respect to surjective quasi-isomorphisms of LI0-complete modules.

(b) The functor LI0 takes acyclic cofibrations in ModR to morphisms which have the left lifting property
with respect to surjections of LI0-complete modules.

(c) If M → N is a cofibration in ModR, the homology H∗N is LI0-complete and M → LI0M is a
quasi-isomorphism, then N → LI0N is a quasi-isomorphism.

Proof. Part (a) and (b) follow from the lifting properties in ModR. For part (c), note that by definition
M → N is an injection with dg-projective cokernel P so we have a diagram

0 M N P 0

0 LI0M LI0N LI0P 0

∼
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in which the top row is exact and the bottom row is right exact. By Lemma 6.3, M and N are derived
complete, and so it immediately follows that P is derived complete too. Therefore P → LI0P is a quasi-
isomorphism by Lemma 6.2, and LIn(P ) = 0 for n > 0 by Lemma 6.3. The long exact sequence of left derived
functors shows that LI0M → LI0N is injective, and so by the five lemma we conclude that N → LI0N is a
quasi-isomorphism. �

Proposition 6.5. There is a model structure on Mod∧R in which the weak equivalences are the quasi-
isomorphisms, the fibrations are the surjections, and the cofibrations are the maps with the left lifting property
with respect to the acyclic fibrations. Furthermore, the adjunction

LI0 : ModR � Mod∧R : i
is Quillen.

Proof. The only parts that need elaboration are the factorization axiom and the lifting axiom. Firstly we
prove the factorization axiom.
Let f : M → N in Mod∧R. Take a factorization M i−→ D

p−→ N in ModR where one of i or p is acyclic. Since
LI0 is left adjoint to the inclusion, maps LI0D → N are in bijection with maps D → N . Therefore, there is a
unique q : LI0D → N making the square

M LI0D

D N

i q

p

α

commute. Note that q is a fibration since q ∼= LI0p and LI0 preserves surjections.
If p is acyclic, Lemma 6.4(c) shows that α is a quasi-isomorphism since H∗D ∼= H∗N , and hence by the
two-of-three property, q is a weak equivalence. Lemma 6.4(a) shows that the factorization f = q(αi) is a
factorization into a map with the left lifting property with respect to acyclic fibrations, followed by an acylic
fibration. This completes the first part of the proof of the factorization axiom.
For the other part we suppose that i is a weak equivalence. Since αi ∼= LI0(i), Lemma 6.4(b) shows that
αi has the left lifting property with respect to fibrations in Mod∧R. Lemma 6.4(c) shows that α is a quasi-
isomorphism since H∗D ∼= H∗M . Therefore f = q(αi) is a factorization into a weak equivalence with the
left lifting property with respect to fibrations followed by an fibration, which completes the proof of the
factorization axiom.
For the lifting axiom, we note that one part is by definition. For the other part, we use the standard method
of the retract argument. Consider the square

A X

B Y

i f

in which i is an acyclic cofibration and f is a fibration. Factor i into a map with the left lifting property
with respect to fibrations followed by a fibration to give A j−→ C

p−→ B. Since j has the left lifting property
with respect to fibrations, there is a lift g : C → X.
As i and j are weak equivalences, p is an acyclic fibration. Since i has the left lifting property with respect
to acyclic fibrations, there exists a lift h : B → C. Therefore gh : B → X gives the required lift in the square.
It is clear that the adjunction is Quillen by the definition of the weak equivalences and fibrations. �

Remark 6.6. One might first think of attempting to prove the existence of this model structure via right
inducing it from ModR. However, in order to be able to do this, we need to know that the inclusion
i : Mod∧R → ModR preserves filtered colimits. This is false; take R = Z and I = (p) and consider the direct
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system Zp
p−→ Zp

p−→ . . .. Then the colimit in the category of abelian groups is Qp, while the colimit in the
category of LI0-complete abelian groups is L(p)

0 (Qp) which is zero.

Proposition 6.7. The model structure on Mod∧R is symmetric monoidal.

Proof. The category of LI0-complete modules is closed symmetric monoidal with tensor product given by
LI0(M ⊗N); see Proposition 5.3.
Let M → N and X → Y be fibrations in Mod∧R. Since the inclusion i : Mod∧R → ModR preserves limits, we
have that the pullback product map is

HomR(iN, iX)→ HomR(iM, iX)×Hom
R

(iM,iY ) HomR(iN, iY ).

Since ModR is a symmetric monoidal model category and i is right Quillen, the pullback product map is
a fibration. A similar proof shows that the pullback product of a fibration with an acyclic fibration is an
acyclic fibration. The unit axiom is immediate since the unit in Mod∧R is LI0R which is cofibrant as R is
cofibrant in ModR. �

We need a model category modelling the homotopy theory of derived complete dg-modules. The left Bousfield
localization of R-modules at the unstable Koszul complex is such a model category by the following result.

Lemma 6.8 ([21, 4.2]). There is an equivalence of categories

hLKModR ' ΛModR
where ΛModR denotes the full subcategory of the derived category of dg-modules consisting of derived complete
dg-modules.

We relate the model category of LI0-complete modules to derived complete modules. We will use these results
to show that cofree G-spectra have an abelian model in terms of LI0-complete modules.

Lemma 6.9. There is a symmetric monoidal Quillen adjunction

LI0 : LK(ModR) � Mod∧R : i.

Proof. The cofibrations in LKModR are the same as the cofibrations in ModR so they are preserved since
LI0 : ModR → Mod∧R is left Quillen. Now suppose that f : M → N is an acyclic cofibration in LK(ModR)
so that the cokernel C is dg-projective. In particular, K ⊗ C and HomR(K,C) are acyclic as K is self-dual
up to suspension. We also know that K∞ is built from K so ΛIC = HomR(K∞, C) is acyclic as well. By
Lemma 6.2, we have ΛIC ' LI0C and so LI0M → LI0N is a quasi-isomorphism. This is a symmetric monoidal
Quillen adjunction since LI0 is strong monoidal by Lemma 5.2, and the unit in LK(ModR) is cofibrant. �

Before we can prove that the above Quillen adjunction is actually a Quillen equivalence, we need the following:

Lemma 6.10. For any dg-module M , the natural map K ⊗M → ΛI(K ⊗M) is a quasi-isomorphism.

Proof. There is a fibre sequence K∞ → R → ČR where ČR = Σker(K∞ → R) is the Čech complex. This
gives rise to another fibre sequence

HomR(K∞, N)← N ← HomR(ČR,N)

for any dg-module N . Now let I = (x1, . . . , xn). Note that ČR is finitely built from R[ 1
xi

] and that the
multiplication map xi : K → K is null-homotopic. Thus HomR(ČR,K ⊗M) ' 0 and K ⊗M is derived
complete. �

We can now prove that LI0-complete modules are a model for derived complete modules.

Theorem 6.11. There is a symmetric monoidal Quillen equivalence

LI0 : LK(ModR) � Mod∧R : i.
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Proof. We now show that this Quillen adjunction is in fact a Quillen equivalence. Let P be cofibrant (i.e.,
dg-projective) in LK(ModR) and M be fibrant in the category of LI0-complete R-modules. We must show
that LI0P →M is a quasi-isomorphism if and only if K ⊗ P → K ⊗M is a quasi-isomorphism.
Firstly, if LI0P → M is a quasi-isomorphism, then K ⊗ LI0P → K ⊗M is a quasi-isomorphism since K is
homotopically flat. Now note that there is a weak equivalence K ⊗ ΛIP

∼−→ ΛI(K ⊗ P ) since K is small.
By Lemma 6.2, K ⊗ LI0P ' ΛI(K ⊗ P ) as P is projective. Hence K ⊗ LI0P ' K ⊗ P by Lemma 6.10. We
conclude that K ⊗ P → K ⊗M is a quasi-isomorphism as required.
Conversely, if K ⊗ P → K ⊗M is a quasi-isomorphism then HomR(K,P ) → HomR(K,M) is too since K
is self-dual up to suspension. Since K∞ is built from K, we also deduce HomR(K∞, P ) → HomR(K∞,M)
is a quasi-isomorphism. It follows that ΛIP → ΛIM is a quasi-isomorphism. By Lemma 6.2, we have
LI0P ' ΛIP and M ' ΛIM . Hence LI0P →M is a quasi-isomorphism. �

As a consequence we obtain the following corollary which extends [16, 6.15] to non-Noetherian rings.
Corollary 6.12. A dg-module M is derived complete if and only if its homology H∗M is LI0-complete.

Proof. Let M be derived complete. By Theorem 6.11, M is quasi-isomorphic to its LI0-completion LI0M . As
the homology of an LI0-complete object is still LI0-complete by Lemma 5.2, we deduce thatM has LI0-complete
homology. The converse is Lemma 6.3(b). �

7. The category of rational cofree G-spectra

From now on we will be working rationally. This means that all spectra are rationalized without comment
and all homology and cohomology theories will be unreduced and with rational coefficients.
Notation 7.1. Fix G a compact Lie group. We denote by SpG the model category of rational orthogonal
G-spectra with the rational G-stable model structure, which is a compactly generated, stable, symmetric
monoidal model category, see [33, III.7.6]. We write ∧ for the tensor product and F (−,−) for the internal
hom functor. We also write hSpG for its associated homotopy category.
Definition 7.2. A G-spectrum X is said to be cofree if the natural map X → F (EG+, X) is an isomorphism
in the homotopy category. We denote by hSpcofree

G the full subcategory of hSpG of cofree G-spectra.
Lemma 7.3. There is a natural equivalence

hLEG+SpG ' hSpcofree
G .

Furthermore, LEG+SpG is a symmetric monoidal model category.

Proof. A fibrant replacement functor in LEG+SpG is given by F (EG+, R(−)) where R is the fibrant replace-
ment in SpG. Therefore, the collection of bifibrant objects in LEG+SpG is equivalent to the full subcategory
of cofree G-spectra. The model category LEG+SpG is symmetric monoidal by Proposition 3.13. �

8. The symmetric monoidal equivalence: connected case

In this section we fix a connected compact Lie group G. We aim to find an algebraic model for the category
of rational cofree G-spectra. There are several steps needed. Recall that our model for cofree G-spectra is
the homological localization LEG+SpG.

Step 1. Consider the complex orientable commutative ring G-spectrum DEG+ = F (EG+, infHQ), see
Construction 4.7 for more details. Restriction and extension of scalars along the unit map S0 → DEG+
induces a symmetric monoidal Quillen adjunction

DEG+ ∧ − : LEG+(SpG) � LEG+(ModDEG+) : U
between the localizations, since DEG+ ∧ EG+ ' EG+. By the Left Localization Principle this is a sym-
metric monoidal Quillen equivalence, since the unit is an EG+-equivalence and U preserves non-equivariant
equivalences.
Remark 8.1. This is a special case of Proposition 4.4 and Example 4.8.
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Step 2. We can now take categorical fixed points to remove equivariance. As a functor from G-spectra to
non-equivariant spectra, the categorical fixed points is right adjoint to the inflation functor. Using [41, §3.3]
we have a symmetric monoidal Quillen adjunction

(−)G : ModDEG+ � ModDBG+ : DEG+ ⊗DBG+ −
between the categories of modules. Note that we suppress notation for the inflation functor. A more detailed
discussion of this adjunction can be found in [26].
Since G is connected, DEG+ generates ModDEG+ by [19, 3.1] and so the counit is an equivalence on all
objects as it is an equivalence on DEG+ and the fixed points functor preserves sums. In order to apply
the Left Localization Principle, it remains to check that the fixed points functor (−)G sends non-equivariant
equivalences between fibrant DEG+-modules to BG+-equivalences. This is equivalent to the derived functor
of (−)G sending non-equivariant equivalences to BG+-equivalences, which follows from [19, 3.3]. Therefore
the Left Localization Principle applies and we get a symmetric monoidal Quillen equivalence

(−)G : LEG+ModDEG+ � LBG+ModDBG+ : DEG+ ⊗DBG+ −.

Step 3. We now apply Shipley’s theorem [44, 2.15] (see also [46, 7.2]) which gives a symmetric monoidal
Quillen equivalence

Θ: ModDBG+ 'Q ModΘDBG+

where ΘDBG+ is a commutative dga with the property that H∗(ΘDBG+) = π∗(DBG+) = H∗BG. It
follows that there is a symmetric monoidal Quillen equivalence

LBG+ModDBG+ 'Q LΘBG+ModΘDBG+

where H∗(ΘBG+) ∼= π∗(BG+) ∼= H∗BG.

Step 4. Since H∗BG is a polynomial ring it is strongly intrinsically formal as a commutative dga. In
other words, for any commutative dga R with H∗R ∼= H∗BG, there is a quasi-isomorphism H∗BG → R.
Therefore, taking cycle representatives we have a quasi-isomorphism z : H∗BG → ΘDBG+. We also need
the following result to identify ΘBG+.

Lemma 8.2. There is a natural weak equivalence ΘBG+ → H∗BG.

Proof. Write (−)∨ = HomQ(−,Q) and note that it is exact. There is a canonical map ΘBG+ → (ΘBG+)∨∨
which is a quasi-isomorphism since the homotopy groups of BG+ are degreewise finite. There is a natural
map ΘDBG+ → (ΘBG+)∨ obtained as the transpose of the natural composite

ΘBG+ ⊗ΘDBG+ → Θ(BG+ ∧DBG+)→ Q.

Since Θ gives a symmetric monoidal equivalence of homotopy categories, the natural map ΘDBG+ →
(ΘBG+)∨ is a weak equivalence.
Since DBG+ is a commutative HQ-algebra, ΘDBG+ is a commutative dga by [44, 1.2]. As H∗BG is
strongly intrinsically formal as a commutative dga, there exists a quasi-isomorphism H∗BG → ΘDBG+.
Putting all this together, we have quasi-isomorphisms

ΘBG+ → (ΘBG+)∨∨ → (H∗BG)∨ → H∗BG.

�

Extension and restriction of scalars along the map z : H∗BG→ ΘDBG+

ModΘDBG+ ModH∗BG
z∗

ΘDBG+⊗H∗BG−

is a symmetric monoidal Quillen equivalence since chain complexes satisfies Quillen invariance of modules.
Therefore we have a symmetric monoidal Quillen equivalence

LH∗BGModΘDBG+ 'Q LH∗BGModH∗BG.
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Step 5. It remains to internalize the localization. Let I be the augmentation ideal of H∗BG and let K
denote its unstable Koszul complex.

Proposition 8.3. The homology H∗BG finitely builds K and K builds H∗BG.

Proof. Suppose that H∗BG = Q[x1, ..., xn]. There is a cofibre sequence

Σ|x1|Q[x1, ..., xn] ·x1−−→ Q[x1, ..., xn]→ ΣK(x1)
and applying HomQ(−,Q) gives the cofibre sequence

H∗BG→ Σ−|x1|H∗BG→ ΣK(x1)∨.
Since K(x1) is self-dual up to suspension, this shows that K(x1) is finitely built from H∗BG. A repeated
argument using the cofibre sequence Σ|xi|Ki−1 → Ki−1 → Ki where Ki = K(x1, ..., xi) and K0 = H∗BG
shows that K is finitely built from H∗BG.
Conversely, since H∗BG is torsion it is built by K as K generates torsion modules [23, 8.7]. �

Therefore, a map is a H∗BG-equivalence if and only if it is a K-equivalence. It follows that
LH∗BGModH∗BG = LKModH∗BG.

Combining all the statements of this section with Theorem 6.11 gives the following result.

Theorem 8.4. Let G be a connected compact Lie group and I be the augmentation ideal of H∗BG. Then
there is a symmetric monoidal Quillen equivalence

LEG+SpG 'Q Mod∧H∗BG
between rational cofree G-spectra and LI0-complete dg-H∗BG-modules. In particular, there is a tensor-
triangulated equivalence

cofree G-spectra '4 D(LI0-complete H∗BG-modules).

9. The symmetric monoidal equivalence: non-connected case

In this section we extend the algebraic model for cofree G-spectra from connected G to any compact Lie
group. The blueprint is the same as for the connected case, however some extra care is required which
arises from taking categorical fixed points. We fix a compact Lie group G with identity component N and
component group W = G/N , and write r for the rank of G.

9.1. Skewed Model Categories. We recall some results about model categories with a action of a finite
group W from [31, §5.2] and [5, §7]. For any cofibrantly generated model category C, we denote by C[W ] =
Fun(BW,C) the category of objects of C with a W -action. We endow C[W ] with the projective model
structure where the weak equivalence and fibrations are created by the forgetful functor C[W ]→ C. We will
need the following result:

Lemma 9.1 ([31, 5.3]). There is a symmetric monoidal Quillen equivalence LEW+SpW 'Q Sp[W ].

More generally, we can consider the category EW with objects the elements of W and a unique morphism
connecting each pair of objects. Let C be a category with a W -action, that is, with functors w∗ : C→ C for
each w ∈ W satisfying (ww′)∗ = w∗w′∗ and e∗ = 1. The category of objects of C with a skewed W -action is
the category of equivariant functors EW → C and equivariant natural transformations, which we denote by
C[W̃ ]. Note that if the W -action on C is trivial, then C[W̃ ] is equivalent to C[W ]. We say that an adjunction
between categories with a W -action is a W -adjunction if both the functors are W -equivariant and the unit
and counit are W -equivariant natural transformations. We say that a model category C with a W -action
is skewable if w∗ : C → C is left Quillen for each w ∈ W . Note that w∗ : C → C is left adjoint to w−1

∗ , so
equivalently, we could ask for w∗ to be right Quillen for all w ∈W .

Lemma 9.2.
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(a) Let C be a skewable, symmetric monoidal, cofibrantly generated model category with a W -action.
Then C[W̃ ] admits a closed symmetric monoidal structure and a projective model structure making
it into a symmetric monoidal model category.

(b) Let C and D be skewable, symmetric monoidal model categories. Suppose that C � D is a W -
adjunction which is a symmetric monoidal Quillen equivalence. Then we have a symmetric monoidal
Quillen equivalence

C[W̃ ] 'Q D[W̃ ].

Proof. One can check that C[W̃ ] is a symmetric monoidal model category in which the weak equivalences
and fibrations are determined levelwise, and that Quillen equivalences extend to the skewed model category;
see [5, §7.3] for the case W = C2. �

9.2. The algebraic model. The component group W acts on N by conjugation and hence on its cohomol-
ogy H∗BN . We write H∗B̃N for the polynomial ring H∗BN equipped with thisW -action. Accordingly, the
model category Mod

H∗B̃N
inherits a W -action as follows. For w ∈ W and a H∗B̃N -module M , we define

w∗M to be the same underlying abelian group asM but with module structure now defined by r·m := (wr)m
for r ∈ H∗B̃N and m ∈ M . This model category is skewable since the action preserves weak equivalences
and fibrations. Therefore, we can consider the model category Mod

H∗B̃N
[W̃ ] of modules with a skewed

W -action. More explicitly, we can identify this category with the category of modules over the skewed ring
H∗B̃N [W ], that is, the ring whose elements are formal linear sums

∑
w∈W xww where xw ∈ H∗B̃N , with

pointwise addition and multiplication defined by

(xw) · (x′w′) = (x(w · x′))(ww′) for w,w′ ∈W and x, x′ ∈ H∗B̃N.
We now turn to define a suitable notion of LI0-completion for a module over the skewed ring.

Definition 9.3. Let I denote the augmentation ideal of H∗BN . We say that a dg-H∗B̃N [W ]-module
M is LI0-complete if M is LI0-complete as a H∗BN -module. We denote by Mod∧

H∗B̃N [W ]
the category of

LI0-complete dg modules over the skewed ring.

Lemma 9.4.

(a) The category of left H∗B̃N [W ]-modules admits a closed symmetric monoidal structure and a projec-
tive model structure making it into a symmetric monoidal model category.

(b) The category of LI0-complete left H∗B̃N [W ]-modules is abelian and is a symmetric monoidal model
category with the projective model structure.

Proof. The results follow from the previous sections and Lemma 9.2 by noticing that the category of (LI0-
complete)H∗B̃N [W ]-modules is equivalent to C[W̃ ] for C the category of (LI0-complete)H∗B̃N -modules. �

Lemma 9.5. (Eilenberg-Moore) Consider the family [⊆ N ] = {H ≤ G | H ⊆ N} and the Quillen adjunction

(−)N : ModDEG+(SpG) � Mod
DB̃N+

(SpW ) : DEG+ ⊗DB̃N+
−

where we set DB̃N+ = (DEG+)N . Then for all DEG+-modules Y , the counit map

εY : DEG+ ⊗DB̃N+
Y N → Y

is a E[⊆ N ]+-equivalence.

Proof. A map of G-spectra is an E[⊆ N ]+-equivalence if and only if its restriction to N -spectra is a weak
equivalence. Therefore, it is sufficient to check that DEN+ ⊗DBN+ Y N → Y is a weak equivalence. The
full subcategory of DEN+-module spectra Y for which εY is a weak equivalence is localizing and clearly
contains DEN+. Since DEN+ generates ModDEN+ by [19, 3.1] the claim follows. �

We now ready to prove our main result.
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Theorem 9.6. Let G be a compact Lie group with identity component N and component group W = G/N .
Let I be the augmentation ideal of H∗BN . Then there is a symmetric monoidal Quillen equivalence

LEG+(SpG) 'Q Mod∧
H∗B̃N [W ]

between rational cofree G-spectra and LI0-complete dg-H∗B̃N [W ]-modules. In particular, there is a tensor-
triangulated equivalence

cofree G-spectra '4 D(LI0-complete H∗B̃N [W ]-modules).

Proof. We will prove the theorem using the Compactly Generated Localization Principle 3.16. To have a
better control on the compact generators of the localized categories, it is convenient to change our model for
cofree G-spectra. Thus we note that

LEG+SpG = LG+SpG
since the EG+-equivalences are the same as the G+-equivalences. Using Proposition 4.4 we have a symmetric
monoidal Quillen equivalence LG+(SpG) 'Q LG+(ModDEG+).
Taking categorical G-fixed points loses too much information since ModDEG+ is no longer generated by
DEG+. Instead we slightly modify the model structure and then take N -fixed points. Consider the family
[⊆ N ] = {H ≤ G | H ⊆ N}. There is a symmetric monoidal Quillen equivalence

LG+ModDEG+ � LG+LE[⊆N ]+ModDEG+

since G+ ∧ E[⊆ N ]+ → G+ is a weak equivalence.
We now take categorical N -fixed points to remove equivariance. We use the tilde in DB̃N+ = (DEG+)N
to emphasize that it may have a non-trivial W -action. We apply the Compactly Generated Localization
Principle to the symmetric monoidal Quillen adjunction

(−)N : LE[⊆N ]+ModDEG+(SpG) � Mod
DB̃N+

(SpW ) : DEG+ ⊗DB̃N+
−

to obtain a symmetric monoidal Quillen equivalence after localization. There are several conditions that
need to be checked. Firstly, we claim that LG+LE[⊆N ]+ModDEG+ is compactly generated by DG+ '
DG+ ∧DEG+. It is clear that it generates so we only show that it is compact. By definition of sum in the
localized category, we have to show that

(1) hModDEG+(DG+, F (EG+,
∨

i

Yi)) '
⊕

i

hModDEG+(DG+, Yi)

where Yi is cofree for all i. This is now clear since DG+ is small and DG+ ∧ EG+ ' DG+. We also claim
that (DG+)N ' W+ compactly generates LW+Mod

DB̃N+
(SpW ). Since W+ has a trivial DB̃N+-action, it

builds DB̃N+ ∧W+ in Mod
DB̃N+

and hence it generates LW+Mod
DB̃N+

(SpW ). It is also compact by a
similar argument to (1). By the Compactly Generated Localization Principle it remains to check that the
derived counit is a G+-equivalence on DG+, and that the derived counit is an E[⊆ N ]+-equivalence for G+.
These are true by the Eilenberg-Moore Lemma. Hence we have a symmetric monoidal Quillen equivalence

LG+LE[⊆N ]+ModDEG+ 'Q LW+Mod
DB̃N+

(SpW ).

Note that have an equality of model categories

LW+Mod
DB̃N+

(SpW ) = LW+Mod
DB̃N+

(LEW+SpW )

since EW+ ∧W+ 'W+.
We can rewrite the target category as LW+Mod

DB̃N+
(Sp[W ]) and apply Shipley’s theorem [44] to obtain

symmetric monoidal Quillen equivalences

LW+Mod
DB̃N+

(Sp[W ]) 'Q LΘ(W+)ModΘDB̃N+
(ModQ[W ]) 'Q LΘ(W+)ModΘDB̃N+[W ].
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One can construct a Q[W ]-module map H∗B̃N → ΘDB̃N+ which is a quasi-isomorphism as in [25, §7].
Since the map is compatible with the W -action, there is a symmetric monoidal Quillen equivalence

ModΘDB̃N+[W ] 'Q Mod
H∗B̃N [W ].

Note that H∗(Θ(W+)) = H0(Θ(W+)) = Q[W ] and hence Θ(W+) is formal as a H∗B̃N [W ]-module since
we have a zig-zag of quasi-isomorphisms Θ(W+) ← τ≥0(Θ(W+)) → H0(Θ(W+)) where τ≥0 denotes the
connective cover functor. Putting all this together, we deduce a zig-zag of symmetric monoidal Quillen
equivalences

LEG+(SpG) 'Q LQ[W ]Mod
H∗B̃N [W ].

We now claim that LQ[W ]Mod
H∗B̃N [W ] = (LQModH∗BN )[W̃ ]. As the underlying categories are equal and

the acyclic fibrations are easily seen to be the same, we only need to argue that the model categories have
the same weak equivalences. This is clear since

Q[W ]⊗
H∗B̃N [W ] M

∼= Q⊗H∗BN M

for all H∗B̃N [W ]-modules M . Hence the two model categories are equal.
Finally, using Lemma 9.2 and Theorem 6.11, we conclude that there are symmetric monoidal Quillen equiv-
alences

(LQModH∗BN )[W̃ ] 'Q Mod∧H∗BN [W̃ ] 'Q Mod∧
H∗B̃N [W ]

.

�
Remark 9.7. Our proof bridges a gap in [25]. In the cited paper it is stated that there is a Quillen
equivalence

(−)N : CellG+ModDEG+(SpG) � CellW+Mod
DB̃N+

(SpW ) : DEG+ ⊗DB̃N+
−

obtained by the Cellularization Principle. The claim as it is stated it is not correct. Indeed, if we want to
apply the Cellularization Principle we need to check that the counit DEG+⊗DB̃N+

(G+)N → G+ is a weak
equivalence of G-spectra, which in general is false. Nonetheless, we can modify the argument as follows.
Firstly there is a Quillen equivalence

CellG+ModDEG+ � CellG+LE[⊆N ]+ModDEG+ .

We note that the localization CellG+LE[⊆N ]+ModDEG+ exists, since left Bousfield localizations of right
proper, stable model categories are right proper by [10, 4.7]. We can then apply the Cellularization Principle
to the Quillen adjunction

(−)N : LE[⊆N ]+ModDEG+(SpG) � Mod
DB̃N+

(SpW ) : DEG+ ⊗DB̃N+
−

and the Eilenberg-Moore Lemma to show that this is a Quillen equivalence after cellularization.

10. Adams spectral sequence

In this section, we construct an Adams spectral sequence for cofree G-spectra. It provides a tool for calcu-
lating the space of maps between two cofree G-spectra in terms of LI0-complete modules, and furthermore
gives intuition for the Quillen equivalence given in the previous section.
We describe the construction of an Adams spectral sequence based on projective resolutions as in [2].
Let T be a triangulated category and let A be a Z-graded abelian category with enough projectives. Note
that T (X,Y ) is a Z-graded abelian group via T (X,Y )n = T (ΣnX,Y ). Assume that we are given a Z-graded
exact functor πA∗ : T → A. We aim to construct a conditionally convergent Adams-type spectral sequence

Es,t2 = Exts,tA (πA∗ (X), πA∗ (Y ))⇒ T (X,Y )t−s
for all X,Y ∈ T . We list the steps needed.
Step 0: Choose a projective resolution of πA∗ (X) in A

0← πA∗ (X)← P0 ← P1 ← P2 ← . . . .
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Step 1: Realize the projectives, i.e., find Pj ∈ T so that πA∗ (Pj) = Pj .
Step 2: Let X ∈ T and Pj as above. Show that the functor πA∗ induces an isomorphism

T (Pj , X)
∼=−→ HomA(Pj , πA∗ (X)).

Step 3: Using Step 0 and Step 1, we can formally produce a tower

P0 Σ1P1 Σ2P2 Σ3P3

X = X0 X1 X2 X3 · · ·

Step 4: Apply T (−, Y ) to get a spectral sequence with E1-page:

Es,∗1 = T (Ps, Y ) = HomA(Ps, πA∗ (Y )).
By construction, we will have a conditionally convergent spectral sequence

E∗,∗2 = Ext∗,∗A (πA∗ (X), πA∗ (Y ))⇒ T (X,Y )∗
where X is the fibre of the canonical map X → hocolimsXs.
Step 5: Show that hocolimsXs = 0.
We apply the recipe above in the following setting. Fix a compact Lie group G with identity component
N and component group W , and fix I to be the augmentation ideal of H∗BN . We consider the abelian
category Mod∧

H∗B̃N [W ]
of graded LI0-complete modules over the skewed group ring H∗B̃N [W ], and the

homotopy category of rational cofree G-spectra. Before we give the exact functor, we need a preliminary
result.

Lemma 10.1. Any cofree G-spectrum is (weakly equivalent to) a DEG+-module.

Proof. Recall that we write DEG+ to mean the mapping spectrum F (EG+, infHQ). Throughout this proof
we will simply write Q for the inflated Eilenberg-MacLane spectrum.
Let X be a cofree G-spectrum and without loss of generality suppose that X is bifibrant. Firstly, EG+ ∧Q
is a DEG+-module with action map defined by

F (EG+,Q) ∧Q ∧ EG+
1∧1∧4−−−−−→ F (EG+,Q) ∧Q ∧ EG+ ∧ EG+

ev−→ Q ∧Q ∧ EG+
µ−→ Q ∧ EG+.

We have a composite

X
∼−→ F (EG+, X) ∼−→ F (EG+,Q ∧X) = HomQ(EG+ ∧Q,Q ∧X)

which is a weak equivalence as X is cofree and S0 → Q is a (rational) weak equivalence. The DEG+-module
structure on EG+∧Q passes to give a DEG+-module structure on HomQ(EG+∧Q,Q∧X) which completes
the proof. �

Remark 10.2. We recall a spectral sequence relating local homology to equivariant homotopy groups,
see [22]. Let R be a ring G-spectrum and M an R-module. For J = (x1, ..., xr) a finitely generated ideal in
πG∗ R define

M∧J = F (K(J),M)
where K(J) = fib(R → R[1/x1]) ⊗R · · · ⊗R fib(R → R[1/xr]) is the Koszul spectrum. Then there is a
convergent spectral sequence

E∗,∗2 = LJ∗ (πG∗ R;πG∗ M) =⇒ πG∗ (M∧J ).
In the special case that R has Thom isomorphisms and J is the augmentation ideal of πG∗ R, there is an
equivalence M∧J

∼−→ F (EG+,M) by [22, 2.5].

Lemma 10.3. Let X be a cofree G-spectrum. Then πN∗ X is LI0-complete.
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Proof. For any DEN+-module M , there is a convergent spectral sequence
E∗,∗2 = LI∗(H∗BN ;πN∗ M) =⇒ πN∗ (F (EG+,M))

by Remark 10.2. If in addition M is cofree, we also have that M∧I 'M .
Now let X be a cofree G-spectrum. The restriction of X to an N -spectrum is still cofree, and so by
Lemma 10.1, the discussion above tells us that we have a convergent spectral sequence

E∗,∗2 = LI∗(H∗BN ;πN∗ X) =⇒ πN∗ X.

Since the E2-page of the spectral sequence consists of LI0-complete modules by [20, 4.1], and the kernel and
cokernel of a map of LI0-complete modules is LI0-complete, we have that πN∗ X is LI0-complete.
Finally, note that W acts on πN∗ (X) by conjugation, making it naturally a module over H∗B̃N [W ]. �

Therefore we may use the exact functor
πN∗ : hSpcofree

G → Mod∧
H∗B̃N [W ]

for the construction of the Adams spectral sequence.

Lemma 10.4 (Step 1). The abelian category Mod∧
H∗B̃N [W ]

has enough projectives. Moreover, the projectives
are realized, that is

πN∗ (F (EG+,
∨

ΣniS0) ∧W+) ∼= LI0(
⊕

ΣniH∗B̃N)[W ].

Proof. Using that LI0 is right exact and left adjoint to the inclusion, we see that LI0(
⊕

ΣniH∗B̃N)[W ] is
projective in Mod∧

H∗B̃N [W ]
and that there are enough projectives. It is left to show that the projectives are

realized. Note that
πN∗ (F (EG+,

∨
ΣniS0) ∧W+) ∼= πN∗ (F (EG+,

∨
ΣniS0))[W ]

so it is enough to show that

πN∗ (F (EN+,
∨

ΣniS0) ∼= LI0(⊕ΣniH∗BN).

By isotropy separation,
F (EN+,

∨
ΣniS0) ∼−→ F (EN+,

∨
ΣniDEN+).

There is a spectral sequence
E∗,∗2 = LI∗(πN∗ M) =⇒ [EN+,M ]N∗ = πN∗ (F (EN+,M))

and when M =
∨

ΣniDEN+ the E2-page has the form

LI∗π
N
∗ (

∨
ΣniDEN+) ∼= LI∗(⊕ΣniH∗BN) = LI0(⊕ΣniH∗BN)

by Proposition 6.2. Since the E2-page is concentrated in one line, the spectral sequence collapses so that

LI0(⊕ΣniH∗BN) ∼= πN∗ (F (EN+,
∨

ΣniDEN+)).

�

Before we can prove Step 2 we need to recall some terminology and give a preliminary result. Let T be a
triangulated category and let X be an object of T; for us, T will be the (homotopy) category of rational cofree
N -spectra. A full replete subcategory of T which closed under retracts is said to be thick. If in addition it is
closed under arbitrary coproducts (resp. products) it is said to be localizing (resp. colocalizing). The thick
(resp. localizing, resp. colocalizing) subcategory of T generated by X is the smallest thick (resp. localizing,
resp. colocalizing) subcategory of T which contains X. We then say that an object Y of T is:

• finitely built from X if Y is in the thick subcategory generated by X;
• built from X if Y is in the localizing subcategory generated by X;
• cobuilt from X if Y is in the colocalizing subcategory generated by X;

Lemma 10.5. Let N be a connected compact Lie group.
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(a) Rationally, EN+ finitely builds N+.
(b) The rational spectrum

⊕
i ΣniN+ is a retract of

∏
i ΣniN+.

(c) The category of rational cofree N -spectra coincides with the colocalizing subcategory generated by
DEN+. The same holds for the rational spectrum DN+.

Proof. Since N is connected, we know that H∗(BN ;Q) = Q[x1, . . . , xr] with generators in even degrees.
Note that [EN+, EN+]G∗ = H∗(BN ;Q) so we can view each generator xi as an endomorphism of EN+. By
the Wirthmüller isomorphism, we have that πN∗ (N+) = ΣdQ where d is the dimension of N . This suggests
that we can build N+ from EN+ via a Kozsul resolution. We put

EN+//x1 = fib(Σ−|x1|EN+
x1−→ EN+)

and
EN+//(x1, . . . xj) = fib(Σ−|xj |EN+//(x1, . . . , xj−1) xj−→ EN+//(x1, . . . , xj−1))

for 1 < j ≤ r. By construction, EN+ finitely builds EN+//(x1, . . . , xr). The latter spectrum can be
identified with the bottom cell of EN+ which is Σ−dN+. This concludes the proof of (a).
For part (b), we first note that in the category of Q-vector spaces the direct sum is a retract of the product.
It follows that the rational spectrum

⊕
Sni is a retract of

∏
Sni . The claim then follows by applying the

functor N+ ∧ − to this splitting together with the identification

N+ ∧ (
∏

Sni) ' ΣdF (N+,
∏

Sni) '
∏

ΣniN+

using that N+ ' ΣdDN+ where d is the dimension of N by the Wirthmülller isomorphism.
We now prove part (c). Note that N+ builds EN+ as it is free. It follows that DN+ cobuilds DEN+, and
so to prove part (c) it is sufficient to show that DEN+ cobuilds any rational cofree N -spectrum Y . We have
seen in Lemma 10.4 that any free resolution of πN∗ (Y ) can be realized in rational cofree N -spectra by F̂i =
F (EN+,

∨
ΣniDEN+). Since the homological dimension of LI0-complete H∗BN -modules is r = rank(N), it

follows that Y is finitely built from the collection of F̂i. Therefore it suffices to show that each F̂i is cobuilt
from DEN+.
We write F =

∨
ΣniDEN+ and F̂ = F (EN+,

∨
ΣniDEN+) for its cofree-ification. Since EN+ finitely

builds N+, applying the dual functor shows that DEN+ finitely builds N+ by the Wirthmüller isomorphism.
Note that DEN+ ∧N+ ' N+, and therefore DEN+ cobuilds

∏
(ΣniDEN+ ∧N+). Hence DEN+ cobuilds

F ∧N+ =
∨

ΣniDEN+ ∧N+ since it is a retract of the product.
As EN (n)

+ is a finite free N -CW-complex, F ∧ N+ finitely builds F ∧ DEN (n)
+ . Therefore DEN+ cobuilds

F ∧DEN (n)
+ . Finally, we note that F̂ = holim(F ∧DEN (n)

+ ) since EN (n)
+ is finite. This completes the proof

of (c). �

We also need to realize the maps.

Lemma 10.6 (Step 2). Taking homotopy groups gives an isomorphism

πN∗ : [F (EG+,
∨

ΣniS0) ∧W+, Y ]G∗
∼=−→ Hom

H∗B̃N [W ](L
I
0(⊕ΣniH∗B̃N)[W ], πN∗ (Y )).

Proof. We apply the change of groups adjunctions on both sides to reduce to showing that

πN∗ : [F (EN+,
∨

ΣniS0), Y ]N∗
∼=−→ HomH∗BN (⊕ΣniH∗BN, πN∗ (Y )).

Since there is a weak equivalence EN+ ∧X ∼−→ EN+ ∧ F (EN+, X) for any X, we see that

[F (EN+,
∨

ΣniS0), F (EN+, Y )]N ∼= [
∨
F (EN+,ΣniS0), F (EN+, Y )]N .

Accordingly, it is enough to show that

πN∗ : [DEN+, Y ]N∗
∼=−→ HomH∗BN (H∗BN, πN∗ (Y ))

for all Y cofree N -spectra. We note that the collection of Y for which the above map is an isomorphism
is colocalizing. As every rational cofree N -spectrum is cobuilt from DN+ by Lemma 10.5 it is enough to
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prove the claim for Y = DN+. It is easy to see that both sides evaluated at DN+ give Q. Thus we only
have to argue that the natural transformation πN∗ is non-zero. Observe that a nontrivial N -equivariant
map f : DEN+ → DN+ corresponds to a nontrivial N -equivariant map f̃ : N+ → EN+ which gives a map
f̃/N+ : S0 → BN+ which is nontrivial in reduced H0. It remains to note that for a free N -spectrum we have
πN∗ (X) = H∗(X/N) up to an integer shift. �

Since πN∗ maps homotopy direct limits to direct limits, it is left to show the following:

Lemma 10.7 (Step 5). Let X be a cofree G-spectrum with πN∗ (X) = 0. Then X ' 0.

Proof. We first prove the claim for the connected case and then we show how to extend it to all compact
Lie groups. Note that there is an equivalence EN+ ' EN+ ∧DEN+ so that EN+ ∈ ModDEN+ . We claim
that N+ ∈ Loc(EN+); that is N+ is in the localizing subcategory generated by EN+. Note that DN+ is
cofree and hence a DEN+-module. Since DEN+ generates the category ModDEN+ by [19, 3.1], we get that
DN+ ∈ LocModDEN+

(DEN+). Since the forgetful functor ModDEN+ → SpN and EN+ ∧ − : SpN → SpN
preserve colimits we get EN+ ∧DN+ ∈ Loc(EN+ ∧DEN+). By the Wirthmüller Isomorphism, we see that
DN+ ' Σ−dN+ where d is the dimension of N . Putting all this together, N+ ∈ Loc(EN+) as required.
Let us now prove that for a cofree N -spectrum X with πN∗ (X) = 0, then π∗(X) = 0 and hence X ' 0. By
hypothesis, we have

0 = πN∗ (X) = [EN+, X]N .
By a localizing subcategory argument we get π∗(X) = [N+, X]N = 0 as required. Finally, let G be any
compact Lie group and let X be a cofree G-spectrum with πN∗ (X) = 0. By the previous paragraph, we know
that X is N -equivariantly contractible, that is F (W+, X) ' 0 and hence F (EW+, X) ' 0. Therefore

X ' F (ẼW,X) ' F (ẼW ∧ EG+, X) ' 0
since X is cofree. �

Finally, we have our Adams spectral sequence:

Theorem 10.8. For X and Y cofree G-spectra, there is a strongly convergent Adams spectral sequence
E∗,∗2 = Ext∗,∗

H∗B̃N [W ]
(πN∗ X,πN∗ Y ) =⇒ [X,Y ]G∗ .

Proof. Combining the results of this section with Proposition 5.6, we have constructed a conditionally con-
vergent spectral sequence as above. Note that H∗B̃N [W ] has global homological dimension smaller or equal
to r = rank(N) since the projectives are induced from the category of H∗BN -modules, see Lemma 10.4. It
follows that the spectral sequence is concentrated in rows 0 to r, and hence is strongly convergent. �
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CHAPTER 3

Flatness and Shipley’s algebraicization theorem
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FLATNESS AND SHIPLEY’S ALGEBRAICIZATION THEOREM

JORDAN WILLIAMSON

Abstract. We provide an enhancement of Shipley’s algebraicization theorem which behaves
better in the context of commutative algebras. This involves defining flat model structures as in
Shipley and Pavlov-Scholbach, and showing that the functors still provide Quillen equivalences
in this refined context. The use of flat model structures allows one to identify the algebraic
counterparts of change of groups functors, as demonstrated in forthcoming work of the author.
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1. Introduction

Many concepts and constructions in algebra can be understood in a homotopy invariant sense,
and the derived category of a ring is the universal category in which to study these. In turn,
these homotopy invariant algebraic notions can be translated into stable homotopy theory [13]
and this translation to spectral algebra has led to a powerful new point of view on many areas
such as modular representation theory [12, 14]. Robinson [31] showed that the category of
spectra contains ‘extraordinary’ derived categories generalizing the derived category of a ring.
Shipley [39] gave a more precise and general version of Robinson’s result in terms of a zig-zag
of Quillen equivalences. This paper is a contribution to the understanding of the relationship
between spectral and homological algebra.
Passing between the worlds of spectral algebra and homological algebra is a valuable technique.
It allows the reduction of topological questions to algebraic questions, and conversely, allows
the importation of algebraic methods to the realm of spectra. Associated to any ring R there
is an Eilenberg-MacLane spectrum HR, and the homological algebra of R is equivalent to the
spectral algebra of HR. This relation is particularly striking in the case that R = Q, as the
rational sphere spectrum is equivalent to HQ.
Let R be a commutative ring. It was shown by Shipley [39] that there is a zig-zag of Quillen
equivalences between HR-module spectra and chain complexes of R-modules. Moreover, this
is a zig-zag of symmetric monoidal Quillen equivalences, so that it gives a zig-zag of Quillen
equivalences between HR-algebra spectra and differential graded R-algebras. Shipley’s alge-
braicization theorem shows that spectral algebra is a vast generalization of homological algebra.
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Moreover, it provides a bridge between the worlds of topology and algebra. This bridge has
been widely used in the construction of algebraic models for rational equivariant cohomology
theories by Barnes, Greenlees, Kędziorek and Shipley, see [1, 2, 5, 15, 16, 17, 23, 29, 36].
By Shipley’s algebraicization theorem, an HR-algebra X corresponds to a differential graded R-
algebra ΘX and there is a Quillen equivalence ModX 'Q ModΘX . However, if X is in addition
a commutative HR-algebra, it does not correspond to a commutative differential graded R-
algebra, but rather to a differential graded E∞-R-algebra, see [30].
When R = Q, more is true. A commutative HQ-algebra X does correspond to a commutative
differential graded Q-algebra by [39, 1.2]. More precisely, there is zig-zag of natural weak
equivalences ΘX ' Θ′X where Θ′X is a commutative DGA. However, despite the fact that the
categories of modules have symmetric monoidal structures, the Quillen equivalence ModX 'Q
ModΘ′X is not a symmetric monoidal Quillen equivalence. This is because the upgrading of a
Quillen equivalence to the categories of modules involves cofibrant replacement of monoids [34,
3.12(1)] which will destroy commutativity and hence the symmetric monoidal structure.
The stable model structure on spectra does not behave well with respect to commutative alge-
bras, in the sense that for a commutative ring spectrum S, cofibrant commutative S-algebras
are not cofibrant as S-modules in general. Shipley [37] constructed the flat model structure
(also called the S-model structure) on symmetric spectra, which does satisfy the property that
cofibrant commutative algebras are cofibrant as modules. Pavlov-Scholbach [28] extended this
to the case of symmetric spectra in general model categories. This extra compatibility between
commutative algebras and modules provides several useful tools that would otherwise not be
valid. For a concrete example of where this compatibility can be useful, see the next section of
the introduction.
In light of these considerations, the goal of this paper is threefold. Firstly, we show that the
zig-zag of Quillen equivalences in Shipley’s algebraicization theorem still holds in flat model
structures which satisfy the extra compatibility between commutative algebras and modules
discussed above. See Section 5 for a precise statement of the zig-zag of symmetric monoidal
Quillen equivalences in this first theorem.

Theorem 1.1. There is a zig-zag of symmetric monoidal Quillen equivalences
Modflat

HQ 'Q ChQ

where the intermediate categories have the flat model structure.

In fact we show that the flat model structures on the intermediate categories are the same as
the stable model structures used by Shipley [39], see Corollary 4.13.
Secondly, we use this theorem to give a new proof of the following theorem, which appears in
the body of the paper as Theorem 6.6. In particular, our approach does not pass through the
category of E∞-algebras as in the proof given by Richter-Shipley [30].

Theorem 1.2. There is a zig-zag of Quillen equivalences between the category of commutative
HQ-algebras and the category of commutative rational DGAs.

Finally, we prove the following theorem which appears as Theorem 7.2 in the main body of the
paper.

Theorem 1.3. For a commutative HQ-algebra X there is a zig-zag of weak symmetric monoidal
Quillen equivalences ModX 'Q ModΘX where ΘX is a commutative DGA.

Motivation and related work. The author’s main motivation comes from the study of al-
gebraic models for rational equivariant cohomology theories. A key step in the construction of
algebraic models is the passage from modules over a commutative HQ-algebra to modules over
a commutative DGA via Shipley’s algebraicization theorem. Therefore, a deep understanding
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of Shipley’s algebraicization theorem provides key insights into the understanding of algebraic
models for rational equivariant cohomology theories.
Working in the flat model structure provides valuable techniques which are not valid in the
stable model structure. In forthcoming work [44], the author considers the correspondence of
the change of groups functors in rational equivariant stable homotopy theory with functors be-
tween the algebraic models. In particular, this includes studying how the extension-restriction-
coextension of scalars adjoint triple along a map of commutativeHQ-algebras θ : S → R behaves
with respect to the Quillen equivalences in Shipley’s algebraicization theorem.
The restriction of scalars functor along a map of commutative monoids θ : S → R in a symmetric
monoidal model category is always right Quillen in the model structure right lifted from the
underlying category, but it is not left Quillen in general. If the monoidal unit of the underlying
category is cofibrant, then restriction of scalars is left Quillen if and only if R is cofibrant
as an S-module. Since a key step in the proof of algebraic models is a formality argument
based on the fact that polynomial rings are formal as commutative DGAs, one needs to be
able to replace R in such a way that it is still a commutative S-algebra, and is cofibrant as
an S-module. This replacement is possible in the flat model structure, but not in the stable
model structure on spectra. Therefore, Theorem 1.1 provides the necessary setup in which to
attack the correspondence of functors along the bridge which Shipley’s algebraicization theorem
provides between topology and algebra.
The use of the flat model structure allows the extension of the result to commutative algebra
objects, so that we prove a Quillen equivalence between the category of commutative HQ-
algebras and the category of commutative rational DGAs. Richter-Shipley [30] prove that
the category of commutative HR-algebras is Quillen equivalent to the category of differential
graded E∞-R-algebras for any commutative ring R. Since E∞-algebras in chain complexes of
Q-modules can be rectified to strictly commutative objects, see for example [25, §7.1.4], as a
corollary [30, 8.4] of Richter and Shipley’s result one obtains that the category of commuta-
tive HQ-algebras is Quillen equivalent to the category of commutative rational DGAs. We
give a concrete zig-zag of Quillen equivalences which lands naturally in commutative DGAs,
bypassing the need for the rectification step. We expect that this direct approach will enable
a better understanding of algebraic models for naive-commutative rational G-spectra as stud-
ied by Barnes-Greenlees-Kędziorek [3, 4]. White-Yau [43] give an alternative approach to this
zig-zag of Quillen equivalences by using the stable model structure and their theory of lifting
Quillen equivalences to categories of coloured operads. The generality of their theory leads to
more stringent hypotheses than our approach, see for example [43, 3.27]. Our approach exploits
the fact that in the flat model structure, cofibrant commutative algebras forget to cofibrant
modules.
Finally we give a concrete zig-zag of symmetric monoidal Quillen equivalences between the
category of modules over a commutative HQ-algebra and the category of modules over a com-
mutative DGA. The result is assumed without proof in the literature, see for example [6, 3.4.4].
Due to the importance of this result in the construction of algebraic models, we believe it is
valuable to make the proof explicit. Shipley proved that there is a Quillen equivalence [39, 2.15]
between modules over an HR-algebra X and modules over a DGA ΘX for any ring R. In the
case that R = Q, Shipley furthermore proves that ΘX is naturally weakly equivalent to a com-
mutative DGA Θ′X [39, 1.2]. A dual of a result of Schwede-Shipley [34, 3.12(2)] allows one to
conclude moreover that there is a commutative DGA ΘX and a zig-zag of symmetric monoidal
Quillen equivalences ModX 'Q ModΘX . The fact that this is a symmetric monoidal Quillen
equivalence has been a vital ingredient in the construction of symmetric monoidal algebraic
models, see [6, 3.4.4] and [29, 9.6].

Outline of the paper. We recall the key background on model categories in Section 2, and
on symmetric spectra in general model categories in Section 3. In Section 4, we recall results
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from Pavlov-Scholbach [28] which enable the construction of flat model structures on symmetric
spectra in general model categories, and apply these results to our cases of interest. Section
5 is dedicated to the proof of Theorem 1.1. In Section 6 we extend our results to show that
the category of commutative HQ-algebras is Quillen equivalent to the category of commutative
rational DGAs. Finally, in Section 7 we consider the extension to modules over commutative
HQ-algebras.

Conventions. We write the left adjoint above the right adjoint in an adjoint pair displayed
horizontally, and on the left in an adjoint pair displayed vertically.

Acknowledgements. I am grateful to John Greenlees and Luca Pol for their comments on
this paper and many helpful discussions. I would also like to thank Brooke Shipley and Sarah
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2. Model categorical preliminaries

In this section we recall the necessary background on model categories which we require for the
paper.

2.1. Bousfield localization. Firstly we recall the definitions and key properties of left Bous-
field localizations from [18].

Definition 2.1. Let C be a model category and let S be a collection of maps in C.

• An object W in C is S-local if it is fibrant in C and for every s : A→ B in S, the natural
map map(B,W )→ map(A,W ) is a weak equivalence of homotopy function complexes.
• A map f : X → Y in C is an S-local equivalence if for every S-local objectW , the natural
map map(Y,W )→ map(X,W ) is a weak equivalence of homotopy function complexes.

The left Bousfield localization of C at S (if it exists), denoted LSC, is the model structure on C

in which the weak equivalences are the S-local equivalences and the cofibrations are the same
as in C. The fibrant objects are the S-local objects. We call the fibrations the S-local fibrations.
The left Bousfield localization of C at S exists if S is a set of maps and C is left proper and
cellular [18, 4.1.1], or if S is a set of maps and C is left proper and combinatorial [7, 4.7]. Any
weak equivalence in C is an S-local equivalence, so it follows that the identity functors give a
Quillen adjunction C� LSC.

Proposition 2.2 ([18, 3.3.16], [22, 7.21]). Let C be a model category and S a set of maps in C.

(1) If f is an S-local equivalence between S-local objects, then f is a weak equivalence in C.
(2) If f is a fibration between S-local objects, then f is an S-local fibration.

We now recall a result of Dugger [11, A.2], which when used in conjunction with Proposition 2.2
simplifies the process of proving a Quillen adjunction between left Bousfield localizations.

Proposition 2.3. Let F : C � D : G be an adjunction, where C and D are model categories.
Then G is right Quillen if and only if G preserves fibrations between fibrant objects and all
acyclic fibrations.

2.2. Algebras and modules. We next recall the theory of (commutative) monoids, (commuta-
tive) algebras and modules in symmetric monoidal model categories due to Schwede-Shipley [33]
and White [42].
Recall that a model category is said to be symmetric monoidal if it has a closed symmetric
monoidal structure and satisfies the following two conditions:
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(1) pushout-product axiom: if f : A→ B and g : X → Y are cofibrations, then the pushout-
product map

f�g : A⊗ Y
⋃

A⊗X
B ⊗X → B ⊗ Y

is a cofibration, which is acyclic if either f or g is acyclic;
(2) unit axiom: for c1→ 1 a cofibrant replacement of the unit, the natural map c1⊗X →

1⊗X ∼= X is a weak equivalence for all cofibrant X.
Definition 2.4. Suppose that F : C � D : U is a Quillen adjunction between symmetric
monoidal model categories. We say that (F,U) is a weak symmetric monoidal Quillen adjunction
if the right adjoint U is lax symmetric monoidal (which gives the left adjoint F an oplax
symmetric monoidal structure) and the following conditions hold:

(1) for cofibrant A and B in C, the oplax monoidal structure map ϕ : F (A⊗B)→ FA⊗FB
is a weak equivalence in D;

(2) for a cofibrant replacement c1C of the unit in C, the map F (c1C) → 1D is a weak
equivalence in D.

If the oplax monoidal structure maps are isomorphisms, then we say that (F,U) is a strong
symmetric monoidal Quillen adjunction. We say that (F,U) is a weak (resp. strong) symmetric
monoidal Quillen equivalence if (F,U) is a weak (resp. strong) symmetric monoidal Quillen
adjunction which is also a Quillen equivalence. Note that if F is strong monoidal and the unit
of C is cofibrant, then the Quillen pair (F,U) is a strong symmetric monoidal Quillen pair.

In this paper, we will be particularly interested in the interaction of model structures and
Quillen functors with categories of modules and (commutative) algebras. Let (C,⊗,1) be a
symmetric monoidal model category. For a monoid S in C, we denote the category of (left)
S-modules by ModS(C). If the underlying category is clear, we will instead write ModS .
The categories of modules and algebras often inherit a model structure from the underlying
category in the following way. Let F : C � D : U be an adjunction in which C is a model
category and D is a bicomplete category. Kan’s lifting theorem [18, 11.3.2] provides conditions
under which D inherits a model structure in which a map f in D is a weak equivalence (resp.
fibration) if and only if Uf is a weak equivalence (resp. fibration) in C. We call such a model
structure right lifted.
Under mild hypotheses, the categories of modules and (commutative) algebras obtain right
lifted model structures. We refer the reader to [33, 2.4] for the precise smallness condition in the
following theorem, and instead note that it is satisfied if C is locally presentable. Similarly, we
refer the reader to [33, 3.3] and [42, 3.1] for the definitions of the monoid axiom and commutative
monoid axiom respectively.
Theorem 2.5 ([33, 4.1], [42, 3.2]). Let C be a cofibrantly generated, symmetric monoidal model
category (with some smallness condition) and let S be a commutative monoid in C.

(1) If C satisfies the monoid axiom then the categories of S-modules and S-algebras have
right lifted model structures in which a map is a weak equivalence (resp. fibration) if
and only if it is a weak equivalence (resp. fibration) in C.

(2) If C satisfies the commutative monoid axiom and the monoid axiom, then the category
of commutative S-algebras has a right lifted model structure in which a map is a weak
equivalence (resp. fibration) if and only if it is a weak equivalence (resp. fibration) in C.

We say that a symmetric monoidal model category C satisfies Quillen invariance of modules
if for any weak equivalence θ : S → R of monoids in C, the extension-restriction of scalars
adjunction

ModS ModR
R⊗S−

θ∗
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is a Quillen equivalence, see [33, 4.3]. Throughout we write θ∗ = R⊗S − for the left adjoint of
the restriction of scalars functor θ∗.

2.3. Cofibrations of modules and (commutative) algebras. In general there is not an
explicit description of the cofibrations in a right lifted model structure, but in many situations
they have desirable properties.

Theorem 2.6 ([33, 4.1]). Let C be a symmetric monoidal model category and let S be a commu-
tative monoid in C. Every cofibration of S-algebras whose source is cofibrant as an S-module is
also a cofibration of S-modules. In particular, if the unit of C is cofibrant, then every cofibrant
S-algebra is a cofibrant S-module.

The case of commutative algebras is more subtle. White [42, 3.5, 3.6] has given an answer
to this question in general, but it requires stronger assumptions that just the existence of the
model structure on commutative algebras. We recall some relevant examples.

Example 2.7. If S a commutative DGA over a field of characteristic zero and R is a cofi-
brant commutative S-algebra, then R is cofibrant (i.e., dg-projective) as an S-module, see for
instance [42, §5.1]. Note that it fails in non-zero characteristic since Maschke’s theorem does
not apply.

Example 2.8. In categories of spectra the situation is more complicated. It is well known
by Lewis’ obstruction [24] that the stable model structure on (symmetric) spectra cannot be
right lifted to a model structure on commutative algebra spectra as the sphere spectrum is
cofibrant. Indeed, a fibrant replacement of the sphere spectrum as a commutative ring spectrum
would be an Ω-spectrum whose zeroth space is a commutative topological monoid which is
weakly equivalent to colim(ΩnΣnS0). This implies that colim(ΩnΣnS0) is weakly equivalent to
a product of Eilenberg-MacLane spaces which is false. Instead, one must consider the positive
stable model structure in which the sphere spectrum is not cofibrant. This model structure
can be right lifted to give a model structure on commutative algebras, however, a cofibrant
commutative algebra in the positive stable model structure on spectra need not be cofibrant as
a module. Nonetheless there is a model structure on spectra called the flat model structure, for
which this property is true, see Corollary 4.11.

3. Symmetric spectra in general model categories

In this section we recall the definition of the category of symmetric spectra in general model
categories and its properties and stable model structure as in [20]; see also [30, §2].
Let (C,⊗,1) be a bicomplete, closed symmetric monoidal category and K ∈ C. Let Σ be the
category whose objects are the finite sets n = {1, . . . , n} for n ≥ 0 where 0 = ∅, and whose
morphisms are the bijections of n. The category of symmetric sequences in C is the functor
category CΣ. The category CΣ inherits a closed symmetric monoidal structure from C via the
Day convolution, with tensor product given by

(A�B)(n) =
∐

p+q=n
Σn ×Σp×Σq A(p)⊗B(q).

The category of symmetric spectra SpΣ(C,K) is the category of modules over Sym(K) in CΣ,
where Sym(K) = (1,K,K⊗2, · · · ) is the free commutative monoid on K. Therefore, SpΣ(C,K)
inherits a closed symmetric monoidal structure with tensor product defined by the coequalizer

X ∧ Y = coeq (X � Sym(K)� Y ⇒ X � Y )
of the actions of Sym(K) on X and Y . More explicitly, an object X of SpΣ(C,K) is a collection
of Σn-objects X(n) ∈ C with Σn-equivariant maps

K ⊗X(n)→ X(n+ 1)
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for all n ≥ 0, such that the composite
K⊗m ⊗X(n)→ X(n+m)

is Σm × Σn-equivariant for all m,n ≥ 0. Note that taking C = sSet∗ and K = S1 recovers the
usual notion of symmetric spectra as defined and studied by Hovey-Shipley-Smith [21].
We now sketch the construction of the stable model structure on SpΣ(C,K) due to Hovey [20].
If C is a left proper and cellular model category, one can equip SpΣ(C,K) with a level model
structure in which the weak equivalences and fibrations are levelwise weak equivalences and
levelwise fibrations in C respectively [20, 8.2]. One can then left Bousfield localize this level
model structure to obtain the stable model structure [20, 8.7]. We call the weak equivalences
in this model structure the stable equivalences and the fibrations the stable fibrations.
There is also a positive stable model structure, which allows the construction of right lifted
model structures on commutative algebras, see for instance [26, §14]. However, these model
structures do not have the property that cofibrant commutative algebras are cofibrant modules.
In order to rectify this, we turn to the flat model structure in the next section.
Notation 3.1. We set notation for the categories of symmetric spectra of interest.

• We write SpΣ = SpΣ(sSet∗, S1) for the category of symmetric spectra in simplicial sets.
• We write SpΣ(sQ-mod) for the category SpΣ(sQ-mod, Q̃S1) where sQ-mod is the cat-
egory of simplicial Q-modules and Q̃ : sSet∗ → sQ-mod is the functor which takes the
levelwise free Q-module on the non-basepoint simplices.
• We write SpΣ(Ch+

Q) for the category SpΣ(Ch+
Q,Q[1]) where Ch+

Q is the category of non-
negatively graded chain complexes of Q-modules and Q[1] is the chain complex which
contains a single copy of Q concentrated in degree 1.

4. Flat model structures

In this section we show that the categories used in Shipley’s algebraicization theorem support
a flat model structure. Recall from Example 2.8 that a cofibrant commutative algebra need not
be a cofibrant module in the stable model structure on spectra. To rectify this, Shipley [37]
constructs a flat (and a positive flat) model structure on symmetric spectra in simplicial sets
in which this property holds. Pavlov-Scholbach [28] extended these flat model structures to
symmetric spectra in general model categories. The flat model structure has the same weak
equivalences as the stable model structure on spectra (i.e., the stable equivalences), but has
more cofibrations. In particular, the identity functor from the stable model structure to the flat
model structure is a left Quillen equivalence.

4.1. Equivariant model structures. The stable model structure on symmetric spectra dis-
regards the actions of the symmetric groups on each level. Instead, the flat model structure
proceeds by remembering this equivariance and building it into the model structure. There are
two extreme cases: the naive case is where no equivariance is recorded and the genuine case is
when all equivariance is recorded. The flat model structure on SpΣ(C,K) (when it exists) is
built from the blended model structure on G-objects in C which is intermediate between the
naive and genuine structures. Note that some authors refer to this model structure as the mixed
model structure, but we do not since it is not mixed in the sense of Cole mixing [10].
From now on, we assume that C is a pretty small model category [27, 2.1]. We note that this
condition is satisfied for simplicial sets, simplicial Q-modules and non-negatively graded chain
complexes of Q-modules.
We now recall the conditions needed for the genuine and blended model structures to exist, see
for instance [40]. Let G be a finite group. We write GC for the category of G-objects in C;
that is, the functor category [BG,C] where BG is the one-object category whose morphisms are
elements of G.
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Definition 4.1. We say that C satisfies the weak cellularity conditions for G if the following
are true for all subgroups H,K ≤ G:

(1) (−)H preserves directed colimits of diagrams in GC where each underlying arrow in C

is a cofibration,
(2) (−)H preserves pushouts of diagrams where one leg is of the form G/K ⊗ f for f a

cofibration in C,
(3) (G/K ⊗ −)H takes generating cofibrations to cofibrations and generating acyclic cofi-

brations to acyclic cofibrations.

We say that it satisfies the strong cellularity conditions for G if (1) and (2) from above hold,
and for any H,K ≤ G and any X ∈ C,

(G/H ⊗X)K ∼= (G/H)K ⊗X.
Definition 4.2. We say that a map f : X → Y in GC is:

• a naive weak equivalence if the underlying morphism is a weak equivalence in C;
• a naive fibration if the underlying morphism is a fibration in C;
• a naive cofibration if it has the left lifting property with respect to the naive acyclic
fibrations;
• a genuine weak equivalence if for every subgroup H of G, the map fH : XH → Y H is a
weak equivalence in C;
• a genuine fibration if for every subgroup H of G, the map fH : XH → Y H is a fibration
in C;
• a genuine cofibration if it has the left lifting property with respect to all genuine acyclic
fibrations.
• a blended fibration if it has the right lifting property with respect to maps which are
both naive weak equivalences and genuine cofibrations.

The cellularity conditions control when the genuine model structure on GC exists.

Proposition 4.3. If the weak cellularity conditions hold for C then the genuine weak equiva-
lences, genuine cofibrations and genuine fibrations give a cofibrantly generated, model structure
on GC called the genuine model structure. Furthermore, if C is proper, then so is the genuine
model structure on GC, and if C is a monoidal model category with cofibrant unit, then so is the
genuine model structure on GC.

Proof. The claim that the genuine model structure exists and is cofibrantly generated is due to
Stephan [40, 2.6]. The generating cofibrations and generating acyclic cofibrations are given by
∪H≤G{G/H ⊗ i | i ∈ I} and ∪H≤G{G/H ⊗ j | j ∈ J} respectively, where I and J are the sets
of generating cofibrations and acyclic cofibrations for C respectively.
We now prove that the genuine model structure is left proper. It suffices to prove that in a
diagram of pushouts of the form

G/H ⊗A C X

G/H ⊗B D Y
p

∼

p

where A→ B is a generating cofibration for C, the map D → Y is a genuine weak equivalence.
This is because as C is pretty small, weak equivalences are closed under transfinite composi-
tion [27, 2.2], and therefore the class of maps for which pushing out along them preserves weak
equivalences is closed under retracts, pushouts and transfinite compositions. By the second
cellularity condition, after taking K fixed points, the left hand square and the outer rectangle
are still pushouts. It follows that the right hand square is also still a pushout.
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By the third cellularity condition, the left most vertical map is still a cofibration after taking K
fixed points. Since cofibrations are stable under pushout, the map CK → DK is a cofibration,
and since C is left proper, we have that DK → Y K is a weak equivalence for all K. Hence the
genuine model structure is left proper. The fact that the model structure is right proper follows
immediately from the fact that fixed points determine fibrations and weak equivalences.
We now prove that the genuine model structure is monoidal. Firstly we must show that the
pushout-product of two genuine cofibrations is a genuine cofibration. We use the description of
the generating cofibrations ∪H≤G{G/H ⊗ i | i ∈ I} for the genuine model structure where I is
the set of generating cofibrations for C. Take generating cofibrations

G/H ⊗ i : G/H ⊗A→ G/H ⊗B and G/K ⊗ i′ : G/K ⊗X → G/K ⊗ Y
for the genuine model structure. Since G/H ⊗ − and G/K ⊗ − are left adjoints, the pushout
product map (G/H ⊗ i)�(G/K ⊗ i′) can be identified with the map (G/H ⊗ G/K) ⊗ (i�i′),
which in turn can be identified with

∐

x∈[H\G/K]
G/(H ∩ xKx−1)⊗ (i�i′)

by the double coset formula. Since C is monoidal, i�i′ is a cofibration in C and hence the
pushout product map (G/H ⊗ i)�(G/K ⊗ i′) is a genuine cofibration as required. It follows
by a similar argument that the pushout product of a genuine cofibration with a genuine acyclic
cofibration is a genuine acyclic cofibration.
For the unit axiom, note that the monoidal unit in GC is the unit of C equipped with the trivial
G-action. The functor which equips an object with the trivial G-action is left adjoint to the
G-fixed points functor, and hence is left Quillen. It then follows that since the unit of C is
cofibrant, the unit in GC is genuine cofibrant. �

We can then localize the genuine model structure to give the blended model structure.

Theorem 4.4. Let C be a simplicial, proper model category which satisfies the weak cellularity
conditions. Then the naive weak equivalences, genuine cofibrations and blended fibrations give a
proper, cofibrantly generated model structure on GC which we call the blended model structure.

Proof. We apply Bousfield-Friedlander localization [9, 9.3] to the genuine model structure onGC,
with QX = map(EG, f̂X) where f̂ is a genuine fibrant replacement functor and map denotes
the simplicial cotensor. We must verify that the conditions (A1), (A2) and (A3) from [9, 9.3]
are satisfied. Note that a map f : X → Y in GC is a naive weak equivalence if and only if
Qf : QX → QY is a genuine weak equivalence. To see this, if f : X → Y is a naive weak
equivalence, then map(G, f) is a genuine weak equivalence. Therefore, map(Z, f) is a genuine
weak equivalence if Z is built from free cells. Conversely, since EG → ∗ is a naive weak
equivalence, if map(EG, f) is a genuine weak equivalence then f is a naive weak equivalence.
The conditions (A1) and (A2) follow from this observation. Since Q preserves fibrations and
pullbacks, condition (A3) follows from the right properness of the genuine model structure on
GC. �

Note that [9, 9.3] also gives an explicit description of the blended fibrations as those maps
X → Y which are genuine fibrations and have the property that

(?)
X map(EG, f̂X)

Y map(EG, f̂Y )

is a homotopy pullback square. The genuine fibrant replacement ensures that this is equivalent
to the square being a homotopy pullback after taking H-fixed points for all H ≤ G.
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Proposition 4.5. The blended model structure exists on GC for C = sSet∗, sQ-mod and Ch+
Q.

Proof. The categories of based simplicial sets and simplicial Q-modules satisfy the strong cellu-
larity conditions by [40, 2.14]. The category of non-negatively graded rational chain complexes
satisfies the weak cellularity conditions by [40, 2.19]. Therefore the result follows from Theo-
rem 4.4. �

Finally we note that in these cases, the blended model structure can be identified with the
injective model structure in which the weak equivalences and cofibrations are both underlying.

Proposition 4.6.

(i) A map f in G-sSet∗ is an underlying cofibration if and only if it is a genuine cofibration.
(ii) For C = sQ-mod and Ch+

Q, a map f in GC is an underlying cofibration if and only if it
is a naive cofibration if and only if it is a genuine cofibration.

Proof. Part (i) is well known; see for example [37, 1.2] or [40, 2.16].
For part (ii), let C = Ch+

Q or sQ-mod and note that we can give the same style of proof since
they are both Q-additive. From the description of the generating cofibrations of the genuine
model structure given in the proof of Proposition 4.3, it is clear that any genuine cofibration
is an underlying cofibration. Since any naive cofibration is also a genuine cofibration it follows
that any naive cofibration is an underlying cofibration.
We now turn to proving the forward implication. Since any naive cofibration is a genuine
cofibration, it suffices to show that if f is an underlying cofibration then it is a naive cofibration.
Let f : X → Y be an underlying cofibration in GC. In order to prove that f is a naive cofibration
we must show that it has the left lifting property with respect to the naive acyclic fibrations.
Consider a commutative square

X A

Y B

α

f h

β

in GC, in which h is a naive acyclic fibration. Since f is an underlying cofibration, there is a
lift θ : Y → A making the diagram commute, but this need not be an equivariant map. Define
ϕ : Y → A by

ϕ(y) = 1
|G|

∑

g∈G
gθ(g−1y).

This is an equivariant map, so it remains to check that it is indeed a lift.
Since f and α are equivariant maps,

ϕ(f(x)) = 1
|G|

∑

g∈G
gθ(f(g−1x)) = 1

|G|
∑

g∈G
gα(g−1x) = α(x).

In a similar way, one can show that hϕ = β. Therefore ϕ is a lift, and the map f is a naive
cofibration and hence also a genuine cofibration. �

Corollary 4.7. For C = sQ-mod and Ch+
Q, the blended model structure, injective model struc-

ture and the naive model structure on GC are the same.

Proof. The weak equivalences in all three model structures are the naive weak equivalences.
The cofibrations in each coincide by Proposition 4.6. �

We emphasize that in the case of C = sSet∗, the blended model structure is the same as the
injective model structure on GC, but is not the same as the naive model structure.
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Corollary 4.8. For C = sSet∗, sQ-mod and Ch+
Q, the blended model structure on GC is

monoidal.

Proof. Note that in each case, C is monoidal and has cofibrant unit. Since the blended model
structure is the same as the injective model structure by Proposition 4.6, it is immediate that the
pushout-product axiom holds. The unit axiom holds by the same argument as in Proposition 4.3.

�

4.2. The flat model structure. We can equip SpΣ, SpΣ(sQ-mod) and SpΣ(Ch+
Q) with the

level flat model structure, in which the weak equivalences (resp. fibrations) are the levelwise
naive weak equivalences (resp. levelwise blended fibrations) [28, 3.1.3]. The cofibrations in the
level flat model structure are the flat cofibrations; that is, the maps which have the left lifting
property with respect to maps which are both levelwise naive weak equivalences and levelwise
blended fibrations. In a similar manner, SpΣ, SpΣ(sQ-mod) and SpΣ(Ch+

Q) can be given the
positive level flat model structure in which the weak equivalences (resp. fibrations) are the maps
which are naive weak equivalences (resp. blended fibrations) for each level n > 0.
A left Bousfield localization of the level flat model structure yields the flat model structure. The
weak equivalences in the flat model structure are the stable equivalences, and the cofibrations
are the flat cofibrations. We call the fibrations in the flat model structure the flat fibrations.
Similarly, a left Bousfield localization of the positive level flat model structure gives the positive
flat model structure in which the weak equivalences are also the stable equivalences.

Theorem 4.9. The flat and positive flat model structures on SpΣ, SpΣ(sQ-mod) and SpΣ(Ch+
Q)

(and on modules over monoids in these categories) exist. Furthermore, they satisfy Quillen
invariance of modules, and are stable, left proper, symmetric monoidal and combinatorial model
structures.

Proof. Since the genuine cofibrations are the same as the underlying cofibrations by Proposi-
tion 4.6, the blended model structure coincides with the injective model structure. The injective
model structure is strongly admissible by [28, 2.3.7] and therefore the flat model structure ex-
ists by [28, 3.2.1]. Quillen invariance holds by [28, 3.3.9], monoidality follows as it is defined
to be a monoidal left Bousfield localization, stability by [28, 3.4.1] and left properness and
combinatoriality follows from [28, 3.4.2]. �

We now record some key properties of the flat model structure which we will use throughout
this paper.

Proposition 4.10.

(i) A map is an acyclic flat fibration if and only if it is a levelwise acyclic flat fibration.
(ii) A map between flat fibrant objects is a flat fibration if and only if it is a levelwise flat

fibration.
(iii) The identity functor is a left Quillen equivalence from the stable model structure to the

flat model structure.

Proof. Part (i) follows from the fact that left Bousfield localization does not change the acyclic
fibrations and part (ii) follows from Proposition 2.2. For part (iii), since the stable model
structure and the flat model structure have the same weak equivalences, it suffices to show that
any stable cofibration is a flat cofibration. A map is a stable cofibration if and only if it has
the left lifting property with respect to maps which are levelwise naive acyclic fibrations, and a
map is a flat cofibration if and only if it has the left lifting property with respect to maps which
are both levelwise naive weak equivalences and blended fibrations. Any blended fibration is a
naive fibration, and therefore a stable cofibration is also a flat cofibration. �
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Corollary 4.11. Let S be a commutative monoid in SpΣ, SpΣ(sQ-mod) or SpΣ(Ch+
Q). The

positive flat model structure can be right lifted to give a model structure on commutative S-
algebras. Moreover, a positively flat cofibrant commutative S-algebra is also flat cofibrant as an
S-module.

Proof. Since the blended model structure coincides with the injective model structure in these
cases by Proposition 4.6, and the injective model structure is strongly admissible [28, 2.3.7],
this is a consequence of [28, 4.1, 4.4]. �

The flat model structure is a left Bousfield localization of the level flat model structure where
weak equivalences and fibrations are determined levelwise in the blended model structure. We
can give a characterization of the fibrant objects in the flat model structure.

Proposition 4.12 ([28, 3.2.1]). An object X of SpΣ(C,K) is flat fibrant if and only if X is
level flat fibrant and Xn → Hom(K,Xn+1) is a naive weak equivalence where Hom(K,−) is the
right adjoint to K ⊗−.

The following corollary shows that stable model structures on SpΣ(sQ-mod) and SpΣ(Ch+
Q)

satisfy extra compatibility between commutative algebras and modules, unlike the stable model
structure on SpΣ.

Corollary 4.13. The flat (resp. positive flat) model structure on SpΣ(sQ-mod) and SpΣ(Ch+
Q)

is the same as the stable (resp. positive stable) model structure.

Proof. The weak equivalences in both the flat and stable model structure are the stable equiv-
alences. Therefore it suffices to show that they have the same acyclic fibrations. A map is
an acyclic fibration in the stable model structure if and only if it is a levelwise naive acyclic
fibration. By Corollary 4.7, this is the case if and only if it is a levelwise acyclic fibration in the
blended model structure, i.e., an acyclic flat fibration. �

In light of the previous corollary, we could call the model structure which we use on SpΣ(sQ-mod)
and SpΣ(Ch+

Q) either flat or stable. However, we will often refer to it as the flat model structure
to remind the reader of the extra compatibility between commutative algebras and modules
given by Corollary 4.11, which we will use throughout the paper.

Remark 4.14. One can give explicit characterizations of the stable and flat cofibrations in
terms of latching objects. Define an object Sym(K) of SpΣ(C,K) to be 0 in level 0 and K⊗n in
level n, with the evident structure maps. The nth latching space of X ∈ SpΣ(C,K) is defined by
LnX = Evn(X ∧Sym(K)). This is an object in ΣnC, and the natural map Sym(K)→ Sym(K)
induces a Σn-equivariant map in : LnX → X. Recall from [20, 8.5] that a map f : X → Y in
SpΣ(C,K) is a stable cofibration if and only if the pushout-product map Xn ∪LnX LnY → Yn is
a naive cofibration in ΣnC for all n ≥ 0. In a similar way, one can show that a map f : X → Y
is a flat cofibration if and only if Xn ∪LnX LnY → Yn is a genuine cofibration in ΣnC for all
n ≥ 0. This observation together with Proposition 4.6 gives another proof of Corollary 4.13.

Remark 4.15. Recall that in SpΣ every π∗-isomorphism is a stable equivalence [21, 3.1.11],
but the converse fails [21, 3.1.10]. However, since we work rationally throughout this paper, the
situation can be somewhat simplified. Shipley [35] constructs a detection functorD : SpΣ → SpΣ

with the property that a map f is a stable equivalence if and only if Df is a π∗-isomorphism.
The functor D is defined in terms of a homotopy colimit over the injection category. Since
colimits over the injection category are exact rationally, it follows that in the rational setting a
map is a stable equivalence if and only if it is a π∗-isomorphism. Moreover, π∗(DX) ∼= π∗(LX)
where L is a stable fibrant replacement functor [35, 2.1.3], so that rationally the genuine stable
homotopy groups (i.e., maps from the sphere in the homotopy category) coincide with the naive
homotopy groups. For more details, also see [32, 8.49].
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5. Shipley’s algebraicization theorem in the flat setting

In this section we show that the chain of Quillen equivalences given by Shipley [39] for the stable
model structure are still Quillen equivalences in the flat model structure, for the rational case.
The identity functor from the stable model structure to the flat model structure is a left Quillen
equivalence by Proposition 4.10. Therefore by the 2-out-of-3 property of Quillen equivalences, it
is sufficient to check that we get Quillen adjunctions in the flat model structure. In fact, since the
stable and flat model structure are the same on SpΣ(sQ-mod) and SpΣ(Ch+

Q) by Corollary 4.13,
this reduces to just checking that the first adjunction is a Quillen adjunction. The following
diagram summarises all of the adjunctions between HQ-modules and chain complexes of Q-
modules.

(†)

Modflat
HQ SpΣ(sQ-mod)flat SpΣ(Ch+

Q)flat ChQ

Modstable
HQ SpΣ(sQ-mod)stable SpΣ(Ch+

Q)stable ChQ

Z

1'Q 1

ϕ∗NU

= 1=

L D

1=

R

Z

1

'Q
U

1

ϕ∗N

'Q

1

L D

'Q

1

R

The functors will be defined throughout the rest of the section.
The model structure on simplicial Q-modules is right lifted from simplicial sets along the
forgetful functor sQ-mod → sSet∗. Applying this functor levelwise gives a forgetful functor
Ũ : SpΣ(sQ-mod) → SpΣ. Note that ŨSym(Q̃S1) = (Q, Q̃S1, Q̃S2, ...) which is HQ [21, 1.2.5].
Therefore the forgetful functor Ũ can be viewed as a functor U : SpΣ(sQ-mod)→ ModHQ.
Firstly, we show that the forgetful functor Ũ is right Quillen when SpΣ is equipped with the
flat model structure. Even though the flat model structure and the stable model structure
on SpΣ(sQ-mod) are the same by Corollary 4.13, in order to prove the following it is actually
convenient to work with the description of the acyclic fibrations in the flat model structure.

Lemma 5.1. The forgetful functor

Ũ : SpΣ(sQ-mod)flat → SpΣ
flat

preserves fibrations, and preserves and detects weak equivalences.

Proof. The forgetful functor preserves and detects weak equivalences by [39, Proof of 4.1]. We
now show that it preserves the fibrations. By Proposition 2.3 it is sufficient to show that Ũ
preserves the acyclic flat fibrations and the flat fibrations between flat fibrant objects.
A map is an acyclic flat fibration if and only if it is a levelwise acyclic flat fibration, so it
suffices to show that the forgetful functor sQ-mod → sSet∗ preserves naive weak equivalences
and blended fibrations. Since the model structure on sQ-mod is right lifted from sSet∗, the
forgetful functor preserves naive weak equivalences and genuine fibrations. It remains to check
the homotopy pullback condition (?), which is an immediate consequence of the fact that the
forgetful functor preserves homotopy pullbacks.
A flat fibration between flat fibrant objects is a levelwise flat fibration and hence Ũ sends it to a
levelwise flat fibration by the previous paragraph. Therefore, it remains to show that Ũ preserves
flat fibrant objects. Let X be a flat fibrant object in SpΣ(sQ-mod)flat. By Proposition 4.12,
X is level flat fibrant and Xn → Hom(Q̃S1, Xn+1) is a naive weak equivalence. It follows
that ŨX is level flat fibrant, and since Ũ preserves naive weak equivalences, we also have that
ŨXn → ŨHom(Q̃S1, Xn+1) is a naive weak equivalence. By the Q̃ a U adjunction, it follows
that

ŨXn → Hom(S1, ŨXn+1)
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is a naive weak equivalence, and hence by Proposition 4.12, ŨX is flat fibrant. Therefore, Ũ
preserves flat fibrant objects. �
Corollary 5.2. The forgetful functor

U : SpΣ(sQ-mod)flat → Modflat
HQ

preserves fibrations, and preserves and detects weak equivalences.

Recall from [39, 4.3] that the forgetful functor U : SpΣ(sQ-mod)→ ModHQ has a left adjoint Z
defined by

Z(X) = HQ⊗Q̃HQ Q̃X

where HQ is viewed as a Q̃HQ-module via the ring map β : Q̃HQ→ HQ given by the monad
structure on Q̃.

Proposition 5.3. The adjunction

Modflat
HQ SpΣ(sQ-mod)flat

Z

U

is a strong symmetric monoidal Quillen equivalence with the respect to the flat model structures.

Proof. The forgetful functor U preserves weak equivalences and fibrations in the flat model
structure by Corollary 5.2. Therefore, Z a U is a Quillen adjunction and hence by the 2-out-
of-3 property of Quillen equivalences, is a Quillen equivalence; see Diagram (†). It is a strong
symmetric monoidal Quillen equivalence as Z is strong symmetric monoidal and the unit HQ
is a cofibrant HQ-module. �

Applying the normalization functor N : sQ-mod→ Ch+
Q levelwise yields a functor

N : SpΣ(sQ-mod)→ ModN
(
(Ch+

Q)Σ
)

where N = N(Sym(Q̃S1)). There is a ring map ϕ : Sym(Q[1]) → N induced levelwise by the
lax symmetric monoidal structure on N , and therefore composing N and ϕ∗ gives a functor
ϕ∗N : SpΣ(sQ-mod)→ SpΣ(Ch+

Q). This functor has a left adjoint denoted L by [34, §3.3]. It is
important to note that the left adjoint is not just the composite of the left adjoints of N and
ϕ∗. Shipley [39, 4.4] shows that

SpΣ(sQ-mod) SpΣ(Ch+
Q)

ϕ∗N

L

is a weak symmetric monoidal Quillen equivalence.
The final step is the passage from symmetric spectra in non-negatively graded chain complexes
to unbounded chain complexes. The inclusion Ch+

Q → ChQ of non-negatively graded chain
complexes into unbounded complexes has a right adjoint C0 called the connective cover. This
is defined by (C0X)n = Xn for n ≥ 1 and (C0X)0 = cycles(X0). Using the connective cover,
one defines a functor R : ChQ → SpΣ(Ch+

Q) by (RY )n = C0(Y ⊗ Q[n]). Recall from [39] that
this functor has a left adjoint D. Moreover, D is strong symmetric monoidal as proved by
Strickland [41]. Note that this fact has been subject to some confusion, see [38]. Shipley [39,
4.7] shows that

SpΣ(Ch+
Q) ChQ

D

R

is a strong symmetric monoidal Quillen equivalence where ChQ is equipped with the projective
model structure.
Combining the results of this section gives a proof of Theorem 1.1.
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6. Extension to commutative algebras

Let F : C� D : G be a weak symmetric monoidal Quillen pair. As G is lax symmetric monoidal,
it preserves commutative monoids and therefore gives rise to a functorG : CMon(D)→ CMon(C).
If the Quillen pair is a strong symmetric monoidal Quillen pair, then F also lifts to a functor
on commutative monoids. However, when F is only oplax symmetric monoidal, it will not
necessarily preserve commutative monoids.
We always equip the category of commutative monoids with the model structure right lifted
along the forgetful functor, see Theorem 2.5. The forgetful functor U : CMon(C)→ C has a left
adjoint given by

PC(X) =
∨

n≥0
X∧n/Σn.

The adjoint lifting theorem [8, 4.5.6] implies that the lift of G to the categories of commutative
monoids has a left adjoint F̃ defined by the coequalizer diagram

PDFPCX PDFX F̃X.

One of the maps is obtained from the counit of the PC a U adjunction, and the other map is
adjunct to the natural map

FPCX ∼=
∨

n≥0
F (X∧n)/Σn →

∨

n≥0
(FX)∧n/Σn

∼= PDFX

obtained from the oplax structure on F . Since G preserves commutative monoids, there is a
natural isomorphism UG ∼= GU and by adjunction there is a natural isomorphism

PDF ∼= F̃PC.

Before we can state a theorem about lifting weak symmetric monoidal Quillen equivalences to
Quillen equivalences on commutative monoids, we need to impose a hypothesis.

Hypothesis 6.1. Let F : C� D : G be a weak symmetric monoidal Quillen equivalence. For
any cofibrant object X of C, the natural map

F (X∧n)/Σn → (FX)∧n/Σn

is a weak equivalence in D.

Lemma 6.2. Let F : C � D : G be a weak symmetric monoidal Quillen equivalence. This
satisfies Hypothesis 6.1 if either of the following conditions hold:

(i) F : C� D : G is a strong symmetric monoidal Quillen equivalence;
(ii) underlying cofibrant objects in ΣnD are naive cofibrant.

Proof. The first part follows immediately from the definition. For the second part, let X be
cofibrant in C. By definition of a weak symmetric monoidal Quillen pair, the natural map
F (X∧n)→ (FX)∧n is a weak equivalence between cofibrant objects in the injective model struc-
ture on ΣnD. By hypothesis, this is moreover a naive weak equivalence between naive cofibrant
objects. From the description of the generating (acyclic) cofibrations given in Proposition 4.3
one can see that the orbits functor (−)/Σn : ΣnD → D is left Quillen when ΣnD is equipped
with the genuine model structure. Since the identity is a left Quillen functor from the naive
model structure on ΣnD to the genuine model structure, it follows that (−)/Σn : ΣnD → D is
left Quillen when ΣnD is equipped with the naive model structure. By Ken Brown’s lemma, it
then follows that F (X∧n)/Σn → (FX)∧n/Σn is a weak equivalence in D. �

We now state when weak symmetric monoidal Quillen equivalences lift to Quillen equivalences
between the categories of commutative monoids. This result is closely related to work of
Schwede-Shipley, White and White-Yau. Schwede-Shipley [34, 3.12(3)] consider the related
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question on associative monoids without the commutativity assumption, White [42, 4.19] pro-
vides hypotheses under which strong monoidal Quillen equivalences lift to the categories of
commutative monoids and White-Yau [43, 5.8] provide hypotheses under which weak monoidal
Quillen equivalences lift. The most general of the statements is that of White-Yau where the
result follows from a more general result about lifting Quillen equivalences to categories of
coloured operads.
For orientation in the following statement and proof, the reader might like to consider C being
the positive flat model structure on spectra and C̃ being the flat model structure on spectra.
The hypotheses are designed in such a way that this example fits into the framework. We note
that we write left adjoint functors on the left in an adjoint pair displayed vertically.
Theorem 6.3. Let F : C� D : G be a weak symmetric monoidal Quillen equivalence between
cofibrantly generated model categories which satisfy the commutative monoid axiom and the
monoid axiom. Suppose that the underlying categories of C and D support other model structures
denoted C̃ and D̃ respectively, with the same weak equivalences, such that

C D

C̃ D̃

1

F

1
G

F

1 1

G

are all Quillen adjunctions. Suppose that cofibrant commutative monoids in C (resp. D) are
cofibrant in C̃ (resp. D̃), the generating cofibrations I of C have cofibrant source (and hence
target), the monoidal unit 1C of C is cofibrant and that Hypothesis 6.1 is satisfied. Then there
is a Quillen equivalence

F̃ : CMon(C)� CMon(D) : G.

Proof. Since the model structures are right lifted, G preserves fibrations and acyclic fibrations
and therefore is right Quillen as a functor CMon(D) → CMon(C). Let A be a cofibrant com-
mutative monoid in C and B be a fibrant commutative monoid in D. We must show that the
map A→ GB is a weak equivalence in C if and only if F̃A→ B is a weak equivalence in D.
The adjunction unit of F̃ a G gives rise to a map UA → UGF̃A ∼= GUF̃A and hence by
adjunction there is a natural map FA → F̃A where we neglect to write the forgetful functors.
The composite FA→ F̃A→ B is adjunct to the map A→ GB in C.
Let X ∈ D. Write fX for a fibrant replacement of X in D and f̃X for a fibrant replacement of
X in D̃. Consider the square

X f̃X

fX ∗
in which the left vertical arrow is an acyclic cofibration in D, and the right vertical is a fibration
in D̃ and hence in D. By lifting properties, we obtain a map fX → f̃X which is a weak
equivalence.
We must show that the map A → GB is a weak equivalence in C if and only if F̃A → B is a
weak equivalence in D, where A is cofibrant in CMon(C) and B is fibrant in CMon(D). By the
previous paragraph, we have a weak equivalence B → f̃B where f̃B is fibrant in D̃ and hence
in D. By Ken Brown’s lemma, GB → Gf̃B is a weak equivalence, and therefore A→ GB is a
weak equivalence if and only if A→ Gf̃B is a weak equivalence.
Note that since C and C̃ have the same weak equivalences, the identity functor C → C̃ is a
left Quillen equivalence, and similarly for D. Therefore, by the 2-out-of-3 property of Quillen
equivalences, F : C̃ � D̃ : G is a Quillen equivalence. Since A is cofibrant in CMon(C) and
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hence in C̃, and f̃B is fibrant in D̃, A → Gf̃B is a weak equivalence if and only if FA → f̃B
is a weak equivalence. Since B → f̃B is a weak equivalence, FA → f̃B is a weak equivalence
if and only if FA → B is a weak equivalence. Since the composite FA → F̃A → B is adjunct
to the map A → GB in C, it follows that it is enough to show that λA : FA → F̃A is a weak
equivalence.
As C is cofibrantly generated, A is a retract of a PC(I)-cell complex where I is the set of
generating cofibrations for C, i.e., ∅ → A is a retract of a transfinite composition of pushouts of
maps in PC(I). We proceed by transfinite induction on the transfinite composition which defines
a cofibrant object. The base case is the claim that F (1C)→ F̃ (1C) is a weak equivalence. The
left adjoint F̃ takes the initial object 1C of CMon(C) to the initial object 1D of CMon(D). Since
1C is cofibrant, F (1C) → 1D is a weak equivalence by the unit axiom of the weak monoidal
Quillen adjunction F a G. Therefore the base case holds.
Write PnX = X∧n/Σn, so that PX = ∨n≥0PnX. By Hypothesis 6.1, if X is a cofibrant object
of C, F (PnCX) = F (X∧n)/Σn → (FX)∧n/Σn = PnD(FX) is a weak equivalence. Since X is
cofibrant in C, PnCX is cofibrant in C̃ and therefore F (PnCX) is cofibrant in D̃. In a similar
way, one sees that PnD(FX) is cofibrant in D̃. Therefore F (X∧n)/Σn → (FX)∧n/Σn is a
weak equivalence between cofibrant objects in D̃ and Ken Brown’s lemma shows that taking
coproducts preserves this weak equivalence. Therefore,

FPCX = F
∨

n≥0
X∧n/Σn

∼=
∨

n≥0
F (X∧n)/Σn

∼−→
∨

n≥0
(FX)∧n/Σn = PDFX

is a weak equivalence. Hence using the isomorphism PDFX ∼= F̃PCX, if X is cofibrant in C,
one sees that both FPCX → F̃PCX and FPnCX → F̃PnCX are weak equivalences.
We now prove that if

PCX Y

PCX
′ P

f

is a pushout square in CMon(C), and FY → F̃ Y is a weak equivalence where Y is cofibrant,
then FP → F̃P is a weak equivalence. Since I consists of cofibrations with cofibrant source,
we may assume that X and X ′ are cofibrant in C. By [42, B.2], f : Y → P has a filtration

Y = P0 → P1 → · · ·
where Pn−1 → Pn is defined by the pushout

Y ∧Qn(f)/Σn Pn−1

Y ∧ PnCX ′ Pn

in C. For our purposes, it is not important precisely what Qn(f) is, apart from the fact that it
is a colimit of a punctured n-dimensional cube whose vertices are given by tensor products of
X, X ′ and Y . It follows from the commutative monoid axiom that Qn(f)/Σn is cofibrant in C,
see [42, Proof of 4.17] for details.
Since F sends pushouts in C to pushouts in D,

F (Y ∧Qn(f)/Σn) FPn−1

F (Y ∧ PnCX ′) FPn
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is a pushout in D. Since F̃ preserves pushouts of commutative monoids,

PDFX F̃Y

PDFX
′ F̃P

F̃ f

is a pushout in CMon(D) using the isomorphism PDF ∼= F̃PC. Applying [42, B.2] again, we
obtain a filtration F̃ Y = R0 → R1 → · · · of F̃ f : F̃ Y → F̃P where Rn−1 → Rn is defined by
the pushout

F̃ Y ∧Qn(F̃ f)/Σn Rn−1

F̃ Y ∧ PnDFX ′ Rn

in D. This filtration is compatible with the filtration of Y → P and therefore λY sends FPn to
Rn. By applying F to the pushout square shown Diagram 1 in [42, Proof of A.1] and using that
F a G is a weak monoidal Quillen pair, one argues by induction that there is a natural weak
equivalence FQn(f) ∼−→ Qn(F̃ f). Similarly, since taking orbits commutes with taking pushouts,
there is a natural weak equivalence FQn(f)/Σn

∼−→ Qn(F̃ f)/Σn by an inductive argument on
Diagram 6 in [42, Proof of A.3].
We now show by induction that λPn : FPn → Rn is a weak equivalence. The base case holds
since λP0 = λY which was a weak equivalence by assumption. Suppose that λPn−1 is a weak
equivalence. Consider the diagram

F (Y ∧Qn(f)/Σn) F̃ Y ∧Qn(F̃ f)/Σn

FPn−1 Rn−1

F (Y ∧ PnCX ′) F̃ Y ∧ PnDFX ′

FPn Rn

in which the leftmost face and the rightmost face are pushouts in D. The horizontal map
FPn−1 → Rn−1 is a weak equivalence by the inductive hypothesis.
The horizontal map F (Y ∧Qn(f)/Σn)→ F̃ Y ∧Qn(F̃ f)/Σn factors as the composite

F (Y ∧Qn(f)/Σn)→ FY ∧ FQn(f)/Σn → F̃ Y ∧ FQn(f)/Σn → F̃ Y ∧Qn(F̃ f)/Σn

where the first map is a weak equivalence since F a G is a weak monoidal Quillen pair. The map
FY → F̃ Y is a weak equivalence between cofibrant objects in D̃, and the map FQn(f)/Σn

∼−→
Qn(F̃ f)/Σn is a weak equivalence between cofibrant objects in D. Since cofibrant objects in
D are also cofibrant in D̃, both of these maps are weak equivalences between cofibrant objects
in D̃. By Ken Brown’s lemma, tensoring with cofibrant objects preserves weak equivalences
between cofibrant objects, and hence the second and third map are weak equivalences.
The horizontal map F (Y ∧ PnCX ′)→ F̃ Y ∧ PnDFX ′ is a weak equivalence since it factors as the
composite

F (Y ∧ PnCX ′)→ FY ∧ FPnCX ′ → F̃ Y ∧ F̃PnCX ′ ∼= F̃ Y ∧ PnDFX ′.
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Therefore, the map FPn → Rn is a weak equivalence by [19, 5.2.6]. Each filtration map is a
cofibration between cofibrant objects and hence by Ken Brown’s lemma and [19, 5.1.5], the map
FP → F̃P is a weak equivalence.
It remains to show that the property is preserved under the transfinite compositions used to
build relative cell complexes which again follows from [19, 5.1.5]. Therefore for any cofibrant
commutative monoid object A of C, we have that the map FA → F̃A is a weak equivalence
which concludes the proof. �
Remark 6.4. The hypothesis that C and D satisfy the commutative monoid axiom and the
monoid axiom ensures that the categories of commutative monoids inherit a right lifted model
structure [42, 3.2].
Remark 6.5. In some cases such as rational chain complexes, cofibrant commutative algebras
are cofibrant as modules, see Example 2.7. In such examples, one can take C = C̃ in the previous
theorem.
Theorem 6.6. There is a zig-zag of Quillen equivalences between the category of commutative
HQ-algebras and the category of commutative rational DGAs.

Proof. Consider the adjunctions

Modpf
HQ SpΣ(sQ-mod)pf SpΣ(Ch+

Q)pf ChQ
Z

ϕ∗NU

L D

R

where pf denotes the positive flat model structure. Recall from Corollary 4.13 that on SpΣ(sQ-mod)
and SpΣ(Ch+

Q) the positive stable and positive flat model structures are the same.
Firstly, we must justify that these are Quillen adjunctions. The adjunction D a R is Quillen
since it can be viewed as the composite of Quillen adjunctions

SpΣ(Ch+
Q)pf SpΣ(Ch+

Q) ChQ
1

1

D

R

where the second adjunction was proved to be Quillen in [39, 4.7].
For the adjunction Z a U , by Proposition 2.3 it is sufficient to check that the right adjoint U
preserves acyclic positive flat fibrations and positive flat fibrations between positive flat fibrants.
Recall that a map is an acyclic positive flat fibration if and only if it is a levelwise acyclic blended
fibration for levels n > 0, and that a map is a positive flat fibration between positive flat fibrants
if and only if it is a levelwise blended fibration for levels n > 0 between positively flat fibrant
objects. By [28, 3.2.1], an object X of SpΣ(C,K) is positively flat fibrant if and only if X is
levelwise blended fibrant for levels n > 0 and Xn → Hom(K,Xn+1) is a naive weak equivalence
for all n ≥ 0 where Hom(K,−) is the right adjoint to K ⊗−. One notes that all the conditions
that must be checked, except for the last condition, are all levelwise. Therefore, applying the
arguments given in Lemma 5.1 and to levels n > 0 verifies the necessary levelwise conditions.
The remaining condition that Xn → Hom(K,Xn+1) is a naive weak equivalence is unchanged
between the flat model structure and the positive flat model structure. This condition was also
verified in Lemma 5.1. For the L a ϕ∗N adjunction one can argue similarly, using [39, 4.4].
We now apply Theorem 6.3. For each of the categories of symmetric spectra, we take C to be
the version equipped with the positive flat model structure, and C̃ to be equipped with the flat
model structure. For the category of chain complexes, we take C = C̃. In each case, cofibrant
commutative algebras forget to flat cofibrant modules by Corollary 4.11. Hypothesis 6.1 holds
for the first and last adjunctions since they are strong symmetric monoidal Quillen equivalences
and therefore they give Quillen equivalences on the commutative monoids by Theorem 6.3.
For the L a ϕ∗N adjunction, we argue that condition (ii) in Lemma 6.2 holds. We show that for
a finite group G, if f : X → Y is an underlying cofibration in G-SpΣ(sQ-mod)pf then f is a naive
cofibration in G-SpΣ(sQ-mod)pf . A G-objectX in SpΣ(sQ-mod) consists of G×Σn-objectsX(n)
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in sQ-mod with G×Σn-equivariant structure maps. Similarly, a map ϕ : X → Y between objects
in G-SpΣ(sQ-mod) consists of a collection of G × Σn-equivariant maps ϕ(n) : X(n) → Y (n)
making the evident diagrams commute.
Write U for the forgetful functor G-SpΣ(sQ-mod) → SpΣ(sQ-mod). Suppose that f : X →
Y is an underlying cofibration in G-SpΣ(sQ-mod)pf , i.e., Uf : UX → UY is a positive flat
cofibration, and that p : A → B is a naive acyclic fibration in G-SpΣ(sQ-mod)pf , i.e., Up is
an acyclic positive flat fibration. Therefore Uf has the left lifting property with respect to
Up. It remains to argue that the lift θ : UY → UA can be made into an equivariant map
ϕ : Y → A. The lift θ : UY → UA is a collection θ(n) : Y (n) → A(n) of Σn-equivariant maps.
Since the maps are determined levelwise, one can apply the averaging method as in the proof
of Proposition 4.6 to construct G × Σn-equivariant maps ϕ(n) : Y (n) → A(n) and it follows
that ϕ is a map in G-SpΣ(sQ-mod) which is also a lift. Therefore, f is a naive cofibration
in G-SpΣ(sQ-mod). Hence by Theorem 6.3, the middle Quillen equivalence also lifts to the
commutative monoids. �

7. A symmetric monoidal equivalence for modules

In this section, we give a symmetric monoidal Quillen equivalence between the categories of
modules over a commutative HQ-algebra and a commutative DGA. We note that this result
has been assumed without proof in the literature; for more details see the introduction. We
firstly explain why this result is not an immediate corollary of the zig-zag of Quillen equivalences
ModHQ 'Q ChQ.
Let F : C � D : G be a strong symmetric monoidal Quillen equivalence and suppose that the
unit objects of C and D are cofibrant. If S is a cofibrant monoid in C, Schwede-Shipley [34,
3.12] show that F : ModS(C) � ModFS(D) : G is a Quillen equivalence. Now suppose that S
is a commutative monoid in C, which is not cofibrant as a monoid. Since S is commutative,
the category ModS(C) of modules is symmetric monoidal, with tensor product defined by the
coequalizer of the two maps

M ⊗S N = coeq(M ⊗ S ⊗N M ⊗N)

defined by the action of S on M and N .
However, a cofibrant replacement q : cS ∼−→ S as a monoid will no longer be commutative, and
hence the zig-zag of Quillen equivalences

ModS(C) ModcS(C) ModFcS(D)
q∗

−⊗cSS F

G

cannot be symmetric monoidal. We explain how to rectify this.
Before we can prove the desired symmetric monoidal Quillen equivalence, we require an abstract
lemma about lifting symmetric monoidal Quillen equivalences to the categories of modules. We
note that this first statement is a counterpart to [34, 3.12(2)]. The proof is effectively the same.

Lemma 7.1. Let

C D
F

G

be a strong symmetric monoidal Quillen equivalence and let S be a commutative monoid in
C. Suppose that C and D satisfy the monoid axiom. If F preserves all weak equivalences and
Quillen invariance holds in C and D, then

ModS ModFS
F

G
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is a strong symmetric monoidal Quillen equivalence.

Proof. Let q : cS → S be a cofibrant replacement of S as a monoid in C. As F preserves all
weak equivalences Fq : FcS → FS is a weak equivalence. Consider the diagram of left Quillen
functors

ModS ModcS

ModFS ModFcS

F

S⊗cS−

F

FS⊗FcS−

which is commutative since F is strong monoidal. By [34, 3.12(1)] the right hand vertical is a
Quillen equivalence, and by Quillen invariance the horizontals are Quillen equivalences. Hence
by 2-out-of-3 the left vertical is a Quillen equivalence as required. As a functor between the
module categories, F is strong symmetric monoidal since the tensor product in the module
category ModS is defined by a coequalizer which F preserves. Therefore

ModS ModFS
F

G

is a strong symmetric monoidal Quillen equivalence. �

We recall from Shipley [39, 1.2] the zig-zag of natural weak equivalences between Zc and α∗Q̃
where α is the ring map HQ → Q̃HQ induced by the unit of the monad structure on Q̃. Let
β : Q̃HQ→ HQ be the ring map induced by the multiplication map of the monad structure.
We have Zc = β∗Q̃c ∼= α∗β∗β∗Q̃c since βα = 1. There is then a natural map α∗Q̃c→ α∗β∗β∗Q̃c
arising from the unit of the β∗ a β∗ adjunction. This is a weak equivalence since Q̃ preserves
cofibrant objects, the β∗ a β∗ adjunction is a Quillen equivalence and α∗ preserves all weak
equivalences. Finally there is a natural map α∗Q̃c → α∗Q̃ which is a weak equivalence as α∗
and Q̃ preserve all weak equivalences. We can now apply the previous lemma to obtain the
desired statement.

Theorem 7.2. Let A be a commutative HQ-algebra. There are zig-zags of weak symmetric
monoidal Quillen equivalences

Modstable
A 'Q ModΘA and Modflat

A 'Q ModΘA

where ΘA = Dϕ∗Nα∗Q̃A is a commutative DGA.

Proof. The proof for each part of the theorem follows the same method. Namely, we apply [34,
3.12(2)] together with Lemma 7.1 to the underlying Quillen equivalences given by Shipley [39]
in the stable case, and given by Theorem 1.1 in the flat case. Since the weak equivalences in
both the stable model structure and the flat model structures are the same, the following proof
applies in both cases.
The first step is the adjunction

ModA(ModHQ) ModQ̃A

(
ModQ̃HQ

)
.

Q̃

U

Since Q̃ preserves all weak equivalences, this is a strong symmetric monoidal Quillen adjunction
by Lemma 7.1.
Recall that there is a ring map α : HQ → Q̃HQ. Since α∗ is lax symmetric monoidal it gives
rise to a functor

ModQ̃A

(
ModQ̃HQ

)
α∗−→ Mod

α∗Q̃A(SpΣ(sQ-mod)).
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It follows from [34, §3.3] that the left adjoint to α∗ at the level of modules, is given by αQ̃A
∗ (M) =

Q̃A⊗
α∗α∗Q̃A

α∗M . We claim that αQ̃A
∗ is strong monoidal. As α∗ preserves colimits and is strong

monoidal, we have
α∗(M ⊗α∗Q̃A N) = α∗coeq(M ⊗ α∗Q̃A⊗N ⇒M ⊗N)

∼= coeq(α∗M ⊗ α∗α∗Q̃A⊗ α∗N ⇒ α∗M ⊗ α∗N)
= α∗M ⊗α∗α∗Q̃A α∗N.

From this, one sees that

αQ̃A
∗ (M ⊗

α∗Q̃A N) ∼= αQ̃A
∗ (M)⊗Q̃A α

Q̃A
∗ (N)

and hence αQ̃A
∗ is strong symmetric monoidal. Since α∗ preserves all weak equivalences, it

follows from [34, 3.12(2)] that

ModQ̃A

(
ModQ̃HQ

)
Mod

α∗Q̃A(SpΣ(sQ-mod))
α∗

αQ̃A
∗

is a strong symmetric monoidal Quillen equivalence.
The next step is the passage along the Dold-Kan type equivalence. Recall that applying the
normalization functor levelwise gives a lax monoidal functor

SpΣ(sQ-mod)→ ModN
(
(Ch+

Q)Σ
)

where N = N(Sym(Q̃S1), and that there is a ring map ϕ : Sym(Q[1]) → N . The composite
ϕ∗N : SpΣ(sQ-mod)→ SpΣ(Ch+

Q) is lax monoidal.

Let S be a commutative monoid in SpΣ(sQ-mod). We now show that the induced functor
ϕ∗N : ModS(SpΣ(sQ-mod))→ Modϕ∗NS(SpΣ(Ch+

Q))
on the categories of modules is lax symmetric monoidal. Recall that colimits in categories of
modules are calculated in the underlying category of symmetric spectra where they are computed
levelwise. Therefore, N preserves colimits as it is an equivalence of categories sQ-mod→ Ch+

Q.
The restriction of scalars ϕ∗ also preserves colimits since it is left adjoint to the coextension of
scalars functor. Therefore we have the following map

ϕ∗NA⊗ϕ∗NS ϕ∗NB = coeq(ϕ∗NA⊗ ϕ∗NS ⊗ ϕ∗NB ⇒ ϕ∗NA⊗ ϕ∗NB)
→ coeq(ϕ∗N(A⊗ S ⊗B)⇒ ϕ∗N(A⊗B))
∼= ϕ∗N(coeq(A⊗ S ⊗B ⇒ A⊗B)
= ϕ∗N(A⊗S B)

giving ϕ∗N a lax symmetric monoidal structure as a functor between the categories of modules.
We now must show that LS a ϕ∗N is a weak monoidal Quillen pair, where LS denotes the left
adjoint of ϕ∗N . We use the criteria [34, 3.17]. Since the monoidal unit ϕ∗NS is cofibrant in
Modϕ∗NS the first condition is that LSϕ∗NS → S is a weak equivalence. Since ϕ∗N preserves
all weak equivalences [39, 4.4] and ϕ∗NS is cofibrant, this map is the derived counit of the
Quillen equivalence LS a ϕ∗N and as such is a weak equivalence. The second condition holds
since ϕ∗NS is a generator for the homotopy category of Modϕ∗NS .

By taking S = α∗Q̃A in the previous discussion, the adjunction

Mod
α∗Q̃A(SpΣ(sQ-mod)) Mod

ϕ∗Nα∗Q̃A(SpΣ(Ch+
Q))

ϕ∗N

Lα
∗Q̃A

is a weak symmetric monoidal Quillen adjunction. Since ϕ∗N preserves all weak equiva-
lences [39, 4.4], it follows from [34, 3.12(2)] that this is moreover a weak symmetric monoidal
Quillen equivalence.
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The final step in the zig-zag is the adjunction

Mod
ϕ∗Nα∗Q̃A(SpΣ(Ch+

Q)) ModΘA(ChQ)
D

R

which is a strong symmetric monoidal Quillen equivalence by Lemma 7.1, since D preserves all
weak equivalences rationally [39, 4.8]. �
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CHAPTER 4

Algebraic models of change of groups functors for (co)free
rational equivariant spectra
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ALGEBRAIC MODELS OF CHANGE OF GROUPS FUNCTORS IN
(CO)FREE RATIONAL EQUIVARIANT SPECTRA

JORDAN WILLIAMSON

Abstract. Greenlees-Shipley [19, 21] and Pol and the author [36] have given an algebraic model
for rational (co)free equivariant spectra. We give a model categorical argument showing that
the induction-restriction-coinduction functors between categories of (co)free rational equivariant
spectra correspond to functors between the algebraic models in the case of connected compact
Lie groups.
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1. Introduction

1.1. Rational equivariant cohomology theories. Rational equivariant cohomology theories
are represented by objects called rational G-spectra. Greenlees [12] conjectured that for each
compact Lie group G, there is an abelian category A(G) and a zig-zag of Quillen equivalences

SpG 'Q dA(G)

between rational G-spectra and differential objects in A(G). The conjecture has been proved in
many cases: G finite [4], G = SO(2) [39], G = O(2) [5], G = SO(3) [29] and G a torus of any
rank [22].
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Rather than focusing on a particular group G, we are interested in certain classes of rational
G-spectra: those of free and cofree G-spectra. These are the G-spectra for which the natural
map EG+ ∧X → X or the natural map X → F (EG+, X) are equivalences respectively. There
are several reasons why these objects are of particular interest. Firstly, they represent equivariant
cohomology theories on free G-spaces. In addition, these cases provide insight into the general
case, where the algebraic models are built from contributions at each closed subgroup, where the
model resembles that of the free case. Greenlees-Shipley [19, 21] constructed an algebraic model
for free G-spectra and Pol and the author have given an algebraic model for cofree G-spectra [36],
where G is any compact Lie group.

1.2. Change of groups. The inclusion of a subgroup i : H → G in a compact Lie group
gives rise to an adjoint triple. The restriction functor i∗ : SpG → SpH has both a left adjoint
i∗ = G+ ∧H − called induction and a right adjoint i! = FH(G+,−) called coinduction. Moreover
the adjoint triple

SpG SpHi∗
i∗

i!

is a Quillen adjoint triple. In other words, both adjunctions are Quillen with respect to the
same model structures. Such a situation is a rare occurrence since it forces the middle functor
to be both left and right Quillen. In particular, such a functor must preserve all of the classes of
maps in the model structure, including the weak equivalences.
In a setting where we have algebraic models for G-spectra and H-spectra, it is a natural
question to ask what functors between the algebraic models correspond to this adjoint triple.
Diagramatically, we want to find functors

SpG dA(G)

SpH dA(H)

'Q

i∗ ?

'Q

i∗ i! ? ?

which are algebraic counterparts of the functors in topology. We emphasise that our approach
to this is model categorical; we view the functors as Quillen functors and we want to show that
there are natural maps at the point-set level which realise the correspondence of functors. At
the homotopy category level, the correspondence of functors has been studied by Greenlees-
Shipley [19] and Greenlees [14] in the free case. We also note that in the non-free case,
Greenlees [13] has given an account of the correspondence of change of groups functors between
SO(2)-spectra and H-spectra for H a subgroup of SO(2), again at the derived level.
If G is connected, the algebraic model for free G-spectra is I-power torsion modules over the
polynomial ring H∗BG [19, 1.1] where I is the augmentation ideal of H∗BG. The algebraic
model for cofree G-spectra is L-complete modules over H∗BG [36, 8.4], where a H∗BG-module
is said to be L-complete if the natural map M → LI0M is an isomorphism, where LI0 is the
zeroth left derived functor of the I-adic completion. The inclusion i : H → G gives rise to a ring
map θ : H∗BG → H∗BH, and therefore an adjoint triple between the categories of modules.
The adjoint triple

ModH∗BG ModH∗BH
θ∗

θ!
θ∗

is given by the restriction of scalars θ∗, extension of scalars θ∗ = H∗BH⊗H∗BG− and coextension
of scalars θ! = HomH∗BG(H∗BH,−).
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Despite this, one notices that it is not routine to write down the algebraic models as there is a
mismatch in directions. In topology, two of the functors go from H-spectra to G-spectra, but in
algebra only one functor goes in this direction. Therefore, one must construct extra functors in
algebra to model the adjoint triple in topology.
Before we can state the main theorem of this paper, we must explain what we mean by a
correspondence of Quillen functors. We do this by considering the following example. The
notation we have chosen is suggestive of the special case we have in mind. In particular, we
are not assuming the existence of any group actions on the model categories in this general
framework. Suppose that we have a diagram

CG DG EG

CH DH EH

FG

L

UG U ′G

F ′G

L′

FH

R

UH U ′H

F ′H
R′

of model categories where each of the horizontal adjunctions is a Quillen equivalence, and (L,R)
and (L′, R′) are Quillen adjunctions. We say that (L′, R′) corresponds to (L,R) if there exists a
Quillen adjunction L′′ : DG � DH : R′′ together with natural weak equivalences FHL ' L′′FG
and L′′F ′G ' F ′HL

′ on cofibrant objects. Such a correspondence of Quillen adjunctions gives
natural isomorphisms of derived functors

RU ′H ◦ LFH ◦ LL ∼= LL′ ◦ RU ′G ◦ LFG
and

RU ′G ◦ LFG ◦ RR ∼= RR′ ◦ RU ′H ◦ LFH
using the theory of mates. For more details, see Section 4. In a similar way one can define
correspondences of Quillen adjunctions along zig-zags of Quillen equivalences of any length. We
note that this is a particularly structured form of correspondence since the intermediate steps
are required to be Quillen adjunctions too.
We can now state the main theorem of this paper. Recall that the restriction functor i∗ is both
left and right Quillen. Therefore, there are two functors which correspond to it in algebra; one
as a left Quillen functor and one as a right Quillen functor. This can be seen in the diagram
below where there are four functors in algebra rather than the three in topology.

Theorem 1.1. Let i : H → G be the inclusion of a connected subgroup into a connected compact
Lie group. We have the following correspondence of Quillen functors

free G-spectra derived torsion H∗BG-modules

free H-spectra derived torsion QH∗BH-modules

'Q

i∗ Σ−aθ! θ∗

'Q

i∗ i! Σaθ∗ θ∗

where a = dim(G/H) and QH∗BH is a cofibrant replacement of H∗BH as a commutative
H∗BG-algebra. In other words, (i∗, i∗) corresponds to (Σaθ∗,Σ−aθ!) and (i∗, i!) corresponds to
(θ∗, θ∗). Similarly, when the induction, forgetful functor and coinduction functors are viewed as
functors between the categories of cofree spectra, they correspond to the same functors as in the
free case, now viewed as functors between the categories of derived complete modules.

Remark 1.2. The functors θ∗ and Σ−aθ! are not isomorphic in general at the model categorical
level. However, at the derived level this is true. For more details, see Corollary 3.11.

Remark 1.3. It would be interesting to investigate whether the natural isomorphism Lθ∗ ∼=
RΣ−aθ! in algebra corresponds to the natural isomorphism Li∗ ∼= Ri∗ in topology. However,
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since the natural isomorphism Lθ∗ ∼= RΣ−aθ! is a zig-zag of equivalences due to the relative
Gorenstein condition, it is not clear how to approach this at a model categorical level. For more
details on these natural isomorphisms see Section 3. We also note that the existing applications
do not require this additional correspondence.

If the ranks of G and H are equal there is a stronger statement, see Remark 10.5 and Proposi-
tion 10.3. In this case Remark 1.2 does not apply, and the restriction of scalars is both left and
right adjoint (without a shift) to the extension of scalars along the ring map θ : H∗BG→ H∗BH.

Theorem 1.4. Let i : H → G be the inclusion of a connected subgroup into a connected compact
Lie group and assume that rkG = rkH. Then we have the correspondence of functors

free G-spectra I-power torsion H∗BG-modules

free H-spectra J-power torsion H∗BH-modules

'Q

i∗ θ∗

'Q

i∗ i! θ∗ θ∗

where I and J are the augmentation ideals of H∗BG and H∗BH respectively. Similarly, when
the induction, forgetful functor and coinduction are viewed as functors between the categories of
cofree spectra, they correspond to θ∗, θ∗ and θ∗ respectively, between the categories of L-complete
modules.

1.3. Summary of the method. The first part of the paper is dedicated to producing the
required setup to prove the main theorem. In particular, the results are not restricted to this
example, and we expect that they can be applied in other cases, such as the disconnected case
or the non-free case. We consider diagrams of model categories and Quillen functors of the form

CG DG

CH DH

θ∗θ(∗)

FG

ϕ∗ϕ(∗)

UG

θ∗θ†

FH

ϕ∗ϕ†

UH

where Rθ(∗) ∼= Lθ∗ and Rϕ(∗) ∼= Lϕ∗, and FG a UG and FH a UH are Quillen equivalences.
As described above, in this general framework the notation is purely suggestive and does not
indicate the existence of any group actions.
This encompasses all of the cases that arise in our proof of the correspondence for (co)free
spectra and connected groups. There are eight squares of derived functors which one would like
to show commute:

(1) Lϕ∗ ◦ LFG ∼= LFH ◦ Lθ∗,
(2) Rθ∗ ◦ RUH ∼= RUG ◦ Rϕ∗,
(3) LFG ◦ Lθ† ∼= Lϕ† ◦ LFH ,
(4) Rθ(∗) ◦ RUG ∼= RUH ◦ Rϕ(∗),
(5) Lθ† ◦ RUH ∼= RUG ◦ Lϕ†,
(6) LFG ◦ Rθ∗ ∼= Rϕ∗ ◦ LFH ,
(7) Rϕ(∗) ◦ LFG ∼= LFH ◦ Rθ(∗),
(8) Lθ∗ ◦ RUG ∼= RUH ◦ Lϕ∗.

By virtue of the natural isomorphisms Rθ(∗) ∼= Lθ∗ and Rϕ(∗) ∼= Lϕ∗, we note that (7) is
equivalent to (1) and (8) is equivalent to (4). Since the functors in (1) and (4) have the same
handedness, these conditions are the ones which are more natural to check. Therefore, from now
on we refer to six derived squares, rather than eight.
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We show that instead of checking that all six squares commute, it is sufficient to prove that only
two do, see Theorem 4.4. Moreover, we check these conditions at a model categorical level; that
is, we construct natural weak equivalences which realize the isomorphisms of derived functors.
We then verify that these squares do commute in many general settings. In particular, we treat
the cases where the horizontals are strong monoidal Quillen equivalences (Proposition 4.6), weak
monoidal Quillen equivalences (Proposition 4.9) and Quillen equivalences arising from Quillen
invariance of modules (Proposition 4.7), and the vertical functors are given by change of rings
adjunctions. The proof of our main theorem then reduces to showing that the zig-zag of Quillen
equivalences between (co)free equivariant spectra and their algebraic models satisfy the relevant
hypotheses. This requires the construction of ten different squares of the form shown above
which satisfy the relevant hypotheses. See Section 5.2 for a more comprehensive discussion.

1.4. Conventions. We follow the convention of writing the left adjoint on the left in an adjoint
pair displayed vertically, and on top in an adjoint pair displayed horizontally. In the second
part of this paper, everything is rationalized without comment. In particular, H∗(−) denotes
the (unreduced) cohomology with rational coefficients. We write q : QX → X for cofibrant
replacement. All monoidal model categories are assumed to be symmetric monoidal as in [37].
We use the standard convention that ‘subgroup’ means ‘closed subgroup’.

Acknowledgements. I am grateful to John Greenlees for his comments on this paper and
many helpful discussions. I would also like to thank Brooke Shipley and Sarah Whitehouse for
many useful conversations and suggestions.

Part 1. The formal setup

2. Background

In this section we provide the necessary background. In particular, we recap flat model structures
and their importance for our method. We also recall key facts about monoidal structures and
Quillen pairs from [38].

2.1. Flat model structures. We will always use the model structure on (commutative) algebras
and modules which is right lifted from the underlying category along the forgetful functor,
meaning that the weak equivalences and fibrations are the maps which are weak equivalences
and fibrations respectively in the underlying category. We write CAlgS(C) and ModS(C) for the
categories of commutative S-algebras and S-modules respectively. If the underlying category is
clear, we will often omit it from the notation.

Hypothesis 2.1. We shall always assume that the required model structures on (commutative)
algebras and modules exist; in particular, we implicitly assume that all our model categories are
cofibrantly generated. For general existence theorems see [37] and [44]. See Examples 2.2 for
more details on the existence of these model structures in our cases of interest.

We next record the key examples for this paper.

Examples 2.2. There is a right lifted model structure on modules in each of the following cases:

• dg-modules over a DGA [6, 3.3];
• modules over a ring spectrum in the stable model structure [31, III.7.6] and flat model
structure, see [40, 2.6] and [35, 3.2.1];
• modules over a ring G-spectrum in the stable model structure [30, III.7.6] and flat model
structure [43, 2.3.33].

Similarly, there is a right lifted model structure on commutative algebras in each of the following
cases:
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• commutative DGAs over a field of characteristic zero [44, §5.1];
• commutative algebra spectra in the positive stable model structure and in the positive
flat model structure, see [40, 3.2] and [35, 4.1];
• equivariant commutative algebra spectra in the positive stable model structure and in
the positive flat model structure, see [30, III.8.1] and [43, 2.3.40].

Definition 2.3. Let C be a monoidal model category and suppose that there exists another
model structure C̃ on the same underlying category as C, which has the same weak equivalences
and for which the identity functor C̃→ C is left Quillen. We say that (C, C̃) is convenient if the
forgetful functor CAlgS(C̃)→ ModS(C) preserves cofibrant objects, for all commutative monoids
S ∈ C.

The following lemma summarizes the key feature of a pair (C, C̃) of convenient model structures.

Lemma 2.4. Suppose that (C, C̃) is convenient and let θ : S → R be a map of commutative
monoids in C. A cofibrant replacement of R as a commutative S-algebra in the model structure
right lifted from C̃ is cofibrant as an S-module in the model structure right lifted from C.

Before turning to the examples, we describe the importance of this property. The restriction of
scalars functor along a map of commutative monoids θ : S → R in a monoidal model category C

is always right Quillen, but it is not left Quillen in general. If the monoidal unit of the underlying
category is cofibrant, then restriction of scalars is left Quillen if and only if R is cofibrant as an
S-module, see Proposition 3.8. Since a key step in the proof of algebraic models is a formality
argument based on the fact that polynomial rings are intrinsically formal as commutative DGAs,
one needs to be able to replace R in such a way that it is still a commutative S-algebra, and
is cofibrant as an S-module. If (C, C̃) is convenient, then this is possible by replacing R as a
commutative S-algebra in the model structure right lifted from C̃.
The pair of model structures (stable,positive stable) on spectra is not convenient. To rectify
this, Shipley [40] constructs the flat and positive flat model structures on symmetric spectra
which are convenient. This has since been generalised by Stolz [43] to equivariant spectra and
by Pavlov-Scholbach [35] to symmetric spectra in general model categories. It is important to
note that in the flat model structures on (equivariant) spectra, the weak equivalences are the
same as in the stable model structure. Therefore for each of these flat model structures, the
identity functor is a right Quillen equivalence from it to the stable model structure.
In summary, we have the following crucial result.

Theorem 2.5. The following pairs of model categories are all convenient in the sense of
Definition 2.3:

• (projective, projective) on chain complexes over a field of characteristic zero;
• (flat, positive flat) on symmetric spectra;
• (flat, positive flat) on symmetric spectra in simplicial Q-modules;
• (flat, positive flat) on symmetric spectra in non-negatively graded chain complexes of
Q-modules;
• (flat, positive flat) on equivariant spectra.

Proof. The proofs can be found in [44, §5.1], [40, 4.1], [35, 4.4] together with [45, 4.11], and [43,
2.3.40] respectively. �

2.2. Flat cofibrants. In a monoidal model category, if X is cofibrant, then X⊗− is left Quillen
and hence preserves weak equivalences between cofibrant objects by Ken Brown’s lemma. It is
often convenient to work with monoidal model categories which satisfy something stronger.

Definition 2.6. We say that cofibrants are flat in a monoidal model category, if for every
cofibrant object X, the functor X ⊗− preserves all weak equivalences.
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This is satisfied in all of the model categories of interest in this paper. In particular it holds in
the following examples:

• Projective model structure on dg-modules: The cofibrant objects in this model category
are the semi-projective modules P , and these have the property that P ⊗− preserves
quasiisomorphisms [2, 11.1.6, 11.2.1].
• Equivariant spectra: Cofibrants are flat in both the stable and flat model structure on
G-spectra and in modules over a ring G-spectrum, see [30, 7.3, 7.7] and [43, 2.3.40].
• Symmetric spectra: Cofibrant objects are flat in both the stable and flat model structure
on symmetric spectra (in general model categories) and in modules over a ring spectrum,
see [27, 5.3.10] and [35, 3.5.1].

2.3. Lifting Quillen adjunctions to module categories. Recall that a Quillen adjunction
F : C � D : U between monoidal model categories is said to be a weak monoidal Quillen
adjunction if the right adjoint U is lax symmetric monoidal (which gives the left adjoint F an
oplax symmetric monoidal structure) and the following conditions hold:

(1) for cofibrant A and B in C, the oplax monoidal structure map ϕ : F (A⊗B)→ FA⊗FB
is a weak equivalence in D;

(2) for a cofibrant replacement c1C of the unit in C, the map F (c1C) → 1D is a weak
equivalence in D.

If moreover the oplax monoidal structure maps are isomorphisms, we say that it is a strong
monoidal Quillen adjunction.
Throughout the paper we will make use of categories of modules and how Quillen pairs are lifted
to the categories of modules, for more detail see [38, §3.3]. If F : C � D : U is a weak monoidal
Quillen adjunction then U preserves commutative monoids. Let S be a commutative monoid
in D. The adjoint lifting theorem [7, 4.5.6] shows that the Quillen adjunction lifts to a weak
monoidal Quillen adjunction

ModUS(C) ModS(D).
FS

U

If the original pair (F,U) is a strong monoidal Quillen pair, then we have the formula FSM =
S ⊗FUS FM and the lifted Quillen pair (FS , U) is strong monoidal. For example, this arises in
the case of the fixed points-inflation adjunction, see Section 7.
In addition, when (F,U) is a strong monoidal Quillen pair, F preserves commutative monoids. It
follows that for S a commutative monoid in C, the adjunction lifts to a strong monoidal Quillen
adjunction

ModS(C) ModFS(D).
F

U

3. Functors between categories of modules

3.1. The derived story. Let R and S be commutative ring spectra (for concreteness, commu-
tative monoids in the category of orthogonal spectra) with a ring map θ : S → R. This ring map
induces a restriction of scalars functor θ∗ : ModR → ModS and this has left and right adjoints.
If R is (derived) small as an S-module, i.e., the natural map

⊕[R,Mi]S → [R,⊕Mi]S

is an isomorphism for any set of S-modules {Mi}, then there are further adjoints (at least in the
derived categories).
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We write DR for the relative dualizing complex RHomS(R,S), which is an (S,R)-bimodule.
We begin with a discussion in the derived categories. Ultimately, we want to lift these derived
functors to Quillen functors. In this subsection, all functors are implicitly derived.
There are functors

D(R) D(S)
θ∗

θ†

θ!

θ∗

θ(∗)

defined as follows, where D(S) denotes the derived category of S-modules.

(1) Twisted extension of scalars: θ†(M) = DR⊗RM
(2) Twisted coextension of scalars: θ(∗)(N) = HomS(DR,N)
(3) Extension of scalars: θ∗(N) = R⊗S N
(4) Restriction of scalars: θ∗(M) is the S-module with underlying object M and action

defined by the composite S ⊗M → R⊗M →M
(5) Coextension of scalars: θ!(N) = HomS(R,N)

Since DR is an (S,R)-bimodule, we have an adjoint pair θ† a θ(∗). In addition, we have the
adjoint triple θ∗ a θ∗ a θ!.
We always require R to be small as an S-module. This can often be checked using the following
result.

Proposition 3.1 ([15, 10.2]). Let S be a ring spectrum such that π∗S is regular. Then an
S-module M is small if and only if π∗M is a finitely generated π∗S-module.

By Venkov’s theorem, H∗BH is a finitely generated H∗BG-module. Since H∗BG is polynomial,
it is regular. Therefore, any map θ : S → R of ring spectra with π∗S = H∗BG and π∗R = H∗BH
has the property that R is a small S-module. The majority of ring maps that we use in this
paper fall into this category.

3.2. Relatively Gorenstein maps. Throughout this paper we will rely upon a helpful rela-
tionship between the dual of an S-algebra and itself. In particular, this will allow us to show
that the derived functors Lθ∗ and Rθ! are isomorphic up to a shift.

Definition 3.2. Let C be a stable, monoidal model category. A map θ : S → R of commutative
monoids in C is relatively Gorenstein of shift a if DR ' ΣaR as R-modules, where D =
RHomS(−, S) is the derived hom of S-modules.

All the relatively Gorenstein maps that we use will arise from one particular example. Whilst we
do not state the theorem in its full generality, we note that the fact that we work with connected
compact Lie groups is vital. We write DBG+ = F (BG+, S0) and note that this is a special
case of the cochain spectrum C∗(BG, k) = F (BG+, Hk) for k = Q, since the rational sphere
spectrum is equivalent to HQ.

Theorem 3.3 ([16, 6.1]). Let H be a subgroup of G where both H and G are connected compact
Lie groups. The ring map θ : DBG+ → DBH+ is relatively Gorenstein of shift d, where d is the
codimension of H in G.

We now prove that relatively Gorenstein maps are preserved by monoidal Quillen equivalences.
Let F : C � D : U be a weak monoidal Quillen equivalence. Under certain hypotheses, given a
monoid S′ ∈ D, there is an induced Quillen equivalence ModS′(D) 'Q ModUS′(C); see [38, 3.12].
There is an analogous result where one begins with a monoid in C. Recall that whilst U passes
to a functor of the module categories (as it is lax monoidal), the left adjoint of U will not be F
anymore in general.
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Remark 3.4. As the Gorenstein condition is a derived condition, we may assume that objects
are suitably (co)fibrant in order to satisfy the hypotheses of [38, 3.12].

Proposition 3.5.

(1) Let F : C � D : U be a strong monoidal Quillen equivalence between stable, monoidal
model categories and let θ : S → R be a relatively Gorenstein map of shift a of commutative
monoids in C. Then Fθ : FS → FR is relatively Gorenstein of shift a.

(2) Let F : C � D : U be a weak monoidal Quillen equivalence between stable, monoidal model
categories and let ϕ : S′ → R′ be a relatively Gorenstein map of shift a of commutative
monoids in D. Then Uϕ : US′ → UR′ is relatively Gorenstein of shift a.

Proof. Throughout this proof all functors are derived, however we abuse notation and fail to
record this in the notation. For the first statement we have

DFR ' FUDFR = FUHomFS(FR,FS) ' FHomS(R,UFS) ' FHomS(R,S) ' ΣaFR

since the Quillen equivalence provides equivalences of derived categories D(S) ' D(FS) and
D(R) ' D(FR), see Remark 3.4. This shows that Fθ is relatively Gorenstein of shift a.
Similarly we have

DUR′ = HomUS′(UR′, US′) ' UHomS′(FS
′
UR′, S′) ' UHomS′(R′, S′) ' ΣaUR′

where FS′ : D(US′)→ D(S′) is the left adjoint to U . This shows that Uθ is relatively Gorenstein
of shift a. �

The previous proposition shows that all of the ring maps we consider in the second part of
this paper are relatively Gorenstein of the same shift, since they all arise via monoidal Quillen
equivalences from the ring map DBG+ → DBH+.

3.3. Quillen functors. In this section we show how to give Quillen functors whose derived
functors present the functors of interest. One can define the extension, restriction and coextension
of scalars functors at the model categorical level. However, defining Quillen functors whose
derived functors are the twisted extension and twisted coextension of scalars is more complex,
due to the fact that the (underived) dual has poor homotopical properties.
Let θ : S → R be a map of monoids in a monoidal model category. Recall that unless otherwise
stated, we use the projective model structure on modules in which the weak equivalences and
fibrations are created by the forgetful functor to the underlying category.

Proposition 3.6. The adjoint pair θ∗ a θ∗ is Quillen.

Proof. It is immediate that θ∗ preserves weak equivalences and fibrations since they are tested
in the underlying model category. �

In order to discuss the θ∗ a θ! adjunction we first need a lemma about enriched model categories.
We refer the reader to [23, §4.3] for definitions and basic properties of enriched model categories.
Recall that we implicitly assume that our model categories are cofibrantly generated, see
Hypothesis 2.1.

Lemma 3.7. Let C be a monoidal model category and let S be a monoid in C. Then ModS is a
C-enriched model category.

Proof. By cofibrant generation, it suffices to check the required condition on generating (acyclic)
cofibrations. The generating cofibrations (resp. acyclic cofibrations) of ModS are of the form
S∧f where f is a generating cofibration (resp. acyclic cofibration) for C. Therefore, it suffices to
show that for a cofibration i : X → Y in C and a generating cofibration S ∧ f : S ∧M → S ∧N
of ModS , that i�(S ∧ f) is a cofibration in ModS which is acyclic if either i or f is.
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We have that i�(S ∧ f) = S ∧ (i�f). As C is a monoidal model category, i�f is a cofibration in
C which is acyclic if either i or f is. Since S ∧ − is left Quillen, i�(S ∧ f) is a cofibration in
ModS which is acyclic if either i or f is. �

Proposition 3.8. Let C be a monoidal model category with cofibrant unit. The adjoint pair
θ∗ a θ! is Quillen if and only if θ∗R is cofibrant as an S-module.

Proof. As ModS is an C-enriched model category by Lemma 3.7, it follows by lifting properties
that for i : M → N a cofibration in ModS and p : E → B a fibration in ModS that

HomS(N,E)→ HomS(M,E)×HomS(M,B) HomS(N,B)

is a fibration which is acyclic if either i or p is. Taking i to be the map ∗ → θ∗R shows
that HomS(R,−) is right Quillen if θ∗R is cofibrant as an S-module, as fibrations and weak
equivalences are determined in C.
Conversely, as 1 is cofibrant in C we have that R is cofibrant as an R-module. Therefore if θ∗ is
left Quillen, then θ∗R is a cofibrant S-module. �

The (underived) dual HomS(R,S) behaves badly in general at the model category level. For
example, consider the ring map θ : Q[c]→ Q where |c| = −2. This example is pertinent since it
is the map H∗BSO(2)→ H∗B1. Then HomQ[c](Q,Q[c]) = 0 but RHomQ[c](Q,Q[c]) ' ΣQ. We
now explain how to resolve these issues and produce Quillen functors which model θ† and θ(∗).

Write D for the functor RHomS(−, S). There is a natural morphism ψM,N : DM ⊗L
S N →

RHomS(M,N) which is defined to be the transpose of the natural map

DM ⊗L
S N ⊗L

S M
∼= DM ⊗L

S M ⊗L
S N

ev⊗1−−−→ S ⊗L
S N
∼= N.

There is also a natural morphism ϕM : M → D2M defined to be the transpose of the evaluation
map

DM ⊗L
S M

ev−→ S.

The following result is well known. Its proof can be found in [26, 2.1.3] for instance. Note that
we implicitly assume that our categories are generated by small objects (i.e., are algebraic stable
homotopy categories in the sense of [26]).

Lemma 3.9.

(1) The natural map ψM,N : DM ⊗L
S N → RHomS(M,N) is an equivalence if M is a small

S-module.
(2) The natural map ϕM : M → D2M is an equivalence if M is a small S-module.

Proposition 3.10. Let θ : S → R be a map of commutative monoids such that R is a small
S-module. There is a natural isomorphism of derived functors Lθ∗

∼−→ Rθ(∗).

Proof. Note that since R is a small S-module by assumption, we have that DR is also a small
S-module. We define α : Lθ∗ ⇒ Rθ(∗) to be the composite

Lθ∗(N) = R⊗L
S N

ϕR⊗1−−−→ D2R⊗L
S N

ψDR,N−−−−→ RHomS(DR,N) = Rθ(∗)(N).

By Lemma 3.9, α is an equivalence. �

The following result summarises the key points of this section.

Corollary 3.11. Let θ : S → R be a relatively Gorenstein map of shift a, such that R is a small
S-module and R is cofibrant as an S-module. Then θ∗ a θ∗ and θ∗ a θ! are Quillen pairs and
there are natural isomorphisms of derived functors Lθ∗ ∼= Σ−aRθ! and Lθ∗ ∼= Rθ∗ ∼= Σ−aLθ†.
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Proof. The fact that θ∗ a θ∗ and θ∗ a θ! are Quillen pairs is Propositions 3.6 and 3.8. By
Proposition 3.10 we have a natural isomorphism Lθ∗ ∼= Rθ(∗). Then

Rθ(∗)M = RHomS(DR,M) ∼= RHomS(ΣaR,M) ∼= Σ−aRθ!M.

Since θ∗ is both left and right Quillen, Lθ∗ ∼= Rθ∗. Therefore the other natural isomorphism
follows by adjunction. �

4. Comparing Quillen functors

In this section, we set up the general techniques for showing when Quillen functors correspond.

4.1. The calculus of mates. We firstly recap the calculus of mates, see [28, §2] for a compre-
hensive account.
Consider the diagram

CG DG

CH DH

FG

L

UG
L′

FH

UH

in which FG a UG and FH a UH are adjunctions and L and L′ are functors (not necessarily
left adjoints). As stated in the introduction, in this general framework the notation is only
suggestive and does not indicate the existence of any group actions.
Given a natural transformation α : FHL⇒ L′FG, one can define its mate α : LUG ⇒ UHL

′ to
be the natural transformation

LUG
ηLUG====⇒ UHFHLUG

UHαUG=====⇒ UHL
′FGUG

UHL
′ε====⇒ UHL

′.

Conversely, given β : LUG ⇒ UHL
′ one defines its mate β : FHL⇒ L′FG by the composite

FHL
FHLη====⇒ FHLUGFG

FHβFG=====⇒ FHUHL
′FG

εL′FG====⇒ L′FG.

These two operations are inverse to one another by the triangle identities and therefore give a
bijection between the two kinds of natural transformation.
In general, the mate of a natural isomorphism need not be a natural isomorphism. However,
this does hold in certain cases.

Proposition 4.1. If FG a UG and FH a UH are adjoint equivalences, then a natural transfor-
mation FHL⇒ L′FG is a natural isomorphism if and only if its mate is.

Proof. Since FG a UG and FH a UH are adjoint equivalences, the units and counits are natural
isomorphisms. The result then follows by the 2-out-of-3 property of isomorphisms. �

Unfortunately, there is no analogous result at the level of model categories, saying that a map is
a natural weak equivalence if and only if its mate is. However, the mates correspondence does
give us a way to attack questions about the commutativity of derived functors.
Note that natural weak equivalences of Quillen functors of the same handedness pass to natural
isomorphisms of the derived functors by virtue of the natural isomorphism L(F ◦F ′) ∼= LF ◦LF ′.
However, a natural weak equivalence between composites of left and right Quillen functors
does not imply that the composites of derived functors are naturally isomorphic. An explicit
counterexample can be found in [33, 0.0.1].
We give a short overview of how we will use the machinery of mates. Suppose we are given a
square
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CG DG

CH DH

FG

L

UG
L′

FH

UH

in which L and L′ are left Quillen functors and FG a UG and FH a UH are Quillen equivalences.
Suppose we want to know that LL ◦ RUG ∼= RUH ◦ LL′. Instead we can check that there is
a natural weak equivalence L′FG ' FHL on cofibrant objects, and then since they have the
same handedness, we have a natural isomorphism LL′ ◦ LFG ∼= LFH ◦ LL. Since the Quillen
equivalences will descend to adjoint equivalences at the level of derived categories, it follows from
Proposition 4.1 that taking mates gives the desired natural isomorphism LL ◦RUG ∼= RUH ◦LL′.

Remark 4.2. Shulman [42] develops a method for comparing composites of left and right
derived functors. Since we will be interested in the case where the horizontal adjunctions are
Quillen equivalences, we can always compare composites of left and right derived functors by
instead comparing their mates, as described above. This allows us to only ever have to consider
Quillen functors of the same handedness. Therefore, Shulman’s method is unnecessary for our
purposes.

4.2. Proving commutation of derived functors. Consider the diagram

CG DG

CH DH

θ∗θ(∗)

FG

ϕ∗ϕ(∗)

UG

θ∗θ†

FH

ϕ∗ϕ†

UH

of model categories and Quillen functors, where Rθ(∗) ∼= Lθ∗ and Rϕ(∗) ∼= Lϕ∗, and FG a UG
and FH a UH are Quillen equivalences. We note that we have chosen names in keeping with
the example that we have in mind, where the top horizontal is a Quillen equivalence arising in
the construction of an algebraic model for G-spectra. We are in interested in using a model
categorical approach to show that all of the six squares of derived functors listed in Section 1.3
commute. In this section we prove that in order to check that all six of the derived squares
commute, it is sufficient to check that only two squares commute.

Lemma 4.3. Let

CG DG

CH DH

θ∗

FG

ϕ∗

UG

θ∗

FH

ϕ∗

UH

be a diagram of model categories and Quillen functors.

(1) There is a natural weak equivalence ϕ∗FG
∼=⇒ FHθ∗ on cofibrant objects if and only if

there is a natural weak equivalence θ∗UH
∼=⇒ UGϕ

∗ on fibrant objects.
(2) There is a natural weak equivalence FHθ∗

∼=⇒ ϕ∗FG on cofibrant objects if and only if
there is a natural weak equivalence UGϕ∗

∼=⇒ θ∗UH on fibrant objects.
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Proof. Given a natural weak equivalence α : ϕ∗FG
∼=⇒ FHθ∗, we have a natural map α̃ : θ∗UH ⇒

UGϕ
∗ defined by

θ∗UH
ηθ∗UH====⇒ UGϕ

∗ϕ∗FGθ∗UH
UGϕ

∗αθ∗UH========⇒ UGϕ
∗FHθ∗θ∗UH

UGϕ
∗ε′=====⇒ UGϕ

∗

where η is the unit of the ϕ∗FG a UGϕ∗ adjunction and ε′ is the counit of the FHθ∗ a θ∗UH
adjunction. To check that this is a natural weak equivalence on fibrant objects, it suffices to
check that

α̃∗ : map(X, θ∗UHY ) ∼−→ map(X,UGϕ∗Y )
is a weak equivalence of homotopy function complexes for all cofibrant X and fibrant Y [25,
17.7.7]. Left Quillen functors preserve cosimplicial resolutions of cofibrant objects, so the
adjunction passes to the level of homotopy function complexes [25, 17.4.16] to give the following
diagram

map(FHθ∗X,Y ) map(ϕ∗FGX,Y )

map(X, θ∗UHY ) map(X,UGϕ∗Y ).

∼

∼= ∼=

Therefore, the natural map θ∗UH
∼=⇒ UGϕ

∗ is a weak equivalence on fibrant objects by 2-out-of-3.
The converse to (1) and the proof of (2) follow similarly. �

We now state the theorem which allows us to reduce the problem of checking that all six squares
commute, to only checking that two squares commute. Note that in the following theorem,
saying ‘there is a natural weak equivalence F ' G’ means that there is either a natural weak
equivalence F ⇒ G or G⇒ F . We do not permit zig-zags of weak equivalences.

Theorem 4.4. Consider the square

CG DG

CH DH

θ∗θ(∗)

FG

ϕ∗ϕ(∗)

UG

θ∗θ†

FH

ϕ∗ϕ†

UH

in which all the adjoint pairs are Quillen, FG a UG and FH a UH are Quillen equivalences,
and suppose that there are natural isomorphisms Lθ∗ ∼= Rθ(∗) and Lϕ∗ ∼= Rϕ(∗). Consider the
statements:

a) There is a natural weak equivalence ϕ∗FG ' FHθ∗ on cofibrant objects.
b) There is a natural weak equivalence θ∗UH ' UGϕ∗ on fibrant objects.
c) There is a natural weak equivalence FGθ† ' ϕ†FH on cofibrant objects.
d) There is a natural weak equivalence θ(∗)UG ' UHϕ(∗) on fibrant objects.

If either (a) or (b) is true and either (c) or (d) is true, then each of the six derived squares listed
in Section 1.3 commutes.

Proof. Statement (a) is equivalent to statement (b) by taking adjoints (see Lemma 4.3), and
similarly (c) is equivalent to (d). Since all of the functors in each statement have the same
handedness, the natural weak equivalences descend to isomorphisms of derived functors.
It just remains to show that these statements are sufficient to conclude that we have natural
isomorphisms Lθ† ◦RUH ∼= RUG ◦ Lϕ† and LFG ◦Rθ∗ ∼= Rϕ∗ ◦ LFH . By statement (c) we have
a natural isomorphism β : LFG ◦ Lθ† ∼= Lϕ† ◦ LFH . Since FG a UG and FH a UH are Quillen
equivalences and hence their derived adjunctions are adjoint equivalences, by Proposition 4.1 we
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find that the mate of β is also a natural isomorphism β : Lθ† ◦ RUH ∼= RUG ◦ Lϕ†. Similarly,
applying Proposition 4.1 to the natural isomorphism RUG ◦ Rϕ∗ ∼= Rθ∗ ◦ RUH from statement
(b) we obtain a natural isomorphism LFG ◦ Rθ∗ ∼= Rϕ∗ ◦ LFH . �

4.3. Checking commutativity. In this section we give some lemmas which verify when the
hypotheses of Theorem 4.4 hold. These fall into three types: strong monoidal Quillen pairs,
weak monoidal Quillen pairs and Quillen equivalences which arise from Quillen invariance of
modules.
If (F,U) is a strong monoidal adjunction, then UHom(FX, Y ) ∼= Hom(X,UY ) where Hom
denotes the internal hom. However, if the adjunction is a weak monoidal Quillen pair, there is a
natural weak equivalence relating the two.

Lemma 4.5. Let (F,U) be a weak monoidal Quillen pair. For X cofibrant, there is a natural
weak equivalence

UHom(FX, Y ) ∼−→ Hom(X,UY ).

Proof. There is a natural map UHom(FX, Y )→ Hom(X,UY ) which is adjunct to the natural
map

F (X ⊗ UHom(FX, Y ))→ FX ⊗ FUHom(FX, Y ) 1⊗ε−−→ FX ⊗Hom(FX, Y ) ev−→ Y

constructed using the oplax monoidal structure map of F . We use the Yoneda lemma for
homotopy function complexes [25, 17.7.7] to show that this is a weak equivalence. Let A be
cofibrant. We then have the following string of equivalences:

map(A,UHom(FX, Y )) ∼= map(FA,Hom(FX, Y ))
∼= map(FA⊗ FX, Y )
∼−→ map(F (A⊗X), Y )
∼= map(A⊗X,UY )
∼= map(A,Hom(X,UY ))

which completes the proof. �

Firstly we deal with the case of strong monoidal Quillen pairs.

Proposition 4.6. Let

C D
F

U

be a strong monoidal Quillen pair and let θ : S → R be a map of commutative monoids in C.
Write Fθ = ϕ : FS → FR. There are natural isomorphisms θ∗U ∼= Uϕ∗ and Fθ∗ ∼= ϕ∗F , i.e.,
the diagrams

ModS(C) ModFS(D)

ModR(C) ModFR(D)

U

θ∗

U

ϕ∗

ModS(C) ModFS(D)

ModR(C) ModFR(D)

F

F

θ∗ ϕ∗

commute up to natural isomorphism.

Proof. Take N ∈ ModFR. The underlying objects of θ∗UN and Uϕ∗N are the same so it remains
to check that the module structures agree. We write Φ for the lax monoidal structure map on
U , and a : FR ∧N → N for the action map.
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S ∧ Uϕ∗N UFS ∧ Uϕ∗N U(FS ∧ ϕ∗N) U(FR ∧N) UN

S ∧ θ∗UN R ∧ UN UFR ∧ UN U(FR ∧N) UN

η∧1

1 θ∧1

Φ

UFθ∧1

U(ϕ∧1)

U(Fθ∧1)

Ua

1 1

θ∧1 η∧1 Φ Ua

The first triangle commutes by definition, the following square by naturality of η, the following
square by naturality of Φ, and the remaining triangle and square by definition.
The second natural isomorphism can be proved similarly. �

We now turn to the case of Quillen equivalences which arise from Quillen invariance of modules.

Proposition 4.7. Let C be a monoidal model category. Suppose that we have a commutative
square of commutative monoids

S S′

R R′
θ

f
∼

ψ

g
∼

in C whose horizontal arrows are weak equivalences.

(1) There is a natural isomorphism f∗θ∗ ∼= ψ∗g∗, i.e., the diagram

ModS ModS′

ModR ModR′

f∗

θ∗

g∗

ψ∗

commutes up to natural isomorphism.
(2) If cofibrants are flat in ModR′ (see Definition 2.6) and there is a natural weak equivalence

S ⊗S′ R′ ∼−→ R, then there is a natural weak equivalence f∗ψ∗M ∼−→ θ∗g∗M for cofibrant
R′-modules M , i.e., the diagram

ModS ModS′

ModR ModR′

f∗

θ∗ ψ∗

g∗

commutes up to natural weak equivalence on cofibrant objects.

Proof. The isomorphism f∗θ∗ ∼= ψ∗g∗ follows from the fact that f∗θ∗ ∼= (θf)∗. The natural weak
equivalence follows from applying −⊗R′ M to the natural weak equivalence S ⊗S′ R′ ∼−→ R. We
note that −⊗R′ M preserves weak equivalences since M is cofibrant and cofibrants are flat. �
Remark 4.8. We note that in the category of commutative monoids, the pushout of a span
S ← S′ → R′ is given by the tensor product S ⊗S′ R′. Therefore, the condition that there is a
natural weak equivalence S ⊗S′ R′ ∼−→ R is satisfied if f is an acyclic cofibration of commutative
S′-algebras as pushouts preserve acyclic cofibrations, or if the model category of commutative
S′-algebras is left proper and ψ is a cofibration of commutative S′-algebras. Alternatively, the
condition clearly holds if the square is a pushout of commutative S′-algebras.

Finally, we treat the case of weak monoidal Quillen pairs. In this case we have to argue with
the right adjoint since the left adjoint at the level of modules is different to the underlying left
adjoint.
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Proposition 4.9. Let

C D
U

F

be a weak monoidal Quillen pair and let θ : S → R be a map of commutative monoids in C. Write
ϕ = Uθ : US → UR. Suppose that there exists another model structure C̃ on the same underlying
category as C so that (C, C̃) is convenient (see Definition 2.3). Let q : QUR→ UR be a cofibrant
replacement of UR in CAlgUS(C̃) and write ψ : US → QUR for the unit map of the US-algebra
structure on QUR.

(1) There is a natural isomorphism ψ∗q∗U ∼= Uθ∗, i.e., the diagram

ModS(C) ModUS(D)

ModR(C) ModUR(D) ModQUR(D)

U

U

θ∗

q∗

ψ∗

commutes up to natural isomorphism.
(2) Suppose that R is cofibrant as an S-module and that

ModS(C) ModUS(D)
U

FS

is a Quillen equivalence. Assume that either R is fibrant, or that U preserves all weak
equivalences. Then there is a natural weak equivalence q∗Uθ!M

∼−→ ψ!UM for M fibrant
in ModS(C), i.e., the diagram

ModS(C) ModUS(D)

ModR(C) ModUR(D) ModQUR(D)

U

θ! ψ!

U q∗

commutes up to natural weak equivalence on fibrant objects.

Proof. For an R-module N the underlying objects of ψ∗q∗UN and Uθ∗N are equal so it suffices
to check that the module structures agree:

US ∧ Uθ∗N U(S ∧ θ∗N) U(R ∧N) UN

US ∧ ψ∗q∗UN UR ∧ UN U(R ∧N) UN

Φ

1 ϕ∧1

U(θ∧1)

U(θ∧1)

Ua

1 1

qψ∧1 Φ Ua

This diagram commutes by using the naturality of the lax monoidal structure map Φ on U ,
which completes the proof of (1).
For (2), note that since (C, C̃) is convenient, QUR is a cofibrant US-module. Since FS a U is a
Quillen equivalence, the derived counit FSQUR→ R is a weak equivalence (using either that R
is fibrant or that U preserves all weak equivalences). Since M is fibrant, Ken Brown’s lemma
shows that HomS(−,M) sends weak equivalences between cofibrant objects to weak equivalences
between fibrant objects, where HomS(−,−) denotes the internal hom of S-modules. Therefore,
HomS(R,M) → HomS(FSQUR,M) is a weak equivalence between fibrant objects. Another
application of Ken Brown’s lemma gives

q∗Uθ!M = q∗UHomS(R,M) ∼−→ q∗UHomS(FSQUR,M) ∼−→ HomUS(QUR,M) = ψ!UM

where the last equivalence follows from Lemma 4.5. �
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4.4. Quillen pairs post localization. In this section we will give conditions under which the
Quillen pairs θ∗ a θ∗ and θ∗ a θ! descend to Quillen pairs between Bousfield localizations.
We first must recall the projection formula.

Definition 4.10. Let C and D be monoidal categories with adjunctions

C D
i!

i∗
i∗

where i∗ is strong monoidal. We say that the projection formula for i∗ holds if the natural map
p : i∗(i∗(X) ∧ Y )→ X ∧ i∗(Y ) defined by

i∗(i∗(X) ∧ Y ) i∗(i∗(X) ∧ i∗i∗(Y )) i∗i∗(X ∧ i∗(Y )) X ∧ i∗(Y )i∗(1∧η)
∼=
i∗Φ ε

is an isomorphism for all X ∈ D and Y ∈ C, where Φ denotes the monoidal structure map of i∗.

Remark 4.11. There is also a natural map p′ : X ∧ i!(Y )→ i!(i∗(X)∧Y ) for X ∈ D and Y ∈ C,
defined by

X ∧ i!(Y ) i!i
∗(X ∧ i!(Y )) i!(i∗(X) ∧ i∗i!(Y )) i!(i∗(X) ∧ Y )η

∼=
i!Φ−1 i!(1∧ε)

so it also makes sense to ask when i! satisfies the projection formula. However, this is not relevant
for our purposes.

The projection formula clearly holds for the extension of scalars functor along a map of commu-
tative monoids in a symmetric monoidal category. It also holds for the induction functor from
H-spectra to G-spectra, see [30, V.2.3].
We can now deal with the case of left Bousfield localizations. We write 〈E〉 for the Bousfield
class of E, that is, for the class of objects X for which E ∧X ' 0.

Theorem 4.12. Let

C D
θ∗

θ!
θ∗

be a Quillen adjoint triple between stable monoidal model categories, and suppose that θ∗ satisfies
the projection formula. Let E ∈ C and E′ ∈ D be cofibrant. Then

LEC LE′D
θ∗

θ!
θ∗

is a Quillen adjoint triple if 〈E′〉 = 〈θ∗E〉.

Proof. As 〈E′〉 = 〈θ∗E〉, the left Bousfield localizations LE′D and Lθ∗ED are equal as model
categories. Therefore it suffices to prove the result for the case when E′ = θ∗E.
By [36, 3.1] the adjunction θ∗ a θ∗ is Quillen between the localizations as the objects correspond.
For the θ∗ a θ! adjunction, by Hirschhorn [25, 3.3.18], it suffices to check that θ∗ sends θ∗E-
equivalences between cofibrant objects to E-equivalences. Let f : A→ B be an θ∗E-equivalence
between cofibrant objects. As θ∗(θ∗E ⊗R f) ∼= E ⊗S θ∗f by the projection formula, the result
follows. �

We now give a means of checking the hypotheses of the previous theorem in a certain case. We
note that if E′ ' θ∗E (up to suspension) then they have the same Bousfield class. The following
proposition shows that the condition that E′ ' θ∗E is preserved by Quillen equivalences.

Proposition 4.13.
89



(1) Let F a U be a strong monoidal Quillen pair. Let θ : S → R and write ϕ = Fθ : FS →
FR. Let E ∈ ModS and E′ ∈ ModR, with both cofibrant. If E′ ' θ∗E, then FE′ '
ϕ∗FE.

(2) Let F a U be a weak monoidal Quillen equivalence. Let θ : S → R and write ϕ =
Uθ : US → UR. Let E ∈ ModS and E′ ∈ ModR, with both cofibrant. If E′ ' θ∗E, then
QUf̂E′ ' ϕ∗QUf̂E where f̂ denotes fibrant replacement.

(3) Suppose that we have a commutative square of commutative monoids

S S′

R R′
θ

f
∼

ψ

g
∼

in which the horizontal maps are weak equivalences and Quillen invariance of modules
holds.
(a) Let E ∈ ModS′ and E′ ∈ ModR′ with both cofibrant, such that E′ ' ψ∗E. Then

g∗E′ ' θ∗f∗E.
(b) Let E ∈ ModS and E′ ∈ ModR with both cofibrant, such that E′ ' θ∗E. Then

ψ∗Qf∗E ' g∗E′.

Proof. Statement (1) is a consequence of the fact that F is strong monoidal, together with Ken
Brown’s lemma.
For (2), by Proposition 4.9 we have that Uθ∗ ∼= ϕ∗U . Taking mates, we have an equivalence
ϕ∗QUf̂E ' QUf̂θ∗E ' QUf̂E′ as required.
For (3), we have an isomorphism of functors f∗θ∗ ∼= ψ∗g∗ by Proposition 4.7. Taking left adjoints
yields an equivalence θ∗f∗E ' g∗ψ∗E ' g∗E′ as required for (a). For (b), taking mates of
f∗θ∗ ∼= ψ∗g∗ gives an equivalence ψ∗Qf∗E ' g∗θ∗E ' g∗E′. �

Now we turn to the case of cellularizations. Let D be a stable model category and X and Y
be objects in D. We say that X builds Y if Y is in the localizing subcategory generated by X,
that is, if Y is in the smallest replete, triangulated full subcategory of hD which is closed under
arbitrary coproducts and contains X.

Theorem 4.14. Let

C D
θ∗

θ!
θ∗

be a Quillen adjoint triple between stable monoidal model categories. Let K ∈ D be cofibrant. If
K builds θ∗θ∗K, then

Cellθ∗KC CellKD
θ∗

θ!
θ∗

is a Quillen adjoint triple.

Proof. By [20, 2.7], the adjunction θ∗ a θ! is Quillen between the cellularizations as the objects
correspond. To check that the adjunction θ∗ a θ∗ is Quillen between the cellularizations, we must
check that θ∗ sends K-cellular equivalences between fibrant objects to θ∗K-cellular equivalences
by Hirschhorn [25, 3.3.18].
Suppose that M → N is a K-cellular equivalence between fibrant objects. By adjunction,
θ∗M → θ∗N is a θ∗K-cellular equivalence if and only if M → N is a θ∗θ∗K-cellular equivalence.
As K builds θ∗θ∗K, M → N is an θ∗θ∗K-cellular equivalence as required. �
Remark 4.15. If θ : S → R is a map of commutative ring spectra such that R is small over S,
then for any R-module K, K finitely builds θ∗θ∗K.
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Part 2. The correspondence of functors

5. The general strategy

5.1. Recap of the algebraic model. In this section we recap the construction of the algebraic
model for (co)free G-spectra for G connected. The free case is due to Greenlees-Shipley [19, 21],
and the cofree case is work of Pol and the author [36]. We note that in the free case, we follow
the Eilenberg-Moore approach taken in [21], rather than the approach via Koszul duality taken
in [19]. It is important to note that the correspondence of functors we obtain by using the
zig-zag of Quillen equivalences in [21] is different from the correspondence obtained in [19] by
using the Koszul duality approach. In the cofree case we follow the direct approach given in [36],
rather than the approach given by first passing to free G-spectra and then using the equivalence
between derived torsion and derived complete modules.
Free G-spectra are modelled by the cellularization CellG+SpG, and cofree G-spectra are modelled
by the homological localization LEG+SpG. We now recall the Quillen equivalences used in the
construction of the algebraic model. Note that not all of the Quillen adjunctions below are
Quillen equivalences, but they all become so after appropriate localization/cellularization.

(1) Change of rings: Beginning in G-spectra, the first step is to change rings along the map
κ : S0 → DEG+ where DEG+ = F (EG+, S0). Therefore the first stage is the extension
and restriction of scalars adjunction

SpG ModDEG+(SpG).DEG+∧−
κ∗

(2) Fixed points-inflation adjunction: The next step is to use categorical fixed points to
remove equivariance. More precisely, the next stage is the adjunction

ModDEG+(SpG) ModDBG+(Sp)
(−)G

DEG+⊗DBG+−

where we have suppressed notation for the inflation functors in the left adjoint.
(3) Shipley’s algebraicization theorem: The next stage is to use Shipley’s algebraicization

theorem [41] to pass from modules over the commutative ring spectrum DBG+ to
modules over a commutative DGA which we denote ΘDBG+. This is a zig-zag of Quillen
equivalences. See Section 8 for more details on the zig-zag of Quillen equivalences.

(4) Formality: One can next use the fact that polynomial algebras are strongly intrinsically
formal as commutative DGAs to construct a quasiisomorphism z : H∗BG→ ΘDBG+.
This gives a Quillen equivalence

ModΘDBG+ ModH∗BG.
z∗

ΘDBG+⊗H∗BG−

via extension and restriction of scalars.
(5) Torsion and completion: The final step is to identify the resulting localization or

cellularization with an abelian model. In the localization case, this is the category
of LI0-complete modules, and in the cellularization case this is the category of torsion
modules.

5.2. Proving the correspondence of functors. In this section we explain the general process
for proving that the functors correspond. We give the details here rather than in the following
sections since the principle remains the same throughout the zig-zag of Quillen equivalences.
The general process is that we will have a square
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CG DG

CH DH

θ∗θ(∗)

FG

ϕ∗ϕ(∗)

UG

θ∗θ†

FH

ϕ∗ϕ†

UH

of model categories and Quillen functors, where Rθ(∗) ∼= Lθ∗ and Rϕ(∗) ∼= Lϕ∗, and FG a UG
and FH a UH are Quillen equivalences. Depending on the type of square we can then apply
Theorem 4.4 in conjunction with Propositions 4.6, 4.7 and 4.9 to conclude that all six squares of
derived functors commute.
In general the vertical functors will be the extension-restriction-coextension of scalars functors
along a map of commutative rings θ : S → R. In general, R need not be cofibrant as an S-module,
so that θ∗ a θ! will not be a Quillen adjunction by Proposition 3.8. To rectify this, we must
cofibrantly replace R as a commutative S-algebra to obtain S → QR. In a convenient model
structure, this implies that QR is also cofibrant as an S-module, see Section 2.1. Quillen
invariance of modules also shows that extension and restriction of scalars gives a Quillen
equivalence ModR 'Q ModQR.
In summary, each step will consist of:

(1) Construct a square of Quillen functors. This may involve taking cofibrant replacements
of commutative algebras in a convenient model structure.

(2) Check that under the relevant localizations/cellularizations which make the horizontals
Quillen equivalences, the vertical functors are still Quillen. In general, this can be
achieved by using Theorem 4.12, Proposition 4.13 and Theorem 4.14.

(3) Use Propositions 4.6, 4.7 and 4.9 to verify that the hypotheses of Theorem 4.4 are
satisfied and hence deduce that the Quillen functors correspond.

6. Change of rings

6.1. The setup. The first step in the series of Quillen equivalences is a change of rings along the
map S0 → DEG+. The construction of adjoints between ModDEG+(SpG) and ModDEH+(SpH)
requires some explanation, because we not only have to change the underlying category between
SpG and SpH , but also the rings that we take modules over.

Lemma 6.1. Let C and D be monoidal categories and R be a monoid in C. Suppose that we
have adjunctions

C D
i!

i∗
i∗

where i∗ is strong monoidal. If the projection formula for i∗ is satisfied (see Definition 4.10)
then we have adjunctions

Modi∗R(C) ModR(D)
i!

i∗
i∗

between the categories of modules.

Proof. Since i∗ is strong monoidal it sends monoids in C to monoids in D. Moreover, it follows
that i∗ is oplax monoidal and i! is lax monoidal. Let M be an i∗R-module.
To give i∗M a R-module structure define the action map by

R ∧ i∗M p−1
−−→∼= i∗(i∗R ∧M) i∗(a)−−−→ i∗M
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where p is the projection formula map and a : i∗R ∧M →M is the module structure map for
M . Similarly, we define a R-module structure on i!M by

R ∧ i!M p′−→ i!(i∗R ∧M) i!(a)−−−→ i!M

where p′ is the natural map in the projection formula for i!, see Remark 4.11.
It remains to check that the action maps defined above are associative and unital. So as to avoid
interrupting the flow, we defer the remainder of the proof to Appendix A. �

Proposition 6.2. There is a Quillen adjoint triple of functors

ModDEH+(SpH) ModDEG+(SpG)
i!

i∗
i∗

where i∗ is the restriction from G-spectra to H-spectra, i∗ = G+ ∧H − and i! = FH(G+,−).

Proof. Recall that the projection formula holds for i∗ : SpH → SpG, see [30, V.2.3]. By Lemma 6.1,
it follows that we have adjunctions as described, so it only remains to check that they are
Quillen. Since the weak equivalences and fibrations in the categories of modules are created by
the forgetful functors to the underlying equivariant spectra, i∗ and i! are right Quillen, since
they are right Quillen when viewed as functors between G-spectra and H-spectra. �

6.2. Quillen functors. In this section we show that all the functors of interest are Quillen
after the relevant localizations and cellularizations.

Proposition 6.3. There are Quillen adjoint triples of functors

LEH+SpH LEG+SpG
i!

i∗
i∗

and

LEH+ModDEH+(SpH) LEG+ModDEG+(SpG)
i!

i∗
i∗

Proof. The Bousfield classes 〈EG+〉 and 〈G+ ∧H EH+〉 are equal since for a free G-spectrum F ,
X ∧ F ' 0 if and only if X is non-equivariantly contractible. Therefore the result follows from
Theorem 4.12. �

Proposition 6.4. There are Quillen adjoint triples of functors

CellH+SpH CellG+SpG
i!

i∗
i∗

and

CellH+ModDEH+(SpH) CellG+ModDEG+(SpG)
i!

i∗
i∗

Proof. Since i∗H+ ' G+, we have that the i∗ a i∗ adjunction passes to the cellularizations. For
the i∗ a i! adjunction, by Hirschhorn [25, 3.3.18] it suffices to check that i! sends H+-cellular
equivalences between fibrant objects to G+-cellular equivalences. We have that i∗G+ is built
from H+ as EH+ ∧ i∗G+ ' i∗G+. Therefore i! sends H+-cellular equivalences between fibrant
objects to G+-cellular equivalences. �
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6.3. The corresponding adjoints. We consider the square

ModS0(SpG) ModDEG+(SpG)

ModS0(SpH) ModDEH+(SpH)

i∗

κG∗

i∗

κ∗G

i∗ i!

κH∗
κ∗H

i∗ i!

where the horizontals are given by extension and restriction of scalars along the ring maps
κG : S0 ∼= F (S0, S0)→ F (EG+, S0) = DEG+ and κH : S0 → DEH+ and the verticals are the
change of groups adjunctions of equivariant spectra.
Firstly, the forgetful functor i∗ commutes with the restrictions κ∗ on underlying spectra since
none of the functors change the underlying spectra. It remains to show that the module structures
agree. Let M be an object of ModDEG+(SpG) with module action map a : DEG+ ∧M → M .
We write Φ for the monoidal structure map of i∗.

S0 ∧ κ∗Hi∗M DEH+ ∧ i∗M i∗DEG+ ∧ i∗M i∗(DEG+ ∧M) i∗M

S0 ∧ i∗κ∗GM i∗S0 ∧ i∗κ∗GM i∗(S0 ∧ κ∗GM) i∗(DEG+ ∧M) i∗M

1

κH∧1 1 Φ
∼=

1

i∗(a)

1

1

κH∧1

Φ
∼=

i∗(κG∧1)

i∗(κG∧1) i∗(a)

The top row is the module structure defined by κ∗Hi∗M and the bottom row is the module
structure defined by i∗κ∗G. This diagram commutes by naturality of Φ using that i∗κG = κH ,
and hence the module structures agree (i.e., the identity is a module map). Therefore we have a
natural isomorphism κ∗Hi

∗ ∼= i∗κ∗G.

We now check that the identity gives a natural isomorphism i!κ
∗
H
∼= κ∗Gi!. Let M be a DEH+-

module with action map a : DEH+ ∧M → M . Then the underlying objects of i!κ∗HM and
κ∗Gi!M are the same so it remains to check the module structures agree.

S0 ∧ i!κ∗HM i!(S0 ∧ κ∗HM) i!(DEH+ ∧M) i!M

S0 ∧ κ∗Gi!M DEG+ ∧ i!M i!(DEH+ ∧M) i!M

1

p−1

κG∧1

i!(κH∧1)

i!(κH∧1)

i!(a)

1

κG∧1 p−1 i!(a)

The top row is the module structure on i!κ∗HM and the bottom row is the module structure on
κ∗Gi!M . The diagram commutes by the naturality of p, and hence we have a natural isomorphism
i!κ
∗
H
∼= κ∗Gi!. It follows from the special case of Theorem 4.4 in which the two downward pointing

arrows are the same, that all the squares commute at the derived level.

7. The fixed points-inflation adjunction

In this section we describe how the passage from equivariant module spectra to non-equivariant
module spectra interacts with change of groups functors.

7.1. Quillen pairs. Stolz [43] constructs a flat model structure on orthogonal G-spectra such
that the identity functor is a left Quillen equivalence from the stable model structure to the flat
model structure. The flat model structure has all the necessary properties to apply our general
results from Sections 3 and 4. In particular, the flat model structure on orthogonal G-spectra is
a monoidal model structure which satisfies the monoid axiom (so that the categories of modules
inherit a right lifted model structure), is convenient, and has flat cofibrant objects, see Section 2
for more details. Before we can show a correspondence of functors we need to prove that certain
functors are Quillen in the flat model structure on equivariant spectra.
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The flat model structure is built from the blended model structure on G-spaces. In the blended
model structure, the weak equivalences are the naive weak equivalences and the fibrations are
the maps which are genuine fibrations and for which

X F (EG+, f̂X)

Y F (EG+, f̂Y )

is a homotopy pullback (in the genuine model structure), where f̂ denotes a genuine fibrant
replacement functor.

Lemma 7.1. There is a Quillen adjoint triple

Spflat
G Spflat

Hi∗
i∗

i!

where both categories are equipped with the flat model structure.

Proof. Firstly we claim that i! is right Quillen between the level flat model structures. To prove
this it is sufficient to check that i! is right Quillen as a functor Topblended

H → Topblended
G . Let

g : X → Y be a blended H-fibration between blended H-fibrant objects, i.e., g is a genuine
H-fibration and

X F (EH+, f̂X)

Y F (EH+, f̂Y )

is a homotopy pullback (in the genuine model structure). We know that i! sends genuine
H-fibrations to genuine G-fibrations. Since the objects in the homotopy pullback square are
fibrant, i! sends this homotopy pullback square to a homotopy pullback square. In other words,

i!X i!F (EH+, f̂X)

i!Y i!F (EH+, f̂Y )

is a homotopy pullback square. A simple adjunction argument shows that i!F (EH+, f̂X) ∼=
F (EG+, i!f̂X) and therefore i!g is a blended G-fibration. In a similar fashion, one sees that
i! sends blended H-fibrant objects to blended G-fibrant objects. Therefore, i! sends blended
H-fibrations between blended H-fibrants to blended G-fibrations between blended G-fibrants.
As the blended model structure is a left Bousfield localization of the genuine model structure, the
acyclic fibrations in both model structures coincide and hence i! preserves the acyclic fibrations in
the blended model structure. Therefore by [9, A.2], i! : Topblended

H → Topblended
G is right Quillen.

It follows from [36, 3.1] that as i! is right Quillen between the level flat model structures, it is
right Quillen between the flat model structures.
By [8, 2.6.11] the adjunction i∗ a i∗ is Quillen with respect to the level flat model structures. Let
SG denote the set of morphisms with the property that LSGSplevel flat

G = Spflat
G . By Hirschhorn [25,

3.3.18] it is sufficient to check that i∗ sends SH -local equivalences between flat cofibrant objects
to SG-local equivalences. Since LSGSplevel flat

G = Spflat
G , the SG-local equivalences are precisely

the π∗-isomorphisms (the usual weak equivalences of G-spectra). It follows that i∗ sends SH -local
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equivalences between flat cofibrant objects to SG-local equivalences as induction i∗ preserves all
π∗-isomorphisms. �

Proposition 7.2. There is a Quillen adjunction

Spflat
G Spflat

(−)G
inf

where the categories are equipped with the flat model structure.

Proof. By mimicking the proof that i! : Splevel flat
H → Splevel flat

G is right Quillen, one can show
that (−)G : Splevel flat

G → Splevel flat is right Quillen. To complete the proof, by Hirschhorn [25,
3.3.18] it is sufficient to check that inflation sends π∗-isomorphisms between flat cofibrant spectra
to π∗-isomorphisms. This is clear since inflation preserves weak equivalences. �

7.2. A coinduction Quillen equivalence. The coinduction functor i! : SpH → SpG is lax
symmetric monoidal since the forgetful functor i∗ : SpG → SpH is strong symmetric monoidal.
Therefore the coinduction functor i! takes (commutative) ring H-spectra to (commutative) ring
G-spectra.

Proposition 7.3. Let H ≤ G and R be a ring H-spectrum. If R generates ModR(SpH), then
i!R generates Modi!R(SpG).

Proof. Any i!R-module M is a retract of i!R ∧M . By the Wirthmüller isomorphism and the
projection formula for i∗, we have i!R ∧M ' i!(R ∧ i∗M) and the result follows. �

As H is connected (and we work rationally), the commutative ring H-spectrum DEH+ generates
its category of modules [16, 3.1]. Therefore we obtain the following corollary.

Corollary 7.4. The commutative ring G-spectrum FH(G+, DEH+) generates its category of
modules.

Proposition 7.5. The adjunction

ModDEH+(SpH) ModFH(G+,DEH+)(SpG)
i!

DEH+⊗i∗FH (G+,DEH+)i
∗(−)

is a Quillen equivalence.

Proof. The existence of the Quillen adjunction follows from [38, §3], also see Section 2.3. The
derived counit is an equivalence onDEH+ and therefore asDEH+ and FH(G+, DEH+) generate
their categories of modules, by the Cellularization Principle [20, 2.7] the adjunction is a Quillen
equivalence. �

Remark 7.6. Since the adjunction

ModDEH+(SpH) ModFH(G+,DEH+)(SpG)
i!

DEH+⊗i∗FH (G+,DEH+)i
∗(−)

is Quillen in both the stable and flat model structures, the previous proposition holds in both
the stable and flat model structures.

Remark 7.7. Proposition 7.5 could be viewed as an analogue of the results of Balmer-
Dell’Ambrogio-Sanders [3, 1.1] on étale extensions, also see [32, 5.32].
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7.3. Commutativity. Let ω : DEG+ → FH(G+, DEH+) be the natural map which is adjoint
to the identity map on DEH+ (i.e., the unit map DEG+ → i!i

∗DEG+). By taking a cofibrant
replacement of FH(G+, DEH+) as a commutative DEG+-algebra, we obtain a commutative
diagram

DEG+

FH(G+, DEH+) QFH(G+, DEH+).

ω
ψ

q
∼

Taking categorical G-fixed points yields a map

DBG+ (QFH(G+, DEH+))G FH(G+, DEH+)G DBH+.
ψG ∼ ∼=

The isomorphism follows by the fact that there is a natural isomorphism (i!M)G ∼= MH which
can be proved by an adjointness argument using the Yoneda lemma.
By factoring this map into a cofibration followed by an acyclic fibration of commutative DBG+-
algebras, we obtain a commutative diagram

DBG+

DBH+ QDBH+.

ϕ

∼

Since DBG+ → QDBH+ is a cofibration and (QFH(G+, DEH+))G → FH(G+, DEH+)G is an
acyclic fibration, we may use the lifting properties to obtain a natural map χ : QDBH+ →
(QFH(G+, DEH+))G.

Notation 7.8. We set the notation a = dim(G/H). Note that this is the shift that arises in
the Wirthmüller isomorphism and in the Gorenstein condition for the map DBG+ → DBH+,
see Theorem 3.3.

To complete the necessary setup, we must check that FH(G+, DEH+) is a small DEG+-module.
We note that this is not covered by Proposition 3.1 as we are in the land of equivariant spectra.
Nonetheless, one sees that FH(G+, DEH+) is a small DEG+-module since

[FH(G+, DEH+),−]DEG+ ∼= [Σ−aG/H+ ∧DEG+,−]DEG+ ∼= [Σ−aG/H+,−]

by the Wirthmüller isomorphism. Since G/H+ is a small G-spectrum (as induction is left adjoint
to the restriction functor i∗ which preserves sums), the result follows.
Now that we have set up the appropriate groundwork, we can move on to showing that we have
a correspondence of functors. The first stage is the diagram

ModDEG+(SpG) ModDEG+(SpG)

ModDEH+(SpH) ModQFH(G+,DEH+)(SpG)

1

i∗

1

ψ∗Σ−aψ!i∗ i!

q∗i!

DEH+⊗i∗FH (G+,DEH+)i
∗q∗(−)

Σaψ∗ ψ∗

We must firstly show that the functors pass to the localizations and cellularizations.

Proposition 7.9. There is a Quillen adjoint triple of functors
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Lq∗FH(G+,EH+)ModQFH(G+,DEH+)(SpG) LEG+ModDEG+(SpG)ψ∗

ψ!

ψ∗

Proof. Since the diagram

DEG+

FH(G+, DEH+) QFH(G+, DEH+).

ω
ψ

q
∼

commutes, we have an isomorphism of functors ω∗ ∼= q∗ψ∗. Taking mates, we have an equivalence
ψ∗ ' q∗ω∗ on cofibrant objects. Note that ω∗EG+ ' FH(G+, EH+) since

FH(G+, DEH+)⊗DEG+ EG+ ' F (G/H+, S
0) ∧ EG+ ' FH(G+, EH+)

by smallness of G/H+. Therefore ψ∗EG+ ' q∗FH(G+, EH+) and the result follows from
Theorem 4.12. �

Since i!H+ ' G+ (up to shift) by the Wirthmüller isomorphism, Theorem 4.14 yields the
following.
Proposition 7.10. There is a Quillen adjoint triple of functors

Cellq∗i!H+ModQFH(G+,DEH+)(SpG) CellG+ModDEG+(SpG)ψ∗

ψ!

ψ∗

We can now show that the functors correspond. We note that for a DEH+-module M , the
coinduction i!M is both a DEG+-module and a FH(G+, DEH+)-module: the DEG+-module
structure arises from the projection formula map and the FH(G+, DEH+)-module structure by
using the lax monoidal structure on i!.
Proposition 7.11. Let M ∈ ModDEH+. Then i!M ∼= ψ∗q∗i!M as DEG+-modules.

Proof. The underlying objects are the same so it is sufficient to check that the module structures
agree. Note that ψ∗q∗ ∼= (qψ)∗ = ω∗. We write R = DEG+ to ease the notation. We must
check that

R ∧ i!M i!(i∗R ∧M) i!M

R ∧ ω∗i!M i!i
∗R ∧ i!M i!(i∗R ∧M) i!M

1 η∧1

p′ i!(a)

1 1

ω∧1 l i!(a)

commutes, where p′ is the projection formula map and l is the lax monoidal structure on i!.
By definition ω is the adjoint of the identity map on i∗R, or in other words it is the unit
η : R→ i!i

∗R and hence the first triangle commutes. From this one sees that it is enough to just
check that the middle square commutes. Spelling out the definitions of p′ and l, this amounts to
checking that

R ∧ i!M i!i
∗(R ∧ i!M) i!(i∗R ∧ i∗i!M)

i!i
∗R ∧ i!M i!i

∗(i!i∗R ∧ i!M) i!(i∗i!i∗R ∧ i∗i!M) i!(i∗R ∧M)

η

η∧1

i!Φ−1

i!i∗(η∧1) i!(η∧1) i!(1∧ε)

η i!Φ−1 i!(ε∧ε)
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commutes, where going right and down is the map p′ and going along the bottom row is the lax
monoidal structure map l. This diagram commutes using (from left to right) naturality of η,
naturality of Φ−1 and the triangle identities. �

Proposition 7.12. For any fibrant DEG+-module M , there is a natural weak equivalence
Σ−aψ!M

∼−→ q∗i!i∗M .

Proof. The Wirthmüller isomorphism gives a natural weak equivalence G+ ∧H DEH+ →
ΣaFH(G+, DEH+). Since ΣaQFH(G+, DEH+) → ΣaFH(G+, DEH+) is an acyclic fibra-
tion and G+ ∧H DEH+ is cofibrant, by liting properties we have a natural weak equivalence
G+ ∧H DEH+ → ΣaQFH(G+, DEH+) between cofibrant objects. We then have the string of
natural weak equivalences

Σ−aψ!M = Σ−aHomDEG+(QFH(G+, DEH+),M)
∼−→ q∗HomDEG+((G+ ∧H DEH+),M)
∼= q∗HomDEG+(G/H+ ∧DEG+,M)
∼= q∗F (G/H+,M)
∼= q∗i!i

∗M

where the first equivalence follows from Ken Brown’s lemma. �

Therefore, by Theorem 4.4 all six squares of derived functors commute.
The next square in this step is the diagram

ModDEG+(SpG) ModDBG+(Sp)

ModQFH(G+,DEH+)(SpG) ModQDBH+(Sp)

ψ∗Σ−aψ!

(−)G

ϕ∗Σ−aϕ!

DEG+⊗DBG+−

Σaψ∗ ψ∗

χ∗((−)G)

Σaϕ∗ ϕ∗

QFH(G+,DEH+)⊗QDBH+ (−)

where χ : QDBH+ → (QFH(G+, DEH+))G is the natural map constructed by lifting properties
of the cofibration DBG+ → QDBH+ against the acyclic fibration (QFH(G+, DEH+))G →
FH(G+, DEH+)G.
Firstly we check that the vertical functors are Quillen after localization. In order to do this
we require a lemma. We write Γk for the k-cellularization functor, i.e., the right adjoint to the
inclusion of the localizing subcategory generated by k.

Lemma 7.13. Let θ : S → R be a map of ring spectra such that R is small over S, and let k be
an R-algebra. Then for M an S-module, we have R⊗S ΓkM ' Γk(R⊗S M).

Proof. We must check that R ⊗S ΓkM satisfies the universal properties of the cellularization.
Firstly, there is a natural map R ⊗S ΓkM → R ⊗S M as there is a natural map ΓkM → M .
Since S finitely builds R, k finitely builds R⊗S k, so R⊗S ΓkM is k-cellular. It remains to check
that R⊗S ΓkM → R⊗S M is a k-cellular equivalence.
Note that there are natural equivalences

HomR(k,R⊗S −) ' HomR(k,HomS(DR,−)) ' HomS(DR,HomS(k,−))
since R is a small S-module. It follows that R⊗S ΓkM → R⊗SM is a k-cellular equivalence as
ΓkM →M is a k-cellular equivalence. �

Corollary 7.14. There is an equivalence DBH+ ⊗DBG+ Σdim(G)BG+ ' Σdim(H)BH+.
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Proof. This follows from Lemma 7.13 and the fact that ΓS0DBG+ ' Σdim(G)BG+ by Gorenstein
duality [11]. �

Proposition 7.15. There is a Quillen adjoint triple of functors

LBH+ModQDBH+(Sp) LBG+ModDBG+(Sp)ϕ∗
ϕ!

ϕ∗

Proof. By Corollary 7.14, we have that ϕ∗BG+ ' BH+ up to suspension. The result then
follows from Theorem 4.12. �

Applying Theorem 4.14 we have the following.

Proposition 7.16. There is a Quillen adjoint triple of functors

CellS0ModQDBH+(SpH) CellS0ModDBG+(SpG)ϕ∗
ϕ!

ϕ∗

It follows from Proposition 4.9 and Theorem 4.4 that all six derived squares commute.

8. Shipley’s algebraicization theorem

In this section we use the results of [45] to pass between modules over the commutative ring
spectra DBG+ and QDBH+ to modules over commutative DGAs, whilst keeping track of the
change of rings adjunctions. This consists of three steps which we will deal with separately. The
first step involves passage from symmetric spectra in simplicial sets to symmetric spectra in
simplicial Q-modules, the second step is a stabilized version of the Dold-Kan equivalence and
the final step is the passage to algebra. Shipley [41] proved that these Quillen equivalences hold
in the stable model structure. For our purposes, the flat model structure is crucial, and the
Quillen equivalences are proven to hold in the flat model structures in [45].

8.1. Recap of the equivalences. We provide a brief recap of the Quillen equivalences used
in Shipley’s algebraicization theorem and use this as an opportunity to set notation. For more
details see [41] and [45].
Let C be a bicomplete, closed symmetric monoidal category. Let Σ be the category whose objects
are the finite sets n = {1, . . . , n} for n ≥ 0 where 0 = ∅, and whose morphisms are the bijections
of n. The category of symmetric sequences in C is the functor category CΣ. For an object K ∈ C,
the category of symmetric spectra SpΣ(C,K) is the category of modules over Sym(K) in CΣ,
where Sym(K) = (1,K,K⊗2, · · · ) is the free commutative monoid on K.
We write Q̃ : sSetΣ → sQ-modΣ for the functor which takes the free simplicial Q-module levelwise.
Recall that we define SpΣ(sQ-mod) to be the category of modules over Sym(Q̃S1) in sQ-modΣ.
The object Sym(Q̃S1) is equivalent to HQ. There is a ring map α : HQ → Q̃HQ, and the
composite α∗Q̃ gives a zig-zag of strong monoidal Quillen equivalences between ModHQ and
SpΣ(sQ-mod).
We write SpΣ(Ch+

Q) for the category of modules over Sym(Q[1]) in (Ch+
Q)Σ where Q[1] is the

chain complex which contains a single copy of Q in degree 1. Applying the normalized chains
functor N : sQ-mod → Ch+

Q levelwise gives a functor SpΣ(sQ-mod) → ModN((Ch+
Q)Σ) where

N = NSym(Q̃S1). There is a ring map ϕ : Sym(Q[1])→ N, and the composite

ϕ∗N : SpΣ(sQ-mod)→ SpΣ(Ch+
Q)

is a right Quillen equivalence. This forms a weak monoidal Quillen equivalence.
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Finally, there is a functor R : ChQ → SpΣ(Ch+
Q) which is defined by RYn = C0(Y ⊗Q[n]) where

C0 denotes the connective cover, and this functor is a right Quillen equivalence. Together with
its left adjoint D, this forms a strong monoidal Quillen equivalence.
Since all of these functors are appropriately monoidal, they lift to give Quillen equivalences
between the categories of modules over monoids as described in Section 2.3.

8.2. To simplicial Q-modules. To ease the notation, we will work in the general setting of
a map of commutative ring spectra ϕ : S → R. Suppose that R is a cofibrant S-module and
write κ = Q̃ϕ : Q̃S → Q̃R. Since Q̃ is left Quillen, Q̃R is cofibrant as a Q̃S-module. Cofibrantly
replacing α∗Q̃R as a commutative α∗Q̃S-algebra gives a commutative diagram

α∗Q̃S

α∗Q̃R Qα∗Q̃R

α∗κ
δ

q
∼

The passage to simplicial Q-modules can be seen as the two squares

ModS ModQ̃S Mod
α∗Q̃S

ModR ModQ̃R Mod
Qα∗Q̃S

Q̃

ψ∗Σ−aψ!

α∗U

κ∗Σ−aκ!

α∗

δ∗Σ−aδ!

Q̃

Σaψ∗ ψ∗

q∗α∗U

Σaκ∗ κ∗

α∗q∗

Σaδ∗ δ∗

The vertical functors are still Quillen after the appropriate localization and cellularization by
Theorems 4.12 and 4.14 and Proposition 4.13. The first square satisfies the hypotheses of
Proposition 4.6 and the second square satisfies the hypotheses of Proposition 4.9, so it follows
from Theorem 4.4 that each of the six squares of derived functors commutes.

8.3. The Dold-Kan type equivalence. Since ϕ∗N is lax symmetric monoidal, we obtain a
map of commutative monoids ϕ∗Nδ, and by cofibrant replacement in commutative algebras, we
obtain a commutative diagram

ϕ∗Nα∗Q̃S

ϕ∗NQα∗Q̃R Qϕ∗NQα∗Q̃R

ϕ∗Nδ
γ

q
∼

From these we get the square which gives the passage from symmetric spectra in simplicial
Q-modules to symmetric spectra in non-negatively graded chain complexes of Q-modules, as
shown in the following diagram. Note that since (L,ϕ∗N) is only a weak monoidal Quillen pair
as an adjunction between SpΣ(sQ-mod) and SpΣ(Ch+

Q), the left adjoint to ϕ∗N at the level of
modules is not L.

Mod
α∗Q̃S Mod

ϕ∗Nα∗Q̃S

Mod
Qα∗Q̃R Mod

ϕ∗NQα∗Q̃R Mod
Qϕ∗NQα∗Q̃R

ϕ∗N

δ∗Σ−aδ!

Lα
∗Q̃S

γ∗Σ−aγ!

ϕ∗N

Σaδ∗ δ∗

LQα
∗Q̃S

q∗

Σaγ∗ γ∗

q∗
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The vertical functors are Quillen after the appropriate localization and cellularization by Theo-
rems 4.12 and 4.14 and Proposition 4.13. Using Theorem 4.4 along with Proposition 4.9, we
obtain that all six possible squares of derived functors commute.

8.4. To algebra. The final stage in the process is the passage from symmetric spectra in
non-negatively graded chain complexes to chain complexes. This can be realized by a single
square

Mod
ϕ∗Nα∗Q̃S Mod

Dϕ∗Nα∗Q̃S

Mod
Qϕ∗NQα∗Q̃R Mod

DQϕ∗NQα∗Q̃R

D

γ∗Σ−aγ!

R

λ∗Σ−aλ!Σaγ∗ γ∗

D

R

Σaλ∗ λ∗

in which λ = Dγ. Since D is left Quillen, DQϕ∗NQα∗Q̃R is a cofibrant Dϕ∗Nα∗Q̃S-module.
The vertical functors are still Quillen after the appropriate localization and cellularization by
Theorems 4.12 and 4.14 and Proposition 4.13. By Theorem 4.4 and Proposition 4.6 we have
that all of the derived squares commute.
Taking S = DBG+ and R = QDBH+ shows that the functors correspond through Shipley’s
algebraicization theorem in our setting. We note that despite starting in the flat model structure
on spectra, we are now in the usual projective model structure on chain complexes.

9. The formality square

To ease notation we write Sa and Ra for the images of DBG+ and QDBH+ respectively under
the Quillen equivalences in Shipley’s algebraicization theorem described in the previous section.
They are commutative models for the cochains on BG and BH respectively but they are not
good models for us since it is not clear how build a commutative square

Sa H∗BG

Ra H∗BH.

We now describe how to alter these models so that a commutative square can be built with the
desired properties.
Firstly factor the map λ : Sa → Ra as an acyclic cofibration followed by a fibration

Sa
jG−→ S′a

ν−→ Ra.

Since ν : S′a → Ra is a fibration (i.e., a surjection) we can build a commutative square

Sa S′a H∗BG

Ra H∗BH.

jG

λ ν

w
∼

θ

w′
∼

To do this first define w′ : H∗BH → Ra by choosing cocycle representatives ỹi of the polynomial
generators yi of H∗BH. Write H∗BG = Q[x1, ..., xr]. Choosing cocycle representatives x̃′i for the
polynomial generators will not yield a commutative square in general. However, the cohomology
classes ν(x̃′i) and w′θ(xi) are cohomologous since the map DBG+ → DBH+ which gives rise to
λ : Sa → Ra via Shipley’s algebraicization theorem represents the map θ in homotopy. Therefore
the differences ν(x̃′i)−w′θ(xi) are coboundaries d(bi). As ν : S′a → Ra is a surjection, we can lift
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the coboundary d(bi) to give a coboundary ai in S′a such that νai = d(bi). Define w(xi) = x̃′i−ai.
Then

νw(xi) = νx̃′i − νai = νx̃′i − d(bi) = w′θ(xi)
so the square commutes.
Next factor the map θ : H∗BG→ H∗BH into a cofibration followed by an acyclic fibration

H∗BG
ϕ−→ QH∗BG

q−→ H∗BH.

Taking the pushout of the span S′a
w←− H∗BG ϕ−→ QH∗BH gives the commutative diagram

S′a H∗BG

R′a QH∗BH

Ra

ν
δ

w
∼

ϕ

α

w′q

z
∼

where z is a weak equivalence by left properness.
From this it follows that we have the commutative squares

Sa Sa S′a H∗BG

Ra R′a R′a QH∗BH

λ

1
∼

δjG

jG
∼

δ

w
∼

ϕ

α
∼

1
∼

z
∼

and we can see the formality step as the following three squares. We write β = δjG to ease
notation.

ModSa ModSa ModS′a ModH∗BG

ModRa ModR′a ModR′a ModQH∗BH

1

λ(∗) λ∗

1 jG∗

β(∗) β∗

w∗j∗G

δ(∗) δ∗

w∗

ϕ(∗) ϕ∗

α∗

λ† λ∗

α∗ 1

β† β∗

z∗1

δ† δ∗

z∗

ϕ† ϕ∗

The vertical functors are still Quillen after the appropriate localization and cellularization by
Theorems 4.12 and 4.14 and Proposition 4.13. All three squares satisfy the hypotheses of
Proposition 4.7, so by Theorem 4.4 all of the derived squares commute.

Remark 9.1. The splitting of this formality step into three pieces is necessary to ensure that
the vertical functors are Quillen. In order to guarantee this, the vertical maps of commutative
DGAs need to be cofibrations, see Proposition 3.8.

Combining all of the results of the previous sections, this completes the proof of Theorem 1.1.

10. Torsion and completion

There are two options for the final step: either to pass to torsion H∗BG-modules, or L-complete
H∗BG-modules. We show that unless the ranks of G and H are equal, there are obstructions to
forming the correct setup in this step. In this section we will complete the proof of Theorem 1.4.
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10.1. Koszul complexes and local (co)homology. In this section we recall some key defini-
tions which we require for the rest of the section. For more detail see [10, §6].
For I = (x1, · · · , xn) a finitely generated homogeneous ideal in a graded commutative ring S,
the stable Koszul complex denoted K∞(I) is defined by

K∞(I) = K∞(x1)⊗S · · · ⊗S K∞(xn)
where K∞(xi) is the complex S → S[1/xi] in degrees 0 and -1.
The local homology of an S-module N is defined by

HI
nN = HnHomS(PK∞(I), N)

where PK∞(I) is a projective replacement of K∞(I), see [18, §1] for instance. We write
ΛI = RHomS(K∞(I),−) for the derived completion functor. The local cohomology is defined by

Hn
I N = H−n(K∞(I)⊗S N).

We note that when S is Noetherian the 0th local homology is the L-completion functor
LI0 = L0((−)∧I ))

which is the 0th left derived functor of I-adic completion [17, 2.5]. We say that an S-module M
is LI0-complete if the natural map M → LI0M is an isomorphism, and write Mod∧S for the full
subcategory of LI0-complete S-modules.
The 0th local cohomology is the I-power torsion functor

ΓIM = {m ∈M | Inm = 0 for some n}
by a result of Grothendieck [24]. We say that an S-module M is (I-power) torsion if the natural
map ΓIM → M is an isomorphism, and write Modtorsion

S for the full subcategory of torsion
S-modules.
We now turn to the interaction of local homology with change of rings. Given a map of rings
θ : S → R and an ideal I = (x1, . . . , xn) of S, we write IR for the ideal (θ(x1), . . . , θ(xn)) of R.

Lemma 10.1. Let θ : S → R be a map of rings and I be an ideal in S. There is an isomorphism
HI
∗ (θ∗M) ∼= HIR

∗ (M) for any R-module M . Furthermore, if R is a projective S-module, there is
an isomorphism HomS(R,HI

∗ (N)) ∼= HIR
∗ (HomS(R,N)) for any S-module N .

Proof. Throughout this proof we neglect to indicate that homs are derived. Recall that there is
an isomorphism R⊗S K∞(I) ∼= K∞(IR). Therefore

ΛI(θ∗M) = HomS(K∞(I), θ∗M) ∼= HomR(R⊗S K∞(I),M) ∼= HomR(K∞(IR),M) = ΛIRM
which gives the first desired isomorphism.
For the other isomorphism, note that

θ!ΛIN = HomS(R,HomS(K∞(I), N))
∼= HomS(R⊗S K∞(I), N)
∼= HomS(K∞(I),HomS(R,N))
∼= HomR(R⊗S K∞(I),HomS(R,N))
= ΛIR(θ!N).

The result then follows from the fact that θ! is exact since R is projective as an S-module. �

We now recall the change of base theorem for local cohomology. We omit the proof as it is
similar to Lemma 10.1.

Lemma 10.2. Let θ : S → R be a map of rings and I be an ideal in S. There is an isomorphism
H∗I (θ∗M) ∼= H∗IR(M) for any R-module M . Furthermore, if R is a flat S-module, there is an
isomorphism R⊗S H∗I (N) ∼= H∗IR(R⊗S N) for any S-module N .
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10.2. Cofibrancy. We have a natural map θ : H∗BG→ H∗BH induced by the inclusion of H
into G. Throughout the remainder of this section, we write I for the augmentation ideal of
H∗BG and J for the augmentation ideal of H∗BH. We note that

√
I ·H∗BH = J by Venkov’s

theorem, using the general fact that if (S, n)→ (R,m) is a map of local rings with R a finitely
generated S-module, then

√
nR = m. Up to quasi-isomorphism, the stable Koszul complex only

depends on the radical of the ideal, so we can apply the base change results from the previous
section in this example.
Recall from Proposition 3.8 that the restriction-coextenstion of scalars adjunction along θ is
Quillen (in the projective model structure) if and only if H∗BH is cofibrant as a H∗BG-module.
A dg-module M over a dga S is called semi-projective if HomS(M,−) preserves surjective
quasiisomorphisms. The semi-projective dg-S-modules are precisely the cofibrant objects in the
projective model structure on ModS [1, 3.15].
Proposition 10.3. Let H → G be the inclusion of a connected compact Lie group into a
connected compact Lie group. The following are equivalent:

(1) rkG = rkH
(2) H∗BH is a cofibrant H∗BG-module (in the projective model structure)
(3) H∗BH is a free H∗BG-module

Proof. (1)⇒ (3): If rkG = rkH then H∗BH ∼= H∗BG⊗H∗(G/H) as a H∗BG-module (see [34,
8.3]) so H∗BH is a free H∗BG-module.
(3) ⇒ (2): Both H∗BH and H∗BG have trivial differential so by [2, 9.8.1], since H∗BH is
underlying projective as a H∗BG-module (as it is free) it is semi-projective and hence cofibrant.
(2)⇒ (3): Recall that semi-projective implies underlying projective [2, 9.6.1, 9.4.1]. By Venkov’s
theorem H∗BH is a finitely generated H∗BG-module, so H∗BH is free over H∗BG as finitely
generated projective modules over local rings are free.
(3) ⇒ (1): Firstly, note that the rank of G is the Krull dimension of H∗BG. As H∗BH is
a free H∗BG-module, we have that dimQH

sBH ≥ dimQH
sBG for all s. It follows from the

characterization of Krull dimension in terms of Hilbert series that rkH ≥ rkG. As H is a
subgroup of G, we also have rkH ≤ rkG. �
Corollary 10.4. If H∗BH is a cofibrant H∗BG-module, then θ∗M ∼= θ!M .

Proof. If H∗BH is a cofibrant H∗BG-module then H∗BH is finitely generated and free over
H∗BG by Proposition 10.3. Therefore H∗BH is a finite sum of shifted copies of H∗BG and the
result follows. �
Remark 10.5. One may expect that if H∗BH is not cofibrant as a H∗BG-module that we
may cofibrantly replace it in the category of commutative H∗BG-algebras. Note that H∗BG
and H∗BH have zero differential, but the cofibrant replacement QH∗BH will not have zero
differential. This means that it is not possible to talk about L-complete or torsion modules over
QH∗BH. This is why Theorem 1.1 has a stronger statement in the case that the ranks of G
and H are equal.

10.3. Completion. Firstly we must show that the functors pass to the category of L-complete
modules.
Lemma 10.6. Suppose that rkG = rkH. There are Quillen adjunctions

Mod∧H∗BG Mod∧H∗BH .
θ∗

θ!
θ∗

Proof. By Lemma 10.1 the restriction functor θ∗ and the coextension functor θ! send L-complete
modules to L-complete modules. Combining this with Corollary 10.4 shows that θ∗ also sends
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L-complete modules to L-complete modules. Since the weak equivalences and fibrations of
L-complete modules are created by the inclusion to all modules, it is immediate that θ∗ and θ!
are still both right Quillen. �

It remains to consider the square

ModH∗BG Mod∧H∗BG

ModH∗BH Mod∧H∗BH

θ∗

LI0

θ∗

i

θ∗θ∗

LJ0

θ∗θ∗

j

where i and j denote the inclusions and rkG = rkH.
It is clear that the inclusions commute with all vertical functors, and therefore applying
Theorem 4.4 shows that all the derived squares commute.

Remark 10.7. We note that each square here commutes up to natural isomorphism rather
than just natural weak equivalence.

10.4. Torsion. Another possible model instead of L-complete modules is that of torsion modules.
The category of torsion modules does not have enough projectives, but it has does have enough
injectives, so it supports an injective model structure [19, 8.6]. Since the injective model structure
is not right lifted from the underlying category of chain complexes, the results of Section 3.3 do
not apply. Therefore, we must next recall when the extension-restriction-coextension functors
are Quillen in the injective model structure. A dg-S-module M is said to be semi-flat if M ⊗S −
preserves injective quasiisomorphisms.

Proposition 10.8. Let θ : S → R be a map of DGAs. The adjunction θ∗ a θ! is Quillen in the
injective model structure. The adjunction θ∗ a θ∗ is Quillen in the injective model structure if
and only if R is semi-flat as an S-module.

Proof. Since the weak equivalences and cofibrations are underlying, the restriction of scalars
functor θ∗ preserves them. Therefore, θ∗ a θ! is Quillen.
If R is a semi-flat S-module, R⊗S − preserves injective quasiisomorphisms. It follows from [2,
11.2.1] that R is linearly flat, meaning that R⊗S − preserves injections (cofibrations). Therefore
R⊗S − preserves cofibrations and acyclic cofibrations so is a left Quillen functor.
Conversely, if the adjunction is Quillen, then R⊗S − preserves injective quasiisomorphisms, so
R is a semi-flat S-module. �

Note that this proposition shows that if the ranks of G and H are the same, then the extension-
restriction and restriction-coextension adjunctions along the ring map H∗BG → H∗BH are
Quillen in the injective model structure.

Lemma 10.9. Suppose that rkG = rkH. There are Quillen adjunctions

Modtorsion
H∗BG Modtorsion

H∗BH .
θ∗

θ!
θ∗

Proof. By Lemma 10.2 and Corollary 10.4 we have that extension, restriction and coextension
preserve torsion modules. Since the weak equivalences and cofibrations of torsion modules
are created by the inclusion to all modules, it is immediate that θ∗ and θ∗ are still both left
Quillen. �
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It remains to consider the square

ModH∗BG Modtorsion
H∗BG

ModH∗BH Modtorsion
H∗BH

θ∗

ΓI

θ∗

i

θ∗θ∗

ΓJ

θ∗θ∗

j

where i and j denote the inclusions and rkG = rkH.
It is clear that the inclusions commute with all vertical functors, and therefore applying
Theorem 4.4 shows that all the derived squares commute.

Remark 10.10. We note that each square here commutes up to natural isomorphism rather
than just natural weak equivalence.

Combining the results of this section with Theorem 1.1 completes the proof of Theorem 1.4.

Appendix A. Proof of Lemma 6.1

We conclude the proof of Lemma 6.1.

Proof. We must check that the module structures defined in the proof of Lemma 6.1 satisfy the
associativity and unit axiom. We prove this for i∗. The proof for i! is similar and therefore we
omit it. Associativity amounts to the outer square commuting in the following diagram.

R ∧R ∧ i∗M R ∧ i∗(i∗R ∧M) R ∧ i∗M

i∗(i∗R ∧ i∗R ∧M) i∗(i∗R ∧M)

R ∧ i∗M i∗(i∗R ∧M) i∗M

µ∧1

1∧p−1

p−1 p−1

1∧i∗(a)

p−1

i∗(µ∧1)

i∗(1∧a)

i∗(a)

p−1 i∗(a)

The top right square and the bottom left square commute by naturality of p, and the bottom
right square commutes by the associativity axiom for M . The triangle in the top left requires us
to use the construction of p, by considering the following diagram.

i∗(i∗R ∧ i∗R ∧M) i∗(i∗R ∧ i∗R ∧M)

i∗(i∗R ∧ i∗i∗(i∗R ∧M)) i∗(i∗R ∧ i∗(R ∧ i∗M)) i∗(i∗R ∧ i∗R ∧ i∗i∗M)

i∗i∗(R ∧ i∗(i∗R ∧M)) i∗i∗(R ∧R ∧ i∗M)

R ∧ i∗(i∗R ∧M) R ∧R ∧ i∗M

1

i∗(1∧η) i∗(1∧1∧η)

i∗Φ

i∗(1∧i∗p)

i∗Φ

i∗(1∧Φ)

i∗Φ
i∗i∗(1∧p)

ε ε

1∧p
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The bottom square commutes by naturality of ε, the middle square commutes by naturality of
Φ and the triangle on the right commutes since i∗ is strong monoidal (with structure map Φ).
It remains to check that the top square commutes, for which is it sufficient to check that the
following diagram commutes.

i∗R ∧M i∗R ∧ i∗i∗M i∗(R ∧ i∗M)

i∗(R ∧ i∗M)

i∗i∗(i∗R ∧M) i∗i∗(i∗R ∧ i∗i∗M) i∗i∗i∗(R ∧ i∗M)

1∧η

η

Φ

η

1

η

i∗i∗(1∧η) i∗i∗Φ

i∗ε

The left hand square commutes by naturality of η, the right hand square commutes by naturality
of η, and the triangle commutes by the triangle identities. This completes the proof of the
associativity axiom.
For the unit axiom, we require that the outer square in the following diagram commutes, where
S denotes the monoidal unit of D.

S ∧ i∗M R ∧ i∗M

i∗(i∗S ∧M)

i∗M i∗(i∗R ∧M)

η∧1

λC

p−1

p−1

i∗λD i∗(i∗η∧1)

i∗(a)

The top right square commutes by naturality of p and the bottom triangle commutes by the unit
axiom for M . For the left triangle we show that it commutes with p instead since we have an
explicit construction for this using the unit and counit of the adjunction. Consider the diagram

i∗(i∗S ∧M) i∗(i∗S ∧ i∗i∗M)

i∗(i∗S ∧ i∗i∗M) i∗i∗(S ∧ i∗M)

i∗i∗i∗M S ∧ i∗M

i∗M i∗M

i∗(1∧η)

i∗(λD)

i∗(1∧η) 1 Φ

i∗λD εi∗i∗λC

εi∗ λC

1

i∗η

in which the outer square gives the left triangle in the previous diagram with p instead of p−1.
We see that the top triangle commutes immediately, the left hand square commutes by naturality
of η, the top right square commutes by definition of i∗ being strong monoidal, the bottom right
square commutes by naturality of ε, and the bottom triangle commutes by the triangle identities.
We must also check that i∗ sends module maps to module maps. Let f : M → N be a map of
i∗R-modules. Then the diagram
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R ∧ i∗M R ∧ i∗N

i∗(i∗R ∧M) i∗(i∗R ∧N)

i∗M i∗N

1∧i∗f

p−1 p−1

i∗(1∧f)

i∗(a) i∗(a)

i∗f

commutes, by the naturality of p and since f is an i∗R module map.
It remains to show that these functors form an adjoint triple. It is enough to check that the
units and counits are module maps.
For the unit of the i∗ a i∗ adjunction we consider the diagram

i∗R ∧N i∗R ∧ i∗i∗N

i∗(R ∧ i∗N)

i∗i∗(i∗R ∧N)

N i∗i∗N

a

1∧η

η

Φ

i∗p−1

i∗i∗(a)

η

in which the square commutes by naturality of η. For the triangle, it suffices to check that the
following diagram commutes.

i∗R ∧N i∗R ∧ i∗i∗N i∗(R ∧ i∗N)

i∗i∗i∗(R ∧ i∗N)

i∗i∗(i∗R ∧N) i∗i∗(i∗R ∧ i∗i∗N)

η

1∧η Φ

η

i∗ε

i∗i∗(1∧η)

i∗i∗Φ−1

The left hand square commutes by naturality of η and checking that the right hand square
commutes can be done by considering the diagram

i∗R ∧ i∗i∗N i∗(R ∧ i∗N)

i∗(R ∧ i∗N)

i∗i∗(i∗R ∧ i∗i∗N) i∗i∗i∗(R ∧ i∗N)

η

Φ−1

1

η

i∗i∗Φ−1

i∗ε

in which the left hand square commutes by naturality of η and the triangle commutes by the
triangle identities. The argument for the counit of the i∗ a i∗ adjunction follows similarly, as
does the other adjunction. �
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CHAPTER 5

Future directions
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In this chapter we discuss possible extensions of the work presented in this thesis. There are two
potential extensions to the theorem identifying the change of groups functors in the algebraic
model; removing the hypothesis of connectedness or extending beyond the (co)free case. We
then discuss a potential application beyond rational equivariant stable homotopy theory.

1. Disconnected groups

When finding the counterparts to the change of groups functors, we assumed that both G and
H are connected. This assumption has two main consequences. Firstly, there is no action of the
Weyl group. When constructing an algebraic model for (co)free G-spectra for disconnected G,
one must consider the action of the Weyl group on all modules and rings considered. This leads
to an extra layer of complexity. Secondly, the ring map DBG+ → DBH+ need not be relatively
Gorenstein unless G and H are connected.
The author has some preliminary work on extending the algebraic models of change of groups
functors between (co)free spectra to the disconnected case. The main complication now arises
from the fact that the action of the group of components of G and H must be taken into account.
Nonetheless, since we are working in the free case, we expect that the action of the group of
components can be ‘removed’ and treated in a purely categorical manner as follows.
Firstly, we note that the algebraic models for free and cofree G-spectra still exist, and the general
strategy of proof is the same. We write Ge for the identity component of G and Gd = G/Ge for
the component group. Since the cofree case is proved in Chapter 2 we work in the cofree rather
than free case. The free case is analogous.
The first step in constructing the algebraic model is still a change of rings along S0 → DEG+
but the main difference arises in removing equivariance. Taking G-categorical fixed points is
too brutal to record the action of the component group, and so we instead must take Ge-fixed
points. This provides a Quillen equivalence to LGd+ModDBGe+ where DBGe+ = (DEG+)Ge is
a commutative ring Gd-spectrum. The next step is to use the following lemma to allow us to
work with Gd-objects in non-equivariant spectra.

Lemma ([10, 5.3]). There is a Quillen equivalence

LEGd+SpGd
'Q Sp[Gd].

Applying this lemma, we obtain a Quillen equivalence

LGd+ModDBGe+(SpGd
) 'Q LGd+ModDBGe+(Sp)[G̃d].

By pulling out this action, we have reduced to the connected case and we now expect that
proving the correspondence of functors in the disconnected case follows from this formally. In
order to check this, one must carefully verify that each step is appropriately equivariant.
A layer of complexity which we have so far hidden in this discussion is that when dealing with
a subgroup inclusion i : H → G, it does not follow that id : Hd → Gd is a monomorphism. For
example, if we take H = SO(2) and G = O(2), we have Gd = C2 but Hd is the trivial group.
We expect that carefully reconciling the actions of the component groups will be the key step in
extending the correspondence to the disconnected case.
Further evidence of the fact that the action can be pulled out and treated formally is that the
algebraic models for (co)free equivariant spectra do not detect whether the sequence

1→ Ge → G→ Gd → 1

is split exact. For example, we have that free O(2)-spectra and free Pin(2)-spectra are equivalent.
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2. Beyond the (co)free case

The next generalization of the work in this thesis is to find algebraic models for change of groups
functors without the (co)free assumption. In this case the algebraic models are more complex
and are diagram categories. The slogan is that the algebraic model for G-spectra is a sheaf on
the space of (connected) subgroups of G.
Let us focus on the case where G is a torus. An algebraic model for torus-equivariant spectra
was given by Greenlees [4, 5, 6] and a zig-zag of Quillen equivalences was constructed by
Greenlees-Shipley [8]. We give a brief description of the objects in the algebraic model for
rational G-spectra. We define a ring

OF =
∏

F∈F
H∗(BG/F )

where F is the family of finite subgroups of G. One may define a multiplicative set of Euler
classes for each connected subgroup K of G, and using this define a diagram of rings indexed on
ConnSub(G) by

ÕF(K) = E−1
K OF.

A module over the diagram of rings ÕF is a collection of modules M(K) indexed by ConnSub(G),
where M(K) is a E−1

K OF-module, together with structure maps M(L)→M(K) for each L ⊆ K.
The algebraic model A(G) is then given by a subcategory of ÕF-modules. Namely, they are
the quasi-coherent and extended modules. These two conditions say that the value at any
connected subgroup is determined by the value at the trivial group, and relates the value at
any connected subgroup to the value at a quotient. These conditions mirror the Borel-Hsiang-
Quillen localization theorem for Borel cohomology which says that if X is a finite complex,
then H∗G(X)→ H∗G(XG) = H∗(BG)⊗H∗(XG) is an isomorphism after inverting E−1

G . Indeed,
one may define M(K) = H∗G/K(XK) for a finite G-space X and one then sees that this is
quasi-coherent and extended by the Borel-Hsiang-Quillen localization theorem.
We write Tr for the torus of rank r. Take r ≤ s and consider the inclusion i : Tr → Ts. We
expect that constructing functors between the algebraic models will require some complex
homological algebra, but much of this probably already exists in [5, §6]. It is unclear whether
the extra complication which arises from working with modules over diagrams of rings makes
the correspondence of functors significantly harder to prove. We expect that once the correct
setup has been established, the correspondence should follow in a reasonably formal manner
from the results of Chapter 4.

3. Singularity categories and the BGG correspondence

The singularity category of a commutative Noetherian ring R is the Verdier quotient

Dsg(R) = Db(R)
Dc(R)

of the bounded derived category (the complexes with bounded cohomology) by the perfect
complexes (the bounded complexes of finitely generated projectives) [3]. The singularity category
measures how far the ring R is from being regular. Indeed, R is regular if and only if Dsg(R) = 0.
Greenlees-Stevenson [9] have recently extended the definition of the singularity category to
DGAs and ring spectra by a Noether normalization procedure.
We follow [9] and work in the general setting of a map of ring spectra R→ k. We note that one
must impose hypotheses on the Noether normalization, but we ignore these technicalities here.
One can define the cosingularity category

Dcosg(R) = Db(R)
thick(k)
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and the BGG correspondence relates the singularity and cosingularity categories via Morita
theory. More precisely, given a ring R define its Morita pair to be E = HomR(k, k). There are
equivalences

Dsg(R) ' Dcosg(E) and Dsg(E) ' Dcosg(R).
We note that this is a vast generalization of the original BGG correspondence as stated in [2].
We now give two examples of interest.

Example 3.1. Let R = Λ(t1, · · · , tn) be an exterior algebra. Its Koszul dual is E = k[x1, · · · , xn]
where |xi| = −1. The BGG correspondence recovers the usual Koszul duality statement

Dsg(Λ(t1, · · · , tn)) ' Db(Pn−1
k ).

Example 3.2. Let k be a field of characteristic p and G be a p-group. Let R = C∗(BG; k) =
F (BG+, Hk). Its Morita pair is E = kG. Note that

Dsg(E) = Db(kG)
Dc(kG) ' stmod(kG)

so the BGG correspondence gives an equivalence Dcosg(C∗(BG; k)) ' stmod(kG). Greenlees-
Stevenson [9, 10.6] also treat the case where G is a finite group which is not necessarily a p-group.
In this case though, E = C∗(ΩBG∧p ) 6' kG since BG is not p-complete in general.

We hope to apply the general machinery developed in this thesis to approach the question of
correspondence of functors along the BGG correspondence. For example, given a map of rings
S → R, this induces a map on Morita pairs ER → ES in the opposite direction. Immediately,
this is reminiscent of the situation for free G-spectra where the inclusion H → G induced a ring
map H∗BG→ H∗BH. We now discuss some of the challenges and obstacles we foresee.
Firstly, all discussions in this section have been in bounded derived categories. In order to
approach this via the model categorical techniques we developed, we must find model categories
which represent the objects we are interested in. Instead of working in the bounded case, we
expect to work in the so-called big singularity category KacInj(R) as defined by Krause [11].
Becker [1] has discussed this at a model categorical level for DGAs, but we would like to
approach it more generally, so as to encompass the examples given by Greenlees-Stevenson.
Greenlees-Shipley [7, 5.4] prove a general Koszul duality style result for model categories, and
we expect this to be a valuable template in constructing an appropriate version of the BGG
correspondence at the model categorical level.
The next issue is the commutativity of rings which played a crucial role in the general theory
developed in Chapter 4. Given a commutative ring R, its Morita pair E is not commutative in
general. However, this is true in some interesting cases via a Cartan commutativity argument [7,
5.2]. For example, both R and E are commutative in Example 3.1. Similarly in Example 3.2,
whilst kG is not commutative in general, the stable module category stmod(kG) is a closed
symmetric monoidal category.
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