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Abstract 

This thesis investigates aspects of the chemistry and transport of the upper troposphere 

and lower stratosphere (UTLS), with a particular focus on the Asian Summer Monsoon 

(ASM). The overall aims have been pursued through simulations of the TOMCAT three-

dimensional (3-D) chemical transport model in comparison with aircraft, balloon and 

satellite observations. Scientific motivation for this work has been provided by the EU 

StratoClim project which conducted flight campaigns in Greece (2016) and Nepal (2017). 

Simulations of the transport of chemically active tracers to the UT depend critically on 

the treatment of convection. In this work I have tested and further developed an 

improvement to the existing TOMCAT model by using a convection scheme based on 

mass fluxes from archived meteorological analyses. This leads to more rapid uplift of 

chemical tracers, which is most apparent for those with short lifetimes (e.g. around 5 

days). Both the old and new convection schemes have been evaluated against 

observations. 

The model has then been used to quantify the transport associated with the Asian Summer 

Monsoon (ASM) circulation, focusing on the interannual variability using decadal 

simulations forced by ERA-Interim reanalysis. The role of large-scale ascent versus 

convective transport has been investigated, along with the link between the interannual 

variability of the transport of surface-emitted CO to the UT to the strength of the ASM. 

Model intercomparisons of tropospheric age-of-air when the old (Tiedtke) convection 

scheme is applied, shows weak transport, in particular at UTLS levels, when compared 

with other state-of-the-art 3-D models. In contrast the new (archived mass flux) scheme 

shows faster and stronger transport reflected in a younger age-of-air in the UT. A 

multidecadal (1989-2017) simulation with idealized tracers show that the alternative 

convection schemes vastly impact the related confinement of such tracers in the ASM 

anticyclonic structure at 100 hPa. However, connecting this confinement with common 

metrics of the dynamical strength of the ASM circulation is not straightforward and does 

not lead to conclusive results over the time period modelled.  
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The main chemical observations so far available from the StratoClim campaign are water 

vapour and CO. Comparison between the in-situ water data from the StratoClim and the 

ERA-Interim values confirms a negative bias in UTLS in the reanalyses over the Indian 

Subcontinent region. A full chemistry model simulation is able to capture the observed 

magnitude and variability of the observed CO well. Analysis of daily model output 

reveals an interesting tri-modal pattern of elevated CO in the ASM region, which is 

strongly dependent on convection over the Tibetan Plateau but not entirely due to it. 

Injection of brominated species into the stratosphere has been investigated using 

observations from the more extensive American 2013/14 Airborne Tropical Tropopause 

Experiment (ATTREX) aircraft campaign in the Eastern Pacific. The model simulations 

with the new convective scheme agree well with UTLS observations of CHBr3, CH3Br, 

CH2Br2 and H-1211, confirming the injection of around 6 ppt bromine derived from very 

short-lived substances (VSLS) into the stratosphere. However, comparisons of observed 

and modelled BrO show that this cannot account in all cases for the amount of inorganic 

bromine observed in the lower stratosphere, suggesting direct injection of significant 

levels (a few ppt) of inorganic bromine into the stratosphere in the Tropics. 

Finally, I have investigated the impact of artificial injection of particles into the 

stratosphere – so-called geoengineering through solar radiation management to 

counteract climate change. I have assessed the possible impact of the underexplored 

particulate mineral substance, TiO2, on stratospheric ozone through enhanced 

heterogeneous chemistry. Model simulations, based on loadings causing a similar climate 

impact to the Mt Pinatubo eruption, show the injection of TiO2 particles in the 

stratosphere likely has only a small impact on present-day ozone concentrations (decrease 

of up to 0.06%). With further assumptions about the possible role of TiO2 on chlorine 

heterogeneous chemistry, a model simulation to 2049 with recurrent large Pinatubo-like 

volcanic eruptions shows that the impact with declining stratospheric chlorine loading is 

not more than a -2.5% change in ozone. 
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“The Earth is blue, how wonderful, it is amazing!” 

Yuri A. Gagarin, first human being in space 
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1 Introduction  

Since the second half of the 20th century, remarkable importance has been attributed to 

the mechanism of transport of air from the troposphere to the stratosphere (Charney and 

Drazin, 1961). Transport from the Upper Troposphere (UT) controls the amount of ozone-

depleting substances which can reach the stratosphere and thereby affect the Earth’s 

ozone shield which filters out biologically damaging short wavelength radiation. In this 

regard, the Upper Troposphere Lower Stratosphere (UTLS) exerts great influence. 

Generally speaking, the UTLS can be defined as the layer within 5 km of the tropopause, 

with a clear division between Tropics and Extra-Tropics (Gettelman et al., 2011). The 

former contains the Tropical Tropopause Layer (TTL), a transition layer between 

troposphere and stratosphere which has been recognized as the gateway for almost all the 

air originating from surface to enter the stratosphere, particularly water vapour and very 

short-lived substances (VSLS). These both have a profound impact on the stratospheric 

chemical and radiative balance (Figure 1.1.) (Gettelman et al., 2011; (Fueglistaler et al., 

2009). The Extra-Tropics TTL is characterized by the baroclinic balance and downward 

propagation of circulation and tracers anomalies (Held, 1982). The complex and not-well-

understood interactions between the most important elements of the UTLS, i.e. ozone, 

aerosol, properties of clouds and water vapour, exert an impact on the temperature 

structure of the atmosphere and surface climate. For example, ozone anomalies in the 

stratosphere and consequently in the LS where 90% of ozone is located, have evident 

consequences in terms of superficial temperature variations in the Southern Hemisphere 

(Thompson et al., 2011). 
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Figure 1.1. Schematic of global average radiative forcing (RF) in 2001 relative to 1750 

(Wm-2), divided between emitted compounds. RF values result from the effect of emitted 

compounds or processes that results in a combination of drivers. Best estimates are shown 

in black together with corresponding uncertainty. Confidence levels in the net forcing 

(VH – very high, H – high, M – medium, L – low, VL – very low) are provided on the 

right. For further details see (IPCC, 2013). 

Depletion of stratospheric ozone has been a major scientific and environmental issue of 

the past few decades. Farman, et al., (1985) first reported the large losses of column ozone 

over Antarctica. A period of intense research soon revealed that the cause of this depletion 

was chlorine and bromine which were transported to the stratosphere in the form of long-

lived source gases such as chlorofluorocarbons (CFCs) and halons. These source gases 

decompose in the stratosphere releasing the chlorine and bromine which reside in a range 

of reservoir and radical species. The radicals can destroy ozone through catalytic cycles. 

Following action in the Montreal Protocol (and amendments) the production of certain 

long-lived source gases is now severely limited (or banned completely) and the 

stratospheric loading of chlorine and bromine is decreasing (WMO, 2014). Hence 

stratospheric ozone is expected to return to 1980 values during this century and the first 
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signs have been detected (e.g. , Solomon et al., 2016; Chipperfield et al., 2017). However, 

there is concern that the transport of naturally emitted or uncontrolled anthropogenic 

halogenated very short-lived substances (VSLS) might delay the recovery of stratospheric 

ozone (Figure 1.2.). These VSLS, with lifetimes of 6 months or less, may not be expected 

to reach the stratosphere in large quantities. However, efficient transport mechanisms 

which allow this have been identified and VSLS source gases have been observed in the 

lower stratosphere (Hossaini et al., 2017). Among these transport mechanisms, the Asian 

Summer Monsoon (ASM) is believed to play an important role. 

 

Figure 1.2. SLIMCAT 3-D chemical transport model (see Chapter 3 for technical 

details) simulations of mean change in the October column O3 (DU) in the stratosphere 

over Antarctica (60–90oS) relative to a 1980 baseline. Simulations were performed 

according to three different CH2Cl2 VSLS different emission scenarios. Scenario 1 (blue, 

surface CH2Cl2 continues to increase at the mean rate observed over the 2004–2014 

period), scenario 2 (red, surface CH2Cl2 continues to increase at the mean rate observed 

over the 2012–2014 period), scenario 3 (orange, no future growth) and scenario 4 (black, 

no CH2Cl2 emissions). Note, the 1980 baseline is calculated from a model simulation 

performed with 2012 meteorology, in a similar manner to the forward simulations, to 

isolate the impact of CH2Cl2 growth from inter-annual variability due to meteorology. 

ERA-Interim meteorological fields availability starts 1979 limiting the simulations to 

1980 onwards (1979 is used as spin up year). Figure adapted from Hossaini et al., 2017. 

To a first order, Monsoon systems develop when a strong seasonal temperature contrast 

between land and ocean drastically change the wind circulation in a certain area. 

Monsoons are present in West Africa, North America, Asia and Australian (Webster and 
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Fasullo, 2003). The ASM is the strongest monsoon system on the planet and is 

characterized by the reversal of the surface horizontal winds during the Boreal winter and 

summer. It is driven, to a first order, by the different physical properties of land (Indian 

subcontinent) and ocean (Indian Ocean). The associated winds and precipitation over the 

heated land are organized in cycles lasting between 10 and 30 days, known as “active 

periods of the Monsoon”. The poleward migration of the inter-tropical convergence zone 

(ITCZ) is another aspect of ASM circulation (Figure 1.3.) (Webster and Fasullo, 2003). 

 

Figure 1.3. India southwest summer monsoon onset map, based on the work of 

Burroughs, 1999.  

The ASM exerts a profound influence on the entire atmosphere and particularly on the 

UTLS, (Lal et al., 2001; Kripalani et al., 2007) through several spatial and temporal 

scales, despite its confinement to a relatively small area of the Northern Hemisphere. 

Distinctive features of this weather system are the associated deep convection (Heath and 

Fuelberg, 2014; Bergman et al., 2012; Devasthale and Fueglistaler, 2010), and the 

development of a wide anticyclonic structure (Figure 1.4.), extending on average from 

Egypt to Eastern China in the overlying UTLS (Randel and Park, 2006). Its role in 

transporting surface-emitted anthropogenic compounds from the surface up to the UT, 
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and eventually into the stratosphere, has been object of extensive research during the past 

20 years and only recently has its effect has been partially understood thanks to in-situ 

campaigns, satellite observations and modelling results (Dethof et al., 1999; Park et al., 

2007, 2008, 2009;  Randel et al., 2010). 

Given the likely importance of the ASM for the rapid transport of air masses to the 

stratosphere, the European Union (EU) funded the StratoClim field campaigns in 2016 

and 2017. Its aim was to gain a better understanding of the ASM and its role in the climate 

system. It is well known that climate change can significantly alter the UTLS, e.g. on 

upward transport in the tropical tropopause region (Gettelman et al., 2010) or in the Asian 

monsoon circulation (Lal et al., 2001; Kripalani et al., 2007; Turner and Annamalai, 

2012), which are key regions for vertical fast transport of species, including VSLS into 

the stratosphere (Randel et al., 2010). Current understanding of key processes in the role 

of the upper troposphere and stratosphere (UTS) in climate is limited by the paucity of 

essential measurements and process studies and their neglect in state-of-the-art climate 

projections. The StratoClim campaign was conducted in Kalamata (Greece) 2016 and 

Katmandu (Nepal) 2017 with an unprecedented in-situ aircraft payload for this region and 

supporting ground stations, designed to perform highly targeted measurements in the 

ASM region. 

 

Figure 1.4. The Asian summer monsoon circulation develops a strong anticyclonic vortex 

in the upper troposphere and lower stratosphere (UTLS, thick blue arrow), spanning from 

East Asia to the Middle East. The anticyclone is a region of persistent enhanced pollution 
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in the upper troposphere during boreal summer, linked to rapid vertical transport of 

surface air from Asia, India and Indonesia in deep convection and confinement by the 

strong anticyclonic circulation. Figure courtesy of Yong Wang, FZJ Jülich. 

Concern over the impact of climate change, and the difficulties in achieving international 

agreement to limit the emission of greenhouse gases has led to discussion on whether 

other action could be taken. In August 2006 Nobel Laureate Paul Crutzen published an 

article which reinvigorated the debate around counter measures against escalating global 

surface warming, through the intentional manipulation of the environment, so called 

“geo-engineering” (Crutzen, 2006) . Solar radiation management (SRM) techniques are 

among proposed geoengineering techniques (Figure 1.5.). The aim of implementing 

these techniques is to enhance the back-scattering of incoming radiation and an option to 

achieve this is the injection of highly reflective particles at stratospheric levels. 

 

Figure 1.5. Overview of solar radiation measurement (SRM) methods whose main target 

is to enhance backscattering of the solar radiation into space, thereby reducing surface 

temperature. Figure taken from Ming et al., 2014. 

To date, injection of sulfuric acid particles and other minerals have been proposed as 

viable candidates for SRM purposes (Pope et al., 2012; Visioni et al., 2017). However, 

injection of these particles could have important effects on stratospheric chemistry 
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through enhanced ozone depletion, especially while the atmospheric loading of chlorine 

and bromine remains high. These particles could potentially provide surfaces which allow 

the same heterogeneous reactions as occur on polar stratospheric clouds (PSCs) and 

volcanic aerosol. The heterogeneous reactions which occur on atmospheric sulfuric acid 

particles has been widely researched and fairly well understood (Ammann et al., 2013; 

Burkholder et al., 2015) but this is not the case for other mineral particles. Titanium 

dioxide (TiO2) has been suggested as an interesting alternative to sulfate aerosols in SRM 

due to its large refractive index (Pope et al., 2012). Laboratory data is now becoming 

available for relevant heterogeneous chemical reactions on TiO2 particles but the 

atmospheric implications of these measurements needs to be quantified using realistic 

stratospheric models (Moon et al., 2018). 

This thesis aims to investigate a number of issues related to the chemistry and transport 

of ozone-and climate-relevant species in the UTLS. A particular focus will be on the 

dynamics of the ASM, especially in relation to new observations from the StratoClim 

campaign. A further focus will be to assess the behaviour of TiO2 as a suitable particle 

for SRM purposes with particular focus on stratospheric impact and ozone depletion 

through activation of chlorine radicals.   

 Aims of this thesis 

Although considerable progress has been made in recent years in our understanding of 

the ASM transport and the impact of intentional injection of particles on the stratospheric 

composition, important questions still remain. The aims of this thesis are to address some 

of these open issues, which can be expressed in the following three overarching sets of 

questions:  

Question 1. How rapid and efficient is the transport of surface-emitted species to the 

UTLS in the ASM? Is there significant interannual variability in this? How well can 

we represent this in global models? 

Extensive scientific research in the past years has improved our understanding of the 

transport in the UTLS due to deep convection associated with the ASM and elsewhere in 

the Tropics. However, important aspects are still uncertain and remain unquantified, 

along with our ability to model this sub-gridscale process in global models. The details 
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of the mechanisms of the transport, namely fast vertical deep convection versus large-

scale ascent, geographical contributions and subsequent uplift in the stratosphere are not 

well not understood, along with how the importance of these processes varies for tracers 

of different lifetimes. Also, transport mechanisms from surface to the UTLS due to ASM 

activity are not yet well understood and corroborated by reliable measurements (Ploeger 

et al., 2017). 

Question 2. What is the chemical composition of air entering the stratosphere via 

the Asian Summer Monsoon? How well can campaign data characterize this? 

A crucial issue is how and to what extent the ozone and the water vapour abundance are 

changing in the UTLS, as their impact on its radiative balance have been well established 

(Forster and Shine, 1999, 2002). Net upward flux of water vapour in the tropical 

tropopause due to the ASM has been pointed out by Gettelman et al., (2004) but related 

in-situ measurements are so far missing. A direct role of the ASM in transporting 

halogenated compounds in the stratosphere has been proven only for a limited number of 

long-lived species (Umezawa et al., 2014) and analogous studies for VSLS are still 

lacking which is particularly important due to their short lifetime and potential impact on 

stratospheric ozone. Likewise, in situ detailed measurements of VSLS are inadequate and 

localized and show wide spatial and temporal variations (Butler et al., 2010). However, 

transport of anthropogenic and natural compounds into the stratosphere, due to the ASM, 

remains debated (Bourassa et al., 2012; Fromm et al., 2013; Bourassa et al., 2013). 

Particular importance needs to be addressed to the transport of halogenated VSLS which 

are not regulated by the Montreal Protocol and whose negative effect on stratospheric 

ozone has been recently quantified (Hossaini et al., 2017). The analysis of StratoClim 

campaign data (and complementary data from the NASA East Pacific Airborne Tropical 

Tropopause Experiment (ATTREX)) is expected to shed new light on these aspects, 

validating the model representation of chemical species in the UTLS.   

Question 3. What are the potential impacts on stratospheric composition of 

geoengineering approaches using TiO2? 

Injection of any particle into the stratosphere potentially provides a surface for 

heterogeneous reactions which can perturb the background chemistry. In particular, 

heterogeneous reactions can activate stable reservoir species into more chemically active 
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forms, which in turn can lead to ozone depletion. The impact of known and potential 

heterogeneous reactions needs to be assessed using detailed models of stratospheric 

chemistry. Important issues to assess are the extent of ozone depletion that might be 

caused due to known reactions, and what might be the most important reactions for which 

laboratory data is not yet available. TiO2 particles have been proven to be an interesting 

candidate for SRM purposes, due to their large refractive index which is very close to the 

ideal H2SO4 corresponding value. Also, it has been largely studied and used in the context 

of submillimetre applications. (Pope et al., 2012). The energy absorbed by such a particle 

is then ri-emitted in the longwave form, but its thermal effect in the stratosphere is less 

than the same of sulfuric acid (see Figure 6.5). Nevertheless, the evaluation of uptake 

coefficients of potential ozone-depleting reactions, which involve  particles suitable for 

SRM purposes, is still largely missing. So far, uptake coefficients for reactions triggered 

by the TiO2 particles in the stratosphere have been measured only for the hydrolysis of 

N2O5 and ClONO2 (Tang et al., 2014, 2016). Corresponding chemistry-climate model 

(CCM) results on stratospheric ozone and N2O5 abundance show evident discrepancies 

with similar TOMCAT CTM simulations (Moon et al., 2018), suggesting that further 

investigations are needed to give a definite answer for the reliability of these particles for 

the above-mentioned purposes. 

 Thesis layout 

The thesis is organised as follows. Chapter 2 contains a literature review and general 

background covering the characteristics of the UTLS and the details of ASM transport. 

Chapter 3 describes the TOMCAT model used in various configurations throughout this 

study. Chapter 4 discuss the evaluation of TOMCAT model with improved treatment of 

convection and studies of tracer transport in the ASM anticyclone. Chapter 5 presents 

comparisons of the model with observations obtained during the EU StratoClim field 

campaigns of 2016 and 2017 and the NASA ATTREX campaign of 2013. Chapter 6 

presents a short review on stratospheric injection of particles for SRM purposes and 

discusses the results of the TOMCAT simulations to study the effect of TiO2 particles on 

the stratospheric ozone concentrations. Finally, Chapter 7 summarises the result of the 

thesis, synthesises overall conclusions and gives suggestions for future work. 
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2 Background 

 Introduction 

This chapter provides information on the relevant scientific background which forms the 

basis that motivates results shown in subsequent Chapters 4, 5 and 6. Section 2.2 outlines 

the structure of the atmosphere, with a particular focus on the upper troposphere and lower 

stratosphere (UTLS). Section 2.3 describes the transport characteristics associated with 

the Asian Summer Monsoon (ASM) circulation, which is central to the aims of much of 

this work. Finally, Section 2.4 summarises the 2013-2019 EU StratoClim project which 

provided scientific support for this thesis. In particular, the StratoClim field campaigns in 

2016 and 2017 provided observations on which model comparisons in Chapter 5 are 

largely based. 

 Vertical structure of the atmosphere 

The Earth’s atmosphere extends from the surface until about several hundred kilometres 

altitude. The vast majority of chemical reactions and dynamical effects occur in the 

homosphere and this layer is what is commonly defined as “Earth’s atmosphere” within 

the scientific community. However, according to the vertical temperature profile and 

physical-chemical processes which characterize the atmosphere, it is convenient to divide 

it into the following two macro-layers: 

• Homosphere: This extends from surface to about 100 km, characterized by fairly 

constant mixing ratios of the main constituents N2 (78%), O2 (21%), Ar (1%) and 

very long-lived tracers (CO2), almost independent with height. 

• Heterosphere: Above 100 km the mean free path (distance between two distinct 

collisions of a gas molecule) is more than 1 m so that collisions are so rare that 

any molecular species is then considered as independent. Under these conditions, 

the concentration of heaviest elements decreases with height more rapidly than 

lighter ones (H, H2, He) and consequently are more abundant. In this region, the 
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temperature profile is no longer used as a criterion to determine atmospheric 

properties. 

The division of the homosphere based on the temperature profile, reveals the presence of 

four fundamental layers: the troposphere, stratosphere, mesosphere and 

thermosphere (Figure 2.1.). 

 

Figure 2.1. Mean vertical structure of the Earth’s atmosphere showing temperature from 

the surface to the thermosphere. The Karman line conventionally defines the limit 

between the upper atmosphere and the deep space. (© 2014 University of Waikato, 

www.scienceleanr.org.nz). 

2.2.1 Troposphere 

The troposphere is the atmospheric layer which extends from surface to about 10-12 km 

altitude. It is characterized by a fairly constant temperature with altitude decrease whose 

value is  btw the dry and the moist adiabatic lapse rate, -10 °C/km and -6.5 respectively. 

The reason for this decrease is the adiabatic expansion of an air parcel, caused by the 
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reduction of pressure with height, which ultimately cools it down. The presence of warm 

air at lower altitude and colder air above creates vertical instability  which mixes the 

troposphere.  

The troposphere contains about 80% of the overall atmospheric mass and nearly all of the 

atmospheric water vapour. Aerosols in the troposphere have short residence times, of the 

order of magnitude of weeks, because wet deposition, dry deposition and rain scavenging 

constantly remove them. 

As shown in Figure 2.2., the vertical extent of the troposphere varies strongly with 

latitude. It reaches 7-8 km above poles, 10-12 km at middle latitudes and 16-18 km in the 

Tropics, where strong convective activity typical of this region pushes the limit of 

troposphere (i.e. the tropopause) upward. 

The top of the troposphere (so called tropopause) is limited by a temperature inversion 

which acts as a boundary. This drastically limits the extension of convective vertical 

motion, although occasional deep convective systems (clouds) can break through in the 

UTLS (Section 2.2.4), in the tropics. However, the mere temperature inversion is not 

sufficient for a full description of the properties of the tropical tropopause and a complex 

interplay between ozone, water vapor distribution together with effects of the dynamics 

and convective/radiative equilibrium better represents the characteristics of this layer ( 

Highwood and Hoskins, 1998, MacKenzie et al., 2006). The ascent of air in the UTLS 

occurs over the tropics, via a seasonal cycle of temperatures in the tropopause which then 

regulates the amount of water vapor entering the lower stratosphere. Once in the lower 

stratosphere, air is uplifted further up showing water vapor values which resemble tilted 

stripes in a time height cross section (the so-called “atmospheric tape recorder”, Mote et 

al., 1996).  Eventually, once in the UTLS air can ascend further to higher levels of the 

stratosphere and impact the ozone layer therein present. This phenomenon occurs during 

ASM and it is one of the foci of the EU StratoClim campaign (Section 2.4 and Chapter 

5). The latitudinally varying height of the tropopause (dark solid line, Figure 2.2.) is 

characterized by discontinuity at mid-latitudes. 
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Figure 2.2. Simplified vertical cross section of tropopause (thick solid line) and zonal 

wind (perpendicular to the page) for (a) the winter and (b) the summer hemispheres. 

Darker shading indicates larger windspeed. Image adapted from Stull, 2011. 

 

This tropopause discontinuity corresponds the maximum meridional temperature 

gradient, which is responsible for the evolution of a “jet stream”, which flows from the 

west and reaches speeds greater than 200 km/h (Figure 2.2.).  

The troposphere contains the Planetary Boundary Layer (PBL) which extends from the 

surface to about 2-3 km. It is characterized by an active eddy mixing, due to turbulent 

transport generated by internal friction and vertical motion generated by heated surface 

by solar radiation. The height of the PBL shows a strong diurnal cycle and generally 

increases during daytime (due the action of convection) and reduces at night-time (Garrat, 

1994). Within the PBL two sublayers can be identified: 

• Laminar boundary layer: This is the “closest” layer to surface, usually just a 

few millimetres thick, characterized by laminar motion. 

• Turbulent surface layer: This is depicted by maximum turbulence intensity 

caused by small scale vortices generated by the friction with the surface 

roughness. The turbulent surface layer extends for 50-100 m during daytime, 

while it reduces to a few metres during night-time. 

The meridional tropospheric circulation can be subdivided in three cells (Figure 2.3.): 

• Hadley cell: This is driven by the strong convection typical of equatorial regions. 

It transports humid air from the Intertropical Convergence Zone (ITCZ) up to the 
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tropopause, where it eventually loses almost all of the accumulated moisture, 

before descending in the Tropics (30oS - 30oN). Dry surface air is then re-

transported to the equator.  

• Ferrel cell: In order to explain the presence of westerlies at mid-latitudes, in 1856 

Ferrel hypothesized the presence of an indirect cell, where warm “remaining” air 

from the Hadley cell flows poleward accompanied by equatorward transport of 

cold air from the subpolar jet at higher levels. The Ferrel cell is less stable than 

the other cells described here and contributes to the establishment of perturbations 

at mid latitude.   

• Polar cell: Poleward of 60° latitude, warm and cold air masses are fairly well 

separated. Closer to the poles the flux of cold polar air prevails over any other air 

flow and builds up a convective cell with warm air rising at 60° and extremely 

cold air subsiding at the poles. Very low temperatures and humidity make the 

weather system stable and very dry. Also, as the tropospheric column above the 

poles is just 8 km deep, compared to 18 km above Tropics, a stable low pressure 

system persists and is called the polar vortex.  

 

Figure 2.3. Representation of the Earth’s mean atmospheric circulation. Blue arrows 

denote cold air, red denote warm air. Copyright Brooks/ Cole Thomson, 

www.meteoportaleitalia.it. 

http://www.meteoportaleitalia.it/images/stories/Roberto_Viccione/ferrel/ferrel2.jpg
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2.2.2 Stratosphere 

The stratosphere extends from the tropopause (Figure 2.1.) to the stratopause at about 

50km and can be divided in two sub-layers. The  former extends in a region  where the 

temperature remains approximately constant (see Figure 2.1.) and correspond to the 

UTLS (Section 2.2.4), whose tropical part will be described in detail in Section 2.3. The 

latter extends for about 25-30 km where temperature increases with altitude and for which 

vertical mixing is strongly inhibited. 

The stratosphere contains most of the atmospheric ozone (about 90%) which reaches its 

maximum concentration between 15-35 km altitude. Ozone (O3) absorbs the solar 

ultraviolet (UV) radiation consequently heating the stratosphere and causing the 

temperature inversion (Figure 2.2.). The absorption of the UV radiation by the ozone is 

fundamental to maintain life on Earth and via reactions involving 𝑂3, 𝑂2 and 𝑂: 

             𝑂2 + ℎ𝑣 → 𝑂 + 𝑂      (λ < 242 nm) 

𝑂2 + 𝑂 + 𝑀 → 𝑂3 + 𝑀 

                                       𝑂3 + ℎ𝑣 → 𝑂2 + 𝑂   (290nm < λ < 310 nm) 

 

where ℎ𝑣 is a photon energy and M represents an inert atmospheric gas such as N2 and 

O2 which absorbs the excess of kinetic energy generated by the collision between 

molecular and atomic oxygen (Matsumi et al., 2002).  

Brewer, (1949) and Dobson, (1956) first hypothesized a single poleward cell to drive the 

stratospheric circulation, in order to explain the observed ozone stratospheric distribution. 

This circulation is the so-called Brewer-Dobson circulation or BDC (Butchart, 2014). 

Tropospheric air rises in the Tropics and is transported to the winter pole, causing large 

ozone columns there (Figure 2.4.). Unlike the Hadley cell, the BDC is not generated by 

convection but is forced by large-scale atmospheric waves. It shows large seasonal 

variability and it is predicted to accelerate under current and future climate change 

(Butchart, 2014).  
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Figure 2.4. Simplified representation of the mean meridional tropospheric and 

stratospheric circulation of a general circulation model (GCM) at the solstices. Broad 

arrows show advective transport, while thin double headed arrows shows locations and 

directions of diffusive transport (figure adapted from Butchart, 2014).  

 

2.2.3 Mesosphere and thermosphere 

The highest temperatures in the stratosphere are reached at stratopause levels (Figure 

2.1.), above which the mesosphere, which literally means “middle atmosphere”, begins. 

The mesosphere extends till about 80 km and is the final layer of the homosphere. In this 

region temperature drops with altitude, to its minimum (-130°C) at the mesopause. 

Consequently, vertical mixing due to resulting convection is frequent. 

The thermosphere is several hundreds of kilometres deep and is characterized by large 

diurnal temperature variations. Note that temperature in the thermosphere is strictly 

linked to the intensity of the solar radiation (UV and x-rays) and its increase with altitude 

is due to the absorption of solar radiation by the photo-dissociation of molecular species 

such as N2 and O2. Above 100 km altitude, cosmic radiation produces the ionization of 

atoms releasing electrons.   
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2.2.4 Upper Troposphere Lower Stratosphere 

This section focusses on the UTLS, which is the vertical domain relevant to the results 

presented in Chapters 4, 5 and 6. The UTLS can be roughly defined as the layer ±5 km 

around the tropopause (Gettelman et al., 2011); this definition developed through time 

starting from the pioneering work of De Bort, (1902). An historical review of the 

development of the concept of tropopause can be found in (Gettelman et al., 2011). As a 

transitional layer, mechanisms which operate in this region can play a role in dynamical, 

radiative and chemical processes which occur in the surrounding troposphere and 

stratosphere. For instance, the stratosphere-troposphere exchange (STE) is an important 

two-way process which alters the chemistry of both the troposphere and stratosphere 

(Holton et al., 1995). Nevertheless, the UTLS is important for reasons far beyond mere 

chemical aspects. It is the region where the Cold Point Tropopause (CPT) lies (Figure 

2.7.). It is defined as the minimum temperature value below the Karman line, apart from 

the minimum reached at mesopause altitudes (Figure 2.1.). Unlike the latter, the CPT 

regulates the amount of water vapour transported into the stratosphere thereby playing a 

large role in the radiative balance of the entire atmosphere (Forster and Shine, 1999). In 

the Tropics, the dynamics of the UTLS is influenced by the Quasi Biennial Oscillation 

(QBO), which is the periodic variation (~28 months) of the direction of the zonal wind 

between 16-50 km, subsequently defined as the Upper Troposphere and Stratosphere 

(UTS), (Baldwin et al., 2001). The QBO acts on the tropospheric dynamics modifying 

planetary waves in the UTLS (Garfinkel and Hartmann, 2010). Notably, the QBO is 

evolving in the context of a warming climate, thus stressing the overall atmospheric 

chemical and radiative atmospheric interactions. 

It is convenient to divide the UTLS into two separate regions, depending on the latitude 

(Figure 2.5.): 

• Tropical UTLS: This region is characterized by radiative-convective balance and 

contains the Tropical Tropopause Layer (TTL) (Fueglistaler et al., 2009). The top 

of the TTL is an extremely important level because the flux of tropical air to higher 

latitudes is prominent (Tuck et al., 1997, Rosenlof et al., 1997). Analysis of 

Figure 2.7. (below) shows that the ASM anticyclone is located within the TTL, 

thus being an effective transport route for air therein comprised to spread at 

stratospheric heights. 
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• Extratropical UTLS: Unlike its tropical counterpart, the extratropical UTLS is 

characterized by different controlling physical processes. Baroclinic wave 

dynamics, reflected in the different tropopause height (≈17 km in the Tropics, ≈10 

km in the extra-Tropics) is dominant here (Held, 1982). 

 

 

Figure 2.5. Snapshot of the UTLS latitude-height structure along 60oW, on 15 February 

2006. Solid black lines show wind contours (10 ms-1 internal), potential temperature 

surface (dashed black lines), thermal tropopause (red dots), PV surface (2 PVU, light blue 

solid line). Extratropical layer in dark blue shading. Clouds and synoptic weather systems 

in grey shading. Static stability contours in tropopause inversion layer (TIL) are shown 

in green shading. Quasi-isentropic exchange (red wavy arrows), cross-isentropic 

exchange (orange wavy arrows). BDC is shown in deep, red solid outline, shallow dotted 

solid outline. Figure adapted from Gettelman et al., 2011. 

 ASM transport 

The ASM is one of most prominent atmospheric phenomena, involving a large portion of 

the terrestrial surface in the northern hemisphere, and affecting the lives and economic 
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resources of more than a billion people. In the last two decades, extensive research has 

been conducted to try to better understand the role of the ASM in transporting climate-

relevant species from the surface to the UTLS and related confinement in the 

corresponding Asian Summer Monsoon Anticyclone (ASMA). This section presents the 

basic concepts which defines the ASM transport via its circulation (Section 2.3.1) and 

confinement in the ASMA (Section 2.3.2). 

2.3.1 ASM circulation 

Historically, the term “monsoon” derives from Arabic word "mawsim" (مس وم , season) 

that was used to describe a weather system that shows a winter-summer shift of the 

horizontal wind field. However, the word monsoon has gradually come to refer to regions 

where there is a drastic change in rainfall intensity between winter (dry season) and 

summer (rainy season) (Webster, 1987). Monsoon systems have a profound impact on 

local, regional, and global scales of the tropical climate. The most prominent monsoon 

systems are the Asian Summer, West African and Australia Summer Monsoon (Figure 

2.6.). Precipitation is considered the most important meteorological element to 

characterize monsoon activities and these three monsoons have roughly these same mean 

precipitation rate (10 mm/day, Hung et al., 2004 and Janicot et al., 2011). While the West 

African and Asian Summer Monsoon are dynamically linked on several time scales, 

showing temporal fluctuations in the corresponding rainfalls (Janicot, 2009), the 

Australian Summer Monsoon rainfalls are not strongly correlated with succeeding Asian 

Summer Monsoon rainfalls (Hung et al., 2004). A comprehensive study (Uma et al., 

(2004) shows that Monsoon in both Northern and Southern Hemispheres have a 

significant, although variable, impact on the water vapor distribution in the UTLS, a key 

factor in the overall radiative balance of the overall atmosphere (Forster and Shine, 1999, 

2002).    
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 Figure 2.6. Schematic geographical position of the West African (a), Asian Summer (b) 

and Australian Summer Monsoon (c).  

In order to observe a monsoon structure a drastic temperature contrast between land-

ocean is needed, generated by the solar heating. The ASM is probably the most important 

seasonal meteorological phenomenon in the Northern Hemisphere. During boreal 

summer the Indian subcontinent is much warmer than the neighbouring Indian Ocean, the 

heat capacity of the latter being about four times greater than the former (4281 Jkg-1K-1 

for water and 1300 Jkg-1K-1 for dry land). However, wet soil can have about a 30% higher 

heat capacity than dry land (Webster and Fasullo, 2003). This temperature distinction 

generates a pressure gradient between the Indian Subcontinent and the Indian Ocean 

which in turn develops a flow of oceanic moisture-rich air. This is the flow which brings 

abundant rainfall over the Indian Subcontinent and develops the so-called the Asian 

Summer Monsoon (ASM) (Figures 2.7. and 2.8.). During autumn, the maximum solar 

heating peaks equatorward, transporting water vapour-depleted air to the Indian Ocean. 

This is the so-called dry phase of the Asian Monsoon. Monsoon precipitation shows 

variability from subseasonal (Parthasarathy et al., 1994) to interannual time scales 

(Turner and Annamalai, 2012).  
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Figure 2.7.  Map representing the passage of the ASM over India. Red arrows refer to 

the summer wind, while green arrows refer to the winter wind direction. The blue line 

illustrates the position and displacement of the ITCZ (figure from Burroughs, 1999). 

Distinctive features of this weather system are the associated deep convection 

(Devasthale and Fueglistaler, 2010; Bergman et al., 2012; Heath and Fuelberg, 2014) and 

the development of a wide anticyclonic structure, extending on average from Egypt to 

Eastern China in the overlying UTLS (Section 2.2.4) (Randel and Park, 2006). This 

atmospheric layer extends from 12 km (~183 hPa) to 22 km (~45 hPa) and includes the 

TTL (Fueglistaler et al., 2009). Coupling effects between the troposphere and 

stratosphere occur in this region, controlling dynamics, physics and chemistry of 

radiatively relevant species such as water vapour, ozone aerosols and cirrus (Gettelman 

et al., 2011). Processes in the UTLS can therefore modify both the troposphere and the 

stratosphere. 
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Figure 2.8. Mechanistic representation of the development of the meridional circulation 

associated with the ASM. Air coming from lower latitudes is water vapour-rich and 

eventually drawn over the land. Note the extension of the cumulus which can reach 

heights up to 15 km, corresponding to tropopause levels (not shown) (figure adapted from 

Webster and Fasullo, 2003). 

2.3.2 ASM anticyclone 

The previous section described how the ASM circulation develops and brings abundant 

rainfall to the Indian subcontinent, impacting the life of a population of more than a 

billion individuals. Together with the prominent horizontal wind, a related vertical 

transport associated with the ASM couples to surface emissions impacting regional air-

quality and the chemical-radiative balance of the overlying UTLS (Wang, 2006). The 

uplift of several pollutants, water vapour and anthropogenic emission, due to the action 

of the ASM has been evidenced by recent studies starting from the seminal work of 

Dethof et al., (1999). Once uplifted to UTLS levels, species at tropospheric heights are 

eventually “confined” into a specific circulatory structure called the Asian Summer 

Monsoon Anticyclone (ASMA) (Brunamonti et al., 2018) (Figure 2.9.). The air within 

the ASMA is fairly isolated from the surroundings, acting as an active barrier for the 

tracers therein comprised. The ASMA develops roughly from the Middle East to East 

China and is far from being static and constant in space and time. Rather, it shows 
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bimodality (Nützel, et al., 2016; Pan et al., 2016) (Figure 2.10.) east-westward 

displacement (Nützel, et al.,  2016) and eddy shedding (Popovic and Plumb, 2001; Vogel 

et al., 2014). However, an unequivocal definition of the ASM anticyclone itself has not 

yet been found. An approach based on PV-gradient maxima on the 380K level 

highlighted the existence of a barrier to separate low PV air, typical of the ASM 

circulation, from the surroundings (Ploeger et al., 2015). Low PV air has been identified 

as a proxy for the existence of an anticyclonic structure (Garny and Randel, 2013) while 

an empirical method based on the maximum of geopotential positive height to define the 

centre of the anticyclone has been recently developed (Pan et al., 2016).  

 

 

Figure 2.9. Illustration of the ASMA together with the highest (Top of Confinement, 

TOC) and lowest levels (Lapse Rate Minimum, LRP). The ASMA forms within these 

levels. Approximate pressure, altitude, potential temperature and dynamical features of 

the ASM area indicated. Description of the features CLS, LRM and ATTL are given in 

Brunamonti et al., 2018. Figure adapted from Brunamonti et al., 2018. 

In addition to a purely dynamical portrait of the ASMA, it has been recently observed 

that species such as CO and O3 (Park et al., 2007, 2008, 2009) HCN (Randel et al., 2010), 

CH3Cl (Umezawa et al., 2014), CH2Cl2 (Leedham Elvidge et al., 2015), NH3 (Höpfner 

et al., 2016), water vapour (Rolf et al., 2018) and aerosols (Vernier et al., 2015). are 

transported from the troposphere to the ASMA levels via transport mechanisms which 
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are related to three dynamical regimes of the ASM: convection over the Bay of Bengal, 

via the Tibetan plateau and large-scale ascent from the Pacific pool (Figure 2.11., Fu et 

al., 2006; Park et al., 2009; Chen et al., 2012) .  

 

Figure 2.10. Distribution of the locations of the ASMA centre determined using daily 

geopotential height at 100 hPa during JJA in various reanalyses (roughly 30 years of data 

have been used): (a) Modern-Era Retrospective Analysis (MERRA), ERA-Interim (ERA-

I), National Centers for Environmental Prediction/National Center for Atmospheric 

Research 1 (NCEP 1), (b) Japanese 25-year reanalysis (JRA25), Japanese 55-year 

reanalysis (JRA55), Climate Forecast System Reanalysis (CFSR), NCEP/Department of 

Energy (NECP 2). Figure taken from Nützel, et al., 2016. 

The contribution of each of these regions to the overall vertical transport is not clear, 

although a recent work (Pan et al., 2016) seems to identify the Tibetan plateau as a 

preferred boundary source region. The analysis of the ASM transport regimes and 

timescales is significant not only in terms of composition, dynamical and radiative 

characteristics of UTLS but also in the complex interactions between aerosols and clouds 

(Bollasina et al,. 2011). Furthermore, tracers from the UTLS can ascend to the free 
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stratosphere and interact with ozone and water vapour, whose radiative effect is 

substantial (Forster and Shine, 2002) (Figure 2.9.). However, in addition to the direct 

radiative effects of these forcings, growing evidence supports the idea that changes in the 

chemical composition of the UTLS affects surface climate, via radiative and dynamical 

mechanisms (Eyring,  et al., 2010). 

 

Figure 2.11. (a) Map of Microwave Limb Sounder (MLS) CO mixing ratio at 100 hPa in 

the Eastern Hemisphere. Black arrows denote the horizontal wind direction and strength. 

Figure from (Park et al., 2007). (b) Aura Atmospheric Chemistry Experiment- Fourier 

Transform Spectrometer (ACE-FTS) latitude vs altitude plot of HCN JJA zonal mean 

average. HCN is a chemical constituent of biomass burning and wildfires and is denoted 

by a strong oceanic sink. White dashed line shows the tropopause, while solid black lines 

denote isentropic levels. Figure taken from Randel et al., 2010. 

 StratoClim project 

The importance of the UTLS for impacting the radiative balance of the atmosphere, 

through the redistribution of aerosol, ozone-depleting substances (ODSs), water vapour 

and properties of clouds has been discussed in Section 2.2.4. Subsequent transport in the 

“free stratosphere” (Figure 2.9.) is still an ongoing debated topic and conclusive results 

are still lacking (Ploeger et al., 2017). In order to have a clearer picture of the chemical 

and dynamical processes that determine the composition of the UTLS, the production, 

transport, loss and redistribution of ozone, aerosols, water vapour and clouds need to be 

better understood. Accordingly, detailed observations in the source areas of transport are 

needed.  
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The uplift of air to UTLS heights is nevertheless not longitudinally symmetric. A key 

pathway has been identified in the ASM circulation, by Randel et al., (2010). For these 

reasons, the EU funded the project Stratospheric and Upper Tropospheric Processes for 

Better Climate Predictions (StratoClim, www.stratoclim.org) from 2013 to 2019. 

StratoClim was coordinated by Prof. Markus Rex at the Alfred Wegener Institute, 

Bremen, Germany and had components of observations and modelling. In particular, 

StratoClim had a significant field campaign, which took place 2016 and 2017 in Greece 

and in the Indian subcontinent. Overall StratoClim aimed to provide the scientific 

community with information to answer the following questions (www.stratoclim.org): 

• What are the processes which regulate the flux of aerosols and its precursors, 

water and very short-lived substances (VSLS) and where are they able to break 

into the stratosphere? 

• What is the impact of changing in stratospheric ozone and how does climate 

change affect surface climate and tropospheric composition and how does climate 

change affect the ozone layer? 

• What is the impact of changes in the concentration, nature and physical 

characteristics of the stratospheric aerosols on global climate and how does 

climate change impact the stratospheric aerosol? 

• What are the processes which link the aerosols in the UTS (roughly defined as the 

layer between 10-50 km, Sections 2.2.1 and 2.2.2) with cloud properties and how 

will these evolve under climate change conditions? 

• What is the interconnection between climate change and alterations in the 

stratospheric circulation? 

• How does tropospheric weather variability interact with the UTS and vice versa? 

• How does the tropical and extratropical efficiency evolve under climate change? 

• What is the effect of both natural and anthropogenic emissions of sulfur 

containing species on UTS aerosols and clouds? 

• What is the impact of change in the UTS on societies and their economic 

activities? 

The scientific conclusions of the StratoClim project will be used to include the role of the 

UTS in the state-of-the-art Earth System Models (ESMs) and Chemistry-Climate Models 

(CCMs), to produce new and better climate projections. In order to achieve these goals, 

http://www.stratoclim.org/
http://www.stratoclim.org/
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the StratoClim project was divided in nine work packages (WPs), as shown in Figure 

2.12.  

 

Figure 2.12. Organizational chart of the EU-StratoClim project. Courtesy of Fred Ströh, 

Juelich, Germany. 

 

WP1: Tropical field campaign. To understand the processes which lead to the interaction 

between ODSs and other pollutants, in-situ observations are needed to obtain the required 

spatial and temporal resolution. During the tropical field campaign, which took place 

2016 (Greece) and 2017 (Nepal), the former Soviet Union spy aircraft M55 Geophysica 

was used (Stefanutti et al., 1999) (Figure 2.13.).  

Between 1996-2010 the M55 Geophysica has been successfully deployed in many other 

scientific campaigns such as APE-THESEO (Stefanutti et al., 2004) and SCOUT O3 

(Vaughan, et al., 2008) .  
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Figure 2.13. Technical specifications of M55 Geophysica aircraft, used during 

StratoClim tropical campaigns in 2016 and 2017. Courtesy of Fred Ströh. 

With a maximum operational altitude of 21,000 metres and a range of 3,000 km, M55 

Geophysica provides unique in-situ measurements in barely accessible regions. The 

aircraft campaign has been conducted in Kalamata, Greece, in summer 2016 and in 

Katmandu, Nepal in 2017. The “Greek” campaign can be considered as a test for the 

proper tropical campaign  in Katmandu 2017. Locations of the 11 flights are shown in 

Figures 2.14. and 2.15.  

 

Figure 2.14. Geographical location of the M55 Geophysica during the StratoClim 

tropical campaign, Grece 2016. 
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Figure 2.15. Same as Figure 2.14. but for the Nepal campaign, based in Katmandu in 

2017. 

To pursue the scientific goals of the project, the aircraft was equipped with an 

unprecedented payload which included remote sensing, particle and gas-phase 

instruments. Table 2.1. summarizes the characteristics of the latter.  

 

Table 2.1. Summary of the gas-phase instrumentation on board M55 Geophysica during 

the Tropical field campaign (WP1). Acronyms used are as follows: Central Aerological 

Observatory (CAO), Electro-Chemical Cell (ECC), Deutsches zentrum für Luft- und 

Raumfahrt (DLR), Bergische Universität Wuppertal (BUW), Gas Chromatography (GC), 

Electron Capture Detector (ECD), Infra Red (IR), Mass Spectrometry (MS), Centro 
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Nazionale delle Ricerche (CNR), Tunable Diode Laser (TDL), Chemical Ionization Mass 

Spectroscopy (CIMS), Integrated Cavity Output Spectroscopy (ICOS), Cavity Enhanced 

Absorption Spectroscopy (CEAS), Forschungs Zentrum Jülich (FZJ) and  Time Of Flight 

(TOF). 

In addition to detailed in-situ flight observations, the tropical campaign was 

complemented with observations provided by ground stations located in the following 

key areas: Island state of Palau (7.34°N, 134.47°E) and Bhola Island, Bangladesh, 

(22.41°N,  90.76°E) (Figure 2.16.).  

 

Figure 2.16. Map of ground stations of the StratoClim campaign.  

WP2 is based on the analysis of data derived by the instrumentation on these two stations. 

These stations are designed to study the TTL above the West Pacific warm pool, which 

is an important source of air which feeds the stratosphere (Chen et al., 2012). Vertical 

profiles of SO2 and CO2, collected in the Bhola Island, have been compared with 

corresponding measurements in Palau. In combination with these, water vapour and 

ozone profiles have also been collected in summer 2016 in Nainital, India (29.35°N, 

79.46°E) and Dhulikhel, Nepal (27.62°N, 85.54°E). These measurements evidence that 

vertical transport can occur well above the CPT (Figure 2.17.).  
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Figure 2.17. Mean profiles (solid lines) and standard deviations (coloured shading) of (a) 

temperature, (b) the H2O mixing ratio and (c) the O3 mixing ratio as a function of altitude 

relative to the CPT. NT16AUG (blue) refers to the balloon campaign in Nainital, August 

2016. DK17 (red) refers to similar campaign in Dhulikhel in July-August 2017. Dashed 

lines show the average CPT (black) and the average LRM and TOC levels (Section 2.3.2) 

for NT16 and DK17. Figure adapted from Brunamonti et al., 2018.  

WP3 focused on the analysis of satellites SO2, OCS UTS data, combined with analogous 

CCM and CTM simulations. In particular, observations of these species during the 

Michelson Interferometer for Passive Atmospheric Sounding (MIPAS)/ENVISAT era 

(2002-2012) (Fischer et al., 2008) together with measurements from the aircraft campaign 

have been fed into CTMs to determine budget and variations of stratospheric sulfur 

loading.  

WP4 and WP5 were devoted to the understanding of the upward transport mechanisms, 

for climate relevant tracers to break into in the stratosphere, crossing the tropopause. The 

findings of this analysis will form the basis on which modules to be included in CCMs 

and ESMs will be developed. 

WP6 explored the socio-economic implications of the results of the previous WPs. For 

instance, impact on the Asian Monsoon rainfall is a crucial part of the work of WP6. 

However, due to the enormous potential of the conclusions of WP6, policy makers and 

economic stakeholders are their natural recipients.  

WP7 is then focused on the way how the results of WP6 are communicated to wider, 

politically and economically influenced audiences. WP8 and WP9 aimed to ensure an 
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efficient organization of all the WPs, through a primary management structure consisting 

of a coordinator, executive group and an external advisory board (Figure 2.10.). 

At the time of writing StratoClim has recently finished as a project, but analysis of the 

observations will continue in various scientific groups. The work presented in this thesis 

is, in part, a contribution to the results of StratoClim. I make use of new observations that 

became available after the 2016 and 2017 campaigns and I perform model studies which 

address some aspects of the wider aims of StratoClim. 
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3 The TOMCAT 3-D Model 

 Introduction  

Numerical models are essential tools for understanding chemistry and transport in the 

atmosphere. These models are a mathematical representation of our current understanding 

of relevant processes. Comparison of model simulations with observations allow us to 

test our understanding. Discrepancies point to a failure of our theories (and/or model) 

which then need to be investigated. Once a model has been successfully developed it can 

be used for predictions and to explore different possible scenarios. 

A range of atmospheric chemistry models exist and there a number of different possible 

classifications which distinguish them. A primary classification relates to the domain size 

and dimensionality of the model. Models range from global, three-dimensional (3-D) 

models, through regional 3-D models, to simple ‘box’ models  (Seinfeld and Pandis, 

2016) which simulate chemistry at just a single point. Clearly, box models are a lot 

cheaper computationally and will therefore allow a lot more chemical complexity.  

Models can also be classified as Eulerian or Lagrangian. Eulerian models divide their 

domain up into an array of fixed grid boxes. Tracers are then transported between the grid 

boxes. These models have the advantage of equal coverage of the whole domain and offer 

a more direct way of analysing global budgets. Lagrangian models follow the movement 

of air parcels, e.g. a trajectory box model. These models are good for understanding 

chemistry transformations of air parcels under specific transport regimes but are not so 

well suited as Eulerian models for global studies. 

A final important classification for global 3-D atmospheric chemistry models relates to 

the treatment of dynamics. ‘Off-line’ chemical transport models (CTMs) use external 

winds and temperatures to specify the model meteorology. This makes the models 

relatively cheap as there is no overhead for the dynamical and radiative calculations. 

Moreover, by using analysed meteorology, the models are excellent tools for comparing 

simulations with specific observations. However, as there is no coupling between the 
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chemistry and dynamics these models cannot be used for coupled feedback studies. 

Simulations of the future need to use repeating ‘past’ meteorology. In contrast, coupled 

chemistry-climate models (CCMs, Eyring, et al., 2010) are based on a general circulation 

model (GCM) coupled to detailed chemistry These models are needed for coupled 

predictions of future climate change and the feedbacks with atmospheric chemistry. 

However, they are very computationally expensive and comparison with past 

observations is generally done in a climatologically way, although ‘nudging’ to analysed 

meteorology can be done (Morgenstern et al., 2009; Connor et al., 2014). 

The remainder of this chapter describes the TOMCAT CTM which is used in this study. 

Sections 3.1, 3.2 and 3.3 summarise the basic formulation of the model and its treatment 

of advection of boundary layer mixing. Section 3.4 describes the treatment of convection 

in the model, including the existing Tiedtke scheme and the new scheme based on 

archived convective mass fluxes which has been developed, tested and used in this work. 

Section 3.5 describes the various chemistry schemes which have been used in the 

simulations subsequently presented in this thesis. 

 The TOMCAT model 

The TOMCAT 3-D CTM belongs to the wide class of Eulerian models, where fixed grid 

boxes encompass the Earth the size of which depend on the horizontal resolution and the 

availability of vertical levels. Tracers are transported through the boxes due to the action 

of large-scale winds and parameterized mixing, e.g. from convection. Originally 

separated in a tropospheric (TOMCAT) and stratospheric (SLIMCAT) “versions”, the 

TOMCAT/SLIMCAT model has been firstly used in the early 1990s in the context of 

evaluating the relevant chemistry of the Arctic winter polar stratosphere (Chipperfield et 

al., 1993). However, from 1993 the model has undergone continual updates and has been 

validated by several tropospheric and stratospheric studies due to its comprehensive and 

detailed implemented chemistry scheme (Chipperfield, 1999, 2006). The dynamical 

variables (wind, pressure and temperature) needed to force the model are not calculated 

in a specific internal routine but are downloaded from the European Centre for Medium-

Range Weather Forecasts (ECMWF). The model is written in FORTRAN (originally F77 

and later F90) and divided in segments and consequently the modules (advective, 

convective, chemical and radiative) therein incorporated are performed in a ‘process split’ 
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sequence. The lack of interaction between dynamical and chemical segments in the 

model, drastically reduces the computational resources required to run the simulations, 

compared, for example to coupled chemistry-climate models. 

 Model grid 

The model uses a Gaussian grid (slightly irregular in latitude, Eliasen, et al., 1970) which 

encircles the globe latitudinally, longitudinally and vertically, and the resolution of which 

can be chosen depending on the problem to be studied. In this thesis, simulations with 

horizontal resolution 5.6° lat × 5.6° lon, 2.8° lat × 2.8° lon and 1.1° lat × 1.1° lon have 

been performed. These values correspond to the Gaussian grids associated with the T21, 

T42 and T106 spectral resolutions, respectively, a typical format used by the ECMWF 

(Dee et al., 2011). The large-scale analyses are input to the model as spherical harmonics 

are then converted in grid points on Earth with the desired vertical levels. The vertical 

resolutions used here are 60 vertical levels from the surface to 0.1 hPa, and 31 levels from 

the surface to 10 hPa. The TOMCAT model uses hybrid 𝝈/𝒑 vertical levels to follow 

topography at low height while being purely pressure levels 𝒑 in the free atmosphere. The 

pressure at model vertical grid box interface  𝒑
𝒌+

𝟏

𝟐

 is given by   

𝒑
𝒌+

𝟏
𝟐

= 𝑨𝒑𝟎 + 𝑩𝒑𝒔 

where 𝑝𝑠 is the surface pressure, 𝑝0 is a reference pressure of 1000 hPa, while 𝐴 and 𝐵 are 

two constants for each level. However, levels in UTLS and above are normally 

characterized by isentropic transport regime and therefore the model has the option 

(‘SLIMCAT’) to use 𝝈/𝜽 (potential temperature) as vertical variables. Above a level 𝜃0 

the model uses pure isentropic levels according to the formula 

 𝜽
𝒌+

𝟏

𝟐

= 𝑪𝜽𝟎 

with C≥1 and 𝜽𝟎 ≈ 𝟑𝟓𝟎 𝑲 (Chipperfield, 2006). Between the interface level 𝜃0 and the 

surface the pressure of the model half levels is 
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𝒑
𝒌+

𝟏
𝟐

= 𝑪𝒑𝜽𝟎 + (𝟏 − 𝑪)𝒑𝒔         𝒘𝒊𝒕𝒉  𝑪 < 𝟏 , 

where 𝒑𝜽𝟎 refers to the pressure at lowest purely isentropic half level. On the other hand, 

the temporal resolution (timestep) cannot be chosen arbitrarily, but must obey the 

Courant-Friedrich-Lewy (CFL) condition, which ensures that the numerical solution of a 

certain partial differential equation maintains an acceptable stability: 

𝒖𝒊∆𝒕

∆𝒙𝒊
≤ 𝑪𝟏  

where 𝒖𝒊 is the wind speed in the 𝑖𝑡ℎ direction (x,y,z) and ∆𝒙𝒊 is the corresponding 

resolution. 𝑪𝟏 is a constant which changes according to the partial differential equation 

considered. Obviously, the CFL condition must hold for all the three spatial components. 

Consequently, it is apparent that increasing the spatial resolution must result in a 

reciprocal increase of temporal resolution. The choice of special resolution values is then 

a compromise between accuracy and computational speed, depending on the available 

computer resources. It is usually the east-west size of the grid boxes near the pole that 

poses the strongest CFL constrain in a global CTM. To overcome this TOMCAT uses 

extended polar zones (EPZ, Prather et al.,1987;  Rind, 1987) to group grid boxes in the 

east-west direction at the pole. 

 Advection and Planetary Boundary Layer schemes 

Apart from negligible molecular diffusion, atmospheric tracers move from the emission 

point to other parts of the atmosphere, under the action of winds. The TOMCAT off-line 

CTM does not have a ‘dynamical core’, meaning that the meteorological fields (winds, 

temperature, pressure) need to be read-in from an external source. Typically, ERA-

Interim reanalyses (Dee et al., 2011) are used but coupling with an external GCM is also 

possible (Chipperfield, 2006b). Nevertheless, only the horizontal wind components are 

read into the model. The reason for this lies behind the fact that when archived vertical 

winds are adapted to the model grid both vertically and horizontally, the corresponding 

interpolation might bring undesirable inconsistency between horizontal and vertical 

winds. These are intrinsic problems of off-line models as described by Jöckel, et al., 

(2001) and Rotman et al., (2004). To overcome this problem, TOMCAT calculates the 

vertical component of the winds from horizontal mass fluxes using the continuity 
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equation. However, the model has the ‘SLIMCAT’ option to calculate the vertical wind 

component from heating rates which are derived from a radiation scheme described in  

Chipperfield, (2006).  

To precisely describe the advection of atmospheric tracers, an advection scheme is needed 

to preserve mass concentration (0th moment order distribution), spatial gradient (1st order 

moment distribution) and eventually the curvature (2nd order moment distribution, SOM). 

The computational effort required to operate the scheme largely depends on the amount 

of moments conserved, with 10 variables for every grid box, tracer and timestep stored if 

the SOM is conserved. The SOM tracer advection scheme implemented in the model for 

this study is based on the work of Prather (1986). 

The transport from Planetary Boundary Layer (PBL) towards the free atmosphere is 

parametrized in a corresponding scheme. The model has two options over the choice of a 

PBL scheme. A local first-order diffusion scheme (Louis, 1979) calculates the eddy-

diffusion coefficients in the PBL using the Richardson number which in turn depends on 

the local wind field gradient and potential temperature. Nevertheless, when the Louis, 

1979 scheme is implemented the TOMCAT model shows weak vertical transport and 

considerable superficial tracer concentrations, as pointed out by Stockwell and 

Chipperfield, (1999). Another option is using a non-local scheme developed by Holtslag 

and Boville, (1993). This scheme shows stronger transport out of the PBL (Wang et al., 

1999) and then into the free atmosphere, and consequently has been used in this study. 

 Convection schemes  

The study of the transport of species emitted at surface to ASM anticyclone levels requires 

that the effect of convection in the TOMCAT model is represented in a realistic way. This 

thesis has compared two convection schemes: the existing default Tiedtke scheme, which 

calculates convection in the model based on large-scale analyses which are read in, and a 

new scheme which directly uses archived convective mass fluxes from the same source 

as the large-scale analyses. 

3.5.1 Existing Tiedtke scheme 

The default convection scheme in the TOMCAT model, based on the work of Tiedtke, 

(1989), makes use of mass fluxes which reproduce the cloud properties to evaluate the 
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budget of heat and moisture due to convective-driven transport. This scheme has been 

used in TOMCAT since the work of Stockwell and Chipperfield (1999). Large-scale 

meteorological variables within ERA-Interim reanalyses (winds, temperature, humidity) 

are used in this scheme to calculate entrainment, detrainment and cumulus downdrafts 

(Stockwell and Chipperfield, 1999). Figure 3.1. shows the vertical structure of the 

variables used in the Tiedtke scheme to calculate the convective contribution to the 

transport of tracers. Cloud is at k level with entrainment and detrainment rates (units of 

1/𝑠3) at the top of the cloud indicated by 𝐸𝑢
𝑘 and 𝐷𝑢

𝑘 , respectively. 𝑀𝑑,𝑢
𝑘  is the fraction of 

tracer mass from down (up) and then transferred through model interface k due to all sub-

gridscale processes. The scheme tests the presence of a cloud via the calculation of the 

relative humidity, which must be at supersaturation level (RH >100). Once a cloud is 

“found”, buoyancy of the air parcel is tested and a criterion on the horizontal convergence 

of moisture below the cloud base discerns between shallow and deep convection 

according to the formula 

∫ 𝒗 ∙ 𝛁𝜌𝑤 𝑑𝑧 =  ∫ {𝜌𝑤 𝛁 ∙ 𝒗 − 𝛁(𝜌𝑤𝒗)} 𝑑𝑧

𝑐𝑙𝑜𝑢𝑑 𝑏𝑎𝑠𝑒

𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑐𝑙𝑜𝑢𝑑 𝑏𝑎𝑠𝑒

𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 

where 𝒗 is the horizontal wind,  𝜌𝑤 is the water density (kg(water)m-3) and z is the vertical 

coordinate. If the integral on the right side is positive, the grid column is convectively 

unstable and deep convection is initiated. It is worth remembering that the water mixing 

ratio together with the wind fields are taken from the ECMWF reanalyses, from fields 

which have already been subject to convection.  
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Figure 3.1. Convective variables for the Tiedtke shown on TOMCAT vertical levels. 

Taken from Chipperfield, (2006a). 

The Tiedtke scheme has been used in several studies focused on the transport of VSLS 

up to UTLS heights (see Hossaini et al., (2012) and references therein).  

3.5.2 Archived Convective Mass Fluxes 

An alternative to the ‘online’ (or diagnosed) Tiedtke scheme which is explored in this 

thesis is the use of ERA-Interim archived convective mass fluxes. An early version of this 

approach was tested by Feng et al., 2011 who examined the vertical extent of convection 

by this method, compared to the existing Tiedtke scheme. Their results show that the 

former can reach higher altitudes (≈100 hPa) compared to the latter (≈200 hPa). However, 

a previous study by Hossaini et al., (2010) pointed out that when the default Tiedtke 

scheme is implemented, the model overestimates the rapidly uplifted concentration of 

CH2Br2 (≈7 days lifetime) and CHBr3 (≈2 days lifetime). Subsequently, a general 

improvement of the model and the implementation of the ERA-Interim archived mass 

fluxes (Hossaini et al., 2012) seem to produce results which better adhere to observations.  
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In this new approach the 6-hourly accumulated (forecast) fields of vertical convective 

mass flux (M, Figure 3.1.) and detrainment rates (D) for both updrafts and downdrafts 

are read in from ERA-Interim reanalyses at 1o × 1o resolution. These fields are then 

averaged onto the current model horizontal and vertical grids being used in the particular 

simulation. The third component of tracer transport by convection, the entrainment rate 

(E) at each model level, is derived in order to conserve tracer mass balance. Once these 

three components are derived, the same convective tracer transport routines as used for 

the online Tiedtke scheme are used, i.e. the model calculated values of E, D and M for 

both updrafts and downdrafts in Figure 3.1. are replaced by the archived values. 

The use of archived convective tracer fluxes from the same source as the large-scale 

meteorology appears attractive and self-consistent. It should have the advantage that the 

CTM should be able to reproduce the extent of convection produced in the high resolution 

system that produces the analyses. However, it should be noted that the archived 

convection fields are not available for all meteorological analyses. In the case of 

ECMWF, the reanalyses supply them but they are not available for the regular operational 

analyses due to the computational and storage costs involved. A further likely advantage 

of the new method is that as the large-scale analyses will have already been subject to the 

effects of convection it is likely that the online Tiedtke approach will underestimate 

convection. This was shown in the original analysis by Feng et al., (2011) and is 

illustrated in Figure 3.2. 
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Figure 3.2. (a) Convective updraft mass fluxes (kg m-2 s-1) at 500 hPa averaged over time 

period 1989-2001, using ERA40 Reanalyses. (b) Same as (a), but using ERA-Interim 

reanalyses, averaged over 1989-2005. (c) Convective updraft mass flux from results of 

TOMCAT T42 simulation with ERA40 Reanalyses (operational analyses after 2001), 

averaged over 1989-2005. (d) Same as (c) but using ERA-Interim reanalyses. Details of 

the simulation setups are available in Feng et al., 2011. The different average time periods 

depend on the corresponding data availability. Figure adapted from Feng et al., 2011. 

Compared to the early testing of the scheme by Feng et al. (2011), the work in this thesis 

has developed the scheme into a robust parameterisation suitable for long, multidecadal 

studies (by ensuring exact mass conservation within the convective transport) and tested 

it for a wide range of tracers. As extensively shown in Chapter 4, this new version of the 

convection scheme is consistent with fast deep convective activity typical of tropical 

regions, which are the key regions of this study.  

 Chemistry schemes 

The TOMCAT model allows the inclusion of several chemistry schemes to reproduce at 

best the conditions of the experiment. These can be either be detailed ‘full’ chemistry 
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schemes for tropospheric/stratospheric studies or a specific simplified scheme for 

idealised tracers. In this way the model can used as tracer transport model, with or without 

coupled full chemistry. In either case a standard chemistry scheme called CHIMIE is the 

basic tracer subroutine implemented within the model. 

3.6.1 Simplified approach 

The simplified approach makes use of artificial, idealized tracers and processes which 

can be used to gain insight into a particular problem. It is characterized by generally a 

small number of specific tracers (typically 10 or fewer) and a simplified chemistry 

scheme, to reduce the computational cost and complexity. Due to this relatively low 

computational cost, this approach can be used for multiannual simulations, which would 

be prohibitive with ‘full’ chemistry. In this study, this approach has been used in Chapter 

4 to study the interannual variability of artificial and idealized tracers in and around the 

ASM. In this case a bespoke CHIMIE subroutine has then been modified to include the 

tracers specifically created for this kind of simulation: surface emitted species with 

specified atmospheric loss. The decay of a tracer mixing ratio 𝑚𝑟  in this simplified 

approach then depends exclusively on the lifetime of the tracers according to the formula  

𝒎𝒓𝒊+𝟏 = 𝒎𝒓𝒊 𝐞𝐱𝐩 (−
∆𝒕

𝝉
) 

where 𝑖 is the timestep label and ∆𝒕 timestep. In this study, two idealized tracers CO25 

and CO50 with lifetimes of 25 and 50 days, respectively, have been used corresponding 

to CO lifetimes in the range typical of the tropical regions (Novelli et al., 1998; Petrenko 

et al., 2013). These CO tracers used realistic surface emissions of CO, which vary with 

location in response to industrial and fire activity. The main source ignored in these kinds 

of runs are the secondary chemical source from oxidation of other hydrocarbons in the 

atmosphere. In terms of direct emissions the main two are included (anthropogenic and 

biomass burning) although there is also a small direct biogenic source (see Table 3 in 

Zheng et al., 2019). Further artificial tracers TR5 and TR50, with 5- and 50-day lifetimes, 

were also used. These tracers have the boundary conditions of an arbitrary 100 ppbv 

mixing ratio, zonally homogenous. The TR50 tracer therefore provides a contrast with 

CO50 in terms of its simpler surface distribution. Tracer TR5 is very short-lived and 

provides information on very rapid vertical transport which is not revealed by CO25. 
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3.6.2 Full chemistry approach 

The TOMCAT model has two ‘full’ chemistry schemes, both of which are used in this 

thesis. The first scheme is a flexible ‘tropospheric’ scheme, most recently described by 

Monks et al., (2017). The second scheme is based on the original ‘stratospheric’ scheme 

described by Chipperfield (1999). The stratospheric scheme is less flexible but well tested 

and more computationally efficient for studies related to stratospheric ozone. 

The ‘tropospheric’ full chemistry approach provides the required chemical details needed 

to represent the complexity of the chemical and radiative mechanisms which govern the 

UTLS. The full chemistry scheme is based on the work of Carver et al., (1997) who 

developed the ASAD package which incorporates reactions for 79 species, including O3, 

CO, CH4 , C2-C3 hydrocarbons, H2O, H2O2, H2SO4, N2O5, NOx, HNO3. This version of 

the model is also coupled to the GLOMAP aerosol module. Surface emissions are 

specified from standard inventories (Monks et al., 2017). This scheme has been used for 

the detailed chemistry simulations in Chapter 5. These simulations are very costly in 

terms of time and computational resources and therefore they have been run only for the 

years of the StratoClim campaign (2016 and 2017).  

The ‘stratospheric’ scheme is used in Chapter 6 for the model simulations for the therein 

described geo-engineering study. The scheme includes a description of the chemistry of 

the main families which affect stratospheric ozone, namely HOx, NOy, Cly, and Bry along 

with the major source gases such as halocarbons, CH4 and N2O. The scheme includes gas-

phase chemistry as well as a treatment of heterogeneous chemistry on sulfate aerosols and 

polar stratospheric clouds (PSCs). For the work described in Chapter 6 the subroutine 

CHIMIE was modified to include a treatment of heterogeneous chemistry on TiO2 

particles. 
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4 Modelling the interannual variability of tracer 

transport via the Asian Summer Monsoon  

 Introduction  

The vertical transport of air masses associated with the Asian Summer Monsson (ASM) 

circulation is of undoubted primary importance due to its influence on the composition of 

the upper troposphere / lower stratosphere (UTLS) (see Chapter 2). The evaluation of 

this transport requires detailed in-situ observations in remote areas which often have poor 

operational access. Although, this observational “gap” has to some extent been addressed 

by the StratoClim campaigns in 2016 and 2017 (see Chapter 5) complementary 

modelling studies are also essential in order to understand the underlying mechanisms of 

this transport.  

Convective transport is a key component of rapid vertical motion in the troposphere, but 

it is challenging to represent as a subgrid process in a large-scale model. The first part of 

this chapter describes TOMCAT 3-D CTM simulations of tropospheric age-of-air (AoA) 

used as a diagnostic for transport times, when the default Tiedtke convection scheme is 

replaced with a new one based on archived ERA-Interim updrafts (Chapter 3). The 

validation of this new scheme is further motivated by a recent study which showed that 

the default (Tiedtke) scheme is not consistent with the deep intense convection-driven 

transport typical of the Tropics. This new version of the model forms the basis for the 

results shown in the second part of the chapter, where simulations conducted using 

artificial tracers and idealized CO tracers with specified lifetimes ranging from 5-50 days 

are used to test the ability of the model to quantify the transport from surface to ASM 

anticyclonic levels. 

The chapter is structured as follows: Section 4.2 evaluates the results of TOMCAT 

simulations when a new convection scheme (ERA-Interim updrafts) is used. Section 4.3 

is devoted to the study of TOMCAT-simulated artificial and idealized tracers when the 

two convection schemes are compared, along with simulations when convection is 
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switched off, with particular attention on the ASM region. Section 4.3 summarizes the 

results presented here. 

 Test of ERA-INTERIM updraft convection scheme 

The terrestrial surface is the source of almost all pollutants and climate-relevant species 

which reach the stratosphere, and the ASM is believed to play an important role in the 

global vertical transport (see Chapter 2). To assess this transport quantitatively, and to 

study the related mechanisms, modelling studies require that convective 

parameterisations therein incorporated should be tested against observations. A typical 

metric used to determine this kind of transport is the “Age of Air” (AoA), a concept first 

used for the investigation of the stratospheric transport timescales (Hall and Plumb, 

1994). In this context it is defined as mean of the “age spectrum of the time distribution 

since the fluid elements constituting a given stratospheric air parcel lost contact with the 

troposphere” (Holzer and Hall, 2000), i.e. the mean time since an air parcel entered the 

stratosphere at the tropical tropopause. 

      

Figure 4.1. Annual mean stratospheric Age of Air (AoA) (years) for the period 2002-

2007 calculated from SF6 Michelson Interferometer for Passive Atmospheric Sounding 

(MIPAS) measurements. Figure adapted from Kovács et al., (2017). 
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AoA is not a directly observable quantity so it needs to be estimated from appropriate real 

tracers, e.g. SF6, which is particularly suitable as it displays a near-linear growth in its 

tropospheric mixing ratio due to its near-constant emissions and long lifetime (1278 

years, Kovács et al., 2017). Figure 4.1. shows zonal mean plot of stratospheric AoA 

which follows to the presence of well-known pathways from the surface to the 

stratosphere, with the tropical upwelling areas characterized by “young” AoA, while at 

higher latitudes the stratospheric AoA may reach values of up to ten years. Following the 

idea of developing an analogous tropospheric version of AoA (Waugh et al., 2013; Holzer 

and Waugh, 2015), Krol et al., (2018) studied the performance of six global models 

(CTMs and GCMs), including TOMCAT, for their ability to convectively redistribute 

tracers in the troposphere and transport to stratospheric levels, from Northern Hemisphere 

(NH) to Southern Hemisphere (SH) and vice versa. This is a crucial aspect of tropospheric 

transport to be quantified, when large dynamical systems which involve deep convective 

activity, such as the ASM, are involved. However, as shown below, the standard 

TOMCAT model persistently showed slow and weak transport throughout the 

troposphere to stratospheric levels, when compared to observations and other models 

(Krol et al., 2018). To compare different model results, which have different advective, 

convective and meteorological parametrisations, in a clear and robust way a protocol with 

appropriate boundary conditions which can be implemented in all the models is 

necessary. The protocol used to develop the simulations for this chapter is taken from 

Krol et al., (2018) and presented in Section 4.2.1.  

4.2.1 Age of Air tracer protocol 

The modelled AoA is calculated from the mixing ratio of five artificial tracers emitted at 

specific locations (forcing volumes): surface, NH or SH (see Table 4.1). The mixing 

ratios of these tracers are then evaluated at every grid box of the model. The mixing ratio 

𝐺 in the forcing volume (surface, NH surface or SH surface) grows linearly with time 

according to the formula  𝐺 = 𝑓𝑡, where 𝑡 is the elapsed time in seconds since 1st January 

1988 and 𝑓 = 10−15 𝑚𝑜𝑙 𝑚𝑜𝑙−1𝑠−1 is a forcing constant. At the end of the simulation, 

on the 31st of December 2014, 𝐺 ≈ 852 𝑛𝑚𝑜𝑙 𝑚𝑜𝑙−1. The mixing ratios of these tracers 

are set to zero on the 1st of January 1988, with the mixing ratio of AoA tracer defined at 
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every time step in its forcing volume (see Table 4.1) to the G value.  The AoA of an air 

parcel, with mixing ratio M is calculated as 𝐴𝑜𝐴 = 𝑡 −
𝑀

𝑓
  in seconds. It can easily be 

verified that the mixing ratio M in close proximity with the boundary will be 𝑀 = 𝑓𝑡 and 

then 𝐴𝑜𝐴 = 0. The longer since the atmospheric air was in the boundary forcing volume, 

the lower its mixing ratio will be and the older its age. A main aim is to classify models 

according to their transport characteristics. The boundary conditions used to calculate 

AoA in the troposphere and are indicated in Table 4.1. 

AoA tracer Forcing volume 

Surface Surface <100 m 

NH surface NH surface <100 m 

SH surface SH surface <100 m 

Table 4.1. Simulated AoA tracers used in the TOMCAT simulations. Table adapted from 

the work of Krol et al., 2018. 

The five models used for comparison with TOMCAT (see Chapter 3) are two CTMs, 

namely NIES (Belikov et al., 2013) and ACTM (Numaguti, Takahashi and Nakajima, 

1997), and three GCMs namely LMDZ (Hourdin et al., 2006, 2013), TM5 (Krol et al., 

2005) and EMAC (Jöckel, et al., 2006). Table 4.2 shows the main technical features of 

the models used. 
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Model 

simulations 

Base model Resolution (lon 

× lat) 

Vertical 

levels 

Meteorological 

driver data 

LSCE_LMDZ5A LMDZ 3.75°×1.875° 39 hybrid σ-

pressure 

Nudged to 

ERA-Interim 

ACTM_T42L67 ACTM ≈2.81°×2.81° 67* σ up to 

90km 

Nudged to JRA-

25 

TM5_3X2 TM5 3°×2° 60 hybrid σ-

pressure 

ERA-Interim 

NIES NIES 2.5°×2.5° 32 hybrid σ-

ϴ up to 5 

hPa 

JRA-25 

EMAC_T63 EMAC ≈1.875°×1.875° 90 hybrid σ-

pressure 

Nudged to 

ERA-Interim 

TOMCAT TOMCAT ≈2.81°×2.81° 60 hybrid σ-

pressure 

ERA-Interim 

Table 4.2. Summary of models used for comparison AoA simulations, adapted from Krol 

et al., 2018. 



 

  66 

 

 

4.2.2 Intercomparison of AoA results  

Results from Krol et al., 2018 are presented in Figures 4.2. and 4.3. A latitude-pressure 

cross section of AoA for the surface tracer, averaged over 2000-2011 is shown in Figure 

4.3. The 6 models generally show the same latitude-vertical patterns, with younger air in 

the Tropics, where it is rapidly uplifted and older air at the mid-latitudes where 

stratospheric air is mixed into the troposphere (Holton et al., 1995). However, it is clear 

that the NIES and TOMCAT show slower transport throughout the troposphere, 

especially in the tropical upper troposphere with ages around 40 days in TOMCAT 

compared to around 20 days in other models. TOMCAT and NIES share the same 

convection parametrization based on Tiedtke (1989) (see Chapter 3), which has been 

shown previously to exhibit weak transport to upper tropospheric levels (Feng et al., 

2011). 

 

Figure 4.2. Summary of AoA tracer “Surface” zonal mean distributions (days), for 2000-

2010 time period. The thin black lines denotes average vertical levels of the models. The 

dashed black lines show the climatological tropopause. White areas refer to air older than 

100 days. From Krol et al., (2018). 

The interhemispheric transport plots shown in Figure 4.3. using the NH and SH tracers, 

also highlight some interesting features. In particular, it is clear all models agree that 
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transport is faster from the NH to the SH than vice-versa, probably due to the asymmetric 

distribution of land and ocean between in the NH and SH with consequently stronger 

convection occurring in the former. Moreover, a preferred pathway for the transport 

seems to be the level around 200 hPa at equatorial latitudes (Prather et al., 1987). As for 

the surface tracer, TOMCAT and NIES are the models with oldest air in both 

hemispheres. It is interesting that although TOMCAT and TM5 (see Table 4.2) share the 

same ERA-Interim meteorological datasets, the corresponding AoA (Figures 4.2 and 4.3) 

are radically different, suggesting that the nature of the convection scheme implemented 

in the model plays a crucial role. Nevertheless, the modelling of the transport of any tracer 

in the atmosphere is the result of a complex interplay between advection, convection 

schemes, boundary layer mixing and meteorological dataset used.  

 

Figure 4.3. Zonal averages of (a) NH and (b) SH AoA tracers (years), averaged over 

2000-2010 time period. White areas correspond to regions where air is older than 1.4 

years. From Krol et al., 2018 . 

4.2.2 TOMCAT AoA results with ERA-Interim updrafts  

The TOMCAT model results shown in Krol et al., (2018) are based on the implementation 

of the Tiedtke default convection scheme (Tiedtke, 1989) which has been in the model 

since the work of Stockwell and Chipperfield, (1999). This configuration of the model 

shows persistent low and slow interhemispheric transport and slow transport to upper 
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troposphere levels compared to the majority of other models (Section 4.2.1). Thus, 

modelling the vertical transport of short-lived-substances from surface to these levels in 

this version of TOMCAT might underestimate their actual mixing ratio. In order to try to 

solve this issue, an updated version of the convection scheme has been developed and 

used in the simulations of this subsection: ERA-Interim convective mass fluxes. The use 

of this convection scheme in the TOMCAT model builds on previous work; an earlier 

version of this scheme has already been successfully used to determine the model 

performance in the context of cloud convection (Feng et al., 2011). This updated 

convection scheme showed significant enhancement of vertical transport in the Tropics 

at about 100 hPa compared to the results obtained with the default Tiedtke scheme (Feng 

et al., 2011). This is a significant level, where the ASM anticyclone is well developed and 

pollutants originated on the surface are therein confined (see Section 2, Brunamonti et 

al., 2018). Nevertheless, the work presented in this chapter (with an improved version of 

the scheme) represents the first long-term (multiannual) simulations with the archived 

convection terms in TOMCAT and the first evaluation with similar global CTMs. 

In order to show that the implementation of the ERA-Interim convective mass fluxes in 

TOMCAT improves transport to UTLS levels, plots of the AoA tracers based on the 

protocol in Table 4.1 are shown. 

 

Figure 4.4. Latitude-vertical plots of TOMCAT zonal average AoA (days) from tracer 

emitted at surface, averaged over 2000-2010 time period. AoA is calculated from mixing 

ratio emitted according to the protocol specified in Table 4.1. Panel (a) shows results 

when ERA-Interim updrafts are used, while (b) refers to results with default Tiedtke 

scheme. Grey areas indicate AoA older than 100 days. 
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Figure 4.4. compares the results of the Surface tracer with the Tiedtke scheme (as in 

Figure 4.2.) and the ERA-Interim updraft scheme. The archived ERA-Interim fluxes 

cause a much stronger upward transport in the Tropics which produces much lower AoA 

values: for example 20 days at 200 hPa in the Tropics compared to around 40 with the 

default Tiedtke scheme. The pattern of the AoA tracer with the archived convection also 

gives a characteristic distribution of outflow in the UT, i.e. a larger region of young AoA 

than at mid-levels. With the new convection scheme there is also a general reduction in 

the AoA values in the mid-latitude mid troposphere.  

 

Figure 4.5. Latitude-vertical plots of zonal average AoA emitted at NH surface, averaged 

over 2000-2010 time period. AoA is calculated from mixing ratio emitted according to 

the protocol specified in Table 4.1. Panel (a) shows results when ERA-Interim updrafts 

are used, while (b) refers to results when defaults Tiedtke scheme is implemented. Grey 

areas indicate AoA older than 1.4 years. 

Figures 4.5 and 4.6. show the TOMCAT NH-emitted and SH-emitted tracers from the 

simulations with the two versions of the convection scheme. The results of the Tiedtke 

scheme are the same as those shown in Figure 4.3. For both tracers the new convection 

scheme decreases the AoA in the opposing hemisphere, though this is more noticeable at 

high latitudes for the NH tracer. The largest impact (decrease) on the AoA for the SH 

tracer is at northern mid-latitudes. The use of the new convection scheme reduces the 

difference between TOMCAT and the other models for these tracers (Figure 4.3.) but 

TOMCAT still shows some larger ages. For example, the AoA values for the SH tracer 

at northern high latitudes is still over a year with the archived scheme. 
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Figure 4.6. Latitude-vertical plots of zonal average AoA (years) diagnosed from tracer 

emitted at SH surface, averaged over 2000-2010 time period. AoA is calculated from 

specified mixing ratio according to the protocol specified in Table 4.1. Panel (a) shows 

results when ERA-Interim updrafts are used, while panel (b) shows results when default 

Tiedtke scheme is implemented. Grey areas indicate AoA older than 1.4 years. 

Overall, the inclusion of the archived ERA-Interim convective fluxes has increased the 

rapid vertical motion in the TOMCAT model. This is to be expected as the Tiedtke 

scheme in the CTM aims to diagnose convection from large-scale analyses (temperature, 

moisture, horizontal winds) which have already been subject to convection (i.e. 

stabilized). It would be expected that these large-scale fields will not generate sufficient 

regions of small scale convective instability, though parameters in the Tiedtke scheme 

can be adjusted to negate this effect. The ERA-Interim archived convective mass fluxes 

are calculated at the full resolution of the reanalysis model (≈100 km) with meteorological 

fields at their full time resolution. Using the archived convection mass fluxes from the 

same assimilation system which produces the other model meteorology will also be more 

consistent. It should be noted that it is only the reanalyses products like ERA-Interim for 

which ECMWF provide accumulated convective mass fluxes as a diagnostic. Many past 

TOMCAT studies have used operational analyses for which the only option was to 

recalculate convection online (e.g. using the Tiedtke scheme). 

4.2.3 Artificial tracer simulations in the ASM region  

The Asian Summer Monsoon extends over an important region well known for the 

transport of climate-relevant gases from the troposphere to the stratosphere, as discussed 
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in Chapter 2. Recent work by several groups (Park et al., 2007; Pan et al., 2016; Ploeger 

et al., 2017) have focused on quantifying processes which contribute to coupling in the 

upper troposphere-lower stratosphere (UTLS), including transport during the ASM 

period. Troposphere-to-stratosphere transport in this region has been the focus of a 

number of recent campaigns, including the EU “StratoClim campaign” in Greece 2016 

and Nepal 2017 (see Chapter 5).  

Anthropogenic compounds such as CO, Very Short-Lived Substances (VSLS), which 

destroy stratospheric ozone, and sulfur compounds, which maintain the stratospheric 

aerosol layer, are among the important species involved in large convective systems 

transport such as the ASM. An important question for halogenated VSLS is whether 

ASM-associated transport can take place on timescales which are short relative to their 

chemical lifetimes of days to months.  

This subsection presents results from TOMCAT CTM simulations from 1989 through 

2017 to investigate these issues using moderate-resolution simulations (2.8° × 2.8°, 60 

levels from surface to 60 km). I created ad hoc artificial and idealized tracers to shed new 

light on the interannual variability of the transport via the ASM, considering three 

convective scenarios (Tiedtke default scheme, ERA-Interim archived mass fluxes and no 

convection, see Chapter 3). These simulations are based on the “simplified approach” 

described in Section 3.4.1. Computationally cheap simulations allow the model to run 

over multi-decadal time periods and therefore have been exploited here. This allows the 

global model to be used for a study on interannual variability which involves the transport 

via the ASM circulation. The tracers used in these simulations were chosen to span a 

range of relevant lifetimes and to have surface distributions which are uniform (easier to 

interpret) or representative of a pollution tracer. They are: 

•  CO25, Carbon monoxide-like tracer 25-day lifetime (e-folding time, see 

Chapter 3) realistic geographical emission distribution.  

• CO50, Carbon monoxide-like tracer 50-day lifetime (e-folding time, see 

Chapter 3) realistic geographical emission distribution. 

• TR5, 5-day lifetime (e-folding time, see Chapter 3), fixed 100 ppbv 

surface value within 32oN-49oN latitudinal band. 

• TR50, 50-day lifetime (e-folding time, see Chapter 3), fixed 100 ppbv 

surface value within 32oN-49oN latitudinal band. 
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Maps of the surface mixing ratio tracers are summarized in Figure 4.7. The lifetimes of 

CO25 and CO50 were chosen according to the real CO lifetime which is between 1-2 

months (Novelli et al., 1998; Petrenko et al., 2013). TR5 and TR50 are initialized in the 

32oN-49oN latitudinal band to represent highly polluted Chinese industrialized area and 

the chosen lifetime of the former reflects fast deep convective transport while the latter is 

related to slow ascent large scale structure (Chen et al., 2012) 

            

            

 

Figure 4.7. Surface 1989-2017 JJA average of tracers CO25 (top left) , CO50 (top right), 

TR5 (bottom left) and TR50 (bottom right). 

 Figures 4.8. shows the vertical profiles of model results of CO25 and CO50 from when 

the ERA-Interim archived mass fluxes (a and c), the Tiedtke scheme (b and d) and 

difference between the two schemes (e and f). The results are longitudinally averaged 

over the ASM area (0-140oE). The plots show clear transport of both CO25 and CO50 in 

the vertical column which correspond to large emissions over India, around 25oN (see 

Figures 4.8. a, b). As expected, CO50 is, in absolute terms, more abundant than CO25, 

due to its longer lifetime. However, both convection schemes agree on the shape and 

extent of the transport which fits with the location and height of the ASM anticyclone 

(Brunamonti et al., 2018, Figure 6). The difference plots (Figures 4.8.e and f) show some 
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interesting features. Figure 4.8.e highlights that ERA-Interim archived convective 

updrafts provide stronger transport, than the Tiedtke scheme between 100-150 hPa at 

25oN, although some noisy patterns at lower altitudes are present. In contrast, CO50 

(Figure 4.8.f) shows a clear net improvement when the default scheme is switched to the 

archived one, at the same height and latitude of CO25. However, a closer look shows that 

in relative terms the consequences on CO25 are greater than on CO50, especially at the 

upper limit of transport at around 100 hPa. The ameliorated performance of the ERA-

Interim archived updrafts seem to have a greater effect on shorter lived substances than 

longer ones and that becomes more clear with interannual variability plots (Figure 4.10., 

below). The vertical plots of TR5 and TR50 (Figure 4.9.) reflect the surface distribution. 

Due to its short lifetime, TR5 does not ascend to the same levels as CO25 and CO50. 

Only a small fraction (a few ppbv) of TR5 can reach pressure levels between 100-200 

hPa. As its lifetime is comparable to the deep convective timescale (≈2 days, Chen et al., 

2012) the difference between the two convective schemes shows a noisy behaviour for 

TR5 with the Tiedtke scheme showing stronger transport to 200 hPa and above. TR50 

(Figure 4.9. c, d, f) shows similar structure to TR5, although its greater lifetime makes 

this tracer able to reach UTLS levels around 25oN, where tracers are confined within the 

ASM anticyclone (Brunamonti et al., 2018). However, a positive net contribution from 

ERA-Interim archived mass fluxes is present at around 100 hPa, between 0-30oN. 
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Figure 4.8. 1989-2017 JJA average over the ASM region (0-140oE) of artificial and 

idealized tracers CO25 and CO50 with Tiedtke convection scheme (a and c) and ERA-

Interim archived mass fluxes (b and d). Panels (e) and (f) show differences between the 

two convection schemes for CO25 and CO50, respectively. 

The interannual variability of CO25, CO50, TR5 and TR50 from 1989-2017 (Figure 

4.10.a-d) averaged in the ASM region (0-50oN, 0-140oE) at 100 hPa, when ERA-Interim 

archived mass fluxes, Tiedtke and no convection scheme are implemented is shown in 

Figures 4.10. The apparent discrepancy between the vertical plots of CO25 at 100 hPa 

(Figures 4.9.c and d) and the corresponding interannual variability plot (Figure 4.10.c), 

(a) (b) 

(c) (d) 

(e) (f) 
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which shows mixing ratio of just fractions of ppbvs, is explained by the fact that the latter 

is averaged over an area which comprises the horizontal extension of the ASM 

anticyclone (Popovic and Plumb, 2001; Vogel et al., 2014) and the deep convective area 

in south east Asia which has been identified as a source region of species subsequently 

confined in the ASM anticyclone (Chen et al., 2012) and therefore does not correspond 

with the area of high ASM anticyclone core occurrence (Ploeger et al., 2015). Therefore, 

the averaging process over such an area produces lower mixing ratios than if included 

only the core of the ASM. The interannual variability of these tracers is essentially driven 

by the internal variability of the circulation in the ASM region. Although some 

connections between some large-scale phenomena like ENSO and structure, stability and 

evolution of the ASM anticyclone have been found (Yan et al., 2018), complex 

interdependency between other factors such as volcanic eruptions, monsoon strength 

(Webster and Fasullo, 2003) and rainfall (Liu et al., 2016) probably play a role. Figure 

4.10. shows a rapid decline in JJA 1992, a year after the Pinatubo eruption (June1991) 

and interestingly is observed in all the convective scenarios (ERA-Interim archived 

updrafts, Tiedtke scheme and no convection). Its magnitude depends on the tracer, with 

longer-lived tracers showing nearly the same decay in all three scenarios (in absolute 

terms). The presence of an abrupt decrease even in idealized TR5 and TR50 tracers, 

suggest a dynamically-induced change by the eruption, rather than a purely chemically-

induced one. The impact of such a large volcanic eruption on TR50 in case of “no_conv” 

might be due to the reduced lapse rate provoked by the aerosol loading generated by the 

eruption (Canty et al., 2013), which in turn depressed the vertical lapse rate and then 

convection and vertical advection. It worth noting that a scenario with increased 

stratospheric aerosol loading is not only relevant to large volcanic eruptions, but also to 

Solar Radiation Management (SRM) techniques, in the context of geo-engineering 

strategies implementation as explained in Chapter 6. Furthermore, the effect of increased 

aerosol loading caused by the possible application of these strategies on the Asian 

Tropopause Aerosol Layer (ATAL, Vernier et al., 2015) is as yet totally unexplored. The 

effect of large volcanic eruptions on the tracers we used in this study would likely be 

similar in case of injection of particles in the stratosphere (Chapter 6).  
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Figure 4.9. 1989-2017 JJA average over the ASM region (0-140oE) of artificial tracers 

TR5 and TR50 with ERA-Interim archived mass fluxes (a and c) and Tiedtke convection 

scheme (b and d). Panels (e) and (f) show differences between the two convection 

schemes for tracers TR5 and TR50, respectively. 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 4.10. 1989-2017 JJA average over the ASM region (0-50oN, 0-140oE) of idealized 

tracers (a) CO25 and (b) CO50, and artificial tracers and (c) TR5 and (d) TR50 with 

Tiedtke convection scheme. 

The tracers shown in this section are naturally subjected to variations in both local and 

global dynamical structures. The ASM itself is inextricably linked to ENSO, large 

volcanic eruptions, teleconnections and other aspects of the global climate (Chapter 2). 

One of the consequences of this interaction is obviously reflected in the ability of the 

ASM to vertically transport species from surface to upper atmospheric levels. To quantify 

the “strength” of the ASM, many indices have been created which describe different 

aspects of the ASM (e.g., circulation, convection, rainfall intensity) (Wang and Fan, 

1999). The most commonly used indices are the Webster and Yang index (WYI) (Webster 

and Yang, 1992) and All Indian Summer Rainfall Index (AIRI) anomalies (Parthasarathy 

et al., 1994) (Figure 4.11). The former is defined by the vertical shear of the zonal wind 

U between 850 hPa and 200 hPa to reflect the variability of the broad scale of the South 

East Asian Summer Monsoon averaged over 0°-20°N and from 40°E-110°E, during 

JJAS. The latter is a long rainfall dataset which cover the entire Indian nation and is 

available from 1871 till 2014, (available at https://www.tropmet.res.in/ visited on 20th of 

May 2020). To link the vertical transport and related confinement of the idealized tracers 

(a) (b) 

(c) (d) 

https://www.tropmet.res.in/
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used in this chapter to ASM anticyclonic levels (100 hPa at 0-50oN, 0-140oE) a slightly 

different version of the WYI has been used, according to the work of Wang and Fan, 1999 

hereafter called WSI1. This adapted version differs from WYI in the averaging area (5°N-

20°N, 40°E-80°E) (region a in Figure 4.12). This is motivated by the fact that such an 

index is well correlated with convective activity over India and the Bay of Bengal (region 

b in Figure 4.12)  assessed using negative Outgoing Longwave Radiation (OLR) 

anomaly a typical proxy for convection as explained by Wang and Fan (1999).  

            

Figure 4.11. Interannual variability of WSI1 index (blue) and AIRI anomalies (pink), 

(left). The former is calculated for the 1989-2017 period while the latter refers to 1989-

2014 (calculated wrt to the 1871-2014 average). Scatter plot (right) of WSI1 and AIRI 

anomalies for the 1989-2014 period with correlation coefficient equals to 0.43 and best 

fit line shown in blue. 

 

Figure 4.12. Averaging area of ASM index WSI1 (region a) and convective area over the 

Bay of Bengal (region b). 
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Correlation plots between the idealized/artificial tracers (CO25, CO50, TR5 and TR50) 

in the ASM anticyclone and indices WSI1 and AIRI are shown in Figure 4.13 and 

summarized in Table 4.3. 

  

  WSI1  AIRI  

CO25 ERA-Interim   0.348  -0.098  

               Tiedtke scheme  0.219  -0.258  

              No convection  -0.044  -0.276  

CO50 ERA-Interim   0.335  -0.043  

               Tiedtke scheme  0.311  -0.276  

            No convection  0.262  -0.223  

TR5 ERA-Interim   0.401   0.177  

             Tiedtke scheme  0.460  -0.125  

          No convection  0.351   0.026  

TR50 ERA-Interim 0.112   0.051  

              Tiedtke scheme  0.235  -0.110  

           No convection  0.008  -0.078  

Table 4.3. Summary of correlation coefficients between idealized tracers at 100 hPa 

averaged in the ASM area and the indicesWSI1 and AIRI. For the latter, simulations have 

been limited to 2014, due to availability of the AIRI dataset. 
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Figure 4.13.  Correlation plots of tracers CO25, CO50, TR5 and TR50 (ppbv) versus 

ASM index WSI1 (m/s). 

Table 4.3. shows that the correlation between the tracers and WSI1 is not more than 

0.460. Moreover, it does not seem that the implementation of the ERA-Interim archived 

scheme is strongly linked with WSI1 and consequently with convective-induced vertical 

transport originating in India and BoB. Objections to this analysis could lie in the fact 

that the tracers have been averaged over JJA while the WSI1 and AIRI are averaged over 

JJAS. However, averaging over JJA is a common procedure in the relevant literature of 

the study of transport at anticyclonic level (Park et al., 2008, 2013; Randel et al., 2010). 
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In any case, calculation shows that averaging WSI1 and AIRI over JJA does not change 

the correlation coefficients significantly (not shown). Understandably, the “No 

convection” scenario shows chaotic or very small correlation with convection over India 

and BoB. We would expect better correlation between shorter lived tracers and WSI1 

than longer lived ones, due to the convection time-scale (2-3 days, Chen et al., 2012) and 

it is actually the case for CO25 and TR5. The expected superiority of the ERA-Interim 

archived mass fluxes is not clear and the Tiedtke scheme produces high correlations for 

TR5 and TR50. These results suggest that the modelling of interannual variability of the 

confinement of tracers at ASM anticyclone levels (Chapter 2) is a combination of 

dynamical regimes which act on several time scales, including the internal variability of 

the ASM itself, convective source locations and convective parametrization included in 

the model. Also, the idealized and artificial tracers considered in these simulations are 

averaged on a fixed longitude-latitude regions, while the anticyclone and related 

confinement shows eddy shedding and bimodality, with a strong intraseasonal variability 

(Nützel et al., 2016).  

The AIRI 1989-2014 versus tracers (limited to 2014) connection is chaotic. Together with 

the limitations described above a further explanation could be that rainfalls are the result 

of a complex interaction between several aspects of the climate (e.g., land sea interaction, 

nucleation) and not simply on convection. 

4.3 Summary 

This chapter has described tracer experiments with the TOMCAT model aimed at testing 

a new version with improved treatment of convection and diagnosis of tracer transport in 

the ASM. The improved convection scheme applied archived ERA-Interim mass fluxes 

with careful averaging onto the lower resolution CTM grid in a mass-conserving 

approach. The new model was first tested against published results (Krol et al., 2018) 

where the older version of TOMCAT had performed relatively poorly for convective 

transport. The updated model produced tracer results similar to other global CTMs that 

used archived convective mass fluxes. 

The model was then applied to study multiannual variation of tracer transport related to 

the ASM over the period 1989-2017 using simplified, parameterised tracers with lifetimes 

ranging from 5 to 50 days. Using the archived ERA-Interim convective mass fluxes in 
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the model produced significantly faster vertical tracer transport in the tropical troposphere 

compared to the previous default Tiedtke scheme. The Tiedtke scheme is based on the 

CTM recalculating convection from the large-scale analyses while use of the archived 

convective fluxes (averaged onto the model grid from the higher resolution analyses) 

ensures that TOMCAT is including the full convection produced in the ECMWF 

assimilation model. This is therefore an important model improvement. 

As expected, convection is an important component of the vertical transport in the 

analyzed 1989-2017 simulation although its impact is reduced the longer lived the tracer 

(i.e. smaller effect for 50-day lifetime tracer compared to 5-day lifetime) and in this case 

the large-scale slower ascent appears to dominate over convection. The impact of large 

volcanic eruptions (Pinatubo-like) greatly influences the extent of the vertical transport 

over the ASM region and analogies with the injection of stratospheric particle for SRM 

techniques have been suggested.  

While the ERA-Interim archived mass fluxes show a better vertical transport ability when 

compared with an older version of the convection subroutine within the model (Section 

4.2.2) and in a 1989-2017 simulation (Section 4.2.3), correlating this improved 

characteristics of the model with the strength of the ASM is not straightforward. A very 

commonly used index, namely WSI1, which is related to strong convective activity over 

the Bay of Bengal does not show a clear robust correlation with the ASM anticyclonic 

average of any tracer considered (CO25, CO50, TR5 and TR50) at 100 hPa. A possible 

explanation for this result might lie in the fact that a single index might not be accurate 

enough to describe a complex feature like the ASM (Wang and Fan, 1999) which suggests 

that comparison with a series of indices might be more appropriate. This kind of analysis 

would be a topic for future work. 

 

  



 

  83 

 

 

 

5 Interpretation of UTLS Campaign Observations 

  Introduction  

One of the foci of this thesis, as outlined in Chapter 1, is the evaluation of climate- and 

ozone-related species entering the stratosphere via the ASM. Although much progress has 

been made since the pivotal work of Dethof et al. in (1999), which firstly determined the 

role of the ASM in transporting water vapour in the stratosphere (Dethof et al., 1999), a 

clear portrait of its mechanisms and impact is still missing. Thanks to the staging of the 

EU StratoClim campaign (Chapter 2), in-situ data of climate-relevant species within the 

ASM are starting to be analyzed (Brunamonti et al., 2018, 2019). In this chapter the ‘full 

chemistry’ TOMCAT model is tested against temperature, water vapour and CO values 

from the StratoClim fight campaign (Chapter 2). While the StratoClim campaign was 

clearly focussed on understanding and quantifying the transport over the Indian 

Subcontinent (Chapter 2) many other well instrumented campaigns have probed the 

UTLS in recent years, providing a lot of complementary data. A notable example is 

NASA Airborne Tropical Tropopause Experiment (ATTREX) campaign (Werner et al., 

2017) which took place in Guam in 2013/2014. The ATTREX observational payload 

allowed a focus on the transport of bromine VSLSs, which typically a high ozone-

depleting effect when they reach the stratosphere. Using the full chemistry troposphere-

stratosphere version of TOMCAT, simulations were performed to quantify the 

concentration of these species in the UTLS above the East Pacific Ocean. The model 

results related to ATTREX have been included in a published peer-reviewed paper by 

Werner et al., (2017). 

Section 5.2 presents the performance of the TOMCAT/SLIMCAT model (Chapter 3), 

configured with the new archived convective mass fluxes (Chapter 3), when compared 

with the measurements of this campaign. Due to the ongoing debate on the source of the 

observed CO at UTLS levels in the ASMA (Pan et al., 2016), in Section 5.4 I assess 

whether targeted TOMCAT simulations are able to give a definitive answer on this issue, 
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highlighting the complexity of this topic and estimating the importance of the two main 

presumed contributors (Bay of Bengal, BOB and Tibetan Plateau, TP) to the observed 

UTLS CO values. 

  Temperature, water vapour and CO comparison 

In order to compare the TOMCAT simulation results with corresponding observations of 

any chemical species, it is necessary that the model realistically represents water vapour 

mixing ratios and temperature fields. The water vapour values used for the comparison 

comes from the FLASH instrument on board the M55 Geophysica aircraft (Chapter 2, 

Sitnikov et al., 2007) while the temperature values are taken directly from the aircraft 

flight data. CO measurements are taken using COLD (Chapter 2, Viciani et al., 2018). 

Table 5.1. shows the flight dates, related availability and instruments used for water 

vapour, temperature and CO measurements (used in Section 5.3). 

It is important to note that water vapour and temperature values in TOMCAT are not 

generated by the model itself but are instead specified from the forcing ECMWF ERA-

Interim reanalyses, consistent with the convection scheme used in the simulations 

(Chapter 3). Figures 5.1. and 5.2. show that the model water vapour and temperature 

values (sampled at aircraft location and time) are consistent with corresponding FLASH 

and aircraft measurements. However, a recent study (Brunamonti et al., 2019) based on 

the analysis of balloon-borne measurements of UTLS water vapour over Nainital in 2016 

and Dhulikel in 2017 (NT16 and DK17, Chapter 2) concluded that the ERA-Interim 

UTLS representation is very much too dry, with an average mixing ratio difference 

ranging from -38% (100-120 hPa) to 10% (40-60 hPa) when compared with balloon water 

vapour measurements. This difference is well above the systematic error which affects 

FLuorescent Airborne Stratospheric Hygrometer (FLASH) measurements (Sitnikov et 

al., 2007). 
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 Water Vapour CO  Temperature 

1st Flight KAL 30.8.2016 ✕ ✓ ✓ 

2nd Flight KAL 01.09.2016 ✓ ✕ ✓ 

3rd Flight KAL 06.09.2016 ✕ ✕ ✓ 

1st Flight KTM 27.7.2017 ✓ ✓ ✓ 

2nd Flight KTM 29.7.2017 ✓ ✓ ✓ 

3rd Flight KTM 31.7.2017 ✓ ✓ ✓ 

4th Flight KTM 02.08.2017 ✓ ✓ ✓ 

5th Flight KTM 04.08.2017 ✓ ✓ ✓ 

6th Flight KTM 06.08.2017 ✓ ✓ ✓ 

7th Flight KTM 08.08.2017 ✓ ✓ ✓ 

8th Flight      KTM 

10.08.2017 

✓ ✓ ✓ 

Table 5.1. Summary of the availability of water vapour, temperature and CO observations 

from the StratoClim flight campaign. Water vapour and CO values have been measured 

using FLASH and COLD, respectively (Chapter 2). Locations of the flights are 

represented in Figure 2.13. and 2.14. 
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Figure 5.1. Plots of FLASH water vapour measurements (red dots) during the StratoClim 

campaigns. Results from TOMCAT model water vapour results (blue dots) and the 

aircraft altitude (black) are also shown. KAL refers to the flight during the campaign over 

Kalamata, Greece in 2016, while KTM refers to the campaign over Nepal in 2017. 

In order to investigate further this problem, I quantified the discrepancy between the 

TOMCAT (ERA-Interim) water vapour and temperatures with corresponding data taken 

with FLASH and onboard instrumentation. This comparison aims to confirm or disprove 

the findings of Brunamonti et al., (2019) which have important repercussions on the 

availability of the water vapour in the UTLS. To date this is the only published study on 

comparison of water vapour values from the StratoClim campaign with reanalysis data. 

First, it is worth noting that this analysis has been limited to the Nepal (Katmandu) 2017 

data, i.e. excluding similar data for the Kalamata (Greece) 2016 (although shown in 

Figures 5.1 and 5.2, flights tracks are in Figures 2.13 and 2.14). This is due to the fact 

that balloon data used in the study of Brunamonti et al., (2019) were launched from 

Nainital (India) and Dhlikhel (Nepal).  
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The temperature model data, sampled every 600 seconds along the flight path, fit 

extremely well with the corresponding temperature data measured from M55 Geophysica. 

Calculations show that the average difference is about 1 K, with temperature range 

between 194-204 K in the UTLS. More interesting is the water vapour difference shown 

in Table 5.2. together with values from the balloon campaigns in NT and DK in 2016 and 

2017, respectively, (Brunamonti et al., 2017). 

Pressure (hPa) ERA_Interim –  

Aircraft FLASH H2O 

ERA_Interim – 

Balloon H2O 

(Brunamonti et al., 

2019) 

40-60 -1.31 ppmv (-31%)  (18)  +0.46 ppmv (+10%) 

60-80 -0.95 ppmv (-37%) (36) -0.64 ppmv( -14%) 

80-100 -2.48 ppmv(-40%)  (18) -1.68 ppmv (-30%) 

100-120 -1.17 ppmv (-25%) (38) -3.23 ppmv (-38%) 

Table 5.2. Summary of water vapour comparison between averaged ERA-Interim 

database and FLASH measurements from all aircraft flights of the Nepal (KTM) 

campaign and the balloon campaigns binned into 4 altitude range. The latter data are taken 

from Brunamonti et al., (2019). The values in brackets refer to the number of FLASH 

values over which the average has been carried out. 

Likewise the temperature data, model water vapour has been sampled every 600 seconds. 

The results show a severe underestimation of the ERA-Interim water vapour in UTLS 

above the India and Nepal, probed by the aircraft, compared to FLASH values. Results 

show that the FLASH instrument identifies a pronounced drier the UTLS, although the 

percentage difference and the absolute value are different. For instance, a moister 40-60 

hPa layer is not seen in the results shown here, while the LS (60-100 hPa) values are more 

in agreement. A temperature bias cannot be the explanation. However, the general 
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agreement between two independent instruments from the StratoClim campaign is a 

positive sign, although a further investigation is desirable. One of the aims of the 

StratoClim project is to have a clearer picture of the distribution of water vapour in the 

UTLS and consequently more realistic parametrizations of such species in CTM and 

CCMs (Chapter 2). Switching to different reanalyses, such as ERA5 (ECMWF, 2018) 

as suggested by Brunamonti et al., (2019) might to help to pursue this aim, although 

positive bias (moister UTLS) is present, in favour of better vertical and horizontal 

resolution (137 levels, 0.5° × 0.5° ). 

 

Figure 5.2. Plots of measured temperature values (K) during the StratoClim flights 

campaign (red dots). Samples of TOMCAT modelled temperature are shown in blue, 

while the aircraft altitude is shown in black. KAL refers to flights during the campaign 

over Kalamata, Greece in 2016, while KTM refers to the campaign over Nepal in 2017. 

Flights tracks are shown in Figures 2.13. and 2.14.  

Nepal 

Greece 



 

  89 

 

 

While the water vapour and temperature comparisons test the accuracy of ECMWF 

reanalyses and the meteorological forcing, more information on the ability of the model 

to simulate the UTLS can be obtained by comparing chemically active tracers from the 

StratoClim campaign. For this three tropospheric full chemistry simulations (Chapter 3) 

were performed and the TOMCAT CO values are compared with COLD (Viciani et al., 

2018) data from the flight campaign (Figure 5.3.). CO is a typical tropospheric chemical 

tracer and is not directly affected by the bias in water vapour in the UTLS as discussed 

before, although it is produced and destroyed in reactions involving OH, which has H2O 

as its primary source. CO is also chosen because it was the tracer with the largest 

StratoClim observed dataset in the period following the campaign. The three model 

experiments different in their treatment of convection: archived convective mass fluxes, 

the Tiedtke scheme and no convection. 

 

Figure 5.3. Time series of CO COLD mixing ratio along StratoClim flights (see Table 

5.1.) are shown in pink. TOMCAT CO mixing ratio sampled at aircraft position, 

calculated  with three different treatments of convection are shown. Red diamonds refer 

to run with archived mass fluxes, green diamonds describe run with the default convection 
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scheme (Tiedtke) while blue diamond refers to run with no convection scheme 

implemented. Black line refers to the aircraft altitude shown in meters on the right axys.  

The results with the convective scenario (see also Chapter 4) do not give a definite 

answer on the “best” parametrization to use. Although the ERA-Interim convective mass 

fluxes (hereafter EICMF) sometimes overestimate the observed CO (see 1st KAL, 2nd 

KTM and 6th KTM flights) the simulation fits the observations better.  

The correlation plots in Figure 5.4. show that simulation with EICMF generally 

overestimate the observed data, although it shows a less chaotic behaviour compared to 

other two schemes. 

 

Figure 5.4. Correlation plots of observed (COLD data) and modelled (TOMCAT) CO 

for all available StratoClim flights. The data are shown for simulations with EICMF (left, 

correlation coefficient 0.95), no convection implemented (centre, correlation coefficient 

0.86) and with default Tiedtke scheme (right, correlation coefficient 0.92). Best fit lines 

are plotted in blue. Mean absolute errors are 19.3 ppbv, 16.1 ppbv and 9.9 ppbv for 

EICMF, no convection and Tiedtke scheme respectively.  

The Tiedtke scheme correlates well at higher altitude, but close to surface it tends to 

overestimate the observations. This suggests that the tracer stays at the surface rather than 

being vertically uplifted resulting in a non-realistic mixing ratio. The related (Pearson) 

correlation are as follows: 0.95 EICMF, 0.86 no convection, 0.92 Tiedtke scheme. The 

ECMWF archived mass fluxes give the best agreement. Interestingly the correlation in 

the unrealistic run with no convection is still fairly high, suggesting that the improvement 

from the Tiedtke scheme to EICMF (0.92 to 0.95) is important. There results corroborate 
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the conclusions of the modelling study in Chapter 4 and therefore this configuration of 

the model is the most appropriate to study the transport of species at stratospheric levels, 

over the tropical regions. This conclusion is in line of what found in a previous study 

focused on a similar topic with an early version of the EICMF scheme (Feng et al., 2011). 

 NASA ATTREX campaign 

The UTLS is the key region for species to be transported into the free stratosphere and 

therein impact ozone and other key components, particularly those which directly or 

indirectly affect its delicate radiative balance. Among these species the halogenated 

VSLSs, with lifetimes less than 6 months, generate concern due to their direct effect on 

stratospheric ozone and also due to the fact that they are not controlled in the Montreal 

Protocol (Montzka et al., 2011; Hossaini et al., 2016, WMO 2014). The Airborne Tropical 

Tropical Tropopause Experiment (ATTREX) was designed to measure a wide range of 

chemical tracers including various brominated species, such as CH3Br, CHBr3, CH2Br2 

and Halon-1211 (H-1211) which have been identified as powerful ODSs (Seinfeld and 

Pandis, 2016). Measurements were taken via a large set of instrument aboard of the 

Global Hawk (GH) (Werner et al., 2017). These data complement the more modest 

database of ASM observations from StratoClim and allow an investigation of the amount 

of brominated VSLS reaching the stratosphere in the East Pacific Ocean in early 2013 

(Figure 5.5., left). Satellite measurements (Figure 5.5. right ) show that convection 

extended in the TTL (see Figure 2.5.) up to about 360 K is strong in the West Pacific 

above 10⸰N in Jan-Feb 2013, while deep convection reaching the TTL in the East-Central 

pacific is far less likely (occurrence frequency less than 1%, Jensen, et al., 2017). 

Therefore, the data related to the ATTREX February 2013 flights represents a situation 

where convection doesn’t seem to be the main driver of transport of species into the TTL. 

Comparison btw altitude and equivalent potential temperature (Bolton, 1980) (Figures 

5.7. a and j), especially in the area III (Tropical TTL, see Werner et al., 2017) confirm  

the relative vertical stability of this layer in agreement with the findings in Figure 5.5. 

right. As a matter of fact, EPT increases when the altitude does and the other way around 

and this reflects a condition vertically stable atmosphere (Holton, 2004).  
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Comparison of TOMCAT simulations with these data are a good test for the model table 

4.2during the ASM (see Section 2.3.) the opposite (convection turned “ON”) is a more 

realistic representation.  

 

   

Figure 5.5. (left) Geographical location of NASA-ATTREX flights SF1-SF6, conducted 

from Dryden, California in 2013. The thickness of the line describes the flight altitude 

with thinnest line is for around 14 km and the thickest is for around 18 km. Figure taken 

from Werner et al., 2017. Further ATTREX flights took place from Guam in 2014. (right)  

Occurrence frequency of convection at levels above 370 K (a), 360 K (b) and 350 K (c), 

derived from satellite measurements, during January- February 2013. The grey boxes 

show the ATTREX campaign flights locations. Figure taken from Jensen et al., 2017.  

For these comparisons TOMCAT/SLIMCAT (Chapter 3) simulations with the 

stratospheric full chemistry scheme have been run with the ERA-Interim archived 

convective mass fluxes, due its better vertical transport performance, an important aspect 

in the Tropics where convection can be the dominant vertical transport regime (Chapters 

2 and 4). First a low resolution simulation (5.6o × 5.6o) was integrated from 1979 until 

2013. The surface mixing ratio of long-lived source gases were specified from monthly 

global mean values based on observations. The long interation ensured that the model 

was fully spun-up, including the distribution of long-lived stratospheric tracers such as 
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CH4, N2O and CFCs. Brominated VSLS species were included with constant surface 

mixing ratios of: CHBr3 = 1ppt, CH2Br2 = 1ppt and the sum of minor species a total of 1 

ppt Br. Overall that added a further 6 ppt bromine to Bry  (WMO, 2014) Output from this 

run on January 1st 2013 was taken to initialise a higher resolution simulation (1.2o × 1.2o) 

to cover the period of the 2013 ATTREX campaign. This run was sampled along the 

Global Hawk flightpaths to provide output for direct comparison with the aircraft data. 

Example mixing ratio ‘curtain plots’ of selected TOMCAT species profiles along the 

flightrack of 14th February 2013 are shown in Figure 5.6. The Global Hawk flight track 

is shown in white. Methane shows high abundances in the troposphere which start to 

decay in the lower stratosphere, at the top of the plotted domain. The ozone distribution 

is anti-correlated with this and Figure 5.6. shows that the aircraft just probes the large 

stratospheric values around 30oN latitude. NO2 and BrO are both short-lived radical 

species and need to be sampled at the correct local time for sensible model-data 

comparisons. Figure 5.6. shows the increasing abundance of these species in the 

overlying stratosphere. The lower panels of Figure 5.6. show the conversion of bromine 

from the organic source gas forms at lower altitudes (Bry
org) to inorganic forms (Bry

inorg) 

at higher altitudes. 

Figure 5.7. compares the observed and modelled chemical tracers along the flight of 14th 

February 2013, including CH4, O3 and NO2. Preliminary comparisons (not shown) 

revealed generally good, but not perfect, agreement between the modelled and observed 

CH4 and O3. These results pointed to a slight mismatch in the vertical profiles in the 

model. As the modelled and observed CH4/O3 ratios agreed very well (see Werner et al., 

2017) ozone (with its stronger gradient) was used as a vertical coordinate to shift the 

model profiles. This correction was around 1 km or less. Consequently, in Figure 5.7. the 

model ozone field appears to agree perfectly. Given that, the model then does perform 

very well in the other comparisons, particularly for the longer lived CH4. CH4 

measurement accuracy (~0.5%) and stability are calibrated by periodically replacing 

ambient air (4 min every 30 min) with NOAA-traceble gas standards, so the variations in 

CH4 show real atmospheric variability (~ 0.2 ppbv, Werner et al., 2017) 
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Figure 5.6. Latitude-height cross section of TOMCAT-simulated CH4 (upper left), O3 

(upper right), NO2 (middle left), BrO (middle right), Bry
inorg (bottom left) and Bry

org 

(bottom right) along the example ATTREX flightpath SF3-2013 (14 February 2013). The 

white line represents the Global Hawk trajectory. Figure taken from Werner et al., 2017. 
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Figure 5.7. (a) Plot of time-altitude trajectory of the Global Hawk during ATTREX flight 

SF3-2013 (14-15 February 2013). Panels (b)-(e) show intercomparisons between the 

TOMCAT simulation and results of (b) CH4 (HUPCRS), (c) O3 (NOAA-2 polarized O3 

photometer), (d) NO2 (mini DOAS) and (e) BrO (mini-DOAS). The grey shaded-error 

bars include all significant errors (see Figure 3 in Werner et al., 2017 for details). Panel 

(f) shows the TOMCAT models partitioned Bry for a control run. Panel (g) shows 

modelled and observed Bry
inorg, with uncertainty grey band. (h) H2O (UCTAS), and 

NOAA-2 polarized photometer measurements. Red and yellow bands represent 

significant errors for UCATS and NOAA-2 respectively. (i) temperature and (j) 

equivalent potential temperature (EPT) of the Global Hawk. Plots (a)-(g) are taken from 

Werner et al., 2017 where more details can be found.  
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Figure 5.8. presents the correlation plots between modelled and measured CH3Br(~62 

days lifetime, Mellouki et al., 1992)  , CHBr3 (~26 days lifetime, WMO, 2014), CH2Br2 

(~ 120 days lifetime, WMO, 2014) and Halon-1211 (H-1211, ~24 years lifetime, Volk, 

et al., 1997) from the Global hawk Whole Air Sampler (GWAS). The longer-lived species 

CH3Br and Halon-1211 (specified at the surface from global mean observations) agree 

well between the model and observations. The VSLS CHBr3, specified with a constant 

surface mixing ratio of 1 ppt also agrees well overall, but shows more scatter. This is 

likely due larger variability in it is source and distribution. In contrast, the agreement for 

the VSLS CH2Br2 is less good and varies from a model underestimate of ~0.1 ppt at high 

values (near the surface) to an overestimate at low values (higher altitude). There are 

likely various factors involved. The specified surface mixing ratio of CH2Br2 (1 ppt) is 

likely too low, together with a likely incorrect treatment of specified OH abundance 

which result in error in its lifetime and too little loss in the upper troposphere. The CH3Br 

and CHBr3 data scatter is reasonable but not very close, due instead to the variability of 

surface emission (Butler et al., 2010) encountered by the air masses sampled. As a matter 

of fact, emissions of natural brominated species, such as CHBr3 and CH2Br2, are quite 

sparse and have a large spatial and temporal variability (Butler et al., 2010). 
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Figure 5.8. Correlation plots of measured tracers (ppt) from the ATTREX GWAS versus 

TOMCAT modelled CH3Br (upper right), CHBr3 (upper left), CH2Br2 (lower left) and 

Halon-1211 (H-1211) (bottom left). Flight SF1-2013 is indicated in blue, SF3-2013 in 

yellow, SF4-2013 in light blue, SF5-2013 in purple and SF6-2013 in green. Figure taken 

from Werner et al., (2017). 

Figure 5.7e compares the observed and modelled abundance of BrO. As an inorganic Bry 

species, the abundance of BrO depends on the production from organic source gases. BrO 

is also the most widely observed Bry species and therefore the best species from which 

to infer the overall abundance of bromine. The figure shows generally good agreement 

between the model and observations, confirming the generally accurate abundance of the 

specified long-lived and short-lived bromine source gases. However, the model does 

underestimate the very largest BrO values near the start of the flight, which may point to 

direct injection of inorganic BrO into the stratosphere.  

In summary, these TOMCAT/SLIMCAT simulations with the new convective scheme 

(Chapter 4) confirm the injection of around 6 ppt bromine derived from VSLS into the 
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stratosphere, but also show that this cannot account in all cases for the amount of 

inorganic bromine observed in the lower stratosphere. The validation of the model with 

the in-situ aircraft measurements is a further motivation to use the ERA-Interim archived 

mass fluxes to study the transport of VSLS originated at surface originated and then 

transported at stratospheric level. Further work should explore the variability of the 

surface sources rather than assume constant mixing ratios as done here. 

 Test of CO boundary layer sources 

As shown in Section 2.3.2, the ASMA shows variability on several time scales. In 

Chapter 4 the interannual variability of idealized CO25/CO50 and artificial TR5/TR50 

tracers has been analysed and quantified. The subseasonal variability of the ASMA has 

been the object of a recent study (Pan et al., 2016) which shows that CO at 100 hPa is 

characterized by two modes, namely the Tibetan Plateau (TP) and Iranian (IR) modes 

(Figure 5.9). 

 

Figure 5.9. Simulated Whole Atmosphere Chemistry Climate Model (WACMM) CO 

field on August 10th 2005 at 100 hPa. Black contours show the geopotential height (km) 

and black arrows the horizontal winds at 100 hPa. Figure adapted from Pan et al., (2016). 
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Pan and co-authors also identify the TP as the main contributor of CO at 100 hPa, which 

acts as chimney which feeds the Iranian mode (IR) via quasi-horizontal transport. 

Nevertheless, a previous study from Chen et al., (2012) highlighted that together with the 

TP, the Bay of Bengal (BoB) and the Warm Pool (WP, East Pacific Ocean) contribute to 

the transport of air parcels from surface into the Asian Monsoon region. Among these, 

the TP contributes the least with only 12% while the BoB contributes the most with 21% 

of air parcels originating from the surface of these regions being transported to tropopause 

heights in the Asian Monsoon region. 

In order to try and resolve this discussion with two conflicting hypotheses, I ran the 

TOMCAT model with the simplified chemistry scheme (Chapter 3) using the same 

CO50 used in Chapter 4 but in four different convective scenarios. The first simulation 

is a control run, with EICMF. Three additional simulations were run with convection 

turned off over TP, BoB and TP+BoB, respectively. The model simulations covered the 

period of summer 2017. From the available output,  August 9th 18 UTC to study an 

interesting three-mode configuration (IR+TP+WP) in tracer CO50 at 150 hPa, has been 

chosen. The main source regions are northern India and North East China (Figure 5.10. 

left). 

 

Figure 5.10. TOMCAT modelled tracer CO50 at 150 hPa on Aug 9th 2017 18 UTC at 

surface (left) and at 150hPa (right). The Tibetan Plateau (TP), Iranian (IR) and Western 

Pacific (WP) modes are indicated. 

This structure is lost when time averaging longer than 6 hours is applied (Figure 5.10. 

right). Furthermore at 100 hPa this structure is less clear and the WP mode tends to 

disappear (not shown). Similar behaviour is found in case of CO25 (not shown). Figure 

5.11.  shows the difference between the control run and the respective area of “no 

surface 

surface 

150 hPa 
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convection”. A drastic reduction in the concentration of tracer CO50 over Northern India 

is evident when convection over TP is switched off (up to nearly 50%). The contribution 

of convection over BoB is minimal and the combination of TP+BoB is dominated by TP 

alone. Lack of convection on these two key areas, however, does not neutralize the three 

modes, suggesting that the modelled CO50 tracer distribution is the result of different 

transport regimes (e.g. large-scale ascent). This case study seems to negate the hypothesis 

that BoB is a main contributor of air in the ASMA region, although the level analysed 

here is lower (150 hPa rather than 100 hPa). Nevertheless, it unlikely that air coming from 

the BoB contributes only at 100 hPa thus skipping the 150 hPa level, implying a non-

realistic air pathway to explain such a behaviour. Also, given the surface CO50 

geographical distribution focused on northern India and North-East China, it is hard to 

speculate a vertical direct, fast deep transport from the BoB itself.brother  More 

interestingly is the attempt to explain the disappearance of the WP mode at 100 hPa which 

leaves the open hypothesis of an autonomous boundary source which feeds exclusively 

the WP with peculiar time scales and characteristics. This analysis of this hypothesis is 

left for future works. 

In terms of the model used here, it is worth noting that the analysis made here is somewhat 

complementary to the other two studies mentioned above. While Pan et al., (2016) used 

WACCM, with the meteorology nudged to MERRA, Chen et al., (2012) used 

FLEXPART a trajectory model whose winds come from ERA-Interim Reanalysis. The 

TOMCAT model, is an off-line model with detailed tropospheric and stratospheric 

chemistry schemes (Chapter 5) and so its findings come from a different standpoint 

which help to shed new light on the discussion developed here.  
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Figure 5.11. Plots of the difference (ppbv) between the CO50 control run and CO50TP 

(top), CO50BoB (bottom left) and CO50TP+BoB (bottom right) tracers at 150 hPa, on August 

9th 2017, 18 UTC. Areas of “no convection” are shown by the black rectangle. 

 Summary 

This chapter has been devoted to the analysis of temperature, water vapour and CO data 

from the StratoClim campaign and brominated species from the ATTREX project. 

Moreover, a TOMCAT modelling study designed to try to give new insight on the long-

standing issue on the boundary sources of the ASMA has been conducted.  

First, the model was compared with FLASH water vapour and aircraft temperature data 

taken during the StratoClim campaign of 2016 and 2017. This analysis aimed to compare 

results derived by the balloon measurements of the StratoClim campaign (now recently 

published), which shows that the UTLS over the Asian Monsoon in the ERA-Interim 

reanalyses is far too dry (up to -38% relative to balloon data, (Brunamonti et al., 2019)). 

This ERA-Interim dataset is used in all TOMCAT simulations, as tropospheric water 

vapour is not calculated within the model. Therefore, it is important to understand whether 

or not a bias is present in the treatment of water vapour in the ERA-Interim in the UTLS. 

The dryness found in balloon measurements are generally confirmed by independent 

FLASH data. As FLASH is a highly precise fluorescent airborne stratosphere hygrometer, 

designed specifically for measurements in the UTLS (Sitnikov et al., 2007)  an issue with 

the ERA-Interim dataset might be present, following  Brunamonti et al., (2019). 

Switching to ERA5 water vapour database might be beneficial, although a positive bias 

(too moist UTLS) is present in this dataset.  

The StratoClim COLD instrument gives a precious and unique portrait of CO in the UTLS 
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over the ASM. Following the rationale of Chapter 4, the model has been run using three 

different convection schemes (EICMF, Tiedtke scheme and no convection) to test which 

one fits the observations best. Both of the convective schemes give good correlation 

scores (above 0.92), but understandably the Tiedtke scheme overestimates the mixing 

ratio at surface and lacks the “strength” to transport CO upward. EICMF simulations have 

a correlation coefficient of about 0.95 when compared with COLD CO data, confirming 

the better ability of this scheme to reproduce the observations. This is further evidence of 

the successful comparison of the model in this configuration with in-situ measurements. 

In the context of the 2013 ATTREX campaign in the Eastern Pacific, designed to probe 

the UTLS abundances of powerful halogen ODSs such as CHBr3, CH3Br, CH2Br2 and H-

1211, the model agrees well with the observations. These studies are complementary to 

StratoClim and provide a much greater coverage of species. Simulations of 

TOMCAT/SLIMCAT with the new convective scheme based on archived mass fluxes 

confirm the injection of around 6 ppt bromine derived from VSLS into the stratosphere, 

but also show that this cannot account in all cases for the amount of inorganic bromine 

observed in the lower stratosphere. Direct injection of significant levels (few ppt) of 

inorganic bromine appear to occur, as further discussed in Werner et al., (2017). 

The understanding of the vertical transport regimes, which uplift tracers from surface to 

UTLS is still a highly debated topic. CO is a tropospheric tracer originated at surface and 

eventually transport upward. It is typically used to try to discern the geographical areas 

which eventually supply it UTLS during the ASM. Recent evidence points out that the 

TP and BoB are the main important near-surface source regions, nevertheless they 

disagree on which is the dominant one. The model simulations, using computationally 

cheap idealized CO with 50-day lifetime, suggest that the BoB contributes little to the CO 

mixing ratio at 150 hPa, unlike the TP which shows a reduction up to 48 ppbv 

(corresponding to about 50%) when it is excluded from the convective sources. Analysis 

of daily summertime model fields shows also reveals a tri-modal CO structure at 150 hPa, 

which does not dissipate completely when the convection is turned off in both TP and 

BoB. This suggests that assuming TP and BoB as the sole main contributors may in itself 

be an oversimplification. 
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6 Impact of the injection of TiO2 particles on 

Stratospheric Composition 

 

 Introduction  

Concern about climate change has led to the proposals that humans could act to modify 

the Earth or its atmosphere to counteract these changes (Crutzen, 2006; Keith et al., 

2010). This topic is summarized by the term ‘geoengineering’. Given the serious 

consequences of climate change, these ideas are being widely discussed and therefore 

need to be informed as accurately as possible. In addition to the significant technical and 

ethical issues of geoengineering, there are also questions related to atmospheric 

composition. In particular, could attempts to modify the Earth’s climate have undesired 

consequences on other parts of the Earth system such as the ozone layer? This is where 

models of stratospheric chemistry, which have been thoroughly tested against 

atmospheric observations (e.g. see Chapters 4 and 5), play a critical role in assessing the 

possible negative consequences. 

This chapter investigates the potential impact of titanium dioxide (TiO2) particles on 

stratospheric composition. TiO2 particles have been proposed as a means of 

geoengineering through solar radiation management because of their high reflectivity 

(Pope et al., 2012). However, their injection into the lower stratosphere could cause 

impacts on chemistry through heterogeneous reactions, similar to those that occur on 

sulfate aerosols and on polar stratospheric clouds. Laboratory data for the rates of some 

possible heterogeneous reactions on TiO2 are now becoming available and forms the basis 

for the model experiments discussed here. Some results from the modelling work in this 

chapter have been published in Moon et al., (2018), which specifically looked at the role 

of HO2 loss on TiO2 particles. 

The layout of this chapter is as follows: Section 6.2 provides some background of the 

historical context of geoengineering. Section 6.3 reviews recent literature and laboratory 

studies related to the use of TiO2 particles in the atmosphere. Sections 6.4 and 6.5 
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describe results of TOMCAT simulations related to the impact of TiO2 particles on 

stratospheric ozone. The key results of this chapter are summarized in Section 6.6. 

 Historical Context 

Weather and climate modification is far from being a new concept in our modern times. 

Societies from many parts of the globe have always desired to control the weather, mostly 

through some kind of ritualistic "rainmaking" (National Science Foundation, 1966). In 

modern times many methods have been suggested to try to increase rainfall in certain 

areas. For instance, before the 20th century two U.S. Government patents on rainfall 

management were registered (National Research Council, 1966). However, the history of 

‘geoengineering’, a term which will be defined below, had its turning point around the 

publication of an influential paper from Nobel Laureate Paul Crutzen (Crutzen, 2006). 

From 2006 a large number of scientists, politicians, and scholars of moral issues have 

become involved in the assessment of several aspect of geoengineering. 

Shortly after WWII, few American scientists understood that since the human beings have 

an effect on local weather, e.g. emitting NOx and deforesting rural areas, similar 

procedures can be undertaken to modify the weather on purpose. From 1945 until well 

into the 1970s, both of the two superpowers invested large sums of government money 

to explore projects to harm each other’s local weather, e.g. to ruin the Soviet harvest by 

creating a drought. These actions were part of a wider theory, so-called climatological 

warfare (Fleming, 2010), a term which alongside the race with Soviet Union to produce 

more lethal nuclear weapons, suggested a similar decisive competition to control the 

weather (Neumann, 1955). The idea of “cloud seeding” (Figure 6.1.) remained the main 

weather-modification project until the mid-1970s. In this process silver iodide particles 

cause cloud moisture to freeze and create ice crystals, changing the microphysics of 

clouds and allowing rain drops or snow to form.  

Although concerns around the negative effects on rainfall were raised (Lambright and 

Changnon, 1989), research efforts and funding for cloud-seeding projects continued 

throughout the 1960s with questionable results (National Academy of Sciences, 1966). In 

the early 1970s the U.S. government invested more than $20 million dollars per year on 

cloud seeding projects, although in the late 1970s and 1980s funding and attention 
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suffered a steady substantial decline (Lambright and Changnon, 1989). After that, both 

the USA and Soviet Union abandoned these kinds of projects to pursue a different aim. 

Awareness of global warming effects started to grow and some scientists thought that 

human intervention to counteract it should not be considered as a taboo. Research then 

developed from manipulation of the conditions of the atmosphere on a local, temporally 

limited scale (weather) to a global, temporally long basis (climate). 

 

Figure 6.1. Illustration showing how cloud seeding works: targeted clouds are fed with 

silver iodide particles, via an aircraft or an in-situ generator, which aid in the formation 

of ice crystals, eventually becoming large enough to fall and create snow or rain. Figure 

from https://en.wikipedia.org/wiki/Cloud_seeding# 

As mentioned above, research in this direction was stimulated in August 2006 when Paul 

Crutzen published an article (Crutzen, 2006) which reinvigorated the debate around 

“solutions” to escalating climate change. A clear definition of geoengineering as the 

“intentional manipulation of the environment to counteract the negative impacts of the 

global warming” finally took hold. Carbon dioxide removal (CDR) and solar radiation 

management (SRM) are currently the two main techniques proposed to try to mitigate the 

effect of climate change, the former based on the removal of CO2 from the atmosphere, 

while the latter aims to enhance the back-scattering of the incoming radiation to reduce 

the consequential surface heating. These two methods can be applied through several 

techniques, some of which illustrated in Figure 6.2. 
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Figure 6.2. Overview of main geoengineering methods divided between CDR and SRM 

techniques. (A) Ocean Fertilization, based on the enhancement of CO2 uptake due to the 

increment of nutrients; (B) Alkalinity Addition to the Ocean: solid minerals are injected 

in the ocean to enhance the dissolution of atmospheric CO2; (C) Accelerated Weathering: 

dissolved silicate and carbonate mineral rocks applied in coastal environment are 

transported to the ocean to enhance ocean CO2 uptake; (D) Direct Air Capture: 

underground or oceanic storage of chemically captured CO2; (E) Biomass Energy With 

Carbon Capture and Storage: electric power production using biomass, CO2 captured and 

stored either underground or in the ocean; (F) Afforestation: planting new trees enhance 

natural CO2 storage in forest ecosystems; (G) Deployment of Space Mirrors: space 

reflectors at appropriate distance reflect solar radiation; (H) Stratospheric Aerosol 

Injection: highly reflective particles indirectly producing aerosols are injected at 

stratospheric levels; (I) Marine Cloud Brightening: marine stratocumulus clouds coverage 

can be artificially increased through appropriate cloud seeding; (J) Ocean Brightening 

with Microbubbles: increment of microbubbles in ship wakes resulting in a more 

reflective ocean surface; (K) Crop Brightening: more reflective crops can increase 

backscatter of solar radiation; (L) Whitening Rooftops: whitening roofs and other 

constructions increases the brightness of urban and rural environments. Figure taken from 

(IPCC, 2013). 
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 Proposed Use of TiO2 for Solar Radiation Management 

Among the SRM techniques, injection of aerosols at stratospheric levels is currently 

one of the most widely studied. In particular, research on this topic accelerated in 

August 2006, when Nobel laureate Paul Crutzen published an editorial essay (Crutzen, 

2006), which reviewed in detail the pros and cons of injecting sulfuric acid aerosols 

in the stratosphere to reduce the incoming shortwave radiation and thus cooling the 

surface. Those aerosols occur naturally in the stratosphere mostly due to the transport 

of volcanic emission of SO2 and biogenic (oceanic) emissions of OCS (Seinfeld and 

Pandis, 2016). The stratospheric sulfur burden during a reduced volcanic activity is 

about 0.65±0.2 Tg (SPARC, 2006). In this context, the international modelling project 

GeoMIP (Geoengineering Model Intercomparison, (Robock, 2014)) attempted to assess 

the impact of sulfur geoengineering on temperature, precipitation and radiative balance, 

through a comprehensive chemistry–climate modelling research effort. However, a 

unique occasion to study the impact of the injection of large quantities of aerosols in the 

stratosphere was provided by the Pinatubo eruption in 1991, when it has been estimated 

that about 30 Tg of H2SO4 accumulated in the stratosphere (McCormick and Veiga, 1992) 

causing global-average surface cooling of about 0.5 K (Dutton and Christy, 1992) 

although a recent work has reduced this value to about 0.14 K (Canty et al., 2013) (see 

Figure 6.3.). 

 

Figure 6.3. Estimated model global mean surface temperature response (oC) to large 

volcanic eruptions (IPCC, 2013). 

Pinatubo eruption 

Krakatoa eruption 

El Chicon eruption 
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Following this idea, the artificial recreation of large volcanic eruptions has been suggested 

as a way to ‘engineer’ the climate. However, together with the desired temperature 

mitigation, other undesired aspects are associated with large volcanic eruptions, which 

should be avoided in case of the implementation of any geoengineering strategy. For 

instance, observations evidenced a minimum in stratospheric ozone values after the 

eruption (McCormick et al., 1995), and particularly up to 30% in the tropical stratosphere 

(Figure 6.4.). The reason for this is the involvement of changes in the dynamics, 

photolysis rates and heterogeneous chemistry induced by the volcanic event (Grant, et al., 

1994).  

 

 

 

 

 

 

 

 

 

Figure 6.4. Change in global average total column ozone (%) relative to 1964-1980 

average. Figure taken from (World Meteorological Organization (WMO), 2014). 

As the mechanisms of the impact of sulfate aerosols on stratospheric ozone are well 

understood, and given the consequential (negative) effects which followed the Pinatubo 

eruptions, alternatives to sulfate have been sought and found in mineral dusts particles 

(Pope et al., 2012). A comprehensive review of sulfate particles for geo-engineering 

strategies can be found in (Visioni,  et al., 2017). Nevertheless, suitable alternatives to 

sulfur particles for stratospheric injection must have comparable scattering efficiencies 

and avoid the abovementioned undesirable effects on ozone. Likewise, aerosols in the 

stratosphere affect the temperature field through the absorption-emission of long wave 

radiation and then eventually changing the circulation there. In turn, that could alter the 

Pinatubo eruption 
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ozone distribution and also, they are constantly subject to removal processes. Ideally, a 

candidate for SRM techniques should have low impact on the longwave radiation balance 

and long residence time, to avoid negative influence on the dynamics and constant re-

introduction of particles from the surface. Recent laboratory and modelling studies have 

determined that TiO2 particles show slower sedimentation time and less heating effect 

than sulfur particles (Ferraro et al., 2011 ; Benduhn and Lawrence, 2013) as shown in 

Figure 6.5.  

                                                                                

 

Figure 6.5. Modelled DJF zonal mean temperature change (K) due to the stratospheric 

injection of aerosols composed of (a) sulfuric acid (sulfate) and (b) titanium dioxide 

(titania), from Ferraro, Highwood and Charlton-Perez, 2011. (c) Relative sedimentation 

loss coefficient for sulfate aerosols (H2SO4) and TiO2 particles for sizes typical of 

geoengineering studies, Figures taken  from Benduhn and Lawrence, 2013.  

In their influential paper (Pope et al., 2012) first reviewed the chemical characteristics of 

mineral dust particles with potential for SRM use and, among these, SiO2 and TiO2 

particles have been the object of subsequent work focused on assessing the impact on 

HO2, nitrogen species and chlorine radical activation (Tang et al., 2014; Tang et al., 2016; 

Moon et al., 2018). Mineral dust particles are widely spread in the troposphere and 

account the largest fraction of the tropospheric aerosol burden (Textor et al., 2006; 

Huneeus et al., 2011) with TiO2 accounting for up to 10% of the all mineral dust loading 

(Usher, et al.,  2003). In particular, TiO2 particles, have been suggested as convenient for 

SRM schemes due to their large refractive indices (Pope et al., 2012). It has been 

estimated that the use of TiO2  particles requires a factor of 3 less in mass (and a factor of 

7 less in volume) of sulfuric acid particles in order to achieve the same cooling effect due 

to the Pinatubo eruption, as the refractive index of TiO2 at 550 nm is 2.5 compared to a 

TiO
2
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value of 1.5 for naturally occurring sulfate aerosols (Pope et al., 2012). However, the 

injection of particles in the atmosphere, provides surfaces for heterogeneous reactions to 

occur and this is especially important at stratospheric levels, where the ozone 

concentration is maximum.  

In order to understand the impact of TiO2 particle injection on climate-relevant species, 

e.g. ozone, recent laboratory experiments studies (Tang et al., 2014; Tang et al., 2016) 

have focused on the investigation of the efficiency of those particles to hydrolyse N2O5  

and ClONO2 via the following reactions: 

 

       𝑁2𝑂5 + 𝐻2𝑂 + 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 → 2𝐻𝑁𝑂3                                                                                            (R1) 

 

      𝐶𝑙𝑂𝑁𝑂2 +  𝐻2𝑂 + 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 → 𝐻𝑁𝑂3 + 𝐻𝑂𝐶𝑙                                                                      (R2) 

 

The dissolution of N2O5 and ClONO2 has been widely observed after the Mt Pinatubo 

eruption together with the activation of chlorine radicals formed by the photolysis of Cl2 

derived from reaction of ClONO2 with HCl (Fahey, et al., 1993). 

 

𝐶𝑙𝑂𝑁𝑂2 + 𝐻𝐶𝑙 + 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 → 𝐻𝑁𝑂3 + 𝐶𝑙2                                                                              (R3) 

 

A further study (Moon et al., 2018) tested the uptake of HO2 on TiO2 particles, a radical 

responsible for up to 40% of ozone depletion in the lower stratosphere via the catalytic 

cycle  

 

      𝑂𝐻 +  𝑂3  →   𝐻𝑂2 + 𝑂2   

     𝐻𝑂2 + 𝑂3 →  𝑂𝐻 + 2𝑂2 

       𝑁𝑒𝑡:  2𝑂3  →             3𝑂2   

The source of HOx (OH + HO2) in the stratosphere is water vapour. HOx is short-lived 

and there is a strong cycling in/out of the H2O reservoir. Source of stratospheric water 



 

  111 

 

 

vapour is transport from the troposphere (through the temperature minimum at the 

tropopause) and oxidation of CH4 (Seinfeld and Pandis, 2016). 

  TOMCAT Model Experiments 

The TOMCAT off-line three-dimensional (3-D) (Chipperfield, 1999, 2006) has been used 

to assess the impact of the heterogeneous reactions on TiO2 particles on stratospheric 

composition. As described in Chapter 3, the model has been widely used in previous 

studies of stratospheric chemistry and performs well in reproducing stratospheric ozone 

and the trace species which control its distribution (Chipperfield et al., 2015). The model 

includes a detailed treatment of stratospheric chemistry of Ox, HOx, NOy, Cly and Bry 

species along with the main source gases. The model has a comprehensive gas-phase 

chemistry scheme and includes a number of heterogeneous reactions on stratospheric 

sulfate aerosols and polar stratospheric clouds (Chipperfield, 1999).  

The loss rate of a gas-phase chemical species (HO2, N2O5, ClONO2) due to heterogeneous 

reaction with TiO2 was included in the model as: 

                                                                k = 0.25 Sa w γ                                 (Eqn. 1) 

where Sa is the surface area density of TiO2, w is the mean velocity of the reacting 

molecules (ms-1) and γ is the uptake coefficient which is based on laboratory data as 

described above. Two sets of TOMCAT experiments, one for 2008 and the other one 

for time period 2000-2049 were performed (see Table 6.1.).  

The first set included four TOMCAT simulations, performed at a horizontal resolution 

of 5.6o × 5.6o and 32 levels from the surface to ~60 km. The aim of these shorter 

experiments was to assess the impact of TiO2 particles under present-day conditions. 

The model was forced with wind and temperature fields from the European Centre for 

Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalyses and integrated 

for 2 years from January 2007 until December 2008, initialised with the output from 

a standard TOMCAT run which had spun-up from 1977. The first simulation 

(CNTL_2008), similar to that presented in Chipperfield et al., (2015), did not include 

TiO2 particles. A specified latitude-height distribution of TiO2 particles was then included 
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in two simulations with an effective aerosol surface area density equal to that of sulfate 

aerosols in 1992 following the eruption of Mt Pinatubo. This is an assumption which 

allows for the fact that less TiO2 mass is needed in order to produce the same radiative 

impact as sulfate aerosol from Mt Pinatubo, but the TiO2 particle size is smaller. Hence 

these effects largely cancel (Tang et al. (2014)). 

Experiment 

Label 

Time 

Period 

γ(R1) γ(R2) γ(R3) γHO2 = 1 

CNTL_2008 2007-2008 0 0 0 0 

R1_2008 2007-2008 0.005 0 0 0 

R2_2008 2007-2008 0.005 0 0 1 

R3_2008 2007-2008 0.005 0.0015 0 0 

R4_2008 2007-2008 0.005 0.0015 0.02 0 

CNTL_2049 2000-2049 0 0 0 0 

R4_2049 2000-2049 0.005 0.0015 0.02 0 

Table 6.1. Summary of the TOMCAT 3-D CTM simulations performed to assess the 

impact of TiO2 particles on relevant stratospheric species, with the assigned 

coefficient uptakes (γ). 

Simulation CNTL_2008 is a control simulation using 2008 meteorology and chemical 

conditions without the inclusion of TiO2 particles. The first of the sensitivity simulations 

(R1_2008) included only the loss of N2O5 on TiO2 particles with γ(R1) = 0.005, the upper 

limit used in the modelling of Tang et al. (2014), which allows comparison with their 

study. Simulation R2_2008 also included the loss of HO2 on TiO2 particles with a γHO2 = 

1, as discussed above. Simulation R3_2008 was the same as R1_2008 but also included 
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the hydrolysis of ClONO2 was included (γ(R2)=0.0015, according to lab results of Tang 

et al., 2016). Finally, a run with γ(R1)s=0.005, γ(R2)=0.0015 and γ(R3)=0.02 (Molina 

et al., 1997) was performed (R4_2008). These last two runs did not include loss of HO2 

because of the negligible impact of the titanium dioxide particles on this species, as shown 

below for R2_2008. 

The second set of TOMCAT simulations were performed to assess how the impact of 

TiO2 particles may change as the composition of the stratosphere changes, notably as 

the halogen loading declines in response to the effects of the Montreal Protocol. As 

this is the timescale on which geoengineering may take place, it is important to see 

the time dependence of any effects on ozone. Therefore, two additional simulations 

(with and without TiO2) were performed to investigate the combined impact of 

reactions (R1), (R2) and (R3) for time period from 2000-2049, particularly in terms 

of chlorine activation which is a key step in stratospheric ozone depletion. For the 

future model years, the meteorology was fixed to 2012 values from 2018 onwards. In 

order to investigate the interaction of geoengineering and large volcanic eruptions, 

which of course may still occur, these future runs include the eruption of a Pinatubo-

like volcano every 10 years (in 2021, 2031, 2041, etc.). The varying effect of the 

interaction of aerosols and TiO2 particles can also be studied. Uptake coefficients used 

for these simulations have been object of studies led by M. Tang (Tang et al., 2016) 

and M.J. Molina (Molina et al., 1997), respectively. Limitations in the former study 

meant that laboratory experiments were only conducted at room temperature (296±2 K), 

while in the latter study conditions were typical of the mid-latitude lower stratosphere but 

α-alumina (Al2O3) particles were used. The simulation, R4_2049 was conducted with 

γ(R1)=0.005 (same as the simulations for 2008 conditions), γ(R2)=0.0015 (Tang et 

al., 2016) and γ(R3)=0.02 (Molina et al., 1997). The control simulation CNTL_2049 

assumed no particle injection, therefore γ(R1) = γ(R2) = γ(R3) = 0. 

 Results 

This section describes and discuss the simulation results obtained according to the 

methodology described in the previous section. The findings relate to the third set of 

research questions that guided this study as explained in Section 1.1. 
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6.5.1 Reaction of N2O5 

The impact of N2O5 loss on TiO2 particles has been assessed by (Tang et al., 2014) using 

a nudged chemistry-climate model (CCM). Therefore, results from TOMCAT simulation 

R1_2008 can be used to compare with that study as a test of the model setup. 

Figure 6.6.b shows the impact of including heterogeneous loss of N2O5 on TiO2 particles 

in the model, with γ(R1)=0.005 (R1_2008 simulation). N2O5 is decreased by up to 0.5% 

in the region of TiO2 particles, which is assumed to follow the distribution of sulfate 

particles after the Mt Pinatubo eruption. The zonal means at 20 km, for January-December 

2008 (Figures 6.7a,b) shows some latitudinal discrepancies which follow, at least for 

N2O5, the seasonal minimum temperature conditions. Nevertheless, the effect on N2O5 is 

is only a minor effect and considerably smaller than the impact of around -20% modelled 

by (Tang et al., 2014, Figure 6.8.) for the same assumed γ(R1)=0.005. The reasons for 

this are not clear, although it is noted that the effect modelled in the off-line chemical 

transport model used here, with specified meteorology, is clearly confined to regions of 

high aerosol loading. The impacts modelled in the nudged CCM study of Tang et al., 

2014 are not confined to the region of high aerosol and even extend to the upper 

stratosphere. Large N2O5 increases (>10%) in the Tropics between 30-40 km at the North 

Pole between 40-50 km, raise some doubts due to the separation from the main TiO2 

particle distribution (Figure 6.9.). It is possible that their simulations, although nudged, 

also include some feedback due to dynamical variability, which enhances an otherwise 

small signal, or that there was model variability between the different sensitivity 

simulations (i.e. the nudging was not a strong constraint). Figure 6.6a shows that the 

resulting impact on O3 in TOMCAT simulation R1_2008 is small with changes less than 

0.02%. The model produces a region of slight decrease in the very low stratosphere, with 

a region of slight increase above. 
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Figure 6.6. Annual mean zonal mean difference (%) in atmospheric (a) O3 and (b) N2O5 

for 2008 derived from TOMCAT simulation R1_2008 compared to simulation 

CNTL_2008 Figure also shown in Moon et al., 2018. 

   

Figure 6.7. 2008 January-December monthly zonal mean difference mean at 20 km (%) 

vs latitude in atmospheric (a) O3 and (b) N2O5 for derived from TOMCAT simulation 

R1_2008 compared to simulation CNTL_2008.  
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Figure 6.8. Simulated changes in N2O5 concentrations (%) caused by TiO2 injection (see 

Figure 6.9.) with γ(R1)=0.005 using the UKCA nudged chemistry-climate model. Figure 

taken from Tang et al., (2014). 

 

Figure 6.9. Surface area density (μm2 cm−3) of TiO2 particles which is estimated to 

generate the same radiative effect as the sulfate particles derived from the Pinatubo 

eruption. Figure taken from Tang et al., 2014. 

6.5.2 Reaction of HO2 

The effect of HO2 uptake onto TiO2 particles for stratospheric concentrations of HO2 and 

O3 was assessed using the TOMCAT model. At relative humidities (RH) relevant to the 

lower stratosphere (<40%) (Moon et al., 2018) showed that γ(HO2) is in the range 0.020-
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0.028 at 295 K. At stratospherically relevant temperatures (T = 200 - 220 K), γ(HO2) is 

likely to be considerably larger (Thornton et al., 2008), due to a negative temperature 

dependence (Moon et al., 2018) suggesting that considerably larger γ(HO2) values are 

realistic (Gershenzon et al., 1995). Given this uncertainty, and to assess the extreme case, 

γ(HO2) = 1 was used in the model simulation R2_2008 to represent an upper limit (see 

Table 6.1). 

It is evident that HO2 loss due to heterogeneous reaction between HO2 and TiO2 particles 

in 2008 is <1% and is confined to the lower stratosphere where the assumed TiO2 particles 

are located. Figure 6.10a shows that the subsequent effect of the TiO2 particles on the O3 

concentrations through the effects of this reaction is also small (<0.1%), with a small 

decrease in the tropical upper troposphere/lower stratosphere and a small increase at all 

latitudes in the lower stratosphere. This small effect of TiO2 particles on stratospheric 

HO2 and O3 concentrations is due to the reactive nature and short lifetime of HO2 (order 

of seconds). The species readily reacts with other gas phase species (e.g. O3) and so loss 

on TiO2 surfaces does not compete significantly. The analysis of plots in Figure 6.11 

agrees with this interpretation. Therefore, loss of HO2 was not considered in the further 

TOMCAT simulations. 

 

Figure 6.10. Annual mean zonal mean difference (%) in (a) O3 and (b) HO2 for 2008 

from TOMCAT simulation R2_2008 compared to CNTL_2008. Figure also shown in 

(Moon et al., 2018). 
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Figure 6.11. 2008 January-December monthly zonal mean difference mean at 20 km (%) 

vs latitude in atmospheric (a) O3 and (b) N2O5 for derived from TOMCAT simulation 

R2_2008 compared to simulation CNTL_2008.  

6.5.3 Chlorine activation reactions 

A particularly important impact of the injection of TiO2 particles may be due to their 

potential role in the activation of chlorine radicals which are very well known to cause 

depletion of stratospheric ozone, most notably in the Antarctic ozone hole (Seinfeld  

and Pandis, 2016; Farman, et al., 1985). For this reason, simulations R3_2008 and 

R4_2008 (see Table 6.1) were performed with the treatment of heterogeneous 

processing of HCl and ClONO2. The simulation results of R4_2008 are shown in 

Figure 6.12. and Figure 6.13. 
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Figure 6.12. Annual mean zonal mean difference (%) in (a) O3, (b) N2O5, (c) HCl, (d) 

ClONO2, (e) HNO3 and (f) ClO for 2008 from simulation R4_2008 compared to 

CNTL_2008. 
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Figure 6.13. 2008 January-December monthly zonal mean difference mean at 20 km (%) 

versus latitude in atmospheric (a) O3 and (b) N2O5 for derived from simulation R4_2008 

compared to simulation CNTL_2008.  

The 2008 O3 annual change (Figure 6.12a) shows similar depletion patterns to the 

R1_2008 simulation although the inclusion of reaction R3 and R2 enhances the depletion 

up to -1.8%, between 10 and 20 km. The hydrolysis of ClONO2 (R2) produces HNO3 and 

reduce NOx (NO+NO2) which in turn depletes ozone, as the hydrolysis of N2O5 does (R1). 

Moreover, at extreme low temperatures (below 200 K) hydrolysis of ClONO2 (R2) equals 

the contribution of R1 to deplete ozone (Fahey et al., 1993). In our case, the ozone 
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reduction is, in absolute terms, more than double the reduction due to the sole R1 (-

0.020%), suggesting that the additional effect is due to R3 via the reaction between 

reservoir ClONO2 and HCl (Fahey,  et al., 1993). Furthermore, it is not surprising that the 

greatest ozone reduction is detected at the poles where temperatures below 200 K are 

normal during winter periods. More interestingly, the N2O5 concentration is strongly 

influenced by R2 and R3 as a comparison between Figures 6.6b and 6.12b show. 

Although the N2O5 (Figure 6.12b) distribution follows the same as for R1_2008 (Figure 

6.6b), the negative contribution is about an order of magnitude stronger up to -18% at the 

North Pole. To disentangle the role of R3 in this strong depletion, plots of O3 and N2O5 

from R3_2008 (Table 6.1.) are presented in Figures 6.14. and 6.15.  

 

     

    

Figure 6.14. 2008 zonal mean difference (%) in (a) O3, (b) N2O5, (c) HCl, (d) ClONO2, 

(e) HNO3 and (f) ClO from simulation R3_2008 compared to CNTL_2008.  
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Figure 6.15. 2008 January-December monthly zonal mean difference mean at 20 km (%) 

versus latitude for atmospheric (a) O3 and (b) N2O5 for derived from simulation R3_2008 

compared to simulation CNTL_2008. 

 

The minimum ozone value (Figure 6.14a) stays between the corresponding value for 

R1_2008 (-0.020%) and R4_2008 (-1.8%), although this value does not double the 

R1_2008 one, as previously explained. The difference should be due to the effect of 

inclusion of R3. While this is of minor importance for ozone, the jump from up -1.1%, 
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R3_2008 (Figure 6.14b), to up to -18% (Figure 6.12b) due to R4_2008 suggests the 

strong influence of the sole radical chlorine activation on the N2O5 balance. The reason 

behind that could be the effect of perturbation on the NOx balance, a primary source of 

N2O5, due to the production of Cl2 and ClO. (Fahey et al., 1993). 

6.5.4 Impact of TiO2 Particles in a Future Atmosphere 

As the effect of chlorine activation produced by the injection of TiO2 particles, 

particularly via R3, is so relevant for ozone, TOMCAT simulations from 2000 until 

2049 have been run including a TiO2 particles field designed to “mimic” the same 

cooling effect recorded a year after Pinatubo eruption. The evaluation was focused on 

on O3, N2O5, HCl and ClONO2 (see reaction (R1), (R2) and (R3)). The negligible 

uptake of HO2 on TiO2 particles was not included in these simulations (see Section 

6.5.2). In the lower stratosphere about 90% is contained (Seinfeld and Pandis, 2016) 

and consequently we focused our attention in 20 km level which is comprised in this 

layer. Moreover, the simulations involving the chlorine activation (R3_2008 and 

R4_2008) show that this level is affected by the ozone depletion the most, although 

up to a few percent (Figures 6.12a and 6.14a). 

To better understand the effect the injection of the TiO2 particles on the chemistry of 

the ozone-relevant species ClONO2, HCl, O3 and N2O5 interannual variability of the 

mixing ratio plots are shown in Figure 6.15. for the Tropics (-20oN < latitude < 20oN) 

and Antarctic regions (latitude < -65oN). Figure 6.15a shows that the inclusion of 

reaction (R2) and (R3) causes a net increase in ClONO2 especially in Antarctica. 

ClONO2 is produced by re-combination of NO2 and ClO (Fahey et al., 1993). 

However, it is clear analysing Figure 6.12b and Figure 6.16d that N2O5 is negatively 

affected by TiO2 particles injection. N2O5 forms through combination between NO2 

and NO3, the latter produced in the reaction of NO2 and ozone. Consequently, the sole 

effect of R2 on ClONO2 should be a net reduction. The reason behind a net increase 

should be sought in the effect of R3 because it is worth noting that ClONO2 is not 

touched (Figure 6.16a) by the nearly total depletion of N2O5 the year after every 

Pinatubo-like eruption (2012, 2022, 2032, ..., see also Figure 6.16.). Nevertheless, 

Figure 6.15. shows that, as expected, the absolute concentration of ClONO2 is 
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reducing over time. The global decline of the stratospheric chlorine burden is also 

evident in the HCl mixing ratio (Figure 6.16b). 

Figures 6.18. show the (%) interannual variability of ClONO2, HCl, N2O5 and O3 

from 2000 until 2049 for Antarctic, Tropics (-20oN < latitude < 20oN) and Arctic 

(latitude > 65oN). The first thing to note is that, aside from ClONO2, where the 

particles injection increase produces a net increment as shown above, all the other 

species show negative percent difference (%), meaning that the TiO2 particles cause a 

net depletion, due to the adsorption of those species on the surface provided by them. 

The Arctic seems to be the most sensitive region. Moreover, the effect of TiO2 uptake 

decreases with time, according to a scenario where atmospheric chlorine burden is 

reducing and thus removing the possibility of reactions (R2) and (R3) to occur. While 

O3 and N2O5 decreases linearly with time toward 0%, HCl seems to converge 

asymptotically to about -7%, as it is possible to infer from Figure 6.13c. Comparing 

Figure 6.6b with 6.18d draws the conclusion that including reactions (R2) and (R3) 

causes a general reduction of more than an order of magnitude of N2O5 in the Arctic, 

compared to the effect of the hydrolysis alone. Ozone does not seem to be particularly 

affected by the activation on chlorine radicals. Although the maximum depletion 

increases from -0.06% (Figure 6.12a) to -2.4% (Figure. 6.18c), it cannot be 

considered as a large effect. In addition, from Figure 6.17d is clear that TiO2 particle 

injection is responsible for maximum 9% depletion of N2O5, while during large 

volcanic eruptions the value goes up to about 70 pptv (Figure 6.16d, Antarctic_control 

simulation), which leads to speculation that the uplift of sulfur particles has much more 

impact on N2O5, compared to TiO2 particles. It is worth noting that the Tropics are left 

nearly intact from the injection of particles either sulfuric or mineral.  
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Figure 6.16.: Modelled annual mixing ratio (%) from 2000 to 2049 in (a) ClONO2 , (b) 

HCl, (c) O3 and (d) N2O5 at 20 km.vAntarctic_exp, shows the model results including 

reaction (R1), (R2) and (R3), limited to Antarctica. Tropics_exp, same as Antarctic_exp 

but for the tropical region. Control runs in Antarctica and Tropics are indicated as 

Antarctic_control and Tropics_control, respectively. 
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Figure 6.17. Enlargement of Figure 6.16.a for (a) Antarctica and (b) Tropics. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.18. Annual mean zonal mean percent difference (%) between TOMCAT model 

experiment R3_2049 and control run CNTL_2049 from 2000 to 2049 at 20 km altitude 

for (a) ClONO2 , (b) HCl, (c) O3 (c) and (d) N2O5. The experiment R4_2049 includes 

reactions (R1), (R2) and (R3) with coefficient uptakes described in the text (Table 6.1). 
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  Summary 

This chapter presented the results of the TOMCAT CTM simulations to evaluate the 

impact of the injection of TiO2 particles on stratospheric chemistry, and in particular 

ozone. The first part of this study, whose results are presented in (Moon et al., 2018), 

show the small effect of the uptake of both N2O5 and HO2 (part of the ozone-destroying 

HOx family) on the abovementioned particles, injected in a manner to “mimic” the same 

radiative effect as the 1991 Pinatubo eruptions. Although these results diverge from those 

shown in a recent previous study (Tang et al., 2014), I am confident that the use of an off-

line model avoids unrealistic feedback effects typical of CCM simulations. I find that the 

TOMCAT modelled stratospheric depletion is minimal (up to -0.06%).    

The second part of this chapter has been devoted to the investigation of the long term 

effects (2000-2049) of the adsorption of stratospheric relevant chlorine species, namely 

ClONO2 and HCl, on titanium dioxide particles. I found that a scenario where the 

emissions of chlorine are reducing and large volcanic eruptions occur every 10 years are 

appropriate for the scope. The overall modelling results suggest that related impact on the 

stratospheric ozone concentration is small. Latitudinal dependence is present but the 

impact is no larger than -2.5%. The concentration of ClONO2 and HCl follows a steady 

decline, although ClONO2 seems to be indirectly produced by the presence of the newly 

injected particles. In contrast, N2O5 shows remarkable opposite effect although a closer 

look show that sulfur injection caused by large volcanic eruptions play a much greater 

role. 

The results shown in this chapter are limited by the paucity of recent laboratory 

coefficient uptakes, particularly for the reaction HCl + ClONO2 (R3). However, the 

overall conclusion is that the chemical impact on the ozone layer of using TiO2 particles 

for geoengineering is likely modest and will decrease with time as the chlorine loading 

decays. However, changes in stratospheric heating associated with the presence of the 

TiO2 particles, which are not considered here, could affect the distribution of ozone 

through dynamical changes.  

A possible microphysical interactions btw volcanic aerosol and TiO2 particles cannot be 

a priori excluded. The eventuality of insoluble mineral dust particles,  such as TiO2 , to 
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be become cloud condensation nuclei when in contact with (convective) clouds and 

sulfates has been investigated (Yin et al., 2002). This unexplored subject, in the context 

of SRM techniques, appears to be important especially in the event of large volcanic 

eruptions, where the plumes can reach the UTLS and where TiO2 are located. Moreover, 

this kind of microphysical interactions are likely to occur in the Tropics especially in 

regions where the deep convection is more likely to happen,  to say, the Indian 

Subcontinent, East Asia and the West Pacific (Chapters 2 and 5). 

 

7 Conclusions 

The final chapter of this thesis summarises the main results obtained during my PhD 

project and presented in Chapters 4, 5 and 6. These results in turn address the research 

questions given in Section 1.1. This summary is provided in Section 7.1. Suggestions for 

follow-on studies and extensions of this work are provided in Section 7.2. 

 Summary 

The TOMCAT 3-D CTM has been used throughout this work to evaluate the role of the 

vertical transport associated with the Asian summer monsoon (ASM), to transport species 

from surface to the UTLS. In conjunction with this, a study of the impact of TiO2, a 

substance able to efficiently reflect solar radiation, on stratospheric ozone and chlorine 

has conducted.  

In order to quantify the vertical transport of species due to the action of the ASM, a 

comprehensive diagnosis of the convection performance of the TOMCAT model was 

necessary. Motivated by a previous study which showed the relatively poor performance 

of the default Tiedtke convection scheme, this was replaced with a scheme based on ERA-

Interim archived convective mass fluxes, in which the convection is calculated by the 

ECMWF model. Intercomparison with similar state-of-the-art chemical transport models, 

show that this “new” convective scheme largely improves both vertical and 

interhemispheric transport (Section 4.2.1). The analysis of a 1989-2017 simulation, 

designed using idealized tracers of 5, 25 and 50-day lifetimes, presents some interesting 
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aspects. The mixing ratio at 100 hPa, averaged over the ASM region is dominated by 

convective activity, but its effect is evident only for the shorter lived tracers (5- and 25-

day lifetimes). This does not come as a surprise, because the convection timescale is on 

the order of days. Large volcanic eruptions, like Mt Pinatubo in 1991 have an apparent 

impact over the extent of the vertical transport (Section 4.2.2). While the test of the ERA-

Interim archived mass fluxes, using age-of-air and other specific artificial tracers, gives 

clear evidence of the amelioration of the model, this is not the case when the same method 

is applied to a complex system like ASM. The correlation plots between the lifetime 

tracers (CO25, CO50, TR5 and TR50) and a widely used called WSI1, which is related 

to the convective activity over the Bay of Bengal (BoB), does not lead to clear 

conclusions. 

In order to test the accuracy of the simulated distribution of chemical species in the UTLS 

the model needs to be validated by observations. In Chapter 5, comparison between 

water vapour, CO and temperature data from the StratoClim campaign have been 

performed (Section 5.2). The temperature measured by the M55 Geophysica, during the 

StratoClim campaign fits extremely well with the model temperature data, which are 

directly specified by the ECMWF ERA-Interim reanalyses. Unfortunately, these data 

when compared with in-situ FLASH water vapour data do not match very well, 

highlighting a negative bias (drier UTLS, in the Asian Monsoon region), confirming 

recently published results using balloon data. CO aircraft data have been tested against 

three convective scenarios (ERA-Interim convective mass fluxes (EICMF), Tiedtke 

scheme and no convection) to have a further evidence of performance of the new scheme 

developed here. The correlation between modelled and observed CO in this case is high 

and equal to 0.95.  

CO is often used to identify the area which contributes most to transport to the upper 

troposphere. Two convective sources are usually identified as the main ones: the Tibetan 

Plateau (TP) and the BoB. Nevertheless, it is has not been established in the literature 

which one dominates. A three-step simulation for summer 2017 has been run, turning off 

the convection at each step either over TP, BoB or both. According to the results discussed 

here, the TP is the main contributor and its exclusion causes a reduction of about 50% of 

CO, compared to a normal scenario where convection occurs. 

Section 5.3 presents some results of the 2013 ATTREX campaign, where measurements 
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of relevant halogenated species have been taken in the Eastern Pacific. The ATTREX 

campaign was designed to probe the UTLS abundances of a wide range of trace gases in 

a much more comprehensive way than StratoClim. Therefore, this dataset provided the 

best opportunity to investigate brominated VSLS over the timescale of this thesis. 

Simulations of TOMCAT/SLIMCAT with the new convective scheme based on archived 

mass fluxes agree well with UTLS observations of CHBr3, CH3Br, CH2Br2 and H-1211, 

the model agrees well with the observations. This confirms the injection of around 6 ppt 

bromine derived from VSLS into the stratosphere, but also shows that this cannot account 

in all cases for the amount of inorganic bromine observed in the lower stratosphere. Direct 

injection of significant levels (few ppt) of inorganic bromine appear to occur, as further 

discussed in Werner et al., (2017). 

Concerns over climate change, has led many scientists and engineers to explore feasible 

options to try to limit its effects. Among them, the injection of highly reflective TiO2 

particles in the stratosphere has gained the attention of the researchers. In Sections 6.5.1 

and 6.5.2, full-chemistry simulations have been run to see the effect of the surface 

provided by TiO2 to initiate heterogeneous reactions which impact the overall 

stratospheric chemistry, in particular ozone. The TiO2 burden was designed to reproduce 

the same cooling caused by the large Mt Pinatubo eruption in 1991. The simulations show 

that TiO2 has a negligible impact on ozone (-0.06%) and on N2O5 and HO2 which once 

transformed in NO2 and OH can deplete ozone, even when the hydrolysis of ClONO2 and 

the reaction  𝐶𝑙𝑂𝑁𝑂2 +  𝐻𝐶𝑙 + 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 → 𝐻𝑁𝑂3 +  𝐶𝑙2  is included in the simulations. 

Section 6.5.4 contains the results of a 2000-2049 simulation, conceived to see the effect 

of a permanent TiO2 injection on the chlorine species in the stratosphere, which in turn 

can easily and rapidly destroy ozone. Large volcanic eruptions were assumed to occur 

every 10 years and the chlorine stratospheric loading steadily declines in accord with the 

Montreal Protocol. Modelled HCl follows this decline, while ClONO2 slightly increases. 

Remarkably, N2O5 also increases, but maybe the net effect of TiO2 is masked by the 

presence of sulfur generated by the large volcanic eruptions. It is worth emphasising that 

for they key reaction HCl + ClONO2 (R3) in Section 6.3, accurate estimation of the 

coefficient are currently missing. 
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 Future work 

This study has helped to answer the questions posed in Section 1.1. Nevertheless, it has 

also given new insights on how to extend the research shown in this thesis. The new 

convective scheme improved the TOMCAT model in its ability to describe the transport 

in the UTLS. Linking the variability of species in the UTLS to the strength of the ASM 

requires an appropriate set of diverse indices describing, for example, dynamics, 

convection and rainfall. Future work in this regard could go in the simulation of improved 

idealized tropospheric tracers such as CO and HCN designed with realistic surface 

emissions. Such tracers are computationally cheap and can be run for long time periods, 

to study the interannual variability of the transport. Comparison with available satellite 

data (MLS, MIPAS) will help to validate the model.   

Once the results from the StratoClim campaign are finalised, released and evaluated, they 

will drive modelling efforts toward detailed and targeted simulations aimed to describe 

the underlying mechanisms behind the ASM transport at UTLS levels and above. So far, 

the balloon water vapour data together with the analysis of FLASH data suggest to 

explore the potential of the ECMWF ERA5 dataset, not only in terms of water vapour. Its 

high horizontal (0.5° × 0.5°) and vertical resolutions (137 levels from surface to 1Pa, 80 

km) will allow the models to study processes in the UTLS and above with improved 

accuracy.  

The focus of the StratoClim campaign on the ASM region has prompted interest within 

the community. In particular, NASA and NSF in the USA are planning a similar campaign 

in summer 2020. The Asian Summer Monsoon Chemical and Climate Project (ACCLIP, 

PIs Laura Pan and Paul Newman, www2.acom.ucar.edu/acclip) will be based in Japan 

from July 15th to August 31st and use the NSF/NCAR GV and NASA WB-57 aircraft. 

These heavily instrumented aircraft will make extensive chemistry and aerosol 

measurements in an around the ASM. The campaign’s primary goal is to ‘investigate the 

impacts of Asian gas and aerosol emissions on global chemistry and climate via the 

linkage of ASM convection and associated large-scale dynamics’ which will clearly 

extend on the basis provided by StratoClim. 

Geoengineering techniques are being explored worldwide, also prompted by the current 

sensitivity of public opinion on the issues related to climate change. The simulations 

https://www2.acom.ucar.edu/acclip
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performed for this study provide a positive feedback on the eventual use of TiO2 for solar 

radiation management. However, laboratory evaluation of coefficient uptakes, 

particularly for chlorine-activating reactions are still missing. A growing number of 

modelling studies might encourage related laboratory studies which in turn would have 

the positive effect of improving the reliability of the simulations which test geo-

engineering techniques. The implementation of any of these methods requires extra-care 

which is maybe unique in climate and atmospheric studies, due to the enormous 

implications that these have on the life of a huge number of individuals. For this reason 

an interplay between modelling and laboratory communities is crucial to pursue the 

ambitious aims which are inherent in geo-engineering itself.  
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9 Contribution to published papers 

Paper #1: Probing the subtropical lowermost stratosphere and the tropical upper 

troposphere and tropopause layer for inorganic bromine, Werner et al., 2017: 

I compared the O3 and other ATTREX data with corresponding TOMCAT/SLIMCAT 

results, which formed the basis for the plots which include ozone in the paper. 

 

Paper #2: Heterogeneous reaction of HO2 with airborne TiO2 particles and its 

implication for climate change mitigation strategies, Moon et al., 2018: 

I ran the SLIMCAT simulations to include uptake of HO2 and O3 onto TiO2 and produced 

the plots in Figures 8 and 9. 

 


