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Abstract

Semigroup representations are one of the oldest areas in semigroup theory. In 1933,

Suschkewitch published the first paper on the topic. Since then, the area has been

approached largely by Clifford, Munn, Ponizovskii, and then by Hewitt and Zucker-

man, Lallement and Petrich, Preston, McAlister, and Rhodes. Following an intense

period of development during the 1950’s and 1960’s, the theory witnessed a dormant

era during the 1970’s and 1980’s. There was a resurgence of interest in the subject

in the late 1990’s in the work of Putcha, Brown and others. The lack of continuity

of research in the theory is intriguing. This thesis addresses the discontinuous de-

velopment of the theory and the reasons behind it.

The Clifford-Munn-Ponizovskii correspondence states that the irreducible rep-

resentations of a semigroup are in one-to-one correspondence with the irreducible

representations of its maximal subgroups. Since the principal approach to identify

representations of semigroups is this correspondence, we start with the observa-

tion that the lack of interest in semigroup representation theory could have been

because the Clifford-Munn-Ponizovskii theory reduces the whole problem of find-

ing irreducible representations to group representation theory. It turns out that

this is a wrong assumption. It is not clear that during the dormant period the

correspondence was widely known. By the time Munn and others stopped work-

ing on the theory, the correspondence was not stated in a fully-fledged form. The

Clifford-Munn-Ponizovskii correspondence was subsequently formulated by others

and emerged much later than in the work of Clifford and Munn.

In the thesis we first discuss the subject using modern mathematical language,

starting with groups and then with semigroups. With this hindsight, we then turn

to the subject as it was developed for groups and semigroups.
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Chapter 1

Groups and Their Representations

The theory of representations of groups is important in group theory and related

areas of algebra. Research dates back to the early 19th century. This chapter

adopts both a historical perspective and a contemporary one to provide insight into

the theory of representations of groups. In the first section, group representations

are examined from a modern standpoint. Section 1.2 describes the motivations and

development of the theory. Section 1.3 presents a timeline of the development of the

theory between approximately 1850 and the present. This is followed by a discussion

of applications.

1.1 Group Representation Theory

In this section, we provide several facts and properties concerning group represen-

tations and characters. All of these can be found in [10,41,42,96,99,103,107].

The definition of a linear group representation is based on the definition of group

action on a set.

Definition 1.1.1. [103] An action of a group G on a set X is a function

(x, g) ∈ X ×G→ x · g ∈ X

that takes a pair (x, g) of an element x ∈ X and a group element g ∈ G to x · g ∈ X
such that

(x · g1) · g2 = x · (g1g2) for all x ∈ X, g1, g2 ∈ G

and

x · e = x for all x ∈ X

where e is the identity element of G. We usually write xg instead of x · g and 1,

rather than e, for the identity element of G.
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Thus, an action of a group G on a set X is in fact equivalent to a homomorphism

from G into the group of all bijective transformations of X. To show this, if a group

G acts on X, as in the above definition, then define the map

θ : G→ SX

by gθ : X → X is the map with x(gθ) = x · g. This is a bijection from X to X and

a homomorphism since,

x((gh)θ) = x · (gh)

= (x · g) · h

= (x(gθ)) · h

= x((gθ)(hθ)),

for all x ∈ X and g, h ∈ G. This leads to:

Definition 1.1.2. Let G be a group and X be a set. Then G acts on X if there is

a homomorphism θ : G→ SX .

According to definition 1.1.1, if we replace the set X with a vector space V and

add a few more conditions, we obtain the group representation definition. Note that

the action of a group will be on the right and the composition in G is left to right

throughout the section.

Let V be an n-dimensional vector space over a field k. Consider the group GL(V )

of all invertible linear maps from V to V . We first define a representation as a linear

map:

Definition 1.1.3. [99] Let G be a finite group. A (linear) representation of G on V

is a homomorphism ϕ from G to GL(V ). Each g in G acts as a linear transformation.

We write vg for the action of g on v ∈ V in a representation ϕ, so that v(g)ϕ = vg.

The map φ : V × G → V is a representation of G on V if φ is a group action

and if, for every g ∈ G, the function φ : V → V defined by (v)φ = (v, g)φ (v 7→ vg)

is a linear function.

From Definition 1.1.3, since ϕ is a homomorphism, it follows that, for all g, h ∈
G, (gh)ϕ = (g)ϕ(h)ϕ. Moreover, if 1 is the identity of G and id is the identity linear

map in GL(V ), then (1)ϕ = id. Hence (g−1)ϕ = (gϕ)−1, as

id = (1)ϕ = (gg−1)ϕ = (g)ϕ(g−1)ϕ.

Now, for all v ∈ V and g, h ∈ G the product v(gϕ) ∈ V and the homomorphism

2



defined above show that

v((gh)ϕ) = v(gϕ)(hϕ).

Further, since (1)ϕ is the identity map, it follows that v(1ϕ) = v for all v ∈ V , and

the properties of the linear maps in GL(V ) give that for all u, v ∈ V , λ ∈ k and

g ∈ G, we have

(λv)(gϕ) = λ(v(gϕ) and (u+ v)(gϕ) = u(gϕ) + v(gϕ)

This observation allows us to view a representation ϕ of G as a G-module, as

defined below.

Definition 1.1.4. [42] Let G be a finite group and V be a finite-dimensional vector

space over k. Then, V is a G-module if there exists a mapping V ×G→ V such that

(v, g) 7→ vg ∈ V , where v ∈ V and g ∈ G; and it satisfies the following conditions

for all u, v ∈ V, λ ∈ k and g, h ∈ G :

1. v(gh) = (vg)h;

2. v1 = v, where 1is the identity of a group G;

3. (λv)g = λ(vg);

4. (u+ v)g = ug + vg.

Now, let G be a group and let k be a field. Consider the group GLn(k) of

invertible n× n matrices with entries in k.

Definition 1.1.5. [42] A representation of G over k is a homomorphism ϕ from

G to GLn(k), for some n. The integer n is the degree (or the dimension) of the

representation.

Since a representation is a homomorphism, it follows that for every representation

ϕ from G to GLn(k), we have

1ϕ = In, and

g−1ϕ = (gϕ)−1 for all g ∈ G,

where In denotes the n× n identity matrix.

We call this representation a matrix representation. Notice that if we consider

an n-dimensional vector space V over k and choose a basis for V , then relative to

this basis each endomorphism of V is represented by an n× n matrix over k. This

gives rise to an isomorphism between the group GL(V ) of all linear maps from V

to V and the group GLn(k). Thus, if we have a matrix representation, then we

can think of it as a representation acting on the vector space kn. Given a matrix

3



representation ψ : G → GLn(k), g 7→ Ag, for A an n × n matrix, we get a linear

representation ϕ : G→ GL(V ), g 7→ ϕg via (v)ϕg = vAg, for g ∈ G and v ∈ V with

dimk V = n. Conversely, given a linear representation ϕ : G → GL(V ), if we fix a

basis B, we get a matrix representation ψ : G → GLn(k) via g 7→ [(g)ϕ]B, where

[(g)ϕ]B is the matrix of (g)ϕ relative to the basis B . We often refer to V itself as

the representation since the important thing is how G acts on V .

Two matrix representations are equivalent if and only if they describe the same

representation in different bases:

Definition 1.1.6. [42] Let ϕ : G→ GL(V ) be a representation of a group G. Let

A = {a1, . . . , an} and B = {b1, . . . , bn} be two bases for V . Then the two associated

matrix representations

ϕA : G→ GLn(k)

ϕB : G→ GLn(k)

are equivalent.

We need the following fundamental notions before we examine Maschke’s Theo-

rem below.

If U1, . . . , Ur are subspaces of a vector space V , then the sum U1 + . . .+ Ur is a

subspace of V and defined by

U1 + . . .+ Ur = {u1 + . . .+ ur : ui ∈ Ui for 1 ≤ i ≤ r}.

We say that the sum U1 + . . . + Ur is a direct sum if every element of the sum can

be written in a unique way as u1 + . . . + ur with ui ∈ Ui for 1 ≤ i ≤ r. If the sum

is direct, then it is written as

U1 ⊕ . . .⊕ Ur.

Definition 1.1.7. [42] A subrepresentation of a representation ϕ from G to GL(V )

is a linear subspace U of V that is invariant under the action of G, i.e. (U)ϕg ⊆ U

for all g in G.

Maschke’s Theorem. [42] Let G be a finite group and let k be a field of characteris-

tic zero or coprime to |G|. Let V be a representation of G. If W is a subrepresentation

of V, then there is a subrepresentation U of V such that V = W ⊕ U .

Definition 1.1.8. [42] A non-zero G-representation V is said to be simple or

irreducible if the only subrepresentations of V are {0} and V itself.

The space V is called completely reducible or semisimple, if it can be expressed

as a direct sum of irreducible subrepresentations. The power of Maschke’s Theorem

lies in the following consequence.
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Complete Reducibility Theorem. [42] Every finite-dimensional representation

of a finite group over a field of characteristic zero is completely reducible.

Recall that the symmetric group Sn is the set of all permutations of a set of

n symbols. Suppose we have a subgroup G ⊂ Sn. Then we can construct an n-

dimensional representation of G called a permutation representation. The method

of the construction is as follows:

Let V be an n-dimensional vector space over a field k, with a basis {v1, . . . , vn}
and G be a subgroup of Sn. Every element g in G is a permutation of the set

[n] = {1, . . . , n}. For each i with 1 ≤ i ≤ n and each permutation g in G, define a

linear map

(g)ρ : V → V by vi 7→ vig

Then vig ∈ V and vi1 = vi. Also, for g, h ∈ G,

vi(gh) = vi(gh) = v(ig)h = (vig)h.

Then ρ is a homomorphism.

Definition 1.1.9. [42] Let G be a subgroup of Sn. The representation V of G

with basis {v1, . . . , vn} such that vig = vig for all i, and all g ∈ G, is called the

permutation representation for G over k. We call {v1, . . . , vn} the natural basis of

V .

Matrices representing (g)ρ with respect to the natural basis of V are called

permutation matrices : entries 0 everywhere except 1 in each row and column, and

((g)ρ)ij = 1 precisely when ig = j, for 1 ≤ i, j ≤ n.

Example 1.1.10. Let G = {(1), (123), (132)} ⊂ S3 so that G is a subgroup. Let V

be a 3-dimensional permutation representation for G over C. Then, the permutation

representation of G is

((1))ρ =

 1 0 0

0 1 0

0 0 1

 , ((123))ρ =

 0 1 0

0 0 1

1 0 0

 , ((132))ρ =

 0 0 1

1 0 0

0 1 0

 .

We now move on to defining characters of a finite group which are the essential

tools for the study of group representations. In contrast with representations, we

intend to write characters as functions on the left. Any two matrices representing a

linear map from V to V with respect to different bases have the same trace. Thus we

may refer to the trace of a linear map. Note that the trace of a linear function is just

the trace of any matrix representing it under any basis. That is, given L : V → V

define tr(L) by trace of a matrix of L under any basis.
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Definition 1.1.11. [42] Let ϕ : G → GL(V ) be a representation of a finite group

G. The character of this representation is a function χ : G → C defined as χ(g) =

tr((g)ϕ), for g ∈ G, where tr denotes the trace of the linear map (g)ϕ. Moreover, if

V is an irreducible representation, then χ is called an irreducible character.

Proposition 1.1.12. [42] Let V be representations of a finite group G, and suppose

that

V = U1 ⊕ · · · ⊕ Ur,

a direct sum of irreducible subrepresentations Ui, 1 ≤ i ≤ r of V . Then the characters

of V is equal to the sum of characters of the subrepresentations U1, . . . , Ur.

If two elements g and h are conjugate in G, then χ(g) = χ(h). The dimension

of a representation V , which is the character value of the identity matrix on V , is

referred to as the degree of the character.

Theorem 1.1.13. [42] Let V and W be representations of a finite group G, with

characters χ and ψ, respectively. Then V and W are isomorphic if and only if

χ = ψ.

Definition 1.1.14. [42] A class function is a function ϕ : G → C such that

(g)ϕ = (hgh−1)ϕ, for all g, h ∈ G.

The set of all class functions into C for a given group G is denoted by Cclass(G).

The set Cclass(G) is a subspace of the vector space of all functions from G to C. A

basis of Cclass(G) is given by those functions which take the value 1 on precisely one

conjugacy class and zero on all other classes. Thus, if m is the number of conjugacy

classes of G, then dimCclass(G) = m.

Since tr(B−1AB) = tr(A), characters of G are invariant under conjugation and

hence are class functions on G. For all g and h in G:

χ(hgh−1) = tr
(

(hgh−1)ϕ
)

= tr
(

(h)ϕ(g)ϕ(h−1)ϕ
)

= tr
(

(h−1)ϕ(h)ϕ(g)ϕ
)

= tr((h−1h)ϕ(g)ϕ)

= tr((g)ϕ)

= χ(g).

This shows that character is constant on conjugacy classes of G. Since the dimension

of Cclass(G) is the number of conjugacy classes in G, which is in fact equal to the

number of irreducible characters of G, and the irreducible characters form a linearly
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independent set in Cclass(G), the irreducible characters form a basis of Cclass(G).

Definition 1.1.15. [42] Let g ∈ G. The centralizer of g in G, denoted by CG(g),

is the set of elements of G which commute with g; that is,

CG(g) = {h ∈ G : gh = hg (or h−1gh = g)}.

Corollary 1.1.16. [42, Corollary 15.4] Let G be a finite group. The irreducible

characters χ1, . . . , χk of G form a basis of the vector space of all class functions on

G. Indeed, if ψ is a class function, then

ψ =
k∑
i=1

λiχi

where

λi = 〈ψ, χi〉 =
k∑
i=1

ψ(gi)χi(gi)

|CG(gi)|

for 1 ≤ i ≤ k; gi are the representatives of the conjugacy classes of G.

As consequence, there is one-to-one correspondence between the irreducible char-

acters of a group G and the conjugacy classes of G.

For the upcoming fact, we define first the tensor product space and then the dual

of a representation as a representation. Let V and W be two vector spaces over a

field k with dimensions dimV = m and dimW = n. Fix bases {v1, . . . , vm} and

{w1, . . . , wn} for V and W respectively. The tensor product space V ⊗W of V and W

is an mn-dimensional vector space over k with basis {vi⊗wj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
Thus:

• V ⊗ W =
{ ∑

1≤i≤m
1≤j≤n

λij(vi ⊗ wj) : λij ∈ k
}

with obvious addition and scalar

multiplication;

• if v =
∑
αivi ∈ V and w =

∑
βjwj ∈ W , then v ⊗ w is defined as

v ⊗ w =
∑
i,j

αiβj(vi ⊗ wj).

The map ϕ : V ×W → V ⊗W is a bilinear map which has the property that for

any bilinear map h : V ×W → Z, for any vector space Z, there is a unique linear

map h̃ : V ⊗W → Z such that h = ϕh̃. See [50, Chapter XVI].
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Let V be a finite-dimensional representation of a finite group G. The image of

v ∈ V under the action of g ∈ G is v · g, so v · (gh) = (v · g) · h. Let

V ∗ = {α : V → C : α is a linear function}.

We define the action of G on the vector space V ∗ by α 7→ α · g where (v)(α · g) =

(v · g−1)α and α · e = α. Then we want to show that

α · (gh) = (α · g) · h.

For all v ∈ V ,

(v)(α · (gh)) = (v · (gh)−1)α

= (v · (h−1g−1))α

= ((v · h−1) · g−1)α

= (v · h−1)(α · g)

= (v)((α · g) · h).

This is the required result and thus V ∗ is a representation for the group G, called

the dual space of V . Note that the dimension of V ∗ is equal to the dimension of V .

Proposition 1.1.17. [99] Let V and W be representations of a finite group G.

Then the following statements hold:

1. χ(V ⊕W ) = χ(V ) + χ(W );

2. χ(V ⊗W ) = χ(V ) · χ(W );

3. χ(V ∗) = χ(V ).

Now, suppose that a group G acts on a vector space V with character χ1, and

a group H acts on a vector space W with character χ2. Then G × H acts on the

vector space V ⊗W with character χ(g, h) = χ1(g)χ2(h), for g ∈ G and h ∈ H.

Furthermore, each irreducible representation of G×H is a tensor product of an ir-

reducible representation of G and with that of H. This is called the external tensor

product of representations.

Let G be a finite abelian group. If the order of G is n then gn = 1, for every

g ∈ G and hence χ(g)n = 1 for each g ∈ G and each character on G. Therefore, a

character of the group G maps G to the roots of unity. Two characters can be multi-

plied pointwise to define a new character. We explain this in the following paragraph.

The product of two characters χ1, χ2 of a group G is defined by (χ1χ2)(g) =

χ1(g)χ2(g) for g ∈ G. With this product, the characters on G, for G an abelian
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group, form a group called the character group of G and denoted by Ĝ. The identity

element of Ĝ is the trivial character that maps G to 1. Since any character on G

maps G to the roots of unity, the inverse χ−1 : g 7→ χ(g)−1 of a character χ is equal

to its complex conjugate χ : g 7→ χ(g). A character group of an abelian group G is

isomorphic with G and in particular, |Ĝ|= |G|.

Characters provide the information needed to classify irreducible representations.

This information is organized into a square table called the character table, in which

the left-most column is dedicated to the irreducible characters, and the top row is

dedicated to the conjugacy classes of the group. Each box has a number and that

number is the value of the character on the respective conjugacy class. The k × k
matrix of this table is denoted by X = [χi(gj)], where χ1(= 1), χ2, . . . , χk are the

irreducible characters of G, and C1(= {eG}), C2, . . . , Ck are the conjugacy classes,

with gj ∈ Cj. The (i, j)th entry of X is χi(gj), for 1 ≤ i, j ≤ k.

Example 1.1.18. Let G be a symmetric group S3. Recall that in symmetric groups,

conjugacy classes are the same as the cycle-type classes, thus by Corollary 1.1.16

there are 3 irreducible characters of S3. Hence the character table will be a 3 × 3

matrix:

S3 id (12) (123)
trivial χ1 1 1 1
sign χ2 1 -1 1

geometric χ3 2 0 -1

To fully understand the next section, the following concepts are required.

Let G be a finite group with elements g1, . . . , gn, and k be a field. We define a

vector space over k with g1, . . . , gn as basis, we denote this vector space by k[G].

The elements of k[G] are expressions of the form

λ1g1 + · · ·+ λngn, where all λi ∈ k.

The rules for addition and scalar multiplication are defined as: if

u =
n∑
i=1

λigi and v =
n∑
i=1

µigi

are elements of k[G], and λi, µi ∈ k, then

u+ v =
n∑
i=1

(λi + µi)gi and λu =
n∑
i=1

(λλi)igi.
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With these rules, k[G] is a a vector space over k of dimension n, with basis g1, . . . , gn,

called natural basis of k[G].

Definition 1.1.19. [42] The vector space k[G], with multiplication defined by(∑
g∈G

λgg
)(∑

h∈G

µhh
)

=
∑
g,h∈G

λgµh(gh).

for λg, µh ∈ k, is called the group algebra of G over k.

Definition 1.1.20. [42] Let G be a finite group and k be a field. The representation

g 7→ [g]B obtained by taking B to be the natural basis of the group algebra k[G]

(B = G) is called the regular representation of G over k, where [g]B denotes the

matrix of the endomorphism v 7→ vg of V , relative to the basis B.

If l is a subfield of a field k, then we say k is a field extension of l and it is

denoted by k/l.

Definition 1.1.21. [96] Let k/l be a field extension. The Galois group is

Gal(k/l) = {automorphisms σ of k fixing l pointwise}

under the binary operation of composition. If f ∈ l[x] has a splitting field k (which

means that f is a product of linear factors in k[x]), then the Galois group of f is

Gal(k/l).

Here l[x] is the polynomial ring over a field l and an automorphism σ of k fixes

l pointwise if cσ = c for every element c in l.

Let G be a finite group. Then we call a field k a splitting field for G if every

irreducible representation of G remains irreducible for every extension field of k.

1.2 Motivations and Developments

A character of a finite group is defined as the trace of a matrix representation.

However, it was initially introduced via a different approach. The starting point of

character theory of finite groups was in 1896 when the algebraist and number theo-

rist Richard Dedekind (1831-1916) posed a problem to the group theorist Ferdinand

Georg Frobenius (1849-1917). The problem was about factoring the determinant of

a matrix corresponding to a finite arbitrary group, which is called the group determi-

nant. In this section, we discuss briefly the motivation that led Frobenius to his cre-

ation of character theory and subsequently the representation theory of finite groups.

This section also contains the main points of the study of the abstract problem of

factoring group determinant. For further discussions, [9, 11, 12, 31, 32, 43, 44, 48, 49]
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provide a historical survey of the work. The original works can be found in [17–20,24]
1 (written in German). Some of the mathematical parts of the discussion are pre-

sented in their modern formulation.

Before exploring Frobenius’s motivations, it is worth discussing his mathematical

background, and that of Dedekind, when they started their correspondence.

Dedekind’s background [12, 32] was based on Gaussian characters 2 of finite

abelian groups, higher reciprocity and the Legendre symbol, Dirichlet’s application

of analytical methods to number theory, and his contemporary work on hypercom-

plex systems and on number theory via his editing of Dirichlet’s Vorlesungen. This

explains why the development of character theory has its unexpected origins in

number theory. Prior to 1896, Frobenius did not know about group determinants.

However, he had earlier worked with a similar concept relating to the factorization

of a homogeneous polynomial in theta functions and in linear algebra, and presum-

ably this was the reason that the problem had his direct attention. Frobenius’s

background [12,32] was the theory of linear differential operators, linear forms with

integer coefficients, improved proofs of Sylow’s theorem, linear and bilinear forms,

and the theory of biquadratic forms.

Before tracing back the development and the progress of representation theory

of groups, we look at the letter that is at the heart of the matter. In his March

1896 letter to Frobenius (published in [13]), Dedekind introduced the concept of

the group determinant of a finite group. He explained how it factors and suggested

Frobenius think about the general case. Dedekind defined this fundamental idea

using the following statement (the exposition of the following definition is in its

modern formulation):

Definition 1.2.1. [9,48] For a finite group G of size n, let {xg : g ∈ G} be a set of

independent variables over the field of complex numbers C. Define the group matrix

XG(= Xgh) as the n× n matrix with rows and columns indexed by the elements of

G such that the (g, h) entry in XG is xgh. The group determinant Θ(G) of G is then

the determinant of XG, which is therefor a homogeneous polynomial of degree n in

the variables xg.

However, Dedekind preferred using the variable xgh−1 instead of xgh in the (g, h)

position to interchange the g and g−1 columns of the group table which only affects

1The original works of Frobenius writings were brought together in Gesammelie Abhandlungen,
J. P. Serre, ed., 3 vols. (BerlinHeidelberg-New York, 1968).

2The mathematical term character was first introduced by Gauss in his 1801 paper Disquisi-
tiones Arithmeticae to assign the numerical information to classes of binary quadratic forms, in
order to separate classes of forms with the same determinant into different genera [12, Chapter I,
page 3-4].
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the determinant by a factor of ±1.

The following example illustrates the idea of a group determinant.

Example 1.2.2. Consider the cyclic group of order 3, G = C3 = {1, a, a2} with

relation a3 = 1. Then the group matrix is

Xgh =

 x1 xa xa2

xa xa2 x1

xa2 x1 xa

 or Xgh−1 =

 x1 xa2 xa

xa x1 xa2

xa2 xa x1

 .
The determinant is Θ(G) = x3

1 + x3
a + x3

a2 − 3x1xaxa2 . This polynomial decomposes

into linear factors over C as:

(x1 + xa + xa2)(x1 + ωxa + ω2xa2)(x1 + ω2xa + ωxa2),

where ω is a primitive cube root of unity.

It might be asked why Dedekind was interested in a group determinant and how

it came about. The motivation came from his study of the discriminant in a normal

field (the algebraic number field). How exactly did this happen? The answer to this

question takes us to the initial part of the tale. In 1846, Eugène Charles Catalan

(1814–1894) introduced for the first time the so-called circulant as follows.

Definition 1.2.3. [9] For a positive integer n, let X0, . . . , Xn−1 be indeterminates

and consider an n× n matrix where each row is obtained from the previous one by

a cyclic shift one step to the right:
X0 X1 X2 · · · Xn−1

Xn−1 X0 X1 · · · Xn−2

...
...

...
. . .

...

X1 X2 X3 · · · X0

 .

The determinant of this matrix is called a circulant of order n, and it is a homo-

geneous polynomial of degree n with integer coefficients.

Ten years later, William Spottiswoode (1825-1883) discovered that over the com-

plex numbers, the circulant of order n factors into n homogeneous linear polynomials

whose coefficients are nth roots of unity.

Dedekind 3 then considered the extension of the notion of the circulant into group

theory. Let k be a finite field of degree n extension of the rational numbers and let

3Dedekind, R., 1931. Gesammelte mathematische Werke, 2, Braunschweig.
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G = {π1, . . . , πn} be the Galois group of k. Given ω1, . . . , ωn, any basis for k over C,

then the discriminant ∆ of ω1, . . . , ωn is defined as ∆ = D2, where D = det(ωiπj).

Here, (ωiπj) is an n×n matrix whose ith row consists of the entries (ωiπ1, . . . , ωiπn).

By picking a single element ω in k such that the n entries (ωπ1, . . . , ωπn), form a

basis for k, or if ωi = ωπi, then we get D = det(ωπiπj). If we let xπ = ωπ, then the

determinant will be D = det(xπiπj). Thus, the discriminant of k leads to the group

determinant.

In 1879 4, Dedekind formally defined the character function for a finite abelian

group G. The following definition is in its modern formulation:

Definition 1.2.4. [31, 48] A character is a homomorphism χ from G into the

multiplicative group of the field C of nonzero complex numbers; i.e. a map χ : G→
C∗ that satisfies χ(gh) = χ(g)χ(h) for all g, h in G.

This is in fact the second version of a character’s definition and we now need

to clarify the relationship between this version and the previous version, Definition

1.1.11, which is in the sense of representations. First, we show that Definition 1.1.11

is an example of Definition 1.2.4:

χ(gh) = tr((gh)ϕ) = tr((g)ϕ(h)ϕ)

= tr((g)ϕ) · tr((h)ϕ)

= χ(g) · χ(h).

Secondly, since a character χ is a class function G→ C that is constant on conjugacy

classes of the group G and by using Corollary 1.1.16, we have:

χ =
k∑
i=1

λiχi.

Note that the character χ here is in the sense of Definition 1.2.4. Now, if the charac-

ter χi comes from a G-representation Vi, then χ is the character of V a1
1

⊕
. . .
⊕

V ak
k

and this is an example of Definition 1.1.11. We conclude that the two versions of

character are equivalent.

Then, around 1880, Dedekind discovered and proved that if a group G is an

abelian group, then the associated group determinant factors completely into linear

forms with coefficients given by the characters of G.

Theorem 1.2.5. [11, 48] Let G be a finite abelian group of size n and let Ĝ be the

4This was in one of Dedekind’s supplements to Dirichlet’s lectures in number theory.
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character group of G. The factorization of the group determinant is:

Θ(G) =
∏
χ∈Ĝ

Pχ, where Pχ =
∑
g∈G

χ(g)xg.

Then Θ(G) is a homogeneous polynomial of degree n and it factors into exactly n

homogeneous linear polynomial Pχ over C∗.

For the above example, the cyclic group C3 has three characters: χ1, χ2 and χ3,

determined by the generator element g of C3 by χi+1(g) = ωi, where ω is a primitive

cube root of unity. Thus, the factorization of the group determinant is:

Θ(G) =
3∏
i=1

(
χi(1)x1 + χi(a)xa + χi(a

2)xa2
)
.

It is noteworthy that the underlying concept of character here is that of a group

determinant, but not yet that of a group representation.

We can now examine the situation in the case of a finite non-abelian group.

Example 1.2.6. [31] Consider the dihedral group D3 = {1, a, a2, b, ab, a2b}. Then

the group determinant Θ(D3) is the product of the following homogeneous factors:

(x1 + xa + xa2 + xb + xab + xa2b), (x1 + xa + xa2 − xb − xab − xa2b), and

(x2
1 + x2

a + x2
a2 − x1xa − x1xa2 − xaxa2 − x2

b − x2
ab − x2

a2b + xbxab + xbxa2b + xabxa2b)
2.

As above, the linear factors are derived from the homomorphisms χ : D3 → C∗,
but the last factor is of degree two. So what does this mean?

In the period 1880-1886, Dedekind worked intermittently on investigating the

following questions: how does Θ(G) – as an element of C[xg], the polynomial ring

over C – factor into irreducible components, and what does it tell us about a fi-

nite group? He succeeded in finding a solution for the case when G is abelian in

Theorem 1.2.5, but he could not resolve the question in general. For example, he

studied the behaviour of the group determinants for two non-abelian groups, the

symmetric group S3 of order 6 and the quaternion group Q8 of order 8, and found

that some factors of their group determinants were not linear. Eventually, in March

1896, Dedekind proposed this problem to Frobenius and provided a number of useful

results, the examples and conjectures. Without the collaboration between Dedekind

and Frobenius theory of finite group characters and representations would not ex-

ist. With enthusiasm, Frobenius showed an interest and immediately considered the

question.
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Frobenius formulated the problem as follows [12,32,48]: let G be a finite group.

If

Θ(G) =
l∏

λ=1

Φλ(x)eλ

is the factorization of the determinant into different irreducible factors Φ of degree

fλ, (where l is the number of conjugacy classes of G), then how does the factoriza-

tion reflect the properties of the group G?

In order to solve the problem of how Θ(G) factors linearly, Dedekind tried to

extend the field C to be a hypercomplex number system (a linear associative algebra

over the complex numbers in modern terminology). By contrast, Frobenius looked

at the coefficients of the irreducible factors over C and investigated the relation be-

tween the structure of finite group G and the irreducible factors of the homogeneous

polynomials and their number and degree. In about a month, with intensive work,

Frobenius succeeded in extending the concept of character to arbitrary finite groups

and applied it to provide a full solution to Dedekind’s group determinant problem.

In the following paragraphs, we review the results of Frobenius in this area.

Dedekind 5 emphasized the following conjecture, which was proven by Frobenius.

This was also the first conjecture that Frobenius considered.

Theorem 1.2.7. [11, 31, 48] The number of linear factors in the factorization of

Θ(G) over C is equal to the index of the commutator subgroup G′ and hence to the

order of the abelian group G/G′.

This theorem relates the property of the group determinant Θ(G) to the structure

of the underlying group. This was later successfully proved by Frobenius. The first

main result for Frobenius was on the basic property of irreducible characters, the

orthogonality relations 6:

Theorem 1.2.8. [11, 12] For two irreducible characters χ and ψ of G, we have

1

|G|
∑
g∈G

χ(g)ψ(g−1) =

1 if χ = ψ;

0 otherwise.

Using the previous orthogonality relations, he proved the following results 7:

Theorem 1.2.9. [12, 48] The number of distinct irreducible factors of Θ(G) over

C is equal to the number of the conjugacy classes of G.

5Dedekind, Werke, vol.2, page 422.
6The original formula of the relations are in Über Gruppencharaktere [18].
7The original formula of the results are in Über die Primfactoren der Gruppendeterminante [19].
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Theorem 1.2.10. [12,32,48] The degrees of the irreducible factors of Θ(G) divide

the order of G.

He then obtained a result which he called the fundamental theorem in the theory

of the group determinant, through which he achieved the desired result 7:

Theorem 1.2.11. [12,32,48] The degree fλ of each irreducible factor of Θ(G) and

the multiplicity eλ with which it occurs in the factorization of Θ(G) coincide and are

both equal to the degree of the corresponding character.

Frobenius called the positive integer fχ = χ(1) the degree [Grad ] of a character

χ, which is the value of χ at the identity element 1 of G.

In terms of matrix representations, this is the theorem that an irreducible repre-

sentation occurs in a representation as often as its degree. According to Frobenius,

this was a difficult theorem to prove and its proof is extremely long and compli-

cated. An important consequence of this fundamental theorem is is that the order

of a group is equal the sum of the squares of the degrees of its characters 8.

Corollary 1.2.12. [11, 12] If G is a finite group with order n, then∑
f 2
χ = n (fχ = eχ).

Frobenius then stated the multiplicative property of the group determinant

Θ(G), given here in the next theorem 8.

Theorem 1.2.13. [9,12] Let G be a finite group. Let Φ be a homogeneous irreducible

polynomial in the variables Xg. Then Φ(xy) = Φ(x)Φ(y) if and only if Φ is monic

in Xe and is a factor of Θ(G), where e is the identity element of G and x, y are

independent variables (or indeterminates).

When Frobenius was trying to prove his fundamental Theorem 1.2.11, he did not

know that he was studying representations. Let us briefly discuss the observation

that led Frobenius to shift from characters to representations. If G is any group of

order n, and

Θ(G) = det(XG) =
k∏

λ=1

Φfλ
λ

is the factorization of the group determinant into its irreducible factors, then the k

characters χ(λ) of G may be used to define a matrix A such that

A−1XGA =


N1(x) 0 · · · 0

0 N2(x) · · · 0
...

...
. . .

...

0 0 · · · Nk(x)

 , (1.1)

8Originally, it appeared in Über die Primfactoren der Gruppendeterminante [19].
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where det(Nλ(x)) = Φλ(x)fλ [32]. Frobenius proved this result and then defined the

matrix A that carried the decomposition of the group matrix further:

Theorem 1.2.14. [32] If G is any group of order n, then a matrix A exists such

that (1.1) holds, where the f 2
λ × f 2

λ matrix Nλ(x) has the form

Nλ(x) =


x

(λ)
ij 0 · · · 0

0 x
(λ)
ij · · · 0

...
...

. . .
...

0 0 · · · x
(λ)
ij

 ,

with x
(λ)
ij is an fλ × fλ matrix whose f 2

λ entries x
(λ)
ij are linearly independent homo-

geneous functions of the group variables xg, xh, . . . and det(x
(λ)
ij ) = Φλ(x).

From this step, Frobenius changed his perspective from determinants to matri-

ces. For every λ, x
(λ)
ij defines an irreducible representation, which is associated with

an irreducible factor Φλ of the group determinant Θ(G) and hence with its charac-

ters. This theorem shows that representation of G decomposes into the irreducible

representations defined by the matrices x
(λ)
ij . In other words, it implies the complete

reducibility theorem for the regular representation of G.

One year later in 1897, Frobenius first introduced the idea of a representation

of a finite group and explained the equivalence between two representations [12,32].

His main result contains the general version of Dedekind’s definition of character

and shows that the character is the trace function of the matrix representation.

Each irreducible factor of the group determinant corresponds to an irreducible

character. In modern mathematical language, the Maschke-Wedderburn theory of

semisimple algebras states that the group algebra C[G] is isomorphic to a direct

product of irreducible matrix algebras over C, and this is in fact equivalent to the

reduction of the group matrix XG to a block diagonal matrix, which in turn is equiv-

alent to the decomposition of the group determinant Θ(G) into irreducible factors.

Frobenius then introduced a function called a k-character using an algorithm to

construct the factor corresponding to the character χ.

Definition 1.2.15. [43,44] Let χ be an irreducible character of G. The k-character

associated with the character χ is the function χ(k) : Gk → C defined recursively by:

1. χ(1) = χ(g) (the ordinary character), and

2. χk(g1, g2, . . . , gk) = χ(g1)χ(k−1)(g2, g3, . . . , gk)− χ(k−1)(g1 · g2, g3, . . . , gk)

− χ(k−1)(g2, g1 · g3, . . . , gk)− . . .− χ(k−1)(g2, g3, . . . , g1 · gk).
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We illustrate the algorithm for k = 2 and 3:

1. χ(2)(g, h) = χ(g)χ(h)− χ(gh),

2. χ(3)(g, h, k) = χ(g)χ2(h, k)− χ2(gh, k)− χ2(h, gk)

= χ(g)χ(h)χ(k)− χ(g)χ(hk)− χ(h)χ(gk)

− χ(k)χ(gh) + χ(ghk) + χ(gkh),

here g, h, k are in G. To illustrate analytically, the polynomial Pχ in Theo-

rem 1.2.5 is completely determined by its k-characters and vice versa. Frobenius

expressed this fact explicitly in the next theorem 9:

Theorem 1.2.16. [12, 32, 48] Let G be a finite group and let A = {χ1, . . . , χm}
be a complete set of irreducible characters of G. Then, the number of irreducible

characters of G equals the number of conjugacy classes of G. Moreover, the complete

factorization of the group determinant is

Θ(G) =
∏
χ∈A

Pχ, where Pχ =
1

d!

∑
ḡ∈Gd

χ(d)(ḡ)xḡ

and d is the degree of χ with Pχ the corresponding irreducible factor of Θ(G) and if

ḡ = (g1, . . . , gd), then xḡ = xg1 · · ·xgd.

It is worth pointing out here that, without representations, Frobenius achieved

significant results regarding representations of finite groups. During his development

of character theory, he discovered that his generalization of the characters was in

fact the trace functions of the irreducible representations of the group.

We can sketch the relation between the determinant, characters and representa-

tions of a finite group from Frobenius’s perspective. Let G be a finite group of order

n and consider the group algebra C[G] = {
∑

g∈G αgg : αg ∈ C}. Consider a linear

transformation Tg that acts on the algebra as right multiplication by g ∈ G :

Tg

(∑
h∈G

αhh
)

=
∑
h∈G

αhhg.

Let σ(g1) be the matrix representation of Tg1 with respect to the basis G of C[G].

Thus, σ(g1) is a matrix with 0 and 1 entries. Then g1 7→ σ(g1) is the right regular

representation of G and

Θ(G) = det(XG), where XG = xg1σ(g1) + . . .+ xgnσ(gn)

is the n× n group matrix of G.

9The original formula is in Über Gruppencharaktere [18].
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Moreover, let A be a non-singular n× n matrix over the complex numbers such

that for all elements g of G:

Aσ(g)A−1 =

(
µ(g) 0

0 ν(g)

)
,

where µ(g) and ν(g) are r× r and s×s matrices, respectively, with complex entries.

If Θ(x1, . . . , xn) is a polynomial with integer coefficients in n independent indeter-

minates x1, . . . , xn, where xi denotes any indeterminate xg with g ∈ G. Then,

Θ(x1, . . . , xn) = Φ1(x1, . . . , xn)Φ2(x1, . . . , xn)

where Φ1 = det
(∑

xiµ(gi)
)

and Φ2 = det
(∑

xiν(gi)
)
, are polynomials in the xi

with complex coefficients of degree r and s respectively. Thus, the decomposition

of a group representation into irreducible representations is in fact equivalent to the

decomposition of group determinants into irreducible factors. Additionally, each

factor of the group determinant is a homogeneous polynomial with the same degree

as its corresponding representation.

The relation between representations and characters of a finite group becomes

clear after the following theorem which shows that Frobenius characters are simply

the trace functions of the irreducible representations of the group10.

Theorem 1.2.17. [12, 32, 48] Let G be a finite group of order n, and let XG be

the group matrix of G. Then there exists an invertible n × n matrix P such that

P−1XGP = U , for a matrix U which is the direct sum of submatrices Ui.Each

submatrix Ui is a matrix associated with a representation of G whose determinant

is one of the irreducible factors Φ of the group determinant

Θ(G) = |XG|=
∏

Φf .

Each factor of the group determinant is associated with a submatrix Ui, in this way.

Moreover, let

Ui ↔ Φ↔ χ

with χ the character of degree f corresponding to Φ. Let r 7→ (R) be the representa-

tion of G such that Ui =
∑

(R)xr. Then the coefficient of uf−1 in the characteristic

polynomial |Ui − uI| of the matrix Ui is
∑
χ(r)xr and then we have

χ(r) = tr(R) =
∑

rii

10The original formulation of the theorem can be found in Über die Darstellung der endlichen
Gruppen durch lineare Substitutionen [20].
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for the matrix (R) = (rij) corresponding to r ∈ G.

Theorem 1.2.18. [9] For an irreducible complex representation σ of G:

1. the polynomial det
(∑

g xgσ(g)
)

is irreducible and

2. σ is determined by det
(∑

g xgσ(g)
)

.

In the period from 1897 to 1899, Frobenius set up the foundation of represen-

tation theory [12, 32]. He published four papers covering representations of finite

groups, induced characters, and tensor products of characters. He investigated the

relation between the characters of a finite group and characters of its subgroups,

which we call today induced representations and also, he proved what we now term

the Frobenius Reciprocity Theorem. His work in this period drove him to the study of

characters of symmetric and alternating groups, and application of the theory to the

structure of the co-called Frobenius group, in 1900 and 1901. Forbenius’s inventions

mentioned in this paragraph can be found in [12, Chapter II]. According to [12], that

Forbenius’s original works were brought together in Gesammelie Abhandlungen [24].

To sum up the section, Frobenius went from considering Dedekind’s question

to generalizing the arithmetic idea of a group character. In 1896, he defined the

characters of general finite groups, and stated and proved a number of fundamental

theorems. He then applied his new theory to solve Dedekind’s problem of factoring

the determinant of a general group into irreducible factors and published the work in

three papers. The analysis of Dedekind’s group determinant problem drove Frobe-

nius to introduce formally, in 1897, the modern definition of a matrix representation

of a group G. This was followed by the modern definition of the character of a group

representation and then by subsequent developments and applications.

The solving of the question of factoring the group determinant of a finite group

is considered to be one of many applications of representation theory to the study

of groups. In the language of group determinants, most of the basic theorems of the

character theory of groups and representations are attributed to the correspondence

between Dedekind and Frobenius [12, 32]. According to Hawkins in his book [32],

of all the mathematicians who discovered some aspect of the theory of group char-

acters and representations, it was by far Frobenius who developed the theory and

its applications most extensively and rigorously. Interestingly, after the invention of

representations, the group determinant was abandoned for nearly a century.

1.3 The Timeline of Developments

The foundation of group representation theory had been established by Frobenius

in the period (1896-1898) and then by other figures, such as William Burnside
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(1852-1927), Heinrich Maschke (1853-1908), Issai Schur (1875-1941), Emmy Noether

(1882-1935) and Richard Brauer (1901-1977). Number theory was their inspiration

through the course of their research work. Frobenius’s discovery of the theory of

representations of finite groups had led to a flurry of research in the area and this

research enthusiasm does not seem to have dampened. In this section, we discuss

briefly the timeline of the development of the theory of representations of finite group

involving contributions made by the pioneers mentioned above [11,12,32,48,49].

Burnside had almost the same period of activity as Frobenius, which was be-

tween 1897 and the start of the First World War (1914-1918). However, each of

these mathematicians independently put his own stamp on the theory and provided

a series of papers and books. It was notable that Burnside and others simplified the

proofs of many of Frobenius’s results and extended the theory in completely new

and different directions.

In 1897, Burnside published the first edition of his book entitled Theory of groups

of finite order. The second edition of the book appeared in 1911 and it has been

described by Curtis [12] as the first book which provides a systematic account of

representation theory, and includes many results on abstract groups which were

proved using group characters. Additionally, Burnside published around twelve

papers on the topic. Here, we mention one of his signature results in group theory:

Burnside’s paqb Theorem. [11,12,49] If p and q are prime numbers and a and b

are positive integers, then no group of order paqb is simple.

Burnside proved this theorem for many special choices of the integers a and b,

but he only succeeded in proving the theorem in general after he studied Frobenius’s

new theory of group representations. Burnside’s proof of this theorem is considered

as the first and outstanding group-theoretic application of representation theory.

Furthermore, Burnside’s paqb Theorem leads to an informative result about groups

of order paqb:

Theorem 1.3.1. [11,12,49] If p and q are prime numbers and a and b are positive

integers, then every group of order paqb is solvable.

By solvable we mean a group G which has subgroups G0, G1, . . . , Gr with

1 = G0 < G1 < . . . < Gr = G

such that for 1 ≤ i ≤ r, Gi−1 C Gi and the factor group Gi/Gi−1 is cyclic of prime

order.
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From the very beginning, both Frobenius and Burnside recognized the impor-

tance of the theory of representations of finite group to abstract finite group theory,

and they were confident that it would play a vital role. Since that time until today,

research activities have confirmed their intuition about the potential of the theory

for vast application. It is noteworthy that the range of applications was not confined

or limited to just pure mathematics, but extended far beyond the pure boundaries

to include physics and chemistry. We will take up this point later in Section 1.4.

In 1899, Maschke discovered his famous theorem about the decomposition of rep-

resentations of a finite group into irreducible sub-representations. This significant re-

sult was the basis of further research by pioneers. It implied the concept of semisim-

plicity (or complete reducibility) which gave a clear classification of finite group

representations. Following this, Frobenius’s talented student Schur contributed to

the theory and its related subjects between 1904 and 1933. His accomplishments are

presented in fourteen papers, plus two joint papers with Frobenius published in 1906.

We summarize Schur’s achievement in two points: the first is the introduction

of a so-called projective representation of a finite group (in 1904 and 1907) – that

is, a homomorphism from a finite group into the projective general linear group

PGLn(C). The second is the investigation of the arithmetical properties of repre-

sentations, linking with algebraic number theory; the main concept here is a splitting

field of a finite group. With the mention of Schur’s name, we also mention his well-

known lemma, which states:

Schur’s Lemma. [42] Let V and W be irreducible C[G]-modules.

1. If ϕ : V → W is a C[G]-homomorphism, then either ϕ is a C[G]-isomorphism,

or vϕ = 0 for all v in V.

2. If ϕ : V → V is a C[G]-isomorphism, then ϕ is a scalar multiple of the identity

endomorphism 1V .

The year 1929 marks a real turning point and breakthrough in representation

theory, attributed to Noether in her paper, Hyperkomplexe Grössen and Darstel-

lungstheorie [72]. The results utilized Wedderburn’s Theorems [41] discovered in

1908. It was the start of the study of modules over rings and algebras, which in

turn led to new insights into the structure of semisimple rings.

The last pioneer of the foundation of representation theory was Schur’s student

Brauer. In the period from 1926 to 1933, Brauer studied the transition from repre-

sentation theory of matrix groups to the theory of simple algebras, and introduced

what is today called the Brauer Group: an abelian group of equivalence classes of
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central simple algebras over a field k, denoted B(k).

Brauer and Noether were considered as the leaders in introducing representations

of rings and algebras to the area. They collaborated with each other from 1926

to 1933, and have a joint paper with Schur on indecomposable representations,

published in 1930. Up to this point the underlying field had characteristic zero or

a prime not dividing the order of the group. One of Brauer’s initial results over a

field of prime characteristic is:

Theorem 1.3.2. [11,12] The number of equivalence classes of irreducible represen-

tations of a finite group G, in a splitting field of characteristic p > 0, is equal to the

number of conjugacy classes in G containing elements of order prime to p.

In 1935, Brauer noted that in the case when the characteristic p of a field k

divides the order of a group G, then there exist representations of G which are not

completely reducible. This means that the group algebra is no longer semisimple

(an algebra is semisimple if and only if it is a direct sum of simple algebras). Brauer

dealt with this case and started the systematic study of modular representations.

During the period 1935-1960, modular representation theory was highly developed

by Brauer. He produced many results on the subject and its applications to the

theory of finite groups, among them a number of joint papers.

Using MathSciNet, we collected some statistics on the numbers of papers in

various periods. Because Mathematical Reviews (MR) covers data from 1940 to the

present, our statistics start from 1940. There are approximately 400 papers in the

1940’s that mention the phrase “group representation”, and the figure for the 1950’s

is approximately 1100. Figure 1.1 displays the steadily increasing amount of papers

from 1970 to 2000. These papers are written in different languages; the main ones

are English, German, Russian, and French. In Chapter 6, we will study the situation

with semigroups and compare the two cases.

1.4 Applications

The immediate use of the theory to determine information about the structure of

a finite group made it distinct, and therein lies its appeal and glamour. There

are many applications of group characters and representations within the different

branches of mathematics, such as group theory and number theory and also outside

the field, such as in physics and in chemistry. As mentioned previously, the primary

applications of the theory were purely in the study of the structure of finite groups.

Burnside was the first who applied group character theory to pure group problems.

However, it is evident that Burnside and Frobenius showed the immediate utility
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Figure 1.1: The progression of group representation theory

of group representations and characters by establishing some properties of finite

groups, simultaneously. For instance, the structure theorem of Frobenius groups

(published 1901) and Burnside’s paqb Theorem (1.3) (1904) were proved using rep-

resentation theory.

The original proof of Frobenius’s Theorem (found in [12]) using character theory

was done by Frobenius himself. Moreover, there is no known proof of Frobenius’s

Theorem in which character theory is not used. On the contrary, Burnside’s paqb

Theorem has a proof without the use of representations, due to Helmut Bender

(1942-present) in 1972 [12]. But even earlier in 1904, Burnside proved his theorem

with the use of the theory. The fact is that Burnside’s Theorem shows the impor-

tance of representation theory in the classification of finite simple groups. After

1899, Frobenius focused on applying his theory of group characters to the nontriv-

ial problem of computing character tables for particular groups – for example the

symmetric and alternating groups.

Burnside used group character results to study groups of odd order. In 1900, he

proved that if a group G has odd order, then no irreducible character other than

the trivial can be real-valued. Based on this result and some of its consequences, he

showed that among subgroups of the symmetric group Sn for n ≤ 100 there are no

simple groups of odd order, and every irreducible group of linear transformations in

three, five, or seven variables must be solvable.

According to Curtis [12], Eugene Wigner (1902-1995) was the first who applied

representation theory of finite group in physics in two papers on the quantum me-

chanics of atomic spectra published in 1926 and 1927; it was also used by Hermann
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Weyl (1885-1955), in lectures given on related subjects during the 1927-1928 period.

Rigorously, Wigner and Weyl formulated the close connection between the theory

of group representations and physics. Indeed, their work exposed the importance of

group representation theory in physics. Later on, both Weyl and Wigner expanded

these works into books in 1928 [108] and in 1931 [109], respectively.

Frobenius and his Ph.D. student Schur had two joint papers on applications of

character theory published in 1906 [12, 32]. One year later, Frobenius also wrote a

paper on the theme which contains a new link between character theory and the

number of solutions of certain equations in a finite group. The last work of Frobenius

on applications appeared in 1911 and concerns the classification of crystal classes.

It turns out that, since that time, group characters and representations have be-

come increasingly important and have been used extensively in many applied fields,

such as spectroscopy, crystallography, molecular orbital theory, ligand field theory,

quantum mechanics, and the list continues [12,32,103].

The connection with physics was such a large and important area of 20th century

science, it added glamour to the subject and stimulated development. The reason is

that representation theory of groups describes the symmetries of the physical field

in a natural mathematical language. This leads us to end this section with a brief

description of the early application of group representation theory in physics, pre-

cisely in quantum theory. Research has shown that representation theory has played

a vital role in the development of quantum theory. In fact, it provides an effective

structure in which to exploit symmetry –which simplifies problems– in quantum

theory and derives implications for the behavior of a quantum mechanical system.

To explain this, we require some concepts [63,103], as given below.

For the rest of this section, we allow our vector spaces V to be infinite dimen-

sional.

Definition 1.4.1. A Hilbert space H is a real or complex vector space with inner

product 〈·, ·〉, which is complete as a metric space with respect to the norm ‖ψ‖=√
〈ψ|ψ〉. The space H is called separable if it has a countable orthonormal basis.

The mathematical framework of quantum mechanics is closely related to unitary

group representations.

Definition 1.4.2. LetG be a group. A representation ϕ : G→ GL(V ) on a complex

vector space V is called unitary if the action of G preserves the inner product on V

(viewing V as a Hilbert space). That is

〈vg|wg〉 = 〈v|w〉, for all g ∈ G and v, w ∈ V,
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where by vg we mean v(gϕ).

In a simple way, let us introduce the structure of quantum mechanics and its re-

lated terminologies. A quantum mechanical system consists of a separable complex

Hilbert space. The state of a quantum mechanical system is a nonzero vector in

a complex vector space with a Hermitian inner product, the so-called state space.

Such a state space will sometimes be a space of functions known as wave functions.

A pure state of the system consists of a one-dimensional subspace.

Let H be the Hilbert space of the system. We say that G acts as a group of

automorphisms if for any two unit vectors φ and ψ and g ∈ G, we have

|〈φg, ψg〉|2= |〈φ, ψ〉|2.

This is called a symmetry transformation and it preserves transition probabilities be-

tween the states. The theorem given by Wigner which is considered as a cornerstone

of the mathematical formulation of quantum mechanics, states that:

Wigner’s theorem. [103] Any symmetry transformation can be represented on

the Hilbert space of physical states by an operator that is either linear and unitary

or anti-linear and anti-unitary.

The theorem was stated and first proved by Wigner himself in his 1931 book [110].

Sternberg in his book [103, Section 3.9, page 149] summarizes the main points of

Wigner’s work on the subject in what follows: “the logic of physics is quantum

mechanics and hence, a symmetry group of the system manifests itself as a unitary

representation of the Hilbert space”.

Wigner’s theorem on quantum mechanical symmetries describes the fundamen-

tal relation between quantum mechanics and representation theory, that is, if we

have a quantum system which has a Lie group of symmetries, then the state space

naturally carries a unitary representation of that symmetry group. Thus, when-

ever we have a physical quantum system with a group G acting on it, the space of

states H will carry a unitary representation of G. From a physical perspective, this

implies that representation theory provides information about quantum mechani-

cal state spaces when G acts on the system. On the other hand, mathematically,

this means that physics is considered as a productive source of unitary representa-

tions to study since any physical system with a group G acting on it will provide one.

To sum up, the theory of representations of groups has played critical role in

different fields for over a century. In this chapter, we discussed the reasons for the

continuous development of group representation theory. Later in Chapter 6, we
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will address the development of semigroup representation theory and then we will

compare the two cases.
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Chapter 2

Semigroup Theory

2.1 Introduction

Semigroup theory is one of the relatively young areas of study in algebra [35]. Al-

though the initial use of the term semigroup can be attributed to de Séguier in 1904,

the theory of semigroups really began in 1928 with the work of Suschkewitsch, as

explained by Clifford and Preston in the preface of their book [8]. “Suschkewitsch

was doing (algebraic) semigroup theory before the rest of the world even knew there

was such a thing”, says Hollings [35, Section 2].

The attempts to define the term semigroup started from 1904 until 1940. From

1940 onwards, a generally accepted definition of the term semigroup emerged, pre-

sumably due to the influential works of Rees (1940) [91] and Clifford (1941) [5]

(Hollings [36, Chapter 1]). In 1940, the first important structure theorem of semi-

group theory, now known as the Rees Theorem, was introduced by Rees analogously

to the Artin-Wedderburn Theorem for rings. In fact, the Rees Theorem was pre-

ceded by the 1928 result of Suschkewitsch in the finite case. This theorem had a

significant bearing on the early development of semigroup theory. Nevertheless, the

structure theorem provided by Clifford in 1941 is considered as the beginning of the

truly independent theory of semigroups, since the prior results and analyses were

heavily influenced by both group and ring theories [36, Section 1.3].

The 1950’s witnessed the discovery of three highly important concepts in the the-

ory: Green’s relations and regular semigroups by Green in 1951, and inverse semi-

groups, which were introduced independently in 1952 by Wagner – who termed them

generalised groups – and by Preston in 1954 who named them inverse semigroups.

By the end of the 1950’s, the theory of semigroups had become a self-contained

branch of modern algebra.

At the start of the 1960’s, a solid foundation for the algebraic theory of semi-
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group, with unified notations and terminologies, was provided by three highly signif-

icant semigroup textbooks: Semigroups by Lyapin in 1960 (its English translation

appeared in 1963); the first volume of Clifford and Preston’s The algebraic theory of

semigroups [8], in 1961, and the second volume in 1967. Additionally, the establish-

ment of the journal Semigroup Forum in 1970 provided the means for a significant

body of work to grow on the theory. Since then, a wealth of papers and textbooks

have emerged in the literature, such as the texts [37] by Howie and [27] by Grillet.

The purpose of this chapter is to assemble some of the basic ideas from semi-

group theory that are particularly relevant to semigroup representation theory. We

illustrate some of the concepts mentioned with examples. We start by defining the

notion of a semigroup and introducing the standard types of semigroups: groups,

and inverse and regular semigroups. The second section is devoted to Green’s rela-

tions. We present these relations and visualize the intuitive notion of the D-relation

in a picture (diagram) called an “Egg-Box”. We then state the useful properties and

particular facts related to Green’s relations that we require before Chapter 3, which

outlines the representation theory of semigroups. Also, we focus on idempotents,

which play a vital role in semigroup theory, and assert the link between the existence

of idempotents and maximal subgroups. Definitions and results are mostly taken

from [37]. Throughout the chapter, maps are written on the right and composition

is left to right, unless otherwise specified.

2.2 Basic Definitions

Definition 2.2.1. [25] A semigroup is a pair (S, ∗) where S is a non-empty set

and ∗ is an associative binary operation on S (i.e. ∗ is a function S × S → S with

(a, b) 7→ a ∗ b and for all a, b, c we have a ∗ (b ∗ c) = (a ∗ b) ∗ c).

We write S instead of (S, ∗). We also write a ∗ b or omit the binary operation

and write ab. Any group is a semigroup; the converse is not true. A simple example

is the set of natural numbers N with addition which is a semigroup but not a group.

An element e of a semigroup S is called a left identity if es = s for every s ∈ S,

and a right identity if se = s for every s ∈ S. Moreover, if S has a left identity e

and a right identity f , then e = f and e is the unique two-sided identity for S. We

normally denote the identity element by 1 when it exists.

Definition 2.2.2. [37] A semigroup S is called a monoid if it has an identity 1 ∈ S,

where 1s = s = s1 for all s ∈ S.

Observe that an identity element is unique whenever it exists. A monoid G is

a group if, in addition, every element a ∈ G has a unique inverse a−1 ∈ G such
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that aa−1 = 1 = a−1a. In any monoid the units are the elements that have unique

inverses in the sense of group theory, and these form a group called the group of

units. Note that, groups are monoids and monoids are semigroups. Thus we have:

groups ⊂ monoids ⊂ semigroups.

Definition 2.2.3. [37] For a semigroup S, we define a monoid S1 by adjoining an

identity to S, if S does not have one:

S1 =

S if S is a monoid,

S ∪ {1} if S is not a monoid.

The multiplication in the semigroup S ∪ {1} is defined by:

a · b =


ab if a, b ∈ S,

a if b = 1,

b if a = 1

for all a and b in S ∪ {1}.

A zero element of a semigroup S is an element 0 of S such that

S 6= {0} and 0a = a0 = 0 for all a ∈ S.

The product of subsets A and B of a semigroup S is defined by:

AB = {ab ∈ S | a ∈ A, b ∈ B}.

We write aB for {a}B = {ab | b ∈ B}. As stated in [37, Section 1.1], a non-empty

subset T of a semigroup S is called subsemigroup if it is closed with respect to

multiplication:

a, b ∈ T ⇒ ab ∈ T (i.e. : T 2 ⊆ T ).

Associativity holds throughout T , hence T itself is a semigroup. A subsemigroup of

S which is a group with respect to the multiplication of S is called a subgroup of S.

Alternatively, a non-empty subset T of S is a subgroup of S if and only if

∀ a ∈ T : aT = T and Ta = T. (2.1)

To prove this statement, suppose that T ⊆ S is a subgroup of S, then for any

a, b ∈ T ,

b = a(a−1b) ∈ aT,
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so that T ⊆ aT ⊆ T , hence T = aT . Dually, T = Ta. Conversely, suppose that for

all a ∈ T , aT = T and Ta = T . For any a, b ∈ T , the product ab lies in aT = T ,

hence T is a subsemigroup. Let a ∈ T , since T = aT we have a = ac for some c ∈ T .

Let b ∈ T , then since T = Ta we have b = da for some d ∈ T . Now,

bc = (da)c = d(ac) = da = b,

Thus, c is a right identity for T . Dually, we can find a left identity c′, such that

c = c′c = c′.

Thus c is a (two-sided) identity for T . Now let t ∈ T . Since Tt = T = tT , we have

c = st = ts′ for some s, s′ ∈ T . Then

s = sc = s(ts′) = (st)s′ = cs′ = s′,

so s is the inverse of t. Therefore T is a group, hence a subgroup of S.

Definition 2.2.4. [37] Let S be a monoid with identity 1. A non-empty subset T

of S is said to be a submonoid of S if it is a subsemigroup with identity 1.

Two semigroups can be related by a map from one to the other:

Definition 2.2.5. [37] Let S and T be semigroups. A map ψ : S → T is said to

be a semigroup homomorphism if, for all a, b ∈ S:

(ab)ψ = (aψ)(bψ).

If, in addition, a semigroup homomorphism ψ is a bijection, we call it an iso-

morphism; the semigroups S and T are then said to be isomorphic, denoted S ∼= T .

Moreover, if S, T are monoids, with identity elements 1S and 1T , respectively, then ψ

is called a monoid homomorphism if it is a semigroup homomorphism and 1Sψ = 1T

(note that this doesn’t happen automatically, as in the group case). A homomor-

phism ψ from S into itself is called an endomorphism.

There are special elements in semigroup theory.

Definition 2.2.6. [37] An element e ∈ S is called idempotent if e2 = e.

The set of idempotents in S is denoted by E(S) = {e ∈ S | e2 = e}. There is a

partial order ≤ among the elements of E(S) defined by

e ≤ f if and only if ef = fe = e.
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Definition 2.2.7. [37] An element a of a semigroup S is called regular if there

exists x in S such that axa = a.

Remark 2.2.8.

1. From the previous definition, the elements ax and xa are idempotents. Any

idempotent is regular and any unit is regular.

2. Any finite semigroup contains an idempotent [37].

Definition 2.2.9. [37] An inverse of an element a in a semigroup S is an element

a′ of S such that

a = aa′a and a′ = a′aa′.

The elements a and a′ are called mutually inverse. From the definition, it is ob-

vious that an element with an inverse is regular. The opposite is also true. Suppose

that a is regular. Then there exists b ∈ S such that aba = a. Let a′ = bab. Then

aa′a = a(bab)a = (aba)ba = aba = a

and

a′aa′ = (bab)a(bab) = b(aba)bab = babab = b(aba)b = bab = a′.

Thus a′ is an inverse of a.

Remark 2.2.10. To distinguish between inverses in a monoid and inverses in a

group, we use a′ (or a∗) as an inverse of a in the sense of a monoid, and a−1 as an

inverse of a in the sense of a group.

Note that inverses need not be unique. Hence, we denote by V (a) the set of all

inverses of a. We will illustrate this point below by an example. Regular and inverse

elements lead to the particular types of semigroups that are defined in the following

paragraph.

A semigroup S is called regular if every a ∈ S is regular. In semigroup theory,

regular semigroups are essential because groups are regular semigroups with a unique

idempotent. A semigroup S is an inverse semigroup if |V (a)|= 1 for all a ∈ S, that

is, every element has a unique inverse. A fundamental, but not obvious, property

of inverse monoids is that their idempotents commute. The following alternative

characterization for inverse semigroups provides us with another useful definition of

an inverse semigroup.

Theorem 2.2.11. [37, Theorem 5.1.1] A semigroup S is inverse if and only if S is

regular and the idempotents of S commute.
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As mentioned in [37, Section 5.2], if S is an inverse semigroup, then a partial

order relation ≤ is defined on S by

a ≤ b⇔ a = eb for some e ∈ E(S).

Let S be an inverse semigroup S, a ∈ S and e ∈ E(S). Let a ≤ e, we want to

show that a is an idempotent.

a ≤ f ⇒ a = ef [by definition, for some e ∈ E(S)]

⇒ a2 = efef

⇒ a2 = e2f 2 [since idempotents commute in S]

⇒ a2 = ef

⇒ a2 = a.

In fact, inverse semigroups have interesting structural properties first studied by

Vagner in 1952 and Preston in 1954.

We have some well-known semigroups on the set [n] = {1, ..., n}. These are:

1. The symmetric group Sn of all permutations of the set [n]:

Sn = {α | α is a bijection [n]→ [n]}.

2. The full transformation monoid Tn consisting of all maps from [n] into itself:

Tn = {α | α is a function [n]→ [n]}.

3. The symmetric inverse monoid In consisting of all partial bijections:

In = {α | α is a partial bijection X → Y ; X, Y ⊆ [n]}.

In all cases, the operation is composition of (partial) maps. According to [37,

Section 5.1], we compose elements of In by means of the following rule:

1. A partial permutation is defined to be a bijection α : domα → imα, where

domα and imα are subsets of [n].

2. Since α is a bijection, it has an inverse α−1 : imα → domα such that the

composition αα−1 is the identity mapping on domα and α−1α is the identity

mapping on imα.
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3. If α, β ∈ In, then

domαβ = (imα ∩ dom β)α−1 and imαβ = (imα ∩ dom β)β.

4. The map αβ is map composition domαβ 7→ imαβ.

5. If imα ∩ dom β = ∅, then αβ is the empty transformation.

6. Idempotents in In are the identity functions on [n].

Example 2.2.12. Consider the full transformation monoid T4 and choose the ele-

ments a, b, and c as:

a =

(
1 2 3 4

1 1 3 3

)
, b =

(
1 2 3 4

2 4 4 4

)
and c =

(
1 2 3 4

2 4 4 2

)
.

Then, a simple calculation shows that b and c are both inverses of a.

Cayley’s Theorem asserts that a group of order n is isomorphic to some subgroup

of Sn. This theorem has an important place in the history of group theory. The

analogue of Cayley’s theorem in inverse semigroup theory is the Wagner-Preston

representation theorem:

Theorem 2.2.13. [37, Theorem 5.1.7] Let S be an inverse semigroup. Then there

exists a symmetric inverse semigroup In and a one-to-one homomorphism ϕ : S →
In.

2.3 Green’s Relations

In this section, we introduce a fundamental tool created by Green [26] for the study

of the structure of a semigroup: Green’s relations. These relations describe how

elements of a semigroup interact. Before presenting these relations, we first need

the following definitions and facts.

Definition 2.3.1. [37, Section 1.4] Let ψ and ϕ be binary relations on a set X.

Then the composition of relations ψ ◦ ϕ is defined by

ψ ◦ ϕ = {(a, c) ∈ X ×X : ∃ b ∈ X such that aψ b and b ϕ c}.

In a special case, if ψ and ϕ are partial functions, the composition in the above

definition is just the ordinary composition of those partial functions. Now let ψ ∨ϕ
be the join of equivalence relations ψ and ϕ:
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Proposition 2.3.2. [37, Section 1.5] Let ψ and ϕ be equivalences on a set S and

a, c ∈ S. Then (a, c) ∈ ψ ∨ ϕ if and only if, for some n ∈ N, there exist elements

b1, b2, . . . , b2n−1 ∈ S such that

aψ b1, b1 ϕ b2, b2 ψ b3, . . . , b2n−1 ϕ c.

Moreover:

Corollary 2.3.3. [37, Corollary 1.5.12] Let ψ and ϕ be equivalences on a set S

such that ψ ◦ ϕ = ϕ ◦ ψ. Then, ψ ∨ ϕ = ψ ◦ ϕ.

As stated in [37, Section 1.1], a subset I ⊆ S is a left ideal if SI ⊆ I, a right

ideal if IS ⊆ I and an ideal (or a two-sided ideal) if it is both a left and a right

ideal. The subset aS1 of a semigroup S is

aS1 := {a}S1 = {as : s ∈ S1} = aS ∪ {a}

and is called the principal right ideal generated by the element a ∈ S. Dually,

S1a = Sa ∪ {a}

is the principal left ideal generated by a. Similarly,

S1aS1 = SaS ∪ Sa ∪ aS ∪ {a}

is the principal two-sided ideal generated by a. We deal with the monoid S1 to

guarantee that the ideal aS1 contains its generator a.

Green’s relations on a semigroup S are five equivalence relations L, R, H, D and

J characterizing the elements of a semigroup in terms of the principal ideals they

generate.

Definition 2.3.4. [37, Section 2.1] Let a, b be elements of a semigroup S. Then

the relations L, R, H, D and J are defined as follows.

1. aL b if and only if there exists x, y ∈ S1 such that xa = b and yb = a.

Equivalently, S1a = S1b.

2. aR b if and only if there exists u, v ∈ S1 such that au = b and bv = a.

Equivalently, aS1 = bS1.

3. aJ b if and only if there exists x, y, u, v ∈ S1 such that xay = b and ubv = a.

Equivalently, S1aS1 = S1bS1.

4. H = L ∩R := {(a, b) ∈ S × S : (a, b) ∈ L and (a, b) ∈ R}.
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H

RL

D

J

Figure 2.1: Hasse diagram of Green’s relations on a semigroup

5. D = L ∨R, the join of the R and L relations.

Proposition 2.3.5. [37, Proposition 2.1.3] The equivalence relations L and R
commute: i.e. for all a,b ∈ S,

aL cR b for some c ∈ S ⇐⇒ aR dL b for some d ∈ S.

By a consideration of the results 2.3.3 and 2.3.5, Green’s relation D can also be

described as

L ∨R = L ◦ R = R ◦ L.

This allows us to have an alternative definition of the relation D as follows:

aD b if and only if there exists an element c ∈ S such that aR cL b

if and only if there exists an element d ∈ S such that aL dR b.

By Definition 2.3.4, it is obvious that L ⊆ J and R ⊆ J . Furthermore, D ⊆ J
as D = L ∨R, and H ⊆ R and H ⊆ L.

Proposition 2.3.6. [37, Proposition 2.1.4] If S is a finite semigroup, then D = J .

We denote by La, Ra, Ha, Da, Ja the L-class, R-class, H-class, D-class and J -

class containing the element a ∈ S, respectively. In addition, we denote the principal

(two-sided) ideal S1aS1 generated by the element a as J(a).

The kernel of α : X → Y ; denoted by kerα, is an equivalence relation on X

defined by the rule

x kerα y ⇔ xα = yα.

The fibers of a function are the equivalence classes made by the kernel. For example,

the fiber of the element y in the set Y under a map α : X → Y is the inverse image
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yα−1 = {x ∈ X | xα = y}. Observe that the intersection of any fiber of a function

with its image should be in one point.

According to [14], Green’s relations in Sn, In and Tn are given by:

1.

aL b if and only if im(a) = im(b); (2.2)

2.

aR b if and only if

fibers(a) = fibers(b) when a, b ∈ Tn; or

dom(a) = dom(b) when a, b ∈ In;
(2.3)

note that since Sn is a group, aR b ∀ a, b ∈ Sn,

3. aJ b if and only if |im(a)|= |im(b)|;

4. aH b if and only if both equations (2.2) and (2.3) hold.

Example 2.3.7. Consider the full transformation monoid T3.

1. Choose e =

(
1 2 3

1 1 3

)
∈ E(T3).

2. Since im(e) = {1, 3}, the fibers(e) are {1, 2} and {3}.

3. Hence, aH e if and only if im(a) = im(e) and fibers(a) = fibers(e). Equiva-

lently, im(a) = {1, 3} and fibers(a) are {1, 2} and {3}.

4. Thus the choices for a in step 3 are

a =

(
1 2 3

3 3 1

)
or a = e =

(
1 2 3

1 1 3

)
.

Observe that the idempotents of Tn are the elements a which are the identity

when restricted to im(a), since e2 = e if and only if xe = (xe)e, for x ∈ im(e).

There is a natural partial order ≤ on the set J -classes of a finite semigroup S

defined by:

Ja ≤ Jb if and only if S1aS1 ⊆ S1bS1, where a, b ∈ S.

A J -class is called minimal (respectively, maximal) if it is a minimal (respectively,

maximal) element in this partial order. Observe that every finite semigroup contains

minimal and maximal J -classes.
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2.3.1 The Structure of D-classes

With the consideration of the definition of D,

aD b if and only if there exists an element c ∈ S such that aR cL b.

Thus, the element c ∈ Ra∩Lb, which means Ra∩Lb 6= ∅, also we have La∩Rb 6= ∅,

since D is symmetric. Therefore, every L-class and every R-class belonging to the

same D-class have nonempty intersection. For a, b ∈ S we have:

aD b if and only if La ∩Rb 6= ∅ if and only if Lb ∩Ra 6= ∅.

Hence a D-class can be visualized by a rectangular table termed an ‘egg-box’ by

Clifford and Preston (1961) [8]. In the egg-box, the rows correspond to R-classes,

the columns correspond to L-classes, and each cell gives the H-class that is the in-

tersection of the L-class and R-class forming the column and row that contain that

cell. Since L ⊆ D and R ⊆ D, every D-class must be both a union of L-classes and

a union ofR-classes. The order of these rows and columns may be placed arbitrarily.

Proposition 2.3.8. [37, Proposition 2.3.1] Let a be a regular element in a semi-

group S. Then every element belonging to the D-class Da is regular.

Proof. As a is a regular element, then there exists x in S such that axa = a. If

b ∈ Da, then there exists an element c ∈ S1 such that aRcLb. Since aRc, there

exists u, v ∈ S1 such that au = c and cv = a. Notice that

c = au = (axa)u = (ax)au = axc = cvxc = ctc,

where t = vx. Thus, c is regular. Since cLb, a dual argument shows that b is regular.

Hence, the result holds.

This proposition shows that either all elements of a D-class are regular or no

element is regular. We say that a D-class (or an H-class or R-class or L-class)

is regular if it contains only regular elements. Since idempotents are regular, any

D-class containing an idempotent is regular. On the other hand, we have

Proposition 2.3.9. [37, Proposition 2.3.2] In a regular D-class, each R-class and

L-class contains an idempotent.

Proof. Let a ∈ S be such that Da is regular. In particular, a is regular, so axa = a

for some x ∈ S. Now we have, axR a and (ax)2 = axax = ax. Hence, ax is an

idempotent in Ra. similarly, xa is an idempotent in La, thus the result holds.
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Ha
• aRa

La

Figure 2.2: The egg-box diagram of a D-class Da

In particular, any regular D-class contains an idempotent. The above description

of D-classes is taken from [37, Sections 2.3].

Figure 2.2 depicts the R-class Ra and the L-class La in the egg-box diagram by

the row and column that intersect in the box representing the H-class Ha containing

the element a.

Example 2.3.10. Let S = I3. Let a, b, c ∈ I3 be such that a ∈ D3, b ∈ D2, and

c ∈ D1, where Dr = {α ∈ I3 : |im(α)|= r, 0 ≤ r ≤ 3}. Notice that D = J so Dr is

a J -class. Then we have:

J(a) = D3 ∪D2 ∪D1 ∪D0,

J(b) = D2 ∪D1 ∪D0,

J(c) = D1 ∪D0.

This implies

J(c) ≤ J(b) ≤ J(a),

where

J(a) = S1aS1 = {xay | x, y ∈ I3}

= D3 ∪D2 ∪D1 ∪D0.

Similarly, we can get the other principal ideals S1bS1 and S1cS1. The diagram in

Figure 2.3 illustrates the D-classes (= J -classes) of I3.

We end this section by listing necessary facts associated with Green’s relations

which are required for Chapter 3. We start with a theorem that shows the impor-

tance of the existence of an idempotent in such a semigroup. The theorem below is

a crucial result to the representation theory of semigroups which characterises the

maximal subgroups within a semigroup S.

Theorem 2.3.11 (Maximal Subgroup Theorem). [14] Let e be an idempotent

in a semigroup S. Then the H-class He is the maximal subgroup of S with identity
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D0

D1

D2

D3

a ∼= S3{1,2,3}

{1,2,3}

∅

∅

c

{3}

{2}

{1}

{1} {2} {3}

b

{2,3}

{1,3}

{1,2}

{1,2} {1,3} {2,3}

Figure 2.3: The total order in I3

e. The maximal subgroups of S are precisely the H-classes containing an idempotent

e.

Remark 2.3.12. The H-classes with an idempotent are isomorphic to Sr in Tn and

In, where 1 ≤ r ≤ n.

The regular semigroups can be characterized by the Green’s relations as given

in the following theorem:

Theorem 2.3.13. [37] Let S be a semigroup. Then the following statements are

equivalent:

1. S is a regular semigroup;

2. every L-class contains at least one idempotent;

3. every R-class contains at least one idempotent;

4. every D-class contains at least one idempotent.

Indeed, suppose that a semigroup S is regular, this implies that every D-class

is regular. Then by Proposition 2.3.9, every D-class contains an idempotent, hence

(1)⇒ (4). Now, suppose that every D-class contains at least one idempotent, then

by Proposition 2.3.8 every D-class is regular as idempotents are regular, hence S is
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regular and this is (4)⇒ (1). Statements (2) and (3) are identical.

For an inverse semigroup we have:

Theorem 2.3.14. [37, Theorem 5.1.1] Let S be a semigroup. Then the following

statements are equivalent:

1. S is an inverse semigroup;

2. S is a regular semigroup, and its idempotents commute;

3. every L-class and every R-class contains exactly one idempotent;

4. every element of S has a unique inverse.

2.3.2 Green’s Lemmas and their Consequences

Green’s Lemmas provide an explicit description of the structure of a D-class in a

semigroup and determine the relationships between Green’s relations.

Definition 2.3.15. [37] Let S be a semigroup and s, t ∈ S1. The map ρs : S → S

defined by aρs = as for all a ∈ S is called a right translation. Dually, the map

λt : S → S defined by aλt = ta for all a ∈ S is called a left translation.

The following shows that multiplication by suitable elements induces bijections

between certain R-classes, L-classes, and H-classes.

Lemma 2.3.16 (Green’s Lemma). [37, Lemma 2.2.1] Let S be a semigroup and

a, b ∈ S be such that aRb. Let s, s′ ∈ S1 where as = b and bs′ = a. Then:

1. the map ρs : La → Lb, defined by aρs = as, and the map ρs′ : Lb → La, defined

by bρs′ = bs′, are mutually inverse, hence bijections;

2. both maps ρs and ρs′ preserve R-classes; that is, for all c ∈ La and d ∈ Lb, we

have cR cρs and dR dρs′.

In other words,

ρs|Laρ′s|Lb= idLa and ρ′s|Lbρs|La= idLb ,

that is the right translation maps ρs and ρs′ restrict to mutually inverse bijections be-

tween the L-classes La and Lb, and both of these restricted maps preserve R-classes.

We illustrate Green’s Lemma in Tn:

Example 2.3.17.
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1. Let S = T4 and choose a, b ∈ T4 to be

a =

(
1 2 3 4

2 4 4 4

)
and b =

(
1 2 3 4

2 3 3 3

)
.

2. Then a has image = {2, 4} and fibers {1}, {2, 3, 4} and b has image = {2, 3}
and fibers {1}, {2, 3, 4}.

3. Therefore, aR b since fibers(a) = fibers(b).

4. Let s, s′ ∈ T4 be

s =

(
1 2 3 4

4 2 1 3

)
and s′ =

(
1 2 3 4

1 2 4 3

)
,

so that as = b and bs′ = a.

5. If c =

(
1 2 3 4

2 2 4 2

)
∈ La, then cR cρs since

cρs = cs =

(
1 2 3 4

2 2 3 2

)

has fibers {1, 2, 4} and {3} that are equal to the fibers of c.

6. Moreover, if d =

(
1 2 3 4

3 3 3 2

)
∈ Lb, then dR dρs′ since

dρs′ = ds′ =

(
1 2 3 4

4 4 4 2

)

has fibers {1, 2, 3} and {4} and they are equal to the fibers of d.

7. We can see that csL b, since im(cs) = im(b) = {2, 3}. Also, ds′ L a, as

im(ds′) = im(a) = {2, 4}.

The next result is the dual version of Green’s Lemma:

Lemma 2.3.18. [37, Lemma 2.2.2] Let S be a semigroup and a, b ∈ S be such that

aL b. Let t, t′ ∈ S1 where ta = b and t′b = a. Then:

1. The map λt : Ra → Rb, defined by aλt = ta, and the map λt′ : Rb → Ra,

defined by bλt′ = t′b, are mutually inverse bijections. That is, λtλt′ is the

identity map on Ra, and dually λt′λt is the identity map on Rb.

2. Both maps λt and λt′ preserve L-classes; that is, for all c ∈ Ra and d ∈ Rb,

we have cL c λt and dL dλt′.
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ta = c

t′c = a = bs′ b = as

d

La = Lc Lb = Ld

Ra = Rb

Rc = Rd

(−)s

(−)s′

t′(−)t(−)

Figure 2.4: Combination of Green’s Lemmas

See Figure 2.4 for the illustration of Green’s Lemmas. The combined effect of

the two Green’s Lemmas 2.3.16 and 2.3.18 gives bijections between all H-classes in

the same D-class:

Lemma 2.3.19. [37, Lemma 2.2.3] If a, b are D-equivalent elements in a semigroup

S, then |Ha|= |Hb|.

Proof. Assume aD b. Then there exists an element c ∈ S such that aR c and cL b.
Let s, s′, t, t′ ∈ S1 be such that as = c, cs′ = a, tc = b, and t′b = c. Then by Green’s

Lemmas 2.3.16 and 2.3.18 we have:

ρs|Ha : Ha → Hc is a bijection, and

λt|Hc : Hc → Hb is a bijection.

Then

ρs|Haλt|Hc : Ha → Hb is a bijection.

Hence |Ha|= |Hb|.

Green’s Lemmas 2.3.16 and 2.3.18 also provide a nice consequence focusing on

the multiplicative properties of an H-class.

Lemma 2.3.20. [37, Lemma 2.2.4] Let a,b be elements of a semigroup S.

1. If ab ∈ Ha, then ρb|Ha is a bijection of Ha onto itself.

2. If ab ∈ Hb, then λa|Hb is a bijection of Hb onto itself.

The following results allow us to apply group theory to semigroups:

Theorem 2.3.21 (Green’s Theorem). [37, Theorem 2.2.5] If H is an H-class

in a semigroup S, then either H2 ∩H = ∅ or H2 = H and H is a subgroup of S.
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Proof. If H2∩H = ∅, then there is nothing further to prove. Suppose that H2∩H 6=
∅. Then there exist a, b ∈ H such that ab ∈ H. Then aH ab, in particular aR ab.
By Green’s Lemma, ρb|H is a bijection from H onto itself. Similarly, since bL ab,
λa|H is a bijection from H onto itself, by Lemma 2.3.18. Now let c ∈ H. Then

ac = cλa|H and cb = cρb|H are both in H. By Green’s Lemmas, ρc|H and λc|H are

bijections from H onto itself. Since c ∈ H is arbitrary, we have cH = Hc = H

for all c ∈ H. Hence H2 = H, which certainly implies H2 ∩ H = H and H is a

subsemigroup. By statement (2.1), H is a subgroup of S.

Let e be an idempotent in a semigroup S. For any x ∈ Re, there exists s ∈ S1

such that x = es. Then

x = es⇒ ex = e(es) = e2s = es = x.

Thus, e is a left identity for the R-class Re. We can apply a dual argument to prove

that ye = y for y ∈ Le and so:

Proposition 2.3.22. [37] Every idempotent e in a semigroup S is a left identity

for the R-class Re and a right identity for the L-class Le.

The following theorem determines the location of the inverses of a regular element

a in a semigroup S by determining the location of the idempotents in the D-class

of a.

Theorem 2.3.23. [37, Theorem 2.3.4] Let a be an element of a regular D-class D

in a semigroup S.

1. If a′ ∈ V (a), then a′ ∈ D and the two H-classes Ra ∩La′andLa ∩Ra′ contain,

respectively, the idempotents aa′ and a′a.

2. If b ∈ D is such that Ra ∩ Lb and La ∩ Rb contain idempotents e and f,

respectively, then Hb contains an inverse a∗ of a such that aa∗ = e and a∗a = f .

3. No H-class contains more than one inverse of a.

Figure 2.5 shows the location of idempotents and inverse elements in a D-class.

By Theorems 2.3.14 and 2.3.23 and since the order of rows and columns is arbitrary,

we can deduce that the picture of the D-class of an inverse semigroup is square, with

all H-classes containing idempotents appear in the diagonal of the D. With respect

to the diagonal, the H-classes of mutually inverse elements are located symmetri-

cally. As an immediate consequence of Theorem 2.3.23, we have:

Proposition 2.3.24. [37, Proposition 2.3.5] Let e and f be idempotents in a semi-

group S. Then e and f belong to the same D-class if and only if there exist an element

a in S and an inverse a′ of a such that aa′ = e and a′a = f .
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f = a′a
group

a e = aa′
group

a∗ = a′
inverse of a

La = Lf Le = La′

Ra = Re

Ra′ = Rf

(−)a′

(−)a

a(−)a′(−)

Figure 2.5: Locating semigroup inverses

Proof. Suppose that eD f . Since idempotents are regular, the D-classes De and Df

are regular. Choose a ∈ Re ∩ Lf and b ∈ Rf ∩ Le. Then by Theorem 2.3.23, Hb

contains some a′ ∈ V (a) such that aa′ = e and a′a = f . Conversely, suppose that a

in S and the inverse a′ of a are such that aa′ = e and a′a = f . Since e = aa′ and

ea = aa′a = a, we have eR a. Similarly, since f = a′a and af = aa′a = a, it implies

that aL f . Hence eR aL f and therefore eD f .

Proposition 2.3.25. [37, Proposition 2.3.6] If H and K are two group H-classes

in the same (regular) D-class, then H and K are isomorphic.

In view of the above results, we observe the following:

Remark 2.3.26. [14]

1. Every row and column in an egg-box containing an idempotent contains a

group.

2. Products are located by idempotents: ab ∈ Ra ∩ Lb if and only if Rb ∩ La
contains e ∈ E(S).

3. Any two L-classes contained in the same D-class have the same cardinality.

Similarly, for any two R-classes, and for any two H-classes.

4. Two H-classes containing idempotents that are in the same D-class are iso-

morphic subgroups (maximal subgroups).

5. Let e be an idempotent in S. If eR a, then ea = a and a = ex for some x ∈ S1.

6. If He and Ha are two H-classes in the same R-class, then every element of the

H-class Ha has a unique expression as ga where g ∈ He. Dually, if He and Hb

are two H-classes in the same L-class, then every element of the H-class Hb

has a unique expression as bg for some g ∈ He.
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Having examined several basic definitions and results in semigroup theory, we

are now ready to introduce semigroup representation theory in the next chapter.
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Chapter 3

Semigroup Representation Theory

This chapter is devoted to the basic aspects of representations of semigroups and

some of the related terminologies. We also provide different examples across the

chapter to illustrate the various ideas put forward. For further detail in this area,

see [14, 15, 22, 23, 102]. Throughout the chapter, the action of a semigroup will be

on the right, unless otherwise indicated.

3.1 Basic Definitions

Definition 3.1.1. Let S be a (finite) semigroup and V be a finite-dimensional vector

space over a field k. A representation of S or S-representation is a homomorphism

ϕ from S to End(V ), the semigroup of all linear transformations of V .

We identify a ∈ S and aϕ ∈ End(V ); for v ∈ V we write v · a or va instead

for the effect of aϕ on the vector v. If S is a monoid, an additional requirement is

that ϕ map the identity element from S to the identity transformation on V . We

call dimV the degree of the representation ϕ. A representation ϕ is called faithful

if besides being a homomorphism, ϕ is also a monomorphism.

Remark 3.1.2.

• We exclude the null representation which maps every element to zero. Thus

imϕ 6= {0}. Indeed, when S is a monoid, this cannot happen since ϕ must send

the identity element 1 of a monoid S to the identity linear map id : V → V .

• The elements of End(V ), like those of S, need not have inverses. If S is a

group, then imϕ ⊆ GL(V ), the group of all invertible maps from V to V .

We call a representation in the sense of the previous definition a representation

as linear maps.

If we choose a basis for V , then relative to this basis each endomorphism of V

is represented by an n × n matrix over k and this gives an isomorphism between
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End(V ) and Mn(k). There is another version of representation which is called a

matrix representation as follows:

Definition 3.1.3. A matrix representation of S over k is a homomorphism ρ from

S to Mn(k), the multiplicative monoid of all n× n matrices over k for some n ≥ 1.

An equivalent notion of representation is that of a module. If V is a vector space,

then V is an S-module (or module over S) if a multiplication V × S → V given by

(v, a) 7→ v · a is defined, satisfying the following conditions for all v, w ∈ V , λ ∈ k
and a, b ∈ S:

1. (λv) · a = λ(v · a);

2. (v · a) · b = v · (a · b);

3. v · 1 = v, where 1 is the identity element of S;

4. (v + w) · a = v · a+ w · a.

Note that the above conditions (2) and (4) ensure that for v ∈ V the function

v 7→ v · a

is an endomorphism of V , for all a ∈ S.

In fact, the concepts of linear representations, matrix representations and repre-

sentation modules are equivalent. Thus, we can phrase their related terminologies in

terms of endomorphisms, matrices or modules. Throughout this chapter, we provide

the notions in terms of endomorphisms, however we sometimes use the equivalent

concepts interchangeably.

Let V and W be two S-modules. A linear mapping µ : V −→ W is called a

homomorphism or an S-homomorphism if it commutes with the action of all elements

from S. Thus, for each element s ∈ S the following diagram commutes:

V V

W W

(−)s

µ µ

(−)s

where (−)s denotes multiplication by s. Moreover, µ is an isomorphism if and

only if it is bijective. The set of all S-homomorphisms from V to W is denoted by

HomS(V,W ).

Two representations ϕ : S → End(V ) and ψ : S → End(W ) are said to be equiv-

alent, and we write ϕ ∼ ψ, if there exists a vector space isomorphism T : V → W
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such that (s)Tψ = (s)ϕT for all elements s in S (which means HomS(V,W ) contains

an isomorphism).

Let S be a finite semigroup and k be a field. Define a vector space k[S] where

the basis vectors are elements of S. That is, if S = {a1, . . . , an}, then let

k[S] =
{ n∑

i=1

λiai : λi ∈ k
}

where

n∑
i=1

λiai +
n∑
i=1

µiai =
n∑
i=1

(λi + µi)ai and λ
( n∑
i=1

λiai

)
=

n∑
i=1

(λλi)ai,

and dim k[S] = n. Define a multiplication on k[S] as follows:

(∑
a∈S

λaa
)(∑

b∈S

λbb
)

=
( ∑
a,b∈S

λaλb(ab)
)
, (3.1)

where λa, λb ∈ k. Then k[S] is called the semigroup algebra of S over k.

Each representation of the semigroup algebra k[S] induces or restricts to a rep-

resentation on the underlying semigroup S. Conversely, each representation of S

over k uniquely extends by linearity to a representation of the semigroup algebra

k[S]. This produces an equivalence between representations of S and those of k[S].

It then follows that a representation of S on a vector space V over k is the same

thing as a k[S]-module structure on V and that two representations are equivalent

if and only if the corresponding k[S]-modules are isomorphic. Explicitly, if ϕ is an

S-representation, then the k[S]-module structure on V over k is given by

v ·

(∑
a∈S

αaa

)
=
∑
a∈S

αa(v · a), for v ∈ V. (3.2)

We continue presenting the definitions related to representations of semigroups.

Definition 3.1.4. If V is an S-representation and U a subspace of V with the

property that US ⊆ U , then U is an S-subrepresentation of V .

Obviously, the whole of V and the zero vector space {0} are subrepresentations

of any representation.

If V is a vector space and V1, . . . , Vn are subspaces of V , then

V1 + · · ·+ Vn = {v1 + · · ·+ vn : vi ∈ Vi where 1 ≤ i ≤ n}.
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This vector space is a subspace of V .

Definition 3.1.5. A vector space V is the direct sum of a family {Vi : 1 ≤ i ≤ n}
of subspaces of V if and only if

1. V =
∑

i Vi, and

2. for each i, where 1 ≤ i ≤ n,

Vi ∩
(∑

j 6=i

Vj

)
= 0.

Then V is denoted by
⊕

i Vi, with 1 ≤ i ≤ n.

The direct sum of representations is the simplest way of constructing new rep-

resentations from given ones.

Definition 3.1.6. Let V be an S-representation, and suppose that as vector spaces

V =
⊕
i

Vi, with 1 ≤ i ≤ n,

where Vi are S-subrepresentations of V . Then, V is called a direct sum of subrepre-

sentations.

Now, we are ready to introduce the irreducibility of a representation.

Definition 3.1.7. An S-representation V is an irreducible S-representation if it

is not null and the only subrepresentations are {0} and V itself. Otherwise V is

reducible.

Example 3.1.8. Let S be any semigroup. Then mapping all elements of S to the

identity transformation k
id−−→ k defines on k the structure of an S-representation.

This representation is called the trivial S-representation and it is irreducible be-

cause it has only two subrepresentations, namely, k and {0}. A one-dimensional

representation is automatically irreducible.

In terms the language of modules, an S-module V is called simple when it is

not null and the only submodules of V are {0} and V , thus the corresponding

representation is irreducible. Moreover, we have the following essential definition:

Definition 3.1.9. A representation V is called completely reducible if it is equivalent

to a direct sum of irreducible subrepresentations. In other words, V can be written

(decomposed) as V = V1⊕· · ·⊕Vn for some irreducible subrepresentations V1, . . . , Vn.

Again, in terms of module language, modules corresponding to completely re-

ducible S-representations are called semisimple S-modules. The preceding defini-

tions apply to representations of algebras, and an S-representation is irreducible
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(completely reducible) if and only if the corresponding algebra representation is re-

ducible (completely reducible).

The character of a representation ϕ : S → End(V ) of a semigroup S is the

function χ : S → k defined by χ(s) = trace sϕ for all s ∈ S. The trace of an

endomorphism is equal to the trace of the matrix representing it. If χ is the character

of an irreducible representation, then χ is said to be an irreducible character. The

aim of the following example is to illustrate the concept of the reducibility of a

semigroup representation.

Example 3.1.10. Mapping representations [14]

Let S be Sn, In or Tn. Consider the vector space V over k with basis {v1, v2, . . . , vn}.
For every a ∈ S define a linear map on V by prescribing its action on the basis

elements of V in the following way: vi · a = via , when a ∈ Sn or Tn, or

vi · a =

via if i ∈ dom(a);

0, otherwise,

when a ∈ In.

Consider the following two subspaces of V .

• The subspace

U = k-span of v1 + v2 + . . .+ vn. (3.3)

• The hyperplane W with equation x1 + x2 + . . .+ xn = 0; that is,

W =
{
w =

n∑
i=1

λivi ∈ V :
n∑
i=1

λi = 0, λi ∈ k
}
. (3.4)

Let us verify whether both subspaces U and W can be S-subrepresentation when S

is Sn, In and Tn, respectively.

When S =Sn (permutation representation) [14]:

Since dimU = 1, the only subspaces of U are {0} and U itself. Hence, U is

an irreducible subrepresentation of V as USn ⊆ U . Then V is a reducible Sn-

representation.

First, we claim thatW is a subrepresentation of V . Let w = λ1v1+. . .+λnvn ∈ W
with λ1 + . . . + λn = 0 and σ ∈ Sn. Then w · σ = λ1v1σ + . . . + λnvnσ with

λ1 + . . . + λn = 0. This implies that w · σ ∈ W, which means WSn ⊆ W . Second,

we claim that W is an irreducible Sn-subrepresentation. To prove this, we need to

show that the only Sn-invariant subspaces of W is are the trivial one and the whole
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space W .

Assume that the characteristic char(k) of the field k does not divide n, the di-

mension of V . Suppose that v ∈ W with v 6= 0 and v =
n∑
i=1

λvi (the coordinates

are the same). Then, as v ∈ W and
n∑
i=1

λ = 0, we have nλ = 0. By the restric-

tion on char(k) we must have λ = 0 and thus v = 0 which is a contradiction to

our assumption. This means that any v ∈ W must have at least two coordinates

that are different. That is, we write the vector v as
n∑
i=1

λivi with λj 6= λk for some

1 ≤ j < k ≤ n. For any i there is a σi ∈ Sn (1 ≤ i ≤ n − 1) such that jσi = i and

kσi = i+ 1 . Hence, if we apply σi to v we get that v · σi has i-th and (i+ 1)-st co-

ordinates that are different. Any subrepresentation of W , say Z 6= 0, that contains

v 6= 0 also contains v · σi for 1 ≤ i ≤ n.

Consider v · σi (i, i+ 1)− v · σi. Then if v · σi has coordinates the row vector

(µ1, µ2, . . . , µi, µi+1, . . . , µn),

we get

v · σi(i, i+ 1)− v · σi = (µ1, µ2, . . . , µi+1, µi, . . . , µn)

− (µ1, µ2, . . . , µi, µi+1, . . . , µn)

= (0, 0, . . . , µi+1 − µi, µi − µi+1, . . . , 0)

= κ(0, 0, . . . , 1,−1, . . . , 0),

for κ = µi+1 − µi 6= 0, as µi+1 6= µi . Thus, v · σi(i, i+ 1)− v · σi = κ(vi − vi+1). In

other words, a nonzero multiple of vi − vi+1 is contained in the subspace Z. This

implies that vi − vi+1 ∈ Z ⊆ W , for all i with 1 ≤ i ≤ n− 1. We claim that the set

{vi − vi+1, 1 ≤ i ≤ n− 1} forms a basis for W , to show this:

1. the vectors vi−vi+1 are independent as {vi, . . . , vn} is the basis of V . It follows

that all the coefficients of vi − vi+1 are zeros.

2. the vectors vi − vi+1 span (n− 1)-dimensional subspace of W :

Spank{vi − vi+1, 1 ≤ i ≤ n− 1} ≤ W.

As W is a hyperplane so dimW = n− 1. Hence,

Spank{vi − vi+1, 1 ≤ i ≤ n− 1} = W

This means that Z = W , indicating that W is an irreducible Sn-subrepresentation.
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We conclude that V = U ⊕ W is a direct sum of irreducible subrepresentations,

which means that V is completely reducible, for S = Sn, n ≥ 2.

When S = In, n>1 (partial permutation representation) [14]:

Consider the previous subspaces W (3.4) and U (3.3). Let u ∈ U and a ∈ In such

that

a =

(
1 2 3 · · · n

1 − − · · · −

)
∈ In. (3.5)

Let us see the action of In on U and W , respectively. The element u · a =

(v1 + v2 . . . + vn) · a = v1 does not belong to the subspace U since it has the

coordinates (1, 0, 0, . . . , 0). The element v1 − v3 is in the subspace W but its image

under the action of a is (v1 − v3) · a = v1, and is not in W since the sum of its co-

ordinates is not zero. Thus, U and W are not In-subrepresentations since UIn * U

and WIn * W .

In fact, we will prove that V is an irreducible partial permutation representation

for In. Let V ′ ⊂ V be an In-subrepresentation with V ′ 6= {0}. We need to show

that V ′ is indeed the whole space V . Take v′ ∈ V ′ with v′ 6= 0; then v′ =
n∑
i=1

λivi

with λj 6= 0 for some j. Let

ai =

(
1 2 · · · j − 1 j j + 1 · · · n

− − · · · − i − · · · −

)
∈ In, 1 6 i 6 n. (3.6)

Then, v′ai = λjvi ∈ V ′ and hence each vi ∈ V ′, 1 ≤ i ≤ n. But the vi are the

basis of V and therefore V = V ′. Thus, the only two subrepresentations, that V has

are {0} and V . Hence, we get the desired result.

When S = Tn, n>1 (mapping representation) [14]:

First, we need the following preliminary results:

1. If T is a submonoid of S and V is an S-representation, then restricting the

S-action to T gives V the structure of a T -representation.

2. Let V be an S-representation and V =
⊕
i

Vi with the Vi irreducible subrep-

resentations. If W ⊂ V is an irreducible subrepresentation, then W ∼= Vj for

some j [107].

Consider the subspaces W (3.4) and U (3.3). We claim that U is not a Tn-

subrepresentation of V . To see this, let a ∈ Tn such that

a =

(
1 2 3 · · · n

1 1 1 · · · 1

)
and u = v1 + . . .+ vn ∈ U. (3.7)
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We have u · a= v1 + . . .+ v1 = nv1 /∈ U and this implies that UTn * U . On the

other hand, W is an irreducible Tn-subrepresentation of V . To prove this: let w ∈ W
such that w =

n∑
i=1

λivi with
n∑
i=1

λi = 0 and a ∈ Tn with im(a) = {i1, i2, . . . , ik} ⊂ [n].

The set [n] =
⋃
ija
−1 = dom(a) is a disjoint union where ija

−1 = {l ∈ [n] : la =

ij, 1 ≤ j ≤ k} are the fibers of the element a.

Aside:

Example 3.1.11. Let a ∈ T5 be such that

a =

(
1 2 3 4 5

1 3 3 1 5

)
.

Then im(a) = {1, 3, 5} and the fibers of a are {1, 4}, {2, 3}, and {5}.

Now, we compute

w · a =
( ∑
m∈i1a−1

λm

)
vi1 + . . . +

( ∑
m∈ika−1

λm

)
vik (3.8)

where
k∑

n=1

( ∑
m∈ ina−1

λm

)
=
∑
λi = 0 . That is, when we add the coordinates of w ·a

we have
n∑
i=1

λi = 0 and hence w · a ∈ W . This implies that WTn ⊆ W , which means

that W is a Tn-subrepresentation of V , hence a Tn-representation V is reducible.

Moreover, W is irreducible since if W ′ ⊂ W is a Tn-subrepresentation, then, given

that Sn ≤ Tn we have that W ′ is an Sn-subrepresentation of W , which is an irre-

ducible Sn-representation. Thus, W ′ = {0} or W .

Let X be a 1-dimensional subrepresentation of V . Let X = C[v] with v =
∑
λivi

where
∑
λi = 0; thus v ∈ W , which implies that X is a subrepresentation of W .

But this is a contradiction since W is irreducible, hence
∑
λi 6= 0. Now, let a ∈ Tn

be such that (i)a = 1 for all i, 1 6 i 6 n. Then v · a = (
∑
λi)v1 ∈ X and since∑

λi 6= 0 we get v1 ∈ X. If we repeat the previous step with (i)a = 2 for all i, we

get v2 ∈ X. This is a contradiction since X has dimension one.

Thus V has no 1-dimensional Tn-subrepresentations if n > 2, and exactly one Tn-

subrepresentation namely, W , if n = 2 [14]. Furthermore, if we can write V =
⊕
i

Vi

with the Vi irreducible subrepresentations, then W is isomorphic to one of the Vi,

which is therefore (n − 1)-dimensional. Now, we have V = V1

⊕
V2 with V2, say, a

1-dimensional subrepresentation and W ∼= V1. But, no such V2 exists and this means

that V cannot be decomposed, i.e, V is not completely reducible. This example also

shows that a non-completely reducible representation of a semigroup need not be

irreducible.
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3.2 Semisimplicity of Semigroup Algebras

In the theory of representations of a finite group, Maschke’s Theorem plays a

fundamental role.

Maschke’s Theorem. [8] Let G be a finite group and k be a field. Then the algebra

k[G] is semisimple if and only if the characteristic of k does not divide the order of

G.

Consequently, representations of G over k are completely reducible. If we re-

place the group G by a finite monoid, how can we describe semisimplicity for the

monoid algebra k[S]? Steinberg has addressed this topic [102] and we describe here

his main results. Throughout this section, we write mapping symbols on the left

and the action of a semigroup is on the left.

Let S be a finite monoid. We need to introduce the notion of an S-set. An S-set

is a set X together with a mapping S × X → X, written (s, x) 7→ sx, such that

1x = x and s1(s2x) = (s1s2)x for all x ∈ X and s1, s2 ∈ S. A mapping θ : X → Y

of S-set is said to be S-equivariant if θ(sx) = s(θx) for all x ∈ X and s ∈ S. We

denote by HomS(X, Y ) the set of all S-equivariant mappings from X to Y . Note

that a special case of this is the earlier S-homomorphism.

Let V be a simple S-module. An idempotent e ∈ E(S) is called an apex for V

if eV 6= 0 and IeV = 0 where Ie = eSe \Ge. We sometime refer to an apex e by its

J -class Je. The following proposition provides the characterization of the apex of

an S-module V .

Proposition 3.2.1. [23] An S-module V has apex e if and only if Je is the unique

minimal J -class, with respect to the order of J -classes, that does not annihilate V .

The theorem below shows the existence of apexes in a finite semigroup.

Theorem 3.2.2. [23] Let S be a finite semigroup. Then every simple S-module V

has an apex.

It turns out that there exists an apex; so, we can fix an apex e in E(S) and

its related maximal subgroup Ge. Then we define some functors associated to e as

follows [102, Chapter 5],

IndGe : k[Ge]-mod −→ k[S]-mod; (3.9)

CoindGe : k[Ge]-mod −→ k[S]-mod, (3.10)

by putting

IndGe(V ) = k[Le]⊗k[Ge] V ;
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CoindGe(V ) = HomGe(Re, V ).

Here, V is a k[Ge]-module and HomGe(Re, V ) is the vector space of Ge-equivariant

mappings θ : Re → V . Also, k[Le] and k[Re] are the left and right Schützenberger

representations associated to the J -class Je of S. Note that k[Le] is the set of all

formal sums
∑

i λisi where λi ∈ k and si ∈ Le, similarly for k[Re]. The function

IndGe is called the induction functor and CoindGe is called the coinduction functor.

Let W be a k[Ge]-module, e ∈ E(S). Then, if we put Ae = k[S]/k[I(e)], where

I(e) = {a ∈ S | e /∈ SaS} (it is an ideal of S if it is not empty), we get a homomor-

phism of Ae-modules

ϕW : IndGe(W ) −→ CoindGe(W ).

For l ∈ Le, w ∈ W , and r ∈ Re, define

ϕW (l ⊗ w)(r) = (r � l)w,

where

r � l =

rl, if rl ∈ Ge;

0, else.

Note that rl ∈ eSe. An arbitrary element of IndGe(W ) is a k-linear combination of

terms (l ⊗ w).

All preparations for stating the main results of semisimplicity are now completed.

Definition 3.2.3. [15] Let S is a finite regular monoid and k is a field. Then the

semigroup algebra k[S] is semisimple when every S-module V over k is completely

reducible.

This means there exists essentially a unique way to write V as a direct sum of

irreducible submodules as V ∼= V1 ⊕ · · · ⊕ Vn.

Theorem 3.2.4. [102, Chapter 5] Let S be a finite monoid and k be a field. Then

k[S] is semisimple if and only if all the following hold:

1. S is regular;

2. the characteristic of k does not divide the order of Ge, for any e ∈ E(S);

3. the homomorphism ϕk[Ge] : IndGe(k[Ge]) −→ CoindGe(k[Ge]) is an isomor-

phism for all e ∈ E(S).

The following theorem is the analogous semigroup theorem to Maschke’s The-

orem of finite group representations.
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Corollary 3.2.5. [8, Oganesyan] Let S be a finite inverse monoid and k be a field.

k[S] is semisimple if and only if the characteristic of k does not divide the order of

any of the maximal subgroups Gei.

Example 3.2.6. Let S = In and let V be an In-representation. Let k be a field .

All maximal subgroups of In are isomorphic to Sr, 1 ≤ r ≤ n. Thus, V is semisimple

if and only if char(k) - r!, 1 ≤ r ≤ n. Consequently, V is semisimple if and only if

char(k) - n!. In particular, when k = C, every In-representation is semisimple.

Example 3.2.7. Since S = Tn is not inverse and the mapping representation is not

completely reducible for n > 2, (Tn, k) is not semisimple for any field k (even for

the complex vector space with characteristic 0).

In terms of matrices, the following theorem shows that the monoid algebra k[S]

is isomorphic to a product of matrix algebras Mni(k[Gei ]) over the group algebras

of its maximal subgroups.

Theorem 3.2.8. [102, Chapter 5] Let S be a finite monoid and k be a field such

that k[S] is semisimple. Let {e1, . . . , es} be a complete set of representatives of the

J -classes of idempotents of S and suppose that Jei contains ni L-classes. Then

there is an isomorphism of k-algebras

k[S] ∼=
s∏
i=1

Mni

(
k[Gei ]

)
.

In the case of finite inverse monoids we have:

Corollary 3.2.9. [102, Chapter 9] Let S be a finite inverse monoid and k be a

field. Let {e1, . . . , es} be the set of idempotent representatives of the J -classes of S

and let ni = |E(Jei)|. Then there is an isomorphism

k[S] ∼=
s∏
i=1

Mni

(
k[Gei ]

)
.

3.3 Reduction and Induction of Representations

In this section, we introduce the notion of reduction (some authors call it restriction)

and describe the induction of (3.9) in a more elementary way. We also illustrate

each notion with an example in In [14].

Reduction of a representation is a technical procedure for constructing a rep-

resentation of a maximal subgroup from a representation of a semigroup. In the

reverse direction, induction is a technical procedure for constructing a representa-

tion of a semigroup from a representation of a maximal subgroup. We start with

the reduction procedure.
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3.3.1 Reduction Process

Let S be a finite monoid and V be an irreducible S-representation. Consider a

J -class J of S and fix an idempotent e belonging in J . Consider the maximal

subgroup Ge with e ∈ Ge. We need two steps to construct a representation of Ge,

as follows [1]:

• consider the subspace V e = {v · e | v ∈ V } of V and

• define the action of Ge on V e.

These steps are required in the reduction process. Note that we do not know whether

the resulting Ge-representation is irreducible or reducible, we will discuss this point

later in this chapter.

The following is illustration of the process in the symmetric inverse monoid In.

Example 3.3.1. [14] Let S = In and consider the previous vector space V of Ex-

ample 3.1.10, the In- irreducible partial permutation representation with dimension

n. Fix e ∈ E(S) so that Ge is a maximal subgroup of S. Let X = {1, . . . , `},
we have e = idX : X → X, X ⊆ [n], the identity of Ge, where |X|= ` and

Ge = {all the bijections from X onto X}, hence is isomorphic to S`, 0 ≤ ` ≤ n. Let

V e = {v · e | v ∈ V } be the k-space with the basis {v1e, . . . , v`e} = {v1, . . . , v`}, so

that dim(V e) = `. For g ∈ Ge and v · e ∈ V e, we define the action of Ge on V e

(group action)

(v · e) · g = v · (eg). (3.11)

Note that v · (eg) = v · (ge) = (v · g) · e ∈ V e. It follows that V e is a Ge-

representation that is isomorphic to the permutation representation of S`. Note

that, S`-representation is reducible when ` ≥ 2 and irreducible when ` = 1, and if

e ∈ J0 is the zero map then V e = 0 (see Example 3.1.10).

We conclude that the procedure above turns the irreducible partial permuta-

tion representation for In into a reducible permutation representation for S` where

2 ≤ ` ≤ n.

Let f be another idempotent in the same J -class as e, f is the identity of Gf .

Let a∗ is the inverse of an element a : Y → X such that aa∗ = f and a∗a = e. Define

an action of Gf on V f = {v · f | v ∈ V } gives a Gf -representation, as follows. For

h ∈ Gf and v · f ∈ V f ,

(v · f) · h = v · (fh) = v · (hf) = (v · h) · f ∈ V f. (3.12)
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Ge ga∗
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ψ

(−)a∗

(−)a

a(−)a∗(−)

Figure 3.1: Applying Green’s Lemmas in our case

We have Gf and Ge are isomorphic via ψ : Gf → Ge, given by h 7→ a∗ha, where its

inverse ψ−1 : Ge → Gf is given by g 7→ aga∗, for g ∈ Ge. So that Gf , SY , SX and

Ge are all isomorphic. Now, by applying Green’s Lemmas in our case we obtain the

diagram in Figure 3.1.

Also, V f is isomorphic to V e via: v · f 7→ v · (fa) = v · (ae) = (v · a)e ∈ V e.
Moreover, the following commutative diagram shows that V e does not depend on

the choice of e inside the J -class we choose:

V f V f

V e V e

(−)h

∼= ∼=
(−)a∗ha

where (−)h and (−)a∗ha denote the multiplications by h and a∗ha, respectively.

This implies that the Gf -representation V f is isomorphic to the Ge-representation

V e (for more detail see [14]).

In the remaining parts of this section, we present the induction procedure that

can be more complicated when there is a possibility that the constructed represen-

tation is reducible. Then we apply these processes to In.

3.3.2 Induction Process

Let S be a finite regular monoid and k be a field. Fix e ∈ Je and consider Re, the R-

class of e and the maximal subgroup Ge. Let V be an irreducible Ge-representation.

Our aim is to extend the Ge representation to an S-representation. The steps of

induction are as described below [1]:
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• let A = {aj : j ∈ J} be a set of representatives from each of the H-classes

inside Re, with e itself as the representative in Ge. Note that each H-class has

only one representative.

• for aj ∈ A let Vj = {vj = v ⊗ aj : v ∈ V } ∼= V be a copy of V, a k-space with

vj + v′j = (v ⊗ aj) + (v′ ⊗ aj) = (v + v′)⊗ aj

and

λvj = λ(v ⊗ aj) = (λv)⊗ aj,

where v, v′ ∈ V and λ ∈ k. Note that dimVj = dimV .

• consider all the copies Vj and define the vector space

U =
⊕
aj∈A

Vj.

Then any u ∈ U can be written uniquely in the form u =
∑
j∈J

vj, where vj ∈ Vj.

Note that dim
⊕

Vj =
∑
j∈J

dimVj = |J |· dimV .

• recall that by Green’s Lemma [37] every a ∈ Re can be written uniquely as

gaj, for some aj ∈ A and a unique element g ∈ Ge (see Chapter 2). Now, we

define an S-action on U in the following way: for b ∈ S define

(v⊗aj)·b =

v · g ⊗ ak if ajb ∈ Re and ajb = gak, for some ak ∈ A and g ∈ Ge;

0, ajb /∈ Re.

(3.13)

This gives an S-representation U . Up to this point, we do not know whether the

resulting S-representation is irreducible or reducible.

Example 3.3.2. [14] Let S = In and J1 be the J -class consisting of all partial

bijections between subsets of [n] with size 1. Fix an idempotent e : {k} → {k} ∈ J1,

where k ∈ [n] so that Ge is a maximal subgroup of S and consider its R-class Re.

Let V be the trivial representation of Ge
∼= S1. Notice that V is a one-dimensional

irreducible representation with basis {v} and v · e = v. The set of representatives

aj as A = {aj : {k} → {j}; k, j ∈ [n]}. Observe that there are only one element

in each H-class in Re and the domain {k} for these representatives is fixed and the

images are vary.

To do the induction process, we need a copy Vj of V that has basis

{vj = v ⊗ aj : v ∈ V, aj ∈ A}
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and Vj ∼= V . If we consider all the copies Vj, we have

dim
⊕
aj∈A

Vj = n

For any b ∈ In, we have ajb ∈ Re if and only if dom(ajb) = dom(e) = {k} if and

only if j ∈ dom(b). Thus the partial map ajb can be described as

ajb =

ajb : {k} → {jb} if j ∈ dom(b);

0, otherwise.
(3.14)

In this case, there is a unique element e ∈ Ge such that ajb = ajb = eajb, with

aj ∈ A. Hence, the action of In on Vj can be written as

vj · b = (v ⊗ aj) · b

(v · e)⊗ ajb = v ⊗ ajb if j ∈ dom(b);

0, else.
(3.15)

The vector space
⊕
aj∈A

Vj carries the partial permutation representation for In and,

in particular, it is irreducible by Example 3.1.10.

Now, if the induction procedure produces a reducible representation, how can

we make it irreducible? The following paragraphs will explain and illustrate this

situation.

In general, when we do the induction process, the previous steps is insufficient,

and we need an extra step to ensure that we end up with an irreducible representa-

tion. Before starting this step, we list some required definitions and facts.

• If V is an S-representation and U ⊂ V is an S-subrepresentation, then the

quotient space V/U is an S-representation via the action: (v+U) ·a = v ·a+U .

• U ⊂ V is a maximal subrepresentation of V if and only if when W is another

subrepresentation of V such that U ⊂ W ⊂ V , we have that W = U or

W = V .

• The relation between maximality and quotient S-representations is: U is a

maximal subrepresentation of V if and only if the quotient representation

V/U is irreducible.

• Let S be a semigroup and V be an S-representation. Then the set AnnS(V ) =

{s ∈ S : V s = 0} is called the annihilator of V .

Now, back to induction process steps. If we define Ann(Le) as
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Ann(Le) = {v ∈
⊕
A

Vj : v · b = 0 for all b ∈ Le},

then Ann(Le) is the unique maximal subrepresentation of
⊕
A

Vj. Hence, by using

the above we end up with the irreducible S-representation:

V ↑ S def
:=
⊕
A

Vj/Ann(Le).

Observe that we commence the induction process with an irreducibleGe-representation

V and by inducing it up we obtain the irreducible S-representation

V ↑ S =
⊕
A

Vj/Ann(Le).

The steps required for the induction process are completed.

Example 3.3.3. [14] Let S be the inverse monoid In and V be the trivial irreducible

representation of Ge, where e : X
id−→ X. We claim that Ann(Le) = {0}. Let v ∈

Ann(Le), so that v ∈
⊕
ai∈A

Vi with v ·b = 0 for all b ∈ Le and we have v =
∑
i

vi⊗ai, for

some i ∈ I. For any i and fixed j, if a∗j is the inverse of aj ∈ Re (with aj : X −→ Y ),

then aia
∗
j ∈ Re if and only if dom(aia

∗
j) = X if and only if im(ai) = dom(a∗j) = Y.

This happens if and only if i = j which means that when i 6= j, we have aia
∗
j /∈ Re.

Now, we have v ∈ Ann(Le) and a∗j ∈ Le, hence, v · a∗j = 0. So,

0 = v · a∗j
=
(∑

i

vi ⊗ ai
)
· a∗j

=
∑
i

(vi ⊗ ai ) · a∗j

= (vj ⊗ aj) · a∗j [since ai = aj and by formula (3.13)]

= (vj · e)⊗ e [since aja
∗
j = e = ee and by formula (3.13)]

= vj ⊗ e. (3.16)

This means that the vector vj⊗ e is the zero vector, and we obtain this when vj = 0

in the trivial Ge-representation V . It follows that the copy vj ⊗ aj in Vj is also zero.

When we let j vary, we have v = 0. This completes the proof that Ann(Le) = {0}.

We deduce that when S is finite inverse monoid, then Ann(Le) = {0}.

Theorem 3.3.4. [1, Chapter 4] Let S be finite inverse monoid and V be an irre-

ducible Ge-representation. Then, (V ↑ S) is irreducible.
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The following section explains the concept of Clifford-Munn-Ponizovskii corre-

spondence theory with respect to the above ideas.

3.4 Clifford-Munn-Ponizovskii Theory

The Clifford-Munn-Ponizovskii correspondence gives a bijection between the irre-

ducible representations of a finite monoid and the irreducible representations of its

maximal subgroups. In this section, we provide two expositions of this theory. The

first one is given in an abstract approach by Steinberg in his book mentioned previ-

ously [102]. The second one is provided by Everitt in his paper [14] where he deals

pragmatically with this theory by applying it to the symmetric inverse monoid In.

Prior to examining the main theory, we state the requirements for understanding

it. Note that in the first exposition, the action of a semigroup will be on the left.

Definition 3.4.1. Let M be a module. A descending chain

M = M1 ⊃M2 ⊃ . . . ⊃Mk ⊃Mk+1 = ∅

of submodules is called a composition series of M if all factor modules Mi/Mi+1 are

simple. These quotient modules Mi/Mi+1 are called composition factors of M , for

i = 1, . . . , k.

Let S be a finite monoid and k be a field. In addition to the previous functors

in Section (3.2) which are associated to k[S]/k[I(e)] and k[Ge], we introduce new

ones [102]. Fix an idempotent e ∈ E(S) and define:

IndGe : k[Ge]-mod −→ k[S]-mod (3.17)

CoindGe : k[Ge]-mod −→ k[S]-mod (3.18)

ResGe : k[S]-mod −→ k[Ge]-mod (3.19)

Te : k[S]-mod −→ k[S]-mod (3.20)

Ne : k[S]-mod −→ k[S]-mod (3.21)

by putting

IndGe(V ) = k[Le]⊗k[Ge] V

CoindGe(V ) = HomGe(Re, V )

ResGe(V ) = eV

Te(V ) = SeV

Ne(V ) = {v ∈ V | eSv = 0}.
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Observe that

• IndGe(V ) = V ↑ k[S] (induction function) and

• ResGe(V ) = eV = V ↓ k[Ge], is called restriction( reduction) of V .

The Clifford-Munn-Ponizovskii Theory is the following:

Theorem 3.4.2. [102, Chapter 5] Let S be a finite monoid and k be a field.

1. There is a bijection between isomorphism classes of simple k[S]-modules with

apex e ∈ E(S) and isomorphism classes of simple k[Ge]-modules given by

W 7→ ResGe(W ) = eW, (3.22)

V 7→ V ] = IndGe(V )/Ne(IndGe(V )) ∼= Te(CoindGe(V )), (3.23)

for W a simple k[S]-module with apex e and V a simple k[Ge]-module.

2. Every simple k[S]-module has an apex (unique up to J -equivalence).

3. If V is a simple k[Ge]-module, then every composition factor of IndGe(V ) and

CoindGe(V ) has apex f with SeS ⊆ SfS. Moreover, V ] is the unique compo-

sition factor of the two modules W and V with apex e.

The isomorphism in (3.23) is given by Corollary 4.12 of [102]. Consequently,

there are two corollaries to this theorem. The first one states that there is a bijec-

tion between irreducible representations of S and irreducible representations of the

maximal subgroups of S. The other gives an example of obtaining the irreducible

representations of an R-trivial monoid. Before proceeding further with the corollar-

ies, we need to introduce this notion.

Let M be a monoid. If m ∈M , then Mm,mM and MmM are the principal left,

right and two-sided ideals, respectively, generated by m. A monoid M is called R-

trivial if mM = nM implies m = n, that is, the R-relation is equality. The notion

of L-trivial is defined dually. Moreover, a monoid is J -trivial if MmM = MnM

implies that m = n.

Let Irrk(S) be the set of isomorphism classes of simple k[S]-modules and Irrk(Gei)

be the set of isomorphism classes of simple k[Ge]-modules.

Corollary 3.4.3. [102, Chapter 5] Let S be a finite monoid and k be a field. Let

{e1, . . . , es} be a complete set of idempotent representatives of the regular J -classes

of idempotents of S. Then there is a bijection between Irrk(S) and the disjoint union⋃s
i=1 Irrk(Gei).
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Corollary 3.4.4. [102, Chapter 5] Let S be an R-trivial monoid and k be a field.

The simple k[S]-modules are in bijection with regular J -classes of S. More precisely,

for each regular J -class Je with e ∈ E(S), there is a one-dimensional simple k[S]-

module WJe with corresponding representation χJe : S −→ k given by

χJe(a) =

1, if Je ⊆ SaS;

0, a ∈ I(e).
(3.24)

This example is a simple application of the Clifford-Munn-Ponizovskii correspon-

dence to a particular class, the R-trivial monoid.

The following subsection provides an implementation of the Clifford-Munn-Ponizovskii

correspondence, which yields an alternative approach to the subject in a simple

way [14]. We start with an explanation of the method using slightly different nota-

tions than the above and then apply it to the symmetric inverse monoid.

3.4.1 The proof of the Clifford-Munn-Ponizovskii correspon-

dence in the case of the symmetric inverse monoid

Before we start applying the correspondence, we need to clarify the idea of the

apex defined in Section (3.2). Let S be a finite semigroup. Then any irreducible

S-representation V has a unique apex Je, where e is idempotent. The reason for

the need for this apex resides in the fact that when we reduce an irreducible S-

representation V to be Ge-representation V e, we have many Ge-representations as-

sociated with different J -classes. Which one should we therefore use in the reduction

to end with irreducible Ge-representation? This is the point of the apex; it navigates

us to where exactly to send the V and which maximal subgroup to associate with

it. Thus the transition from an irreducible S-representation to an irreducible Ge-

representation is via reduction process with an apex Je. Then the correspondence

will run perfectly.

The apex Je of V is a unique minimal J -class that satisfies the following condi-

tions [1]:

• its idempotent representative e (:= e ∈ Je) determines a nonzeroGe-representation

V e;

• for all other J -classes that are greater than the J -class Je (with respect

to partial ordering ≤J ), their idempotent representatives yield nonzero G-

representations: In other words,

for each f ∈ Jf where Jf > Je; we have V f 6= 0;
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• for all remaining J -classes that are not greater than the J -class Je, their

idempotent representatives annihilate V : In other words,

for each f ∈ Jf where Jf ≯ Je; we have V f = 0.

Hence, an idempotent representative e belonging to the J -class Je can also iden-

tify the apex of V , and is unique up to J -equivalence. The following theorem shows

the important of the apexes when S is finite inverse monoid.

Theorem 3.4.5. Let S be a finite inverse monoid. If V is a irreducible S-representation

with apex Je, then the Ge-representation V e is irreducible.

Let S be a finite regular monoid and e be an idempotent in the set E(S). Let

Ge be a maximal subgroup of S with idempotent e and T be the set of idempotent

representatives for J -classes of S. Let V be an irreducible S-representation and U

be an irreducible Ge-representation. We need to recall some facts:

• for any idempotent f ∈ T , let V f be a Gf -representation. In fact, if f ′ ∈ T
and f ′ is J -related to f , then V f is isomorphic to V f ′.

• define an apex of a representation in a different way: an apex is a unique

minimal J -class Je of S, where e is idempotent, such that for any idempotent

f ∈ Jf the following rule holds:

V f 6= 0 if and only if Je 6 Jf .

We now fix the field k. We have three main sets: the set of all irreducible represen-

tations of S over k is denoted by Irr(S); the set Irre(S) = {V ∈ Irr(S) such that

V has an apex Je with e ∈ Je}, and for each e ∈ T we have the set Irr(Ge) of all

irreducible Ge-representations over k.

In this correspondence, we have two mappings, namely

α1 : V
reduction7−−−−−−→ V ↓ Ge and α2 : U

induction7−−−−−−→ U ↑ S.

In the first map, we take V to be an irreducible representation of S with apex Je

and reduce it to be an irreducible Ge-representation V e = V ↓ Ge. In the second

map, we start with U , an irreducible representation of Ge, and induce it up to an

irreducible representation of S. Thus, the result U ↑ S =
⊕
A

Uj/Ann(Le) ends up

in the set Irre(S) of irreducible S-representations with apex Je.

The next aim is to show that, for a fixed e in T , both maps are inverses of each

other, hence bijectives. We do this in two steps as follows:
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1. (U ↑ S) ↓ Ge
∼= U .

Here, we start with U an irreducible representation of Ge and induce it to

an irreducible S-representation and then reduce that to end up with an irre-

ducible Ge-representation that is isomorphic to U . Therefore, this step gives

the identity map on the set Irr(Ge).

2. (V ↓ Ge) ↑ S ∼= V .

In this step, we start with the irreducible S-representation V , having apex Je,

and reduce to an irreducible Ge-representation we then induce that to end up

with an irreducible S-representation that is isomorphic to V . This map is the

identity map on the set Irre(S).

Thus, the Clifford-Munn-Ponizovskii correspondence equips us with the following

machine, for a fixed e:

Irre(S) Irr(Ge)

Reduction

Induction

Figure 3.2: Clifford-Munn-Ponizovskii Correspondence Machine

This implies that

Irr(S) =
⋃
e∈T

Irre(S), a disjoint union.

Then,

|Irr(S)| =
∑
e∈T

|Irre(S)| =
∑
e∈T

|Irr(Ge)|,

where T = {e : e is an idempotent representative for each J -class}.

Now it is time to translate the method mathematically and prove it for S = In.

Example 3.4.6. Let S = In and V be an irreducible S-representation Let U be an

irreducible Ge-representation which is isomorphic to a representation of the symmet-

ric group Sk, 0 ≤ k ≤ n. Fix the J -class Jk, let X = {1, . . . , k} and e be the identity

map on X. Note that if a is an element of In, then 0 ≤ |im(a)|= |dom(a)|≤ n. Con-

sider Y = {i1, i2, . . . , ik} contains distinct elements of [k] such that i1 < i2 < . . . < ik.

Pick a very particular element aY : (j)aY 7→ ij, where 1 ≤ j ≤ k:
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1

aY =

i1

2

i2

k

ik

undefined

n

Figure 3.3: Induction Process: aY ∈ In

and let A = {aY : |Y |= k}.

1. Claim: V ↓ Ge = V e is an irreducible Ge-representation when Je is the apex

of V . Fix V ∈ Irre(S) an irreducible S-representation with apex Je and reduce

it to V e, an irreducible Ge-representation. The maximal subgroup Ge acts on

V e via:

(v · e) · a = v · (ea)︸︷︷︸
∈ Ge

= v · (ae)

= (v · a)︸ ︷︷ ︸
∈ V

· e

︸ ︷︷ ︸
∈ V e

for (v · e) ∈ V e and a ∈ Ge. Since V is irreducible, V e is an irreducible Ge-

representation by [14, Exercise 3]. Thus V e belongs to the set Irr(Ge) and this

implies that α1 : V 7→ V ↓ Ge is a map from the set Irre(S) to the set Irr(Ge).

2. Claim: U ∈ Irr(Ge) implies that U ↑ S is irreducible and has an apex Je

which means U ↑ S ∈ Irre(S). The irreducibility follows from [14, Example

16]. To do the induction process, we have U ↑ S =
⊕
aY ∈A

UY where UY has basis

{u⊗ aY : u ∈ U} (recall that Ann(Le) = 0). Let f : {1, . . . , `} id−−→ {1, . . . , `}
be another idempotent; we prove that U ↑ S has apex Je in three steps, as

follows:

• (U ↑ S)·f = 0 when ` < k, which means Jf < Je. By considering aY ∈ S,

compute (u⊗ aY ) · f : we have (see Figure 3.3 and 3.4)

dom(aY f) ⊆ dom(aY ) = {1, . . . , k}, but k /∈ dom(aY f).

This means

dom(aY f) ( X = {1, . . . , k}

=⇒ aY f /∈ Re
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1

aY =

2 ` k

ik

undefined

n

f =

1 2 `

undefined

n

Figure 3.4: Computing aY f

=⇒ (u⊗ aY ) · f = 0

=⇒ UY f = 0 for all Y.

Hence (U ↑ S) · f = 0 when ` < k.

• (U ↑ S) · e 6= 0, which implies that Je is the apex of U ↑ S. Take an

element u⊗ aY from UY when u 6= 0. Then we compute the following:

(u⊗ aY ) · e = u · e⊗ aY · e (aY e ∈ Re ⇒ dom(aY e) = X)

= u · e⊗ e

= u⊗ e 6= 0

=⇒ (U ↑ S) · e 6= 0.

• (U ↑ S) · f 6= 0 when k < ` ≤ n. By contrapositive, we will show

that if (U ↑ S) · e 6= 0, then (U ↑ S) · f 6= 0 when e < f . Suppose

that (U ↑ S) · f = 0. We have e < f if and only if fe = e. Then

(U ↑ S) · f = 0 implies that ((U ↑ S) · f) · e = 0, hence (U ↑ S) · (fe) = 0.

Thus (U ↑ S) · e = 0, and the result holds.

We conclude that U ↑ S has an apex Je which implies that U ↑ S belongs to

the set Irre(S) and hence α2 is a map from the set Irr(Ge) to the set Irre(S).

3. For a fixed e, the two maps α1 : V 7→ V ↓ Ge and α2 : U 7→ U ↑ S are

bijections. In this part, we need to prove the following:

• (U ↑ S) ↓ Ge
∼= U .

For an element b ∈ S and g ∈ Ge, the action of S on U ↑ S is

(u⊗ aY ) · b =

u · g ⊗ ak, where aY b = gak ∈ Re;

0, aY b /∈ Re.
(3.25)

Since in the vector space (U ↑ S) ·e we have (u⊗aY ) ·e = u⊗e (aY e /∈ Re
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if Y 6= X), then we define an isomorphism (U ↑ S) ·e
∼=−−→ U by u⊗e 7→ u

and the following diagram commutes:

(U ↑ S) · e 3 u⊗ e (u⊗ e) · g = u · g ⊗ e

U 3 u u · g

(−)g

(−)g

We have that (U ↑ S) ↓ Ge
∼= U is an irreducible Ge-representation and

the map

U 7→ (U ↑ S) 7→ (U ↑ S) ↓ Ge
∼= U

is the identity map on the set Irr(Ge).

• (V ↓ Ge) ↑ S ∼= V .

For V an irreducible S-representation with apex Je, we need to recon-

struct (V ↓ Ge) ↑ S inside the vector space V . Consider the subspace

V · (eaY ) of the vector space V for the element aY ∈ A and let a∗Y be the

inverse map of aY , where A is the set of representatives from each of the

H-class inside Re. Then:

(a) The two maps

V · e aY−−→ V · (eaY ) and V · (eaY )
a∗Y−−→ V · e

are vector space maps with

v · e 7→ v · (eaY ) 7→ v · (eaY a∗Y ) = v · e2 = v · e.

These maps are mutually inverse and hence are isomorphisms. Each

V · (eaY ) is thus an isomorphic copy of V · e.
(b) Consider the sum

∑
Y V · (eaY ), we prove the following claim: for

Z 6= Y , where |Z|= k = |Y |, we have

V · (eaY ) ∩
∑
Z 6=Y

V · (eaZ) = 0.

To show this we need the following fact:

Fact 3.4.7. Let S be any finite semigroup and V be an S-representation.

Let f be an idempotent of S with V f = 0. If a ∈ S is a J -related

to f , then V a = 0.

To prove this fact: since aJ f if and only if there exists s, s′ and t, t′

in S1 such that a = sft and f = s′at′. Suppose that V f = 0, then

V a = V (sft) = V s(ft) ⊆ V (ft) = (V f)t = 0t = 0.
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1

aZ =

k

X

Z

Y

undefined

n

a∗Y =

1
X

k n

Figure 3.5: Domain aZa
∗
Y

Hence, V a = 0. Now, consider the map:

V · (eaY ) ∩
∑
Z 6=Y

V · (eaZ)
(−)a∗Y−−−→∼=

(
V · (eaY ) ∩

∑
Z 6=Y

V · (eaZ)
)
a∗Y .

The vector space
(
V · (eaY ) ∩

∑
Z 6=Y V · (eaZ)

)
is a subspace of

V · (eaY ). But(
V · (eaY ) ∩

∑
Z 6=Y

V · (eaZ)
)
a∗Y ⊆ V · (eaY a∗Y ) ∩

∑
Z 6=Y

V · (eaZa∗Y )

= V · e ∩
∑
Z 6=Y

V · (eaZa∗Y ).

For Z 6= Y we have dom(aZa
∗
Y ) ( dom(e) = dom(aZ) = X with

|X|= k and im(aZa
∗
Y ) ( im(a∗Y ). Thus eaZa

∗
Y is located in a lower

J -class than e, (which is in the J -class with size k). Next, let f 2 = f

be an idempotent in the J -class of eaZa
∗
Y . We have the following:

Je is an apex
=======⇒

of V
V · f = 0

=⇒ V · (eaZa∗Y ) = 0 for all Z

=⇒ V · e ∩
∑
Z 6=Y

V · (eaZa∗Y ) = 0

=⇒ V · (eaY a∗Y ) ∩
∑
Z 6=Y

V · (eaZa∗Y ) = 0

=
(
V · (eaY ) ∩

∑
Z 6=Y

V · (eaZ)
)
· a∗Y = 0.

Since the partial map a∗Y is injective, we have

V · (eaY ) ∩
∑
Z 6=Y

V · (eaZ) = 0.
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This shows that ∑
Z

V · (eaZ) =
⊕
Z

V · (eaZ) ⊆ V.

(c) Consider the vector space
⊕
aY ∈A

V · (eaY ) ⊂ V and note that V · e 6= 0

is one of them when aY = e. For b ∈ S, the S-action on
⊕
aY ∈A

V ·(eaY )

is defined as follows: first, the partial map aY b is described as

aY b =

∈ Re ⇒ aY b = gaZ , where g ∈ Ge and aZ ∈ A;

/∈ Re ⇒ dom(aY b) ( dom(aY ) = X ⇒ aY b ∈ J < Je.

(3.26)

Second, for v ∈ V the action of b ∈ S on the vector V · (eaY ) is

v·(eaY )·b =



v · (eaY b) = v · (egaZ)

= v · (geaZ)

= (v · g) · (eaZ) ∈ V · (eaZ) if eaY b ∈ Re;

0, as Je is the apex of V and if eaY b /∈ Re.

(3.27)

After this, we deduce the following points:

i. The vector space
⊕
aY ∈A

V · (eaY ) ·S is a subspace of
⊕
aY ∈A

V · (eaY )

since it is left invariant under the action of S. This implies that⊕
aY ∈A

V · (eaY ) is subrepresentation of V .

ii. Since Je is the apex of the vector space V , we have that V e 6= 0

is an irreducible Ge-representation. Hence,

0 6= V e ⊂
⊕
aY ∈A

V · (eaY ) ⊂ V (which means it is not equal to zero)

V is
=====⇒
irreducible

V =
⊕
aY ∈A

V · (eaY ).

This shows that

V ∼=
⊕
Z

V · (eaZ),

as vector spaces.

iii. Finally, the following diagram is commutative

v · (eaY ) (v · g) · (eaZ) if eaY b ∈ Re or 0, else

(v · e)⊗ aY v · (eg)⊗ aZ if aY b = gaZ ∈ Re or 0, else

(−)b

∼= ∼=
(−)b
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This shows that

V ∼=
⊕
Z

V · (eaZ),

as S-representations. Here, V e = V ↓ Ge induces up to S by

taking copies. It turns out that the vector space V is isomorphic

to
⊕
aY ∈A

V · (eaY ) and thus is isomorphic to (V ↓ Ge) ↑ S as an

irreducible S-representation. This implies that the map

V 7→ (V ↓ Ge) 7→ (V ↓ Ge) ↑ S ∼= V

is the identity map on the set Irre(S).

This completes the proof of the result for S = In.

To conclude [1], the irreducible representations of a finite regular monoid S are

determined by the irreducible representations of its maximal subgroups. Hence, to

construct all irreducible representations of S, it is sufficient to consider all irreducible

representations of the representative maximal subgroups of each J -class and apply

the induction process to each individual one.

In the next chapters, we will discuss the Clifford-Munn-Ponizovskii correspon-

dence from a historical perspective.
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Chapter 4

Simple Semigroups and Clifford’s

Contributions

In order to answer the research questions posed in this thesis, we track back the

development of semigroup representation theory. To gain insight into the topic, we

investigate who was contributing to this area, what they were doing mathematically,

and what was the nature of semigroup representation theory. We focus mainly on

the work that pertains to the Clifford-Munn-Poniszovskii correspondence. We in-

tend to see how this correspondence evolved over the timeline of the development

of the theory.

The present chapter consists of four sections. The first two sections give an

account of the necessary background on semigroups, concerning Rees matrix semi-

groups and their related terminologies; the reader is referred to [8, 15, 25–27, 37, 79]

for more detail. Section 4.3 briefly outlines Clifford’s biography [62,86] and his work

on representation theory of semigroups [6–8]. Clifford’s own symbols, and semigroup

actions, will be used throughout Section 4.3. The chapter ends with a discussion

about Clifford’s contribution in representation theory of semigroups.

4.1 Simple Semigroups

Let S be a semigroup. We say that a semigroup S without zero is simple if it has no

proper ideals, or equivalently its only (two-sided) ideal is itself, that is, if SaS = S

for every a of S. A semigroup S with zero is called 0-simple if S is not null (i.e.

S2 = {st | s, t ∈ S} 6= 0) and S has only two ideals, namely: {0} and S. Note

that S2 is always an ideal, so the condition S2 6= 0 is only required to eliminate the

2-element null semigroup, where every product equals zero. An example of a simple

semigroup is a group since a group does not contain any proper ideals. Let G be a

74



group and I be a right ideal, so IG ⊆ I. Let g ∈ G, a ∈ I then we have

g = a(a−1g) ∈ I

and so G = I. Thus G is simple.

In terms of the Green’s relation J on S, we have S is simple if and only if

J = S × S (or if any two elements are J -related). Similarly, if S has a zero, then

{0} and S \ {0} are the only J -classes of S (or, any two non-zero elements are

J -related). An ideal of a semigroup S is called minimal if it contains no other ideal

of S. Clearly, every finite semigroup S has a minimal ideal. The minimal ideal of

a finite semigroup S is a simple semigroup and is a regular J -class. In the case

where S has a zero, then an ideal is called a 0-minimal ideal if the only ideal of

S contained in it is {0} (and it is not equal to {0}). Equivalently with 0-simple,

S2 6= 0 and S is a 0-minimal ideal of itself. According to Clifford and Preston [8],

any 0-minimal ideal I of a finite semigroup S is either null (meaning I2 = 0), or

it is a 0-simple semigroup (so then I \ {0} is a regular J -class). We note that if a

semigroup S contains a minimal ideal, then it is unique and called the kernel of S

and if S has a zero, the kernel is equal to {0}.

With the above as background, we now introduce the term principal factor of a

finite semigroup S. Let a be an element of a semigroup S. Suppose that the J -class

Ja of a is minimal among the J -classes of S. Then J(a) = Ja is the least ideal of S

(the kernel of S). On the other hand, if Ja is not minimal in S/J , then the set

I(a) = {b ∈ J(a) : Jb < Ja}

is an ideal of S such that J(a) = I(a) ∪ Ja, and this union is disjoint. If B is a

proper ideal of J(a) and I(a) ⊆ B, then I(a) = B. This implies that J(a)/I(a)

is a 0-minimal ideal of S/I(a), i.e. J(a)/I(a) is either a null semigroup or it is a

0-simple semigroup. Each semigroup J(a)/I(a) is called the principal factor of S.

We can think of the principal factor J(a)/I(a) as consisting of the J -class

Ja = J(a) \ I(a) with zero adjoined (if I(a) 6= ∅). The principal factor J(a)/I(a) is

null if and only if the product of any two elements of Ja always falls into a lower J -

class. In particular, if Ja is a subsemigroup of S, then the principal factor J(a)/I(a)

is not null. We say that the J -class Ja is regular if and only if its principal factor

is a 0-simple semigroup. Thus, Ja is non-regular if and only if its principal factor is

a null semigroup. Note that a semigroup cannot be both 0-simple and null.

The following results summarize the above:

75



Theorem 4.1.1. [37, Theorem 3.1.6] If a is an element of a semigroup S, then

either:

1. the J -class Ja is the kernel of S; or

2. the set I(a) = {b ∈ J(a) : Jb < Ja} is non-empty and is an ideal of J(a) =

S1aS1 such that J(a)/I(a) is either 0-simple or null.

Lemma 4.1.2. [8, Section 2.6] Each principal factor of any semigroup S is 0-

simple, simple, or null. If S has a kernel, then the only simple principal factor is

the kernel.

With respect to the natural partial order among the elements of E(S), an idem-

potent e 6= 0 of a semigroup S with zero is primitive if it is minimal within the set

of non-zero idempotents of S. Thus a primitive idempotent e has the property that

for all non-zero idempotents f of S,

ef = fe = f 6= 0⇒ e = f.

Definition 4.1.3. [37, Section 3.2] A semigroup S is called completely (0)-simple

if it is (0)-simple and contains a primitive idempotent.

Rees [91] showed that every finite 0-simple semigroup is completely 0-simple. A

semigroup is called a completely semisimple if each of its principal factors is either

(completely) 0-simple or (completely) simple. Thus completely 0-simple semigroups

are the building blocks of finite semigroups.

4.2 Rees Matrix Semigroups

A Rees matrix semigroup is constructed as follows: let G be a group, let I, Λ be

non-empty sets and let P be a Λ× I matrix over G0 = G∪ {0} such that no row or

column of P consists entirely of zeros (in fact, P is a function P : Λ× I → G0 with

P : (λ, i) 7→ (pλi) which we consider as a matrix P = (pλi)), in which case, P is said

to be regular. We define a multiplication on the set (I ×G× Λ) ∪ {0} by letting 0

act as a zero

(i, g, λ)0 = 0(i, g, λ) = 00 = 0

and

(i, g, λ)(k, h, µ) =

0 if pλk = 0,

(i, gpλkh, µ) if pλk 6= 0
(4.1)

where g, h ∈ G; i, k ∈ I; λ, µ ∈ Λ (see Figure 4.1). This gives a semigroup called

a Rees matrix semigroup over G0 and denoted by M0(G; I,Λ;P ). The group G is
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Figure 4.1: The multiplication in a Rees matrix semigroup

called the structure group of the semigroup, and the matrix P is called the sandwich

matrix. The elements of M0(G; I,Λ;P ) are all triples (i, g, λ) with g 6= 0. A Rees

matrix semigroup is regular if and only if the sandwich matrix P is regular.

Example 4.2.1. The product (1, g, 2)(3, h, 4) is either (1, gp23h, 4) or 0, depending

on the value of p23. The shape of the transpose of P is the same as the shape of the

grid, and the cells containing the multiplicands, the cell corresponding to p23, and

the cell containing the product (if it is not zero) form the corners of a rectangle (see

Figure 4.2).

A Rees matrix semigroup has the following properties [37, Section 3.2]:

1. (i, g, λ) is idempotent ⇔ pλi 6= 0 and g = p−1
λi ;

2. M0 is regular;

3. (i, g, λ)R(j, h, µ)⇔ i = j;

4. (i, g, λ)L(j, h, µ)⇔ λ = µ;

5. (i, g, λ)H(j, h, µ)⇔ i = j and λ = µ;

6. the D = J -classes are {0} andM0 \ {0} (so {0} andM0 are the only ideals);

7. M0 is 0-simple.
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Figure 4.2: The product (1, g, 2)(3, h, 4) in a Rees matrix semigroup

The following is the Rees Theorem, which plays an important part in the repre-

sentation theory of semigroups.

Theorem 4.2.2. [37, Theorem 3.2.3] A semigroup S is completely 0-simple if and

only if S is isomorphic to a regular Rees matrix semigroup over a group with zero

adjoined.

We now describe the equivalent version of a Rees matrix semigroup. Let I,Λ

and G,P be as above. The set M0[G; I,Λ;P ] denotes the set of all I × Λ-matrices

over G0 with at most one nonzero entry. The symbol (g)iλ denotes the I×Λ-matrix

with g ∈ G in the (i, λ)-position and zero elsewhere. Moreover, (0iλ) denotes the

I×Λ zero matrix; it is also denoted by 0. Let P = (pλi) be a fixed Λ×I matrix over

G0. This matrix is called a defining matrix since it is used to define a multiplication

in the set of I × Λ matrices over G0 as follows:

A ◦B = APB,

where A and B are I × Λ matrices over G0. If A = (a)iλ and B = (b)jµ, then the

multiplication is defined by

(a)iλ ◦ (b)jµ = (aiλ)P (bjµ) = (apλjb)iµ (a, b ∈ G; i, j ∈ I;λ, µ ∈ Λ).
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Let P = (pλi) and a, b ∈ G; i, j ∈ I; λ, µ ∈ Λ. Then

(a)iλ ◦ (b)jµ ◦ (a)iλ = (apλjbpµia)iλ

is equal to (a)iλ if and only if pλjbpµi = a−1. With the given element (a)iλ, there

exists such an element (b)jµ inM0[G; I,Λ;P ] if and only if pλj 6= 0 and pµi 6= 0, that

is, if and only if the λ-th row and i-th column of P each contain a non-zero element

in G0. Hence, every matrix P in M0[G; I,Λ;P ] is regular if and only if each row

and column of P contains a non-zero entry.

Lemma 4.2.3. [79, Lemma 3.3] The mapping

(i, a, λ)→ (a)iλ, 0→ 0

is an isomorphism of M0(G; I,Λ;P ) onto M0[G; I,Λ;P ].

Note that we will not distinguish between the two versions of Rees matrix semi-

groups later in the thesis.

The semigroupM(G; I,Λ;P ) is called a Rees matrix semigroup without zero over

the group G. This semigroup consists of all the nonzero elements of the semigroup

M0(G; I,Λ;P ) constructed from the same data by deleting all the zeros in the above

definition. Note that the matrix P has to be regular since there are no zeros. Note

that a Rees matrix semigroup is finite if the group G is finite and the index sets I

and Λ are finite.

For the purpose of the next chapter, we introduce the following notion based on

Rees matrix semigroups. Let S be a Rees matrix semigroup M0[G; I,Λ;P ] over a

group G0 with Λ × I sandwich matrix P = (pλi), where λ ∈ Λ, i ∈ I. Then the

nonzero elements of S are the matrices (g)iλ having g in the (i, λ)- position and zero

elsewhere with multiplication defined by

(g)iλ ◦ (h)jµ = (g)iλP (h)jµ = (gpλjh)iµ,

where g, h ∈ G. Now let U be any algebra over a field k and P be a fixed Λ × I
matrix over U . Let M[U ; I,Λ;P ] be a vector space of all I × Λ matrices over U .

The matrices in M[U ; I,Λ;P ] have at most one nonzero entry. The product in M
is defined by A ◦ B = APB, where A and B are in M. Therefore, M[U ; I,Λ;P ]

is an algebra over k and it is called the Munn I × Λ matrix algebra over U with

sandwich matrix P . The construction of a Munn matrix algebra is similar to the

construction of a Rees matrix semigroup M0[G; I,Λ;P ] where a group with zero

adjoined stands instead of an algebra U , and the condition on the sandwich matrix
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P is that it contain a nonzero entry in each row and each column. The elements

in both are matrices with at most one nonzero entry and their multiplication is the

same; we multiply matrices of arbitrary size by ignoring the sums of an arbitrary

number of zeros [8, Chapter 5, page 162].

4.3 Representations of Completely Simple Semi-

groups

4.3.1 Clifford’s Biography

Two distinguished well-known algebraists share the same surname of “Clifford”. The

first one is William Kingdon Clifford (1845-1879) who was a group algebraist and

the second is Alfred Hoblitzelle Clifford (1908-1992) who was mainly a semigroup

algebraist. This section focuses on the latter.

Miller wrote of Clifford [62, Page 4]: “With a very few others, notably A. K.

Suschkewitsch and D. Rees, he may be counted as a founder of [semigroup] theory”.

Clifford was also one of the founding editors of the journal Semigroup Forum, during

the years 1972 to 1976. In addition, he was a former editor of the Transactions of

the American Mathematical Society. He dedicated about forty-five years of his life

to the semigroup research community as a scholar, teacher and colleague.

In 1933, he was awarded a doctorate from the California Institution of Technol-

ogy. His thesis, conducted under the supervision of Eric Temple Bell, was entitled

Arithmetic of ova. Arithmetic and ideal theory of abstract multiplication is the title

that Clifford gave to a summary of the thesis that he published the Bulletin of the

American Mathematical Society. His publication phase ran from 1933 to 1979. The

majority of Clifford’s published work was on algebra, some of it was in collaboration

with other mathematicians. According to MathSciNet, forty-five of his fifty-three

papers are on group theory and generalizations thereof.

According to different sources [58, 60, 65], matrix representations of completely

simple semigroups are linked to Clifford’s input to the theory. Nevertheless, it

is important to point out that the prior work of Suschkewitsch in 1933 and 1935

played a catalytic role in that achievement. Clifford presented his contribution to

representation theory of semigroups precisely in two papers and a joint book with

Preston: Matrix representations of completely simple semigroups [6] in 1942, Basic

representations of completely simple semigroups [7] in 1960, and the first volume of

The algebraic theory of semigroups [8] in 1961. This book, considered as an advanced

textbook, has had a strong influence on the development of semigroup theory. Prior
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to Clifford and Preston’s 1961 book, there were only two books on the subject, and

both of them were in Russian. These were Suschkewitsch’s Theory of generalized

groups in 1937 and Lyapin’s Semigroups in 1960 [62].

4.3.2 Clifford’s Representation Theory of Semigroups

In the introduction to his 1960 paper [7, Page 431], Clifford wrote of Suschke-

witsch’s 1933 paper: “the underlying ideas and methods of [6] should be attributed

to Suschkewitsch[’s 1933 paper]”. This is confirmed by Preston who described Clif-

ford’s 1942 work as [86, Page 38]: “an extension and elaboration of that of Suschke-

witsch”. Thus we start this subsection with a brief outline of Suschkewitsch’s 1933

work.

This 1933 paper entitled Über die Matrizendarstellung der verallgemeinerte Grup-

pen, contained Suschkewitsch’s first work in the representation of generalized groups

where he realised the importance of the matrices in representing semigroups in a

concrete form. Suschkewitsch began the paper by providing some preliminary re-

sults on matrices which followed by studying the matrix representations of ordi-

nary groups, and then utilizing these to obtain similar representations of a special

type of semigroups called Kerngruppen ((finite) simple semigroup) [36, Section 3.3].

Suschkewitsch considered matrices with rank strictly less than their order to deter-

mine all representations of Kerngruppen by these matrices. We will discuss the work

of Suschkewitsch briefly in more detail later in Chapter 6.

The following provides “a simpler characterisation of these representations due

to Clifford appears in [6, 7]”, says Hollings [36, Section 11.1, page 282].

As indicated by the two papers’ titles, Clifford addressed representations of com-

pletely (0-)simple semigroups. He managed to provide a method for finding all ir-

reducible representations of a 0-simple semigroup from those of its structure group.

The following is a synthesis of Clifford’s key results on semigroup representation

theory.

Let S be a Rees matrix semigroup M0[G; I,Λ;P ]. According to Clifford and

Preston [8], it is possible for two Rees (I × λ) matrix semigroups over the same

group G0 to be isomorphic without the sandwich matrices being the same. This iso-

morphism allowed Clifford to make a useful normalization of the sandwich matrix

P . Thus, P can be normalized in the sense that all the elements in a given row and

in a given column are either 0 or e(= 1), the identity element of the structure group

G, and so that p11 = e and the elements p1i, pλ1 are either 0 or 1. Consider the set

81



G11 = {(x)11;x ∈ G} which forms a maximal subgroup of S with identity (e)11 and

is isomorphic to G.

Let Γ∗ be a matrix representation of the completely 0-simple semigroup S of

degree m over a field Φ, as Γ∗ : S −→ Mm(Φ), s 7→ Γ∗(s), for s ∈ S, where Mm(Φ)

denotes the multiplicative semigroup of m × m matrices with entries from Φ. By

restricting the representation Γ∗ to the group G11 we have:

Γ∗ : (e)11 −→

(
In 0

0 0

)
,

since the matrix Γ∗(e)11 is an idempotent matrix and hence is diagonalizable with

eigenvalues 0 or 1. As

(e)11 · (x)11 = (x)11 = (x)11 · (e)11,

we therefore get:

Γ∗ : (x)11 −→

(
Γ(x) 0

0 0

)
.

Hence, Γ∗ induces a representation Γ of G11 given by Γ : x 7→ Γ(x) of degree n, say,

as for x, y ∈ G11 we have

Γ(x)Γ(y) = Γ(xy) and Γ(e) = In,

for all x, y ∈ G11. The representation Γ∗ is called an extension representation to S

of the representation Γ of G .

After a number of calculations using a series of results that hold in S, Clifford

obtained an n × t matrix Qλ and a t × n matrix Ri; where t = m − n, and put

forward the following theorem:

Theorem 4.3.1. [6, Theorem 3.1] Let Γ∗ be given by

Γ∗ : (x)iλ 7 −→

(
Γ(p1ixpλ1) Γ(p1ix)Qλ

RiΓ(xpλ1) RiΓ(x)Qλ

)
where Q1 = 0 and R1 = 0. (4.2)

Then formula (4.2) defines a representation of S if and only if the matrices Qλ and

Ri satisfy the following equations for all i 6= 1 and λ 6= 1:

QλRi = Γ(pλi)− Γ(pλ1p1i). (4.3)

Conversely, every representation of S is equivalent to one of this form.
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For λ = 1 and i = 1, we have

Γ∗(e)i1 =

(
Γ(p1i) 0

Ri 0

)
and Γ∗(e)1λ =

(
Γ(pλ1) Qλ

0 0

)
.

This fact shows the relation between the matrices Qλ and Ri, on one side, and the

sandwich matrix P on the other. Clifford credits the creation of his theory, in par-

ticular the first part of Theorem 4.3.1, to Suschkewitsch’s 1933 paper [8, Section 5.4].

From Theorem 4.3.1, we observe the following.

• The representation Γ∗ is determined by Γ, R1, . . . , Ri and Q1, . . . , Qλ. The

matrices R′s and Q′s must satisfy equation (4.3).

• Conversely, given a representation Γ of G and matrices R1, . . . , Ri, Q1, . . . , Qλ

satisfying equation (4.3), then Γ∗ given by formula (4.2) is a representation of

S.

• Moreover, every S-representation Γ∗ has this form up to equivalence.

Thus Clifford’s terminology is firstly the representation Γ∗ restricts to Γ; this is al-

ways possible. Secondly, the representation Γ extends to Γ∗; here we need to find the

matrices R1, . . . , Ri, . . . , Q1, . . . , Qλ, . . . satisfying (4.3), then we get Γ∗ by formula

(4.2).

Now let:

Hλi = Γ(pλi)− Γ(pλ1p1i), (4.4)

and define H to be the matrix of matrices

H =


...

. . . Hλi . . .
...

 , (4.5)

for λ 6= 1, i 6= 1. Then we need matrices Q and R, with t columns and t rows,

respectively, such that

H = QR (4.6)

where 
...

Qλ

...

 and
(
. . . Ri . . .

)
,

for λ 6= 1, i 6= 1 if and only if rank H ≤ t. Using Theorem 1.1 of [6], we have finally:
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Theorem 4.3.2. [6, Theorem 3.2] A given representation Γ of G of degree n has an

extension Γ∗ to S of finite degree if and only if the rank h of the matrix H defined

previously by (4.4) and (4.5) is finite. The defining matrices Qλ and Ri of any

extension Γ∗ of Γ of degree n+ t are obtained from a factorization (4.6) of H. This

is possible if and only if h ≤ t, and so every extension of Γ has degree at least n+h.

The above is an analysis of Clifford’s work which appeared in [6, Section 3].

Furthermore, Clifford discussed the equivalence and reducibility of extension

representations.

Theorem 4.3.3. [6, Theorem 4.1] Let S be a completely 0-simple semigroup. Let

Γ∗ and Γ
′∗ be two extension representations to S of representations Γ and Γ′ of G,

respectively. Let Γ∗ be defined by (4.2), and Γ
′∗ is defined analogously:

Γ
′∗ : (x)iλ 7 −→

(
Γ′(p1ixpλ1) Γ′(p1ix)Q′λ
R′iΓ

′(xpλ1) R′iΓ
′(x)Q′λ

)
.

Then, Γ∗1 and Γ
′∗ are equivalent if and only if there exist invertible matrices C1

and C2 such that the following hold:

1. Γ′(x) = C1Γ(x)C−1
1 for all x ∈ G;

2. Q′λ = C1QλC
−1
2 for all λ 6= 1;

3. R′i = C2RiC
−1
1 for all i 6= 1.

Theorem 4.3.4. [6, Theorem 7.1] If a representation of G is irreducible, then its

extension representation to S is also irreducible.

On the other hand, if the representation Γ of G decomposes into Γ1 and Γ2, say,

then the extension representation Γ∗ to S decomposes into the extensions Γ∗1 and

Γ∗2 of Γ1 and Γ2, respectively. Clifford then applied his theory to Brandt groupoids,

named here for the first time (in the 1942 paper), and found all their representations

(for a discussion about Brandt groupoids, see [8, Section 3.3]).

The above results derive from Clifford’s 1942 paper. In the 1960 paper, Clifford

completed the picture of his representation theory. He introduced and discussed the

theory of a basic representation of a completely 0-simple semigroup. Let Γ be a

representation of G; this representation can be extended, and among its extensions,

there is one with least possible degree over a field Φ and it is uniquely determined by

Γ to within equivalence. This extension is called the basic extension of Γ, denoted

by Γ∗0. Additionally, any representation of S which is the basic extension to S of

some representation of G is called a basic representation of S. It turns out that any
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other extension of a representation Γ of G decomposes into the basic representation

Γ∗0 and null representations.

Clifford proved the converse of Theorem 4.3.4 via the next theorem.

Theorem 4.3.5. [8, Theorem 5.51] Let S be a completely simple semigroup. Let

Γ be a representation of G and Γ∗ be any extension representation of Γ to S. If Γ∗

is an irreducible representation of S, then Γ is an irreducible representation of G.

Moreover, all irreducible representations of S over a field Φ are obtained as the basic

extensions to S of the irreducible representations of the basic group G.

This theorem shows the relationship between the basic representations of a com-

pletely (0-)simple semigroup S and the representations of its basic group G. Fur-

thermore, the following corollary states the correspondence between the basic rep-

resentations of S and representations of G.

Corollary 4.3.6. [8, Corollary 5.47] Let Γ and Γ′ be representations of G. Let Γ∗0

and Γ
′∗
0 be their respective basic extensions to S. Then Γ∗0 and Γ

′∗
0 are equivalent if

and only if Γ and Γ′ are equivalent.

We end this section with two results about complete reducibility and semisim-

plicity, from Clifford’s perspective.

Theorem 4.3.7. [8, Theorem 5.52] Complete reducibility holds for representations

of S over a field Φ if and only if:

1. complete reducibility holds for representations of its basic group G over Φ, and

2. the only extension representation to S of a representation of G is the basic

extension.

Corollary 4.3.8. [8, Corollary 5.53] Let S be a finite semigroup, and assume

that the characteristic of Φ does not divide the order of G. Then the algebra of

S is semisimple if and only if the only representation of S extending any given

representation of G is its basic extension.

4.4 Discussion

One might ask why Clifford was only interested in representations of completely

0-simple semigroups. The possible and simple answer is that completely 0-simple

semigroups are built from groups, hence these were semigroups that could be ap-

proached via groups. Thus Clifford was able to construct representations of com-

pletely 0-simple semigroup in terms of those of its associated structure group. Also,

at the time when Suschkewitsch started using matrices in the semigroup context
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Clifford was working with Weyl on group representations [36, Chapter 11, page 277].

The explanations so far indicate that representations of completely 0-simple semi-

groups were the starting point for the representation theory of semigroups. The

previous section shows that Suschkewitsch and Clifford provided a good picture of

the very earliest work in this direction. In his first work on the subject in 1942 [6],

Clifford built on Suschkewitsch’s 1933 work. He was able to find a method of con-

structing all representations of a Rees matrix semigroup via representations of its

maximal subgroup. Then, he established a one-to-one correspondence between rep-

resentations of a Rees matrix semigroup and representations of its structure group.

The first class of semigroups whose representations were understood were the

completely 0-simple ones. They were first considered by Suschkewitsch in 1933 but

their representation theory was completely worked out by Clifford in 1942 and then

1960. Although Clifford wrote two papers on the subject, separated by two decades,

he settled for just the completely 0-simple case without further progress towards a

complete description for an arbitrary semigroup. What we now understand to be

the Clifford-Munn-Poniszovskii correspondence is therefore not found in Clifford’s

work. Clifford’s work was picked up later by Munn and Poniszovskii and this the-

sis will consider their contributions to the topic. Also, we will revisit the work of

Suschkewitsch and Clifford mentioned here later in the discussion of Chapter 6.

Since most of the contributions on the subject were made by Munn, the main

goal of the next chapter is to fit Munn’s work in this area into a broader picture.

Our focus will be on what Munn envisioned and wanted to achieve in semigroup

representation theory. Our strategic overview of the “flow” of ideas through his

work is to see where his mathematics was going and how it led him to the Clifford-

Munn-Poniszovskii correspondence. As mentioned previously, we want to see how

this correspondence evolved over the course of Munn’s work.

To achieve our objectives, we need to contextualize Munn’s work. For instance,

we need to assess what Munn knew at the start of his work. We have already

discussed Clifford’s work. But we have to understand the studies of representations

of semigroups (if any) that were being carried out during Munn’s time and determine

whether he was aware of such studies.
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Chapter 5

Munn’s Contributions to

Semigroup Representation Theory

In this chapter, our basic consideration will be devoted to the work of Munn in the

representation theory of semigroups. We recall that the Clifford-Munn-Ponizovskii

correspondence states that there is a one-to-one correspondence between the equiv-

alence classes of the irreducible representations of a finite regular monoid and the

equivalence classes of the irreducible representations of its maximal subgroups. As

an introduction to Munn’s contribution to this significant result, we commence with

the paper: On Semigroup Algebras [65]. Then we move chronologically to the follow-

ing papers, Matrix Representations of Semigroups [66], Characters of the Symmetric

Inverse Semigroup [67], Irreducible Matrix Representations of Semigroups [68], A

Class of Irreducible Matrix Representations of an Arbitrary Inverse Semigroup [69],

and finally, Matrix Representations of Inverse Semigroups [70]. In our own words,

with comments and observations, we provide a summary account of Munn’s six

papers, each in an individual section. However, we will use Munn’s own notation,

symbols, and semigroup action, unless otherwise indicated. The chapter begins with

Munn’s biography and finishes with a discussion and synopsis.

5.1 Munn’s Biography

Howie’s introduction of Munn [38, Page 2] is a nice start to the biography: “Douglas

Munn is arguably the most influential semigroup theorist of his generation”. Walter

Douglas Munn was born on April 25, 1929 and passed away on October 26, 2008. In

1951, he graduated from the University of Glasgow with an undergraduate degree in

Mathematics and Natural Philosophy. He then moved to Cambridge for postgradu-

ate study and his Ph.D. journey started. After reading Clifford’s work on algebra,

Munn found his calling and made a decision on his area. Together with Clifford,

Munn was inspired by Rees and Green [36]. In 1955, he was awarded a doctorate

by the University of Cambridge for his thesis Semigroups and their algebras, under
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the supervision of Derek Taunt.

Munn’s research in the 1950’s until the mid 1960’s was on semigroup representa-

tion theory. Since then until the mid 1970’s, he was interested in the theory of inverse

and regular semigroups. From the 1980’s onwards, Munn worked on semigroup rings

and returned to his initial interest in semigroup algebras. Munn’s publication period

was from 1955 to 2008, comprising around eighty-one papers, which made contribu-

tions in different directions. If we could classify his papers, it would be into three

main topics: representations of semigroups, inverse semigroups, and semigroup alge-

bras [15]. It is noticeable from his papers that he had numerous collaborations with

Michael Crabb (we will discuss the significance of this point in Section 5.9). Munn

had four Ph.D. students: Norman Reilly, John Hickey, P. Mclean, Pedro Silva [92].

Munn held several academic positions at the University of Glasgow and the Uni-

versity of Stirling. Specifically, in 1966, he established a department of mathematics

at the new University of Stirling. During Munn’s tenure there, John Howie and

Gordon Preston were around and that made the department full of activities in

semigroup theory. Munn’s work at Government Communications Headquarters in

Cheltenham, 90 miles west of London, showed his computing skills (details on this

part of his life are few) [36]. Apart from Munn’s scientific life, he was talented

in music and the mathematical community enjoyed his piano performance during

musical evenings at conferences [92].

5.2 On Semigroup Algebras

The paper [65] was published in 1955 which was the same year that Munn submitted

his Ph.D. thesis [64]. It has two main objectives which are, firstly, finding necessary

and sufficient conditions for the algebra of a semigroup S to be semisimple, and as a

result, the matrix representations of S and its algebra are completely reducible and

secondly, obtaining the complete set of irreducible representations of a semigroup S

from the irreducible representations of groups associated with S.

The following paragraphs will provide the key points of this paper. Munn worked

over a field F , with suitable characteristic, and dealt with finite semigroups. Most

of the concepts are based on the existence of a descending series:

S = S1 ⊃ S2 ⊃ · · · ⊃ Sn ⊃ Sn+1 = ∅. (5.1)

This is a chain of subsemigroups Si, i = 1, . . . , n, of a semigroup S and such that

Si+1 is an ideal of Si. This series is defined to be a composition series or a prin-
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cipal series depending on the Rees factor semigroups Si/Si+1; i = 1, . . . n, which

are called the factors of the series. If each factor Si/Si+1 is simple semigroup (or

irreducible, in other words), then the series is a composition series. In addition to

that condition, if each Si is an ideal of S, then the series is principal, and in this

case the semigroup is said to be semisimple. The factors of a principal series are

called principal factors of a semigroup S. As an observation, a principal factor is

either simple or 0-simple. Note that the principal factor of a semigroup S described

in Section 4.1 and the principal factor of the principal series 5.1 are isomorphic in

some order, see [8, Section 2.6]

Munn described the notion of a semigroup algebra in a manner entirely analogous

to that of a group algebra. Let S be a finite semigroup and F be a field; a vector space

with basis S together with an associative multiplication over F forms the semigroup

algebra U(S). The elements are formal sums
∑
i

λisi, where si are elements of S and

λi are coefficients in F . The multiplication is defined by the rule (as seen in Section

3.1): (∑
i

λisi

)(∑
j

µjsj

)
=
∑
i,j

λiµjsisj.

When S has a zero z, Munn preferred to work with the contracted algebra, which

is the quotient algebra U(S)/U(z), where U(z) = {λz : λ ∈ F} ∼= F . In this case,

U(S) is semisimple if and only if the quotient algebra U(S)/U(z) is semisimple. In

addition, if I is an ideal of S, U(S)/U(I) is isomorphic to the contracted algebra of

the quotient S/I.

One of the basic results about semisimplicity that he proved is:

Theorem 5.2.1. [65, Lemma 3.3] If U(S) is the algebra of a semigroup S, then

U(S) is semisimple if and only if the algebra of each of the principal factors of S is

semisimple.

Now, we turn to a new matrix algebra denoted by Mmn[U, P ], where U is an

algebra over F with an identity element e; we call it a Munn matrix algebra. Munn

defined this algebra as follows: it is the algebra consisting of m × n matrices with

entries from U ; P is any fixed n×m matrix over U and the multiplication is defined

by the rule, for A and B ∈ Mmn: we define A ◦ B = APB. Munn denoted the

n × n unit matrix over U by Un and wrote Mn(U) for the algebra Mnn[U,Un] of

n×n matrices over U . The matrix P is termed non-singular if there exists an m×n
matrix Q over U such that either PQ = In or QP = Im.

Recall from Chapter 4 the equivalent notion of Rees regular matrix semigroup

Smn[G,P ]. This is a semigroup that consists of m × n matrices (x)ij with just one
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nonzero entry x ∈ G0 = G∪{0} in the ij-th position and zeros elsewhere. The Rees

matrix semigroup Smn[G,P ] is called regular because P has at least one element in

each row and column, which is not zero. In other words, the matrix P is regular in

the case that for each i ∈ I there exists λ ∈ Λ such that pλi 6= 0, and for each λ ∈ Λ

there exists i ∈ I such that pλi 6= 0. See Chapter 4.

We point out here the result of Rees that every finite completely 0-simple semi-

group is isomorphic to the semigroup Smn[G,P ] over a group G with zero [91].

Note that this result is due to Rees in the precise form given here, but the result

was proved by Suschkewitsch in 1928 in slightly different terms. Munn then indi-

cated that the contracted algebra of Smn[G,P ] is isomorphic to Mmn[U, P ], where

U = U(G) is the algebra of the structure group G of the Rees matrix semigroup.

We sketch the proof as follows. Any element in S = Smn[G,P ] is written as an

m × n matrix (x)ij. Let α be an arbitrary element of the algebra U(S); it can be

written as an F -linear sum of elements of S: α =
∑
k

λk (xk)ikjk . Thus, if we compute

this linear combination of matrices, we get an m×n matrix, say Aα, with entries from

the algebra U(G). In other words, the result of the sum of scaler multiple of matrices

is one matrix with entries are linear combinations of elements of G, which is one

matrix with entries from U(G). Now we can define a map: U(S) −→Mmn[U(G), P ]

by α 7→ Aα. This map will give us the desired isomorphism U(S) ∼= Mmn[U(G), P ].

Furthermore, Munn discussed the effect of the non-singularity of the fixed matrix

P on the semisimplicity of the algebra Mmn[U, P ]. For instance, he demonstrated

the following:

Theorem 5.2.2. [65, Theorem 4.7] The algebra Mmn[U, P ] is semisimple if and

only if U is semisimple and P is non-singular.

By the previous theorem, Munn reduced the problem of determining the semisim-

plicity of the algebra of an arbitrary semigroup to the problem of determining the

semisimplicity of the contracted algebra of a simple semigroup Smn[G,P ], which is

isomorphic to Mmn[U, P ]. Different tests for the non-singularity of matrices over

any algebra U were provided, such as the following result:

Lemma 5.2.3. [65, Lemma 5.3] Let A =

(
A11 A12

0 A22

)
∈ Mn(U), where A11 ∈

Mr(U), 1 6 r < n. Then A is non-singular if and only if both A11 and A22 are

non-singular.

Moreover, via a number of theorems, Munn illustrated the importance of semisim-

plicity and non-singularity in the representation theory of algebras. For example:
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Theorem 5.2.4. [65, Theorem 6.1] Let S = Smn[G,P ], and let F be a field of

characteristic zero or a prime not dividing the order of G. Let G∗ be any subgroup

of G containing all the non-zero entries of P , and let U∗ = U(G∗) be the algebra

of G∗ over F . Let {Γ∗i ; i = 1, . . . , k∗} be a complete set of inequivalent irreducible

representations of G∗ over F . Then the algebra of S over F is semisimple if and

only if each of the matrices Γ∗i (P ) is non-singular.

Note that if Γ∗i (P ) is non-singular then P must be square. As a corollary of

the previous theorem, Munn proved that if the algebra U(S) of a simple semigroup

without zero is semisimple, then the semigroup S is in fact a group. The term

non-singular had been extended as follows: a simple semigroup S will be termed

c-non-singular if it is isomorphic to a Rees matrix semigroup of the form Snn[G,P ],

where P is a non-singular square matrix over the group algebra U(G) over any field

of characteristic c. Munn used this notion in Theorem 6.4 of [65]:

Theorem 5.2.5. [65, Theorem 6.4] Let U(S) be the algebra of a semigroup S over

a field of characteristic c. Then U(S) is semisimple if and only if

1. each principal factor of S is a c-non-singular simple semigroup, and

2. the characteristic is zero or does not divide the orders of any of the basic groups

of the principal factors.

As a corollary to this result, he proved that if the algebra U(S) is semisimple,

then the kernel of S is a group (the kernel being the minimal ideal of a semigroup).

Clifford demonstrated that if a semigroup S is completely 0-simple then ev-

ery representation of S can be obtained from representations of its maximal sub-

groups [6]. Accordingly, Munn gave an overview of how Clifford constructed all

representations of a completely 0-simple semigroup S as extensions of those of its

maximal subgroup.

We summarize Clifford’s construction procedure in a few steps as follows:

1. Let S = Smn[G,P ] and p11 = e be the identity of G. Consider the set G11 =

{(x)11;x ∈ G} which forms a maximal subgroup of S with identity (e)11 and

is isomorphic to G0.

2. Let Γ′ : S −→ Mk(F ) be a matrix representation of the completely 0-simple

semigroup S. By restricting the representation Γ′ to the group G11 we have:

Γ′ : (x)11 7→

(
Γ(x) 0

0 0

)
.

Hence, Γ′ induces a representation Γ of G11 given by Γ : x 7→ Γ(x).
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3. After a number of calculations, Clifford obtained matrices Qλ (1 ≤ λ ≤ n)

and Ri (1 ≤ i ≤ m) where Q1 = 0 and R1 = 0 such that

Γ′ : (x)iλ 7→

(
Γ(p1ixpλ1) Γ(p1ix)Qλ

RiΓ(xpλ1) RiΓ(x)Qλ

)
(5.2)

defines a representation of S if and only if the matrices Qλ and Ri satisfy the

following:

QλRi = Γ(pλi)− Γ(pλ1p1i).

Conversely, every representation of S is equivalent to one of this form. For more

details about Clifford’s theory, the reader refer to Subsection 4.3.2. Employing that,

Munn extended the results to a representation of the algebra Mmn[U, P ] and imposed

its semisimplicity in order to find the complete set of irreducible representations of

a semigroup S = Smn[G,P ]. Theorem 8.7 of [65] states:

Theorem 5.2.6. [65, Theorem 8.7] Let S = Smn[G,P ] and {Γi : i = 1, . . . , k} be a

complete set of inequivalent irreducible representations of G over F whose character-

istic is zero or a prime not dividing the order of G. Let the contracted algebra U(S)

be semisimple. Then {Γ′i : i = 1, . . . , k} is a complete set of inequivalent irreducible

representations of S over F , where Γ′i is the basic extension of Γi.

At the end of this paper, Munn discussed the notion of a semigroup that admits

relative inverses and then he applied some of his results on this type of semigroup.

A semigroup S (not necessarily finite) is said to admit relative inverses if for any a

in S there exist elements e and a′ in S such that ea = a = ae and a′a = e = aa′.

Today, such semigoups are called completely regular (to a wider work on completely

regular semigroup, see [5]). Among the applications is the following theorem:

Theorem 5.2.7. [65, Theorem 9.5] Let S be a finite semigroup which admits relative

inverses. Let F have characteristic zero or a prime not dividing the orders of any of

the basic groups of the principal factors of S. Then U(S) is semisimple if and only

if all the idempotents of S commute.

As a consequence, if F is a field with characteristic zero or a prime not dividing

the orders of any of related groups of a semigroup S, then the representations of

S over F are completely reducible. In the previous theorem, as a semigroup S is

regular and the idempotents commute, therefore S is inverse semigroup.

On Semigroup Algebras was the first work of Munn on the development of repre-

sentation theory of semigroups. Whenever a semigroup algebra is semisimple, there

is an ideal series such that the quotients (principal factors) are matrix algebras over

the group algebra. Munn related his work on semisimplicity to Clifford’s represen-

tation theory for a completely (0-)simple semigroup and showed that semigroups
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with semisimple algebras form a special class. Further elaboration on this topic will

be provided in the next section.

5.3 Matrix Representations of Semigroups

In this section, we intend to highlight the main points of Munn’s paper entitled:

Matrix Representations of Semigroups [66]. Munn continued his work on semigroup

representation theory making use of his results in the previous paper [65]. The goal

of the current paper is to construct all the inequivalent irreducible representations of

a certain semigroup S, whose algebras are semisimple, in terms of those of the basic

groups of the principal factors of S. The semigroups in question include finite Rees

matrix semigroups Smn[G,P ] with square non-singular matrix P , and also inverse

semigroups. All the approaches in this area build upon Rees’s result of characteriz-

ing simple or 0-simple semigroups up to isomorphism [91].

Munn commenced with preliminaries and recalled some basic notions. He as-

sumed that all the semigroups throughout the paper [66] are finite and any algebra

U is over a field F with a specific characteristic. Let (x)ij denote the m× n matrix

over a group G0 with entry x ∈ G in the ij-th position and zero elsewhere, and let

P be any fixed n×m matrix over G0. Define a multiplication by the rule:

(x)ij ◦ (y)kl = (x)ijP (y)kl = (xpjky)il,where x, y ∈ G.

Then the elements (x)ij form the well-known Rees matrix semigroup Smn[G,P ].

Any simple or 0-simple finite semigroup is isomorphic to some Smn[G,P ]. By theo-

rem 4.2.2, a semigroup S is completely 0-simple if and only if S is isomorphic to a

regular Rees matrix semigroup over a group with zero adjoined. Although, here we

are using Munn’s notation not Howie’s notation mentioned from Section 4.2.

Let U be any algebra over a field F , and let A and B be m × n matrices with

entries from U ; P is any fixed n × m matrix over U . Then the multiplication

A ◦ B = APB gives the Munn matrix algebra Mmn[U, P ] over U . Recall our The-

orem 5.2.2, originally from the previous paper [65], that the Munn matrix algebra

Mmn[U, P ] is semisimple if and only if U is semisimple and the defining matrix P is

non-singular.

The link between Rees matrix semigroups Smn[G,P ] and Munn matrix algebras

Mmn[U, P ] is that the contracted algebra of Smn[G,P ] over a field F is isomorphic

to Mmn[U, P ], where U = U(G) [65]. As usual, Munn was concerned with the con-

tracted algebra and pointed out that there is a one-to-one correspondence between
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the representations of the algebra of a semigroup S and those of its contracted

algebra. According to Maschke’s theorem, U(G) is semisimple if and only if the

characteristic of F does not divide the order of G. If the matrix P is non-singular

over the algebra U(G), then the Rees matrix semigroup Smn[G,P ] is called a non-

singular simple semigroup; in fact the non-singularity of P depends only on the

characteristic of F .

Before Munn discussed the method of obtaining the complete set of irreducible

representations of a non-singular simple semigroup Smn[G,P ], he defined the nota-

tion whereby if A is a matrix over the algebra U , and if θ is a matrix representation

of U , then θ(A) is the block matrix whose (i, j)th entry is θ(aij). He then stated

and proved the following theorem:

Theorem 5.3.1. [66, Theorem 2.1] Let S = Snn[G,P ]. Let {γr : r = 1, . . . , k} be

a complete set of inequivalent irreducible representations of the semisimple algebra

U over F , and let P be a non-singular n×n matrix over U. Define the mapping γ′r

on Mnn[U, P ] by the rule γ′r(X) = γr(XP ). Then {γ′r : r = 1, . . . , k} is a complete

set of inequivalent irreducible representations of Mnn[U, P ] over F.

Here, since P is non-singular, the mapping X → XP is an isomorphism from

Mnn[U, P ] to Mn(U), the algebra of n × n matrices over U . In the case where the

semigroup Smn[G,P ] is non-singular, we can use the following corollary to obtain

the complete set of inequivalent irreducible representations of the contracted algebra

of Smn[G,P ]:

Corollary 5.3.2. [66, Corollary 2.2] Let S = Snn[G,P ] and let {γr : r = 1, . . . , k}
be a complete set of inequivalent irreducible representations of G over a field F whose

characteristic is zero or a prime not dividing the order of G. Let P be a non-singular

n×n matrix over U(G). Define the mapping γ′r on Snn[G,P ] by the rule

γ′r{(x)ij} = γr{(x)ijP} =
n∑
s=1

γr{(xpjs)is}

for (x)ij ∈ S. Then {γ′r : r = 1, . . . , k} is a complete set of inequivalent irreducible

representations of S over F .

To make the representation in the above corollary clear, we point out that the

matrix representation γr{(x)ijP} is a block matrix with one non-zero row of blocks

(rather than a row of entries) and the other rows are blocks of zero matrices. Each

block in this row (precisely the ith row) is dedicated to the matrix representations

γr(xpjs)is, where s = 1, . . . , n. The matrix (x)ijP is:
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

s 1 2 3 ······ n

0 0 · · · · · · 0
...

...
...

...
...

i xpj1 xpj2 xpj3 · · · · · · xpjn

0 · · · · · · · · · 0

0 · · · · · · · · · 0


,

where xpjs ∈ G. Hence, the matrix representation γr{(x)ijP} is:



s 1 2 3 ······ n

0

i γr(xpj1) γr(xpj1) · · · · · · γr(xpjs) · · · · · ·

0

.

Each γr{(xpjs)is} is a block matrix whose (i, s)-th block is γr(xpjs) and looks like:



s
...
...

· · · · · · · · · γr(xpjs) · · ·
...
...


i.

Munn then extended the problem of obtaining the representations of the non-

singular semigroup to finding the representations of an arbitrary semigroup S whose

algebra U(S) is semisimple over a field F of characteristic zero or a prime not

dividing the order of any of the basic groups of the principal factors of S. This implies

in particular that S is also a semisimple semigroup. He started with a complete set of

inequivalent irreducible representations of the principal factors of the algebra U(S)

and ended up with a complete set of inequivalent irreducible representations of S

over F . The method is provided in the following theorem.

Theorem 5.3.3. [66, Theorem 3.1] Let S be a semisimple semigroup whose algebra

U(S), over a field F of characteristic zero or a prime not dividing the order of any

of the basic groups of the principal factors of S, is semisimple. Let

U(S) = U(S1) ⊃ U(S2) ⊃ · · · ⊃ U(Sn) ⊃ U(Sn+1) = U(∅)

95



be the series of ideals of U(S) corresponding to the principal series

S = S1 ⊃ S2 ⊃ · · · ⊃ Sn ⊃ Sn+1 = ∅

of S, and let ei be the identity element of the algebra U(Si)/U(Si+1) (i = 1, . . . , n).

Let {γ′ir : r = 1, . . . , ki} be a complete set of inequivalent irreducible representations

of U(Si)/U(Si+1) over F . Define the mapping γ∗ir on S by the rule

γ∗ir(x) = γ′ir(x
θei),

where θ is the natural homomorphism of S onto S/Si+1. Then

{γ∗ir; i = 1, . . . , n; r = 1, . . . , ki}

is a complete set of inequivalent irreducible representations of S over F .

Now we turn our attention to an important type of semigroup: inverse semi-

groups. Recall that an inverse semigroup is a semigroup in which each element has

precisely one inverse in the sense that for each element a ∈ S there is a unique

element a′ ∈ S such that a = aa′a and a′ = a′aa′. It has the equivalent property

that it is regular and its idempotents commute. Before Munn proceeded with his

discussion about the representations of inverse semigroups, he stated and proved a

number of results. For example:

Lemma 5.3.4. [66, Lemma 4.2] A (finite) simple inverse semigroup is isomorphic

to a Rees matrix semigroup Snn[G,Un], where Un is the n× n unit matrix over G.

Munn introduced the notion of Brandt semigroup as a completely 0-simple in-

verse semigroup with zero. By Lemma 5.3.4, these are precisely the completely

0-simple inverse semigroups. Thus a Brandt semigroup is a semigroup isomorphic

to a Rees matrix semigroup B = M0(G; I, I; ∆) over a group G, where ∆ is the

I × I identity matrix over G. The group G may be referred to as the structure

group of M0. Thus, B is a completely 0-simple inverse semigroup. The rank of a

Brandt semigroup is defined to be the cardinal of its set of non-zero idempotents

E \ {0}. Thus, the rank of B is |I|. In particular, B is a group with zero (∼= G0) if

and only if rank(B) = 1. Moreover, when I is finite, with |I|= k say, Munn replaced

M0(G; I, I; ∆) byM0(G; k, k; ∆k), denoting by ∆k the k×k identity matrix over G0.

The elements ofM0(G; k, k; ∆k) are denoted by (a; i, j), where a ∈ G0, 1 6 i, j 6 k,

and the non-zero idempotents are of the form (u; `, `), where u is the identity ele-

ment of G and 1 6 ` 6 k.

Each principal factor of an inverse semigroup is also an inverse semigroup, and

in particular is simple, and this implies that S is a semisimple semigroup. As a

96



consequence we have:

Theorem 5.3.5. [66, Theorem 4.4] Let S be an inverse semigroup and F be a field

of characteristic zero or a prime not dividing the order of any of the basic groups of

the principal factors of S. Then U(S) is semisimple.

The representations of inverse semigroups were derived directly from the results

of Theorem 5.3.1 and Corollary 5.3.2 mentioned above. The following theorem

illustrates an application to the inverse semigroup Snn[G,Un].

Theorem 5.3.6. [66, Theorem 4.5] Let S = Snn[G,Un], and let {γr : r = 1, . . . , k}
be a complete set of inequivalent irreducible representations of G over F whose char-

acteristic is zero or a prime not dividing the order of G. Define the mapping γ′r on

S by the rule

γ′r{(x)ij} = γr{(x)ij}

for (x)ij ∈ S. Then {γ′r : r = 1, . . . , k} is a complete set of inequivalent irreducible

representations of S over F .

Notice that γr{(x)ij}, where x ∈ G, is a block matrix whose (i, j)th block is the

representation matrix γr(x), and the remaining blocks are zero matrices.

Once Munn was able to construct all the irreducible representations of a simple

inverse semigroup Snn[G,Un], he was able to deal with the case of a general arbitrary

inverse semigroup. Munn stated the method in the following theorem and provided

its proof:

Theorem 5.3.7. [66, Theorem 4.7] Let S be an inverse semigroup. Let

S = S1 ⊃ S2 ⊃ · · · ⊃ Sn ⊃ Sn+1 = ∅

be any principal series for S, and let {eij : j = 1, . . . ,mi} be the set of non-zero

idempotents of Si/Si+1 (i = 1, . . . , n). (We take mn = 1 and en1 to be the identity

of the group Sn.) Let F be a field of characteristic zero or a prime not dividing

the order of any of the basic groups of any of the principal factors Si/Si+1, and let

{γ′ir : r = 1, . . . , ki} be a complete set of inequivalent irreducible representations of

Si/Si+1 over F . Define the mapping γ∗ir on S by the rule

γ∗ir(x) =

mi∑
j=1

γ′ir(x
θeij),

where θ is the natural homomorphism of S onto S/Si+1. Then

{γ∗ir; i = 1, . . . , n; r = 1, . . . , ki}
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is a complete set of inequivalent irreducible representations of S over F .

Theorem 5.3.7 starts with the irreducible representations of the principal factors

Si/Si+1 of an inverse semigroup S. Each such representation then gives a represen-

tation of S of same dimension of that we start with. This is in contrast to induction

in the Clifford-Munn-Ponizovskii correspondence from Chapter 3, where we start

instead with irreducible representations of maximal subgroups and the induced rep-

resentations of S then have dimensions some multiple of the dimensions of that we

start with.

In the final part of the paper [66], Munn gave some results on the identity

element of the algebra of an inverse semigroup S over our restricted field F . By

Theorem 5.3.5, the algebra of S is semisimple and hence it contains an identity. Let

E denote the semigroup of idempotents of S. Since S is an inverse semigroup, E is a

semilattice of groups of order one and again by Theorem 5.3.5, U(E) is semisimple

(for more discussion about semilattice, see [8, Section 1.8]). Let e and f be two

elements in E, we say that e covers f when e > f and there exists no g ∈ E such

that e > g > f . Now let u be the identity of U(S). Then the result is that we can

express u as a linear combination of the elements of E as follows:

u =
∑
e∈E

(1− ne)e,

where ne is the number of elements of E covering e [66, Section 4, page 11].

The moral of the second paper is that Munn determined semigroup representa-

tions of completely 0-simple semigroups by the rules of Theorem 5.3.1 and Corollary

5.3.2. Although these rules apparently just link and connect representations of a

finite semigroup with representations of its related groups and because we know pre-

viously the Clifford-Munn-Ponizovskii correspondence from Chapter 3, they might

be the starting point of the idea of the correspondence which is the core of the theory

of semigroup representations. We will discuss this point in Section 5.9.

5.4 Characters of the Symmetric Inverse Semi-

group

In April 1956, Munn completed his paper: Characters of the Symmetric Inverse

Semigroup [67]. The title clearly states the purpose of the paper. Munn provided

a concrete method for constructing all the characters of the irreducible representa-

tions of the symmetric inverse semigroup in terms of the characters of the irreducible

representations of the symmetric group over a field F with characteristic zero. An
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explicit application was given to the case n = 4. This section aims at summarizing

the underlying results related to this special inverse semigroup. In addition, we

reformulate Munn’s work from our perspective, in a separate subsection.

Throughout this section, we work with a finite set X = {1, . . . , n} with car-

dinality n. Munn denoted the symmetric inverse semigroup (or symmetric inverse

monoid) by A(n), but the standard notation is In. The order of A(n) can be computed

by the formula
n∑
r=0

(
n

r

)2

r!. In terms of principal series for A(n), each principal factor

A
(n)
r −A(n)

r−1 is a 0-simple inverse semigroup, so that the principal factors are Brandt

semigroups, and hence are isomorphic to Rees matrix semigroups over groups. In

fact, they are of the form S(nr)(
n
r)

[Gr, U(nr)
](r = 1, . . . , n), where Gr is the symmetric

group of size r and U(nr)
is the

(
n
r

)
×
(
n
r

)
unit matrix over Gr. The idempotents of

A(n) are the identity mappings of subsets of X of cardinal r onto themselves. For

any two subsets A and B of X of the same cardinality, the element x of A(n) is

written as

x =

(
a1, . . . , ar

b1, . . . , br

)
,where ai ∈ A and bi ∈ B; (i = 1, . . . , r).

The inverse of x is the mapping:

x−1 =

(
b1, . . . , br

a1, . . . , ar

)
.

The cardinal of the subsets A and B is called the rank of x.

The product of two partial transformations x and x′ is defined as follows:

1. Suppose x maps A onto B and x′ maps A′ onto B′; all the sets are subsets of

X.

2. Then x · x′ maps (A′ ∩B)x−1 ⊆ A onto (A′ ∩B)x′ ⊆ B′.

3. If A′ ∩B is the empty set, then the product is equal to the zero map.

4. The rank of this product is

rank(x · x′) 6 min(rank x, rank x′).

Now, how might we decompose a partial transformation x on X? We have two

cases with respect to subsets A and B of X:

1. When A = B, then x is a permutation.
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2. When A 6= B, pick any element a1 in A but not in A ∩B (a1 ∈ A− (A ∩B))

and let x : a1 7→ b1. We have now two cases:

(a) if b1 ∈ B − (A ∩B), then we cannot proceed any further;

(b) if b1 ∈ A ∩ B, then b1 = a2, say, and we continue in a similar way with

b2, . . . , bs until we have a sequence of elements of X: a1, . . . , bs, starting

with an element of a1 = A − (A ∩ B) and ending with an element of

as = B − (A ∩B).

By finiteness, this procedure must terminate. The sequence is called a link and

is written in square brackets [a1, . . . , bs], to be distinct from the round brackets of

a cyclic permutation. The number of elements of A ∩ B permuted by x is called

the subrank of x. Analogously to group permutations, these elements can be de-

composed into disjoint cycles. The partition of the disjoint cycles is called the cycle

pattern of x. In the decomposition of a partial transformation we cannot omit cycles

of length one.

If C is a subset of X and x is a partial transformation on X, so the restriction

of x to C maps C to itself. Then we say that x induces a permutation of C.

To make the above notions clear, if

x =

(
1 2 3 4 5 6 7 8 9

8 9 4 5 3 6 7 − −

)
,

then x can be written as x = [18][29](345)(6)(7). The rank of x is 7, the subrank

is 5, and the cycle pattern is (312). If C = {3, 4, 5, 6, 7}, then x induces the permu-

tation (345)(6)(7) of C with cycle pattern (312). Similarly, if C = {3, 4, 5, 6}, then

x induces the permutation (345)(6) of C with cycle pattern (31). It turns out that

any partial transformation of a finite set can be expressed as a conjunction of links

and disjoint cycles (note that the order is not important here).

The rest of this section is dedicated to the characters of the symmetric inverse

semigroup A(n).

Generally, the character of a matrix representation of any algebraic structure over

a field F is the trace of the representation matrix; this is the sum of the diagonal

elements of that matrix. Munn utilized the results of paper [66], to discuss the matrix

representations and the characters of A(n). He started with the semisimplicity of

A(n) and its ideals and gave the following theorem:

Theorem 5.4.1. [67, Theorem 3.1] The algebra of A(n) over a field of characteristic
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zero or a prime greater than n is semisimple.

Moreover, the contracted algebra of any principal factor of A(n) is semisimple.

To proceed, we need to set up some notations before we reach the main results

of the paper [67]. Munn obtained the irreducible representations of A(n) in terms of

those of its principal factors. Let A
(n)
r /A

(n)
r−1 be the principal factors of A(n), where

A
(n)
r = {σ ∈ A(n) : rank σ ≤ r}, for r = 1, . . . , n. Let {γ′rs : s = 1, . . . , hr} be a

complete set of irreducible representations of the contracted algebra of A
(n)
r /A

(n)
r−1

over a field of characteristic zero. He defined the mapping γ∗rs on A(n) by the rule

that for all x ∈ A(n):

γ∗rs(x) =

(nr)∑
i=1

γ′rs{(x.eri)θ}, (5.3)

where θ is the natural homomorphism of A(n) onto A
(n)
r /A

(n)
r−1 and {eri : i =

1, . . . ,
(
n
r

)
} is the set of all idempotents of A(n) of rank r. Then by our Theo-

rem 5.3.7, originally from [66], we deduce that {γ∗rs : s = 1, . . . , hr; r = 0, . . . , n} is

a complete set of inequivalent irreducible representations of A(n) over F .

Next, Munn showed the natural one-one correspondence between the represen-

tations of the contracted algebra of A
(n)
r /A

(n)
r−1 and those of the group Gr. To make

this correspondence clear, we have the following steps:

1. Consider the J-class with size r (0 6 r 6 n) with corresponding principal

factor A
(n)
r /A

(n)
r−1.

2. Let M1, . . . ,M(nr)
be the subsets of X = {1, . . . , n} of size r (r = 0, . . . , n).

3. Let ui be a partial bijection mapping M1 onto Mi and uj be another partial

bijection mapping M1 onto Mj, where 1 6 i, j 6
(
n
r

)
.

4. If y is a partial bijection mapping Mi onto Mj, then there is a unique element

x : M1 → M1 ∈ Gr(M1) such that y = u−1
i xuj, where Gr(M1) is a symmetric

group Gr on the subset M1.

5. We write [x]ij instead of u−1
i xuj, so that

[x]ij[x
′]jk = u−1

i xuj · u−1
j x′uk = u−1

i xx′uk = [xx′]ik.

Otherwise, if j 6= l, then [x]ij[x
′]lk has domain a proper subset of Mi, or has

rank < r.

Apparently at this step, Munn started his induction process, without being aware

of it.

101



If χrs is a character of an irreducible representation of Gr, then χ
(λ)
rs ∈ F will

denote its value on the conjugacy class of elements of Gr having a cycle pattern

defined by the partition (λ) of r. The next result gives the value of the characters

of irreducible representations of the principal factor of A(n).

Lemma 5.4.2. [67, Lemma 3.4] Let χrs and χ′rs be the characters of the corre-

sponding irreducible representations of Gr and A
(n)
r /A

(n)
r−1 over F , respectively. If

x ∈ A(n)
r /A

(n)
r−1, then

χ′rs(x) =

χ
(λ)
rs if x has subrank r and cycle pattern (λ),

0 if x has subrank less than r.

Now, the preparation is finished and we are ready to state the theorem that

describes the process of obtaining the character values of the irreducible represen-

tations of A(n).

Theorem 5.4.3. [67, Theorem 3.5] Let γ∗rs be the representation of A(n) of rank r

derived from γ′rs as defined in Formula (5.3) and let χ∗rs be its character. Then, for

any x ∈ A(n),

χ∗rs(x) =
∑

χ(λ)
rs , (5.4)

where the summation is over the partitions (with repetitions) corresponding to the

cycle patterns of all permutations of rank r induced by x.

In the following paragraphs, we explain how we can obtain the irreducible rep-

resentations of the symmetric inverse semigroup A(n) in terms of irreducible repre-

sentations of its maximal subgroups, the symmetric groups Gr, for 1 6 r 6 n. The

idea is that we start with irreducible representations of the maximal subgroup Gr

and these will give us irreducible representations of the principal factors A
(n)
r /A

(n)
r−1

of A(n) and these give irreducible representations of the symmetric semigroup.

To illustrate the above process, we have the following example. Let x be the

element

x = [01](234)(56)(7)(8)(9) ∈ A(10).

Let χ∗3s be the character of a matrix representation of A(10) of rank (= subrank)

3, and let χ3s be the corresponding character of the matrix representation of G3.

As there are three partitions of 3, namely, 1 + 1 + 1, 2 + 1, and 3 , there are three

conjugacy classes. We denote the partition 1 + 1 + 1 as (13), 2 + 1 as (21), and 3

as (3). This implies that there are three irreducible representations of A(10) with

subrank = 3. We calculate the following:

χ′(xe{2,3,4})
θ = χ′(234) = χ(123);
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χ′(xe{5,6,7})
θ = χ′{(56)(7)} = χ{(12)(3)};

χ′(xe{7,8,9})
θ = χ′{(7)(8)(9)} = χe{1,2,3}.

By Formula (5.4), the character of A(10) with rank 3 is

χ∗3s(x) = χ
(3)
3s + 3χ

(21)
3s + χ

(13)
3s .

(The summand χ
(21)
3s occurs with multiplicity 3 because in Formula (5.4) we are

taking the sum with repetitions over partitions).

Now, we need the character table of the symmetric group G3 [42]:

G3 id (12) (123)

trivial χ31 1 1 1

sign χ32 1 -1 1

geometric χ33 2 0 -1

Thus,

χ∗31(x) = 5, χ∗32(x) = −1, and χ∗33(x) = 1.

In the following subsection, we will take up this example in detail. Since the char-

acters of matrix representations of the symmetric inverse semigroup are expressible

as sums of characters of the matrix representations of the symmetric group, we have:

Corollary 5.4.4. [67, Corollary 3.6] The values of the characters of the matrix

representations of A(n) are integers.

Corollary 5.4.5. [67, Corollary 3.7] The elements of A(n) with the same subrank

and the same cycle pattern have the same character value in every representation of

A(n).

This means that the symmetric inverse semigroup A(n) can be partitioned into

classes according to subrank and cycle pattern. The number of these classes is∑n
s=0 ps, where ps is the number of partitions of s with p0 = 1. In fact, the number

of classes of A(n) is also the number of inequivalent irreducible representations of

A(n). Precisely, there are pr representations of rank r (r = 0, . . . n). Observe that the

links play no role. At the end of the paper [67], Munn applied the above character

theory and provided the complete character table for the semigroup A(4) of order 209.

We observe that in the present work Munn demonstrated that there is a one-

to-one correspondence between the irreducible representations of A(n) and the irre-

ducible representations of Gr, 0 6 r 6 n. This may be the point where he first

realised what would become the Clifford-Munn-Ponizovskii correspondence. More

comments about this point will be given in the last section.

103



5.4.1 The Characters of the Symmetric Inverse Monoid,

from our Perspective

The goal of this subsection is to elaborate on the technique described by Munn in

his 1957 paper [67] to induce the characters of the symmetric group Sr to charac-

ters of the symmetric inverse semigroup In over C, 0 ≤ r ≤ n. We explicitly give

the method by example on I10 using modern notation. To do this, we start with

some preliminary concepts of group characters and then provide some results about

characters of the symmetric groups and Young Tableaux which are the motivation

behind the article [67].

In Chapter 1, we saw that characters are considered as a significant part of the

representation theory of finite groups. Specifically, characters are essential tools in

many applications of group theory to different problems, in mathematics, but also

physics and chemistry. The question is: why are characters so useful in applications?

What does their importance stem from? The simple answer is that since a character

is obtained from a representation by taking the trace of a matrix representation, it

is more convenient and easier to deal with a character (a number) than a represen-

tation (a matrix). The utility of characters comes mainly from the following reasons.

First, equivalent representations have the same characters; also, any character is

constant on conjugacy classes. This feature shows that characters of a group rep-

resentation are intimately linked with the conjugacy classes of the group. Second,

using characters is the better way to classify representations, whether the represen-

tation is reducible or irreducible. Third, any reducible characters of a group can

be written uniquely as a sum of irreducible characters of that group. Finally, irre-

ducible characters of a group encapsulate information about the structure of a group

itself. For example, once the character table of a group is known, it can be used to

determine whether a group is abelian, simple or solvable.

To give the article of Munn a flavour, we provide a strategic picture of the sym-

metric inverse monoid In. The diagram in Figure 5.1 illustrates the J -classes of the

symmetric inverse monoid In .

According to Munn [67], the elements of a symmetric inverse semigroup can be

written as a conjunction of links in square brackets and disjoint cycles in round

brackets. For example, we write

α =

(
0 1 2 3 4 5 6 7 8 9

1 − 3 4 2 6 5 7 8 9

)
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J0
∅

J1

=S1

∼=S1

∼=S1

J2

=S2

∼=S2

∼=S2

J3

=S3

∼=S3

. . .

. . .

. . .

∼=S3

Jn−1

=Sn−1

∼=Sn−1

∼=Sn−1

∼=Sn−1

Jn Sn

Figure 5.1: The J -classes of the symmetric inverse monoid In
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as α = [01](234)(56)(7)(8)(9) and, as usual, (234) is a cycle and [01] is a link. Before

we present our example, we need the following notions.

Let λ = {λ1, . . . , λk} be a partition of a positive integer n such that
∑k

j=1 λj = n

and λ1 ≥ . . . ≥ λk > 0. Any cyclic decomposition of a permutation in Sn is associ-

ated with a partition of n, where {λj} are the lengths of the individual cycles. This

partition can be expressed using a Young diagram, which is a set of empty boxes ar-

ranged in rows such that there are λ1 boxes in row 1, etc. Thus, the Young diagram

associated with the partition λ has k rows and λj boxes in the jth row. Clearly,

there is a one-to-one correspondence between partitions and Young diagrams. We

call λ the shape of the permutation and each shape specifies a conjugacy class.

Since the number of conjugacy classes is equal to the number of irreducible rep-

resentations, each partition λ corresponds to an irreducible character of Sn. For

S3, there are three conjugacy classes, corresponding to the Young diagrams , ,

and of sizes 1, 3, and 2, respectively. For S4, there are five conjugacy classes,

corresponding to the Young diagrams , , , and of sizes 1, 6, 8, 6 and

3, respectively. These diagrams will be used later on in our example.

We use Munn’s formula (5.4), with some modification in symbols, to calculate

the values of characters χ∗ on any element α of the symmetric inverse semigroup In

in terms of the corresponding characters of the symmetric group Sr, 0 ≤ r ≤ n:

χλ∗(α) =
∑

(cycle type)

χλ.

The sum runs over the cycle types counted with multiplicity of the permutations

of degree r induced by α. Note that χλ is the value of the irreducible character

of Sr on the conjugacy class of shape λ and χλ∗ is the corresponding character of

In. Our aim now is to induce a character χ of a symmetric group Sr to a character χ∗.

Let α be the element of I10 such that

α = [01](234)(56)(7)(8)(9).

We have one link [01] and five cycles (234)(56)(7)(8)(9). For r = 3, the partial per-

mutation α has five permutations of three elements: (234), (56)(7), (56)(8), (56)(9),

and (7)(8)(9). Hence, we have, respectively, one permutation with cycle type (3),

three permutations with cycle type (2, 1), and one with cycle type (1, 1, 1).
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The following table displays the above information about these permutations:

r cycle type

3

(1, 1, 1) (7)(8)(9) 1

(2, 1) (56)(7), (56)(8), (56)(9) 3

(3) (234) 1

In the table above, the third column shows the permutations of rank r = 3 induced

by α of the given cycle type. The forth column contains the number of such permu-

tations.

The character table for the symmetric group S3 is as follows [42]:

S3 (1)(2)(3) (12)(3) (123)

cycle type (1, 1, 1) (2, 1) (3)

trivial χ 1 1 1

sign χ 1 −1 1

geometric χ 2 0 −1

This is the same character table mentioned before Corollary 5.4.4 except with dif-

ferent notation.

In Figure 5.2, we have an equilateral triangle whose vertices have been labeled

by 1, 2, and 3. If σ is an element of S3, then it acts on the equilateral triangle by

permuting the vertices as σ permutes the numbers 1, 2, and 3. According to that

permutation, this is a linear map of R2 to itself sending the equilateral triangle to

itself by choosing basis v1 and v2. Then the matrices of the representation of the

symmetric group S3 corresponding to with respect to the basis v1 and v2 are:

(1)(2)(3) 7→

(
1 0

0 1

)
⇒ the trace is 2,

(12)(3) 7→

(
0 1

1 0

)
⇒ the trace is 0,

and

(123) 7→

(
0 1

−1 −1

)
⇒ the trace is − 1.

107



3 1

2

v2

v
1

−v1
− v

2

Figure 5.2: Geometric representation of S3

All actions are on the right when computing the matrices above.

Thus,

χ∗ (α) = χ (1)(2)(3) + 3 χ (12)(3) + χ (123) = 1.

Similarly, we compute the character of the trivial representation χ∗ and the char-

acter of the sign representation χ∗ :

χ∗ (α) =1 + 3 · (1) + 1 = 5,

χ∗ (α) =1 + 3 · (−1) + 1 = −1.

We remind the reader that this is a completely analogous calculation to that in

the previous section but using modern notation.

For r = 4, the partial permutation α has six permutations of four elements:

(234)(7), (234)(8), (234)(9), (56)(7)(8), (56)(7)(9), and (56)(8)(9). So, we have

three permutations with cycle type (3, 1) and three permutations with cycle type

(2, 1, 1). The character table for the symmetric group S4 is as follows [42]:

S4 (1)(2)(3)(4) (12) (123) (1234) (12)(34)

cycle type (1, 1, 1, 1) (2, 1, 1) (3, 1) (4) (2, 2)

χ 1 1 1 1 1

χ 1 −1 1 −1 1

χ 3 1 0 −1 −1

χ 3 −1 0 1 −1

χ 2 0 −1 0 2
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v1

v2

v3

−v1 − v2 − v3 = v4

Figure 5.3: Geometric representation of S4

Here we compute χ ↑ I10 = χ∗ and the others can be obtained in the

same way. In Figure 5.3, we have a tetrahedron whose vertices have been labeled

by v1, v2, v3, and v4. If σ is an element of S4, then it acts on the tetrahedron by

permuting the vertices as σ permutes the numbers 1, 2, 3, and 4. According to that

permutation, this is a linear map of R3 to itself sending the tetrahedron to itself.

Then the matrices of the representation of the symmetric group S4 corresponding

to with respect to the basis v1, v2, v3 and v4 = −v1 − v2 − v3 are:

(1)(2)(3)(4) 7→

 1 0 0

0 1 0

0 0 1

⇒ the trace is 3,

(12)(3)(4) 7→

 0 1 0

1 0 0

0 0 1

⇒ the trace is 1,

(123)(4) 7→

 0 1 0

0 0 1

1 0 0

⇒ the trace is 0,
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(1234) 7→

 0 1 0

0 0 1

−1 −1 −1

⇒ the trace is − 1,

and

(12)(34) 7→

 0 1 0

1 0 0

−1 −1 −1

⇒ the trace is − 1.

From the above representation of the element (1234), we have:

v1 7→ v2, v2 7→ v3, and v3 7→ v4 = −v1 − v2 − v3.

Because we are acting on the right that means that each row is the image of the

corresponding basis vector and this is the reason that we get the matrix: 0 1 0

0 0 1

−1 −1 −1


Thus,

χ∗ (α) = 3 χ (123) + 3 χ (12)

= 3.

5.5 Irreducible Matrix Representations of Semi-

groups

In this section, we discuss the highlights of Munn’s paper: Irreducible Matrix Rep-

resentations of Semigroups [68].

In his previous papers [65] and [66], Munn considered the problem of constructing

the complete set of irreducible representations of a finite semigroup, whose algebra

over a certain field is semisimple, via the irreducible representations of its maximal

subgroups. In this next paper, he demonstrated how to do this for an arbitrary

semigroup (maybe infinite), even when its algebra is not semisimple.

The main result of this paper is that for a semigroup S satisfying the minimal

condition on its principal one-sided ideals, there is a natural bijective correspondence

between the irreducible principal representations of S and the irreducible represen-
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tations vanishing at zero of the (0-)simple principal factors of S.

We begin with some notational conventions and definitions. Let S be a semigroup

and J be a fixed J -class of S. Then:

1. P (J) denotes the principal ideal in S generated by the elements of J .

2. N(J) denotes the set of non-generators of P (J) (it is the ideal P (J)− J).

3. Q(J) denotes the Rees quotient semigroup P (J)/N(J). It is in fact the prin-

cipal factor of S corresponding to J .

4. x 7→ x̄ denotes the natural homomorphism from P (J) to Q(J) and is defined

by

x̄ =

x for all x in J,

z otherwise,

where z = N(J) is the zero element of Q(J).

Let S and T be semigroups and k be a field. If a map θ : S → T is a semigroup

homomorphism, then θ extends uniquely to θ̄ : k[S] → k[T ]. Thus by linearity, we

can extend the homomorphism in (4) uniquely to a homomorphism from the algebra

of P (J) to the algebra of Q(J). Moreover, if the Rees factor Q(J) is simple, then J

is a simple J -class of S.

According to Green [26], a semigroup S is said to have the property Mf if every

set of principal two-sided ideals of S has a minimal member. This is called the

minimal condition on the principal two-sided ideals of S. The minimal conditions

Mr and Ml on principal right and left ideals are defined in a similar manner. These

conditions Mr, Ml, and Mf , are respectively, equivalent to the descending chain

conditions on principal right, left, and two-sided ideals of S. In other words, a

semigroup S has Ml if and only if there are no infinite chains

S1a1 ⊃ S1a2 ⊃ S1a3 ⊃ · · ·

of principal left ideals. Ml is the descending chain condition (d.c.c.) on principal

left ideals. The condition Mr is the dual of this.

Munn denoted the algebra of all n × n matrices over a field F by (F )n. Then

he defined a representation Γ of a semigroup S of degree n over F to be a ho-

momorphism of S into the multiplicative semigroup of (F )n. It is clear that every

representation of a semigroup S over F can be extended uniquely to a representation

of the semigroup algebra of S. Let T be a subset of S; then Γ(T ) is defined to be
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the set of all matrices Γ(t), where t ∈ T and [Γ(T )] is the subspace of (F )n spanned

by the elements of Γ(T ). Moreover, we say that two representations Γ and Γ′ of S

are equivalent if and only if there exists a non-singular matrix A over F such that

Γ′(x) = A−1Γ(x)A for all x in S. Note that the space F [T ] is the linear subspace

of the algebra of S spanned by T (i.e. the set of all finite linear combinations of

elements of T with coefficients in F ).

Before we state the results of the paper currently under consideration, we point

out that they make use of the existence of elements ei in an ideal of S and αi ∈ F
such that

∑
αiΓ(ei) = In, where In denotes the n× n identity matrix of (F )n.

Lemma 5.5.1. [68, Lemma 1] Let Γ be a representation of S of degree n over F

and let T be a subset of S such that [Γ(T )] is an irreducible subalgebra of (F )n. Then

there exists an element e of F [T ] such that Γ(e) = In.

We now describe the idea of an irreducible principal representation of a semi-

group. Let Γ be an S-representation. We let V (Γ) denote the ideal of S consisting

of all elements x in S such that Γ(x) = 0; we call this ideal the vanishing ideal

of Γ. The representation Γ of S is called principal if S − V (Γ) contains a unique

minimal J -class of S. If such a J -class J of S exists, we call it the apex of Γ.

This representation Γ is described by the rule: Γ(x) 6= 0 if and only if J 6 Jx. In

particular, if S has a kernel K and V (Γ) = ∅, then Γ is a principal representation

with apex K. (Recall that the kernel K is the unique minimal J -class of S.)

Now, let Γ(x) = 0 for all x in the ideal N(J). Then we restrict the representation

Γ to a representation Γ∗ of Q(J) by the following relation:

Γ∗(x̄) = Γ(x),where x ∈ P (J).

Γ∗ is said to be the representation of Q(J) induced by Γ and we say that Γ is an

extension of Γ∗ to S. It is clear that V (Γ∗) = {z}, thus Γ∗ is a 0-restricted repre-

sentation in the sense that only the zero of Q(J) is mapped onto the zero matrix.

Note that we need Γ(x) = 0 for all x in N(J), so that the representation Γ∗ of Q(J)

extends uniquely to the representation Γ of P (J). Here, the representation Γ is a

unique well-defined extension of Γ∗. In particular, if Γ is a principal representation

of S with apex J , then we call it a principal extension of Γ∗.

The following theorem is the main result of the paper [68]; it establishes the

one-to-one correspondence mentioned earlier:

Theorem 5.5.2. [68, Theorem 1] Let S be a semigroup and F be a field.
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1. Let Γ be an irreducible principal representation of S of degree n over F, and

let J be the apex of Γ. Then J is simple, and the representation Γ∗ of Q(J)

induced by Γ is irreducible. Also, there exists an element e of the algebra of J

such that Γ∗(e) = In, and for any such element e we have

Γ(x) = Γ∗(x̄e),where x ∈ S. (5.5)

2. Let J be a simple J -class of S and let Γ∗ be an irreducible representation of

Q(J) of degree n over F such that Γ∗(z) = 0, where z is the zero of Q(J).

Then there exists an element e of the algebra of J such that Γ∗(e) = In, and

for any such element e equation (5.5) serves to define an irreducible principal

extension Γ of Γ∗.

3. Two irreducible principal representations of S are equivalent if and only if they

have the same apex J and induce equivalent representations of Q(J).

When a semigroup S obeys the minimal condition Mf on principal two-sided

ideals, then the representations of such a semigroup lie in a special class, as in the

following result:

Theorem 5.5.3. [68, Theorem 2] Let S be a semigroup satisfying the condition Mf

and let F be a field. Then every irreducible representation of S over F is principal.

Munn then observed that our Theorems 5.5.2 and 5.5.3, together with the work

attributed to Suschkewitsch, 1933 paper, and Clifford [8] on the theory of repre-

sentations of completely simple semigroups, allow us to obtain the complete set of

irreducible representations of a semigroup S satisfying the conditions Mr and Ml in

terms of those of its maximal subgroups. In addition, since conditions Mr and Ml

together imply Mf [26, Theorem 4], and by Theorem 5.5.3 above, we deduce that

every irreducible representation of S is principal. In a special case, if a semigroup S

is finite and its algebra is semisimple, the element e mentioned previously is unique,

and it is in fact the identity element of the algebra of Q(J). This case had been

studied before by Munn [65,66] and Ponizovskii [68].

The characterization of complete reducibility was discussed in the last theorem

of this paper. Munn first stated a required lemma and then the key theorem which

contains a sufficient condition for the complete reducibility of representations of a

semisimple semigroup S.

Lemma 5.5.4. [68, Lemma 2] Let J be a simple J -class of a semigroup S. Let

Γ : x→ Γ(x) = (γij(x))
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be a representation of S of degree m over a field F. If γij(x) = 0 for all i, j such that

1 6 i 6 j 6 m and for all x in J, then Γ(x) = 0 for all x in J.

Theorem 5.5.5. [68, Theorem 3] Let S be a semisimple semigroup which satisfies

condition Mf and let F be a field. Further, let every representation of every principal

factor of S over F be completely reducible. Then every representation of S over F is

completely reducible.

We have a special case of this theorem: if the representation of a semigroup S is

over the real or the complex field, then the representation will become a bounded

representation (a representation is bounded if there exists a positive real number k

such that |γij(x)|< k for all x in S and all i, j). Hence, every bounded representation

of S is completely reducible and even the induced representation is also bounded

and so completely reducible.

The paper ends with an application of the theoretical techniques discussed above.

As in his previous papers [66, 67], Munn illustrated the results on an inverse semi-

group obeying the minimal condition Ml and he provided the method of constructing

all irreducible representations of this special type of semigroup over a field F via

those of its related groups. Moreover, he also studied the case when the field is the

real or the complex field and showed that all bounded representations of the inverse

semigroup are completely reducible. In fact, these results are an extended version

of Munn’s works in [66].

We recall that the paper under discussion is the fourth in Munn’s series of works

on the development of semigroup representation theory. Our principal observations

on this paper are that it has the first mention of Ponizovskii’s work on semisimplicity,

which shows Munn’s awareness of Ponizovskii’s work in the area. It also contains the

first mention of the term ‘apex’. The determination of the type of representations

discussed here is based on the existence of the apex of a representation, which is a

certain J -class. A question arises here: what if a semigroup does not satisfy the

minimal condition on principal ideals and as a result its irreducible representations

may not be principal? This case encouraged Munn to introduce a new type of

representation without minimal conditions, as explained in the following section.

5.6 A Class of Irreducible Matrix Representations

of an Arbitrary Inverse Semigroup

From his series of papers on the representation theory of semigroups, it can be noted

that Munn dealt with irreducible representations of different classes of semigroups.

However, the study of the irreducible representations of inverse semigroups was the
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major theme in Munn’s works on this area; the next paper to consider is one of

them [69]. In contrast to the earlier [68], this paper studies the representations of

inverse semigroups without minimal conditions.

We start the discussion with preliminaries. Recall that an inverse semigroup S

is defined by the following equivalent properties:

1. S is regular (i.e. a ∈ aSa for every a ∈ S) and its idempotents commute;

2. every element of S has a unique inverse;

3. each principal left ideal and each principal right ideal of S is generated by one

and only one idempotent.

The first theorem discusses the idea of the maximal group homomorphic image of

an inverse semigroup:

Theorem 5.6.1. [69, Theorem 1] Let S be an inverse semigroup and let a relation

σ be defined on S by the rule that:

x σ y if and only if there exists an idempotent e ∈ S such that ex = ey.

Then we have:

1. the relation σ is a congruence relation and S/σ is a group;

2. if τ is any congruence on S with the property that S/τ is a group, then σ ⊆ τ ,

and so S/τ is isomorphic to a quotient group of S/σ. The quotient S/σ is

called the maximal group homomorphic image of S and is denoted by GS;

3. if M is an ideal of S, then M is an inverse semigroup and GM is isomorphic

to GS.

For more detail about the maximal group homomorphic image of an inverse

semigroup S, see [37, Sections 1.4 and 1.5].

The map x → x̄ denotes the natural homomorphism of an inverse semigroup S

onto its maximal group homomorphic image. In a special case, if the inverse semi-

group S has kernel K, then K is a group, then GS is isomorphic to K. By showing

that for any two elements x and y ∈ S: x̄ = ȳ if and only if ex = ey, where e is the

identity of K, the mapping x̄ → ex gives the desired isomorphism, where x̄ is the

equivalence class of x.

Munn was then motivated to introduce the concept of a prime irreducible repre-

sentation of an inverse semigroup S. At the beginning of this part, he drew attention
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to the case where S has an identity, in which case it is required that it is mapped to

the identity matrix. Also, he excluded the null representation of degree one (which

maps every element to the zero matrix) from the concept of irreducibility. Munn

made use of the notations of paper [68].

In representation theory, we can think of Γ as a matrix (as Munn did) or as a

linear transformation. This means that each element s of S corresponds to an n×n
matrix or a linear transformation. Let W be a representation space for Γ and U be

an invariant subspace of W under Γ. If we choose a basis {w1, . . . , wn} of W such

that {w1, . . . , wr} with 1 ≤ r < n is a basis of U , then the representation matrix

Γ(s) takes the partitioned form

Γ(s) =

(
Γ1(s) 0

Γ12(s) Γ2(s)

)
,

where Γ1(s) is an r× r matrix, and Γ2(s) is an (n− r)× (n− r) matrix (1 ≤ r < n).

A matrix representation Γ is said to be reducible if it has the previous block form.

Otherwise, Γ is irreducible.

The vanishing set V (Γ) is called a prime ideal of S if it is not equal to S and

the complement set S \ V (Γ) is a subsemigroup of S. If the vanishing set V (Γ) is

empty or a prime ideal, then the representation Γ is called a prime representation

of S. Munn utilized the following lemma for the proofs of Theorems 2 and 3 of his

paper.

Lemma 5.6.2. [8, Theorem 5.7] An irreducible subalgebra of (F )n is a simple

algebra over F.

The next theorem provides a means of obtaining all the prime irreducible rep-

resentations of an arbitrary inverse semigroup via certain unique irreducible repre-

sentations of the maximal group homomorphic image of S \ V .

Theorem 5.6.3. [69, Theorem 2] Let S be an inverse semigroup and F be a field.

1. Let V be the empty set or a prime ideal of S. Then S \ V is an inverse semi-

group.

2. Let Γ be a prime irreducible representation of S over F and let V=V (Γ). Then

S \ V is an inverse semigroup and

Γ(x) =

Γ∗(x̄) if x ∈ S \ V,

0 if x ∈ V,
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where x→ x̄ is the natural homomorphism of S \ V onto GS\V , and Γ∗ is an

irreducible representation of GS\V .

3. Also, if Γ∗ is any irreducible representation of GS\V , then the mapping Γ de-

fined previously is a prime irreducible representation of S.

Generally, every semigroup S has a trivial prime irreducible representation which

is the representation Γ of degree one defined by Γ(x) = 1 for all x in S. Munn ended

this part with an example of an inverse semigroup that possesses an irreducible rep-

resentation that is not prime.

Munn closed this paper with a discussion of a significant class of inverse semi-

groups for which every irreducible representation is prime, and he applied the earlier

results to this class. According to Clifford and Preston [8], a semigroup S is intrareg-

ular if and only if a ∈ Sa2S for every a ∈ S. Using Clifford’s terminology [5], such

semigroups are semilattices of simple semigroups (a semilattice means a commuta-

tive semigroup of idempotents, see [8, Section 1.8]). In particular, an intraregular

inverse semigroup is a semilattice of simple inverse semigroups, and conversely.

Since a group is a special type of a simple inverse semigroup, a semilattice of

groups is an intraregular inverse semigroup. Such a semigroup S is a union of disjoint

groups Sα, say, where α belongs to a semilattice Y . To each pair of elements α and

β in Y such that α > β, there exists a homomorphism φαβ of Sα into Sβ. The

transitivity relation holds for these homomorphisms: for α > β > γ, we illustrate

the transitivity by the following commutative diagram:

Sα Sβ

Sγ

φαγ

φαβ

φβγ

In addition, ISα is the identity of Sα, for all α ∈ Y . Then the multiplication in

S is defined by the rule:

xαyβ = (xαφαγ)(yβφβγ),

where xα and yβ are elements of Sα and Sβ, respectively, and γ = αβ. Consequently,

SαSβ ⊆ Sαβ. The groups Sα are exactly the J -classes of S. A semilattice Y is a

special example of a poset and all posets can be given a structure of a category

in a standard way. In fact, what we have is a contravariant functor from Y , as a

category, to the category of groups. The structure of a semilattice of groups is taken

from Theorem 3 of Clifford’s paper [5].

117



We point out here that the semigroup in the next theorem need not be an inverse

semigroup.

Theorem 5.6.4. [69, Theorem 3] Every irreducible representation of an intraregular

semigroup is a prime representation.

By combining Theorems 5.6.3 and 5.6.4, we are able to obtain all the irreducible

representations of an intraregular inverse semigroup S. Munn deduced that if Γ1

and Γ2 are equivalent irreducible representations of S, then their vanishing sets are

equal (V (Γ1) = V (Γ2) = V ) and the corresponding irreducible representations Γ∗1

and Γ∗2 of GS\V , defined in Theorem 5.6.3, are also equivalent. Conversely, if Γ∗1 and

Γ∗2 are equivalent irreducible representations of GS\V , where V is empty or a prime

ideal of S, then the Γ1 and Γ2, defined in Theorem 5.6.3, are equivalent irreducible

representations of S.

The last part of this section is devoted to the construction of the principal irre-

ducible representations of an intraregular inverse semigroup, where a representation

Γ is called principal if S \ V (Γ) contains a unique minimal J -class, which is the

apex of Γ. Let Γ be a principal irreducible representation of S over a field F . By

Theorem 5.6.4, this representation is prime. Furthermore, since Γ is principal, there

exists an element ω ∈ Y such that Sω is the kernel of S \ V . By a former result, the

mapping x̄α → eωxα = xαφαω (xα ∈ Sα ⊆ S \ V ) is an isomorphism of GS\V onto

Sω, where eω is the identity of Sω.

Therefore, by part (1) of Theorem 5.6.3, there is an irreducible representation

Γ∗ of Sω over F such that

Γ(xα) =

Γ∗(xαφαω) if xα ∈ Sα, α = ω,

0 if xα ∈ Sα, α � ω.

Conversely, if ω is an element of a semilattice Y and if Γ∗ is an irreducible represen-

tation of Sω over F , then the previous representation defines a principal irreducible

representation of S over F with apex Sω. In a special case, if a semigroup S obeys

the minimal condition on principal ideals, then every irreducible representation is

principal and so is defined as above. A trivial example is provided of non-principal

irreducible representations.

The study of representations of inverse semigroups remained a productive re-

search area in the mathematical work of Munn. The next section reviews the last

paper of Munn on this theme, Matrix Representations of Inverse Semigroups [70].
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5.7 Matrix Representations of Inverse Semigroups

The objectives of this paper are, for an arbitrary field F , to construct all repre-

sentations of a 0-simple inverse semigroup and all the irreducible representations of

an arbitrary inverse semigroup from those of its associated Brandt semigroup. To

provide a method for finding the desired representations, Munn used the results and

concepts of [69,71].

For a semigroup S, we write S = S0 when S is a semigroup which has a zero

and at least one other element. Munn showed that the following conditions are

important in the theory of representations of a semigroup S = S0.

C1. If a, b, c are elements of S such that abc = 0, then either ab = 0 or bc = 0.

C2. If M and N are non-zero ideals of S, then so is M ∩N .

The first condition is called a categorical at 0. In the case where {0} is a prime ideal

of S (which means that the complement S \ {0} is a subsemigroup) both conditions

are trivially satisfied.

Let Γ be a representation of a semigroup S = S0 of degree n over a field F . By

convention, we require Γ(0) to be the n× n zero matrix 0. If S 6= S0, then we may

extend any representation Γ of S to a representation of S0 by defining Γ(0) = 0.

Throughout this paper, Munn dealt with the case S = S0.

Recall the notation of the vanishing ideal of Γ, V (Γ) = {x ∈ S : Γ(x) = 0}.
Now, we define some notions on S which play a prominent part in the discussion.

1. r(Γ) = least integer s greater than zero such that, for some x ∈ S \ V (Γ), the

matrix representation Γ(x) has rank s.

2. M(Γ) = {x : x ∈ S, rank Γ(x) = r(Γ)} ∪ V (Γ). If r(Γ) = n, then M(Γ) = S

and Γ(x) is non-singular for all x in S \ V (Γ).

In preparation for the main purpose of the paper, we state some required results

related to these subsets.

Lemma 5.7.1. [70, Lemma 1.5] Let Γ be a non-null representation of a semigroup

S = S0. Then

1. V (Γ) and M(Γ) are ideals of S and M(Γ)/V (Γ) = {M(Γ)/V (Γ)}0;

2. M(Γ)/V (Γ) satisfies condition C1,

3. if a, b, c, d are elements of M(Γ) such that ab = ac /∈ V (Γ) and bd = cd /∈ V (Γ);

then Γ(b) = Γ(c).

119



Lemma 5.7.2. [70, Lemma 1.7] Let Γ be an irreducible representation of a semi-

group S = S0. Then S/V (Γ) satisfies condition C2.

Now we start our discussion about representations of inverse semigroups. For

the case of inverse semigroups, Munn reformulated part 3 of Lemma 5.7.1 as follows:

Lemma 5.7.3. [70, Lemma 2.1] Let Γ be a non-null representation of an inverse

semigroup S = S0 and let e, x, y be elements of M(Γ) such that e2 = e and ex =

ey /∈ V (Γ). Then Γ(x) = Γ(y).

Munn provided a summary of Clifford’s construction for non-null representations

of a completely 0-simple inverse semigroup [6]:

Theorem 5.7.4. [70, Lemmas 2.2 and 2.3] Let B = M0(G; k, k; ∆k), a Brandt

semigroup and let F be a field.

1. A Brandt semigroup B admits a non-null representation if and only if the rank

of B is finite.

2. Let Γ] be an irreducible representation of G0 of degree l over F and let Γ∗ be

a mapping of B into (F )kl, where (F )kl is the set of all kl × kl matrices over

F , defined by the rule Γ∗{(a; i, j)} is the k × k matrix of l × l blocks which

has Γ](a) as its (i,j)-th block and zeros elsewhere. Then Γ∗ is an irreducible

representation of B, called the basic extension of Γ].

3. Every irreducible representation Γ∗ of B is, to within equivalence, of the form

described in (1).

4. The correspondence Γ∗ ←→ Γ] established in (1) and (2) preserves reducibility.

Recall from Section 4.3 that Clifford considered Rees matrix semigroup S =

M0(G;m,n;P ) over a group G0. Also, he defined the basic extension of a represen-

tation Γ of a group G0 to a semigroup S as the unique extension of least possible

degree over F . Every other extension of Γ reduces to the basic extension and null

representations. Moreover, if the representation Γ of G0 decomposes into two rep-

resentations Γ′ and Γ′′ say, then the basic extension of Γ to S decomposes into the

basic extensions of Γ′ and Γ′′. Based on Theorem 5.7.4, Munn inferred two further

results.

Corollary 5.7.5. [70, Corollary 2.4] Let B be a Brandt semigroup of finite rank k

and let F be a field. Let Γ∗ be a representation of B of degree n over F . Then k

divides n and Γ∗(B) is a homogeneous subset of (F )n such that for x ∈ B \ {0}

rank Γ∗(x) =
n

k
.
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Corollary 5.7.6. [70, Corollary 2.5] Let B be a Brandt semigroup of finite rank k

and let f1, . . . , fk be the distinct non-zero idempotents of B. Let Γ∗ be an irreducible

representation of B of degree n over F. Then

k∑
i=1

Γ∗(fi) = In.

The notions of the following paragraph are attributed to Munn [71]. A congru-

ence ρ on a semigroup S = S0 is proper if {0} is a ρ-class of S; that is, if 0ρ]ρ
−1
] = 0,

or in other words, if aρ] = 0ρ] implies a = 0, where ρ] denotes the natural ho-

momorphism of S onto S/ρ. If S/ρ is a Brandt semigroup, then a congruence ρ

is called a Brandt congruence. Conditions C1 and C2 are necessary conditions for

the existence of a proper Brandt congruence on an inverse semigroup S = S0. Let

σ be a congruence satisfying: {0} is a σ-class and if x, y ∈ S \ {0} then xσy if

and only if there exists an idempotent e ∈ S such that ex = ey 6= 0. Then σ is a

proper Brandt congruence on S and is the unique finest such congruence. That is,

if τ is any proper Brandt congruence on S, then σ ⊆ τ . The corresponding largest

homomorphic image S/σ is denoted by BS.

For any 0-simple inverse semigroup S of finite rank, not equal to zero, the fol-

lowing theorem shows that there is a natural relation between the non-null repre-

sentations of S and those of BS.

Theorem 5.7.7. [70, Theorem 2.6] Let S be a 0-simple inverse semigroup and F

be a field.

1. The semigroup S admits a non-null representation if and only if S has a finite

rank, not equal to zero.

2. Let S have finite non-zero rank and let Γ∗ be a non-null representation of BS

of degree n over F. Let x → x̄ denote the natural homomorphism of S onto

BS. Then a representation Γ, defined on S by:

Γ(x) = Γ∗(x̄)

for all x in S, is a non-null representation of S of degree n over F.

3. Every non-null representation Γ of S is obtained from a non-null representation

Γ∗ of BS in the above way.

So, the representations of S depend only on those of BS. Thus we have a one-

to-one correspondence between representations of S and representations of BS.
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Suppose that S is a simple inverse semigroup and S 6= S0. In this case {0} is a

prime ideal of S0 and hence S0 satisfies conditions C1 and C2. Thus, by deleting the

zero elements from S0 and BS0 , we get that BS0 \0 (∼= GS) is a group. Thus, we can

use the above result to find the representations of S in terms of the representations

of GS, the maximal group homomorphic image of S.

In the last part of this paper, Munn worked with an arbitrary inverse semigroup

S = S0. We need to set up some notation before stating the main result, which

gives a method of obtaining the irreducible representations of an inverse semigroup

S = S0. Let V 6= S be an ideal of S such that S/V satisfies condition C2. If S/V

has non-zero rank, then there is an ideal M of S, strictly containing V (so that

M/V = (M/V )0) and having the property that M/V is the unique maximal ideal of

S/V satisfying condition C1. Furthermore, M/V is an inverse semigroup satisfying

condition C2 and thus the Brandt semigroup BM/V exists.

Theorem 5.7.8. [70, Theorem 3.1] Let S = S0 be an inverse semigroup and F be

a field.

1. Let V (6= S) be an ideal of S such that S/V satisfies condition C2 and has

finite non-zero rank k. Let M be an ideal of S containing V such that M/V

is the maximal ideal of S/V satisfying condition C1.

2. Let a→ ā denote the natural homomorphism of M onto BM/V . Let e1, . . . , ek

be idempotents of M such that ē1, . . . , ēk are the distinct non-zero idempotents

of BM/V . Let Γ∗ be an irreducible representation of BM/V of degree n over F.

Then Γ, defined on S by the rule that

Γ(x) =
k∑
i=1

Γ∗(eix)

for all x in S, is an irreducible representation of S of degree n over F. Further-

more, V (Γ) = V , M(Γ) = M , r(Γ) = n÷ k, and for any x in S, rank Γ(x) is

a multiple of r(Γ).

3. Conversely, every irreducible representation of S over F is of the type described

above.

Theorem 5.7.8 shows that there is a natural bijective correspondence between

the set of all irreducible representations of an inverse semigroup S and those of the

associated Brandt semigroups BM/V of finite rank. In part 1 of this theorem, if

instead of the ideal M we put an ideal T strictly containing V and such that T/V

satisfies condition C1, then T/V ⊆ M/V and so BT/V
∼= BM/V and the formula

mentioned above holds. Then, Munn concluded the paper by utilizing Theorem
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5.7.8 to find the principal irreducible representations of S and the prime irreducible

representations of S.

We have now finished our review of the last paper in a course of six written by

Munn between 1955 and 1964 about the theory of semigroup representations. Next

we need to discuss the overall context of Munn’s work and try to analyze his vision

and line of thought. This is the content of the last section which also includes a

synopsis, but before that we briefly discuss the work of Ponizovskii.

5.8 Ponizovskii’s Contribution

Paying tribute to the achievement of Munn and Ponizovskii on semigroup algebras,

Hollings says in [36, Chapter 11, page 279]: “the two main authors of [the] new

representation theory were Munn and Ponizovskii.”.

One might wonder why we have not so far devoted a complete section (or even

a subsection) to Ponizovskii. The answer is twofold. First, we had poor access to

Ponizovskii’s work. In fact, we know little about his life: we did not find a piece

of biographical information about Ponizovskii in the literature except for a small

paragraph in [36], where Hollings also points out this absence of materials on the

researcher’s life. Using the limited available resources, we outline his early contri-

bution to the theory of semigroup representations.

Ponizovskii’s first paper was in 1956 and was entitled On matrix representations

of associative systems. The second paper was On irreducible matrix representations

of finite semigroups, in 1958. Both papers were written in Russian. What we found

is that from the beginning of their work, Munn and Ponizovskii were mindful of

the importance of the semisimplicity of semigroup algebras in studying semigroup

representations. Regarding semisimplicity, in a direct parallel to Munn’s work [65],

Ponizovskii’s 1956 work covered very similar ground to Munn. Additionally, with

respect to the construction of all irreducible representations of Rees matrix semi-

groups, Ponizovskii’s 1958 result corresponded to Munn’s 1957 [36].

Therefore, since our main concern is in Munn’s work and given the above rea-

son, we limit ourselves to tackle briefly Ponizovskii’s work on representations of

semigroups later in Section 6.1.
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5.9 Discussion and Synopsis

Each of Munn’s papers has been treated in isolation, so we need to retrace the flow

of ideas across the papers as a group. Chapter 3 addresses the image that we have

in our minds concerning the Clifford-Munn-Ponizovskii correspondence. Let us see

how Munn’s papers led up to the correspondence.

At the start [65], Munn was motivated to develop the concepts of Maschke’s

Theorem, and its consequences, which enable us to study representations of a finite

group via its irreducible representations. Thus, he determined the representations

of a finite semigroup, for which the corresponding semigroup algebra is semisimple,

in terms of representations of its principal factors. As every principal factor of S

is a completely 0-simple semigroup or null, all the irreducible representations of S

can be expressed in terms of irreducible representations of maximal subgroups by

utilizing Clifford’s results [6]. This was a combined work of Clifford’s results and

Munn’s results. We recall that Clifford in his work [6] restricted a representation of a

completely simple semigroup to a representation of its maximal subgroups, hence it

was a restriction process and not the reduction process described in Chapter 3. Also,

Clifford extended representations of the maximal subgroups of a completely simple

semigroup to obtain representations of the whole semigroup. This gives a one-to-one

correspondence between representations of a completely simple semigroup and the

representations of its maximal subgroups. Thus Clifford’s terminology in his theory

of semigroup representations was the restriction and extension of a representation

and not the reduction and induction presented in Chapter 3.

In [66], Munn gave a theoretical technique to connect, without recourse to reduc-

tion or induction presented in Chapter 3, the irreducible representations of a finite

semigroup (whose algebra is semisimple) to the representations of its associated

groups. He provided a one-to-one correspondence between the irreducible repre-

sentations of a finite semigroup whose algebras are semisimple and the irreducible

representations of its principal factors. The formulas in his theorems tell us that

representations of a finite semigroup exist, but they do not explicitly describe what

the representations look like. We can say that the idea here is similar to the Clifford-

Munn-Ponizovskii correspondence, which relates representations of a semigroup to

representations of its maximal subgroups but with different formulation. Wherein

lies the difference? Munn’s version of what we call the Clifford-Munn-Ponizovskii

correspondence is different from the version in Chapter 3 which is in a modern form.

The fundamental difference is that the one given in Chapter 3 is directly between

a semigroup and its maximal subgroups using induction and reduction processes;

whereas Munn’s version which appeared in the results of [66, Section 2 and 3] is
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between a semigroup and its principal factors using the results of [66] and Clifford’s

result [6]. Thus until this stage, there was no explicit detailed explanation about

reduction and induction process of representations, as given in Chapter 3. This

came later in the paper of Rhodes and Zalcstein [95].

As indicated previously, Munn’s paper, The characters of the symmetric inverse

semigroup [67] is distinguished. It seems to be the first time in the three first papers

that there is an explicit connection made between the irreducible representations

of the symmetric inverse monoid In and the irreducible representations of the max-

imal subgroups, the symmetric groups. Munn provided a formula for irreducible

characters of the symmetric inverse monoid in terms of the irreducible characters

of the symmetric groups. This was a special case of his general theory developed

in [66, Section 4] of representations of finite semigroups. We can say that Munn

provided the induction process in a different form from the one given in Chapter 3.

In the previous two papers [65,66], we have a completely simple semigroup (Rees

matrix semigroup) and one maximal subgroup. Munn is showing that there is a

one-to-one correspondence between representations of the basic group and repre-

sentations of the Rees matrix semigroup itself. In [67] he is presenting again the

same idea, in a slightly more complicated way. Furthermore, the paper does not

contain any hint or reference to reduction – the opposite process of induction – and

we would anticipate that Munn would provide in his next work a reduction method

or at least would generalize his induction process, but he seemingly did not.

For an arbitrary semigroup S, Munn [68] introduced the concept of an apex of a

representation, and he called its associated representation a principal representation.

Furthermore, he showed that when a semigroup S satisfies a minimal condition on its

principal ideals, every irreducible representation of S is principal, thus has an apex.

As described in Chapter 3, the apex of a representation is required in the reduction

process. Munn however used the apex to construct irreducible representations of S

in terms of irreducible representations of its principal factors, and he established a

one-to-one correspondence between these representations. In this paper [68, Section

2], Munn proved that every irreducible representation has an apex. Independently,

the proof was provided by Ponizovskii in his 1956 paper. The previous result is in

fact Theorem 3.2.2 mentioned in Section 3.2. Munn then [69, 70] studied further

the representations of inverse semigroups. The last paper [70] concluded with an

open-ended statement: “the question of determining the reducible representations

remains open”. Contrary to our expectations, Munn quit the subject and left the

question to his successors.

125



The theoretical treatment of the Clifford-Munn-Ponizovskii correspondence the-

ory presented in Chapter 3 connects the irreducible representations of finite monoids

with the irreducible representations of their maximal subgroups. After the above

survey on Munn’s contribution to the representation theory of semigroups, the ul-

timate question is to what extent Munn had this version of the correspondence.

The answer is that the full form of the correspondence is not in Munn’s papers

examined above. Thus because we already know the correspondence, and this may

not have been obvious to Munn, it is easy for us to recognize a partial version of

Munn and others and determine the basis for attributing any aspect of this corre-

spondence to Munn. The basis and partial versions of the commonly referred to as

the Clifford-Munn-Ponizovskii correspondence theory that we have seen in Munn’s

work are in [66, Sections 2 and 3], [67, Sections 3] and [68, Section 2].

It is time now to identify the people other than Rees [91], Green [26], and Clif-

ford [5, 6] who were involved in Munn’s development of semigroup representation

theory.

Clifford’s representations of completely simple semigroups by matrices over a

suitable field had been referred to by Munn in his first published paper [65], and

afterwards. It is obvious that, from the very beginning and throughout these pa-

pers, Clifford’s contribution was the prime and essential motivator for Munn’s de-

velopment of semigroup representation theory. Clifford in [6] obtained representa-

tions of Rees matrix semigroups as extension of representations of the basic groups.

Munn then in [65], adapted Clifford’s result and found irreducible representations

of semisimple algebra of Rees matrix semigroups (Munn algebras). Munn’s 1955 re-

sults about semisimplicity were found independently by Ponizovskii in his 1956 pa-

per. The following result is due to Munn [65] and Ponizovskii’s 1956 paper [58, Page

223]:

Theorem 5.9.1. Let S = Smn[G,P ] be a finite 0-simple semigroup and let F be

a field. Then the full reducibility holds for representations of S if and only if P is

invertible and the characteristic of F does not divide the order of G.

As we mentioned previously that until this point Munn was not aware of Poni-

zovskii’s work.

In the introduction of his 1960 paper [68], Munn wrote that “a different approach

in constructing all representations of a finite semigroup whose algebra is semisim-

ple was done independently by Ponizovskii in his 1956 paper entitled: On matrix

representations of associative systems”. In the same introduction, Munn indicated

that the proofs of Theorem 1 5.5.2 and 2 5.5.3 of [68] include a generalization of the
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technique used by Hewitt and Zuckerman in their 1957 paper [33], where they ob-

tained the irreducible representations of the full transformation monoid Tn. Hewitt

and Zuckerman observed that if Γ is an irreducible representation of Tn with apex

J , then Γ(F [J0]), is a simple algebra over a field F and therefore has an identity,

where J0 = J ∪ {0}. Thus there exist αi ∈ F and ei ∈ J such that
∑
αiΓ(ei) is the

appropriate identity matrix. Then

Γ(a) =
∑

αiΓ(aei),

for every a ∈ Tn and Γ is determined by the action of a on J0. This result was used

by Ponizovskii (1958) and also by Munn in [68]. In [33], Hewitt and Zuckerman uti-

lized their 1955 joint paper Finite dimensional convolution algebras. At the end of

paper [68, Page 309] Munn mentioned that “a method of obtaining all the irreducible

representations of a finite semigroup over an arbitrary field has recently been given

by Ponizovskii, On irreducible matrix representations of finite semigroups, 1958”.

During his Ph.D. project, Munn met Preston for the first time and Preston told

him about the new invention inverse semigroups which became preferable exam-

ples for Munn to apply his results. Also during that time, Munn was aware of the

Wagner-Preston representation theorem 2.2.13 and Preston’s 1954 work [81] on rep-

resentations of inverse semigroups by partial transformations. In his last paper [70],

Munn showed his knowledge of Warne’s 1963 work [106] on matrix representations

of d-simple semigroups. Note that the modern term for such semigroups is bisim-

ple semigroups. Warne obtained irreducible representations of a bisimple inverse

semigroup with an identity. Munn started researching bisimple semigroups just two

years after the last paper on semigroup representation theory. Munn wrote seven

papers investigating bisimple semigroups, one of them was a joint paper with his

first Ph.D. student Norman Reilly. Munn also utilized Warne’s work on bisimple

inverse semigroups with identity.

Norman Reilly, in his paper [92] pointed out that Munn in his last few years re-

turned to his first interest in semigroup algebras. He focused on linking semigroup

properties to ring-theoretic properties of their algebras and enjoyed working jointly

with Michael Crabb between 1995-2007 [38,92] with a total of nine papers. In fact,

Crabb was essentially a functional analyst, but his work with Munn was mainly on

semigroup algebras. Since semigroup algebras are the key tool in semigroup repre-

sentation theory, it seems that Munn’s successful collaboration with Michael Crabb

made him return indirectly to representations of semigroups.

We conclude that the Clifford-Munn-Ponizovskii correspondence was not stated

in a fully-fledged form in any of Munn’s papers. Looking back at the work of Clifford
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in Chapter 4, we can see only glimmers of the Clifford-Munn-Ponizovskii correspon-

dence in their works. Now, the following questions arise: if Clifford and Munn did

not have the full correspondence, so where did it first appear? And what was the

first modern formulation of the correspondence? The answers will be in Section 6.1.

In the next chapter, we will revisit some of the works mentioned here.
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Chapter 6

Some Conclusions

This chapter examines the main arguments of the thesis and is organized as follows.

We begin with a discussion of the development of semigroup representation theory

including, in particular, the Clifford-Munn-Ponizovskii correspondence theory. The

results of Chapters 4 and 5 are then summarized to connect the flow of ideas through

the timeline of the theoretical development. The following section addresses the

reasons why semigroup representation theory lay dormant during the seventies and

the eighties. Finally, we show that the theory was revived and redeveloped in the

late nineties. We especially refer to [8,36,102] for the discussion of the main points

in this chapter.

6.1 Development of the Representation Theory of

Semigroups

The theory of semigroup representations developed significantly during the fifties

and sixties, due largely to the efforts of Clifford, Munn, Ponizovskii, Hewitt and

Zuckerman, and then to Lallement and Petrich, Preston, McAlister, and Rhodes

and Zalcstein. Although this thesis concentrates mainly on the work of Munn on

the representation theory of semigroups, other parallel works that strongly depend

on Munn’s ideas are also mentioned. In this section, we try to assess every contri-

bution that impacts significantly on the theory. In order to tie up the story and to

provide a complete and detailed picture of the development, we recall and outline

some of the work discussed previously in Chapters 4 and 5.

We start with an overview of the work of Munn. Let us now recall from Chapter

1 the main representation theorem of semisimple algebras: Maschke’s Theorem is

one of the fundamental results in group representation theory. It states that if G is a

finite group and k is a field, then the group algebra of G is semisimple if and only if

the characteristic of k does not divide the order of G. Thereafter, Van der Waerden
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(1903-1996) reformulated this important result and stated the main representation

theorem of semisimple algebras:

Theorem 6.1.1. [8, Section 5.2] Every representation of a finite group G over a

field k is completely reducible if and only if the characteristic of k does not divide

the order of G.

In fact, this result shows the significant role of semisimplicity in the representa-

tion theory of algebras, whether in semigroup or group theory. In terms of groups,

this result and Maschke’s Theorem enable us to study representations of finite groups

over a certain field via its irreducible representations. This was later developed for

semigroup algebras by Munn [64, 65], in parallel with Ponizovskii (1956). Theorem

6.1.1 provided the starting point for Munn. In the introduction of his PhD thesis

in 1955, he stated that the central problem is extending Theorem 6.1.1 to the case

of a finite semigroup. Munn studied this case and found necessary and sufficient

conditions for a finite semigroup and its semigroup algebra to be semisimple.

Munn then studied the representations of finite semigroups and semigroup alge-

bras in the semisimple case. In order to illustrate the concept, he applied his results

to inverse semigroups. Basically, Munn’s results draw on the early works of Clifford

on semigroup theory, especially the work on matrix representations of completely

simple semigroups [6]. As we saw in Chapter 4 and in comparison with the early

work of Suschkewitsch, Clifford’s results constitute the core paradigm shift in repre-

sentations of semigroups. However, Suschkewitsch’s 1933 work laid the ground for

the theory of semigroup representations, as seen in Section 4.3.

Next, Munn addressed the problem of turning the known representations of the

maximal subgroups into representations of the given semigroup. Basically, he ob-

tained the irreducible representations of a finite semigroup S from the irreducible

representations of the completely (0-)simple principal factors of S, and these factors

are connected, via Clifford’s results [6], with the irreducible representations of the

maximal subgroups of S. Munn started with representations of an associated group

and ended up with all representations of of a finite semigroup. The idea was looking

for representations for a Rees matrix semigroup via the representations of its basic

group. Here, Munn was demonstrating that there is a one-to-one correspondence

between the representations of a Rees matrix semigroup and representations of its

basic group. From our point of view, this was the start of the well-known Clifford-

Munn-Ponizovskii correspondence.

Munn obtained representations of different types of simple semigroups: non-

singular semigroups and arbitrary semigroups whose algebras are semisimple [65,66].
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As usual, inverse semigroups were the ideal semigroups to which to apply the results.

Then, he studied as a particular example the symmetric inverse semigroup. Using

the fact that every finite inverse semigroup is completely reducible (we saw this

result in Chapter 3), Munn succeeded in describing all irreducible characters of the

symmetric inverse semigroup from irreducible characters of its maximal subgroups,

which are isomorphic to symmetric groups [67]. As we have indicated in Chapter

5, this is the point where Munn might have formulated what we now understand as

the Clifford-Munn-Ponizovskii correspondence, but he did not.

The procedure where we take a representation of a maximal subgroup and turn

it into a representation of the whole semigroup is the induction process, as seen in

Chapter 3. The induction process for the symmetric inverse semigroup In in Munn’s

sense is slightly different from the modern one which is provided in [22, Section 11.2].

First, he relates the representations of the symmetric group to the representations

of principal factors of the symmetric inverse semigroup. Second, he defines the rep-

resentations of the symmetric inverse semigroup in terms of those of its principal

factors. This could be the first time where there was an explicit connection between

the irreducible representations of a semigroup and the irreducible representations of

the maximal subgroups. During that time, Munn was using again the same idea of

the Clifford-Munn-Ponizovskii correspondence, but in a slightly more complicated

example, as seen in Section 5.4.

In 1960, Munn was aware of the work of Ponizovskii (1956) on semigroup rep-

resentations. For the first time in his paper [68], Munn pointed out that both of

them worked independently on the same problem of finding all representations of a

finite semigroup whose algebra is semisimple over a specific field. He also stated that

Ponizovskii addressed independently the same problem of obtaining all representa-

tions of a finite semigroup whose algebra is semisimple [68, page 295]. Moreover,

Munn took advantage of the technique of Hewitt and Zuckerman in constructing the

irreducible representations of the full transformation monoid Tn over the complex

field [33] (we will discuss this work later in this chapter). After defining the notion of

a principal representation, Munn obtained the irreducible principal representations

for an arbitrary semigroup and showed that there is a one-to-one correspondence

between these and the irreducible 0-restricted representations of the simple principal

factors of the semigroup. Most of Munn’s work continued to include applications of

the results to inverse semigroups.

Apparently, the study of representations of inverse semigroups was the most

popular theme in the mathematical works of Munn on the theory of semigroup rep-

resentations. Also, in 1964 he introduced a new type of representation – the prime
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representations [70]. For an arbitrary inverse semigroup, he defined the prime irre-

ducible representations in terms of those of a certain group – the maximal group

homomorphic image. Next, he gave a definition of a class of inverse semigroups for

which every irreducible representation is prime. These are called intraregular in-

verse semigroups. Munn then applied the previous result on prime representations

to them. We can thus see that the years 1956 to 1960 were productive years for

Munn.

The year 1964 was the last one in which Munn studied matrix representations of

semigroups. Here [70] we have more about representations of 0-simple inverse semi-

groups. First, he showed that there is a natural one-to-one correspondence between

representations of 0-simple inverse semigroups and those of the associated quotient

semigroup (a Brandt semigroup). Second, for a simple inverse semigroup, Munn

proved that there is a natural one-to-one correspondence between representations

of 0-simple inverse semigroup and those of the maximal group homomorphic image.

Finally, Munn demonstrated the correspondence between the irreducible represen-

tations of an inverse semigroup and the irreducible representations of the associated

Brandt semigroups of finite rank.

After our survey of the development of semigroup representations, and taking

into consideration that it was developed principally by Munn, we can divide the

stages of the development of the theory as follows:

• The Pre-Munn era; the initial phase (1933-1954): This contains the early

work of Suschkewitsch and the work of Rees and Green on the structure

of semigroups. This stage includes the work of Clifford in 1942, described

by Hollings [36, Section 11.2, page 285]: “Clifford’s work might therefore be

viewed as bridging the initial work of Suschkewitsch and that of Munn and

Ponizovskii”.

• The Munn era (1955-1964): In addition to Munn’s work, this stage includes

the work of Clifford, Hewitt and Zuckerman, Ponizovskii and Preston.

• The Post-Munn era (1965-1975): This period contains the work of McAlister,

Lallement and Petrich, Preston, and Rhodes and Zalcstein.

• The dormant era (1975-1995).

• The revival era (1995-current): This follows a two-decade period of inactiv-

ity in the development of the theory of semigroup representations. Here, we

will have the work of Putcha, Rhodes, Brown, Steinberg and others. This is

discussed in the third section of the present chapter.
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We will review each stage individually.

The Pre-Munn era (1933-1954):

The first paper on semigroup theory was published in 1928 and the first on matrix

representations of semigroups was in 1933. Both papers were by Suschkewitsch.

According to Hollings (in an unpublished paper), Munn as a student was aware of

the first paper but he did not know about the other papers of Suschkewitsch listed

under his name in the bibliography of [8]. The most influential works on semigroup

theory in this period were those of Rees [91], Clifford [5], and Green [26], [36, Section

11.4] . Because of the absence of abstract algebra in the syllabus of the University

of Glasgow, where Munn graduated as an undergraduate student, Munn started his

PhD journey in Cambridge with little knowledge of algebra. The contributions of

Rees [91], Clifford [5], and Green [26] helped him to build a strong foundation in

semigroup theory. The paper of Rees in 1940 attracted Munn to become a semi-

group theorist, and Clifford’s papers [5, 6] provided him with the starting point of

his PhD project.

We now briefly discuss Suschkewitsch’s 1933 paper Über die Matrizendarstellung

der verallgemeinerten Gruppen. In this paper, Suschkewitsch showed the impor-

tance of matrices in the study of semigroup theory, which becomes in a concrete

form after involving matrices. His goal was to characterize all representations of

two certain types of finite semigroups which were called left groups (in a modern

terminology, a left group is a semigroup which is both left simple and right can-

cellative) and Kerngroups (the union of all the minimal left ideals of a semigroup

S; this is in fact a finite simple semigroup without a zero element) [36, Section 11.1].

Firstly, Suschkewitsch stated the following theorem for an arbitrary group:

Theorem 6.1.2. [36, Theorem 11.3] All representations of a (finite) group by means

of m ×m matrices of rank n < m may be obtained from the representations of the

same group by n× n matrices of rank n.

Secondly, he extended this result to the case of left groups. According to Suschke-

witsch, a Kerngruppe may be written as a union of left groups, so he used the result

on left groups also to obtain representations of Kerngruppen by means of m × m
matrices of rank n < m. According to [36, Section 11.1, page 282], Suschkewitsch’s

construction of representations of Kerngruppen is very long and Clifford’s 1942 pa-

per provides a simpler description of these representations, as appeared in Section

4.3. Suschkewitsch ended his paper by applications first to Klein 4-group in the form

of 2 × 2 matrices of rank 2, then to the Kerngruppe formed from four isomorphic
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copies of Klein-4-group in terms of 3× 3 matrices of rank 2 [36, Section 11.1].

Clifford, in his 1942 paper [6], provided a clear definition of a representation

close to the modern one, as follows:

Definition 6.1.3. [6, Page 327] Let S be a semigroup, a be an element in S and

F be a field. Let T (a) be an n× n matrix corresponds to a. If, for all a, b ∈ S,

T (ab) = T (a)T (b),

then the correspondence Γ : a→ T (a) is called a matrix representation of S over F

of degree n.

This is similar to Definition 3.1.3 provided in Section 3.1. Clifford was influenced

by Rees [91] and Suschkewitsch (1933) and by his work on group representations.

He showed his awareness of these works by developing their results. He used his

own notation for the Rees matrix semigroup: it was denoted by (a)ij, instead of

the triple form (i, a, j), where a ∈ G0 = G ∪ {0}. Clifford’s aim was to construct

all finite-dimensional irreducible representations of a Rees matrix semigroup over

a group with zero element as extensions of irreducible representations of its basic

group (its maximal subgroup). He also obtained irreducible representations of the

maximal subgroup as restrictions of the irreducible representations of the Rees ma-

trix semigroup, as seen in Section 4.3.

Clifford discussed also the irreducibility and equivalence of these representations.

He then ended the paper with illustrations involving Brandt groupoids. This work is

regarded as the core of the development of the theory because it was an inspiration

for many and led to a great productive phase by Munn and others.

The Munn era (1955-1964):

The outstanding contributions in this period were made by Munn and he left a

prominent mark on the theory. In this part, we discuss the works of other mathe-

maticians in the field.

Any collection of one-one partial mappings, with or without 0, whose inclusion

is not always necessary, was termed simply a semigroup of 1-1 mappings if it was

closed under composition. If, in addition, it was closed under inversion, then the

semigroup was called to be complete [36, Section 10.6, page 274].

In 1954, Preston published his first paper on the representation theory of semi-

groups [81], where he investigated representations of a new discovery at that time –
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the inverse semigroups introduced by Wagner in 1952 (Russian) and independently

by Preston in 1954. Preston proved the following result:

Theorem 6.1.4. [81, Theorem 1] A semigroup admits a faithful representation as

a complete semigroup of 1-1 mappings if and only if it is an inverse semigroup.

Independently, this result also obtained by Wagner in his 1952 paper Generalised

groups. In fact, the representation in the previous theorem is indeed the analogue of

Cayley’s theorem in inverse semigroup theory, the Wagner-Preston representation

theorem 2.2.13 mentioned in Section 2.1.

Due to a lack of communication, Ponizovskii (1956) achieved very similar re-

sults on the semisimplicity of semigroups to those of Munn in his paper [65]. Both

described the semisimplicity of semigroup algebras in terms of the invertibility of

the sandwich matrices of Rees matrix semigroups over appropriate group algebras.

Although Ponizovskii published his first paper, On matrix representations of as-

sociative systems (Russian) in 1956, he underlined that he obtained these results

in 1952 and 1953 – that is, before the publication of Munn’s 1955 work on the

topic. For a given field P , Ponizovskii termed a semigroup whose semigroup al-

gebra over P is semisimple a P-system. He investigated the semisimplicity of the

symmetric inverse semigroup and of Rees matrix semigroups [36, Section 11.5]. In-

terestingly, even though Munn and Ponizovskii were aware of each other’s work by

the end of the 1950’s, “both continued to study representation theoretic problems,

seemingly without worrying that they might be duplicating the work of their coun-

terpart” [36, Section 11.5, page 301]. This is because there was no real prospect of

being able to communicate.

Among the results of Ponizovskii’s 1956 paper is the following theorem:

Theorem 6.1.5. [36, Section 11.5] An associative system S with a principal series

is a P-system if and only if all its principal factors are P-systems.

In modern terminology, an associative system S means a semigroup. Ponizovskii

studied the P -system in the cases of a field with characteristic zero. A general

method was given to find all irreducible matrix representations of a finite semigroup

whose algebra over an algebraically closed field is semisimple.

Utilizing only the results of Rees [91] and the results of Clifford [6], Ponizovskii

published another paper in 1958 where he studied irreducible matrix representations

of finite semigroups equipped with a zero. The title of this paper is: On irreducible

matrix representations of finite semigroups. We use an (unpublished) translation of

this paper by Hollings.
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Over a fixed field, Ponizovskii proved that every representation of every Rees

quotient of a finite semigroup S with zero generates, in one way only, an irreducible

representation of the semigroup S. As mentioned, this study was based on Clif-

ford’s fundamental construction of irreducible matrix representations of completely

0-simple semigroups [6]. Thus, all of the irreducible matrix representations of S

can be obtained. He also stated that the total number of inequivalent irreducible

representations of a semigroup S (which has a principal series) is equal to the sum of

the number of inequivalent irreducible representations of each of its principal factors.

The study of representation theory of the full transformation monoid Tn has a

long history, beginning with the joint work of Hewitt and Zuckerman [33]. In 1957,

Hewitt and Zuckerman published the paper, The irreducible representations of a

semigroup related to the symmetric group [33]. In it, they described the represen-

tations of the full transformation monoid Tn on a finite set [n] and determined all

representations of this semigroup. As stated previously, in the same year, Munn

constructed all characters of irreducible representations of the symmetric inverse

monoid In [67]. Regarding the term symmetric inverse semigroup, Hollings [36] in-

dicates that the first appearance of this term can be traced back to Munn’s 1957

paper [67]. Also, Munn in [68] generalized Hewitt and Zuckerman main theorem to

an arbitrary finite monoids. In this paper [68, Page 296], Munn pointed out that

the algebra of the full transformation monoid Tn cannot be semisimple, hence its

representations are not completely reducible. This was examined in Sections 3.1 and

3.2. Around 40 years later, Putcha in [87] computed the character table of the full

transformation monoid Tn.

Schützenberger [97, 98], Preston [83], and Tully [104, 105] dealt with a differ-

ent approach to matrix representations of semigroups than that of Munn, called

a monomial representation. According to Schützenberger in his 1957 paper [97]:

D-représentation des demigroupes, for each D-class of a semigroup S with identity,

there is a homomorphism of S into a semigroup of matrices over a group with zero.

Based on this result, and without Schützenberger’s restriction that D-classes should

be finite, Preston constructed the direct sum of the Schützenberger representations

determined by the D-classes of S and discussed the duals of these representations.

These results are presented in Preston’s paper [83].

Corresponding to each D-class in S, Preston constructed two representations M

and M ′. Let Γ = ⊕M and Γ′ = ⊕M ′ be the direct sums over the D-classes of S.

Furthermore, Γ⊕Γ′ denotes the direct sum of Γ and Γ′. Preston stated a number of

necessary and sufficient conditions for each of the representations Γ, Γ′, and Γ⊕ Γ′

to be faithful representations.
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Preston then investigated the faithfulness of these representations when a semi-

group S is regular and inverse. If Γ and Γ′ are the representations defined in the

previous paragraph then:

Theorem 6.1.6. [83, Theorem 2] Let S be a regular semigroup. A representation

Γ⊕ Γ′ is a faithful representation of S.

Generally, when S is a regular semigroup, both representations Γ and Γ′ are not

faithful. In the case that S is an inverse semigroup, however, they are faithful (this

was an observation of Clifford).

In 1960, Clifford published his second paper [7] on representations of semigroups

which is supplemental to his earlier results in [6]. He proved that all irreducible

representations of a completely simple semigroup S are obtained as the basic exten-

sions to S of the irreducible representations of the basic group G.

We end this subsection with a brief outline of two works. The first is the book

of Clifford and Preston: The Algebraic Theory of Semigroup, volume 1 [8]. We have

observed that since this book was published in 1961, it has become an important ref-

erence in semigroup theory, particularly in the representation theory of semigroups.

It can be said that it was considered as the Semigroup Bible at that time. According

to Munn, the notations of semigroup theory became largely standardized after the

publication of this book. The first volume of the book contains five chapters on the

structure of semigroups, whereas the fifth chapters is about semigroup representa-

tions by matrices.

Miller wrote on the occasion of Clifford’s sixty-fifth birthday [62, Page 9]: “the

Clifford [and] Preston work, which goes beyond its predecessors in breadth and

depth, is both a treatise and a textbook”. Hollings says “it is arguably the most

influential semigroup textbook to date” [35, Section 2, page 501]. That is why we

consult Clifford and Preston’s book [8] as our main reference for the study of the

development of semigroup representation theory during Munn’s time and even be-

fore that.

The second work of this part is a paper written by Warne in 1963 [106], where

he considered a type of semigroup called a d-simple semigroup. Let S be any semi-

group with identity element. Two elements a and b in S are said to be d-equivalent

if there exists an element d in S such that Sa = Sd and bS = dS. Then a semi-

group S is d-simple if it consists of a single class of d-equivalent elements. In other

words, a semigroup S is d-simple if any two elements in S are D-related. Warne
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determined matrix representations of d-simple semigroups. We remind the reader

that the modern term for such semigroups is bisimple semigroups. Regarding this

paper, Warne wrote [106, Page 434]: “our paper is the first paper in matrix repre-

sentations of semigroups that makes use of the technique of embedding a semigroup

in more special semigroup. We feel this technique may have further applications in

the representation theory”.

The Post-Munn era (1965-1975):

In this subsection, we provide a general outline of the work done after Munn ceased

to work on representation theory. In 1967, McAlister produced his first paper [55],

where he made use of Munn’s paper [70]. McAlister generalized the method that was

given by Munn, to obtain the irreducible representations of an inverse semigroup, to

the case of an arbitrary semigroup. Throughout McAlister’s paper, all semigroups

are with zero. As a preparation for the main objective, McAlister studied first the

nature of a semigroup S = S0 that obeys a number of conditions. The conditions

are:

C1. For any a, b, x ∈ S, if axb = 0, then ax = 0 or xb = 0. This condition is due

to Munn [70].

C2. If a ∈ S and aSa = {0}, then a = 0.

C3. If a, b, x, y ∈ S, then the relations ax = bx 6= 0 and ya = yb 6= 0 together

imply that a = b.

A semigroup S = S0 satisfies C1 is called categorical at zero. If S obeys C2, it is

called indecomposable at zero. Moreover, if S obeys both C1 and C2, it is called

0-primary. If S obeys C3, it is called weakly 0-cancellative or weakly reductive.

A representation θ of a semigroup S = S0 is said to be 0-restricted if it is a

0-restricted homomorphism: if aθ = 0θ then a = 0. McAlister investigated the

existence of this type of representation and then characterized all 0-restricted ir-

reducible representations of an arbitrary semigroup S = S0 via the 0-restricted

irreducible representations of certain associated semigroups. Also, he discussed the

non-null representations in the case of a 0-simple semigroup.

Two years later, Preston [84] studied matrix representations of inverse semi-

groups. He started by studying the nature of a type of inverse semigroup called

a primitive inverse semigroup of matrices, and he dealt with inverse semigroups

with zero. Preston pointed out that he developed the methods used previously by

Munn [70] to determine the matrix representations of inverse semigroups. According
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to Preston, Munn’s results on 0-simple inverse semigroups are a special case of the

results of [84].

In 1969, Lallement and Petrich published [47] which concerns irreducible matrix

representations of finite semigroups. They provided a number of results on the ir-

reducible representations of finite 0-simple semigroups. Factorizations of a matrix

H of finite rank are described as solutions to the matric equation XY = H, where

X has a finite number of columns, and Y has a finite number of rows. Clifford

used this factorization problem to determined all representations of a completely 0-

simple semigroup [6,7]. On the other hand, Lallement and Petrich managed to give

expressions for these representations without the factorization conditions, instead

employing Schützenberger representations by monomial matrices.

Let S be a finite semigroup and k be a field. Fix a J -class J of S and let MJ

be the k-vector space with basis the J -class J . An element s ∈ S acts on a basis

vector x of MJ by

x · s =

xs if xs ∈ J,

0 otherwise.

The MJ are called Schützenberger representations of S.

Lallement and Petrich defined a new representation called a standard represen-

tation as follows:

Definition 6.1.7. [47, Definition 1.1] Let J be a regular J -class of a finite semi-

group S and G be its Schützenberger group (G is isomorphic to the maximal sub-

groups of S contained in J). Let MJ be the Schützenberger representation of S

defined by J . If γ is a representation of G0 by matrices over a field k, define Γ(x)

for x in S to be Γ(x) = γ[MJ(x)], the matrix obtained by replacing each entry of

MJ(x) by its image under γ. Then Γ is a representation of S by matrices over k,

and is called the standard representation defined by J and γ.

For any nonempty subset W of a vector space V , [W ] is the subspace of V

spanned by W . The following theorem provides a description of all irreducible

representations of a finite semigroup:

Theorem 6.1.8. [47, Theorem 1.7] Let S be a finite semigroup. Let Γ be the

standard representation defined as in Definition 6.1.7 by a regular J -class J and

an irreducible representation γ over k of the Schützenberger group G of J. Then

Γ has a unique non-null irreducible constituent Γ∗ such that [Γ∗(S)] coincides with

[Γ∗(J)], where [Γ∗(T )] (T ⊆ S) denotes the linear closure of Γ∗(T ). Conversely,

every irreducible representation of S is equivalent to the constituent Γ∗ of a standard

representation Γ defined above.
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The proof of this theorem ends with a general formula for an irreducible repre-

sentation Γ∗ of S defined by its apex J and an irreducible representation γ of the

group of J . For every x in S, the formula is

Γ∗(x) = It,nrAγ[MJ(x)]A−1Inr,t,

where r is the degree of γ, nr is the degree of Γ, Inr,t is the nr × t matrix whose

entries are (Inr,t)ij = 1 when i = j and 0 elsewhere, and t = rank γ(P ). Here, P is a

matrix of the principal factor Q(J) relative to J , and since J is a regular J -class of

S, we have Q(J) ∼= Rees matrix semigroup M0(G; I,Λ;P ). We may always choose

a basis so that

γ(P ) =

(
Ir 0

0 0

)
,

and then the matrix A is the appropriate change-of-basis matrix. In Theorem 6.1.8,

if S is a finite 0-simple semigroup, then the standard representation Γ has only one

non-null constituent Γ∗. Generally, if S is not 0-simple semigroup, then Γ has non-

null constituents distinct from Γ∗.

In 1969, McAlister published his second paper on the theme [56]. He explained

the concept of basic representations from his own perspective. Moreover, he proved

that when S is a completely 0-simple semigroup, then his definition of this type

of representation is equivalent to Clifford’s concept of basic extension of matrix

representations of a group G to matrix representations of M0(G; I,Λ;P ) [6, 7].

Definition 6.1.9. [56, Section 2] A representation Γ of a semigroup S = S0 by

linear transformations of the finite-dimensional vector space V over a field k is called

basic if for each ideal N of S such that Γ(N) 6= 0, we have:

1. UΓ(N) 6= 0 whenever U is a nonzero subspace of V ;

2. [V Γ(N)] = V .

For a completely 0-simple semigroup, the next theorem shows that a basic rep-

resentation is equivalent to the definition provided by Clifford in [6, 7]:

Theorem 6.1.10. [56, Theorem 3.12] Let S = M0(G; I,Λ;P ) be a completely 0-

simple semigroup and Γ be a representation of S of degree n over a field k. Then the

following conditions on Γ are equivalent:

1. Γ is basic;

2. Γ is basic in the sense of Clifford (it is a basic extension of matrix represen-

tation of G).

Recall that a representation Γ is called proper if
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1. Γ(z) = 0 when S has a zero element z;

2. Γ is not decomposable into a direct sum of two representations, one of which

is the null representation.

For finite 0-simple semigroups, we have the following characterization:

Theorem 6.1.11. [56, Theorem 2.3] Let S =M0(G;m,n;P ) be a finite 0-simple

semigroup and let k be a field. Then the following are equivalent:

1. the basic radical Bk(S) = {x ∈ k0[S] : SxS = 0} is equal to zero, where k0[S]

is the contracted algebra of S over k;

2. P is invertible over the algebra k[G];

3. k0[S] has an identity;

4. m = n and k0[S] is isomorphic to the algebra of all n× n matrices over k[G];

5. S is quasi-simple over k; that is, all proper representations of S over k decom-

pose into basic representations;

6. each proper representation of S over k is basic.

We refer the reader to Section 5.2 for the concept of contracted algebra of a finite

semigroup.

Additionally, we have the next result for finite semigroups:

Theorem 6.1.12. [56, Theorem 2.4] Let S = S0 be a finite semigroup and let k

be a field. Then each proper representation of S over k is basic if and only if S is

0-simple and satisfies the six conditions of Theorem 6.1.11.

McAlister constructed all basic representations of an arbitrary semigroup in

terms of basic representations of completely 0-simple semigroups. This construction

is a generalization of Clifford’s 1942 results [6]. A number of results on homogeneous

semigroups of linear transformations and on their representations were given. He

then defined a fully basically reducible representation as follows:

Definition 6.1.13. [56, Section 7] Let S = S0 be a semigroup and let Γ be a

representation of S of degree n over a field k. Then Γ is fully basically reducible

if each non-null indecomposable representation of Γ is basic. Any fully reducible

representation of S is fully basically reducible.

Among the results in [56] regarding fully basically reducible representations, we

select the following:
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Theorem 6.1.14. [56, Theorem 7.1] Any basic representation of a semigroup S =

S0 of degree n over a field k is fully basically reducible.

Corollary 6.1.15. [56, Corollary 2] A representation of S of degree n over a field k

is fully basically reducible if and only if it is the direct sum of basic representations.

In the last section of [56], McAlister applied his results to inverse semigroups.

McAlister published his third paper [57] in 1970 also regarding basic represen-

tations of finite semigroups. The objective of the paper was the study of basic

representations of finite semigroups. He started with the basic representations of

completely 0-simple semigroups. The reason for this is that the 0-simple princi-

pal factors of S determine the basic representations of S. Furthermore, the paper

contains a discussion about the co-called quasisimplicity of semigroups and their

algebras. McAlister investigated first the quasisimplicity of completely 0-simple

semigroups and then of arbitrary finite semigroups.

Let S = S0 be a finite semigroup and let k be a field. If all representations of S

over k decompose into basic representations, then S is said to be quasisimple over k.

Explicitly, McAlister indicated that the description of the quasisimplicity of a finite

semigroup is similar to that of the semisimplicity of a finite semigroup as described

by Munn in [65]. The main result is:

Theorem 6.1.16. [57, Theorem 2.4] Let S = M0(G;m,n;P ) be a completely

0-simple semigroup and let k be a field. Then the following are equivalent:

1. S is quasisimple over k;

2. the regular representation γ of G over k extends properly only to a basic rep-

resentation of S;

3. m = n and γ(P ) is invertible over k;

4. m = n and P is invertible over the algebra k[G];

5. the (contracted) semigroup algebra k[S] of S over k has an identity;

6. m = n and k[S] ∼= (k[G])n, where (k[G])n is the algebra of all n× n matrices

over k[G].

The following theorem shows necessary and sufficient conditions for an arbitrary

finite semigroup to be a quasisimple semigroup:

Theorem 6.1.17. [57, Theorem 4.2] Let S = S0 be a finite semigroup and let k

be a field. Then S is quasisimple over k if and only if each principal factor of S is

quasisimple over k.
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Corollary 6.1.18. [57, Corollary 4.2.1] Let S = S0 be a finite semigroup and let k

be a field. If S is quasisimple over k, then each ideal of S is quasisimple over k.

McAlister then provided a description of the algebra of a finite quasisimple semi-

group over a field k:

Theorem 6.1.19. [57, Theorem 5.1] Let S = S0 be a finite semigroup and let k be

a field. Then S is quasisimple over k if and only if the algebra k[I] has an identity

for each ideal I of S.

The reason for the similarity of the results of this paper to those of Munn in [65]

is given by the following:

Corollary 6.1.20. [57, Corollary 5.2.1] Let S = S0 be a finite semigroup and let k

be a field. Then the algebra k[S] is semisimple if and only if S is quasisimple over k

and the characteristic of k does not divide the order of any maximal subgroup of S.

We continue with McAlister’s work. He published three papers in 1971. The

first [58] is in fact the first part of a survey article which deals with representations

of completely 0-simple semigroups and basic representations of arbitrary semigroups.

The second [59] contains a discussion of representations of inverse semigroups and

other special cases, and representations of finite semigroups. The subject of the

third 1971 paper [60] is that of constructing the representations of the algebra of a

completely 0-simple semigroup (Munn ring) in a different and a simpler way from

Clifford’s theory in [6, 7]. Unlike Clifford, representations in McAlister’s paper [60]

do not need to be finite dimensional or over a field. McAlister studied the morphisms

between representations of the Munn ring, over a ring with identity. He also defined

the notion of a basic representation in a slightly different way than Definition 6.1.9

above.

Definition 6.1.21. [60, Definition 1.3] Let U be a ring and R be a ring with

identity. Then a representation Γ of U over R is a morphism of the ring U into the

ring Hom(V, V ) of endomorphisms of a vector space V .

Definition 6.1.22. [60, Definition 1.4] For each representation Γ : U → Hom(V, V )

of a ring U over a ring R with identity we define

N = N(Γ) = {v ∈ V : vΓ(x) = 0 for each x ∈ U},

I = I(Γ) = submodule generated by {vΓ(x) : v ∈ V, x ∈ U}.

A representation Γ is a null representation if N(Γ) = V or, equivalently, if I(Γ) = 0.

Γ is basic if N(Γ) = 0 and I(Γ) = V .
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Basic representations are a more general type than irreducible representations,

and it turns out that every irreducible representation is basic. McAlister then showed

that the category of basic representations of a completely 0-simple semigroup S is

equivalent to the category of proper representations of any of the maximal subgroups

of S.

Based on the work of Munn [66, 67] and others, McAlister’s 1972 paper [61] is

on characters of finite semigroups. He developed further the character theory of

monoids over the complex field. Independently, this theory was also developed by

Rhodes and Zalcstein in [95]. The set of characters of a semigroup S forms an addi-

tive commutative cancellative semigroup under the operation of pointwise addition.

The pointwise multiplication of two characters also gives a character. Adjoining

the negatives of these functions gives a ring ch(S) called the character ring of S. A

character of a representation of S is irreducible if and only if the representation is

irreducible. Thus, the irreducible characters of S generate the character ring ch(S).

In [64, Theorem 8.10, page 101], Munn proved the following result:

Theorem 6.1.23. Let S be a simple semigroup with zero and F be a splitting field

of characteristic zero for the basic group of S. Then if the contracted algebra of

S over F is semisimple, every matrix representation of S over F is determined to

within equivalence by its character.

McAlister then extended Munn’s result and obtained the main result of [61] which

describes the character ring of S via the character rings of its maximal subgroups:

Theorem 6.1.24. [61, Theorem 3.4] Let S be a finite semigroup, let J1, . . . , Jr be

the regular J -classes of S, and let H1, . . . , Hr be maximal subgroups of J1, . . . , Jr,

respectively. Then

ch(S) ∼= ch(H1)× . . .× ch(Hr).

Consequently, we have the following corollary:

Corollary 6.1.25. [61, Corollary 3.5] Let S be a finite semigroup, let J1, . . . , Jr be

the regular J -classes of S, and let H1, . . . , Hr be maximal subgroups of J1, . . . , Jr,

respectively. Then two representations Γ and ∆ of S over C have the same irreducible

constituents if and only if Γ|Hi is equivalent to ∆|Hi , 1 6 i 6 r.

Moreover, the character theory was developed further by Rhodes and Zalcstein

in [95].

Thus far, we have not yet completed the whole picture of the early development

of the theory during the fifties and sixties. We now turn to the Clifford-Munn-

Ponizovskii correspondence.
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6.1.1 Development of the Clifford-Munn-Ponizovskii Corre-

spondence

As stated in Chapter 3, the Clifford-Munn-Ponizovskii correspondence is as follows.

Let M be a finite monoid, and let U denote the poset of regular J -classes of M .

Fix a J -class J of M and let e be an idempotent in E(J). Then the set Irr(M)

of irreducible representations of M is in one-to-one correspondence with the set of

irreducible representations of the various HJ , the H-class of e, hence:

Irr(M) =
⋃
J∈U

Irr(HJ).

We recall from the third chapter the key idea to understanding the Clifford-

Munn-Ponizovskii correspondence. Let S be a finite semigroup. There is a pro-

cedure called induction which turns a representation of a maximal subgroup into

a representation of the semigroup S. Moreover, there is another procedure, called

reduction, which turns a representation of S into a representation of any of the

maximal subgroups of S. If we take a maximal subgroup from each regular D-class

of S and apply induction to the irreducible representations of the given maximal

subgroups, then we obtain all irreducible representations of S. So, the way to un-

derstand the representation of S is to understand the representation of its maximal

subgroups and the induction process.

From Chapters 4 and 5, we summarize the fact that the study of this theory

started with Clifford’s construction of irreducible representations of a completely

0-simple semigroup [6]. Munn then extended this work to finite semigroups and

showed that in order to obtain their representations, it is sufficient to construct the

representations of 0-simple semigroups [65, 66]. Munn preferred principal factors

to maximal subgroups. We recall here that Clifford and then Munn both used re-

striction of representations. In the following, we explain the fundamental difference

between reduction and restriction processes. In restriction, we just restrict a repre-

sentation of a semigroup S to a part of the semigroup which is principal factor (in

Munn case) and the outcome matrix has the same size as the matrix representation

of S which we start with. While in reduction as in Chapter 3, we restrict a represen-

tation of a semigroup S to two things at once, a part of the semigroup; its maximal

subgroups and also to part of the vector space; subspace, that we are acting on and

hence the dimension of the matrix representation of S becomes small.

Munn had a mechanism that produced the irreducible representations of a fi-

nite semigroup S, but in three steps: starting with a principal series, going next

to the principal factors and then using the work of Clifford on completely 0-simple
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semigroups. Hence, it is going to be a one-to-one correspondence between the prin-

cipal factors of S and their maximal subgroups. Munn has a different formulation

of the induction process described in Chapter 3. His method starts with the irre-

ducible representations of the principal factors of a semigroup finite S. Each such

representation then gives a representation of S of same dimension of that we start

with [66]. On the contrary, in the modern method of induction in the Clifford-

Munn-Ponizovskii correspondence, we start instead with irreducible representations

of maximal subgroups and the induction process gives representations of S with di-

mensions some multiple of the dimensions of the representations which we start with.

Before his interest in the field waned, Munn wrote a paper on the symmetric in-

verse monoid [67] where he utilized [66,81] and Wagner’s 1952 paper to completely

describe all characters of the symmetric inverse monoid in terms of symmetric groups

characters. Munn used the induction process which resembles closely the modern

standpoint of the induction of the Clifford-Munn-Ponizovskii correspondence, as de-

scribed in Chapter 3, but with a different formulation and it was limited to one

particular semigroup, the symmetric inverse monoid. One might have expected

Munn to demonstrate that the method works for any semigroup, but he did not.

Munn’s paper [67] is totally different from his other papers and is also a special case

using a self-contained technique which Munn did not generalize. That is why we

consider [67] as an oddity and as a cryptic paper.

The work of Clifford [6, 7], Munn [65, 67] and Ponizovskii (1958) parameterized

the irreducible representations of finite monoids via group representation theory and

determined which finite monoids have semisimple algebras. All of these approaches

make use of Rees’s theorem from Chapter 4 which characterizes 0-simple semigroups

up to isomorphism and Wedderburn theory from Chapter 1. The definitive sum-

mary of their approach appears in Chapter 5 of Clifford and Preston’s book [8].

We know that the underlying idea of the Clifford-Munn-Ponizovskii correspon-

dence is that the irreducible representations of a finite monoid are in one-to-one cor-

respondence with the irreducible representations of the maximal subgroups. Now,

which parts of the Clifford-Munn-Ponizovskii correspondence existed at the time

Munn stopped working on the subject? The answer is as follows. The Clifford-

Munn-Ponizovskii correspondence theory developed in Clifford [6], Munn [65,66,68]

and Ponizovskii (1956). From the context of their work, we credit all these au-

thors with obtaining the description of the concept of the commonly referred to

as the Clifford-Munn-Ponizovskii correspondence but without writing it down and

specifying it explicitly. Then the correspondence developed further via monomial

representations in the works of Lallement and Petrich [47] and Rhodes and Zalc-
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stein [95].

The first time the Clifford-Munn-Ponizovskii correspondence is found in a rec-

ognizable modern form is in the paper [95, Section 2] of Rhodes and Zalcstein. We

call this paper the “mysterious” paper because although it was written in the late

sixties, it was not published until the early nineties. In the following paragraphs, we

will examine this paper. Monoids and semigroups with applications [94] is a 1991

survey book edited by John Rhodes. It contains several papers and conference talks

and includes relations to other mathematical branches and applications to different

fields. Among these is the paper entitled Elementary representation and character

theory of finite semigroups and its application [95]. It is a joint work of Rhodes and

Zalcstein. According to the book editor (Rhodes), this paper was written in the

very late 1960’s but surprisingly it was not directly published until 1991. Also, the

paper [95] was based on lectures given by Rhodes in seminar at the University of

California, Berkeley in the spring of 1968 [95, Introduction, page 335].

The paper [95] is different from the others mentioned as it is the first to contain a

modern formulation of the Clifford-Munn-Ponizovskii correspondence. In contrast,

the non-modern formulations are the partial correspondences of Munn and others.

Rhodes and Zalcstein stated the result as follows:

Theorem 6.1.26. [95, Corollary 2.13] Let S be a finite semigroup and G1, . . . , Gn

be a choice of exactly one maximal subgroup from each regular J -class of S. Then

there is a one-to-one correspondence between the irreducible representations of Gi

and the irreducible representations of S having apex J such that Gi is a maximal

subgroup of J. In particular, if ki is the number of conjugacy classes of Gi, then the

number of irreducible representations of S is
n∑
i=1

ki.

In this paper [95], and based on an unpublished argument of Munn, Rhodes

and Zalcstein managed to provide an independent construction of representations

of 0-simple semigroups. They also gave a new method for obtaining the irreducible

representations of finite semigroups. In addition, [95] includes a development of the

character theory of semigroups and applications to a so-called group complexity of

finite semigroups.

At the end of our tracing of the development of the theory and in assessing

the overall theory, we have two key points. We emphasize again that the highly

influential pioneering works on the early development of semigroup representation

theory were done, in the following order with respect to high impact, by Clifford,

Munn, Ponizovskii, Hewitt and Zuckerman, Preston, McAlister, Lallement and Pet-

rich, and Rhodes and Zalcstein. Therefore, “this area may justifiably be referred to
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as [Clifford-]Munn-Ponizovskii Theory”, as Hollings writes [36, Section 11.5, page

302].

6.2 The Dormant Era (1975-1995)

Why did Munn stop working on semigroup representations after the late 1960’s? In

Subsection 6.2.1 below, we show that in the 1950’s and 1960’s there was a certain

amount of work done on the subject, but subsequently it went relatively quiet. In

fact, it was not completely silent during the 1970’s and 1980’s, but the work done in

the area was sporadic. Then all of a sudden, in the middle of the 1990’s, interest in

the area re-blossomed. The dormant period lasted approximately twenty-five years,

during which no significant work was done in the field; several papers were simply

repetitions or slight reformulations of the work that had already been done by Munn.

Thus, due to the general perceived time frame of the subject, the question above

became: why was the quiet period not just limited to Munn but also included other

mathematicians working in the area? Therefore, the question naturally needs to be

broadened.

6.2.1 The Evidence for the Existence of the Dormant Era

Using MathSciNet, we collected statistics on the number of papers in various pe-

riods. Because Mathematical Reviews (MR) covers data from 1940 to the present,

our statistics start from 1940. There are approximately two papers in the 1940’s

that mention the phrase “semigroup representation”, and approximately 15 papers

in the 1950’s. Figure 6.1 displays the number of papers published on the subject

from 1950 to 2000. They are written in different languages; the main ones are En-

glish and Russian. From Chapter 1, we can clearly observe the difference between

the interest in group representations and that in semigroup representations from the

start. In group case, Figure 1.1 shows that from the beginning of the development

of group representations, there were hundreds of publications and then the number

of papers increased consistently and there is no indication that there was an inactive

period. On the other hand, Figure 6.1 of the development of semigroup represen-

tations shows that there were tens of publications at the start of the development

followed by an inactive period during the 1970’s and the 1980’s, then from the mid

of 1990’s semigroup representations was revived.
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Figure 6.1: The progress of semigroup representation theory

6.2.2 Comparing Group and Semigroup Representation The-

ory

In order to understand why Munn and others stopped working on the subject, and

also to give evidence to our conclusions, we compare the situation of semigroup

theory with that of group theory. Let us recall the development of group represen-

tation theory from Chapter 1. The collaboration between Dedekind and Frobenius

on group character theory started seriously in 1896. Dedekind took material from

Galois Theory and tried to understand it – dealing with certain polynomials and

their factorizations when a group is abelian. He noted something and asked Frobe-

nius if he could develop the ideas for an arbitrary group. Very quickly, the idea of

representations of a group grew out of this.

The mechanism of a group determinant is an important part on the development

of group representations. One starts with a finite group and a matrix whose rows

and columns are indexed by the elements of the group, and then inserts the variable

xgh−1 into the (g, h)-position. Then we take the determinant of this matrix, which is

a polynomial in these variables. The question that arises here is: can the polynomial

be factorized? This was the problem that Dedekind and Frobenius were considering.

The polynomial can indeed be factorized, with an irreducible factor of degree d for

every irreducible representation of degree d of the group. That was what motivated

group representation theory.

Dedekind showed this in the case that the group is abelian. In responding to

Dedekind’s question about the generalizability of the idea, Frobenius invented group

character theory. He directly realized the importance of generalized group charac-

ters and that it is in fact part of a deeper theory, which was later to become group
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representation theory. Ponizovskii wrote of comparing the situation of semigroup

theory with that of group theory: “The theory of matrix groups is a rather vast

area of the group theory. This is not the case with matrix semigroups. There is

a small number of papers only devoted to this subject”, [80, Introduction, page 117].

Again, the motivation for group representation theory was from outside group

theory. It came from Galois Theory, thus making it more interesting. Dedekind and

others reformulated the notion of a character in number theory to the context of

finite abelian groups. This indicates that the theory had a promising and rigorous

start. Once Frobenius – and subsequently Burnside – started publishing papers,

there was an uninterrupted and increasing amount of material, showing continuous

development. Thus, there was no dormant period and there were also immediate ap-

plications to group theory (such as Burnside paqb Theorem 1.3) and then to physics

and chemistry. This seems quite different from the situation of semigroups. As men-

tioned in Section 1.4, this was the main reason that group representation theory had

genuinely a special appeal and glamour from the very beginning of its development.

6.2.3 The Reasons for the Dormant Era

One might think that the reason for the dormant period was that the Clifford-

Munn-Ponizovskii correspondence tells us everything we need to know about the

representations of a sensible semigroup via the irreducible representations of the

groups contained in it. In other words, the question is reduced back to group theory.

Eventually, we decided that this could not be the right reason as the correspondence

was not common enough knowledge at the time of the dormant period. Only a few

selected people were working on the subject and it was not written in the literature

and not accessible to students for them to read and understand. So, what are the

real underlying causes of the dormancy during the 1970’s and 1980’s? We have

identified three broad reasons regarding this situation. These will be discussed in

the following three subsections.

6.2.4 Motivations

We speculate that one reason for the lack of applications after Munn’s era is the

genesis of the theory of semigroup representations itself. It seems that both Clifford

and Munn were trying to generalize from groups to semigroups; this is a slightly

less appealing motivation than is the case for group representation theory. As we

mentioned above, the motivation for group representations came from outside group

theory. This was a strong and interesting start and also the main reason of its suc-

cess. On the other hand, semigroup representation theory was merely motivated by
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the desire to generalize that of group representations.

We found some evidence which supports our claim here. First, the central prob-

lem in Munn’s thesis [64] is extending Maschke’s theorem for a finite group to the

case of a finite semigroup. Second, Okniński wrote in [73, Chapter V, page 257] that

“the strength of [group representation] theory and its broad applications motivated

several authors to develop the theory of representations of semigroups”. Thus, for

semigroup representations, we identify that the motivation and the applications, as

we will explain below, were less vigorous and its development was less active than

in the group case.

Generally, a good motivation for the development of a theory is for there to be

a question, external to the area, that needs answering. This is what happened with

groups. Questions in Galois theory lead to the development of group representations.

With semigroups there did not seem to be such questions that needed answering,

external to semigroup theory. Instead, the theory was generalising an existing one,

and this, while worthwhile, is never as good a reason.

6.2.5 Applications

During the early renaissance of the theory, we found only three applications to the

study of finite semigroups. The first application was indicated by McAlister in his

1971 survey [58] and presented in Rhodes’s 1969 paper entitled: Characters and

complexity of finite semigroups [93]. In this paper, Rhodes applied semigroup repre-

sentation theory to finite semigroups. He also provided a formula for a congruence

induced on a finite semigroup S by the direct sum of all irreducible representations

of S over the field of complex numbers. This type of congruence is today called

the Rhodes radical of the semigroup. Rhodes then computed the Krohn-Rhodes

complexity (defined in [46]) of completely regular monoid via character theory.

Later in 1971, the second application was produced by Zalcstein [111] where he

applied semigroup representation theory to finite semigroup. Surprisingly, the ab-

stract of [111] mentions that the paper itself is a continuation of the results of the

mysterious paper of Rhodes and Zalcstein [95] which was listed in the references with

an indication that it would be published. As mentioned previously, the paper [95]

was written in the late sixties but it was not made public until 1991. Given the time

when the paper was written, it is considered the third attempt to apply representa-

tions of finite semigroups. Rhodes and Zalcstein developed the character theory of

finite semigroups and then applied their results to the study of group complexity of

finite semigroups.
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There is some evidence regarding the paucity of applications. In a paper [34]

entitled: The relationship of Al Clifford’s work to the current theory of semigroups,

commemorating the work of Clifford and regarding representation theory, Rhodes

stated that [34, Page 48]:

It is a beautiful theory, but unlike the situation in finite groups, it has

not had any serious applications to date. This is a mystery.

Nevertheless, Rhodes was positive and believed that representation theory of semi-

groups via the work of Clifford, Munn, McAlister and Putcha would become impor-

tant over the next 25 years, and indeed he was right. In addition, Okniński wrote

with astonishment in [73, Chapter V, page 257] that, unlike in the case of groups,

the results obtained in the early development of the theory by Munn and others had

not been used as tools to prove important facts on semigroups and their algebras.

In [58, Preface, page 191], McAlister wrote:

Although the representation theory of semigroups has given rise to many

important concepts in semigroup theory, it has not yet proved nearly as

useful as has group representation theory.

As a result of this lack of direct and serious applications, the progression of the the-

ory subsided for several years until 1996 when it was revived again by Putcha [87].

This point will be taken up in the last section.

Arguably, the modest attempts to apply semigroup representation theory reflect

perhaps the lack of awareness of the potential of the theory at that time.

6.2.6 Accessibility

From an early stage, there were interesting texts on group representation theory,

making it easier for students and those from different disciplines to engage with the

topic. On the other hand, similar books for semigroups have only just started to

appear. This might be considered as another reason for the dormancy period. Ac-

cording to [23, Introduction, page 3585], since the early contributions on the theory

of semigroup representations utilized and owed a great debt to Rees’s theorem for

0-simple semigroups, the results were somewhat inaccessible to the non-specialist in

semigroup theory. This evidence boosts our claim for the unpopularity of semigroup

representation theory as compared with groups.

When people started reducing their use of the heavy semigroup-theoretic lan-

guage in their own work, semigroup representation theory reemerged and was re-
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stored to its former glory. For example, the new approach to semigroup representa-

tion theory avoids the use of principal factors as Munn did. Also, semigroup repre-

sentation theory has become attractive to people outside semigroup theory because

of the use of Green’s relations in the formulation of results as seen in Chapter 2. Ac-

cordingly, since the early 2000’s, the number of research papers on the application of

semigroup representation theory increased to an average annual production of about

thirty papers and most of them are written by non-specialist semigroup-theorists,

according to MathSciNet. As a consequence, general mathematicians became able

to interact and easily deal with the recent results in an accessible way that was

previously hard to approach because the early results on semigroup representation

theory in the literature were technically complicated and required more advanced

knowledge about algebras.

The last section of this chapter shows that the theory is gaining ground again

and widespread application. Once we have understood the revival of semigroup rep-

resentation theory, there will be no need to wonder about the cause of its dormancy

anymore.

6.3 The Revival of Semigroup Representation The-

ory

Our investigation of the representation theory of semigroups is divided chronologi-

cally into three periods: an early active time, an inactive time and then a renewed

period which includes recent times. The early time (1940-1970) is associated with

Clifford, Munn, Ponizovskii, and then Hewitt and Zuckerman, Lallement and Pet-

rich, Preston, McAlister, Rhodes and Zalcstein. In this section, we intend to show

that, after many inactive years, the theory redeveloped in the late 1990’s and the

early 2000’s. The revival was initiated by Putcha and then by Brown, Steinberg,

Solomon and others.

Semigroup representation theory was successfully revived by Putcha in a series

of four papers [87–90] between 1996 to 2001. Putcha’s work on the topic raises the

following question: why and how did he become interested in the theory or why

did he break the silence over the theory? The predictable answer would be that

he simply got interested in the theory itself. In general, the reason for the rapid

growth of semigroup representation theory in the 1990’s is that interesting examples

started to appear in semigroup theory and outside it, in for example combinatorics,

automata theory and probability theory [102, Introduction, page xxi] . Thus we can

speculate that this is why the theory has taken off again then.
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Putcha addressed complex representations of arbitrary finite monoids in [87] and

he then applied his results, specifically, to the full transformation monoids Tn to ob-

tain all their irreducible characters. In fact, Putcha here re-derived by different

means the prior work of Hewitt and Zuckerman in [33]. Additionally, his paper [89]

has an application of semigroup representation theory to finding the weights of a

finite group of Lie type. In 2001, he dealt with irreducible character theory of finite

semigroups [90]. One year later and for the purposes of algebraic combinatorics and

representations of the symmetric group, Solomon produced a paper [101] about the

representation theory of the symmetric inverse monoid. The early 2000’s saw the

publication of many papers on the topic, for instance [2, 14, 23]. Also, a wealth of

general texts has emerged, such as [22,102].

In [23], the authors indicated that as a consequence of the heavy semigroup-

theoretic language used in the early works by Clifford, Munn and others, it seems

that when researchers from other areas needed to use semigroup representation the-

ory, they were forced to reinvent parts of the theory for themselves. A perfect

example is provided by the group theorist Brown, who was a leader in adopting this

trend in his 2000’s papers [3,4] where he studied and analyzed random walks on finite

semigroups via semigroup representation theory. According to Steinberg [102, Intro-

duction, page xix], “Brown was forced to redevelop from scratch a very special case

of monoid representation theory in order to analyze [the so-called] Markov chains”.

It seems that the papers by Brown from the early 2000’s have broadly reinvigo-

rated people’s interest. In the same manner, Steinberg emphasizes that his recent

book [102] is designed for “a fairly broad audience [and] a lot of the technical jargon

of semigroup theory is deliberately avoided to make the text accessible to as wide

readership as possible” [102, Preface, page vii]. This simplification of the theory

might be considered as a leading cause of its redevelopment. For further detail on

this topic, the reader is referred to a survey in the introduction of [102].

To conclude: motivations, applications, and accessibility (or, the lack of them)

have proven to be the reasons for the continuous rapid development of representation

theory in the case of groups and the sporadic slow development of representation

theory in the case of semigroups. Arguably, semigroup representation theory has

several advantages and a promising future for further developments in various areas

of mathematics and even beyond. We hope by the end of this last chapter that

we have provided a clear and comprehensive overview of the progress in semigroup

representation theory, starting with the modern standpoint and ending with a dis-

cussion of its origins and unusual or unpredictable development.
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[75] Okniński J, Ponizovskii JS. A new matrix representation theorem for semi-

groups. Semigroup Forum 1996; 52(1): 293-305.

[76] Pastijn F. A representation of a semigroup by a semigroup of matrices over a

group with zero. Semigroup Forum 1975; 10(1): 238-249.

159



[77] Petrich M. Representations of semigroups and the translational hull of a regular

Rees matrix semigroup. AMS Transl. 1969; 143: 303-318.

[78] Petrich M, Reilly NR. A representation of E-unitary inverse semigroups. The

Quarterly Journal of Mathematics. 1979; 30(3): 339-350.

[79] Petrich M. Some constructions related to Rees matrix semigroups. Semigroup

Forum 1999; 59(2): 244-263.

[80] Ponizovskii IS. On irreducible matrix semigroups. Semigroup Forum 1982;

24(1): 117-148.

[81] Preston GB. Representations of Inverse Semigroups. Journal of the London

Mathematical Society. 1954; 1(4): 411-419.

[82] Preston GB. A note on representations of inverse semigroups. Proceedings of

the American Mathematical Society. 1957; 8(6): 1144-1147.

[83] Preston GB. Matrix representations of semigroups. Quart. J. Math. Oxford

Ser. 1958; 9(2): 169-176.

[84] Preston GB. Matrix representations of inverse semigroups. Journal of the Aus-

tralian Mathematical Society. 1969; 9(1-2): 29-61.

[85] Preston GB. Representations of inverse semigroups by one-to-one partial

transformations of a set. Semigroup Forum. 1973; 6(1): 240-245.

[86] Preston GB. A.H. Clifford: an appreciation of his work on the occasion of his

sixty-fifth birthday. Semigroup Forum 1974; 7(1-4): 32-57.

[87] Putcha MS. Complex representations of finite monoids. Proceedings of the

London Mathematical Society. 1996; 3(3): 623-641.

[88] Putcha MS. Complex representations of finite monoids II. Highest weight cat-

egories and quivers. Journal of Algebra. 1998; 205(1): 53-76.

[89] Putcha M. Semigroups and weights for group representations. Proceedings of

the American Mathematical Society. 2000;128(10): 2835-2842.

[90] Putcha MS. Reciprocity in character theory of finite semigroups. Journal of

Pure and Applied Algebra. 2001; 163(3): 339-51.

[91] Rees D. On semi-groups. Mathematical Proceedings of the Cambridge Philo-

sophical Society 1940; 36(4): 387-400

[92] Reilly NR. Walter Douglas Munn. Semigroup Forum 2009; 78(1): 1-6.

160



[93] Rhodes J. Characters and complexity of finite semigroups. Journal of Combi-

natorial Theory. 1969; 6(1): 67-85.

[94] Rhodes J, editor. Monoids and Semigroups with Applications : Proceedings of

the Berkeley Workshop in Monoids, Berkeley, Calif., 1989. World Scientific;

1991.

[95] Rhodes J, Zalcstein Y. Elementary representation and character theory of fi-

nite semigroups and its application. Monoids and semigroups with applications

(Berkeley, CA, 1989). 1991: 334-367.

[96] Rotman J. Galois theory. Springer Science & Business Media; 1998.

[97] Schützenberger MP. D-relation representation des demi-groupes. Comptes ren-
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