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Abstract

In the upcoming “smart grid” era, advanced control schemes are required for inverter-
interfaced DERs to guarantee stability of inverter-dominated feeders and microgrids.
Nevertheless, in many of the recently proposed methods, the safe and stable oper-
ation of inverters can not be analytically guaranteed under normal and abnormal
grid conditions.

In this thesis, single-phase grid-connected inverters are initially considered and an
enhanced Current-Limiting Droop (CLD) controller is proposed. In contrast to the
original CLD, which limits the inverter current under a lower value than its maxi-
mum during faults, the proposed controller fully utilizes the inverter capacity. An
inherent current limitation is proven through nonlinear ultimate boundedness the-
ory and is shown to facilitate the operation of Fault-Ride-Through (FRT) schemes.
Furthermore, conditions for asymptotic stability of the closed-loop system are de-
rived. Additionally, a new CLD scheme is proposed, which operates without the
need of a PLL and introduces a virtual inertia property to DERs. In the sequel,
three-phase grid-connected inverters are investigated and a new controller in the
dq-frame is proposed to deal with FRT in three-phase systems. Initially, a novel
method to divide the current into its symmetrical components during unbalanced
faults is proposed. Hence, based on an adaptive bounded integral controller, the
proposed scheme provides voltage support to both positive and negative sequences,
while ensuring the current boundedness and asymptotic stability of the closed-loop
system. In the final part of this thesis, the safe and stable operation of three-phase
inverter-based microgrids is investigated. Particularly, an advanced controller is
proposed to deal with extreme load conditions. Through the proposed scheme, the
limitation of the inverter current during transients is guaranteed, without the need
of online adaptation techniques. Furthermore, the proposed approach significantly
simplifies the stability analysis of microgrids, since it can be investigated through a
Jacobian matrix of reduced size.

Validation methods: The proposed controllers are verified through extended simu-
lation, real-time simulation and experimental results.

Keywords: Nonlinear control systems, Power systems analysis, Stability analysis,
Inverters, Distributed energy resources, Microgrids, Power system dynamics, Grid
faults.
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1 Introduction

Renewable energy sources (RESs) have evolved into a crucial component of power
systems. From the theoretical aspects, RESs are a highly desired energy source
since they are environmental friendly. In particular, photovoltaic systems, wind
turbines, tidal energy systems and other RESs help in decreasing the share of power
production from fossil fuels and decarbonize the power sector, which is one of the
biggest CO2 emitters globally at the moment. From a technical point of view, RESs
represent today the majority of distributed energy resources (DERs) connected to
power grids. For decades, renewable energy sources were being used for electrical
power production, however, their capacities were insignificant compared to the coal,
gas and the nuclear power plants. As the years went by, a need for more electrical
energy production from RESs came up due to their aforementioned environmental
advantages, while certain targets were set regarding their utilization around the
world. European 2020 package was a significant action of the EU leaders in 2007,
that targeted to achieve by 2020, a 20% (or even 30%) reduction in CO2 emissions
compared to the 1990 levels, a 20% of the consumed energy to be coming from RESs
and a 20% increase in energy efficiency. Similar targets are now under agreement in
the EU energy strategies for 2030 and 2050.

Power systems structure has undergone significant changes over the years. In partic-
ular, the apparatus and the adopted technologies have faced a continuous transfor-
mation over the years to deal with different requirements and raised issues. However,
the fact that “changed the paradigm” in the power system structure and operation,
is the massive interconnection of DERs, which either consist from RESs connected
to the grid through power electronics devices (i.e. inverters) or from synchronous
machine-based units, such as hydroelectric plants. When the DERs penetration
level was raised significantly at the transmission and distribution levels, power flow
changed from unidirectional (which was the case under the conventional centralized
generation topology) to bidirectional. Moreover, the inverter-interfaced DERs ex-
hibit a different dynamic behavior than that of synchronous generators. As a result,
a need for new control and protection approaches came up while eventually, a to-
tally different operation principle will be required to locally exploit the capabilities
of DERs. The power grid that would host a high capacity of distributed energy re-
sources to increase the renewable energy sources utilization and that would further
ensure a smart, reliable, safe and economical operation, would be called the “smart
grid.” Among other advancements, this smartness also refers to the smart grid’s abil-
ity to act on its own under variations in the grid conditions or during grid faults.
Hence, the control philosophy of the smart grid becomes a crucial aspect. This au-
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Chapter 1 Introduction

tonomy in decisions, in combination with the local utilization of DERs, is believed
to be a solution to some of the technical issues that arise from the high penetration
of DERs, from the dynamic behavior of inverter-interfaced DERs or from the new
technologies that are getting connected to the grid (e.g. electric vehicles and energy
storage devices). In the same context, with the increased power production from
DERs, the microgrid structure was also proposed to locally utilize the DERs capa-
bilities in a more reliable way. Specifically, the local production and consumption
of electric power is expected to help in hosting higher capacities of DERs and in
achieving a more reliable, efficient and economical operation of the power system,
since microgrids are able to operate either connected to the main (smart) power grid
or in the islanded mode. Therefore, a microgrid corresponds to the structural unit
of the smart grid, which can continue operating normally when faults appear in the
upstream network. Since the smart grid and microgrid concepts are pretty broad at
the moment, a direct transformation from the current power system structure to the
smart grid is not possible, but gradually all the new technologies and infrastructure
aim to this concept.

In the context of control of power generation units, the schemes that are used to-
day for the synchronous generators are considered advanced enough to deal with
most of the disturbances that may come up in power systems, even in the case of
distributed synchronous generators of low power rating. On the other hand, a vast
amount of the DERs interconnected to the power grid are RESs which interfere
with the grid through power electronic devices. However, the massive integration
of these inverter-interfaced units raises issues such as fluctuations in the grid volt-
age and the limitation of the system’s inertia, due to the dynamics of the power
electronic devices. Hence, significant restrictions apply today to the grid integra-
tion of inverter-interfaced DERs and in order to overcome some of these limitations,
advanced control systems are required for the inverter devices of those DER units.
Among other tasks, there is a need for advanced control schemes that can accom-
plish the proportional power sharing between inverter-interfaced DERs and the load
voltage and frequency regulation, while ensuring the protection of the inverter equip-
ment during transients and the stability of the power system. This particular PhD
thesis aims to tackle the aforementioned challenge.

1.1 Aim, Objectives and Potential Impact

The aim of this thesis is to develop novel control methods to be applied to the invert-
ers of inverter-interfaced DERs. Firstly, the grid-connected operation of inverter-
interfaced DERs will be taken into consideration and then, the challenging concept
of inverter-based microgrids will be investigated as well. The proposed controllers
should be capable to operate in the same (unified) structure under both normal and
abnormal grid conditions. Furthermore, the proposed control schemes will desirably
provide an assured stability to the plant, while the relevant modeling and analysis
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1.2 Thesis organization

will be mathematically shown.

The objectives, needed, to meet the stated aim are:

• Obtain the mathematical model of the inverter-interfaced DERs and the rest of
the power components under consideration.

• Develop advanced control schemes based on the upon stated models in order to
meet the requirements coming out from the Grid Codes and in order for the control
systems to become more reliable and simpler to implement.

• Mathematically, ensure the safe and stable operation under normal and abnormal
grid conditions.

• Test the proposed controllers in order to validate their operation.

Validation methods: The controller verification can be performed through i) nu-
merical simulation results, using well-known software environments, ii) real-time
simulation results, which employ a digital simulator to test the system under con-
sideration under the real-world clock rate and iii) hardware experimental results,
using power electronics laboratory setups.

Potential impact of this thesis to the scientific community: Nowadays, the large-
scale utilization of DERs cannot be achieved due to technical and safety concerns.
Hence, the share of renewable energy in energy consumption ranges today from
10% to 40%, in most of the countries. It is a common belief but not fully proven
yet, that with the development of advanced control methods for the power inverters
interfering with the grid, the large-scale utilization of distributed energy resources
can be addressed and therefore larger amounts of electric power coming from RESs
can be utilized, paving the way to zero carbon emissions power networks. This
offers advantages in terms of sustainability, a better environmental outcome and in
practice, the set energy targets by each state to be met. Inherent current limitation,
voltage support under grid faults, virtual inertia introduction, self-synchronization
capability, communication-less safe inverter operation in microgrids are tasks that
if completed and implemented in unified control schemes, the safety and operation
issues discussed above could be overcome and thus, the control system of inverters
could significantly contribute in the transition to the smart grid.

1.2 Thesis organization

The rest of this thesis is organized as follows: In chapter 2, a literature review
of the research topic of this thesis is presented. The required background knowl-
edge is highlighted and the state-of-the-art research is being critically discussed. In
chapter 3, important theorems and stability tools utilized throughout this thesis are
presented. In chapter 4, the case of single-phase grid-connected inverters is con-
sidered. Advanced control schemes are proposed to guarantee the safe and stable

7



Chapter 1 Introduction

operation of the grid-connected inverter-interfaced DERs, while their response un-
der grid faults is also tackled, according to the recent Grid Code requirements. In
chapter 5, three-phase grid-connected inverter applications are taken into consider-
ation. In particular, their safe and stable operation under grid faults is investigated.
Focus is especially given in the unbalanced grid faults case, where advanced schemes
are required to deal with voltage support in both positive and negative symmetri-
cal component sequences. In chapter 6, the operation of inverter-based microgrids
is investigated. Advanced control schemes that guarantee the proportional power
sharing and at the same time ensure an inherent inverter current limitation are
proposed, while the stability of the entire microgrid is also assessed. In chapter 7,
the derived conclusions from this thesis are outlined and future work directions are
given. In the Appendix, supplementary analysis and proofs are presented, while the
list of publications is given in the end of the thesis.
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2 Literature review

2.1 Interfacing DERs to the power grid

The majority of the distributed energy resources (DERs) require power electronic
devices for their connection to the grid [1], as depicted in Fig. 2.1. This is due to
the fact, that nearly all of the renewable energy sources (RESs) units require power
inverters to interfere with the grid. At the same time, the grid operators impose
certain requirements for the connection of those DER units to the power system.
These requirements are most of the times defined in each country’s Grid Code and
continuously get updated as the share of DERs is increasing [2]. Apart from the
requirements that focus on the operation of DERs under normal grid conditions,
methodologies regarding how these units should respond to grid faults (or other
emergency conditions) are also given from the operators. A vast amount of these
ancillary services, can be satisfied from the DERs through the appropriate design
of the inverter control system and this is the reason that power inverters’ control
is researched - among other topics- from both power and control engineers in order
to establish a “smart” future power system, also named as a “smart grid”. Hence,
concurrently with the modern grid requirements and technologies that pave the way
to the smart grid era, the inverters should accomplish specific tasks in order to
switch to their smart era as well. In this context, the “smart inverter” concept is
introduced based on the features of: self-awareness (e.g. monitoring, diagnostics,
fail-safe), adaptability (e.g. self-tuning, fault-tolerant), autonomy (e.g. load sharing,
limited communication), cooperativeness (e.g. optimization, stability enhancement)
and plug-and-play techniques (e.g. operate without technical configuration) [3].

2.2 Grid Code requirements for DERs

2.2.1 Low and zero inertia power networks

The interconnection of DERs to the power grid is performed under specific guide-
lines, given from the grid operators. With every new guideline release, new control
techniques may appear as a recommended or required practice for DERs. Instruc-
tions are given regarding the desired response of DERs, not only in each country’s
Grid Code [2], but also in the ENTSO-E guidelines for the European supergrid
[4]. Moreover, specific ancillary services are usually required from the DERs, under
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Figure 2.1: Transition of the power system into its “smart” era

abnormal grid conditions. The main reason that these instructions and required
services continuously get updated nowadays, is the “paradigm shift” that power
systems face due to the increasing penetration of DERs. In particular, the massive
interconnection of DERs at the distribution system allowed bidirectional power flow
at the feeders, while due to the dynamic response of inverter-interfaced DERs, the
inertia constant started getting limited [5, 6]. However, this lack of inertia may
lead to undesirable events during transients. To highlight this trend, National Grid
in United Kingdom has presented a diagram, depicted in Fig. 2.2, that predicts
how system’s inertia will be limited in the following years [7]. Hence, new control
and protection techniques are required for power networks with increased share of
inverter-interfaced DERs [8].

In the special scenario of inverter-dominated systems which arise in the case of
feeders where inverter-interfaced DERs supply a critical part of the the load (feed-
ers with high penetration level) or in the case of islanded microgrids without syn-
chronous machine-based DERs, the zero inertia may lead to catastrophic events.
Soon enough, it is expected that new requirements will come up regarding low and
zero inertia power networks. As a matter of fact, an IEEE task force is at the mo-
ment active and investigates this issue [9]. In light of these concerns, the relaxation
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Figure 2.2: Inertia estimation by National Grid [7]

of the Grid Code requirements, the use of stand-by synchronous generators to pro-
vide inertia and the virtual inertia provision by inverter-interfaced DERs have been
proposed [10, 11]. Regarding the latter case, control techniques have been proposed
to virtually introduce inertia to the DER units, through the inverter control system
[12, 13, 14, 15, 16]. In practice, these techniques govern the frequency response of
DERs, thus mimicking the inertia constant of synchronous machines. Nevertheless,
most of the renewable DERs do not have a rotating mass to inject or absorb (store)
energy during transients. To tackle this issue, solutions have been proposed based
on supercapacitors at the inverter DC link [17, 18]. The virtual inertia introduc-
tion through the control system of inverter-interfaced DERs has shown satisfactory
preliminary results and it represents a possible requirement of the future Grid Codes.

As it was already mentioned, different techniques have been proposed to inherit
a virtual inertia property to DER units through their control system. However,
limited research has focused on how virtual inertia should be placed in the power
grid. In [19], the problem of optimal placement of virtual inertia in power systems
is investigated and a solution based on an optimization problem is proposed. The
results of the proposed optimal placement method are highlighted through a case
study that considers a three-region power system. Another study that addresses
the same problem can be found in [20], where initially the grid is modeled through
the swing equations and then, for the optimal placement of virtual inertia, inertia
and damping at each node are optimized such that the frequency transient behavior
is acceptable. It should be highlighted that one of the conclusions in [19], is that
the resilience of the power system mostly depends on the location of the possible
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disturbance and the inertia placement in the grid, rather than the total inertia of
the system. The latter result may be of great interest for the future Grid Codes.

2.2.2 Operation under voltage drops

One of the most recent Grid Code requirements for DERs, is the Fault-Ride-Through
(FRT) scheme. According to the FRT scheme, DERs should remain connected to
the grid and support the point of common coupling (PCC) voltage, when grid faults
occur. The idea behind this scheme lies on the fact that with the increased share
of DERs, the power system could be benefited through ancillary services that the
DERs can provide. Moreover, since the DERs nowadays supply a critical share of
the load of power networks, disconnections during minor grid faults would reduce the
reliability of the power system. From the technical point of view, this requirement
usually consists of voltage/ time tripping curves that both synchronous machine-
based DERs and inverter-interfaced DERs should follow. As an example, the desired
operation under faulty grid conditions, according to the German BDEW curve [2], is
depicted in Fig. 2.3. One can notice in this figure that when the voltage at the PCC
is greater than 0.9 p.u., each DER should continue its normal operation. However,
under more severe voltage drops, a minimum time during which the DER should
remain connected to the grid is defined. During this time period, each DER should
supply reactive power to support the grid voltage, based on the predominantly
inductive nature of the power system lines. The amount of reactive power to be
injected, most of the times, depends on the voltage drop. As an example, in [21], it
is stated that the reactive current component iq is selected as

iq = k∆V, (2.1)

where k is defined as the FRT gain and ∆V is the PCC voltage drop. Even if each
Grid Code usually defines exactly how the DERs should operate during faults, from
the control perspective, different FRT schemes that aim to optimize the voltage
support operation have been proposed in the literature. Furthermore, even though
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the original FRT scheme was proposed for faults in the transmission system, recent
applications of FRT schemes have emphasized on faults in the distribution system
as well [22]. The application of FRT schemes during voltage drops, is also met in
the literature as the Low-Voltage-Ride-Through (LVRT) scheme [22, 23].

A significant number of lately published works, has proposed different control schemes
with FRT capability for inverter-interfaced DERs. In [24], a control scheme to sup-
port PCC voltages during grid faults is presented. This technique has the ability to
determine the amount of reactive power that needs to be injected in order for the
faulty voltages to be lifted inside an acceptable range, according to the Grid Codes.
This work though is limited to symmetric faults and this is the reason that in [25],
the same controller is redesigned such that to define the reactive power injection
through positive and negative sequence components control, to extend its applica-
tion to asymmetric and time varying grid faults. Experimental results verified the
operation of both control schemes. In [26], the FRT gain k, shown in Eq. (2.1), is
investigated for its impact to the inverter operation during grid faults. Moreover,
a technique that injects reactive power during grid faults according to the German
FRT requirement and concurrently reduces the real power to avoid overloading, is
proposed. Then, it is highlighted that a new kind of instability (namely “current
angle instability”) occurs due to the difference between the angle of the reference
current and the angle of the output impedance, which can lead to loss of synchro-
nization. This instability stresses the system when severe voltage drops occur, close
to the PCC of each DER. In order to analyze this kind of instability, some assump-
tions are made; specifically, i) the consideration of the PCC voltage to be equal to
the voltage drop at the inverter output impedance and ii) the consideration of the
DER as a current source converter due to the fast inner current controller. As a so-
lution to this instability, the locking of the synchronization unit under severe voltage
drops is proposed. In [27], an adaptive control technique is proposed, which utilizes
an online gain tuning during disturbances to familiarize grid-connected photovoltaic
systems with the Low-Voltage-Ride-Through requirement. Finally, in [28], a LVRT
control technique is proposed that ensures the full exploitation of the power capa-
bilities of a photovoltaic DER, when voltage drops occur. The proposed scheme is
based on modifying the current reference values, to inject real and reactive power to
the grid through positive and negative sequence components control, in a way that
fully utilizes the plant capabilities for the LVRT. Hence, through this control scheme,
two objectives are fulfilled during voltage sags: i) maximum available current is in-
jected independently of the voltage sag magnitude, ii) real power oscillations are
avoided. However, the employed current-limiting technique is based on limiting the
reference current values, i.e. the current limitation is ensured only at the steady
state. Note that for every FRT or LVRT technique, the considered current-limiting
technique is of crucial importance and hence, it will be extensively investigated in
the sequel. Furthermore, it should be highlighted that most of the control schemes
that deal with FRT techniques, do not investigate the operation during normal grid
conditions. Nevertheless, the control system of inverters in power systems with high
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share of DERs should be capable to operate in a unified way under both normal and
abnormal grid conditions, while ancillary services may be required from the DERs
during the normal grid operation as well. Finally, the closed-loop system stability
is rarely investigated under the control schemes with FRT capability.

As it is clear in the previous review, research regarding the response of inverter-
interfaced DERs during grid faults, is not limited to balanced faults. Thus, when
negative sequence components come up in the power system, the control system
should act in way that ensures the safe inverter operation and the grid support
provision. In this context, different control objectives are met in the literature:

1) Avoiding the power oscillations that occur from the interaction of positive and
negative sequence components, as in [28, 29]

2) Provision of balanced current and hence, only positive sequence power injection
to the grid, as in [30, 31]

3) Provision of voltage support through increasing positive sequence voltage and
reducing negative sequence voltage, as in [32, 33].

Regarding the 3rd objective, recently, guidelines for negative sequence voltage re-
duction have been proposed [34]. The wider concept of adopting voltage support
schemes for both the positive sequence voltage (FRT & LVRT) and the negative
sequence voltage, is commonly denoted as the “voltage support concept” [35]. This
constitutes in DERs supporting (increasing) the positive sequence voltage and elimi-
nating (decreasing) the negative sequence voltage, which comes up when unbalanced
grid faults occur. Nevertheless, this concept has an increased complexity regarding
the required current-limiting technique, as it will be discussed in the sequel.

As it can be understood from this section, the desired response of inverter-interfaced
DERs during transients can be guaranteed through advanced control schemes. Sim-
ilarly, the response of inverters during normal grid conditions can be optimized
through their control system. Finally, it should be noted that inverter-interfaced
DERs correspond to the majority of DER devices and this is the reason that this
thesis focuses on the control of inverter-interfaced DERs, to enable large scale uti-
lization of DERs and RESs. Hence, in the sequel, a thorough review of control
schemes of inverter-interfaced DERs will be presented, both for the grid-connected
mode and the islanded microgrid operation.

2.3 Control of grid-connected inverter-interfaced

DERs

As it is stated in [36], the fundamental requirements for a power system are “i)
to uninterruptedly feed the loads with the required powers, ii) to feed the loads
in the minimum cost and with minimum environmental impact and iii) to follow
certain guidelines regarding the quality of the power supply.” In order to meet
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these requirements, different control techniques in more than one control levels are
used today for the bulky generation units, while methodologies for optimizing the
operation of the generation system are still under research. Similarly, in the context
of inverter-interfaced DERs, the control system can guarantee the safe and reliable
operation of inverter-dominated power networks. In [37], a review is presented
regarding control schemes that have been proposed for grid-connected inverters.
The main differences between these control schemes arise from the adopted control
technique, the reference frame transformation (which will be discussed later), the
feedback loops used (single or cascaded), the output filter design and the modulation
method used. In the end, the major characteristics of each control system under
investigation are listed on a table.

The control techniques applied to the large synchronous generators are nowadays
considered well established, since their operation is based on the governor and au-
tomatic voltage regulator (AVR) devices [36]. Apart from optimizing the operation
during normal grid conditions, the settings of these devices can also define the tran-
sient response of the synchronous generators under any faults in the power grid. On
the one hand, by assuming that the large synchronous generators are able to guar-
antee power system stability (in terms of voltage and frequency regulation), control
of inverter-interfaced DERs has been based for years on current-controlled inverters,
using PI or PR controllers. In these control schemes, the current references are gen-
erated such that the maximum available power of the prime mover is injected to the
grid and that the DC bus voltage is kept inside its limits. Based on this technique,
the concept of grid-following inverters was defined. However, since recently the share
of DERs has vastly increased, power system stability can not be governed solely from
the bulky synchronous generators [16]. Inspired by the electromechanical character-
istics of the synchronous generators and the corresponding governor and AVR-based
control techniques, there is a trend in inverter-interfaced DERs control, to mimic
the response of the synchronous generators through sophisticated power controllers.
In this context, the droop controller [38], the virtual synchronous generator (VSG)
[39], the synchronverter [16], the virtual synchronous machine (VISMA) [40] and the
synchronous power control (SPC) [41] concepts have been proposed among others
to mimic the synchronous generator response, both in the steady state and during
transients. The common property of all these techniques, is the inclusion of the
droop control characteristics for the voltage and frequency regulation. The droop
control concept mimics the behavior of the governor and the AVR of the synchronous
generators, by modifying the power injection such that to regulate the voltage and
the frequency close to their set points. The VSG is actually the combination of the
droop control technique and virtual inertia introduction in the control system. The
synchronverter, apart from the virtual inertia, virtually introduces the friction coef-
ficient and the field and mutual inductances in order to faithfully mimic the dynamic
behavior of a synchronous generator. The SPC introduces into the inverter opera-
tion both the electrical and the mechanical characteristics of synchronous generators
and on top of that, it manages to overcome some of the limitations of synchronous
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generators. In these cases, the droop-controlled inverter-interfaced DERs are not
classified any more as grid-following, but as grid-forming units, since they take part
in the regulation of the load voltage and frequency. It should be highlighted that
the above methodologies are met both in grid-connected and in islanded micro-
grid applications. However, more challenging control tasks are met in the islanded
inverter-based microgrid operation and this is why control in microgrids is going to
be reviewed separately in the sequel.

The aforementioned advanced grid-forming droop-based control schemes correspond
to the power controller part of the inverter control scheme. Apart from the droop-
based schemes, PQ regulation control (it can be met as PQ−set control as well)
or unity power factor control (where Q = 0) are commonly adopted at the power
control stage as well. Note that when the power controller adopts the PQ-set or
unity power factor control schemes, the inverter is classified as grid-following while
when the power is regulated according to droop control schemes, the inverter is
classified as grid-forming, as it was already mentioned. Since grid-forming controllers
are expected to pave the way towards large-scale utilization of inverter-interfaced
DERs, a variety of enhanced grid-forming power control schemes have been proposed
in the literature. The majority of the proposed techniques aim to enhance the
functionalities of the inverter and to optimize the DER behavior under different
grid conditions. As an example, in [42], the impact of grid fluctuations to the the
power flow in a grid-connected inverter is analyzed. Then, an enhanced droop control
scheme is proposed which mitigates the power flow control issues, by feed-forwarding
the grid voltage and frequency into the droop control law. Finally, the proposed
control scheme is further modified to guarantee closed-loop system stability.

The appropriate control technique to be used each time, depends on the characteris-
tics of the setup under investigation and the ancillary services that are required from
the inverter-interfaced DER. Even if the grid-following single-loop current control
structure [25] is widely used today in real-world grid-connected inverter-interfaced
DER applications, multi-loop controllers [6] have gained popularity due to the raised
stability concerns in the upcoming smart grid era [8]. These multi-loop schemes have
extra capabilities such as voltage regulation and smooth synchronization, while they
can adopt both grid-forming and grid-following power control schemes. In order to
better understand the structure of a typical multi-loop (cascaded) controller used
for grid-connected inverters, the most commonly used units will be summarized in
the sequel.

Common controller units for grid-connected inverter-interfaced DERs:

• Phase Locked Loop: The phase locked loop (PLL) unit is used to measure the
frequency and the angle at the PCC of the inverter-interfaced DER and it is usually
required for the safe synchronization of the inverter with the grid.

• Power Calculation block: The power calculation block uses the current and voltage
measurements to calculate the output real and reactive powers. These calculations
are required for the power controller operation.
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• Power Controller: The power control stage is usually the slowest control action
(has the lowest bandwidth) and performs the real and reactive power regulation
according to a variety of different methods (e.g. grid-forming droop control or grid-
following reference power regulation control), through PI controllers or statically.

• Virtual inductance/ resistance: In some cases, a virtual inductance or resistance
may be introduced at the power controller stage to accomplish different tasks such
as current limitation [43] or output impedance shaping [1].

• Voltage Controller: The voltage controller regulates through PI or PR controllers
the inverter output voltage to a reference value which is usually defined by the power
controller. A better power quality is guaranteed with the voltage controller while
pre-synchronization issues are coordinated through this control loop as well [1].

• Current Controller: The inner current control loop is usually the fastest loop
(has the highest bandwidth) and regulates through PI or PR controllers the inverter
current to its reference value, which is usually defined by the voltage controller. In
cases where the inverter parameters are accurately known and there are no uncer-
tainties, a P controller may be enough for the inverter current regulation. However,
in realistic systems, uncertainties are commonly present and that is why PI and PR
controllers are usually preferred. The current controller significantly enhances the
quality of the output current [1].

• PWM Generator: The PWM generator is the final stage of the controller and
transforms the desired inverter voltage into the required pulses to control the inverter
semiconductor switches.

The typical multi-loop control structure for grid-connected inverter-interfaced DERs
is depicted in Fig. 2.4.

Note that as discussed in [15], power controllers with inherited synchronization and
voltage regulation capabilities, have been proposed to replace the cascaded con-
troller structure [30, 44, 45]. Furthermore, according to the requirements of each
application, a variety of other units may also be introduced in the control system,
e.g. saturation units to limit reference values of voltage or current, communication
channels for the implementation of hierarchical control structures or switches to
switch between different controllers [46, 47]. Moreover, in three-phase inverters, a
useful technique that simplifies the control implementation and the controller analy-
sis is the adoption of reference frame transformations [48, 49]. Instead of the natural
reference frame (NF or abc frame), the stationary reference frame (SF or αβ frame)
and the synchronous reference frame (SRF or dq frame) are commonly employed.
The αβ frame transforms a three-phase sinusoidal signal into a new frame with two
sinusoidal components, thus simplifying the control design, while the dq synchronous
reference frame, utilizes a rotational transformation, which translates a three-phase
sinusoidal signal into DC components (at the steady state) and hence, enables the
use of traditional integral control schemes. Thus, reference frame transformation
blocks may also be met in the control implementation.
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Figure 2.4: Typical structure of the control system of inverter-interfaced DERs

Finally, it should be noted that the described controller structure is subject to
improvements, such as:

• Removing the PLL: Research is conducted on how the PLL can be removed from
the controller since it is inherently nonlinear and moreover, the inverter performance
may be degraded from oscillations at the measured frequency, due to possible DC
offsets in the PLL input. In response to this issue, self-synchronization techniques
have been proposed for grid-connected inverters [15, 43, 50].

• Avoiding the integrator wind-up phenomenon: Another issue, commonly discussed
in the literature, is the integrator wind-up that may occur when saturation units are
placed in the output of integral controllers (IC) in order to bound the control input
of the plant [51]. Specifically, when the output of the controller is saturated, the
controller is actually getting deactivated and this can lead to undesired performance
or instability [52]. In response to this issue, a number of works have introduced
anti-windup techniques [51, 53, 54]. However, the only approach that has managed
to implement the IEEE anti-windup PI control model for dynamic analysis of power
systems, is the one in [55]. Lately, the proposed in [56] bounded integral controller
(BIC) is shown to be able to replace the traditional integral controller, while ensuring
the control state boundedness and closed-loop system asymptotic stability. This
work is supplemented by [57], where an enhanced version of the BIC is proposed to
mimic more adequately the operation of the traditional IC while ensuring a bounded
output and to de-stress the assumptions made in the original BIC about the initial
values of the controller states.

The above description and discussion offers a general design approach for the con-
trol system of grid-connected inverter-interfaced DERs. Even if the same structure
(with the corresponding challenges) is often used in microgrids, the control design
for inverter-interfaced DERs in islanded microgrids is a more challenging task and
thus, it will be separately reviewed. Furthermore, due to their popularity both in
grid-connected and in microgrid applications, droop-controlled inverters will be also
separately reviewed in the sequel.

18



2.4 Control of inverter-based microgrids

2.4 Control of inverter-based microgrids

In the absence of grid connection, the power produced from DERs needs to match
the requested load power. In the same context, the control of standalone DERs can
not follow current control techniques as in the case of DERs connected to stiff grids,
but has been based for years on voltage control schemes, where the load voltage
is regulated to its nominal value. Nevertheless, with the increased integration of
DERs, the formation of microgrids which host multiple DERs, raised new issues
regarding the control system design, like the requirements for proportional power
sharing and network voltage/frequency regulation.

A microgrid is a “small scale” power system that hosts production and consump-
tion units, while it has the ability to operate either connected to the main grid or
as an island. As stated in [58], the difference between a microgrid and a distri-
bution system feeder with DERs, is the control philosophy. A microgrid can be
considered as a part of the grid that is independently controlled. This does not
hold for any feeder hosting DERs since each feeder can not necessarily operate in
islanded mode. The microgrid concept was originally presented in [59], as the future
power system structural unit. In the same work, the first concepts about the mi-
crogrid control system, protection system and energy management techniques, were
briefly proposed. Nowadays, nearly two decades after those first concepts, advanced
control techniques have been proposed for microgrids which vary between central-
ized or decentralized schemes and between primary or multilevel control systems
(similarly to the conventional power system control levels structure), according to
the required reliability and ancillary services for each application. Moreover, since
inverter-interfaced DERs correspond to the vast majority of grid-connected DERs,
the inverter-based microgrid concept has attracted a lot of attention [6].

A significant challenge under the islanded inverter-based microgrid configuration, is
how the inverter-interfaced DERs will share the load proportionally to their ratings,
in order to ensure an efficient operation and increase the devices lifetime. This chal-
lenge combined with the need for load voltage and frequency regulation restricts the
primary control of inverter-interfaced DERs in islanded inverter-based microgrids
to grid-forming control techniques. Droop control is the most widely used primary
control technique in microgrids, due to its ability to regulate the load voltage and
frequency and at the same time share the power according to the capacity of each
inverter, without requiring any communication links [6, 38, 60]. Apart from droop
control, other primary grid-forming control schemes have also been proposed for
microgrids, like the virtual oscillator control [61, 62]. Nevertheless, droop control
remains the most widely used technique in microgrids [63, 64], either by directly
being applied to inverter-interfaced DERs in its conventional form [6] or by utiliz-
ing the advanced droop control schemes that were discussed in the previous section
[16, 39, 65].

For a long time, different control levels have been utilized for the proper power
system operation, i.e. hierarchical control structures with primary, secondary and
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tertiary levels. Likewise, hierarchical control structures have been proposed for
inverter-based microgrids as well. In [8], the primary, secondary and tertiary control
levels of microgrids are classified. The primary control level of grid-forming inverters
aims to stabilize voltage and frequency, as it was previously discussed, while it does
not require any communication links, since it acts in a decentralized manner based
on the local inverter measurements. However, it usually introduces an error in the
voltage and frequency regulation and the power sharing is accurate only when the
p.u. output impedance of every inverter is the same [1]. Hence, aiming to address
optimization issues, the local primary control is not enough and a need for higher
control levels comes up. Regarding the higher control levels, the secondary control
level aims at restoring the microgrid voltage and frequency to their rated values and
furthermore, at restoring the proportional power sharing between inverter-interfaced
DERs. Then, the tertiary control level is used to optimize the power flow and the
operation cost between interconnected microgrids or between a microgrid and the
main grid [66]. A typical hierarchical control structure consisting of primary, sec-
ondary and tertiary levels is depicted in Fig. 2.5. In [66], a complete framework of
hierarchical control of inverter-based microgrids is proposed. Specifically, primary,
secondary and tertiary controllers are presented and the proposed scheme is verified
experimentally. However, a centralized secondary control scheme is proposed, while
power sharing restoration is not considered. It should be highlighted that distributed
secondary control schemes are more reliable than centralized schemes, which have a
single point of failure and require more communication links. To face these issues,
the reactive power sharing restoration is performed through a distributed controller
in [67]. In [68], the effect of the voltage and frequency restoration to the restoration
of the real and reactive power sharing is analyzed and a distributed controller is
proposed to guarantee voltage and frequency restoration and proportional power
sharing, simultaneously. A review is performed in [69], where the recently proposed
primary decentralized control schemes and their stability analysis are presented.
Furthermore, microgrid hierarchical control techniques are presented. It is note-
worthy that since the higher control levels require communication links which may
fail for various reasons, every inverter in a microgrid should always be capable to
operate only with its primary grid-forming controller, as a backup solution.

Another crucial challenge in control of microgrids, is to ensure that a microgrid
can smoothly connect and disconnect to the main grid, when this is required [8].
This transition between the grid-connected and the islanded modes usually requires
information which is not available locally (e.g. the grid frequency and the grid phase
sequence). Thus, the appropriate control action is commonly performed through the
secondary or the tertiary control level. In [70], the droop control law is modified
during the synchronization process, such that to achieve a smooth connection to
the grid, by utilizing a distributed control scheme. A similar technique is presented
in [71], where seamless transition is achieved by modifying the droop control law,
using a central controller that transmits the grid voltage measurements to each unit.
In [44], a droop-like universal primary controller that has the ability to seamlessly
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Figure 2.5: Different control levels of microgrids

transit between the two operation modes is proposed. The control scheme in [44] can
guarantee voltage and frequency regulation when in islanded mode and control the
real and reactive power injection when in grid-connected mode. This controller is
modified in [72] to be applied to three-phase inverters, while in [30], it is redesigned
so that it can follow the FRT guidelines during unbalanced grid faults.

2.5 Droop Control of inverter-interfaced DERs

As it was highlighted in sec. 2.4, droop control is the most widely used primary
control method in microgrids, while as it was discussed in sec. 2.3, the droop control
technique is useful in the case of grid-connected inverters as well, due to its volt-
age and frequency regulation property. Hence, the droop control technique will be
analytically discussed in this section.

Droop-controlled inverters operating in parallel were firstly investigated in [38]. In
[38], real and reactive power sharing between two inverters was achieved through the
droop control technique, without using any communication links. Nowadays, droop
controllers are considered for most of the inverter-interfaced DERs which integrate
renewable energy sources and distributed storage devices to inverter-dominated net-
works. Note that even if most of the inverter-interfaced DERs have a renewable
energy source as a prime mover, energy storage devices have the ability to take part
in voltage and frequency regulation too and thus, droop control is commonly utilized
for these devices as well.

Droop control offers many advantages both in the grid-connected and in the islanded
modes of operation of inverter-interfaced DERs. In an islanded microgrid scenario,
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droop-controlled inverters are able to regulate the load voltage and frequency close
to their rated values and share the load according to the DERs capacities, by con-
trolling two values - the angular frequency and the voltage magnitude. The propor-
tional power sharing capability is subject to errors due to inaccuracies in the output
impedance of each inverter. In fact, only when the p.u. output impedance of each
inverter in a microgrid is the same, accurate real and reactive power sharing will
be achieved [1]. Apart from its benefits in the islanded mode of operation, droop
control is beneficial in the grid-connected mode as well, since it enhances the in-
verters with the ability to regulate the injected power according to the grid voltage
and frequency. This ability is of great importance in feeders with high penetration
level of inverter-interfaced DERs, since if all the units of a feeder were injecting
the maximum available power and did not take part in the voltage and frequency
regulation, overvoltage phenomena could arise and the DERs could eventually trip.
Nevertheless, as in [63, 73], droop control is more widely used by inverters in is-
landed microgrids, while for grid-connected inverters, the power regulation through
current controllers is the most common approach in the industry today.

To better understand the droop control operation, the nature of the output impedance
needs to be introduced. The output impedance refers to the impedance between the
PCC of each generation unit and the load, as shown in Fig. 2.6. Traditionally, the
transmission system of power networks possesses an inductive impedance due to the
long transmission lines. Furthermore, the heavy transformers in the output of the
power plants make the impedance nature even more inductive. This inductive na-
ture of the power system lines introduces the P ∼ ω and Q ∽ V relations, i.e. real
power is mainly related to the frequency of the grid and reactive power mainly re-
lates to the grid voltage [1, 66]. The operation of the AVR and the governor devices
(that control the behavior of synchronous machines) is based on the aforementioned
relations. In a similar manner, by assuming an inductive output impedance for the
inverter-interfaced DERs, the conventional droop control is also defined based on
the P ∼ ω and Q ∽ V relations [6, 38]. These droop functions are defined by the
Grid Code [74] and CERTS [75], and should be followed by DERs that take part
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Figure 2.7: Conventional droop control curves

in the voltage and frequency regulation. To this end, the conventional static droop
control functions take the form

ωi =ω0 +mi (Pset − Pi) (2.2)

Vi =V0 + ni (Qset −Qi) , (2.3)

where ω0 is the nominal angular frequency, Vo is the nominal voltage, mi and ni are
the droop coefficients which define the power injection according to the deviation
from the nominal voltage and frequency and Pi, Qi are the measured real and reactive
powers. In practice, equations (2.2)-(2.3) define the desired output voltage and
frequency of a voltage source, as the one shown in Fig. 2.6, where θi = ωit + δi.
The corresponding droop curves are depicted in Fig. 2.7. It should be highlighted
that Pset and Qset, which are the reference values of the output real and reactive
power, are mostly used during the grid-connected operation, while they are usually
removed in the islanded microgrid operation, where producing excess power may lead
to instability. Note that aiming to guarantee proportional power sharing between
DERs in inverter-based microgrids, all DERs should adopt the same droop control
design (e.g. selection of droop coefficients).

As it was discussed, droop control is an important control method due to the advan-
tages that it offers. Hence, it remains an active research topic and new concepts are
continuously being proposed. In the following list, some of the most recent advances
in droop control of inverter-interfaced DERs are presented:

• Research on output impedance shaping and universal droop schemes: When
the output impedance is not of inductive nature, the droop relations of (2.2)-
(2.3) can not guarantee the proportional power sharing and the voltage/ fre-
quency regulation anymore. In these cases, the droop relations are modified
to P ∼ V, Q ∼ −ω for resistive output impedance and to P ∼ −ω, Q ∼ −V
for capacitive output impedance [1]. Note that the resistive output impedance
scenario mainly corresponds to low voltage power networks or to cases of mixed
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output impedance (i.e. resistive-inductive), where a virtual resistance is in-
troduced through the control design to shape the output impedance [1, 76].
Similarly, in the case of mixed output impedance, a virtual inductance may
also be introduced through the control design in order to use the conventional
droop equations of (2.2)-(2.3). This virtual impedance (resistance or induc-
tance or both) concept is a commonly used technique to ensure the proper
operation of droop-controlled inverter-interfaced DERs. Nevertheless, the dy-
namic stability of the closed-loop system is affected from the introduction of
the virtual impedance and this effect should always be considered in the con-
troller analysis [77]. Furthermore, the calculation of the virtual impedance
value is a difficult task, since it introduces a virtual voltage drop. In [78], un-
der an adequate selection of droop parameters, the performed analysis shows
that power sharing can be properly achieved in a highly resistive AC microgrid
by adopting the conventional droop controller instead of the modified P ∼ V,
Q ∼ −ω scheme. In [79], a universal droop control scheme is proposed that
does not depend on the nature of the output impedance.

• Research on robustness to system loading: Most of the studies regarding droop
control schemes for inverter-based microgrids consider balanced loading and
only fundamental frequency components. However, the analysis done for bal-
anced systems does not hold under unbalanced or other distorted conditions.
As an example, regarding the analysis of three-phase microgrids in the dq
frame, the dq components do not remain constant (DC) in the steady-state
under unbalanced conditions. In [80], unbalanced microgrid loading is con-
sidered and in order to overcome the negative sequence current sharing error
and the overcurrent stress issues that may occur, a combination of droop con-
trol and a supplementary model predictive control (MPC) action is proposed.
The proposed scheme can degrade the system unbalance while ensuring the
inverter current limitation. Nevertheless, the effectiveness of this technique is
not verified experimentally but through simulation results only. The micro-
grid stability under this control technique is not verified as well. Similarly,
droop controllers have been proposed to deal with the sharing of loads with
higher harmonic content [1, 81]. Finally, the controller in [76], which intro-
duces the P ∼ V and Q ∼ −ω droop equations for the case of resistive output
impedance, is shown to achieve a good power sharing even in the case of non-
linear loading.

• Research on enhanced droop control schemes to provide ancillary services: Ac-
cording to the discussion in sec. 2.1, a challenge arises in developing control
schemes of inverter-interfaced DERs that combine the droop control mecha-
nism for the steady-state response with extra properties to maintain grid sta-
bility during transients. The most common ancillary services that are required
from inverter-interfaced DERs have to do with the performance of those units
under transients. Aiming to deal with problems arising from the low inertia
of inverter-dominated power networks, many droop-based power controllers
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have been proposed to virtually introduce inertia to DERs [16, 39, 65], while
the optimal placement of virtual inertia has been investigated as well [19].
Nevertheless, recently it has been proven that the conventional droop con-
troller inherits a virtual inertia property through the low pass filter that is
usually required for the average real power measurement [63]. Hence, under
a certain selection of the control parameters, the droop control and the VSG
control schemes become identical. Note though that obtaining the average
power through integration (instead of low pass filtering) has been shown to
improve inverter transient response [77]. At the same time, other approaches
aim to exploit the fast dynamics of inverter-interfaced DERs, such as the V/I
droop control proposed in [82]. In [82], it is shown that the power sharing
problem can be translated into a current sharing problem, where the nonlin-
ear power measurements are not required. In particular, it is shown that if
the inverter reference voltages vary according to the inverter currents, proper
power sharing can be achieved. As in the case of the conventional droop con-
trol scheme, the dynamic response of the proposed control scheme is mainly
associated with the selection of the droop coefficients. Last but not least, since
droop-controlled inverters are widely used in grid-connected inverter applica-
tions as well, their ability to provide grid voltage support during transients (as
discussed in sec. 2.2.2), while ensuring a safe (limited) inverter current injec-
tion is of great importance. Hence, rigorous techniques that inherit the desired
current limitation in the droop controller have been proposed in [45, 64]. This
concept will be analytically discussed in the sequel.

Apart from the aforementioned broad categorization, many strategies that deal with
a variety of different issues have been proposed, based on the droop control mecha-
nism. A review about different control strategies that aim to achieve proportional
power sharing in islanded microgrids can be found in [83]. In [84], a dual droop con-
trol scheme is proposed for two-stage converters. The main novelty of this work lies
on the fact that except for the output real and reactive powers, the inverter DC link
voltage regulation is considered in the control design in order to avoid the instability
that may arise when the required power injection from the droop controller can not
be supplied from the prime mover. However, it would be interesting to further con-
sider voltage drops in the AC microgrid, since faults in the AC side may affect the
DC-link voltage regulation. As a matter of fact, investigating every proposed control
scheme under faulty conditions is essential in order to be considered for real-world
applications, since overcurrents or overloading conditions may lead to infrastructure
damages. In [85], a droop controller that combines a virtual impedance introduction
with a voltage compensation technique is proposed to achieve accurate real and re-
active power sharing between DERs in a microgrid, during both the transient state
and the steady-state. Balanced, unbalanced and nonlinear loads were considered
for the simulation verification, while both single-bus and multi-bus microgrid cases
were investigated. However, the stability of the microgrid has not been investigated
under the proposed control scheme. In [86], an extra feed-forward term is added
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to the current controller of a cascaded droop control scheme in order to facilitate
the droop control operation in the grid-connected mode. In the islanded mode, this
controller is able to switch between the conventional droop control mode, the power
quality control mode (which adapts to the nominal frequency and voltage magnitude
values) and the sync control mode (in which the droop characteristics are modified in
a way to achieve a smooth grid-connection). However, no stability analysis has been
performed to verify this control approach. Furthermore, an enable/disable action of
PI controllers is required to change the mode of operation, which can lead to unde-
sirable effects. In [87], proportional real power sharing between DERs and system
frequency restoration are guaranteed through the proposed control method. The
self-frequency recovery is achieved through a local control loop. Hence, a secondary
frequency restoration control is not required. Then, a compensation method is pro-
posed to avoid errors in the real power sharing due to the different instantaneous
frequency deviations. Nevertheless, a central secondary control scheme is required
for this compensation method, while the stability analysis for this method is missing
as well. A similar problem is addressed by the droop control scheme of [88], where
a frequency restoration process (named FRP) is used to maintain the frequency at
its nominal value, while proportional reactive power sharing is guaranteed as well.
Since the droop control approach may be considered for energy storage devices as
well, in [89], distributed energy storage devices are considered in an islanded micro-
grid and a novel droop controller is proposed to guarantee the voltage and frequency
regulation, the proportional power sharing and the state of charge (SoC) balancing
between the storage devices. The method in [89] is well supported with a stability
analysis and experimental results.

Recently, an alternative of the conventional frequency droop control (given in (2.2))
was proposed to improve the voltage and frequency regulation; this is the angle
droop control scheme of [90]. Nevertheless, due to the required high droop coef-
ficient, a supplementary control action is essential to maintain closed-loop system
stability. The angle droop control concept is also considered in [91], where pro-
portional power sharing is guaranteed without the need of a supplementary control
action. However, communication links are required for this control scheme, which
degrade the reliability of the proposed control structure. Finally, in [92], the control
techniques of virtual impedance introduction, frequency droop and angle droop are
analyzed. In particular, it is mathematically proven that angle droop control corre-
sponds to the virtual inductance introduction method, while the virtual inductance
method can be considered as same with the frequency droop control with the addi-
tion of a derivative term. Particularly, when combining the introduction of virtual
inductance and frequency droop control, the result is analogous to the PD (propor-
tional–derivative) frequency droop, which is often introduced in the control system
to mitigate power oscillations. The aforementioned conclusions lead to a unified
control scheme that combines the properties of the three control techniques under
investigation. Furthermore, the presented analysis can provide new perspectives on
the design of droop controllers and motivate researchers for technical modifications
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to improve the dynamic response of droop-controlled inverters.

Apart from the modifications that have been proposed for the droop control tech-
nique to guarantee improved power sharing, enhanced dynamic performance and
to provide ancillary services, the applicability of droop control in a variety of ap-
plications that require high reliability such as all-electric ships, all-electric aircrafts
and isolated community microgrids (microgrids without PCC), should be verified
as well. Furthermore, aiming to standardize the droop control operation in the
inverter-interfaced DERs of power systems, its operation should always mathemati-
cally ensure a stable operation regardless of the system parameters, a task which is
really challenging and is usually ignored.

2.6 Stability analysis of inverter-dominated networks

Apart from the appropriate control of inverters to meet the Grid Code requirements,
the stability of power systems with high share of inverter-interfaced DERs should be
considered for the control design as well. Even if well-known stability tools exist for
the conventional power systems structure with centralized generation, these tools
cannot be directly applied to power systems or microgrids that host a high share
of DERs or operate in the islanded mode, due to the different system dynamics
[6, 36]. As an example, one may consider the common assumption used in power
system stability studies according to which, the line dynamics are much faster than
the generation units dynamics, which allows the use of the admittance matrix in the
stability analysis. In the case of inverter-dominated power networks, this assumption
does not hold [93]. Another common assumption when investigating power systems
with centralized generation, is the existence of a slack bus of constant voltage and
frequency which simplifies the power flow and stability analyses. However, this can
not be valid in inverter-based microgrids, where voltage and frequency are governed
by distributed generation units [6, 36].

Even though the inverter filter and distribution line dynamic models are linear,
nonlinearities in the closed-loop system of inverter-interfaced DERs come up due
to the power measurements of the power controller, due to nonlinear loads (e.g.
constant power loads or converter-fed loads [76]) or due to advanced control schemes
with nonlinear dynamics [56]. Hence, the stability analysis of inverter-dominated
power networks is a challenging task due to the nonlinear nature of the closed-loop
system. To overcome these nonlinearities, the majority of the stability analyses in
the literature use the linearization method together with a root-locus analysis, to
investigate the stability properties of power systems or microgrids under different
control schemes of inverter-interfaced DERs. This method is commonly met in the
literature as “small-signal stability analysis.”

One of the first attempts to develop a small-signal model to investigate the stability
properties of a droop-controlled inverter-based microgrid, is presented in [94]. How-
ever, in this work, the network dynamics are ignored. A more realistic modeling
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is performed in [6], where each inverter of the microgrid is modeled in its own dq
reference frame and then, all the inverters together with the the lines and the loads
of a meshed microgrid, are combined into a global (common) DQ reference frame.
The transformation from each local dq frame to the global DQ frame is based on
the rotational angle difference of each inverter. The derived model is investigated
through sensitivity and root-locus analyses, while it is experimentally verified as
well. A thorough description of the global (common) reference frame which is uti-
lized in dq frame-based stability analyses of microgrids is given in [95] and [96].
It should be highlighted that [6] served as a reference for most of the works that
followed on small-signal stability analysis of droop-controlled inverter-based micro-
grids. As a recent example of a microgrid stability investigation that is based on
the small-signal technique of [6], a “critical cluster” technique is employed to in-
vestigate stability of interconnected inverter-based droop-controlled microgrids in
[97]. In [98], an optimization domain of the droop controller parameters is obtained,
based on the results of a small-signal stability analysis. It should be highlighted
that by adjusting the controller parameters and design according to the results of
the stability analysis, the DER control schemes can guarantee the closed-loop sys-
tem stability. In [99], a small-signal model is utilized to define the angle stability
of voltage-controlled inverter-interfaced DERs. Hence, angle stability is researched
similarly to the method used for conventional power system studies, i.e. through
the P − δ curve, while the DC bus dynamics of the DER are also considered. As a
result, it is revealed that the output impedance of the DER and the line impedance
determine significantly the angle stability of the system. In [100], a small-signal
stability analysis of a droop-controlled inverter-based microgrid with a centralized
secondary control scheme is performed, which takes into account the delays that
come up due to the communication links of the central controller. In [101], the
possible instability occurring from the interaction of the output impedance of in-
verters operating in parallel is investigated through a small-signal stability analysis.
Moreover, a controller is proposed to enhance microgrid stability. Finally, in the
universal droop control scheme of [79], a small-signal stability analysis is performed
in order to verify the applicability of the proposed scheme under any type of output
impedance. Nevertheless, the above approaches present some drawbacks. Apart
from the fact the the original nonlinear model is not considered in those stability
analyses, which would provide global stability results but is indeed a daunting task,
the main drawback of the studies that employ a root-locus analysis is that the latter
tool gives an insight for the stability properties of a given network application only.
Thus, there is a challenge in developing more robust methodologies.

Recently, stability of inverter-dominated power networks has been investigated with-
out using the root-locus analysis tool. These approaches are based on determin-
ing conditions for stability of inverter-based microgrids or grid-connected inverter-
interfaced DERs [102, 103, 104]. In [103], conditions about the voltage droop coef-
ficients are derived to guarantee local asymptotic stability of inverter-based micro-
grids, under some assumptions on the topology and the electrical characteristics (e.g.
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lossless structure and bounded phase angle difference). Hence, the droop controller
can be designed accordingly to guarantee the microgrid closed-loop system stabil-
ity. In [105], a droop-like controller for microgrids is proposed to improve power
sharing and guarantee regulation at the nominal frequency. The control design is
optimized through a linear matrix inequality problem in order to guarantee stability
of the original nonlinear model of a microgrid. In particular, specific control gains
can be derived to achieve the desired control properties. In [67], voltage stability is
investigated, while ignoring the real power-frequency droop dynamics. Particularly,
conditions for local exponential stability are derived under a distributed consensus
controller that achieves proportional reactive power sharing in inverter-based micro-
grids. In [102], stability of the synchronized solution of inverter-based microgrids
is investigated. To tackle the synchronization issue, the authors in [102], highlight
that an inverter-based microgrid governed by the frequency droop control of (2.2),
is equivalent to a network of Kuramoto oscillators. In [106], microgrids with both
synchronous machine-based DERs and inverter-interfaced DERs are considered and
frequency synchronization is investigated. In particular, conditions are derived to
guarantee local stability of the synchronized solution. It should be highlighted that
the analyses that determine conditions for stability of power networks represent a
more rigorous approach compared to the root-locus analyses, since they do not re-
fer to a specific application. In fact, satisfying the derived conditions for stability
based on the worst case scenario, guarantees stability for the whole operation of the
grid-connected inverter-interfaced DER or the inverter-based microgrid. However,
these approaches usually consider restricting assumptions, such as a lossless network
structure, neglecting the output filter dynamics and small or bounded power angles,
while abnormal grid conditions are rarely taken into consideration.

To sum up, even if useful stability results can be obtained through the small-signal
stability analysis method, there is a challenge in investigating stability of the closed-
loop system of inverter-interfaced DERs and inverter-based microgrids without con-
sidering a specific application example. An interesting and more rigorous approach
is based on deriving conditions for stability of inverter-dominated power networks.
Nevertheless, common assumptions that are required to obtain these generic results,
may deteriorate the accuracy of the derived conditions.

2.7 Current-limiting control of inverter-interfaced

DERs

Although guaranteed stability is a crucial property of power systems, the protection
of the inverter devices during abnormal grid conditions is of great importance as well.
Abnormal grid conditions may correspond to a variety of grid faults in grid-connected
applications, while both overloading and grid faults may lead to abnormal conditions
in microgrid applications. Most of the studies that propose control schemes for
inverter-interfaced DERs or analyze stability, investigate the operation under normal
grid conditions [6, 94, 103, 107]. However, during abnormal grid conditions, the
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current injection increases and this can cause damages to the inverter devices which
have a limited thermal capability, compared to that of the synchronous generators.
At the same time, as it was highlighted in sec. 2.2.2, according to the recent Grid
Codes, DERs should not trip in the presence of grid faults but instead, remain
connected to the grid and support the PCC voltage. Hence, the safe injection
of current (according to the inverter limitations) during abnormal grid conditions
represents a great challenge for control system designers.

Indeed, to guarantee the protection of inverter-interfaced DERs, several methods
have been proposed for the implementation of current-limiting techniques through
the control design. Note that apart from the control-based approaches, hardware
techniques can be found in the literature too, based on algorithms which detect
the overcurrent and enable external limiters or relay devices, however these tech-
niques have an increased cost and they may restrict the operation according to
the FRT requirements. In the context of control-based current-limiting techniques,
the most common approaches limit the inverter current reference values through
saturation units [108], or in the case of grid-following inverters, by designing the
current reference such that it does not violate the maximum allowed current [109].
Furthermore, a switching to a different current-limiting control scheme is employed
in some methods, when faulty conditions appear [47]. In [47, 110], the most com-
mon current-limiting techniques for grid-forming inverters are presented. The main
methods presented in [47, 110] are: the reference inverter current dq components
limitation through saturation units, the vector amplitude limitation through satu-
ration units, the switching to a predefined saturated reference value during faults
and the current limitation through virtual impedance. Among all these techniques,
the prevalent approach is the reference inverter current dq components limitation
through saturation units. However, the maximum power utilization is not always
available with this technique, since a conservative selection of the upper and lower
values of the saturation units is required. Moreover, the techniques that limit the
reference inverter current are based on the assumption of the high bandwidth of the
current controller, i.e. the current controller is very fast and quickly regulates the
inverter current to its reference (limited) value during faults. Finally, the saturation
units cause a deactivation of the voltage controller during faults, which can lead
to integrator wind-up and instability. Even though, the maximum power injection
issue can be addressed through adaptive saturation units [111] or through the vector
amplitude limitation technique [110], these alternatives still require saturation units
and thus, integrator wind-up remains as their crucial drawback. This led to the de-
velopment of advanced current-limiting techniques based on the virtual impedance
method, as it will be analytically discussed in the literature review that follows.

In [46], a comparison of current-limiting methods that have been proposed in the
literature is provided. All the considered techniques are experimentally tested, with
the response of currents and voltages being mainly observed, in order to determine
the effectiveness of each technique in limiting the injected current and in returning
to its initial operation, when the fault is cleared. Apart from the inverter response
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Figure 2.8: Current-limiting droop control design [45]

to the fault appearance, the post fault operation is a crucial aspect of designing
current-limiting techniques as well. As it is explained in [46], two problems may
occur when the employed control technique switches to a different controller during
faults, integrator wind-up and latch up. Integrator wind-up occurs when the original
controller keeps integrating during the fault and the output of the PI controller
may result to overshoots when the fault is cleared. Latch up occurs when the
current-limiting controller remains enabled when the fault is cleared, instead of
granting control back to the original controller. In the same work, conclusions are
derived on how current-limiting techniques should be designed in order to avoid
such phenomena and specifically, set and reset functions are proposed. In [52], it
is underlined that the widely used current-limiting technique through saturation
units can lead to integrator wind-up and instability. As a matter of fact, the use
of saturation units is similar to switching to a different control scheme, since when
the output of the voltage controller is saturated, the voltage controller is unable
to act. Then, it is proven that the use of a virtual impedance for the current
limitation can improve the transient stability, since it effectively limits the voltage
reference, instead of saturating the output of the voltage controller. Specifically,
under faulty or overload conditions, the virtual impedance rises to higher values, thus
reducing the injected current without deactivating the voltage controller. Similar
current-limiting techniques which use the virtual impedance concept have been also
proposed in [47, 112]. However, the aforementioned techniques require additional
control loops and a smart tuning to define the value of the virtual impedance that
needs to be added through the controller during faults, while saturation units may
be required in these loops as well. To overcome these issues, a current-limiting
property is introduced in the droop controller operation in [64]. Nevertheless, the
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line impedance is required for the implementation of this technique, which is a strict
requirement.

A new current-limiting controller was proposed in [43], that inherits the current lim-
itation property in the power controller loop through the bounded integral controller
(BIC) structure, proposed in [56]. In practice, the current limitation is accomplished
by feed-forwarding the output voltage and at the same time introducing a dynamic
virtual resistance with given bounds. Through this dynamic virtual resistance, the
power controller operation is inherited in the control design. Furthermore, in [43], it
is mathematically proven that the proposed controller can guarantee the limitation
of the inverter current under a given maximum value, without any switching actions
or saturation units. In [45], an extension of this technique, the Current-Limiting
Droop (CLD) controller, is proposed. Compared with the original controller of [43],
the CLD does not have a self-synchronization capability but has the ability to regu-
late real and reactive power to its reference values or operate under the droop control
law, while the original control scheme of [43] was operating under unity power factor
and the real power controller operation was restricted to regulating the output real
power to its reference value.

According to [45], the CLD is defined using the universal robust droop control scheme
functions [79], and the inverter voltage (control input) is proposed as follows:

v = vc + (1 − wq)(
√

2Vg sin(ωgt+ δ) − wi), (2.4)

where vc is the LCL filter capacitor voltage with Vc being its RMS value and Vg
and ωg correspond to the RMS grid voltage and grid frequency, respectively. The
control state w is a dynamic virtual resistance and wq is an auxiliary control state.
Similarly, δ is a phase shift, with δq being an extra control state. These control
states vary according to the BIC scheme, through the functions

ẇ = −cw(Ke(E
∗ − Vc) − n(P − Pset))w

2
q
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(
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∆δ2
m

+δ2
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)
δq,

to achieve the desired current limitation and droop control functionality. Note that
cw, cδ, Ke are constant positive gains, wm, ∆wm, ∆δm are control parameters and
n, m are the droop coefficients. The CLD controller is depicted in Fig. 2.8.

Nevertheless, in [43, 45], the maximum power capability is not utilized during faults
since the current provision depends on the amount of the residual voltage. This
fact violates the demand of the modern Grid Codes for voltage support under grid
faults. Furthermore, the CLD control scheme has been proposed and verified solely
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for single-phase grid-connected inverters. A framework to be applied to three-phase
inverters and extend the controller application to MV and HV networks is missing,
while extending its properties to microgrid scenarios would be of great interest as
well. Finally, the asymptotic stability of the closed-loop system under the CLD
control scheme remains unverified.

2.7.1 Current limitation under the “voltage support concept”

Even though similar current-limiting techniques are used in both single-phase and
three-phase applications, the main feature that differentiates the three-phase sce-
nario is the case of unbalanced grid faults. In fact, the majority of grid faults are
single-phase to ground or phase to phase faults, while balanced three-phase faults
correspond to a rare case.

From sec. 2.2.2, it can be concluded that under balanced faulty conditions, the limi-
tation of the total current and the maximum power injection for supporting the grid
voltage are the two main tasks of the inverter. However, when unbalanced faults
appear at the grid, the selection of the appropriate strategy to optimally provide
voltage support, is a complicated problem [32, 113]. Significant amount of research
has addressed the inverter response through grid-following current controllers that
inject both positive and negative sequence currents, in order to provide voltage sup-
port in terms of positive sequence voltage support and negative sequence voltage
elimination [35, 114]. The voltage support concept is thoroughly presented in [35],
where current controllers that employ symmetrical components theory and reduce
the voltage unbalance factor (VUF) are reviewed. Nevertheless, the way current lim-
itation is achieved under unbalanced grid conditions still represents a challenging
task, especially when grid-forming droop-controlled inverters are considered, since
their task is to regulate the grid voltage and frequency. The authors in [30, 31]
have implemented power controllers that ensure a balanced current provision under
voltage sags. As explained in [30], this enhances the fault-ride-through capability
in terms of injecting only positive sequence powers/current that comply with the
FRT requirement, while current limitation at the steady-state is achieved through
the real and reactive power set points. However these approaches do not deal with
negative sequence voltage mitigation. In the latter case, injection of both positive
and negative sequence currents is required while the selection of the current am-
plitude in each sequence is a difficult task as well. An explanation of two limiting
methods (i.e. the straight forward technique and the advanced technique) of the
total current, when injecting current in both sequences, is given in [34, 115].

Regarding the control schemes that have investigated voltage unbalance elimination
through grid-forming converters, in [33], a negative sequence droop controller is pre-
sented which manages to mitigate the voltage unbalance at the point of common
coupling under voltage drops. Nevertheless, current limitation is not considered in
this control design; instead, saturation units are used in the negative sequence refer-
ence power generation unit. A current-limiting scheme in both sequences for voltage
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controllers is presented in [111] and [116] for microgrid and grid-connected applica-
tions, respectively, where the novel theory from [117] is introduced and employed.
However, the current limitation is performed through saturation units that can lead
to instability, while the droop control concept is not considered in the control design.

Table 2.1: System and controller parameters for the case study

Parameters Values Parameters Values

L1, L2 2.2 mH C1, C2 1µF
rl1, rl2 0.04 Ω, 0.02 Ω Ll1, Ll2 3 mH, 2 mH
ω∗ 314.15 rad/s E∗ 220 V
n1 0.0047 m1 0.0012
n2 0.0094 m2 0.0024
Irated1 20 A Irated2 10 A
Imax1 40 A Imax2 10 A

2.7.2 Case study: Current limitation through saturation units

As it has been highlighted in [52], when a droop-controlled inverter-interfaced DER
that uses saturation units in the inner loops as a current-limiting method operates in
parallel to a synchronous machine-based DER (i.e. a unit with a different transient
frequency response), integrator wind-up can occur in the inverter-interfaced DER
under abrupt load changes or grid faults. In particular, when saturation units are
placed in the output of the voltage controller to ensure the desired current limitation,
the voltage controller gets deactivated during transients, thus losing the ability to
control the output voltage. In this case, the phase shift of the inverter drifts away
and the voltage controller suffers from integrator wind-up. As shown in [52], this can
lead to a number of undesirable events such as transient instability and violation of
the inverter current limit. Apart from the case of parallel operation of an inverter-
interfaced DER and a synchronous machine-based DER, similar events occur in the
cases of parallel inverter-interfaced DERs with different virtual inertia constants
and parallel inverter-interfaced DERs with different p.u. maximum current. In this
case study, two inverter-interfaced DERs are considered, which operate in parallel
and have different p.u. maximum allowed currents. We showcase that undesirable
events can occur during sadden load changes or grid faults. Hence, we highlight
that the current-limiting techniques which utilize saturation units in cascaded droop
controllers may lead to instability even in inverter-based microgrid applications.

In order to perform the case study, Matlab/Simulink simulation results are pro-
vided for an inverter-based microgrid consisting of two inverter-interfaced DERs
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Figure 2.9: Inverter control scheme for the case study

connected to a common resistive-inductive load (RL) , through an LiCiLi filter and
a resistive-inductive (rliLli) line. The controller under consideration is the conven-
tional cascaded droop controller, as it is presented in [6, 52] and depicted in Fig. 2.9,
with saturation units placed at the inverter reference currents, while voltage feed-
forward terms are also added to the current controller since they can improve the
effectiveness of the current limitation [47]. The power system and controller pa-
rameters are given in Tab. 2.1. The maximum inverter currents are selected as
Imax1 = 2Irated1 = 2 p.u. and Imax2 = Irated2 = 1 p.u., which represents a real-world
scenario since according to the inverter manufacturer, a different maximum current
may be allowed [47, 118]. Moreover, it is considered that Inverter #1 has twice
the capacity of Inverter #2. The presented simulation scenario in Fig. 2.10, is as
follows: Initially, both inverters do not feed the load since their PCC switches are
open while at 0.1 s, the first inverter is connected to the load which initially has
the value R = 25 Ω and L = 40 mH. At 0.3 s, the second inverter is connected to
the common load bus and at 2 s, a sudden load change takes place with the total
load being driven to a very low resistive value. In this case, the required current for
regulation close to the load voltage and frequency set points is higher than the total
capacity of both inverters. In practice, this loading case corresponds to a microgrid
fault. At 2.6 s, the load is returned to its initial value. As it is observed in Fig. 2.10,
due to the integrator wind-up and phase shift drift issues, the inverters never return
to their normal operation. This is caused due to the fact that the voltage controller
of the second inverter loses its controllability, as it is clear from Fig. 2.10f. Hence,
the second inverter current never returns from its maximum value while it also flip
flops between the maximum and minimum values of the saturation units, as it can
be understood from Fig. 2.10c. This has also been explained in [52]. It should
be finally highlighted that the reactive power sharing operation is completely dis-
torted with the second inverter absorbing reactive power instead of taking part in
the load voltage regulation. Hence, the load voltage regulation is deteriorated, as it
is depicted in Fig. 2.10d.
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(e) Inverter #1 voltage controller output
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(f) Inverter #2 voltage controller output

Figure 2.10: Microgrid operation with conventional current-limiting control of cas-
caded droop-controlled inverters

2.8 Literature gaps and challenges to be addressed

According to the discussions and the literature review presented in this chapter,
droop control, current-limiting techniques of inverter-interfaced DERs and stabil-
ity analysis of power networks dominated by inverter-interfaced DERs, are active
research topics and there are still crucial challenges to be tackled. Furthermore,
a property that the inverter control scheme should ideally have, is to operate in a
unified way under normal and abnormal grid conditions. One may also notice, that
these challenges correspond to a cross disciplinary research area between power sys-
tem analysis, control systems design and analysis, and power electronics experimen-
tal applications. This makes contributing in this specific research field an even more
challenging task. According to the findings of this chapter, the main challenges for
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this thesis will be now outlined for the scenarios of grid-connected inverter-interfaced
DERs and inverter-interfaced DERs that form inverter-based microgrids.

In the grid-connected applications, the main challenges lie on developing unified
control schemes for inverters to:

• Support the grid voltage and frequency during normal grid conditions, accord-
ing to the Grid Code.

• Support grid voltage when balanced and unbalanced faults occur, according
to the voltage support concept and the fault-ride-through requirements.

• Contribute to system’s protection through advanced current-limiting control
techniques that allow the operation of the aforementioned voltage support
schemes.

• Introduce a virtual inertia property, aiming to mimic the transient response
of synchronous generators.

• Inherit a self-synchronization mechanism – no PLL requirement.

• Guarantee closed-loop system stability of grid-tied inverters, by deriving the
necessary conditions for asymptotic stability.

In the case of inverter-interfaced DERs that form inverter-based microgrids, the
main challenge lies on developing a unified control scheme for the inverters to:

• Contribute to system’s protection by developing advanced current-limiting
techniques that are not prone to integrator wind-up.

• Inherit the current-limiting technique in the power controller loop, without
additional adaptive techniques that are usually employed in the dq framework.

• Achieve power sharing between inverter-interfaced DERs, without additional
communication units that increase cost and decrease reliability.

• Guarantee stability for an entire microgrid.

The development of such control schemes will lead to a new generation of smart
inverters with advanced control and protection features which will pave the way
towards reliable and resilient power networks and microgrids, with a high penetration
level of inverter-interfaced DERs. The facilitation of increased power generation
from inverter-interfaced DERs will lead to a rise in “clean” energy production and
contribute to the environmental and sustainability policies.
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3 Preliminaries

In order to address the challenges that were discussed and posed in the previous
chapter (e.g. inherent current-limiting property of inverters and closed-loop system
stability of inverter-dominated power networks), a rigorous mathematical analysis
is required. As it was highlighted in sec. 2.6, even if most of the dynamic models
of power system components are linear (e.g. inverter output filter and line dynamic
models), the closed-loop system of inverter-dominated power networks is usually
of nonlinear nature. This is due to the power calculations that are required for
the operation of the power control schemes or due to advanced control schemes
with nonlinear dynamics or due to nonlinear system loading. Hence, stability tools
for nonlinear systems are of great importance for the issues tackled throughout this
thesis. This chapter highlights theorems and tools, which are utilized in the analysis
of the control schemes proposed in the sequel of this thesis.

3.1 Lyapunov indirect method

In this section, the “Lyapunov’s first” or “indirect” method is presented. This
method investigates the stability properties of a nonlinear system, based on the fact
that in a small area around an equilibrium point, we can study the behavior of a
nonlinear system through its linear approximation about that equilibrium point. It
is noteworthy that the transient response of a linear or a nonlinear system around
an equilibrium point can be investigated through its response around the origin of
the state-space, by shifting the equilibrium point to the origin [119, 120]. Hence,
without loss of generality, most of the theorems regarding closed-loop system stabil-
ity investigate the case where the origin of the state-space corresponds to the desired
equilibrium point.

Theorem 1 [119]:

Let x = 0 be an equilibrium point for the nonlinear system

ẋ = f (x) (3.1)

where f : D → Rn is continuously differentiable and D is a neighborhood of the
origin. Let

A =
ϑf

ϑx
(x)

∣∣∣∣∣
x=0
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Then,

1. The origin is asymptotically stable if Reλi < 0 for all eigenvalues of A.

2. The origin is unstable if Reλi > 0 for one or more of the eigenvalues of A.

The proof of Theorem 1 can be found in [119], 3rd Edition, Th. 4.7.

3.2 Ultimate boundedness

In many engineering applications, it is crucial to guarantee boundedness of the
solution of the system state equations. Notably, in inverter-interfaced DER applica-
tions (that this thesis focuses on), it is of great interest to rigorously guarantee the
boundedness of the power system and control system states, instead of using meth-
ods which can degrade system stability, such as saturation units. A “Lyapunov-like”
theorem for proving ultimate boundedness for the states of the system

ẋ = f (t, x) , (3.2)

is the one that follows.

Theorem 2 [119]:

Let D ∈ Rn be a domain that contains the origin and V : [0,∞) × D → R be a

continuously differentiable function such that

α1 (‖x‖) ≤ V (t, x) ≤ α2 (‖x‖)

ϑV

ϑt
+
ϑV

ϑx
f (t, x) ≤ −W3 (x) , ∀ ‖x‖ ≥ µ > 0

∀t ≥ 0 and ∀x ∈ D, where α1 and α2 are class K functions and W3 (x) is a contin-

uous positive definite function. Take r > 0 such that Br ⊂ D and suppose that

µ < α−1
2 (α1 (ρ)) .

Then, there exists a class KL function β and for every initial state x (t0) , satisfying

‖x (t0)‖ ≤ α−1
2 (α1 (ρ)) , there is T ≥ 0 (dependent on x (t0) and µ) such that the
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solution of (3.2) satisfies

‖x (t)‖ ≤ β (‖x (t0)‖ , t− t0) , ∀t0 ≤ t ≤ t0 + T (3.3)

‖x (t)‖ ≤ α−1
1 (α2 (µ)) , ∀t ≥ t0 + T. (3.4)

Moreover, if D = Rn and α1 belongs to class K∞, then (3.3) and (3.4) hold for any

initial state x(t0), with no restriction on how large µ is.

The proof of Theorem 2 can be found in [119], 3rd Edition, Th. 4.18.

An interesting note in [119], which may be useful when using this theorem, states

that if ‖x (t0)‖ ≤ α−1
1 (α2 (µ)) , then T = 0, i.e.

‖x (t)‖ ≤ α−1
1 (α2 (µ)) , ∀t ≥ 0.

3.3 Input-to-state stability

The “input-to-state stability” notion is extending the Lyapunov stability tools to
systems with inputs, such as the nonlinear non-autonomous system described by

ẋ = f (t, x, u) . (3.5)

Theorem 3 [119]:

Let V : [0,∞) × Rn → R be a continuously differentiable function such that

α1 (‖x‖) ≤ V (t, x) ≤ α2 (‖x‖)

ϑV

ϑt
+
ϑV

ϑx
f (t, x, u) ≤ −W3 (x) , ∀ ‖x‖ ≥ ρ (‖u‖) > 0

∀ (t, x, u) ∈ [0,∞) × Rn × Rm, where α1, α2 are class K∞ function, ρ is a class K

function, and W3 (x) is a continuous positive definite function on Rn. Then, the

41



Chapter 3 Preliminaries

system (3.5) is input-to-state stable with γ = α−1
1 ◦ α2 ◦ ρ.

The analytical proof of Theorem 3, which is based on the ultimate boundedness
property of Theorem 2, can be found in [119], 3rd Edition, Th. 4.19.

3.4 Stability of interconnected systems

In a variety of engineering problems and particularly in power systems, the subsys-
tems of a larger system may form an interconnected system of the following form,
as described in [119].

Initially, consider the interconnected system

ẋ1 = f1 (t, x1, x2) (3.6)

ẋ2 = f2 (t, x2) , (3.7)

where f1 : [0,∞) × D1 × D2 → Rn1 and f2 : [0,∞) × D2 → Rn2 are piecewise

continuous in t and locally Lipschitz in x; x
def
= [x1 x2]T . The set Di is a domain in

Rni that contains the origin xi = 0; in the global case, we take Di = Rni.

In these cases, the following theorem can be found of use in the closed-loop system
stability investigation.

Theorem 4 [119]:

Under the stated assumptions

• If the system (3.6), with x2 as input, is input-to-state stable and the origin of
(3.7) is uniformly asymptotically stable, then the origin of the interconnected
system (3.6)-(3.7) is uniformly asymptotically stable.

• If the system (3.6), with x2 as input, is input-to-state stable and the origin of
(3.7) is globally uniformly asymptotically stable, then the origin of the inter-
connected system (3.6)-(3.7) is globally uniformly asymptotically stable.

Theorem 4 and its proof can be found in [119], 2nd Edition, Lemma 5.6.

3.5 Bounded integral control

Recently, the bounded integral control (BIC) structure was proposed in [56]. The
BIC aims to mimic the operation of a traditional integral controller and moreover,
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guarantee the boundedness of the control state (plant control input), while main-
taining the stability properties of the conventional integral control scheme. The
structure and the operation of the BIC is briefly explained in the remainder of this
section.

Initially, consider the plant ẋ = f (x, u) . In order for the control input u to remain
inside a given bounded range [−umax, umax] , the BIC dynamics take the form

[
ẇ
ẇq

]
=



 0 kIg (x) wqu
2
max

u2
max−u2

c

−kIg (x) wq

u2
max−u2

c
−kq

(
w2

u2
max

+ w2
q − 1

)




[
w
wq

]
(3.8)

where u = w, kI is the integral gain, kq is a positive constant, g (x) is the function
to be regulated, uc ∈ (−umax, umax) is a constant and the states initial values are
selected as w0 = 0 and wq0 = 1. Through the analysis in [56], based on the stated
initial conditions, it is proven that using the BIC structure, the control states will
start and remain on the ellipse

W0 =

{
w,wq ∈ R,

w2

u2
max

+ w2
q = 1

}
.

Hence, the desired boundedness of the control input is inherently guaranteed by the
BIC. The analytical proofs of the BIC properties can be found in [56].
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4 Enhanced current-limiting droop

control of single-phase

grid-connected inverters

4.1 Motivation and novel outcome

The ancillary services that Grid Codes require from DERs continuously get updated,
as the share of DERs in power systems is increasing. Among other ancillary ser-
vices, the requirements regarding the response of DERs during grid faults are of
great importance. In order to increase the reliability in power system operation,
DERs are expected to remain connected to the grid and provide voltage support
by injecting maximum available power, instead of tripping, during grid faults. This
brings a significant challenge in the inverter-interfaced DERs control system design,
since advanced control schemes are required to guarantee at the same time a rigor-
ous current limitation for inverter protection, maximum power injection for voltage
support and closed-loop system stability.

In [45], it is proven that the proposed current-limiting droop controller limits the
RMS value of the inverter current under a given value, without employing satura-
tion units which may lead to instability [52]. However, the maximum capacity of
the inverter is not utilized under grid voltage drops, since the current is limited to a
value proportional to the residual voltage. As an example, in the case of a solid short
circuit, the inverter current is limited to zero, which is similar to disconnecting the
inverter. Hence, reactive power cannot be maximized to provide voltage support to
the grid during voltage drops, as demanded by the recent FRT requirements. Fur-
thermore, stability is guaranteed only in the sense of inverter current boundedness,
while the proof of regulation to the desired equilibrium is still missing. Finally, the
CLD control method for grid-connected inverters requires a PLL device for its im-
plementation and does not introduce any virtual inertia to the system, a property
which is expected to be an essential requirement in future power systems.

To deal with the above stated limitations, an enhanced version of the CLD controller
is initially proposed in this chapter, in sec. 4.2. Opposed to the original CLD which
limits the inverter current under a lower value than its maximum when voltage
sags occur, the proposed controller fully utilizes the capacity of the inverter, by
injecting the maximum allowed current during any grid fault. Hence, the enhanced

45



Chapter 4 Enhanced CLD control of grid-connected inverters

dcV
+

-

L i

+

-
v vg

 Inverter

+

-
vc C

Lg ig

+

-
vo

rgr

Figure 4.1: Single-phase inverter connected to the grid through an LCL filter

CLD scheme allows the implementation of a rigorous FRT technique to provide
voltage support during faults. Furthermore, conditions for asymptotic stability of
the closed-loop system are derived, to deal with the challenging task of guaranteeing
the stability properties of inverter-interfaced DERs. Then, in sec. 4.3, an extension
of the proposed enhanced CLD controller is developed, which operates without the
need of a PLL device and at the same time introduces a virtual inertia property to
the inverter-interfaced DER.

4.2 Enhanced current-limiting droop controller to

guarantee stability and maximize power injection

under grid faults

4.2.1 System modeling

The power system under consideration is a single-phase inverter connected to the
grid through an LCL filter, as depicted in Fig. 4.1. The capacitor of the filter is
denoted as C while the inductances are denoted as L and Lg with r and rg being their
parasitic resistances, respectively. The output voltage and current of the inverter
are v and i, while the capacitor voltage is denoted as vc. The voltage and current
of the grid are vg and ig with vg =

√
2Vg sinωgt, where Vg is the RMS grid voltage

and ωg is the angular grid frequency.

The dynamic equations of the system can be obtained as

L
di

dt
= v − vc − ri

C
dvc
dt

= i− ig (4.1)

Lg
dig
dt

= vc − vg − rgig

where v represents the control input and corresponds to the voltage at the output
of the inverter.
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4.2 Enhanced current-limiting droop controller to guarantee stability and
maximize power injection under grid faults

4.2.2 The proposed controller

The main goal in this section is to propose a droop controller that inherently limits
the inverter current to protect the device under unrealistic power demands or under
grid faults, while supporting the grid voltage at all times. Hence, inspired by the
structure of the original CLD in [45], a dynamic virtual resistance is introduced
in series with the filter inductor through the control input v, which should remain
positive and bounded. Although this bounded dynamic virtual resistance can be
implemented using traditional integral control with saturation, such an approach
can lead to integrator wind-up and instability [52]. Therefore, the bounded integral
control (BIC) concept proposed in [56] is utilized here to overcome this limitation.
Finally, in order to provide robustness to different output impedance, the P ∼ V and
Q ∼ −ω droop expressions of the universal droop controller are employed [76, 79].

As it was mentioned in the previous section, the main limitations of the original
CLD control technique are i) the failure to utilize the maximum inverter capacity
during faults and ii) the absence of an asymptotic stability analysis. In order to
overcome the maximum power utilization issue, the maximum value of the inverter
current should not be defined by the residual voltage during grid faults, but by
the nominal load voltage. Furthermore, in order to provide a rigorous asymptotic
stability analysis, it would be advantageous to remove the extra control state of the
BIC from the inverter voltage equation. Hence, the novel control structure of the
current-limiting droop controller proposed in this thesis takes the form:

v = vo +
(w − wm)2

∆w2
m

(√
2E∗ sin(ωgt+ δ) − wi

)
, (4.2)

with control dynamics

[
ẇ
ẇq

]
=


 0 −cwf(Pg, Vg)w

2l−1
q

cwwq

l∆w2
m
f(Pg, Vg) −kw

l

(
(w−wm)2

∆w2
m

+w2l
q −1

)


[
w − wm
wq

]
(4.3)

[
δ̇

δ̇q

]
=

[
0 cδg(Qg, ωg)δ

2l−1
q

− cδδq

l∆δ2
m
g(Qg, ωg) −kδ

l

(
δ2

∆δ2
m

+δ2l
q −1

)
] [

δ
δq

]
(4.4)

where l ≥ 1 ∈ N and f(Pg, Vg) and g(Qg, ωg) are given by

f(Pg, Vg) = n(Pset−Pg)+Ke(E
∗−Vg) (4.5)

g(Qg,ωg)= m(Qg−Qset) + ω∗ − ωg (4.6)

and represent the droop control expressions, with cw, cδ, kw, kδ, wm, ∆wm and ∆δm
being positive constant parameters of the controller, E∗ and ω∗ being the rated
grid voltage and frequency and n, m representing the droop coefficients. The initial
conditions are defined as w0 = wm, wq0 = 1 and δ0 = 0, δq0 = 1. The proposed
controller implementation is depicted in Fig. 4.2. Comparing (4.2) with the original
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CLD expression (2.4), one can notice that the term (1 − wq) has been replaced by
(w−wm)2

∆w2
m

to facilitate the closed-loop system stability analysis and that the controlled

voltage source in (4.2), uses the rated voltage E∗ instead of the grid voltage, in order
to allow the maximum power utilization under grid faults. These novel properties
will be analytically proven in the sequel.

As it is obvious from Fig. 4.1, when the inverter is not connected to the grid, then
vo = vg and when the relay closes, vo = vc. Parameters w and δ represent a virtual
resistance and phase shift, respectively, which vary according to the nonlinear dy-
namic expressions (4.3)-(4.4). In order to guarantee boundedness of the controller
states w,wq, δ and δq without using saturation units, a generalized version of the
BIC [56], is proposed in this section depending on the value of l ≥ 1 ∈ N . Through
this approach, it is guaranteed that w is bounded in the range [wmin, wmax] > 0 and
δ is bounded in the range δ ∈ [−∆δm,∆δm] .

To further explain this boundedness property, consider initially the continuously
differentiable function

Ww =
(w − wm)2

∆w2
m

+w2l
q

for system (4.3). The time derivative of Ww takes the form

Ẇw =
2 (w − wm) ẇ

∆w2
m

+ 2lw2l−1
q ẇq

which by substituting ẇ and ẇq from (4.3) becomes

Ẇw =−2kw

(
(w − wm)2

∆w2
m

+w2l
q −1

)
w2l
q .

According to the stated initial conditions (i.e. w0 = wm and wq0 = 1), it holds
true that Ẇw = 0, i.e. Ww(t) = Ww(0) = 1. Hence, the controller states w

and wq will start and remain on the set Ew =
{
w,wq ∈ R : (w−wm)2

∆w2
m

+w2l
q =1

}
,

yielding the desired boundedness property of the controller state w, i.e. w ∈
[wm − ∆wm, wm + ∆wm] = [wmin, wmax] , ∀t ≥ 0, for wm > ∆wm > 0. A similar
analysis holds for the controller states δ and δq by considering the continuous differ-

entiable function Wδ = δ2

∆δ2
m

+δ2l
q for the system (4.4), thus guaranteeing that states

δ and δq will start and remain on the set Eδ =
{
δ, δq ∈ R : δ2

∆δ2
m

+δ2l
q =1

}
, based on

the given initial conditions δ0 = 0, δq0 = 1.

From the above analysis it is concluded that w ∈ [wmin, wmax] > 0 and δ ∈
[−∆δm,∆δm] for all t ≥ 0. Note that for l = 1, the dynamics (4.3)-(4.4) take
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Figure 4.2: Proposed controller implementation

the form of the original BIC [56], while wmin = wm − ∆wm, wmax = wm + ∆wm,
∆δm can be set by the control operator and represent the minimum and maximum
values of the virtual resistance and the maximum absolute value of the phase shift,
respectively.

Regarding the selection of the rest of the controller parameters, the variables cw
and cδ represent the controller integral gains and the variables kw and kδ are used
to increase the robustness of the control states wq and δq. These parameters can
be selected according to the analysis in [45]. Furthermore, note that w0 = wm
corresponds to the initial current Im that flows through the LC filter when the
switch in Fig. 4.1 is open (before grid connection) and thus, it can be selected as

wm = E∗

Im
= E∗

ωgCVg

√(
1 − ω2

gLC
)2

+ (rωgC)2.

Note that at the steady-state, the functions (4.5) and (4.6) get to 0, i.e. it holds
Vg = E∗ + n

Ke
(Pset−Pg) and ωg = ω∗ + m(Qg− Qset). Hence, the proposed control

scheme adopts the droop control scheme proposed in [79]. Moreover, by removing
the terms Ke(E

∗ − Vg) and ω∗ − ωg from equations (4.5) and (4.6), the proposed
controller can easily change its operation from the PQ-droop mode to the PQ-set
mode in order to regulate the real and reactive power at their reference values. It is
underlined that, compared to the original CLD in [45], here the proposed enhanced
controller introduces the generalized nonlinear dynamics (4.3)-(4.4) and a different
expression for the control input v given in (4.2). In particular, the proposed inverter
voltage v depends only on the virtual resistance w and the phase shift δ (controller
states) and makes use of the rated value E∗ of the voltage. The new structure of
the controller ensures that the maximum power capacity of the inverter is utilized
under faults and facilitates a rigorous stability analysis, as shown in the subsection
that follows, which represent two of the key contributions of this control scheme.
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4.2.3 Stability Analysis

4.2.3.1 Current-limiting property

By applying the proposed controller (4.2) into the original system dynamics (4.1)
and assuming grid-connected operation where vo = vc, the closed-loop dynamics of
the inverter current become

L
di

dt
= −ri− (w − wm)2

∆w2
m

wi+
(w − wm)2

∆w2
m

√
2E∗ sin(ωgt+ δ). (4.7)

For system (4.7), consider the continuous differentiable function V representing the
energy stored in the inductor L, i.e.

V =
1

2
Li2. (4.8)

Since w ∈ [wmin, wmax] > 0 for all t ≥ 0 according to the boundedness property of
the generalized BIC explained above, the time derivative of V is calculated as

V̇ = −ri2 − (w − wm)2

∆w2
m

wi2+
(w − wm)2

∆w2
m

√
2E∗i sin(ωgt+ δ)

≤ −ri2 − (w − wm)2

∆w2
m

wmini
2+

(w − wm)2

∆w2
m

√
2E∗|i||sin(ωgt+ δ)|

≤ −ri2, ∀ |i| ≥
√

2E∗

wmin
.

Thus, according to the Theorem 2 in sec. 3.2, which is analytically given in [119],
there exists a KL function β so that for any initial condition i (0) , there is a T ≥ 0
such that

|i (t)| ≤ β (|i (0)| , t) ∀0 ≤ t ≤ T

|i (t)| ≤
√

2E∗

wmin
∀t ≥ T,

proving that the solution of the inverter current is uniformly ultimately bounded.
Note that if initially |i (0)| ≤

√

2E∗

wmin
, then T = 0, i.e. it holds true that

|i(t)| ≤
√

2E∗

wmin
, ∀t ≥ 0. (4.9)

Since wmin is linked to the controller parameters (wmin = wm − ∆wm), which are
designed by the user, then by selecting

wmin =
E∗

Imax
(4.10)
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it yields

|i(t)| ≤
√

2Imax, ∀t ≥ 0. (4.11)

The previous inequality holds for any t ≥ 0 and for any constant positive Imax. As
a result

I ≤ Imax, ∀t ≥ 0, (4.12)

where I is the RMS value of the inverter current, showing that the proposed con-
troller introduces a current-limiting property below a given value Imax, that can be
selected by the control operator. Since inequalities (4.9) and (4.12) do not depend
on the grid voltage or frequency, i.e. Vg or ωg, it is clear that the proposed controller
can limit the RMS value of the current under Imax irrespectively of grid variations
or faults, thus utilizing the maximum power capacity of the inverter at all times.
This is a significant advantage compared to the original CLD.

4.2.3.2 Asymptotic stability

In sec. 4.2.3.1, the dynamic model (4.1) was used to prove the desired current limita-
tion for the instantaneous value of the current, irrespective of the functions f(Pg, Vg)
and g(Qg, ωg); hence, the current-limiting property holds at all times, even during
transients. However, to investigate whether the closed-loop system can regulate the
real and reactive power or operate under the droop control mode, the functions
f(Pg, Vg) and g(Qg, ωg) should be considered in the analysis.

Note that for a single-phase inverter, the Pg andQg expressions represent the average
real and reactive power of the inverter. Hence, as it is shown in [102, 103, 121],
in order to analyze the stability of a droop-controlled single-phase inverter, the
expressions of Pg and Qg that use the RMS voltages and the power angles, i.e. the
phasor voltages, should be utilized. This approach can be used in this work since
the inverter frequency does not introduce additional dynamics due to the utilization
of the PLL to obtain ωg (PLL response is much faster than the inverter and droop
control dynamics [122] and hence the phasor analysis makes sense).

As it can be seen from (4.7), the dynamics of the inverter current, when grid-
connection has been achieved, are partially decoupled from the capacitor voltage
and grid current dynamics due to the feed-forward term vo used in (4.2). Thus, the
equivalent circuit of the grid-connected inverter takes the form shown in Fig. 4.3.
Here,

Veq = −jXCI

where Xc = 1
ωgC

and

I =
E∗ (w−wm)2

∆w2
m

∠δ

(w−wm)2

∆w2
m

w + r + jωgL
.

51



Chapter 4 Enhanced CLD control of grid-connected inverters
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Figure 4.3: Equivalent circuit of the closed-loop system

Considering that Vg = Vg∠0o, then the real and reactive power delivered at the grid
are given from the following expressions explained in [121] and [123]:

Pg = −V 2
g

Z
cos (θZ)+

VgE
∗ (w − wm)2 Xc

∆w2
m

√(
(w−wm)2

∆w2
m

w+r
)2

+(ωgL)2Z

cos(ϕ) (4.13)

Qg = −V 2
g

Z
sin (θZ) − VgE

∗ (w − wm)2Xc

∆w2
m

√(
(w−wm)2

∆w2
m

w+r
)2

+(ωgL)2Z

sin(ϕ) , (4.14)

with Z = Z∠θZ =

√
r2

g +
(
ωgLg− 1

ωgC

)2

∠tan−1

(
ωgLg−

1
ωg C

rg

)
and ϕ=δ − tan−1

(
ωgL

(w−wm)2

∆w2
m

w+r

)
−

θZ − π
2 . Since δ is bounded, i.e. δ ∈ [−∆δm,∆δm], then ϕ is also bounded and can take

positive or negative values to allow the inverter to inject or receive reactive power
from the grid. Thus, without loss of generality, we can assume that ϕ ∈

(
−π

2
, π

2

)

and ω2
gLgC < 1.

The closed-loop dynamics for the stability analysis can be obtained by combining
(4.3)-(4.6) with (4.13)-(4.14) and the state vector is given as x = [wwq δ δq]

T . Note
that by considering constant Vg and ωg (not necessarily equal to their rated values),

an equilibrium point xe = [we wqe δe δqe]
T of the closed-loop system can be obtained.

Hence, the stability properties of the grid-connected inverter under the proposed
enhanced CLD are summarized in the following proposition.
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Proposition 1: Every equilibrium point xe = [we wqe δe δqe]
T of the closed-loop

system obtained by (4.3)-(4.6) and (4.13)-(4.14), with we ∈
(
wmin,

wm

3

)
and δe ∈

(−∆δm,∆δm) is asymptotically stable when ∆δm is selected as

∆δm = min






∣∣∣∣∣∣
max




0,
π

2
+ tan−1




2
(
(wmin + r)2 + (ωgL)2

)

ωgL (3wmin − wm)
− wmin + r

ωgL







+

+ tan−1
(

ωgL

wmin + r

)
+ θZ

∣∣∣∣ , π + tan−1

(
27ωgL∆w2

m

4w3
m + 27∆w2

mr

)
+ θZ

}
. (4.15)

Proof: Considering any equilibrium point xe = [wewqe δe δqe]
T with we∈

(
wmin,

wm

3

)

and δe∈(−∆δm,∆δm), the Jacobian matrix of the system takes the form

A =



AT 02x1 02x1

A1 −2kww
2l
qe 0

A2 0 −2kδδ
2l
qe


 ,

where

AT =


 −aζ cos(ϕe) − aωgLψ∆w2

m

ε
sin(ϕe) −a (we − wm)2 sin(ϕe)

bζ sin(ϕe) − bωgLψ∆w2
m

ε
cos(ϕe) −b (we − wm)2 cos(ϕe)




with ε=

((
(we−wm)

∆w2
m

2
we + r

)2

+ (ωgL)2

)
∆w4

m, a=
cwnVg E∗w2l

qe

ωgC
√

εZ
, b=

cδmVg E∗δ2l
qe

ωgC
√

εZ
, ψ=(we − wm)3 (3we −wm) ,

γ =

(
(we−wm)2

∆w2
m

we + r

)
∆w2

mψ and ζ = γ

ε
− 2 (we − wm) . Since we ∈

(
wmin,

wm

3

)
and δe ∈

(−∆δm,∆δm), then wqe, δqe ∈ (0, 1] and therefore −2kww
2l
qe < 0 and −2kδδ

2l
qe < 0

(for details see [45]). Aiming to prove stability through Theorem 1 in sec. 3.1, the
eigenvalues of A will have negative real parts if the eigenvalues of AT have negative
real parts. The characteristic polynomial that is derived from the characteristic
equation det [λI − AT ] = 0 takes the form

λ2 + λ

((
b (we − wm)2 + aζ

)
cos(ϕe) +

aωgLψ∆w2
m

ε
sin(ϕe)

)
+ abζ (we − wm)2 = 0.

Since abζ (we − wm)2 > 0, then xe is asymptotically stable if

(
b (we − wm)2 + aζ

)
cos(ϕe) +

aωgLψ∆w2
m

ε
sin(ϕe) > 0 (4.16)

is satisfied. Since ϕe ∈
(
−π

2
, π

2

)
, then

tan−1




ωgL
(we−wm)2

∆w2
m

we + r


+ θZ < δe < π+ tan−1




ωgL
(we−wm)2

∆w2
m

we + r


+ θZ . (4.17)
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The term b (we − wm)2 cos(ϕe) is always positive and by substituting all the consid-
ered variables, (4.16) will hold true if

tan(ϕe) >
2∆w2

m

((
(we−wm)2

∆w2
m

we + r
)2

+ (ωgL)2
)

ωgL (we − wm)2 (3we − wm)
−
(

(we−wm)2

∆w2
m

we + r
)

ωgL
(4.18)

yielding

δe > tan−1




ωgL
(we−wm)2

∆w2
m

we + r


+ θZ +

π

2
+

+ tan−1




2∆w2
m

((
(we−wm)2

∆w2
m

we + r
)2

+ (ωgL)2
)

ωgL (we − wm)2 (3we − wm)
−
(

(we−wm)2

∆w2
m

we + r
)

ωgL


 . (4.19)

By combining inequalities (4.17) and (4.19), the condition that δe needs to satisfy
in order to guarantee asymptotic stability becomes

max





0,
π

2
+tan−1




2∆w2
m

((
(we−wm)2

∆w2
m

we + r
)2

+ (ωgL)2
)

ωgL (we − wm)2 (3we − wm)
−
(

(we−wm)2

∆w2
m

we + r
)

ωgL








+

+ tan−1




ωgL
(we−wm)2

∆w2
m

we + r


+θZ < δe < π+tan−1




ωgL
(we−wm)2

∆w2
m

we + r


+θZ . (4.20)

Since we ∈
(
wmin,

wm

3

)
, then (4.20) will be always satisfied if the following condition

holds:

max



0,

π

2
+ tan−1




2
(
(wmin + r)2 + (ωgL)2

)

ωgL (3wmin − wm)
− wmin + r

ωgL







+ (4.21)

tan−1
(

ωgL

wmin + r

)
+ θZ < δe < π + tan−1

(
27ωgL∆w2

m

4w3
m + 27∆w2

mr

)
+ θZ ,

where wmin = E∗

Imax
according to (4.10) and wm = wmin + ∆wm. Taking into

account that −∆δm < δe < ∆δm from the proposed controller dynamics and
we ∈

(
wmin,

wm

3

)
, then if ∆δm is selected from (4.15), it is concluded that (4.21)

is always satisfied guaranteeing asymptotic stability for the considered equilibrium
point xe.
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Remark 1: Compared to the existing approaches that consider the assumption of
small power angle to guarantee stability [67], here the bound for the phase shift δ
is guaranteed via the control design and does not represent an assumption.

For typical values of L, E∗ and Imax in low power-rating grid-connected inverter
applications, where also small parasitic resistances r and rg are considered, the term
2((wmin+r)2+(ωgL)2)

ωgL(3wmin−wm) − wmin+r
ωgL

takes small values and θZ ≈ − π
2 . Therefore, from (4.15),

it is clear that ∆δm can be simply selected as ∆δm = π
2
. In practice, a slightly

lower value than π
2

can be used to compensate the very small terms tan−1
(

ωgL

wmin+r

)

and tan−1
(

27ωgL∆w2
m

4w3
m+27∆w2

mr

)
. However, for inverters with higher power ratings, the original

expression (4.15) should be used to realize ∆δm.

Remark 2: Proposition 1 shows that asymptotic stability is guaranteed for any
equilibrium point where we ∈

(
wmin,

wm

3

)
. This corresponds to the range of the

inverter RMS current 3Im < Ie < Imax, i.e. 3ωgCVg√
(1−ω2

gLC)
2
+(rωgC)2.

< Ie < Imax, which

shows that the smaller the filter capacitor C the largest the operating range for the
inverter current with guaranteed asymptotic stability.

4.2.4 Voltage support capability under grid faults

As proven in sec. 4.2.3.1, the maximum power capability of the inverter can be
now utilized with the proposed controller. Thus, inspired by the FRT requirements
that have been proposed for DERs connected to the transmission and distribution
networks, the proposed controller can be extended to provide support to the grid
voltage under faults. As showcased in different FRT applications [2], voltage support
is demanded when the voltage at the point of common coupling drops under 0.9 p.u.
and it is practically accomplished through injection of reactive power. In order to
introduce the voltage support mode (VSM) into the control design, expression (4.6)
is proposed to take the form:

g(Qg, af , ωg)=m(Qg− afQset−(1− af )Sn)+ af (ω
∗−ωg), (4.22)

where af is a parameter defining whether VSM is enabled (af = 0) when Vg <
0.9 p.u., or disabled (af = 1) when Vg ≥ 0.9 p.u.

As it was analytically explained in sec. 4.2.2, the phase shift δ in the proposed
controller (4.2) is bounded in the range δ ∈ [−∆δm,∆δm] independently from the
function g(Qg, af , ωg) in (4.4). Hence, when the phase shift δ reaches the upper
or lower limit of its value (∆δm or −∆δm), from (4.13) and (4.14), it is clear that
Pg = 0 in both cases while the reactive power becomes Qg = −Sn and Qg = Sn,
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respectively, where Sn is the nominal apparent power of the inverter. This property,
combined with the inherent current limitation, leads to the VSM of the proposed
controller as explained below.

Considering a relatively stiff grid and a small voltage drop between the capacitor
voltage Vc and the grid voltage Vg, which can be neglected, then it yields

S = VcI ≈ VgI ≤ E∗Imax = Sn. (4.23)

This expression actually provides the selection of the maximum current Imax, when
the nominal apparent power of the inverter is known, i.e. Imax = Sn

E∗ .

However, under grid faults, the grid voltage Vg drops by a percentage p and then
according to (4.23), the proposed controller limits the apparent power below (1 −
p)VgImax. When VSM is enabled, i.e. p > 0.1, then αf = 0 and according to (4.4)
and (4.22), the dynamics of the phase shift δ become

δ̇ = cδm(Qg − Sn)δ2l
q . (4.24)

Since the apparent power S of the inverter is limited below (1 −p)VgImax due to the
current-limiting property, then in (4.24) there is

δ̇ = cδm(Qg − Sn)δ2l
q ≤ cδm((1−p)VgImax−E∗Imax)δ

2l
q <0.

This means that the phase shift δ will keep decreasing and since δ ∈ [−∆δm,∆δm],
due to the bounded control structure of (4.4), there is δ → −∆δm. This means that
Qg → Qe = (1 − p)E∗Imax < Sn, i.e. the reactive power will be regulated to the
maximum apparent power under the grid voltage drop. Obviously, the real power
will automatically converge to zero since

Pg → Pe =
√

((1 − p)E∗Imax)
2 −Q2

e = 0.

This property indicates that opposed to existing algorithms that change both the real
and reactive power references during faults [30, 33], the proposed controller requires
only a change in the phase shift dynamics of δ which are related to the reactive power
while the real power will automatically drop to zero to allow maximum reactive
power injection with an inherent current limitation and support the grid voltage.
Furthermore, the change of the value of af during grid faults, changes only the
function g(Qg, af , ωg) that is being integrated, while in conventional approaches the
controller switches between dynamic controllers. Hence, the proposed controller
keeps a unified structure with the same dynamic states at all times.
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Table 4.1: System and controller parameters for comparative results

Parameters Values Parameters Values

L,Lg 2.2 mH ω∗ 2π x 50 rad/s
r, rg 0.5 Ω ωg 2π x 49.98 rad/s
C 10µF Imax 8 A
E∗ 110 V wm 318.25 Ω
Sn 880 VA ∆wm 304.5 Ω
cw 348 Ke 10
cδ 15.7 kw, kδ 1000
n 0.0625 m 0.0036

4.2.5 Comparative simulation results

In order to verify the desired operation of the proposed controller, a grid-connected
single-phase inverter is simulated in Matlab/Simulink under normal and faulty grid
conditions, since the implementation of the FRT algorithm in single-phase systems
has shown an increasing interest recently [22, 23]. The power system and controller
parameters are shown in Tab. 4.1. The controller parameters are selected according
to the analysis in [45] and the stability condition of sec. 4.2.3.2. Note that under the
specific parameters of Tab. 4.1, one could further perform a root-locus analysis of
the linearized system, to select the gains cw, cδ, based on the desired performance
metrics. Both the original CLD and the enhanced CLD schemes are investigated
under the same scenario, while for the enhanced CLD scheme, the VSM is enabled.
The inverter is connected to the grid at 0.1 s. Initially, Pset is set to 150 W, and Qset

is set to 0 Var, while at 0.6 s, the real power reference changes to 300 W and the
reactive power reference increases to 200 Var. As it is shown in Fig. 4.4, both the
original and the enhanced CLD lead the real and the reactive power of the inverter
to the desired values. The real power and reactive power droop control functions are
enabled at 1 s, and it is clear that both the real and the reactive power drop since
the output voltage is above the rated value and the grid frequency ωg is slightly
below the rated frequency ω∗. Until this point, the responses of the original and
the enhanced CLD are identical, proving that the proposed version maintains the
original CLD behavior under a normal grid.

To investigate the controller performance under a faulty grid, at 2 s, a voltage sag
occurs and the grid voltage drops by 0.3 p.u., while the fault is self-cleared at 2.3 s.
As shown in Fig. 4.4a, when the enhanced CLD controller with the VSM enabled
is adopted, the active power reduces during the fault, opposed to the original CLD.
In particular, due to the current-limiting property of the proposed controller and
the fact that reactive power is being increased in order to reach Sn, as shown in Fig.
4.4b, the real power automatically drops to zero. The support to the PCC voltage

is clear in Fig. 4.4c, where it is observed that the RMS output voltage under the
enhanced CLD scheme is higher than the one with the original CLD. The reason
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Figure 4.4: Simulation results of a grid-connected inverter equipped with the en-
hanced CLD with VSM enabled, compared to the original CLD
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for the improved voltage support provision is that the current with the enhanced
CLD reaches its maximum value, while the original CLD limits the current to a lower
value that corresponds to the percentage of the voltage drop, as it is observed in Fig.
4.4d. This clearly indicates the ability of the proposed controller to fully utilize the

maximum capacity of the inverter. Furthermore, the maximization of the reactive
power rather than the real power, further improves the voltage support operation.
The time response of the controller states w and δ are given in Fig. 4.4e and Fig.
4.4f, respectively. Since the dynamics of w are the same in both controllers, it is

obvious that the response of w is identical in both scenarios. However, the phase
shifting δ differs, since in the case of the enhanced CLD with VSM enabled it tends
to −90o during the fault in order to maximize the injection of the reactive power.
Finally, in Fig. 4.4g, the inverter duty ratio (which results from the inverter voltage
v divided by the dc voltage) is depicted during the grid fault. It can be observed
that the duty ratio always stays inside the linear region of the PWM modulator (i.e.
[−1, 1]). Moreover, with the enhanced CLD controller, the amplitude and the phase
shift of the duty ratio are modified according to the different real and reactive power
injections.

4.2.6 Experimental Validation

Table 4.2: System and controller parameters for experimental results

Parameters Values Parameters Values

L 7 mH ω∗ 2π x 50 rad/s
Lg 6 mH l 1
r 0.5 Ω rg 0.5 Ω
C 11µF Imax 3 A
E∗ 110 V wmin 36.66 Ω
Sn 330 VA ∆wm 531.66 Ω
cw 380 Ke 10
cδ 20 kw, kδ 1000
n 0.1667 m 0.0095

To experimentally verify the proposed control approach, a single-phase inverter with
rated power Sn = 330 VA was tested using a modified version of the Texas Instru-
ment (TI) Development Kit HV DC/AC Solar Inverter connected to a Chroma 61830
Regenerative Grid Simulator. The system and controller parameters are shown in
Tab. 4.2. A sinusoidal tracking algorithm PLL was used to obtain the required ωg.
The inverter switching frequency was 15 kHz while the proposed controller was im-
plemented using a F28M35H52C1 DSP with a sampling frequency of 4 kHz. A lower
sampling frequency was selected, as commonly done when implementing the power
control loops for inverter applications. For the droop functions, it is expected that at
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Q: [75 Var/div] 

P: [75 W/div] 

Figure 4.5: Operation under normal grid conditions

 

Q: [75 Var/div] 

P: [75 W/div] 

ig: [5 A/div] 

vc: [50 V/div] 

Figure 4.6: Transient response when Pset changes from 225 W to 350 W and Qset =
0 (current-limiting property)

the nominal power Sn, a maximum of 5% deviation of the voltage and 1% deviation
of the frequency is allowed [124]. Thus, since the P ∼ V and Q ∼ −ω droop ex-
pressions are being used, the droop coefficients can be calculated as n = 0.05KeE

∗

Sn
for

the real power droop and m = 0.01ω∗

Sn
for the reactive power droop, according to [79].

The real and reactive power is calculated using the measurements of the capacitor
voltage vc and the inverter current i, which are available at the TI inverter kit. For
typical low-power inverter applications, the real and reactive power delivered to the
grid (Pg and Qg) are very close to the values of the real and reactive power delivered
at the filter capacitor (P and Q), and hence P and Q can be used in the controller
dynamics based on the measurements of vc and i to simplify the implementation.

To verify both PQ-set control and PQ-droop control modes of the proposed con-
troller, in Fig. 4.5 the following scenario is presented: At t = 0.25 s the inverter
is connected to the grid and the real and reactive power reference values are set
to 150 W and 0 Var, respectively. After 1 s, the real power reference is increased to
225 W and 1 s later the reactive power reference is increased to 75 Var. As it is shown
in Fig. 4.5, both P and Q reach the desired values after a short transient. The real
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4.2 Enhanced current-limiting droop controller to guarantee stability and
maximize power injection under grid faults

power droop control is enabled after 1 s and the real power drops in order to bring
the output voltage of the inverter closer to the rated value. Similarly, the reactive
power droop control is enabled 1 s later and the injected reactive power drops since
during that period the grid frequency was at 49.98 Hz, i.e. lower than the rated
ω∗. In order to verify the current-limiting property (Imax = 3 A), in Fig. 4.6, the
reference value of real power Pset is changed from 225 W to 350 W when the reactive
power is zero. As it can be seen in Fig. 4.6, the RMS inverter current value is limited
to almost 3 A and hence, the output real power is limited to slightly below 330 W,
which corresponds to Sn for Q = 0. Thus, it is validated that the proposed controller
protects the inverter from unrealistic power reference values. It is noteworthy that
a THD around 5% is present at the grid current waveform. This can be a result of
imperfect LCL filter design or sampling issues. Note that when a lower THD is re-
quired, inner current and voltage control loops can be also considered. Nevertheless,
inner loop controllers were not considered in the proposed controller implementa-
tion, since the main goal of this section is to propose the enhanced CLD controller
and rigorously prove its theoretical current-limiting and stability properties for first
time.

 

Q: [75 Var/div] 

P: [75 W/div] 

ig: [2 A/div] 

vc: [50 V/div] 

vc: [50 V/div] Q: [75 Var/div] 

P: [75 W/div] 

ig: [2 A/div] 

Figure 4.7: Operation under 37% drop of the grid voltage (110 V → 70 V)
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P: [75 W/div] 

ig: [2 A/div] 
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P: [75 W/div] 

ig: [2 A/div] 

Figure 4.8: Operation under 50% drop of the grid voltage (110 V → 55 V)
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Q: [75 Var/div] 

P: [75 W/div] vc: [50 V/div] 

ig: [2 A/div] 

Figure 4.9: Operation under 50% drop of the grid voltage (110 V → 55 V) with
voltage support enabled

In order to test the proposed controller efficacy under grid faults, in Fig. 4.7, a drop
of the grid voltage from the nominal value (110 V) to 70 V is applied at 340 ms.
Due to the voltage drop, the real power increases and the current reaches its up-

per limit, leading the real power to its steady-state value Pe =

√
(1 − ρ)2 S2

n −Q2
e =√

0.6323302 − 622 W = 198 W. When the fault is cleared, both the real and reactive
power return to their original values according to the droop control after a short
transient. One can see that during this short transient, the voltage returns to its
nominal value instantly while the current remains at its maximum value for a short
period of time. Hence, as it is depicted in Fig. 4.7, the apparent power is driven from
the maximum available power during the fault to Sn, for a short time before return-
ing to its original value, however it never exceeds Sn as required. At the bottom part
of Fig. 4.7, the instances when the fault occurs and is being cleared are presented,
where it can be clearly observed that the current remains below its maximum value
during transients as well. A similar response is observed for a voltage drop of 50%
of the nominal voltage in Fig. 4.8. Compared to the original CLD in [45], where the
inverter current is limited to lower values under faults (Ie ≤ (1 − ρ) Imax), here, the
proposed controller leads the inverter current to almost Imax = 3 A; thus utilizing
the maximum power capacity of the inverter.

Since the maximum power utilization is now verified under grid faults, the voltage
support mode can be enabled in the control system, as explained in sec. 4.2.4. As
it was discussed in chapter 2, even if the voltage support operation based on FRT
requirements is mainly applied to three-phase inverters for MV and HV grids, very
recently, the voltage support capability has shown increased interest for single-phase
inverters connected to the LV grid as well [22]. The scenario of a 50% voltage drop
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is again tested while the inverter operates in the PQ-droop mode. As illustrated in
Fig. 4.9, when the voltage sag occurs, the VSM algorithm is enabled and reactive
power is maximized to support the voltage, while real power drops automatically
to values close to 0 W, as described in sec. 4.2.4. As it can be observed in Fig. 4.9,
when the fault is cleared, the real and reactive powers return to their original values.
Note that the inverter current reaches the upper limit during the fault but never
violates it, even during transients, as rigorously proven by the nonlinear ultimate
boundedness theory in sec. 4.2.3.1.

4.3 Enhanced CLD control with self-synchronization

and virtual inertia properties

In the previous section, a novel enhanced version of the CLD controller for grid-tied
inverters was proposed to guarantee the maximum power injection during grid faults
and closed-loop system stability. In this section, motivated by the recently developed
self-synchronization methods, a new CLD structure is proposed which can remove
the PLL device and at the same time introduce a virtual inertia property to the
grid-connected inverter. Additionally, the proposed structure inherits the bounded
integral controller [56] in order to guarantee tight bounds for the inverter frequency,
as required by the Grid Code. At the same time, it is proven that the proposed
controller maintains the advanced current-limiting capability of the enhanced CLD
scheme of the previous section. Finally, the effect of the output filter to the closed-
loop system is also investigated under the proposed controller.

4.3.1 The proposed controller design

In Fig. 4.10, the proposed self-synchronized current-limiting droop controller is de-
picted, for the grid-connected inverter shown in Fig. 4.1 with the system dynamics
(4.1). The proposed controller maintains the ability to utilize the maximum capacity
of the inverter and takes the form

v = vo + (1 − wlq)(
√

2E∗ sin θ − wi), (4.25)

where l > 1 ∈ N and w represents a dynamic virtual resistance which together with
the controller state wq, is given as

ẇ = −cwf(P, VC)w2
q (4.26)

ẇq =
cw(w−wm)wq

∆w2
m

f(P, Vc)−kw
(

(w − wm)2

∆w2
m

+w2
q−1

)
wq (4.27)
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Chapter 4 Enhanced CLD control of grid-connected inverters

with

f(P, Vc) = n(Pset − P )+Ke(E
∗− Vc). (4.28)

Again, wm,∆wm, cw, kw are positive constants with wm > ∆wm.

The w,wq dynamics introduce the P ∼ V droop function and similar to the analysis
of the original CLD in [45], for initial conditions w = wm and wq0 = 1, there is
w ∈ [wmin, wmax] = [wm − ∆wm, wm + ∆wm] > 0 and wq ∈ [0, 1] for all t > 0. For
the calculation of the phase θ in (4.25), and consequently the frequency ω, a self-
synchronization mechanism is adopted using a PI controller as shown in Fig. 4.10,
motivated by the self-synchronized synchronverter [15]. In this way, the output
voltage vo in (4.25) can be initially applied to the inverter voltage and then, the

dynamic part of the proposed control scheme
(
(1 − wlq)(

√
2E∗ sin θ − wi)

)
can be

enabled at the time that relays close, without requiring a PLL, to achieve a smooth
connection. Moreover, since the frequency f = ω

2π
is required to remain in a bounded

range, eg. [49.5 Hz, 50.5 Hz] , in this control scheme, the BIC of [56] is used to replace
the traditional integrator in the frequency dynamics. Since the BIC guarantees a
bound for the frequency without any saturation units, it prevents integrator wind-
up phenomena and instability in the frequency dynamics. Thus, the frequency
dynamics take the form

θ̇ = ω (4.29)

ω̇ = u(t)ω2
q (4.30)

ω̇q=−(ω − ωn)ωq
∆ω2

m

u(t)−kω
(

(ω − ωn)2

∆ω2
m

+ω2
q−1

)
ωq (4.31)

where u(t) results from the inverse Laplace transformation of

u(s) =
1

J

(
Q(s) −Qset − 1

m
(ω(s) − ωn − ωPI(s))

)
,

with

ωPI(s) =
(KP s+KI)(ω(s) − ωn)

(m+KP )s+KI

,

when SQ is closed. Parameter kω is a positive constant, ωn is the nominal angular
frequency and KP , KI > 0 represent the proportional and integral gain of the PI
controller. Additionally, ∆ωm is the maximum acceptable frequency derivation from
the nominal value. For example, for a nominal frequency of 50 Hz with maximum
deviation 0.5 Hz, there is ωn = 100π rad/s and ∆ωm = π rad/s.

A significant difference that distinguishes the proposed controller with the original
CLD [45] is the self-synchronization property in the frequency dynamics for the
calculation of the phase θ, opposed to the original CLD which used a traditional PLL.
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Figure 4.10: The proposed self-synchronized current-limiting droop controller

A second key difference is the use of the nominal voltage E∗ in (4.25) instead of the
grid voltage Vg, as in the enhanced CLD scheme of the previous section. Remember
that the original CLD fails to utilize the maximum capacity of the inverter under
faults, i.e. the inverter current is limited to a lower value depending on the grid
voltage drop, which is a significant disadvantage in grid-connected units to support
the grid under faulty conditions. The difference in the structure of (4.25) enables
the current-limiting property with maximum capacity utilization as shown below.

4.3.2 Current-limiting property

By applying the proposed controller (4.25) into the grid-tied inverter dynamics (4.1),
the dynamics of the inverter current take the form

L
di

dt
= −(r + (1 − wlq)w)i+ (1 − wlq)

√
2E∗ sin θ. (4.32)

Following the analysis of the original CLD dynamics for w and wq, it holds true
(for details see [45]) that w ∈ [wmin, wmax] > 0, where wmin = wm − ∆wm, wmax =
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Chapter 4 Enhanced CLD control of grid-connected inverters

wm + ∆wm, and wq ∈ [0, 1] for all t ≥ 0. For system (4.32), let us consider the
Lyapunov function candidate

V =
1

2
Li2, (4.33)

which actually represents the energy stored in the inductor L. Therefore, the time
derivative of V becomes

V̇ = −(r + (1 − wlq)w)i2 + (1 − wlq)
√

2E∗i sin θ

≤ −(r +(1−wlq)wmin)i2+ (1−wlq)
√

2E∗ |i| |sin θ| .

This shows that V̇ ≤ −ri2 when |i| ≥
√

2E∗|sin θ|
wmin

, proving that (4.32) is input-to-state

stable (ISS) assuming as input the expression
√

2E∗ sin θ. Since this expression is
bounded, then the inverter current i is bounded for all t ≥ 0. According to the ISS
property highlighted in sec. 3.3, it holds true that

|i| ≤
√

2E∗

wmin
, ∀t ≥ 0,

if initially i(0) satisfies the previous inequality. Since wmin is one of the controller
parameters (wmin = wm − ∆wm), by selecting

wmin =
E∗

Imax
(4.34)

where Imax is the maximum allowed RMS value of the inverter current, then

|i| ≤
√

2Imax. (4.35)

The previous inequality holds for any t ≥ 0 and for any constant positive Imax. As
a result

I ≤ Imax, ∀t ≥ 0, (4.36)

where I is the RMS value of the inverter current, showing that the proposed con-
troller maintains the current-limiting property below a given value Imax. Since the
closed-loop current equation (4.32) does not depend on the grid voltage vg, then the
current-limiting property holds independently from any grid voltage variations (eg.
grid faults), similarly to the enhanced CLD of the previous section.

4.3.3 Effect of the LCL filter to the closed-loop system

LCL filters are widely used in inverter-interfaced DERs due to their ability to reduce
the harmonic content resulting from the pulse width modulation. However, the main
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Figure 4.11: Equivalent circuit of the closed-loop system

drawback of these topologies is the high gain that they introduce at the resonance
frequency [125]. Depending on the controller structure and dynamics, the closed-
loop system may become unstable due to this resonance issue. In order to realize the
effect of the LCL to the closed-loop system based on the proposed controller, the
closed-loop system resulting from the combination of (4.1) and (4.25) with dynamics
(4.26)-(4.31) is investigated. By replacing (4.25) into (4.1) the equivalent closed-loop
circuit is shown in Fig. 4.11 where veq = (1 − wlq)

√
2E∗ sin θ. Hence, the transfer

functions from the voltage veq(s) to the inverter current i(s) and to the grid current
ig(s) are

i(s)

veq(s)
=

1

Ls+ r + (1 − wlq)w
(4.37)

and

ig(s)

veq(s)
=1/

[
LLgCs

3 +(rgCL+LgCr+LgC(1−wlq)w)s2+ (4.38)

+(L+rrgC+rgC(1 −wlq)w)s+r+(1−wlq)w
]
.

Since the values of w and wq change during the inverter operation but remain
bounded in a given range, both (4.37) and (4.38) represent a set of transfer func-
tions. Given that w starts from the initial condition wo = wm and can reach
the minimum value wmin at the maximum current, then the bode diagrams of
(4.37) and (4.38) are provided in Fig. 4.12a and Fig. 4.12b, respectively, for
w ∈ [wmin, wm] = [wm − ∆wm, wm] and by neglecting r, rg. Since from (4.27), wq is

restricted on the ellipse (w−wm)2

∆w2
m

+ w2
q = 1 and wq ∈ [0, 1], then wq =

√
1 − (w−wm)2

∆w2
m

[45]. In the same figures, the open-loop transfer functions for an LCL filter are pro-
vided. Note that the parameters of Tab. 4.3 have been taken into account. In Fig.
4.12a, it is observed that considering the proposed controller dynamics, the reso-

nance of the LCL filter is avoided. However, in Fig. 4.12b, for the transfer function
ig(s)
veq(s)

, one can see that the resonance still exists with the proposed controller but

with a limited value.
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Figure 4.12: Effect of the LCL filter to the closed-loop system

4.3.4 Controller verification through simulation results

In order to verify the effectiveness of the proposed controller, a single-phase grid-
connected inverter is simulated under both normal and faulty grid conditions. The
parameters of the power and the control systems used for the simulations, are given
in Tab. 4.3. The scenario is as follows: The inverter is connected to the grid at 0.1 s.
Initially, the PQ-set control is enabled by setting the desired values of the real and
reactive power. Particularly, the real power reference is set to 100 W and after 2 s
changes to 500 W, while the reactive power reference is initially set to 0 Var and at 3 s
changes to 50 Var, as shown in Fig. 4.13a and Fig. 4.13b. It is observed that both
the real and the reactive power are regulated to their reference values after a short
transient. At 4 s, the droop control for both the real and the reactive power is enabled
by opening switch SQ and closing switch SP , and the real and reactive power injected
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4.3 Enhanced CLD control with self-synchronization and virtual inertia properties

Table 4.3: System and controller parameters for simulation results

Parameters Values Parameters Values

L,Lg 2.2 mH ωn 2π x 50 rad/s
r, rg 0.5 Ω ωg 2π x 49.98 rad/s
C 10µF Imax 8 A
E∗ 110 V l 100
J 0.001 kg.m2 wm 318.25 Ω
Sn 880 VA ∆wm 304.5 Ω
cw 348 Ke 10
kw 1000 kω 1000
n 0.0625 m 0.0036
KP 0.1 KI 1

∆ωm π rad/s ts 0.05 s

to the grid change according to the droop expressions, as shown in Fig. 4.13a and
Fig. 4.13b. At 7 s, a voltage drop of 0.3 p.u. occurs and lasts for 2.5 s in order to
investigate a grid fault. Under this grid fault, the injected power to the grid remains
limited (Fig. 4.13a and Fig. 4.13b) because as shown in Fig. 4.13d, the current-
limiting property of the proposed controller maintains the RMS current under the
maximum value. When the fault is self-cleared, both the real and the reactive power
return to their original values. In Fig. 4.13e, the response of the controller state w
is depicted and in Fig. 4.13f a comparison between the inverter frequency that is
obtained via the self-synchronization process of the proposed controller and the grid
frequency measured from a conventional PLL is illustrated. One can observe that the
inverter equipped with the proposed self-synchronized CLD remains synchronized
with the grid at all times and that the inverter frequency stays always inside the
desired range [49.5 Hz, 50.5 Hz] , even during faults in the grid voltage. It should
be noted that the conventional PLL is used only for comparison purposes and is
not part of the proposed controller. Hence, the self-synchronization property of the
proposed controller has been verified, proving that a PLL is not required for its
operation. This brings significant advantages to the control system operation, due
to the limitations that PLL devices introduce, as discussed in sec. 2.3.
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Figure 4.13: Simulation results of a grid-tied inverter operating under the proposed
self-synchronized CLD controller

4.4 Conclusions

In this chapter, the concept of current-limiting droop control of grid-connected in-
verters was revisited and two advanced control schemes were proposed to address
the limitations of the original CLD control scheme. Firstly, an enhanced CLD con-
troller was proposed to guarantee the maximum power utilization during voltage
drops and closed-loop system stability. Ιt was analytically proven that the proposed
controller can guarantee the desired current-limiting property at all times, even un-
der transient phenomena, without using any saturation units or depending on the
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system parameters. This current limitation was proven independently from the grid
voltage variations; thus enabling maximum power utilization under grid faults. In
addition, the asymptotic stability of any equilibrium point of the closed-loop system
within a given operating range was proven for the first time with the proposed con-
troller. Finally, since the maximum power capacity of the inverter (or equivalently
the DER unit) can be utilized under faults, an extension of the proposed enhanced
CLD was developed to provide voltage support under faults by injecting maximum
reactive power (inspired by the FRT requirements). The efficacy of the proposed
control approach was validated with comparative simulation results and extended
experimental results for a grid-connected inverter under both normal and faulty
grid conditions. In the sequel of this chapter, a modified version of the enhanced
CLD controller was proposed, which inherits virtual inertia and self-synchronization
properties to the grid-connected inverter, apart from the inherent current limitation
and the maximum power utilization capabilities. Extended simulation results were
presented to validate the self-synchronized enhanced CLD scheme.
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5 Three-phase grid-connected

inverters with inherent

current-limiting capability

5.1 Motivation and novel outcome

In this chapter, the design of current-limiting control techniques for three-phase grid-
connected droop-controlled inverters is investigated. Three-phase grid-connected
inverter applications are of vital importance, since they enable the connection of
DERs to the MV and HV power networks. Furthermore, a different modeling is
required to represent the dynamics of a three-phase system, which usually employs
a reference frame transformation. Moreover, the operation of three-phase inverters
during grid faults is subject to more demanding requirements, compared to single-
phase inverters. In particular, a challenging task in three-phase systems is how to
deal with unbalanced grid faults from the control perspective. Particularly, in the
context of current-limiting control techniques, the safe voltage support provision
during unbalanced grid faults is a complicated problem. Note that most of the
faults that appear in power systems are of unbalanced nature, and as the share of
DERs is increasing, ancillary services like the voltage support of both the positive
and the negative sequence voltages, will be required from DERs.

As it has already been highlighted, a novel current-limiting control technique has
been proposed in [45] for single-phase grid-connected droop-controlled inverters.
This technique inherits a current-limiting property into a droop controller without
using saturation units, thus avoiding integrator wind-up and instability. Never-
theless, in order to extend this technique to three-phase inverter applications, the
current-limiting droop control concept should be redesigned. As in the case of single-
phase inverters in sec. 4.2, the resulting scheme should be capable to inject the max-
imum available power during faults in order to comply with the modern Grid Code
requirements and provide voltage support. Note that as it was mentioned before,
a challenge arises in optimizing the voltage support operation, while guaranteeing
a safe current injection. More specifically, in the case of unbalanced grid faults,
the inverter should accomplish both positive sequence voltage support and negative
sequence voltage elimination, according to the “voltage support concept” [35], by
injecting both positive and negative sequence currents.
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To deal with the above stated challenges, in sec. 5.2, a novel current-limiting con-
trol scheme is proposed for three-phase grid-connected droop-controlled inverters,
which uses the SRF model (dq model) to reduce the computational burden. A full
model of the three-phase grid-connected inverter in the dq framework is obtained and
the inherent current limitation is proven through nonlinear analysis of the closed-
loop system. Furthermore, the proposed control design is shown to facilitate the
investigation of asymptotic stability of the closed-loop system. In the sequel, in
sec. 5.3, building on the previously developed control scheme, the fault-ride-through
operation of three-phase inverters with inherent current-limiting characteristics is
investigated, especially during unbalanced grid faults. Initially, the dq modeling of
a three-phase grid-connected inverter is revisited in order to consider the existence
of both positive and negative sequence components. Then, the control design is per-
formed such that to combine a guaranteed current limitation and voltage support
provision, when injecting both positive and negative sequence currents. Moreover,
a novel method is proposed so that the maximum available current is divided into
the two sequences, during unbalanced grid faults. Finally, asymptotic stability of
the closed-loop system is proven with the proposed control scheme, regardless of the
system parameters.

5.2 Current-limiting droop control of three-phase

grid-connected inverters

5.2.1 System modeling in the SRF under balanced grid

conditions

The system under consideration consists of a three-phase inverter connected to the
grid through an LCL filter, as depicted in Fig. 5.1. The capacitors of the filter
are denoted as C, while the inductances are denoted as L and Lg with parasitic
resistances r and rg, respectively. The line-to-line voltage between phases a and b
is given as viab, while via represents the phase voltage of the inverter. The capacitor
voltage is denoted as vca and the grid voltage is va with va =

√
2Vg cosωgt, where Vg

is the RMS grid voltage and ωg is the angular grid frequency. The inverter and grid
side currents are ia and iga respectively. In order to obtain the dynamic model of
the system, the widely used SRF theory is considered [48]. Although the clockwise
SRF transformation from [1] is most commonly used with phase a aligned to the α
axis, in this case, the generic αβ transformation is taken into account as presented
in [49]:

Tαβ =
2

3




cos θa cos(θa − 120o) cos(θa + 120o)
sin θa sin(θa − 120o) sin(θa + 120o)
0.5 0.5 0.5


 ,
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Figure 5.1: Three-phase inverter connected to the grid through an LCL filter

where θa is the angle between phase a and the α axis, followed by the rotating
transformation

Tdq =

[
cos θg − sin θg
sin θg cos θg

]
,

with θg = ωgt.

By applying the above transformations to the three-phase current and voltage quan-
tities of the system, the SRF-based dynamic equations of the three-phase grid-tied
inverter are obtained as

L
did
dt

= vid − vcd − rid − ωgLiq (5.1)

L
diq
dt

= viq − vcq − riq + ωgLid (5.2)

Lg
digd
dt

= vcd − vd − rgigd − ωgLgigq (5.3)

Lg
digq
dt

= vcq − vq − rgigq + ωgLgigd (5.4)

C
dvcd
dt

= id − igd − ωgCvcq (5.5)

C
dvcq
dt

= iq − igq + ωgCvcd, (5.6)

where vid and viq are the dq-axis values of the inverter voltage and represent the
control inputs of the system [126].
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5.2.2 The proposed controller design

The proposed controller consists of an inner-loop voltage and current controller and
an outer-loop power controller, which includes the droop control characteristics and
inherently limits the grid current.

5.2.2.1 Inner-loop controller

The inner-loop current controller takes the form

vid = vcd +

(
kPCC +

kICC
s

)
(irefd − id) + ωgLiq

viq = vcq +

(
kPCC +

kICC
s

)
(irefq − iq) − ωgLid,

where PI controllers with decoupling and feed-forward terms are applied to regulate
id to irefd and iq to irefq . Similarly, the voltage controller from which irefd and irefq are
obtained is described through the equations

irefd = igd +

(
kPV C +

kIV C
s

)
(vrefcd − vcd) + ωgCvcq

irefq = igq +

(
kPV C +

kIV C
s

)
(vrefcq − vcq) − ωgCvcd,

where the reference values vrefcd and vrefcq are defined by the outer-loop power control.

As in typical multi-loop controller applications, the current controller is designed
to settle much faster than the voltage controller which settles much faster than the
power controller. In order to satisfy this, the parameters of the PI controllers can be
suitably selected using the pole placement technique. Thus, for the power controller
design, which operates in a slower time scale, it is reasonable to assume that vcd
and vcq are quickly regulated to vrefcd and vrefcq . Further analysis about the inner-loop
controllers commonly used in DERs applications can be found in [29].

5.2.2.2 The proposed droop controller

The outer-loop controller consists of a power controller which adopts droop control
to support the grid. Following to the introduction of the inner-loop controller in
sec. 5.2.2.1, the power controller will be directly applied to the capacitor voltage of
the LCL filter through controlling the reference capacitor voltage values vrefcd and
vrefcq . The proposed power controller for the grid-connected operation is described
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by the equations

vrefcd = vd + E∗
d − wdigd + ωgLgigq (5.7)

vrefcq = vq + E∗
q − wqigq − ωgLgigd (5.8)

where vd, vq are the grid voltage dq components and wd, wq are the virtual resistances
applied to each axis, which change according to the expressions

ẇd = −cwdf(P )w2
dq (5.9)

ẇdq =
cwd(wd − wm)wdq

∆w2
m

f(P )−kw
(

(wd − wm)2

∆w2
m

+ w2
dq − 1

)
wdq

ẇq = −cwqg(Q)w2
qq (5.10)

ẇqq =
cwq(wq − wm)wqq

∆w2
m

g(Q)−kw
(

(wq − wm)2

∆w2
m

+ w2
qq − 1

)
wqq

where cwd, cwq, kw, wm, ∆wm are positive constants and

f(P ) = n(Pset − P ) +Ke (E∗
rms − Vg) (5.11)

g(Q) = m(Qset −Q) − (ω∗ − ωg) (5.12)

with E∗
d and E∗

q representing the nominal voltages on dq axes, Ke being a positive
constant, E∗

rms is the RMS nominal voltage and m, n are the droop coefficients.
The real and reactive power of the inverter are denoted as P and Q with their
desired values Pset and Qset, respectively. It should be noted that the P ∼ V and
Q ∼ −ω droop expressions of the universal droop controller are adopted here to
provide robustness to different output impedances [79].

The PQ-set and PQ-droop control modes can be implemented in the control system
through the functions (5.11)-(5.12). In these two control modes, the inverter is either
tracking the reference values Pset, Qset, when the terms Ke (E∗

rms − Vg) and ω∗ −ωg
are removed from (5.11) and (5.12), respectively, or regulates to the grid voltage and
frequency to support the grid. For the dynamics of the virtual resistances wd and wq
in (5.7)-(5.8), the bounded integral controller, proposed in [56], is adopted in order
to guarantee the boundedness of wd and wq without using any saturated integrators
that could drive the system to instability. Hence, it is guaranteed that wd, wq ∈
[wmin, wmax] > 0, for all t ≥ 0, where ∆wm = wmax−wmin

2
and wm = wmin+wmax

2
. For

more details, the reader is referred to sec. 4.2 and to [56]. This design of bounded
virtual resistance will lead to the desired grid current-limiting property, as it will
be explained in the sequel. The implementation of the proposed control approach
is depicted in Fig. 5.2.
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Figure 5.2: The proposed control scheme

5.2.3 Stability analysis

5.2.3.1 Current-limiting property

Taking into account the fast inner current and voltage control loops that regulate
vcd and vcq to vrefcd and vrefcq in (5.3) and (5.4), by substituting the proposed con-
troller equations (5.7) and (5.8) into the system dynamics (5.3)-(5.4), the closed-loop
system can be obtained as

Lg
digd
dt

= E∗
d − wdigd − rgigd (5.13)

Lg
digq
dt

= E∗
q − wqigq − rgigq. (5.14)

The equations (5.13) and (5.14) are the derived dynamics of the grid current. Re-
call that for the controller dynamics wd, wdq, wq, wqq it holds true that wd, wq ∈
[wmin, wmax] > 0, where wmin = wm − ∆wm, wmax = wm + ∆wm, for all t ≥ 0. Tak-
ing into account these properties, let us consider the Lyapunov function candidate

V =
1

2
Lgi

2
gd +

1

2
Lgi

2
gq.

The time derivative of V , after substituting into its expression the dynamic equation
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of the grid current, becomes

V̇ = −rg(i2gd + i2gq) +
(
igd(E

∗
d − wdigd) + igq(E

∗
q − wqigq)

)

≤ −(rg + wmin)(i2gd + i2gq) +
[
E∗
d E∗

q

] [ igd
igq

]

≤ −(rg + wmin) ‖ig‖2
2 + ‖E∗‖2 ‖ig‖2 ,

where ig =
[
igd igq

]T
and E∗ =

[
E∗
d E∗

q

]T
. Hence,

V̇ ≤ −rg ‖ig‖2
2 , ∀ ‖ig‖2 ≥ ‖E∗‖2

wmin
,

which means that the grid current dynamics system given by equations (5.13) and
(5.14) is input-to-state stable (ISS) according to Theorem 3 in sec. 3.3, when the
voltage vector E∗ is considered as input. Since E∗

d and E∗
q represent constant values

of the rated voltage then the grid currents igd and igq will be bounded for all t ≥ 0.

Since ig =
[
igd igq

]T
and E∗ =

[
E∗
d E∗

q

]T
, considering the relationship between

the RMS value and the dq components, then

‖ig‖2 =
√
i2gd + i2gq =

√
(
√

2Igrms)2 =
√

2Igrms

‖E∗‖2 =
√
E∗2
d + E∗2

q =
√

(
√

2E∗
rms)

2 =
√

2E∗
rms.

Given a maximum RMS value of the grid current Imaxgrms, then by selecting the con-

troller parameter wmin = E∗
rms

Imax
grms

and taking into account that the system (5.13)-(5.14)

is ISS, it holds true that if at the time that the controller is enabled, the grid current
is less than the maximum Imaxgrms, i.e. Igrms(0) < Imaxgrms, then

Igrms(t) ≤ E∗
rms

wmin
= Imaxgrms, ∀t > 0.

Hence, it is mathematically proven that the grid current of the inverter will never
violate a given maximum value Imaxgrms. It is highlighted that the maximum value of
the grid current is guaranteed by suitably selecting the minimum value of the virtual
resistances wd and wq in the proposed controller dynamics.
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Figure 5.3: Equivalent circuit of the closed-loop system

5.2.3.2 Asymptotic Stability

As it can be seen from (5.13)-(5.14), the dynamics of the grid current are decoupled
from the inverter current and capacitor voltage dynamics and are independent from
each other due to the lack of cross-coupling terms. The equivalent circuit of the
three-phase grid-connected inverter can be simplified as shown in Fig. 5.3 and its
dynamics are given by (5.9)-(5.12) and (5.13)-(5.14). Given that in the used SRF the
real and reactive power can be calculated from P = 3

2(vdigd+vqigq) and Q = 3
2(vdigq−

vqigd), the state vector of the closed-loop system is x = [wdwdq wq wqq igd igq]
T . Since

wde, wqe ∈ (wmin, wmax) then wdqe, wqqe ∈ (0, 1] and for any equilibrium point xe =

[wde wdqewqewqqe igde igqe]
T , the investigation of closed-loop system stability using the

Jacobian matrix results into two negative eigenvalues −2kww
2
dqe and −2kww

2
qqe and

the remaining eigenvalues obtained from matrix

A =




0 0 cwdw
2
dqen

3
2vd cwdw

2
dqen

3
2vq

0 0 −cwqmw2
qqe

3
2vq cwqw

2
qqemvd

3
2

− E∗
d

Lg(rg+wde) 0 −wde+rg

Lg
0

0 − E∗
q

Lg(rg+wqe) 0 −wqe+rg

Lg



.

To ensure the asymptotic stability, the eigenvalues of A need to have negative real
parts, according to Theorem 1 in sec. 3.1. The characteristic polynomial of matrix
A is λ4 + α3λ

3 + α2λ
2 + α1λ+ α0 = 0, where

α3 =
wde + wqe + 2rg

Lg

α2 =β
E∗
rms

Lg(rg + wde)
+ α

E∗
rms

Lg(rg + wqe)
+

(wde + rg)(wqe + rg)

L2
g

α1 = α
E∗
rms(wde + rg)

L2
g(wqe + rg)

+ β
E∗
rms(wqe + rg)

L2
g(wde + rg)
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α0 =
2αβE∗2

rms

L2
g(wde + rg)(wqe + rg)

,

with α = cwqw
2
qqem

3
2
Vg and β = cwdw

2
dqen

3
2
Vg, where Vg = vd = vq and E∗

rms = E∗
d =

E∗
q . Note that vd = vq and E∗

d = E∗
q can be achieved by selecting θa = 45o in the

generic Tαβ transformation. Then, to ensure the asymptotic stability of xe using the
Ruth-Hurwitz criterion, the following conditions need to be satisfied

βE∗
rms (wde + wqe + 2rg)

(wde + rg) (wqe + rg)
<

(wde + rg)
2

Lg
(5.15)

αE∗
rms (wde + wqe + 2rg)

(wde + rg) (wqe + rg)
<

(wqe + rg)
2

Lg
. (5.16)

Taking into account that wde, wqe > wmin = E∗
rms

Imax
grms

, then the conditions to guarantee

asymptotic stability result in

cwd <

(
E∗

rms

Imax
grms

+ rg

)4

3VgE∗
rmsLgn (wmax + rg)

(5.17)

cwq <

(
E∗

rms

Imax
grms

+ rg

)4

3VgE∗
rmsLgm (wmax + rg)

. (5.18)

According to (5.17)-(5.18), the controller parameters cwd, cwq can be selected accord-
ingly to guarantee asymptotic stability of any equilibrium point xe in addition to
the desired current-limiting property.

Table 5.1: System and controller parameters for real-time simulations

Parameters Values Parameters Values

L,Lg 2.2 mH Ke 1
r, rg 1 Ω ωg 314.15 rad/s
C 1µF Imaxgrms 3 A

E∗
rms 110 V wm 294.4 Ω
cwd 183 ∆wm 257.8 Ω
cwq 3217 kw 1000
n 0.0056 m 0.0032
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5.2.4 Controller verification through real-time simulation results

In order to verify the proposed control approach, a three-phase grid-connected in-
verter equipped with the controller proposed in sec. 5.2.2 will be tested using a
OP4500 OPAL-RT real-time digital simulator. The parameters of the controller
and the power system are given in Tab. 5.1. The controller is enabled and the ref-
erence values Pset and Qset have the values of 400 W and 0 Var, respectively. Note
that initially, the proposed controller operates in the PQ-set mode and regulates P
and Q to their desired values, as shown in Figures 5.4a and 5.4b. In Fig. 5.4d,
one can observe that the voltage remains at its nominal value during this operation
since a stiff grid is assumed. At 5s, Qset is changed to 50 Var and the reactive power
injection is accordingly modified, as depicted in Fig. 5.4b, while at 10s, Pset is set
as 600 W. At 15s, the droop control operation is enabled and both the real and
reactive power drop due to the slightly higher value of the grid voltage compared
to the nominal (110.3 V) and the slightly lower than the nominal grid frequency
(49.98 Hz). At 20s, a grid voltage drop of 0.2 p.u. occurs (as shown in Fig. 5.4d)
to test the operation under faults and the desired current-limiting property of the
controller. As shown in Fig. 5.4c, the grid current reaches its maximum RMS value
of 3 A, as it has been analytically proven in sec. 5.2.3.1, thus protecting the inverter
under grid faults. When the fault is self-cleared at 25s, P and Q return to their
original values according to droop control, always without violating the maximum
grid current.

Regarding the controller states that were introduced through the control design, one
can observe in Figures 5.4e and 5.4f the time response of wd and wq, which change
in order to regulate the real and reactive power accordingly. As observed in both
figures, when the current limit is triggered at 20s, wd and wq reach their minimum

value
(
wmin = E∗

rms

Imax
grms

= 110
3 = 36.66 Ω

)
, in order to maintain the grid current limited

below its given maximum value.

5.3 Voltage support under grid faults with inherent

current limitation for three-phase

droop-controlled inverters

In the previous section, a current-limiting droop controller was proposed for three-
phase grid-connected inverters, based on the CLD concept of [45] and the BIC con-
cept of [56]. However, there is a challenge in developing control schemes that can
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Figure 5.4: Response of the three-phase grid-connected inverter equipped with the
proposed controller

safely deal with unbalanced grid faults, which represent a more realistic case rather
than balanced three-phase grid faults. Hence, in this section, a rigorous modeling
in the SRF (dq) frame is performed, while considering both positive and negative
sequence components. Moreover, a more accurate power system model is taken into
consideration with a line (feeder) between the PCC and the grid. Then, an advanced
control scheme is proposed that adopts the droop control during normal grid condi-
tions and complies with the “voltage support concept” during faulty (balanced and
unbalanced) grid conditions. In particular, two power controllers are proposed for
the positive and the negative sequence systems, to provide voltage support by in-
creasing the positive sequence voltage and eliminating the negative sequence voltage
(as required by the “voltage support concept” [35]), while rigorously guaranteeing
a limited current injection, during faults. To ensure the safe inverter operation
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Figure 5.5: Three-phase inverter connected to the grid through an LCL filter and
a line

during unbalanced grid faults, a novel method is proposed to divide the maximum
available current into the positive and the negative sequence current components.
Finally, the proposed control scheme is proven to guarantee asymptotic stability of
the grid-connected inverter closed-loop system.

5.3.1 Power system under consideration

The system under consideration consists of a three-phase inverter connected to the
grid through an LCL filter and a line, as depicted in Fig. 5.5. The capacitors of
the filter are denoted as C, while the inductors are denoted as L and Lg with their
parasitic resistances being r and rg, respectively. The line-to-line inverter voltage
between phases a and b is given as viab, while via represents the phase voltage of the
inverter. The capacitor voltage is denoted as vca while the PCC voltage is va with
va =

√
2V cosωgt, where V is the RMS PCC voltage and ωg is the angular PCC

frequency. The grid voltage is denoted as vga and is considered as unknown for the
controller design. The inverter and grid side currents are ia and iga, respectively.
When considering a balanced system, the above voltage and current quantities match
with the positive sequence components. However, in the presence of unbalanced
grid conditions, both positive and negative sequence components appear, while zero
sequence components can be neglected when considering a three-phase three-wire
system. In order to obtain the dynamic model of the system in both sequences, the
widely used synchronous reference framework (SRF) theory is considered together
with the delay signal cancellation (DSC) sequence extraction method [29, 127], as
explained in the analysis that follows.
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5.3.2 System modeling in the SRF under unbalanced grid

conditions

Similarly to sec. 5.2, the clockwise SRF transformation is considered. In order to
align phase a to the α axis, θa can be selected as 0o in the generic αβ transformation
presented in [49]

Tαβ =
2

3




cos θa cos(θa − 120) cos(θa + 120)
sin θa sin(θa − 120) sin(θa + 120)
0.5 0.5 0.5


 .

Following to the Tαβ transformation, the sequential transformation for the clockwise
SRF takes the form:

T+− =
1

2




1 0 0 0 1 0
0 1 0 −1 0 0
0 0 1 0 0 0
1 0 0 0 −1 0
0 1 0 1 0 0
0 0 0 0 0 1




.

The matrix T+− occurs from the DSC method which is employed here because it is
faster compared to the methods using low-pass filters [33]. Note that this matrix is
different when the anti-clockwise SRF is employed, while for details on obtaining this
matrix and a comparison with the low pass filtering method, the reader is referred
to [128]. T+− is then followed by the rotating transformation

T+−
dq =




cos θ+−
g − sin θ+−

g 0
sin θ+−

g cos θ+−
g 0

0 0 1


 ,

where θ+
g = ωgt for the positive sequence and θ−

g = −ωgt for the negative sequence.

Hence, considering T (t) = T̃dqT+−T̃αβ with T̃αβ =

[
Tαβ 03x3
03x3 Tαβ

]
and T̃dq =

[
T

+
dq

03x3

03x3 T
−

dq

]
, then

the complete transformation can be described for a cosinusoidal three-phase voltage
variable vabc from the equation




v+
d

v+
q

v+
0

v−
d

v−
q

v−
0




=T (t)




va(t)
vb(t)
vc(t)

va(t− T )
vb(t− T )
vc(t− T )




=




√
2

3
(Va + Vb + Vc)

0
1
6

(va (t) + vb (t) + vc (t))√
2

3
(Va − 0.5Vb − 0.5Vc)

1√
6

(Vb − Vc)
1
6

(va (t− T ) + vb (t− T ) + vc (t− T ))




, (5.19)
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where T = 1
4f

and f = ωg

2π
. By applying the above transformation to the three-phase

current and voltage quantities of the system, the SRF-based dynamic equations of
the three-phase grid-tied inverter are obtained as

L
di+−
d

dt
= v+−

id − v+−
cd − ri+−

d ∓ ωgLi
+−
q (5.20)

L
di+−
q

dt
= v+−

iq − v+−
cq − ri+−

q ± ωgLi
+−
d (5.21)

Lg
di+−
gd

dt
= v+−

cd − v+−
d − rgi

+−
gd ∓ ωgLgi

+−
gq (5.22)

Lg
di+−
gq

dt
= v+−

cq − v+−
q − rgi

+−
gq ± ωgLgi

+−
gd (5.23)

C
dv+−

cd

dt
= i+−

d − i+−
gd ∓ ωgCv

+−
cq (5.24)

C
dv+−

cq

dt
= i+−

q − i+−
gq ± ωgCv

+−
cd , (5.25)

where v+−
id and v+−

iq are the positive and negative sequence dq-axis components of
the inverter voltage and represent the control inputs of the system. For the ±
and ∓ signs that appear in the coupling terms in (5.20)-(5.25), the top operator
corresponds to the positive sequence and the bottom one to the negative sequence.
The instantaneous real and reactive power injected to the grid can be calculated
from

p = P+ + P− + p̃, q = Q+ +Q− + q̃,

where

P+ =
3

2
v+
d i

+
gd, P

− =
3

2
(v−
d i

−
gd + v−

q i
−
gq) (5.26)

Q+ =
3

2
v+
d i

+
gq, Q

− =
3

2
(v−
d i

−
gq − v−

q i
−
gd) (5.27)

since v+
q is always zero from (5.19), while p̃, q̃ are oscillation terms with zero average

value [30, 33, 109]. The VUF can be defined now at the PCC as

V UF =
V −

V +
=

√
v−2
d + v−2

q
√
v+2
d + v+2

q

while V UFgrid is equivalently derived for the grid side [129, 130].
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5.3.3 The proposed control scheme

The proposed controller consists of two inner-loop controllers, i.e. current and volt-
age control, designed in the αβ frame and two novel outer-loop controllers in the
SRF (in the positive and negative sequence), which include the droop control con-
cept and inherently limit the grid current in both sequences.

5.3.3.1 Inner-loop controllers

The current controller of the inner control loop takes the form

viα = vcα +

(
kP CC + kRCC

s

s2 + ω2
g

)
(iref

α − iα) (5.28)

viβ = vcβ +

(
kP CC + kRCC

s

s2 + ω2
g

)
(iref

β − iβ) (5.29)

where PR controllers are applied to regulate iα to irefα and iβ to irefβ . Similarly, the

voltage controller, from which irefα and irefβ are obtained, is described through the
equations

iref
α = igα +

(
kP V C + kRV C

s

s2 + ω2
g

)
(vref

cα − vcα) (5.30)

iref
β = igβ +

(
kP V C + kRV C

s

s2 + ω2
g

)
(vref

cβ − vcβ) (5.31)

where the reference values vrefcα and vrefcβ are defined from the values vref+
cd , vref−

cd and
vref+
cq , vref−

cq (generated by the positive and negative sequence outer-loop controllers)
transformed to αβ . Note that as in typical multi-loop controller applications, the
PR controller gains can be suitably selected such that the current controller settles
much faster than the voltage controller which settles much faster than the outer-
loop controllers. Thus, for the outer-loop controllers design, which operate in a
slower time scale, it is reasonable to assume that vcα and vcβ quickly track vrefcα and

vrefcβ . This is a common assumption for the inner-loop controllers used in DERs
applications and further analysis can be found in [29].

5.3.3.2 Positive sequence current-limiting droop control

The positive sequence outer-loop controller consists of a droop-based power con-
troller to support the grid. Since apart from the droop operation, a grid current
limitation should be embedded through the power controller, inspired by [45], a
virtual resistance should be introduced through the control design. Furthermore,
to realize current limitation, the controller states should be bounded in a range set
by the operator. In order to avoid the possible instability issues that may occur
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when using saturation units, for the boundedness of the controller states, the BIC
structure from [56] is adopted here. Following the introduction of the inner-loop con-
troller in sec. 5.3.3.1, the power controller will be directly applied to the capacitor
voltage of the LCL filter through controlling the reference capacitor voltage values
vref+
cd and vref+

cq . The proposed controller is described by the following equations

vref+
cd = v+

d + E+
d − r+

v i
+
gd + ωgLgi

+
gq (5.32)

vref+
cq = v+

q + E+
q − r+

v i
+
gq − ωgLgi

+
gd (5.33)

where r+
v is a constant virtual resistance and E+

d , E
+
q are virtual voltages applied to

each axis which change according to the expressions

Ė+
d = cpdf(P+)

(
E+
dq

)2 −kwe




(
E+
d

)2

(E+
max)

2 +
(
E+
dq

)2 −1


E+

d (5.34)

Ė+
dq = −cpdE

+
d E

+
dq

(E+
max)

2 f(P+)−kwe




(
E+
d

)2

(E+
max)

2 +
(
E+
dq

)2 −1


E+

dq

Ė+
q = cpqg(Q+)

(
E+
qq

)2 −kwe




(
E+
q

)2

(E+
max)

2 +
(
E+
qq

)2 − 1


E+

q (5.35)

Ė+
qq = −cpqE

+
q E

+
qq

(E+
max)

2 g(Q+)−kwe




(
E+
q

)2

(E+
max)

2 +
(
E+
qq

)2 − 1


E+

qq

where cpd, cpq, kwe, E
+
max are positive constants and

f(P+) = n(P+
set − P+) + E+

rms − V + (5.36)

g(Q+) = m(Q+
set − Q+) − ω∗ + ωg (5.37)

where E+
rms is the RMS nominal voltage in the positive sequence, n, m are the droop

coefficients, while the powers are being measured from P+ =
3v

+
d

E
+
d

2r
+
v

and Q+ =
3v

+
d

E
+
q

2r
+
v

by

using the steady-state current values (this will be further explained in sec. 5.3.3.4).
Hence, at the steady-state P+ = P+ and Q+ = Q+, thus achieving the desired
droop control operation at the steady-state, while the expressions of P+ and Q+

are used to facilitate the stability analysis, as explained in the sequel. The positive
sequence reference real and reactive power are denoted as P+

set and Q+
set respectively.

It should be highlighted that the P ∼ V and Q ∼ −ω droop expressions of the uni-
versal droop control scheme are adopted here [79], to provide robustness to different
output impedance. Through the functions (5.36)-(5.37), the PQ-set and PQ-droop
control modes are inherited in the control system. In these two control modes, the
inverter either regulates the real and reactive power to their reference values P+

set,
Q+
set, when the terms E+

rms − V + and −ω∗ + ωg are removed from (5.36) and (5.37),
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respectively, or supports the grid voltage and frequency regulation through droop
control. For the dynamics of the virtual voltages E+

d and E+
q in (5.32)-(5.33), the

bounded integral controller (BIC), proposed in [56], is adopted in order to guaran-
tee the boundedness of E+

d and E+
q without using any saturated integrators that

could drive the system to instability. It is noteworthy that in this control scheme,

the terms −kwe
(

(E+
d )

2

(E+
max)

2 +
(
E+
dq

)2 −1

)
E+
d and −kwe

(
(E+

q )
2

(E+
max)

2 +
(
E+
qq

)2 − 1

)
E+
q have

been added in (5.34)-(5.35) to guarantee attractiveness of the controller states to
a desired ellipse on the phase plane. To further explain this, consider the lower
bounded function

W =
1

4

( (
E+

d

)2

(
E+

max

)2 +
(
E+

dq

)2

− 1

)2

for the system (5.34). The time derivative of W takes the form

Ẇ =
1

2

( (
E+

d

)2

(
E+

max

)2 +
(
E+

dq

)2

− 1

)(
2E+

d Ė
+
d(

E+
max

)2 + 2E+
dqĖ

+
dq

)

which by substituting Ė+
d and Ė+

dq from (5.34), becomes

Ẇ = −kwe

( (
E+

d

)2

(
E+

max

)2 +
(
E+

dq

)2

−1

)2( (
E+

d

)2

(
E+

max

)2 +
(
E+

dq

)2
)

6 0. (5.38)

Furthermore, one can easily show that Ẅ is bounded. Hence, according to the
“Lyapunov-Like Lemma” (Lemma 4.3 in [120]), Ẇ → 0 as t → ∞. It is clear from

(5.38) that Ẇ = 0 holds at the set E =

{
E+

d , E
+
dq ∈ R :

(E
+
d )

2

(E
+
max)2 +

(
E+

dq

)2

=1

}
and at

the origin. However, regarding the origin, where E+
d = 0 and E+

dq = 0, it can be
easily proven that it is an unstable equilibrium point, from Theorem 4.4 in [120],

by considering the continuously differentiable function W̄ =
(E

+
d )

2

(E
+
max)2 +

(
E+

dq

)2

. Thus,

starting from any initial conditions E+
d0 and E+

dq0, except from the origin, the states
E+
d and E+

dq will be quickly attracted on E and remain on the curve thereafter
ensuring that E+

d ∈ [−E+
max, E

+
max] , ∀t ≥ 0. Note that the positive parameter E+

max

represents the horizontal radius of the ellipse E and when it varies, it becomes clear
from (5.38), that E+

d and E+
dq will quickly converge to a new ellipse. The larger

the kwe, the faster the convergence. This enables an adaptation of the upper and
lower bounds of E+

d . A similar analysis holds for E+
q and E+

qq guaranteeing that
E+
q ∈ [−E+

max, E
+
max] , ∀t ≥ 0.

5.3.3.3 Negative sequence current-limiting control

The proposed current-limiting controller in the negative sequence is designed in a
similar form and aims at regulating the negative sequence grid current. Hence it
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can be obtained as follows

vref−
cd = v−

d + E−
d − r−

v i
−
gd − ωgLgi

−
gq (5.39)

vref−
cq = v−

q + E−
q − r−

v i
−
gq + ωgLgi

−
gd (5.40)

where similarly to the positive sequence controller, r−
v is a constant virtual resistance

and E−
d , E

−
q are virtual voltages applied to each axis which change according to the

expressions

Ė−
d = cnd

(
iref−
gd − E−

d

r−
v

)(
E−
dq

)2 −kwe




(
E−
d

)2

(E−
max)

2 +
(
E−
dq

)2 −1


E−

d (5.41)

Ė−
dq = −cndE

−
d E

−
dq

(E−
max)

2

(
iref−
gd − E−

d

r−
v

)
−kwe




(
E−
d

)2

(E−
max)

2 +
(
E−
dq

)2 −1


E−

dq

Ė−
q = cnq

(
iref−
gq − E−

q

r−
v

)(
E−
qq

)2 −kwe




(
E−
q

)2

(E−
max)

2 +
(
E−
qq

)2 − 1


E−

q (5.42)

Ė−
qq = −cnqE

−
q E

−
qq

(E−
max)

2

(
iref−
gq − E−

q

r−
v

)
−kwe




(
E−
q

)2

(E−
max)

2 +
(
E−
qq

)2 − 1


E−

qq

where iref−
gd

=
2
(

P
−

set
v

−

d
−Q

−

set
v

−

q

)

3
(

v
−2
d

+v
−2
q

) and i
ref−
gq =

2
(

P
−

set
v

−

q +Q
−

set
v

−

d

)

3
(

v
−2
d

+v
−2
q

) are the current reference values,

which can be realized by equating the P− and Q− formulas from (5.26) and (5.27)
with their reference values P−

set and Q−
set, while cnd, cnq, E

−
max are positive constants.

As one can see, through the proposed controller, the expressions
E−

d

r−
v

and
E−

q

r−
v
, which

represent a good approximation of the steady-state negative sequence current values
(see sec. 5.3.3.4) can be regulated to the reference values iref−

gd and iref−
gq . Through this

control structure, P− andQ− can track their reference values which can be computed
to optimally eliminate the negative sequence voltage. Following a similar analysis to
the positive sequence controller, it can be proven that E−

d , E
−
q ∈ [−E−

max, E
−
max], ∀t ≥

0, which facilitates the desired current limitation. The methodology for generating
P−
set and Q−

set and the current-limiting property are explained in the sequel.
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5.3.3.4 Current-limiting property

By substituting the proposed controller (5.32)-(5.33) and (5.39)-(5.40) into the sys-
tem dynamics (5.22)-(5.23), the closed-loop system takes the form

Lg
di+−
gd

dt
= E+−

d −
(
r+−
v + rg

)
i+−
gd (5.43)

Lg
di+−
gq

dt
= E+−

q −
(
r+−
v + rg

)
i+−
gq . (5.44)

The equations (5.43) and (5.44) are the derived dynamics of the grid current in both
sequences. From (5.43) and (5.44) the steady-state value of the grid currents can be

approximated from i+−

gde ⋍
E

+−

d

r
+−

v

and i+−

gqe ⋍
E+−

q

r
+−

v

considering that r+−
v > rg, which can

be achieved by appropriately selecting the virtual resistances r+−
v , which represent

controller parameters. This is why the previous expressions are used in (5.36), (5.37),
(5.41), (5.42). Taking into account that E+−

d , E+−
q ∈ [−E+−

max, E
+−
max], ∀t ≥ 0, let us

consider the continuous differentiable function candidate

V =
1

2
Lgi

+−2
gd

for system (5.43).

The time derivative of V becomes

V̇ =−
(
rg + r+−

v

) (
i+−
gd

)2
+ i+−

gd E
+−
d ≤ −

(
rg + r+−

v

) (
i+−
gd

)2
+
∣∣∣i+−
gd

∣∣∣
∣∣∣E+−

d

∣∣∣ .

Thus,

V̇ ≤ −rg
(
i+−
gd

)2
, ∀
∣∣∣i+−
gd

∣∣∣ ≥
∣∣∣E+−

d

∣∣∣

r+−
v

which according to Theorem 3 in sec. 3.3, proves that system (5.43) is input-to-state

stable (ISS) by considering E+−
d as the input. Since it is proven that

∣∣∣E+−
d

∣∣∣ ≤
E+−
max, ∀t ≥ 0, then i+−

gd will be bounded for all t ≥ 0. More precisely, it will hold
that

∣∣∣i+−
gd

∣∣∣ ≤ E+−
max

r+−
v

, ∀t ≥ 0,

with the condition that initially
∣∣∣i+−
gd (0)

∣∣∣ ≤ E+−
max

r+−
v

. This holds true because the set

Ω =
{
i+−
gd ∈ R,

∣∣∣i+−
gd

∣∣∣ ≤ E+−
max

r+−
v

}
is invariant. Hence, if E+

max and E−
max are selected as

E+
max =

√
2r+

v I
max+
grms and E−

max = r−
v I

max−
grms , then

∣∣∣i+gd
∣∣∣ ≤

√
2Imax+
grms and

∣∣∣i−gd
∣∣∣ ≤ Imax−

grms .
Since the same analysis and same result holds for the q axis current as well, it is
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concluded that

I+
grms =

√
(i+gd)

2
+(i+gq)

2

√
2

≤
√

2Imax+
grms

I−
grms =

√
(i−gd)

2
+(i−gq)

2

√
2

≤ Imax−
grms .

The reason
√

2 is used in E+
max and the way Imax+

grms and Imax−
grms are selected online,

are further explained in sec. 5.3.4.2.

5.3.4 Operation under the voltage support scheme

5.3.4.1 Fault-ride-through operation

Fault-ride-through guidelines have been recently proposed in order to standardize
the way DERs should provide support under grid faults. In particular, during grid
voltage drops, DERs should provide voltage support through reactive power injection
instead of getting disconnected due to tripping of the inverter. In a wider manner,
the most common voltage support technique in the literature is the “voltage support
concept” where maximum available power is injected to the grid in order to increase
the voltage level at the PCC and reduce voltage unbalance [35]. To understand this,
consider the voltage difference between the PCC and the grid ∆V + = V + − V +

g

and assuming a resistive-inductive line with resistance rl and inductance Ll, let us
use the approximation of this voltage difference as it is commonly presented in the
literature [131, 132]

∆V + =
P+rl +Q+xLl

3V +
. (5.45)

Interested readers can obtain this approximation by using the equations that relate
the magnitudes of the PCC and grid voltages according to the current real and
reactive components, as shown in [32, 133, 134].

Since power lines are most of the times considered as predominantly inductive, it
can be understood from (5.45) that reactive power affects more drastically the PCC
voltage and thus, by injecting reactive power we can increase the PCC voltage
level compared to the faulty grid voltage. In case only resistive or only inductive
impedance is considered between the PCC and the grid, the relations between the
amplitudes are simplified as presented in [35], thus requiring the injection of only
real or reactive power respectively to support PCC by increasing ∆V +. The most
commonly used FRT guidelines are those from the German grid code [135] which
take the form:

I+
grmsQ =





0, V + > 0.9E+
rms(

1 − V +

E+
rms

)
kImax+
grms , 0.5E+

rms < V + < 0.9E+
rms

Imax+
grms , V + 6 0.5E+

rms

(5.46)
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where I+
grmsQ is the reactive component of the positive sequence grid current and k is

the FRT gain (k ≥ 2) with
(
1 − V +

E+
rms

)
k ≤ 1.According to (5.46), it is concluded that

P+
set =

√(
S+

max

)2 −
(
Q+

set

)2 and Q+
set =

(
1 − V +

E
+
rms

)
kS+

max, where S+
max represents the amount

of apparent power assigned to the positive sequence controller during faults, in the
case where 0.5E+

rms < V + < 0.9E+
rms.

Regarding the negative sequence voltage (which is a crucial part of the “voltage
support concept” as well), according to the literature, it can be eliminated by in-
creasing the negative sequence reactive power and decreasing the negative sequence
real power. This can be understood either from [32], where equations that involve
the magnitude of the PCC voltage are shown to explain the negative sequence volt-
age elimination concept or from the phasor analysis in [33]. For the calculation of
the negative sequence reference powers during unbalanced grid faults, in this control
scheme, a PI controller is applied to generate Q−

set, i.e.

Q−
set =

(
kPV U +

kIV U
s

) (
V − − E−

rms

)
(5.47)

while

P−
set = − rl

ωgLl
Q−
set, (5.48)

where E−
rms is a constant and kPV U , kIV U are the proportional and integral gains

of the PI controller. Note that (5.48) represents a decoupling solution based on
the line impedance parameters [33, 136]. However, accurate knowledge of rl and Ll
is not essential since an estimation of the term rl

Ll
is enough. Through (5.47) and

(5.48), the required negative sequence reference powers to eliminate the PCC nega-
tive sequence voltage are acquired. As it is obvious from (5.47)-(5.48), considering
initially a balanced system, as long as there is no negative sequence voltage at the
PCC (balanced system), Q−

set = P−
set = 0 and thus the inverter injects only positive

sequence power. Note that a superiority of the proposed controller compared to
existing approaches, is that when the capacity is not enough to track P−

set and Q−
set,

priority is given to the current limitation property proven in sec. 5.3.3.4, without
switching to different control dynamics or suffering from integrator wind-up issues.

It should be highlighted that methodologies that take into account the line impedance
have been also applied for positive sequence voltage support, see for example [32,
134]. In this case, decoupling based on the line impedance parameters is achieved
in the positive sequence as well and thus, (5.45) does not represent an assumption
since it expresses accurately the voltage difference. However, since the FRT is an
essential standard in most of the grid codes nowadays, it is adopted for the positive
sequence voltage support in this controller, as in [33]. Note though that if required,
P+
set and Q+

set formulas can be easily modified and be determined according to rl and
Ll instead of the FRT guidelines.
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5.3.4.2 Online adaptation of Imax+
grms and Imax−

grms

With the proposed controller, the grid current limitation is inherently applied through
the outer-loop controllers and not through saturated integrators in the inner loop.
Thus, a proper selection of the maximum available current in each sequence needs
to take place by proposing an algorithm that defines the values Imax+

grms and Imax−
grms .

To realize this current allocation, priority is given to the positive sequence voltage
regulation by means of supporting V +

c so that when V + < 0.9E+
rms, we can achieve

V +
c ≥ 0.9E+

rms or V +
c − V + ≥ 0.9E+

rms − V + which based on [137], can be rewritten as

P+rg +Q+xLg

3V +
≥ 0.9E+

rms − V +. (5.49)

This methodology is employed since in contrary to [117], the aim here is to provide
a non dynamic method of adjusting the positive and negative sequence maximum
currents and furthermore, V +

g is considered unknown. Otherwise the positive se-
quence voltage support could be applied at the PCC voltage. By recalling the P+

set

and Q+
set formulas derived from (5.46), expression (5.49) results to

S+
max

(√
1 − ρ2k2rg + kρωgLg

)

3V +
≥ 0.9E+

rms − V +

which can be equivalently written as

Imax+
grms >

E+
rms (ρ− 0.1)√

1 − k2ρ2rg + kρωgLg
.

Thus, we can select

Imax+
grms =

E+
rms (ρ− 0.1)√

1 − k2ρ2rg + kρωgLg
, (5.50)

where ρ is the p.u. voltage drop of the RMS voltage at the PCC. The derivation
of (5.50) is analytically given in the Appendix. Note that (5.50) is valid only when
0.5 ≥ ρ ≥ 0.1 (from (5.46)) and V − > E−

rms since in the absence of negative
sequence voltage, all the available current is assigned to the positive sequence. Imax+

grms

is then passed through a saturator that ensures that Imax+
grms ∈

[
0, Imax

grms

]
. Opposed to

conventional current-limiting control schemes that apply a saturator on the current
dynamics, here the function being saturated is not dynamic and thus does not suffer
from integrator wind-up. Then, according to the theory presented in [109, 111, 116],
which shows that the total current of any phase has a maximum value Imax

grms 6

I+
grms + I−

grms even if unbalanced current is injected to the grid, Imax−

grms can be set as

Imax−
grms = Imaxgrms − Imax+

grms (5.51)

[34, 115, 138, 139]. When current allocation has taken place, the value S+
max can

be easily selected as 3V +Imax+
grms and the positive sequence reference powers can be
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ref
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ref

cdv
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Figure 5.6: Implementation diagram of the proposed controller
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Figure 5.7: FRT Block

calculated according to the FRT guidelines (5.46), while when Imax+
grms = Imaxgrms from

(5.50) or due to the saturator, then S+
max = (1 − ρ)Smax and Imax−

grms = 0. Since the
maximum current for each sequence is now defined according to the voltage drop,
the proposed controller dynamics (5.34)-(5.35) and (5.41)-(5.42) can be adapted on-
line through the expressions E+

max =
√

2r+
v I

max+
grms , E

−
max = r−

v I
max−
grms . Opposed to the

work presented in [45, 140], here the proposed design enables the adaptation of the
controller parameters E+

max and E−
max, and the controller states are attracted on any

ellipse E with varying horizontal radius (E+
max or E−

max) as analytically proven in
sec. 5.3.3.2. The positive sequence maximum current is set as the amplitude and
not the RMS value in order to allow P,Q ∈ [0, S+

max] for the FRT. However, since

it holds that P+
set =

√(
S+

max

)2 −
(
Q+

set

)2
, the maximum RMS current will never be

violated at the steady-state while during transients, through the input-to-state sta-
bility property of the closed-loop current dynamics, it is proven that it remains below
the value

√
2Imaxgrms = 1.4Imaxgrms (worst-case scenario), which commercial inverters can

handle [118]. Finally, during normal grid conditions, Imax+
grms can be simply selected

as Imaxgrms/
√

2 to ensure current limitation under the value Imaxgrms at all times. The
implementation of the proposed control approach is depicted in Fig. 5.6, where the
control part generating the positive and negative sequence reference powers and the
maximum currents is denoted as the FRT block, which is shown in Fig. 5.7.
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5.3.5 Stability analysis

After applying the proposed controller into the three-phase inverter system, the
closed-loop dynamics are given by (5.34)-(5.37) and (5.41)-(5.44). The state vector

of the closed-loop system, for both sequences, takes the form x+− =

[(
x+−

1

)T (
x+−

2

)T
]T

,

where x+−
1 =

[
i+−
gd

i+−
gq

]T
, x+−

2 =
[
E+−

d
E+−

dq
E+−

q E+−
qq

]T
. Consider now any steady-state

equilibrium point x+−
e =

[(
x+−

1e

)T (
x+−

2e

)T
]T

=
[
i+−
gde

i+−
gqe E

+−
de

E+−
dqe

E+−
qe E+−

qqe

]T with E+−
de

, E+−
qe ∈

(
−E+−

max, E
+−
max

)
, i.e. E+−

dqe , E
+−
qqe ∈ (0, 1] , where the voltage and frequency at the PCC

are considered constant (according to the different time scales approach explained in
the Appendix) and the negative sequence reference currents are assumed constant.
By defining x̃+−

1 = x+−
1 −x+−

1e and x̃+−
2 = x+−

2 −x+−
2e , then the closed-loop dynamics

(5.34)-(5.37) and (5.41)-(5.44) can be written in the following interconnected system
form

˙̃x+−
1 = f1

(
x̃+−

1 , x̃+−
2

)
(5.52)

˙̃x+−
2 = f2

(
x̃+−

2

)
, (5.53)

where the equilibrium has been shifted at the origin. According to Theorem 4
in sec. 3.4, which is analytically given in Lemma 5.6 in [119], if the system (5.52)
with the x̃+−

2 as input, is locally input-to-state stable and the origin of (5.53) is
asymptotically stable, then the origin of the interconnected system (5.52)-(5.53) is
asymptotically stable.

System (5.52) is linear and can be written from (5.43)-(5.44) as




˙̃i+−
gd

˙̃i+−
gq



 =



 −rg+r+−
v

Lg
0

0 −rg+r+−
v

Lg




[
ĩ+−
gd

ĩ+−
gq

]
+




Ẽ+−
d

Lg

Ẽ+−
q

Lg


 .

Since the characteristic matrix of the grid current dynamics is diagonal with all
elements being negative, then the system (5.52) is bounded-input bounded state

stable with respect to the input
[
Ẽ+−

d

Lg

Ẽ+−
q

Lg

]T
, which means that (5.52) is ISS. Then,

for the dynamics of the control system (5.34)-(5.37) and (5.41)-(5.42) the Jacobian
matrix of (5.53) becomes

A+− =

[
A+−

1 02×2

02×2 A+−
2

]
,
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where

A+−
1 =




−α+−
(
E+−
dqe

)2 − 2kwe
(E+−

de )
2

(E+−
max)

2 −2kweE
+−
dqeE

+−
de

α+−E+−
de

E+−
dqe

−2kweE
+−
de

E+−
dqe

(E+−
max)

2 −2kwe
(
E+−
dqe

)2




A+−
2 =




−β+−
(
E+−
qqe

)2 − 2kwe
(E+−

qe )
2

(E+−
max)

2 −2kweE
+−
qqeE

+−
qe

β+−E+−
qe E+−

qqe −2kweE
+−
qe E+−

qqe

(E+−
max)

2 −2kwe
(
E+−
qqe

)2




with α+ =
cpd3nv+

d

2r+
v

, β+ =
cpq3mv+

d

2r+
v

, α− = cnd

r−
v

and β− = cnq

r−
v
. Since A+− is a block di-

agonal matrix, we can investigate the system matrices A+−
1 and A+−

2 independently.
The characteristic polynomials of these two matrices take the form

λ2+
(
2kwe +α+−

(
E+−
dqe

)2
)
λ+2kwe

(
E+−
dqe

)4
α+− +

2kwe
(
E+−
de

)2 (
E+−
dqe

)2
α+−

(E+−
max)

2 = 0

λ2+
(
2kwe +β+−

(
E+−
qqe

)2
)
λ+2kwe

(
E+−
qqe

)4
β+− +

2kwe
(
E+−
qe

)2 (
E+−
qqe

)2
β+−

(E+−
max)

2 = 0.

Hence, the condition to guarantee asymptotic stability for any equilibrium point x+−
e

of the closed-loop system in the bounded operating range E+−
de ,E

+−
qe ∈(−E+−

max, E
+−
max),

is

α+, α−, β+, β− > 0,

which is always true regardless of the voltage level. Opposed to the majority of
the conventional approaches that use root-locus analysis and guarantee stability
of a given equilibrium point under the specific parameters of the inverter and the
grid, here the proposed controller guarantees asymptotic stability of any equilibrium
point x+−

e in the bounded operating range. In addition, an inherent current-limiting
property and an enhanced operation under grid faults is achieved in a unified control
structure, which highlight the novelties of the proposed control scheme.

5.3.6 Validation through real-time results

In order to validate the proposed control approach, a three-phase inverter connected
to the grid, as shown in Fig. 5.5, and equipped with the proposed controller, is
tested using an OPAL-RT OP4500 real-time digital simulator. The parameters
of the controller and the power system are given in Tab. 5.2. In the sequel, the
performance of the proposed controller will be showcased under various normal and
abnormal grid conditions.
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Table 5.2: System and controller parameters for real-time simulations

Parameters Values Parameters Values

L,Lg 2.2 mH Zl 0.9 + 1.256jΩ
r, rg 0.5 Ω Vdc 400 V
C 1 μF Smax 3.3 KVA

E+
rms 110 V Imaxgrms 10 A

E−
rms 0 V ω∗ 314.15 rad/s
ωg 314.03 rad/s kwe 1000
n 0.00333 m 0.0019
r+
v 30 Ω r−

v 10 Ω
cpd 780 cpq 3415
cnd 250 cnq 125
kPV U 2 kIV U 20
kPCC 0.2 kRCC 2
kPV C 1.5 kRV C 15

5.3.6.1 Balanced operation

Firstly, the operation of the grid-connected inverter equipped with the proposed
controller will be tested under balanced grid conditions. The switch between the
LCL filter and the PCC is initially open, and then closes at t = 0.1 s, while at the
same time the controller is enabled with the reference values P+

set and Q+
set having

the values of 600 W and 0 Var, respectively. The controller operates initially in the
PQ-set mode and regulates P+ and Q+ to their desired values, as shown in Fig. 5.8.
In the same figure, V +

c and I+
grms can be observed as well. At t = 1 s, Q+

set is changed
to 50 Var and the reactive power injection is accordingly modified while at t = 2 s,
P+
set is set as 800 W. Since the PQ-set operation is now verified, at t = 4 s and
t = 5 s, the real and reactive power droop control modes are enabled respectively.
One can see that both the real and the reactive power drop since at that time,
the grid operates with a slightly higher value of RMS grid voltage compared to the
nominal (110.4 V) and a slightly lower than the nominal grid frequency (49.98 Hz).
At t = 6 s, a balanced grid voltage drop of 0.4 p.u. is applied in order to test the
operation under faulty grid conditions. At the initial transient, it can be observed
in Fig. 5.8, that I+

grms reaches the value of 11 A while it never violates the ultimate

bound of
√

2Imaxgrms = 14 A. Following to the transient, the RMS value of the grid
current is regulated to its maximum value of 10 A, as it has been analytically proven
in the controller analysis, while P+ and Q+are regulated according to the FRT, thus
achieving grid support and inverter protection simultaneously. When the fault is
self-cleared at t = 8 s, P+ and Q+ return smoothly to their original values according
to the droop control.
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Igrms
+: [5 A/div] 

Vc
+: [50 V/div] 

Q+: [500 Var/div] 

P+: [500 Watt/div] 

Figure 5.8: Operation under balanced grid conditions with a 0.4 p.u. balanced
voltage drop at 6s

5.3.6.2 Operation under single-phase voltage sag

In order to test the operation of the proposed controller under unbalanced faults, a
single-phase voltage sag is applied on vga, with its RMS value dropping by 0.65 p.u.
which leads to V +

g ≈ 0.78 p.u., while the inverter is operating with droop control.
As it can be observed in Fig. 5.9b, the current allocation algorithm leads the RMS
currents to the values I+

grms = 6.65 A and I−
grms = 3.15 A. It should be noted that

according to the proposed controller operation, the components I+
grms and I−

grms

are tracking their maximum values from (5.50) and (5.51) during voltage drops
(unless the desired V − = E−

rms regulation has been achieved with less than the
maximum negative sequence current). Hence, the total current is regulated close to
its maximum value Imaxgrms but without exceeding it. The primary objective of the
proposed controller is achieved since as it is depicted in Fig. 5.9b, V +

c is regulated
to 0.9E+

rms. This verifies the proper selection of the value Imax+
grms which further leads

to the S+
max calculation, while the rest of the available inverter capacity is assigned to

negative sequence current controller so that V −, shown in Fig. 5.9b, is eliminated
as much as possible. Even if the proposed controller does not deal directly with the
VUF but aims to increase the positive sequence voltage and eliminate the negative
sequence voltage, in this certain scenario, it can be seen in Fig. 5.9c that V UF
at the PCC is eliminated by 7% when compared to V UFgrid. The real and reactive
power components injected to the grid according to (5.46) and (5.47)-(5.48) are
depicted in Fig. 5.9a. At the steady-state, P−

set and Q−
set are not tracked since

priority is given to the current-limiting property. However, if greater capacity was
available, such that V − = E−

rms, P
− and Q− would be regulated to their reference

values. After 1.5 s, the fault is self-cleared and the positive sequence components are
driven to their initial values according to droop control while the negative sequence
components are driven to 0. Note that during the clearing transient, the value
I+
grms + I−

grms reaches the value 12 A for 10 ms, however, it never exceeds its ultimate
bound during transients set at 14 A, as proven in the theoretic analysis.
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P+: [1000 Watt/div] 

Q+: [1000 Var/div] 

P-: [100 Watt/div] 

Q-: [100 Var/div] 

(a) Injected powers

 

Vc
+: [50 V/div] 

V-: [25 V/div] 

Igrms
+: [5 A/div] Igrms

-: [5 A/div] 

0.9Erms
+ 

(b) Positive and negative sequence RMS voltages and cur-
rents

 

VUFgrid: [10% /div] 

VUF: [10% /div] 

(c) Voltage unbalance factors

Figure 5.9: Operation under single-phase voltage drop (Vga = 0.35 p.u.)

5.3.6.3 Operation under two-phase voltage sag

To further demonstrate the operation of the proposed controller under unbalanced
faults, a two-phase voltage sag is now applied, with the RMS values of vga and
vgc dropping so that Vga = 0.73 p.u. and Vgc = 0.65 p.u. leading to V +

g ≈ 0.8 p.u.,
while the inverter is operated in the droop control mode. As mentioned before,
the maximum current assigned to the positive sequence controller is tracked by the
controller leading to I+

grms = 6.1 A in order to optimize the support operation and
thus, V +

c is regulated to 0.9E+
rms, as shown in Fig. 5.10b. The the rest of the

available current, is assigned to the negative sequence current controller which leads
to I−

grms = 3.7 A thus, managing to eliminate the negative sequence voltage, shown in
Fig. 5.10b. Hence, the total current never violates its maximum value Imaxgrms = 10 A.
The powers injected to the grid in both sequences can be observed in Fig. 5.10a
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while the V UF is eliminated by 7% compared to the V UFgrid, as depicted in Fig.
5.10c. After 1.5 s, the fault is self-cleared and the positive sequence components are

driven to their initial values according to droop control while the negative sequence
components are driven to 0. It is underlined that during the clearing transient, the
addition I+

grms + I−
grms, reaches the value of 11.5 A for less than 10 ms without ever

violating the ultimate bound for transient currents, set at 14 A.

 

P+: [1000 Watt/div] 

Q+: [1000 Var/div] 

P-: [100 Watt/div] 

Q-: [100 Var/div] 

(a) Injected powers

 

Vc
+: [50 V/div] 

V-: [25 V/div] 

Igrms
+: [5 A/div] Igrms

-: [5 A/div] 

0.9Erms
+ 

(b) Positive and negative sequence RMS voltages and cur-
rents

 

VUFgrid: [5% /div] 

VUF: [5% /div] 

(c) Voltage unbalance factors

Figure 5.10: Operation under two-phase voltage drop (Vga = 0.73 p.u. and Vgc =
0.65 p.u. )
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5.4 Conclusions

In this chapter, the current-limiting control design of three-phase grid-connected in-
verters was investigated. Initially, a current-limiting droop controller was developed
for three-phase inverters. The proposed control approach allows the inverter to ei-
ther track the set reference values for the real and reactive power or to operate with
a droop control technique to support the grid. Furthermore, a grid current-limiting
property was shown to be sustained at all times by introducing a virtual resistance
and was analytically proven using the input-to-state stability (ISS) property of the
closed-loop system. This current limitation ensures a safe operation even in the
case where voltage dips occur in the grid, without the need of saturation units that
can lead to instability. Finally, asymptotic stability of the closed-loop system was
proven without assuming knowledge of the system parameters. The proposed con-
trol approach was validated through extensive real-time simulation results. In the
sequel, aiming to address the operation of three-phase inverters during unbalanced
grid faults, a novel control concept was proposed, which inherits a current-limiting
property to three-phase grid-connected droop-controlled inverters. The proposed
control scheme complies with the “voltage support concept” to achieve grid voltage
support under both balanced and unbalanced grid faults. To accomplish the desired
tasks, two novel outer-loop controllers were applied to the positive and the negative
sequence systems, while the boundedness of the grid current was proven through
closed-loop system analysis. A novel way to divide the rated inverter current into
the positive and the negative sequence current components was proposed to enable
the desired voltage support operation. Finally, asymptotic stability of the closed-
loop system was proven for inverters that adopt the proposed control scheme. The
proposed controller was verified through extended real-time simulation results.
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6 Inverter-based self-protected

microgrids

6.1 Motivation and novel outcome

As it was discussed in the literature review of chapter 2, the increasing integration
of DERs into power systems has driven to a paradigm shift in the power system
structure and operation. In this “smart grid” era, advanced control and protection
techniques are required [8]. In the same context, a vital component of the smart
grid is the “microgrid” which aims to locally utilize the DERs’ capabilities. In par-
ticular, a microgrid is a part of a power system that can operate either connected
to the the grid or as an island. Hence, sophisticated control schemes are required
to guarantee the proper microgrid operation. Up to recently, the islanded operation
of parts of the power system was not allowed by the Grid Codes and anti-islanding
techniques were required for every DER. However, with the recent advances in the
control schemes of inverter-interfaced DERs, which can accomplish tasks like load
voltage and frequency regulation and proportional power sharing, the islanded mi-
crogrid operation is nowadays actively investigated in order to improve smart grid’s
reliability. Nevertheless, the safe operation of inverter-based microgrids under faulty
or overload conditions has not been sufficiently and rigorously investigated [107].

Aiming to tackle the safe operation of inverter-based microgrids, the concept of
droop-controlled inverters with inherent current limitation should be revisited so
that it can be applied to islanded systems. The advanced current limitation offered
through the BIC structure is expected to bring significant benefits in inverter-based
microgrid applications, where the conventional current limitation approaches may
lead to undesirable performance [46]. Moreover, the investigation of stability of
islanded microgrids is a challenging task due to the absence of a stiff grid to stabilize
voltage and frequency. It is noteworthy that similarly to the case of three-phase
grid-connected inverter applications, the SRF (dq) framework is commonly used for
modeling and control of three-phase microgrids. Nevertheless, since in an inverter-
based microgrid each inverter operates with its own phase shift, each inverter has its
own dq alignment. Hence, to investigate the microgrid closed-loop system stability,
the global DQ framework concept should be considered based on the rotational
angle difference of each inverter in the inverter-based microgrid [6].

To deal with the above mentioned challenges, in sec. 6.2, a new current-limiting
droop controller is proposed for three-phase inverters operating in parallel. Droop
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control is employed to ensure the proportional power sharing between the parallel
inverters, while an inherent current-limiting property is achieved through the control
design. Furthermore, small-signal analysis is performed to examine the closed-loop
system stability of two parallel inverters equipped with the proposed controller. In
the sequel, on top of the control scheme proposed in sec. 6.2, a simpler control scheme
should be developed while a more accurate model of an inverter-based microgrid
with lines between the PCC of each inverter and the load should be considered.
Moreover, the microgrid stability analysis should be performed in a more generalized
manner, i.e. without considering an exemplary case of two inverter-interfaced DERs
operating in parallel. Hence, in sec. 6.3, a novel droop controller that ensures the
desired inverter current limitation and guarantees the stable operation of inverter-
based microgrids under extreme load conditions is proposed. Opposed to existing
dq framework-based droop controllers that align the output voltage on d axis, in the
proposed scheme, the inverter current is aligned on d axis in order to achieve two
main goals: i) limitation of the RMS value of each inverter current during transients,
without a need for saturation units that may lead to instability and that usually
require an online adaptation technique to fully utilize inverter capacity and ii) a
rigorous proof of closed-loop system stability for the entire microgrid. In particular,
the proposed approach significantly simplifies the stability analysis of the microgrid,
since it can be investigated through a Jacobian matrix of reduced size.

6.2 Current-limiting droop control of three-phase

inverters operating in parallel

6.2.1 System modeling

The system under consideration consists of n three-phase inverters operating con-
nected to a common load bus through an LC filter, as depicted in Fig. 6.1. The
inductance of the filter is denoted as Li, with its parasitic resistance being ignored
due to its small value, while the filter capacitor is denoted as Ci where i denotes
the number of the inverter with i ∈ [1, . . . , n] . The inverter voltage in the natu-
ral reference framework is denoted as viabc and the inverter current is given as iiabc
while the load voltage and current are denoted as vLabc and iLabc, respectively. The
contribution to the total load current from each inverter is given as iLiabc. Following
the synchronous reference frame theory proposed in [48] and thoroughly presented
in [49], the abc/dq0 transformation is described from the matrix

Tαβ =
2

3




sin θa sin(θa − 120) sin(θa + 120)
cos θa cos(θa − 120) cos(θa + 120)
0.5 0.5 0.5


 ,

where θa is the angle between phase a and the α axis, followed by the rotating
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Figure 6.1: Parallel inverters under consideration

transformation

Tdq =

[
cos θi sin θi

− sin θi cos θi

]
,

where θi is the angle of each inverter. One may notice that a different dq transforma-
tion is introduced here, compared to the one used in chapter 5. This transformation
is selected in this chapter, since it is more widely used in the literature. Neverthe-
less, the control design is not restricted to a specific rotational transformation, as
long as the control parameters are accordingly selected. The dynamic equations for
any of the n parallel three-phase inverters in the dq framework can be written as

Li
diid
dt

= vid − vLid + ωiLiiiq (6.1)

Li
diiq
dt

= viq − vLiq − ωiLiiid (6.2)

Ci
dvLid
dt

= iid − iLid + ωiCivLiq (6.3)

Ci
dvLiq
dt

= iiq − iLiq − ωiCivLid, (6.4)

where ωi is the angular frequency of each inverter and the inverter voltages vid and
viq represent the control inputs.
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Figure 6.2: The proposed controller

6.2.2 The proposed controller design

The proposed controller for each inverter operating in parallel takes the form

vid = vLid +
(wi − wmi)

2

∆w2
mi

(Ed − wiiid) − ωiLiiiq (6.5)

viq = vLiq − wmini iiq + ωiLiiid (6.6)

where Ed is the nominal load voltage on d axis which for the used SRF transformation
(θα = 90o) is derived as Ed =

√
2Erms, with Erms being a constant representing

the nominal RMS load voltage. The term (wi−wmi)2

∆w2
mi

is used in order to achieve a

smooth connection thus avoiding any possible overvoltage that could arise due to
the constant parameter Ed. The terms ωiLiiiq and ωiLiiid represent the decoupling
terms and wmini is the minimum value of the virtual resistance wi applied to the d
axis, which changes according to the nonlinear expressions

ẇi = −cwifi(Pi)w2
qi (6.7)

ẇqi =
cwi(wi − wmi)wqi

∆w2
mi

fi(Pi) − kw

(
(wi − wmi)

2

∆w2
mi

+ w2
qi − 1

)
wqi (6.8)

where cwi and kw are positive constants. As it has been highlighted, through this

structure, wi ∈ [wmini , wmaxi ] = [wmi − ∆wmi, wmi + ∆wmi] , while wmi =
wmin

i +wmax
i

2

and ∆wmi =
wmax

i −wmin
i

2
. The function fi(Pi) inherits the real power droop control

expression, which is applied in the proposed controller through the virtual resistance
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dynamics and takes the form

fi(Pi) = Erms − VL − npiPi (6.9)

where Pi = 3
2

(vLidiid + vLiqiiq) . The reactive power droop control is applied through
the SRF transformation and is described from

ωi = ω∗ +mqiQi (6.10)

where Qi = 3
2

(vLiqiid − vLidiiq) . In the droop expressions, npi represents the real
power droop coefficient, mqi represents the reactive power droop coefficient, while

VL is the RMS load voltage which is calculated from
√

2VL =
√
v2
Lid + v2

Liq and ω∗ is

the nominal angular frequency. One can see that real power droop control is applied
through the d component of the inverter voltage (which is a control input of the sys-
tem) and reactive power droop is applied through the angular frequency dynamics.
The P ∼ V, Q ∽ −ω droop expressions are used in this controller since the universal
droop controller from [79] is adopted. The implementation of the proposed controller
is shown in Fig. 6.2. As highlighted before, for the virtual resistance dynamics in
(6.7)-(6.8), the BIC setup from [56] is employed to guarantee the boundedness of
the virtual resistance wi. This property will lead to the boundedness of the inverter
current for every three-phase inverter as it will be analytically shown in the analysis
that follows.

6.2.3 Stability analysis

6.2.3.1 Current-limiting property

Applying the proposed controller (6.5)-(6.6) into the system dynamics (6.1)-(6.4),
the closed-loop system takes the form depicted in Fig. 6.3. The inverter current
dynamics are

Li
diid
dt

=
(wi − wmi)

2

∆w2
mi

(Ed − wiiid) (6.11)

Li
diiq
dt

= −wmini iiq. (6.12)

This also verifies that the steady-state currents take the values iide = Ed

wi
and iiqe = 0.

Now, let us consider the Lyapunov function candidate

V =
1

2
Lii

2
id +

1

2
Lii

2
iq,
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Figure 6.3: Equivalent circuit of the closed-loop system

which represents the energy stored in each inductor. Its time derivative takes the
form

V̇ =
(wi − wmi)

2

∆w2
mi

(
Ediid−wii2id

)
−wmini i2iq

≤ (wi − wmi)
2

∆w2
mi

(
[Ed 0]

[
iid
iiq

]
−wmini

(
i2id + i2iq

))

≤ (wi − wmi)
2

∆w2
mi

(
−wmini ‖Ii‖2

2 + ‖E‖2 ‖Ii‖2

)

where Ii = [iid iiq]
T and E = [Ed 0]T . Thus, it is concluded that

V̇ < 0, ∀ ‖Ii‖2 >
‖E‖2

wmini

. (6.13)
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Furthermore, taking into account the relation between the dq quantities and the
RMS values

‖Ii‖2 =
√
i2id + i2iq =

√
2Iirms

‖E‖2 =
√
E2
d = Ed =

√
2Erms

and since (6.13) holds true, if initially Iirms (0) ≤ Erms

wmin
, then

Iirms(t) ≤ Erms
wmini

, ∀t ≥ 0. (6.14)

By selecting wmini = Erms

Imax
irms

then Iirms (t) ≤ Imaxirms, ∀t ≥ 0 for a given maximum value

of the RMS current Imaxirms. Since the boundedness in (6.14) is proven independently
from the load voltage or frequency, the RMS inverter current can reach but never
exceed its set maximum value, for any t > 0. According to this, the controller
variable Imaxirms can be selected by the control operator in order to ensure a current
limitation under this threshold value at all times, even under transients and for any
type of load.

6.2.3.2 Small-signal stability analysis

Although a current-limiting property is guaranteed for every inverter, the stability of
multiple inverters operating in parallel has not been proven yet. In order to evaluate
the proposed controller in terms of the closed-loop system stability, an exemplary
case of two three-phase inverters operating in parallel is considered for simplicity,
although the same approach can be extended to multiple parallel inverters. The
state vector of the closed-loop system when considering two parallel three-phase
inverters feeding a resistive load is x = [i1d i2d i1q i2q vLd vLq w1 w2wq1 wq2]

T . Note
that, as shown in Fig. 6.1, both inverters have access to the common load voltage and
additionally iiqe becomes zero at the steady-state. This means that at the steady-
state, when power sharing is achieved and all frequencies have been synchronized,
the dq axes of every inverter will be aligned to each other and will have an angle
difference δe compared to the global reference frame, where vLd and vLq is calculated.
At this global reference frame, the capacitor voltage is aligned on d axis (vLqe = 0).
Then, the Jacobian matrix of the closed-loop system takes the form

A =



AT 08×1 08×1

A1 −2kww
2
q1e 0

A2 0 −2kww
2
q2e


 .

However, since in the bounded range of operation it holds wi ∈ (wmini , wmaxi ) ,
then for any equilibrium point xe with wq1e, wq2e ∈ (0, 1] , the values −2kww

2
q1e and

−2kww
2
q2e are always negative. Thus, all the eigenvalues of the closed-loop sys-

tem will be negative if all the eigenvalues of the matrix AT , analytically shown in
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AT =




− ǫ2w1e

∆w2
m1

L1
0 0 0 0 0 − ǫ2i1de

∆w2
m1

L1
0

0 − ζ2w2e

∆w2
m2

L2
0 0 0 0 0 − ζ2i2de

∆w2
m2

L2

0 0 −
wmin

1
L1

0 0 0 0 0

0 0 0 −
wmin

2
L2

0 0 0 0
cos δe

C1+C2

cos δe
C1+C2

− sin δe
C1+C2

− sin δe
C1+C2

− 1
R(C1+C2)

ω0 0 0

sin δe
C1+C2

sin δe
C1+C2

cos δe
C1+C2

cos δe
C1+C2

−ω0 − 1
R(C1+C2)

0 0

3
2

cw1np1γw2
q1e 0 3

2
cw1np1σw2

q1e 0 α1cw1w2
q1e β1cw1w2

q1e 0 0

0 3
2

cw2np2γw2
q2e 0 3

2
cw2np2σw2

q2e α2cw2w2
q2e β2cw2w2

q2e 0 0




(6.15)

(6.15), have negative real parts. To facilitate the representation of AT , the following
notations are considered: αi = 3

2npiiide cos δe +1/
√

2, βi = 3
2npiiide sin δe, γ = vLde cos δe,

σ = −vLde sin δe, ǫ = (w1e − wm1) and ζ = (w2e − wm2) . In order to perform a root-
locus analysis for the matrix AT , the equilibrium point of the closed-loop system,
xe = [i1de i2de i1qe i2qe vLde vLqe w1ew2e wq1ewq2e]

T needs to be identified. This is pos-
sible through solving the system of equations (6.3)-(6.4) and (6.7)-(6.12), while ω0

represents the system steady-state frequency at each equilibrium point when consid-
ering that synchronization has been achieved. The droop coefficients are calculated
from the formulas npi = 0.09 Erms

Smaxi
and mqi = 0.01 ω∗

Smaxi
. Therefore through root-

locus analysis, the closed-loop system stability for the case of two parallel inverters
feeding a resistive load and equipped with the proposed controller can be examined,
while the considered system parameters are given in Tab. 6.1.

In Fig. 6.4a, the eigenvalues of the closed-loop system for a resistive load with
R = 10 Ω are depicted for a real power droop percentage (npi) between 3% and 30%.
Since all the eigenvalues have negative real part, from Theorem 1 in sec. 3.1, it is
concluded that the closed-loop system is stable around the considered equilibrium
point. Furthermore, in Fig. 6.4b, the trajectory of the eigenvalues that are closer
to the imaginary axis is depicted, where it can be understood that as npi gets lower
values, eigenvalues tend more close to the unstable region.

Table 6.1: System and controller parameters for simulation results

Parameters Values Parameters Values

L1, L2 1.1 mH C1, C2 10µF
Smax1 3300 VA Smax2 1650 VA
ω∗ 314.15 rad/s Erms 110 V
np1 0.003 mq1 0.000952
np2 0.006 mq2 0.0019
Imax1rms 10 A Imax2rms 5 A

Imin1rms-I
min
2rms 0.14 A kw 1000

wm1 394 Ω wm2 399 Ω

110



6.2 Current-limiting droop control of three-phase inverters operating in parallel

-3 -2.5 -2 -1.5 -1 -0.5 0

10
4

-4000

-2000

0

2000

4000

(a) Full spectrum of the eigenvalues

-5000 -4000 -3000 -2000 -1000

-3000

-2000

-1000

0

1000

2000

3000

n
pi

 decreasing

n
pi

 decreasing

(b) Spectrum of the eigenvalues close to the
imaginary axis

Figure 6.4: Spectrum of the closed-loop system eigenvalues as a function of npi :
0.03Erms

Smaxi
< npi <

0.3Erms

Smaxi

6.2.4 Verification through simulation results

To validate the performance of the proposed controller, two parallel three-phase
inverters connected to a common load bus, as depicted in Fig. 6.1, are simulated in
the Matlab/Simulink environment. The system and controller parameters are given
in Tab. 6.1. Initially both inverters do not feed the load since their switches are
open while at 0.1 s, the first inverter is connected to the load which initially has the
value R = 18 Ω. As it can be seen in Fig. 6.5a, the first inverter quickly regulates
its output real power P1 in order to achieve a load voltage close to its nominal value
through droop control. Similarly, in Fig. 6.5b, it is shown that reactive power is
accordingly injected to regulate load frequency close to the nominal frequency. The
load bus voltage VL and frequency f are regulated close to their nominal values
as depicted in Figures 6.5e and 6.5f, respectively. At 2 s, the second inverter is
connected to the common load bus and since a 2 : 1 power sharing ratio is desired
according to the capacity of the inverters, both real and reactive power are shared
proportionally so that P1 = 2P2 and Q1 = 2Q2, as it can be observed in Figures
6.5a and 6.5b. To accomplish this, P1 is reduced, so that both power inverters are

stressed equally, whilst as shown in Fig. 6.5e, VL is now regulated to a higher value
which can be understood from (6.9). At 5 s, a load change is experienced and the
total load is driven to R = 10 Ω. As shown in Figures 6.5a and 6.5b, the inverters
modify their response, while the power sharing remains accurate. At 7 s, an even
higher demand occurs leading the common load to R = 6 Ω, which requires a power
greater than the total capacity of the two parallel inverters Smax1 +Smax2. However,
according to the controller theoretic analysis, at that time both controller states w1

and w2 are driven to their minimum values (11 Ω and 22 Ω respectively, as shown
in Fig. 6.5d) thus, limiting the inverter currents I1rms and I2rms to their maximum
values as shown in Fig. 6.5c. Hence, the DERs are protected from overcurrents
while the load bus voltage VL drops significantly, since priority is given to protecting
the inverter devices. The presented simulation results verify the proportional power
sharing and current-limiting capabilities of the proposed controller.
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Figure 6.5: Response of two three-phases inverters operating in parallel

6.3 Inverter-based microgrids with inherent current

limitation under extreme load conditions

In the previous section, a new current-limiting droop control approach was pro-
posed for three-phase inverters operating in parallel. However, a more realistic
microgrid topology should be considered and the microgrid small-signal stability
analysis should not investigate a specific setup with two parallel inverters. Thus,
in this section, a new droop control approach is proposed for inverter-based micro-
grids, that guarantees an inverter current limitation and ensures stability for the
entire microgrid, under extreme load conditions. This is accomplished by aligning
the inverter current on the d axis of the local (inverter) dq framework, in contrast to
conventional droop control approaches that align the output voltage on the d axis
[6]. In particular, it is analytically proven that the proposed control structure guar-
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Figure 6.6: Microgrid under consideration

antees an inverter RMS current limitation without the need of adaptive saturation
units to fully utilize the inverter capacity and that it further simplifies the Jacobian
matrix, the eigenvalues of which should be computed in order to investigate the
stability properties of an inverter-based microgrid.

6.3.1 Microgrid modeling

The system under consideration is an inverter-based microgrid consisting of n three-
phase inverters connected to a common load bus through an LC filter and an RL
line, as depicted in Fig. 6.6. This microgrid configuration is commonly considered
in power system stability studies [76, 100, 141], while as highlighted in [100], it
represents a special case of a meshed microgrid. The power system components
and variables are defined as follows: the inductance of the filter is denoted as Li
with its parasitic resistance being ri, the filter capacitor is denoted as Ci, where
i indicates the number of the inverter with i ∈ [1, . . . , n] . The line inductance
and resistance are represented as Lli and rli, respectively. The inverter voltage
in the natural reference frame is defined as viabc, the inverter current is given as
iiabc, while the capacitor voltage, load voltage, line current and load current are
represented as vCiabc, vabc,iLiabc and iLabc, respectively. Each inverter can measure
its inverter current iiabc and its point of common coupling voltage voabc. As it is
clear from Fig. 6.6, when the inverter switches are open voiabc = vabc, while when
the switches close, voiabc = vCiabc. Following the SRF transformation described in
sec. 6.2, the dynamics of each inverter can be described in the synchronously rotating
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dq reference frame using θi as the angle of each inverter. Since in an inverter-based
microgrid each individual inverter may have its own angle and hence, its own dq
frame alignment, the local dq reference frame quantities (e.g. fdq) of each DER
with angular frequency ωi, can be transformed into the global DQ reference frame
quantities (e.g. fDQ) with angular frequency ωcom, through the transformation

fDQ =

[
cos δi − sin δi
sin δi cos δi

]
fdq,

where δi is the rotational angle difference between the local reference frame of each
DER and the global reference frame, given by

δ̇i = ωi − ωcom. (6.16)

To facilitate the modeling, the angular frequency of one of the inverters can be
selected as the global reference frame [6]. Following the above methodology, the
considered microgrid can be modeled in the synchronous reference frame, where
the dynamic equations for any of the n three-phase inverters of the microgrid are
obtained as

Li
diid
dt

= vid − vCid − riiid + ωiLiiiq (6.17)

Li
diiq
dt

= viq − vCiq − riiiq − ωiLiiid, (6.18)

where the inverter voltage components vid and viq represent the control inputs.
Note that the inverter real and reactive powers Pi and Qi can be calculated from
Pi = 1.5 (vCidiid + vCiqiiq) and Qi = 1.5 (vCiqiid − vCidiiq) . For the filter capacitors
and each line that connects each PCC with the common load bus, the dynamics at
the global reference frame rotating with ωcom [6, 95], take the form

Ci
dvCiD
dt

= iiD − iLiD + ωcomCivCiQ (6.19)

Ci
dvCiQ
dt

= iiQ − iLiQ − ωcomCivCiD (6.20)

Lli
diLiD
dt

= vCiD − vD − rliiLiD + ωcomLliiLiQ (6.21)

Lli
diLiQ
dt

= vCiQ − vQ − rliiLiQ − ωcomLliiLiD. (6.22)
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6.3.2 The Proposed Controller: Control design and

current-limiting property

6.3.2.1 Control Design

In order to accomplish the desired tasks highlighted in sec. 6.1, the proposed con-
troller is suitably designed to align the inverter current on the d axis of each inverter
local dq framework, to guarantee an inherent current limitation. To this end, the
inverter voltage (which is the control input) consists of two parts: i) a voltage feed-
forward term implemented in the abc reference frame and ii) a dynamic control part
implemented in the dq reference frame. The proposed controller takes the form

viabc = voiabc + viabc

where viabc is the dq to abc transformation of the reference voltages

v̄id = Ei − rviiid − ωiLiiiq (6.23)

v̄iq = −rviiiq + ωiLiiid, (6.24)

where Ei is a control state representing a virtual voltage, rvi is a constant virtual
resistance and ωiLiiiq and ωiLiiid are decoupling terms. The state Ei changes ac-
cording to the nonlinear expressions

Ėi = cifi(Pi, Vi)E
2
qi (6.25)

Ėqi=−ciEiEqi
E2
maxi

fi(Pi, Vi)−ki
(
E2
i

E2
mi

+ E2
qi − 1

)
Eqi (6.26)

proposed in [56] while Eqi is an extra control state, ci, ki are positive constant gains
and the control states initial conditions are defined as Ei0 = 0, Eqi0 = 1. The
P ∼ V,Q ∽ −ω droop expressions of the universal droop control scheme in [79] are
considered here to provide robustness to different kinds of output impedance (i.e.
resistive or capacitive). In the proposed controller, the function fi(Pi, Vi) inherits
the real power droop control characteristics through the virtual voltage dynamics
and takes the form

fi(Pi, Vi) = E2
rms − V 2

i − npiPi. (6.27)

The reactive power droop control is statically applied through the inverter local
frequency ωi with

ωi = ω∗ +mqiQi, (6.28)
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Figure 6.7: The proposed controller implementation

while npi, mqi represent the real power and reactive power droop coefficients, respec-
tively, Vi is the RMS PCC voltage and Erms is the nominal RMS load voltage. The
proposed controller is depicted in Fig. 6.7. The BIC structure from [56] that was
adopted for the controller dynamics (6.25)-(6.26), guarantees that the controller

states Ei, Eqi will start and remain on the ellipse W =
{
Ei, Eqi ∈ R :

E2
i

E2
mi

+ E2
qi =1

}
,

based on the given initial conditions. Thus it holds that Ei ∈ [−Emi, Emi] , with
Emi > 0 being the absolute maximum value of the control state, which is defined by
the control operator and Eqi ∈ [0, 1] . For more details on the boundedness of the
states Ei, Eqi, the reader is referred to sec. 4.2. This boundedness feature is essential
for the desired inverter current-limiting property of any three-phase inverter con-
nected to a microgrid, as it will be proven through the closed-loop system analysis
in the sequel.

6.3.2.2 Current-limiting property

By applying the proposed controller (6.23)-(6.24) into the inverter current dynamics
(6.17)-(6.18), and considering that the switches are closed, i.e. voiabc = vCiabc, the
closed-loop system dynamics take the form

Li
diid
dt

= Ei − (rvi + ri) iid (6.29)

Li
diiq
dt

= − (rvi + ri) iiq. (6.30)

Note that at the steady state it holds iide = Ei

rvi+ri
and iiqe = 0, while from (6.30),

it is clear that if iiq (0) = 0, then iiq (t) = 0, ∀t ≥ 0. Now consider as Lyapunov
function candidate the function

V =
1

2
Lii

2
id +

1

2
Lii

2
iq.

Its time derivative takes the form
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V̇ =
(
Eiiid−(rvi + ri) i

2
id

)
−(rvi + ri) i

2
iq≤

[Ei 0]

[
iid
iiq

]
−(rvi+ri)

(
i2id + i2iq

)
≤

− (rvi + ri) ‖Ii‖2
2 +

∥∥∥Ei

∥∥∥
2

‖Ii‖2 ,

where Ii = [iid iiq]
T and Ei = [Ei 0]T . Furthermore taking into account the dq

transformation where

‖Ii‖2 =
√
i2id + i2iq =

√
2Iirms

∥∥∥Ei

∥∥∥
2

=
√
E2
i = |Ei|

and given that |Ei| ≤ Emi from the BIC structure, as explained in sec. 6.3.2.1, it
follows that

V̇ ≤ −2 (rvi + ri) I
2
irms +

√
2EmiIirms

V̇ ≤ −2riI
2
irms, ∀Iirms ≥ Emi√

2rvi
.

Thus, according to the Theorem 2 in sec. 3.2, there exists a KL function β so that
for any initial condition Iirms (0) there is a T ≥ 0 such that

Iirms (t) ≤ β (Iirms (0) , t) ∀0 ≤ t ≤ T

Iirms (t) ≤ Emi√
2rvi

∀t ≥ T,

proving that the solution of the RMS inverter current is uniformly ultimately bounded.
Note that if initially Iirms (0) ≤ Emi

√

2rvi
, then T = 0, i.e. it holds true that

Iirms (t) ≤ Emi√
2rvi

, ∀t ≥ 0. (6.31)

By selecting the controller parameter Emi as Emi =
√

2Imaxirmsrvi, (6.31) yields

Iirms ≤ Imaxirms, ∀t ≥ 0.

According to the ultimate boundedness analysis, the controller variable Imaxirms can be
accordingly selected by the controller operator in order to ensure an inverter RMS
current limitation at all times, even during transients. It should be highlighted
that through the proposed control scheme, the maximum available current injection
is achieved without requiring an adaptive limitation technique, as in conventional
current-limiting approaches of dq control schemes [108, 116].
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Remark 3: It should be noted that since the current limitation was proven inde-
pendently of the microgrid structure, the inherent current-limiting capability of the
proposed controller will hold under any microgrid setup (e.g. meshed microgrid)
and is not limited to the common load bus structure.

6.3.3 Small-signal stability analysis of common load bus

inverter-based microgrid

6.3.3.1 The case without lines between the PCC and the load bus

Although, in the previous subsection, the desired RMS current limitation was proven
for each inverter, the stability analysis of the entire inverter-based microgrid is not
yet guaranteed. This is a crucial problem due to the absence of a stiff grid to stabilize
voltage and frequency. To investigate stability using the proposed a controller, a
simple case will be initially considered where each inverter is directly connected
to the load bus, i.e. without the lines shown in Fig. 6.6. This means that all
inverters measure the same load voltage components in the global reference frame,
i.e. by denoting any two inverters as i and j, it holds vCiD = vCjD = vD and
vCiQ = vCjQ = vQ. Taking into account the angle difference of each inverter from
(6.16) and since it is proven in sec. 6.3.2.2 that iiq = 0, one can rewrite the power
equations as Pi = 1.5(vD cos δi + vQ sin δi)iid and Qi = 1.5(vQ cos δi − vD sin δi)iid.
Since the same RMS voltage is measured by every inverter, then accurate power
sharing will be achieved for both real and reactive power at the steady-state. Hence,
it holds that npi

npj
= Pj

Pi
and mqi

mqj
= Qj

Qi
, with npi

npj
= mqi

mqj
. Thus, at the steady-state

npiiid (vD cos δi + vQ sin δi) = npjijd (vD cos δj + vQ sin δj)

mqiiid (vQ cos δi − vD sin δi) = mqjijd (vQ cos δj − vD sin δj) ,
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which by dividing these two equations and after some mathematical manipula-
tions results to

(
v2

D + v2
Q

)
sin (δj − δi) = 0. Under the common assumption that δi, δj ∈(

−π
2
, π

2

)
[103], it is concluded that δi = δj .

This proof shows that in the absence of lines between the PCC of each inverter and
the common load bus, not only accurate power sharing is achieved without the need
of hierarchical control structures but also, the rotational angle differences δi and δj
are all the same and hence, by selecting the angular frequency of one inverter as
the global reference frame, it holds δi = δj = 0 at the steady-state. This is also
graphically explained in Fig. 6.8. However, since this represents only a special case,
an analysis considering the entire microgrid with the lines, as depicted in Fig. 6.6,
will be performed in the sequel.

6.3.3.2 The case with resistive-inductive lines between the PCC and the load

bus

The state vector of the closed-loop system, when lines are considered between
the PCC of each inverter and the common load (where δi, δj are not zero at the
steady-state), as shown in Fig. 6.6, becomes x = [i1d...ind E1...En vC1D...vCnD vC1Q...vCnQ

iL1D...iLnD iL1Q...iLnQ δ2...δn Eq1...Eqn i1q...inq]
T
, where the load is modeled as constant

impedance load (RL) and the angular frequency of the first inverter is selected as the
frequency of the global reference frame, i.e. ω1 = ωcom. Note that when considering
a constant impedance load, as commonly done in power system studies [6], the load
dynamics take the form

L
diLD
dt

= vD − RiLD + ωcomLiLQ

L
diLQ
dt

= vQ − RiLQ − ωcomLiLD.

For the coupling terms in the capacitor, line, load and rotational angle dynamics, the
angular frequency of the global reference frame ωcom is selected as the steady-state
microgrid frequency to simplify the analysis, as in [6, 95]. Considering an equilibrium
point xe with xe = [i1de..indeE1e...EnevC1De..vCnDevC1Qe..vCnQeiL1De..iLnDe iL1Qe...iLnQe δ2e..

.δneEq1e...Eqne i1qe...inqe]T , where |Eie| < Emi and Eqie ∈ (0, 1] , the Jacobian matrix
of the closed-loop system takes the form

A =




AT 0 A2

A1 −diag
{
2kiE

2
qie

}
A3

0 0 −diag
{
rvi+ri

Li

}


 , (6.32)

with
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AT =




−diag

{
rvi+ri

Li

}
diag

{
1

Li

}
0n×2n 0n×2n 0n×(n−1)

−diag

{
cinpiE2

qie
3
2

κi

}
0n×n AT 1 0n×2n AT 2

AT 3 02n×n

[
0n×n diag {ωcom}

−diag {ωcom} 0n×n

][−diag

{
1

Ci

}
0n×n

0n×n −diag

{
1

Ci

}
]

AT 4

02n×n 02n×n AT 5 AT 6 02n×(n−1)

AT 7 0(n−1)×n AT 8 0(n−1)×2n −diag

{
mqi

3
2

iideλi

}




.

(6.33)

Hence, the closed-loop system will be stable if all the eigenvalues of the matrix
AT in (6.33) have negative real parts where κi = (vCiDe cos δie + vCiQe sin δie) , λi =
(cos δievCiDe + sin δievCiQe) and the sub-matrices of the matrix AT are given in the
Appendix.

Remark 4: It should be highlighted that the dynamics of the currents iiq have been
decoupled under the proposed control scheme, as it is clear from (6.32). Hence, the
stability investigation can be performed through a new Jacobian matrix AT which
is reduced by n states compared to conventional SRF-based droop controllers. In
the conventional approaches, the voltage vCiq is regulated to zero [6] and a different
timescale for the inner current controller has to be assumed in order to achieve a
similar simplification in the Jacobian matrix in order to decouple the voltage dynam-
ics. Thus, with the proposed control scheme the Jacobian matrix, and concurrently
the stability analysis, is significantly simplified, without considering any timescale
separation assumption.

6.3.3.3 Identifying the equilibrium point and root-locus analysis

In order to perform a root-locus analysis, first the steady-state equilibrium point of
the entire microgrid needs to be identified. However, the analytic calculation of the
equilibrium point is a daunting task when dealing with islanded microgrids [6, 142]
and hence, many papers approximate the required equilibrium points through time-
domain simulations [142, 143]. Note that an exemplary microgrid with two inverters
will be considered for simplicity but a similar methodology can be followed for any
number of inverters, since the microgrid modeling and the derived Jacobian matrix
deal with the case of n inverters. Firstly, the first inverter’s angular frequency is
selected as the global reference frame. Then, only the values of I1rms and ωcom are
needed to be identified. Thus, keeping in mind that δ1 = 0, then i1de = i1De =√

2I1rms and i1qe = i1Qe = 0. Now, the capacitor voltages of the first inverter can be
calculated from the droop expressions at the steady-state as

vC1Qe =
ωcom − ω∗

1.5mq1i1De

vC1De =
√

2.25n2
p1i

2
1De − v2

C1Qe + 2E2
rms − 1.5np1i1De

120



6.3 Inverter-based microgrids with inherent current limitation under extreme load
conditions

and the line currents of the first inverter can be obtained from the steady-state
equation of the capacitor dynamics

iLiDe = iiDe + ωcomCivCiQe (6.34)

iLiQe = iiQe − ωcomCivCiDe. (6.35)

Following the analysis in [100], the admittance matrix for the setup under consider-
ation in the DQ framework takes the form




iL1De

iL1Qe

iL2De

iL2Qe


 =




G11 −B11 G12 −B12

B11 G11 B12 G12

G12 −B12 G22 −B22

B12 G12 B22 G22







vC1De

vC1Qe

vC2De

vC2Qe


 .

Through the admittance matrix, the values of vC2De, vC2Qe and iL2De, iL2Qe can be
calculated, and at the same time using the steady-state capacitor equations (6.34)-
(6.35) of the second inverter, the inverter currents in the global frame can be obtained

as well. Finally, since it holds that δ2 = acos
(
i2D/

√
i22D + i22Q

)
, the inverter currents

of the second inverter in their local frame can be found as well, while it holds that

Eie = iide (rvi + ri) and Eqie =
√

1 − (E2
ie/E

2
mi) from the BIC analysis. A specific

equilibrium point for a constant RL load with R = 12.5 Ω and L = 20 mH, can now
be finally obtained using the system parameters in Tab. 6.2. The state values of the
equilibrium point are given in Tab. 6.3.

In Fig. 6.9, the eigenvalues of the closed-loop system, for the considered equilibrium
point, are depicted for controller gains c1 = c2 ranging from 0.02 to 1.2. It is shown

Table 6.2: Power system and controllers’ parameters for root-locus analysis and
simulation results

Parameters Values Parameters Values

Power system parameters
L1, L2 2.2 mH r1, r2 0.5 Ω
Ll1 0.028 mH Ll2 0.014 mH

C1, C2 1µF rl1, rl2 0.04 Ω,0.02 Ω
Erms 220 V ω∗ 2π50 rad/s
Imax1rms 20 A Imax2rms 10 A

Proposed controller parameters
c1, c2 0.9 rv1, rv2 20 Ω
np1, np2 0.69, 1.39 mq1, mq2 0.0012, 0.0024

Benchmark controller parameters
kpi, kii, kpv, kiv 4, 200, 0.3, 12 rv1, rv2 0.7 Ω, 1.4 Ω

np1, np2 0.0047, 0.0094 mq1, mq2 0.0012, 0.0024

121



Chapter 6 Inverter-based self-protected microgrids

that up to a value of ccritical = 1.02, all the eigenvalues have negative real parts
and thus, according to Theorem 1 in sec. 3.1, the microgrid is stable around the
considered equilibrium point using the proposed control approach. Hence, ci can be
selected according to the root-locus analysis to obtain the desired transient response
and guarantee closed-loop system stability.

Table 6.3: Considered equilibrium point

Variable Equilibrium point value

vC1De, vC1Qe 266.52 V,134.08 V
vC2De, vC2Qe 266.11 V,133.99 V
i1de, i2de 13.97 A,7.18 A
i1qe, i2qe 0 A,0 A

iL1De, iL1Qe 14.01 A,−0.08 A
iL2De, iL2Qe 7.22 A,0.01 A

ωcom 317.50 rad/s
δ2e 0.76 o
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Figure 6.9: Closed-loop system eigenvalues for ci ranging from 0.02 to 1.2
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6.3.4 Comparison through Simulation Results

6.3.4.1 Selection of the benchmark controller

In order to validate the properties of the proposed controller, in this section, it
will be compared with a conventional virtual resistance-based droop controller [76].
The widely used dq framework with inner loops will be considered for the benchmark
control scheme, with saturation units being applied to the reference inverter currents
for current-limiting purposes, in a similar way as in [6, 52]. Finally, the selection
of the droop coefficients is carried out according to the formulas in [6]. The control
scheme discussed above is selected as the benchmark controller for the comparative
simulations results, and is depicted in Fig. 6.10.

6.3.4.2 Simulation Results

To provide an insight into the performance of the proposed controller, compared to
that of the benchmark controller, Matlab/Simulink simulation results are presented
here. The exemplary case of two inverters that was used for the root-locus analysis
is again considered, with Inverter #1 having twice the power rating of Inverter #2.

The droop coefficients in the proposed controller can be selected as npi = 0.19 E2
rms

Smaxi

and mqi = 0.05 ω∗

Smaxi
, in order to allow a maximum of 10 % voltage deviation and

5 % frequency deviation. The power system and controller parameters are given in
Tab. 6.2. For both control schemes the same scenario is examined: Initially both
inverters do not feed the load since their switches are open. At 0.1 s, Inverter #1 is
connected to the constant RL load which initially has the values of R = 25Ω and
L = 40 mH, per phase. At 1.5 s, an extra load of R = 25 Ω and L = 40 mH per
phase is added in parallel to the initial one. At 3 s, Inverter #2 is connected and
the two inverters share the common load. Finally, at 5 s, a three-phase short circuit
is applied at the load bus, which is self-cleared after 150 ms.

Comparing the response of the two control schemes, depicted in Fig. 6.11, one can
see that the singe inverter operation is similar for both schemes. However, at the
time when Inverter #2 connects to the microgrid, the transient is much smoother
using the proposed controller while using the benchmark controller, the Inverter
#2 current rises close to its limit. The small difference in the power values comes
from the usage of the line currents to calculate the power in the benchmark con-
trol scheme. When the three-phase short circuit is applied, using the benchmark
controller, the inverter current limits are violated during the transient and reach
very high values while during the steady-state, the maximum allowed current is not
injected since in this certain example, iiq takes very small values. For this issue
to be solved, an adaptive saturation technique would be required which, however,
would further complicate the control implementation. On the other hand, using the
proposed controller, both RMS inverter currents are driven to their maximum values
without violating this threshold value, even during the transient. The simulation re-
sults verify the superiority of the proposed controller in terms of its current-limiting
capability and the smooth connection.
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(d) Reactive power: Proposed controller
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Figure 6.11: Comparative simulation results

Table 6.4: System parameters for experimental results

Parameters Values Parameters Values

L1, L2 3.5 mH,5.7 mH Ll1, Ll2 4.4 mH,1 mH
r1, r2 0.4 Ω,0.8 Ω rl1, rl2 0.9 Ω,0.4 Ω
C1, C2 1µF c1, c2 0.6
Erms 90 V ω∗ 2π50 rad/s
Imax1rms 2 A Imax2rms 1 A
k1,k2 1000 rv1, rv2 50 Ω, 10 Ω
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P1: [150 W/div] 

I2rms: [1 A/div] 

P2: [150 W/div] 

I1rms: [1 A/div] 
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Figure 6.12: Initial operation of Inverter #1 and connection of Inverter #2

 

vc: [50 V/div] 

vC2a: [50 V/div] vC2c: [50 V/div] 

va: [50 V/div] 

Figure 6.13: Synchronization process of Inverter #2

6.3.5 Experimental Validation

Α 90 V, 50 Hz prototype lab-scale microgrid was built in order to experimentally
verify the proposed controller. The microgrid consists of two three-phase inverters
with ratings of 540 VA for the first inverter (Inverter #1) and 270 VA for the sec-
ond inverter (Inverter #2). The controllers were digitally implemented through a
Texas Instruments (TI) F28M379D control card for Inverter #1 and a dSpace 1104
control card for Inverter #2, with 15 kHz sampling frequency and 16 kHz switching
frequency. Both inverters were connected to a three-phase resistive load (R) through
an LC filter and a inductive-resistive line, as shown in Fig. 6.6, while the system
and controller parameters are given in Tab. 6.4.
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va: [50 V/div] vb: [50 V/div] 

vc: [50 V/div] 

Figure 6.14: Load voltage under parallel operation of inverters

Firstly, Ιnverter #1 is connected to the load, which is initially R = 100 Ω. As it can
bee seen in Fig. 6.12, Ιnverter #1 regulates its output real power to feed the load,
while regulating the voltage close to its nominal value Erms. I1rms is also depicted
in the same figure. At 44 s, Inverter #2 is switched on and at 46 s, it starts its
synchronization process by feed-forwarding the PCC voltage. The synchronization
process can be clearly depicted in Fig. 6.13, where at 62 ms, the voltage read at the
PCC is feed-forwarded at the inverter capacitors to allow a seamless connection.
When the synchronization has been completed, at 49 s in Fig. 6.12, Inverter #2 is
smoothly connected to the microgrid. In Fig. 6.14 the load voltage under the parallel
operation of the two inverters is shown. Since the rating of Inverter #1 is twice the
rating of Inverter #2, a 2 : 1 power sharing is desired through the droop control. As
it is illustrated in Fig. 6.12, the real powers and RMS currents of the two inverters
are very close to the desired 2 : 1 sharing, where the small inaccuracies are expected
due to the different line impedance (“line impedance effect”). Note that since the
capacitors of the LC filter have small capacitance and the load is purely resistive,
the reactive powers of both inverters are very close to 0 Var and thus, they are not
presented here.

To verify the inherent current-limiting property (that was analytically proven in
sec. 6.3.2.2), in Fig. 6.15, a load change from R = 100 Ω to R = 25 Ω is performed at
49 s, which represents an extreme loading demand condition. Following to the load
change, I1rms and I2rms go very fast close to their maximum values (2 A and 1 A,
respectively) without violating their limit at any time, even during the transient.
Since the current provision is not enough to regulate the load voltage inside the
selected 10% droop percentage, the load voltage drops to 70 V. The transient of the
load voltage at the time that the load changes can be seen in Fig. 6.16, while iLa is
also shown in the same figure. Note that the load current never exceeds the sum
of the maximum RMS values of the two inverter currents, i.e. 3 A, even during the
transient. This clearly demonstrates the current-limiting capability of the proposed
controller for each inverter in the AC microgrid.
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Figure 6.15: Load change and current-limiting property

va: [50 V/div] vb: [50 V/div] 

vc: [50 V/div] 

iLa: [5 A/div] 

Figure 6.16: Load voltage and current transient during load change

6.4 Conclusions

In this chapter, the safe operation of inverter-based microgrids was investigated. Ini-
tially, a new current-limiting controller was proposed for three-phase inverters oper-
ating in parallel, which also guarantees the proportional power sharing between the
inverters through droop control. The current-limiting property was proven through
nonlinear analysis of the closed-loop system, which leads to the limitation of each in-
verter current under a threshold value at all times, even during transients. Moreover,
the small-signal model of the closed-loop system was developed in order to evaluate
the stability properties of two paralleled three-phase inverters, equipped with the
proposed controller. The proposed control approach was verified through extended
simulation results. In the sequel, aiming to investigate a more realistic inverter-
based microgrid setup and to examine closed-loop system stability more rigorously,
a new current-limiting droop controller was proposed. In contrast to conventional
approaches, this novel control scheme aligns the inverter current on the d axis of the
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local dq frame in order to rigorously prove the desired current limitation and the
stability of the entire microgrid, under extreme load conditions. It was highlighted
that the desired current limitation is ensured even during transients, while the in-
verter current is driven to its maximum value during faults, without requiring an
online adaptation technique. Furthermore, it was shown that the proposed control
scheme facilitates the stability analysis of the inverter-based microgrid. In particu-
lar, it was proven that the stability properties of the inverter-based microgrid can
be investigated through a Jacobian matrix of reduced size. The proposed controller
was compared to a conventional droop controller under extreme load conditions
through simulation results, while its effectiveness was also verified experimentally in
a lab-scale microgrid.
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7.1 Conclusions

The aim of this thesis was to develop advanced control schemes for grid-connected
inverter-interfaced DERs and for inverter-interfaced DERs that form inverter-based
microgrids. These control schemes should mathematically ensure the safe and stable
operation of the system under consideration, while complying with the most recent
Grid Code requirements for inverter-interfaced DERs. The development of such
control schemes, that mathematically guarantee the desired response of inverter-
interfaced DERs during normal and abnormal grid conditions, is expected to pave
the way towards environment-friendly future smart grids.

Motivated by the bounded integral control theory, a framework was developed in this
thesis for designing control systems of inverter-interfaced DERs that ensure closed-
loop system asymptotic stability and protection of the inverter devices. Moreover,
emphasis was given in embedding the modern Grid Code requirements in the inverter
operation through the proposed control schemes. The proposed control approaches
covered a wide range of inverter-interfaced DERs applications, i.e. single-phase and
three-phase grid-connected inverters and three-phase inverter-based microgrids. The
key novel contributions of this thesis are briefly summarized below.

In chapter 4, a new CLD controller was initially proposed for single-phase grid-
connected inverters to guarantee the maximum power utilization of the inverter
under grid faults and closed-loop system stability. By addressing all limitations of
the original CLD, the proposed enhanced CLD version facilitates a rigorous asymp-
totic stability proof of any equilibrium point within a given range. The proposed
controller structure was further extended to provide voltage support under grid
faults. Extensive simulation and experimental results verified the proposed control
approach under normal and faulty grid conditions. Then, a redesigned version of the
enhanced CLD control scheme was proposed, which apart from the current-limiting
and maximum power utilization properties, is further able to operate without a
PLL device and at the same time to introduce a virtual inertia property to the grid-
connected DER. Extensive simulation results were presented to verify this modified
enhanced CLD scheme.

In chapter 5, a new droop controller was initially proposed for three-phase grid-
connected inverters, introduced in a multi-loop (cascaded) control structure based
on dq modeling. The proposed controller was proven to inherit a current-limiting
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property for the grid-side inverter current and guarantee asymptotic stability for
the closed-loop system. Moreover, the proposed design enables a simple switch
between PQ-set and PQ-droop control modes to either control the injected real
and reactive powers to their reference values or support the grid through droop
control. Using nonlinear analysis of the closed-loop system, it was shown that the
desired grid current limitation is maintained even when faults occur at the grid
voltage, offering a unified control structure for both normal and abnormal grid
conditions. The effectiveness of the proposed control approach was verified through
extended real-time simulation results. Later on, a new control concept was proposed,
which offers an inherent current limitation for three-phase grid-tied droop-controlled
inverters. The proposed controller complies with the latest grid code requirements
and furthermore, voltage support through maximum power injection is achieved
under both balanced and unbalanced grid faults. To accomplish this, two novel
outer-loop controllers are applied to both positive and negative sequences, while the
boundedness of the grid current is inherently achieved without the need of saturation
units, as required. A new way of dividing the maximum available current into the
positive and the negative sequence current components under unbalanced grid faults
was proposed, so that the positive sequence voltage is increased and the negative
sequence voltage is eliminated. Finally, asymptotic stability of any equilibrium point
of the closed-loop system within the bounded operating range was proven without
assuming knowledge of the system parameters. The proposed control approach was
verified through extensive real-time simulation results.

In chapter 6, a new current-limiting droop controller was initially proposed for three-
phase inverters operating in parallel. The proportional power sharing between the
parallel inverters was guaranteed through droop control, while the desired current-
limiting property was proven through nonlinear analysis of the closed-loop system,
which leads to the boundedness of each inverter current under a threshold value at
all times, even under transients. Moreover, the stable operation of two inverters
operating in parallel was guaranteed through the performed small-signal stability
analysis. The proposed control approach was further validated through extended
simulation results. In the sequel, in the last contribution of this thesis, aiming to
investigate a more realistic inverter-based microgrid setup where lines are considered
between each inverter’s PCC and the load, a new droop controller was proposed to
inherently guarantee RMS inverter current limitation and microgrid stability. The
proposed control scheme aligns the inverter current on the d axis of the local dq
frame in order to prove the desired current limitation during transients and the
stability of the entire microgrid. Furthermore, it was shown that through the pro-
posed controller, the microgrid stability properties can be investigated through a
Jacobian matrix of reduced size. The proposed control approach was compared to
a conventional droop control scheme under extreme load conditions through simu-
lation results, while its effectiveness was also verified experimentally in a prototype
microgrid.
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7.2 Future work

Challenging and interesting topics can be investigated based on the results of this
thesis. In the sequel of this section, a summary of research tasks is given to motivate
future research in the area of advanced current-limiting control of inverter-interfaced
DERs. These tasks include: improvements in the control design, further controller
analysis, alternative approaches for the stability analysis of inverter-dominated net-
works and supplementary experimental verification of the proposed control schemes.

• The extension of the enhanced CLD scheme that introduces a virtual inertia
property to the inverter-interfaced DER in chapter 4, has been proven to guar-
antee the inverter current limitation regardless of variations in the grid volt-
age and frequency. Nevertheless, its virtual inertia property could be further
validated based on the recent frequency support requirements. Particularly,
it would be of great interest to investigate the performance of this control
scheme under frequency deviations, where the virtual inertia property could
provide significant benefits. Furthermore, the asymptotic stability proof for
the closed-loop system of the grid-connected inverter under this control scheme
is still missing and should be investigated.

• In sec. 5.3, a novel control scheme was proposed to deal with the challenging
task of voltage support and current limitation during unbalanced grid faults.
However, in the low-voltage distribution system, unbalanced conditions may
occur even during the normal operation of the power system, i.e. due to slightly
unbalanced loading. Hence, it would be of interest to redesign the proposed
control scheme so that its voltage support capability (in terms of decreasing
the negative sequence voltage) is not limited to the case of grid faults.

• The analytical calculation of the equilibrium point of an inverter-based micro-
grid with an arbitrary number of inverters is indeed a daunting task. Similarly
to the majority of microgrid stability analyses in the literature, the analysis
of the controller regarding inverter-based microgrids in chapter 6 has utilized
some information from time-domain simulations to approximate the equilib-
rium point. Very recently, some algorithmic approaches have been proposed for
the load flow analysis of islanded microgrids, which present some similarities
with the conventional load flow algorithms of large power networks. Hence, it
would be of interest to approximate the desired equilibrium point through one
of these algorithmic approaches instead of using time-domain simulations, in
order to simplify the root-locus analysis of the microgrid stability study.

• As it was discussed in the literature review of chapter 2, the concept of de-
riving conditions for stability is more rigorous than the root-locus analysis,
which refers to a certain microgrid application. However, due to the complex-
ity of the dynamics of inverter-based microgrids, restricting assumptions are
usually required to analytically derive conditions for stability of inverter-based
microgrids. Hence, similarly to the majority of stability analyses in the lit-
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erature, the stability analyses in chapter 6 employed a root-locus analysis of
the small-signal model to verify the microgrid stability properties under the
proposed control schemes. Even if in sec. 6.3, emphasis was given in the sim-
plification of the Jacobian matrix, offered by the proposed controller, a great
challenge arises in deriving conditions for asymptotic stability of inverter-based
microgrids (that adopt the proposed controller), without considering restrict-
ing assumptions.

• Throughout this thesis, the dynamics of the DC bus of the considered inverter-
interfaced DERs were ignored, i.e. a constant DC voltage was considered at the
inverter input. This is a common assumption when developing control schemes
for inverter-interfaced DERs. In practice though this is not always true, since
the DC input power is governed by the prime mover (e.g. a photovoltaic unit
or a wind turbine), which can not guarantee a constant output voltage at all
times. Hence, the DC bus voltage stabilization should be considered in the
inverter control system and analysis [144, 145].

• In the the proposed controllers of this thesis, the universal droop control
(UDC) scheme from [79] was utilized to provide robustness against different
types of output impedance. Nevertheless, it is unclear how a UDC-controlled
inverter would operate in parallel to a synchronous machine [8]. Hence, an in-
teresting task would be to redesign the advanced current-limiting droop control
schemes of this thesis so that they adopt the conventional droop control rela-
tions. Indeed, even if the scenario of inverter-based microgrids raises a great
challenge regarding the inverter control system design, a realistic microgrid
could host synchronous machine-based DERs too. Hence, the investigation
of microgrids with both inverter-interfaced and synchronous machine-based
DERs would be an intriguing task.

• In the proposed schemes of chapter 4 and chapter 6, the approach of design-
ing a power controller with inherited synchronization and voltage regulation
capabilities was employed [15], while in the control schemes of chapter 5, the
conventional approach with inner PI or PR voltage and current controllers was
considered. Note that in this thesis, emphasis was given in designing power
control schemes by employing the BIC structure to guarantee the safety and
the stability of the inverter-interfaced DERs. Aiming to combine the benefits
of the cascaded control structure (i.e. improved power quality) and the sta-
bility properties of the BIC structure, it would be of great interest to design a
cascaded droop controller where all power, voltage and current control loops
adopt the BIC structure.

• The experimental validation of the enhanced current-limiting droop controller
in sec. 4.2 showed that good voltage and current quality can be achieved
through the proposed control design. However, in cases where an even lower
THD is required for the grid current, a redesign of the proposed controller con-
sidering a cascaded design with inner current and voltage control loops would
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be required. This controller structure would further help in optimizing the
design of the LCL filter, which is used to filter out the undesired harmonic
components. The same remark holds for the controller regarding inverter-
based microgrids in chapter 6, where adoption of inner loop controllers would
improve the current and power quality.
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Appendix

1. Analytical calculation of the maximum positive

sequence RMS current

Initially consider the power system modeling of sec. 5.3. Furthermore, the voltage
difference between the positive sequence RMS voltage at the capacitor V +

C and the
PCC RMS voltage V +, is denoted as ∆̄V = V +

C −V +, while as PC and QC , the real
and reactive powers measured at the capacitor node are defined, respectively. By
rewriting (5.45) for ∆̄V it holds,

∆̄V =
P+
C rg +Q+

CxLg
3V +

C

.

Nevertheless, from the analysis in [137], ∆̄V can be also described from

∆̄V =
P+rg +Q+xLg

3V +
,

where P+ and Q+ are the positive sequence real and reactive powers measured at the
PCC. Now, the aim is to calculate the required positive sequence RMS grid current
so that during unbalanced voltage drops, it holds V +

C ≥ 0.9E+
rms or V +

C − V + ≥
0.9E+

rms − V + or ∆̄V ≥ 0.9E+
rms − V +.

By defining the p.u. voltage drop as ρ, where ρ = 1 − V +

E+
rms

, and considering that

real and reactive powers are regulated to their reference values obtained from the

FRT scheme in (5.46), i.e. Q+
set = ρkS+

max and P+
set =

√
S+2
max −Q+2

set, it is concluded

that

∆̄V ≥ 0.9E+
rms − V + =⇒

S+
max

(√
1 − ρ2k2rg + ρkxLg

)

3V +
≥ 0.9E+

rms − V +

=⇒ I+
grms ≥ 0.9E+

rms − V +

√
1 − ρ2k2rg + ρkxLg

=⇒ I+
grms ≥ E+

rms (0.9 − (1 − ρ))√
1 − ρ2k2rg + ρkxLg

.
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Thus, we can select the positive sequence maximum RMS grid current as

Imax+
grms =

E+
rms (0.9 − (1 − ρ))√
1 − ρ2k2rg + ρkxLg

.
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2. Different time scales approach to assume constant

PCC voltage

Recently, the investigation of the closed-loop system stability of inverter-dominated
power networks has been approached through the singular perturbation method
[119]. Through this method, the system under consideration is separated into sub-
systems that operate in different time scales, aiming to simplify the closed-loop
system stability analysis. This concept is analytically explained in [146, 147].

As in the case of the control scheme proposed in sec. 5.3, let us consider an inverter
connected to a stiff grid through an LCLg filter and an Ll, rl line (feeder). Moreover,
consider that a PCC voltage feed-forward and a decoupling of the cross-coupling
terms are applied through the outer loop controller, while that fast inner voltage
and current control loops allow us to ignore the LC system of the filter (again as in
sec. 5.3). Thus, the closed-loop system can be described from the dynamic equations

Lg
digd
dt

= Ed − (rv + rg) igd

Lg
digq
dt

= Eq − (rv + rg) igq

Ll
digd
dt

= vd − vgd − rligd − ωgLligq

Ll
digq
dt

= vq − vgq − rligq + ωgLligd,

where Ed and Eq are control states, rg is the parasitic resistance of the grid-side filter
inductance and rv is a constant virtual resistance, similarly to the system (5.43)-
(5.44). To assume a time scale separation, we need to identify a unitless variable ǫ
to transform our original system to the form of the singular perturbation method
[119]. Hence, the following transformations are considered:

[
igd
igq

]
= Ix

[
Ed
Eq

]
= Eu

[
vd
vq

]
−
[
vgd
vgq

]
= V̄ (z − d)

t = Tτ =⇒dx

dt
=

1

T

dx

dτ
,

where I, T, E and V̄ are current, time and voltage variables respectively and

x =

[
xd
xq

]
, u =

[
ud
uq

]
, (z − d) =

[
zd − dd
zq − dq

]
,
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with xd, xq, zd, zq, dd, dq, ud, uq, τ being unitless scalars. Hence, the initial system can
be rewritten as

LgI

T

dxd
dτ

= Eud − (rv + rg) Ixd

LgI

T

dxq
dτ

= Euq − (rv + rg) Ixq

LlI

T

dxd
dτ

= V̄ (zd − dd) − rlIxd − ωgLlIxq

LlI

T

dxq
dτ

= V̄ (zq − dq) − rlIxq + ωgLlIxd.

In vector form, the system becomes

LgI

T

dx

dτ
= Eu− (rv + rg) Ix

dx

dτ
=
T V̄ (z − d)

LlI
−
[

rlT
Ll

ωLlT
Ll

−ωLlT
Ll

rlT
Ll

]
x,

or equivalently

Lg
T (rv + rg)

dx

dτ
=

Eu

(rv + rg) I
− x

dx

dτ
=
T V̄ (z − d)

LlI
−
[

rlT
Ll

ωT

−ωT rlT
Ll

]
x.

Now, in order to bring both systems in the general form ẋ = Ax+Bu, we can define
T = LlI

V̄
, V̄ = ωLlI and E = (rv + rg) I. Hence, the initial system can be finally

described from

ǫ
dx

dτ
= u− x (7.1)

dx

dτ
= (z − d) −

[
rlT
Ll

1

−1 rlT
Ll

]
x, (7.2)

where ǫ = Lg

T (rv+rg)
. Thus, we can now define the unitless variable ǫ, which describes

the time scale separation of systems (7.1) and (7.2) as

ǫ =
Lg

T (rv + rg)
=

ωLg
rv + rg

.

Note that through the appropriate selection of the controller parameter rv, ǫ takes
very small values. Hence, the two dynamic systems (7.1) and (7.2) operate in a
different time scale and can be studied according to the singular perturbation theory
[119]. In particular, it is proven that the grid-side filter inductance dynamics operate
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in a faster time scale than the line (feeder) dynamics and thus, the PCC voltage
(which can be calculated from the stiff grid voltage and the line currents) can be
considered as constant for the controller analysis [147].
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3. Sub-matrices of the inverter-based microgrid

Jacobian matrix in sec. 6.3.3

AT 1 =



c1E

2
q1eβ1 · · · 0 −c1E

2
q1eγ1 · · · 0

...
. . .

...
...

. . .
...

0 · · · cnE
2
qneβn 0 · · · −cnE

2
qneγn




βi =
(
− 3

2npiiide cos δie − vCiDe

)
, γi =

(
3
2npiiide sin δie + vCiQe

)
.

AT 2 =




0 · · · 0
c2np2E

2
q2e

3
2 i2deη2 · · · 0

...
. . .

...
0 · · · cnnpnE

2
qne

3
2 indeηn




ηi = (− cos δievCiQe + sin δievCiDe) .

AT 3=




cos δ1e

C1
· · · 0

...
. . .

...

0 · · · cos δne

Cn
sin δ1e

C1
· · · 0

...
. . .

...

0 · · · sin δne

Cn




.AT 4=




0 · · · 0

− sin δ2ei2de

C2
· · · 0

...
. . .

...

0 · · · − sin δneinde

Cn

0 · · · 0
cos δ2ei2de

C2
· · · 0

...
. . .

...

0 · · · cos δneinde

Cn




.

AT 5 =




̺1 ξ12 · · · ξ1n 0 0 · · · 0
ξ21 ̺2 · · · ξ2n 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
ξn1 ξn2 · · · ̺n 0 0 · · · 0
0 0 · · · 0 ̺1 ξ12 · · · ξ1n

0 0 · · · 0 ξ21 ̺2 · · · ξ2n

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 ξn1 ξn2 · · · · · · ̺n




,

̺i = L−1
li − L

−2
li

L
−1
sum

, ξij = − L
−1
li

L
−1
lj

L
−1
sum

, L−1
sum = L−1 +

∑n

i=1 L
−1
li .

AT 6 =




ϕ1 ψ12 · · · ψ1n ωcom 0 · · · 0
ψ21 ϕ2 · · · ψ2n 0 ωcom · · · 0

...
...

. . .
...

...
...

. . .
...

ψn1 ψn2 · · · ϕn 0 0 · · · ωcom

−ωcom 0 · · · 0 ϕ1 ψ12 · · · ψ1n

0 −ωcom · · · 0 ψ21 ϕ2 · · · ψ2n

...
...

. . .
...

...
...

. . .
...

0 0 · · · −ωcom ψn1 ψn2 · · · ϕn



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L−1R−L
−1
li

rli

L
−1
sum

− L−1
li rli, ψij = −L−1

li

RL−1
−L

−1
lj

rlj

L
−1
sum

.

AT 7 =




0 −mq2
3
2η2 · · · 0

...
...

. . .
...

0 0 · · · −mqn
3
2ηn


 .

AT 8 =




0 − 3
2ζ2 · · · 0 0 3

2σ2 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · − 3

2ζn 0 0 · · · 3
2σn


 ,

ζi = mqiiide sin δie, σi = mqiiide cos δie.
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