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Abstract

One of the main concerns in space situational awareness is to keep

track of the large number of space objects, including both satellites

and debris, orbiting the earth. The state of an orbiting object indi-

cates the position and velocity of the object and it is generally repre-

sented using a 6-dimensional state vector. Observations typically take

the form of angles-only measurements from ground-based telescopes.

Two specific challenges are the tracking of objects and the association

of objects. Ideas from the directional statistics can be used to tackle

both of these challenges.

There are two sets of contributions made in this thesis. The first

set of contributions deals with the tracking of an orbiting object. In

general, the filtering or tracking problem is simplest when the joint

distribution of uncertainties in the state vector and the observation

vector is normally distributed. To achieve this goal, the “Adapted

STructural (AST)” coordinate system has been developed to describe

the orbiting object and the measurements of the object. The propa-

gated orbital uncertainty represented using the AST coordinate sys-

tem is approximately Gaussian under a wide range of conditions and

as a result this coordinate system is suitable for using a Kalman fil-

ter for tracking space objects. A comparative study has been per-

formed to understand behavior of different non-linear Kalman filters.

Further, two new Kalman filters, namely the Observation-Centered

extended Kalman filter and Observation-Centered unscented Kalman

filter, have been developed. Various uses of the AST coordinate sys-

tem are described using suitable examples.



The second set of contributions is related to the representation of the

2-dimensional uncertainty, associated with the angles-only position.

The concept of the newly developed “Adapted Spherical (ASP)” co-

ordinate system is described in detail. Several examples are provided

to discuss the usefulness of the ASP coordinate system for solving

association problems. In addition, limitations of the ASP coordinate

system are also highlighted. Especially for a break-up event scenario,

the propagated point cloud in the ASP coordinate system displays

a “bow-tie” or “pinching” pattern when the propagation period is a

close multiple of half orbital period. A new “Pinched-Normal (PN)”

distribution has been developed to understand the reason. Finally,

the distribution of the radial component is analyzed.



Abbreviations

AST Adapted STructural (coordinate system)
ASP Adapted SPherical (coordinate system)
PN Pinched-Normal (distribution)
ESA European Space Agency
ECI Earth-centered Inertial
SSA Space Situational Awareness
SDS Simplified Dynamic System
STT State Transition Tensor
PCE Polynomial Chaos Expansion
GMM Gaussian Mixture Models
PCM Polynomial Chaos Model
EKF Extended Kalman Filter
UKF Unscented Kalman Filter
IEKF Iterated Extended Kalman Filter
IUKF Iterated Unscented Kalman Filter
OCEKF Observation-centred Extended Kalman Filter
OCUKF Observation-centred Unscented Kalman Filter
RTN Radial Tangential Normal
RAAN Longitude of the Ascending Node (Right Ascension of the Ascending Node)
LEO Low Earth Orbit
MEO Medium Earth Orbit
GEO Geosynchronous Equatorial Orbit
HEO Highly Eccentric Orbit
CRTN Central RTN



Index of Notation (Chapter 1 to Chapter 7)

xECI(0) Cartesian-ECI position at t = 0
ẋECI(0) Cartesian-ECI velocity at t = 0
xECI(t) Cartesian-ECI position at t = t1
ẋECI(t) Cartesian-ECI velocity at t = t1
t, t1 time
b length of the minor axis
a length of the major axis
e orbital eccentricity
T (t) true anomaly at time t
r(t) radial distance at time t
M(t) mean anomaly at time t
E(t) eccentric anomaly at time t
FM-to-T function for computing true anomaly from the mean anomaly
FT-to-M function for converting mean anomaly from the true anomaly
µ gravitational constant
u, v,w u, v,w coordinate system, w is normal to the u− v plane
h, h angular momentum vector and angular momentum
e eccentricity vector
�p orbital period
n mean motion
i inclination angle
NRAAN node vector
Ω RAAN
ω argument of perigee
θp angle of perigee in true anomaly scale
φp angle of perigee in mean anomaly scale
θ true longitude in true anomaly scale or break angle
φ true longitude in mean anomaly scale or re-invented break angle
(c), (d) superscripts to represent the central and deviated states respectively
x1(t), x2(t), x3(t) propagated Cartesian position vector elements
ẋ1(t), ẋ2(t), ẋ3(t) propagated Cartesian velocity vector elements



Index of Notation (Chapter 1 to Chapter 7)

ECI1, . . . , ECI6 Cartesian elements
K1, . . . , K6 Keplerian elements
E1, . . . , E6 Equinoctial elements
A1, . . . , A6 AST elements
G(c) rotation matrix for computing Cartesian-CRTN state vectors
xCRTN Cartesian-CRTN position
ẋCRTN Cartesian-CRTN velocity
xCRTN-unit unit vector representation of the Cartesian-CRTN position
A(d) deviated AST coordinate system
ra, rp apogee and perigee distances
va, vp velocities at apogee and perigee
Pσ% % of geometric mean of ra and rp
Pτ% % of geometric mean of va and vp
ε, δ small deviations
A,B,C position (element 1) and velocity values (elements 2 and 3)
ψ true latitude
ψ1 standardized true latitude
f1, f2 AST elements 4 and 5
xk, zk state and observation vectors
wk,vk system and measurement noises
Fk,Hk state transition matrix and observation matrix
Kk optimal Kalman gain
µKalmanx , µKalmanx|zobs , xobs prior, posterior and observation means

l, N dimension and no. of data points in a point cloud
αUKF, βUKF, κUKF UKF tuning parameters
θobs, ψobs observation angles (observed longitude and latitude)
φobs observed longitude in mean anomaly scale
obs subscript “obs” is related to the observation
θtrue true longitude in true anomaly scale (ASP coordinate element)
.f(ψ(t), θ(t)), .p(ψ(t), θ(t)) density function, posterior probability
.P (ψ(t), θ(t)) tail probability



Theme of the thesis

This thesis deals with three key ideas. They are listed below.

(1) Representation of the propagated state vector and the associated

uncertainty.

Contribution. 6-dimensional “Adapted STructural (AST)” co-

ordinate system to represent the state and the associated uncer-

tainty of an orbiting object at time t.

Note that under Keplerian dynamics only the third AST coordi-

nate (A3(t)) changes with time.

Purpose. Under Keplerian dynamics the propagated orbital

uncertainty represented using the AST coordinate system is ap-

proximately Gaussian for all values of t.

(2) Representation of the propagated state vector in the ambient

coordinate system.

Contributions.

– 2-dimensional “Adapted SPherical (ASP)” coordinate sys-

tem to represent the propagated angles-only (the latitude

and the longitude or the true angles) vector (plus associated

uncertainty) of an orbiting object at time t.

Throughout the thesis the word “true” is used in two senses.

First, it is the “true state” of nature, i.e., the actual (but

unknown) state of the orbiting object. Second, it means the

“true anomaly” or the angular position of a moving space

object along its orbit (see Chapter 1 for more details).



– Newly developed “Pinched-Normal (PN)” distribution to un-

derstand the break-up event scenario and the distribution of

the latitude at time t.

Purpose. These two propagated angles (true angles) provide

information related to the observation angles. In addition, the

propagated angles-only position in ASP coordinates follows the

PN distribution, and the standardized propagated angles-only

position follows the bivariate normal distribution.

(3) Filtering or tracking space object using the iterated or newly

developed “Observation-Centered (OC)” filters.

Contribution. Newly developed Observation-Centered Kalman

filters to tackle space object tracking problem. Performance wise

iterated and OC filters are similar (based on the examples pro-

vided in this thesis) but OC filters don’t require iteration.

Purpose. Standard non-linear Kalman filters (such as, the EKF

and UKF) often perform poorly. The OC filters for the space

object tracking problem perform much better than the EKF and

UKF under varying conditions.
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Chapter 1

Introduction

1.1 Introduction

Sputnik 1 was launched in 1957. In the last 63 years around 9500 satellites have

been launched and based on a report published by the European Space Agency

(ESA), more than 128 million space debris are orbiting the earth now and most

of them are of size less than 1 mm (ESA, 2020a). Out of these 128 million space

objects, only around 23,000 objects are traceable (ESA, 2020a) due to the size

limitation. Space debris can arise from anything related to a man-made space

mission such as rocket bodies, solar panels, unused thermal blankets of astronauts

and much more. Space debris can be extremely dangerous for spacecraft and

satellite operations. Due to the high population and large relative velocities

of space debris, it is extremely difficult to track them accurately using optical

observations and to associate them with past observations. A major challenge

is to represent the uncertainty in predicted location and velocity of debris more

precisely for tracking and association purposes.

Consider a space object in an elliptical orbit about the earth. If the initial

location and velocity, xECI(0) and ẋECI(0) (represented using the Cartesian-ECI

coordinate system), are known 3-dimensional vectors at time t = 0, then the laws

of Newtonian motion can be used to propagate the motion using the Keplerian

(without perturbations) or non-Keplerian (with perturbations) dynamics, i.e. to

compute xECI(t) and ẋECI(t) for all t > 0. If measurements for the position and ve-

locity at an initial time (t = 0) are available up to Gaussian noise in the Cartesian
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1.1 Introduction

Earth-centered Inertial (ECI) coordinate system, a point cloud is typically used

to describe the propagated uncertainty at later times. As the propagation time (t)

increases, the shape of the point cloud for position in R3 becomes more “banana-

shaped” (curved) (Junkins et al., 1996; Kent et al., 2016; Valli et al., 2013) in the

Cartesian-ECI coordinate system (see the propagation example in Chapter 2, Fig.

2.3). Similar issues arise for the propagated distribution in other coordinate sys-

tems such as the Keplerian-ECI (and Keplerian-CRTN) or the Equinoctial-ECI

and such distributions are awkward to work with. In addition, the Keplerian-

ECI (and Keplerian-CRTN) and Equinoctial-ECI coordinate systems also have

singularities (see propagation examples in Chapters 2 and in the Appendix, Figs.

2.4, 2.5, A.3). Here “CRTN” indicates “central Radial-Tangential-Normal” basis,

see Chapter 2 for more details. In this thesis, we mention a coordinate system

by combining its name and the reference basis in which it is represented. For

instance, the term “Keplerian-CRTN” indicates the Keplerian coordinate system

represented using the CRTN basis.

This thesis talks about two new coordinate systems and illustrates their var-

ious uses. First, it discusses the “Adapted STructural (AST)” coordinate sys-

tem (AST-CRTN) to represent the 6-dimensional orbital state (Chapter 2). The

propagated uncertainty represented using the AST-CRTN coordinate system is

approximately Gaussian under a wide range of conditions. Second, it discusses

the “Adapted SPherical (ASP)” coordinate system (ASP-CRTN) to represent the

uncertainty associated with the 2-dimensional angles-only position of the prop-

agated point cloud (Chapter 3). The term “point cloud” refers to a state and

the surrounding uncertainty (“uncertainty cloud”). Further, we also discuss the

distribution of the radial component (or the altitude). The ASP-CRTN coor-

dinates along with the radial component can be used to represent the position

of an orbiting object in terms of the Cartesian-CRTN coordinate system. Suit-

able examples are provided to show effectiveness of both the AST-CRTN and

ASP-CRTN coordinate systems.

This introductory chapter discusses both the mathematics and the statistics

of orbital dynamics. In addition, this chapter also summarizes some of the basic

concepts which will help the reader to understand the thesis.

29



1.2 Thesis contributions

1.2 Thesis contributions

Orbital uncertainty propagation and orbital object tracking are key themes in the

Space Situational Awareness (SSA) and a number of papers have been published

in recent years to deal with the non-linearity of the system equation when ex-

pressed in Cartesian-ECI coordinates. There are two basic strategies to deal with

non-linearity: (i) transform the coordinate system to remove the non-linearity, or

(ii) develop sophisticated methods to accommodate it. This thesis uses the first

approach.

However, many papers have taken the second approach. For example, Park

and Scheeres used a mixture (hybrid approach) of a simplified dynamic system

(SDS) model and the state transition tensor (STT) model to propagate and model

the uncertainty with higher order Taylor series terms (Park & Scheeres, 2018,

2006, 2012). Vittaldev, Russell and Linares (Vittaldev et al., 2016) proposed

a mixture of polynomial chaos expansion (PCE) and Gaussian Mixture Models

(GMMs) based on Hermite polynomials. Several other papers (Bhusal & Sub-

barao, 2019; Fenfena et al., 2014) also used the polynomial chaos model (PCM)

and PCE for representing the orbital uncertainty.

The space object tracking problem is nonlinear (more details can be found in

Chapter 4 and Chapter 5). Standard nonlinear Kalman filters are the Unscented

Kalman filter (UKF) and the Extended Kalman filter (EKF). However, these two

filters are often unreliable. In order to overcome limitations of these two filters,

a number of new filters have been proposed for the space object tracking prob-

lem. For instance, Raihan and Chakravorty proposed a hybrid filter (Raihan A &

Chakravorty, 2018) by mixing concepts of the UKF and particle filter together.

McCabe and DeMars showed the usefulness of a particle filter (McCabe & De-

Mars, 2014) for the space object tracking purpose. Sigges and Baun discussed

the usefulness of the ensemble Kalman filter (EnKF) (Sigges & Baum, 2017) in

their paper. However, all these methods can be computationally expensive. The

tracking algorithm proposed in this thesis is fast and performance wise similar to

a particle filter.

Note that in order to test our proposed coordinate systems under extreme

conditions (Chapter 2 and Chapter 3), we consider a high amount of initial uncer-
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1.2 Thesis contributions

tainties (both in position and velocity) and show that the propagated point cloud

is able to preserve normality under such conditions. However, in reality these

error values are huge (at least 50 times higher) compared to the standard values

(Hussein et al., 2015; Woodburn & Tanygin, 2014; Yang et al., 2018). In addition,

to test various coordinates both two-line-element (TLE) data (standard)(Vallado

& Cefola, 2012) and computer simulated data are used. Computer simulated

data allows us to test our algorithms under a wide range of conditions (such as,

circular orbit vs. extremely high elliptical orbit, LEO vs. GEO etc.) compared

to the TLE data. Our proposed methods and algorithms turn out to be widely

applicable and can deal effectively with a wide variety of initial conditions that

can cause problems for other methods, including (a) long propagation times, (b)

high eccentricity, (c) large initial uncertainties and (d) specialized situations such

as break-up events.

My key contributions related to this project are listed below.

(a) Standard astrodynamics coordinate systems are often non-Gaussian under

propagation; to address this issue a local “Adapted STructural (AST)”

coordinate system (AST-CRTN) is developed in which the uncertainty is

represented in terms of deviations from the “central state” (provided that

we have information about the state and the associated uncertainty at time

t = 0). In this coordinate system initial Gaussian uncertainty remains

Gaussian for all propagation times under Keplerian dynamics. A number

of statistical tests have been carried out to confirm the quality of Gaussian

approximation. The “central state” does not need to be the mean but

locates near the center of the uncertainty point cloud for the AST-CRTN

coordinate system at t = 0.

(b) The problem of object tracking can be viewed as an example of Bayesian fil-

tering (Chen, 2003). Examples of such filters include the classic Kalman fil-

ter (Bhaumik & Paresh, 2019; Hongbin et al., 2020; Youngjoo & Hyochoong,

2018), together with non-linear variants such as the extended (Bhaumik &

Paresh, 2019) and unscented Kalman filters (Julier, 2002; Julier & Uhlmann,

2004; Wan & Merwe, 2000), and computationally more expensive particle
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1.2 Thesis contributions

filters (Chen, 2003; Gustafsson et al., 2002). The unscented (UKF) or ex-

tended (EKF) Kalman filters are (sometimes) unable to approximate the

posterior mean and the variance accurately (Havĺık & Straka, 2015; Zhan

& Wan, 2007). The iterated (“I”) Kalman filters such as the IEKF (Kent

et al., 2019a) and IUKF (Kent et al., 2019a) often perform well. Two

new “Observation-Centred Kalman filters (OCKF)” have been developed

(Kent et al., 2019a,b). Performance wise the OCEKF, IEKF, OCUKF and

IUKF are similar (Kent et al., 2019a,b) for the orbital tracking examples

mentioned in this thesis (Chapters 4 and 5). However, one advantage of

the Observation-Centred filters over the IEKF/IUKF is that they do not

require iteration.

(c) The AST-CRTN coordinate system along with the OCKF (or with the

IEKF/IUKF) can be used to treat ambiguity or the filtering-association

problem. The term “ambiguity” refers to a situation when the object cus-

tody is ambiguous. Ambiguity in custody occurs when an angles-only ob-

servation at a particular time say t = 0, can be associated with the states

for two or more objects in a catalog or library (see Chapter 6, Section.

6.8.4).

(d) The AST-CRTN coordinate system represents the 6-dimensional orbital

uncertainty. Another coordinate system is developed to represent the 2-

dimensional uncertainty associated with the angles-only part of the propa-

gated point cloud and the name of the newly developed coordinate system

is the “Adapted SPherical (ASP)” coordinate system (ASP-CRTN). Note

that both the AST-CRTN and ASP-CRTN coordinate systems represent the

propagated uncertainty associated with the state vector but in two differ-

ent forms. The AST-CRTN coordinate system represents the 6-dimensional

orbital state vector but the ASP-CRTN coordinate system deals with the

2 or 3-dimensional position vector. In addition, the ASP-CRTN coordinate

system can be constructed from the AST-CRTN coordinate system but the

opposite cannot be done. However, both the AST-CRTN and ASP-CRTN

are of use in filtering, the first to represent the state and the second to link

the state to the observation.
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(e) One of the major concerns with representing the orbital uncertainty in a

two-dimensional coordinate system is that if the uncertainty associated with

the position of the object is 0 (or extremely small compared to the velocity

uncertainty) at time t = 0 (such as during a break-up event where the initial

position is known nearly exactly), then the propagated point cloud often

displays a “bow-tie” or “pinching” pattern in the ASP-CRTN coordinate

system. Such a distribution cannot be approximated using a multivari-

ate normal distribution. A new distribution, named the “Pinched-Normal

(PN)” distribution has been developed to investigate this issue. Further, we

asses the approximate pinching duration using “velocity-only sigma points”.

Here, the term “sigma points” indicates points generated using weighted

standard deviations (or “σ”) and provide a discrete approximation to a

distribution. Further details can be found in Chapter 3.

1.3 Two uses of the word Keplerian

In this thesis, we use the term “Keplerian” for mainly two different purposes, (i)

Keplerian coordinate systems (Keplerian-ECI coordinate system and Keplerian-

CRTN coordinate system) and (ii) Keplerian dynamics. The Keplerian coordinate

system is made of six orbital elements and they are used to represent the state of

an orbiting object at time t. Further information on the Keplerian coordinate sys-

tem can be found in Subsection 1.7.6.2. The term Keplerian dynamics indicates

a situation when we do not incorporate any perturbation forces in our system.

On the other hand, the term non-Keplerian dynamics means when we consider

various deterministic (such as the oblateness of the earth, solar radiation pres-

sure, atmospheric drag etc.) (Roy, 2004) and non-deterministic perturbations.

We perform all our analyses using Keplerian dynamics in this thesis.

1.4 Organization of the thesis

Much of the thesis is based on work that has appeared in a series of conference

papers. However, the underlying unity of the ideas has only become fully apparent
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1.4 Organization of the thesis

when combining the material together. More details are listed below for each

chapter.

(a) Chapter 1 is the current chapter and also works as an introductory chapter.

Apart from discussing my key contributions, this chapter also illustrates

various coordinate systems. Parts of this chapter are taken directly or

indirectly from my some of my papers (Kent et al., 2019a,b).

(b) Chapter 2 introduces the AST-CRTN coordinate system. Further, this

chapter lists a number of statistical tests which confirm the approximate

Gaussian behavior in the AST-CRTN coordinate system. Parts of this

chapter are taken directly or indirectly from some of my papers (Bhat-

tacharjee et al., 2019b; Kent et al., 2019b). Note that several other versions

of the AST-CRTN coordinate system have been proposed and developed in

various conference papers (Bhattacharjee et al., 2017a,b, 2018a,b,c; Kent

et al., 2017b, 2018a,c) but the version mentioned in this chapter is the most

upgraded version.

(c) Chapter 3 discusses the uncertainty associated with the propagated angles-

only position. This chapter introduces the ASP-CRTN coordinate system.

Further, this chapter also discusses the distribution of the propagated radial

component. Parts of this chapter are taken directly or indirectly from one

of my papers (Bhattacharjee et al., 2019a). Note that we mentioned about

the ASP-CRTN coordinate system in some of our previous papers (Bhat-

tacharjee et al., 2017a, 2018b; Kent et al., 2017a,c, 2018b).

(d) Chapter 4 introduces the filtering problem and highlights limitations of

the UKF and EKF, it also discusses benefits of using the IUKF, IEKF,

OCUKF and OCEKF using suitable 1-dimensional examples. The main

purpose behind developing the AST-CRTN coordinate system is to facilitate

the filtering problem. Recall the previous section, the UKF, EKF, IUKF,

IEKF, OCUKF and OCEKF stand for the unscented Kalman filter, the

extended Kalman filter, the iterated unscented Kalman filter, the iterated

extended Kalman filter, the observation-centered unscented Kalman filter
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and the observation-centred extended Kalman filter. Parts of this chapter

are taken directly or indirectly from two of my papers (Kent et al., 2019a,b).

(e) Chapter 5 discusses the 6-dimensional filtering problem. First, we illus-

trate the usefulness of the AST-CRTN coordinate system by discussing the

AST-IUKF algorithm. Next, we discuss the OCKF algorithm for tackling

the 6-dimensional orbital tracking problem. Parts of this chapter are taken

directly or indirectly from two of my papers (Kent et al., 2019a,b).

(f) Chapter 6 highlights how the ASP-CRTN coordinate system with/without

some modifications can be used for handling various association problems.

In addition, this chapter also discusses the filtering-association problem us-

ing a suitable example. Parts of this chapter are taken directly or indirectly

from one of my papers (Bhattacharjee et al., 2019a).

(g) Chapter 7 lists related and future work. In addition, this chapter also

discusses key conclusions.

(h) The Appendix is divided into four subparts. The first part provides fur-

ther details on orbital dynamics. The second part explains various statis-

tical concepts. The third part lists orbital parameters for various orbiting

objects that are used throughout the thesis to illustrate key ideas. The final

portion lists my papers.

1.5 Outline of the rest of this chapter (Key con-

tributions)

The key contributions (related to this chapter) are summarized below.

(1) First, we discuss the mathematics of orbital dynamics. This section con-

tains information related to the representation of an orbit in 2-dimensional

and 3-dimensional planes, various angles associated with orbital dynamics,

equations of orbital motion, classification of various orbits and different

coordinate systems (Section 1.7).
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(2) Second, we mention the statistics of orbital dynamics. This section illus-

trates the uncertainty representation model. In addition, this section also

talks about the statistical analysis of propagated distributions (Section 1.8).

(3) Third, we provide one example (Example 1.1.) to highlight limitations

of standard coordinate systems. The example, which is discussed in this

section, is not related to astrodynamics but the purpose of this example

is to introduce the problem through a known coordinate system (Section

1.9).

(4) Fourth, we discuss the tracking and association problems (Sections 1.10 and

1.11).

(5) Finally, we provide a brief summary of this thesis and illustrate key contri-

butions (Section 1.12).

1.6 Relation to other chapters

This chapter introduces various orbital elements to the reader. In addition, this

chapter also discusses standard astrodynamics coordinate systems. The next

chapter shows why these coordinate systems are unreliable for statistical analysis

using suitable propagation examples (Section 2.5.3). The AST-CRTN coordinate

system, mentioned in the Chapter 2, has been developed to deal with the limita-

tions of the standard coordinate systems. Besides, this chapter briefly discusses

the association problem. The association problem is investigated in detail in

Chapter 6.

1.7 Mathematics of orbital dynamics

This section discusses various orbital elements, representation of an orbit in both

2-dimensional and 3-dimensional planes and various astrodynamics coordinate

systems.
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Figure 1.1: Representing an orbit in 2 dimensions (Not scaled to size).
Various orbital elements in a 2-dimensional orbital plane are shown in this image.
Note that only the true anomaly (T) and the radial distance (distance between
point f1 to point L) change with time. The perigee and apogee are indicated by
points P and A respectively.

1.7.1 Orbital dynamics in 2 dimensions

An object orbiting the earth follows an exact elliptical orbit under Keplerian

dynamics, with the center of the earth at one of the focal points of the ellipse.

Fig. 1.1 represents an orbiting object and the orbit (ellipse). In this image f1, f2

and C indicate two focal (or foci) points and the center of the ellipse respectively.

Further, points P and A denote the perigee and the apogee respectively and the

direction of motion is anti-clockwise. The distance between the rotating object

and the earth is the smallest at the perigee and largest at the apogee. The

distance between point C to point P (same as the distance between point A to

point C) is called the length of the major axis (a) whereas the distance between

point C to point B is the length of the minor axis (b). The relationship between

the major axis (a) and minor axis (b) can be mathematically written as,

b = a
√

(1− e2),

where, e is the eccentricity. Note that e = 0, 0 < e < 1 (Fig. 1.1), e = 1, e > 1

denote circle, ellipse, parabola, hyperbola (Curtis, 2006; Roy, 2004) respectively.

For a circular orbit (e = 0) f1, f2 and C will be one single point.

The angular position (]Pf1L) is shown using the letter T and the distance

between point f1 to point L is called the radial distance (r).
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Recall Kepler’s first law (Planets are rotating around the sun in an elliptical

orbit and the sun is located at one of the two focal points), in our case, the “sun”

and “planet” are replaced by the “earth” and “satellite/debris” receptively. In

Fig. 1.1, point M (located at the foci f1) is the main body (earth) and the rotating

object (satellite or debris) is located at the point L.

Finally, using the representation mentioned in this subsection, only the angu-

lar position and the radial distance change with time.

An orbit in the 2-dimensional plane can be represented using following ele-

ments,

(1) Size of the orbit, 2 elements: Length of the major axis (a) and eccen-

tricity (e).

(2) Location of the moving object, 2 elements: Angular displacement

(T (t), equivalent to the true anomaly measured from the perigee) and radial

distance (r(t))

The concept of the true anomaly is mentioned in the next subsection. How-

ever, before describing the orbital dynamics in 3 dimensions, several related con-

cepts are mentioned. These information (related to various orbital elements) will

help the reader to understand the Section 1.7.4.

1.7.2 Three angles in orbital dynamics

There are three angles of mathematical interest in orbital dynamics setting to

describe the angular position of the object along its orbit are (see Fig. 1.2):

the eccentric anomaly (E(t))(]PCL2), the mean anomaly (M(t))(]PCL1) and

the true anomaly (T (t))(]Pf1L), where all three angles are measured from the

perigee (Point P in Fig. 1.2). The true anomaly describes the actual angular

position of the object, as measured from the center of the earth (Point f1 in Fig.

1.2). The mean anomaly simplifies the mathematical development because it

changes at a constant rate in time, and the eccentric anomaly is an intermediate

angle of no direct interest.
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The relation between the angles is given as follows (Curtis, 2006; Roy, 2004),

where e is the ellipticity, 0 ≤ e < 1 (for this thesis):

tan
1

2
T =

√
1 + e

1− e
tan

1

2
E, (1.1)

M = E − e sinE, (1.2)

tanE =

√
1− e2 sinT

e+ cosT
. (1.3)

The calculations are all straightforward, except that a numerical iteration is

needed to solve for E from M . Equation (1.2) is also called the Kepler’s equation

and has no closed-form solution for E given M and can only be solved using

Newton-Raphson method (Roy, 2004).

All three angles are defined on the same interval −π < E,M, T ≤ π. These

three angles agree at the midpoint (apogee) and endpoints (perigee). That is, if

E = 0, π or −π, then M and T also equal to 0, π or −π, respectively. Further

the identification between angles is symmetric about the origin. That is, if E

corresponds to M and T , then −E corresponds to −M and −T . Finally, by

periodic extension, the mapping between the three angles can be extended to any

interval −π + 2πk ≤ E,M, T ≤ π + 2πk, k ∈ Z.

The notation E = FM-to-E(M, e) is used to describe the transformation between

M and E and similar notation for the transformations between other pairs of

angles. Fig. 1.2 shows all three anomalies in one picture and Fig. A.8 visually

illustrates the true and eccentric anomalies for further clarification.

1.7.3 Equations of orbital motion in 3 dimensions

Consider the state of an object orbiting the earth. The state at time t can be

described in Cartesian-ECI coordinates by three-dimensional position and three-

dimensional velocity vectors xECI(t), ẋECI(t). Note that as the name suggests,

for this coordinate system the origin is located at the center of mass of the

earth (Vallado, 2001; Wikipedia contributors, 2019). Further, the term inertial

indicates this coordinate system remains unaffected by the rotation of earth and

various other acceleration forces.
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Figure 1.2: The true, mean and eccentric anomalies (Not scaled to size).
The true, mean and eccentric anomalies are highlighted in this image. The true
anomaly is measured with respect to the actual location of the object (in the
ellipse). The object is located at the point L. Also see image A.8.

In this thesis the term “ECI” includes three ideas: an inertial representation

of objects around the earth, location of the observer (“centered”) and the idea

of a specific basis. Later, AST coordinates (Chapter 2) will still use an inertial

representation (the location of the observer/origin is still at the center of the

earth), but with a different basis (the CRTN basis).

The state at the initial time (t = 0) determines the state at all other times as

the object follows an elliptical orbit. Various features (Curtis, 2006; Roy, 2004)

can be extracted from the state to help describe this elliptical orbit (see Fig. 1.3).

Here µ is the gravitational constant for the earth.

(a) In general, a frame is a basis of orthonormal vectors in R3. In the current

setting, a useful frame is the RTN (radial-tangential-normal) frame at an

initial time t = 0, defined as follows (Vallado, 2001):

u = uRTN ∝ xECI(0), (1.4)

v = vRTN ∝ ẋECI(0)− {ẋECI(0)Tu}u, (1.5)

w = wRTN = u× v ∝ xECI(0)× ẋECI(0), (1.6)
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1.7 Mathematics of orbital dynamics

Figure 1.3: Orbital dynamics in three dimensions (Not scaled to size). An
orbiting object in Keplerian dynamics. The plot shows the reference and orbital
planes together with their preferred directions and normal directions. The angles
ω, Ω, i and T (t) are highlighted.

so that u points in the radial direction, v points in the tangential direction

(after orthogonalizing with respect the the radial direction) andw is normal

to the u− v plane.

Next, we discuss how to compute various orbital elements. Note that we

use x(0) and ẋ(0) (rather than xECI(0) and ẋECI(0) or xCRTN(0) and ẋCRTN(0))

to represent the state of an orbiting object as the choice of basis does not

change these formulas but change values of various orbital angles (such as,

the inclination angle).

(b) The angular momentum vector is given by

h = x(0)× ẋ(0). (1.7)
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Its magnitude h = |h| is called the angular momentum.

(c) The eccentricity vector is given by

e =
1

µ
(ẋ(0)× h)− u. (1.8)

Its magnitude e = |e| is called the eccentricity.

(d) The (semi-major axis) of the ellipse is given by

a =
h2/µ

1− e2
, (1.9)

(e) The period (�p) and the mean motion (n) are

�p = 2π
√
a3/µ, n = 2π/�p =

√
µ/a3. (1.10)

(f) The inclination angle is given by

i = cos−1
hz
h
. (1.11)

(g) The node vector (also defines the node line) and its magnitudes are,

NRAAN = w × h, NRAAN =
√
NRAAN ·NRAAN. (1.12)

Further, the node vector lies on the intersection of the orbital and reference

planes.

(h) The Right Ascension of the Ascending Node (RAAN) angle is computed as,

Ω = cos−1
Nx

N RAAN
. (1.13)

Note. Nx = NRAAN(1).

(i) The argument of perigee is,

ω = cos−1
NRAAN · e
NRAANe

. (1.14)
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(j) The true anomaly (from the perigee) is,

T = cos−1
e · x
ex

. (1.15)

Note that Ω and ω and T lie in [0,360), Ω is an angle in the reference plane

and ω and T are angles in the orbital plane. Subsections 1.7.6.1 and 1.7.6.2

provide more information on the reference plane and the orbital plane.

(k) Finally, the direction of perigee (in the RTN basis) is given by

θp = atan2(eTv, eTu) (1.16)

and defines the angle in the u − v plane at which the orbiting object is

closest to the earth. Here atan2 is the two-argument arctan function found

in many computing languages. For example, θp = 0 points towards the

positive u axis and θp = π/2 points towards the positive v axis.

The ellipticity vector lies in the u−v plane and can be written in the form

e = f1u+ f2v, (1.17)

where f1 = e cos θp and f2 = e sin θp.

These pieces of information can be used to describe the evolution of an

orbiting object in time under Keplerian dynamics. Of course the frame

u,v,w is defined at time t = 0 and so does not change with time. In

addition, the features f1, f2, n, and hence also h, e, n, θp are also constant in

time.

(l) The state equation of the orbiting object can be expressed as

x(t) = r(t){cos θ(t)u+ sin θ(t)v}, (1.18)

in terms of a radial function r(t) and an angular function θ(t) (Curtis, 2006;
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Vallado, 2001), where

r(t) =
(h2/µ)

1 + e cosT (t)

=
(h2/µ)

1 + e cos(θ(t)− θp)

=
(h2/µ)

1 + f1 cos θ(t) + f2 sin θ(t)
(1.19)

θ(t) = θp + T (t), T (t) = FM-to-T(M(t), e), (1.20)

φ(t) = φp + FT-to-M(θ(0)− θp, e) + nt

= φ(0) + nt. (1.21)

Here T (t) and M(t) denote the usual (measured from the perigee) true

anomaly and the mean anomaly, with the relation between them is ex-

pressed using a function M(t) = FT-to-M(T (t), e) and its inverse T (t) =

FM-to-T(M(t), e) (also see Subsection 1.7.2).

Equation (1.21) shows that on the mean anomaly scale the angular speed

n is constant. However, non-linear mappings, centered at the direction of

perigee, are needed to move back and forth between the mean anomaly and

true anomaly scales (Equation (1.20)).

Here φ(t) denotes the propagated angle on the mean anomaly scale, and

θ(t) denotes the propagated angle on the true anomaly scale, initialized so

that φ(0) = θ(0) = 0. Similarly, φp = FT-to-M(θp, e) denotes the direction

of perigee on the mean anomaly scale where θp denotes the corresponding

value on the true anomaly scale. Fig. A.7 shows the relationship between

the true anomaly and the mean anomaly for varying eccentricity values.

This section has provided a quick details on various orbital elements. Note

that Appendix A (Section A.1) provides some extra information on orbital

dynamics and orbital elements (some of the elements are already discussed

in this subsection).

Note on the naming convention. In this thesis we typically use super-

scripts (c) and (d) to represent the “central state” (such as, x(c)) and a “devi-

ated state” (such as, x(d)) (deviated state indicates a point/state to represent
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the uncertainty of a specific location or a state in the uncertainty point cloud)

respectively. However, in some cases we don’t use any superscript (such as, x)

and it means that we indicate both the central and deviated states.

1.7.4 Orbital dynamics in 3 dimensions

Subsections 1.7.1 and 1.7.3 have discussed orbital dynamics in 2-d and orbital

equations respectively. This section summarizes orbital elements in a 3-dimensional

plane. Note that these six unique elements determine the state of an object at

time t. These elements are also called “Keplerian orbital elements” (see Subsec-

tion 1.7.6.2 for more details).

(1) Size of the orbit, 2 elements: Length of the major axis (a) and eccen-

tricity (e).

(2) Orientation of the orbit, 3 elements: Inclination angle (i), RAAN (Ω)

and argument of perigee (ω).

(3) Location of the moving object, 1 element: True anomaly measured

from the perigee (T).

Fig. 1.3 shows various orbital elements represented in a 3-dimensional plane.

Note that the 2-dimensional representation of an orbit is the simplest way

to represent an orbit and such a representation does not contain information

related to the reference plane or the orientation of the orbit. One key assumption

associated with this representation (2-dimensional) is that the orbital plane and

the reference plane are same (or superimposed). Subsections 1.7.6 discusses more

on the orbital plane, reference plane and 3-dimensional representation of an orbit.

1.7.5 Classification of various orbits

An orbit of a satellite is mainly classified using 3 parameters.

(1) Altitude/radial distance, r(t): Based on the altitude, an orbit can be

classified into three different categories, namely, a) Low Earth Orbit (LEO,

altitude 200 km to 2000 km), b) Medium Earth Orbit (MEO, altitude 2000

km to 35000 km) and, c) Geosynchronous Equatorial Orbit (GEO, altitude
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Figure 1.4: Classification based on the altitude (Not scaled to size). LEO,
MEO and GEO. Note that this image is only for visual illustration, no scaling is
applied here.

≥ 35000 km) (Curtis, 2006; ESA, 2020b; Wikipedia contributors, 2020c).

Note that an object located at the LEO, MEO or GEO orbit typically has

low eccentricity. See Fig. 1.4 for visual illustration.

(2) Eccentricity, e: For an artificial satellite or space debris the eccentricity

(e) lies between 0 and 1 (i.e. 0 ≤ e < 1). As mentioned previously, an

orbit with e = 0 is called circular orbit and for such orbits the length of the

major axis is always same as the length of the minor axis. On the other

hand, an orbit with high eccentricity (generally e ≥ 0.3) is called “Highly

Eccentric Orbit (HEO)”. Note that GEO are generally circular (e = 0)

or near circular orbits and the radial distance or altitude remains always

(almost) fixed (Curtis, 2006; ESA, 2020b; Wikipedia contributors, 2020c).

(3) Inclination angle, i: The inclination angle i ∈ [0o, 180o]. An Orbit with

inclination angle ≤ 90o is called prograde orbit and an orbit with inclination

angle > 90o but ≤ 180o is called retrograde orbit. See Fig. 1.5 for visual
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Figure 1.5: Classification based on the inclination (Not scaled to size).
A is a prograde orbit and B is a retrograde orbit.

illustration. An orbit with inclination angle i = 90o is called a polar orbit

(Curtis, 2006; ESA, 2020b; Wikipedia contributors, 2020c).

1.7.6 Introduction to the standard coordinate systems

Various astrodynamics coordinate systems are briefly introduced in this section.

These coordinates are defined with respect to a specific basis (such as ECI or

CRTN basis), see Section 1.7.7 for more details.

1.7.6.1 Cartesian coordinate system

The Cartesian coordinate system is the simplest coordinate system to represent

the state of an orbiting object and consists of 6 elements where the first 3 elements

(namely, x1(t), x2(t), x3(t)) represent the position (x(t)) of an object in the sky

and the last three elements (namely, ẋ1(t), ẋ2(t), ẋ3(t)) represent the velocity

(ẋ(t)) of the object. These are Cartesian coordinates with respect to a reference

basis where,

u =

1
0
0

 , v =

0
1
0

 , w =

0
0
1

 , (1.22)
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where u and v define the reference plane (also called the “equatorial” plane). In

this plane a preferred reference direction is given by u and angles in the reference

plane can be measured counter-clockwise (i.e. moving from u to v) from the

preferred reference direction. Similarly, w can be termed the normal reference

direction.

In many ways Cartesian (both the Cartesian-ECI and Cartesian-CRTN) co-

ordinates are the easiest coordinates to work with, but they have two main draw-

backs. First, the propagation equations are non-linear, leading to non-Gaussian

distributions under propagation (see Section 2.5.3). Secondly, the Cartesian-ECI

coordinate system does not use orbital elements (mentioned in the Section 1.7.3)

directly.

Time varying elements: Using Keplerian dynamics, under propagation all six

Cartesian-ECI elements change with time.

1.7.6.2 Keplerian coordinate system

The Keplerian elements use orbital elements directly. Conventionally, the stan-

dard reference basis (ECI reference basis) from (1.22) is used for the definition of

Keplerian-ECI elements.

The orbital plane is the second plane and it represents the orbit of the ro-

tating object (the reference plane is the first plane). If the orbital inclination

is zero then the orbital plane and the reference plane (or the equatorial plane)

are exactly same. Within the orbital plane, a preferred orbital direction can be

defined by the direction of perigee, and angles in the orbital plane can be mea-

sured counter-clockwise (i.e. in the direction of orbital motion) from the preferred

orbital direction.

The Keplerian elements for a state (x(t), ẋ(t)), defined with respect to the

specified reference basis, are given as follows (Curtis, 2006; Shin et al., 2015;

Vallado, 2001):

� e, the eccentricity, 0 ≤ e < 1.

� i, the inclination of the orbital plane with respect to the reference plane.

� T (t), the true anomaly (an angle in the orbital plane).
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� Ω ∈ [0, 360o), the angle in the reference plane from the preferred reference

direction (vernal equinox) to the RAAN direction.

� ω ∈ [0, 360o), the angle in the orbital plane from the RAAN direction to

the preferred orbital direction.

� a, the major semi-axis, a > 0.

Three of these elements, i,Ω, ω, depend on the choice of reference plane. The

Keplerian coordinate system has drawbacks for statistical analysis because it has

two singularities. First, if the orbital plane is equatorial then the RAAN angle

becomes undetermined. Second, if the orbit is circular (e = 0) then the argument

of perigee is ill-defined. In addition, the inclination angle (i) and eccentricity (e)

suffer from the bounded range problem (see Section 1.9 for more details on the

bounded range problem, Fig. A.3 shows the propagated Keplerian coordinates

when both the initial eccentricity and inclination angle are 0).

Time varying elements: Using Keplerian dynamics, under propagation only

the true anomaly (T (t)) changes with time.

1.7.6.3 Equinoctial coordinate system

The problems of Keplerian elements are partly resolved by using the Equinoc-

tial coordinate system (Cefola, 1972; Roy, 2004), Equinoctial elements, denoted

E1, . . . , E6 and defined as follows (with respect to the same standard reference

basis that is used conventionally for Keplerian elements):

E1 = 2 tan(i/2) cos(Ω), E2 = 2 tan(i/2) sin(Ω), E3(t) = Ω + ω + T (t),

E4 = e cos(Ω + ω), E5 = e sin(Ω + ω), E6 = a. (1.23)

Even though Ω and/or ω may be undetermined in certain circumstances, the

Equinoctial elements remain well-defined except for a retrograde equatorial orbit

(i = 180o) where Equinoctial coordinates break down (see Section 2.5.3).

Time varying elements: As indicated in the notation, all the coordinates are

fixed in time except the third (under Keplerian dynamics). The third coordinate

E3(t) can be termed as the remapped angular position or break angle, since these

three angles (Ω, ω and T(t)) are located at two different planes.
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1.7.7 Different coordinate systems and reference frames

The last three subsections discussed various astrodynamics coordinate systems.

In general this thesis discusses three key concepts related to a coordinate system

and they are listed below.

(a) Location of the observer/origin - Earth-centered rather than the sun-centered

or observer centered. Although a brief discussion on the observer centered

reference frame is provided in the Chapter 7.

(b) Basis - The ECI basis or the CRTN basis.

(c) Coordinate System - Either 6 dimensional or 2 (or 3) dimensional. Choices

include,

(c.1) 6 dimensional - The Cartesian, Keplerian, Equinoctial and AST coor-

dinate systems.

(c.2) 2 dimensional - The spherical and ASP coordinate systems. Typically

these two coordinate systems are two dimensional but 3 dimensional

if the radial component is added.

As mentioned before, this thesis identifies a coordinate system by its name

and a basis. Table 1.1 provides a brief summary on various coordinate systems

and basis.

Table 1.1: Coordinate systems and reference bases

Coordinate system/basis ECI CRTN
Cartesian Cartesian-ECI (or classic Cartesian) Cartesian-CRTN
Keplerian Keplerian-ECI (or classic Keplerian) Keplerian-CRTN

Equinoctial Equinoctial-ECI (or classic Equinoctial) AST-CRTN(1)

Spherical Spherical-ECI (or classic Spherical) ASP-CRTN(2)

1 Equinoctial-CRTN is essentially the same as AST-CRTN (with some minor

modifications).
2 Spherical-CRTN is essentially the same as ASP-CRTN.
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Note that spherical coordinates only define the angles-only part of the posi-

tion vector and so are only two-dimensional (3-dimensional if the radial part is

included).

Remarks

(1) The Cartesian-CRTN, Keplerian-CRTN and Equinoctial-CRTN are special

versions of the Cartesian-ECI, Keplerian-ECI and Equinoctial-ECI coordi-

nate systems respectively. Further details on these three coordinate systems

are given below.

(a) All six Cartesian-CRTN coordinates change with time (similar to the

Cartesian-ECI) and the propagated joint distribution becomes non-

normal after a moderate term propagation.

(b) For the Keplerian-CRTN coordinate system, only the true anomaly

(T (t)) changes with time (similar to the Keplerian-ECI). However,

due to the construction the inclination angle suffers from the bounded

range problem.

(c) For the Equinoctial-CRTN coordinate system, only E3(t) changes with

time (similar to the Equinoctial-ECI). However, due to the construc-

tion Equinoctial-CRTN coordinate system is always prograde.

(2) The AST-CRTN coordinate system is the local version of the Equinoctial-

ECI coordinate system and improved version (in terms of statistical analy-

sis) of the Equinoctial-CRTN coordinate system. Only one AST coordinate

element (A3(t)) changes with time (more details can be found in Chapter

2).

(3) The ASP-CRTN coordinate system is the local version of the spherical co-

ordinate system (i.e., spherical coordinate system represented using the

CRTN basis). Under Keplerian dynamics, both the ASP-CRTN elements

change with time, more details can be found in Chapter 3.
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1.8 Statistical variability in orbital dynamics

The previous section has discussed the mathematics of orbital dynamics and this

section will discuss the statistics of orbital dynamics.

1.8.1 Representing the orbital uncertainty

Imagine a point cloud of deviated states about a central state. Next, find a

3× 3 rotation matrix (say, G(c)) which rotates the coordinate system so that the

central orbital plane is horizontal and the central initial position is proportional

to [1, 0, 0]T . The matrix G(c) can be computed using the Gram-Schmidt process.

Note that in (1.24) and (1.25), A > 0, B ∈ R and C > 0 are positive constants for

the central state (and AC > 0). Section B.5 briefly discusses key steps related to

the Gram-Schmidt process. Superscripts (c) and (d) indicate central and deviated

states respectively. Fig. 1.6 shows a visual illustration. The position and velocity

vectors for the central state take the form,

xCRTN(c)(0) = G(c)xECI(c)(0) =

A0
0

 , (1.24)

ẋCRTN(c)(0) = G(c)ẋECI(c)(0) =

BC
0

 , (1.25)

and the deviated states in the point cloud can be represented in terms of depar-

tures from the central state,

xCRTN(0) = xCRTN(d)(0) = G(c)xECI(d)(0) =

A+ ε1
ε2
ε3

 , (1.26)

ẋCRTN(0) = ẋCRTN(d)(0) = G(c)ẋECI(d)(0) =

B + δ1
C + δ2
δ3

 , (1.27)

where, ε (ε = [ε1, ε2, ε3]
T ) and δ (δ = [δ1, δ2, δ3]

T ) are typically “small” deviations.

Note. Previously we discussed the Cartesian and Keplerian coordinates. The

Cartesian-CRTN position (unit vector representation, denoted by xCRTN-unit(t) in
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Figure 1.6: Reconstructing the central and deviated state (Not scaled to
size). The left panel (A) shows both the central and deviated states before per-
forming the rotation. The right panel (B) shows both the states after performing
the rotation. Note that the red dotted ellipse and the red dotted line denote the
deviated state and the deviated normal direction respectively, the black ellipse
and the black line indicate the central state and the central normal direction.

Equation (1.28)) of an space object can be written in terms of the Keplerian

elements (Fitzpatrick, 2012),

xCRTN-unit(t) =
xCRTN(t)

r(t)
=

cos Ω cos(ω + T (t))− sin Ω sin(ω + T (t)) cos i
sin Ω cos(ω + T (t)) + cos Ω sin(ω + T (t)) cos i

sin i sin(ω + T (t))

 .
(1.28)

Further, if i (inclination angle) is very small or 0 (due to the change of basis)

then xCRTN-unit(t) can be written as,

xCRTN-unit(t) ≈

cos Ω cos(ω + T (t))− sin Ω sin(ω + T (t))
sin Ω cos(ω + T (t)) + cos Ω sin(ω + T (t))

sin i sin(ω + T (t))


≈

cos(Ω + ω + T (t))
sin(Ω + ω + T (t))
sin i sin(ω + T (t))


≈

 cos θ(t)
sin θ(t)

sin i sin(θ(t)− Ω)

 ,
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1.8 Statistical variability in orbital dynamics

where, θ(t) (θ(t) = Ω + ω + T (t) = E3(t) using the CRTN basis) denotes the

propagated angle in the true anomaly scale (we also mention this angle as the

propagated true longitude in Chapters 2 and 3).

1.8.2 Statistical analysis of propagated distributions

An important criterion for a “good” coordinate system is that a propagated point

cloud at time t = t1 should look approximately Gaussian, given an initial Gaus-

sian distribution in Cartesian-CRTN coordinates at t = 0. Apart from judging

Gaussianity visually, we judge approximate Gaussianity using the multivariate

p-value tests developed by Mardia (Mardia et al., 1979). Note that in Chapter

7 (Section 7.4), we perform an explorative study between various normality tests

for the reliability (i.e., able to detect the slightest non-normality) analysis.

For simplicity attention is restricted to testing the full 6-dimensional point

cloud for Gaussianity under each of our coordinate systems. The approximate

multivariate normality is summarized by two p-values (one for the skewness and

another for the kurtosis). If Gaussianity holds, the p-value will be uniformly

distributed between 0 and 1. However, if normality fails, then the p-value will

tend to be close to 0. To carry out a formal statistical test, a small threshold

ν is chosen (e.g. ν = 0.05) and if the p-value is below the threshold, then the

hypothesis of Gaussianity is rejected. For each pairs plot in this thesis, a total of

2 p-values are computed. Further, in some places we also compute the Shapiro-

Wilk’s univariate p-value (one p-value for each coordinate element) to check the

univariate normality (Korkmaz et al., 2014; MIT, 2010; Shapiro & Wilk, 1965).

Caution- The power of a statistical test depends on the sample size (here the

number of simulated points in the point cloud). If the underlying distribution is

even slightly non-normal, then for a large enough sample size, the hypothesis of

normality will be eventually rejected.

Examples are listed in Chapters 2, 3 and 7.
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1.9 Example 1.1., problems with the standard coordinate systems,
simple illustration

1.9 Example 1.1., problems with the standard

coordinate systems, simple illustration

Most of the standard coordinate systems suffer from two major issues. They are,

(a) Bounded range problem

(b) Curvature.

Bounded range: For some of the parameters, there may be a natural finite

range. For example, the eccentricity of an ellipse lies between 0 and 1. Similarly,

the latitude of a point on the sphere ranges between -90o and 90o. Further, these

endpoints are often achievable: an ellipse with zero ellipticity is a circle, and

latitude 90o corresponds to the north pole. If uncertainty is concentrated near

one of these endpoints, then the resulting distribution cannot be normal and often

the behavior is even more complicated to describe statistically.

Curvature: This problem is best illustrated in Cartesian coordinates, where

the uncertainty spreads out along a curved path (see Chapter 2 for more details).

Next a simple example is provided to discuss the bounded range problem.

Note that this example is not related to the orbital dynamics and the purpose

of this example is to introduce the bounded range problem using the spherical

coordinate system. An example of a bounded range problem in orbital dynamics

settings can be found in the Appendix A (Fig. A.3).

Example 1.1. Bounded range problem

A problem with the bounded range is given by the unit sphere, where points

can be represented either in Cartesian coordinates (xunit1 , xunit2 , xunit3 ) or in spher-

ical coordinates, θ (longitude) and ψ (latitude),

xunit1 = cosψ cos θ; xunit2 = cosψ sin θ; xunit3 = sinψ.

Here ψ ∈ [-90o, 90o] denotes the latitude and θ ∈ [-180o, 180o) is the longitude.

Consider a highly concentrated distribution on the sphere (more specifically, a

Fisher distribution with concentration parameter κ = 2500, number of data points

N = 2000), with two possible centers.
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1.10 Tracking Problem

(a) The first center lies on the equator with ψ = 0o; θ = 0o (Fig. 1.8).

(b) The second center lies at the north pole with ψ = 90o and θ is undefined

(Fig 1.8).

Figure 1.7: Example 1.1., bounded range problem, part 1. The unit sphere
with two concentrated point clouds are plotted, one near the equator (A) and one
near the north pole (B).

Point clouds for simulated values of θ and ψ are plotted in Fig. 1.7. For the

first distribution (A), ψ lies a long way from its endpoints, and the distributions

of θ and ψ look normal (Fig. 1.8). For the second distribution (B), ψ = 90o lies

at the endpoint of possible values. In this case the distribution of ψ suffers from

bounded range problem and approximately follows an exponential distribution

and θ is uniformly distributed on the circle (Fig. 1.8), both of which are very

non-normal.

For parameters lying on a sphere, a good strategy is to orient the coordinate

system to be like the first case rather than the second case.

1.10 Tracking Problem

As mentioned in Section 1.2, the problem of space debris tracking can be treated

by using a Kalman filter. Typically, Kalman filters can be classified into two

categories, (i) linear and (ii) non-linear. As the name suggests, for the linear or
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Figure 1.8: Example 1.1., bounded range problem, part 2. Spherical
coordinates for both distributions.

classic Kalman filter, the transformation from the state vector to the observation

vector is linear. One example of such a problem is the 2-dimensional position

and velocity tracking problem, where the state vector consists of the position and

velocity and the observation vector is made of the position (uloc(t) = uloc(0) +

vvelt. Here, uloc(t), uloc(0), vvel and t indicate position at time t, position at time

0, velocity and time respectively).

However, most of the real world tracking problems are non-linear. The term

“non-linear” indicates that the transformation from the state vector to the obser-

vation vector is non-linear. One example of a non-linear filtering is the aircraft

range tracking problem. In this problem the state vector consists of the veloc-

ity (vvel) and the altitude (r) (assuming that the initial location at time t = 0

is 0) and the observation vector contains the slant range (yslant), yslant(t) =√
v2velt

2 + r2. The space object tracking problem is non-linear, Chapters 4 and 5

discuss it.

Two commonly used non-linear Kalman filters are the EKF and UKF. The

EKF uses first order Taylor series expansion. The UKF uses 2l + 1 (l is the

dimension) weighted sigma points. The term “sigma” refers to the standard

deviation, these points are generated by computing the standard deviation (and
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1.11 Association Problem

the mean) of a distribution. For instance, assume a univariate normal distribution

with mean y and standard deviation ξ1, then three sigma points will be located at

y, y+Wξ1 and y−Wξ1. Note that W denotes the weight. Further details on the

EKF and UKF can be found in Chapter 4. Note that l = 6 (6-dimensional state

vector and 2-dimensional observation vector) for the orbital tracking problem.

1.11 Association Problem

Suppose that for a library of space objects, their predicted angular positions

(2-dimensional angular position, the latitude and the longitude measured with

respect to the ECI or CRTN reference frame using the spherical coordinate sys-

tem) at the current time are available from previous observations, including an

assessment of the errors. Given a new angles-only observation at the current

time, the objective is to decide which object, if any, in the library corresponds to

the observed object.

Fig 1.9 illustrates some of the issues that can arise. Assume a library of two

objects (A and B) and three potential observations (1, 2 and 3).

Point 1 lies in the main body of the distribution for object A, but not for

object B. Hence the posterior probability that point 1 comes from object A is

large. Point 2 is more closely associated with B than A, but lies far enough from B

that is might be considered incompatible with either object. Point 3 lies midway

between the two principal axes, but is close enough to the common mode to be

compatible with both distributions. In particular, the posterior probabilities will

be nearly equal.

1.12 Thesis summary

This thesis first discusses the 6-dimensional propagated state vector and intro-

duces the AST-CRTN coordinate system. Second, the ASP-CRTN coordinate

system (propagated 2-dimensional state vector in the ambient space) and the PN

distribution are introduced. Further, suitable examples are provided to illustrate

their various usages. Finally, the tracking problem is discussed.
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1.12 Thesis summary

Figure 1.9: Association problem. Two overlapping distributions A and B
for the angles-only part of a state vector. The distributions are represented by
point clouds in the tangent plane to the unit sphere in terms of the latitude and
longitude in degrees. In addition three possible observations, labeled 1,2,3, have
been highlighted.
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(a) The propagated 6-dimensional state vector: use the AST-CRTN coordinate

system as it is able to preserve approximate normality under a wide range

of conditions. See Chapter 2 for more details.

(b) Propagated 2-dimensional angles-only position: the angles-only position is

measured in terms of the longitude and the latitude and the angles-only

observation vector may suffer from the pinching effect. During the pinching

(break-up event) scenario the propagated angles-only distribution cannot be

approximated using a bivariate normal distribution. This thesis investigates

the reason and discusses the PN or “Pinched-Normal” distribution. See

Chapter 3 for more details.

(c) Filtering: the UKF and EKF are sometimes unable to approximate the

posterior mean and the variance accurately. However, the IUKF, IEKF,

OCUKF and OCEKF are able to approximate the posterior distribution

accurately. This thesis discusses application of these filters for solving the

space object tracking problem. See Chapters 4, 5 and 6 for more details.

Thesis contributions are visualized using Figs. 1.10 and 1.11.

Note that spherical coordinates (spherical-ECI and ASP-CRTN) are either 2

or 3 dimensional. In a sense, these two coordinates are incomplete as they only

deal with the position of an orbiting object.
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1.12 Thesis summary

Figure 1.10: Thesis contributions, part 1. Uncertainty propagation in differ-
ent coordinate systems.
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Figure 1.11: Thesis contributions, part 2. Applications of newly developed
coordinate systems to the filtering and association problems.
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Chapter 2

Representing uncertainties
associated with the propagated
state vector

2.1 Introduction

In this chapter we discuss the distribution of the propagated 6-dimensional state

vector. Previously, we discussed the Cartesian-ECI, Keplerian-ECI and Equinoctial-

ECI coordinate systems and highlighted some of the limitations of these coordi-

nates. In this chapter the “Adapted STructural (AST)” coordinate system (AST-

CRTN) is introduced. A number of statistical tests are carried out to judge the

quality of Gaussianity in the AST-CRTN coordinate system. The first portion of

this chapter introduces the AST-CRTN coordinate system and highlights its key

differences with the Equinoctial-ECI (and Equinoctial-CRTN) coordinate system.

The second portion deals with various statistical tests, which are performed to

test approximate Gaussian behavior in the AST-CRTN coordinate system.

2.2 Chapter summary and key contributions

Key contributions are listed below.

(1) The AST-CRTN coordinate system is introduced in this chapter and key

differences with the Equinoctial-ECI/CRTN coordinate system (and other

coordinate systems) are also listed (Section 2.4).
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2.3 Relation to other chapters

(2) A number of investigations are performed to analyze the quality of approxi-

mate Gaussian behavior in the AST-CRTN coordinate system (Section 2.5).

These tests are listed below.

(a) Representing AST-CRTN elements using the first order Taylor series

expansion (Subsection 2.5.1).

(b) Linearity analysis (Subsection 2.5.2).

(c) Point cloud propagation under high initial uncertainties (Subsection

2.5.3).

2.3 Relation to other chapters

The previous chapter introduced various coordinate systems (Subsection 1.7.6)

and briefly talked about their limitations. This chapter provides further evidences

using suitable examples. The theme of this chapter is the AST-CRTN coordinate

system and the representation of the propagated uncertainty at the AST-CRTN

coordinate system (at t = t1, t1 > 0) depends on the uncertainty at the Cartesian-

ECI state vectors at t = 0.

Cartesian-ECI(0) −→ Cartesian-CRTN(0) −→ AST-CRTN(t)

Further, mappings between the Cartesian-ECI/CRTN, Keplerian-ECI/CRTN,

Equinoctial-ECI/CRTN coordinate systems to the AST-CRTN coordinate sys-

tem are bijective. The AST-CRTN coordinate system can be used to construct

the ASP-CRTN coordinate system (discussed in the next chapter). Application

of the AST-CRTN coordinate system for solving tracking problem is illustrated

in the Chapters 5 and 6 using suitable examples.

2.4 The AST-CRTN coordinate system

This chapter discuses the Adapted STructral (AST-CRTN) coordinate system.

The logic here is somewhat different to the fixed coordinate systems (such as the

Cartesian-ECI, Keplerian-ECI and Equinoctial-ECI) described in the previous

chapter. The term fixed means that these coordinate systems are developed on
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2.4 The AST-CRTN coordinate system

the fixed frame of reference. The AST-CRTN coordinate system uses a local or

adapted frame of reference, so that the uncertainty in the state can generally

be represented using the Gaussian distribution. The term local means that the

coordinate system depends on the central state and it is designed based on the

rotating frame (or local to the rotated central state) of reference.

The starting point for AST-CRTN coordinates is a known approximate value

for the state of an orbiting object at time t = 0. This value is called the central

state (xCRTN(c)(0), ẋCRTN(c)(0)) and the central state provides a reference basis.

Like the previous chapter, features related to the central and deviated states will

be indicated with a superscript (c) and (d). The deviated state is assumed to lie

near the central state

Let CRTN stand for the central RTN basis, that is, the RTN basis (see Equa-

tions (1.4) to (1.6), Subsection 1.7.3) determined from the central state at the

initial time t = 0. Then AST coordinates, denoted A1, . . . , A6, are defined to be

a local version of Equinoctial coordinates (Equinoctial-ECI), i.e., the Equinoctial

coordinates defined with respect to the CRTN basis, with some small adjust-

ments:

A1 = 2 tan(iCRTN/2) cos(ΩCRTN), A2 = 2 tan(iCRTN/2) sin(ΩCRTN),

A3(t) = φCRTN(t), A4 = e cos(θCRTNp ),

A5 = e sin(θCRTNp ), A6 = n. (2.1)

Time varying elements: Note that under Keplerian dynamics only A3(t)

changes with time. Various angles in Equation (2.1) can be computed same

as in Subsection 1.7.3, but using the CRTN reference basis.

The AST-CRTN coordinates differ from Equinoctial-ECI coordinates in three

ways. The most important difference is the choice of reference basis (the central

RTN or CRTN basis for AST-CRTN coordinates instead of the standard ECI

basis for Equinoctial-ECI coordinates). The other two differences are that the

angular position of the orbiting object, A3(t), is represented on the mean anomaly

scale rather than the true anomaly scale (and is treated as a number rather than

an angle) using the reinvented break angle (or the CRTN break angle), A6, is
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2.4 The AST-CRTN coordinate system

defined by the mean motion n instead of the major semi-axis a. These last two

choices are made to linearize the propagation equation. The term reinvented

indicates that we redefined the original break angle (E3(t)) for the AST-CRTN

coordinate system.

A detailed examination of AST-CRTN coordinates will be given in the next

section. Key differences between the AST-CRTN coordinate system and the

Equinoctial-ECI coordinate system are summarized below.

(a) Retrograde orbits. Standard Equinoctial (Equinoctial-ECI) coordinates

(E1, E2, see Subsection 1.7.6.3) generally break down for a nearly retrograde

equatorial orbit (for which the inclination approaches π). For AST-CRTN

coordinates the problem does not arise. The inclination of the central state

always equals 0o and the inclinations for the deviated states are always close

to 0o.

(b) Linear propagation and winding number. The system equation is

a linear function of φCRTN(0) and n for time t (Equation (1.21)). Thus if

the initial values of φCRTN(0) and n are Gaussian, the propagated value of

φCRTN(t) remains Gaussian for all future times t.

Further, the use of this representation makes it straightforward to keep

track of the winding number, that is, how many times the orbiting object

has gone around its orbit. More specifically, without any knowledge of the

history of the orbiting object, the initial angle φCRTN(0) only makes sense as

an angle; that is φCRTN(0) and φCRTN(0)+2πk represent the same angle for any

integer k. The initial angle can be turned into a number by restricting it to

the interval [−π, π]. Once φCRTN(0) has been turned into a number, φCRTN(t)

also makes sense as a number, and the integer part of (φCRTN(t)−φCRTN(0))/2π

records the whole number of orbits which have occurred by time t.

(c) Effects of change of basis due to rotation. Consider a situation where

the CRTN basis equals the standard ECI basis. Hence the central orbital

plane is equatorial and the initial central state points towards the standard

reference direction, xECI(c)(0) ∝ u (Equation (1.4)). Then the Equinoctial-

ECI and AST-CRTN coordinates are identical except for small differences
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2.5 Analyzing the AST-CRTN coordinate system

in elements 3 and 6. Next rotate the central and deviated orbital planes by

90o (polar orbit, see Subsection 1.7.5) or more. The AST-CRTN coordinates

remain unchanged. However, since the reference plane for Equinoctial coor-

dinates remains equatorial, most (except E6) of the Equinoctial coordinates

undergo major changes.

2.5 Analyzing the AST-CRTN coordinate sys-

tem

This section discusses approximate Gaussian behavior in the AST-CRTN coordi-

nate system and three tests are performed to judge the Gaussianity.

(1) First, we show that deviations represented using AST-CRTN coordinates

can be approximated using the first order Taylor series expansion from

the initial (t = 0) Cartesian-CRTN deviations. Since initial deviations are

approximately normally distributed (at t = 0), the AST-CRTN coordinates

of the deviations are also approximately normal. Hence, we can conclude

that the transformation from the Cartesian-CRTN (t = 0) to the AST-

CRTN (t = t1) coordinate system is approximately linear.

(2) Second, we perform linearity analysis and show that the transformation

from the Cartesian-CRTN to the AST-CRTN coordinate system at time

t = 0 is approximately linear.

(3) Finally, we discuss a point cloud propagation example and show that the

propagated point cloud in the AST-CRTN coordinate system can be ap-

proximated using a multivariate normal distribution. The key assumption

in this example is initial uncertainty (at t = 0) is approximately Gaussian

in the Cartesian-CRTN coordinate system. Similar to the previous two test

results, this test also confirms that the transformation from the Cartesian-

CRTN (at t = 0) to the propagated AST-CRTN (t = t1) is approximately

linear.
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2.5 Analyzing the AST-CRTN coordinate system

2.5.1 A first order representation for initial AST-CRTN
coordinates

From Section 1.8.1, the Cartesian-CRTN representation of a central state and a

deviated state at time t = 0 take the form,

xCRTN(c)(0) =

A0
0

 , ẋCRTN(c)(0) =

BC
0


xCRTN(d)(0) =

A+ ε1
ε2
ε3

 , ẋCRTN(d)(0) =

B + δ1
C + δ2
δ3

 .
In this section, a first order Taylor series expansion (see Section B.6 for more de-

tails on Taylor series expansion) is used to show how the difference in AST-CRTN

coordinates between the deviated and the central state can be approximated by

linear expressions of ε and δ,

A(d) −A(c) = J


ε1
ε2
ε3
δ1
δ2
δ3

 , (2.2)

where, J is the 6×6 Jacobian matrix from Cartesian-CRTN to AST-CRTN coor-

dinates and A(d) = A.

The formula for J is given below. The quality of this linear approximation is

explored in the next section.

Computing the Jacobian matrix
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2.5 Analyzing the AST-CRTN coordinate system

The Jacobian J = ∂(AST-CRTN)/∂(Cartesian-CRTNT ) takes the form

J =

ε1 ε2 ε3 δ1 δ2 δ3


0 0 −B/AC 0 0 1/C A1

0 0 −1/A 0 0 0 A2

0 Dcoeff/A 0 0 0 0 A3

C2/µ− 1/A −BC/µ 0 0 2AC/µ 0 A4

−BC/µ B2/µ− 1/A 0 −AC/µ −AB/µ 0 A5

P1C + P2Q1 −P1B + P2Q2 0 P1A+ 2P2A
2BC2 P2Q3 0 A6

(2.3)

where

Dcoeff =

(
1− e(c)2

)3/2
(1 + e(c) cosT (c))

2

P1 = −3

2

n(c)

h(c)
22AC

P2 = −3

2

n(c)

h(c)
2

a(c)

µ

Q1 = {(2C2 − 2µ

A
)(AC2 − µ) + 2AB2C2}

Q2 = {−2BC(AC2 − µ)− 2AB3C +BCµ}

Q3 = {4AC(AC2 − µ) + 2A2B2C}.

Here is the derivation, with all expansions taken to first order in ε and δ. As

mentioned in the previous section, the superscript (c) denotes the value of a

parameter for the central state.

Expansion for A1(0) and A2(0). The angular momentum vector can be

expressed as

h = xCRTN×ẋCRTN =

 ε2δ3 − ε3(C + δ2)
ε3(B + δ1)− (A+ ε1)δ3

(A+ ε1)(C + δ2)− ε2(B + δ1)

 ≈
 −ε3C

ε3B − Aδ3
AC + Aδ2 + Cε1 − ε2B

 ,
with squared norm,

h2 ≈ A2C2 + 2AC(Aδ2 + Cε1 −Bε2).
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That is,

h2 ≈ h(c)2 + ∆h2 ,

where h(c) = AC and

∆h2 = 2AC(Aδ2 + Cε1 −Bε2).

The first two components of wunit = h/h (wunit is a unit vector) simplify to

wunit
1 ≈ −ε3C, wunit

2 ≈ ε3B − Aδ3.

In terms of Keplerian elements,

wunit
1 = sin i sin Ω ≈ i sin Ω, wunit

2 = − sin i cos Ω ≈ −i cos Ω

since the inclination angle i is small. Further, the first two AST-CRTN coordi-

nates are given by

2 tan(i/2) sin(Ω) ≈ i sin(Ω) ≈ wunit
1 , 2 tan(i/2) cos(Ω) ≈ i cos(Ω) ≈ −wunit

2 ,

thus confirming the first two rows of J .

Expansion for A3(0). For this section, write the first order representation

of the deviated basis at time t = 0 in more concise notation. Using the spherical

coordinate representation,

xCRTN(0) =

A+ ε1
ε2
ε3

 = r(0)

cosψ(0) cos θ(0)
cosψ(0) sin θ(0)

sinψ(0)

 (2.4)

Note that r(0), θ(0) and ψ(0) indicate the radial distance, longitude and latitude

at time t = 0. From Equation (2.4), θ(0) can be written as,

θ(0) = atan2(ε2, A+ ε1) ≈
ε2
A
. (2.5)

The final step is to transform from the true anomaly scale to the mean anomaly

scale. The value of θ(0) is related to the true anomaly by θ(0) = θp + T (0) and

φ(0) = FT-to-M(θp, e) + FT-to-M(T (0), e)

= FT-to-M(θ(0)− T (0), e)− FT-to-M(−T (0), e)

≈ FT-to-M(−T (0), e) + θ(0)F ′T-to-M(−T (0), e)− FT-to-M(−T (0), e) = θ(0)F ′T-to-M(−T (0), e)

= θ(0)F ′T-to-M(T (0), e)

≈ θ(0)F ′T-to-M(T
(c)(0), e(c)).
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Note. F’ means derivative with respect to the first argument.

The derivative is well-known,

(δ/δT )FT-to-M(T, e) =
(1− e2)3/2

(1 + e cosT )2
(2.6)

It does not matter to first order whether the deviated or central value is used

since f1 and e are close to f
(c)
1 and e(c).

Expansion for A4(0) and A5(0). After a bit of calculation, the expression

for the eccentricity vector e simplifies to

e ≈ 1

µ

 AC2 + 2δ2AC + ε1C
2 − ε2BC − µ− µε1/A

−ABC − δ1AC − ε1BC − δ2AB + ε2B
2 − µε2/A

−δ3AB − ε3B2 − ε3C2 − µε3/A

 ,
and since e = f1u

(c) + f2v
(c),

f1 ≈
1

µ
(AC2 + 2δ2AC + ε1C

2 − ε2BC − µ− µε1/A),

f2 ≈
1

µ
(−ABC − δ1AC − ε1BC − δ2AB + ε2B

2 − µε2/A).

The first order error terms determine rows 4 and 5 of J .

Expansion for A6(0). From e, compute its squared norm

e2 =
1

µ2
{(AC2 − µ)2

+ 2(2δ2AC + ε1C
2 − ε2BC − µε1/A)(AC2 − µ)

+ (ABC)2

+ 2(δ1AC + ε1BC + δ2AB − ε2B2 + µε2/A)(ABC)}.

Write

e2 = e(c)
2

+ ∆e
2,

where e(c)
2

denotes the eccentricity for the central state.

h2 = h(c)
2

+ ∆h
2,
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where h(c) denotes the magnitude of the central angular momentum vector. Then

we can write (true to a certain extent),

e(c)
2

=
1

µ2
{(AC2 − µ)2 + (ABC)2},

∆e
2 ≈ 1

µ2
{2(2δ2AC + ε1C

2 − ε2BC − µε1/A)(AC2 − µ)

+ 2(δ1AC + ε1BC + δ2AB − ε2B2 + µε2/A)(ABC)},

h(c)
2

= A2C2,

∆h
2 = 2AC(Aδ2 + Cε1 −Bε2).

Then a takes the form

a =
h2

µ

1

1− e2

≈h
(c)2

µ

1

1− e(c)2
(1 +

∆h
2

h(c)
2 +

∆e
2

1− e(c)2
)

= a(c) + ∆a,

where,

a(c) =
h(c)

2

µ

1

1− e(c)2
and ∆a = a(c)(

∆h
2

h(c)
2 +

∆e
2

1− e(c)2
).

a(c) =
h(c)

2

µ

1

1− e(c)2

= − A2C2

A2B2C2

µ
+ A2C4

µ
− 2AC2

=
Aµ

2µ− AB2 − AC2
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Finally, writing n =
√
µ/a3 in the form n = n(c) + ∆n, it follows that

n =

√
µ

(a(c) + ∆a)3

≈
√

µ

a(c)
3 (1− 3

2

∆a

a(c)
)

≈ n(c)(1− 3

2

∆a

a(c)
)

≈ n(c) − 3

2

∆a

a(c)
n(c)

≈ n(c) + ∆n, say.

Finally,

∆n = −3

2

∆a

a(c)
n(c)

= −3

2

n(c)

a(c)
(∆a)

= −3

2

n(c)

a(c)
(a(c)(

∆h
2

h(c)
2 +

∆e
2

1− e(c)2
))

= −3

2
n(c)(

∆h
2

h(c)
2 +

∆e
2

1− e(c)2
)

= −3

2
n(c)(

∆h
2

h(c)
2 )− 3

2
n(c)(

∆e
2

1− e(c)2
)

= −3

2
n(c)(

∆h
2

h(c)
2 )− 3

2
n(c)(

∆e
2µa(c)

h(c)
2 )

= −3

2

n(c)

h(c)
2 (∆h

2 + ∆e
2µa(c)).

2.5.2 Linearity analysis for initial AST-CRTN coordinates

This section explores the extent to which AST-CRTN coordinates at the initial

time t = 0 depend linearly on ε and δ. In order to simplify the study to its

mathematical essentials, suppose the length and time units are scaled so that the

gravitational constant is µ = 1 and the central orbital period is �p = 2π. Then

an initial central state can be specified by giving the eccentricity e and the initial
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2.5 Analyzing the AST-CRTN coordinate system

true anomaly T (0). The corresponding values of A,B,C are given by

A =
h2

1 + e cosT (0)
, where h2 = 1− e2,

C =
h

A
, B =

e

AC
sinT (0).

The error variances are most conveniently specified in terms of relative errors.

For this study set the position standard error σ to be a specified percentage Pσ%

of the geometric mean of the radius at perigee and apogee. Similarly set the

velocity standard error τ to be a specified percentage Pτ% of the geometric mean

of the speed at the perigee and the apogee. In standardized units, these geometric

means for position and velocity reduce to h and 1, respectively.

Note that

h2 = aµ(1− e2),

ra =
h2

µ

1

1 + e cos(π)
=
h2

µ

1

1− e
,

rp =
h2

µ

1

1 + e cos(0)
=
h2

µ

1

1 + e
,

va =

√
(1− e)
(1 + e)

µ

a
,

vp =

√
(1 + e)

(1− e)
µ

a
.

The radii of an elliptical orbit at apogee (ra) and perigee(rp) are given by

(h2/µ)/(1 − e) and (h2/µ)/(1 + e), where h2 = 1 − e2. Hence if the length and

time units are chosen so that µ = 1, the geometric mean reduces to
√

1− e2.
Similarly, it can be shown that the velocities at apogee(va) and perigee(vp)

are given by
√

(1−e)
(1+e)

and
√

(1+e)
(1−e) , respectively, so the geometric mean reduces to

1.

For each component of ε and δ, 5 equally spaced values were chosen from

−2σ to +2σ and −2τ to +2τ , respectively. Then for each AST-CRTN coordinate

and each coordinate of ε and δ a plot is constructed. The plot shows how each
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AST-CRTN coordinate varies as the corresponding coordinate of ε or δ takes

its 5 possible values (with the other components of ε and δ fixed at 0). Also

superimposed on the plot is a straight line with slope given by the corresponding

element of the Jacobian matrix J . Thus a total of 36 plots are generated. If the

mapping from ε and δ is exactly linear, then the 5 “test values” in each of the

36 plots should lie exactly on the straight line.

Example 2.1. To judge the quality of the linear approximation for AST-

CRTN coordinates, a challenging set of parameters are chosen, with a high ec-

centricity, e = 0.7, and high relative standard error, Pσ = 2.5%, Pτ = 10%. This

eccentricity is at the high end of what is observed in practice. The error rates are

far higher than usually found in practice, but are kept small enough to ensure

that deviated eccentricity is always less than 1.

Various choices were tried for the initial true anomaly; the choice T (0) = 45o

is shown here, but the choice of T (0) has little effect.

Figs. 2.1-2.2 show that even under these extreme conditions, most of the plots

are visually very close to linearity. The worst one is plot (1,6) in Fig. 2.1 with a

squared correlation coefficient of R2 = 0.977; even this plot is acceptably linear

for most purposes. The quality of the linear approximation improves with a)

lower standard errors and b) lower eccentricity.

Note that in Figs. 2.1-2.2, within each row one Cartesian-CRTN coordinate

varies over an interval with the other Cartesian-CRTN coordinates held fixed.

The rows in Fig. 2.1 correspond to the three Cartesian-CRTN position coordi-

nates. The rows in Fig. 2.2 correspond to the three Cartesian-CRTN velocity

coordinates.

2.5.3 Point cloud propagation

Previous sections emphasized the initial behavior of deviated states under the

Cartesian-CRTN and AST-CRTN coordinate systems. This section looks at the

propagated distributions after a given propagation time t say, under Cartesian-

CRTN, Keplerian-CRTN, Equinoctial-ECI (to show limitations of the Equinoctial-

ECI coordinate system) and AST-CRTN coordinates. More propagation exam-

ples can be found in Section A.2.
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2.5 Analyzing the AST-CRTN coordinate system

Figure 2.1: Example 2.1., linearity example, part 1. Linearity analysis at
time t = 0 showing plots of each AST-CRTN coordinate against the first three
Cartesian-CRTN coordinates. See also Fig. 2.2.

Recall Chapter 1, in Cartesian coordinates all 6 coordinates vary with time

and some of the scatter-plots show distinct amount of curvature. However, for

the Keplerian coordinate system only the third element (T (t)) changes with time.

Similarly, for the Equinoctial and AST-CRTN coordinate systems only the third

coordinate element (E3(t) and A3(t) respectively) varies with time.

The following example illustrates some of the problems with Cartesian-CRTN,

Keplerian-CRTN and Equinoctial-ECI coordinates. Each 6-dimensional propa-

gated distribution is simulated and the resulting point cloud is visualized using a

pairs plots. Each pairs plot includes a histogram for each variable and a scatter

plot for each pair of variables. The point clouds are based N = 2000 simu-

lated initial states. This value of N is more than sufficient to see the patterns

of variability in the propagated distributions. Indeed the same patterns can be

identified using a much smaller value of N , e.g. N = 500.

Example 2.2. Consider a central orbit with eccentricity e(c) = 0.7 (an im-

portant parameter) and initial true anomaly T (c)(0) = 45o (a minor parameter).
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Figure 2.2: Example 2.1., linearity example, part 2. Linearity analysis at
time t = 0 showing plots of each AST-CRTN coordinate against the last three
Cartesian-CRTN coordinates.

Suppose the relative initial standard deviations are Pσ, Pτ , the same as before.

For Equinoctial coordinates, the inclination is also an important parameter. If

i(c) = 0, then Equinoctial-ECI (same as Equinoctial-CRTN) and AST-CRTN co-

ordinates are very similar; here let i(c) = 175o to illustrate the problems that can

arise for retrograde orbits.

In terms real world situations, if the period is 12 hours (equivalent to a =

26610 km), these parameters correspond to a highly eccentric orbit (HEO) (see

Subsection 1.7.5 for more information on different orbits) with A = 9078 km, B

= 2.6 km/sec and C = 8.1 km/sec. Further, ra = 45237 km, rp = 7983 km, va =

1.6 km/sec and vp = 9.21 km/sec, where ra, rp, va and vp indicate radius at the

apogee, radius at the perigee, velocity at the apogee and velocity at the perigee

respectively.

The state of the object has been propagated for 0.5 central orbital peri-

ods. Propagated point clouds have represented as 6-dimensional pairs plot in

Cartesian-CRTN coordinates (Fig. 2.3), Keplerian-CRTN coordinates (Fig. 2.4),
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Equinoctial-ECI coordinates (Fig. 2.5) and AST-CRTN coordinates (Fig. 2.6).

Note that more propagation examples are listed in the Appendix (Section A.2).

Figure 2.3: Example 2.2., propagation example, Cartesian-CRTN coor-
dinates. Propagated point cloud in Cartesian-CRTN coordinates. First three
elements represent the propagated position vector (km) and last three elements
indicate the propagated velocity vector (km/sec).

From Figs. 2.3 to 2.6, the following conclusions can be made.

(a) In Cartesian-CRTN coordinates (Fig. 2.3), there is extreme non-Gaussianity.

E.g. the scatter plot (1,5) shows severe curvature. Even with much lower

standard deviation, there would still often be appreciable curvature in such

plots.
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Figure 2.4: Example 2.2., propagation example, Keplerian-CRTN coor-
dinates. Propagated point cloud in Keplerian-CRTN coordinates.

(b) In Keplerian-CRTN coordinates (Fig. 2.4), there is extreme non-Gaussianity.

E.g. the scatter plot (1,3) shows severe curvature. Notice the range for in-

clination (K2).

(c) In Equinoctial-ECI coordinates (Fig. 2.5), there is also noticeable non-

Gaussianity, e.g. the skewness in E1 and E2. The non-Gaussianity in this

example is due to the high inclination of the orbital plane and demonstrates

the problems with Equinoctial coordinates in this setting.

(d) In AST-CRTN coordinates (Fig. 2.6), all the scatter plots are approx-

imately normally distributed. Notice the perfect linear relation between
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Figure 2.5: Example 2.2., propagation example, Equinoctial-ECI coor-
dinates. Propagated point cloud in Equinoctial-ECI coordinates.

elements 3 and 6 (φ(t) and n) in scatter plot (3,6), which is due to the fact

that the uncertainty in φ(t) is dominated by the variability in n for large t.

Multivariate test results

Section 1.8.2 discussed the p-value test in judging multivariate normality. In

Figs. 2.3 to 2.6, we judge the approximate normality using Mardia’s normality

test. From visual inspection, it can be clearly stated that the propagated point

cloud is approximately Gaussian only in the AST-CRTN coordinate system. The

statistical test results are summarized in Table 2.1. For the Cartesian-CRTN,

Keplerian-CRTN and Equinoctial-ECI coordinate systems very small p-values (<
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Figure 2.6: Example 2.2., propagation example, AST-CRTN coordi-
nates. Propagated point cloud in AST-CRTN coordinates. All the histograms
and scatter plots are approximately normal.

2e−16) are effectively 0 and indicate the distribution is extremely non-Gaussian.

Table 2.1: Normality test results. Here pskewness, pkurtosis represent p-values for
the skewness and kurtosis respectively.

Coordinate system/p-value pskewness pkurtosis
Cartesian (Fig. 2.3) < 2e−16 < 2e−16

Keplerian (Fig. 2.4) < 2e−16 < 2e−16

Equinoctial (Fig. 2.5) < 2e−16 < 2e−16

AST (Fig. 2.6) 0.07 0.09
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Note. Note that Mardia’s p-value test judges the multivarite normality. In

order to judge the univariate normality, we use the Shapiro-Wilk’s univariate

normality test. The test result confirms that all six AST coordinate elements are

approximately univariate normal. However, none of the ECI or Keplerian coor-

dinates are approximately univariate normal and for the Equinoctial coordinate

system only E4 is univariate normal.
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Chapter 3

Representing uncertainties
associated with the propagated
observation vector

3.1 Introduction

The previous chapter discussed the propagated 6-dimensional state vector or the

AST-CRTN coordinate system. In this chapter we investigate the behavior of

the 2-dimensional state vector or the propagated angles-only uncertainty. The

AST-CRTN coordinate system represents the 6-dimensional propagated orbital

uncertainty and contains information related to the position and the velocity of

an object. However, the “Adapted SPherical (ASP)” coordinate (ASP-CRTN)

system represents the 2-dimensional angles-only position vector (or 3-dimensional,

if we add the radial component). It includes information about the position of

an object. During the filtering or tracking, the AST-CRTN coordinate system is

used to describe the whole 6-dimensional propagated state vector, whereas the

ASP-CRTN coordinate system deals with the propagated observation vector (as

the observation is measured using the angles-only position). Various features of

the propagated angles-only distribution are listed below.

The distribution of the propagated longitude is approximately Gaussian for

a small propagation time. As the propagation time increases, the distribution

becomes more spread out, eventually wrapping around the circle. It is then

better described by the wrapped normal distribution. The distribution of the
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latitude is approximately normal apart from few special cases.

In the case of a break-up (due to a collision) event, where the initial position

is known nearly exactly, but the initial velocity shows high uncertainty the joint

distribution shows a pronounced “pinching” or “bow-tie” effect in a scatter plot

of latitude vs. longitude whenever the propagation time is an integer multiple of

the half-period for the initial state. However, this is a special case. This chapter

discusses it in details.

The pinching effect starts and ends a little before and after (respectively) the

half orbital propagation. In this chapter with the use of weighted sigma points,

we compute the approximate pinching duration.

The distribution of the radial component is approximately normally distributed

if the propagation time is small. However, if the propagation time is moderate

then distribution of the radial component becomes more complicated to work

with. We discuss the distribution of the radial component here. In addition,

we also provide the conditional distribution of the radial component given the

longitude.

3.2 Chapter summary and key contributions

The aim of this chapter is to analyse the uncertainty associated with the angles-

only position of the propagated point cloud. Previous chapter showed that the

propagated uncertainty in the Cartesian-CRTN coordinate system is non-normal

(Section 2.5.3) and suffers from the “banana” effect (Cartesian-ECI coordinate

system also suffers from the same effect). Such a distribution is not ideal to work

with as it is not possible to use a Kalman filter. Uncertainty represented using the

ASP-CRTN coordinate system (or the modified ASP-CRTN coordinate system)

is approximately Gaussian. Next, key contributions are summarized below.

(a) A modified spherical coordinate system (or the spherical coordinate system

represented using the CRTN basis), namely the “Adapted Spherical (ASP)”

coordinate (ASP-CRTN) system, is introduced in this chapter. Under Ke-

plerian dynamics the propagated angles-only uncertainty can be approxi-

mated using a bivariate normal distribution in the ASP-CRTN coordinate
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system if the propagation time is not too large and both uncertainties (po-

sition and velocity uncertainties at t = 0) are present (Section 3.4).

(b) The transformation from the initial central state to the propagated devi-

ated state is presented using the analytic derivation. The analytic expansion

shows that for a break-up event (i.e., uncertainty in position is zero) if the

propagation period is close to a multiple of half central orbital period then

the propagated uncertainty represented using the ASP-CRTN coordinate

system suffers from the “pinching” effect. However, the conditional distri-

bution of the latitude given the longitude is approximate normal (Sections

3.5 and 3.6).

Note that during the break-up event, a single object splits into many ob-

jects. The individual objects initially lie at the same position, but move

apart with different velocity vectors.

(c) We use weighted velocity-only sigma points to compute the approximate

pinching duration (Section 3.7).

(d) The final portion of this chapter discusses the distribution of the radial

component (Section 3.9).

3.3 Relation to other chapters

This chapter discuses the ASP-CRTN coordinate system. The ASP-CRTN coor-

dinate system can be constructed in several ways, such as, from the AST-CRTN

(t) coordinate system or from the Cartesian-CRTN (t) coordinate system (or

other 6-dimensional coordinate systems). Information related to the Cartesian-

ECI/CRTN coordinate system and the AST-CRTN coordinate system can be

found in Chapters 1 and 2. In this thesis, we use the ASP-CRTN coordinate

system to discuss the break-up event. Further, we also use the ASP-CRTN coor-

dinate system to solve various association problems (Chapter 6).

(a) Construction of the ASP-CRTN coordinate system using the AST-

CRTN (t) coordinate system (see Equations (3.11) and (3.12) to un-
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derstand the relation between the AST-CRTN (t) system and the ASP-

CRTN(t) system).

Cartesian-ECI(0) −→ Cartesian-CRTN(0) −→ AST-CRTN(t) −→ ASP-CRTN(t).

(b) Construction of the ASP-CRTN coordinate system using the Cartesian-

CRTN (t) coordinate system.

Cartesian-ECI(0) −→ Cartesian-CRTN(0) −→ Cartesian-CRTN(t)∗

∗ −→ r(t), (unit-vector) CRTN-position(t) −→ ASP-CRTN(t).

3.4 The ASP-CRTN coordinate system

The formation of the ASP-CRTN coordinate system is mentioned below. Note

that the central-state is represented using the CRTN reference basis and as men-

tioned before, the ASP-CRTN coordinate system is actually the spherical repre-

sentation a state (position) of an orbiting object using the CRTN basis.

(1) Recall Section 1.8.1, the central state (Cartesian-CRTN) in the CRTN ref-

erence basis takes the following form,

xCRTN(c)(0) =

A0
0

 (3.1)

ẋCRTN(c)(0) =

BC
0

 . (3.2)

Further, the deviated states can be represented in terms of departures from

the central state,

xCRTN(0) = xCRTN(d)(0) =

A+ ε1
ε2
ε3

 (3.3)

ẋCRTN(0) = ẋCRTN(d)(0) =

B + δ1
C + δ2
δ3

 . (3.4)
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(2) Propagate the point cloud using Keplerian dynamics.

(3) Let xCRTN-unit(t) = xCRTN(t)/|xCRTN(t)|, j = 1, . . . , N denote the projections

of the positions of the point cloud on the unit sphere.

(4) Spherical coordinates for a vector xCRTN-unit = [xCRTN-unit1 , xCRTN-unit2 , xCRTN-unit3 ]T

can be written in terms of the unit vector by

xCRTN-unit1 (t) = cosψ(t) cos θ(t), xCRTN-unit2 (t) = cosψ(t) sin θ(t), xCRTN-unit3 (t) = sinψ(t).
(3.5)

Here ψ(t) (equivalent to ψCRTN(t)) ∈ [−π/2, π/2] denotes the “latitude”, θ(t)

(equivalent to θCRTN(t)) ∈ [−π, π) is the “longitude”, and [0, 0, 1]T points

towards the “north pole” or “central normal direction” in the unit sphere.

In these coordinates, ψ = 0, θ = 0, corresponds to the intersection of the

“prime meridian” and the “equator” in the unit sphere.

(5) Finally, plot the data, ψ(t) vs. [θ(t) − θ(c)(t)] for various t. The reason

for using these spherical (or spherical like) coordinates is that the banana-

shape in Euclidean coordinates turns into an approximate bivariate normal

in the ASP-CRTN coordinate system. Note that [θ(t)− θ(c)(t)] (treated as

an angle) is used to center the propagated central state at the (0,0) location.

Note. In this chapter ψ(t) and θ(t) are same as ψCRTN(t) and θCRTN(t) respec-

tively.

3.4.1 Example 3.1., distribution of the propagated angles-
only elements

The purpose of the example is to illustrate the usefulness of the ASP-CRTN co-

ordinate system. Consider an orbital object (“central state”) with eccentricity

= 0.13, orbital period = 131.013 minutes and true anomaly measured from the

perigee = 99.41o (with A = 8582 km, B = 0.88 km/sec and C = 6.74 km/sec). Fur-

ther, initial uncertainties are Pσ = 1% for Cartesian-CRTN position elements and

87



3.4 The ASP-CRTN coordinate system

Pτ = 1% for Cartesian-CRTN velocity elements. The point cloud has been prop-

agated for 1 central orbital period. Final angles-only positions are summarized

in Fig. 3.1. Notice that both the longitude and the latitude are approximately

univariate normal and their joint distribution is approximately bivariate normal.

Further, the approximate normality can be confirmed using p-values obtained

using Mardia’s p-value test. In this set-up p-values are 0.09 for the skewness

and 0.95 for the kurtosis using Mardia’s tests. Note that since e = 0.13, the

function FM-to-T (Section 1.7.3) is almost linear (also see A.7, this plot describes

the relationship between the true anomaly and the mean anomaly for different

eccentricity values).

Figure 3.1: Example 3.1., propagated angles-only components. Propa-
gated angles-only elements. Note that the joint distribution of the longitude and
the latitude can be approximated using a bivariate normal distribution. Initial
conditions are mentioned in Section 3.4.1.

Note. Note that if the eccentricity (central eccentricity) is small and the
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propagation period is not extreme then [θ−θ(c)] ≈ [φ−φ(c)]. Further, under such

circumstances the distribution of the θ(t) or θ − θ(c) is approximately normal.

Since e (or e(c)) is small, the choice of θ or φ makes almost no difference in

terms of normality assessment. Appendix (Section A.2) lists more propagation

examples, where we show behavior of various angles under propagation based

on orbital eccentricity and period. In addition, Section 3.6 summarizes various

angular components used in this thesis.

3.5 Uncertainty representation for the ASP-CRTN

coordinate

From the previous chapter (Section 2.5.1), the Jacobian matrix for converting the

Cartesian-CRTN to the AST-CRTN coordinate system J = ∂(AST-CRTN)/∂(Cartesian-CRTNT )

(at time t = 0) takes the form,

J =

ε1 ε2 ε3 δ1 δ2 δ3


0 0 −B/AC 0 0 1/C A1

0 0 −1/A 0 0 0 A2

0 Dcoeff/A 0 0 0 0 A3

C2/µ− 1/A −BC/µ 0 0 2AC/µ 0 A4

−BC/µ B2/µ− 1/A 0 −AC/µ −AB/µ 0 A5

P1C + P2Q1 −P1B + P2Q2 0 P1A+ 2P2A
2BC2 P2Q3 0 A6

The latitude can be written as (see Chapter 1, Equation (1.28)),

ψ(t) ≈ sin(i) sin(θ(t)− Ω)

≈ i sin θ(t) cos Ω− i cos θ(t) sin Ω

≈ A1 sin θ(t)− A2 cos θ(t). (3.6)

Note. All these angles (ψ(t), i, θ(t), Ω) are defined with respect to the CRTN

basis.

In this setting three scenarios are possible. Note that (a) and (b) are special

cases.
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(a) (Break-up event) If σ2 = 0 so that ε vanishes, then

ψ(t) ≈ (δ3/C) sin θ(t). (3.7)

At the break-up time, a single object splits into many objects. The individ-

ual objects initially lie at the same position, but move apart with different

velocity vectors.

(b) The opposite situation is perhaps mainly of mathematical interest. If τ 2 = 0

so that δ vanishes, then

ψ(t) ≈(−ε3B/(AC)) sin θ(t)− (−ε3/A) cos θ(t)

≈(ε3/A) cos θ(t) + [−ε3B/(AC)] sin θ(t). (3.8)

(c) Finally, when both σ2 > 0 and τ 2 > 0, then

ψ(t) ≈(ε3/A) cos θ(t) + [−ε3B/(AC) + δ3/C] sin θ(t). (3.9)

3.5.1 Propagated angles-only positions during break-up
event

Example 3.2., part 1. Consider the same object which was considered previously

in Example 3.1., the initial position of the object is known exactly (σ2 = 0,

ε = 0) and the initial velocity is normally distributed with standard deviation Pτ

= 1% in each direction. Further, the uncertainties in all 3 velocity coordinates

are independent. The state of the object has been propagated for various time

intervals and propagated angles-only positions are summarized in Fig. 3.2.

Fig. 3.2 shows various stages of the pinching. First, the plot located at the

upper-left panel (say, (a)) indicates the joint distribution of the latitude and the

longitude when propagation time is 0.8 central orbital periods. Note that the

joint distribution is approximately a bivariate normal. Second, the plot located

at the upper-right panel (say, (b)) exhibits the propagated point cloud after 0.98

central orbital periods. The pinching behavior is visible here. Third, the plot

located at the lower-left panel (say, (c)) displays the point cloud exactly after 1

central orbital period and the “bow-tie” pattern is clearly visible here. Finally,

the last plot (say, (d)) shows the propagated point cloud after 1.02 orbital periods.

The pinching effect is still visible in this plot.
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3.5 Uncertainty representation for the ASP-CRTN coordinate

Figure 3.2: Example 3.2., pinching example, part 1. Angles-only part of
the propagated point cloud has been shown for various propagation times (much
before, just before, during and just after pinching). Subplot (a) highlights a sce-
nario which is much before the pinching. The propagation period is 0.8 central
orbital period. The joint distribution is approximately bivariate normal. Subplot
(b) shows the angles-part just before the pinching behavior and the propagation
period is 0.98 central orbital period. Subplot (c) illustrates the exact pinching
behavior, a “bow-tie” or “butterfly” pattern is clearly visible here. Finally, Sub-
plot (d) displays the propagated point cloud just after the pinching. Note that
(b), (c) and (d) are not bivariate normal.

3.5.2 Treating the pinching problem and the Pinched-
Normal distribution

The distribution of (ψ(t), θ(t)) during a break-up event can be turned into a

bivariate normal distribution by re-scaling the latitude ψ(t) to

ψ1(t) = ψ(t)

[
C

(sin θ(t)σδ3)

]
(3.10)

and by transforming from θ(t) on the true anomaly scale to φ(t) on the mean

anomaly scale. Then (ψ1(t), φ(t)) follows a bivariate normal distribution with

independent components (for a break-up event φ(t) = φ(0) + nt = f(δ1, δ2)).

We describe the distribution of the (ψ1(t), φ(t)) as the “Pinched-Normal (PN)”

distribution. As mentioned before, if e is small then the choice of θ or φmakes very

little difference (f(ψ1(t), φ(t)) ≈ f(ψ1(t), θ(t))). In Equation (3.10) σδ3 denotes
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the standard deviation associated with the δ3 deviation.

Example 3.2., treating the pinching, part 2. In Fig. 3.3, the first

element is the longitude θ(t), the second element is the original latitude ψ(t)

and the final element is re-scaled/standardized latitude ψ1(t) (with mean 0 and

standard deviation 1). The initial conditions are kept same as Fig. 3.2 and the

propagation time is exactly 1 central orbital period (same as Fig. 3.2, Subplot

(c)). Since the central eccentricity e(c) and the propagation period are small,

θ(t) ≈ φ(t).

The resulting point cloud (joint distribution of θ and ψ1) can be tested for

approximately normality using Mardia’s multivariate normality test. The result-

ing p-values are 0.09 (for the skewness) and 0.52 (for the kurtosis) indicating no

incompatibility with the Gaussian distribution.

3.6 A brief summary based on the behavior of

various propagated angles

(1) True angles. The term “True angles” indicates the latitude (ψ) and the

longitude (θ). These two propagated angles provide information related to

the observation angles. The term “True” also means that these two angles

are real and directly related to the observation vector (or observed angles,

observed latitude and longitude). Note that if the measurement error is 0

then true and observation angles are exactly the same. Typically true angles

are unknown but with a well-specified propagated distribution. However,

observation angles are distributed about the true values with measurement

errors.

(a) Distribution of the latitude. Compared to the longitude, the distribu-

tion of the latitude is typically much more tightly concentrated. In

addition, the distribution of the latitude is generally approximately

normal apart from a break-up event.

(b) Distribution of the longitude. If the propagation period is small/moderate

and orbital eccentricity is not huge then the distribution of the longi-

tude is approximately normal or wrap-normal (becomes normal if we

92



3.6 A brief summary based on the behavior of various propagated
angles

Figure 3.3: Example 3.2., pinch-corrected distribution, part 2. The
first element is the longitude, the second and third elements are original and
scaled/standardized latitudes respectively. The joint distribution of the longitude
(θ) and the scaled latitude (ψ1) can be approximated using a bivariate normal
distribution. The initial conditions are same as Fig. 3.2 and the propagation
time is exactly 1 central orbital period, as in Fig. 3.2, Subplot (c).

use the correct winding number). However, if initial uncertainties are

huge and/or propagation period is large and the orbital eccentricity is

high then the distribution of the unwrapped longitude cannot be ap-

proximated using a normal distribution. See Appendix, Section A.2,

for an example.

(2) Pseudo true angles. The term “Pseudo true angles” refers to the φ or

the modified break-angle (re-invented) and ψ1 or the standardized lati-

tude. These two angles are not real (they are artificial, that’s why the

term “pseudo” is used) but they are developed to deal with the non-normal
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behavior of the propagated true angles or distributions related to the prop-

agated true angles (θ and ψ).

(a) Distribution of the standardized latitude. The standardized latitude is

(always) approximately normal with mean 0 and standard deviation

(s.d.) 1.

(b) Distribution of the modified/re-invented break-angle. The distribution

of φ is also (always) approximately normal.

For solving space object tracking or association problems, the propagation period

is typically not huge and uncertainties are not extreme (< 1% for both) and the

use of θ is justified as under such conditions θ is approximately a univariate

normal. However, to deal with non-normal uncertainty generated due to a break-

up event, we need to use ψ1 or the standardized latitude, see Sections 6.8.2 and

6.8.3 (Chapter 6) for examples. However, if the propagation period is large and

the orbital uncertainty is also not small then it is recommended to use (ψ, φ) or

(ψ1, φ) in place of (ψ, θ).

The AST coordinate system was discussed in Chapter 2. Next, a brief discus-

sion is provided to show the relation between AST coordinate elements and true

angles (discussed earlier this section). Recall Chapter 1, Equation (1.28),

θ(t) = Ω + ω + T (t) = θp + T (t) = atan2 (A5, A4) + T (t)

= atan2 (A5, A4) + FM-to-T

(
A3(t)− φp,

√
A2

4 + A2
5

)
= atan2 (A5, A4) + FM-to-T

(
A3(t)− L3,

√
A2

4 + A2
5

)
(3.11)

ψ(t) = sin(i) sin (ω + T (t)) = sin−1 (sin(L1) sin(L2(t))) , (3.12)

where,

L1 = 2 tan−1

(√
A2

1 + A2
2

2

)
,

L2(t) = FM-to-T

(
A3(t),

√
A2

4 + A2
5

)
− atan2 (A2, A1) ,

L3 = FT-to-M

(
atan2(A5, A4),

√
A2

4 + A2
5

)
.
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3.7 Velocity-only sigma points for break-up event analysis

(1) The function FM-to-T (also FT-to-M) is nonlinear, if the orbital eccentricity e

is 0 (or small) then it becomes linear and θ(t) = φ(t) = A3(t).

(2) If θ(t)(= θ) is fixed at time t, then we can represent latitude using linear

combinations of A1 and A2 (Equation 3.6). Further, we can also write,

J1 =

A1 A2 A3 A4 A5 A6[ ]
sin θ − cos θ 0 0 0 0 ψ

0 0 1 0 0 0 φ

. (3.13)

Note that J1 is a transformation matrix which computes ASP coordinates

from AST (or AST-CRTN) coordinates when θ is fixed.

In addition, we can also represent ASP coordinate elements using ε and δ

terms using (2.3) and (3.14).

(a) The longitude (modified/re-invented break-angle) can be written as,

φ(t) = φ(0) + nt

≈D
coeffε2
A

+ ε1(P1C + P2Q1) + ε2(−P1B + P2Q2)

+ ε4(P1A+ 2P2A
2BC2) + (P2Q3)ε5

≈ε1(P1C + P2Q1) + ε2(−P1B + P2Q2 +
Dcoeff

A
)

+ ε4(P1A+ 2P2A
2BC2) + ε5(P2Q3).

(b) The latitude can be written as,

ψ(t) ≈(ε3/A) cos θ(t) + [−ε3B/(AC) + δ3/C] sin θ(t)

≈ε3(
cos θ(t)

A
− B sin θ(t)

AC
) + δ3(

sin θ(t)

C
).

3.7 Velocity-only sigma points for break-up event

analysis

In order to study the propagated orbital uncertainty in a more idealized form for

a break-up event, it is helpful to use a small set of carefully selected deviated
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3.7 Velocity-only sigma points for break-up event analysis

initial points. We represent the point cloud using seven (N = 2l + 1 = 7, l is

the dimension and l = 3 for a velocity-only uncertainty analysis, ε = 0) care-

fully chosen velocity-only sigma points which can mimic the point cloud behavior

both qualitatively and quantitatively. Further, the point cloud based uncertainty

propagation method can be computationally expensive but sigma points based

propagation method is much faster. Basically, sigma points are the discrete ap-

proximation of the point cloud. Note that the concept of using a sigma points

based system to represent the propagated orbital uncertainty is motivated by the

UKF sigma points (see Chapter 4 for more details).

Recall Section 3.5, if ε = 0, then a deviated state can be represented in the

Cartesian-CRTN coordinate system as,

xCRTN(d)(0) = xCRTN(c)(0) =

A0
0

 , ẋCRTN(d)(0) =

B + δ1
C + δ2
δ3

 . (3.14)

Consider 6 perturbation vectors for the velocity, ±τ1e1, ±τ1e2, ±τ1e3, where,

e1 =

1
0
0

 , e2 =

0
1
0

 , and e3 =

0
0
1


denote three coordinate axes.

Label the deviated initial conditions by ±τ1e1, ±τ1e2, ±τ1e3, respectively,

giving a collection of N = 7 (N = total number of data points) initial conditions.

The perturbations ±τ1e1 lie in the “radial” direction, ±τ1e2 lie in the “in-

track” direction, and ±τ1e3 lie perpendicular to these directions, i.e the “cross-

track” direction.

The perturbations ±τ1e2 mainly affect the period of the orbit. Similarly, the

perturbations ±τ1e3 mainly affect the direction of the orbit but not its period.

3.7.1 Sigma points propagation

Example 3.3. To illustrate the use of sigma points, consider the same setting

as in Examples 3.1. and the propagation period is 0.8 central orbital period.
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3.7 Velocity-only sigma points for break-up event analysis

Figure 3.4: Example 3.3., sigma points propagation. Illustration of sigma
points after 0.8 central orbital periods (for τ1 = 1, 2, 3 and 3.5τ respectively).
The data are plotted in ASP-CRTN coordinates with the “latitude” ψ(t) and the
“longitude” ([θ(t) - θ(c)(t)]) in degrees. Here, ∗ denotes the base point; squares
denote the ±τ1e1 sigma points, diamonds denote the ±τ1e2 sigma points, and
circles denote the ±τ1e3 sigma points. Plus perturbations are indicated by an
open symbol; minus perturbations by a closed symbol.

Fig. 3.4 (Example 3.4.) describes four scenarios for different values of sigma.

From these examples, we can conclude that τ1 = 3.5τ is a sensible choice (scales

are approximately same for both the latitude and the longitude for the sigma

points based system and a propagated point cloud).

3.7.2 Limitations of Velocity-only sigma points based sys-
tem

Sigma points (or velocity-only sigma points, these two terms are used interchange-

ably in this chapter) and a point cloud behave in a similar way for orbital un-

certainty representation under certain circumstances (see the previous example).

This section describes a situation where sigma points are unable to mimic a point

cloud.
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The main intention behind developing the sigma points is to provide a discrete

approximation of distributions of the two angular components (the latitude and

the longitude) of the propagated point cloud. Further, using a sigma points based

system is a sensible choice if both the latitude and the longitude are univariate

normal and their joint distribution is a bivariate normal. However, if the joint

distribution is non-normal then sigma points fail to replicate the point cloud.

Consider an example where the error variances describe a break-up event and

where the propagation time is a multiple of a half orbital period, the propagated

angular distribution displays a “bow-tie” or “pinching” pattern in the ASP-CRTN

coordinate system for a point cloud (Example 3.2., Fig. 3.2). As discussed earlier,

the distribution of the latitude (for a point cloud during a pinching event) is not

normal and sigma points fail to approximate the joint distribution (as the joint

distribution is not a bivariate normal), see Fig. 3.5 for more details.

Example 3.4. Consider the same orbital object which we considered previ-

ously in Example 3.1. In this example, we propagate velocity-only sigma points

for exactly 1 central orbital period and plot the propagated angles-only com-

ponents in ASP-CRTN coordinates. As expected, the angles-only part of the

propagated point cloud shows a “pinching” pattern and sigma points are unable

to capture this feature both quantitatively and qualitatively (Fig. 3.5).

To summarize, during a break-up event, the distribution (for point cloud prop-

agation) of the longitude is approximately normal but the the distribution (for

point cloud propagation) of the latitude is non-normal and the joint distribution

is also not a bivariate normal. As a result, sigma points are unable to approximate

the point cloud properly.

3.8 Application of Sigma points

If the propagation time is moderate and not close to a multiple of half orbital

period then sigma points are very similar to a point cloud based system for

representing the propagated angular position. However, if the propagation period

is close to a multiple of half orbital period, then sigma points are unable to mimic

the propagated point cloud. Our velocity-only sigma points can be used for
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3.8 Application of Sigma points

Figure 3.5: Example 3.4., sigma points during a pinching event. Repre-
sentation of sigma points during a pinching event. Clearly, scales for the longitude
are approximately same (or close) in both the point cloud and sigma points. How-
ever, sigma points are unable to mimic the point cloud behavior for the latitude.
The rectangle located just above the pinching location is the zoomed in version
of the small (dashed) rectangle situated exactly at the center of the image.

computing the approximate pinching duration and the next subsection provides

a detailed description.

3.8.1 Computing the pinching time span

Recall the pinching scenario mentioned using the Fig. 3.2, the pinching effect is

maximum during the multiple of the half orbital period but pinching starts and

ends a little before and a little after the multiple of half orbital period respectively.

This portion of the chapter aims to compute the approximate duration of the

pinching with 99.95% confidence intervals (3.5τ). See Fig. 3.4, it shows that 3.5τ

is a sensible choice to a propagated point cloud (during a non break-up event and

also initial conditions are not extreme).

Two horizontal sigma states (say, (xCRTN(1), ẋCRTN(1)) and (xCRTN(2), ẋCRTN(2)))

can be represented using the ASP-CRTN coordinate system as (Sections 3.4 and
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3.7),

xCRTN(1)(0) =

A0
0

 , ẋCRTN(1)(0) =

 B
C + τ1e2

0

 , (3.15)

xCRTN(2)(0) =

A0
0

 , ẋCRTN(2)(0) =

 B
C − τ1e2

0

 . (3.16)

Since ε = 0, xCRTN(1)(0) = xCRTN(2)(0). Further, by combining 3.15 and 3.16,

we can write,

xCRTN(l)(0) =

A0
0

 , ẋCRTN(l)(0) =

 B
C ± τ1e2

0

 =

BCl
0

 l = 1, 2, (3.17)

where, τ1 = 3.5τ .

Now we compute various orbital elements (using the formulas mentioned in

Chapter 1, Section 1.7.3) for these two states. The angular momentum vector

can be expressed as,

hl =

 0
0
ACl

 , (3.18)

with squared norm,

hl
2 = A2Cl

2. (3.19)

The expression for the eccentricity vector el simplifies to

el =
1

µ

ACl2 − µ−ABCl
0

 . (3.20)

From e, we can compute its squared norm,

el
2 =

1

µ2
{(ACl2 − µ)2 + (ABCl)

2}. (3.21)
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Then the length of the major axis can be computed as (by combining 3.19 and

3.21),

al =
hl

2

µ

1

1− el2

= − A2Cl
2

A2B2Cl
2

µ
+ A2Cl

4

µ
− 2ACl

2

=
Aµ

2µ− AB2 − ACl2
, (3.22)

where, µ is the gravitational constant (see Chapter 1).

Now, assume that two sigma points take �p1 and �p2 times to finish a full or-

bit (orbital period) respectively, then the approximate pinching time span (∆�p)

can be written as, ∆�p = �p2 - �p1,

Further, from (1.7.3) an orbital period can be written as, (�p) = 2π√
µ
a

3
2 . Then,

�p1 =
2π
√
µ
a

3
2
1 , �p2 =

2π
√
µ
a

3
2
2 . (3.23)

The pinching duration (say, ∆�p) can be computed analytically as follows

(from 3.22 and 3.23),

∆�p = �p2 −�p1

=

(
2π
√
µ

)(
a

3
2
2 − a

3
2
1

)
. (3.24)

Further, the variable part of ∆�p can be analytically written as,

a
3
2
2 − a

3
2
1 =

(
Aµ

2µ− AB2 − AC2
2

) 3
2

−
(

Aµ

2µ− AB2 − AC2
1

) 3
2

= (Aµ)
3
2

[(
1

2µ− AB2 − AC2
2

) 3
2

−
(

1

2µ− AB2 − AC2
1

) 3
2

]

=

(
Aµ

2µ− AB2

) 3
2


 1

1− AC2
2

2µ−AB2

 3
2

−

 1

1− AC2
1

2µ−AB2

 3
2


= �K

[(
1

1− ζ2

) 3
2

−
(

1

1− ζ1

) 3
2

]
, (3.25)

101



3.9 Distribution of the Radial component

where, (in Equation (3.25)),

�K =

(
Aµ

2µ− AB2

) 3
2

, ζ1 =
AC2

1

2µ− AB2
, ζ2 =

AC2
2

2µ− AB2
. (3.26)

Since the length of the major axis and the orbital period of an orbiting object

cannot be negative, we can write,

2µ− AB2 > AC2
1 , 2µ− AB2 > AC2

2 . (3.27)

Equation (3.27) indicates that if we increase the uncertainty then the pinching

duration also increases.

Fig. 3.6 (Example 3.5.) displays two scenarios (note that again initial condi-

tions are same as in Example 3.1).

(1) The first image (left) indicates the approximate beginning of the pinching.

Here, the prorogation time is 0.956 central orbital period. The joint distri-

bution of the latitude and longitude is plotted using the spherical coordinate

system.

(2) The second image (right) shows the approximate end of the pinching. The

propagation time is 1.045 central orbital period. The propagated angular

position is represented using the spherical coordinate system.

3.9 Distribution of the Radial component

As of now, we have discussed the distribution of the propagated angles-only vec-

tor and showed that the joint distribution of the longitude and the latitude (or

standardized latitude) is approximately a bivariate normal. This section discusses

the distribution of the propagated radial component (r or r(t)).

Example 3.6. uses the same object which was used previously in this chapter.

Further, initial uncertainties are same as in Example 3.1.

It can be seen in Fig. 3.7 that if the propagation period is small then the

distribution of the radial component can be approximated using a univariate nor-

mal distribution (Subplots (a) and (c)) and the starting location has no influence
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3.9 Distribution of the Radial component

(a) Pinching starts (b) Pinching ends

Figure 3.6: Example 3.5., approximate pinching duration computation.
Subplot (a) indicates the approximate beginning of the pinching effect and Sub-
plot (b) shows the approximate ending of the pinching effect. From this analysis
it can be concluded that sigma points works fairly well in computing the pinching
duration.

(on the statistical analysis) at all under such set-up. However, if the propaga-

tion period is large then the distribution cannot be approximated using a normal

distribution.

In this section, we show that the conditional (conditioned on the longitude)

distribution of the radial component (standardized radial component) is approx-

imately normal and necessary computation steps are discussed below. Recall

Section 1.7.3 (Chapter 1), the radial distance can be written as,

r(t) =
h2

µ

1

(1 + e cosT (t))
. (3.28)

In Equation (3.28), the radial element is denoted by r(t) (same as r) and the for-

mula given above (3.28) is true for both the central and deviated states. Further

in Equation (3.28) only the true anomaly (the true anomaly measured from the

perigee, T or T (t)) changes with time. From the Chapter 2 (Section 2.5.1), we
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Figure 3.7: Example 3.6., distribution of the radial component, part 1.
This plot shows distribution of the radial component based on the propagation
time and the starting location. The first plot (a) shows the distribution when
the starting location is the perigee (T = 0o) and the propagation period is small
(0.5 central orbital period). Next, plot (b) shows the distribution of the radial
component for the same set-up but for a higher number of propagation period (10
central orbital period). For generating plots (c) and (d) we use the same set-up
except the starting location is apogee (T = 180o).
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know that,

h2 ≈ A2C2 + 2AC(Aδ2 + Cε1 −Bε2),

(1 + e cosT ) = 1 + e cos(θ − θp) = 1 + f1 cos θ + f2 sin θ

f1 ≈
1

µ
(AC2 + 2δ2AC + ε1C

2 − ε2BC − µ− µε1/A)

f2 ≈
1

µ
(−ABC − δ1AC − ε1BC − δ2AB + ε2B

2 − µε2/A). (3.29)

Hence, the reciprocal of the radial component can be written as,

1

r
=

µ

h2
(1 + e cosT )

≈ µ+ µf1 cos θ + µf2 sin θ

A2C2 + 2AC(Aδ2 + cε1 −Bε2)

≈ µ+ µf1 cos θ + µf2 sin θ

A2C2[1 + (2δ2/C + ε1/A−Bε2/AC)]

≈ µ+ µf1 cos θ + µf2 sin θ

A2C2
(1− (2δ2/C + ε1/A−Bε2/AC)) (3.30)

Equation (3.30) is computed using the first order Taylor series expansion.

Further, from Equation (3.30),

(µ+ µf1 cos θ + µf2 sin θ) ≈ µ+ (AC2 − µ) cos θ + (−ABC) sin θ

+ (2δ2AC + ε1C
2 − ε2BC − µε1/A) cos θ

+ (−δ1AC − ε1BC − δ2AB + ε2B
2 − µε2/A) sin θ

(3.31)

= Q4 +Q5 (3.32)

Let,

1− (2δ2/C + ε1/A−Bε2/AC) = 1−Q6 (3.33)

In Equation (3.31) and (3.33),

Q4 = µ+ (AC2 − µ) cos θ + (−ABC) sin θ

Q5 = (2δ2AC + ε1C
2 − ε2BC − µε1/A) cos θ

+ (−δ1AC − ε1BC − δ2AB + ε2B
2 − µε2/A) sin θ

Q6 = (2δ2/C + ε1/A−Bε2/AC)

(3.34)
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Note that Q4 does not depend on ε and δ. It only depends on A, B, C and θ.

However, both Q5 and Q6 depend on ε and δ. In addition, by combining (3.32)

and (3.33), Equation (3.30) can be written as,

1

r
=

1

A2C2
(Q4 +Q5)(1−Q6)

≈ 1

A2C2
(Q4 +Q5 −Q4Q6) (3.35)

Equation (3.35) ignores Q5Q6 as it contains second order expansions of ε and

δ (too small). Note that one of the major reason behind using the reciprocal

of the radial (or deviated radial) component is that the reciprocal can be easily

expressed using the first order Taylor series expansion. Further, if h2 is fixed then

r is a linear function of f1 and f2.

Let, r(ic) denotes the analytic expansion of the inverse radial component for

the central state, it can be written as,

r(ic) = [µ+ (AC2 − µ) cos θ(c) − ABC sin θ(c)]
1

A2C2
, (3.36)

where, r(ic) is independent of ε and δ terms. However, terms which are dependent

on ε and δ can be expressed as,

rε1 = ε1[(C
2 − µ/A) cos θ + (−BC) sin θ − 2Q4/A]

1

A2C2
= P3ε1 (3.37)

rε2 = ε2[(−BC) cos θ + (B2 − µ/A) sin θ + 2Q4B/AC]
1

A2C2
= P4ε2 (3.38)

rε3 = ε3[0] = 0 (3.39)

rδ1 = δ1[−AC sin θ]
1

A2C2
= P5δ1 (3.40)

rδ2 = δ2[−AB sin θ + 2AC cos θ − 2Q4/C]
1

A2C2
= P6δ2 (3.41)

rδ3 = δ3[0] = 0 (3.42)
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3.9 Distribution of the Radial component

Note that P3, . . . , P6 terms are used for the simplification purpose, where,

P3 = [(C2 − µ/A) cos θ + (−BC) sin θ − 2Q4/A]
1

A2C2

P4 = [(−BC) cos θ + (B2 − µ/A) sin θ + 2Q4B/AC]
1

A2C2

P5 = [−AC sin θ]
1

A2C2

P6 = [−AB sin θ + 2AC cos θ − 2Q4/C]
1

A2C2
.

Note that θ and θ(d) are the same in this section. Finally, the reciprocal of

the radial component (say, 1
r

= r(id)) can be written as,

1

r
= r(id) = r(ic) + P3ε1 + P4ε2 + P5δ1 + P6δ2 (3.43)

r(id−ic) = r(id) − r(ic) = P3ε1 + P4ε2 + P5δ1 + P6δ2 (3.44)

In Equation (3.44), r(id−ic) indicates the inverse deviation (containing only ε and

δ terms). The scaling factor (say, r(sf)) can be written as,

r(sf) =
√
P 2
3 Σε1 + P 2

4 Σε2 + P 2
5 Σδ1 + P 2

6 Σδ2 . (3.45)

In Equation (3.45), Σ terms indicate variances associated with various devia-

tions. The inverse scaled-corrected/standardized distribution (say, r(isc)) r(isc) =
r(id−ic)

r(sf)
is approximately normal (See Fig.3.9). Next several examples are provided.

Fig. 3.8 shows the distribution of the inverse radial component with initial condi-

tions are exactly the same as in Fig. 3.7. In Fig. 3.9 all the scaled inverse radial

components are approximately normal, irrespective of the propagation time and

the initial starting location.
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3.9 Distribution of the Radial component
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Figure 3.8: Example 3.6., distribution of the inverse radial component,
part 2. This plot is similar to the plot mentioned previously in Fig. 3.7. The only
difference is that in this plot inverse of the radial distributions are highlighted.
However, both plots (Figs. 3.7 and 3.8) convey the same message.
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3.9 Distribution of the Radial component
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Figure 3.9: Example 3.6., distribution of the standardized inverse radial
component, part 3. This plot represents standardized (inverse) radial com-
ponents. As it can be seen all the radial distances are approximately univariate
normal.
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Chapter 4

Filtering, part 1

4.1 Introduction

The construction of a Kalman filter depends on three key ingredients, (i) the state

vector, (ii) the observation vector and, (iii) their relation or the transformation

function. In our case (space object tracking problem), the state space is the

6-dimensional AST-CRTN coordinate system and the observation space is the 2-

dimensional (or 3-dimensional, if we incorporate the radial component) position

vector (preferably angles-only). Clearly the transformation from the state space

to the observation space is non-linear. Various methods have been proposed for

solving the non-linear filtering problem, EKF, IEKF, UKF, IUKF. In this list we

add two new Kalman filters, namely the OCEKF and the OCUKF. This chapter

and the next chapter discuss these filters in details and a brief summary is given

in Table 4.1.

The filtering or the tracking problem is demonstrated using two chapters.

This chapter provides the basic details related to the tracking. The key intention

of this chapter is to introduce various tracking algorithms to the reader using

suitable 1-dimensional (1-to-1) examples. The next chapter discusses the higher

dimensional (6-to-2) tracking problem.

Chapter 1 briefly introduced the EKF and UKF but did not talk about the

centering location, this chapter mentions it in Section. 4.6. In general, the EKF

and UKF are common choices for the non-linear Kalman filtering but there are

situations where they are not good choices. The Observation-centered Kalman
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4.2 Key contributions

Table 4.1: A summary on various non-linear Kalman filters. In this table, the
EKF and UKF indicate the Extended Kalman Filter and the Unscented Kalman
Filter respectively.

Classification EKF UKF centering location
General EKF UKF Prior mean

Iterated (I) IEKF IUKF Posterior mean
Observation-centred (OC) OCEKF OCUKF Observation mean

filters and iterated Kalman filters are performance wise similar. This chapter

explores performance of various Kalman filters using suitable examples.

4.2 Key contributions

The key contributions of this chapter are listed below,

(1) First, we discuss the classical Kalman filter and provide a suitable example

(Section 4.4).

(2) Second, we briefly describe various non-linear Kalman filters (Section 4.6).

(3) Third, we provide suitable examples to illustrate limitations of the tradi-

tional (EKF and UKF) non-linear Kalman filters and advantages of using

the iterated and observation-centered Kalman filters (Section 4.9).

Note that the EKF and UKF computational steps are given in the Appendix

(Section B.1).

4.3 Relation to other chapters

This chapter and the next chapter will discuss the filtering problem. Of course,

Chapter 1 provided some information related to the tracking/filtering but in

this chapter we perform a detailed investigation on the tracking problem using

1-dimensional examples. In the next chapter, we will illustrate the usefulness

of the AST-CRTN coordinate system for solving the six dimensional tracking

problem. Note that the construction of the AST-CRTN coordinate system was
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4.4 The classic Kalman filter

mentioned in Chapter 2. Further, we will discuss the filtering-association problem

in Chapter 6 using concepts discussed in this chapter.

In this chapter we will start with the classic Kalman filter and after that we

will move our focus to non-linear Kalman filters.

4.4 The classic Kalman filter

The classic Kalman filter (Chen, 2003; Youngjoo & Hyochoong, 2018) is designed

for linear propagation and observation equations, with Gaussian noise. There is

a sequence of l1-dimensional state vectors {xk} and a sequence of l2-dimensional

noisy (partial) observations {zk} at times tk, k ≥ 1. Let Fk denote the infor-

mation contained in the first k observations z1, . . . ,zk. The state vectors evolve

through noisy linear propagation

xk = Fkxk−1 +wk, (4.1)

where Fk is a l1×l1 matrix and wk is system noise. Note that Fk is also called the

state transition matrix. The observations are noisy versions of linear functions of

the state vectors,

zk = Hkxk + vk, (4.2)

where Hk is a l2 × l1 matrix and vk is the measurement noise. Note that Hk is

also called the observation matrix. The random vectors wk and vk are assumed

independent of one another and of z1, . . . ,zk−1, with Nl1(0,Qk) and Nl2(0,Rk)

distributions, respectively. The dimension l1 of the state vector is allowed to be

different from the dimension l2 of the observation vector.

Start with an initial Gaussian distribution for x0, with mean vector and co-

variance matrix denoted x0|0,P0|0. Then the conditional propagated distribution

of xk given Fk, k ≥ 1 follows a Gaussian distribution. The conditional mean vec-

tor and covariance matrix, denoted xk|k,Pk|k, say, can be determined iteratively

as follows.

Suppose xk−1|k−1 and Pk−1|k−1 are known. After propagation from time tk−1

to tk, the conditional distribution of the state becomes

xk|Fk−1 ∼ Nl1(xk|k−1,Pk|k−1),

112



4.5 Example 4.1., 1-dimensional linear tracking example

where

xk|k−1 = Fkxk−1|k−1, Pk|k−1 = FkPk−1|k−1F
T
k +Qk.

Given the observation zk at time tk the Bayesian update yields the posterior

distribution

xk|Fk ∼ N(xk|k,Pk|k)

and computation steps for the updated mean vector and the covariance matrix

are given below (Chen, 2003; Wikipedia contributors, 2020b; Youngjoo & Hy-

ochoong, 2018).

(1) The measurement residual can we written as,

yk = (zk −Hkxk|k−1). (4.3)

(2) Optimal Kalman gain is given by,

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)−1. (4.4)

(3) Finally, the posterior mean and variance can be written as,

xk|k = xk|k−1 +Kk(zk −Hkxk|k−1) (4.5)

Pk|k = (I −KkHk)Pk|k−1. (4.6)

Next, an example is discussed. This example (Example 4.1.) is not related

to the astrodynamics or space object tracking. The purpose of this example is

to describe the use of the classical Kalman filter in 1-dimensional setting using

computational steps mentioned above.

4.5 Example 4.1., 1-dimensional linear tracking

example

Assume that we have some measurement meter and it generates some reading. We

do not care about the functionality of the meter or parameters influencing read-

ings. In this example, both the state and observation vectors are 1-dimensional
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4.5 Example 4.1., 1-dimensional linear tracking example

(or scalar) (both of them are meter readings, same scale and scalar). The trans-

formation matrix Hk is one dimensional (scaler).

For this example, x1|0 = µKalmanx , P1|0 = ξ21 , Q1 = 0 and R1 = ξ22 . Using

Equations (4.3) to (4.6) for the one step update,

(1) Kalman gain can be written as,

K1 =
ξ21

ξ21 + ξ22
. (4.7)

(2) Posterior mean and variance can be written as,

x1|1 = µKalmanx +
ξ21

ξ21 + ξ22
(z1 − µKalmanx ). (4.8)

P1|1 = ξ21 −
ξ41

ξ21 + ξ22
=

ξ21ξ
2
2

ξ21 + ξ22
. (4.9)

From 4.8 and 4.9,

(a) if ξ22 << ξ21 ,

x1|1 ≈ µKalmanx + (z1 − µKalmanx ) ≈ z1.

P1|1 ≈ ξ22 ,

(b) if ξ22 = ξ21 ,

x1|1 = µKalmanx +
1

2
(z1 − µKalmanx ).

P1|1 = ξ21/2,

(c) finally, if ξ22 >> ξ21 ,

x1|1 ≈ µKalmanx +
ξ21
ξ22

(z1 − µKalmanx ).

P1|1 ≈ ξ21 .

Note that using the Kalman filter principle x1|1 and P1|1 will be used as the prior

mean and variance for the next stage. Further, after the second update stage the

posterior variance will be,

P2|2 =
P2|1ξ

2
2

P2|1 + ξ22
=

ξ21ξ
2
2

ξ21+ξ
2
2
ξ22

ξ21ξ
2
2

ξ21+ξ
2
2

+ ξ22
=

ξ21ξ
2
2

2ξ21 + ξ22
. (4.10)

114



4.5 Example 4.1., 1-dimensional linear tracking example

After a bit of computation, it can be showed that after the kth update the

posterior variance will be,

Pk|k =
ξ21ξ

2
2

kξ21 + ξ22
. (4.11)

Equation (4.11) can be further analysed using two possible test cases and they

are mentioned below.

(1) If ξ22 << ξ21 , then posterior variances for stage 1 to k will be approximately

ξ22 , ξ
2
2/2, ξ

2
2/3, . . . , ξ

2
2/k.

(2) If ξ22 = ξ21 , then posterior variances for stage 1 to k will be approximately

ξ21/2, ξ
2
1/3, ξ

2
1/4, . . . , ξ

2
1/(k + 1).

These two conditions are tested and results are summarized using variance plots.

(1) Assume that ξ22 = 0.01, ξ21 = 10 (ξ21 >> ξ22), x1|0 = µKalmanx = 1 and number

of observations = 5. In this example, ξ22 << ξ21 . Further, there is no process

noise and observations are randomly chosen. The posterior variance plot is

shown using Fig. 4.1 and it shows that the change of variance is ∝ O(1/k).

Figure 4.1: Example 4.1., variance plot, ξ22 << ξ21. In this example, total
number of observations are 5 and ξ22 << ξ21 . The posterior variance values are
displayed in the plot (next to each plot marker) only for the visualization purpose.
This plot shows that the rate at which the variances are decaying is ∝ O(1/k).

(2) In this setup ξ22 = ξ21 = 1, x1|0 = µKalmanx = 1 and number of observations =

5 (same as before). The posterior variance is exhibited using Fig. 4.2 and

it shows that rate of change of variance is ∝ O(1/k).
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4.6 Non-linear Kalman filters

Figure 4.2: Example 4.1., variance plot, ξ21 = ξ22 = 1. In this example, total
number of observations are 5 (same as before). This plot shows that the rate of
change of variance is ∝ O(1/k).

4.6 Non-linear Kalman filters

Section 4.4 introduced the classic Kalman filter. Next, various non-linear Kalman

filters are discussed using suitable 1-dimensional examples. Linear Kalman fil-

ters are easy to implement and understand but most of the real world tracking

problems (including the space object tracking problem) are non-linear (as the

transformation from the state vector to the observation vector is non-linear).

This section discusses various non-linear Kalman filters in details.

4.6.1 The EKF, IEKF and OCEKF (1-dimensional set-
ting)

Previous two sections provided details on the one step update for the linear (or

classic) Kalman filter and also discussed the rate of change of variance. This

section discusses one step update for the non-linear Kalman filters. The key

materials for the one step update can be written as,

Prior: x ∼ N(µKalmanx , ξ21) (4.12)

Likelihood: z|x ∼ N(hKalman(x), ξ22), (4.13)

where, hKalman(·) is a known function, and where x, µKalmanx , ξ21 , ξ
2
2 correspond

to xk, xk|k−1, Pk|k−1, Rk, respectively, in the Section 4.4. Note that vector signs
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4.6 Non-linear Kalman filters

(boldfaces) are removed as the problems discussed in this chapter are one dimen-

sional. Using Equations (4.12) and (4.13) the posterior distribution for the x

given a realization zobs of the observation z can be written as,

Posterior ∝ Prior× Likelihood,

f(x|zobs) ∝ exp

{
−1

2

(x− µKalmanx )2

ξ21
− 1

2

(zobs − hKalman(x))2

ξ22

}
. (4.14)

The EKF approximates this posterior distribution by a Gaussian distribution.

Using the first order Taylor series, we can write,

zobs − hKalman(x) = zobs − hKalman(y) + hKalman(y)− hKalman(x)

≈ zobs − hKalman(y) + hKalman
′(y)(y − x), (4.15)

In Equation (4.15), the choice of y defines various filters (with different cen-

tering locations) Recall, Table 4.1, we discussed the centering location and the

choice of y in Equation (4.15) leads to various centering locations. Further, the

exponent becomes a quadratic function of x; hence the approximating posterior

distribution is Gaussian with mean and variance

µKalmanx|zobs = µKalmanx +
hKalman

′ξ21
hKalman

′2ξ21 + ξ22
{zobs − hKalman(y) + hKalman

′[y − µKalmanx ]},

(4.16)

ξ21x|zobs =

(
1

ξ21
+
hKalman

′2

ξ22

)−1
, (4.17)

where hKalman
′ = hKalman

′(y).

There are three important choices for y (y = µKalmanx , µKalmanx|zobs and xobs).

(a) y = µKalmanx , the prior mean. This choice gives the standard EKF. Equation

(4.16) for the posterior mean takes the form,

µx|zobs = µKalmanx +
hKalman

′ξ21
hKalman

′2ξ21 + ξ22

{
zobs − hKalman(µKalmanx )

}
. (4.18)

(b) y = µKalmanx|zobs , the posterior mean. This choice gives the iterated EKF. Equa-

tion (4.16) for the posterior mean becomes,

µKalmanx|zobs = µKalmanx +
hKalman

′ξ21
hKalman

′2ξ21 + ξ22

{
zobs − hKalman(µKalmanx|zobs ) + hKalman

′[µKalmanx|zobs − µ
Kalman
x ]

}
.

(4.19)
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4.6 Non-linear Kalman filters

(c) y = xobs = hKalman
−1(zobs), the transformed observation. This choice gives

the observation-centered EKF. Equation (4.16) for the posterior mean sim-

plifies to,

µKalmanx|zobs = µKalmanx +
hKalman

′2ξ21
hKalman

′2ξ21 + ξ22

{
xobs − µKalmanx

}
. (4.20)

Assuming that hKalman is monotone, so inverse exists.

4.6.2 The UKF, IUKF and OCUKF (1-dimensional set-
ting)

The EKF uses the first order Taylor series approximation whereas the UKF uses

the sigma points. Further, similar to the Subsection 4.6.1 various choices of y

give different versions of the UKF(UKF, IUKF and OCUKF). The starting point

is a collection of three “UKF sigma points”,

x−1 = y −Wξ1, x0 = y, x+1 = y +Wξ1, (4.21)

W =
√
l + λUKF, λUKF = αUKF2(l + κUKF)− l,

where W is the weight and made of various “tuning” parameters (αUKF, βUKF and

κUKF). Note that l denotes the dimension. Two sets of weights are defined,

wa−1 = wa+1 =
1

2(l + λUKF)
, wa0 =

λUKF

l + λUKF

wv−1 = wv+1 =
1

2(l + λUKF)
, wv0 =

λUKF

l + λUKF
+ 1− αUKF2 + βUKF,

where the first weights (related to superscript a) are used to compute means and

the second weights (related to superscript v) are used to compute variances and

covariances.

A smaller value of αUKF indicates that the sigma points are located close to y

(mean). The sigma points have weighted mean and variance,∑
wajxj = y,

∑
wvj (xj − y)2 = ξ21 ,

where in all cases the sums range over j = −1, 0,+1.
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4.7 Intuition behind the iterated and observation-centered filters

Let zj = hKalman(xj) denote the transformed sigma points, with mean z̄ =∑
waj zj. Let CKalman = CKalman(y) and VKalman = VKalman(y) denote the weighted

covariance between the {zj} and {xj}, and the weighted variance of the {zj},
respectively,

CKalman(y) =
∑

wvj (zj − z̄)(xj − y), VKalman(y) =
∑

wvj (zj − z̄)2.

Typically, a small value of αUKF is recommended if the system is highly non-

linear, κUKF can be any number but κUKF ≥ 0 or l + κUKF = 3 (l is the dimension)

ensures the positive semi-definiteness of the covariance matrix and βUKF = 2 (Julier

et al., 2000; Yongfang & Tao, 2018). However, the exact choices of these scaling

parameters depend on the problem (Yongfang & Tao, 2018). Several choices of

unscented filter can be defined by mimicking the extended filters in (4.16)–(4.17),

µKalmanx|zobs = µKalmanx +
CKalman

VKalman + ξ22
{zobs − hKalman(y) + (V/C)[y − µKalmanx ]}, (4.22)

ξ21x|zobs = ξ21 − C2
Kalman/(VKalman + ξ22),

for suitable values of y.

(a) The standard UKF uses y = µKalmanx .

(b) The IUKF uses y = µKalmanx|zobs in (4.22).

(c) Similar to the IUKF, it is possible to define an observation-centered UKF

(OCUKF) by using y = xobs = hKalman
−1(zobs) in (4.22).

4.7 Intuition behind the iterated and observation-

centered filters

The Taylor series approximation in (4.15) is a good approximation if hKalman is

approximately linear over an interval containing y and x. When ξ22 is small

and ξ21 is not small, then the posterior distribution of x should be concentrated

near xobs. The choice y = µKalmanx may not be a good choice in this setting; the

effective support of the posterior distribution of x may be a long way from µKalmanx
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4.8 Example 4.2., idealized analytic example

and hKalman may be very non-linear over this interval. On the other hand, both

y = µKalmanx|zobs (iterated) and y = xobs (observation-centered) may be very good

choices; these two values will be close together and the posterior distribution will

be concentrated near both these choices. Since, ξ22 is small (for space object

tracking problem), it is reasonable to map the variability in z about hKalman(x)

from the measurement scale to the signal scale. This approach is used by the

iterated and observation-centered filters.

There are several features in this setup that make the iterated and observation-

centered filters feasible and effective.

(1) The prior distribution of the signal is exactly normal.

(2) The transformation function hKalman is allowed to be highly non-linear (but

still monotone).

(3) The standard deviation ξ2 for the distribution of an observation z given x

is small.

(4) For the observation-centered filters, the mapping between signal space and

observation space is one to one. In particular it is possible to define xobs,

the value on the signal scale corresponding to the observation zobs on the

measurement scale. This is the key requirement for the observation-centered

filters. We will discuss more about it in the next chapter.

Note that if hKalman is a linear function (or nearly linear) then all the filters

are performance wise similar.

4.8 Example 4.2., idealized analytic example

To illustrate the issues involved, consider an idealized version of the problem and

limit attention to the extended filters. Suppose that the mapping from the signal

scale to the measurement scale is defined by xλ (first order derivative λxλ−1),

where λ is a known power. Let ξ22 = 0, so there is no measurement error. In

addition, assume that µKalmanx = 1 and zobs = 2 are fixed. The choice of ξ21 is

irrelevant for this section.
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4.9 Application to 1-dimensional orbital dynamics

The standard EKF gets the posterior variance ξ21x|zobs = 0 correct, but gets

the posterior mean wrong. Results for various extended filters are summarized in

Table 4.2. Note that the EKF overshoots the exact posterior mean if λ < 1 and

undershoots the exact posterior mean if λ > 1.

Table 4.2: Comparison between various approximations to the posterior distri-
bution for idealized example in Section 4.8. The exact posterior distribution is
centered at the value given in the column “Truth”. The IEKF and OCEKF re-
sults match the exact result here. However, the EKF gives the wrong value. The
exact posterior distribution has zero variance and all three filters (EKF, IEKF
and OCEKF) produce the right value.

IEKF
λ EKF OCEKF

Truth
1 2 2.00

0.5 1.5 1.41
2 3 4

4.9 Application to 1-dimensional orbital dynam-

ics

Recall Chapter 1, we use M(t), T(t), e, FM-to-T to denote the mean anomaly at

time t (measured from the perigee), the true anomaly at time t (measured from

the perigee), orbital eccentricity and the function which maps from the mean to

the true anomaly (non-linear but linear if e is 0) respectively. Suppose that the

initial mean anomaly M(0) at time t = 0 is known exactly, but that the mean

motion n has some Gaussian uncertainty, n ∼ N(µKalmann , ξ21n). Then after some

time t1, say, the mean anomaly has distribution

M(t1) ∼ N(M(0) + t1µ
Kalman
n , t1ξ1

2
n).

However, the observation is on the true anomaly scale (T (t1) or true anomaly

measured from the perigee)

Tobs ∼ N(T (t1), ξ
2
2), T (t1) = FM-to-T(M(t1), e).
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4.9 Application to 1-dimensional orbital dynamics

Note that even if ξ21n is small, ξ21 = t1ξ1
2
n can still become large by considering

a large propagation time t1. For the purposes of this chapter, suppose ξ21 is

not too large in order to avoid winding number issues. In particular, restrict

ξ1 = t
1/2
1 ξ1n to be substantially less than 360o so that Tobs can be treated as

a number unambiguously satisfying |Tobs − T (t1)| < 360o. In other words the

number of whole orbits undergone is essentially known. The choices ξ1 = 25o and

ξ1 = 15o are used in the examples below.

At the same time, the typical angles-only observations will be highly accu-

rate. Three choices for ξ2 are used in each example: (a) ξ2 = 0o for a perfect

measurement (rare), (b) ξ2 = 1.66e−02o (equal to 1 arc-minute) for a realistic

measurement error, and (c) ξ2 = 2o for a good but less accurate measurement.

Let M(t1) here corresponds to the state x in Section 4.4, with variance ξ21 ,

and let zobs denotes the observed true anomaly, with variance ξ22 . Thus the

state variable is the mean anomaly x = M(t1) lying on the signal scale, and the

observation is the true anomaly zobs = Tobs lying on the measurement scale.

Here are two numerical examples to illustrate the pitfalls of the EKF, UKF

and to demonstrate the benefits of the IEKF, IUKF, OCEKF and OCUKF. For

both examples a high value of ellipticity is used, e = 0.7, so that the function

hKalman = FM-to-T is very non-linear and the differences between the various filters

stand out prominently. The parameters for each example are listed in Table 4.3

and highlighted in Figure 4.3. The posterior means and variances for various

filters are summarized in Table 4.4. The row labeled “Truth” in that table gives

the exact moments from the true posterior distribution, as computed by numerical

integration.

Example 4.3. Since xobs = 310o = 260o + 2 × 25o = µKalmanx + 2ξ1, the

observation is mildly unusual but not infeasible under the prior distribution.

Part 1 (ξ2 = 0o). Since the observation standard derivation is zero, the

posterior distribution for the mean anomaly is concentrated at xobs with zero

posterior variance. From Table 4.4, note that just as in the idealized example

in Section 4.8, both the EKF and the UKF are hugely incorrect for the mean,

whereas the IEKF, IUKF, OCEKF and OCUKF produce the right mean. All the

posterior standard deviations are correctly computed as 0o, except for the UKF,
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4.9 Application to 1-dimensional orbital dynamics

Figure 4.3: Mapping FM-to-T function when e = 0.7. True anomaly as a
function of mean anomaly, for eccentricity e = 0 (diagonal straight line) and
e = 0.7 (curved line). Angles are given in degrees. The points indicated by
circles, after projection onto the horizontal axis, give the prior means µKalmanx for
Examples 4.3. and 4.4. The points indicated by boxes, after projection onto the
vertical axis, give the observations zobs, and after projection onto the horizontal
axis, give the values of xobs = hKalman

−1(zobs), for Examples 4.3. and 4.4.

IUKF and OCUKF. The problem with the UKF, IUKF and OCUKF is that they

are using differences rather than derivatives to cope with the non-linearity.

Part 2 (ξ2 = 1.66e−02o). This is a more realistic assumption. In this case

both the EKF and UKF behave badly. However, the IEKF, IUKF, OCEKF,

OCUKF are able to approximate the true posterior mean and variance closely.

Part 3 (ξ2 = 2o). In this case the posterior means and standard deviations

for IEKF, IUKF, OCEKF and OCUKF posterior means and variances are very

close to the true values. On the other hand the EKF and UKF posterior means

and variances are so bad that a 95% confidence interval about the true posterior

mean would not include either the EKF or the UKF posterior mean. Note that
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for EKF and UKF, the posterior means are too large.

Example 4.4. Now, xobs = 65o = 35o + 2 × 15o = µKalmanx + 2ξ1, so again

the observation is mildly unusual but not infeasible under the prior distribution.

For all three values of ξ2 (ξ2 = 0o, 1.66e−02o and 2o), the behavior of the different

filters and the comparisons between them are the same as for Example 4.3. But

in this case for EKF and UKF, the posterior means are too small.

Table 4.3: The prior means µKalmanx and its standard deviations ξ1, plus the ob-
servations zobs and its standard deviations ξ2 for Examples 4.3. and 4.4. In each
case three choice for the error standard deviation ξ2 are considered. The value of
hKalman

−1(zobs) = xobs is also given.

Example 4.3. Example 4.4.
µKalmanx = 260o µKalmanx = 35o

ξ1 = 25o ξ1 = 15o

zobs = 225.5o zobs = 143.6o

xobs = 310o xobs = 65o

a: ξ2 = 0o

b: ξ2 = 1.66e−02o

c: ξ2 = 2o

4.10 Performance analysis

Several conclusions can be made from above mentioned simulations.

(1) The EKF and UKF are standard methods to deal with non-linear filtering

problems. However, when the non-linearity is high and the observation

variance ξ22 is small relative to the prior state variance ξ21 , these filters can

perform very poorly.

(2) In terms of performance, the IEKF, IUKF, OCEKF and OCUKF are very

similar for the examples in this chapter. Further, the posterior means and

variances computed using these filters closely match the true posterior mo-

ments.
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4.10 Performance analysis

Table 4.4: Posterior means and standard deviations (s.d.) from various filters for
Examples 4.3. (a,b,c) and 4.4. (a,b,c).

KF/Example moment 4.3(a) 4.3(b) 4.3(c) 4.4(a) 4.4(b) 4.4(c)
Truth mean 310.0o 309.989o 309.0o 65.0o 64.956o 63.5o

s.d. 0o 2.3e−02o 2.8o 0o 3.2e−02o 3.5o

EKF mean 329.8o 329.831o 326.1o 55.0o 55.073o 54.8o

s.d. 0o 4.8e−02o 5.7o 0o 1.5e−02o 1.7o

UKF mean 327.1o 327.088o 323.5o 59.1o 59.184o 58.9o

s.d. 2e−03o 4.8e−02o 5.8o 4e−03o 3.2e−02o 1.8o

IEKF mean 310.0o 309.989o 309.3o 65o 64.956o 63.2o

s.d. 0o 2.3e−02o 2.8o 0o 3.2e−02o 3.5o

IUKF mean 310.0o 309.989o 309.3o 65o 64.956o 63.2o

s.d. 7e−03o 2.3e−02o 2.8o 2e−03o 3.2e−02o 3.5o

OCEKF mean 310.0o 309.989o 309.3o 65o 64.956o 63.1o

s.d. 0o 2.3e−02o 2.7o 0o 3.2e−02o 3.7o

OCUKF mean 310.0o 309.989o 309.3o 65o 64.956o 63.2o

s.d. 7e−03o 2.3e−02o 2.8o 2e−03o 3.2e−02o 3.7o

(3) One advantage of the OCEKF and OCUKF over the IEKF and the IUKF

is that they do not require iteration.

(4) However, an advantage of the IEKF and the IUKF over the OCEKF and

the OCUKF is that they are more widely applicable. In situations where

ξ22 is not small relative to ξ21 , the OC filters can perform badly.
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Chapter 5

Filtering, part 2

5.1 Introduction

The previous chapter introduced various Kalman filters and compared them using

suitable 1-dimensional examples. This chapter discusses the filtering algorithm

for solving the 6-dimensional space object tracking problem. Recall the AST

(AST-CRTN) coordinate system discussed in the Chapter 2, one of the main

purposes behind the development of the AST-CRTN coordinate system is to use

it for treating the filtering problem. The previous chapter discussed and compared

various Kalman filters. Note that complexity wise both the UKF and EKF are

same and performance wise the UKF is same or better (Julier et al., 2000). The

major benefit of using the UKF is that the construction of the UKF does not

require the computation of a complicated Jacobian matrix (like the EKF).

The iterated filters are widely used for dealing with the tracking problem and

these filters use the EKF or the UKF in the background (with different centering

locations). The first part of this chapter discusses the AST-IUKF algorithm. One

tracking example is provided to show the power of the AST-IUKF algorithm.

The term AST-IUKF refers that the IUKF algorithm (already mentioned in the

previous chapter) is used with the AST-CRTN coordinate system.

The second part of this chapter deals with the Observation-Centered Kalman

filter. Recall the previous chapter, we discussed the OCEKF and OCUKF algo-

rithm but for solving one dimensional filtering problems. This chapter illustrates

how to use Observation-Centered filters for solving 6-dimensional orbital track-
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ing problem. Two methods/versions are proposed and discussed in this chapter.

The Observation-Centered filter for solving higher dimensional tracking problem

is a hybrid filter and consists of two stages, (i) the first stage is the Observation-

Centered (OC) filtering stage (non-linear filter, fixing the longitude, 1-to-1 map-

ping) and, (ii) the second stage is the non-linear Kalman filtering (such as the

EKF or the UKF) stage (again non-linear filter, mainly fixing the latitude, 6-to-2

mapping). However, by tuning filtering parameters properly, the second stage of

the Observation-Centered filter (for 6-dimensional tracking) reduces to a linear

Kalman filter.

5.2 Key contributions

This chapter deals with two key contributions, they are listed below.

(1) First, we discuss the AST-IUKF algorithm and provides an example to

illustrate the power of the AST-IUKF algorithm (Section 5.4).

(2) Next, we discuss the AST-OC filter algorithm. Further, we also show that

by using an Observation-Centered filter the space object tracking problem

can be solved using a linear Kalman filter to a certain extent (Sections 5.5

to 5.7).

5.3 Relation to other chapters

The previous chapter discussed various Kalman filters and we will use them in

this chapter. In addition, we will also use the AST (AST-CRTN) and ASP (ASP-

CRTN) coordinate systems for the tracking purpose. Further, we will use tracking

algorithms discussed in this chapter to tackle the filtering-association problem in

the next chapter.
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5.4 Simulated Tracking example using the AST-IUKF algorithm

5.4 Simulated Tracking example using the AST-

IUKF algorithm

Assume that each observation is represented in the ASP-CRTN coordinate system

and takes the form of an angles-only position measurement (a unit vector zobs =

[z1, z2, z3]
T ), the “latitude” ψobs = ψCRTN

obs ∈ [−π/2, π/2] and “longitude” θobs =

θCRTNobs ∈ [−π, π). The equivalent Cartesian coordinates are,

z1 = cosψCRTN
obs cos θCRTNobs , z2 = cosψCRTN

obs sin θCRTNobs , z3 = sinψCRTN
obs .

(a) The longitude is computed on the true anomaly scale. Further, when the

observation error is small (or zero), the longitude can be written as,

θCRTNobs (t) ≈ θCRTNp + T (t).

Note that θCRTNp and T (t) are true values.

(b) AST-CRTN element 3 (A3(t) = φCRTN(t)) is computed on the mean anomaly

scale (see 2.4).

(c) Recall Fig. 4.3, the transformation from mean anomaly to true anomaly

can be extremely non-linear under high eccentricity.

Note: In this chapter, all the computations are performed on the CRTN

reference basis (similar to Chapters 2 and 3)

Next consider the update stage of the Kalman filter. In particular, it requires a

6-dimensional variance matrix for the propagated stateA(t), and a 2-dimensional

measurement variance matrix for (θobs(t), ψobs(t)). Of these, the most interesting

components are the propagated variance of A3(t) and the measurement variance

of the longitude θobs(t). If the eccentricity is high, then a non-linear version of

the Kalman filter is needed. Common choices are the unscented and extended

Kalman filters (UKF and EKF).

However, if in addition the propagation time is large, then the propagated

variance of A3(t) can be much larger than the measurement variance of θobs(t).

In such a situation the UKF and EKF can perform very poorly (also see Section
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5.4 Simulated Tracking example using the AST-IUKF algorithm

4.9). The reason is that they deal with the non-linearity by taking a Taylor

expansion centered at the propagated mean of A3(t), whereas it is much better to

center the Taylor expansion at or near the measurement value FT-to-M(θobs, e) (≈
FT-to-M(θobs, e

(c))), where e(c) is the central eccentricity for the mean propagated

state.

This (performance issue related to the EKF and UKF) leads to 4 solutions: (a

and b) newly developed observation-centered Kalman filters, (c and d) iterated

Kalman filters such as the IEKF and IUKF. This chapter uses IUKF for update

steps. We choose the IUKF due to the fact that when the measurement error is

large, iterated filters are performance-wise better than the Observation-Centered

filters. Note that the mapping from AST-CRTN(t) (AST-CRTN state vector)

to (θ(t), ψ(t)) (state vector represented in the ambient coordinate) is already

mentioned in Chapter 3, Equation (3.12). Next, the AST-IUKF steps are briefly

summarized.

Given
a. The central state in Cartesian-ECI coordinates at time
t = 0;

b. The covariance matrix associated with the central state in
Cartesian-ECI coordinate system;

c. Sequence of angles-only measurements;
Computation

1) Find the CRTN frame;
2) Compute the initial mean state and its covariance matrix
in AST-CRTN coordinates;

3) Transform angles-only measurements to the CRTN
coordinates;

4) Propagate and update AST-CRTN state mean and
variance using IUKF;

5) Repeat stages 3) and 4) for each observation;
Algorithm 1: AST-IUKF stages

5.4.1 Example 5.1.

Example 5.1. Tracking. The purpose of this example is to describe effec-

tiveness of the AST-IUKF algorithm for solving the orbital tracking problem.

Consider the same object mentioned in Chapter 2 (Section 2.5.3), and consider
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5.5 The Observation-Centered Filter for solving higher dimensional
tracking problem, approach 1

a sequence of 200 hourly angles-only observations (sequence of observations),

with standard deviations 0.1o in in-track and cross-track directions. Results are

summarized using Figs. 5.1 and 5.2. In order to judge the performance of the

AST-IUKF, three sets of plots are generated and analyzed. A brief description

is given below.

(a) Log scaled variance plots. Intuitively the AST-CRTN posterior vari-

ances for A1(tk) to A5(tk) are expected to decrease at rate O(1/tk) (Section

4.5, Example 4.1. discusses the rate of change of variance using analytic ex-

pansion), and the posterior variance for A6(tk) to decrease at rate O(1/t2k).

To visualize this behavior, Fig. 5.1 shows plots of loge{Aj(tk)tk}, j =

1, . . . , 5 and loge{A6(tk)t
2
k} vs. tk. The log transform is used so that a few

initial outliers do not distort the plot. As expected, except for a few initial

values, each plot is approximately a horizontal straight line.

(b) Log scaled absolute difference plots. Similarly, Fig. 5.2 shows plots of

loge{Dabs
j (tk)t

1/2
k }, j = 1, . . . , 5 and loge{Dabs

6 (tk)tk} vs. tk, where Dabs
j (tk)

denotes the absolute difference between the true AST-CRTN value and the

updated AST-CRTN mean at time tk, for j = 1, . . . , 6. As expected, up to

sampling error all the plots are approximately horizontal straight lines.

5.5 The Observation-Centered Filter for solving

higher dimensional tracking problem, ap-

proach 1

In the previous chapter, we discussed Observation-Centered filters. However,

problems discussed in the previous chapter were 1-dimensional. The principle

behind the OCEKF/OCUKF works only if the state and the observation have the

same dimension. In orbital dynamics problem, the state is always 6-dimensional,

but an angles only observation is only 2-dimensional. However, in some cases it

may be possible to split the state vector into two parts, where the first part has

same dimension as the observation vector. Then an Observation-Centered filter

can be used for the first part and an EKF/UKF can be used for the second part

(hybrid approach).
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5.5 The Observation-Centered Filter for solving higher dimensional
tracking problem, approach 1

Figure 5.1: Example 5.1., log scaled variance plots. The log scaled updated
AST-CRTN variances vs. time for A1-A6.

5.5.1 Stage-1, the Observation-Centered filtering stage

As mentioned previously, most interesting elements of the state and the observa-

tion vectors are A3(t) (measured in the mean anomaly scale) and θobs(t)(measured

in the true anomaly scale) respectively. In addition, under Keplerian dynamics

only A3(t) changes with time (among all 6 elements of the state vector). The

first stage of this hybrid filter (or overall filter) consists of 1-dimensional filtering

between A3(t) and θobs(t). Further, perform either the OCEKF or the OCUKF

at this stage. This stage is visually illustrated using Equation (5.1).

A(t) = µKalman
x =



A3(t)

A1

A2

A4

A5

A6



}
x1}
x2

zobs =

[
θobs(t)
ψobs(t)

] }
z1}
z2

µKalmanx|zobs
∗

= A3
∗(t)

(5.1)

131



5.5 The Observation-Centered Filter for solving higher dimensional
tracking problem, approach 1

Figure 5.2: Example 5.1., log scaled absolute difference plots. The log
scaled absolute differences between the true AST-CRTN values and the updated
AST-CRTN means vs. time for A1-A6.

For this stage, both the state and observation vectors are scalar (1-dimensional).

In Equation (5.1), the state vector (A3(t)) is shown using x1 and the observation

vector (θobs(t)) is indicated using z1. In addition, assume that after using the

Observation-Centered filter the posterior mean or the pseudo posterior mean is

A∗3(t) (= µKalmanx|zobs
∗
), A∗3(t) will be used as the prior mean (in place of A3(t)) during

the second stage.

5.5.2 Stage-2, the non-linear filtering stage

This stage can be performed either using the EKF or the UKF and there is

no need to use an iterated Kalman filter. Note that A∗3(t) is used in place of

A3(t) as the prior mean for the third AST-CRTN element (in µKalman
x

∗
). In this

stage the state vector (say, µKalman
x

∗
) is 6 dimensional (see Equation (5.2)) and

the observation vector is 2 dimensional (consisting of both the latitude and the

longitude and indicated using zobs in Equation (5.2)). In addition, the posterior

mean is indicated using µKalman
x|zobs

∗∗
. In a sense this hybrid filter is a specialized
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5.6 The Observation-Centered Filter, approach 2

case of the iterated Kalman filter. Further, the third AST-CRTN element will be

updated twice during the whole filtering process (first during the Observation-

Centered filtering stage and second during the UKF/EKF stage).

See 5.2 for an illustration.

A(t)∗ = µKalman
x

∗
=


A1

A2

A∗3(t)
A4

A5

A6

 zobs =

[
θobs(t)
ψobs(t)

]
µKalman

x|zobs
∗∗

=


A∗1
A∗2

A∗∗3 (t)
A∗4
A∗5
A∗6

 (5.2)

5.6 The Observation-Centered Filter, approach

2

Section 5.5 discussed a way to use the OC algorithm for tackling the space object

tracking problem. Note that during the second stage of the filter, we suggested

to use an UKF (non-linear filter). In this section, we propose another version

of the OC filter which uses a linear Kalman filter for the space object tracking

problem. However, the first stage of the filter or the OC stage remains same as

before (Subsection 5.5.1) but we modify the second stage. Detailed description

is given below.

5.6.1 Stage-1, the Observation-Centered filtering stage

Same as in Subsection 5.5.1.

5.6.2 Stage-2, the non-linear filtering stage

During this step, we suggest two modifications in representing the zobs(t) or the

observation vector. They are,

(1) Replace θobs(t) by φobs(t).

φobs ≈ φ(c)
p (t) + FT-to-M(θobs − θ(c)p , e(c)),

θ(c)p = FM-to-T(φ
(c)
p , e

(c)),
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5.6 The Observation-Centered Filter, approach 2

In addition, represent the measurement error for the θobs(t) (true anomaly

scale) in φobs(t) (mean anomaly scale) scale. Using the first order Taylor

series the variance of a function can be written as,

XFx ∼ N(µFx, σ
2
Fx),

f(XFx) ≈ N(f(µFx), f
′(µFx)

2σ2
Fx), (5.3)

where, σ2
Fx is typically small and f ′(µFx) 6= 0.

Using Equations (5.3) and 92.3), the variance for φobs can be written as,

Var(φobs) ≈


(

1− e(c)2
)3/2

(1 + e(c) cosT (c))
2


2

Var(θobs).

(2) From Equation (3.6), (Section 3.5) the observed latitude can be written as,

ψobs(t) ≈ A1 sin θtrue(t)− A2 cos θtrue(t), (5.4)

where, θtrue (equivalent to θ) is computed using Equation (3.11) from the

state vector (A) (or from the true value). Further, for this step we treat

θ(t) as a constant (at time t) for the one step update.

By performing the above mentioned steps, the observation matrix (H) can be

written as,

H =

[
0 0 1 0 0 0

sin θtrue − cos θtrue 0 0 0 0

]
(5.5)

Clearly, the tracking problem can be solved using a linear Kalman filter. Be-

fore discussing one example, we summarize both approaches (OCKF approaches

1 and 2).

The steps of the AST-OCKF algorithm can be summarized as follows.
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5.7 OCKF example

Given
a. The central state in Cartesian-ECI coordinates at time t = 0;
b. The covariance matrix associated with the central state in
Cartesian-ECI coordinate system;

c. Sequence of angles-only measurements;
Computation

1) Find the CRTN frame;
2) Compute the initial mean state and its covariance matrix in
AST-CRTN coordinates;

3) Transform angles-only measurements to the CRTN coordinates;
4) Propagate and update AST-CRTN state mean and variance using
OCKF;

4.1) Filtering stage 1: Update the mean of the A3(t) using the
OCUKF or OCEKF algorithm. Assume that the updated (or posterior)
mean is denoted by A∗3(t);

4.2) Filtering stage 2: Use the updated mean or A∗3(t), obtained in
previous step 4.1 as the prior mean along with other five AST-CRTN
elements and perform EKF or UKF (6-to-2 mapping, 6 dimensional
state vector to 2 dimensional observation vector) (approach 1) or a
linear Kalman filter (approach 2);

5) Repeat stages 3) and 4) for each observation;
Algorithm 2: AST-OCKF stages

5.7 OCKF example

In this section, we discuss one example (Example 5.2.). The purpose of this

example is to analyze performances of two proposed OC filters.

Example 5.2. One-step update. Assume an uncertain orbiting object

with central eccentricity e(c) = 0.7 and with initial relative standard errors Pσ =

2.5%, Pτ = 10% in Cartesian-ECI coordinates, the same as in Examples 2.1 and

2.2. For simplicity here assume the central inclination vanishes, i(c) = 0o and

the central angle of perigee is θ
(c)
p = 0o. Recall from (1.21) that the propagated

variance of A3(t) increases linearly with t. Choose the propagation time t = t1

large enough that the standard deviation of A3(t) equals ξ1 = 25o. Also suppose

that the propagated mean of A3(t) is µKalmanx = 260o. This value is chosen to

highlight the non-linearity of FT-to-M.

Consider an angles-only observation with longitude θobs = 225.5o and latitude

135



5.7 OCKF example

ψobs = 0o in the ASP-CRTN coordinate system, with measurement standard devi-

ation 5.5e−04o (2 arc-seconds) for both. Note that the longitude of the observation,

after transformation to the mean anomaly scale, takes the value

φobs = FT-to-M(225.5o, 0.7) = 310o,

which is located at the 2 s.d. distance of the propagated distribution for A3(t1)

since φobs = µKalmanx + 2ξ1 = 260o + 2× 25o = 310o.

The propagated distribution for A3(t1) forms the prior in the Bayesian up-

date. Since the measurement standard deviation is very small (2 arc-seconds), the

posterior mean for the A3(t1) is concentrated very close to 310o. The results are

summarized in Table 5.1. For the “Exact” entry in this table, the posterior mean

and variance have been computed using a particle filter (Gustafsson et al., 2002;

Kent et al., 2019b) with one million particles. Table 5.1 shows that the IUKF,

OCKF-1 (using the first approach) and OCKF-2 (using the second approach) all

give excellent approximations.

The “Exact” columns gives the correct answer showing that the posterior is

highly concentrated about 310o. The IUKF, OCKF-1 and OCKF-2 filters are all

similar to one another and provide the exact answer.

Table 5.1: Posterior means and standard deviations for A3(t1) in Example 5.2.,
computed using various filters.

Moment IUKF OCKF-1 OCKF-2 “Exact”
mean (A3) 310o 310o 310o 310o

s.d (A3) 3.2e-02o 3.2e-02o 3.1e-02o 3.2e-02o
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Chapter 6

Application of the propagated
observation vector for solving
association problems

6.1 Introduction

Recall the association problem discussed in the first chapter (see Section 1.11),

in this chapter we provide several examples to illustrate the usefulness of the

propagated observation vector in solving association problems. One practical use

of the association problem is catalog maintenance (Moretti et al., 2017; Siminski

et al., 2014) of various space objects. There are three different types of association

problems (Bhattacharjee et al., 2017a; Hussein et al., 2015; Kent et al., 2017a).

The first one is the Observation-to-Track association problem (OTTA) (Faber

et al., 2017; Kent et al., 2017a), where we want to associate an observation with

a track (uncertain orbital state) with the help of historic information about the

object from a library of space objects. The second type of association problem

is the Observation-to-Observation association problem (OTOA), where we have

a database of observations taken at different time intervals and we would like to

determine whether any two or more observations are generated from the same

space object. Final one is the Track-to-Track association problem (TTA) (Faber

et al., 2017; Kent et al., 2017a), where we want to match uncorrelated tracks to

see if any two or more tracks are generated from the same space object or not

(Faber et al., 2017; Kent et al., 2017a). In this thesis, we solve the OTTA problem
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for mainly two objects and we also discuss various test cases. In recent years, a

significant number of research works have been performed on solving association

problems for two or more number of space objects (in some cases for only a single

object, Example 6.2). For instance, (Tchamova et al., 2004) used their algorithm

on two objects (plus two tracks and two observations) but (Moretti et al., 2017)

and (Hussein et al., 2015) solved association problems for three and four objects

respectively. To test the proposed methodology, we use a high amount of initial

uncertainties and these ranges are much higher than the values used by other

research works. For instance, the paper by (Pirovano et al., 2020) used standard

deviation of 0.5 arcsec for generating simulated observations and the paper by

(Hussein et al., 2015) used 100m in position and 10m/sec in velocity uncertainties

(represented in Cartesian coordinates). The success rate depends on multiple

factors (such as, initial uncertainties, methodology, single stage association vs.

multiple stage association etc.). High initial uncertainties can often result in

ambiguity in custody. Example 6.1 highlights one such issue. However, we solve

this problem by using the multistage association or filtering-association (Example

6.4). In this chapter, we also demonstrate the usefulness of the PN-ASP setup

by considering an object generated due to a break-up event.

6.2 Key contributions

There are three key contributions made in this chapter.

(a) First, we discuss various concepts related to solving an association problem

(Sections 6.4 to 6.7).

(b) Second, we provide several examples to discuss various association problems

(Section 6.8).

(c) Third, we discuss an example to show the role of filtering in solving associ-

ation (filtering-association) problem (Subsection 6.8.4).
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6.3 Relation to other chapters

Chapter 1 discussed key concepts related to orbital dynamics. In Chapter 1, we

also discussed standard astrodynamics coordinate systems. Chapter 2 introduced

the AST-CRTN coordinate system to represent the propagated 6-dimensional or-

bital uncertainty and we used the AST-CRTN coordinate system for the filtering

in Chapter 5. In Chapter 3, we talked about the ASP-CRTN coordinate sys-

tem. This chapter will use these concepts to solve various association problems.

We assume that the observation is measured in terms of the angles-only position

(similar to the last chapter) and we use the propagated ASP-CRTN coordinate

system. Recall, Section 3.6 in Chapter 3, various angles can be summarized as

follows.

(a) Angle: Latitude (ψ) (true observation).

Measurement scale: N.A.

Description: Non-normal during a break-up event.

(b) Angle: Longitude (θ) (true observation).

Measurement scale: True anomaly.

Description: Non-normal if the propagation period is large and eccentric-

ity is high.

(c) Angle: Scaled or standardized latitude (ψ1) (pseudo observation).

Measurement scale: N.A.

Description: Approximately normal.

(d) Angle: Modified/re-invented break-angle (φ) (pseudo observation).

Measurement scale: Mean anomaly.

Description: Approximately normal.
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6.4 Association problem

In this thesis, we use two different set-ups for solving association problems. These

two set-ups are mentioned below.

(1) Fixed set-up association problems. Recall Fig. 1.9, we use this set-up

to associate points 1 and 2 with proper distributions. We discuss three

possible test cases.

(a) Solving the association problem for a non break-up event.

(b) Solving the association problem for a break-up event.

(c) Solving the association problem for a mixture of break-up and non

break-up events.

(2) Moving set-up association problems. We need to use filtering to solve

these type of problems. We discuss one such case in this thesis.

(a) Solving the association problem when the object custody is ambiguous.

The term Moving set-up association problems indicates that the object cus-

tody is ambiguous and the association problem cannot be solved in one stage

and we need to use filtering to estimate information related to future stages.

However, the term Fixed set-up association problem means that the association

problem can be solved in one stage.

6.5 Discriminant analysis

Consider an angles-only observation z on the unit sphere (in the ASP-CRTN

coordinate system) which may come from one of J possible populations with

densities .fj(z), j = 1, . . . , J . We allocate z to the population for which .fj(z)

is largest. Further, if we assume each population has equal prior probability, then

the posterior probability that z comes from population j is

.pj(z) =
.fj(z)∑J
j′=1 .fj′(z)

, j = 1, . . . , J, (6.1)

where .f(z) = .f(ψ, θ).
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6.6 Tail probability

There is one additional possibility to be considered, namely z is not associated

with any of the populations in the library.

After transforming to Gaussianity, let D2
Mahal(z) denotes the squared Maha-

lanobis distance between z and the origin (distribution mean). Assuming the

observation comes from the specified member of the library, D2
Mahal(z) follows a

χ2
2 distribution (the same as an exponential distribution with scale parameter

1/2) with tail probability

.P (z) = exp{−1

2
D2

Mahal(z)}. (6.2)

Going back to the library of populations and an observation z, we remove

from consideration any population j for which .Pj(z) < ν, where ν is a small

pre-chosen critical value, e.g. ν = 0.001.

If all populations are removed from consideration, we are left with the con-

clusion that the observation z is not compatible with any of the populations.

Note that, the difference between the Mahalanobis distance and the Euclidean

distance is mentioned in the Appendix (Section B.3) using a suitable example.

6.7 Solving association problem for non break-

up and break-up events

In this section, we discuss steps related to solving association problems for objects

related to both break-up and non break-up events. First, we start with the non

break-up scenario and then we move our focus to the break-up scenario.

6.7.1 Association problem related to the non break-up
event

Solving the association problem for the non break-up event is straight forward.

Key steps are mentioned below.

(1) First, compute the probability density .fj(ψ, θ) (see Section B.4) for the

given observation with respect to each cluster or propagated distribution

separately.
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(2) Next, compute the posterior probability (.pj(z) or .pj(ψ, θ)).

(3) Finally, compute tail probabilities using Equation (6.2).

6.7.2 Association problem related to the break-up event

Solving the association problem related to the break-up event requires few more

extra computation steps and these steps are mentioned below. Recall the break-

up event scenario, the first order approximation to the conditional variance drops

to 0 whenever T (t) is a multiple of π and this leads the “pinching problem”.

(1) In the break-up scenario, ψ(t) depends only on δ3 and also on the θ(t) to

first order. Hence the conditional distribution of ψ(t) given θ(t) is

ψ(t)|θ(t) ∼ N(0, (Σδ3/C
2) sin2 θ(t)). (6.3)

(2) Compute the density (.fj(θ, ψ)) and the posterior probability (Mardia

et al., 1979). Note that the joint density takes the form,

.f(ψ(t), θ(t)) = .f(θ(t))f(ψ(t)|θ(t)), (6.4)

.f(ψ(t)|θ(t)) = .f(ψ(t); 0, (Σδ3/C
2) sin2 θ(t)), (6.5)

where, Σδ3 denotes the variance associated with the third velocity vector

(Σδ3 = Var(δ3)) (Recall Chapter 2, where we defined A, B, C, and δ terms).

(3) Compute tail probabilities.

6.7.3 Note on the distribution of longitude and the related
density

As discussed in the previous chapter (Section 3.6) and also shown in the Ap-

pendix (A.2) that if the propagation period is large and/or initial uncertainties

are large then the distribution of the longitude (θ) cannot be approximated using

a bivariate normal distribution. These situations are rare but to deal with such

situations, we suggest to use the modified break-angle or φ (see Chapter 2) rather

than θ. Further, by using φ, computation steps related to the density function

are mentioned below.
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(1) The Jacobian matrix (J) (Section 2.5.1) shows that [n−n(c)] is to first order

a linear combination of ε and δ where the terms ε3 and δ3 do not appear

(see 6.6). In particular, to first order the mean motion n has a normal

distribution, n ∼ N(n(c), ρ2), for some ρ2 > 0.

[n− n(c)] ≈

(P1C + P2Q1)ε1 + (−P1B + P2Q2)ε2 + (P1A+ 2P2A
2BC2)δ1 + (P2Q3)δ2.

(6.6)

(2) The derivative of the mean anomaly M(t) with respect to the true anomaly

T (t) is given by
dM(t)

dT (t)
=

(1− e2)3/2

(1 + e cosT (t))2
. (6.7)

(3) Putting the pieces together yields the joint density for (ψ(t), θ(t))

.f(ψ(t), θ(t)) = .f(θ(t)) . f(ψ(t)|θ(t)). (6.8)

where

.f(θ(t)) = .f(φ(t);φ(c)(t), t2ρ2) dM(t)/dT (t). (6.9)

6.8 Association problems

6.8.1 Example 6.1. Solving association problem for a non
break-up event (association problem)

Consider a “library” containing two space objects, and suppose that based on

earlier observations the predicted angular location for each object at the current

time t can be summarized using the ASP-CRTN coordinate system.

In this example, we have two overlapping distributions (say, 1 and 2). The

first distribution is generated from the LEO object (e = 0.13) mentioned in the

Chapter 3 and is highlighted using green markers in Fig. 6.1. The propagation

period is 0.4 orbital period and initial uncertainties are same as before. The

second distribution is generated from the HEO object (e = 0.7) discussed in

Chapter 2 and the distribution is shown using blue markers in Fig. 6.1. The
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propagation period is 0.2 orbital periods. Four points, labeled A, B, C, and D

(see Fig. 6.1) have been picked to illustrate different properties.

Point A lies midway between the two principal axes, but is close enough

to the common mode to be compatible with both distributions. In particular,

the posterior probabilities are nearly equal, .p1 = 0.47, .p2 = 1 − .p1 = 0.53,

indicating an inability to discriminate between the two objects. Further, neither

tail probability is small, .P1 = 0.99, .P2 = 0.99, indicating compatibility with

both objects.

Point B lies in the main body of the distribution for object 1, but not for

object 2. Hence, the posterior probability that point B comes from object 1 is

large (.p1 = 1.00, .p2 = 1 − .p1 = 1.14e−13). This conclusion is reinforced by

the tail probabilities; .P2 = 3.38e−14 is very low, indicating that the observation

is incompatible with object 2 and .P1 = 0.23 is not low, indicating compatibility

with object 1.

Point C lies in the body of the distribution for object 2, but appears to

be an outlier for object 1. This interpretation is confirmed by the posterior

probabilities (.p1 = 2.03e−03, .p2 = 1− .p1 = 0.99) and by the tail probabilities

(.P1 = 6.14e−05, .P2 = 0.038).

Point D is an outlier, lying far from the predicted distributions for both ob-

jects. The tail probabilities are both very small, .P1 = 2.18e−67, .P2 = 5.93e−24,

indicating an incompatibility with either object. Hence the posterior probabilities

are not very meaningful in this case.

6.8.2 Example 6.2. Solving association problem for a break-
up event (association problem)

The following example (Example 6.2.) is particularly a simple version of the

association problem with one library object that has suffered a break-up event.

Two observations have been made after approximately one orbital period. The

question is whether either of these observations is compatible with the library

object.

The upper panel in Fig. 6.2 is the same (in terms of the propagation period) as

panel (b) in Fig. 3.2, with two possible observations marked in red. Horizontally
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Figure 6.1: Example 6.1., solving the association problem. The association
problem for two overlapping distributions 1 and 2. Observations are highlighted
using red markers, a total of 4 observations are made.

they are equi-distant from 0, and their vertical values are identical. However,

point A lies in the left-hand bulge whereas point B lies outside the right-hand

bulge. The lower panel shows the data after transformation to bivariate normality.

Now it can be clearly seen that point A is somewhat compatible with the bivariate

normal distribution but that point B is far way.

This visual impression is confirmed by the tail probability values, equal to 0.07

and 0, respectively, confirming that point A is compatible with the propagated

distribution; point B is extremely incompatible.
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Figure 6.2: Example 6.2., solving the association problem for a break-
up event. The upper plot is the same (in terms of the propagation period) as
panel (b) in Fig. 3.2, with two observations superimposed. The lower plot (with
scaled/standardized latitude representing the vertical axis) shows the transforma-
tion to bivariate normality. Point A is compatible with this distribution; point B
is not.

6.8.3 Example 6.3. Solving the association problem for a
mixture of break-up and non break-up events (as-
sociation problem)

Consider a “library” containing two space objects. Among these two objects, one

object is generated due to a break-up event and another object is related to a non

break-up event. These two objects are same as the first example (Section 6.8.1),

the only difference is that we are assuming that the first object is generated due

to a break-up event by making the initial position uncertainty zero for this object.

The first object is propagated for exactly 1 central orbital period and the second

object is propagated for 0.2 orbital periods (same as before). However, initial

velocity uncertainty is reduced for this object (for the visualization purpose).

As usual, the observation (A) is marked using a red marker and distributions

1 and 2 are marked using green and blue clusters respectively in Fig. 6.3. Clearly,

distribution 1 suffers from the pinching issue. To associate the observation with

the correct object, first we use steps mentioned in Section 6.7.1 to check the

compatibility of point A with the distribution 2, see Subplots (a) and (b). Next,
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we correct distribution 1 (corrected image is shown in Subplot (d)). Note that

in Fig. 6.3 the vertical axis is representing the scaled/standardized latitude.

Finally, we compute the tail probability. There is no need to compute posterior

probabilities for this example.

Figure 6.3: Example 6.3., solving the association problem for for a mix-
ture of break-up and non break-up events. Two distributions and one single
observation where the first object suffers from the pinching problem. The obser-
vation is located just outside the pinching zone or the center of the distribution
1. However, the observation is clearly part of the second distribution.

Note that the observation is located slightly higher than the center of the first

distribution but clearly part of the second distribution. This interpretation is

confirmed by the tail probabilities (.P1 = 2.43e−07, .P2 = 0.99) and similar to

the previous example there is no need to compute posterior probabilities.

6.8.4 Example 6.4. When the object custody is ambigu-
ous (filtering-association problem)

Recall Fig. 6.1 (Subsection 6.8.1), posterior probabilities were nearly equal for

point A. In this section, we use the filtering-association to associate the obser-

vation with the correct distribution. The filtering-association can be used in a

situation where the object custody is ambiguous. Example 6.4. is a special case
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and this example is a complicated version of the Example 6.1. In this example,

we assume that normal directions (h(c)) are same for both objects.

In general, when object custody is ambiguous, some modification to this pro-

cedure (IUKF/OC filters) is needed. Suppose an object can be associated with

two or more objects in a catalog at time tk. Then the state distribution at time tk

is a mixture of two multivariate normal distributions. Sigma points (UKF sigma

points) are constructed and propagated for each component of the mixture. The

update step involves re-computing the sigma points as before, after which the

updated state distribution is approximated by a new mixture of two multivariate

normal distributions.

Example 6.4. To illustrate the procedure consider a situation with two

objects at time t = 0. The first object is same as in the Chapter 2 (eccentricity

= 0.7 and orbital period = 712 minutes). The second object is also located on

a HEO orbit (eccentricity = 0.67 and orbital period = 655 minutes, A = 9078

km, B= 2.5 km/sec and C = 8.1 km/sec). The two (central) normal directions to

the orbital planes are assumed to be the same (for both objects, h(c) ∝ [0, 0, 1]T

and h(c) = 73531 km2/sec). The uncertainties are represented in ECI coordinates

by isotropic normal distributions for position (Pσ = 1%) and velocity (Pτ =

1%). The initial state vectors are represented in ECI, Keplerian, Equinoctial and

AST coordinates in Figs 6.4-6.8. In general the one-dimensional plots are either

unimodal or bimodal, depending on the extent of overlap of initial conditions.

Next we follow these two objects for four different time intervals (t = 0, 200,

400 and 600 minutes). Results are shown using Fig. 6.8.

From Fig. 6.8 several conclusions can be reached.

(1) (Subplot(a).) Both distributions are highly overlapped and posterior

probabilities are also same (.p1 = 0.5, .p2 = 1− .p1 = 0.5).

(2) (Subplot(b).) Both distributions are still very much overlapped, posterior

probabilities are not equal but close (.p1 = 0.53, .p2 = 1 − .p1 = 0.47)

and as a result it is not possible to allocate the observation to the correct

distribution.
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Figure 6.4: Example 6.4., joint distribution in the Cartesian (CRTN)
coordinate system at t = 0, part 1. Initial point clouds (NA = 2000 and
NB = 2000) for objects 1 and 2 represented in ECI coordinates.
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Figure 6.5: Example 6.4., joint distribution in the Keplerian (CRTN)
coordinate system at t = 0, part 2. Initial point clouds (NA = 2000 and
NB = 2000) for objects 1 and 2 represented in Keplerian coordinates.
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Figure 6.6: Example 6.4., joint distribution in the Equinoctial (CRTN)
coordinate system at t = 0, part 3. Initial point clouds (NA = 2000 and
NB = 2000) for objects 1 and 2 represented in Equinoctial coordinates.
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Figure 6.7: Example 6.4., joint distribution in the AST (CRTN) coordi-
nate system at t = 0, part 4. Initial point clouds (NA = 2000 and NB = 2000)
for objects 1 and 2 represented in AST coordinates.
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Figure 6.8: Example 6.4., various filtering stages for ambiguity in cus-
tody problem, part 5. Angles-only representation of the point cloud at t =
0. The blue cluster indicates the distribution associated with the first object
(object 1) and the green cluster represents the second object (object 2). The red
dot is the observation. Subplot (a), at t = 0, note the high degree of overlapping
between the two distributions. Subplot (b), at t = 200 minutes, two distributions
are still very much overlapped. Subplot (c), at t = 400 minutes, the observation
is connected with the first distribution. Subplot (d), at t= 600 minutes, clearly
the observation can be associated with the first distribution.
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(3) (Subplot(c).) The observation is part of the first distribution and posterior

probability values provide evidence (.p1 = 0.99, .p2 = 1− .p1 = 0.01).

(4) (Subplot(d).) The observation is clearly part of the first distribution and

posterior probabilities confirm it (.p1 = 1, .p2 = 1− .p1 = 0).
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Chapter 7

Conclusion and Future directions

7.1 Conclusion

Various issues related to the space object tracking and association problems are

discussed in this thesis. The first chapter has set the theme of the thesis. This

chapter has discussed various concepts related to the orbital dynamics and coor-

dinate systems. In this chapter, the bounded range problem has been explained

using a suitable example. The final part of this chapter briefly introduces the

association and tracking problem.

Chapter 2 has discussed the non-linearity in the propagation equation in the

Cartesian-ECI coordinate system. A first order Taylor series expansion has been

used to represent the AST-CRTN deviations and it has been shown that AST-

CRTN coordinates are approximately linear function of the Cartesian-CRTN de-

viations. This expansion has helped to explain why AST-CRTN coordinates are

generally typically approximately Gaussian whatever the initial conditions are.

Further, using linearity plots it has been shown that AST-CRTN coordinates are

still approximately Gaussian, even under extreme initial uncertainties.

Chapter 3 has dealt with the representation of the propagated uncertainty

associated with the angular position. At the beginning, a brief discussion has

been provided to introduce the ASP-CRTN coordinate system. If the propagation

period is not too extreme or not a close multiple of half orbital period then the

joint distribution of the propagated angles-only position can be approximated

using a bivariate normal distribution. However, an important special scenario is
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a break-up event where there is uncertainty only in initial velocity, but not in

position. In this case, the distribution of the propagated latitude and longitude

has showed a distinctive “bow-tie” effect whenever the propagated time is an

integer multiple of the half-period. This “pinched normal” distribution can be

transformed to a standard bivariate normal distribution. The final portion of this

chapter has investigated the distribution of the radial component. However, the

distribution of the radial component can be turned into an approximate normal

if a correct scaling factor is used.

Chapters 4 and 5 have discussed the tracking problem. Further, the develop-

ment of the fifth chapter has been (partially) based on the second chapter. The

overall tracking problem deals with two types of non-linearity. The first type of

non-linearity is associated with the propagation equation, which has been men-

tioned in the second chapter and resolved by using the AST-CRTN coordinate

system. The second type of non-linearity arises from the non-linear relationship

between the true and the mean anomaly. The relation between the true and the

mean anomaly depends on the orbital eccentricity. For example, for a circular

(e = 0) or near circular orbit the function FM-to-T is linear (approximately). This

chapter has compared various Kalman filters using suitable 1-dimensional exam-

ples. In addition, the usefulness of the AST-CRTN coordinate system has been

illustrated for solving the 6-dimensional tracking problem. The final portion of

the Chapter 5 has discussed two approaches for using the Observation-Centered

Kalman filters for solving the 6-dimensional space object tracking problem.

Chapter 6 has discussed the usefulness of the ASP-CRTN coordinate system

and the newly developed PN distribution. Three different examples have been

used to discuss the association problem under varying conditions. In addition,

this chapter has also mentioned the filtering-association problem for solving the

object custody problem.

To summarize, this thesis has investigated various issues related to the or-

bital uncertainty analysis and tracking. The AST coordinate system is the local-

ized version of the equinoctial coordinate system and it has been developed to

overcome the limitations of the equinoctial coordinate system. This thesis also

highlights various facts related to the propagated uncertainty associated with the

angular position and the radial component. The distribution of the latitude is
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non-normal if the object is generated due to a break-up event. Besides, the dis-

tribution of the radial component can often behave as non-normal. This thesis

has discussed these two distributions in detail. In particular, standardization is

sometimes needed to ensure the Gaussianity of the distributions of the latitude

and the inverse radial distance. These results have been combined to compute

a one-step update for the tracking problem using the OCKF. The newly devel-

oped OCKF works perfectly with a wide variety of initial conditions that can

cause problems for other available methods and by using an OCKF the tracking

problem can be solved using a linear Kalman filter.

7.2 Future directions

Previous chapters discussed my contributions related to this project. This chapter

illustrates some of my other works which are partially developed and require more

attention in the future. In this chapter, we will discuss two of such topics. Note

that we have performed explorative analysis on these topics and discuss results

in this chapter but detailed analysis needs to be performed to understand various

reasons.

(1) Observer-centric representation (origin is at the location of the observer) of

the propagated angles-only point cloud.

(2) Analyzing sensitivity of various multivariate normality tests.

7.3 Observer-centric analysis on the propagated

angles-only position vector

As of now, we performed all our analyses by assuming that the observer is located

at the center of the earth. However, we have also performed a structural analysis

on the observer-centric observation. The term observer-centric indicates that the

observer is located at the surface of the earth. The distribution of the propagated

true angular elements (or the true angles) in an observer-centric frame of reference

mainly depend on two parameters and they are listed below.
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(1) Altitude: An object located at the GEO orbit remains largely unaffected

by the observer-centric observation and the joint distribution of the latitude

(or scaled latitude) and the longitude can be approximated using a bivariate

normal distribution. See Example 7.1. for more details. However, the

change of frame (or the location of the observer) from the earth-centric to

the observer-centric has major impact on an object residing at the LEO

orbit.

(2) Propagation period: The observer-centric reference frame (or observa-

tion) has less severe effect on the joint distribution of the propagated an-

gular uncertainty, if the propagation period is very small and/ or initial

uncertainties are also small. Example 7.2. provides further details.

7.3.1 Example 7.1. Observer-centric analysis based on
altitude

This section provides two examples to show the impact of the observer-centric

frame of reference for analysing the propagated angular uncertainty. The pur-

pose of this section is to understand the role of observer-centric observation in

uncertainty propagation and normality analysis.

Consider two orbiting objects, the first object is located at the LEO orbit (the

object which we used in Chapter 3, Example 3.1.) and the second object is located

at the GEO orbit (A = 42167 km, B = -5.38e−04 km/sec, C = 3.075 km/sec).

The LEO cloud is propagated for exactly 1 central orbital period (equivalent to

131 minutes) and the GEO cloud is also propagated for 1 central orbital period

(equivalent to 1436 minutes). The final assumption is that the observer is located

at the [6000 km, 0, 0] location. The propagated angular uncertainties for the LEO

and GEO clouds are shown in Figs 7.1 and 7.2. Initial uncertainties are 1% each

(i.e., Pσ = 1%) (Pτ = 1%).

The joint distribution in Fig. 7.1 cannot be approximated using a bivariate

normal distribution (p-values obtained using Mardia’s test are 2e−07 and 1.7e−12

for the skewness and kurtosis respectively. Note that Shapiro-Wilk’s test con-

firm the univariate non-normal behaviors with p-values < 2e−16 and 0.0143 for

the longitude and the latitude respectively). However, the joint distribution in
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Fig. 7.2 is approximately a bivariate normal (Mardia’s test results: p-value for

skewness- 0.51, p-value for kurtosis- 0.25. Shapiro-Wilk’s test results: p-value for

the longitude- 0.69, p-value for the latitude- 0.41).

Figure 7.1: Example 7.1., observer-centric propagation analysis for a
LEO object. In this example, a LEO object is propagated and the propagated
angular uncertainties are represented using the observer-centric frame of reference
(or observation). The joint distribution is clearly non-normal.

7.3.2 Example 7.2. Observer-centric analysis based on the
propagation period

In this example (Fig. 7.3), the propagation period is reduced to 0.1 orbital pe-

riod for the same LEO object (Fig. 7.1) which was used in Example 7.1. (other
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Figure 7.2: Example 7.1., observer-centric propagation analysis for a
GEO object. In this example, a GEO object is propagated for 1 central or-
bital period and the propagated angular uncertainties are represented using the
observer-centric frame of reference. The joint distribution is approximately nor-
mal.

conditions are same as before). Notice that the joint distribution of two angular

component is approximately normally distributed. Further, this can also be con-

firmed by computing p-values (Mardia’s test results: p-value for skewness- 0.87,

p-value for kurtosis- 0.28. Shapiro-Wilk’s test results: p-value for the longitude-

0.62, p-value for the latitude- 0.74).
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Figure 7.3: Example 7.2., observer-centric propagation analysis for a
LEO object with short propagation time. In this example, we use the
same LEO object which we used in Fig. 7.1. However, the propagation period is
reduced. In this example the propagation period is 0.1 orbital period (equivalent
to 13.1 minutes). Clearly, the joint distribution of the latitude and the longitude
is approximately a bivariate normal.

7.3.3 Remarks

(1) Objects located at the GEO orbit generally do not affected by the Observer-

centric observation but LEO objects are very sensitive.

(2) The best way to avoid any issue with the normality analysis in the propa-

gated point cloud is to covert back to the Earth-centered reference frame.

However, more research work needs to be carried out in the future.
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7.4 Analyzing sensitivity of various multivariate normality tests

7.4 Analyzing sensitivity of various multivariate

normality tests

We used Mardia’s multivariate normality test to quantify approximate multivari-

ate normality in Chapters 2 and 3. However, we also used Shapiro-Wilk’s normal-

ity test to judge AST coordinates statistically (to check univariate normality). In

this section, we have performed an explorative study to understand the behavior

of various normality tests, i.e., how reliable (able to capture slightest amount of

non-normality) they are under extreme conditions. The MVN package (Korkmaz

et al., 2014) in R contains a list of normality tests.

This section compares performances of three normality tests. They are Mar-

dia’s p-value test (provides two p-values, one for the skewness and another for the

kurtosis) (Mardia, 1970; Mardia et al., 1979), Henze-Zirkle’s p-value test (Henze

& Zirkler, 1990)(provides one p-value) and Shapiro-Wilk’s univariate normality

test (tests are performed for both the latitude and the longitude separately). We

use the same HEO object, which was considered in Chapter 2. Further, we re-

strict our view to the propagated angles-only observation vector and we consider

two different propagation periods (25 and 60 days respectively). In addition, ini-

tial uncertainties are kept almost same as before. Results are shown using Figs.

7.4 (Example 7.3.) and normality test values are summarized in Table 7.1.

From Fig. 7.4, we can see that both the joint distributions are mildly non-

normal. For the first Subplot (a), even though non-normality is visible (non

normality in the longitude due to the wrapping effect) but p-value test designed

by Henze-Zirkle is unable to capture it. However, Shapiro-Wilk’s test is able to

classify the distribution of the longitude as non-normal and Mardia’s p-value test

also classify the joint distribution as non-normal. The second joint distribution

(Subplot (b)) is also not normal (again, the longitude is not normal due to the

wrapping issue). However, Mardia’s test is unable to classify the joint distribution

as non-normal but Henze-Zirkle’s test can identify the joint distribution as non-

normal. Further, Shapiro-Wilk’s univariate test confirms the non-normality in

the longitude.
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7.4 Analyzing sensitivity of various multivariate normality tests

(a) t = 25 days (b) t = 60 days

Figure 7.4: Example 7.3., multivariate sensitivity analysis. Analyzing
sensitivity of different multivariate normality tests. In both subplots, the plot at
the upper left shows a spherical representation of the point cloud. The remaining
plots show histograms (true angles) and a scatter plot for the longitude (unit -
degree) and latitude (unit - degree). Note that we use unwrapped longitude in
both subplots. The term unwrapped means we are treating the longitude as a
number rather than an angle. Notice that both subplots are non-normal. Results
are discussed in Table 7.1

Table 7.1: Here “M. p-val. 1” and “M. p-val. 2” denote multivariate p-values
for skewness and kurtosis respectively computed using Mardia’s MVN p-value
computation method. “Hz p-val” indicates p-value obtained using the Henze-
Zerkler’s MVN computation. Finally, “Lon. p-val.” and “Lat. p-val” indicate
p-values for the longitude and latitude respectively computed using the Shapiro-
Wilk’s test.

Subplot No. M. p-val. 1 M. p-val. 2 HZ p-val. Lon. p-val. Lat. p-val.
a 3.10e−03 0.22 0.07 4.40e−07 0.73
b 0.95 0.23 1.66e−15 < 2.2e−16 0.81

163



Appendix A

More on orbital dynamics

A.1 Orbital dynamics

Recall Chapter 1 (Section 1.7), we discussed various orbital elements, coordinate

systems and orbits. This chapter intends to provide a few more details on various

orbital elements. Note that some of the elements are already discussed in the

Chapter 1 but we provide further details in this section. In particular, we discuss

the transformation form the Cartesian to the Keplerian coordinate system.

Our aim is to compute various orbital elements for an object in the sky for

which the initial states (given in the Cartesian coordinate system) are exactly

known (position x (x1, x2, x3) and velocity ẋ (ẋ1, ẋ2, ẋ3)), various orbital elements

can be written as follows (Curtis, 2006; Roy, 2004).

Note. Note that Section 1.7.3 discussed some of the orbital elements briefly

but in this portion we wish to provide more details.

(1) The radial distance (r) and the speed (v) can be computed as follows,

r =
√
r · r =

√
x · x =

√
x21 + x22 + x23,

v =
√
v · v =

√
ẋ · ẋ =

√
ẋ21 + ẋ22 + ẋ23.

(2) The radial velocity (vr) indicates whether the object flying away (vr > 0)

or towards (vr < 0) the perigee,

vr =
r · v
r

.

164



A.1 Orbital dynamics

(3) The specific angular vector and its magnitude are,

h = r × v,

h =
√
h · h.

(4) The inclination angle takes the following form,

i = cos−1
hz
h
.

(5) The node vector (also defines the node line) and its magnitudes are,

NRAAN = w × h,

NRAAN =
√
NRAAN ·NRAAN.

(6) The eccentricity vector and the eccentricity value can be computed as,

e =
1

µ

(
v × h− µr

r
),

e =
√
e · e.

(7) The RAAN angle is computed as,

Ω = cos−1
Nx

NRAAN

, (Ny ≥ 0),

Ω = 360o − cos−1
Nx

NRAAN

, (Ny < 0),

see Fig. A.1 for further details.

(8) The argument of perigee is,

ω = cos−1
NRAAN · e
NRAANe

, (ez ≥ 0),

ω = 360o − cos−1
NRAAN · e
NRAANe

, (ez < 0),

see Fig. A.1 for further details.

(9) Finally, the true anomaly (measured from the perigee) is,

T = cos−1
e · r
er

, (vr ≥ 0),

T = 360o − cos−1
e · r
er

(vr < 0).
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A.1 Orbital dynamics

(a) ω,Ω < 180o (b) ω < 180o, Ω > 180o

(c) ω > 180p, Ω < 180o

Figure A.1: Examples to show various values of the RAAN and the
argument of Perigee (Not scaled to size). (a) For the first image both the
ω and Ω values are < 180o and the direction of motion is anti-clock wise. For the
second image Ω > 180o but ω < 180o and the direction of motion is clock-wise.
(c) For the third image ω > 180o but Ω < 180o and the direction of motion is
anti-clock wise like the first image.
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A.2 More examples (propagation)

A.2 More examples (propagation)

This portion provides few more propagation examples. The main purpose of this

section is to highlight the behavior of various coordinate elements under varying

conditions. Total four examples are presented.

(1) Cartesian-CRTN coordinate system under short-term propagation and small

initial uncertainties.

Purpose: To show that the Cartesian coordinate system is able to preserve

normality if the propagation period and/or initial uncertainties are small.

(2) Keplerian-CRTN coordinate system for a near circular orbit.

Purpose: To show that if the orbit is circular or near circular (e = 9e−05,

A = 7113 km, B = 4e−03 km/sec, C = 7.47 km/sec, for the purpose of

this example, the amount of initial uncertainties are not relevant) then sev-

eral Keplerian coordinate elements behave poorly (bounded range problem

and/or singularity). Note that we also show the propagated uncertainty

using the AST-CRTN coordinate system.

(3) Propagated angles-only position vector for a HEO orbit when the propaga-

tion period is large.

Purpose: To show that θ or the longitude is non-normal if the propagation

period is large.

(4) Propagated angles-only position vector for a near circular LEO orbit.

Purpose: To show that θ and φ are almost identical.

A.2.1 Cartesian-ECI coordinate system under short term
propagation

Fig. A.2 shows the propagated Cartesian-ECI coordinate system under small

term propagation. In this example, we use the same object which was used in

Chapter 2 (HEO object with e = 0.7). The propagation time is 0.1 central orbital

period (reduced) and initial uncertainties are 0.1 times of the previously used

uncertainties (also reduced). This example shows that if the propagation period
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A.2 More examples (propagation)

Figure A.2: Propagated Cartesian-ECI coordinates for small-term prop-
agation. All the coordinates are approximately normal.

is small and initial uncertainties are also small then the propagated point cloud

in the Cartesian-ECI coordinate system is approximately normally distributed.

A.2.2 Keplerian coordinate system for a near circular or-
bit

Figs. A.3 and A.4 show the propagated Keplerian-CRTN and AST-CRTN co-

ordinate systems for a near circular orbit at the propagation time t = 0. The

purpose of this example is to highlight the bounded range problem for the Ke-

plerian coordinate system. Note that since the orbit is near circular (e ≈ 0)

168



A.2 More examples (propagation)

Figure A.3: Keplerian-CRTN coordinates for a near circular orbit at
t = 0. Most of the elements are non-normal.

and the initial inclination is also 0 (i = 0o due to the construction), both these

elements suffer from the bounded range problem. In addition, the distribution of

the true anomaly (T(0)) is also not normal as perigee is ill-defined. However, all

the AST-CRTN elements are approximately normally distributed (see Fig. A.4).
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A.2 More examples (propagation)

Figure A.4: AST-CRTN coordinates for a circular orbit at t = 0. All the
coordinates are approximately normal.

A.2.3 Propagated angles-only position (true angles) vec-
tor for a HEO orbit when the propagation period
is large

Fig. A.6 is generated using the same object which we used in Chapter 2 (e = 0.7).

From Fig. A.6 several information can be noted.

(1) The mean anomaly (M) is uniformly distributed. However, the distribution

of the true anomaly (T) is definitely not uniform and depends on the start-

ing location in the orbit. Further, scatter plot (1,4) shows the non-linear

relation between the mean and the true anomaly.
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A.2 More examples (propagation)

Figure A.5: Propagated angles-only position vector for a HEO orbit
when the propagation period is large. Notice that the distribution of the
unwrapped φ is approximately normal. However, unwrapped θ is not normal.
Further, look at the scatter plot (1,4), it exactly shows the non-linear pattern
which we discussed in the Chapter 5.

(2) The wrapped φ is uniformly distributed but wrapped θ is not and the dis-

tribution of the wrapped θ depends on the starting location (like the true

anomaly).

(3) The unwrapped ψ is approximately normal but unwrapped θ is not.
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A.2 More examples (propagation)

A.2.4 Propagated angles-only position vector for a near
circular LEO orbit

Figure A.6: Propagated angles-only position vector for a circular LEO
orbit. Since the perigee is ill-defined for a circular orbit, distributions of the
true and mean anomaly are no longer behave as normal. However, notice that
both φ(t) and θ(t) are approximately normal. The orbit is not exactly circular
(e = 9e−05) but a near circular orbit and distributions of θ and φ are nearly the
same.

In this portion, we judge distribution of various angular elements in a near

circular orbit. Of course, the perigee is ill-defined and as a result both the mean

and the true anomalies cannot be approximated using a normal distribution.

However, the longitude θ and the remapped break-angle φ (A3) do not suffer
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A.3 True anomaly vs. mean anomaly for various eccentricity values
(FM-to-T function)

from any such issues. Further, ranges (standard deviations) for the θ and φ are

similar (as e ≈ 0).

A.3 True anomaly vs. mean anomaly for vari-

ous eccentricity values (FM-to-T function)

In this section, we show the relationship between the true anomaly and the mean

anomaly for varying eccentricity values. A total of 10 eccentricity values (start-

ing from 0 and ending at 0.9 with intervals 0.1) are considered. From Fig. A.7,

we can see that when the eccentricity is 0 both the true anomaly and the mean

anomaly are same. Further, for a small eccentricity value the relation between

true anomaly and mean anomaly is approximately linear (or FM-to-T function is

approximately linear). However, non-linearity is clearly visible for higher eccen-

tricity values.

Figure A.7: True anomaly vs mean anomaly for varying eccentricity val-
ues. Relationship between the true anomaly (T ) and the mean anomaly(M) is
highlighted in this plot. A total of 10 different eccentricity(e) values are consid-
ered. Note that when e = 0, both true and mean anomalies are same.
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A.4 True anomaly and eccentric anomaly (simpler representation)

Figure A.8: The true and eccentric anomalies (Not scaled to size). This
plot provides a brief idea on the true and eccentric anomalies.

A.4 True anomaly and eccentric anomaly (sim-

pler representation)

Fig. 1.2 already presented various anomalies. In this section we provide a simpler

representation of true and eccentric anomalies using Fig. A.8.
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Appendix B

Miscellaneous results

B.1 The EKF and UKF computing steps

Recall the classic Kalman filter stages mentioned in the Chapter 4 (Section 4.4),

in this section we discuss computing steps for the extended and unscented Kalman

filters.

B.1.1 The extended Kalman filter

The extended Kalman filter (EKF) (Bhaumik & Paresh, 2019; Gustafsson &

Hendeby, 2012; Havĺık & Straka, 2015; LaViola, 2003; Wikipedia contributors,

2020a) stages are mentioned below.

Propagation steps

xk|k−1 = f(xk−1|k−1, uk)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk

Fk =
δf

δx

∣∣∣
xk−1|k−1,uk

.
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B.1 The EKF and UKF computing steps

Update steps

yk = zk − hk(xk|k−1), Hk =
δh

δx

∣∣∣
xk|k−1

Sk = HkPk|k−1H
T
k +Rk

Kk = Pk|k−1H
T
k S
−1
k

xk|k = xk|k−1 +Kkyk

Pk|k = (I −KkHk)Pk|k−1.

Here, yk,Sk,Kk,xk|k and Pk|k are called residual, innovation covariance,

Kalman gain, posterior (updated) mean and posterior (updated) variance respec-

tively. The state transition matrix and the observation matrices are indicated

using Fk and Hk. Recall Chapter 4, the EKF performs the linearisation at the

prior mean using the first order Taylor series expansion (See further information

on the Taylor series in Section B.6).

B.1.2 The unscented Kalman filter

Before mentioning the propagation and update steps of an unscented Kalman

filter (Julier, 2002; Julier & Uhlmann, 2004; Ponomareva et al., 2010; Wan &

Merwe, 2000), we mention how to compute various weights for performing the

unscented Kalman filter. Note that some of these steps are already mentioned in

Chapter 4 (Section 4.6.2). In this portion, we introduce several new parameters

(with different names) for the discussion purpose.

Sigma points generation

χ0 = ȳ

χl = ȳ + (
√

(l + λUKF)Pk−1|k−1)l, l = 1, . . . , N

χl = ȳ − (
√

(l + λUKF)Pk−1|k−1)l, l = n+ 1, . . . , 2N

Further, note that we use the Cholesky decomposition (Cherny, 2005) for com-

puting the matrix square root.
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B.1 The EKF and UKF computing steps

Weight computation

W0
a = λUKF/(l + λUKF), W0

v = λUKF/(l + λUKF) + (1− αUKF2 + βUKF)

Wl
a = Wl

v = 1/{2(l + λUKF)}

λUKF = αUKF2(l − κUKF)− l

Note that αUKF, βUKF and κUKF are tuning parameters.

Propagation steps

χk|k−1 = f(xk−1|k−1, uk)

xk
− =

2N∑
l=0

Wl
aχl,k|k−1

Pk
− =

2N∑
l=0

Wl
v[χl,k|k−1 − xk−][χl,k|k−1 − xk−]T .

Update steps

γk|k−1 = H[χk|k−1]

yk
− =

2N∑
l=0

Wl
aγl,k|k−1

Pyk
=

2N∑
l=0

Wl
v[γl,k|k−1 − yk−][γl,k|k−1 − yk−]T

Kk = (
2N∑
l=0

Wl
v[χl,k|k−1 − xk−][γl,k|k−1 − yk−]T )P−1

yk

xk|k = xk
− +Kk(zk − yk−)

Pk|k = Pk
− −KkPyk

KT
k .

First, we compute various wights (using tuning parameters) and the sigma

points (propagated). During the update stage we compute the transformed sigma

points (i.e., sigma points generated in the state space are then converted to the

observation space). After that we follow various computation stages to compute

the posterior mean and the variance. Note that Kk is the Kalman gain and also

called the cross covariance matrix.
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B.2 Rotation matrix

B.2 Rotation matrix

(a) A 2-dimensional rotation matrix (Curtis, 2006; Evans, 2001) which rotates

points located in the xy plane by an angle θ takes the following form,

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
(b) In general 3-dimensional rotation matrices (Curtis, 2006; Evans, 2001) can

be built from similar rotations by holding one of the coordinate axes fixed.

(1) Rotation with respect to the x axis (rotation angle θ),

Rx =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .
(2) Rotation with respect to the y axis (rotation angle θ),

Ry =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 .
(3) Rotation with respect to the z axis (rotation angle θ),

Rz =

cos θ sin θ 0
sin θ cos θ 0
−0 0 1

 .
B.3 Mahalanobis distance vs. Euclidean distance

The Mahalanobis distance (Mardia et al., 1979; Mclachlan, 1999) (say, dMahal)

indicates the distance between vector x and a distribution with mean µ (and

variance matrix Σ) in number of standard deviations (i.e., how many standard

deviations away). Note that the Euclidean distance (say, dEuclid) is the original

distance between two data pints (basically it is the straight line distance between

vector x and the distribution mean µ). To understand the difference between

two distances consider the following example.
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B.3 Mahalanobis distance vs. Euclidean distance

Figure B.1: Euclidean distance vs. Mahalanobis distance. Of course, x1 is
part of the distribution Dbivariate but x2 is not. However, the Euclidean distances
are same for both the points.

dMahal =
√

(x−µ)Σ−1(x− µ)T ,

dEuclid =
√

(x−µ)(x− µ)T .

Comparing the Euclidean distance and the Mahalanobis distance

Consider a bivariate normal distribution (say, Dbivariate) with µ = [0, 0]T

and Σ =

[
1 0.9

0.9 1

]
and we want to compute the Euclidean and Mahalanobis

distances for points x1 ([1.5, 2]T ) and x2 ([−1.5, 2]T ) to understand whether x1

and/or x2 are part of the distribution Dbivariate or not. Fig. B.1 shows the

distribution and points x1, x2 and µ. Further, results are summarized in Table

B.1.

By comparing results obtained in Table B.1, we can conclude that Maha-

lanobis distance is much more effective than the Euclidean distance for this ex-

ample.
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B.4 The density computation for a bivariate normal distribution

Table B.1: Comparing the Mahalanobis distance and the Euclidean distance.

Computation method x1 x2

Euclidean distance 2.50 2.50
Mahalanobis distance 2.11 7.83

B.4 The density computation for a bivariate nor-

mal distribution

The probability density function for a univariate normal distribution can be writ-

ten as (Mardia et al., 1979),

p(x;µ,Σ) =
1√

2π|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

For a bivariate normal distribution,

x =

[
x1
x2

]
, µ =

[
µ1

µ2

]
, Σ =

[
Σ1 ρcorσ1σ2

ρcorσ1σ2 Σ2

]
.

Here, ρ denotes the correlation (ρcor = COV (X1,X2)
σ1σ2

). Further, σ1(Σ1 = σ2
1) and

σ2 (Σ2 = σ2
2) are standard deviations.

Then,

(x− µ)TΣ−1(x− µ) =
1

Σ1Σ2(1− ρ2cor)

[
x1 − µ1

x2 − µ2

]T [
Σ2 −ρcorσ1σ2

−ρcorσ1σ2 Σ1

] [
x1 − µ1

x2 − µ2

]
=

1

(1− ρ2cor)

(
(x1 − µ1)

2

Σ1

− 2ρcor
(x1 − µ1)(x2 − µ2)

σ1σ2
+

(x2 − µ2)
2

Σ2

)
.

The density can be written as,

f(x1, x2) =

1

2πσ1σ2
√

1− ρ2cor
exp

[
−1

2

1

(1− ρ2cor)

(
(x1 − µ1)

2

Σ1

− 2ρcor
(x1 − µ1)(x2 − µ2)

σ1σ2
+

(x2 − µ2)
2

Σ2

)]
.

Further, if ρcor = 0, then,

f(x1, x2) =
1

2πσ1σ2
exp

[
−1

2

(
(x1 − µ1)

2

Σ1

+
(x2 − µ2)

2

Σ2

)]
.
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B.5 The Gram-Schimdt process

B.5 The Gram-Schimdt process

The rotation matrix G(c) mentioned in Chapters 1, 2, 3 is computed using the

Gram-Schmidt algorithm (Salehi & Dehkordi, 2015; Thornton & Bierman, 1975)

(or the qr decomposition)

Any matrix (say, A) can be written as A = QR, where

A = [a1|a2| . . . |an], (B.1)

u1 = a1, e1 =
u1
‖u1‖

, (B.2)

u2 = a2 − (a2 · e1)e1, e1 =
u2
‖u2‖

, (B.3)

uk+1 = ak+1 − (ak+1 · e1)e1 − . . .− (ak+1 · ek)ek, ek+1 =
uk+1

‖uk+1‖
, (B.4)

Q = [e1, e2, . . . , en], (B.5)

R = QTA. (B.6)

Note that for our case Q is the rotation matrix and A consists of initial

Cartesian-ECI state vectors.

B.6 Taylor series expansion

The Taylor series expansion (Smith et al., 2011; Wikipedia contributors, 2020d)

is an infinitely differentiable series and can be written as,

f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + . . . . (B.7)

In B.7, the Taylor seres expansion of f(x) is taken at a.

The Taylor series expansion of 1
1+x

can be written as

1

1 + x
= 1− x+ x2 − x3 + x4 + . . . . (B.8)

Further, if x is small, Equation (B.8) takes the form,

1

1 + x
≈ 1− x.
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B.7 Matrix basics

B.7 Matrix basics

(1) Suppose A and B are two matrices with same size l1 × l2 then,

A+B = B +A,

A+B = (aij + bij)l1×l2 ,

c(A+B) = cA+ cB = c(aij)l1×l2 + c(bij)l1×l2 ,

where, c is a real number.

(2) SupposeA andB with sizes l1×l2 and l2×l3 respectively and their product

C = AB (size of C is l1 × l3) then,

cij =

l2∑
k=1

ail2bl2j, i = 1, . . . , l1, j = 1, . . . , l2.

(3) Suppose A, B and D are three matrices with sizes l1× l2, l2× l3 and l2× l3
respectively then,

A(B +D) = AB +AD,

(B +D)A = BA+DA.

(4) Suppose A and B two matrices with sizes l1 × l2 and l2 × l3 respectively

then,

(AT )T = A,

(A+B)T = AT +BT ,

(AB)T = BTAT .

(5) Suppose A is a matrix with size l1× l2 and det(A) denotes the determinant

of A then,

det(AT ) = det(A).
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B.8 Key MATLab functions used in this thesis

(6) Suppose A and B are two square matrices with size l1 × l1 then, diagonal

elements of A. Further,

trace(AT ) = trace(A),

trace(cA) = ctrace(A),

trace(AT +BT ) = trace(A+B) = trace(A+B)T = trace(A) + trace(B).

(7) Suppose A is a square matrix (size l1 × l1) and invertible and E (unique)

denotes the inverse of A then,

AE = EA = I,

det(A) 6= 0,

(A−1)T = (AT )−1.

(8) A matrix A is a symmetric matrix iff i) A is a square matrix and ii) A =

AT .

(9) A matrix A is a Skew-symmetric matrix iff i) A is a square matrix and ii)

A = -AT .

(10) A matrix A is orthogonal iff i) A is a square matrix and ii) A−1 = AT .

Further, we can also write,

ATA = AAT = I.

In addition, if det(A) = 1, then A is a rotation matrix (see Section B.2).

(11) A symmetric matrix A is positive definite if xTAx > 0 for all x 6= 0.

(12) A symmetric matrix A is positive definite if xTAx ≥ for all x 6= 0.

B.8 Key MATLab functions used in this thesis

(1) randn. To generate normally distributed random variables.

(2) det. To compute the determinant of a matrix A.
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B.8 Key MATLab functions used in this thesis

(3) inv. To compute the matrix inverse.

(4) dot. To compute the dot product.

(5) cross. To compute the cross product.

(6) qr. To perform the qr decomposition.

(7) chol. To compute the Cholesky factorization.
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Appendix C

List of objects

This portion summarizes various objects used in this thesis.

(1) Object 1 (O1). A = 9078 km, B = 2.6 km/sec and C = 8.1 km/sec,

period = 712 minutes, e = 0.7.

Object classification. HEO object.

Purpose of use. To show that AST coordinates are able to preserve

approximate normality under extreme circumstances. Further, we also use

this object for treating filtering and association examples.

(2) Object 2 (O2). A = 8582 km, B = 0.88 km/sec and C = 6.74 km/sec,

period = 131 minutes, e = 0.13.

Object classification. LEO object.

Purpose of use. This object is located neither at a circular nor at a highly

eccentric orbit. We use this object to demonstrate angles-only propagation

(true angles-only, Chapter 3). In addition, we also use this object for ana-

lyzing the break-up event in Chapter 2 and for solving association problems

in Chapter 6.

(3) Object 3 (O3). A = 42167 km, B = 5e−04 km/sec and C = 3.07 km/sec,

period = 1436 minutes, e = 5e−03.

Object classification. GEO object.

Purpose of use. This object (along with O2) is used to demonstrate the

concept of observer-centric reference frame.
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(4) Object 4 (O4). A = 9078 km, B = 2.50 km/sec and C = 8.1 km/sec,

period = 654 minutes, e = 0.67.

Object classification. HEO object.

Purpose of use. The normal direction vector (h(c)) and its magnitudes

(h(c)) for this object are same with the Object 1. This object is used to

solve the ambiguity in custody problem.

(5) Object 5 (O5). A = 7113 km, B = 4e−03 km/sec, C = 7.47km/sec, period

= 99 minutes, e = 9e−05.

Object classification. LEO object (near circular).

Purpose of use. This object is located at a near circular LEO orbit, we

use this object to show limitations of the Keplerian orbital elements (in

statistical normality analysis).
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Papers

Published papers

(1) S. Bhattacharjee, J. T. Kent, I. Hussein, and M. K. Jah, “Bayesian Filter-

ing using Directional Statistics for Space Debris Tracking Problem”, 68th

International Astronautical Congress, Adelaide, Australia, IAF/ IAC 2017.

(2) S. Bhattacharjee, J. T. Kent, I. Hussein, and M. K. Jah, “Application of

Directional Statistics to Problems in SSA”, 1st IAA Conference on Space

Situational Awareness, Orlando, Florida, USA, 2017.

(3) S. Bhattacharjee, J. T. Kent, I. Hussein, and M. K. Jah, “Filtering under

ambiguity for the debris tracking problem”, 69th International Astronauti-

cal Congress, 2018.

(4) S. Bhattacharjee, J. T. Kent, I. Hussein, and M. K. Jah, “Understanding

the effect of perturbations on the Gaussianity of various coordinates for the

space object tracking problem”, AMOS conference, 2018.

(5) S. Bhattacharjee, J. T. Kent, I. Hussein, and M. K. Jah, “Tackling asso-

ciation and tracking problems using directional statistics to model uncer-

tainty”, 69th International Astronautical Congress, 2018.

(6) J. T. Kent, S. Bhattacharjee, I. Hussein, and M. K. Jah, “Filtering when

object custody is ambiguous”, IEEE, 21st International Conference on In-

formation Fusion, Cambridge, UK, 2018.
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(7) J. T. Kent, S. Bhattacharjee, I. Hussein, and M. K. Jah, “Orbital Error

Propagation Analysis using Directional Statistics for Space Objects”, 27th

space flight mechanics meeting, San Antonio, Texas, USA, AIAA/AAS,

2017.

(8) J. T. Kent, S. Bhattacharjee, I. Hussein, and M. K. Jah, “Angles-Only Data

Association Using Directional Discriminant Analysis”, 27th space flight me-

chanics meeting, San Antonio, Texas, USA, AIAA/AAS, 2017.

(9) J. T. Kent, S. Bhattacharjee, I. Hussein, and M. K. Jah, “Geometric re-

structurization of the space object tracking problem for improved uncer-

tainty representation”, 7th European Conference on Space Debris, ESA/

ESOC, 2017.

(10) J. T. Kent, S. Bhattacharjee, I. Hussein, and M. K. Jah, “The Performance

of a Direction-Based Bayesian Filter in the Orbital Tracking Problem”, the

Astrodynamics Specialist Conference, Stevenson, USA, AIAA/AAS, 2017.

(11) W. Faber, I. Hussein, J. T. Kent, S. Bhattacharjee, and M. K. Jah, ”Optical

Data Association in a Multiple Hypothesis Framework with Maneuvers”,

the Astrodynamics Specialist Conference, Stevenson, USA, AIAA/AAS,

2017.

(12) W. Faber, I. Hussein, J. T. Kent, S. Bhattacharjee, and M. K. Jah, “FBK

Optical Data Association in a Multi-Hypothesis Framework with Maneu-

vers”, AMOS conference, 2017.

(13) J. T. Kent, S. Bhattacharjee, I. Hussein, and M. K. Jah, “Nonlinear Fil-

tering using Directional Statistics for the Orbital Tracking Problem with

Perturbation Effects”, 28th space flight mechanics meeting, Florida, USA,

AIAA/AAS, 2018.

(14) W. Faber, I. Hussein, J. T. Kent, S. Bhattacharjee, and M. K. Jah, “Optical

Data Processing Using Directional Statistics in a Multi-Hypothesis Frame-

work with Maneuvers”, 28th space flight mechanics meeting, Florida, USA,

AIAA/AAS, 2018.
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(15) J. T. Kent, S. Bhattacharjee, I. Hussein, and M. K. Jah, “FISHER-BINGHAM-

KENT Mixture Models for Angles-Only Observation Processing”, 28th space

flight mechanics meeting, Florida, USA, AIAA/AAS, 2018.

(16) S. Bhattacharjee, J. T. Kent, W. Faber, I. Hussein, and M. K. Jah, “Revis-

iting the filtering problem”, IAC, 2019, October.
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derstanding the distribution of the propagated angles-only position vector”,
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Papers recently finished and uploaded at the arXiv
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centered Kalman filters”. (Preprint: arXiv:1907.13501).
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