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Abstract 

 

Tissue morphogenesis requires co-ordination of changes in cell shape, gene 

expression and the integration of both intrinsic and extrinsic patterning cues. One 

such example of a complex tissue morphogenesis is the asymmetric looping of the 

linear heart tube during embryogenesis. Heart looping is required for the correct 

alignment of the chambers to facilitate septation, chamber ballooning and 

subsequent connection to the rest of the cardiovascular system. The necessity for 

robust heart morphogenesis is evident in the prevalence of congenital heart 

diseases which occur in around 1% of live births, and are the leading cause of birth 

defect-related deaths worldwide. 

 

Most organ systems, including the heart are composed of distinct tissue types with 

specialised functions: during cardiac development, the heart tube comprises an 

outer layer of contractile myocardium surrounding a specialised endothelial cell 

layer known as the endocardium. During heart looping both the myocardial and 

endocardial tissue layers undergo distinct morphogenetic changes, and each play 

important roles in providing temporal and spatial signals to the other, together 

driving robust early cardiac morphogenesis. Separating the myocardium and 

endocardium is a specialised extracellular matrix (ECM) termed the cardiac jelly. 

Numerous studies have highlighted the importance of the cardiac jelly during later 

stages of heart development, however little work since its initial characterisation has 

investigated the mechanisms by which this ECM promotes asymmetric heart 

morphogenesis. 

 

In this thesis I highlight the pivotal and previously underappreciated role of the 

embryonic cardiac jelly in promoting distinct aspects of cardiac morphogenesis in 

zebrafish. Common to all ECMs are the large, heterotrimeric Laminin complexes, 

secreted early during ECM deposition. I first identify and characterise the expression 

of multiple different Laminin subunits in the heart at the onset of heart looping and 
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go on to show a broad requirement for Laminins in promoting cardiac 

morphogenesis. Subsequently, I identify the specific Laminin isoforms which are 

required during heart development and uncover two distinct roles for Laminins: 

promoting asymmetric morphogenesis and restricting cardiac size. 

 

Secondly, I uncover an asymmetry in the embryonic cardiac jelly, prior to the 

initiation of heart looping morphogenesis (which correlates with the expression of an 

ECM-modifying gene). I show that the cardiac ECM is rich in the Proteoglycan 

Hyaluronic Acid and that chamber-specific regionalisation of the ECM is required to 

promote heart morphogenesis. 

 

Together, this work demonstrates that the constituents of the embryonic cardiac 

jelly and their regionalised expression are critical in promoting the robust, 

asymmetric morphogenesis of the linear heart during embryonic development.  
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1. Introduction 
1.1 Congenital Heart Diseases and Heart Development 
 

1.1.1 The incidence of Congenital Heart Diseases 

 

Congenital heart diseases (CHDs) are structural malformations of the heart, arising 

due to failures in the multi-faceted process of heart development. Globally CHD is 

present in approximately 1% of live births and is the most common cause of birth-

defect related deaths (Bernier et al., 2010; Hoffman and Kaplan, 2002; Linde et al., 

2011; Members et al., 2012). One categorisation of CHDs: severe, moderate or mild 

describes how whilst severe and moderate manifestations are likely to be detected 

either before birth or postpartum as they can be life-threatening, mild CHDs - which 

account for greatest prevalence - often go undiagnosed due their asymptomatic 

nature (Hoffman and Kaplan, 2002). Severe CHDs encompass all cyanotic heart 

diseases (the mixing of oxygenated and deoxygenated blood) which present major 

anatomical disruption to the heart (Hoffman and Kaplan, 2002) such as double outlet 

right ventricle (DORV) in which both the pulmonary artery and aorta are connected 

to the right ventricle. Mild CHDs do not exhibit such striking defects in gross heart 

morphology (Hoffman and Kaplan, 2002), instead encompassing more subtle 

abnormalities such as aortic incompetence (also known as aortic insufficiency). 

Moderate CHDs are in some cases almost completely asymptomatic due to their 

relatively minor impact on cardiac morphology, for example small ventricular septal 

defects (Hoffman and Kaplan, 2002). Nonetheless, all forms of CHD have a major 

impact on the individual’s life (Saha et al., 2019). 

 

A range of CHDs are commonly associated with syndromes such as Down, Edward, 

DiGeorge, Holt-Oram and Alagille (Muntean et al., 2016). Mapping of the causative 

element in these syndromes has identified genes or clusters of genes that play roles 

in the development of the heart (Muntean et al., 2016; Pierpont et al., 2000; Sifrim 

et al., 2016). CHDs present in non-syndromic cases are more common and have 
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been linked to mutations in specific genes or specific sets of genes (Muntean et al., 

2016; Sifrim et al., 2016). Mapping and identification of regions associated with 

CHDs in both syndromic and non-syndromic patients has identified transcription 

factors, signalling ligands, receptors and components of the extracellular matrix 

(Muntean et al., 2016; Pierpont et al., 2000; Sifrim et al., 2016). 

 

Using multiple vertebrate models, the characterisation of the expression patterns 

and functions of these genes has shown that many are required during very early 

heart development (Moon, 2008; Stainier, 2001). Furthermore, generation of 

mutants in genes associated with CHDs has proven fruitful in beginning to uncover 

the molecular mechanisms which result in both correct and improper cardiac 

development (Moon, 2008; Stainier, 2001). Together, this highlights how 

understanding development of the heart at early stages is critical to uncovering how 

loss of function of these and other genes results in CHDs. I will set out the main 

landmark events in vertebrate heart development, demonstrating their high level of 

conservation between model organisms. I will also provide examples of mutations in 

genes that promote these specific processes and in which mutations cause CHDs 

and how use of animal models in this context has furthered our knowledge of heart 

development. 
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Figure 1.1. Comparison of Vertebrate Heart Looping. 

Comparison of events during heart looping in morphogenesis Human, Chick, Mouse 

and Zebrafish. (A-A’’) The linear heart tube forms in humans at 22 days (A), begins to 

undergo morphogenesis at 23 days (A’) and valves start to form between chambers 

at 28 days (A’’). (B-B’’). At HH9 the linear heart tube has formed in Chick. (B’) 

Starting at HH10, the heart tube buckles/bends ventrally (magenta), the arterial pole 

rotates rightward (purple) followed by the leftward rotation at the venous pole 

(cyan). Cell number is increasing by second heart field addition (green). (B’’) At 

HH17, valves begin to form between the chambers. (C-C’’’) The initial shaping of 

heart looping morphogenesis occurs rapidly in mouse during E8.5, starting at E8.5e 

(C). (C’) At E8.5f rightward rotation at the arterial pole shifts the ventricle, whilst cell 

number increases through second heart field addition. (C’’) E8.5g the heart buckles 

due to addition from second heart field and the venous pole undergoes leftward 

rotation forming the basic shape of the heart by E9.5 (C’’’) when valves begin to 

form. (D-D’’’) Heart looping morphogenesis in zebrafish begins at 24hpf, the linear 

heart tube  
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1.1.2 An overview of vertebrate heart development 

 

A number of vertebrate models, together with complementary genetic analysis in 

non-vertebrates have been utilised to understand the complex morphogenetic 

process of heart development. Whilst the exact architecture of the final, mature 

cardiovascular system differs between mammals/birds, reptiles and teleost fish, the 

basic morphological processes which generate their respective four, three and two-

chambered hearts is well conserved (Figure 1.1). During embryogenesis, the heart is 

the first organ to form and function. At day 22 in humans, embryonic day (E)8.5e (5-

6 somites) in mice, Hamburger-Hamilton stage (HH)9 in chick and 24 hours post 

fertilisation (hpf) in zebrafish the heart is clearly identifiable as a linear tube (LHT) 

(Figure 1.1A, B, C, D) (Fishman and Chien, 1997; Garrec et al., 2017). Outer, 

contractile myocardium is separated from the endocardium, a specialised 

endothelial cell population, by the cardiac jelly or extracellular matrix (ECM). 

Although the precursor structures to the LHT differ between different model 

organisms, the formation of the LHT represents a highly conserved morphological  

 

Figure 1.1 continued. 

Is positioned asymmetrically under the left eye (D). (D’) In early S-looping, the 

primary addition of cells to the heart is at the arterial pole and the chambers bend 

along their outer curvatures (black). (D’’) During advanced S-looping the atrium 

moves cranially (orange) and similar to mice and chick, rotations at the poles occur, 

predominantly at the arterial pole. By 55hpf (D’’’) the heart has well defined 

morphological chambers with the atrioventricular valve developing at the 

constriction between chambers. Images and stages based on: Desgrange et al., 

2019; Fishman and Chien, 1997; Garrec et al., 2017; Lombardo et al., 2019; Männer, 

2009; Martin et al., 2015; Pater et al., 2009. A: atrium, V: ventricle, LA: left atrium, 

RA: right atrium, LV: left ventricle, RV: right ventricle. Left-right axis inverted, with 

midline denoted by grey line. 
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stage in the development of the cardiovascular system in vertebrates. At this early 

stage, whilst appearing morphologically uniform, the LHT already displays highly 

regionalised gene expression, necessary for correct function during and after 

gestation (Bruneau, 2008). 

 

The first gene linked to syndromic CHD was through the autosomal dominant 

condition Holt-Oram syndrome (HOS). Mapping the genetic region suspected to 

contain the lesion, and comparing multiple familial cases of HOS identified the 

causative gene as T-box transcription factor 5 (TBX5) (Basson et al., 1997). Timing of 

Tbx5 expression in the heart is highly conserved between chick, mouse and 

zebrafish, with expression identified in the mouse cardiac crescent at E8, the chick 

bilateral cardiac primordia at HH8, the analogous stage (Bruneau et al., 1999) and in 

the zebrafish heart tube at 26hpf (Garrity et al., 2002). As the heart tube undergoes 

morphogenesis, Tbx5 expression is maintained throughout heart development, and 

subsequently is excluded from the right ventricle (RV) and outflow tract (OFT) 

(Bruneau et al., 1999). Importantly there is a high degree of correlation between 

Tbx5 expressing regions and those affected in HOS patients (Bruneau et al., 1999) 

and both mice and zebrafish tbx5 mutants have cardiac phenotypes consistent with 

a role for TBX5 in heart development (Bruneau et al., 2001; Garrity et al., 2002). 

These early studies highlight that loss of function of genes expressed throughout 

the heart during early development result in specific malformations of the heart. 

 

Following heart tube formation and beginning at day 23 in humans E8.5f (6-8 

somites) in mice, HH10 in chick and 30hpf in zebrafish, the linear heart tube 

undergoes a robust, dextral, asymmetric morphogenesis known as heart looping 

(Figure 1.1A’, B’, C’, D’) (Fishman and Chien, 1997; Garrec et al., 2017). The highly 

asymmetric nature of heart looping is crucial in positioning the chambers of the 

heart in correct alignment, facilitating accurate septation (division) of the chambers 

and valves between chambers. Ultimately, this ensures unidirectional blood flow 

through the heart and integration of the organ into the rest of the cardiovascular 
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system. The need for tightly-controlled rightward looping of the LHT during 

development is exemplified in the condition Situs ambiguus or Heterotaxy 

syndrome. This results in randomisation of the internal organs across the left-right 

body axis and can cause a spectrum of morphological cardiac abnormalities such as 

sinistral looping of the heart resulting in incorrect attachment of the great vessels to 

heart and life-threatening cyanotic CHDs (Kim, 2011). However, whilst this 

demonstrates that heart looping is a critical developmental process, in comparison 

to other events during heart development, relatively little is known about how it 

progresses and how it is regulated (see 1.2). 

 

During heart looping, multiple processes begin to shape the organ, one of which is 

a dramatic increase in cell number in the myocardium, despite insufficient 

proliferation to account for this increase (Cruz et al., 1977; Pater et al., 2009). This 

increase in cell number is achieved through addition of cells to the developing heart 

from a pool of progenitor cells known as the second heart field (SHF), initially 

identified in chick and conserved in both mice and zebrafish (Figure 1.1 B’, C’, D’). In 

mice and chick, SHF addition generates the majority of cardiac tissue, giving rise to 

the right ventricle and atrial tissue (Cruz et al., 1977; Kelly et al., 2001; Mjaatvedt et 

al., 2001; Waldo et al., 2001), whilst in zebrafish the major contribution of SHF is to 

the single ventricle (Hami et al., 2011; Kelly et al., 2014; Pater et al., 2009). Defects 

in the proper patterning, placement and formation of septa between these 

structures of the heart, amongst other developmental abnormalities including those 

affecting the vestibular system are observed in DiGeorge syndrome patients, also 

known as 22q11.2 syndrome, and mapping of the region identified the causative 

gene TBX1 (T-box transcription factor 1) (Lindsay et al., 2001; Merscher et al., 2001). 

TBX1 regulates a multitude of developmental processes necessary for SHF addition 

(Baldini et al., 2017; Plageman and Yutzey, 2004), one key, highly conserved role 

being proliferation of the progenitor pool (Chen et al., 2009; Nevis et al., 2013). In 

both mice and zebrafish tbx1 mutants, addition of the SHF is affected leading to 

severe heart looping abnormalities in the embryo. 
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As heart looping morphogenesis proceeds, clear divisions begin to form between 

the chambers heart. In mice and chick, septa form physical barriers between each of 

the chambers, with valves forming to facilitate unidirectional blood flow from one 

chamber to another (Day 28 in humans, E9.5 in mice, HH17 in chick, 55hpf in 

zebrafish) (Fishman and Chien, 1997). The development of these valves is most 

clearly observed in the zebrafish model where a constriction forms between the 

atrium and ventricle, known as the atrioventricular canal (AVC), the precursor to the 

atrioventricular valve (discussed in more detail in 1.4.3 and 1.6.3) (Beis et al., 2005; 

Walsh and Stainier, 2001). Additional valves form in the Outflow Tract (OFT),  where 

blood exits from the ventricle into the vascular bed of the respiratory system, alos 

conserved in zebrafish (Duchemin et al., 2019). In Alagille syndrome, the majority of 

patients have defects in the pulmonary valves in the heart. Mapping of the causative 

region identified mutations in the notch ligand JAG1 (Jagged1) (Li et al., 1997) and 

NOTCH2 (Notch receptor 2) (McDaniell et al., 2006). Subsequently, multiple roles 

have been defined for Notch in the development of valve tissue, with studies in 

mouse, chick and zebrafish models demonstrating that signalling ligands and 

downstream effectors highly conserved between species. 

 

Concomitant with valvulogenesis is the development of the trabecular myocardium, 

a mechanism used to increase muscle content and surface area for oxygen uptake in 

the ventricle through co-ordinated myocardial proliferation (Day 30 in humans, E9.5 

in mice, HH16 in chick, 60hpf in zebrafish) (Samsa et al., 2013). Trabeculation is also 

dependent on Notch signalling and mutations in MIB1 (mindbomb homolog 1), a 

conserved regulator of the Notch pathway have been linked to familial cases of Left-

Ventricular Non-Compaction, which results in a failure in trabeculation (Luxán et al., 

2013). Chamber maturation and valve development build upon blueprint of the 

correctly looped heart, and both processes are dependent on the correct flow 

patterns of blood through the heart (see 1.4.3), which itself requires heart looping 

morphogenesis to proceed correctly. Therefore, the early morphogenesis of the 

heart is critical in building the necessary elements of both form and function to 
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ultimately generate the mature, functional heart (Bruneau, 2008; Harvey, 2002; 

Srivastava and Olson, 2000). 

 

Together, these examples of human syndromic CHDs and the associated genetic 

mutations, highlight the power of vertebrate model systems in understanding how 

the complex process of heart development is achieved. Furthermore, the genes 

which regulate these processes are highly conserved between organisms separated 

by millions of years of evolution (Keyte et al., 2014). More generally, the severity of 

CHD is linked with spatiotemporal expression of genes in the linear heart tube which 

are required to setup the necessary pathways to promote morphogenesis and form 

the looped organ. This demonstrates that understanding the earlier processes of 

heart development, in particular heart looping, is crucial to a better understanding 

of the aetiology of CHDs and ultimately the development of better treatments for 

patients in mitigating the lifelong effects of these diseases. 

 

1.2 Heart looping morphogenesis: the integration of 
intrinsic and extrinsic cues 
 

Heart looping morphogenesis shapes the linear heart tube into the morphologically 

complex form of the mature heart. Yet the final form of the heart must reflect the 

need to integrate the rest of the cardiovascular system: zebrafish have a single 

circulatory loop, whilst birds and mammals have two separate systems (Keyte et al., 

2014). Therefore, partitioning of the heart during looping to generate more complex 

four-chambered structures in the mouse, versus a simpler two-chamber heart 

required in the fish, necessitates different degrees of looping morphogenesis: the 

mouse heart undergoes a helical loop, the zebrafish undergoes a simpler S-loop 

(Desgrange et al., 2018). However, the basic morphological processes that drive 

heart looping morphogenesis are highly conserved and integrate various intrinsic 

and extrinsic mechanisms to shape the linear tube, which I discuss below. 
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1.2.1 Embryonic left-right asymmetry and heart looping morphogenesis 

 

Heart looping is a highly asymmetric process and the earliest morphological event 

to break the bilateral symmetry of the vertebrate embryo. However, molecular 

asymmetries exist in the embryo prior to heart formation, directed by a left-right 

organiser: the node in mouse, Hensen’s node in chick and Kupffer’s vesicle in 

zebrafish (Grimes and Burdine, 2017). The left-right organiser is a ciliated organ, in 

which co-ordinated movement of the cilia result in asymmetric fluid flow towards the 

future left-side of the embryo, driving a signalling cascade that results in up-

regulation of Nodal (a conserved signalling ligand of the Transforming growth factor 

beta (TGF-β) family) in the left-lateral plate mesoderm of the embryo, (E8.0 in mice, 

HH7 in chick, 14hpf in zebrafish) (Burdine and Schier, 2000; Levin, 2005; Long et al., 

2003). Thus, the asymmetric expression of Nodal in the left-lateral plate mesoderm 

provides a parsimonious mechanism in driving the directionality and morphogenesis 

of asymmetrically shaped and positioned organs such as the heart and gut. 

 

This basic model would therefore suggest that a loss of Nodal signalling would 

result in a failure of both morphogenesis and positioning of these organs. However, 

mutations in the zebrafish Nodal homolog southpaw (spaw), results in total 

randomisation of gut morphogenesis, but crucially asymmetric morphogenesis still 

occurs, demonstrating that in the gut, left-right asymmetry is dispensable for 

morphogenesis, but instructive for its directionality (Grimes et al., 2019; Noël et al., 

2013). Similarly, loss of spaw does not result in a failure of the heart to undergo 

looping morphogenesis: heart looping still occurs in over 90% of embryos. Yet 

distinct from gut morphogenesis and genetic asymmetry in the brain, over 70% of 

spaw mutant hearts undergo dextral looping morphogenesis. This demonstrates 

that a strong bias towards correct looping morphogenesis persists despite the 

absence of Nodal signalling or indeed cilia function in the Kupffer’s vesicle (Noël et 

al., 2013). Similarly, whilst the directionality of heart looping in mice with loss of 

Nodal display randomised heart looping, asymmetric morphogenesis still occurs 
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(Brennan et al., 2002) and more recently it has been elegantly demonstrated that 

Nodal is not required to initiate the process of heart looping (Desgrange et al., 

2019). Together this shows that directionality of heart looping morphogenesis is 

only partially influenced by extrinsic left-right asymmetry in the embryo and that 

asymmetric morphogenesis of the heart tube is an inherent property of the tissue. 

 

1.2.2 Heart looping is tissue intrinsic 

 

The tissue movements required to implement the robust asymmetric movements in 

heart development across the vertebrates suggests that the mechanisms required to 

bend and shape the heart tube are partially intrinsic to the heart itself. Multiple early 

studies tested this through the use of explant culture of the chick heart which 

suggested that cells of the heart held an intrinsic programme to initiate looping 

morphogenesis, however the exact staging of hearts was unclear (Butler and Keith, 

1952; Castro-Quezada et al., 1972; Llorca and Gil, 1967). A definitive study 

explanted chick hearts at the between HH8-10, (linear tube stage and early looping 

phase), cultured them for 24hrs ex vivo, and examined cardiac morphology. Under 

ex vivo conditions, all but one explant out of 36 underwent looping morphogenesis, 

confirming multiple previous reports that heart looping in the chick is intrinsic (Butler 

and Keith, 1952; Castro-Quezada et al., 1972; Llorca and Gil, 1967; Manning and 

McLachlan, 1990). 

 

Whilst this identified the intrinsic nature of the heart tube to undergo 

morphogenesis, the directionality of looping was not fully explored. Building upon 

the early chick ex vivo studies, dissected zebrafish hearts at 28hpf cultured ex vivo 

for 24hrs also display a robust asymmetric loop, even in the absence of Nodal 

signals (Noël et al., 2013). Using lineage-labelling to orient the explanted heart 

tube, 79% of explanted hearts undergo a dextral loop, demonstrating that not only 

is the nature of heart looping tissue intrinsic, there is also a preferential direction in 
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which the tube will bend in the absence of external cues (Lombardo et al., 2019; 

Noël et al., 2013).  

 

Further investigation of the intrinsic nature of dextral heart looping identified a 

requirement for the activity of the actomyosin cytoskeleton. Drug treatments with 

either Blebbistatin or Cytochalasin B, abrogated any tube morphogenesis in either 

explanted hearts or hearts in vivo, whilst explants treated with Nocodazole did not 

show any effect (Noël et al., 2013). This confirmed earlier studies in chick, which had 

demonstrated that microtubules were not required for the initial looping of the heart 

in the embryo (Icardo and Ojeda, 1984). Together, these experiments demonstrate 

that heart looping morphogenesis is a tissue intrinsic process, guided by external 

cues such as left-right asymmetry in the embryo. 

 

1.2.3 Biomechanical models of heart looping 

 

Heart looping requires the coordination of multiple processes to drive the complex 

tissue rearrangement and techniques have been developed which are being applied 

to begin to define these processes at a tissue level. Recently a highly detailed 

characterisation using high-resolution episcopic microscopy (HREM) subdivided the 

E8.5 stage mouse further into E8.5c to E8.5j, defining landmark changes to the 

tissue architecture during this time (Garrec et al., 2017). During heart looping, SHF 

addition and low levels of proliferation cause the length of the cardiac tube to 

increase between 8.5e and 8.5j, whist the distance between the poles of the heart 

remains constant, implicating a buckling mechanism in heart looping, a mechanism 

first proposed in chick (Garrec et al., 2017; Patten 1922) (Figure 1.1C’). Concomitant 

with buckling of the heart tube, the attachment between the heart tube and the 

body wall - the dorsal mesocardium - is broken down, a process also necessary for 

heart looping morphogenesis. Thirdly, as the heart tube buckles, two temporally 

separate, opposing rotations at the poles of the heart are observed. At E8.5f, the 

arterial pole undergoes approximately a 25-degree rotation displacing the arterial 
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pole to the right of the midline, whist the venous pole displays a leftward 

displacement at stage E8.5g (7-8 somites) (Figure 1.1C’, C’’). These movements, 

together with the buckling mechanism identified (due to growth of the heart tube) 

and breakdown of the dorsal mesocardium, bend the mouse heart tube (Garrec et 

al., 2017). Together, the use of high-resolution imaging and in silico modelling is 

beginning to uncover the relative contribution of each of these mechanisms to 

promote the asymmetric morphogenesis of the heart tube. 

 

Further applications of these techniques in mice has identified that the interaction 

between these processes is crucial in generating the correct form of heart loop, in 

particular between embryonic laterality and tissue-intrinsic processes in heart 

morphogenesis. Upon loss of asymmetric Nodal signalling, four classes of heart 

looping phenotype are observed in which looping is randomised with equal 

incidence (Desgrange et al., 2019). Neither the breakdown of dorsal mesocardium, 

nor distance between the two poles is affected following loss of Nodal, instead the 

initial rotations at the poles of the heart are randomised and also less pronounced. 

Computer simulation of the four different possibilities of randomisation in pole 

rotation and dampened levels of rotation accurately recapitulated the four loss of 

Nodal function mutant classes (Desgrange et al., 2019). Together this demonstrates 

that Nodal signalling is dispensable for asymmetric morphogenesis of the mouse 

heart, but acts to generate opposing left-right asymmetric rotation of the poles of 

the heart, which together with Nodal-independent buckling through cell addition 

and the breakdown of the dorsal mesocardium generates the loop of mouse heart 

(Desgrange et al., 2019; Garrec et al., 2017) (Figure 1.1C’-C’’). 

 

Further, enhanced computer simulations have recently been used to consider 

changes in all three axes of the looping heart (dorsal-ventral, anterior-posterior and 

left-right) (Honda et al., 2019). EdU experiments identified a low level of cell 

proliferation in the first few hours of heart morphogenesis, generating the ventrally 

directed bulge of the heart tube (Honda et al., 2019). Application of the arterially 
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localised rightward displacement of the tube (Desgrange et al., 2019; Garrec et al., 

2017) subsequent to the ventral bulge was then sufficient to generate the initial 

helical loop of the tube (Honda et al., 2019). This in vivo data, together with 

computer modelling strongly correlates with modelling of heart looping in the chick 

embryo. Using a physical model, the shape of the chick heart at stage HH16 could 

be accurately achieved through an initial ventral bending, followed by rightward 

rotation at the cranial pole, left-ward rotation at the venous pole and compression 

along the cranial-caudal axis (Männer, 2004) (Figure 1.1B’). 

 

Similar mechanical movements have been recently characterised in the zebrafish 

heart, separated in into early S-looping (30-42hpf, Figure 1.1D’) and advanced S-

looping (42-54hpf, Figure 1.1D’’) (Lombardo et al., 2019). Between 30-42hpf, both 

chambers bend along the outer curvature, morphologically separating the two 

chambers (Figure 1.1D’), also during this time, another laterality-independent 

mechanism rotates the tube leftward (Baker et al., 2008). During advanced S-

looping the atrium moves cranially, positioning the two chambers side-by-side; 

simultaneously both chambers expand in a process known as cardiac ballooning 

(Lombardo et al., 2019) (Figure 1.1D’’). Using mosaic expression analysis, a similar 

role for torsional movement in the heart tube observed in mice has been described 

in zebrafish: between 48-54hpf a right angular shift occurs in the ventricle (arterial 

pole), whilst at the venous pole, a mild leftward rotation occurs, both rotations are 

most prominent at the poles of the heart (Lombardo et al., 2019) (Figure 1.1D’’). 

Importantly, these cellular movements appear well conserved with mouse heart pole 

rotation (Desgrange et al., 2019; Garrec et al., 2017) and the chick physical model 

(Männer, 2004) (Figure 1.1B’, C’ C’’, D’, D’’), however whether the presence of a 

similar structure to the dorsal mesocardium in mice is also remodelled during heart 

looping in zebrafish has not yet been shown. 

 

In summary, this demonstrates a highly similar, intrinsic suite of cellular of 

behaviours that shape the linear heart into the loop that is built upon by ballooning. 
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Crucially, the recent work quantifying and modelling heart looping in mice upon loss 

of Nodal demonstrates that whilst these mechanisms are able to generate an 

intrinsic loop of the heart tube, additional extrinsic factors such as rotational 

asymmetries, cell addition and breakdown of surrounding tissues are necessary to 

refine the shape of the intrinsic loop further. These advances have only been 

possible until recently due limited quantification techniques, but with the advent of 

higher resolution imaging and 3D-rendering, the morphology of the heart and 

therefore the mechanisms which generate this morphology can be better 

understood. 

 

1.2.4 The role of heart contractility and blood flow in cardiac development 

 

Heart function initiates prior to heart morphogenesis and thus contractility, blood 

flow, and morphogenesis are tightly coupled during cardiac development. At the 

initial stage of looping morphogenesis, the heart tube is a linear, valve-less, 

pumping tube. One study suggests that under these conditions, the formation of a 

looped, valve-less tube is able to generate a greater pressure, proposing that even 

the early morphological changes of the tube improves its ability to move blood 

around the embryo during development (Hiermeier and Männer, 2017). Thus, form 

and function during heart development are highly interconnected. 

 

Regionalised differences in cell shape and size accompany heart morphogenesis, 

and studies in zebrafish have shown these to be dependent on chamber contractility 

(Auman et al., 2007). Between 27hpf and 52hpf, cells residing in the outer curvature 

of the ventricle increase in size and become more elongated whilst at the inner 

curvature, cells do not change their shape as dramatically, both observations similar 

to those made in the chick (Auman et al., 2007; Manasek and Monroe, 1972). 

Mutations in myh6 (myosin, heavy chain 6, cardiac muscle, alpha formerly amhc) 

results in loss of atrial contractility, resulting in smaller, more circular ventricular cells 

at 52hpf. (Auman et al., 2007). Loss of ventricular contractility (resulting from myh7 
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(myosin heavy chain 7, formerly vmhc) mutations) has the opposite impact on 

ventricular cell morphology, cells are large and less circular (Auman et al., 2007). 

Similar to the myocardium, the endocardium also undergoes regionalised cell shape 

changes, including increase in cell area and circularity. However, distinct from the 

myocardial tissue, the endocardium also undergoes proliferation during heart 

looping, which upon complete loss of heart contractility is abolished (Dietrich et al., 

2014). Therefore, heart form influences heart function (Hiermeier and Männer, 2017) 

and heart function influences heart form (Auman et al., 2007; Dietrich et al., 2014; 

Hoog et al., 2018) 

 

Distinct from heart contractility is the sensation of blood flow, which is also required 

for heart morphogenesis (Lombardo et al., 2019) (see 1.4.3 for more detail). One 

example is the immobilisation of blood cells through acrylamide injection in mice 

which results in reduced heart volume, reduction in trabeculae formation and a 

significant reduction in heart looping (Hoog et al., 2018). In the chick, blood flow 

through the OFT increases between HH13 and HH18. These haemodynamic forces 

at the OFT regulate the shape and size of the vessel through sensation of blood flow 

mediated by mechanotransductive transcription factors. Activation of these 

pathways result in vasodilation, leading to a reduction in the overall forces 

experienced by the endocardial cells, whilst supplying the increasing demand for 

oxygenated blood as development continues (Groenendijk et al., 2004; Midgett et 

al., 2015).  

 

Together these studies highlight the importance of heart contractility and blood 

flow through the heart during morphogenesis and that they cannot be uncoupled. 

As such, a suitable model organism which allows for characterisation of form and 

function during heart looping morphogenesis is needed to investigate these 

mechanisms. 
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1.3 Zebrafish as a model for vertebrate development 
 

1.3.1 Advantages of zebrafish usage 

 

Many vertebrate models exist with which to study cardiac development, each with 

their own advantages. Zebrafish embryos are small, develop rapidly ex utero and are 

transparent, making them an ideal model with which to understand development of 

internal organs such as the heart. Their transparency also facilitates live imaging of 

multiple transgenic lines, which can highlight various different tissues in a single 

embryo. 

 

An additional benefit to zebrafish studying cardiovascular development is that when 

heart function is compromised, oxygen diffusion is sufficient to sustain life, meaning 

that the role of blood flow can be investigated more fully than other model 

organisms. In particular, this allows imaging of blood flow dependent processes 

during development through temporarily blocking heart function and acquiring 

detailed, high resolution images to gain insight into the interaction between form 

and function during heart development (Arrenberg et al., 2010; Samsa et al., 2015; 

Steed et al., 2016; Vermot et al., 2009). Furthermore, the oviparity of zebrafish 

means that where mutations result in lethality due to a failure in implantation or 

placental development, this is not a factor zebrafish. 

 

The extensive number of embryos that can be collected from a single cross and cost 

efficiency compared to mice has made zebrafish ideal candidates for forward 

genetics screens to identify mutants with defects in specific developmental 

processes. Commonly these mutations are functional nulls, allowing determination 

of the gene function by characterising development in the absence of its activity. 

This approach has been successful in identifying hundreds of genes with diverse 

roles in development that have shown to be well conserved with other vertebrates, 

including humans. Sequencing of the zebrafish genome and comparison with the 

human genome has identified 47% of human genes have a direct, one-to-one match 
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with a zebrafish gene. More broadly, 71.4% of human genes have at least one 

zebrafish gene, whilst 82% of disease-causing genes in humans has at least one 

zebrafish orthologue (Howe et al., 2013). The ‘one-human-to-many-zebrafish’ class 

of genes, where there are 2.28 zebrafish genes for every human gene (Howe et al., 

2013) is thought to have arisen due the additional round of whole genome 

duplication referred to as the teleost-specific genome duplication.  

 

1.3.2 Reverse genetic approaches in zebrafish 

 

Whilst forward genetic screens offers an unbiased method to identify genes with 

important roles in biological processes, these studies require large numbers of 

animals, are time consuming and expensive. The sequencing of the zebrafish 

genome has subsequently allowed reverse genetic methodologies, an increasingly-

favoured candidate-led approach to investigate the role of specific genes in 

development, being quicker, cheaper and using fewer animals than forward 

genetics. Broadly two reverse genetic approaches are commonly used in zebrafish: 

knockdown, reducing levels of functional protein without mutating the DNA; and 

knockout, abrogating gene function through mutation of the DNA (Figure 1.2). 
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Figure 1.2. Mechanisms of targeted gene knockdown and knockout in zebrafish. 

Comparison of different basic mechanisms currently available in zebrafish to target 

gene function. (A) Under WT conditions, transcription and translation of a protein 

coding gene generates functional protein. (B) Translation blocking morpholinos (red) 

bind the AUG initiation codon of the sense mRNA (cyan), preventing binding of the 

ribosome (orange), leading to absence of translation. (C) Targeted mutagenesis of 

Gene A (purple) results in a genetic lesion in the DNA (red) which is then present as  
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For a long time, the preferred reverse genetic approach to assess the role of a 

specific gene in zebrafish development was knockdown by the use of antisense 

morpholino oligonucleotides (MOs Figure 1.2B) (Nasevicius and Ekker, 2000). 

Morpholino usage in zebrafish is wide-spread, entailing injection of short DNA 

sequences complementary to the target gene at the 1-cell stage which are capable 

of either inhibiting initiation of protein translation (Figure 1.2B) or blocking correct 

splicing of the transcript (Bill et al., 2009). Prior to the development of targeted 

mutagenesis techniques, morpholino usage was commonplace in functional studies 

to ascribe specific functions to genes across a broad range of biological processes. 

Alongside mapping, MOs remain widely used as a secondary method to confirm a 

mutation identified in a forward genetic screen. Morpholinos are subject to decay 

following injection, and this limits use of morpholino knockdown to interrogation of 

the very early stages of development, anecdotally until approximately 3dpf. 

Therefore, examining larval or adult phenotypes is not possible using morpholinos. 

 

However, use of MOs in reverse genetic approaches have proved troublesome. 

Injection of MOs has been reported to result in up-regulation of tp53 (tumor protein 

p53) and induce cell death (Robu et al., 2007). Furthermore MOs may have off-

target effects, interfering with the function of a separate gene (Eisen and Smith, 

2008; Lai et al., 2019). Additionally, there is no standard working concentration for 

Figure 1.2 continued 

a premature stop codon (red), upstream of the WT stop codon (yellow) in the 

transcribed mRNA (cyan). Classically (i) the mutation is expected to result in loss of 

functional protein through loss of domains or degradation of the mRNA. More 

recent studies have identified that the mutation can activate nonsense-mediated 

decay (NMD) of the transcript (ii) and products of decay can up-regulate expression 

compensating Gene B (green) which prevents deleterious phenotype from 

emerging. (D) CRISPR interference uses gRNAs to target catalytically dead Cas9 

(dCas9) to the promoter of the gene, sterically blocking the binding of RNA 

Polymerase II (pink) leading to no mRNA translation and therefore loss of protein. 
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MO use, or complete consensus in the design of negative control experiments, 

which include injection of a scrambled MO, control MO or tp53 alone (Robu et al., 

2007). Together this can make correctly interpreting morphant (embryo injected with 

a morpholino) phenotypes challenging. 

 

More recently, genome-editing techniques such as Zinc Finger Nucleases, TALEN, 

and CRISPR facilitate the specific targeted mutagenesis of genes to generate 

knockouts, which revolutionised the ability to interrogate gene function (Gaj et al., 

2013; Pickar-Oliver and Gersbach, 2019). The common CRISPR-Cas9 system uses 

sequence specific CRISPR RNA (crRNA) which anneals to the common trans-

activating crRNAs (tracrRNAs) to recruit the Cas9 nuclease. The two RNA 

components are commonly referred to as a single guide RNA (gRNA). Target 

recognition by the Cas9 protein requires a protospacer adjacent motif (PAM) 

upstream of the crRNA-binding region in order to cleave the DNA (Gaj et al., 2013). 

Subsequently, in the stable lines generated, transcription of targeted genes results 

in mRNA with a nonsense mutation, leading to a frameshift and a premature 

termination codon (PTC) (Figure 1.2C).  

 

During the pioneer round of translation, if the PTC is more than 50-55bp upstream 

of an exon-exon boundary marked by an exon junction complex (EJC) Upf1 and a 

Smg1-Smg8-Smg9 complex associate with the termination complex. Smg1 activates 

Upf1 through phosphorylation, resulting in repression of mRNA translation and 

recruitment of mRNA decay factors through an interaction between phosphorylated 

Upf1 and Smg7. This results in the exonucleolytic decay of the mRNA, referred to as 

nonsense-mediated decay (NMD) an evolutionarily conserved pathway in 

vertebrates and other classes (Maquat, 2005; Popp and Maquat, 2016; Wittkopp et 

al., 2009). Destruction of the transcript or generation of a truncated protein (which 

dependent on location of PTC is likely to be non-functional) leads to loss of gene 

function. The phenotype that results from this loss-of-function can then be studied 

to understand the role of the gene during development (Figure 1.2Ci). 



1. Introduction 

21 

 

1.3.3 Genetic robustness in zebrafish 

 

Whilst genome-editing technologies have been rapidly adopted and have 

revolutionised our ability to analyse gene function in specific developmental 

processes, studies are reporting that the subsequent link between mutant 

phenotype and gene function is more complex than initially supposed. Multiple 

studies have reported that novel mutations generated in genes resulted in no 

phenotype, despite clear developmental phenotypes when the same gene was 

subjected to morpholino-mediated knockdown or RNA silencing (Braun et al., 2008; 

El-Brolosy and Stainier, 2017; Gao et al., 2015; Lin et al., 2017, 2007; Rossi et al., 

2015; Savage et al., 2019; Williams et al., 2015) A large-scale study in zebrafish set 

out to define the roles of genes with well characterised phenotypes achieved 

through MO knockdown, but only three of the 24 mutant lines recapitulated the 

morpholino phenotype (Kok et al., 2015). This resulted in a backlash against MO 

usage in zebrafish (Eisen and Smith, 2008; Kok et al., 2015; Stainier et al., 2017), and 

also raised concerns over the requirement of many genes, which upon mutagenesis 

had no effect on development of the embryo. Following this, guidelines for MO 

usage were laid out by the zebrafish community and mainly focussed upon MO 

usage only following validation that the morphant and mutant phenotypes were 

comparable (Stainier et al., 2017). 

 

However, one study examined more closely the disparity between the mt2 

(metallothionein 2) mutant and morphant phenotype (which exhibited defects in 

angiogenesis). Zygotic mt2 mutants did not show any development phenotypes, but 

the maternal zygotic mutants of mt2 did show a similar phenotype to the morphants 

(Schuermann et al., 2015). Examination of mt2 transcript levels in two different mt2 

mutant alleles identified varying levels of mt2 expression which correlated with 

phenotypic severity: the more mt2 transcript present, the more severe the 

phenotype. Partial removal of two conserved NMD pathway components, smg1 and 

upf1, in the stronger mt2 mutant allele resulted in increase in penetrance of the mt2 



1. Introduction 

22 

 

morphant phenotype, suggesting that degradation of mutant mRNA transcript could 

result in differences in phenotypic severity through activation of a compensatory 

mechanism (Schuermann et al., 2015). 

 

This compensatory pathway was investigated further in zebrafish egfl7 (EGF-like-

domain, multiple 7) mutants.  Knockdown of EGFL7 in human cells lines, zebrafish 

and frog results in a severe vascular defect (Charpentier et al., 2013; Huang et al., 

2014; Parker et al., 2004), however a mouse Egfl7 knockout has no reported 

phenotype (Kuhnert et al., 2008; Schmidt et al., 2007) and a zebrafish egfl7 null 

mutant does not have a developmental phenotype and survives to adulthood (Rossi 

et al., 2015). RNA-profiling and mass spectrometry of mutant, morphant and wild-

type egfl7 zebrafish embryos revealed significant up-regulation of emilin2a, emilin3a 

and emilin3b in egfl7 mutants, which were shown to be able to compensate for loss 

of egfl7 (Rossi et al., 2015). Interestingly, there was no up-regulation of 

compensating emilins in a 3bp deletion egfl7 mutant, which maintains the reading 

frame and shows no reduction of transcript (Rossi et al., 2015). Together this 

suggested that mutations that result in a reduction of mutant transcript levels could 

up-regulate compensatory genes, whilst embryos subject to knockdown of the same 

gene by MO were unable activate compensation (Figure 1.2C). This could explain 

the basis for absence of phenotypes associated with genetic knockout where the 

associated knockdown exhibits severe phenotypes. 

 

Supporting this, a recent study has begun to identify the mechanisms by which 

increased degradation of mutant transcripts is able to up-regulate compensatory 

genes. Where mutant mRNA is directed for NMD, up-regulation of compensating 

genes can be abolished through the inhibition of NMD either by pharmacological 

inhibition of NMD, or through mutation of upf1, a critical factor for activation of 

NMD (El-Brolosy et al., 2019; Wittkopp et al., 2009). This led to the suggestion that 

mutagenesis approaches should be designed to overcome the NMD-induced 

genetic compensation, for example by targeting the gene promoter for deletion or 
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deleting the entire gene rather than introducing PTCs in the coding sequence (El-

Brolosy et al., 2019). Using this methodology, deletion of the entire egfl7 locus 

recapitulated the original egfl7 morphant phenotype, in striking contrast to the 

previously published egfl7 mutants (El-Brolosy et al., 2019; Rossi et al., 2015). 

Crucially, genetic compensation does not appear to be a zebrafish-specific 

consideration: genetic compensation has been reported in C. elegans, mouse and 

human cell and tissue lines (Dawlaty et al., 2011; Freudenberg et al., 2011; Jackson 

and Pereira-Smith, 2006; Mulligan et al., 1998; Raj et al., 2010) and a similar 

approach to targeted promoter deletion in cell lines appears sufficient to overcome 

this phenomenon. 

 

Whilst analysis of mutant lines is suitable for assessing the impact of loss of function 

of a gene throughout the embryo, there remains a requirement for spatiotemporal 

knockdown, not widely available in zebrafish. One promising possibility is CRISPR 

interference (CRISPRi) where the CRISPR-Cas9 technique has been modified for 

knockdown, rather than knockout. CRISPRi employs a catalytically dead Cas9 

(dCas9, which cannot cleave DNA) which is recruited by gRNAs to act as a 

“roadblock” preventing either initiation or elongation of transcription of a target 

gene (Larson et al., 2013; Qi et al., 2013) (Figure 1.2D). Using an mRFP reporter in E. 

coli, Qi et al. (2013) demonstrated that CRISPRi can carry out highly effective and 

specific gene silencing by preventing transcription. CRISPRi was applied to 

investigate the role of egfl7 in zebrafish by knocking down transcription using two 

gRNAs targeting the non-template strand (Rossi et al., 2015). CRISPants (embryos 

subject to knockdown by CRISPRi) of egfl7 recapitulate the MO phenotype and 

similarly to egfl7 morphants, did not show an up-regulation of emilin genes 

observed in the nonsense deletion egfl7 mutant (Rossi et al., 2015). A similar result 

has been described for tmem33 (transmembrane protein 33), a gene for which the 

mutant has no phenotype, but morphants and CRISPants show a severe delay in 

angiogenesis (Savage et al., 2019) Together these results demonstrate that CRISPRi-

mediated knockdowns appear able to perturb gene function sufficiently to 
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interrogate the role of a gene in development without activating genetic 

compensation mechanisms (Rossi et al., 2015; Savage et al., 2019).  

 

Altogether, this demonstrates the variety of tools available for genetic manipulation 

of the zebrafish and thus its suitability with which to investigate the mechanisms 

which drive cardiac development. The next section will outline in greater detail the 

development of the zebrafish heart, with particular focus on the stages involved in 

heart looping morphogenesis. 
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1.4 Development of the Zebrafish Heart 
 

The zebrafish heart develops rapidly in the first few days of embryonic development, 

with the LHT visible at 24hpf (Figure 1.3B) undergoing looping morphogenesis by 

30hpf (Figure 1.3C). By 2dpf (Figure 1.3D) the heart has completed initial 

morphogenesis and begins to mature, morphologically appearing to compact in size 

(Figure 1.3E). 

 

Figure 1.3. Stages of heart development in zebrafish. 

Schematic of key stages of zebrafish heart development. (A) The precursor structure 

to the linear heart tube at 20hpf is the cardiac disc. At the centre are endocardial 

cells (magenta), surrounded by ventricular cardiomyocytes (dark green) and further 

surrounded by atrial cardiomyocytes (light green). (B) The heart tube forms by 

jogging, in which the heart becomes asymmetrically positioned under the left eye, 

with the atrium positioned more anteriorly than the ventricle and the endocardium 

encompassed by the myocardium. (C) By 30hpf the heart has begun looping 

morphogenesis, with the heart descending over the yolk and chambers taking on 

more distinct shapes at their outer curvatures. (D) At 55hpf, the heart has undergone 

the main morphogenetic movements of looping and is positioned over the yolk with 

a constriction visible between the single atrium and ventricle where the 

atrioventricular canal (blue) is forming. (E) At 3dpf, the morphology of the heart 

changes, with the chambers becoming more compacted and closer to one another. 

The development of the outflow tract valve (orange) has commenced. A-C: dorsal 

views, D-E: ventral views. A: atrium, V: ventricle. 
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1.4.1 Specification of cardiac progenitors, formation of the cardiac disc (0-22hpf) 

 

Classic lineage tracing identified that atrial and ventricular myocardial cells are 

segregated as early as 5hpf (Stainier et al., 1993). Following gastrulation, these 

cardiomyocytes are located bilaterally in the anterior lateral plate mesoderm 

(ALPM), with atrial precursors residing more laterally than the ventricular precursors 

(Bakkers, 2011; Brown et al., 2016). Live cell tracking shows that the endocardium is 

also derived from the ALPM developing from a pool of cells residing anterior to the 

cardiomyocytes that also gives rise to the head vasculature, aortic arches and 

primitive myeloid progenitors (Bussmann et al., 2007). 

 

Between 16hpf and 19hpf, the bilateral, linearly arranged cardiomyocytes migrate 

toward the midline of the embryo, with cells at the extreme poles of each 

population migrating towards their more centrally located neighbours, and fuse at 

the midline to form the cardiac disc (Holtzman et al., 2007) (Figure 1.3A).  However, 

at 16hpf, endothelial cells reside more anterior than myocardial cells and the two 

bilateral endocardial populations have already met at the midline of the embryo, 

highlighting that endocardial migration begins slightly before myocardial migration 

(Bussmann et al., 2007). Interestingly, proper cardiomyocyte migration requires the 

presence of the endothelium, as in cloche mutants, which lack endothelial cells, 

despite cardiomyocyte convergence towards the midline, no angular cell 

movements take place to form the cardiac disc (Holtzman et al., 2007). 

 

Furthermore, a reciprocal interaction is necessary for correct specification of the 

endocardium as the heart disc forms. In hand2 (heart and neural crest derivatives 

expressed 2) mutants, where myocardial progenitors are absent (Yelon et al., 1999) 

at 22hpf, no nfat1c (nuclear factor of activated T cells 1, a marker for the 

endocardium) (Pompa et al., 1998) positive endocardial cells are present in the disc 

(Palencia-Desai et al., 2015). Studies at these early timepoints demonstrate that 



1. Introduction 

27 

 

even before tube formation, the interaction between the two cell layers of the future 

heart tube is critical for heart development. 

 

1.4.2 Heart jogging: the disc-to-tube transition (22-24hpf) 

 

At 20hpf the zebrafish cardiac disc is positioned in the middle of the ALPM (Figure 

1.3A, 1.4A), where endocardial cells are surrounded first by a ring of ventricular 

cardiomyocytes, and at the periphery a ring of atrial cardiomyocytes (Bakkers, 2011; 

Brown et al., 2016). Concomitant with heart disc formation, the zebrafish embryo 

exhibits genetic left-right asymmetries, as a result of Kupffer’s vesicle (KV) activity 

and subsequent asymmetric Nodal signalling. Downstream targets of Nodal 

signaling in the heart disc include bmp4 (bone morphogenetic protein 4), has2 

(hyaluronan synthase 2) and lft2 (lefty2), whose expression is either elevated on, or 

restricted to, the left side of the disc (Chen et al., 1997; Chocron et al., 2007; 

Lenhart et al., 2013; Smith et al., 2008). has2 displays a more distinct left-side 

restriction which is dependent on southpaw, as southpaw morphants have bilateral 

has2 expression (Smith et al., 2008; Veerkamp et al., 2013). 

 

Asymmetric expression of has2 on the left side of the cardiac disc results in a 

reduction of BMP (Bone Morphogenetic Protein) activity on the left side of the heart 

disc (Veerkamp et al., 2013). Expression of a non-muscle myosin is positively 

regulated by BMP and restricted by spaw (Veerkamp et al., 2013) resulting in an up-

regulation of phospho-myosin light chain 2 (pMLC2) on the right side of the disc, 

where BMP is more active (Veerkamp et al., 2013). These genetic asymmetries in the 

heart disc correlate with regional differences in migration patterns of cells within the 

four quadrants of the cardiac disc as the heart tube forms between 22-24hpf 

(Campos-Baptista et al., 2008; Lenhart et al., 2013; Smith et al., 2008; Veerkamp et 

al., 2013). The major contribution to the changes in migration speed comes from a 

significantly slower migration rate of anterior cardiac cells of the disc, but more 
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broadly, cells of the right cardiac disc migrate slower (Campos-Baptista et al., 2008; 

Lenhart et al., 2013; Smith et al., 2008; Veerkamp et al., 2013).  

 

At the same time as regionalised cell migration, the heart disc also undergoes a 

rotation and involution event resulting in a complex rearrangement of cardiac tissue 

as the heart transitions from disc to tube (a process known as heart jogging) (Rohr et 

al., 2008; Smith et al., 2008) (Figure 1.4A). This rotation and migration of cells results 

in redistribution of cardiac cells, positioning the initially left-sided, Nodal-responsive 

lft2-positive cells from the cardiac disc on the dorsal face of the linear heart tube 

(Baker et al., 2008; Smith et al., 2008) (Figure 1.4B), whilst those initially in the 

posterior of the disc reside on the left side of the heart (Guerra et al., 2018). Heart 

jogging positions the linear heart tube under the left eye of the embryo (Figure 

1.3B, 1,4B), where the arterial pole remains at the midline and the venous pole is 

displaced left (Chen et al., 1997). Mutants in the Nodal pathway, for example 

southpaw, or the Nodal-responsive transcription factor foxH1 (forkhead box H1), 

present with a heart tube positioned down the midline of the embryo (Lenhart et al., 

2013; Noël et al., 2013). In these mutants, loss of southpaw activity results in a 

failure of has2 restriction to the left side of the disc, and a uniform dampening of 

BMP activity. This results in a loss of asymmetric migration directionality during heart 

disc rotation and generally slower migration speeds (Campos-Baptista et al., 2008; 

Lenhart et al., 2013; Veerkamp et al., 2013), leading to a failure of disc rotation and 

extension of the heart tube down the midline of the embryo, demonstrating the 

tight link between embryonic asymmetry and heart lateralisation. 
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Figure 1.4. Heart jogging re-organises left-right disc asymmetry to dorsal-ventral 

tube asymmetry. 

Current model of heart jogging, which generates the linear heart tube from the 

cardiac disc. (A) The heart disc (myl7, green) displays left-right asymmetry, 

dependent on the expression of the Nodal signaling pathway (spaw). L-R asymmetry 

cues are required to promote expression of lefty2 (magenta) and restrict the 

hyaluronan synthase 2 (has2, yellow) to the left side. The asymmetric expression of 

has2 results in dampening of responsiveness to BMP ligands, resulting in increased 

BMP activity on the right of the disc (blue triangle), which promotes cell adhesion 

over motility through non-muscle myosins. The asymmetries in the heart disc result 

in increased migration speed on the left of the disc and in the posterior of this disc 

(black triangles). This results in an asymmetric, left-directed migration and right-ward 

rotation of the heart disc (jogging). (B) Heart jogging positions the linear heart tube 

asymmetrically under the left eye, with ventricle/arterial pole remaining at the 

midline (dotted line) and the  
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1.4.3 Heart looping and initiation of valvulogenesis (24-56hpf) 

 

Following heart tube formation, repositioning of the chambers begins as the heart 

tube loops (Figure 1.3C). The directionality of cardiac looping is accurately 

predicted by the direction of heart jogging. In all cases where the heart jogs to the 

left, hearts loop to the right, and under conditions where the heart jogs to the right, 

the heart loops to the left (Chen et al., 1997; Grimes et al., 2019) (Figure 1.4B). The 

re-organisation of left-right asymmetry in the heart disc to dorsal-ventral asymmetry 

in the heart tube (Baker et al., 2008; Smith et al., 2008), supports the model of a 

Nodal-independent mechanism regulating heart looping morphogenesis due to 

spatial disconnection of laterality of the tube and whole embryo (Lombardo et al., 

2019; Noël et al., 2013). There is however an interaction between Nodal and the 

actomyosin cytoskeleton which is required to promote asymmetric morphogenesis. 

Sub-phenotypic treatment with Cytochalasin B of southpaw mutants is able to 

significantly reduce the proportion of right-ward looped hearts and increase the 

incidence of non-looped hearts (Noël et al., 2013). 

 

Conserved with mice and chick, during zebrafish heart looping, myocardial cell 

number increases predominantly through addition of new cardiomyocytes into the 

heart tube from the second heart field (Pater et al., 2009), a pool of cardiac 

precursors in the adjacent mesoderm. Between 24hpf-48hpf cells are first added to 

 

 

Continued from Figure 1.4. 

atrium/venous pole displaced to the left. The asymmetric movements of the heart 

disc lead to a reorganisation of the left-right patterning of the disc to the dorsal-

ventral polarity of the heart tube, leading to lefty2 positive cells being positioned on 

the dorsal surface of the heart (magenta). Dorsal views. Model based on: Baker et 

al., 2008; Campos-Baptista et al., 2008; Lenhart et al., 2013; Rohr et al., 2008; Smith 

et al., 2008; Veerkamp et al., 2013. 
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Figure 1.5. Second heart field addition and myocardial-endocardial cross-talk are 

required for looping morphogenesis. 

(A) Dorsal view of 26hpf zebrafish embryo. The linear heart tube (green) is 

positioned under the left eye with pools of cardiac progenitors (SHF, turquoise) 

present at both poles. (B) At the arterial pole, TGF-β3 localised to extracellular 

matrix by Ltbp3 is required for SHF proliferation. Fgf8 signalling and the 

transcription factor Tbx1 are required for addition of the SHF to the ventricle. (C) At 

the venous pole Isl1 is required for SHF addition. (D) Cross-talk between the 

myocardium (green) and endocardium (magenta), together with blood flow regulate 

changes to endocardial cell shape and proliferation. Functional endocardial CCM 

signalling limits klf2a expression and promotes myocardial chamber ballooning. 

Based on: Bornhorst et al., 2019; Dietrich et al., 2014; Hami et al., 2011; Nevis et al, 

2013; Pater et al., 2009; Zhou et al., 2011; Zhou et al., 2015. A: atrium, V: ventricle. 
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the arterial pole of the heart, in a mechanism dependent upon Fibroblast growth 

factor 8 (Fgf8) signalling, whilst the later addition at the venous pole is dependent 

upon the function of the transcription factor Islet1 (Isl1) (Hami et al., 2011; Pater et 

al., 2009) (Figure 1.5A-C). Similar to mice, loss of FGF signalling or mutations in the 

key transcriptional regulator of SHF addition tbx1 leads to loss of arterial structures 

and defects in heart looping morphogenesis (Felker et al., 2018; Hami et al., 2011; 

Lazic and Scott, 2011; Nevis et al., 2013; Reifers et al., 2000). TGF-β signalling is also 

required at the arterial pole for correct SHF addition to maintain SHF proliferation 

(Zhou et al., 2011). This is achieved by Ltbp3 (Latent transforming growth factor beta 

binding protein 3) which anchors TGF-β3 in the ECM (Figure 1.5B). In summary, 

timely and controlled cell addition together with maintenance of this progenitor 

pool during cardiac development is critical to generate the correct shape of the 

heart. 

 

During cardiac morphogenesis the chambers of the heart contribute to looping by 

elaboration of their outer curvatures, characterised by the expression of natriuretic 

peptide A (nppa, ANF in mice) (Habets et al., 2002) where it is excluded from the 

inner curvature and non-working myocardium at the atrioventricular canal (Auman et 

al., 2007). nppa is closely linked to natriuretic peptide B (nppb), a gene which 

displays a much tighter restriction to the outer curvatures of the heart (Grassini et al., 

2018) (Figure 1.6A-C). Loss of both nppa and nppb result in a spectrum of cardiac 

phenotypes, broadly impacting on heart morphology and the formation of the 

atrioventricular valve. Interestingly, cardiac contractility is important the regulation of 

nppa expression during heart development as loss of myh7 results in failure of 

restriction of nppa, whilst loss of myh6 results in a reduction of nppa expression in 

the ventricle (Auman et al., 2007). Together this identifies a link between heart 

contractility, heart looping and chamber ballooning during cardiac morphogenesis. 

 

Whilst chamber ballooning is predominantly observed to be myocardial, co-

ordination of growth and cell shape change between the myocardium and 
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endocardium is required to maintain cardiac shape and function. Under 

experimental conditions which result in overgrowth of the atrium through increased 

Wnt signalling, endocardial tissue tension increases, transmitted through Cadherin5 

(Cdh5) (Bornhorst et al., 2019) (Figure 1.5D). This increased tension in the 

endocardium correlates with increased Yap (Yes1 associated transcriptional 

regulator) activity, resulting in increased atrial endocardial proliferation to co-

ordinate chamber morphogenesis of both tissues (Bornhorst et al., 2019). Another 

identified cross-talk between the myocardium and endocardium regulates the 

ballooning of the endocardium through regionalised changes in cell shape and size, 

thought to be dependent on myocardial-derived BMP signals and the sensation of 

blood flow (Dietrich et al., 2014) (Figure 1.5E).  

 

Another conserved signalling pathway required for heart looping and correct 

chamber ballooning is the cerebral cavernous malformation (CCM) pathway. 

Mutations in components of the CCM pathway results in enlarged chambers of the 

heart due to uncontrolled chamber ballooning associated with a profound looping 

phenotype, but not through a mechanism of increased cell number (Mably et al., 

2006, 2003). CCM pathway components are expressed in endothelial and 

endocardial cells (Mably et al., 2006, 2003), where they regulate multiple different 

signalling pathways including the MEKK3-ERK5 axis (Otten et al., 2018; Zhou et al., 

2015), however the most obvious effect on the heart following loss of CCM activity 

is in the myocardium (Mably et al., 2006, 2003) (Figure 1.5E). Thus, heart looping 

and chamber ballooning require intricate cross-talk between the two tissues layers 

during heart development and these two processes are tightly coupled during 

morphogenesis and orchestrated by both biochemical and biomechanical signals. 

 

Concomitant with heart looping morphogenesis is the onset of valvulogenesis at the 

AVC, and these processes are tightly linked. The cellular mechanisms of valve 

formation are well conserved between zebrafish, mice and chick and require the co-  
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Figure 1.6. Early valvulogenesis in zebrafish. 

(A-B) Ventral view of zebrafish embryo between 48-56hpf, the heart has undergone 

initial stages of morphogenesis and the chambers are morphologically distinct 

separated by the developing atrioventricular valve where localised ECM deposition 

drives formation of the endocardial cushions. (C) Morphological differences are 

correlate with transcriptional differences between the chambers and the AVC. 

Chamber myocardium (green) is marked by expression of nppa/nppb whist valve 

myocardium expresses foxn4 and tbx2b. Valve endocardium (magenta) expresses 

key, conserved markers of valvulogenesis has2 and notch1b. (D) Endocardial cells of 

the AVC respond to reversing flow through up-regulation of klf2a which maintains 

expression of notch1b to regulate EndoMT and drives expression of fn1b which is 

required for ECM invasion. Has2 expression is required for locaslied HA deposition 

which leads to expression of the cell adhesion molecule Alcama. Based on: Auman  
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ordination of myocardial and endocardial interactions. At 36hpf, endocardial cells at 

the interface between the ventricle and atrium change their morphology from 

squamous to cuboidal and up-regulate Alcama (activated leukocyte cell adhesion 

molecule a) (Beis et al., 2005). These cellular rearrangements are dependent on the 

transcription factor Foxn4 (Forkhead box N4) and its interactions with Tbx5: 

mutations in foxn4 result in loss of notch1b (notch receptor 1b) restriction and 

absence of the transcription factor tbx2b (t-box transcription factor 2b), which 

regulates valve development (Chi et al., 2008). 

 

This correlates with the tightly regulated expression of has2 expression at the 

atrioventricular canal which is required for the presence of Alcama-positive cells in 

the endocardium (Lagendijk et al., 2011) (Figure 1.6C, D)and localised increase in 

cardiac jelly at this region, termed the atrioventricular cushions (Peal et al., 2011). At 

48hpf, protrusions from endocardial cells are observed interacting with the cardiac 

jelly, and endocardial cells invade the cardiac jelly at the AVC by 56hpf (Steed et al., 

2016).  

 

This migration of endocardial cells into the cardiac jelly represent a highly 

specialised form of Epithelial to Mesenchymal transition (EMT) known as EndoMT 

(Endothelial-to-Mesenchymal transition) (Gunawan et al., 2019; Pestel et al., 2016). 

EndoMT is promoted by Notch signalling - over-activation of Notch signalling leads 

to abnormally large atrioventricular valves and an up-regulation of the pro-EMT 

factor snai1a (snail family zinc finger 1a), whilst inhibition of Notch activity results in 

under-developed valves (Timmerman et al., 2004) (Figure 1.6D). 

 

 

 

Figure 1.6 continued. 

et al., 2007; Grassini et al, 2018; Heckel et al., 2015 Lagendijk et al., 2011; Pestel et 

al., 2016; Steed et al, 2016; Vermot et al., 2009 
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These morphological and transcriptional changes associated with valve 

development are almost exclusively dependent on heart contractility. This is most 

clearly demonstrated by a mutant in cardiac troponin, type T2a (tnnt2a, formerly 

silent heart, sih) isolated from a forward genetic screen, where mutants exhibit a loss 

of heart contractility, expression of notch1b and Notch reporter activity in the 

endocardium is abolished (Samsa et al., 2015). In tnnt2a mutants, endocardial cells 

at the presumptive AVC retain their squamous morphology, do not converge 

towards the valve (Boselli et al., 2017; Steed et al., 2016) and do not initiate Alcama 

expression (Beis et al., 2005). Heart contractility is also critical for the correct 

development of the valve through regulation of has2 expression (Lagendijk et. al. 

2011).  

 

While loss of contractility in models such as tnnt2a mutants/morphants implies a 

requirement for cardiac function in distinct aspects of heart development, dissecting 

the mechanical roles of contractility compared to blood flow and its sensation in 

these specific processes can be challenging upon straight-forward loss of 

contractility. Further complicating analysis of contractility mutants, tnnt2a loss-of-

function models also display pericardial oedema as early as 30hpf, and this increase 

in fluid surrounding the heart is also likely to impact upon morphogenesis 

independent of any requirement for blood flow in shaping the cells of the heart 

(Auman et al., 2007; Sehnert et al., 2002). 

 

Heart contractility and blood flow orchestrate atrioventricular valve development 

through multiple mechanisms, one of which is through sensation of blood flow shear 

stress in endocardial cells through the oscillatory flow-responsive transcription factor 

kruppel-like factor 2a (klf2a) (Heckel et al., 2015; Vermot et al., 2009). Reduction in 

blood viscosity through morpholino-mediated knockdown of either gata1a (GATA 

binding protein 1a, formerly gata1) or gata2a (GATA binding protein 2a, formerly 

gata2), both master regulators of erythropoiesis (Brownlie and Zon, 1999) results in 

differing effects on klf2a expression and opposing defects in valvulogenesis (Heckel 
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et al., 2015; Vermot et al., 2009). gata1a morphants result in subtle changes to klf2a 

expression but a dramatic decrease in shear stress (Heckel et al., 2015; Hsu et al., 

2019; Vermot et al., 2009) whilst gata2a morphants display a significant reduction in 

klf2a expression. Knockdown of klf2a results valve morphogenesis defects, together 

with a reduction in bmp4 and clear loss of notch1b expression, both key signalling 

molecules in valve development (Vermot et al., 2009). As well as setting up the 

necessary signalling pathways at the valve, klf2a also regulates localised ECM 

synthesis necessary for the development of the atrioventricular cushions. Between 

48hpf to 56hpf, the expression of fibronectin 1b (fn1b) increases 3-fold, is highly 

restricted to the AVC and is dependent on klf2a function. Knockdown of fn1b leads 

to a failure of EndoMT into the cardiac jelly, a crucial step in valvulogenesis (Steed 

et al., 2016). Together this places klf2a as a major integrating transcription factor in 

the development of the atrioventricular valve. klf2a also plays a role in the 

development of the endocardium during ballooning, where sensation of blood flow 

through klf2a is required for endocardial proliferation (Dietrich et al., 2014). 

 

A close reciprocal relationship exists between blood flow patterns through the heart 

and the looping morphogenesis as one ultimately causes a perturbation on the 

other. In line with the link between form and function of the heart, the sensation of 

blood flow is proposed to be required for proper cardiac morphogenesis more 

generally, with altering of blood viscosity by knockdown of either gata1a and gata2a 

resulting in a failure of heart looping (Lombardo et al., 2019). Interestingly, 

knockdown of either or both gata1a and gata2a results in a less severe looping 

defect than observed in tnnt2a morphants (Lombardo et al., 2019), potentially 

confirming two distinct requirements for blood flow and heart contractility in 

promoting heart looping (Auman et al., 2007). 
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1.4.4 Heart maturation (56hpf onwards) 

 

As development progresses, specialisation between the two chambers becomes 

more apparent. During ventricular maturation, myocardial cells begin to delaminate 

and invade into the ventricular cardiac jelly in a process known as trabeculation. 

Similar to valve development, trabeculation is dependent upon heart contractility as 

tnnt2a morphants display a complete lack of trabeculae (Samsa et al., 2015). Blood 

flow during trabeculation also regulates Notch signalling, although recovery of 

Notch activity in tnnt2a morphants, is not sufficient to recover the loss of trabeculae 

phenotype, suggesting multiple pathways are active during this process (Samsa et 

al., 2015). 

 

Specialisation of the atrium is mainly characterised by the emergence of the Sino-

Atrial node (SAN) or pacemaker at the base of the inner curvature of the atrium 

(Pater et al., 2009). These cells are some of the last to be added to the heart and 

express the transcription factor Isl1 and loss of isl1 function results in pacing defects 

(Pater et al., 2009). Although specified during earlier morphogenesis (prior to 56hpf) 

(Burkhard and Bakkers, 2018), mutations affecting the function of the SAN are more 

pronounced at 3dpf than 2dpf (Tessadori et al., 2012), suggesting a key requirement 

for function from 3dpf onwards. Distinct to that of ventricular trabeculation, between 

7dpf-14dpf, the atrial wall undergoes a significant morphological change. Referred 

to as “webbing”, individual cells of the atrium make sparse contacts with one 

another. Additionally, and similar to the adult ventricular myocardium, the atrial 

myocardium is derived from clonal expansion of the embryonic myocardium (Foglia 

et al., 2016; Gupta and Poss, 2012). 

 

Between 3-4dpf, the atrioventricular valve continues to develop and increase in 

efficiency (Scherz et al., 2008). By 80hpf the atrioventricular valve is a multi-layered 

mass of originally endocardial cells expressing high levels of klf2a with low levels of 

cell proliferation (Steed et al., 2016). By 102hpf, the morphology of the 
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atrioventricular valve is similar to valve present in the adult (Scherz et al., 2008). At 

the outflow tract of the heart a second valve forms between the ventricle and the 

bulbus arteriosis (BA) from 56hpf onwards, and functions to regulate blood flow into 

the aortic arches. This has recently been shown to regulated by a similar, yet distinct 

set of cellular behaviours to that of the development of the AVC, including the 

Klf2a-Notch1b pathway (Duchemin 2019, Hsu 2019). 

 

Initiating around 72hpf, the pro-epicardium begins to cover the surface of the 

maturing heart generating the third cardiac tissue layer of the heart: the epicardium 

(Bakkers, 2011). The epicardium is important in supporting the function of the 

myocardium, containing the precursors necessary to generate the coronary 

vasculature and other cell types (Ruiz-Villalba and Pérez-Pomares, 2012). 

Development of the epicardial layer is dependent on heart contractility, as 

movement of the pro-epicardium onto the heart is compromised in tnnt2a 

morphants (Peralta et al., 2013), further demonstrating the coupling of form and 

function during heart development. 

 

Finally, as the larva begins to develop into the juvenile stage, a third rotation of the 

heart (terminal rotation) occurs between 84hpf and 120hpf. This rotation 

dramatically alters the arrangement of the chambers, such that the ventricle moves 

from the right to ventral and the atrium moves from left to dorsal and it is this 

position that the heart retains throughout life (Singleman and Holtzman, 2012).  

 

1.4.5 Comparison of Zebrafish and Human heart anatomy 

 

The final form of the zebrafish heart is distinctly different from that of the human 

heart (Figure 1.7), reflecting the key differences in the nature of oxygen exchange. 

The 4-chambered mammalian/avian heart is a closed double circulatory loop, 

collecting deoxygenated blood from the soma and moving it to the lungs where it is 

oxygenated, returns to the heart is then returned to the rest of the body (Figure 
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1.7A). Instead, the two-chambered zebrafish heart only delivers deoxygenated 

blood to the gills in a single circulatory loop (Figure 1.7B). Importantly despite these 

differences, the fundamentals of cardiac function are highly conserved with pacing 

of the heart regulated by the sinoatrial node located at the base of the atrium which 

fills with deoxygenated blood (Figure 1.7) and valves present at homologous 

positions between chambers and the major vessels which are integrated into the 

heart. 

 

Ultimately, the final form of the heart is not critical to elucidating how the organ 

takes shape during embryonic development. Instead, it is the conservation of 

mechanisms both at a genetic and cellular level (1.1.2, 1.2 and 1.4.3), and 

integration of biomechanical cues that is important. The co-ordination of these 

processes is necessary to generate the correct form of the heart, which is necessary 

for its function. 
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Figure 1.7. Comparison of human and zebrafish heart anatomy 

(A) The Human heart (ventral view) is a closed, double circulatory loop, where the 

blood passes through the heart twice per circuit. Deoxygenated blood (blue) returns 

to the heart through the Vena Cava (1) into the right atrium (2) through the tricuspid 

valve into right ventricle (3), exiting the heart by the Pulmonary Artery (4) to the 

lungs. Oxygenated blood (red) returns to the heart through the Pulmonary Vein (5) 

into the left atrium (6) through the mitral valve into the left ventricle (7) and exits the 

heart through the Aorta (8). (B) The Zebrafish heart (lateral view) is a closed, single 

circulatory loop, which delivers deoxygenated blood to the gills. Blood enters the 

heart through the Sinus Venous (1) into the single atrium (2) through the 

atrioventricular valve into the ventricle (3) and exiting the heart via the outflow tract 

valve into the Bulbus Arteriosus (4) and into the vascular bed of the gills. In both 

hearts, the pacemaker is positioned sinoatrially (Burkhard et al., 2017; Tessadori et 

al., 2012). RA: right atrium, RV: right ventricle, LA: left atrium, LV: left ventricle, A: 

atrium, V ventricle. 
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1.5 An overview of the Extracellular Matrix 
 

 

Tissue morphogenesis, such as heart looping, requires co-ordination of changes in 

cell shape, gene expression and the integration of intrinsic and extrinsic patterning 

cues often across multiple, distinct tissue types. Whilst many studies focus on the 

interactions between cells in a tissue such as the sending and receiving of 

intercellular signaling molecules, membrane-membrane interactions through 

junctional complexes, and at an intracellular level on the changes in transcription 

factors, the interaction between the cells in a tissue undergoing morphogenesis and 

the extracellular environment is often under-appreciated. The ECM contains a milieu 

of different molecules, but can be broadly divided into glycoproteins (including 

Proteoglycans and Laminins, discussed in detail below) and fibrous proteins such as 

Collagen (Bonnans et al., 2014; Mouw et al., 2014). The ECM can be separated into 

 

Figure 1.8. The Extracellular Matrix. 

Basic structure of the extracellular matrix surrounding an epithelium. The Basement 

Membrane provides physical support to the cells via direct attachment, most 

frequently through Integrins and/or Dystroglycan. Underneath the Basement 

membrane, the Interstitial Matrix provides a structural scaffold for tissues. The 

Basement Membrane commonly contains Laminins and Collagen IV, together with 

Nidogen (not shown) and Perlecan (not shown) whilst the Interstitial Matrix classically 

contains Hyaluronan (purple) synthesised by cell surface Synthases (red), 

Proteoglycans, Fibronectin (not shown) and other Collagens such as Collagen I (not 

shown). 
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two levels: the basement membrane (BM) which provides direct, physical support 

connections and the underlying connective tissue or interstitial matrix (Figure 1.8). 

The specific composition of the ECM, and a cells ability to interact with any of these 

constituents will influence its attachment and migration, provide different 

biomechanical cues to the cell, and facilitate or prevent receipt of biochemical 

signals (Bonnans et al., 2014; Mouw et al., 2014). This range of potential interactions 

between the cell and the ECM is highly diverse and represented in the wide range 

of developmental abnormalities and lethal phenotypes observed upon loss of ECM 

components (Chew and Lennon, 2018; Miner et al., 2004; Rozario and DeSimone, 

2009), however, the precise mechanisms linking the ECM to distinct cellular 

processes which go on to shape the tissue is only beginning to be elucidated. 

During heart looping, the heart tube contains a specialised ECM separating the 

outer layer of contractile myocardium from the inner endocardium. This cardiac jelly 

has been proposed to play a variety of roles during heart development (Barry, 1948; 

Davis, 1924; Nakamura and Manasek, 1981) and therefore understanding the 

interactions between the cardiac jelly, and the cells of the heart during asymmetric 

morphogenesis may provide insight into how this process is achieved. I will first 

focus on specific classes of ECM molecules and subsequently the roles these 

families have been linked to cardiovascular development and function.  

 

1.5.1 Identification, characterisation and nomenclature of Laminins: non-collagenous 

glycoproteins 

 

Laminin was initially isolated from a mouse tumour-synthesised basement 

membrane, and described as a high molecular weight non-collagenous protein 

distinct from Fibronectin (Chung et al., 1979; Timpl, 1989). Two years later, electron 

microscopy revealed the structure of the isolated Laminin as a “rigid asymmetric 

cross” (Engel et al., 1981), the components of which broadly resolved to be three 

polypeptide chains which assembled into the trimer with equimolar amounts (Hogan 

et al., 1980; Howe and Dietzschold, 1983). An initial nomenclature system defined 
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the originally isolated Laminin as being composed of α1, β1 and γ1, as all isolated 

Laminins were found to contain three genetically distinct subunits, with the original 

Laminin (α1β1γ1) designated Laminin-1 (Burgeson et al., 1994). A further refinement 

came in 2005, with the composition of each trimer naming the Laminin instead, 

meaning that Laminin-1 was to be referred to as Laminin-111 (comprising α1, β1 and 

γ1 respectively) (Aumailley et al., 2005). 

 

Since its initial identification, 5 alpha chains, 4 beta chains and 3 gamma chains have 

been described in vertebrates with a high degree of evolutionary and functional 

conservation in zebrafish. Based on microsynteny, zebrafish share ten out of the 

twelve mammalian Laminin subunits, having no laminin, beta 3 (lamb3) or laminin, 

gamma 2 (lamc2) orthologs (Sztal et al., 2011). As well as the 10 mammalian 

orthologs, two duplicated β subunits are present in zebrafish: laminin, beta 2-like 

(lamb2l) a pseudogene of laminin, beta 2 (lamb2) (conserved in mammals) (Jacoby 

et al., 2009) and laminin, beta 1b (lamb1b) a paralogous gene to laminin, beta 1a 

(lamb1a) (human LAMB1) (Sztal et al., 2011). lamb1b is not present in humans or 

mice however, phylogenetic analysis suggests that two copies of Laminin β1 may 

have been the ancestral state and that humans and mice have subsequently lost 

functional lamb1b genes (Sztal et al., 2011). The high level of conservation of 

Laminin subunits show that zebrafish represent a suitable model to understand the 

role of multiple Laminin subunits during development. 

 

Whilst Laminin trimers are highly diverse, all Laminin subunits share a common 

protein structure with both globular and rod-like domains, which associate by their 

coiled-coil domains (Figure 1.6A). All alpha chains possess a much larger C-terminal 

domain consisting of 5 LG (Laminin Globular) domains which undergo varying levels 

of cleavage, and mediate the interaction between Laminin and the cell membrane 

(Domogatskaya et al., 2012) (Figure 1.6). These LG domains in the alpha subunit are 

C-terminal to the coiled-coil domain, which is conserved in the β and γ coiled-coil 

domains and mediates the interactions between the subunits required for trimer 
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formation (Domogatskaya et al., 2012) (Figure 1.6A, B). N-terminal to the coiled-coil 

domains are frequently referred to as the short arms which are required for isoforms 

to polymerise (Bruch et al., 1989). Short arms of Laminin subunits vary in length 

between α, β and γ chains, but also within each subfamily, due to differing numbers 

of LE (Laminin Epidermal Growth Factor like) repeats the most striking being lama3 

(laminin, alpha 3) and lama4 (alminin, alpha 4). (Domogatskaya et al., 2012) (Figure 

1.6A) Other than lama3, lama4 and lamc2 all Laminins possess an N terminal 

Laminin domain (LN) (Figure 1.6A) which are important for polymerisation of the 

Laminin network (Domogatskaya et al., 2012) (Figure 1.6C). 
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Combinatorial transfection studies in HEK293 cells showed that the α1 chain could 

be secreted singularly or together with the β1γ1 complex, suggesting that alpha 

chains may act to drive Laminin trimer secretions (Yurchenco et al., 1997). 

Biochemical and electron microscopy analysis of various fragments of Laminin 

trimers developed the “Three arm interaction model” (Yurchenco and Cheng, 1993). 

This proposes that each short, N-terminal arm of a subunit would preferentially form 

a ternary node with one another, generating a hexagonal lattice-like structure of 

Laminin short arms in the basement membrane where the LG domains at the C-

terminal end of the trimer interacting with the cell membrane (Figure 1.6C). The 

highly modular nature of Laminin subunits and their combinatorial nature allows 

tissue-specific expression of different subunits to drive regionalised deposition of 

distinct Laminin isoforms, encoding specificity to the Laminin-component of the 

ECM in different developmental contexts. 

 

 

 

Figure 1.9. Structure and assembly of Laminins. 

Structure and assembly of Laminins. (A) Classically, Laminin alpha chains have 3 

distinct domains (red): the short arm (alternating Laminin N-terminal (LN) repeats 

and Laminin EGF-like (LE) repeats), coiled-coil and LG (Laminin Globular) domains. 3 

alpha chains (α3A and α4) do not posses a short arm (magenta). β/γ chains (except 

γ2) all possess the short arm and coiled-coil domains, but do not have an LG 

domains. (B) Typical Laminin trimer, containing 1 α, 1 β and 1 γ subunit, associating 

through their coiled-coil domains, with the LG domain and each subunits short arm 

accessible. (C) The three arm interaction model of Laminin assembly. Each short arm 

of the Laminin trimer associates with two others, forming a ternary node, assembling 

into a hexagonal lattice. The LG domains of the alpha chains are free to interacti 

with the cell membranes, anchoring cells to the Laminin-containing basement 

membrane. Schematics based on: Domogatskaya et al., 2012; Yurchenco and 

Cheng, 1993. 
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1.5.2 Laminins in development  

 

Laminins are one of the first ECM components to be generated during embryonic 

development with Lamb1 (laminin B1) and Lamc1 (laminin, gamma 1) expressed 

from as early as the 4-cell stage of the mouse embryo and production of the 

complete trimer detectable from the 16-cell stage (Cooper and MacQueen, 1983). 

Laminins play a role in one of the earliest processes in development, implantation of 

the embryo. Lamc1 null mice result in post-implantation lethality by E6.0 (Smyth et 

al., 1999), due to a failure to generate any embryonic membrane or the basement 

membrane which forms during early placental development (Reichert’s membrane) 

(Smyth et al., 1999). Lamb1 null embryos have a similar spectrum of phenotypes, 

suggesting that Lamb1-Lamc1-containing trimers are crucial for embryo 

implantation (Miner et al., 2004). 

 

Two Lamb1-Lamc1 containing Laminin trimers are present at implantation stages: 

Laminin-111 and Laminin-511 (Miner et al., 2004). As Lamb1 and Lamc1 are 

common to both, the precise role of each trimer could be identified through 

examination of Lama1 (Laminin, alpha 1) and Lama5 (Laminin, alpha 5) mutations. 

Lama1 mutant embryos survive for a day longer that Lamb1 or Lamc1 mutants 

although Reichert’s membrane is absent (Miner et al., 2004). However, Lama5 

mutant embryos survive until E17, much longer than either Lama1, Lamb1 or Lamc1 

mutants (Miner et al., 1998). To explain this discrepancy, it was suggested that LN-

111 could compensate for the absence of LN-511 and that Lama5-containing BM 

could compensate for a short time in Lama1 mutants (Miner et al., 2004). 

Overexpression of Lama5 in Lama1 mutant mice resulted in a mild rescue, where 

Lama1 mutant/Lama5 overexpression mice were larger and more developed at E6.5 

(when Lama1 mutants die) but were still smaller than their control littermates (Miner 

et al., 2004). These early studies highlight that some broad functions of Laminin 

alpha chains are conserved in development, and that alpha chains are the key 

Laminin subunit in providing functional specificity of a trimer. However, whilst there 
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is a partial rescue by LN-511 in Lama1 mutant mice, LN-511 is not able to fully 

rescue, suggesting that other ECM components, which interact solely with LN-111, 

cannot be organised properly by LN-511. 

 

In zebrafish, the role of specific Laminin subunits and their associated trimers have 

been highlighted through forward genetic screens from which three mutants - 

bashful (laminin, alpha 1, lama1), grumpy (laminin, beta 1a, lamb1a) and sleepy 

(laminin, gamma 1, lamc1) - were identified that display notochord, brain and eye 

defects (Eeden et al., 1996; Karlstrom et al., 1996; Odenthal et al., 1996; Pollard et 

al., 2006; Schier et al., 1996; Stemple et al., 1996). As zebrafish development is 

aplacental, the requirement for lamb1a and lamc1 in the embryo could be 

characterised further than in the mice models. The grumpy and sleepy lesions result 

in an indistinguishable phenotype with shortened body axes due to a failure in 

proper differentiation of the notochord, demonstrating a role for lamb1a and lamc1 

in the development of the notochord basement membrane (Parsons et al., 2002). 

 

A second forward genetic screen identified a further role for lamb1a in establishing 

the laterality of the zebrafish digestive system (Hochgreb-Hägele et al., 2013). At 

30hpf in lamb1a mutants, the gut fails to loop asymmetrically to the left, instead 

remaining at the midline (Hochgreb-Hägele et al., 2013). Further characterisation 

identified multiple roles for lamb1a: first in the KV and notochord for establishing L-

R asymmetry and subsequently the asymmetric migration of the LPM during gut 

looping (Hochgreb-Hägele et al., 2013). 

 

The strongest bashful (lama1) allele only affects the development of anterior regions 

of the notochord (Pollard et al., 2006; Stemple et al., 1996). Similar to mice, a high 

degree of redundancy between lama1, lama4 and lama5 exists in the development 

of the notochord in zebrafish. Morpholino-mediated knockdown of lama5 or lama4 

in lama1 mutants resulted in a more severe notochord phenotype although neither 

loss of both lama1-lama4 nor lama1-lama5 was able to totally recapture either the 
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lamb1a or lamc1 axis phenotype (Parsons et al., 2002; Pollard et al., 2006). This 

suggested that LN-111, LN-411 and LN-511 function with partial redundancy 

together to regulate notochord development, and that the most severe phenotype 

in lamb1a or lamc1 mutants is observed due to loss of all three complexes. 

 

One of the most well characterised basement membranes is the glomerular 

basement membrane (GBM) of the nephron, required to support the ultrafiltration of 

the blood in the kidney. Two major cells types line the GBM, endothelial cells on the 

inner face and podocytes on the outer face, both of which generate their own ECM 

which later combine to form the GBM (Miner and Li, 2000). Characterised in mice, 

initially both cell types express Lama1 and Lamb1, but as development progresses, 

expression of Lama1 is replaced quickly by Lama5, and subsequently, over a longer 

time course Lamb1 to Lamb2, resulting in a maturation of the Laminin component of 

the GBM from LN-111, to 511 and finally to the postnatal LN-521 (John and 

Abrahamson, 2001; Miner and Sanes, 1994).  

 

As a result of this isoform switching, different glomerular phenotypes are observed 

in mutants for different Laminin chains (Abrass et al., 2009, 2006; Kikkawa and 

Miner, 2006; Miner et al., 2004; Shannon et al., 2006), in particular, mutations in 

Lamb2 results in proteinuria postnatally following isoform switching (Noakes et al., 

1995). Although appearing normal, Lamb2 mutant mice die between Postnatal day 

(P)15 and P30, with apparently normal glomeruli morphology, however, Lamb1 

remains a major component of the GBM, failing to show loss of expression in these 

postnatal kidneys suggesting either a failure to down-regulate or a compensatory 

mechanism (Noakes et al., 1995). Although no kidney phenotype has been 

examined zebrafish lamb2 mutants display relatively subtle phenotypes, similar to 

mice models. Zebrafish lamb2 mutant muscle degeneration is similar to other 

dystrophic mutants such as lama2 and dystrophin, although distinct from the other 

mutants, the phenotype recovers and adults display no clear morphological or 

behavioural phenotype (Jacoby et al., 2009).  
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Mutations in LAMA2 (Laminin, alpha 2) are the most common cause of Congenital 

Muscle Dystrophy Type 1A, which leads to death early in childhood (Helbling-

Leclerc et al., 1995). Lama2 is contained in the trimer LN-211 which is crucial for 

muscle development and function, and postnatally is almost the only Laminin 

isoform in muscle (Domogatskaya et al., 2012). Loss of LN-211 ultimately results in 

uncoupling of the muscle from the ECM, resulting in poor co-ordination of muscle 

contraction that results in damage to tissue. In a further example of redundancy 

between Laminins, over-expression of Lama1 in skeletal muscle in a Lama2 mutant 

background could reduce features of Congenital Muscular Dystrophy in a mouse 

model (Gawlik et al., 2004).  

 

In summary, Laminins perform, multiple, crucial roles during development and 

exhibit a high level of functional redundancy, particularly between alpha chains. 

Often, multiple Laminin isoforms are expressed in one tissue, where each isoform 

performs a distinct role and can be subsequently be replaced by other trimers as the 

basement membrane matures over the course of morphogenesis. 

 

1.5.3 Laminin receptors 

 

The major cell surface receptors that bind to the ECM are the integrin family, a 

heterodimer consisting of one of 18 α chains and one of 8 β chains, both of which 

are important in providing the ligand-binding specificity. Broadly integrins bind four 

different classes of ECM molecule, but α3β1, α6β1, α6β4 and α7β1 dimers all bind to 

Laminins (Nishiuchi et al., 2006). 

 

Similar to Laminins, integrins are required early in embryogenesis. Itgb1 null mice 

embryos die shortly after implantation, likely due to Itgb1 being a key constituent of 

half of the known 24 integrin heterodimers (Anderson et al., 2013). One well-defined 

pathway involving Itgb1 is in differentiation of the mammary gland epithelium. 

Responsiveness to the hormone Prolactin is only achieved upon simultaneous  
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Figure 1.10. Canonical Laminin-Integrin interactions. 

Summary of the 4 classical Laminin binding integrin heterodimers interactions with 

Laminin alpha chains. Based on: Knoll et al, 2007; Miner and Yurchenco 2004; 

Nishiuchi et al., 2006.   

 

binding of β1 integrin to the Laminin-111 of the basement membrane and together, 

these two active receptors facilitate intercellular signalling and expression of milk 

genes (Naylor et al., 2005; Taddei et al., 2008, 2003). Integrin signalling from the 

basolateral surface is also key in setting up epithelial cell polarity, activating the 

small GTPase Rac1 and leading to orientation of the apical pole of MDCK cells in 

culture (O’Brien et al., 2001). Therefore, the characterisation of integrin expression 

may help to inform function of Laminin isoforms in a basement membrane. 

Furthermore, within the integrin family, α3β1, α6β1, α6β4 and α7β1 dimers bind to 

Laminins each with distinct dissociation constants (Nishiuchi et al., 2006) (Figure 

1.10).  

 

The other main Laminin receptor, Dystroglycan is heterodimeric glycoprotein 

derived from post-translational cleavage of a single gene product Dag1 (Moore and 

Winder, 2010). α-Dystroglycan interacts with ECM components which contain LG 

domains such as those present on Laminin (Figure 1.9A) and through binding to β-
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Dystroglycan to the actin cytoskeleton. Dystroglycan is a ubiquitous cell adhesion 

molecule, and similar to a requirement for laminins in early development, loss of 

Dag1 in mice results in disruption of Reichert’s membrane, changes to Laminin and 

Collagen IV localisation and developmental defects from E6.5 onwards (Williamson 

et al., 1997). Dystroglycan and different integrin heterodimers are expressed on the 

same cells where they are able to interact to regulate intracellular cell signalling for 

example, integrin α6β1 and Dystroglycan have pro- and anti-ERK regulatory 

mechanisms respectively (Ferletta et al. 2003). 

 

Whilst integrins listed in Figure 1.10 and the Dystroglycan complex are the more 

canonical laminin binding partners, other complexes such as the Lutheran blood 

group specifically binds Lama5 LG domains. Furthermore, other interactions 

between integrins α1β1, α2β1 with the LN domains of Lama1 and Lama2 or αvβ3 

with the IVa domain of Lama5 (Miner and Yurchenco 2004). Together this suggests 

that characterising the composition of both Laminin and their receptors may help to 

define which Laminins are required and how they may function during heart 

development . 

 

1.5.4 The structure of Glycosaminoglycans and Proteoglycans 

 

Whilst Laminins and Collagens form the basis of the ECM, Proteoglycans (PGs) are 

involved in more complex ECM structures. Proteoglycans are composed of a core 

protein (such as Aggrecan, Versican, Neurocan) covalently linked to 

Glycosaminoglycans (GAGs), long hydrophilic disaccharide moieties, the most 

common being Heparan Sulfate (HS), Chondroitin Sulfate (CS) or Keratan Sulfate 

(KS) (Figure 1.11B) (Esko., 2017; Lindahl et al., 2017). Distinct from the other 

Glycosaminoglycans, Hyaluronic Acid (Hyaluronan, HA) is not modified any further 

(Esko., 2017). Whilst some aspects of Proteoglycan synthesis and function are 

conserved in evolution, C. elegans and D. melanogaster do not possess the 

enzymes required to generate HA, but can synthesise HSPG (Esko., 2017). PGs, by 
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nature of the negatively charged GAGs are able to draw water into the extracellular 

environment and as such provide compressive resistance to the ECM, as well as 

functioning to limit the diffusion of signalling ligands in a GAG-specific manner.  

 

Broadly, Proteoglycans are classed as Chondroitin Sulfate Proteoglycans (CSPGs) or 

Heparan Sulfate Proteoglycans (HSPGs), based on the GAG linked to the core 

protein. Typically, CSPGs are secreted into the ECM containing Aggrecan, 

Neurocan or Versican, HSPGs can be localised to either the cell surface, where the 

core proteins are commonly Syndecans or Glypicans or in the ECM where the core 

proteins are Agrin or Perlecan (Pomin and Mulloy, 2018). 

 

All Glycosaminoglycans are composed of a repeating disaccharide motif where each 

specific GAG has a different pair of sugars (Lindahl et al., 2017). All GAGs except KS 

require Uronic acid, synthesised by the highly conserved enzyme UDP-glucose 

dehydrogenase (jekyll in zebrafish, sugarless in Drosophila) (Lin et al., 1999; Lindahl 

et al., 2017; Walsh and Stainier, 2001). HA is synthesised of an indefinite length by 

the Hyaluronan Synthase (Has) class of enzymes which are present in vertebrates and 

bacteria. Whilst the synthesis of CS, HS or KS is coupled with core protein 

translation at the Golgi, synthesis of HA occurs at the cell membrane where Has’ are 

localised and is synthesised directly into the ECM (Esko., 2017). 
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Figure 1.11. Interaction between Hyaluronan and Proteoglycans. 

Structure and assembly of Hyaluronan and Proteoglycans. (A) Domain structure of 

the Lectican core protein Aggrecan. The G1 domain associates with Hyaluronan and 

is common to all Lectican core proteins. The G2 domain is unique to Aggrecan, with 

no known function but is highly conserved between species. The G3 domain is able 

to link the Proteoglycan aggregates with other components of the ECM such as 

Tenascin, Fibulin and Fibrillin. Glycosaminoglycans are covalently attached to 

Aggrecan between the G2 and G3 domain (or G1, G3 domains in other Lecticans).  
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Aggrecan is by far the best studied core protein with a critical role in cartilage, the 

ECM synthesised by Chondrocytes, where it is covalently attached to Chondroitin 

Sulfate GAGs (Roughley and Mort, 2014). The negative charge of the CS generates 

a large osmotic pressure through water attraction, critical for the load bearing 

properties which cartilage requires. Systematic analysis of the Aggrecan protein 

defined its structure consisting of three globular domains, with the region between 

G2 and G3 the site of CS or KS addition (Figure 1.11A). This modular nature of core 

proteins is a conserved feature however the G2 domain is specific only to Aggrecan, 

whilst G1 and G3 are highly conserved with Versican (Aspberg, 2012; Kiani et al., 

2002). PGs can further associate with HA (Hardingham and Muir, 1972), and studies 

of Aggrecan interactions with HA suggest that non-covalent PG interactions with HA 

require the G1 domain (Aspberg, 2012; Kiani et al., 2002) the stability of which is 

dependent on the family of Hyaluronan and Proteoglycan binding Link Protein 

(Hapln) (Spicer et al., 2003) (Figure 1.11B) 

 

1.5.5 Functions of Glycosaminoglycans and Proteoglycans in tissue morphogenesis 

 

Similar to the manner in which specific Laminin isoform composition dictates specific 

spatiotemporal roles within development, the specific core proteins component of 

the PG can have distinct effects during development. Implantation of Aggrecan near 

to migrating streams of neural crest results in diversion from the normal migration 

pattern away from the implant, suggesting that Aggrecan plays an inhibitory role 

neural crest migration (Perissinotto et al., 2000). Contrastingly, when Versican 

coated micro-membranes were inserted in the migratory pathway, cells direct their  

 

Figure 1.11 continued. 

(B) Proteoglycans (orange core protein, decorated by magenta Glycosaminoglycans) 

can associate with Hyaluronan (purple) and is stabilised, non-covalently by the family 

of Hyaluronan and Proteogylcan Link Proteins (HAPLNs, cyan). Schematics based on: 

Aspberg, 2012; Faltz et al., 1979. 
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migration towards the exogenous Versican sources, suggesting Versican acts more 

as an attractant (Perissinotto et al., 2000). These reciprocal roles of Aggrecan and 

Versican tally well with their complementary expression patterns, where Versican 

expression is localised to permissive areas of neural crest migration, whilst Aggrecan 

expression is present in non-permissive areas (Perissinotto et al., 2000). In addition 

to the functional studies demonstrating the role of core proteins in a variety of 

developmental processes, mouse loss-of-function models for key biosynthetic 

enzymes for Heparan Sulfate, Ext1 (Exostosin glycosyltrasnferase 1) and Ext2 

(Exostosin glycosyltrasnferase 2), are embryonic lethal exhibiting gastrulation 

defects, however maternal deposition of ext2 in zebrafish allows development to 

proceed further (Poulain and Yost, 2015). Loss Ext1 function in neural stem cells 

results in a complete loss of neurons, astrocytes and oligodendrocytes (Poulain and 

Yost, 2015). Together this shows that, similar to Laminins, the modular nature of PGs 

in the extracellular matrix through expression of specific core proteins, linked with 

particular GAGs is able to dictate specific, developmental outcomes. 

 

In cell culture, expression of the BMP antagonist Noggin at the cell surface is 

dependent on functional HS production (Paine-Saunders et al., 2001). Furthermore, 

membrane-localised Noggin attached to HSPG is able to bind BMP4, preventing 

uptake/signalling in the target cell and dampening BMP signalling in an ECM 

context-dependent manner (Paine-Saunders et al., 2001). In zebrafish, absence of 

HS results in ectopic BMP activation affecting myotome development (Dolez et al., 

2010). Interestingly, this absence of HS is due to a loss of lamc1 (Dolez et al., 2010), 

suggesting complex interactions between different components of the ECM during 

development in regulating biochemical signalling, further to providing structural 

support. 
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1.6 The role of the Extracellular Matrix in cardiovascular 
development 
 

Most organ systems, including the heart are composed of distinct tissue types with 

specialised functions. During cardiac development the heart tube comprises an 

outer layer of contractile myocardium surrounding the endocardium, and separated 

by a layer of ECM termed the cardiac jelly, coined by Davis in 1924. Numerous 

studies have highlighted the importance of the cardiac jelly during heart maturation; 

however, little is known about the role of the embryonic cardiac ECM during earlier 

stages of heart morphogenesis. Below I detail what is currently understood about 

the role of Laminins and Proteoglycans in cardiovascular development across 

vertebrate models. In particular for Laminins, whilst very little is known about their 

role in heart development, I highlight important lessons that can be learned from 

their roles in vascular development. 

 

1.6.1 Laminins and Integrins 

 

In its simplest form, the vascular system composes of the single endothelial cell layer 

in contact with blood on one side and the BM on the other (Hallmann et al., 2005). 

The main Laminin components of the vascular basement membrane are LN-411 and 

LN-511, where Lama4 is expressed during early development (E8.5 onwards), and 

Lama5 is only detectable after 3 weeks of postnatal expressed in predominantly 

larger vessels (Hallmann et al., 2005). 

  

A well-characterised model of sprouting angiogenesis is the development of the 

intersegmental vessels (ISVs) in zebrafish, where endothelial cells delaminate from 

the dorsal aorta and migrate anteriorly between the somites (Gore et al., 2012). 

lama4 is expressed in the dorsal aorta, and together with lama1, Laminin-111 and -

411 function redundantly in promoting the migration of ISVs (Pollard et al., 2006).   
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Lama4 is also expressed in the endothelial cells of the heart, the blood vessel 

basement membrane and peripheral sarcolemma of cardiomyocytes in mice 

(Iivanainen et al., 1997; Wang et al., 2005). Loss of Lama4 results in enlarged hearts 

and significantly larger cardiomyocytes compared to wild-type (WT) (Wang et al., 

2005). Lama4 mutant mice survive postpartum but are haemorrhagic, with 

haemorrhage typically occurring in regions with smaller blood vessels. This 

phenotype seems to be associated with physical stress during birth as E18.5 

embryos displayed milder haemorrhages than newborn pups at sites of greater 

physical stress (Thyboll et al., 2002). At 16-20 weeks, Lama4 mutant hearts have a 

significant increase in markers of hypoxia, and further characterisation supports a 

mechanism of sustained hypoxia, likely resulting from a compromised basement 

membrane, resulting in cardiomyopathy (Wang et al., 2005). Functional studies show 

that whilst loss of Lama4 does not affect heart rate, there were multiple cases of 

cardiac dysfunction including arrhythmia and reduced left ventricular end diastolic 

diameter at 36-40 weeks old (Wang et al., 2005). Mutants also displayed increased 

frequency of sudden death (Thyboll et al., 2002). In line with the requirement for all 

three subunits of the trimer being required for secretion, Lamb1 and Lamc1 protein 

levels were almost absent in Lama4 mutants. Additionally, whilst northern blot 

analysis had previously shown no differences in the level of Lama5 mRNA (Thyboll et 

al., 2002), an up-regulation of Lama5 protein was observed in Lama4 mutant mice at 

4 weeks old (Wang et al., 2005), further demonstrating the complex, redundant and 

compensatory genetic interactions between Laminin subunits. 

 

Using a cornea angiogenesis assay, Lama4 mutant mice display irregular, unco-

ordinated branching of distorted, haemorhhagic vessels (Thyboll et al., 2002). One 

potential mechanism which may could explain this phenotype is the interaction 

between Lama4, tip cells of sprouting angiogenic vessels and Notch signalling 

(Stenzel et al., 2011). Lama4 expression is most concentrated in the tip cell in the 

postnatal mouse retina and loss of Lama4 results in a reduction of Notch signal in 

endothelial cells (Stenzel et al., 2011), consistent with the hypersprouting phenotype 
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previously identified and a link between Laminins and Notch signalling (Thyboll et 

al., 2002). This again identifies interactions between the ECM and signalling ligands 

in regulating the structure of a tissue. 

 

Comparison of patients with dilated cardiomyopathy to control populations 

revealed two deleterious mutations in LAMA4 not present in control populations, 

both of which significantly impact the structure of the LAMA4 protein and its ability 

to interact with integrins (Knoll et al., 2007). In cell culture, fewer endothelial cells 

adhere to the mutant forms of LAMA4-containing substrate compared to WT 

LAMA4, due to a reduction in the affinity of integrin α3β1 for the mutant LAMA4 

substrate (Knoll et al., 2007). Morpholino-mediated knockdown of zebrafish lama4 

results in a low penetrance of cardiac dysfunction. Furthermore, injection at a lower, 

sub-phenotypic dose into heterozygous integrin-linked kinase (ilk) mutants results in 

a low penetrance cardiac dysfunction and haemorrhage, suggesting a potential 

interaction between lama4, ilk and integrins in the heart to promote tissue integrity 

(Knoll et al., 2007). 

 

Further supporting a conserved role for Laminins in cardiac development, Laminin 

has recently been shown to be present in the chick heart at HH28, surrounding the 

outer epicardial layer of the heart and deeper in the myocardial tissue closer to the 

trabecular myocardium (Jallerat and Feinberg, 2020). However, the exact isoform 

structure was not examined. 

 

An additional link between Laminins and heart development is exemplified by 

Dandy-Walker Syndrome (DWS) (Darbro et al., 2013; Haddadi et al., 2018), a rare 

brain malformation which is linked to mutations in LAMC1 and the Laminin 

interacting protein NID1 (Nidogen-1). Interestingly, 26-38% of patients with Dandy-

Walker Syndrome also present with CHDs, supporting a role for Laminins in heart 

development. It is not clear what the link between Laminins and the pathology is 

because no model for Dandy-Walker syndrome exists, potentially due to the early 
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lethality of Lamc1 mice and the need for complex cell-ECM interactions which 

cannot yet be accurately recapitulated in vitro. 

 

1.6.2 Proteoglycans 

 

Proteoglycans have been shown to play major roles in the development of the heart. 

Has2 (the major enzyme producing Hyaluronic Acid in the heart) mutant mice have 

severe cardiac defects and die at E9.5-10, with a near total absence of cardiac jelly, 

despite presence of other ECM components such as Laminins (Camenisch et al., 

2000), implying that the cardiac jelly of the mouse embryo at these early 

development stages contains HA. More definitive characterisation of the localisation 

of HA in the cardiac jelly has been achieved in zebrafish. Previously stains for HA, 

and now the recent development of a live HA sensor, has demonstrated that the 

cardiac jelly is rich in HA from at least 48hpf, a comparable stage to when Has2 

mutant mice arrest in development (Grassini et al., 2018; Hernandez et al., 2019; 

Lagendijk et al., 2011; Smith et al., 2011). The expression of Has2 and Versican 

correlate strongly in the heart at E9.5 and Versican mutant mice display the same 

severe cardiac abnormalities as loss of Has2, strongly suggesting that Versican is the 

core protein interacting with HA in the cardiac jelly (Mjaatvedt et al., 1998; 

Yamamura et al., 1997). Whilst a role for HA in dampening BMP signalling in 

formation of the zebrafish heart tube from the disc is well described in 1.4.2, little 

work has examined the role of HA and associated PGs in promoting heart looping 

morphogenesis, instead the main focus of the role of PGs in heart development has 

been in the formation of the AVC (Butcher and Markwald, 2007; Camenisch et al., 

2002, 2000; Lagendijk et al., 2013; Patra et al., 2011).  

 

Multiple other PG components are associated with the correct development of the 

atrioventricular canal and other structures of the heart. Using the AVC explant 

method, Has2 mutant AVC explants fail to migrate, but addition of exogenous HA 

to the explant culture or transformation of the cells with Has2 cDNA could restore 
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migration of the explants (Camenisch et al., 2002, 2000). Thus, the composition of 

the AV cushions is important for regulating the EndoMT process. Supporting a 

conserved role for PGs in heart development in zebrafish, loss of a key synthetic 

enzyme required for the generation of HA, HS and CS (UDP-glucose 6-

dehydrogenase, ugdh, jekyll) results in a failure heart looping and formation of the 

constriction at the AVC (Walsh and Stainier, 2001). Further supporting the possibility 

that CSPG are required during heart development is the requirement for 

Chondroitin Sulfate synthesis by the enzyme chsy1 (chondroitin sulfate synthase 1) in 

zebrafish (Peal et al., 2009). CS is localised to the cardiac jelly surrounding the 

atrioventricular canal at 36hpf, and loss of CS appears likely to affect the process of 

EndoMT in the zebrafish AVC (Peal et al., 2009). The core protein Aggrecan has 

been linked to cardiac defects and been shown to be expressed in the developing 

heart in both zebrafish and chick at post-looping stages (Rambeau et al., 2017; 

Zanin et al., 1999). Interestingly, Aggrecan is expressed 16-times less in human 

Biscuspid Aortic Valve (BAV) patients (Rambeau et al., 2017). Another class of HA 

interacting proteins previously shown to be important is the link protein Hapln1 

(Hyaluronan and proteoglycan link protein 1), expressed at the developing valves of 

the heart, overlapping HA and Versican (Wirrig et al., 2007). Mutagenesis of Hapln1 

in mouse results in cardiac abnormalities in pups at E13.6 consistent with a role for 

Hapln1 in valve development and therefore interaction with HA and Versican, further 

supported by reduction in levels of Versican protein in Hapln1 mutant mice (Wirrig 

et al., 2007). Together this demonstrates a broad requirement for different PG 

components during development with Versican Chondroitin Sulfate Proteoglycans 

and HA predicted to be key players in regulating this process. 

 

As well as a structural role, the cardiac jelly acts a mediator of intracellular signalling 

during heart development. During SHF addition in mice, FGF-FGFR interactions are 

dependent on the production of HSPGs by Ext1, which is required for maintenance 

of progenitor population (Zhang et al, 2015). Additionally, cells of the SHF residing 

in the splanchnic mesoderm require an Itga5-Fn axis to be sensitised to the FGF8 
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(Mittal et al, 2010). Another class of proteins, Latent TGF-β-binding proteins (LTBPs), 

anchor TGF-β ligands in the ECM; cells must then interact and cleave these 

complexes to receive ligand. In zebrafish ltbp3 is required to maintain SHF 

proliferation (Zhou et al., 2011), whilst Ltbp1L (Latent transforming growth factor 

beta binding protein 1, long form) is required for multiple processes in the 

development of valves and OFT in mice (Todorovic et al, 2011, 2007). Together, 

these studies demonstrate how the cardiac jelly is a key component facilitating cell-

cell communication either through corralling of receptors and ligands or anchoring 

specific signalling ligands in the ECM. 

 

The interaction between the myocardium and endocardium during heart looping is 

important for setting up the expression of genes such as has2 for correct 

valvulogenesis (Patra et al., 2011). Knockdown of the ECM molecule npnta 

(nephronectin a), leads to increased has2 in the ventricular endocardium resulting in 

increased HA deposition. This endocardial expansion can be recovered through 

inhibition of BMP, a signalling ligand expressed in the myocardium (Patra et al., 

2011). This again demonstrates the necessity for co-ordinated interactions between 

myocardial and endocardial tissue layers in the generation of the correct ECM 

environment during looping morphogenesis. Altogether, this highlights the 

importance of Proteoglycans in cardiac development. However, whilst the roles for 

tube formation in zebrafish and valve development in mice, zebrafish and chick have 

been well characterised, despite identification of HA in the cardiac jelly in the 

looping heart, what role HA and its interacting partners play a role in promoting 

heart looping morphogenesis is unclear. 

 

1.7 Rationale 
 

Together, multiple lines of evidence suggest that the constituents of the ECM are 

required for the correct development of the heart, but characterisation of the roles 

of these components is lacking. In particular many studies have identified that 
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Laminin is present in the heart during later stages (W. C. W. Chen et al., 2016; 

Jallerat and Feinberg, 2020; Notari et al., 2018; Thyboll et al., 2002; Wang et al., 

2005) and some studies have highlighted that loss of specific Laminin subunits leads 

to developmental abnormalities in the heart at later stages. The impact of loss of 

specific Laminin subunits on the morphogenesis of the heart tube has never been 

examined extensively. Similarly, whilst roles have been implied for HA and 

associated PGs in promoting heart looping, no comprehensive investigation of 

components related to PG synthesis expression during this critical developmental 

transition exists. 

 

In light of these open questions I set out to investigate the role of the ECM in 

promoting heart looping morphogenesis. Zebrafish represent an excellent model 

system for this approach, displaying high levels of conservation not only in the 

processes which shape the linear heart tube, but also in genes related to ECM 

biology. Furthermore, the variety of transgenic lines and optical clarity facilitate live 

imaging to draw pertinent, in vivo conclusions about cardiac development.  

 

I establish a suite of Laminin subunit genes with dynamic and tissue-specific 

expression in the heart at the onset of looping morphogenesis and identify two 

distinct roles for Laminin complexes during heart development. Harnessing the 

ability to live image the developing zebrafish heart in vivo with numerous transgenic 

lines, I discover the HA-rich cardiac jelly is asymmetrically expanded prior to heart 

looping and go on to investigate the mechanism by which this regionalised ECM 

expansion is required to promote heart looping. Finally, I characterise the role of a 

small Rho GTPase, a potential link between the cardiac jelly and the cells of the 

heart. In summary this work begins to define the ECM as a key regulator of the 

asymmetric morphogenesis of the heart tube during development.  

 

 

 



 

2. Materials and Methods 
2.1 Zebrafish husbandry 
 

2.1.1 Zebrafish lines 

 

The following zebrafish lines were used in this work: 

Table 2.1 Zebrafish lines 

Line Reference 

Wildtype (AB) 
- 

Wildtype (TL) 

Tg(myl7:eGFP) Huang et. al. 2003 

Tg(myl7:lifeActGFP) Reischauer et. al. 2014 

Tg(fli1a:AC-tagRFP)sh511 Savage et. al. 2019 

spawt30973 Noël et. al. 2013 

guptj2998a 
van Eeden et. al. 1996, 
Odenthal et. al. 1996, 
Karlstrom et. al. 1996 

Tg(lft2:GalFF; UAS:RFP) Derrick et. al. 2019 

lamb1b∆2 

Generated in this study 

lamb1b∆25 

lamb1a∆19 (lamb1ash589) 

lamb1a∆25 (lamb1ash590) 

lamb1b∆56 

lamb1b∆183 (lamb1bsh587) 

lamb1b∆428 (lamb1bsh588) 

rhoca∆ATG (rhocash592) 

rhocains10 

rhocb∆20 (rhocbsh593) 

rhocb∆38 (rhocbsh594) 

Tg(Ubi:dCas9-poly(A), cryaa:CFP)sh595 

Tg(Ubi:dCas9-poly(A), cryaa:CFP)sh596 
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2.1.2 Zebrafish care 

 

Adult zebrafish were maintained in circulating water at a temperature of 28.5OC with 

a 14hr. day, 10hr. night cycle.  

 

2.1.3 Zebrafish embryo collection and staging 

 

Following collection of embryos by pair-mating, fertilised embryos were maintained 

in E3 medium (5mM NaCl, 0.17mM KCl, 0.33mM CaCl2, 0.33mM MgSO4) at 28.5OC. 

Embryos were staged according to Kimmel et. al. (1995). When required, 

development of WT embryos was slowed by incubating at 23-24OC and 

subsequently restaged according to Kimmel et. al. (1995). Embryos older than 24hpf 

for use in light-sheet microscopy, in situ hybridisation, fluorescent in situ 

hybridisation or immunohistochemistry were transferred into E3 medium containing 

0.003% 1-phenyl 2-thiourea (PTU, Sigma P7629) to inhibit pigment formation and 

aid imaging.  

 

Prior to fixation, embryos were dechorionated by hand using Jewellers forceps 

(Dumont no. 5). Embryos older than 48hpf were incubated in 0.2M KCl in E3 

medium containing 0.0003% PTU for 30 minutes at 28.5OC prior to fixation, 

arresting the heart to standardise contraction phase of the heart for subsequent 

imaging. 

 

Embryos were fixed overnight in 4% paraformaldehyde (PFA, Cell Signalling 

Technology #12606), washed 3 times in PBST for 5 minutes at room temperature 

and then serially washed into 100% MeOH for long term storage at -20OC. 
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2.1.4 Micro-injection  

 

Glass injection needles were prepared using a P-1000 Flaming/Brown Micropipette 

Puller with Borosilicate Glass Capillaries from Word Precision Instruments. Needles 

were loaded using micro loader tips, and attached to a PV820 Pneumatic PicoPump 

(World Precision Instruments). The needle tip was broken under a dissecting 

microscope using Jewellers forceps and the tip immersed in Mineral Oil (Sigma 

M5904) placed on a Stage Micrometer (Agar Scientific L4201). Droplet size was 

adjusted to 0.5nL as measured by a Micrometer. 

 

Embryos were collected from pair-mated adult zebrafish and loaded onto a 1.5% 

Agarose gel mould (made with E3 medium) and covered with E3. Embryos were 

injected as described below and subsequently transferred into fresh E3. At 

approximately 1hour old, embryos negative for Phenol Red (Sigma P0290) or 

embryos that appeared unfertilised or dead were discarded. 

 

2.1.4.1 DNA morpholino oligonucleotide injections 

 

The following morpholinos were used in this study: 

Table 2.2 Morpholino sequences 

Gene target Sequence Reference  

tp53 GCGCCATTGCTTTGCAAGAATTG 
(Langheinrich et. al. 2002) 

(ZFin tp53-MO4) 

tnnt2a CATGTTTGCTCTGATCTGACACGCA 
(Sehnert et. al. 2002) 
 (ZFin tnnt2a-MO1) 

lamb1b ATG ACGATGAGGCTTTTCCACACTACAG This study 

smg1 AACCATTGGTTTGTTACCTGGTGCA 
Witkopp et. al. 2009  

(ZFin smg1-MO2) 

upf1 TTTTGGGAGTTTATACCTGGTTGTC 
Witkopp et. al. 2009  

(ZFin upf1-MO2) 

gata1a CTGCAAGTGTAGTATTGAAGATGTC 
Galloway et. al. 2005  
(ZFin gata1a-MO1) 
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Morpholinos (Table 2.2) were ordered from GeneTools (www.gene-tools.com, 

except gata1a, a gift from J. Serbanovic-Canic) at 300nM for target of interest or 

100nM for tp53. Morpholinos were reconstituted to 1mM working stock in MilliQ 

water (MQ). Resuspended morpholinos were heated at 60OC for 10 minutes to 

ensure the morpholino was in solution and left to cool to room temperate before 

use. 

 

Morpholinos were stored at -20OC. Prior to each use the morpholino was first 

defrosted at room temperature, then heated at 60OC for 10 minutes to ensure the 

morpholino was in solution. 

 

The following concentrations of morpholinos were used: 

 

Table 2.3 Morpholino dilutions 

Gene target Concentration Dilution factor 

tp53 0.25mM 1 in 4 

tnnt2a 0.125mM 1 in 8 

lamb1b ATG 0.5mM 1 in 2 

smg1 0.5mM 1 in 2 

upf1 

100μM 1 in 10 

50μM 1 in 50 

12.5μM 1 in 80 

10μM 1 in 100 

gata1a 1423.7ng 1 in 5 
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2.1.4.2 RNA injections 

 

For live imaging of the Hyaluronan sensor ssNcan-GFP (Grassini et al., 2018) a 1nL 

injection volume containing ssNcan-GFP mRNA (186pg) and Phenol Red (25%) was 

injected into the yolk of one-cell stage embryos. 

 

To increase blood viscosity, epoa mRNA was injected. A plasmid containing the 

epoa-203 (danRer10/GRCz10) coding sequence (Paffett-Lugassy et al., 2007), was 

linearised with NotI and transcribed with SP6 (see 2.2.8). A 1nL injection into the 

yolk of the single-cell stage embryo containing: epoa mRNA (20pg) (Paffett-Lugassy 

et al., 2007) and Phenol Red (25%) was carried out. Sham injection controls replaced 

epoa mRNA with MQ water, maintaining Phenol Red at 25%. 

 

2.1.5 Drug treatments 

 

2.1.5.1 DAPT. (N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester) 

 

DAPT powder (Merck D5942-5MG) was dissolved in 231μL 100% DMSO (Sigma 

276855) to give a stock concentration of 50mM (5mg/231μl). Prior to treatment, 

embryos were manually dechorionated and 20 embryos were placed in each well of 

a 6-well plate. Stock DAPT was diluted 1:500 in E3-PTU to give a final concentration 

of 100μM DAPT (in 0.2% DMSO), and 3mL was added to treatment wells. In 

addition, two control groups were included: 3mL of E3-PTU, E3-PTU with 0.2% 

DMSO (vehicle control). Embryos were incubated in DAPT or control medium from 

22hpf to 55hpf, at which point the drug was removed by briefly rinsing embryos in 

E3 medium, and embryos were subsequently fixed in 4% PFA overnight at 4OC. 
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2.1.5.2 NMDi14. 4,5-Dimethyl-2-[[2-(1,2,3,4-tetrahydro-6,7-dimethyl-3-oxo-2-
quinoxalinyl)acetyl]amino]-3-thiophenecarboxylic acid ethyl ester, Ethyl 2-{[(6,7–
dimethyl–3-oxo-1,2,3,4-tetrahydro-2-quinoxalinyl)acetyl]amino}-4,5-dimethyl-3-
thiophenecarboxylate 
 

NMDi14 (henceforth NMDi) powder (Merck 530838) was dissolved in 4810μL 100% 

DMSO to give a stock concentration of 5mM (10mg/4810μL). Prior to treatment, 

embryo chorions were opened to improve access of the drug during development. 

20 embryos obtained from a lamb1aΔ25/+ incross were placed in each well of a 6-

well plate. Stock NMDi was diluted 1:500 in E3-PTU to give a final concentration of 

10μM, or diluted 1:250 in E3-PTU to give a final concentration of 20μM. Both drug 

treatments had a final concentration of 1% DMSO. Two control groups for each 

concentration of NMDi were included: E3-PTU and E3-PTU with 1% DMSO (vehicle 

control). Embryos were incubated in 3mL of NMDi or control medium from 8hpf to 

55hpf, when the drug was removed by briefly rinsing embryos in E3 medium, and 

embryos were subsequently fixed in 4% PFA overnight at 4OC. During treatment 

embryos were covered due to the light sensitive properties of the drug. 

 

2.1.5.3 XMD17-109 (ERK5i). 11-Cyclopentyl-2-((2-ethoxy-4-(4-(4-methylpiperazin-1-
yl)piperidine-1-carbonyl)-phenyl)amino)-5-methyl-5H-benzo[e]pyrimido[5,4-
b][1,4]diazepin-6(11H)-one 
 

A stock of 10mM XMD17-109 (henceforth ERK5i) was a gift from S. Johnston. Prior 

to treatment, embryos were manually dechorionated and 20 embryos (10 lamb1aΔ25 

mutants and 10 siblings) were placed in each well of a 6-well plate. Stock ERK5i was 

diluted 1:10,000 in E3 to give a final concentration of 1μM and the final 

concentration of DMSO was 1%. The two control groups were: E3, and E3 with 1% 

DMSO (vehicle control). Embryos were incubated in 3mL of ERK5i or control 

medium from 24hpf to 55hpf, at which point the drug was removed by briefly 

rinsing embryos three times in E3 medium. Embryos were left to develop until 72hpf 

and subsequently fixed in 4% PFA overnight at 4OC. During treatment embryos were 

covered due to the light sensitive properties of the drug. 
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2.2 Molecular Techniques 
 

2.2.1 Isolation of total RNA 

 

At the appropriate stage 50 dechorionated embryos of the relevant genotype were 

placed into an Eppendorf with TriReagent (Invitrogen AM9738) and homogenised, 

followed by addition of one-fifth volume of chloroform and well mixed. Following a 

5 minute incubation at room temperature the two liquid phases were separated by 

ultra-centrifugation at 15000rpm for 15 minutes at 4OC. The aqueous phase was 

removed to a new Eppendorf where an equal volume of Propan-2-ol (Isopropanol) 

was added, mixed and incubated at room temperature for 15 minutes. RNA was 

pelleted by ultra-centrifugation at 15000rpm for 15 minutes at 4OC, the resulting 

pellet was washed twice in 75% Ethanol and then left to air dry at room 

temperature. RNA was resuspended in 30μL DDW (Double distilled water/RNAse 

free water) and subsequently diluted to 500ng/μL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Materials and Methods 

72 

 

2.2.2 Generation of cDNA 

 

2.2.2.1 Verso 

 

cDNA generated by Reverse Transcription using Verso cDNA synthesis kit 

(Invitrogen AB-1453/A) with 500ng of RNA template. A 20μL reaction was 

assembled at room temperature (Table 2.4) and incubated at 42OC for 20 minutes, 2 

minutes at 95OC and then diluted 1:2 with MQ.  

Table 2.4 Verso cDNA Reverse Transcription reaction 

Reagent Volume (μL) 

5X cDNA synthesis buffer 4 

dNTP mix 2 

Oligo dTs 1 

RT enhancer 1 

Verso 1 

500ng RNA X 

DDW 11-X 

 

2.2.2.2 Superscript IV 

 

cDNA generated by Reverse Transcription using Superscript IV Reverse 

Transcriptase (ThermoFisher 18090010) with 2μg of RNA template. OligodT primers 

(Invitrogen 12577-011) were annealed to the RNA template at 65OC for 5 minutes 

(Table 2.5). The reverse transcription reaction mix (Table 2.6) was added to the 

annealed RNA-OligodT, incubated at 42OC for 2 minutes before adding 2μL 

Superscript RT IV enzyme and incubated for 50 minutes at 42OC, followed by 15 

minutes at 70OC. 2μL of RNAseH (Thermo EN0201) was added to degrade the RNA 

template and incubated at 37OC for 20 minutes. cDNA was diluted with 40μL DDW 

and the concentration measured by NanoDrop to control for variability in cDNA 

synthesis for subsequent PCR. 
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2.2.3 Polymerase Chain Reaction (PCR) and Sequencing 

 

2.2.3.1 Primer design 

 

Primers were designed using Primer3 (http://primer3.ut.ee/) or manually. Primers 

were ordered from Integrated DNA Technologies (IDT), reconstituted at 100μM in 

MQ and stored at -20OC. 

 

2.2.3.3 BioMix Red 

 

Standard PCRs were 10μL BioMix Red (BiolineBIO25006) as detailed in Table 2.7 

and the programme carried out in a BioRad Thermocycler (Table 2.8). 

 

 

 

 

 

 

 

 

 

Table 2.5 RT-OligodT Mix  Table 2.6 RT-Reaction Mix 

Reagent Volume (μL)  Reagent Volume (μL) 

2μg RNA X  5X First Strand Buffer 8 

10mM dNTPs 2  25mM MgCl2 8 

Oligo dTs (500ng/μL) 2  0.1mM DTT 4 

MQ 12-X  RNAse Out 2 
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Table 2.7 BioMix Red PCR  Table 2.8 BioMix PCR Programme 
Reagent Volume (μL)  Step Temperature Time 

cDNA/gDNA 1  1 95OC 3min. 

Forward Primer (10μM) 0.2  2 95OC 30s 

Reverse Primer (10μM) 0.2 
 

3 
Annealing Temp. (55OC-

58OC) 
30s/kb 

BioMix Red 5  4 72OC 1min. 

MQ 3.7 
 

5 
Repeat steps 2-4 n times (typically 

30) 

   6 72OC 5min. 

   7 5OC 5min. 

 

2.2.3.4 Phusion Taq 

 

PCR products of full-length coding sequences were generated using Phusion-Taq 

Polymerase (NEB M0530S) in a 50μL reaction detailed in Table 2.9 and the 

programme carried out in a BioRad Thermocycler (Table 2.10) 

 

Table 2.9 Phusion Taq Reaction  Table 2.10 Phusion PCR Programme 

Reagent Volume (μL)  Step Temperature Time 

MQ 35  1 98OC 3min. 

5X High Fidelity Buffer 10  2 98OC 30s 

10mM dNTPs 1  3 Annealing Temp. (55OC-58OC) 30s/kb 

Forward Primer (10μM) 1  4 72OC 1min. 

Reverse Primer (10μM) 1  5 Repeat steps 2-4 40 times 

cDNA 1  6 72OC 10min. 

Phusion-Taq 1  7 5OC 5min. 
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2.2.3.5 Sequencing 

 

Where PCR products were required to be sequenced, a 60μL BioMix Red reaction 

was carried out and purified using a QIAGEN PCR Purification kit (QIAGEN 28016). 

Purified PCR products were sequenced by Sanger at the Sheffield University 

Genomics Core Facility.  

 

2.2.4 TOPO-TA Cloning 

 

The DNA sequence to be ligated was amplified from 55hpf cDNA obtained from 

WT embryos in a 10μL BioMix Red PCR, using sequence specific primers (See 

relevant sections or appendix). 5μL of the resulting PCR product was resolved by 1% 

TAE gel electrophoresis to determine efficiency of reaction and the remaining 5μL 

was diluted accordingly with MQ prior to cloning. 

 

The PCR product was blunt end ligated into either pCRII-TOPO (ThermoFisher 

450640) or pCR4-TOPO (ThermoFisher 450071) at room temperature for 5 minutes 

(Table 2.11) and kept at 4OC before 1μL was used for transformation into either 

TOP10 cells (ThermoFisher C404003) or DH5α sub-cloning efficiency cells 

(ThermoFisher 18265017) (See 2.2.7). 

 

Table 2.11 TOPO reaction volumes 

Reagent Volume (μL) 

(Diluted) BioMix PCR product 1 

Salt solution 0.5 

pCR4-TOPO/pCRII-TOPO 0.5 

MQ 1 
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2.2.5 Gateway cloning: generation of middle entry vectors 

 

The following Gateway plasmids were used in this work (Table 2.12): 

 

Table 2.12 Gateway plasmids used 

Construct Reference 

p5E-myl7 Palencia-Desai et. al. 2015 

p5E-Ubi Mossiman et. al. 2011 

p5E-hsp70 Kwan et. al. 2007 

p5E-fli1a Villefranc et. al. 2007 

pME-rhoca 

Generated in this study pME-lamb1b 

pME-hapln1a 

pME-dCas9 Savage et. al. 2019 

p3E-poly(A) Kwan et. al. 2007 

pDestTol2pA3 Bakkers lab 

pDestTol2pA2-cryaa:CFP Savage et. al. 2019 

 

2.2.5.1 Primers used for cloning of middle entry vectors 

 

The following primers were used to clone lamb1b into pCR4-TOPO (Table 2.13): 

 

Table 2.13 Primers for cloning of lamb1b 
 

Sequence Short Name 

lamb1b ORF-F AACACTGCTGGAGAACAAGC CD22 

lamb1b ORF-R TTAAGCGCAGGTGCTGTAGA EN111 
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The following primers were used to isolate relevant coding sequences flanked by 

attB sites (Table 2.14): 

 

The Kozak sequence (Table 2.14, red) was used to increase the efficiency of 

transcription (Kozak, 1987). 

 

2.2.5.2 Generation of pME-rhoca/pME-hapln1a 

 

The coding sequence of rhoca or hapln1a was amplified from 24hpf cDNA using 

Phusion-Taq polymerase (Table 2.9 (NEB M0530S)), resolved by gel electrophoresis 

and subsequently purified by QIAGEN Gel Extraction kit (QIA 28704) into 30μL MQ. 

The concentration and purity of the PCR product was determined by NanoDrop. 

The PCR product was subsequently ligated into pDONR221 using BP Clonase II 

(ThermoFIsher 11789020) overnight at 25OC (Table 2.15). Following recombination, 

1μL of ProteinaseK (supplied with the kit) was added to the reaction for 10 minutes 

at 37OC. Constructs were stored at 4OC until transformation into TOP10 cells (see 

2.2.7) and grown on LB Agar plates with Kanamycin (50μg/mL). Single colonies were 

assayed for presence of pME by Colony PCR (see 2.2.7) using the primers used to 

generate original PCR product (Table 2.14). A single positive bacterial colony was 

used to inoculate 50mL LB midi cultures, which were grown overnight at 37OC. 

Table 2.14 Primers used in cloning of pME 
 

Sequence (att sites, Kozak, Sequence Specific) 

lamb1b-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTGCCGCCACCATGAGGCTTTTCCAC 
ACTACAG 

lamb1b-R GGGGACCACTTTGTACAAGAAAGCTGGGTTTAAGCGCAGGTGCTGTAGA 

rhoca-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTGCCGCCACCATGGCGGCTATCAGG 
AAAAAG 

rhoca-R GGGGACCACTTTGTACAAGAAAGCTGGGTTCACAACAGTGAGCACCCGC 

hapln1a-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGCCGCCACCATGATTGCTCTGTTT 
TCTGT 

hapln1a-R GGGGACCACTTTGTACAAGAAAGCTGGGTTTTACTGCTGGGCTTTGTAGCAATA 
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Plasmid DNA was recovered using QIAGEN Midi-Prep kit (QIA 12143) and 

resuspended in 100μL MQ, followed by Sanger sequencing to confirm correct 

recombination had occurred and no point mutations had been introduced by the 

PCR. 

 

Table 2.15 BP Reaction for pME 

Reagent Volume (μL) 

TE (pH8.0) 8-X-Y 

90ng attB1-gene-attB2 X 

150ng pDONR221 Y 

BP Clonase II Plus 2 

 

 

2.2.5.3 Generation of pME-lamb1b 

 

The lamb1b coding sequence was isolated by PCR with Phusion Taq from 24hpf 

cDNA and blunt-end ligated into the pCR4-TOPO-Seq vector (See 2.2.4). Successful 

integration of the insert was confirmed by colony PCR and Sanger sequencing as 

described above (See 2.2.7). The resulting pCR4-lamb1b plasmid (50ng) was used as 

a PCR template to generate a lamb1b PCR product with attB sites. Gateway cloning 

and all subsequent steps to generate pME-lamb1b were performed as described 

above (2.2.5.2). 
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2.2.6 Gateway cloning: generation of LR constructs 

 

Generation of final Gateway constructs was carried out by incubating 20fM of p5ME, 

pME, p3E and pDest together with LR Clonase II (Table 2.16 (ThermoFisher 

12538120) overnight at 25OC (see Table 2.17 for relevant cassettes). Following 

recombination, 1μL of ProteinaseK (supplied with the kit) was added to the reaction 

for 10 minutes at 37OC. Constructs were stored at 4OC until transformation into 

TOP10 cells (See 2.2.7) and were grown overnight at 37OC on LB Agar plates with 

Ampicillin (100μg/mL). Colonies were picked from agar plates and used to inoculate 

3mL LB Broth with Ampicillin (100μg/mL) and grown at 37OC overnight in a shaking 

incubator (New Brunswick Scientific, innova 44). Plasmid DNA was isolated by 

QIAGEN Mini-Prep (QIA 27106) and diagnostic restriction digests were carried out 

to confirm correct orientation and recombination order of all cassettes in the final 

plasmid. A single colony containing the correct final plasmid was grown overnight at 

37OC in 50mL LB with Ampicillin. Plasmid DNA was recovered by QIAGEN Midi-

Prep and eluted into 100μL MQ, followed by Sanger sequencing to confirm correct 

recombination had occurred. 

 

 

Table 2.16 LR Reaction 

Reagent Volume (μL) 

TE (pH8.0) 4 

20fM p5E 1 

20fM pME 1 

20fM p3E 1 

20fM pDest 1 

LR Clonase II Plus 2 
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Table 2.17 LR constructs generated 

Construct p5E pME p3E pDest 

fli1a:lamb1b-poly(A) fli1a lamb1b 

poly(A) 

pDestTol2pA3 
fli1a:rhoca-poly(A) fli1a rhoca 

hsp70:lamb1b-poly(A) hsp70 lamb1b 

hsp70:rhoca-poly(A) hsp70 rhoca 

ubi:dCas9-poly(A) ubi dCas9 pDestTol2pA2-cryaa:CFP 

myl7:hapln1a-poly(A) myl7 hapln1a pDestTol2pA3 

 

2.2.7 Bacterial transformation 

 

Chemically competent cells were thawed on ice. 1μL of ligation reaction was added 

to the competent cells (typically 50μL), gently mixed and incubated on ice for 30 

minutes. For TOP10 transformation, cells were heat-shocked at 42OC for 30 seconds, 

and DH5α sub-cloning cells were heat-shocked at 42OC for 20 seconds. Following 

heat shock, cells were incubated on ice for 2 minutes, before addition of 250μL of 

SOC medium (Sigma S1797). Cells were then placed horizontally in a shaking 

incubator at 225rpm for 90 minutes at 37OC. 

 

Transformed cells were pelleted at 3000rpm for 5 minutes at room temperature and 

the pellet resuspended in 30μL of the SOC supernatant. Cells were plated on LB 

agar (Sigma L7025) containing either Kanamycin (Sigma K1377. 50μg/mL) or 

Ampicillin (Sigma A0166. 100μg/mL) together with IPTG (0.1M Merck I6758) and X-

Gal (20mg/mL. Thermo-Fisher R0404) for blue-white selection where appropriate 

and incubated at 37OC overnight. 

 

To identify colonies positive for the plasmid with successful ligation of PCR product, 

up to 8 white colonies were resuspended individually in 10μL MQ. 5μL of colony 

resuspension was used as a template for colony PCR (Tables 2.18 and 2.19), using 

primers that were originally used to clone the fragment. 10μL of the PCR was 

resolved by 1% TAE gel electrophoresis and the remaining 5μL of MQ that 
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contained a positive colony was grown in 50mL of LB (Sigma L72275) with relevant 

antibiotic overnight at 37OC with agitation. The plasmid containing the inserted 

DNA sequence was isolated using a QIAGEN Midi-Prep kit. Sanger sequencing 

using M13F and M13R primers (Sheffield Core Genomics Facility) was used to 

identify the orientation of the insert in the vector for transcription of the anti-sense 

mRNA probe. 

 

  

Table 2.18 Colony PCR volumes  Table 2.19 Colony PCR Programme 

Reagent Volume (μL)  Step Temperature Time 

Colony in MQ 5  1 94OC 2min. 

Forward Primer (10μM) 0.4  2 94OC 20s 

Reverse Primer (10μM) 0.4  3 60OC (drops 1OC per cycle) 20s 

BioMix Red 10  4 72OC 45s 

MQ 4.2  5 Repeat steps 2-4 9 times 

   6 94OC 20s 

   7 50OC 20s 

   8 72OC 45s 

   9 Repeat steps 6-8 14 times 

   10 72OC 3min. 

   11 10OC 5min. 

 

2.2.8 mRNA transcription or riboprobe synthesis and cleanup for in situ hybridisation 

 

To generate the template for mRNA transcription, 15μg of relevant plasmid DNA 

was digested overnight in a 50μL reaction (Restriction enzymes from New England 

BioLabs, Tables 2.20, 2.21 and 2.22). Following linearisation, the template was 

purified using a QIAGEN PCR Purification kit and eluted into 30μL MQ. A 1:5 

dilution of digested plasmid DNA together with a 1:10 dilution of undigested 

plasmid was resolved by gel electrophoresis to confirm linearisation, and the 

concentration of the linaearised template was assayed by NanoDrop. 
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Following linearisation, a transcription reaction using 1μg of linearised template in 

the presence of either digoxigenin-UTP (Roche 11277073910) or fluorescein-UTP 

(Roche 11685619910) to label the RNA probe was incubated at 37OC for 2hrs 

(Tables 2.20, 2.21 and 2.22). Subsequently 3μL of TURBO DNAase (Invitrogen 

AM2238) was added to the transcription reaction for 30 minutes at 37OC to remove 

the DNA template. The RNA probe was recovered using an Ammonium Acetate 

precipitation and ultracentrifugation at 15000rpm for 15 minutes at 4OC. 

 

The resulting RNA pellet was reuspended in 10-20μL DDW depending on size a 1:5 

dilution of the RNA was resolved by gel electrophoresis to confirm integrity of RNA. 

 

Where RNA was to be used for mRNA in situ hybridsation (2.4, 2.4), Hyb- or 

Formamide (See Table 2.23) or was added to the RNA probe, which was stored at -

20OC. 

 

Where mRNA was to be injected (2.1.4.2), a 1:10 dilution was used to assay 

concentration and purity and then subsequently diluted to the necessary 

concentration. A working concentration was stored at -20OC and the stock mRNA 

was stored at -80OC. 
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2.3 mRNA in situ hybridisation (ISH) 
 

2.3.1 Probes generated for this work 

 

Table 2.20 Probes generated for this work 

Probe target Vector Linearisation Transcription Plasmid number 

lamb1a pCR4-TOPO NotI T3 pCD10 

has2 pCR4-TOPO NotI T3 53 

rhocb pCR4-TOPO SpeI T7 pCD11 

lamb2l pCRII-TOPO NotI SP6 pCD13 

lamb4 pCRII-TOPO NotI SP6 pCD14 

tbx2b pCRII-TOPO NotI SP6 82 

itga6a pCRII-TOPO NotI SP6 pCD18 

itga6b pCRII-TOPO NotI SP6 pCD19 

itgb4 pCRII-TOPO NotI SP6 pCD20 

tbx5a pCRII-TOPO NotI SP6 83 

rhoca pCRII-TOPO NotI SP6 pCD27 

itga7 pCRII-TOPO NotI SP6 pCD23 

acana pCRII-TOPO NotI SP6 pCD25 

acanb pCRII-TOPO NotI SP6 pCD26 

dCas9 pCRII-TOPO NotI SP6 132 

chsy1 pCRII-TOPO BamHI T7 105 

 

See Appendix for primer sequences 
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2.3.2 Probes generated for this work by others 

 

Table 2.21 Probes cloned by other members of the lab 

Probe 
target Made by Linearisation Transcription 

Plasmid 
number 

lama4 E. Pollitt NotI T3 31 

lama5 E. Pollitt SpeI T7 32 

lamc1 E. Pollitt NotI T3 33 

itga3b E. Pollitt SpeI T7 35 

itga5 E. Noël NotI T3 12 

itgb1a E. Pollitt NotI T3 34 

lamb2 A. Uruchurtu NotI SP6 97 

hapln1a E. Noël SpeI T7 11 
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2.3.3 Probes previously generated in other works 

 

Table 2.22 Probes previously published 

Probe 
target Reference Linearisation Transcription 

Plasmid 
number 

myl7 (cmlc2) Yelon et. al.  1999 NotI T7 143 

myh7l 
(vmhcl) 

Bakkers lab 

NotI T7 81 

myh6 
(amhc) 

PstI T7 2 

lamb1b Sztal et. al. 2011 NcoI SP6 4 

nfatc1 Lagendijk et. al. 2011 NcoI T7 59 

nppa (anf) Berdougo et. al.  2003 NotI SP6 57 

bmp4 Chen et al 1997 EcoRI T7 54 

notch1b 
Rob Wilkinson, 
unpublished 

HindIII T7 142, 145 

vcana (vcan) 
Kang et al 2004 From T. Whitfield 

vcanb 

klf2a Novodvorsky et. al. 2015 From. T Chico 

hbbe1.1 
Quinkertz and Campos-

Ortega et. al. 1999 
XhoI T3 164 

 

2.3.4 mRNA in situ hybridisation protocol 

 

Based on Thisse and Thisse (2007) 

 

Embryos stored in MeOH were serially rehydrated into PBST (Table 2.23), washed 

four times in PBST and then permeabilised with Proteinase K (PK) in PBST (10μg/mL 

ProteinaseK in PBST), with length of incubation dependent on embryonic stage 

(Table 2.24). Following a rinse in PBST, embryos were refixed in 4% PFA for 20 

minutes at room temperature, washed 5 times in PBST at room temperature for 5 

minutes and pre-hybridised in Hyb+ (50μg/ml Heparin (Merck 2106), 500μg/mL 

Yeast tRNA (Invitrogen 15401-29) in Hyb- See Table 2.26) at 70OC with gentle 
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agitation. Following a minimum of 1hr in Hyb+, Hyb+ was removed and 

digoxygenin- and/or fluorescein-labelled probes in Hyb+ (Tables 2.20, 2.21, 2.22, 

2.23) at appropriate dilutions were added to the embryos and incubated at 70OC 

overnight with gentle agitation. After probe removal, embryos were serially washed 

from Hyb- into 2xSSCT (1:10 20X SSC, 0.2% Tween-20) and then washed twice in 

0.2xSSCT (1:100 20X SSC, 0.2% Tween-20) at 70OC. Following this, embryos were 

transferred by step-wise washes into PBST at room temperate and then washed 

twice in PBST. Embryos were blocked in Blocking buffer (2% Serum (Sigma S3772), 

2mg/mL Bovine Serum Albumin (Sigma A9418) in PBST) for a minimum of 2hrs at 

room temperature prior to incubation with a pre-incubated anti-DIG-AP conjugated 

antibody (1 in 5000 (Roche 11093274910)) or anti-Fluo-AP conjugated antibody (1 in 

5000 (Roche 11426338910)) (see below) in blocking buffer overnight at 4OC with 

gentle agitation. The antibody was removed and embryos were washed a minimum 

of 8 times in PBST over 2-4hrs at room temperature and then washed 3 times in AP-

staining buffer (Table 2.23). Embryos were then incubated with Nitro-blue 

tetrazolium/5-bromo-4-chloro-3-inodyl phosphate (NBT/BCIP (Roche 11681451001)) 

diluted 1:50 or Iodonitrotetrazolium/5-bromo-4-chloro-3-inodyl phosphate 

(INT/BCIP (Roche 1168146001)) diluted 3:400 in AP-Staining Buffer and protected 

from the light for the remainder of the protocol. Upon visual inspection of 

sufficiently developed staining, embryos were rinsed 3 times in PBST, fixed in 4% 

PFA overnight at 4OC and subsequently serially washed into 100% MeOH or 50% 

glycerol for long term storage at 4OC. When examining levels of gene expression in 

embryos subjected to different interventions that could not be separated post-

image acquisition (morpholino or drug treatments and their respective controls), 

staining was stopped at the same time across all groups.  
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Preincubation of the antibody was carried out by homogenising embryos of varying 

stages in PBST and incubating with anti-DIG or anti-Fluo antibody (1:100 dilution) 

for 1hr at room temperature. Embryos were sedimented by centrifugation at 

15000rpm for 15mins at 4OC and the supernatant containing the pre-incubated 

antibody removed. Sodium Azide (Sigma S8032) was added to the pre-incubated 

antibody at a final concentration of 0.02% and the antibody solution was stored at 

4OC. 

 

Table 2.23 ISH solutions 

Name Composition 

PBST 
Phosphate 

Buffered Saline 
(Oxoid BR0014G) 

0.2% Tween-20 
(Sigma P2287) 

   

20X SSC 
(50mL) 
pH 7.0 

87.5g NaCl 
(Sigma S7653) 

44.1g Sodium 
Citrate (VWR 
27833.360) 

500mL MQ 

 

 

Hyb- 
(50mL) 

25mL Formamide 
(50%) (Sigma 

47671) 

12.5mL 20XSSC 
(5X SSC) 

500μL 10% 
Tween-20 

(0.1%) 

460μl 1M 
Citric Acid 
(9.2mM pH 

6.0) 

10.54mL 
MQ 

AP-
Staining 
Buffer 
(50mL) 

5mL 1M Tris-HCl 
pH 9.5 (10mM 

Tris-HCl) (Sigma 
T1503) 

2.5mL 1M 
MgCl2 (50mM 

MgCl2) 

1mL 5M 
NaCl 

(100mM 
NaCl) 

500μL 10% 
Tween-20 

(0.1% 
Tween-20) 

41mL 
MQ 
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Table 2.24 ProteinaseK treatment timings 

Time (hpf) Length of PK-PBST treatment (minutes) 

19-21 3 

24 5 

26 6 

30 10 

33 12 

37 15 

45-48 20 

50 23 

55 25 

63 35 

72-80 45 

 

2.3.5 Imaging in situ hybridisations 

 

Embryos stained with NBT/BCIP only were imaged in Murray’s Medium (BBA. 2:1 

Benzyl Benzoate (Sigma B6630): Benzoic Acid (Sigma 402834)). Embryos stained 

with NBT/BCIP and INT/BCIP were imaged in 80% Glycerol. Images acquired on an 

Olympus BX51 Microscope. 

 

2.3.6 Quantification of heart looping and heart area 

 

Images for quantification were blinded using the ImageJ Blind_Analysis plugin 

(https://github.com/quantixed/imagej-macros/blob/master/Blind_Analysis.ijm), to 

prevent confirmation bias. Quantification of the ratio of looped distance to linear 

distance was calculated for each heart in Fiji, using myl7 expression to demarcate 

the morphology of the heart (Figure 3.8). Heart/chamber area was quantified by 

tracing the myl7, myh6 or myh7l expression domain in Fiji. 
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2.3.7 Quantification of hapln1a expression domain 

 

Two-colour in situ images were split into red, green and blue channels in Fiji and the 

blue channel discarded. The green channel (representing red (myl7), INT stain) was 

used to define the atrium and ventricle as two regions of interest (ROIs), and the 

area of each chamber was measured. The red channel (representing blue (hapln1a), 

NBT stain) was thresholded to a standardised level, the chamber ROIs applied and 

the area of hapln1a expression within each ROI measured. Percentage coverage of 

hapln1a could then be calculated for each chamber. The green channel was then 

processed for heart looping ratio (2.3.7, Figure 3.8) 

 

2.3.8 Genotyping post ISH 

 

Following imaging of individual embryos, single embryos were placed in 50μL SEL-

ProteinaseK (see 2.6.1.2) for extraction of gDNA. The gDNA was subsequently 

diluted 1:1 with MQ, and 1μL used for the relevant genotyping PCR. 
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2.3.9 Statistical Analysis 

 

Quantitative data was analysed in Prism. Heart looping ratio and myl7 area are 

displayed using median and interquartile range, with non-parametric tests applied 

and multiple comparisons where appropriate. 

 

Individual injected embryos or embryos obtained from mutant incrosses are 

displayed as individual data points and statistical tests performed based on each 

embryo representing an individual experimental unit, subjected to small 

experimental variations. A minimum of two biological repeats were performed, 

unless otherwise stated. 

 

Quantitative measurements from all embryos subjected to a single drug treatment 

were averaged to give a single measurement per drug treatment (each drug 

treatment representing a single experimental unit as all embryos of one repeat are 

subjected to the same intervention). Each biological repeat of a drug treatment is 

displayed as individual data points, and statistical tests performed on the arithmetic 

average of three biological repeats. 
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2.4 Fluorescent in situ hybridisation (FISH) 
 

From MacDonald et. al. (2013) and  

https://wiki.zfin.org/display/prot/Triple+Fluorescent+In+Situ 

 

Embryo fixation, dehydration, rehydration, ProteinaseK digestion, re-fixation, PBST 

washes and pre-hybridisation were carried out as described in the ISH protocol 

above (2.3.5). To detect the expression of two separate genes in a single sample, 

Hyb+ containing two RNA probes (one labelled with Digoxygenin and the other 

Fluorescein) was added to embryos and incubated at 70OC overnight with gentle 

agitation. After probe removal, embryos were serially washed from 5X (Table 2.25) 

into 2xSSCT (see 2.3.5) and then 0.2xSSCT at 70OC, followed by step-wise washes 

into PBST at room temperate washes. Embryos were then incubated in 2% H2O2-

PBST (H2O2: VWR 26222.298) for 1hr with gentle agitation before being blocked in 

TBST (Table 2.25) for 4hrs at room temperature. TBST was removed and replaced 

with anti-fluorescein POD-conjugated antibody (1:625 in TBST (Roche 

11426346910)) and incubated overnight at 4OC with gentle agitation. Antibody 

solution was removed and embryos were extensively washed in TNT a minimum of 8 

times over 2-3hrs at room temperature before being rinsed in Amplification buffer 

(Perkin Elmer FP1134) and stained with Tyr-Cy5 (1:50 in Amplification buffer) for 1hr. 

Following detection of the fluorescein probe, embryos were briefly washed in TNT 

before being incubated with 2% H2O2-TNT, washed in TNT and blocked in TBST for 

a minimum of 4hrs at room temperature. TBST was removed and replaced with anti-

DIG POD-conjugated antibody (1:125 in TBST (Roche 1120773910)) and incubated 

overnight at 4OC with gentle agitation. Antibody solution was removed and embryos 

were extensively washed in TNT a minimum of 8 times over 2-3hrs at room 

temperature before being rinsed in Amplification buffer and stained with Tyr-Cy3 

(1:50 in Amplification buffer) for 1hr. Following detection of the digoxygenin probe, 

embryos were briefly washed in TNT before being incubated with 2% H2O2-TNT, 

washed in TNT and fixed in 4% PFA overnight. Embryos were either mounted in 
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VectaShield for imaging or washed in PBST and then into TNT for 

immunohistochemistry (2.8). 

 

Table 2.25 FISH solutions 

Name Composition 

5X 
(50mL) 

25mL Formamide 
(50%) 

12.5mL 
20XSSC (5X 

SSC) 

1.25mL 10% 
Tween-20 (0.25% 

Tween-20) 
11.25mL MQ 

TNT (1L) 
100mL 1M Tris pH 
7.5 (0.1M Tris-HCl) 

30mL 5M NaCl 
(0.15M NaCl) 

50mL 10% 
Tween-20 (0.5% 

Tween-20) 
820mL MQ 

TBST 50mL TNT 
0.25g Perkin 

Elmer Blocking 
Powder (0.5%) 
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2.5 CRISPR-Cas9 gRNA Design and Synthesis 
 

2.5.1 gRNAs used 

 

The following gRNAs were used in this study (Table 2.26): 

 

Table 2.26 CRISPR-Cas9 gRNAs used 

 crRNA sequence (PAM) Stable or G0 
line 

One-
part/Two-

part 
Short name 

lamb1b CDS GGCAGCTGTTACCCTGCGACCGG 
Stable - injected 

by E.Noël 
One-part EN79 

lamb1a CDS GGATCCTCAATCCTGAAGGCAGG 
Stable - injected 

by E.Noël 
One-part EN143 

lamb1b 
promoter 1 

TTGTTAATAGCATAGTACATTGG 
Stable, co-

injected 

Two-part CD95 

lamb1b 
promoter 2 

GGAGAACAAGCAAAACGATGAGG Two-part CD96 

rhoca CDS GGCGGCTATCAGGAAAAGCTGG 
Stable - injected 

by E.Noël 
One-part EN75 

rhocb CDS GAAGTGGACAGCAAACAGGTGGG Stable One-part CD63 

lamc1 F0 1 GGCTTTCAATGCGACCGTGGTGG 
F0, co-injected 

One-part EJP7 

lamc1 F0 2 GGCGTGCAGTCACGGAGCGATGG One-part EJP8 

lamb2 F0 1 GGACAGTGTCCATGCCGACCTGG 

F0, co-injected 

One-part CD257 

lamb2 F0 2 CGAGCCGTCGACAGAAGGAGAGG One-part CD269 

lamb2 F0 3 TGCCGGAAACTGTACCCCTGGGG One-part CD280 

lamb2 F0 4 AGACTGTCAGGAGAACCACTGGG One-part CD281 

lamb1b 
CRISPRi 1 

GCGTGGTGCAGGGTTTGTAGCGG 
CRISPRi, co-

injected 

Two-part CD107 

lamb1b 
CRISPRi 2 

CGCACACATGTCATTGTGATCGG Two-part CD108 
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2.5.2 Ultramer-based, one-part gRNA: crRNA sequence design 

 

One-part gRNAs are a single, RNA oligonucleotide which contains both the 

sequence-specific CRISPR RNA (crRNA) sequence concatenated with the Cas9 

recruiting trans-activating RNA (tracrRNA). 

 

The crRNA sequence of one-part gRNAs were designed using CHOPCHOP v2.0 

(Labun et al., 2016) (recently updated to v3.0 https://chopchop.cbu.uib.no/) using 

danRer10/GRCz10 assembly of the zebrafish genome. Base parameters were 

unchanged from coding sequence targeting and NGG PAM, however 5’ 

requirements were set to NG or GN for in vitro transcription (2.5.3). 

 

Suitable crRNA sequences were selected on the basis of maximal efficiency and 

minimal off-target scores. For generation of rhocb mutants, targeting strategy was 

to introduce a premature stop codon into the coding sequence. For lamc1 F0 crRNA 

selection, both crRNAs were selected for targeting of the start codon (E. Pollitt). For 

lamb2 F0 selection, the lookup table available from (Wu et al., 2018) was used to 

identify 4 regions of interest and crRNAs targeting each region were selected to 

maximise likelihood of generating sufficient deleterious mutations for F0 analysis. 

 

2.5.3 Ultramer-based, one-part gRNA synthesis 

 

Following selection of suitable crRNA sequence (2.5.2) the first two nucleotides were 

converted from NG/GN to GG and the Protospacer Adjacent Motif (PAM) sequence 

(NGG) removed. The reverse complement of the resulting sequence was inserted 

into the Ultramer skeleton (replacing x), resulting in the placement of a T7 promoter 

(bold) upstream of the crRNA sequence with the tracrRNA sequence downstream, 

facilitating transcription of a single one-part gRNA. This DNA Ultramer was ordered 

from IDT at 4nM, resuspended in MQ to a final concentration of 100μM and stored 

at -20OC for long term. 
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Ultramer skeleton sequence (bold denotes T7 promoter): 

 

AAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCT

ATTTCTAGCTCTAAAACxxxxxxxxxxxxxxxxxxxxCTATAGTGAGTCGTATTACGC 

 

The Ultramer template was amplified in a 100μL BioMix PCR (See Table 2.27 for 

primer sequence), purified by QIAGEN PCR Purification kit, eluted into 30μL MQ 

and the concentration measured using a NanoDrop. Subsequently a minimum of 

30ng of amplified template was utilised as the template in a T7 MegaShortScript 

transcription reaction (Invitrogen AM1354 Table 2.28) and incubated for a minimum 

of 4hrs. at 37OC. Following transcription, 1μL of TURBO DNAse was added to the 

reaction and incubated at 37OC for 20 minutes to remove the DNA template, before 

Ammonium Acetate precipitation and ultracentrifugation at 15000rpm for 15 

minutes at 4OC. The supernatant was removed and the RNA pellet was resuspended 

in 10μL DDW and kept on ice. A 1 in 10 dilution of the gRNA was made in order to 

determine the concentration, whilst a 1 in 50 dilution was resolved by gel 

electrophoresis to confirm RNA integrity. The remaining gRNA was diluted to the 

appropriate concentration (see 2.6.1 and 2.6.2) and aliquoted for storage at -20OC 

to reduce freeze-thaw cycles. Non-aliquoted gRNA was kept at -80OC for long term 

storage. 

 

Table 2.27 Primers for amplification of Ultramers 
 Sequence PCR programme 

gRNA primer F GCGTAATACGACTCACTATAG  40 cycles, 60OC 
annealing temperature gRNA primer R AAAGCACCGACTCGGTGCCAC 
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Table 2.28 MegaShortScript T7 Reaction 

Reagent Volume (μL) 

T7 MSS buffer 2 

ATP 2 

CTP 2 

GTP 2 

UTP 2 

T7 MSS enzyme 2 

Amplified ultramer (minimum 30ng) X 

Nuclease Free Water 8-X 

 

 

2.5.4 sygRNA, two-part gRNA design for generating mutant lines 

 

gRNAs for targeted deletion of the annotated lamb1b promoter were designed 

using ApE (A Plasmid Editor) to encompass the annotated promoter 

(https://epd.epfl.ch//) and start codon based on danRer10/GRCz10 assembly of the 

zebrafish genome. 5nM of custom crRNAs and standardised tracrRNA were ordered 

from Merck/Sigma at 5nM (TRACRRNA05N-5NMOL), both with HPLC purification. 

 

2.5.5 sygRNA, two-part gRNA design for knockdown by CRISPRi 

 

gRNAs for targeted knockdown of lamb1b by CRISPRi were designed in line with 

strand binding considerations where gRNAs targeted to inhibit transcription 

initiation are not strand specific, and gRNAs designed to block elongation should 

target the non-template strand (Larson et al., 2013; Qi et al., 2013).  

 

The top seven hits for regions either surrounding the lamb1b initiating ATG codon 

or lamb1b Exon 2 were initially defined by CHOPCHOPv2.0 to minimise off-target 

effects and then ranked by Sequence Scan for CRISPR (SSC: 

http://cistrome.org/SSC/) on the basis of efficacy for “CRISPR inhibition or 
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activation”. To maximise likelihood of dCas9 recruitment, gRNAs targeting a TGG 

were discounted and then remaining gRNAs were selected to enrich for +1C and 

minimise +4T relative to the PAM site (Xu et al., 2015). 5nM of custom crRNAs were 

ordered from Merck/Sigma at 5nM with HPLC purification. 

 

2.5.6 sygRNA, two-part gRNA reconstitution and storage 

 

Working on ice, both 5nM crRNA and 5nM tracrRNA pellets were resuspended in 

10μL DDW to give a stock solution of 500μM. 5μL was stored at -80OC for long term, 

the remaining 5μL was diluted further by the addition of 6.7μL DDW to give a 

working stock of 213.5μM. 10μL of this working stock was aliquoted and stored at -

20OC, the remaining 1.7μL was diluted 1:10 by the addition of 15.3μL DDW, 

resulting in an additional working stock of 21.4μM which was aliquoted and stored 

at -20OC. 

 

2.5.7 Cas9 protein dilution and storage 

 

Cas9 protein (S. pyogenes) was ordered from NEB (M0386T, concentration 20μM) 

and was diluted 1:3 with NEB Dilutent B (300mM NaCl, 10mM Tris-HCl, 1mM DTT, 

0.1mM EDTA, 500μg/mL BSA, 50% Glycerol, pH7.4. B8002S), giving a stock 

concentration of 6.67μM which was aliquoted and stored at -20OC. 
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2.6 Generation of Zebrafish mutant, knockdown and 
transgenic lines 
 

2.6.1 Generation of stable mutant lines 

 

2.6.1.1 Micro-injection 

 

lamb1b promoter mutants were generated by injecting two sequence-specific 

crRNAs (CD95 and CD96 both at 61.2nM), together with tracRNA (122.5nM), Cas9 

protein (3.9nM) and Phenol Red (14%) in a 2nL volume into the yolk of at the single-

cell stage of embryos obtained from a Tg(myl7:lifeActGFP)/+ in-cross.  

 

rhocb mutants were generated by injecting a single, one-part ultramer-based gRNA 

(CD63 33.4pg), Cas9 protein (6.67nM) and Phenol Red (33%) in a 1nL volume into 

the yolk of at the single-cell stage of embryos obtained from a 

Tg(myl7:lifeActGFP)/+ in-cross.  

 

2.6.1.2 Identification and establishment of mutant zebrafish lines by CRISPR-Cas9 

mutagenesis 

 

Following micro-injection of gRNA and Cas9 (2.6.1.1), efficiency of mutagenesis was 

confirmed at 1dpf. Embryos were dechorionated and gDNA extracted in SEL buffer 

(50mM KCl, 2.5mM MgCl2, 10mM Tris pH8.3, 0.005% NP40, 0.005% Tween-20, 

0.001% Gelatine) with 100μg/mL ProteinaseK (Ambion AM2542) by incubation at 

60OC for 1hr then 95OC for 15 mins to denature the Proteinase K. gDNA was 

subsequently diluted 1:1 with MQ. 1μL of gDNA was used as a template for PCR (for 

primers used see Table 2.29). The presence of potential PCR heteroduplexes, 

indicating successful targeted mutagenesis, was examined by resolving the PCR 

products on a 4% TBE (89mM Tris-HCl, 89mM Boric Acid, 2mM EDTA) gel. 
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Upon confirmation of successful mutagenesis, a subset of injected embryos were 

grown to adulthood (F0) and subsequently screened by outcrossing to WT adults 

and collecting embryos to assess transmission of a suitable germ-line mutation using 

the PCR heteroduplex assay described above. Sanger sequencing was used to 

identify the nature of the lesion, and F0 founders transmitting suitable mutations 

were selected to establish stable lines. 

 

Remaining embryos were grown to adulthood (F1) and gDNA extracted from fin 

biopsies (fin-clips) was utilised to identify heterozygous mutant adults. Sanger 

sequencing at Sheffield University Core Genomics Facility was used to confirm the 

mutation in each case. 
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Table 2.29 CRISPR-Cas9 genotyping 

 Sequence 

Annealing 
Temperature 

and no. 
cycles 

Genotyping 

lamb1bCDS-F AGCTATTGCTCTGCACACTTTG 

58OC, 31 
cycles 

lamb1b∆2: BslI 
digestion. Mutant 

allele has lost 
restriction site. 
 lamb1b∆25: Can 

resolve 
differences in size 
of PCR product. 

lamb1bCDS-R TGAACAATAAAAACGAGGGCTT 

lamb1aCDS-F CTTCTGTCTCTCATGGGCCA  Can resolve 
differences in size 
of PCR product 
for either allele. lamb1aCDS-R TGCCTTTACTTTGAATTCTGGGG 

lamb1bprom-
F 

TCACACTAAGACATGGGGCA  Can resolve 
differences in size 
of PCR product 
for either allele. 

lamb1bprom-
R 

ACCAAGCAACCAAAACACTGA 

rhocaCDS-F AAAGATTAGGCTGATTGGGGTT 

 rhoca∆ATG: Can 
resolve 

differences in size 
of PCR product. 
 rhocains10: AhdI 

digestion. Mutant 
allele has 

introduced 
restriction site. 

rhocaCDS-R CTCGAACACAGTAGGCACGTA 

rhocbCDS-F AGCTATCCGTAAGAAGCTGGTG  Can resolve 
differences in size 
of PCR product 
for either allele. 

rhocbCDS-R ATAAACGCACATATGCTTGCAC 
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2.6.1.3 Analysis of lamb1b coding sequence mutations on lamb1b mRNA splicing 

 

Homozygous mutant embryos for either lamb1b∆2 or lamb1b∆25 were collected by 

incrossing adult homozygous mutants for the respective mutations. WT embryos 

were collected from an incross of Tg(myl7:eGFP)/+. cDNA was reverse transcribed 

using Superscript reverse transcriptase from RNA isolated at 55hpf from each 

genotype as described above (2.2.2.2). 

 

PCR primers were designed to amplify two 500bp regions at the 5’ end (Table 2.30) 

of the lamb1b-201 coding sequence (using danRer10/GRCz10 assembly of the 

zebrafish genome), using an annealing temperature of 58OC over 31 cycles. The 

resulting PCR products were purified and sequenced as described above (2.6.1.2). 

 

Table 2.30 lamb1b splicing primers 

Pair no. Sequence Amplicon size (bp) Short name 

Pair 1 
CTCTTCTCCCACGATCCACA 

450 
CD191 

TTCAGCCTCCAAATCCAGCT CD192 

Pair 2 
GGTGTACCGCTACTACGCTT 

503 
CD193 

CGTTTGTCTCTCGGCCTACT CD194 

 

2.6.1.4 Analysing the effect of the rhoca∆ATG mutation on rhoca mRNA splicing 

 

rhoca∆ATG homozygous mutant embryos were obtained from an incross of rhoca∆ATG 

homozygous mutant adults. WT embryos were collected from an in-cross of 

Tg(myl7:eGFP)/+. Two regions of the rhoca-201 coding sequence 

(danRer10/GRCz10 genome assembly) were amplified by PCR (primers in Table 

2.31), purified and sequenced as above. 
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Table 2.31 rhoca splicing primers 

Pair no. Sequence Amplicon size (bp) Short name 

Pair 1 
TGTGTGCATGTGGATTGAGC 

837 
EN35 

CTCCAACTTGCCTCAACACC EN36 

Pair 2 
CGGCGAGTCAGATTCCCATT 

226 
CD159 

CGGTCATAGTCCTCCTGTCC CD160 

 

2.6.2 Generation of transient CRISPR F0 mutant lines 

 

Generation of F0 mutants was carried out according to (Wu et al., 2018). One-part, 

ultramer-based gRNAs were designed and synthesised as described previously 

(2.5.1, 2.5.2., 2.5.3).  

 

For generation of lamc1 F0 mutants, two lamc1-targeting gRNAs (lamc1 F0 1 and 

lamc1 F0 2 500pg each, Table 2.32) were injected together with Cas9 protein 

(1.9nM) and Phenol Red (14%) in a volume of 1nL into the yolk of embryos obtained 

from either WT or lamb1aΔ25 incross. 

 

For generation of lamb2 F0 mutants, four lamb2 targeting one-part gRNAs (lamb2 

F0 1, F0 2, F0 3 and F0 4 each at 214.3pg, Table 2.32) were injected together with 

Cas9 protein (1.9nM) and Phenol Red (14%) in a 1nL volume into the yolk of 

embryos obtained a lamb1aΔ25 incross. 

 

Injection mixtures were assembled on ice and prior to loading into micro-injection 

needle were incubated at 37OC for 5 minutes to aid Cas9-gRNA Ribonucleoprotein 

complex formation for more efficient mutagenesis (Burger et al., 2016; Wu et al., 

2018). 
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2.6.2.1 Confirmation of F0 gRNA targeting 

 

To confirm F0 gRNA efficiency, gDNA was extracted from injected embryos and 

PCR amplification of targeted regions carried as described in 2.6.1.2, using primers 

(Table 2.32). 

 

Table 2.32 CRISPR-Cas9 F0 genotyping 

 Sequence 
Short 
Name 

Genotyping 

lamc1 F0 1/2-F ATCAAGACAGTGACGGTAGCAA EP19 Confirm gRNA cuts, 
genotype lamc1 F0 lamc1 F0 1/2-R TGTGGCATGATTTAGTGACTCC EP20 

lamb2 F0 1-F TGTGAATGCAGTTTAGAGGGCT CD263 

Confirm gRNA cuts 

lamb2 F0 1-R CAGCACACTCTCTGATTTTTGC CD264 

lamb2 F0 2-F CTGGCAGGTGTATCGCTACTTT CD272 

lamb2 F0 2-R ATCCTGATAGCAGGGTCAAGAA CD273 

lamb2 F0 3-F ACCTCTGCACTTTTAGACCACC CD286 

lamb2 F0 3-R TAACCAAATGTTCTCAGAGGGG CD287 

lamb2 F0 4-F CATACAGTTTACAGGCCAGTGC CD288 Confirm gRNA cuts, 
genotype lamb2 F0 lamb2 F0 4-R GGGAGAGAATCAAACCAGAAAA CD289 

 

2.6.3 Generation of Tg(ubi-dCas9-poly(A), cryaa:CFP)  

 

To generate Tg(ubi-dCas9-poly(A), cryaa:CFP) transgenic zebrafish the ubi-dCas9-

poly(A), cryaa:CFP construct (50pg, 2.2.6) was injected together with tol2 mRNA 

(50pg) and Phenol Red (25%)  in a volume of 1nL into the yolk of 1-cell stage 

embryos obtained from a Tg(myl7:eGFP)/+ in-cross. Embryos were screened at 2dpf 

and those with CFP+ eyes were grown to adulthood (F0). 

 

CFP+ F0 adults were outcrossed to WT and germline transmission assessed by the 

presence of CFP+ eyes in the progeny at 2dpf. CFP+ and CFP- embryos from 
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potential founders were separated and fixed for in situ hybridisation (2.3) to confirm 

segregation of dCas9 expression with the CFP+ transgenesis marker. 

 

Upon confirmation of germ lime transmission of construct together with CFP as a 

transgenesis marker, F0 founders were outcrossed to WT (TL), and CFP+ embryos 

were grown to adulthood to generate a stable Tg(ubi-dCas9-poly(A), cryaa:CFP) 

line. 

 

2.6.4 Global CRISPRi 

 

Attempted knockdown of lamb1b transcription was carried out by injecting 2 

crRNAs (CD107, 4.98n and CD108, 4.98nM) together with tracrRNA (9.95nM) and 

7% Phenol Red in a 1nL volume into the yolk of 1-cell stage embryos obtained from 

a Tg(ubi:dCas9, cryaa:CFP)sh595 outcross to WT (TL). Embryos were dechorionated 

and fixed at 24hpf in 4% PFA overnight at 4oC.  

 

2.6.4.1 Confirmation of CRISPRi gRNA targeting 

 

As a proxy to confirm CRISPRi gRNAs can efficiently recruit dCas9 protein, CRISPRi 

gRNAs were injected together with active Cas9 protein. gDNA was extracted from 

injected embryos and PCR amplification of targeted regions carried as described in 

2.6.1.2, using primers (Table 2.33) to confirm Cas9 is being recruited to, and cutting, 

the desired locus. 

 

Table 2.33 CRISPRi genotyping 
 Sequence Short Name 

lamb1b CRISPRi 1-F CGCACCCTGAAAAATCATATCT CD119 

lamb1b CRISPRi 1-R AGAGCTGTAGTGTGGAAAAGCC CD120 

lamb1b CRISPRi 2-F AAGTTTCATCGTGCAACCTTTC CD121 

lamb1b CRISPRi 2-R TTCGTTGGGCCTACCTCTAATA CD122 
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2.7 Light sheet imaging 
 

2.7.1 Image Acquisition 

 

Initial observation of ECM asymmetry was made in embryos obtained from an 

incross of Tg(myl7:lifeActGFP)/+; Tg(fli1a:AC-tagRFP)/+ double transgenic zebrafish, 

which were selected for brightest fluorescence intensity prior imaging at 26hpf. 

Quantification of left-right ECM thickness at 26hpf and 50hpf was carried out in 

embryos obtained from an in-cross of Tg(myl7:lifeActGFP)/+; Tg(fli1a:AC-tagRFP)/+; 

Tg(lft2:GalFF)/+, Tg(UAS:RFP)/+ quadruple transgenic zebrafish, which were 

selected for brightest fluorescence intensity prior imaging. ssNcan-GFP injected 

embryos were obtained as described above (2.1.4.2) 

 

Embryos were anaesthetised using Tricaine (Merck 10521) in E3 medium and 

embedded in 1% low melting point agarose (Sigma A9414) in Brand capillaries 

(Brand 701934). Embryos were imaged in a Zeiss light sheet Z.1 system using a 10X 

objective lens, and oriented to acquire optical cross sections through the heart for 

single slice time-lapse images of 2 minutes in length. Data was acquired using ZEN 

software (Zeiss). Hearts were imaged at the venous pole of 1dpf embryos and at 

venous and arterial poles in 50hpf embryos. 

 

2.7.2 ECM quantification 

 

Manual quantification of left and right cardiac ECM width was carried out on 5 

systole and 5 diastole time points for each imaged heart. The Tg(lft2:GalFF, 

UAS:RFP) line (referred to as lft2 line) was used to demarcate dorsal (lft2+) and 

ventral (lft2-) myocardium, allowing accurate orientation of the left-right axis. The 

distance between the myocardial signal (myl7+) and endocardial signal (fli1a+) was 

quantified on both left and right side of the heart tube using the line and measure 

features in Fiji. The left/right ratio of cardiac ECM thickness was calculated by 

dividing left ECM measurement by right ECM measurement, where a value of 
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greater than one denoted a left-sided ECM expansion. The mean ECM ratio of the 5 

measurements for each contraction cycle (giving 1 diastole and 1 systole 

measurement per embryo) was then plotted for a total of 6 embryos at 1dpf and 5 

embryos at 2dpf. 

2.8 Immunohistochemistry 
 

2.8.1 Immunohistochemistry protocol 

 

Embryos were serially rehydrated into PBST, washed four times in PBST and then 

twice in PBS-Triton (0.2% Triton-X (Sigma T8787) in PBS). Embryos were blocked in 

IHC-Blocking buffer (10% Goat Serum (Invitrogen 10000C) in PBS-Triton) for a 

maximum of 30 minutes at room temperature, before IHC-blocking buffer was 

removed and replaced with IHC-blocking buffer containing 1% DMSO and primary 

antibodies at required concentrations (Table 2.34). Embryos were incubated in 

antibody solution overnight at 4OC with gentle agitation. Following removal of 

primary antibodies, embryos were extensively washed in PBS-Triton before addition 

of IHC-Blocking buffer containing 1% DMSO and secondary antibodies at required 

concentrations (Table 2.35). Embryos were incubated overnight at 4OC with gentle 

agitation and were protected from the light for the remainder of the protocol. 

Following removal of secondary antibodies, embryos were extensively washed in 

PBS-Triton at room temperature before being prepared for imaging. 

 

Table 2.34 IHC primary antibodies 

Antigen Species Dilution Reference 

GFP Chicken 1:500 Aves. GFP-1010 

 

Table 2.35 IHC secondary antibodies 

Raised against Species Fluorophore Reference 

Chicken Donkey Cy2 Jackson Lab 
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2.8.2 Imaging 

 

Embryos were dissected and mounted in VectaShield (Vector Laboratories) between 

a coverslip (Menzel-Gläser 15787582) and glass slide (VWR ROTHH870.1) prior to 

imaging on Nikon A1 Inverted Confocal microscope (Wolfson Light Microscopy 

Facility). 

 

2.9 Semi-quantitative PCR 
 

2.9.1 Collection of embryos 

 

For collection of lamb1a homozygous mutants, lamb1a∆19/+; lamb1b∆2/+ or 

lamb1a∆25/+; lamb1b∆2/+ adults were incrossed and homozygous lamb1a mutants 

were sorted from WT siblings at 1dpf by morphological differences in 

anteroposterior axis (Stemple et al., 1996). 

 

Homozygous mutant embryos for either lamb1b∆2 or lamb1b∆25 were collected by in-

crossing adult homozygous mutants for the respective mutations. lamb1b∆2 

heterozygous embryos were collected from an outcross of homozygous mutant 

lamb1b∆2 males to female Tg(myl7:eGFP)/+, whilst lamb1b∆25 heterozygous embryos 

were collected from an outcross of homozygous mutant lamb1b∆25 females to male 

Tg(myl7:eGFP)/+. WT embryos were collected from an incross of Tg(myl7:eGFP)/+.  

 

55hpf cDNA for each genotype was generated using Superscript IV (see 2.2.2.2), 

from which two separate reverse transcriptions were performed for two biological 

repeats. A third biological repeat carried out from RNA isolated from a separate 

collection of embryos at 55hpf. 
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2.9.2 Polymerase Chain Reaction 

 

3 technical repeats were carried out per cDNA generated, totalling 9 technical 

repeats. Per technical repeat 7 PCRs were performed on the 5 generated cDNAs, 

consisting of 2 loading control PCRs: gapdh and eefa1l1 (Table 2.36) and 5 gene 

specific PCRs covering the first 1kb, middle 500bp and last 1kb of the genes of 

interest (Tables 2.37 and 2.38). 

 

Each 10μL PCR reaction was assembled using cDNA-BioMix and Primer-MQ master 

mixes to limit pipetting error, giving a final reaction concentration of cDNA of 

150ng/μL and Primers of 200nM.  

 

PCRs were carried out with an annealing temperature of 58OC, however cycle 

numbers were reduced to enable comparison of relative levels between different 

cDNA group. For quantification of lamb1a cDNA levels, both experimental and 

control PCRs were subject to 23 cycles. For quantification of levels of lamb1b cDNA, 

control PCRs (gapdh and eefa1l1) were subject to 22 cycles compared to 28 cycles 

for experimental (lamb1b) due to the low levels of lamb1b mRNA expression 

compared to gapdh and eefa1l1. 

 

8μL of resulting PCR products were resolved by gel electrophoresis using a 3% TAE 

(40mM Tris HCl, 20mM Acetic Acid, 1mM EDTA) gel. Gels were imaged using a 

BioDoc-It imaging System and care was taken to ensure no band was over-saturated 

when images were acquired. 
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Table 2.36 Housekeeping control semi-qPCR primers 

Gene Sequence Amplicon size (bp) Short name 

gapdh 
GGACACAACCAAATCAGGCA 

172 
CD15 

GGTGGAGTCGTACTGGAACA CD16 

eefa1l1 
TGGTTATTGGCCACGTCGA 

144 
CD17 

CCCAGGCGTACTTGAAGGA CD18 

 

 

Table 2.37 lamb1a semi-qPCR primers 

Pair no. Sequence Amplicon size (bp) Short name 

Pair 1 
CTGAGCTGGGAGATGTTTGC 

476 
CD177 

TGGCCCATGAGAGACAGAAG CD178 

Pair 2 
ACTGAGGGCGAGGTCATTTT 

458 
CD203 

GCTCGGTAAACTGCCATGTC CD204 

Pair 3 
TCGCCATACACACTCATCGA 

454 
CD205 

CTCCAGCAATACACTCGCAC CD206 

Pair 4 
AATGTGGAGGAGAGGGATGC 

520 
CD207 

TCGTTCACCATCTCTGCTGT CD208 

Pair 5 
CACTCAAACAGGCCGCAG 

450 
CD209 

CCAGTTCATTGGCTTTGTCCT CD210 

 

 

 

 

 

 

 

 



2. Materials and Methods 

110 

 

Table 2.38 lamb1b semi-qPCR primers 

Pair no. Sequence Amplicon size (bp) Short name 

Pair 1 
CTCTTCTCCCACGATCCACA 

450 
CD191 

TTCAGCCTCCAAATCCAGCT CD192 

Pair 2 
GGTGTACCGCTACTACGCTT 

503 
CD193 

CGTTTGTCTCTCGGCCTACT CD194 

Pair 3 
AACAGTGGAAGAGGATGCCA 

525 
CD195 

CATCATCCTCTGCGTGTGTG CD196 

Pair 4 
ATCAGAGCAAAGCACGAGTG 

463 
CD197 

CTCAGTTTGAATTCGGTCGCT CD198 

Pair 5 
AGAGACAAGCTGAGGACACC 

420 
CD199 

GACCTAGAAACTGTGTCCGTT CD200 

 

2.9.3 Quantification and normalisation of band intensity 

 

Following image acquisition, gel images were pre-processed by rotation to ensure 

all bands were parallel across the horizontal axis, cropped to region of interest for 

quantification, and finally the look-up table was inverted. 

 

Quantification of band intensity was carried out using the Fiji>Analyze>Gels 

pipeline. The area under curve for band intensity, together with area above curve for 

background intensity was subtracted from 100% defined as “band percentage 

intensity”. Band percentage intensity was then normalised to either gapdh or 

eefa1l1 loading controls to define “relative band intensity”. Relative band intensity 

for each experimental cDNA was then normalised to relative band intensity of WT 

cDNA to give “relative level normalised to WT loading control”. 
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2.9.4 Statistical Analysis 

 

PCR quantifications were analysed in Prism. Relative levels between mutant and 

either heterozygous siblings (lamb1b) or siblings (lamb1a) were compared using 

One-way ANOVA. 

 

 

 



 

3. Identification and characterisation of 
Laminin expression dynamics during early 
heart morphogenesis 
 

Laminins comprise one of the major classes of ECM component and their multiple 

different α, β, and γ chains allow for different trimers/isoforms to be secreted into 

the ECM. In numerous examples, specific Laminin isoforms regulate different cellular 

processes in a context-dependent manner during development. Despite the 

importance of the cardiac jelly in heart looping morphogenesis, little is known about 

which Laminin isoforms contribute to the cardiac jelly, or whether Laminins play a 

role in promoting vertebrate heart development. Furthermore, investigating the 

roles of selected Laminin genes during development is challenging due to lethality 

in mouse models as a result of implantation defects, making the zebrafish a suitable 

model system to begin to understand the role of Laminins in vertebrate heart 

development. 

 

Here, I define the expression dynamics of six Laminin subunits during early heart 

morphogenesis in zebrafish, identifying groups of subunits with distinct tissue-

restricted expression. I go on to investigate mechanisms which regulate the 

expression of these subunits during heart development, identifying specific subunits 

with either flow-dependent or flow-independent regulation. Finally, I describe a 

novel role for Lamc1-containing Laminin isoforms in promoting heart looping 

morphogenesis. This work begins to uncover the role of Laminins in cardiac 

development and potential mechanisms that control their expression during 

morphogenesis. 
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3.1 Results 
 

3.1.1 Identification of Laminin subunits with dynamic and tissue-specific expression 

during heart morphogenesis 

 

To identify Laminin subunits expressed in the heart during early cardiac 

morphogenesis, a spatial transcriptomics dataset (Tomo-Seq., Junker et al., 2014) 

mapping gene expression in the heart at 26hpf (Derrick et al., 2019) and 30hpf (E. 

Noël, unpublished data, Figure 3.1) was mined for candidate genes, together with 

an mRNA in situ hybridisation (ISH) screen of candidates at 30hpf and 55hpf (Figure 

3.2). At 30hpf, six Laminin subunits are expressed in the zebrafish heart: two alpha 

chains: laminin, alpha 4 (lama4, Figure 3.2A) and laminin, alpha 5 (lama5, Figure 

3.2B); three beta chains: laminin, beta 1a (lamb1a, Figure 3.2C), laminin, beta 1b 

(lamb1b, Figure 3.2D) and laminin beta 2 (lamb2, Figure 1E), and a single gamma 

chain: laminin, gamma 1 (lamc1, Figure 3.2F). Despite expression in the heart at 

30hpf of lamb1a (Figure 3.2C), no reads were present in the Tomo-Seq datasets 

(Figure 3.1), this is likely due to a failure to correctly map to the locus following 

sequencing (E. Noël, personal communication). By 55hpf, following initial heart 

looping morphogenesis, expression of the majority of Laminin subunits becomes 

restricted to the ventricle and atrioventricular canal (Figure 3.2A’, B’, C’, E’ and F’) 

with the exception of lamb1b, which is expressed only in the atrioventricular canal 

(Figure 3.2D’), the precursor to the atrioventricular valve. 
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Figure 3.1. Tomo-Seq identifies 5 laminin subunits expressed in the zebrafish heart 

at 30hpf. 

Spatially resolved transcriptomic datasets from single hearts isolated at 30hpf. 

Individual slices from the venous pole to the arterial pole (identified by the atrial 

marker myh6 (green) and ventricular marker myh7l (blue)) along the x-axis, with read 

number normalised to spike-in RNA on the y-axis. Tomo-Seq identifies at least 5 

laminin subunit genes are expressed in the heart (red) in both datasets: (A-A’) lama4, 

(B-B’) lama5, (C-C’) lamb1b, (D-D’) lamb2 and (E-E’) lamc1. Experimental procedures 

and data analysis performed by E. Noël. 
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Figure 3.2. Dynamic expression of Laminin subunit genes during heart morphogenesis. 

mRNA in situ hybridisation of Laminin subunit genes during zebrafish heart looping at 

30hpf and 55hpf. (A-A’) laminin, alpha 4 (lama4) is expressed throughout the heart (A, 

arrowhead) and in the connecting vasculature at the arterial pole at 30hpf and is restricted 

to the ventricle and atrioventricular canal at 55hpf (A’). (B-B’) laminin, alpha 5 (lama5) is 

expressed throughout the heart at 30hpf and is restricted to the ventricle and 

atrioventricular canal at 55hpf (B’). (C-C’) laminin, beta 1a (lamb1a) is expressed throughout 

the heart at 30hpf (C, arrowhead) and is restricted to the ventricle with a punctate 

expression 55hpf (C’). (D-D’) laminin, beta 1b (lamb1b) expression is observed in the heart 

at 30hpf, with expression predominantly in the ventricle (D, arrowhead), by 55hpf 

expression is restricted to the atrioventricular canal (D’, arrowhead). (E-E’) laminin, beta 2 

(lamb2) expression is expressed throughout the heart at 30hpf (E) by 55hpf expression 

remains in the ventricle, with low levels in atrium (E’). (F-F’) laminin, gamma, 1 (lamc1) is  
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During early heart development, the looping heart tube compromises two tissue 

layers; an outer myocardial layer surrounding the endocardium, a specialised 

endothelium. To examine the tissue layer in which each Laminin subunit is 

expressed, two colour fluorescent in situ hybridisation (FISH) was carried out at 

30hpf for each subunit gene, together with an endothelial marker fli1a (Palencia-

Desai et al., 2015; Schumacher et al., 2013) on embryos expressing the myocardial 

transgene Tg(myl7:eGFP) (Figures 3.3, 3.4 and 3.5). This approach identified a 

subset of Laminin subunits expressed only in the myocardium: lama5 and lamb2 

(Figure 3.3), subunits expressed exclusively in the endocardium: lama4 and lamb1b 

(Figure 3.4) and two Laminin subunits which are expressed in both the myocardium 

and endocardium: lamb1a and lamc1 (Figure 3.5). Together this demonstrates tight 

spatiotemporal control of specific Laminin subunit expression during early heart 

looping morphogenesis, and suggests that distinct endocardial or myocardial 

Laminin complexes may be required for this stage of heart development. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 continued. 

expressed  widely throughout the head of the embryo with expression observed in 

the heart (F, arrowhead), by 55hpf, lamc1 remains expressed in the ventricle, with 

lower levels of expression in the atrium (F’). A, B, C, D, E, F dorsal views. A’, B’, C’, 

D’, E’, F’ ventral views. V: ventricle. A: atrium. 
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Figure 3.3. lama5 and lamb2 are expressed exclusively in the myocardium. 

Single-plane confocal images of mRNA in situ hybridisation and 

immunohistochemistry to identify tissue of expression of lama5 and lamb2 at 30hpf. 

(A, F) Anti-GFP antibody highlighting the myocardial transgene myl7:eGFP. (B, G) 

mRNA in situ hybridisation of the endothelial marker fli1a. (C) mRNA in situ 

hybridisation of lama5. (D-D’) Merge of myocardium (green) and lama5 (cyan) 

expression demonstrating that lama5 and myl7 expression overlap (inset, D’). (E-E’) 

Merge of endocardium (magenta) and lama5 (cyan) expression demonstrating that 

lama5 and fli1a expression do not co-localise (inset, E’). (H) mRNA in situ 

hybridisation of lamb2. (I-I’) Merge of myocardium (green) and lamb2 (cyan) 

expression demonstrating that lamb2 and myl7 expression overlap (inset, I’) (J-J’) 

Merge of endocardium (magenta) and lamb2 (cyan) expression demonstrating that 

lamb2 and fli1a expression do not co-localise (inset, J’). Dorsal views, anterior to 

top. V: ventricle. A: atrium. Scale bars A, F: 50μm. D’, E’, I’, J’: 10μm. 
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Figure 3.4. lama4 and lamb1b are expressed exclusively in the endocardium. 

Single-plane confocal images of mRNA in situ hybridisation and 

immunohistochemistry to identity tissue of expression of lama4 and lamb1b at 

30hpf. (A, F) Anti-GFP antibody marking the myocardial transgene Tg(myl7:eGFP). 

(B, G) mRNA in situ hybridisation of the endothelial marker fli1a. (C) mRNA in situ 

hybridisation of lama4. (D-D’) Merge of myocardium (green) and lama4 (cyan) 

expression demonstrating that lama4 and myl7 expression do not co-localise (inset, 

D’). (E-E’) Merge of endocardium (magenta) and lama4 (cyan) expression 

demonstrating that lama4 and fli1a expression overlap (inset, E’). (H) mRNA in situ 

hybridisation of lamb1b. (I-I’) Merge of myocardium (green) and lamb1b (cyan) 

expression demonstrating that lamb1b and myl7 expression do not co-localise 

(inset, I’) (J-J’) Merge of endocardium (magenta) and lamb1b (cyan) expression 

demonstrating that lamb1b and fli1a expression overlap (inset, J’). Dorsal views, 

anterior to top. V: ventricle. A: atrium. Scale bars A, F: 50μm. D’, E’, I’, J’: 10μm. 
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Figure 3.5. lamb1a and lamc1 are expressed in both the myocardium and 

endocardium. 

Single-plane confocal images of mRNA in situ hybridisation and 

immunohistochemistry to identity tissue of expression of lamb1a and lamc1 at 

30hpf. (A, F) Anti-GFP antibody marking the myocardial transgene myl7:eGFP. (B, G) 

mRNA in situ hybridisation of the endothelial marker fli1a. (C) mRNA in situ 

hybridisation of lamb1a. (D-D’) Merge of myocardium (green) and lamb1a (cyan) 

expression demonstrating that lamb1a and myl7 expression overlap (inset, D’). (E-E’) 

Merge of endocardium (magenta) and lamb1a (cyan) expression demonstrating that 

lamb1a and fli1a expression overlap (inset, E’). (H) mRNA in situ hybridisation of 

lamc1. (I-I’) Merge of myocardium (green) and lamc1 (cyan) expression 

demonstrating that lamc1 and myl7 expression overlap (inset, I’) (J-J’) Merge of 

endocardium (magenta) and lamc1 (cyan) expression demonstrating that lamc1 and 

fli1a expression overlap (inset, J’). Dorsal views, anterior to top. V: ventricle. A: 

atrium. Scale bars A, F: 50μm. D’, E’, I’, J’: 10μm. 
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3.1.2 Identification of specific integrins as potential Laminin receptors during heart 

morphogenesis 

 

Having identified a number of different Laminin subunit genes with cardiac 

expression, a further ISH screen of Laminin-binding integrins was carried out to 

identify possible receptors (Figure 3.6). The Laminin binding sub-family of integrins 

consists of α3β1, α6β1, α7β1, α6β4 (Barczyk et al., 2009; Nishiuchi et al., 2006) and 

zebrafish possess two paralogs of genes encoding human ITGA3 (Integrin subunit 

alpha 3) (itga3a, itga3b), ITGA6 (Integrin subunit alpha 6) (itga6a, itga6b) and a least 

4 annotated paralogs of human ITGB1 (Integrin subunit beta 1) (itgb1a, itgb1b, 

itgb1b.1, itgb1b.2) (Mould et al., 2006). Only the expression of itgb1a and itgb1b, 

the predominantly ITGB1 paralogs expressed in early development (Mould et al., 

2006) which have previously identified expression patterns or roles in heart 

development in zebrafish (Renz et al., 2015; Wang et al., 2014) were examined.  
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Figure 3.6. The Laminin-binding integrins itga3, itga7 and itgb1 are expressed in 

the heart during looping morphogenesis. 

mRNA in situ hybridisation of integrin subunit genes during zebrafish heart looping 

at 30hpf and 55hpf. (A-A’) integrin alpha, 3b (itga3b) is expressed throughout the 

heart at 30hpf (A, arrowhead) and is restricted to the ventricle at 55hpf (A’). (B-B’) 

Expression of integrin alpha 5 (itga5) is clearly visible at the arterial pole at 30hpf  
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At 30hpf, itga3b and itga7 (integrin, alpha 7) show clear cardiac expression, 

predominantly in the ventricle (Figure 3.6A, E) with expression of itga3b still present 

in the ventricle at 55hpf (Figure 3.6A’) whilst itga7 expression is absent or 

undetectable (Figure 3.6E’). Interestingly, itga6a and itga6b show very distinct and 

complementary expression patterns (Figure 3.6C-D’). itga6a shows little or no spatial 

restriction at 30hpf, with relatively uniform staining throughout the head of the 

embryo (Figure 3.6C) and potentially very low levels of expression in the heart 

following looping at 55hpf (Figure 3.6C’). Conversely itga6b expression appears 

exclusively epidermal at 30hpf (Figure 3.6D) with staining absent from cardiac tissue 

at 55hpf, instead expression appears to be retained in the overlying epidermis 

(Figure 3.6D’). Alongside itga3b and itga7, itga5 (integrin, alpha 5), the integrin α  

Figure 3.6 continued. 

(B, arrowhead) and remains expressed in the ventricle at 55hpf, with low levels of 

expression in the atrium (B’). (C-C’) integrin alpha, 6a (itga6a) does not show any 

spatial restriction at 30hpf (C) and may be weakly expressed in the heart at 55hpf 

(C’). (D-D’) integrin alpha, 6b (itga6b) expression is localised to epidermal tissue at 

30hpf, with no expression in the heart tube (D); at 55hpf punctate expression of 

itga6b suggests expression in the epidermis overlaying the heart, rather than 

expression in cardiac tissue (D’). (E-E’) integrin alpha, 7 (itga7) expression is mainly 

observed at the arterial pole of the heart at 30hpf (E, arrowhead) but expression is 

absent in the heart at 55hpf (E’). (F-F’) integrin beta, 1a (itgb1a) does not show clear 

spatial restriction in the heart tube at 30hpf (F), but is weakly expressed in the 

ventricle and atrioventricular canal at 55hpf (F’). (G-G’) integrin beta, 1b (itgb1b) 

does not show clear spatial restriction in the heart tube at 30hpf (G), and expression 

is absent from the heart at 55hpf (G’). (H-H’) integrin beta, 4 (itgb4) expression is 

localised to epidermal tissue at 30hpf, with no expression in the heart tube (H); at 

55hpf punctate expression, similar to itga6b (D’) suggests expression in the 

epidermis overlaying the heart, rather than cardiac expression (H’). A, B, C, D, E, F, 

G, H dorsal views. A’, B’, C’, D’, E’, F’, G’, H’ ventral views. V: ventricle. A: atrium. 
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chain necessary for binding Fibronectin, is also expressed in the heart from at least 

30hpf onwards (Figure 3.6B-B’). 

 

Examination of the relevant integrin β subunits in the zebrafish heart identifies 

itgb1a and potentially itgb1b (Figure 3.6F-G’) as partners of itga3b and/or itga7 in 

binding and possibly transducing the Laminin ECM signal. itgb1b expression, similar 

to itgb1a is ubiquitous throughout the embryo at 30hpf (Figure 3.6G), however in 

some embryos, expression is observed in the heart (n = 3/20, data not shown). 

 

In summary, this demonstrates that the genes necessary to generate integrin α3β1 

and α7β1, two forms of Laminin-binding integrin complexes, are expressed in heart 

in the same developmental window as Laminin genes. Based on expression analysis 

at 30hpf and 55hpf, it would also suggest that α6β1and α6β4 integrins are unlikely to 

play a role in early heart morphogenesis. Together with the analysis of Laminin 

subunit expression, this suggests that Laminin-integrin signalling may play a role in 

cardiac morphogenesis. 

 

3.1.3 Laminin subunit genes display distinct mechanisms of regulation of expression 

 

Understanding the mechanisms by which different ECM environments are generated 

during development may provide insight into the role of the ECM, however the 

regulation of expression of distinct ECM components during development remains 

relatively understudied. In particular, whilst all other Laminin subunits identified 

appear to remain expressed in at least one chamber of the heart at 55hpf (Figure 

3.1), lamb1b expression becomes restricted to the atrioventricular canal, between 

the atrium and ventricle (Figure 3.2D’). This expression pattern closely follows that of 

both notch1b and delta-like 4 (Drosophila) (dll4) (Wang et al., 2013), suggesting that 

lamb1b expression may be dependent on Notch signalling and therefore the 

expression of lamb1b at the AVC may be required for development of the AVC. 
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To investigate whether expression of lamb1b, or the other Laminin subunits 

expressed during early heart morphogenesis is dependent on Notch signalling, WT 

embryos were incubated with the canonical Notch inhibitor DAPT. DAPT inhibits the 

γ-secretase required for the cleavage (Dovey et al., 2009) and subsequent release of 

the Notch Intracellular Domain (NICD) which functions as a transcription factor (Bray 

2016). Embryos were incubated in 100μM DAPT (a concentration known to affect 

heart development in zebrafish) (Timmerman et al., 2004) from 22hpf-55hpf, and 

expression of the six Laminin subunits examined by ISH (Figure 3.7). Embryos 

treated with DAPT showed a clear morphological hallmark of Notch inhibition: 

curvature of the body axis (data not shown) (Yang et al., 2008). 

 

Incubation with DAPT from 22hpf-55hpf results in a clear down-regulation of lamb1b 

expression in the AVC (Figure 3.7D’’), demonstrating that canonical Notch signalling 

is required from early heart tube stage to maintain lamb1b expression. However, 

expression of the other five Laminin subunits showed comparable levels of 

expression between untreated, 0.2% DMSO (vehicle control) and 100μM DAPT-

treated embryos (Figure 3.7D). 

Figure 3.7. Canonical Notch signalling is required for lamb1b expression. 

mRNA in situ hybridisation analysis of Laminin subunit expression at 55hpf, in 

untreated and vehicle-only controls, and embryos incubated with the canonical 

Notch inhibitor DAPT between 22-55hpf. (A-C’’) Expression of lama4, lama5 and 

lamb1a is unaffected in either vehicle control (A’, B’, C’) or DAPT treated (A’’, B’’, 

C’’) embryos compared to untreated (A, B, C). (D-D’’) lamb1b expression is 

unchanged in vehicle control (D’) embryos compared to untreated (D), but inhibition 

of canonical Notch signalling results in a marked reduction in lamb1b expression 

(D’’, arrowhead). (E-F’’) Expression of lamb2 and lamc1 is unaffected in either vehicle 

control (E’, F’) or DAPT treated (E’’, F’’) embryos compared to untreated (E, F). 

Ventral views.  V: ventricle. A: atrium. 
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Figure 3.8. Canonical Notch signalling may be required during early heart looping. 

(A-C) Representative measurements taken to quantify heart looping morphogenesis. 

Expression of the pan-myocardial marker myl7 is used to outline the heart by mRNA 

in situ hybridisation. The linear distance is measured from the arterial to venous pole 

(A, white line). The looped distance, traversing the midline of the heart is measured 

(B, green line), and divided by the linear distance gives the looping ratio (C). (D-D’’) 

Representative images of hearts from either untreated (D), 0.2% DMSO treated 

22hpf-55hpf (D’) or 100μM DAPT treated 22hpf-55hpf (D’’) marked by myl7 

expression. (D’’’) Quantification of effect of inhibition of canonical Notch signalling 

between 22hpf-55hpf on heart looping morphogenesis at 55hpf. Each point  
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Whilst canonical Notch signalling has a well-defined role in both zebrafish and 

mouse models of valvulogenesis (MacGrogan et al. 2016; Timmerman et al.  2004), 

there has been no description of a potential early role in heart morphogenesis. 

Therefore, the effect of DAPT treatment from 22hpf-55hpf on heart looping was 

examined using a quantitative method to assess how robustly the heart had 

undergone looping morphogenesis (Figure 3.8A-C). The expression of mRNA of the 

pan-cardiac marker myosin light chain 7 (myl7, previously cardiac myosin light chain 

2, cmlc2) is used to identify the heart by mRNA in situ hybridisation (Figure 3.8A) 

and two measurements are taken. The linear distance (Figure 3.8A, white line) and 

the looped distance (Figure 3.8B, green line) from the arterial pole to the venous 

pole are measured and the ratio of looped to linear distance gives the looping ratio 

(Figure 3.8C), where a measurement closer to 1 represents a less looped heart. 

 

Heart morphology of embryos incubated in DAPT from 22hpf-55hpf were quantified 

using this method and the averages of three repeats plotted (Figure 3.8D-D’’’). 

Inhibition of canonical Notch signalling during early looping morphogenesis does 

not significantly reduce looping ratio when compared to controls (Figure 3.8D’’’). 

 

 

 

 

 

 

 

Figure 3.8 Continued. 

represents the average of an individual repeat, colour coding denotes the same 

repeat amongst control groups. No significant reduction is observed between DAPT 

treated or control groups. A, B, C, D-D’’: ventral views. D’’: Median with interquartile 

range, Kruskal-Wallis, Dunn’s multiple comparisons. ns: not significant 
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Expression of notch1b in the zebrafish heart is dependent upon blood flow, 

mediated by the mechanotransductive transcription factor klf2a (Samsa et al., 2015; 

Vermot et al., 2009). As lamb1b is dependent at least partially upon Notch signalling 

(Figure 3.7D-D’’), it is possible that lamb1b expression may also be dependent upon 

blood flow. To investigate whether lamb1b or other Laminin subunits are regulated 

by flow during cardiac development, an anti-sense morpholino oligonucleotide 

targeting tnnt2a, (previously silent heart, sih), a cardiac troponin required for heart 

contractility (Sehnert et al., 2002) was injected at the 1-cell stage to prevent cardiac 

contractility, and expression of Laminin subunits examined at 50hpf by mRNA in situ 

hybridisation. 
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Strikingly, loss of blood flow results in the near total loss of lama4 expression from 

the ventricular endocardium (Figure 8A’’), however, a significant proportion of 

tnnt2a morphant embryos retain lama4 expression in two puncta; the localisation of 

which could represent the atrioventricular canal and/or cardiac pacemaker cells 

(Arrenberg et al., 2010; Tessadori et al., 2012) (n = 24/32, Figure 3.9A’’).  

 

In line with regulation by canonical Notch signalling, lamb1b expression is absent 

under no flow conditions (Figure 3.9D’’). Distinct from the endocardial Laminin 

Figure 3.9. Expression of endocardial Laminin subunits is flow dependent. 

mRNA in situ hybridisation analysis of Laminin subunit expression at 50hpf, in 

uninjected, tp53 morphlino (MO) injected only controls, and embryos injected with 

tnnt2a and tp53 morpholino. (A-A’’) lama4 expression is restricted to the ventricular 

endocardium in uninjected (A) and tp53 MO only (A’) but is absent in the heart apart 

from two puncta in embryos subject to tnnt2a knockdown (A’’, arrowheads). (B-B’’) 

lama5 is expressed in the ventricular myocardium with low levels of expression in the 

atrial myocardium in uninjected (B) and tp53 MO only (B’), and remains expressed at 

similar levels in embryos subject tnnt2a knockdown (B’’). (C-C’’) lamb1a is expressed 

in the ventricle and lower levels in the atrium in uninjected (C) and tp53 MO only 

(C’), but is reduced in both chambers in embryos subject tnnt2a knockdown (C’’). (D-

D’’) Expression of lamb1b is restricted to the ventricular endocardium and 

atrioventricular canal in uninjected (D) and tp53 MO only (D’), but is totally absent 

from the hearts in embryos subject tnnt2a knockdown (D’’). (E-E’’) lamb2 expression 

is expressed in the ventricular myocardium with low levels of expression in the atrial 

myocardium in uninjected (E) and tp53 MO only (E’), and remains expressed at 

similar levels in embryos subject tnnt2a knockdown (E’’). (F-F’’) lamc1 is expressed in 

the ventricle and lower levels in the atrium in uninjected (F) and tp53 MO only (F’), 

but is reduced in both chambers in embryos subject tnnt2a knockdown (F’’). Ventral 

views.  V: ventricle. A: atrium. 
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subunits lama4 and lamb1b (Figure 3.4), the expression of the myocardial Laminin 

subunits lama5 and lamb2 appears comparable between tnnt2a morphants and 

control embryos (Figure 3.9B-B’’, E-E’’). However, upon tnnt2a knockdown, 

expression of lamb1a and lamc1, the two subunits expressed in the myocardium and 

endocardium (Figure 3.5), show an overall reduction in expression (Figure 3.9C-C’’, 

F-F’’). One hypothesis for this may be that whilst myocardial Laminin expression is 

flow-independent, endocardial expression of lamb1a and lamc1 could be 

dependent upon heart contractility and most likely blood flow. 

 

Taken together, these data highlight that expression of the cardiac Laminin subunits 

is regulated by multiple, distinct mechanisms. More generally, endocardial Laminin 

expression is likely to be regulated by blood flow, whilst the expression of 

myocardial Laminins is blood flow independent. However, specific subunits may 

have different hierarchical regulation as endocardial lamb1b is at least partially 

dependent upon canonical Notch signalling (Figure 3.7), whilst lama4 expression, 

also expressed in the endocardium is independent of Notch signalling (Figure 3.9). 

 

3.1.4 lamc1 is required for heart morphogenesis 

 

The identification of multiple Laminins subunits with specific spatio-temporal 

regulation during early cardiac development, suggests that they may play multiple 

roles in heart development. To examine the broad functional role of the Laminin 

complexes identified, the single gamma subunit, lamc1, common to both the 

myocardium and endocardium (Figure 3.5F-J) was targeted for mutagenesis. Since 

removing a single subunit from a Laminin trimer is sufficient to prevent secretion 

from the cell and therefore act to negate the function of the complex (Libby et al., 

2000; Yurchenco et al., 1997) I hypothesised that this would allow me to interrogate 

a broad role for Laminins in heart development. Based on the CRISPR F0  
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Figure 3.10. lamc1 F0 mutants recapitulate the stable sleepy phenotype. 

(A) Schematic showing lamc1 genomic DNA, coding exons in blue, non-coding 

exons in red, based on lamc1-201 from danRer10/GRCz10 (oblique cut line 

represents 50kbp). Two gRNAs (spacer highlighted in blue, PAM highlighted in red) 

targeting the first exon of lamc1 downstream of the annotated initiating ATG codon 

(underlined) were used to generate F0 mutants by injecting together with Cas9 

protein. (B-B’’’) Representative brightfield images at 2dpf of either uninjected (B), 

lamc1-targeting gRNA only (B’), Cas9 protein only (B’’) or lamc1-targeting gRNAs 

together with Cas9 protein, referred to as lamc1 F0 mutants (B’’’). Only lamc1 F0 

mutants display a shortened body axis, hydrocephalus and lens defects, identical to 

the published stable sleepy/lamc1 mutants. (C) Gel electrophoresis of PCR product  
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methodology (Burger et al., 2016; Wu et al., 2018) two gRNAs targeting the first 

exon of lamc1 were injected together with active Cas9 protein into WT embryos at 

the 1-cell stage to generate F0 mutants (Figure 3.10A).  

 

lamc1 F0 mutants recapitulate the morphological phenotype of stable lamc1 

(sleepy) mutants with a high level of efficacy (Figure 3.10B-B’’’) (Odenthal et al., 

1996; Parsons et al., 2002; Stemple et al., 1996). Furthermore, lamc1 F0 mutants can 

be genotyped efficiently, enabling blind analysis and correlation of phenotype with 

successful mutagenesis of lamc1 (Figure 3.10C-D’’). Heart looping was quantified as 

previously described (Figure 3.8A-C) to examine the effect of loss of lamc1 on heart 

development (Figure 3.11). 

 

 

 

 

 

 

 

 

Figure 3.10 continued. 

amplified from region targeted by lamc1 gRNAs (A) used to generate lamc1 F0 

mutants. Injection of lamc1 targeting gRNAs only or Cas9 only does not result in 

band shifts observed in lamc1 F0 mutants, used to confirm mutagenesis of the 

lamc1 locus. (D-D’’) Sanger sequencing as a secondary method to confirm 

mutagenesis of the lamc1 gene. gRNA only injected embryos (D’) do not display any 

change to gene sequence compared to uninjected controls (D), whilst lamc1 F0 

mutants (D’’) have multiple reads in the same region, indicative of successful 

mutagenesis. B-B’’’: lateral views, anterior left. 
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Figure 3.11. lamc1 F0 mutants exhibit a profound heart looping phenotype. 

Quantitative analysis of heart looping in lamc1 F0 mutants at 30hpf and 55hpf. (A-

A’’’) Representative images of mRNA in situ hybridisation analysis of myl7 

expression at 30hpf to examine heart morphology in uninjected (A), lamc1-targeting 

gRNA only (A’), Cas9 only (A’’) and lamc1 F0 mutants (A’’’). No obvious cardiac 

phenotypes are apparent in lamc1 F0 mutants when compared to controls. (B-B’’’) 

Representative images of mRNA in situ hybridisation analysis of myl7 expression at 

55hpf to examine heart morphology in uninjected (B), lamc1-targeting gRNA only 

(B’), Cas9 only (B’’) and lamc1 F0 mutants (B’’’). lamc1 F0 mutants at 55hpf display a 

severe heart looping phenotype where the atrium has failed to move cranially (B’’’). 

(C) Quantification of heart looping ratio in lamc1 F0 mutants and control groups at  
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At 30hpf, lamc1 F0 heart morphology appears normal, with no reduction in heart 

looping ratio, when compared to either uninjected or injection control embryos 

(Figure 3.11A-A’’’, C). However, at 55hpf lamc1 F0 mutant hearts appear almost 

linear (Figure 3.11B’’’) and exhibit a significant reduction in heart looping ratio when 

compared to control embryos (Figure 3.11D). 

 

Together, this demonstrates that loss of the only Laminin gamma subunit expressed 

at the onset of heart looping reveals a major role for Laminin complexes in driving 

cardiac morphogenesis (Figure 3.12). Furthermore, since lamc1 F0 mutant hearts are 

morphologically indistinguishable from control embryos at 30hpf (Figure 3.11C), this 

suggests the key window of Laminin function in promoting heart looping is between 

30hpf and 55hpf (Figure 3.12C).  

 

 

 

 

 

 

 

 

 

 

Figure 3.11 continued. 

30hpf, no significant differences are measured. (D) Quantification of heart looping 

ratio in lamc1 F0 mutants and control groups at 55hpf. No significant differences are 

present between uninjected, lamc1-targeting gRNA or Cas9 only controls, however 

lamc1 F0 mutants have a significant reduction in heart looping ratio at 55hpf when 

compared to any control group. A-A’’’, B-B’’’: dorsal views. C, D: Median with 

interquartile range, Kruskal-Wallis, Dunn’s multiple comparisons. ns: not significant, 

****: p<0.0001 
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3.2 Discussion 
 

Laminins are a major component of all ECMs, and Lamb1 and Lamc1 are expressed 

from as early as the 4-cell stage of mouse development (Cooper and MacQueen, 

1983). Here I have identified six Laminin subunit genes expressed in the heart 

during early looping morphogenesis in zebrafish which are expressed in one or both 

of the tissue layers of the developing heart tube (Figures 3.2, 3.3, 3.4, 3.5, 3.12A). 

 

Previously studies have described the expression of specific Laminin subunits in the 

developing zebrafish (Sztal et al., 2011) in which lama3 and laminin, gamma 3 

(lamc3) were reported to be expressed in the heart at 72hpf and 48hpf respectively. 

Neither gene was enriched in the transcriptomics dataset at 26hpf or 30hpf, 

suggesting that expression may be required later in cardiac development, following 

heart looping. Additionally, expression of lamb1a, lamb1b and lamc1 were not 

previously described (Sztal et al., 2011) although the study mainly focussed on 

myotome expression.  
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Figure 3.12. Laminins are required for heart morphogenesis. 

(A) At 30hpf, six Laminin subunit genes are expressed in the zebrafish heart, 

suggesting that four distinct isoforms (two endocardial, magenta, two myocardial, 

green) may be functioning to promote heart morphogenesis. (B) In WT embryos, 

between 30hpf and 55hpf, the heart undergoes a robust, asymmetric dextral 

looping morphogenesis. (C) In lamc1 F0 mutants, heart morphology appears normal 

at 30hpf, but by 55hpf, the heart has failed to loop, and the chambers have not 

ballooned. A: atrium, V: ventricle. 
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Broadly, the tissue-specific expression of Laminin subunits in the heart described 

here correlates with previously published expression patterns in zebrafish (Figure 

3.12A) (Parsons et al., 2002; Pollard et al., 2006; Sztal et al., 2011) and mice (Frieser 

et al., 1997; Miner et al., 2004; Wagner et al., 2018). I have identified two potential 

LN-411 complexes expressed in the endocardium LN-41a1 and LN-41b1, and on a 

broader level within the embryo, expression of lama4, lamb1a, lamb1b and lamc1 

appear to overlap in the vasculature of the developing zebrafish (Parsons et al., 

2002; Pollard et al., 2006; Sztal et al., 2011) data not shown) and is consistent with 

expression and proposed roles in mammalian vascular biology (Russo et al., 2016; 

Stenzel et al., 2011; Thyboll et al., 2002; Wang et al., 2005; Yousif et al., 2012). 

More intriguing is the expression of two Laminin complexes in the myocardium with 

different beta subunits (LN-51a1 and LN-521). Studies in cell culture demonstrated 

that inclusion of a different beta chain is sufficient to alter the behaviour of Schwann 

cells (Patton et al., 1998), suggesting that these two different complexes may 

perform distinct roles. Furthermore, whilst lamb1a (and lamc1) is expressed relatively 

globally throughout the embryo (Sztal et al., 2011) (data not shown), lamb2 

expression is confined only to the somites and myocardium, the two sites of 

contractile muscle (data not shown) (Jacoby et al., 2009). This suggests a role for 

lamb2 in the assembly of basement membranes in contractile tissue. Both LAMB1 

and LAMB2 chains are detectable in human heart samples at gestational weeks 8/9 

(end of the first trimester), and are present in the ECM that surrounds the 

cardiomyocytes as well as the basement membrane surrounding the endocardium 

(Roediger et al., 2010). This conservation of gene expression and localisation 

strongly supports the use of zebrafish as a model for understanding the role of 

Laminins in heart development, and in particular how specific subunits may regulate 

distinct aspects of cardiac formation. 

 

Although I have demonstrated a broad conservation of expression, a key to ECM 

biology is examining secretion, localisation and turnover of specific components 

(Matsubayashi et al. 2020). Exemplifying the need to characterise Laminin 
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localisation in the ECM is that in mice, despite ubiquitous translation of Lamb2 in 

myotubes, a short sequence present in the Lamb2 coiled-coil domain is responsible 

for localisation to “hot-spots” on the post-synaptic membrane (Martin et al., 1995). 

Therefore, developing specific antibodies against each laminin subunit that function 

reliably in zebrafish or tagging of relevant subunits (Keeley et al., 2020) would be 

necessary to examine the spatiotemporal dynamics of basement membrane 

assembly during heart development. Endogenous tagging is critical, as over-

expression of ECM components through copy number variants has been linked to 

CHDs (Silversides et al., 2012; Soemedi et al., 2012). 

 

Regulation of expression of ECM components during development is an important 

aspect of defining how ECM synthesis is directed to enable the precise 

morphogenesis of an organ. By using a pharmacological inhibitor of the canonical 

Notch pathway and knockdown of a cardiac troponin, I have begun to uncover at 

least three possible mechanisms which regulate the expression of Laminin subunits 

during heart development. 

 

The finding that lamb1b expression is reduced but not abolished by DAPT 

treatment suggests that lamb1b expression could be only partially Notch 

dependent, and that another mechanism regulated by blood flow promotes lamb1b 

expression. Alternatively, inhibition of Notch signalling by DAPT may not be fully 

penetrant, or non-canonical Notch signalling, which DAPT does not inhibit 

(Andersen 2012), also regulates lamb1b expression. Examining lamb1b expression 

in notch1b mutants (Kettleborough et al., 2013) would help further establish the role 

of Notch in promoting transcription of ECM components. 

 

Blood flow, sensed through klf2a, has previously been shown to regulate fibronectin 

1b (fn1b) expression, another ECM component whose expression overlaps with 

lamb1b (Steed et al., 2016). This suggests a conserved mechanism functioning at 

the AVC, whereby mechanical and transcriptional pathways converge to generate a 
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unique ECM environment at the developing valve, potentially required for EndoMT 

(Steed et al., 2016). An intriguing finding is the Notch-independent, blood flow-

dependent gene expression of Laminins in the endocardium as most blood flow 

dependent genes and processes have been shown to be regulated by Notch (Samsa 

et al., 2015; Vermot et al., 2009). Two candidate signalling pathways for regulating 

endocardial expression of lama4, lamb1a and lamc1 are BMP signalling, as a role for 

bmp4 in zebrafish has been ascribed to both myocardial and endocardial 

development, linked by blood flow (Dietrich et al., 2014; Patra et al., 2011) and Wnt 

signalling which is dependent on blood flow in both mice and fish (Goddard et al., 

2017) Myocardial Laminin expression appears to be both blood-flow and Notch 

independent, suggesting other signalling pathways may regulate their expression.  

 

Laminins most commonly exert a biological function through the binding and 

activation of integrin receptors (Anderson et al., 2013; Campbell and Humphries, 

2011). I have characterised the expression of the key Laminin binding integrin 

subunits and identified itga3b, itga7, itgb1a and potentially itga6a expressed during 

the same time as Laminin expression (Figure 3.6). Furthermore, it is also likely that 

the Fibronectin receptor α5β1 is expressed in the heart at the same point, in line 

previously defined roles of Fibronectin and Integrin α5β1 in different processes 

during heart development (Gunawan et al., 2019; Mittal et al., 2013; Steed et al., 

2016). The expression patterns of the two zebrafish ITGA6 paralogs likely represents 

a division of labour, with Itga6b solely performing the role of the α6β4 receptor to 

anchor keratinocytes to LN-332 in the epidermis (Margadant et al., 2010), whilst 

Itga6a performs the remaining functions. 

 

The class of patients with dilated cardiomyopathy which have mutations in LAMA4 

affect interaction between the α3β1 integrin receptor and the Laminin complex 

(Knoll et al., 2007). Additionally, sub-phenotypic doses of lama4-targeting 

morpholino injected into integrin-linked kinase (ilk) mutant zebrafish results in 
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cardiac dysfunction (Knoll et al., 2007), reinforcing the link between Laminins and 

their classical receptors in heart development. 

 

At later stages of heart development (E15), all cells of the mouse heart express 

Itgb1, alongside both Itga6 and Itga7, yet Itga3 expression is not observed (Hierck 

et al., 1996). This may suggest different temporal roles for Laminin-binding integrins 

in heart development or potentially, Itga3 and Itga6 may have exchanged roles as 

zebrafish and mouse diverged during evolution. Further work examining expression 

of itga3b, itga6a and itga7 expression throughout cardiac looping and into early 

trabeculation stages may provide some insight. 

 

Mutations in LAMC1 (Laminin subunit gamma 1) and NID1 (Nidogen 1) are linked to 

Dandy-Walker Syndrome (DWS), (Darbro et al., 2013), a rare congenital brain 

malformation of which 26-38% of cases also present with CHDs (Haddadi et al., 

2018). Targeted mutagenesis of lamc1 in zebrafish using the F0 method (Burger et 

al., 2016; Wu et al., 2018) results in a morphological phenocopy of the stable sleepy 

mutant (Figure 3.10), validating the F0 methodology. Loss of lamc1 results in a 

profound cardiac phenotype whereby the heart has failed to undergo looping 

morphogenesis by 55hpf (Figure 3.11, 3.12B-C); lamc1 F0 mutants also display 

severe hydrocephalus (Figure 3.10) another trait of DWS (Haddadi et al., 2018). 

Deletion of the single Laminin gamma gene expressed in the heart, effectively 

functions as a Laminin-null for the heart, as all three subunits are required for 

assembly of the trimer inside the cell and subsequent secretion into the ECM (Libby 

et al., 2000; Yurchenco et al., 1997). Therefore, this highlights a crucial role of 

Lamc1-containing Laminins in zebrafish development in promoting the asymmetric 

morphogenesis of the heart and may also provide a model for a greater 

understanding of the pathology of CHDs in DWS patients. However, whilst this 

demonstrates that Laminins are required in the ECM for proper heart development, I 

have identified at least 4 distinct, potential complexes (LN-41a1, LN-41b1, LN-51a1 

and LN-521, Figure 3.12A) which may perform this role, and through investigation 
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and comparison of cardiac phenotypes associated with loss of either Laminin alpha 

chains or Laminin beta chains, the role of one or more of these complexes can begin 

to be defined. 

 

 

 

 

 

 



 

4. lamb1b is dispensable for heart 
morphogenesis 
 

I have previously shown that Laminins are required for heart morphogenesis, and 

although the exact composition of the Laminin isoform required remains unclear, I 

have demonstrated that Lamc1 is a component. In this chapter, using CRISPR-Cas9-

mediated mutagenesis I target the previously poorly characterised zebrafish Laminin 

subunit lamb1b, to investigate its function in heart development. I show that despite 

predicted loss of function, lamb1b coding sequence mutants are homozygous viable 

and non-phenotypic. However, a wealth of studies has highlighted multiple 

mechanisms by which an organism is able to overcome damaging mutations 

through genetic robustness. I go on to examine exon-skipping, genetic 

compensation and start to develop tools necessary to investigate gene function to 

avoid these mechanisms and other off-target effects. Finally, I delete the lamb1b 

promoter to definitively understand the function of lamb1b in heart morphogenesis. 

These data present multiple points for consideration in the design and 

characterisation of mutant lines in zebrafish for future studies. 

 

4.1 Results 
 

4.1.1 lamb1b exhibits dynamic expression during heart looping 

 

Whilst mutagenesis of lamc1 identified a role for Laminins in promoting heart 

looping, multiple alpha and beta chains are expressed in the heart which could 

assemble with Lamc1 to form one of four potential isoforms (Chapter 3). Therefore, 

to begin to identify which specific Laminin complexes containing Lamc1 promote 

heart looping, mutagenesis of a gene encoding a candidate beta chain was 

undertaken.  
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I have previously identified that lamb1b exhibits highly dynamic expression in the 

endocardium becoming restricted to the atrioventricular canal, and which is 

dependent on blood flow and canonical Notch signalling similar to other genes 

involved in valve specification (Heckel et al., 2015; Steed et al., 2016; Vermot et al., 

2009; Wang et al., 2013) (Figure 1.7). Since the majority of CHDs manifest as 

structural defects which affect valve specification and function (Pierpont et al., 2000), 

and previous analysis of heart looping in lamb1a mutants suggests it is dispensable 

for heart development (Hochgreb-Hägele et al., 2013) this strongly supported a role 

for lamb1b in cardiac development. 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. lamb1b is dispensable 

146 

 

 

Figure 4.1. lamb1b exhibits dynamic expression and restriction to the 

atrioventricular canal during heart looping. 

Characterisation of lamb1b expression during heart looping morphogenesis by 

mRNA in situ hybridisation. (A) Schematic of lamb1b structure based on UniProt 

accession number F1QE6B (Designed in IBS: Liu et al, 2015). Zebrafish Lamb1b 

protein shares 53.6% amino acid similarity to Human LAMB1. Blue: Laminin N-

terminal domain, Purple: Laminin EGF-like repeats, Green: Laminin IV type B, Cyan: 

Coiled-coil domain. (B-E) At 26hpf, lamb1b is expressed throughout the 

endocardium of the developing heart (B), with expression gradually being lost from 

the atrium between 30hpf-37hpf (C-E). (F-H) At 45hpf, lamb1b expression is absent 

from the atrium (F), and expression in the ventricle is gradually reduced between 

48hpf (G) and 55hpf, resulting in restriction of lamb1b expression to the 

atrioventricular canal at 55hpf (H). (I) Expression of lamb1b persists at the 

atrioventricular canal until at least 72hpf. B-D, dorsal views. E-I: ventral views. V: 

ventricle. A: atrium. 
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To examine whether lamb1b expression follows the dynamics of AVC markers over 

the course of looping a detailed time course of lamb1b expression by ISH was 

undertaken. Prior to the initiation of heart looping (26hpf), lamb1b is expressed 

throughout the endocardium of the linear heart tube (Figure 4.1B). As heart looping 

morphogenesis begins, lamb1b expression remains prominent in the ventricle, 

whilst expression is gradually lost in the atrium from 30hpf onwards with expression 

of lamb1b in the atrium absent by 45hpf (Figure 4.1F). At 48hpf, lamb1b remains 

expressed at the AVC, but expression is reduced in the ventricular endocardium 

(Figure 4.1G) By 55hpf lamb1b expression is only present in the presumptive 

endocardial cushions, the expression of which persists until at least 72hpf (Figure 

4.1H-I). Therefore, lamb1b expression closely follows that of genes with previously-

described roles in promoting valvulogenesis such as notch1b, dll4, has2, and fn1b 

(Lagendijk et al., 2011; Steed et al., 2016; Vermot et al., 2009; Wang et al., 2013). 

 

4.1.2 Generation and characterisation of lamb1b coding sequence mutants by 

CRISPR-Cas9 mutagenesis 

 

Having identified lamb1b as a candidate gene required to promote heart looping as 

part of the Lamc1-containing Laminin isoform, possibly through a role at the 

atrioventricular canal, CRISPR-Cas9-mediated genome editing was used to generate 

stable lamb1b mutant zebrafish lines (Figure 4.2). A gRNA targeting the second 

exon of lamb1b (Figure 4.2A) was co-injected with active Cas9 protein at the 1-cell 

stage (E. Noël) and F0 adults were screened for germline transmission of lamb1b 

mutations. Two F0 adult founders transmitting deletions within the lamb1b coding 

sequence were identified and outcrossed to establish the stable lamb1b mutant 

lines lamb1bΔ2 and lamb1bΔ25, both of which are predicted to result in premature 

termination codons in the Lamb1b Laminin N-terminal domain (Figure 4.2B-C). 

 

To examine the result of the loss of lamb1b function, adult heterozygous lamb1b 

mutants were incrossed and heart looping ratio analysed at 55hpf (Figure 4.3). 
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lamb1b mutants do not display any obvious morphological defects (data not shown) 

and heart looping ratio is not significantly reduced when compared to WT or 

heterozygous siblings of either allele (Figure 4.3C, 4.3D), in contrast with the 

reduction in heart looping observed in lamc1 F0 mutants (Chapter 3). 

 

However, whilst no overt heart phenotype in either lamb1b coding sequence 

mutants was identified, the most prevalent CHDs are subtle and affect valve tissue 

(Loffredo, 2000; Pierpont et al., 2000), suggesting that loss of lamb1b could result in 

subtle changes to valve markers. First, to confirm endocardial specification was not 

affected in lamb1b mutants, ISH analysis of the endocardial marker nfatc1 (Palencia-

Desai et al., 2015; Pompa et al., 1998) was performed and found to be normal in 

both lamb1b mutant alleles (Figure 4.4A-A’, B-B’). Secondly, the expression of two 

key markers of AVC development, has2 (Lagendijk et al., 2011) and bmp4 (Vermot 

et al., 2009) were examined. At 55hpf, both has2 (Figure 4.4C-D’) and bmp4 

expression (Figure 4.4E-F’) are unchanged in lamb1b zygotic mutant alleles, further 

suggesting that loss of lamb1b does not significantly impact upon heart 

development. 

 

Although no embryonic phenotype was observable in lamb1b mutants, 

developmental defects could be too subtle to be identified by ISH or may manifest 

in later life (Pierpont et al., 2000). To investigate whether lamb1b function is 

required past embryonic stages, homozygous mutants were grown to adulthood 

(Figure 4.5). lamb1b mutants are adult viable and fertile, with no difference in body 

length at approximately six months of age when compared to siblings (Figure 4.5A, 

B). Additionally, no difference in heart mass normalised to body mass is observed in 

lamb1b homozygous mutants when compared to heterozygous siblings at 

approximately 2 years old (Figure 4.5C, D). 
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Figure 4.2. Generation of lamb1b coding sequence mutants by CRISPR-Cas9 

mutagenesis. 

Mutagenesis strategy and predicted impact on Lamb1b protein (A) Schematic of 

lamb1b genomic DNA based on danRer10/GRCz10, Red: non-coding DNA, Blue: 

coding DNA, Grey: intronic DNA. A single gRNA targeting Exon 2, spacer 

highlighted in blue, PAM highlighted in red, was injected and two mutations were 

identified. (A’) The lamb1bΔ2 allele results in a 2bp deletion. (A’’) The 

lamb1bΔ25allele results in a 25bp deletion. (B) Predicted effect of the lamb1bΔ2 

allele. The initial 35 amino acids are unaffected, followed by two altered amino acids 

and a premature stop codon. (C) Predicted effect of the lamb1bΔ25 allele. The initial 

29 amino acids are unaffected, followed by three altered amino acids and a 

premature stop codon. 
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Figure 4.3. lamb1b zygotic coding sequence mutants do not display cardiac 

abnormalities. 

Quantitative analysis of heart looping in lamb1b mutants at 55hpf (A-A’’) 

Representative images of mRNA in situ hybridisation analysis of myl7 expression at 

55hpf to examine heart morphology in WT (A), lamb1bΔ2 heterozygotes (A’) and 

lamb1bΔ2 homozygous mutants (A’’). (B-B’’) Representative images of mRNA in situ 

hybridisation analysis of myl7 at 55hpf to examine heart morphology in WT (B), 

lamb1bΔ25 heterozygotes (B’) and lamb1bΔ25 homozygous mutants (B’’). (C-D) 

Quantification of heart looping ratio of lamb1bΔ2 mutants and siblings (C) and 

lamb1bΔ25 mutants and siblings (D) and 55hpf reveals no significant differences in 

heart looping of mutants compared to siblings. Ventral views. C, D: Median with 

interquartile range, Kruskal-Wallis, Dunn’s multiple comparisons, ns: not significant. 



4. lamb1b is dispensable 

151 

 

 

 

Previous studies have shown that specific Laminin subunit transcripts are maternally 

supplied during oogenesis (Pollard et al., 2006), thus maternal deposition of lamb1b 

may mask a zygotic role for lamb1b in heart development. Adult lamb1b 

homozygous mutants were incrossed to generate maternal-paternal-zygotic (MPZ) 

lamb1b mutant embryos, abolishing any wild type lamb1b transcripts from the  

 

Figure 4.4. Valve and endocardial markers are unaltered in lamb1b zygotic coding 

sequence mutants. 

mRNA in situ hybridisation analysis of nfatc1, bmp4 and has2 in lamb1b coding 

sequence and WT siblings at 55hpf. (A-B’) The endocardial marker nfatc1 shows no 

change in expression between WT siblings (A, B) and lamb1bΔ2 or lamb1bΔ25 

homozygous mutants (A’, B’). (C-D’) bmp4 shows no change in expression between 

WT siblings (C, D) and lamb1bΔ2 or  lamb1bΔ25 homozygous mutants (C’,D’). (E-F’) 

The valve marker has2 shows no change in expression between WT siblings (E, F) 

and  lamb1bΔ2 or  lamb1bΔ25 homozygous mutants (E’,F’). Ventral views.  V: ventricle. 

A: atrium. 
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Figure 4.5. lamb1b mutant adults do not display body size or cardiac size defects. 

(A-B) Loss of Lamb1b function does not significantly alter adult body length at 24 

weeks post-fertilisation for either sex in lamb1bΔ2 homozygous mutants compared to 

sibling controls (A) or at 21 weeks post-fertilisation for either sex in lamb1bΔ25 

homozygous mutants compared to sibling controls (B). (C-D) Comparison of heart 

weight expressed as a percentage of body weight in adult lamb1b heterozygous 

and homozygous mutants, both obtained from a lamb1b heterozygous incross at 

approximately 2 years old. No significant differences are present between 

homozygous mutants and their respective heterozygous siblings. Arithmetic Mean 

with Standard Deviation A, B: Ordinary one-way ANOVA with Sidak’s multiple 

comparison test C, D: Brown-Forsythe and Welch ANOVA, ns: not significant.  
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developing embryo. When compared to WT or lamb1b zygotic mutants (WT and 

zygotic mutant data reproduced from Figure 4.3), neither allele of lamb1b MPZ 

mutants presented with a cardiac phenotype (Figure 4.6C, D). Together, these data 

suggest that as neither zygotic, nor MPZ lamb1b coding sequence mutants have 

significant defects in heart looping nor abnormalities in valve specification (Figure 

4.3, 4.4, 4.6), and adult mutants are homozygous viable, fertile and do not display 

obvious morphological differences (Figure 4.5) that lamb1b may be dispensable for 

development. 
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Figure 4.6. lamb1b maternal-paternal-zygotic coding sequence mutants do not 

display cardiac abnormalities. 

Quantitative comparison of heart looping and heart size in lamb1b Zygotic (Z) and 

lamb1b Maternal-Paternal-Zygotic (MPZ) mutants at 55hpf. (A-A’’) Representative 

images of mRNA in situ hybridisation analysis of myl7 at 55hpf to examine heart 

morphology in WT (A), lamb1bΔ2 Zygotic mutants (A’) and lamb1bΔ2 Maternal-

Paternal-Zygotic mutants (A’’). (B-B’’) Representative images of mRNA in situ 

hybridisation analysis of myl7 at 55hpf to examine heart morphology in WT (B), 

lamb1bΔ25 Zygotic mutants (B’) and lamb1bΔ25 Maternal-Paternal-Zygotic mutants 

(B’’). (C-D) Quantification of heart looping ratio of WT, zygotic and maternal-

paternal-zygotic lamb1bΔ2 (C) and lamb1bΔ25 mutants (D) at 55hpf no significant 

differences are measured. Ventral views. C, D: Median with interquartile range, 

Kruskal-Wallis, Dunn’s multiple comparisons, ns: not significant 
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4.1.3 lamb1b coding sequence mutants display hallmarks of genetic compensation 

 

Although lamb1b mutants do not display any obvious phenotypes, a number of 

studies across plants, cell culture and animal models have demonstrated that an 

absence of phenotype does not categorically define a gene as having no function 

(El-Brolosy et al., 2019; El-Brolosy and Stainier, 2017). Highlighted by in-depth 

comparative analyses of zebrafish loss-of-function models, a number of different 

mechanisms have been identified by which an organism with a deleterious mutation 

is able to proceed through development, termed genetic robustness. This 

phenomenon can be achieved by activating mechanisms such as transcriptional 

adaptation: “changes in RNA levels or processing resulting from a genetic mutation 

and not from the loss of gene function” i.e. the gene attempts to rescue itself (El-

Brolosy and Stainier, 2017) or genetic compensation: “changes in RNA or protein 

levels that can functionally compensate for the loss of function of another gene” i.e. 

the gene activates another to bring about rescue (El-Brolosy and Stainier, 2017). 

 

One study in zebrafish study has shown that transcriptional adaption by exon 

skipping is in some cases able to recover the frame of a mutant transcript (Anderson 

et al., 2017). Of the seven mutations studied, three showed exon-skipping to 

maintain the frame of the transcript and did not show a reduction in transcript levels, 

whilst in two other mutants, the frame was not maintained and transcript levels were 

significantly lower (Anderson et al., 2017). Therefore, by skipping exons the genome 

is able to overcome some mutations, maintain the reading frame and theoretically 

produce functional protein, although this was not examined in the study.  

 

To investigate the possibility that lamb1b mutants utilise exon-skipping to excise the 

genetic lesion and maintain the reading frame in mutant transcripts (Anderson et al., 

2017), total RNA was isolated at 55hpf from an incross of lamb1b mutants (Figure 

4.7, inX), an outcross of lamb1b mutants (Figure 4.7, outX) and WT RNA from an 

incross of AB adults (Figure 4.7, WT). cDNA was generated from total RNA and two 
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sets of PCR primers used to amplify two regions of the lamb1b coding sequence 

spanning multiple exons: either the region containing the genetic lesion in lamb1b 

mutants (Figure 4.7A, Pair 1) or a region downstream (Figure 4.7A, Pair 2) to 

investigate possible exon skipping in lamb1b mutants. Gel electrophoresis of PCR 

products using either primer pair from lamb1b MPZ mutants does not identify extra 

bands which would be a hallmark of exon skipping (Figure 4.7B ,C). A second band 

is observed in lamb1bΔ25 heterozygous cDNA for pair 1 (Figure 4.7B), reflecting the 

two different sizes of PCR product due to the deletion. Sanger sequencing of PCR 

products from pair 1 (Figure 4.7D-D’’), confirmed the deletion was still present in 

mRNA derived from lamb1b mutants, ruling out exon skipping as a possible 

mechanism of compensation in lamb1b mutants. 
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Figure 4.7. lamb1b mutant mRNA does not undergo alternative splicing. 

(A) Schematic of lamb1b mRNA (blue: translated, grey: non-translated), showing 

region amplified by primers to examine presence of alternative splicing, Pair1 covers 

the two mutation sites. (B) Gel electrophoresis of PCR products using primer Pair 1 

with WT cDNA, cDNA obtained from an incross (inX) or outcross (outX) of lamb1bΔ2 

homozygous mutants, or cDNA obtained from an incross or outcross of lamb1bΔ25 

homozygous mutants. No unexpected extra bands are observed compared to WT or 

outX cDNA. (C) Gel electrophoresis of PCR products using primer Pair 2 with WT 

cDNA, cDNA obtained from an inX or outX of lamb1bΔ2 homozygous mutants, or 

cDNA obtained from an inX or outX of lamb1bΔ25 homozygous mutants. No 

unexpected extra bands are observed compared to WT or outX cDNA. (D-D’’) 

Sanger sequencing traces of PCR products from (B). Both lamb1bΔ2 (D’) and 

lamb1bΔ25 (D’’) homozygous mutant mRNA still contain the genetic lesion. 
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The second, more commonly reported mechanism that could explain absence of 

phenotype in lamb1b mutants is genetic compensation activated by NMD of mutant 

transcript (El-Brolosy et al., 2019; Schuermann et al., 2015). NMD is activated when 

premature termination codons are located more than 55bp upstream of exon-intron 

boundaries resulting in the mutant transcript being targeted for destruction 

(Maquat, 2005; Popp and Maquat, 2016; Wittkopp et al., 2009) (Figure 1.2Cii). As 

NMD products are able to induce genetic compensation (El-Brolosy et al., 2019; 

Schuermann et al., 2015) and the premature termination codon created in both 

lamb1b mutant alleles lies more than 55bp upstream of the exon2-3 boundary 

(Figure 4.8A, B), it is likely that these mutant transcripts may be targeted for 

degradation, and thus initiate genetic compensation.   

 

To examine this possibility the expression of lamb1b in lamb1b mutants was 

examined. in situ hybridisation analysis of lamb1b expression in embryos at 55hpf 

obtained from an incross of lamb1b heterozygous adults demonstrates a clear 

reduction in lamb1b transcript levels at the AVC when compared to WT siblings 

(Figure 4.8C-C’’, D-D’’, brackets), suggesting that the lamb1b transcript is subject to 

decay, possibly by NMD. A secondary method, semi-qPCR examined relative levels 

between lamb1b homozygous mutants and heterozygous carriers across five 

different regions of the lamb1b transcript (Figure 8E-G’). Levels of lamb1bΔ2 mutant 

transcript show a significant reduction in levels compared to lamb1bΔ2 heterozygous 

transcript in the four 3’-most regions assayed (Figure 4.8E, F , F’). lamb1bΔ25 mutants 

display a trend towards reduction compared to controls, when levels are normalised 

to either gapdh (glyceraldehyde-3-phosphate dehydrogenase) (Figure 4.8G) or 

eef1a1l1 (eurkaryotic translation elongation factor 1 alpha, like 1) (Figure 4.8G’) in 

WT across almost all 5 regions of the transcript. This disparity between the ISH data 

and semi-qPCR for lamb1bΔ25 allele may arise because of the sensitivity of the semi-

qPCR assay, due to lamb1b only expressed at very low levels through the 

vasculature of the embryo (data not shown) or that the lamb1bΔ2 allele is the more  
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Figure 4.8 lamb1b coding sequence mutant mRNA transcripts appear to undergo 

decay. 

mRNA in situ hybridisation analysis and semi-quantitative analysis of levels of 

lamb1b mRNA mutant transcript. (A-B) Schematic of lamb1b mRNA, demonstrating 

that both predicted alleles have premature stop codon (Red, TGA) greater than 50-

55bp upstream of the exon2-exon3 junction. (C-D’’) Analysis of lamb1b expression 

at the atrioventricular canal (brackets) at 55hpf in WT (C, D), lamb1bΔ2 heterozygotes  
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severe allele. However, since lamb1b mutants display a reduction in lamb1b 

transcript assayed by ISH and a trend towards reduction of transcript levels by semi-

qPCR, together with the positioning of the PTC at a location that may initiate NMD, 

it is possible that NMD of lamb1b mutant transcripts could activate genetic 

compensation, rescuing any phenotypes induced in lamb1b mutants. 

 

Previous studies have shown that to evade damaging phenotypes upon loss of gene 

function, NMD-activated compensation up-regulates the expression of genes of the 

same family, or genes which contain similar functional domains (El-Brolosy and 

Stainier, 2017; Rossi et al., 2015). Therefore, the most probable candidate for up-

regulation in lamb1b mutants is another Laminin beta subunit. ISH expression 

analysis of all annotated Laminin beta subunits at 55hpf (Figure 4.9) does not show 

any clear up-regulation of lamb1a or lamb2, subunits with previously described 

expression in the heart (Figure 4.9A-D’). In addition, the two remaining Laminin beta 

genes which are not expressed in the WT heart at 55hpf, lamb2l and lamb4  

 

Figure 4.8 continued. 

(C’), lamb1bΔ25 heterozygotes (D’), lamb1bΔ2 homozygous mutants (C’’, D’’). lamb1b 

expression is absent in lamb1b homozygous mutants. lamb1b expression is absent 

in lamb1b homozygous mutants. (E) Schematic of lamb1b mRNA (blue: translated, 

grey: non-translated), showing region amplified by primers used for semi-qPCR. 

Pair1 encompasses the two mutation sites. (F-F’) Quantification of levels of transcript 

in lamb1bΔ2 heterozygous carriers and homozygous mutants, normalised to WT 

gapdh (F) or eefa1l1 (F’) loading control. Levels of regions 2 to 5 show a significant 

reduction in lamb1bΔ2 homozygous mutants. (G-G’) Quantification of levels of 

transcript in lamb1bΔ25 heterozygous carriers and homozygous mutants, normalised 

to WT gapdh (G) or eefa1l1 (G’) loading control. Region 5 shows a significant 

reduction in lamb1bΔ25 homozygous mutants. C-D’’: ventral views, V: ventricle. A: 

atrium. F-G’: Arithmetic mean with standard deviation, One-way ANOVA. ns: not 

significant, *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001 
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Figure 4.9. Expression of other Laminin beta subunits is unchanged in lamb1b 

zygotic coding sequence mutants. 

mRNA in situ hybridisation analysis of all annotated Laminin beta subunits in lamb1b 

coding sequence mutants and WT siblings at 55hpf. (A-B’) Expression of lamb1a in 

the heart shows no change between WT siblings (A) and lamb1bΔ2 homozygous 

mutants (A’) or in WT siblings (B) and lamb1bΔ25 homozygous mutants (B’). (C-D’) 

Expression of lamb2 in the heart shows no change between WT siblings (C) and 

lamb1bΔ2 homozygous mutants (C’) or in WT siblings (D) and lamb1bΔ25 homozygous 

mutants (D’). (E-F’) At 55hpf, lamb2l is not expressed in the heart in either WT 

siblings (E, F) and lamb1bΔ25 or lamb1bΔ25 homozygous mutants (E’,F’). (G-H’) At 

55hpf, lamb4 is not expressed in the heart in either WT siblings (G ,H) and lamb1bΔ2 

or lamb1bΔ25 homozygous mutants (G’,H’). Ventral views. V: ventricle. A: atrium. 



4. lamb1b is dispensable 

162 

 

(laminin, beta 4) (Figure 4.9E-H) are not up-regulated in the hearts of lamb1b 

mutants (Figure 4.9E’-H’). Whilst lamb1b mutants do not display any clear up-

regulation of other Laminin beta subunit genes, this does not rule out the possibility 

of genetic compensation being active in lamb1b mutants, potentially through the 

functional compensation of one of the other Laminin beta subunit genes which are 

normally expressed in the developing heart. 

 

4.1.4 lamb1b ATG morphants have severe cardiac defects which are likely to be due 

to off-target effects 

 

The products of NMD of mutant transcripts are proposed to activate genetic 

compensation (El-Brolosy et al., 2019). As morpholinos function without activating 

NMD but prevent generation of the functional protein (Figure 1.2), resulting in a 

loss-of function phenotype, this may explain the widespread disparity between 

phenotypes observed in embryos subject to gene knockdown and coding sequence 

mutants of the same gene (Kok et al., 2015). Therefore, as no obvious compensating 

gene is up-regulated in lamb1b mutants (Figure 3.10), a morpholino targeting the 

annotated initiating ATG of lamb1b (Figure 4.10A) was injected into WT embryos at 

the 1-cell stage to examine the role of lamb1b in heart looping morphogenesis. 

 

At 55hpf, when lamb1b mutants display no cardiac defects (Figure 4.3, 4.6), lamb1b 

ATG morphants have a mildly dysmorphic hearts and a significant reduction in heart 

looping ratio when compared to uninjected or tp53 MO only injected control 

embryos (Figure 4.10B-B’’, E). To further characterise the effect of lamb1b 

knockdown, ISH expression analysis of individual chamber markers was carried out 

to analyse ventricle (myosin heavy chain 7, like, myh7l, formerly vmhcl) and atrium 

(myh6) development either singularly (Figure 4.10C-C’’) or together (Figure 4.10D-

D’’). Analysis of chamber morphology revealed a significant reduction in both 

ventricular (4.10C-C’’, F) and atrial circularity (4.10D-D’’, G) in lamb1b morphants, 

suggesting that lamb1b plays a role in regulating the shape of both chambers. 
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Figure 4.10. lamb1b ATG morphants have severe cardiac defects. 

Analysis of the impact of the lamb1b ATG morpholino on heart looping 

morphogenesis and heart morphology at 55hpf using mRNA in situ hybridisation. (A) 

Schematic highlighting region of lamb1b mRNA (blue: translated, grey untranslated) 

bound by lamb1b ATG morpholino (red, ATG underlined). (B-B’’) Representative 

images of mRNA in situ hybridisation analysis of myl7 at 55hpf to examine heart 

morphology in uninjected (B), tp53 MO only injected (B’) and lamb1b ATG MO + 

tp53 MO injected embryos (B’’). (C-C’’) Representative images of mRNA in situ 

hybridisation analysis of myh7l at 55hpf to examine ventricle morphology in 

uninjected (C), tp53 MO only injected (C’) and lamb1b ATG MO + tp53 MO injected 

embryos (C’’). (D-D’’) Representative images of mRNA in situ hybridisation analysis  
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Figure 4.10 continued. 

of myh6 (blue) and myh7l (red) at 55hpf to examine heart and specific morphology 

in uninjected (D), tp53 MO only injected (D’) and lamb1b ATG MO + tp53 MO 

injected embryos (D’’). (E) Quantification of heart looping ratio in uninjected, tp53 

MO only and lamb1b MO + tp53 MO embryos at 55hpf where injection of the 

lamb1b ATG MO results in a significant reduction in heart looping ratio compared 

to either control group. (F-G) Quantification of ventricular (F) and atrial (G) circularity 

in uninjected, tp53 MO only and lamb1b MO + tp53 MO embryos at 55hpf where 

injection of the lamb1b ATG MO results in a significant reduction in both ventricular 

and atrial circularity compared to either control group. B-D’’: ventral views. E: 

Median with interquartile range, Kruskal-Wallis, Dunn’s multiple comparisons. F, G: 

Arithmetic mean with standard deviation, Tukey’s multiple comparisons. ns: not 

significant, **: p<0.01, ***: p<0.001, ****: p<0.0001 
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Figure 4.11. Morpholino-mediated knockdown of lamb1b affects cardiac patterning. 

mRNA in situ hybridisation analysis of tbx5a, tbx2b and nppa expression in lamb1b 

morphants at 55hpf. (A-A’’) Expression of tbx5a at 55hpf is comparable between 

uninjected (A), tp53 MO injected (A’) and lamb1b ATG MO + tp53 MO injected 

embryos (A’’). (B-B’’) In uninjected embryos at 55hpf (B), tbx2b is expressed at the 

atrioventricular canal (B, arrowhead), tp53 MO injection (B’) does not alter tbx2b 

expression. Injection of lamb1b ATG MO + tp53 MO results expansion of tbx2b 

expression into the atrium (B’’, arrowhead). (C-C’’) Expression of nppa at 55hpf is 

comparable between uninjected (C), tp53 MO injected (C’) and lamb1b ATG MO + 

tp53 MO injected embryos (C’’). Ventral views. V: ventricle. A: atrium. 
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Figure 4.12. Morpholino-mediated knockdown of lamb1b results in expansion of 

valve markers. 

mRNA in situ hybridisation analysis of valve markers bmp4, notch1b and has2 in 

lamb1b morphants at 55hpf. (A-A’’) bmp4 expression at the inflow tract, 

atrioventricular canal and outflow tract in uninjected embryos (A) is not affected by 

tp53 MO injection (A’). Injection of lamb1b ATG MO + tp53 MO results in expansion 

of bmp4 expression into the ventricle (A’’, arrowhead). (B-B’’) In uninjected embryos 

at 55hpf notch1b is expressed at the atrioventricular canal (B, magenta arrowhead) 

and outflow tract (B, black arrowhead), and tp53 MO injection (B’) does not alter 

notch1b expression. Injection of lamb1b ATG MO + tp53 MO results in profound 

expansion of notch1b expression throughout the endocardium and into the atrium 

(B’’, green arrowhead). (C-C’’) has2 expression in injected embryos (C) strongly  
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Patterning of the myocardium in lamb1b morphants appears unaffected as tbx5a (T-

box transcription factor 5a) and nppa (natriuretic peptide A) expression appear 

normal (Figure 4.11A-A’’, C-C’’), however knockdown of lamb1b often resulted in 

expansion of tbx2b (T-box transcription factor 2b, a marker of non-working 

myocardium at the AVC) (Sedletcaia and Evans, 2011) into the atrium (Figure 

4.11B’’). Other markers associated with valve development, notch1b (Figure 4.12A-

A’’) (Vermot et al., 2009) and has2 (Figure 4.12B-B’’) (Lagendijk et al., 2013, 2011) 

are also expanded into the atrium, with notch1b expression also present in the 

ventricular endocardium, further suggesting that lamb1b may be required to 

properly restrict the valve program. Furthermore, another readout of correct cardiac 

patterning also involved in valve development, bmp4, is expanded into the ventricle 

at 55hpf (Figure 4.12C-C’’). Together, knockdown of lamb1b results in a severe 

cardiac phenotype, characterised by a reduction in heart looping, changes to the 

morphology of both chambers and expansion of valve markers. This suggests that 

lamb1b coding sequences mutants may display genetic compensation, or 

alternatively that the phenotypes observed in lamb1b morphants are due to off-

target effects. 

 

To confirm that the lamb1b knockdown phenotype is specifically due to the loss of 

lamb1b function and not due to off-target effects, the lamb1b ATG morpholino was 

injected into 1-cell stage embryos from an in-cross of lamb1b heterozygotes (Figure  

4.13). The current dogma suggests that should lamb1b mutants exhibit genetic  

 

Figure 4.12 continued. 

overlaps with notch1b expression at the atrioventricular canal (C, magenta 

arrowhead) and outflow tract (C, black arrowhead), expression is unchanged in tp53 

MO injected embryos (C’). Injection of lamb1b ATG MO + tp53 MO (C’’) results in 

mild expansion of has2 expression into the ventricular endocardium (C’’, black 

arrowhead) and atrial endocardium (C’’, magenta arrowhead). Ventral views. V: 

ventricle, A: atrium. 
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compensation, injection of the lamb1b ATG morpholino into lamb1b mutants 

should not result in a phenotype as function of the compensating gene would not 

be affected, whilst WT or heterozygous lamb1b siblings would still present with the 

knockdown phenotype (Stainier et al., 2017). However, lamb1bΔ2 mutants injected 

with the lamb1b ATG morpholino, have a significant reduction in looping ratio 

(Figure 4.13A) compared to injection controls, and appear phenotypically similar to 

WT siblings injected with the morpholino, demonstrating that the lamb1bΔ2 mutants 

are not protected against the lamb1b ATG morphant phenotype. Additionally, 

neither coding sequence mutant allele of lamb1b displays protection from a 

significant reduction in atrial circularity (Figure 4.13B, C). In summary, this 

demonstrates that whilst lamb1b ATG morphants display a severe cardiac 

phenotype, this is likely to be due to off-target effects of the morpholino as lamb1b 

homozygous mutants are not protected from these morphological defects. 
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Figure 4.13. lamb1b coding sequence mutants are not protected against the 

lamb1b ATG morphant phenotype. 

(A) Quantification of looping ratio in injection controls and lamb1b ATG + tp53 MO 

injected embryos in a lamb1bΔ2 heterozygous incross at 55hpf. Injection of lamb1b 

ATG MO + tp53 MO into sibling embryos and lamb1bΔ2 homozygous mutant 

embryos results in a significant reduction in heart looping ratio at 55hpf compared 

to injection controls of relevant genotype. (B-C) Quantification of atrial circularity of 

injection controls and lamb1b ATG + tp53 MO injected embryos from a lamb1bΔ2 

(B) or lamb1bΔ25 (C) heterozygous inX at 55hpf. Injection of lamb1b ATG MO + tp53 

MO into sibling embryos and lamb1b homozygous mutant embryos results in a 

significant reduction in atrial circularity ratio at 55hpf compared to injection controls 

of relevant phenotype. A: Median with interquartile range, Kruskal-Wallis, Dunn’s 

multiple comparisons. B, C: Arithmetic mean with standard deviation, Tukey’s 

multiple comparisons. ns: not significant, *: p<0.05, **: p<0.01, ***: p<0.001, ****: 

p<0.0001 
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4.1.5 Developing CRISPRi as a tool for targeted gene knockdown 

 

The disparity between mutant and morphant phenotypes has driven development of 

the genetic toolkit in zebrafish to definitively uncover gene function during 

development. CRISPRi builds upon the exquisite targeting nature of CRISPR by 

modifying the Cas9 protein for knockdown of gene function rather than knockout. 

dCas9 is recruited by gRNAs to prevent either initiation or elongation of 

transcription (Larson et al., 2013; Qi et al., 2013) similar to how translation-targeting 

MOs result in knockdown (Bill et al., 2009) (Figure 1.2). Although originally 

developing in bacterial culture, CRISPRi has been successfully applied in zebrafish, 

where egfl7 CRISPants recapitulate the egfl7 MO phenotype (Rossi et al., 2015). 

More recently, an elegant study examining the role of tmem33 in distinct aspects of 

zebrafish development utilised tissue-specific CRISPRi, placing the dCas9 coding 

sequence under either endothelial or renal promoters, uncoupling the phenotypes 

observed using global knockdown by morpholino (Savage et al., 2019). Additionally, 

induction of tp53 expression is reduced in CRISPant embryos compared to 

morphants, highlighting that CRISPRi is more specific and results in fewer off-target 

effects (Savage et al., 2019). 

 

To continuing exploring the potential for genetic compensation to be active in 

lamb1b coding sequence mutants, a stable, globally-expressing dCas9 system was 

developed. The dCas9 coding sequence (Savage et al., 2019) was placed under the 

control of the ubiquitously active promoter of ubiquitin B (ubb, ubi) (Mossiman 

2011), in a Gateway vector containing the transgenesis marker cryaa:CFP, which 

results in CFP expression in the retina from 2dpf onwards (Savage et al., 2019) 

(Figure 4.14A). The ubi:dCas9poly(A), cryaa:CFP plasmid was injected together with 

tol2 mRNA into the cell of 1-cell stage embryos and CFP-positive embryos were 

grown to adulthood. Two founders transmitting the ubi:dCas9 construct through the 

germline were identified and outcrossed to generate two stable lines of 

Tg(ubi:dCas9, cryaa:CFP). To confirm segregation of dCas9 transcript with the  
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Figure 4.14. Generation of Tg(ubi:dCas9, cryaaCFP) for global CRISPRi. 

(A) Schematic of Tg(ubi:dCas9, cryaaCFP) construct used to generate the transgenic 

zebrafish line. The dCas9 coding sequence (green), together with the SV40 poly(A) 

antigen (orange) were placed downstream of the ubi promoter (red) to drive 

ubiquitous expression of dCas9. On the opposite strand, the cryaa promoter 

(purple) drives expression of Cerulean Fluorescent Protein (CFP, cyan) as a marker 

for transgenesis. (B-C’) mRNA in situ hybridisation analysis of dCas9 expression in 

progeny from two founders, screened for CFP transgenesis at 2dpf. dCas9 

expression segregates with CFP+ progeny as confirmed by dCas9 expression (B’, 

C’). No dCas9 expression is observed in CFP- negative sibling embryos (B, C). The 

sh595 allele (B’) appears to drive slightly stronger expression than the sh596 allele. 

B-C’: lateral views, anterior left. 
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transgenesis marker, F1 offspring were screened for CFP expression at 2dpf. 

Subsequently, dCas9 expression in CFP positive and CFP negative embryos was 

examined by ISH which confirmed dCas9 expression only in embryos with the CFP 

marker (Figure 4.14B-C’). 

 

Having generated a ubiquitous dCas9-expressing transgenic line, two gRNAs 

targeting lamb1b were designed to prevent lamb1b transcription: gRNA 1 targeting 

the template strand upstream of the initiating ATG in exon 2, and gRNA 2 targeting 

the non-template strand of exon 3 (Figure 4.15A) in line with previously reported 

strand specificity for gene knockdown (Larson et al., 2013; Qi et al., 2013; Xu et al., 

2015). The two gRNAs were injected into 1-cell stage embryos from an outcross of 

Tg(ubi:dCas9, cryaa:CFP)sh596. Embryos were fixed at 24hpf, expression of lamb1b 

examined by ISH to confirm knockdown of the transcript, and carriers of the 

ubi:dCas9 construct identified by PCR (as the cryaa:CFP marker is not visible at 

24hpf). No change in lamb1b expression is observed in Tg(ubi:dCas9, cryaa:CFP)sh596 

injected embryos when compared to uninjected controls (Figure 4.15B’) or non-

transgenic injected siblings (Figure 4.15B’’), demonstrating unsuccessful knockdown 

of lamb1b transcription by CRISPRi, and suggesting that further development and 

optimisation of the CRISPRi system is required for routine use. 
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Figure 4.15. Knockdown of lamb1b is not observed using Tg(ubi:dCas9, cryaaCFP). 

(A) Schematic showing targeting location of the lamb1b CRISPRi gRNAs for lamb1b 

global CRISPRi. (B-B’’’) mRNA in situ hybridisation analysis of lamb1b expression at 

24hpf in WT sibling, uninjected (B), Tg(ubi:dCas9, cryaaCFP)sh596 uninjected (B’), WT 

sibling lamb1b gRNA injected (B’’) and Tg(ubi:dCas9, cryaaCFP)sh596, lamb1b gRNA 

injected (B’’’). No knockdown of lamb1b transcript is observed in Tg(ubi:dCas9, 

cryaaCFP)sh596, lamb1b gRNA injected embryos (B’’’) compared to any control group. 

B-B’’’: dorsal views. V: ventricle, A: atrium. 
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4.1.6 Generation and characterisation of lamb1a coding sequence mutants by 

CRISPR-Cas9 mutagenesis 

 

Having identified that the lamb1b ATG morphant phenotype is due to off-target 

effects and that although a promising system, CRISPRi requires significant further 

investment, to examine whether lamb1b coding sequence mutants display genetic 

compensation, mutagenesis of the most likely compensating gene, lamb1a, was 

undertaken. A gRNA targeting exon 6 of lamb1a (Figure 4.16A) was injected into an 

outcross of lamb1bΔ2 heterozygotes at the 1-cell stage (E. Noël) and F0 adults were 

screened for germline transmission. A single adult heterozygous for the lamb1bΔ2 

allele was identified transmitting two different deletions, and this founder was 

outcrossed to generate two stable lines: lamb1aΔ19and lamb1aΔ25. Both mutant 

alleles are predicted to result in premature termination codons in the Laminin N-

terminal domain of the Lamb1a protein (Figure 4.16B-C). Both mutant alleles of 

lamb1a display a short body axis (Figure 4.17A’, B’) and abnormal asymmetric 

morphogenesis of the endoderm marked by foxa1 (forkhead box A1) expression 

(Figure 4.17C-C’’’) consistent with defects previously described in lamb1a mutants 

(Hochgreb-Hägele et al., 2013; Stemple et al., 1996). Both phenotypes are present 

solely in lamb1a mutants, irrespective of lamb1b genotype (Figure 4.17C’’’). 

 

To investigate whether lamb1a compensates for loss of lamb1b in heart looping 

morphogenesis, lamb1a; lamb1b heterozygous adults were incrossed, embryos 

fixed at 55hpf and using mRNA in situ hybridisation analysis of myl7, the heart 

looping ratio quantified at 55hpf (Figure 4.18). In line with previous studies, loss of 

lamb1a alone does not impact upon heart looping (4.18A’, B ,C’ ,D) (Hochgreb-

Hägele et al., 2013), and furthermore in combination with loss of lamb1b function, 

no significant reduction in heart looping ratio is observed (4.18A’’’, B, C’’’, D). 

Together this suggests that neither lamb1 gene is required to promote heart 

morphogenesis and that loss of lamb1b is not compensated for by lamb1a function. 
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Figure 4.16. Generation of lamb1a coding sequence mutants by CRISPR-Cas9 

mutagenesis. 

Mutagenesis strategy and predicted impact on Lamb1a protein (A) Schematic of 

lamb1a genomic DNA based on danRer10/GRCz10 and UniProt accession number 

Q8JHV7, Red: non-coding DNA, Blue: coding DNA, Grey: intronic DNA. A single 

gRNA targeting Exon 6, spacer highlighted in blue, PAM highlighted in red, was 

injected and two mutations were identified. (A’) The lamb1aΔ19 allele results in a 

19bp deletion. (A’’) The lamb1aΔ25
 allele results in a 25bp deletion. (B) Predicted 

effect of the lamb1aΔ19 allele. The initial 207 amino acids are unaffected, followed by 

11 altered amino acids and a premature stop codon. (C) Predicted effect of the 

lamb1aΔ25 allele. The initial 210 amino acids are unaffected, followed by 6 altered 

amino acids and a premature stop codon. Zebrafish Lamb1a protein shares 56.8% 

amino acid similarity to zebrafish Lamb1b and 66.5% amino acid similarity to Human 

LAMB1. Blue: Laminin N-terminal domain, Purple: Laminin EGF-repeat, Green: 

Laminin domain IV type, Cyan: Coiled-coil. 
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Figure 4.17. lamb1a coding sequence mutants recapitulate previously published 

lamb1a alleles. 

(A-B’) Representative brightfield images of sibling (A), lamb1aΔ19 homozygous 

mutant (A’), sibling (B) and lamb1aΔ25 homozygous mutant (B’) at 2dpf. lamb1a 

mutants are shorter than sibling embryos. (C-C’’’) mRNA in situ hybridisation analysis 

of foxa1 expression as a marker of endoderm morphology in WT, lamb1b 

homozygous mutants, lamb1a homozygous mutants, lamb1a homozygous; lamb1b 

heterozygous mutants and double lamb1a; lamb1b homozygous mutants at 55hpf. 
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Figure 4.17 continued. 

Three classes of gut morphology are observed WT (C), bilateral pancreas (C’, 

arrowhead) and absent pancreas (C’’, arrowhead). Defective gut morphogenesis is 

only observed in lamb1a homozygous mutants (C’’’). A-B’: lateral views, anterior left. 

C-C’’: ventral views. 
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Figure 4.18. lamb1a does not compensate for loss of lamb1b during heart looping. 

Quantitative analysis of heart looping in lamb1a; lamb1b mutants at 55hpf (A-A’’) 

Representative images of mRNA in situ hybridisation analysis of myl7 expression at 

55hpf to examine heart morphology in WT (A), lamb1aΔ19 homozygous mutants (A’), 

lamb1bΔ2 homozygous mutants (A’’) and double lamb1aΔ19; lamb1bΔ2 homozygous 

mutants. (B) Quantification of heart looping ratio of lamb1aΔ19; lamb1bΔ2 mutants 

and siblings at 55hpf, reveals no significant differences between genotypes. (C-C’’) 

Representative images of mRNA in situ hybridisation analysis of myl7 expression at 

55hpf to examine heart morphology in WT (C), lamb1aΔ25 homozygous mutants (C’), 

lamb1bΔ2 homozygous mutants (C’’) and double lamb1aΔ25; lamb1bΔ2 homozygous 

mutants. (D) Quantification of heart looping ratio of lamb1aΔ25; lamb1bΔ2 mutants 

and siblings at 55hpf reveals no significant differences between genotypes. Ventral 

views. B, D: Median with interquartile range, Kruskal-Wallis, Dunn’s multiple 

comparisons. 
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4.1.7 Deletion of the lamb1b promoter demonstrates that lamb1b is dispensable for 

heart development 

 

Evidence suggested that lamb1b is undergoing NMD which could activate genetic 

compensation (Figure 4.8) (El-Brolosy et al., 2019). However, neither a well-

controlled or robust knockdown of lamb1b function by either MO or CRISPRi 

respectively could be achieved (Figure 4.13, 4.15) and having shown that lamb1a 

does not compensate for loss of lamb1b (Figure 4.18) a different approach to 

examine the role of lamb1b was required. To finally test the function of lamb1b and 

following current guidelines to overcome genetic compensation (El-Brolosy et al., 

2019) targeted mutagenesis of the annotated lamb1b promoter (identified using the 

eukaryotic promoter database) (Dreos et al., 2016) using two gRNAs was undertaken 

(Figure 4.19A).  

 

Three separate deletions removing different regions surrounding or partially 

surrounding the promoter were identified in the germline of F0 adults, and these 

founders were outcrossed to generate stable lines (Figure 4.19A). Successful 

deletion of the promoter was confirmed by ISH analysis of lamb1b expression in 

homozygous lamb1b promoter mutant embryos, where expression of lamb1b was 

completely abolished in mutant embryos compared to WT sibling embryos (Figure 

4.19B-B’’). Analysis of heart morphology using myl7 expression revealed that none 

of three lamb1b promoter mutant alleles displayed a significant reduction in heart 

looping morphogenesis compared to either WT or heterozygous siblings (Figure 

4.20), directly contradicting the lamb1b ATG morphant phenotype. As a secondary 

approach to confirm that loss of lamb1b does not recapitulate the morphant 

knockdown phenotype and has no effect on heart development, notch1b expression 

was examined in lamb1b promoter mutants. At 55hpf, notch1b expression is 

unchanged in lamb1b promoter mutants when compared to WT or heterozygous 

siblings (Figure 4.21) in contrast to the obvious expansion observed in lamb1b ATG 

morphants (Figure 4.12B-B’’). 
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Figure 4.19. Targeted deletion of the lamb1b promoter by CRISPR-Cas9 results in 

complete loss of lamb1b transcript. 

Mutagenesis strategy to delete the annotated lamb1b promoter. (A) Schematic of 

annotated lamb1b promoter based on Eukaryotic Promoter Database and upstream 

region based on danRer10/GRCz10, Red: non-coding lamb1b DNA (annotated 

lamb1b promoter underlined), Blue: coding lamb1b DNA, Lilac: coding acot18 

DNA, Green: non-coding acot18 DNA Grey: intronic DNA. Two gRNAs targeting  
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Figure 4.19 continued. 

around the lamb1b promoter spacer highlighted in blue, PAM highlighted in red, 

were injected and three mutations were identified. (A’) The lamb1bΔ56 allele results 

in a 56bp deletion, but leaves some of the lamb1b promoter intact. (A’’) The 

lamb1bΔ183 allele results in a 184bp deletion and a 1bp insertion (yellow), resulting in 

complete deletion of the annotated lamb1b promoter. (A’’’) The lamb1bΔ428 allele 

results in a 428bp deletion and a 10bp insertion (yellow), resulting in complete 

deletion of the annotated lamb1b promoter and some non-coding 3’ elements of 

the acot18 transcript. (B’-B’’’) mRNA in situ hybridisation of lamb1b at 55hpf in WT 

sibling embryos (B), showing prominent expression at the atrioventricular canal (B, 

arrowhead) and head vasculature (B, asterisk). In all three lamb1b promoter deletion 

alleles lamb1bΔ56 (B’), lamb1bΔ183 (B’’) and lamb1bΔ428 (B’’’), lamb1b expression is 

abolished. Ventral views. 



4. lamb1b is dispensable 

183 

 

 

Figure 4.20 lamb1b promoter mutants do not phenocopy lamb1b ATG morphants. 

Quantitative analysis of heart looping in lamb1b promoter mutants at 55hpf. (A-A’’) 

Representative images of mRNA in situ hybridisation analysis of myl7 expression at 

55hpf to examine heart morphology in WT (A), lamb1bΔ56 heterozygotes (A’) and 

lamb1bΔ56 homozygous mutants (A’’). (B-B’’) Representative images of mRNA in situ  
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Figure 4.20 continued. 

hybridisation analysis of myl7 expression at 55hpf to examine heart morphology in 

WT (B), lamb1bΔ183 heterozygotes (B’) and lamb1bΔ183 homozygous mutants (B’’). (C-

C’’) Representative images of mRNA in situ hybridisation analysis of myl7 at 55hpf to 

examine heart morphology in WT (C), lamb1bΔ428 heterozygotes (C’) and lamb1bΔ428 

homozygous mutants (C’’). (D-F) Quantification of heart looping ratio of lamb1bΔ56 

mutants and siblings (D) lamb1bΔ183 mutants and siblings (E) and lamb1bΔ428 mutants 

and siblings (F) at 55hpf reveals no significant differences in heart looping of 

mutants compared to siblings. Ventral views D-F: Median with interquartile range, 

Kruskal-Wallis, Dunn’s multiple comparisons, ns: not significant.  
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Figure 4.21. lamb1b promoter mutants do not recapitulate expansion of notch1b 

observed in lamb1b ATG morphants. 

mRNA in situ hybridisation analysis notch1b expression in lamb1b promoter mutants 

at 55hpf. (A-B’’) Expression of notch1b at the atriovenctricular canal and outflow 

tract in WT embryos (A, B) is unaffected in heterozygous embryos for lamb1bΔ183 (A’), 

lamb1bΔ428 (B’) or homozygous mutant embryos for lamb1bΔ183 (A’’), lamb1bΔ428 (B’’). 

Ventral views. V: ventricle, A: atrium. 

 

Together, the deletion of the lamb1b promoter results in a complete loss of lamb1b 

transcript in the embryo, evading the proposed mechanisms that would activate 

genetic compensation which could be functioning in lamb1b coding sequence 

mutants (Figure 4.19) (El-Brolosy et al., 2019; Rossi et al., 2015). As loss of lamb1b 

transcript does not result in any detectable effect on heart looping morphogenesis 

(Figure 4.20), or notch1b expression at the valve (Figure 4.21) this further confirms 

that the lamb1b ATG morphant phenotype is due to either off-target effects or a 

generalised delay of embryogenesis and demonstrates that lamb1b is dispensable 

for embryonic development. 
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4.2 Discussion 
 

In Chapter 3 I demonstrated that mutagenesis of lamc1 identified a role for Laminins 

in heart looping morphogenesis. lamb1a and lamb2 are expressed in the heart at 

the same time as lamc1, yet mutants have previously been described with no 

associated impact on heart development (Hochgreb-Hägele et al., 2013; Jacoby et 

al., 2009). Thus to further identify the components of the Lamc1-containing isoform 

which are required for heart looping, I characterised the third Laminin beta subunit 

expressed in the heart: lamb1b. lamb1b expression is highly dynamic during heart 

morphogenesis and expression is highly specific to the heart and vasculature during 

zebrafish development, making it an excellent candidate for promoting heart 

looping morphogenesis together with lamc1. However, using CRISPR-Cas9 

mutagenesis of first the coding sequence, and subsequently the promoter of 

lamb1b, I have demonstrated that lamb1b function is not required to promote heart 

development. 

 

The disparity between phenotypes observed in morpholino-mediated knockdowns 

when compared to genetic mutants is well described within the zebrafish 

community, particularly highlighted by one study which aimed to generate and 

characterise zebrafish mutants of genes for which knockdown by MO had resulted in 

severe phenotypes (Kok et al., 2015). Only 3 of the 24 mutants recapitulated the 

MO phenotype and the remaining lines were indistinguishable from wild-type (Kok 

et al., 2015). Importantly, this phenomenon is not restricted to zebrafish, nor the 

animal kingdom, with discrepancies occurring in Arabidopsis thaliana, mice and 

human cell culture (Braun et al., 2008; El-Brolosy et al., 2019; El-Brolosy and Stainier, 

2017; Gao et al., 2015; Lin et al., 2017, 2007; Rossi et al., 2015; Savage et al., 2019; 

Williams et al., 2015). Whilst the differing results in techniques to assess gene 

function may appear concerning, there are many cases in the human population 

where seemingly healthy individuals have deleterious mutations in genes predicted 

to cause disease (D.-H. Chen et al., 2016; Narasimhan et al., 2016; Sulem et al., 

2015). These findings demonstrate the weight given to conclusions developed from 
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the use of one method to assess gene function should be carefully considered, 

particularly when using the literature to inform the design of models for biological 

processes. 

 

Increasingly apparent, the choice of technique is an important consideration in 

relation to the question being asked: the specific role of a gene/protein in a 

developmental process is a different question to that of the impact of mutation of 

the gene on an organism. Whilst the former be can identified through knockdown or 

deletion of the entire gene/promoter (El-Brolosy et al., 2019), the effect of a 

mutation associated with milder or less penetrant phenotypes, which may be 

associated with syndromes is more challenging. These considerations are 

exemplified in the penetrance of different phenotypes presented by patients with 

syndromes such as Dandy-Walker or Adams-Oliver (AOS). All DWS patients are 

characterised with brain abnormalities, but only around a third possess CHDs, and 

thus it is likely that the interactions between known causative genes and normally 

non-pathogenic mutations in other genes results in diverse presentation of other 

defects. Similar to DWS, AOS have a classical defining abnormality of the scalp (cutis 

aplasia congenita) and transverse limb defects, but only 20% of sufferers have CHDs 

(Hassed et al., 2017). Acute knockdown of DOCK6 in cell culture, a gene linked to 

AOS, results in defects in actin organisation, whilst two independent DOCK6 CRISPR 

KO cell lines do not show similar severe defects (Cerikan et al., 2016). Prolonged 

knockdown of DOCK6 was shown to later recover, through induction of a separate 

mechanism, independent of DOCK6 function (Cerikan et al., 2016). The severity of 

the acute loss of DOCK6 function would clearly be incompatible with embryonic 

development, suggesting that whilst DOCK6 mutations are causative for AOS, 

mutations in compensatory pathways (which under WT DOCK6 conditions are not 

pathogenic) may act in concert with DOCK6 mutations to cause AOS. This concept 

is not as striking as is first apparent, and simply builds on multiple discussions of the 

two-hit hypothesis or the transformation of cells necessary to result in cancer, where 

loss of multiple tumour suppressors or activation of oncogenes is required 
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(Knudson, 1971). Ultimately, this means that a better understanding of the 

mechanisms underlying genetic robustness which allow organisms to recover from 

potentially damaging mutations is important to be able to choose the best genetic 

model based on the biological question, and thus to confidently assign gene 

function during development. 

 

In the last five years, the field examining the mechanisms of genetic robustness, in 

particular genetic compensation in zebrafish has advanced rapidly. Basing 

conclusions on the differences between the lamb1b CDS mutant and lamb1b ATG 

morphant phenotype, would have defined a role for lamb1b in restricting the valve 

programme. However, the guidelines for interpretation of morphant phenotypes 

(confirmation of by injecting morpholino into mutants) and the mechanism by which 

genetic compensation can be avoided (targeted promoter deletion), identify that 

lamb1b does not have a role in heart development. Furthermore, I developed 

additional tools to attempt to systematically define lamb1b gene function in 

zebrafish (Figure 4.14) and below I discuss the considerations for overcoming these 

mechanisms.  

 

One possible compensatory mechanism identified in zebrafish is that in some cases 

exon skipping is able to recover the frame of a mutant transcript (Anderson et al., 

2017). I carried out a similar analysis by Anderson et al. and found no evidence for 

this mechanism functioning in the two lamb1b coding sequence mutant alleles 

(Figure 4.7). 

 

Emerging evidence suggests that the site of mutagenesis targeting and the resulting 

lesion are important points for consideration when designing a mutagenesis 

strategy. In zebrafish, two mutant alleles of mt2, generating early PTCs with similar 

lengths of truncated protein show differing severities of phenotypes in maternal-

zygotic embryos. The mild mt2 allele shows almost complete loss of mt2 transcript, 

while more mt2 transcript was observed in the severe allele, suggesting inverse 
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correlation between levels of transcript degradation with phenotypic severity. 

Knockdown of the NMD pathway in the strongest mt2 allele resulted in greater 

penetrance of the mt2 phenotype (Schuermann et al., 2015). This initial 

consideration of severity of allele linked to level of degradation of mutant transcript 

supports the recently proposed model of genetic compensation activated by NMD 

of the mutant transcript (El-Brolosy et al., 2019). This suggests that currently to 

investigate gene function by generation of a complete loss-of-function phenotype, , 

mutagenesis strategies should be designed to abrogate transcription rather than 

disrupt protein translation. Importantly, this does not appear to be a zebrafish-

specific consideration: genetic compensation has been reported in mouse and 

human cell and tissue lines (Dawlaty et al., 2011; Freudenberg et al., 2011; Jackson 

and Pereira-Smith, 2006; Mulligan et al., 1998). 

 

To overcome potential genetic compensation for the loss of lamb1b, I was able to 

successfully identify and delete the annotated promoter of lamb1b and could 

confirm loss of lamb1b transcript. This is one of the first documented mutagenesis 

approaches where a loss-of-function zebrafish mutant is generated by removing the 

promoter. However, for many genes, promoter identification may not be possible, 

or alternatively a promoter may be too large to remove or mutate with complete 

confidence in abolishing transcription. Furthermore, our complete understanding of 

transcriptional control is limited to a very small number of genes. Therefore, a more 

nuanced approach for mutagenesis of some genes may be required, such as 

targeting of conserved motifs or residues known to be required for protein function 

to generate in-frame deletions, thus preventing NMD of transcripts and genetic 

compensation. Added to this, and highlighting the advantages offered by zebrafish, 

introduction of patient-specific mutations using CRISPR knock-in protocols 

(Tessadori et al., 2018), are also likely to become commonplace. Again, selection of 

promoter deletion as a mutagenesis strategy is important within the context of 

whether the study wishes understand the function of a gene or characterise the 

effect of patient-specific mutations on development. 
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Targeting the promoter also comes with the important consideration as there is the 

possibility for generation of alternative transcripts from the same locus, utilising a 

different, and potentially not annotated promoter. Design of multiple different 

mRNA probes that bind along the whole gene would be sufficient to confirm that all 

transcription of the target gene is abolished. It is possible that this could be the case 

for lamb1b, as the mRNA probe used in this study binds in the first 1.5kbp of the 

5.6kbp fragment, however, no other transcript is annotated for lamb1b and given 

the highly conserved, modular structure of Laminin subunits, it seems unlikely that 

alternative and likely shorter transcripts would be sufficient to function. 

 

The use of morpholinos remains commonplace in developmental biology, despite 

the caveats of off-target effects and developmental delay observed here with the 

use of the lamb1b morpholino. Yet, many morpholinos do recapitulate the 

phenotypes observed in stable mutant lines and have often been used to confirm 

mapping of mutations to specific genes following genetic screens, such as tnnt2a, 

jekyll or southpaw (Noël et al., 2013; Sehnert et al., 2002; Walsh and Stainier, 2001). 

How and why one morpholino may produce such varied, non-specific phenotypes, 

often at concentrations when other morpholinos display highly specific and 

reproducible effects remains elusive. One well described effect of morpholino 

injection is the up-regulation of tp53 (Robu et al., 2007), and recently mis-splicing 

and induction of immune response genes have been reported upon injection of 

morpholinos (Lai et al., 2019, references therein). This reinforces the need for robust 

controls and careful examination of data exclusively obtained from morpholino 

usage such as injection of MO in mutants to examine for protection from MO 

phenotype (Stainier et al., 2017). 

 

Whilst I generated a novel transgenic line to stably and ubiquitously express dCas9 

in the zebrafish to perform global CRISPRi, I was unable to achieve knockdown of 

the lamb1b transcript. However, the development of global and tissue-specific 
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CRISPRi has the potential to overtake morpholino usage as the preferred technique 

for gene knockdown, particularly as it appears that induction of tp53 expression is 

less in CRISPants compared to morphants (Savage et al., 2019). Development of 

tissue-specific CRISPRi would provide a powerful method to investigate gene 

function in zebrafish in a tissue-specific manner, similar to the Cre-lox system in mice 

(Gilbert et al., 2014, 2013). This approach is not possible with morpholino or mutant 

analyses and will be an invaluable tool for which the zebrafish community has a 

widespread need. However, the CRISPRi technique was developed using E.coli and 

knockdown by this system is strongly dependent on specific aspects of gRNA 

targeting. Inhibition of transcriptional initiation is not strand specific: gRNAs can 

target either strand, but repression is inversely correlated with gRNA target distance 

from the transcriptional start site (Qi et al., 2013). Conversely, CRISPRi-mediated 

inhibition of transcriptional elongation is strand specific: only gRNAs which bind to 

the non-template strand show effective repression (Larson et al., 2013; Qi et al., 

2013). During gRNA design for targeting of lamb1b, these guidelines were followed, 

however, no knockdown of lamb1b was observed suggesting that other factors may 

play a role in the efficacy of this technique. 

 

However, whilst the initial use of CRISPRi in zebrafish is promising (Rossi et al., 2015; 

Savage et al., 2019; Zhu et al., 2017), there are more factors that need 

consideration. In mammalian cells, CRISPRi was less efficient at gene knockdown 

when compared to E. coli and the authors suggest that the local chromatin 

environment is an important factor for CRISPRi in eukaryotic cells (Larson et al., 

2013; Qi et al., 2013). This has been examined in zebrafish, where gRNAs were 

significantly more effective at targeting and inducing mutations in open chromatin 

regions (Chen et al., 2017). In addition to chromatin accessibility, the sequence of 

the gRNA targeting Cas9 or dCas9 is another important factor. Using data from 

previous studies, logo maps for successful gRNAs which recruit Cas9 were shown to 

have key features which are distinct from gRNAs used in CRISPRi (Xu et al., 2015). 

Additionally, concentration of gRNA and the efficiency of the promoter in driving 
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tissue specific dCas9 expression are factors yet to be fully optimised. A caveat of 

both CRISPRi and morpholino usage is the transient nature of the knockdown, 

morpholinos are anecdotally functional until approximately 3dpf and gRNA remains 

stable until 2dpf (A. Savage, personal communication). Therefore, functional 

analyses during only very early development would be feasible using these 

techniques. To overcome these limitations, stable gRNAs could be ubiquitously 

expressed in the zebrafish together with a tissue-specific dCas9 cassette, although 

again this would require a substantial level of optimisation, potentially on a gene-by-

gene basis. 

 

In the last decade, the identification and development of CRISPR-Cas9-mediated 

genome engineering has revolutionised developmental biology, and within the last 

five years, initial discovery and characterisation of mechanisms of genetic 

compensation across Eukarya has driven a more refined and tailored approach to 

mutagenesis (El-Brolosy et al., 2019). Understanding the mechanisms by which 

genetic compensation is achieved is important for the correct selection and analysis 

of genetic models in order to be able to reliably ascribe function to a gene during 

development. Therefore, in line with current models, the generation of the 

promoter-less lamb1b mutants which have no embryonic phenotype demonstrates 

that lamb1b does not play a role in heart development and is likely dispensable for 

development in general, although alternative transcription sites cannot be ruled out. 

I have also identified that loss of lamb1a also does not appear to result in a heart 

looping phenotype, however I did not investigate whether genetic compensation is 

active in the generated alleles of lamb1a. Together, this strongly suggests that the 

Laminin isoform promoting heart looping, which contains Lamc1, also contains 

either Lamb2 which plays an unappreciated role in heart development, or Lamb1a, 

where the absence of a heart looping phenotype may be due to genetic 

compensation. 

 

 



 

5. Laminins are required to limit heart size 
  

Having established that lamb1b is not required for heart development, I have 

investigated the role of the two remaining Laminin beta chains expressed in the 

heart during early morphogenesis: lamb1a and lamb2. Using a simple, quantitative 

analysis I have identified a previously undescribed cardiac phenotype associated 

with the loss of lamb1a. As previously described, lamb1a mutant hearts undergo 

early looping morphogenesis relatively normally, however heart size in significantly 

increased by 3dpf compared to siblings. I further reveal that as well as promoting 

heart looping, lamc1 is also required to limit heart size. 

 

Examining early cardiac development reveals that lamb1a mutants up-regulate flow-

responsive genes. However, under no-flow conditions this up-regulation persists, 

suggesting that the enlarged heart in lamb1a mutants is likely due to mis-regulation 

of pathways upstream of flow sensing. Together, this work begins to define two 

novel roles for Laminin genes during heart looping morphogenesis. 

 

5.1 Results 
 

5.1.1 lamb1a coding sequence mutants display hallmarks of genetic compensation 

and up-regulate lamb1b 

 

Extensive study of the lamb1b mutant lines generated establish that lamb1b does 

not play a role in heart looping or more broadly in embryonic development. 

However, having identified a role for Laminins in heart looping through mutagenesis 

of lamc1, it is therefore likely that either lamb1a or lamb2 or both functions together 

with lamc1 to promote heart looping. Although the lamb1a mutants generated in 

Chapter 4 display axis and endodermal phenotypes consistent with previously-

described mutants, since the novel lamb1a mutants harbour lesions in the coding  
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Figure 5.1 lamb1a mutant transcripts are subject to RNA decay. 

Semi-quantitative analysis of levels of lamb1a mRNA mutant transcript. (A-B) 

Schematic of lamb1a mRNA, demonstrating that both mutant alleles have a 

premature stop codon (Red, TGA) greater than 50-55bp upstream of the exon7-

exon8 junction. (C) Schematic of lamb1a mRNA (blue: translated, grey: non-

translated), showing region amplified by primers used for semi-qPCR. Pair2 cover 

the two mutation sites. (D-D’) Quantification of levels of transcript in lamb1aΔ19 

sibling and homozygous mutants, normalised to WT gapdh (D) or eefa1l1 (D’) 

loading control. All regions show significant reduction in lamb1a mutants compared  
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sequence (Figure 4.16), it is still possible that genetic compensation could be 

functioning in the lamb1a mutants masking, a role for lamb1a in heart looping. 

 

Both lamb1a coding sequence mutants are predicted to have premature termination 

codons 194bp upstream of the exon 7, exon 8 boundary which could activate NMD 

of the mutant transcript (Figure 5.1A, B) (Maquat, 2005; Wittkopp et al., 2009). 

Comparative analysis of lamb1a transcript levels by semi-qPCR analysis of five 

different regions of the lamb1a transcript (Figure 5.1C) reveals a significant 

reduction of lamb1a mutant transcript when compared to WT siblings of either allele 

(Figure 5.1D-E’). These data could suggest that the lamb1a phenotype may not be 

fully penetrant and that genetic compensation activated by decay of the mutant 

transcript could allow heart development to proceed normally, whilst other aspects 

of development, such as gut morphogenesis and convergent extension are 

defective (Hochgreb-Hägele et al., 2013; Stemple et al., 1996) (Figure 4.17). 

 

lamb1a mutants display the hallmarks of NMD which could activate genetic 

compensation. Despite the fact that lamb1b is not required for heart development 

in WT embryos, lamb1b still represents the most closely related Laminin beta 

subunit to lamb1a (Sztal et al., 2011), and could be functional in a lamb1a mutant 

embryo. Therefore, lamb1b remains the most likely candidate to be up-regulated to 

compensate for loss of lamb1a. To investigate this, lamb1b expression was analysed 

in an incross of lamb1a;lamb1b heterozygotes by ISH. At 30hpf, lamb1b is  

 

Figure 5.1 continued. 

to siblings. (E-E’) Quantification of levels of transcript in lamb1aΔ25 sibling and 

homozygous mutants, normalised to WT gapdh (E) or eefa1l1 (E’) loading control. 

All regions show significant reduction in lamb1a mutants compared to siblings. D-E’: 

Arithmetic mean with standard deviation, One-way ANOVA, **: p<0.01, ***: 

p<0.001, ****: p<0.0001. 
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expressed predominantly in the ventricular endocardium in WT embryos, with weak 

expression in the atrial endocardium (Figure 5.2A, B). However, in lamb1a mutants, 

lamb1b expression is up-regulated in the endocardium compared to WT siblings 

and is also expanded into the atrium (Figure 5.2A’, B’). Following heart looping, 

lamb1b is restricted to the AVC in WT embryos, (Figure 5.2C, D), however in 

lamb1aΔ19 homozygous mutants, mild expression of lamb1b persists in the 

ventricular endocardium (Figure 5.2C’). More strikingly, lamb1b remains expressed 

throughout the entire endocardium in lamb1aΔ25 homozygous mutants at 55hpf 

(Figure 5.2D’), highlighting potential differences in the severity of the lamb1a alleles 

generated. Together, lamb1a mutants display key characteristics of NMD-activated 

genetic compensation: a reduction in levels of mutant transcript and up-regulation 

of a related gene which could functionally compensate for loss of lamb1a. These 

data also suggest that, whilst lamb1b is not required for development, it could act 

to function in the absence of lamb1a. 
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Figure 5.2. lamb1b is up-regulated in lamb1a coding sequence mutants with allele-

specific persistence. 

mRNA in situ hybridisation analysis of lamb1b expression in lamb1a siblings and 

homozygous mutants during heart development. (A-B’) In WT embryos, lamb1b is 

expressed in the ventricular endocardium (A, B). Loss of lamb1a results in an up-

regulation and expansion of lamb1b expression throughout the endocardium into 

the atrium (A’, B, arrowheads). (C-D’). At 55hpf, lamb1b is expressed in the 

atrioventricular canal (C, D). In lamb1aΔ19 homozygous mutants at 55hpf, lamb1b 

expression is observed in the outflow tract (C’, arrowhead). In lamb1aΔ25 

homozygous mutants at 55hpf, lamb1b expression remains present throughout the 

endocardium (D’). A-B’: dorsal views. C-D’: ventral views. V: ventricle, A: atrium. 

 

5.1.2 lamb1b does not compensate for loss of lamb1a 

 

NMD machinery is highly conserved in zebrafish, where the core components are 

maternally deposited and are required for correct development of the embryo 

(Wittkopp et al., 2009). Attenuation of NMD in zebrafish has been shown to inhibit 

NMD-induced genetic compensation (El-Brolosy et al., 2019) and also increase the 

penetrance of mutant phenotypes (Schuermann et al., 2015). Knockdown of the 

NMD pathway components smg1 (SMG1 nonsense mediated mRNA decay 

associated PI3K related kinase) and upf1 (UPF1 RNA helicase and ATPase) have  
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Figure 5.3 Titration of sub-phenotypic dosage of NMD blocking morpholino. 

Quantitative analysis of heart looping using mRNA in situ hybridisation of myl7 at 

50hpf in embryos injected with differing concentrations of NMD-targeting 

morpholinos. (A-C) Heart looping appears normal in uninjected embryos (A), tp53 

MO only injected embryos (B) or smg1 MO + tp53 MO injected embryos (C). (D) 

smg1 MO + 100μM upf1 MO + tp53 MO injected embryos have a severe heart 

looping phenotype at 50hpf. (E) smg1 MO + 50μM upf1 MO + tp53 MO injected 

embryos have a clear heart looping phenotype at 50hpf, but is less severe than (D).  
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previously been used to inhibit decay of the mutant mt2 transcript, leading to an 

increased penetrance of phenotype, consistent with morpholino-mediated 

knockdown of mt2 (Schuermann et al., 2015). 

 

Previously published concentrations of the morpholino used to perform upf1 

knockdown in zebrafish results in severe morphological defects that would impact 

on heart looping morphogenesis independent of the genetic background of the 

embryo (Wittkopp et al., 2009). Therefore, to negate any general effects related to 

the impact of loss of NMD pathway function on heart looping morphogenesis, 

concentrations of smg1 and upf1 were titrated in an attempt to determine a sub-

phenotypic dosage that did not impact on heart morphogenesis (Figure 5.3). 

Depletion of smg1 alone does not affect heart looping ratio (Figure 5.3C ,G), but 

together with the upf1 MO at 100µM or 50µM results in a significant reduction in 

heart looping morphogenesis, associated with a failure of constriction at the AVC 

and loss of atrial ballooning (Figure 5.3D, E ,G), whilst coinjection of 12.5µM upf1 

MO together with smg1 MO results in a non-significant reduction in heart looping 

and abnormal AVC morphology (Figure 5.3F, G), demonstrating that heart 

development may be highly sensitive to levels of Upf1. 

 

 

 

Figure 5.3 continued. 

(F) smg1 MO + 12.5μM upf1 MO + tp53 MO injected embryos have a mild heart 

looping phenotype at 50hpf, but is less severe than (E). (G) Quantification of heart 

looping ratio of all injection groups at 50hpf. Injection of smg1 MO has no impact 

on heart morphogenesis, while coinjection of 100μM or 50μM upf1 MO results in a 

significant reduction in heart looping. Coinjection of 12.5μM upf1 MO together with 

smg1 MO results in a mild, non-significant reduction heart looping. Ventral views. G: 

Median with interquartile range, Kruskal-Wallis, Dunn’s multiple comparisons. ns: 

not significant, **: p<0.01, ***: p<0.001, ****: p<0.0001. 
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Having established an upper limit for upf1 MO concentration at 12.5µM where heart 

morphology is still mildly impacted (Figure 5.3F), a sub-phenotypic dosage of NMD-

targeting MOs (NMD KD: 0.5mM smg1, 10µM upf1) not expected to negatively 

impact on heart morphogenesis in WT embryos was injected into an incross of 

lamb1aΔ25 heterozygotes. At 50hpf, embryos were fixed and heart looping ratio was 

quantified through in situ hybridisation analysis of myl7 expression (Figure 5.4). 

Injection of NMD-targeting MOs does not significantly impact heart looping ratio 

and hearts appear morphologically normal when compared to uninjected or tp53 

MO-injected controls, in either lamb1a mutants or siblings (Figure 5.4D). However, 

morpholino-mediated knockdown of NMD pathway components does not result in 

recovery of lamb1a transcript levels when examined by ISH (compare Figure 4A’’, 

B’’, C’’) suggesting that NMD machinery is still active. Whilst knockdown of upf1 

could be increased sufficiently to inhibit NMD, it is likely that the resulting heart 

looping phenotype would be the result of mechanisms independent of lamb1a 

function (Figure 5.3G). 
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Figure 5.4 Morpholino-mediated knockdown of nonsense-mediated decay 

machinery does not recover lamb1a transcript or impact heart looping 

morphogenesis. 

mRNA in situ hybridisation analysis of lamb1a expression in lamb1a homozygous 

mutants following injection of a sub-phenotypic dose of NMD targeting morpholino 

(NMD KD) and quantitative analysis of NMD knockdown on heart looping 

morphology, analysed by myl7 expression at 50hpf. (A-A’’’) In uninjected controls, 

lamb1a is highly expressed in sibling embryos (A) and heart morphology is normal 

(A’). lamb1a expression is reduced in uninjected lamb1a homozygous mutants (A’’) 

and heart morphology appears normal (A’’’). (B-B’’’) In tp53 MO injected controls, 

lamb1a is highly expressed in sibling embryos (B) and heart morphology appears 

normal (B’). lamb1a expression is reduced in tp53 MO injected lamb1a homozygous 

mutants (B’’) and heart morphology appears comparable to sibling and uninjected 

controls (B’’’). (C-C’’’) In NMD knockdown embryos, lamb1a is highly expressed in 

sibling embryos (C) and heart morphology appears normal compared to controls 

(C’). lamb1a expression in NMD knockdown lamb1a homozygous mutants (C’’) is 

comparable to injection controls (A’’, B’’) and heart morphology appears normal 

(C’’’). (D) Quantification of heart looping ratio of all injection groups in lamb1a 

sibling and mutants at 50hpf. A mild, yet significant reducing in heart looping ratio is 

observed between uninjected siblings and uninjected lamb1a homozygous mutants. 

An increase in heart looping ratio is observed in NMD KD siblings compared to tp53 

MO only siblings. No significant difference is observed between siblings and lamb1a 

mutants subjected to NMD KD injection. A, A’’, B, B’’, C, C’’: lateral views, anterior 

left. A’, A’’’, B’, B’’’, C’, C’’’: dorsal views. D: Median with interquartile range, 

Kruskal-Wallis, Dunn’s multiple comparisons, ns: not significant, *: p<0.05, **: 

p<0.01 
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As use of NMD-targeting MOs could not recover lamb1a mutant transcript levels, it 

was unclear whether NMD was not successfully blocked, or whether the reduction in 

lamb1a transcript is due to an alternative mechanism of degradation (Schoenberg 

2012). To investigate the former, a secondary method to block NMD was 

performed, using the published NMD inhibitor (ethyl 2-{[(6,7 —dimethyl—3-oxo-

1,2,3,4-tetrahydro-2-quinoxalinyl)acetyl]amino}-4,5-dimethyl-3-

thiophenecarboxylate, NMDI14, NMDi) which functions by blocking the interaction 

between SMG7 and UPF1 (Martin et al., 2014). NMDi has previously been used in 

zebrafish to successfully inhibit NMD between 3dpf and 6dpf, preventing up-

regulation of compensating genes (El-Brolosy et al., 2019). However, as the lamc1 

phenotype is apparent at 2dpf and up-regulation of lamb1b is observed in lamb1a 

mutants at 1dpf, the time window when an increase in penetrance of the lamb1a 

phenotype would result in a clear looping phenotype similar to loss of lamc1 would 

be prior to 3dpf, thus requiring an earlier NMDi treatment window.  

 

Embryos obtained from an incross of lamb1aΔ25 heterozygous adults were incubated 

in either 10µM or 20µM NMDi (consistent with previously published concentrations) 

from 8hpf to 55hpf, alongside untreated and 1% DMSO controls. At 55hpf, embryos 

were fixed, heart morphology assessed by in situ hybridisation analysis of myl7 

expression, and heart looping ratio was quantified (Figure 5.5). Incubation with 

either 10µM or 20µM NMDi between 8hpf and 55hpf had no significant effect on 

heart looping morphogenesis at 55hpf in either WT siblings or lamb1aΔ25 mutants 

(Figure 5.5E) compared to control embryos. In addition, similar to injection of NMD-

pathway MOs, no obvious recovery of lamb1a expression was observed in NMDi-

treated embryos when compared to control groups (compare Figure 5.5A’’, B’’, C’’, 

D’’).  
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Together, neither published technique for blocking NMD impacted heart 

morphology of lamb1a mutants, however neither approach was able to recover the 

expression of lamb1a in lamb1a mutant embryos to wild type levels (Figure 5.4, 5.5). 

This suggests that either more nuanced techniques would be required to abolish 

NMD in lamb1a mutants, such as mutagenesis of upf1 (El-Brolosy et al., 2019), or 

that the lamb1a transcript is not subjected to NMD, and may be degraded by  

 

Figure 5.5 Pharmacological inhibition of nonsense-mediated decay does not recover 

lamb1a transcript levels or impact heart looping morphogenesis. 

mRNA in situ hybridisation analysis of lamb1a expression in lamb1a homozygous 

mutants following treatment with two concentrations of the NMD inhibitor (NMDi) 

between 8hpf-55hpf, and subsequent quantitative analysis of treatment on heart 

looping analysed by myl7 expression at 55hpf. (A-A’’’) In untreated controls, lamb1a 

is highly expressed in sibling embryos (A) and heart morphology appears normal 

(A’). lamb1a expression is reduced in untreated lamb1a homozygous mutants (A’’) 

and heart morphology is comparable with wild type siblings (A’’’). (B-B’’’) In vehicle 

controls (1% DMSO), lamb1a is highly expressed in sibling embryos (B) and heart 

morphology appears comparable with untreated controls (B’). lamb1a expression is 

reduced in 1% DMSO treated lamb1a homozygous mutants (B’’) and heart 

morphology appears normal (B’’’). (C-D’’’) In embryos treated with either 10μM or 

20μM NMDi from 8hpf-55hpf, lamb1a is highly expressed in sibling embryos (C,D) 

and heart morphology appears comparable to controls (C’,D’). lamb1a expression in 

10μM or 20μM NMDi treated lamb1a homozygous mutant embryos (C’’,D’’) is 

comparable to controls (A’’, B’’) and heart morphology appears normal (C’’’,D’’’). (E) 

Quantification of heart looping ratio of all treated groups in lamb1a sibling and 

mutants at 55hpf. 10μM and 20μM treatments were run in parallel, but analysed 

separately. No significant differences are observed in heart looping morphogenesis 

in either treatment between any groups. A, A’’, B, B’’, C, C’’, D, D’’: lateral views, 

anterior left. A’, A’’’, B’, B’’’, C’, C’’’, D’, D’’’: dorsal views. E: Median with 

interquartile range, Kruskal-Wallis, Dunn’s multiple comparisons. 
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another RNA surveillance mechanism (Schoenberg and Maquat, 2012), or finally that 

Lamb1a regulates the expression of genes which are required to maintain its own 

expression. 

 

Despite clear down-regulation of lamb1a expression and location of PTC permissive 

for NMD of the lamb1a transcript (Figure 5.1), it was not possible to define whether 

lamb1a mutant transcripts are subject to NMD. However, as lamb1b exhibits clear 

up regulation in both mutant alleles of lamb1a, lamb1b represents a suitable 

candidate which could be compensating for the loss of lamb1a in regulation of heart 

looping morphogenesis and that lamb1a may be required to interact with lamc1 to 

regulate looping morphogenesis. To examine whether up-regulation of lamb1b is 

functionally compensating for loss of lamb1a, lamb1aΔ25 mutants were crossed into 

lamb1bΔ183 or lamb1bΔ428 background (promoter mutants lacking lamb1b transcript, 

Figure 4.19) to generate double lamb1 heterozygous adults. Analysis of lamb1b 

expression in embryos derived from an incross of double heterozygotes was carried 

out to confirm complete loss of lamb1b transcript in lamb1a; lamb1b double 

mutants (Figure 5.6). As previously described, lamb1a mutants up-regulate lamb1b 

at 30hpf (Figure 5.6A’, B’) and the deletion of the lamb1b promoter results in 

complete abolishment of lamb1b transcript in both wild type and lamb1a mutants 

(Figure 5.6A’’-A’’’, B’’-B’’’), removing the capacity for lamb1b to functionally 

compensate for loss of lamb1a.  

 

To determine whether up-regulation of lamb1b in lamb1a mutants functions to 

protect lamb1a mutants from heart looping defects, heart morphology at 55hpf was 

analysed by myl7 expression. At 55hpf, lamb1a; lamb1b double mutants do not 

display any significant reduction in heart looping ratio when compared to WT or 

single lamb1a or lamb1b mutants (Figure 5.7C, D). Therefore taking all mutant data 

for lamb1a and lamb1b into account, the absence of any heart looping phenotype 

shows that Lamb1a- or Lamb1b-containing Laminin trimers are not required to 

promote early heart looping morphogenesis. 
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Figure 5.6. lamb1b expression is abolished in lamb1a; lamb1b promoter double 

mutants. 

mRNA in situ hybridisation analysis of lamb1b expression in lamb1aΔ25; lamb1bΔ183 

heterozygous incross and lamb1aΔ25; lamb1bΔ428 heterozygous incross at 30hpf. (A-

A’’’) At 30hpf in WT embryos (A), lamb1b is expressed in the ventricular 

endocardium. lamb1aΔ25 mutants show misexpression of lamb1b throughout the 

endocardium at 30hpf (A’). lamb1b expression is completely absent from the heart 

in lamb1bΔ183 homozygous mutants (A’’) and double lamb1aΔ25; lamb1bΔ183 

homozygous mutants (A’’’). (B-B’’’) The same result is observed in the lamb1bΔ428 

allele. Dorsal views. V: ventricle, A: atrium. 
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Figure 5.7. lamb1 subunits are dispensable for heart looping morphogenesis. 

Quantitative analysis of heart morphology in WT, lamb1a, lamb1b and double 

lamb1a; lamb1b mutants at 55hpf by analysis of myl7 expression. (A-A’’’) 

Representative images of WT (A), lamb1aΔ25 homozygous mutant (A’), lamb1bΔ183 

homozygous mutants and lamb1aΔ25; lamb1bΔ183 double homozygous mutants (A’’’)  
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5.1.3 lamb1a is required to limit heart size, but is dispensable for heart looping 

morphogenesis 

 

Although lamb1a mutants do not exhibit clear abnormalities in heart looping 

morphogenesis when measured by looping ratio, upon closer examination lamb1a 

homozygous mutant hearts do not appear as compacted as their WT or lamb1b 

single mutant siblings (compare Figure 5.7A’ with A or A’’, and Figure 5.7B’ with B 

or B’’). Measuring the linear distance from the arterial pole to the venous pole at 

55hpf as a readout of heart compaction reveals an increase in pole-pole distance in 

the heart of lamb1a mutants compared to WT siblings, suggesting that while  

 

Figure 5.7 continued. 

at 55hpf. (B-B’’’) Representative images of WT (B), lamb1aΔ25 homozygous mutant 

(B’), lamb1bΔ428 homozygous mutants and lamb1aΔ25; lamb1bΔ428 double homozygous 

mutants (B’’’) at 55hpf. (C-C’’) Quantification of heart morphology in embryos 

derived from lamb1aΔ25; lamb1bΔ183 heterozygous incross. No combination of lamb1 

mutations have a significant effect on heart looping ratio (C). Loss of lamb1a 

significantly increases linear distance, not observed in single lamb1bΔ183 homozygous 

mutants and loss of lamb1b function does not increase the severity of the 

phenotype (C’). No significant differences are measured in heart area for any 

genotype at 55hpf, although lamb1aΔ25and lamb1aΔ25; lamb1bΔ183 homozygous 

mutants show a trend towards increased myl7 area. (D-D’’) Quantification of heart 

morphology in embryos derived from a lamb1aΔ25; lamb1bΔ428 heterozygous incross. 

No combination of mutations has a significant effect on heart looping ratio (D). Loss 

of lamb1a mildly increases linear distance, whilst loss of lamb1b function increases 

the severity of the phenotype (D’). No significant differences are measured in heart 

area for any genotype at 55hpf, although lamb1aΔ25and lamb1aΔ25; lamb1bΔ428 

homozygous mutants show a trend towards increased myl7 area (D’’). Ventral views. 

C-D’’: Median with interquartile range, Kruskal-Wallis, Dunn’s multiple comparisons 

ns: not significant, *: p<0.05, **: p<0.01, ***: p<0.001. 
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looping proceeds normally in lamb1a mutants, heart size could be affected (Figure 

5.7C’, D’). As looping ratio is not significantly altered in lamb1a mutants, this implies 

that in lamb1a mutants the looped distance is also greater, and would suggest that 

whilst lamb1a mutants do not have a reduction in heart looping, they may have an 

increase in heart size. To further characterise the morphology of lamb1a mutant 

hearts, the area of myl7 staining across the four genotypes was quantified as a proxy 

for heart size, revealing a trend towards increased heart size at 55hpf (5.7C’’, D’’). 

This analysis suggests that independent of heart looping, lamb1a may be required 

to restrict heart size during cardiac morphogenesis. 

 

To examine whether the mild increase in heart size in lamb1a mutants progresses 

past 2dpf, heart morphology at 72hpf was analysed by myl7 expression in embryos 

derived from a lamb1a; lamb1b heterozygote incross. By 72dpf, lamb1a mutant 

hearts are almost twice the size of either WT or lamb1b mutant hearts whilst overall 

heart morphology appears normal. Furthermore, loss of lamb1b does not further 

increase heart size (Figure 5.8C’, D’) demonstrating that lamb1a is required to limit 

heart size independent of lamb1b function. 
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Figure 5.8. lamb1a is required to restrict heart size independent of lamb1b 

Quantitative analysis of heart morphology in WT, lamb1a, lamb1b and double 

lamb1a; lamb1b mutants at 72hpf by analysis in situ hybridisation analysis of myl7 

expression. (A-A’’’) Representative images of WT (A), lamb1aΔ25 homozygous mutant 

(A’), lamb1bΔ183 homozygous mutants and lamb1aΔ25; lamb1bΔ183 double  
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Previous studies suggesting that lamb1a is dispensable for cardiac development 

focussed on heart laterality and morphogenesis at relatively early stages, prior to 

2dpf, in an ENU (N-ethyl-N-nitrosourea) mutant identified in forward genetic screen 

(Eeden et al., 1996; Hochgreb-Hägele et al., 2013; Karlstrom et al., 1996; Odenthal 

et al., 1996; Stemple et al., 1996). To confirm that the enlarged hearts found in the 

CRISPR-Cas9-generated lamb1a mutant alleles are related to the loss of lamb1a, 

and not an off-target effect of the mutagenesis, cardiac morphology was examined 

in an additional, previously-characterised lamb1a mutant allele guptj299a, generated 

by random ENU mutagenesis (Eeden et al., 1996; Karlstrom et al., 1996; Odenthal 

et al., 1996; Stemple et al., 1996), thought to disrupt splicing of the lamb1a 

transcript (A. Grierson, personal communication) (Figure 5.9). guptj299a mutants also 

display no significant reduction in heart looping ratio at 55hpf or 72hpf (Figure 5.9A-

B’, D, E), but have significantly larger hearts at 55hpf and 72hpf when compared to 

siblings (Figure 5.9C, C’, E). In addition, similar to both novel lamb1a CDS alleles,  

 

Figure 5.8 continued. 

homozygous mutants (A’’’) at 72hpf. (B-B’’’) Representative images of WT (B), 

lamb1aΔ25 homozygous mutant (B’), lamb1bΔ428 homozygous mutants and lamb1aΔ25; 

lamb1bΔ428 double homozygous mutants (B’’’) at 72hpf. lamb1aΔ25 hearts appear 

much larger than WT or lamb1b homozygous mutant hearts. (C-C’’) Quantification 

of heart morphology in embryos from a lamb1aΔ25; lamb1bΔ183 heterozygous incross 

(C). Loss of lamb1a, independent of lamb1b function results in a significant increase 

in myl7 area at 72hpf. No increase in heart size is observed in single lamb1bΔ183 

homozygous mutants (C’). (D-D’) Quantification of heart morphology in embryos 

from lamb1aΔ25; lamb1bΔ428 heterozygous incross. No combination of mutations has 

a significant impact on heart looping ratio (D). Loss of lamb1a, independent of 

lamb1b function results in a significant increase in myl7 area at 72hpf. No increase in 

heart size is observed in single lamb1bΔ428 homozygous mutants (D’). Ventral views. 

C-D’: Median with interquartile range, Kruskal-Wallis, Dunn’s multiple comparisons, 

ns: not significant, *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001. 
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Figure 5.9. guptj299a mutants have larger hearts and up-regulate lamb1b. 

Characterisation of heart morphology and lamb1b expression by mRNA in situ 

hybridisation in the lamb1a allele guptj299a. (A-B’) Representative images of sibling 

(A) and guptj299a (A’) myl7 expression at 55hpf and 72hpf (B, B’ respectively). guptj299a 

hearts have increased size compared to siblings. (C-C’) At 30hpf, lamb1b expression 

in guptj299a siblings is restricted to the ventricular endocardium of the heart (C). In 

guptj299a mutants, lamb1b is expressed throughout the endocardium (C’). (D-E) 

Quantification of heart morphology comparing siblings and guptj299a mutants at 

55hpf and 72hpf. guptj299a mutants do not display a significant reduction in heart 

looping ratio (D). guptj299a mutants exhibit significantly larger hearts at 55hpf and 

72hpf (E). A-B’: ventral views, C-C’: dorsal views. V: ventricle, A: atrium. D-E: Median 

with interquartile range, Kruskal-Wallis, Dunn’s multiple comparisons, ns: not 

significant, **: p<0.01, ****: p<0.0001. 
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guptj299a mutants display an up-regulation of lamb1b expression at 30hpf compared 

to siblings (Figure 5.9C, C’). Together these data support a novel role for Laminins in 

regulating cardiac size/restricting cardiac growth during development . 

 

To investigate the temporal requirement for lamb1a in restricting heart size, single 

lamb1a mutant heterozygous adults were incrossed and embryos fixed at 30hpf, 

55hpf, 63hpf and 72hpf to analyse heart looping ratio and heart area using in situ 

hybridisation analysis of myl7 expression, (Figure 5.10). At 30hpf, no significant 

difference in heart size or morphology is apparent between lamb1a mutants and WT 

siblings (Figure 5.10A, A’, G, G’), however by 55hpf lamb1a mutants have larger 

hearts than WT siblings, with a more pronounced phenotype in the lamb1aΔ19 allele 

(Figure 5.10B, B’, H, H’). At 55hpf, both lamb1a mutants display a mild reduction in 

heart looping ratio, which recovers by 63hpf (Figure 5.10E, K). Additionally, between 

55hpf and 72hpf, whilst sibling heart area is significantly reduced due to changes in 

morphology, lamb1a mutant hearts, whilst remaining significantly larger than their 

siblings do not significantly change in size. This suggests that whilst by 55hpf 

lamb1a mutants have larger hearts, loss of lamb1a does not continue to increase 

heart size, implying the critical window of lamb1a activity during heart looping is 

between 30hpf and 55hpf. A similar non-significant increase in heart area between 

55hpf and 72hpf is observed in the guptj299a allele. (Figure 5.10D, D’, J, J’, Figure 

5.9E).  

 

As a secondary method to confirm that lamb1a regulates size of the heart, the size 

of individual chambers was measured at 30hpf and 55hpf, using in situ hybridisation 

expression analysis of myh7l and myh6 to quantify size of the ventricle and atrium 

respectively (Figure 5.11). At 30hpf, no significant difference in chamber size is 

observed for either the atrium or ventricle (Figure 5.11A-A’, D-D’, C, F, G-G’, J-J’, I, 

L), however by 55hpf, both chambers in both alleles are significantly larger than their 

siblings (Figure 5.11B-B’ E-E’, C, F, H-H’, K-K’, I, L). 
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Figure 5.10. lamb1a is dispensable for heart looping morphogenesis, but is required 

to limit heart size. 

(A-D’) Representative images for time-course analysis of myl7 expression in 

lamb1aΔ19 heterozygous incross at 30hpf (A-A’), 55hpf (B-B’), 63hpf (C-C’) and 72hpf  
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Figure 5.10 continued. 

(D-D’). By 72hpf a clear increase in heart size is apparent. (E-F) Quantification of 

heart morphology in lamb1aΔ19 mutants and siblings. No significant reduction in 

heart looping ratio is observed between 30hpf to 72hpf between siblings and 

lamb1aΔ19 homozygous mutants, although a mild reduction in looping ratio in 

mutants is observed at 55hpf (E). By 55hpf a significant increase in myl7 area is 

present. No increase in lamb1aΔ19 mutant heart size is observed between 55hpf and 

63hpf, whilst sibling hearts are observed to become smaller (F). (G-J’) 

Representative images for time-course analysis of myl7 expression in lamb1aΔ25 

heterozygous incross at 30hpf (G-G’), 55hpf (H-H’), 63hpf (I-I’) and 72hpf (J-J’). By 

72hpf a clear increase in heart size is apparent. (K-L) Quantification of heart 

morphology in lamb1aΔ25 mutants and siblings. A significant reduction in heart 

looping ratio is observed at 55hpf between siblings and lamb1aΔ25 homozygous 

mutants, although this has recovered by 63hpf (K). By 63hpf a significant increase in 

myl7 area is present, with a non-significant increase apparent at 55hpf. No increase 

in lamb1aΔ25 mutant heart size is observed between 55hpf and 63hpf, whilst sibling 

hearts appear to reduce in size as the heart compacts (L). A, A’, G, G’: dorsal views. 

B-D’, H-J’: ventral views. E, F, K, L: Median with interquartile range, Kruskal-Wallis, 

Dunn’s multiple comparisons, ns: not significant, *: p<0.05, **: p<0.01, ****: 

p<0.0001. 
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Figure 5.11. lamb1a is required to limit chamber size. 

(A-B’) Representative images for time-course analysis of myh7l expression in 

lamb1aΔ19 heterozygous incross at 30hpf (A-A’), 55hpf (B-B’). (C) Quantification of 

ventricular size demonstrates a subtle but significant increase in lamb1aΔ19 

homozygous mutants at 55hpf. (D-E’) Representative images for time-course 

analysis of myh6 expression in lamb1aΔ19 heterozygous incross at 30hpf (D-D’), 55hpf 

(E-E’). (F) Quantification of atrial size demonstrates a subtle but significant increase  
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Collectively these data highlight a novel role for lamb1a in limiting the size of the 

developing heart, but demonstrate it is dispensable for early heart looping 

morphogenesis. Careful time course analysis suggests that the critical window for 

lamb1a function is between 30hpf and 55hpf, identical to that of the role for lamc1 

in promoting heart looping (Figure 3.11, 3.12). Additionally, while lamb1b is up-

regulated in the hearts of lamb1a mutants, lamb1b does not play a role in mediating 

the lamb1a mutant phenotype. 

 

5.1.4 Lamb1a-Lamc1 containing Laminin isoforms are required to limit heart size 

 

As lamc1 is the sole identified Laminin gamma subunit expressed in the heart during 

early cardiac morphogenesis, loss of lamc1 is predicted to prevent the formation of 

all lamb1a containing isoforms (Libby et al., 2000; Yurchenco et al., 1997). If this 

hypothesis is correct, lamc1 F0 mutants would also display the increased heart size 

phenotype exhibited in lamb1a mutants. In agreement with this, while at 72hpf 

lamc1 F0 mutants continue to display a significant reduction in heart looping ratio 

compared to injection controls (Figure 5.12B), they also exhibit as a significant 

increase in heart size (Figure 5.12C), similar to that observed in lamb1a mutants.  

 

Figure 5.11 continued. 

in lamb1aΔ19 homozygous mutants at 55hpf. (G-H’) Representative images for time-

course analysis of myh7l expression in lamb1aΔ25 heterozygous incross at 30hpf (G-

G’), 55hpf (H-H’). (I) Quantification of ventricular size demonstrates a subtle but 

significant increase in lamb1aΔ25 homozygous mutants at 55hpf. (J-K’) Representative 

images for time-course analysis of myh6 expression in lamb1aΔ25 heterozygous 

incross at 30hpf (J-J’), 5hpf (K-K’). (L) Quantification of atrial size demonstrates a 

subtle but significant increase in lamb1aΔ25 homozygous mutants at 55hpf. A, A’, D, 

D’, G, G’, J, J’: dorsal views. B, B’, E, E’, H, H’, K, K’: ventral views. C, F, I, L: Median 

with interquartile range, Kruskal-Wallis, Dunn’s multiple comparisons, ns: not 

significant, *: p<0.05, **: p<0.01, ***: p<0.001. 
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Characterisation of heart area at 30hpf and 55hpf (Figure 5.13D) reveals that lamc1 

may be required for heart size at 30hpf but not at 55hpf and may suggest a possible 

underlying mechanism for the looping phenotype observed (See Chapter 8). 

 

It is possible that lamb1a and lamc1 may function independently to limit heart size 

during development, and as such loss of both lamb1a and lamc1 would result in 

hearts larger than single mutants. However, if lamb1a and lamc1 interact together in 

the same complex, heart area should be indistinguishable between either single 

mutant or the double mutant. To examine this, lamc1 F0 mutants were generated in 

the lamb1aΔ25 background and the resulting cardiac phenotypes characterised at 

55hpf and 72hpf using myl7 expression to analyse heart looping ratio and heart 

area. At both 55hpf and 72hpf, independent of lamb1a genotype, lamc1 F0 mutants 

display a reduction in heart looping ratio (Figure 5.13D-D’, E, Figure 5.14D-D’, E). 

As previously described, lamb1a mutants either injected with guides targeting lamc1 

or uninjected controls have a mild non-significant reduction in heart looping ratio at 

55hpf (Figure 5.13E), which recovers by 72hpf (Figure 5.14E). However, both 

lamb1aΔ25 and lamc1 F0 mutants have significantly increased heart size by 72hpf 

(Figure 5.14F), not observed at 55hpf (Figure 5.13F). Of note is no additive effect of 

loss of lamc1 and lamb1a at 72hpf with regards to heart size (Figure 5.14F), 

suggesting that Lamb1a and Lamc1 function in the same Laminin isoform to restrict 

heart size. Whilst lamc1 F0 mutants and lamb1a mutants are indistinguishable with 

respect to heart area at 72hpf (Figure 5.12C, 5.14D-D’, F), lamb1a mutants do not 

display a significant reduction in heart looping ratio compared to sibling controls at 

72hpf as observed in lamc1 F0 mutants (Figure 5.14E). Together this suggests that 

heart looping and control of heart size are regulated by distinct Laminin isoforms 

and that a separate beta chain is functioning together with Lamc1 to promote 

looping morphogenesis. 
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Figure 5.12. lamc1 is required to restrict heart size and promote heart 

morphogenesis. 

Quantitative analysis of heart looping at 72hpf and heart area at 30hpf, 55hpf, and 

72hpf in lamc1 F0 mutants. (A-A’’’) Representative images of mRNA in situ 

hybridisation analysis of myl7 at 72hpf to examine heart morphology in uninjected 

(A), lamc1 targeting gRNA only (A’), Cas9 only (A’’) and lamc1 F0 mutants (A’’’). 

lamc1 F0 mutants at 72hpf display a severe heart looping phenotype but are also 

clearly larger than injection controls (A’’’). (B) Quantification of heart looping ratio in 

lamc1 F0 mutants and control groups at 72hpf; lamc1 F0 mutants have a significant 

reduction in heart looping ratio compared to gRNA only or Cas9 only injection 

controls. (C) Quantification of myl7 area in lamc1 F0 mutants and control groups at  
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Figure 5.12 continued. 

72hpf. lamc1 F0 mutants have significantly larger hearts than any control group. (D) 

Quantification of myl7 area in lamc1 F0 mutants and control groups at 30hpf and 

55hpf. At 30hpf, lamc1 F0 mutants have significantly smaller hearts compared to 

uninjected controls and gRNA only injected controls, which has recovered by 55hpf. 

No significant differences are observed between uninjected, lamc1 targeting gRNA 

or Cas9 only controls, however lamc1 F0 mutants have a significant reduction in 

heart looping ratio at 55hpf when compared to any control group. A-A’’’: dorsal 

views. B-D: Median with interquartile range, Kruskal-Wallis, Dunn’s multiple 

comparisons, ns: not significant, *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001. 
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Figure 5.13. The lamc1 cardiac phenotype is epistatic to lamb1a. 

mRNA in situ hybridisation analysis of myl7 expression at 55hpf in lamb1a, lamc1 F0 

mutants and controls. (A-D’) Representative images of mRNA in situ hybridisation 

analysis of myl7 at 55hpf to examine heart morphology in uninjected sibling (A), 

uninjected lamb1aΔ25 mutants (A’), gRNA only sibling (B), gRNA only lamb1aΔ25  
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Figure 5.13 continued. 

mutants (B’), Cas9 only sibling (C), Cas9 only lamb1aΔ25 mutants (C’), lamc1 F0 

mutants (D) and lamb1aΔ25; lamc1 F0 mutants (D’). (E) Quantification of looping ratio 

at 55hpf in lamb1a; lamc1 F0 mutants and controls. lamc1 F0 have a significant 

reduction in heart looping ratio compared to injection controls in lamb1a siblings. 

lamb1aΔ25; lamc1 F0 double mutants have a non-significant reduction in heart 

looping compared to lamb1aΔ25 injection controls. (F) Quantification of myl7 area at 

55hpf in lamb1a; lamc1 F0 mutants and controls, no significant differences are 

observed. A-D’: ventral views. E, F: Median with interquartile range, Kruskal-Wallis, 

Dunn’s multiple comparisons, ns: not significant, ****: p<0.0001. 
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Figure 5.14. Laminins perform distinct roles during heart development. 

mRNA in situ hybridisation for myl7 at 72hpf in lamb1a, lamc1 F0 mutants and 

controls. (A-D’) Representative images of mRNA in situ hybridisation analysis of 

myl7 expression at 72hpf to examine heart morphology in uninjected sibling (A), 

uninjected lamb1aΔ25 mutants (A’), gRNA only sibling (B), gRNA only lamb1aΔ25 

mutants (B’), Cas9 only sibling (C), Cas9 only lamb1aΔ25 mutants (C’), lamc1 F0  
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The only remaining Laminin beta subunit expressed in the heart during early looping 

morphogenesis is lamb2 (Figure 3.2, 3.3, 3.12), the expression of which is 

unchanged following loss of lamb1a; lamb1b or both lamb1 subunits (Figure 4.19, 

5.15), suggesting an NMD-induced compensation mechanism may not be acting, 

but that endogenous lamb2 could act together with lamc1, Furthermore, as 

Lamb1a-containing trimers are only required to limit heart size, this supports a role 

for lamb2 function in acting together with lamc1 to promote heart looping. This 

would suggest that loss of lamb1a and lamb2 would recapitulate the lamc1 F0 

phenotype. To investigate this possible role for lamb2 in heart development, 

CRISPR F0 mutagenesis (Burger et al., 2016; Wu et al., 2018) was undertaken, a 

similar approach used to generate lamc1 F0 mutants (Figure 5.16A). Four gRNAs 

targeting lamb2 were injected together with active Cas9 protein into an incross of 

lamb1aΔ25 heterozygous carriers and embryos were fixed at 55hpf and 72hpf. Heart 

looping ratio and heart area was subsequently quantified using in situ hybridisation 

analysis of myl7 expression (Figure 5.16, 5.17). lamb2 stable mutants have no clear 

morphological defects, (Jacoby et al., 2009) therefore to confirm successful 

mutagenesis of the lamb2 gene, gel electrophoresis of PCR-amplified mutagenesis 

target regions was used to identify lamb2 F0 mutants, as described in Chapter 3 

 

Figure 5.14 continued. 

mutants (D) and lamb1aΔ25; lamc1 F0 mutants (D’). (E) Quantification of looping ratio 

at 72hpf in lamb1a ;lamc1 F0 mutants and controls. lamc1 F0 have a significant 

reduction in heart looping ratio compared to injection controls. Loss of lamc1 results 

a phenotype independent of lamb1a genotype. (F) Quantification of myl7 area at 

72hpf in lamb1a; lamc1 F0 mutants and controls. No significant differences are 

present between the myl7 area of lamb1a, lamc1 and lamb1a; lamc1 F0 double 

mutants and are significantly larger than lamb1a siblings or injection controls. E, F: 

Median with interquartile range, Kruskal-Wallis, Dunn’s multiple comparisons. 

Ventral views ns: not significant, *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001. 
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Figure 5.15. lamb2 expression is unchanged by loss of lamb1a and/or lamb1b. 

mRNA in situ hybridisation analysis of lamb2 expression at 30hpf in single or double 

lamb1a; lamb1b mutants. (A-A’’’) lamb2 is expressed throughout the myocardium in 

WT embryos (A), and expression is unchanged in lamb1aΔ25 homozygous mutants 

(A’), lamb1bΔ183 homozygous mutants (A’’) or lamb1aΔ25; lamb1bΔ183 double 

homozygous mutants (A’’’). (B-B’’’) The same result is observed in the lamb1b428 

allele. Dorsal views. V: ventricle, A: atrium. 
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Figure 5.16. lamb2 is dispensable for heart looping at 55hpf. 

Generation of lamb2 F0 mutants by CRISPR-Cas9 genome editing, and 

characterisation by mRNA in situ hybridisation analysis of myl7 expression at 55hpf  
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(data not shown). Contrary to expectations, at both 55hpf (Figure 5.16) and 72hpf 

(Figure 5.17), lamb2 F0 mutants display no clear defects in heart morphology or 

significant reduction in heart looping ratio (Figure 5.16F, Figure 5.17E). As 

expected, loss of lamb2 does not impact heart size at 55hpf or 72hpf in either wild 

type or lamb1a mutants (Figure 5.16G, Figure 5.17F). Together, this demonstrates 

that while lamb1a and lamc1 interact during development to limit heart size, neither 

lamb1a or lamb2 interact with lamc1 to promote looping morphogenesis, 

suggesting an as-yet unidentified Laminin beta subunit regulates this aspect of 

cardiac morphogenesis. 

 

 

 

 

 

 

Figure 5.16 continued. 

in lamb1a, lamb2 F0 mutants and controls. (A) Schematic showing lamb2 genomic 

DNA, coding exons in blue, non-coding exons in red, based on danRer10/GRCz10 

(oblique cut line represents 25kbp). Four gRNAs (spacer highlighted in blue, PAM 

highlighted in red) targeting the exons 6, 12, 20 and 24 were injected to generate 

lamb2 F0 mutants. (B-E’) Representative images of mRNA in situ hybridisation 

analysis of myl7 at 55hpf to examine heart morphology in uninjected sibling (B), 

uninjected lamb1aΔ25 mutants (B’), gRNA only sibling (C), gRNA only lamb1aΔ25 

mutants (C’), Cas9 only sibling (D), Cas9 only lamb1aΔ25 mutants (D’), lamb2 F0 

mutants (E)  and lamb1aΔ25; lamb2 F0 mutants (E’). (F) Quantification of looping ratio 

at 55hpf in lamb1a; lamb2 F0 mutants and controls. No significant differences are 

observed. (G) Quantification of myl7 area at 55hpf in lamb1a; lamb2 F0 mutants and 

controls, no significant differences are observed. B-E’: ventral views. F, G: Median 

with interquartile range, Kruskal-Wallis, Dunn’s multiple comparisons. 
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Figure 5.17. lamb2 is dispensable for early heart morphogenesis. 

mRNA in situ hybridisation analysis of myl7 at 72hpf in lamb1a;lamb2 F0 mutants 

and controls. (A-D’) Representative images of mRNA in situ hybridisation analysis of 

myl7 at 72hpf to examine heart morphology in uninjected sibling (A), uninjected 

lamb1aΔ25 mutants (A’), gRNA only sibling (B), gRNA only lamb1aΔ25 mutants (B’),  
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5.1.5 lamb1a mutants display mis-regulation of flow responsive genes  

 

Having defined a requirement for a Lamb1a-Lamc1 containing Laminin isoform in 

restricting heart size during heart looping morphogenesis, the mechanisms 

underlying the lamb1a mutant phenotype were investigated. A failure to restrict 

heart size may result from improper patterning of the heart which may impact on 

heart function and lead to increased heart size. nppa is a marker of the outer 

curvature of the ballooning chambers, expressed in the working myocardium at 

55hpf (Figure 5.18 A, B) (Auman et al., 2007; Grassini et al., 2018). In both lamb1a 

mutant alleles, expression of nppa is unchanged, demonstrating that the chambers 

are undergoing ballooning correctly and suggesting that heart function is not 

altered in lamb1a mutants, as nppa expression is sensitive to heart contractility 

(Auman et al., 2007). nppa and the related gene nppb are part of an inhibitory 

feedback loop with bmp4 which is required to restrict the valve program to the AVC 

in the zebrafish heart (Grassini et al., 2018). Whilst nppa marks working myocardium, 

bmp4 is expressed in the non-working myocardium where it is normally expressed in 

small rings of cells at the inflow tract, outflow tract and atrioventricular canal (Figure 

5.18C, D). However, in lamb1a mutants, bmp4 expression appears up-regulated in 

the ventricle of just over half of lamb1a mutants compared to siblings. Additionally, 

bmp4 expression is observed in lamb1a mutants to be expanded at the inflow tract  

 

 

Figure 5.17 continued. 

Cas9 only sibling (C), Cas9 only lamb1aΔ25 mutants (C’), lamb2 F0 mutants (D) and 

lamb1aΔ25; lamb2 F0 mutants (D’). (E) Quantification of looping ratio at 72hpf in 

lamb1a; lamb2 F0 mutants and controls. No significant differences are observed. (F) 

Quantification of myl7 area at 72hpf in lamb1a; lamb2 F0 mutants and controls, no 

significant differences are observed. A-D’: ventral views. E, F: Median with 

interquartile range, Kruskal-Wallis, Dunn’s multiple comparisons, ns: not significant, 

**: p<0.01, ****: p<0.0001. 
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of the heart (Figure 5.18C-D’). This suggests that the patterning of lamb1a mutant 

hearts is only mildly affected and that this is unlikely to be the basis for the increase 

in heart size in the lamb1a mutants. 

 

The increase in size of lamb1a mutant hearts is reminiscent of the enlarged heart 

phenotype observed in mutations affecting the Cerebral Cavernous Malformation 

(CCM) pathway (Mably et al., 2006, 2003). ccm mutants exhibit an up-regulation of 

the mechanotransductive transcription factor klf2a through blood-flow independent 

mechanisms, the exact mechanism by which heart size is then affected is unclear, 

 

Figure 5.18. lamb1a mutants display mild cardiac patterning defects. 

mRNA in situ hybridisation expression analysis of cardiac patterning markers bmp4 

and nppa in lamb1a mutants. (A-B’) In siblings at 55hpf, nppa is expressed in the 

working myocardium and excluded from the atrioventricular canal (A, B). Expression 

of nppa is unchanged in lamb1aΔ19 (A’) or lamb1aΔ25 homozygous mutants (B’). (C-D’) 

In siblings at 55hpf, bmp4 is expressed in the non-working myocardium: outflow 

tract (C, D, black arrowhead), atrioventricular canal (C, D, magenta arrowhead) and 

inflow tract (C, D, green arrowhead). Expression of bmp4 is expanded into the 

ventricle in lamb1a mutants (C’, D’, red arrowhead). In a subset of lamb1aΔ25 

mutants, bmp4 expression is expanded at the inflow tract (D’, blue arrowhead) 

embryos. Ventral views. V: ventricle, A: atrium. 
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although evidence suggests modulation of the ROCK cytoskeletal effector (Lisowska 

et al., 2018). Classically, klf2a is regulated by blood-flow, where it is required to 

regulate endocardial ballooning and initiation of the valve programme at the AVC 

(Dietrich et al., 2014; Heckel et al., 2015; Vermot et al., 2009). Furthermore, lamb1b, 

a flow-dependent gene (Chapter 3) is up-regulated in lamb1a mutants, again 

suggesting a similarity between lamb1a mutants and ccm mutants. 

 

To examine whether the mechanism acting in lamb1a mutant hearts is similar to that 

underlying the cardiac defects in ccm mutants, embryos from a lamb1a 

heterozygous incross were injected with a tnnt2a morpholino to block heart 

contractility, thus abolishing blood flow (Sehnert et al., 2002). Expression of klf2a 

and lamb1b were then characterised at 30hpf by mRNA in situ hybridisation (Figure 

5.19). 
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Figure 5.19 lamb1a mutants display flow-independent expression of flow-

dependent genes. 

mRNA in situ hybridisation analysis of the flow dependent genes klf2a and lamb1b 

under no flow conditions in lamb1a mutants. (A-A’) klf2a is expressed predominantly  
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In sibling uninjected embryos, klf2a expression is localised to predominantly the 

arterial pole endocardium (Figure 5.19A), whereas uninjected lamb1a mutants 

misexpress klf2a more broadly throughout the heart and also have prominent 

expression of klf2a in the head (Figure 5.19A’). Morpholino-mediated knockdown of 

tnnt2a in sibling embryos results in almost total loss of klf2a expression in the 

endocardium (Figure 5.19C). Loss of heart contractility in lamb1a mutants results in 

reduced endocardial expression of klf2a compared tp53 MO injected lamb1a 

mutant controls however, klf2a is still expressed at higher levels in lamb1a mutant 

tnnt2a morphants compared to tnnt2a morphant siblings. Intriguingly, loss of heart 

contractility does not affect klf2a expression in the head of lamb1a mutants (Figure 

5.19C’). Together, upon loss of heart contractility, klf2a is absent in sibling embryos 

but some residual expression is retained specifically in lamb1a mutants, suggesting 

that misexpression of klf2a in the mutants is independent of heart function and 

probably blood flow. 

 

Figure 5.19 continued. 

at the arterial pole in sibling embryos (A), but is misexpressed in the endocardium of 

lamb1aΔ25 mutants and also prominently up-regulated in the head (A’, arrowhead). 

(B-B’) Expression of klf2a is unchanged in sibling (B) or lamb1aΔ25 mutants injected 

with tp53 MO (B’). (C-C’) klf2a expression is almost completely absent in sibling 

embryos injected with tnnt2a MO (C). However, klf2a expression in the heart is still 

present in lamb1aΔ25 mutants, although to a lesser degree than control injected 

embryos (C’), and the up-regulated expression in the head is retained (A’, B’,C’). (D-

D’) lamb1b is expressed in the ventricular endocardium in sibling embryos (D, 

arrowhead), but is misexpressed throughout in the endocardium of lamb1aΔ25 

mutants (D’, arrowhead). (E-E’) Expression of lamb1b is unchanged in sibling (E) or 

lamb1aΔ25 mutants injected with tp53 MO (E’). (F-F’) lamb1b expression is almost 

completely absent in sibling embryos injected with tnnt2a MO (F), whilst lamb1b 

expression is still present in lamb1aΔ25 mutants (F’), although to a lesser degree than 

control injected embryos. Dorsal views. V: ventricle, A: atrium. 
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To determine whether loss of lamb1a specifically affects expression of klf2a through 

blood-low independent mechanisms or whether a common mechanism of blood 

flow sensation is altered upon loss of lamb1a, expression of lamb1b was examined 

following tnnt2a knockdown in lamb1a mutants. Similar to klf2a, lamb1b expression 

in the endocardium is maintained in lamb1a mutants injected with tnnt2a-targeting 

morpholino (Figure 5.19F’), albeit at lower levels when compared with lamb1a 

mutant embryos injected with control morpholino (Figure 5.19E’). This is in contrast 

to the loss of lamb1b expression in sibling embryos injected with tnnt2a morpholino 

(Figure 5.19D-F). Together these data demonstrate that the misexpression of two 

flow-dependent genes, klf2a and lamb1b in lamb1a mutants is flow-independent, 

suggesting that misregulation of flow sensing pathways or the improper response to 

blood flow sensation may result in larger hearts. 

 

To investigate whether increased shear stress is responsible for the lamb1a 

phenotype, blood viscosity was lowered through morpholino-mediated knockdown 

of the transcription factor gata1a (Hsu et al., 2019), a master regulator of 

erythropoiesis (Brownlie and Zon, 1999). Control and gata1a injected embryos were 

fixed at 55hpf to examine the expression of the haemoglobin subunit hbbe1.1 

(hemoglobin beta embryonic-1.1) (Paffett-Lugassy et al., 2007; Quinkertz and 

Campos-Ortega, 1999) by mRNA in situ hybridisation to confirm efficiency of gata1a 

knockdown. gata1a knockdown in lamb1a sibling embryos results in almost 

complete loss of expression of hbbe1.1 when compared to uninjected or tp53 

injection controls at 55hpf (Figure 5.20A-C, one experimental repeat). Control and 

gata1a injected embryos were also fixed at 72hpf to examine the heart morphology 

by mRNA in situ hybridisation of myl7. Preliminary analysis suggests that loss of 

Gata1a function and reduction in blood viscosity does not significantly impact on 

heart looping morphogenesis at 72hpf (Figure 5.20D) and does not rescue lamb1a 

mutant heart size to wild type (Figure 5.20E). This supports the notion that changes 

to up-regulation of klf2a in lamb1a mutants is unlikely to be due to increased shear 

stress, although klf2a expression was not examined in gata1a morphants. 
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Figure 5.20. Knockdown of gata1a does not rescue heart size in lamb1a mutants. 

mRNA in situ hybridisation analysis of the effect of gata1a knockdown on lamb1a 

cardiac morphology. (A-A’’) Representative images of hbbe1.1 expression in 

uninjected sibling embryos at 55hpf (A). Representative images of myl7 expression 

in uninjected sibling (A’) and lamb1aΔ25 mutants (A’’) at 72hpf. (B-B’’) Representative 

images of hbbe1.1 expression in tp53 MO injected sibling embryos at 55hpf (B). 

Representative images of myl7 expression in tp53 MO injected sibling (B’) and 

lamb1aΔ25 mutants (B’’) at 72hpf. (C-C’’) In gata1a MO injected embryos, hbbe1.1  
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As a separate method to test the links between blood flow sensation and increased 

heart size, blood viscosity was increased through erythropoietin a (epoa) mRNA 

injection at the 1-cell stage. Epoa acts through the conserved Epo receptor (Paffett-

Lugassy et al., 2007) stimulating a JAK-STAT axis, promoting erythropoeisis and 

resulting in an increase in erythrocyte number and blood viscosity (Koury and 

Bondurant, 1991). As klf2a expression is sensitive to increased shear stress, 

increasing blood viscosity through epoa mRNA injection (Hsu et al., 2019) would be 

predicted to increase klf2a expression. Similarly, if increased klf2a expression is the 

basis for the enlarged hearts observed in lamb1a mutants, epoa mRNA-injected 

embryos would be predicted to have enlarged hearts by 72hpf, phenocopying the 

lamb1a mutant. To examine whether increased blood content could be sufficient to 

drive an increase in heart size, lamb1a heterozygotes were outcrossed to WT and 

embryos injected with epoa mRNA or water (sham). lamb1a heterozygous embryos 

were included in the analysis alongside WT since examining whether lamb1a 

heterozygotes are sensitised to increased blood viscosity may provide a stronger 

link between the role of blood flow and increased heart size in lamb1a mutants. 

 

 

 

 

Figure 5.20 continued. 

expression is absent (C). Representative images of myl7 expression in gata1a 

knockdown sibling (C’) and lamb1aΔ25 mutants (C’’) at 72hpf. (D) Quantification of 

heart looping ratio in sibling and lamb1aΔ25 mutants at 72hpf across all injection 

groups. No significant differences are observed. (E) Quantification of myl7 area in 

sibling and lamb1aΔ25 mutants at 72hpf across all injection groups. lamb1aΔ25 mutants 

subject to knockdown still display a significant increase in heart area compared to 

siblings. A, B, C: lateral views, anterior left. A’, A’’, B’, B’’, C’, C’’: ventral views. D, E: 

Median with interquartile range, Kruskal-Wallis, Dunn’s multiple comparisons. One 

experimental repeat, ns: not significant, **: p<0.01, ***: p<0.001 
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To first demonstrate that epoa mRNA injection increases erythropoiesis, hbbe1.1 

expression was analysed in injected embryos. Both WT and lamb1a heterozygous 

embryos injected with epoa mRNA at the 1-cell stage display greatly increased 

expression of hbbe1.1 expression at 55hpf (compare Figure 5.21A, A’’ to B, B’’ and 

C, C’’). Having confirmed that epoa mRNA increases erythrocyte number, the impact 

of this on heart morphology at 72hpf was analysed by myl7 expression (Figure 5.21 

A-C, A’’’-C’’’). Increase in blood viscosity has no significant impact on heart looping 

at 72hpf in either WT embryos or lamb1a heterozygotes (Figure 5.21D). However, 

compared to sham injections lamb1a heterozygotes display a mild, yet significant 

increase in myl7 area, not observed in WT embryos (Figure 5.21E), suggesting that 

lamb1a heterozygotes may be sensitised to increased blood flow. As manipulation 

of blood viscosity is not sufficient to increase heart size sufficiently to recapitulate 

the mutant phenotype and klf2a and lamb1b display blood flow-independent 

regulation in lamb1a mutants, these data suggest that increased shear stress is not 

responsible for increased heart size in lamb1a mutants. 
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Figure 5.21. Increasing blood flow is not sufficient to increase heart size. 

mRNA in situ hybridisation analysis of the impact of increased blood flow. (A-A’’’) 

Representative images of hbbe1.1 expression in uninjected WT (A) and lamb1aΔ25 

heterozyogtes at 55hpf (A’’). Representative images of myl7 in uninjected WT (A’) 

and lamb1aΔ25 heterozyogtes at 72hpf (A’’’). (B-B’’’) Representative images of 

hbbe1.1 expression in sham injected WT (B) and lamb1aΔ25 heterozyogtes at 55hpf 

(B’’). Representative images of myl7 in sham injected WT (B’) and lamb1aΔ25 

heterozygotes at 72hpf (B’’’). (C-C’’) In epoa mRNA-injected embryos, hbbe1.1 

expression is up-regulated (C, C’’). Representative images of myl7 expression in 

epoa mRNA-injected WT (C’) and lamb1aΔ25 heterozygotes (C’’’) at 72hpf. (D) 

Quantification of heart looping ratio in WT and lamb1a heterozygotes at 72hpf 

across all injection groups. No significant differences are observed. (E) 

Quantification of myl7 area in sibling and lamb1a heterozygotes at 72hpf across all  
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Blood-flow-independent misexpression of klf2a in lamb1a mutants is similar to the 

cardiac phenotype described in ccm mutants, in which KLF2 expression is regulated 

through the MEKK3-MEK5-ERK5 axis (Otten et al., 2018; Zhou et al., 2016, 2015). 

To investigate whether lamb1a mutants have increased activity of the MEK5-ERK5 

axis, phosphoERK (pERK) levels, a marker of ERK activity, were analysed in lamb1a 

mutants by immunohistochemistry (E. Noël Figure 5.22). 

 

At 30hpf, only a small number of pERK positive cells are found in the heart tube 

(visualised with the membrane maker Alcama) and the surrounding tissue (Figure 

5.22 A-A’’, E. Noël). lamb1a mutants display an increase in pERK staining when 

compared to siblings, both within the heart) and in the surrounding tissue (Figure 

5.22 B-B’’, E. Noël), which may represent the second heart field. This suggests that 

an increase in ERK activity may underly the flow-independent up regulation of klf2a 

in the lamb1a mutants, further supporting this may drive an increase in heart size. 

Having established that lamb1a mutants display increased in pERK staining and 

blood flow independent regulation of klf2a, a likely candidate for driving increase in 

heart size is ERK5 (Otten et al., 2018; Zhou et al., 2016, 2015).  

 

To test whether ERK5 activity is responsible for the lamb1a mutant cardiac 

phenotype, lamb1a embryos were treated with the ERK5 inhibitor XMD17-109 

(ERK5i) (Elkins et al., 2013; Gilbert et al., 2017) between 24hpf and 55hpf, the most 

likely critical window of function for lamb1a in heart morphogenesis. At 55hpf the  

compound was removed from the embryos, which were thoroughly washed and 

 

Figure 5.21 continued. 

injection groups. A mild, but significant increase in myl7 area is observed between 

epoa mRNA-injected lamb1a heterozygotes and sham injected lamb1a 

heterozygotes A, A’’, B, B’’, C, C’’: lateral views, anterior left. A’, A’’’, B’, B’’’, C’, C’’’: 

ventral views. D, E: Median with interquartile range, Kruskal-Wallis, Dunn’s multiple 

comparisons, ns: not significant, *: p<0.05. 
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allowed to develop until 72hpf when cardiac morphology was analysed by myl7 

expression (Figure 5.23A-C’). Preliminary analysis suggests that inhibition of ERK5 

during early heart looping morphogenesis does not impact on heart looping ratio 

(Figure 5.23D) or rescue heart size to wild type in lamb1a mutants (Figure 5.23E), 

suggesting that a separate ERK could be driving increase in heart size in lamb1a 

mutants, distinct from ERK5 (McCain, 2013). 
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Figure 5.22. lamb1a mutants display an increase in pERK at 30hpf. 

(A-A’’) Representative maximum intensity projection confocal images of sibling 

heart using immunohistochemistry for the cell membrane marker Alcama (A) to mark 

the myocardium of the heart. pERK staining (A’) is present throughout the embryo. 

The majority of pERK is mainly observed outside the heart tube (A’’). (B-B’’) 

Representative maximum intensity projection confocal images of a lamb1a 

homozygous mutant heart using the cell membrane marker Alcama (B) to mark the 

myocardium of the heart. pERK staining (B’) is increased relative to siblings both in 

the heart (arrowhead) and in the tissue surrounding the heart (asterisk). The majority 

of pERK is mainly observed outside the heart tube, with elevated expression at the 

venous pole (B’’). Dorsal views. V: ventricle, A: atrium. Immunohistochemistry 

performed by E. Noël. 
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Figure 5.23. Inhibition of ERK5 activity does not rescue the lamb1a phenotype. 

mRNA in situ hybridisation analysis of the effect of ERK5i treatment on heart 

morphology in siblings and homozygous lamb1a mutants. (A-A’) Representative 

images of myl7 expression in untreated sibling embryos (A) or untreated lamb1a 

homozygous mutants (A’). (B-B’) In vehicle control treated embryos (1% DMSO) 

heart morphology in sibling embryos (B) or lamb1a homozygous mutants (B’) is 

unaffected. (C-C’) Inhibition of ERK5i activity between 24hpf-55hpf does not appear  
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In conclusion, I have defined distinct roles for Laminin complexes during heart 

morphogenesis (Figure 5.24). Loss of lamb1a does not impact on heart looping 

morphogenesis, but is required together with lamc1 to limit the size of the heart. 

lamb1a mutants display a mis-regulation of flow-sensing pathways, and also display 

an increase in ERK activity, which provide insight as to the possible developmental 

mechanisms which Laminins act through during cardiac development. 

 

5.2 Discussion 
 

I have demonstrated for the first time that Lamb1a/Lamc1-containing Laminin 

trimers are required to regulate heart size during cardiac looping. While mutations in 

lamb1a have previously been isolated in forward genetic screens identifying roles in 

gut looping, notochord vacuolation, lens and neuronal development (Eeden et al., 

1996; Hochgreb-Hägele et al., 2013; Karlstrom et al., 1996; Odenthal et al., 1996; 

Parsons et al., 2002; Pollard et al., 2006; Stemple et al., 1996), this is the first 

description of a developmental cardiac phenotype upon loss of specific Laminin 

subunits. 

 

 

 

 

 

 

Figure 5.23 continued. 

to affect heart morphology in sibling embryos (C) or lamb1a homozygous mutants 

(C’). (D) Quantification of heart looping ratio in sibling and lamb1a homozygous 

mutants across all treatment groups. (E) Quantification of myl7 area in sibling and 

lamb1a homozygous mutants across all treatment groups. A-C’: ventral views. D, E: 

no statistical tests performed. One experimental repeat. 
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Figure 5.24. Laminins perform distinct functions during heart development. 

(A) At 30hpf, six Laminin subunit genes are expressed in the zebrafish heart, 

suggesting that four distinct isoforms (two endocardial, magenta, two myocardial, 

green) may be functioning to promote heart morphogenesis. (B) In WT embryos,  
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The increase in cardiac size observed in lamb1a and lamc1 mutants could result 

from perturbation of any one or more of the developmental mechanisms regulating 

heart morphogenesis. Two straightforward mechanisms underlying the enlarged 

heart phenotype could be increased cell size or cell proliferation in the mutants, or 

an additive effect of the two. This could be examined through quantification of 

myocardial cell number and cell size using a nuclear reporter such as Tg(myl7:dsRed) 

(Mably et al., 2003; Pater et al., 2009) and outlining cell membranes using 

antibodies against membrane-localised proteins such as Alcama (above). Recently 

cross-talk between the myocardial and endocardial tissue layers of the heart has 

been shown to co-ordinate myocardial chamber ballooning with endocardial 

proliferation through biomechanical signalling at cadherin junctions (Bornhorst et al., 

2019).This suggests that examining both myocardial and endocardial cell number 

together with characterising the proliferative index of each tissue will help to 

uncover which tissue is driving the changes observed in the lamb1a mutant hearts. 

Two models could be proposed: one where the endocardium is primarily affected, 

resulting in increased endocardial proliferation, causing the myocardium to change 

shape; alternatively, myocardial proliferation is increased, with no impact on 

endocardial parameters. How the loss of Laminins would result in these processes  

 

Figure 5.24 continued. 

between 30hpf and 55hpf, the heart undergoes a robust, asymmetric dextral 

looping morphogenesis, and between 55hpf and 72hpf the heart appears to 

compact as it undergoes maturation. Loss of lamb1b or mutagenesis of lamb2 does 

not affect heart development, suggesting they are dispensable. (C) In lamc1 F0 

mutants, heart morphology appears normal at 30hpf, whilst by 55hpf. The heart has 

failed to loop, and the chambers have not started ballooning. At 72hpf, heart size 

has not been restricted and the heart does not compact. (D) In lamb1a mutants, 

heart looping proceeds normally between 30hpf and 55hpf, however by 72hpf, 

lamb1a mutant hearts have significantly larger hearts than WT. A: atrium, V: 

ventricle. 
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could be either through a role for Laminins in regulating the cross-talk between the 

tissue layers of the heart, or through having tissue-specific roles in the development  

of either tissue, independent of the other. As the key time window of requirement 

for lamb1a and lamc1 appears to be between 30hpf and 55hpf, when regionalised 

changes in cell shape in the chambers are observed (Auman et al., 2007; Dietrich et 

al., 2014), characterisation of these processes would be a suitable starting point. 

 

lamb1a mutants exhibit an up-regulation of the flow-responsive genes lamb1b and 

klf2a. This suggests that alterations to blood flow sensing may underly the lamb1a 

phenotype as blood flow sensation regulates regional endocardial cell shape 

changes (Dietrich et al., 2014). In cultured mice endothelial cells, cadherin junctions 

are stabilised through integrin β1 binding to LN-511 (Russo et al., 2016). In Lama5 

mutant mouse ex vivo artery culture, endothelial cells fail to respond appropriately 

to blood flow-generated shear stress (Russo et al., 2016), resulting in a significant 

reduction in adhesion complexes and cortical stiffness. Interestingly, loss of Lama4 

appears to have opposing effects (Russo et al., 2016). Together with a recently 

identified role for cadherin tension in the regulation of cardiac ballooning (Bornhorst 

et al., 2019), this could suggest that loss of lamb1a alters the ability of endocardial 

cells to responds to blood flow and potentially disrupts cardiac development. 

 

These models would predict that alterations to blood flow sensing in lamb1a 

mutants, (confirmed by blood-flow independent expression of the flow-responsive 

transcription factor klf2a) drive the increase in heart size. Yet, reduction in blood 

viscosity by gata1a knockdown does not appear to rescue heart size in lamb1a 

mutants. However, the effect of gata1a knockdown on klf2a expression in lamb1a 

mutants was not examined and although gata1a knockdown results in almost a total 

reduction in blood viscosity (Brownlie and Zon, 1999, Figure 5.20) and shear stress 

(Hsu et al. 2019), the effect on klf2a expression is reported to be less severe than 

knockdown of gata2, due to the more dramatic reduction in reversing blood flow 

fraction (Vermot et al., 2009). Examining the impact of this more profound alteration 
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to flow dynamics upon knock down of gata2 in lamb1a mutants would reinforce the 

role of blood flow in the basis of the lamb1a cardiac phenotype. 

 

Furthermore, biomechanical signals may be derived from the active pumping of the 

heart, independent of the sensation of blood flow as exemplified by the 

requirement for functional myh7 to drive regionalised cell shape changes (Auman et 

al., 2007). Whilst I tested the role of heart contractility on the expression of klf2a, I 

did not quantify the effect on heart morphology. Examining the lamb1a cardiac 

phenotype at 72hpf in embryos where heart contraction is prevented (for example 

through injection of tnnt2a morpholino), although impacting on heart looping 

(Lombardo et al., 2019), should not affect heart size if the increase is totally 

independent of blood flow and other mechanical cues. Interestingly, whilst 

increasing blood viscosity by epoa mRNA injection was not able to drive an increase 

in heart size similar to that observed in lamb1a mutants, lamb1a heterozygotes may 

be sensitised to increased blood viscosity, however as epoa mRNA injection has 

been shown to lead to a mild reduction in heart rate (Hsu et al., 2019), influences of 

mechanical stimuli cannot be ruled out. Whether increasing blood viscosity in 

lamb1a mutants is able to further increase heart size may help to understand 

whether increased flow sensitivity is causative of the lamb1a mutant phenotype or 

rather a non-consequential effect of loss of lamb1a. In addition, loss of lamb1a may 

result in an increase in blood viscosity, resulting in an increase in heart size and thus 

knockdown of gata1a in lamb1a mutants may not be penetrant enough to rescue 

the phenotype. Therefore, it is important that blood flow and blood viscosity should 

be characterised in lamb1a mutants. However, if blood content were increased in 

lamb1a mutants, this may suggest that as increased blood content in a WT setting is 

not sufficient to fully recapitulate the increased heart size, Laminin deposition could 

limit the responsiveness to blood flow (Russo et al., 2016), a possibility raised by the 

mild increase in heart size in epoa mRNA-injected lamb1a heterozygotes. 
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A promising avenue of investigation downstream of integrins and suggested by 

blood flow-independent klf2a expression is the well characterised MEKK3-MEK5-

ERK5 pathway, shown to be hyperactive in the family of mutants affecting the Ccm 

proteins (Otten et al., 2018; Zhou et al., 2016, 2015). Similar to lamb1a mutants, ccm 

mutants also display enlarged hearts (Mably et al., 2006, 2003; Otten et al., 2018; 

Zhou et al., 2016, 2015) due to failure of restriction of MEKK3 activity. Independent 

studies in both zebrafish and mice have demonstrated that inhibition of MEK5 (Zhou 

et al., 2015) or ERK5 (Otten et al., 2018) can partially alleviate the CCM mutant 

phenotype. lamb1a mutants display an increase in pERK staining at 30hpf (Figure 

5.22), however preliminary results suggest that inhibition of ERK5 between 24hpf 

and 55hpf is unable to rescue the lamb1a cardiac phenotype. Whilst action of the 

drug was not confirmed, this suggests that either the timing of increased ERK5 

activity driving heart growth in lamb1a mutants is outside of the treatment window 

used here or that ERK5 activity is not responsible for the enlarged hearts and that 

this pathway of klf2a flow independent up-regulation is not functioning in lamb1a 

mutants.  

 

Including ERK5, at least 4 classes of ERK pathways have been described (McCain, 

2013) and previous analysis of heart development in mouse mutants for Fibronectin 

(FN) and its receptor Itga5 have identified a link between ERK signalling and the 

extracellular matrix (Mittal et al., 2013). Both FN and Itga5 mutants exhibit a 

reduction in second heart field addition (Mittal et al., 2013) due to a failure in 

sensitisation of cells to FGF8 signalling, a ligand with a highly conserved role in 

promoting second heat field addition in mice, fish and chick (Hami et al., 2011; 

Ilagan et al., 2006; Lazic and Scott, 2011; Park et al., 2008; Pater et al., 2009; Reifers 

et al., 2000). lamb1a mutants display increased levels of phospho-ERK staining both 

within the heart and surrounding the heart tube where the second heart field 

resides. Therefore, another possible mechanism underlying the increased cardiac 

size in lamb1a mutants may be an increase in sensitivity to pro-additive signals such 

as FGF8, resulting in increased pERK, increased addition from the second heart field 
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and enlarged hearts. Examining markers of second heart progenitors such as ltbp3 

(Zhou et al., 2011) and downstream readouts of FGF signalling such as sprouty 

homolog 4 (Drosophila) (sprouty4) (Pater et al., 2009) should be carried out at 

classical timepoints of SHF addition as well as within the critical window of 55hpf to 

72hpf. Together with developmental timing assays to quantify differences in SHF 

addition (Pater et al., 2009) together this would help define whether this mechanism 

could be responsible for increased heart size in lamb1a mutants, and would support 

a role for Laminins in regulation SHF addition (See Chapter 8). 

 

In addition to the increase in heart size identical to lamb1a, mutations in lamc1 

result in a significant reduction in heart looping morphogenesis not found in lamb1a 

mutants (Figure 5.24C), suggesting that specific Laminin isoforms regulate distinct 

processes of heart development. Since lamb2 is the only beta subunit I have 

identified to be expressed in the heart during looping morphogenesis (Figure 3.2, 

3.3, 5.24A), the absence of a heart looping phenotype in lamb1a mutants strongly 

suggested that Lamb2-Lamc1 containing trimers function to promote heart looping 

morphogenesis. However, lamb2 F0 mutants do not recapitulate the looping 

phenotype observed in lamc1 F0 mutants, (Figure 5.16, 5.17) suggesting that a 

different Laminin beta subunit functions together with Lamc1. Supporting the notion 

of no role for lamb2 in heart development upto 72hpf is the absence of any 

described heart phenotype in the softy (lamb2) mutant (Jacoby et al., 2009), 

however as the heart phenotypes described here have previously been overlooked, 

a more detailed description of the lamb2 cardiac phenotype may be required. As 

none of the beta subunit knockouts generated here recapitulate the lamc1 heart 

looping defect, this suggests that an alternative beta subunit may promote heart 

looping morphogenesis. However, I have not identified another beta subunit 

expressed in the heart (and at earlier developmental stages no additional beta 

subunits have been found to be expressed in the heart disc itself, Farah Hussein, 

personal communication). 
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The absence of a lamb2 F0 cardiac phenotype could suggest that the function of 

lamc1 in promoting looping morphogenesis may be non-autonomous to heart tube. 

Supporting this hypothesis, expression of both lamb1a and lamc1 are very broad at 

30hpf, and their expression overlaps in the region of the embryo where the SHF is 

located (Figure 3.2). This may suggest that lamc1 is required to regulate the 

environment surrounding the heart as it undergoes morphogenesis. Multiple 

approaches could be taken to test this hypothesis for example using tissue-specific 

constructs driving lamc1 expression either under the myl7 (myocardial) or fli1a 

(endocardial) promoter to determine whether reinstating lamc1 in the heart tube 

myocardium or endocardium of lamc1 mutants can rescue heart looping 

morphogenesis. However, this would need to be performed in stable lamc1 mutants 

(Kettleborough et al., 2013; Parsons et al., 2002; Stemple et al., 1996) to avoid 

targeting of the rescue construct by lamc1 gRNAs. Another approach would be 

tissue-specific CRISPRi of lamc1, using myl7 or fli1a promoters to drive dCas9 

expression, knocking down lamc1 expression only in the heart tube or endothelium 

respectively, and analysing whether this can recapitulate the lamc1 F0 heart looping 

defects. However, as discussed in Chapter 4, significant optimisation of the gRNA 

sequence may be required, although the high level of efficiency displayed by the 

lamc1 gRNAs reflects a promising starting point. 

 

In order to better understand the mechanisms by which Laminins drive heart looping 

morphogenesis and restrict growth of the heart, it will be important to define which 

tissue the Lamb1a-Lamc1 containing trimers are secreted from, as both lamb1a and 

lamc1 are expressed in the myocardium and endocardium. While lamb1a and lamc1 

are expressed in both the myocardium and endocardium, lama5 and lama4 display 

tissue-restricted expression in the myocardium and endocardium respectively, 

suggesting that either Laminin-511 or Laminin-411 is required to limit heart size, or 

possibly both isoforms are necessary. Mutagenesis of lama4 or lama5 will be 

invaluable in dissecting the exact Laminin isoform restricting heart size.  
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Although no role for Laminins in has previously been identified in the regulating size 

and shape of the vertebrate heart, Laminins have been shown to play an important 

role in cardiac function. Lama4 mutant mice have been characterised to survive 

post-partum but have enlarged hearts, linked to hypoxia-related cardiomyopathy at 

16-20 weeks (Wang et al., 2005). Cardiomyopathy is also observed in lama4 

morphant zebrafish and human patients with LAMA4 mutations (Knoll et al., 2007). 

Whilst these phenotypes are highly comparable, for both humans and mice, they are 

late onset. However, subtly affecting heart size during early development may be 

sufficient to result in pathogenic changes due to increased pre-load or afterload due 

to increased heart size (Auman et al., 2007).  

 

Zebrafish lama5 mutants have been isolated from genetic screens for genes 

implicated in fin bud formation (Carney et al., 2010) but no heart phenotype has 

been described, however mutations in human LAMA5 have been reported to result 

in mitral valve defects (Sampaolo et al., 2017). Together this demonstrates 

potentially conserved roles for multiple Laminins in distinct aspects of heart form 

and function. Whilst these roles are mostly related to cardiac function, it is 

interesting to speculate that these functional defects may be due to subtle changes 

in the morphology of the developing heart such as increases in size and/or abnormal 

looping morphogenesis. This highlights the need for a better understanding of the 

effect Laminin knockouts on heart morphology and function. Zebrafish are the ideal 

model to investigate these questions as experiments can achieved in vivo to make 

links between form, function and the role that Laminin plays in promoting heart 

development. 

 

In summary, I have identified a novel, previously uncharacterised phenotype 

associated with the loss of lamb1a during heart morphogenesis. Together with data 

highlighting the need for lamc1 to promote heart morphogenesis I have defined two 

distinct roles for Laminins during heart development in zebrafish: promoting robust 

morphogenesis of the linear heart tube and restriction of cardiac size. 



 

6. The cardiac jelly displays regional 
asymmetry during heart development 
 

Heart looping morphogenesis is an asymmetric, tissue intrinsic process, occurring 

independently of the extrinsic laterality cues of the embryo. The cardiac jelly is a 

reservoir of signalling molecules and structural proteins, loss of which results in 

failure in this asymmetric morphogenesis. However, these ECM components are 

broadly considered to be uniformly expressed, and therefore how a seemingly 

homogeneous ECM could promote an asymmetric process is unclear. As the ECM 

represents a key intrinsic factor in promoting heart development, I set out to 

examine whether the cardiac jelly shows regional differences during heart 

development and whether this regionalisation is a contributing factor in promoting 

asymmetric heart morphogenesis. 

 

Using live in vivo imaging of the embryonic heart tube in the zebrafish I identify a 

previously uncharacterised asymmetric expansion of the ECM at the onset of heart 

looping. I show that the cardiac jelly contains Hyaluronic Acid (HA) and describe 

expression patterns of known interacting partners of HA. However, none of these 

previously implicated genes have expression which correlates with the observed 

ECM asymmetry. Subsequently, I describe the identification of hyaluronan and 

proteoglycan link protein 1a (hapln1a), a candidate gene for regulating asymmetric 

cardiac jelly expansion. I show that hapln1a expression overlaps with cardiac ECM 

expansion and that the regionalisation of hapln1a is important for promoting heart 

looping morphogenesis. Finally, I show that hapln1a expression is independent of 

extrinsic laterality cues, and propose that ECM expansion is part of the tissue 

intrinsic mechanism which drives heart tube morphogenesis. 
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6.1 Results 
 

6.1.1 Light sheet microscopy identifies regional differences in ECM thickness in the 

developing heart 

 

The advancement of microscopy to facilitate live imaging not only allows for 

preservation of morphology of cell shape, but also the ECM. To enable visualisation 

of the cardiac jelly in the zebrafish heart, the hearts of double transgenic embryos 

harbouring the myocardial marker Tg(myl7:lifeActGFP) and endothelial marker 

Tg(fli1a:AC-TagRFP) were imaged using live light-sheet microscopy.  Since the 

cardiac jelly lies between the myocardium and endocardium of the developing 

heart, the absence of fluorescent signal between the two transgenes denotes the 

cardiac ECM. An optical cross-section through the ventricle at 50hpf (Figure 6.1A) 

highlights the two tissue layers are in close proximity, with little or no ECM visible 

(Figure 6.1B’’, C’’). 
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Figure 6.1. Ventricular ECM is thin and uniformly distributed in the looped heart. 

(A) Schematic of 50hpf zebrafish embryo, dotted line denotes approximate 

transverse section taken for imaging the ventricle. (B,C) Tg(myl7:lifeActGFP) marks 

the myocardium. (B’,C’) Tg(fli1a:AC-TagRFP) marks the endocardium. (B’’) Merge of 

(B-B’) highlight the two tissue layers of the ventricle in diastole. (C’’) Merge of (C-C’) 

highlights the two tissue layers of the ventricle in systole. The absence of fluorescent 

signal between the two tissue layers denotes the cardiac jelly. A: ventral view. B-C’’: 

cranial view. L: left. R: right. 

 

To aid orientation of the heart during imaging of atrial tissue, two additional 

transgenic constructs labelling lefty2 (lft2)-positive cells - Tg(lft2BAC:GalFF; 

UAS:RFP) (Derrick et al., 2019) - were used to mark the dorsal myocardium which is 

derived from the left side of the heart disc (Smith et al., 2008). Imaging optical 

cross-sections of the atrium at 50hpf (Figure 6.2A) reveals that the atrial ECM is 

generally thicker than that of the ventricle, and in addition there is a difference in 

ECM thickness between the left and right sides of the atrium during both diastole 

(Figure 6.2B’’) and systole (Figure 6.2C’’). To quantify differences in ECM thickness 

the expression profile of lft2 was used to orient the dorsal-ventral and thus left-right 

axis of the heart, and the thickness of the cardiac jelly was then measured on both 

left and right sides of the atrium at five different systoles and diastoles for a single  
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embryo. A ratio of left/right ECM thickness was calculated at each time point and 

averaged for a single embryo, where a ratio greater than 1 (Figure 6.2D, red line) 

represents a left-sided thickening of the ECM. This method objectively confirms a 

left-sided expansion of the ECM in the atrium in the looped heart, with a greater 

difference apparent during atrial systole (Figure 6.2C’’).  

 

 

Figure 6.2. The atrium displays regional differences in cardiac jelly thickness 

following heart looping morphogenesis. 

(A) Schematic of 50hpf zebrafish embryo, dotted line denotes approximate 

transverse section taken for imaging the atrium. (B,C) Tg(myl7:lifeActGFP) marks the 

myocardium. (B’,C’) Tg(fli1a:AC-TagRFP) marks the endocardium (inner signal), 

Tg(lft2BAC:GalFF; UAS:RFP) marks the dorsal myocardium (outer, brighter signal).  

(B’’) Merge of (B-B’) highlight the two tissue layers of the atrium in diastole 

Arrowhead marks the left-sided expansion of the non-fluorescent space, marking the 

cardiac jelly. (C’’) Merge of (C-C’) highlights the two tissue layers of the atrial in 

systole. Arrowhead marks the left-sided expansion of the non-fluorescent space, 

marking the cardiac jelly. (D) Quantification of the average Left:Right ECM ratio in 

the atrium at 50hpf in both diastole and systole. A value great than one (red line) 

denotes a left-sided expansion of the atrial cardiac jelly. Each data point represents 

the average of five separate contraction cycles from one embryo. A: ventral view. B-

C’’: cranial view. D: Arithmetic Mean with standard deviation. L: left. R: right.  
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To establish whether ECM asymmetry is present prior to heart morphogenesis, the 

venous pole/atrium of the heart tube in Tg(myl7:lifeActGFP); Tg(fli1a:AC-TagRFP); 

Tg(lft2BAC:GalFF; UAS:RFP) quadruple transgenic embryos was imaged at 26hpf 

(Figure 6.3A). A noticeably thicker ECM appeared to be present on the left side of 

the heart tube when compared to the right at 26hpf (Figure 6.3B-C’’), which was 

confirmed by quantification of left/right ECM ratio (Figure 6.3D).  

 

Figure 6.3. The cardiac jelly is asymmetrically expanded at the venous pole prior to 

heart looping morphogenesis. 

(A) Schematic of 26hpf zebrafish embryo, dotted line denotes approximate position 

of the transverse section used for imaging the atrium. (B,C) Tg(myl7:lifeActGFP) 

marks the myocardium. (B’,C’) Tg(fli1a:AC-TagRFP) marks the endocardium (inner 

signal), Tg(lft2BAC:GalFF; UAS:RFP) marks the dorsal myocardium (outer, brighter 

signal). (B’’) Merge of (B-B’), highlighting two tissue layers with of the atrium in 

diastole, dorsal myocardium top. (C’’) Merge of (C-C’), highlighting two tissue layers 

with of the atrium in systole, dorsal myocardium top, arrowhead marks the left-sided 

expansion of the non-fluorescent space, marking the cardiac jelly. (D) Quantification 

of the average Left:Right ECM ratio in the atrium at 26hpf in both diastole and 

systole. A value great than one (red line) denotes a left-sided expansion of the atrial 

cardiac jelly. Each data point represents the average of five separate contraction 

cycles from one embryo. A: dorsal view. B-C’’: cranial view. D: Arithmetic Mean with 

standard deviation. L: left. R: right. 
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Together, live, in vivo, light-sheet imaging of the zebrafish heart at 50hpf identifies 

different thicknesses of the cardiac jelly between the ventricle and atrium.  

Interestingly, this left-right ECM asymmetry is established prior to the onset of 

looping morphogenesis, suggesting it may help to promote cardiac morphology 

during development. 

 

6.1.2 The cardiac jelly is rich in the glycosaminoglycan Hyaluronan 

 

Whilst multiple studies have examined the composition of the cardiac jelly in adult 

hearts, particularly focussing on regeneration studies, a relatively limited description 

of the composition of the embryonic ECM exists. However, one key molecule 

present in the embryonic cardiac jelly is the glycosaminoglycan Hyaluronic Acid 

(Hyaluronan, Hyaluronate, HA) (Camenisch et al., 2000; Grassini et al., 2018; 

Lagendijk et al., 2011). Loss of HA results in a uniformly thin cardiac jelly in the 

mouse (Camenisch et al., 2000), suggesting that HA and its interacting partners 

represent suitable candidates which could be responsible for the regionalisation of 

the cardiac ECM. 
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To investigate whether the ECM of the linear heart tube contains regionalised HA, 

mRNA encoding the HA biosensor ssNcan-GFP, comprising the HA-binding domain 

of mouse Neurocan (Ncan) fused to GFP and tagged with a secretion signal (Grassini 

et al., 2018), was injected into 1-cell stage embryos expressing Tg(fli1a:AC-TagRFP); 

Tg(lft2BAC:GALFF; UAS:RFP) transgenes (Figure 6.4). The hearts of ssNcan-GFP 

mRNA-injected embryos were live-imaged at 28hpf using light sheet microscopy 

and optical cross-sections of the atrium demonstrated for the first time that prior to 

heart looping the cardiac jelly is rich in HA (Figure 6.4B-C’’). Furthermore, levels of 

the HA sensor do not appear to exhibit left-right differences in the heart tube 

(Figure 6.4B’’, C’’), suggesting that the cardiac ECM has a uniform distribution of HA 

and that asymmetric deposition of HA is unlikely to be responsible for regionalised  

 

Figure 6.4. Hyaluronic Acid is not asymmetrically deposited into the cardiac jelly. 

(A) Schematic of 26hpf zebrafish embryo, dotted line denotes approximate 

transverse section taken for imaging the atrium. (B,C) Tg(fli1a:AC-TagRFP) marks the 

endocardium (inner signal), Tg(lft2BAC:GalFF; UAS:RFP) marks the dorsal 

myocardium (outer, brighter signal). (B’,C’) ssNcan-GFP, a biosensor for Hyaluronic 

Acid. (B’’) Merge of (B-B’) shows that ssNcan-GFP reported displays uniform 

intensity throughout the cardiac jelly, with increased signal in the endocardium in 

atrial diastole. (C’’) Merge of (C-C’) shows that ssNcan-GFP reported displays 

uniform intensity throughout the cardiac jelly, with increased signal in the 

endocardium in atrial systole. A: dorsal view. B-C’’: cranial view. 
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Figure 6.5. Endocardial has2 is not asymmetrically expressed the heart tube. 

mRNA in situ hybridisation and immunohistochemistry to identify domain and tissue 

of expression of has2 at 26hpf and 30hpf. (A) At 26hpf, has2 expression is uniform 

throughout the linear heart tube. (B) has2 expression is restricted to the 

presumptive atrioventricular canal by 30hpf (arrowhead), expression is also apparent 

in the bilaterally located otic vesicles. (C) Anti-GFP antibody marking the myocardial 

transgene Tg(myl7:eGFP). (D) mRNA in situ hybridisation of the endothelial marker 

fli1a. (D) mRNA in situ hybridisation of has2. (F-F’) Merge of myocardium (green) 

and has2 (cyan) expression demonstrating that has2 and myl7 expression do not co-

localise (inset, E’). (G-G’) Merge of endocardium (magenta) and has2 (cyan) 

expression demonstrating that has2 and fli1a expression overlap (inset, F’). Dorsal 

views. V: ventricle. A: atrium. Scale bars C: 50μm. F’, G’: 10μm. 

 

ECM expansion. 

 

6.1.3 Previously identified proteoglycan-related genes not exhibit left-right 

asymmetric expression in the heart tube 

 

The use of the HA sensor demonstrates that the cardiac jelly contains HA (Figure 

6.4) and suggests that it is not asymmetric HA synthesis that drives the asymmetry. 

ISH analysis of the major cardiac HA synthesising enzyme has2 shows that has2 is 

not asymmetrically expressed in the endocardium at 26hpf (Figure 6.5A, C-G’) and 

that by 30hpf expression is restricted to the forming atrioventricular canal (Figure 
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6.5B), suggesting that by 30hpf the role of has2 is to generate the ECM necessary 

for valvulogenesis. Together this further supports the hypothesis that asymmetric HA 

synthesis in the heart tube is unlikely to play a role in generating the left-sided ECM 

expansion. 

 

Following synthesis and secretion, HA can interact with a variety of Proteoglycan 

units containing different core proteins and Glycosaminoglycans such as Chondroitin 

Sulfate or Heparan Sulfate (Pomin and Mulloy, 2018). Asymmetric expression of 

these genes could promote ECM regionalisation during and to examine this, 

expression patterns in the heart tube were analysed by mRNA in situ hybridisation. 

Chondroitin Sulfate, synthesised by chsy1 has been shown to be present in the 

cardiac jelly where it is thought to be required for valve development (Peal et al., 

2009). However, little or no expression of chsy1 is observed specifically in the heart 

at 26hpf or 30hpf (Figure 6.6A-A’), suggesting asymmetric deposition of CS is not 

responsible for asymmetric ECM expansion. 
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Figure 6.6. Chondroitin Sulfate Proteoglycans exhibit dynamic and complementary 

expression patterns during early heart morphogenesis. 

mRNA in situ hybridisation analysis of chsy1, vcana and vcanb at 26hpf and 30hpf. 

(A-A’) chsy1 expression shows no spatial restriction at either 26hpf (A), or 30hpf (A’). 

(B) At 26hpf vcana is expressed throughout the heart tube but is excluded at the 

presumptive atrioventricular canal (arrowhead). (B’) At 30hpf, vcana expression is 

reduced, but with a low level of expression at the presumptive atrioventricular canal 

(arrowhead). No lateralised expression is observed at either 26hpf (B) or 30hpf (B’). 

(C-C’) Between 26hpf and 30hpf vcanb expression is excluded from the heart tube, 

but is present at the arterial pole of the heart (C-C’ arrowhead). Expression is slightly 

down-regulated by 30hpf (C’). Dorsal views. V: ventricle, A: atrium. 
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Figure 6.7. acana and acanb are expressed in the heart post-looping. 

mRNA in situ hybridisation analysis of acana and acanb at 26hpf, 30hpf and 4dpf. 

(A-B’) acana and acanb expression is absent from the linear heart at 26hpf (A, B) and 

30hpf (A’, B’). (C-C’) At 4dpf, acana is expressed in the aortic arches and other 

structures inducing the presumptive bulbous arteriosus (arrowhead). (D-D’) At 4dpf, 

acanb is expressed in a similar domain to acana (C-C’) but expression is absent from 

the heart. A-B’: dorsal views. C, D: ventral views. C’, D’: lateral views. 

 

Versican (a Chondroitin Sulfate Proteoglycan) has been previously implicated in 

heart development, although primarily at later stages in valve development in 

zebrafish, but more recently for both heart looping and SHF addition in medaka 

(Mittal et al., 2019; Patra et al., 2011). Zebrafish have two paralogous versican 

genes, predicted to have divided the labour of the single human and mouse 

Versican gene (Kang et al., 2004). At 26hpf, vcana (versican a) is expressed in the 

heart tube, but is not lateralised, and appears to be excluded from the developing 

AVC (Figure 6.6B). By 30hpf vcana expression is lost from working myocardium but 

is weakly expressed at the future AVC (Figure 6.6B’), in a domain hypothesised to 

overlap with has2 expression (Figure 6.5B). vcanb (versican b) is not expressed in the 

heart tube at either 26hpf or 30hpf (Figure 6.6C-C’), however a robust and persistent 
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expression is present at the arterial pole (Figure 6.6C, C’) where cardiomyocytes are 

migrating into the heart from the second heart field (Pater et al., 2009).  

 

Another core protein Aggrecan is commonly associated with cartilage (Aspberg, 

2012; Roughley and Mort, 2014), however an early study identified Aggrecan 

expression in the chick heart during maturation (Zanin et al., 1999) and more 

recently work investigating the function of zebrafish aggrecan a has implicated 

Aggrecan in the disease pathology of Bicuspid Aortic Valve (Rambeau et al., 2017). 

in situ hybridisation expression analysis of the zebrafish aggrecan genes acana and 

acanb show no detectable expression in the heart at 26hpf or 30hpf (Figure 6.7A-

B’). However, both aggrecan genes are expressed at 4dpf, particularly in the 

developing aortic arches (Figure 6.7C’, D’), and acana is strongly expressed in the 

bulbus arterious (Figure 6.7C, C’) as previously reported (Rambeau et al., 2017). 

Together, these data show that core proteins and Proteoglycan components 

previously implicated in heart development do not exhibit expression which 

overlaps with the observed asymmetric expansion of the cardiac jelly prior to heart 

looping. This supports the theory that asymmetric synthesis of any previously 

identified ECM components does not drive cardiac ECM asymmetry. 

 

6.1.4 Expression of hyaluronan and proteoglycan link protein 1a (hapln1a) overlaps 

with observed ECM expansion 

 

Having identified no asymmetric expression of previously implicated ECM 

components during heart looping, to identify candidate genes which could drive 

ECM expansion during early heart development, the Tomo-Seq dataset was 

examined for atrial-enriched genes (where the ECM expansion is observed) 

annotated as ECM synthesis, degradation or interacting proteins (Derrick et al., 

2019). This approach identified hyaluronan and proteoglycan link protein 1a 

(hapln1a) as a candidate gene for ECM expansion. Hapln1a is a member of the link 

protein family, functioning to link HA with Proteoglycans such as Versican (Aspberg, 
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2012; Spicer et al., 2003), and the mouse homolog, Hapln1 (formerly Crtl1) has 

previously been implicated in heart development (Wirrig et al., 2007). Together this 

suggested hapln1a as a candidate gene for ECM expansion. 

 

mRNA in situ hybridisation analysis at 26hpf revealed hapln1a expression is highly 

regionalised in the heart, and overlaps with the domains of regionalised ECM 

expansion. At 26hpf, hapln1a expression is elevated with a broader domain of 

expression on the left side of the heart tube compared to the right. Futhermore, 

hapln1a is expressed in the atrium, with no observable signal in the ventricle (Figure 

6.8A). hapln1a expression in the heart tube appears to be transient, as whilst the 

left-sided, atrial elevated expression is maintained, overall levels of expression are 

reduced at 30hpf (Figure 6.8A’). Together, the expression pattern of hapln1a 

strongly suggests that Hapln1a is responsible for the cardiac ECM asymmetry.  
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Figure 6.8. hapln1a expression overlaps observed ECM expansion prior to heart 

looping. 

mRNA in situ hybridisation analysis of hapln1a at 26hpf and 30hpf. (A) At 26hpf, 

hapln1a expression is elevated on the left of the heart tube, with a broader domain 

of expression than the right (arrowhead). Expression is restricted mainly to atrial 

tissue. (A’) Expression of hapln1a at 30hpf is reduced in the heart. Left sided up-

regulation, together with a broader domain of expression than the right, is observed 

in the atrium, with little or no expression in the ventricle. Dorsal views. A: atrium. 

 

The expression patterns of has2 and vcana are highly dynamic during heart looping, 

in particular the restriction of has2 expression between 26hpf and 30hpf suggests 

that at this stage HA synthesis is required for valve formation and not looping 

morphogenesis. As a result, ECM synthesis, asymmetric expression of hapln1a, and 

its interaction with other Proteoglycans may be required prior to heart tube 

morphogenesis for subsequent heart looping. Furthermore, as cells positioned on 

the left side of the heart arise from the posterior compartment of the cardiac disc 

during heart tube formation (Guerra et al., 2018; Smith et al., 2008), the expression 

pattern of hapln1a suggested that cardiac proteoglycan genes (which represent 

candidate interacting partners for Hapln1a) were also likely to be expressed prior to 

tube formation. 
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ISH analysis at 21hpf confirms previously identified has2 expression in the cardiac 

cone (Figure 6.9A) (Smith et al., 2008; Veerkamp et al., 2013) and identifies that 

chsy1 expression in the heart is highly dynamic, with clear expression only 

observable prior to tube formation (Figure 6.9B). Both versican genes are expressed 

in the heart cone; vcana is expressed in the myocardium (Figure 6.9C) and more 

broadly than vcanb (Figure 6.9C). In line with absence of expression in the heart 

tube and confirming a later role in heart development for acana, no expression of 

either aggrecan gene is observed in the cardiac cone at 21hpf (Figure 6.9E, F). 

Similar to expression of meis2b (Meis homeobox 2b) (Guerra et al., 2018), hapln1a is 

primarily expressed in the posterior of the cardiac cone (Figure 6.9G, black 

arrowhead), with some expression in the anterior cone (Figure 6.9G, green 

arrowhead). Together, this suggests that regionalised hapln1a expression is initiated 

from at least 21hpf in the posterior cardiac disc, becomes repositioned on the left-

side of the heart tube, and may interact with VersicanA Proteoglycan and HA to 

generate an expanded cardiac jelly in the heart tube. 
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Figure 6.9 Proteoglycan components display distinct expression patterns in the 

cardiac cone. 

mRNA in situ hybridisation analysis of proteogylcan genes in the cardiac cone at 

21hpf. (A) has2 is predominantly expressed on the left side of the cardiac cone. (B)  
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6.1.5 Regionalised expression of hapln1a is required for correct cardiac 

morphogenesis 

 

Asymmetric regionalisation of the cardiac ECM represents an intrinsic mechanism 

which could be driving heart looping morphogenesis. As the regionalisation of the 

cardiac ECM overlaps with hapln1a expression, one hypothesis is that asymmetric 

expression of hapln1a is required to promote heart looping. To test whether the 

regionalisation of hapln1a expression in the heart tube is required for heart looping, 

an overexpression construct containing the hapln1a coding sequence under the 

control of the pan-myocardial myl7 promoter, flanked by Tol2 transposon sites was 

created (Figure 6.10A) (Kwan et al., 2007). The resulting myl7:hapln1a construct was 

injected together with tol2 mRNA into the cell at the 1-cell stage to facilitate 

integration of the construct into the genome and result in mosaic misexpression of 

hapln1a in the myocardium (Figure 6.10B-B’’). ISH analysis of hapln1a at 55hpf in 

embryos injected with myl7:hapln1a demonstrates varying levels of hapln1a 

misexpression in the myocardium (Figure 6.10B’-B’’), distinct from uninjected 

embryos where hapln1a is restricted to the atrioventricular canal (Figure 6.10B). 

 

To examine the effect of loss of hapln1a regionalisation, two colour ISH was 

performed at 55hpf to identify hapln1a expressing cells (Figure 6.10C-C’’, blue) and 

outline heart morphology using myl7 expression (Figure 6.10C-C’’, red). In WT  

 

Figure 6.9 continued. 

chsy1 expression is elevated in the heart, but with no lateralised expression. (C) 

vcana is strongly and uniformly expressed in the heart. (D) vcanb is expressed in the 

cardiac cone, with no clear localisation to any specific quadrant. (E-F) Neither acana 

nor acanb are expressed in the heart at 21hpf. (G) hapln1a expression is elevated in 

the posterior cardiac cone (black arrowhead), with lower levels and a smaller domain 

of expression in the anterior of the cone (green arrowhead). Dorsal views. 
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embryos at 26hpf, hapln1a expression is predominantly atrial (Figure 6.8A), with 

elevated expression on the left suggesting hapln1a misexpression may have 

different impacts on heart looping morphogenesis depending on its chamber of 

expression. Therefore, the percentage coverage of hapln1a in either chamber was 

quantified and plotted against looping ratio (Figure 6.10D-E). Interestingly, whilst 

frequent misexpression of hapln1a in the ventricle was observed in injected embryos 

(Figure 6.10D), very few embryos were recovered displaying misexpression of 

hapln1a in the atrium (Figure 6.10E). Overexpression of hapln1a in the ventricle upto 

35% does significantly impact on heart looping, although in embryos with greater 

than 35% expression of hapln1a in the ventricle, a non-significant reduction is 

apparent (Figure 6.10D). However, in the atrium, misexpression greater than 10% is 

sufficient to result in a significant reduction in heart looping (Figure 6.10E). 

Together, this suggests that heart morphogenesis displays a greater sensitivity to 

over-expression of hapln1a in the atrium and therefore the regional restriction of 

hapln1a in the atrium may be required to promote proper heart looping. 
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Figure 6.10. Regionalised hapln1a expression is required to promote proper heart 

morphogenesis. 

(A) Schematic of myl7:hapln1a misexpression construct. The hapln1a coding 

sequence (blue), together with an SV40 antigen poly(A) tail (orange) are placed 
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under the promoter of the pan cardiac gene myl7 (red). This is flanked by tol2 

transposon sites (black) for Tol2-mediated transgenesis through injection into the  

 

 

 

 

 

 

 

 

Figure 6.10 continued. 

cell at the 1-cell stage together with tol2 mRNA. (B-B’’) Confirmation of 

myl7:hapln1a construct efficacy by mRNA in situ hybridisation of hapln1a in 

uninjected (B) or injected embryos at 55hpf (B’-B’’). In uninjected embryos at 2dpf, 

hapln1a expression is restricted to the atrioventricular canal (B, arrowhead). Embryos 

injected with the myl7:hapln1a construct display a range of levels of hapln1a 

misexpression in the working myocardium (B’-B’’). (C-C’’) Representative images of 

mRNA in situ hybridisation analysis at 55hpf of hapln1a (blue) to examine 

percentage coverage of misexpression of hapln1a using the myl7:hapln1a contract, 

and myl7 (red) to characterise the morphology of the heart. Uninjected embryos 

have little or no hapln1a expression in the heart (C), whilst varying levels or hapln1a 

mis expression are observed in embryos injected with the myl7:hapln1a plasmid (C’-

C’’). (D) Quantification of the impact of increased ventricular expression of hapln1a 

on heart looping ratio at 55hpf. Misexpression of hapln1a in the ventricular 

myocardium has no significant effect on heart looping ratio. (E) Quantification of the 

impact of increased atrial expression of hapln1a on heart looping ratio at 55hpf. 

Misexpression of hapln1a in the atrial myocardium above 10% results ins a 

significant reduction on heart looping. B-C’’: ventral views. V: ventricle, A: atrium. D, 

E: Median with interquartile range, Kruskal-Wallis, Dunn’s multiple comparisons, ns: 

not significant, *: p<0.05. 
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6.1.6 hapln1a expression is independent of embryonic left-right asymmetry 

 

hapln1a is expressed in the posterior half of the cardiac disc (Figure 6.9G), which 

following heart jogging becomes re-organised to the left-side of the tube (Figure 

1.4 and 6.8A) (Guerra et al., 2018), and this regionalisation of hapln1a is required to 

promote heart morphogenesis (Figure 6.10). hapln1a represents a candidate gene 

which may contribute to the tissue intrinsic nature of heart looping morphogenesis 

in fish and chick (Manning and McLachlan, 1990; Noël et al., 2013). Under this 

model, regionalised hapln1a expression would be independent of embryonic left-

right laterality cues as heart looping in zebrafish is independent of Nodal signalling 

(Noël et al., 2013). To examine the interaction between hapln1a expression and 

laterality, hapln1a expression was characterised in spaw mutants, which lack left-

right asymmetry (Noël et al., 2013). At 19hpf, hapln1a is expressed in the posterior 

compartment of the cardiac disc (Figure 6.11A, 6.9 G), and in spaw mutant embryos 

at the same stage, posterior up-regulation of hapln1a expression in the cardiac disc 

is unaffected (Figure 6.11A), demonstrating that asymmetric hapln1a expression is 

independent of embryonic left-right asymmetry. 
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Figure 6.11. Expression of hapln1a is independent of embryonic left-right laterality.  

mRNA in situ hybridisation analysis of hapln1a expression in the heart disc of WT 

and southpaw mutants at 19hpf. (A) hapln1a is expressed in the posterior half of the 

cardiac disc at 19hpf. (A’) In spaw mutants, expression of hapln1a is unaffected. 

Dorsal views. A: anterior, P: posterior. 

 

Together with previous work, the regionalised expression of HA-proteoglycan 

complex components in the heart disc and subsequently in the heart tube suggest a 

number of roles for distinct proteoglycan complexes in promoting vertebrate 

development (Figure 6.12). In the heart disc (Figure 6.12A), laterality-dependent 

has2 expression (yellow) on the left side of the disc dampens BMP activity, resulting 

in increased cell migration speed on the left (Smith et al., 2008; Veerkamp et al., 

2013), whilst hapln1a is expressed in a laterality-independent manner in the 

posterior heart disc (blue), which correlates with faster cell speed, and the 

differences in cell speed, together with rotation drive heart jogging. By 26hpf 

(Figure 6.12B) heart jogging has repositioned posterior cells of the disc expressing 

hapln1a to the left-side of the heart tube and myocardial has2 expression has been 

turned off and replaced with prominent endocardial expression. vcana expression is 

almost uniformly expressed in the myocardium, whilst vcanb (orange) expression is 

only observed at the arterial pole, overlapping the main region of cell addition 

during heart looping in zebrafish. The expression of hapln1a in the heart tube 

overlaps with an expanded cardiac ECM at 26hpf at the venous pole (Figure 6.12C) 

and regionalised hapln1a expression is required to promote heart morphogenesis. 
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6.2 Discussion 
 

Using live, in vivo light sheet imaging, I have identified and begun to characterise an 

asymmetric expansion of the cardiac jelly prior to and following heart looping 

morphogenesis (Figures 6.1, 6.2 and 6.3). In line with previous studies, I have shown 

the cardiac jelly is rich in HA and established that HA is present in the cardiac ECM 

from the linear heart tube stage (Figure 6.4). Multiple studies both in zebrafish have 

suggested that HA is a major component of the cardiac ECM, and has2 mutant 

mice, which exhibit severe widespread morphological phenotypes, exhibit an almost 

total lack of cardiac jelly and a failure to undergo heart looping morphogenesis 

(Camenisch et al., 2000). However, the mechanisms by which HA promotes the 

asymmetric morphogenesis underlying cardiac looping remain unclear. 

 

I have identified that prior to heart looping, the cardiac ECM of the heart tube is 

asymmetrically expanded and have identified that regionalised expression of a 

candidate gene, hapln1a, is required for heart morphogenesis to occur correctly 

(Figure 6.8, 6.10). Morpholino-mediated knockdown of hapln1a results in a loss of 

left-sided ECM expansion at 26hpf and hapln1a promoter mutants display a thinner 

cardiac jelly at 50hpf and 72hpf, together with abnormal heart morphology, 

demonstrating that Hapln1a is required for ECM expansion (Derrick et al., 2019). 

Further supporting a role for hapln1a in heart development, Hapln1 mutant mice 

display a number of heart valve phenotypes and cardiac abnormalities (Wirrig et al., 

2007), however, as the onset of phenotype was not characterised earlier in 

development, it is possible that valve defects may be associated with a failure in the 

early morphogenesis of the heart tube. 
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Figure 6.12. Model for regionalised gene expression during zebrafish heart 

development. 

(A) At 20hpf, the heart disc (green) is patterned across the left-right and anterior-

posterior axis. Nodal signalling (spaw) acts to promote lefty2 (magenta) and restrict 

has2 (yellow) expression to the left-side of the disc. A spaw-independent mechanism 

results in hapln1a (blue) expression in the posterior cardiac disc, where it overlaps 

with meis2b and significantly faster cell migration speeds. vcana and chsy1 (green)  
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Prior to tube formation, hapln1a is expressed in the posterior of the cardiac disc and 

following heart jogging is repositioned on the left side of the heart tube (Figure 

6.12) (Guerra et al., 2018). hapln1a expression in the heart overlaps with the 

transcription factor meis2b, suggesting that the generation of left-right asymmetry in 

the cardiac jelly may be set-up as early as 12hpf when meis2b-positive 

cardiomyocytes are first identified (Guerra et al., 2018). Examining expression of 

hapln1a in meis2b mutant hearts may provide the first step in understanding the 

transcriptional network required to generate lateralised cardiac ECM asymmetry 

(See Chapter 8). 

 

hapln1a expression is highly dynamic during heart development, with eventual 

restriction to the atrioventricular canal (Figure 6.10). This restriction of hapln1a to the 

AVC appears necessary to promote cardiac looping as even a low level of 

misexpression of hapln1a in the atrial myocardium results in a reduction in heart 

looping (Figure 6.10), (Derrick et al., 2019). What is unclear is why a much greater  

 

Figure 6.12 continued. 

are expressed throughout the cardiac disc. Differences in cell migration speed in the 

cardiac disc result in a reorganisation of left-right and anterior-posterior patterning 

as the disc forms the tube during heart jogging. (B) At 26hpf, lefty2 is expressed in 

the dorsal myocardium, and has2 expression is now restricted to the endocardium. 

chsy1 expression is no longer observed in the heart, suggesting that Chondoitin 

Sulfate synthesis is only required at the disc stage. vcana is expressed almost 

ubiquitously throughout the myocardium at low levels, which may represent a loss of 

expression as its role it re-assigned to valvulogenesis together with has2. vcanb 

(orange) is expressed at the arterial pole of the heart where it may regulate addition 

of the second heart field. hapln1a is expressed predominantly on the left side of the 

atrium, overlapping with the expanded cardiac jelly (C) and regionalised hapln1a 

promotes heart looping morphogenesis. 
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number of embryos with considerable misexpression in the ventricle compared to 

the atrium was achieved by the myl7:hapln1a mosaic study. This could suggest that 

atrial cells which express hapln1a are actively excluded from the chamber, or 

perhaps that sufficient over-expression of hapln1a from as early as 14ss when the 

myl7 promoter is active (Yelon et al., 1999) results in a fate switch from atrial to 

ventricular. This hurdle of achieving significant overexpression in the atrium resulted 

in comparatively few embryos being analysed. To strengthen the conclusion that 

hapln1a must be spatially restricted in the atrium to promote morphogenesis, an 

atrial-specific driver such as the myh6 promoter (Zhang et al., 2013) could be used in 

conjunction with the GAL4/UAS system together with a stably expressed 

UAS:hapln1a to stably misexpress hapln1a throughout the atrium. This approach 

would also allow for misexpression of hapln1a in other domains of the heart, such as 

under the lft:BAC:GALFF to examine the effect of misexpression of hapln1a in the 

left cardiac disc altering the axis of ECM asymmetry within the heart tube. Finally, 

whilst misexpression of hapln1a mRNA is clearly observed, it will be important to 

confirm that Hapln1a protein is also mislocalised in the cardiac jelly. Further work 

with these and similar tools can be used to investigate the mechanisms by which 

differences in ECM regionalisation promote heart morphogenesis.  

 

In E9.5 mouse embryos Has2 and Versican have highly similar expression patterns in 

the heart, and the cardiac jelly is rich in both HA and Versican (Camenisch et. al. 

2000). Furthermore, Versican mutant mice exhibit heart defects, including a 

uniformly thin ECM similar to Has2 mutants (Mjaatvedt et al., 1998; Yamamura et al., 

1997) suggesting Versican is the core protein in the cardiac jelly, where it interacts 

with HA. In Hapln1 mutant mice, levels of Versican protein are reduced, suggesting 

that Hapln binding to Versican may protect the protein from turnover or proteolytic 

cleavage (Wirrig et al., 2007). Together this suggests that HA, Versican and Hapln1 

act together to promote heart development. 
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Supporting this, ISH analysis of the two versican genes in zebrafish (Figure 6.6) 

suggests multiple roles for Versican Proteoglycans in heart development (Figure 

6.12). vcana expression is solely myocardial at 21hpf and following heart tube 

formation expression is greatly reduced, displaying eventual restriction to the 

atrioventricular valve by 30hpf. This supports previous studies implicating vcana, 

together with has2 in the development of the atrioventricular valve in zebrafish 

(Patra et al., 2011). vcanb expression is excluded from the linear heart tube but 

expression at the arterial pole suggests a distinct role in promoting addition of the 

SHF (Pater et al., 2009). In humans and mice, Versican pre-mRNA is reported to 

undergo differential splicing events to generate at least four distinct isoforms, all 

capable of interacting with HA but with differing biological roles, including cell 

proliferation and opposing roles in cell migration including during SHF addition 

(Kern et al., 2007; Nandadasa et al., 2014). Supporting multiple roles for Versican in 

heart development, a reverse genetic screen in Medaka isolated a versican mutant 

in which the heart fails to loop, cardiac jelly is absent and addition from the SHF is 

compromised (Mittal et al., 2019). Together with the non-overlapping expression 

domains of zebrafish vcana and vcanb, this would suggest that in zebrafish distinct 

Versican functions in heart development have been split between the two paralogs, 

and supporting a model where Vcana interacts with Hapln1a and HA to promotes 

heart looping, whilst Vcanb is required for SHF addition to the heart.  

 

Versican is typically covalently linked to Chondroitin Sulfate (Pomin and Mulloy, 

2018), and in zebrafish, the cardiac jelly has been shown to contain CS, where it is 

enriched at the atrioventricular canal from 36hpf (Peal et al., 2009) and in Medaka at 

3dpf (Mittal et al., 2019). A combination of pharmacological inhibition of CS 

synthesis and morpholino-mediated knockdown of chsy1 supported a role for CS in 

valve development (Peal et al., 2009). However, examination of chsy1 expression at 

tube stages does not identify clear expression of chsy1 in the heart tube (Figure 6.5). 

instead, chsy1 expression is observed prior to tube formation (Figure 6.9), 
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suggesting that, similar to HA, the production of CS required for heart 

morphogenesis occurs before the heart tube forms. 

 

HA plays multiple roles during heart development: formation of the linear heart tube 

(Smith et al., 2008), looping morphogenesis (Camenisch et al., 2000; Derrick et al., 

2019), formation of the atrioventricular valve (Camenisch et al., 2002; Lagendijk et 

al., 2013) and trabeculation (Monte-Nieto et al., 2018). Prior to heart tube formation, 

has2 is expressed in the myocardium (Smith et al., 2008; Veerkamp et al., 2013) and 

analysis of has2 expression during disc to tube transition identifies a switch in the 

tissue of expression from myocardium to endocardium. This switch may reflect a 

change in the role of HA in specific aspects of heart development during these 

timepoints (Figures 6.5, 6.9, 6.12): HA derived from the myocardium is required to 

form the tube and position it in the correct place (Derrick et al., 2019; Smith et al., 

2008), whilst endocardially-derived HA is necessary for valvulogenesis (Camenisch et 

al., 2002, 2000) Supporting a model where HA plays multiple and distinct roles in 

heart development, is the use of timed pharmacological inhibition of HA synthesis, 

where inhibition of synthesis prior to tube stage (during myocardial expression of 

has2) results in a failure of heart looping, yet inhibition following tube formation 

when has2 is endocardially expressed does not impact on heart looping (Derrick et 

al., 2019) (Noël, unpublished). Thus, the synthesis of the HA-containing ECM 

required for morphogenesis of the heart tube occurs as the tube is being formed 

(Derrick et al., 2019) and following heart tube formation, the role of ECM synthesis is 

likely directed to generate the atrioventricular valve. Together, the zebrafish 

represents an excellent model in which these multiple, spatiotemporal roles for HA 

during heart development can be elucidated. This will be discussed further in 

Chapter 8. 

 

Live light sheet imaging of the heart at 2dpf revealed that the ECM asymmetry 

present at 1dpf in the atrium persists after the heart tube has begun to undergo 

looping and ballooning morphogenesis. This continued ECM asymmetry correlates 
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with persistent Hapln1a protein in the 2dpf heart (Derrick et al., 2019), despite 

restriction of hapln1a mRNA expression to the valve at this stage. In the ventricle, 

the ECM is uniformly thin, likely at least in part due to the absence of Hapln1a 

protein (Derrick et al., 2019). This may reflect the differences in ECM organisation 

which facilitate trabeculation in later stages of heart development, where myocardial 

cells proliferate into the cardiac lumen inside a localised ECM bubble, which is then 

remodelled to form the mature trabeculae (Monte-Nieto et al., 2018; Passer et al., 

2016). Therefore, whilst expression of hapln1a in the left atrial myocardium may be 

responsible for generating the correct shape of the heart during looping and 

ballooning morphogenesis, exclusion of Hapln1a from ventricular ECM may be 

required to facilitate close contact of the two tissue layers to promote maturation of 

the heart (See chapter 8). Characterisation of trabeculation in myl7:hapln1a injected 

embryos with ventricular misexpression at 3dpf, which at 2dpf do not possess heart 

looping defects (Figure 6.10) (Derrick et al., 2019) would help identify whether the 

atrial-ventricular differences in ECM composition are required to promote distinct 

aspects of maturation such as trabeculation, and will further define the role of early 

patterning of the heart disc and tube to regionalise the cardiac jelly and promote 

heart morphogenesis. 

 

There are several mechanisms through which ECM crosslinking could drive 

asymmetric heart morphogenesis. One is that ECM expansion is likely to result in 

differences in ECM stiffness (Nagy et al., 2017). These differences could be read by 

cellular tension sensors such as the Hippo pathway, a well characterised 

mechanosensitive pathway which can act as a modulator of the actomyosin 

cytoskeleton or to regulate growth through regionalised differences in proliferation 

(Low et al., 2014). Another potential mechanism may be through limiting the 

bioavailability of ligands such as BMP. lamc1 mutants have reduced HSPGs and 

ectopic BMP signalling, which impacts on myotome development (Dolez et al., 

2010). Supporting a role for BMP signalling in the directionality of heart looping, up-

regulated expression of bmp4 in the jogged heart appears to correlate with 
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sidedness of jogging (Chen et al., 1997). However, careful dissection of the role for 

BMP signalling specifically in asymmetric morphogenesis will be necessary due to 

the role of HA in dampening BMP signalling to promote proper rotation and 

involution of the cardiac disc during tube formation (Smith et al., 2008; Veerkamp et 

al., 2013). Furthermore, posterior expression of hapln1a in the cardiac disc, overlaps 

quadrants I and IV which encompass the two fastest migrating populations of cells 

during heart jogging (Campos-Baptista et al., 2008). This suggests a potential role 

for hapln1a even earlier heart development in regulating cardiomyocyte migration 

speed, necessary to generate the correctly positioned heart tube (Noël et al., 2013; 

Smith et al., 2008). Imaging of the migration of the heart disc in hapln1a mutants, or 

quantification of the angle of heart jogging would be sufficient to confirm this. 

 

The role that asymmetric expansion of the cardiac jelly, mediated by Hapln1a, plays 

in cardiac morphogenesis remains unknown, however the Nodal-independent 

expression of hapln1a in the posterior of cardiac disc (Figure 6.11) suggests that 

ECM expansion could be sufficient to direct asymmetric looping and ballooning 

morphogenesis of the heart tube. Indeed, in pkd2 (polycystic kidney disease 2) 

mutants in which laterality is randomised (Bataille et al., 2011; Schottenfeld et al., 

2007), hapln1a-expressing cells are positioned on the right side of the tube in right-

jogged hearts, potentially explaining why direction of jogging is an accurate 

predictor of heart looping directionality (Chen et al., 1997; Derrick et al., 2019; 

Grimes et al., 2019; Noël et al., 2013). Importantly, whilst spaw mutant embryos 

exhibit midline hearts, there is a mild rotation in the heart disc during tube formation 

which is correlated with looping direction (Noël et al., 2013), suggesting that even 

subtle lateralisation of the ECM by Hapln1a could dictate the direction of looping in 

the absence of laterality cues. However, hapln1a mutants (Derrick et al., 2019) and 

morphants (Noël, unpublished) do undergo looping morphogenesis, although the 

morphology of mutant hearts is abnormal (Derrick et al., 2019) suggesting that ECM 

asymmetry is a contributing factor to intrinsic heart looping and that embryonic 

laterality cues are required to position the asymmetry to promote morphogenesis. 
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Examining the effect of loss of hapln1a in spaw mutants will be invaluable in 

examining this interaction between intrinsic heart patterning and extrinsic left-right 

cues in promoting heart morphogenesis. 

 

Similar to the cardiac jelly, the right ECM of the chick midgut is expanded, but Has2 

is not differentially expressed (Sivakumar et al., 2018). Rather, Tsg6 (tumor necrosis 

factor-α-stimulated gene 6) a modifier of HA is restricted to the right side of the 

endodermal ECM and loss of Tsg6 function results in loss of lateralised ECM 

expansion and a failure of gut rotation (Sivakumar et al., 2018). This asymmetric 

expansion mediated by Tsg6 is required for exclusion of vasculature from the right 

ECM through inhibition of Cxcl12 (Chemokine (C-X-C motif) ligand 12) expression 

(Sivakumar et al., 2018), demonstrating that asymmetric ECM components can 

indirectly regulate gene expression and tissue morphogenesis. This suggests 

regional modulation of HA dynamics may be a conserved mechanism in promoting 

asymmetric morphogenesis of tubular organs (Sivakumar et al., 2018). 

 

In summary, I have identified and begun to characterise an asymmetric, left-sided 

expansion of the embryonic cardiac jelly which is established prior to looping 

morphogenesis, independent of left-right asymmetry. Misexpression of hapln1a, the 

candidate gene for asymmetric ECM expansion results in abnormal cardiac 

morphogenesis, demonstrating that tight spatiotemporal control of ECM 

components is required for proper heart development. This will be discussed further 

in Chapter 8. 

 

 

 



 

7. rhoca and rhocb are dispensable for early 
cardiac development 
 

I have identified a role for Lamb1a-Lamc1 containing Laminins in restriction of heart 

size and determined the specific Laminin-binding integrins, which are present in the 

heart during early morphogenesis. To begin to define the signalling axis which 

promotes heart looping and limits heart size, I have examined the role of two small 

Rho GTPases, which could represent a node of the Laminin-Integrin pathway. The 

family of small Rho GTPases are classical intracellular transducers of external signals, 

often located at the cell membrane where they regulate the dynamics of the 

actomyosin cytoskeleton. Different Rho GTPases are able to generate functionally 

distinct arrangements of actin, facilitating changes in cell motility, cell shape and 

programmed cell death.  

 

Here I characterise the expression and function of the two paralogs of the human 

RHOC gene during heart looping morphogenesis in zebrafish. Loss of either rhoca 

or rhocb, or both, does not impact embryonic heart development significantly, 

suggesting that both genes are dispensable for development. 

 

7.1 Results 
 

7.1.1 rhoca is expressed in the heart during looping morphogenesis 

 

A candidate gene identified within the Tomo-Seq dataset which may provide a 

functional link between extracellular matrix signalling and cellular responses in the 

heart was ras homolog family member Ca (rhoca, formerly rhoae) (Figure 7.1A). 

rhoca is over 90% similar in amino acid composition to human RHOC, a member of 

the Rho subfamily of small GTPases (Salas-Vidal et al., 2005).  
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Rho GTPases switch between an active, GTP bound state and an inactive GDP 

bound state, and the interaction between cytosolic effectors which regulate 

actomyosin dynamics in their GTP bound form results in changes to the cell shape 

and attachment in response to external cues. The cycling of the GTP- and GDP-

bound states of Rho GTPases is regulated by three classes of proteins. GEFs 

(Guanine Exhange Factors) facilitate release of GDP and binding of GTP, activating 

GTPases. GAPs (GTPase Activating Proteins), inactivate Rho GTPases through 

stimulation of GTPase activity whilst GDIs (Guanine nucleotide Dissociation 

Inhibitors) sequester Rho GTPases to the cytosol away from their interacting 

partners. In the active, GTP-bound state, Rho GTPases can interact with multiple 

effectors including protein kinases and actin-binding proteins, resulting in changes 

in gene expression and the organisation of the actin network of the cell (Heasman 

and Ridley, 2008).  

 

RhoC promotes proliferation and inhibits migration in cell culture, acting through 

VEGFR2 (Vascular endothelial growth factor receptor 2) (Hoeppner et al., 2015). In 

zebrafish, morpholino-mediated knockdown of rhoca and its paralog ras homolog 

family member Cb (rhocb, formerly rhoad) results in increased vascular permeability 

(Hoeppner et al., 2015), although heart morphogenesis in these models is not 

described. 

 

To begin to define the role of rhoca in heart development, mRNA in situ 

hybridisation was performed at 24, 30 and 55hpf in WT embryos to characterise 

rhoca expression dynamics during heart morphogenesis (Figure 7.1B-D). During 

early heart tube stages rhoca is expressed throughout the heart (Figure 7.1B-C), 

however following heart looping, rhoca expression is restricted to ventricular tissue 

and the atrioventricular canal by 55hpf (7.1D), closely following many of the Laminin 

and integrin subunits described in Chapter 3 (Figure 3.1). 
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Figure 7.1. rhoca is expressed in the heart during early morphogenesis. 

Characterisation of rhoca expression during heart looping morphogenesis by mRNA 

in situ hybridisation. (A) Schematic of rhoca structure based on UniProt accession 

number Q7T399. Zebrafish Rhoca protein shares 92.7% amino acid similarity to 

Human RHOC. Blue: G boxes, Red: Switch regions. (B-C) rhoca is expressed 

throughout the linear heart tube between 24hpf and 30hpf. (D) At 55hpf, rhoca is 

expression is restricted to the ventricle and atrioventricular canal. B-C, dorsal views. 

D: ventral views. V: ventricle, A: atrium. 

 

7.1.2 Generation and characterisation of rhoca CDS mutants 

 

To investigate the role of rhoca in heart morphogenesis, CRISPR-Cas9 mediated 

mutagenesis was used to target the CDS of rhoca (Figure 7.2). Two mutations were 

isolated: rhocains10 (a 2bp deletion and 12bp insertion, Figure 7.2A’, B) leading to a 

frameshift and premature termination codon, and rhocaΔATG (a 99bp deletion and 

384bp deletion), resulting in a loss of the translational start site due to a skipping of 

exon 2 (Figure 7.2A’’, C), which contains the initiating ATG codon. This suggests 

that no functional protein is translated in rhocaΔATG mutants, however translation  
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Figure 7.2. Generation of rhoca coding sequence mutants by CRISPR-Cas9 

mutagenesis. 

Mutagenesis strategy and predicted impact on Rhoca protein (A) Schematic of 

rhoca genomic DNA based on danRer10/GRCz10, Red: non-coding DNA, Blue: 

coding DNA, Grey: intronic DNA. A single gRNA targeting Exon 2, downstream of 

the annotated initiating ATG (blue, underlined), spacer highlighted in blue, PAM 

highlighted in red, was injected and two mutations were identified. (A’) The 

rhocains10 allele results from a 2bp deletion and 12bp insertion (yellow). (A’’) The 

rhocains10 allele deletes 99bp (dashed lines) and a 386bp insertion (yellow). (B)  
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initiating from a downstream codon cannot be ruled out. Both mutant alleles were 

established as stable lines at F2. 

 

Having generated two mutations predicted to have different mechanisms of 

abolishing Rhoca function, the effect of both mutations on heart looping was 

analysed by mRNA in situ hybridisation analysis of myl7 expression in homozygous 

mutant embryos for each allele at 55hpf, and in rhocains10 mutant embryos at 72hpf 

(Figure 7.3). (The rhocaΔATG allele could not be analysed at 72hpf due to husbandry 

issues, however see 7.1.4 for further analysis). Loss of rhoca does not impact upon 

looping morphogenesis or heart size in either mutant allele at 55hpf, or at 72hpf in 

rhocains10 mutants (Figure 7.3A-D). Furthermore, rhoca mutants are adult viable and 

fertile, therefore I could investigate whether maternally-deposited rhoca masks any 

phenotypes in zygotic rhoca mutants. MPZ rhoca mutants do not display cardiac 

looping phenotypes at 55hpf (Figure 7.4B, E. WT and zygotic mutant data 

reproduced from Figure 7.3). However, when compared to WT, rhocaΔATG MPZ 

mutants display a significant reduction in heart area at 55hpf, consistent with a trend 

towards smaller hearts observed between WT and zygotic mutants (Figure 7.4F). A 

similar, but non-significant trend is observed for the rhocains10 allele (Figure 7.4C). 

Together this suggests that rhoca is dispensable for cardiac morphogenesis in the 

embryo, but may play a minor role in regulation of cardiac size. 

 

 

 

Figure 7.2 continued. 

Predicted effect of the rhocains10  allele. The initial 31 amino acids are unaffected, 

followed by 16 amino acids of missense and a premature stop codon. (C-C’) Effect 

of the rhocaΔATG mutation on the splicing of rhoca mRNA. In WT embryos (C), 

correctly spliced mRNA includes the annotated initiating ATG of Exon 2 (blue box). 

rhocaΔATG mutation (C’) results in loss of Exon 2 from the mRNA, leading to loss of 

the initiating ATG. 
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Figure 7.3. rhoca Zygotic mutants do not exhibit cardiac phenotypes. 

Quantitative analysis of heart looping and heart size in rhoca mutants at 55hpf and 

72hpf. (A-A’’) Representative images of mRNA in situ hybridisation analysis of myl7 

at 55hpf to examine heart morphology in WT (A), rhocains10 heterozygotes (A’) and 

rhocains10 homozygous mutants (A’’). (B-B’’) Representative images of mRNA in situ  
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Figure 7.3 continued. 

hybridisation analysis of myl7 at 72hpf to examine heart morphology in WT (B), 

rhocains10 heterozygotes (B’) and rhocains10 homozygous mutants (B’’). (C) 

Quantification of heart looping ratio of rhocains10 mutants and siblings at 55hpf and 

72hpf, no significant differences are measured. (D) Quantification of heart area in 

rhocains10 mutants and siblings at 55hpf and 72hpf, no significant differences are 

measured. (E-E’’) Representative images of mRNA in situ hybridisation analysis of 

myl7 at 55hpf to examine heart morphology in WT (E), rhocaΔATG heterozygotes (E’) 

and rhocaΔATG homozygous mutants (E’’). (F) Quantification of heart looping ratio of 

rhocaΔATG mutants and siblings at 55hpf, no significant differences are measured. (G) 

Quantification of heart area in rhocaΔATG mutants and siblings at 55hpf, rhocaΔATG 

heterozygotes display a mild, yet significant reduction in heart size compared to WT 

siblings. Ventral views. C, D, F, G: Median with interquartile range, Kruskal-Wallis, 

Dunn’s multiple comparisons, ns: not significant, *: p<0.05. 
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Figure 7.4. rhoca Maternal-Paternal-Zygotic mutants do not have significant 

morphological defects. 

Quantitative comparison of heart looping and heart size in rhoca Zygotic (Z) and 

rhoca Maternal-Paternal-Zygotic (MPZ) mutants at 55hpf (A-A’’) Representative 

images of mRNA in situ hybridisation analysis of myl7 expression at 55hpf to 

examine heart morphology in WT (A), rhoca Zygotic mutants (A’) and rhoca 

Maternal-Paternal-Zygotic mutants (A’’). (B) Quantification of heart looping ratio of 

WT, zygotic and maternal-paternal-zygotic rhocains10 mutants at 55hpf reveals no 

significant differences. (C) Quantification of heart size in WT, zygotic and maternal-

paternal-zygotic rhocains10 mutants at 55hpf reveals no significant differences 

measured. (D-D’’) Representative images of mRNA in situ hybridisation analysis of 

myl7 expression at 55hpf to examine heart morphology in WT (D), rhoca Zygotic 

mutants (D’) and rhoca Maternal-Paternal-Zygotic mutants (D’’). (E) Quantification of 

heart looping ratio of WT, zygotic and maternal-paternal-zygotic rhocaΔATG mutants 

at 55hpf no significant differences are measured. (F) Quantification of heart size in 

WT, zygotic and maternal-paternal-zygotic rhocaΔATG mutants at 55hpf, MPZ  

rhocaΔATG mutants have a significant reduction in heart area compared to WT. 

Ventral views. B, C, E, F: Median with interquartile range, Kruskal-Wallis, Dunn’s 

multiple comparisons, ns: not significant, ***: p<0.001. 
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7.1.3 Loss of rhoca does not affect rhocb expression 

 

Whilst both rhoca alleles are predicted to result in loss of functional Rhoca protein 

(Figure 7.2B, C) it is possible that rhocb, the paralog of rhoca (Salas-Vidal et al., 

2005), may functionally compensate for loss of rhoca. NMD-induced genetic 

compensation (El-Brolosy et al., 2019) may be functioning in the rhocains10 allele, 

which could explain the less severe reduction in heart size in rhocains10 MPZ mutants 

compared to rhocaΔATG MPZ mutants as the rhocaΔATG allele is not predicted to 

activate genetic compensation (Figure 7.4C). Alternatively, coincident expression of 

rhocb with rhoca in the heart may be sufficient to partially rescue the heart size 

phenotype. Supporting this, Rhoca and Rhocb proteins are highly similar (Figure 

7.5A) suggesting functional redundancy could be likely.  

 

Although rhocb is expressed more ubiquitously throughout the embryo than rhoca, 

similar to rhoca, rhocb is expressed throughout the heart at 24hpf (Figure 7.5B, 

arrowheads) and becomes restricted to ventricular and atrioventricular canal tissue 

by 55hpf (Figure 7.5C). rhocb expression is unchanged in rhoca mutants at 55hpf 

(Figure 5D-E’’), however expression of rhocb in the same domain in the heart as 

rhoca could explain the absence of a more severe phenotype in rhoca mutants. 
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Figure 7.5. rhocb is expressed in the heart and expression is not altered by loss of 

rhoca. 

Characterisation of rhocb expression pattern during heart looping morphogenesis 

and in rhoca mutants by mRNA in situ hybridisation. (A) Schematic of rhocb 

structure based on UniProt accession number Q6DHE8. Zebrafish Rhocb protein 

shares 93.4% amino acid similarity to Human RHOC and 96.4% amino acid similarly  
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7.1.4 Generation and characterisation of rhocb CDS mutants 

 

To test whether rhocb function is required for cardiac morphogenesis or 

compensates for the loss of rhoca, CRISPR-Cas9 mutagenesis of the rhocb locus was 

performed in a WT background (Figure 7.6A). Two alleles of rhocb were isolated: 

rhocbΔ20 (Figure 7.6B) and rhocbΔ38, both of which are predicted to remove a splice 

acceptor site and cause the incorrect splicing of the second intron from the rhocb 

pre-mRNA, resulting in intron inclusion and a subsequent frameshift (Figure 7.6B). 

Founders transmitting the mutations were outcrossed to rhocaΔATG heterozygous 

adults (predicted to be the more severe rhoca allele based upon the MPZ cardiac 

size phenotype (Figure 7.4F)), to generate double rhoca; rhocb heterozygous 

carriers. 

 

To determine whether rhocb functionally compensates for loss of rhoca, rhoca; 

rhocb double heterozygous carriers were incrossed and heart morphology in the 

resulting embryos characterised at 55hpf and 72hpf by myl7 expression (Figure 7.7). 

As described previously, loss of rhoca alone does not affect cardiac looping (Figure 

7.3C, F) and additionally, loss of rhocb function either alone or in combination with 

loss of rhoca does not impact upon heart looping at either 55hpf or 72hpf (Figure 

7.7I, J). Furthermore, no significant change is observed in myl7 area at either 55hpf 

or 72hpf upon loss of either rhocb alone, or in combination with rhoca (Figure 7.7K, 

 

Figure 7.5 continued. 

to Zebrafish Rhoca. Blue: G boxes, Red: Switch domains. (B-C) rhocb is expressed 

throughout the linear heart tube at 24hpf (B, arrowhead) and at 55hpf rhocb is 

expression is restricted to atrioventricular canal. (D-D’’) rhocb expression is 

unchanged between WT (D) and rhocains10 heterozygous (D’) or rhocains10 

homozygous mutants (D’’) at 55hpf. (E-E’’) rhocb expression is unchanged between 

WT (E) and rhocaΔATG heterozygous (E’) or rhocaΔATG homozygous mutants (E’’) at 

55hpf. B: dorsal view. C-E’’: ventral views. V: ventricle, A: atrium. 
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L). Taken together, the absence of embryonic heart morphology defects in either 

single or double rhoca; rhocb mutants or rhoca MPZ mutants suggests that rhoca 

and rhocb are not required for heart morphogenesis. 

 

Figure 7.6. Generation of rhocb coding sequence mutants by CRISPR-Cas9 

mutagenesis. 

Mutagenesis strategy and predicted impact on Rhocb protein (A) Schematic of 

rhocb genomic DNA based on danRer10/GRCz10, Oblique cut-line: 50kbp, Red: 

non-coding DNA, Blue: coding DNA, Grey: intronic DNA. A single gRNA targeting 

Exon 2, spacer highlighted in blue, PAM highlighted in red was injected and two 

mutations were identified. (A’) rhocbΔ20 mutation results in loss of the last 20bp of 

Exon 2. (A’’) rhocbΔ38 deletes last 20bp of Exon 2 and the first 18bp of Intron 2. (B) 

Predicted impact of each rhocb allele on the Rhocb protein (UniProt Q6DHE8). The 

deletion in both alleles likely results in the loss of the acceptor-splice site, possible 

resulting in a failure to correctly splice out Intron 2 (green). This results in the first 45 

amino acids of the Rhocb protein being unaffected, followed by an altered amino 

acid sequence and a premature termination codon at amino acid 109 for rhocbΔ20 

and amino acid 103 for rhocbΔ38. 
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Figure 7.7. rhoca and rhocb are dispensable for early heart morphogenesis. 

Quantitative analysis of heart looping and heart size in single and double rhoca; 

rhocb mutants at 55hpf and 72hpf. (A-D’) Representative images of mRNA in situ 

hybridisation analysis of myl7 at 55hpf to examine heart morphology in WT (A), 

rhocaΔATG homozygous mutants (B), rhocbΔ20 homozygous mutants (C), rhocaΔATG; 

rhocbΔ20 double homozygous mutants (C’), rhocbΔ38 homozygous mutants (D), 

rhocaΔATG; rhocbΔ38 double homozygous mutants (D’). (E-H’) Representative images 

of mRNA in situ hybridisation analysis of myl7 at 72hpf to examine heart 

morphology in WT (E), rhocaΔATG homozygous mutants (F), rhocbΔ20 homozygous 

mutants (G), rhocaΔATG; rhocbΔ20 double homozygous mutants (G’), rhocbΔ38  
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7.1.5 Loss of rhoca does not affect cardiac size in adults 

 

Whilst rhoca is non-essential for embryonic development (Figure 7.3, 7.4, 7.7) it is 

possible that rhoca function may be necessary later in development and that adult 

rhoca mutants, although viable, may present with cardiac abnormalities, particularly 

in size, given the potential role in regulating embryonic heart size. Hearts were 

dissected from adult fish either heterozygous or homozygous for rhocains10 or 

rhocaΔATG and the ratio of heart mass to body mass calculated (Figure 7.8). At 2 years 

old the hearts of rhoca mutants looked grossly normal, and no significant difference 

were observed in heart mass to body mass ratio between homozygous mutants and 

heterozygous siblings (Figure 7.8), suggesting that rhoca is not required in the 

embryo or adult zebrafish for heart form. 

 

 

 

 

 

 

 

 

Figure 7.7 continued. 

homozygous mutants (H), rhocaΔATG; rhocbΔ38 double homozygous mutants (H’). (I, K) 

Quantification of heart looping ratio (I) and heart area (K) in embryos obtained from 

rhocaΔATG; rhocbΔ20 double heterozygous incross at 55hpf and 72hpf. No significant 

differences in looping ratio or heart area are observed. (J) Quantification of heart 

looping ratio and heart area (L) in embryos obtained from rhocaΔATG; rhocbΔ38 double 

heterozygous incross at 55hpf and 72hpf. No significant differences are observed. 

A-H’: ventral views. I-L: Median with interquartile range, Kruskal-Wallis, Dunn’s 

multiple comparisons. 
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Figure 7.8. Loss of rhoca does not impact adult heart size. 

Comparison of heart weight expressed as a percentage of body weight in adult 

rhoca heterozygous and homozygous mutants, both obtained from a rhoca 

heterozygous incross. No significant differences are present between homozygous 

mutants and their respective heterozygous siblings. Arithmetic Mean with Standard 

Deviation, Brown-Forsythe and Welch ANOVA, ns: not significant. 
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7.2 Discussion 
 

The family of small Rho GTPases have multiple roles within the cell, with the most 

well-defined being the regulation of actin cytoskeleton organisation during cell 

migration, a process requiring correct intracellular responses to the extracellular 

environment (Heasman and Ridley, 2008; Sit and Manser, 2011). Using a reverse 

genetic screen approach based on spatial transcriptomics, rhoca was identified as a 

candidate Rho GTPase expressed in the heart during early heart tube 

morphogenesis.  

 

Subsequent ISH expression analysis validated rhoca as a candidate gene exhibiting 

similar spatiotemporal expression dynamics to the Laminin and integrin subunits 

identified in Chapter 3. rhoca is initially expressed throughout the linear heart tube 

and expression is gradually restricted to ventricular and atrioventricular tissue 

(Figure 7.1). Loss of rhoca and/or rhocb does not impact cardiac morphogenesis, 

supporting a previous observation that whilst rhoca and rhocb are required for 

vascular integrity in the trunk (Hoeppner et al., 2015), they are not required for 

development of the heart. Further supporting that rhoca and rhocb are not required 

for development is the absence of a developmental phenotype following deletion of 

RhoC in mice (Hakem et al., 2005). However, in a murine model of breast cancer, 

although initial tumourogenesis was not affected, loss of RhoC resulted in a 

dramatic reduction in the number of secondary metastases present in the lungs 

(Hakem et al., 2005). Similarly, loss of RhoB in mice does not affect development, 

but leads to an increase in tumourogenesis under an inducible skin cancer model 

(Liu et al., 2001). 

 

However, studies in mice models have proposed that RhoGTPase activity is 

important for heart development. Cardiac over-expression of Rho GDIα, an inhibitor 

of RhoGTPase function, abolishes heart looping and trabeculation by inhibiting cell 

proliferation through up-regulation of the cell cycle inhibitor p21 (Wei et al., 2002). 

In cell culture, RhoC function has been shown to have a similar, but distinct effect on 
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cell cycle progression, independent of p21, whereby activation of RhoC by VEGFR2 

results in increase of CyclinD1 transcription, likely through increased nuclear 

translocation of β-Catenin (Hoeppner et al., 2015). This mechanism could provide a 

potential explanation for the reduction in heart size in rhocaΔATG MPZ mutants. 

However, further characterisation as to whether overall heart size or a specific 

chamber is affected in rhocaΔATG MPZ mutants is needed., This could be investigated 

through chamber specific quantification as carried out in Chapter 5.  

 

More generally, it is tempting to speculate that loss of Rho GTPase function in the 

zebrafish may result in a change in the cell cycle during looping morphogenesis. 

This potential reduction in proliferative state would likely be attributed to the 

endocardium (Dietrich et al., 2014) the likely tissue of rhoca expression (Figure 7.1), 

however, the myocardium could also be affected, despite little or no proliferation 

observed in the myocardium during looping (Boer et al., 2012; Pater et al., 2009). 

 

Importantly, the cardiac phenotype associated with over-expression of Rho-GDI is 

unlikely to be associated with the disruption of the function of a single RhoGTPase 

and as such is likely to be due to a broad spectrum of defects arising due to 

inhibition of multiple different Rho GTPases, and two studies in zebrafish suggest 

Rho GTPases play multiple roles during heart development.  Zebrafish rhoua, part of 

the Cdc42 family of small GTPases (Salas-Vidal 2005), is required for heart looping 

morphogenesis, regulating the localisation of cell adhesion molecules at the 

atrioventricular canal (Dickover et al., 2014). Furthermore, morpholino knockdown of 

zebrafish rhoab (homolog of human RHOA) results in cardiac oedema, as well as a 

failure in convergent extension (Zhu et al., 2006). As both lamb1a and lamc1 mutant 

also display defects in convergent extension (Parsons et al., 2002; Stemple et al., 

1996), it is possible that the rhoab is the predominant Rho GTPase functioning 

during heart development which could transduce signals between the cells of the 

heart and the Lamb1a-Lamc1 containing Laminins in the cardiac jelly. 
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The data presented here demonstrates that rhoca and rhocb are not required for 

cardiac development and mouse models for RhoB or RhoC mutants also display no 

developmental phenotype. Yet interestingly, RhoB or RhoC mutant mouse 

embryonic fibroblasts display defects in cell motility or stress fibre formation 

respectively and these could be associated with the cellular stress associated with 

cell culture experiments (Hakem et al., 2005; Liu et al., 2001). It is possible that the 

loss of these genes is compensated for by a distinct, (non-paralogous, in the case of 

zebrafish) Rho GTPase. Based on current literature, an obvious candidate to examine 

in would be RhoA, for which no mouse or zebrafish stable mutant lines currently 

exist. In parallel, a number of potential approaches would begin to definitively 

assign no function to RhoB and RhoC in both mice and fish such as targeted 

promoter deletion (El-Brolosy et al., 2019) or in-frame deletions that target the 

active site of the protein, to abolish function but not result in degradation of the 

mutant allele mRNA. However, absence of a reported cardiac phenotype in 

zebrafish double morphants, supports the conclusion that rhoca and rhocb are 

dispensable for early cardiac development, and more broadly embryogenesis. 

 

 the active site of the protein, to abolish function but not result in degradation of the 

mutant allele mRNA. However, absence of a reported cardiac phenotype in 

zebrafish double morphants, supports the conclusion that rhoca and rhocb are 

dispensable for early cardiac development, and more broadly embryogenesis. 



 

8. Discussion 
 

Despite the focus of much investigation since its first description in the chick by 

Patten in 1922, heart looping has remained a complex morphogenetic process that 

remains poorly understood relative to other aspects of vertebrate heart 

development. In particular, the role of the ECM/cardiac jelly which influences 

multiple aspects of the development has been under-investigated in how this 

promotes heart looping morphogenesis, despite early studies suggesting a 

requirement (Barry, 1948; Davis, 1924; Nakamura and Manasek, 1981). I have 

defined a number of novel roles for multiple ECM components in distinct aspects of 

heart development, establishing the cardiac jelly as a central controller of vertebrate 

heart development. Below I discuss my work in the wide context of ECM biology 

and the next steps in investigating how the cardiac jelly promotes heart 

development. 

 

8.1 Cell-ECM signalling 
 

The ECM provides structural cues and plays roles in signalling to tissues undergoing 

morphogenesis during development, including the heart. Defining the interactions 

between cells and their environment and subsequent outcomes at both the cellular 

and tissue level is important in understanding how heart looping morphogenesis is 

achieved. I have shown that Lamb1a-Lamc1-containing Laminin isoforms are 

required to limit heart size during heart development and that Lamc1-containing 

Laminins are necessary for heart looping to occur (Chapters 3, 5). I have also 

identified a number of Laminin-binding integrins expressed in the heart during the 

same time frame as Laminin subunit expression. Previous work in zebrafish has 

identified that Laminins and integrin linked kinase (a downstream effector of integrin 

signalling) function together/genetically interact in heart development (Knoll et al., 

2007) suggesting that the integrins I have identified could bind these Lamc1-
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containing Laminin isoforms and transduce the signal to bring about correct cardiac 

morphogenesis.  

 

The spatiotemporal dynamics of integrin expression during heart looping may help 

shed light on the tissue layer which responds to the Laminin as well as the time at 

which Laminin-integrin signalling may be playing its role. At 30hpf, itga3b and itga7 

are clearly expressed in the heart, whilst at 55hpf itga7 expression is absent, but 

itga3b and itgb1a persist. Similar temporal shifts in integrin expression are observed 

in mice, although at later stages where at E13.6, Itga5 and Itga6 are expressed in 

ventricular and atrial cardiomyocytes respectively (Wiencierz et al., 2015), while at 

E15 all cells of the mouse heart express Itgb1 and Itga7, alongside Itga6 in the 

atrium, Itga3 expression appears to be absent (Hierck et al., 1996). The highly 

dynamic expression of these genes suggest different Laminin-binding integrin 

complexes may play distinct roles in the maturation of the heart. Although the 

stages examined are not directly comparable to looping morphogenesis I 

characterised in Chapter 3, the combination of work in both zebrafish and mice 

suggest that both the composition of the ECM and the receptors which bind it are 

highly dynamic during heart morphogenesis. Furthermore, lamb1a mutants have 

enlarged atria at the time when Laminin and integrin expression appears to be 

broadly absent from the atrium, suggesting that these genes play an early role in 

setting up necessary processes which have impacts later in heart development. 

 

The changes in integrin expression during heart looping, together with the different 

windows in which lamb1a and lamc1 are required for proper cardiac development 

may provide insights into the specific interactions between complexes. For example, 

during early morphogenesis of the tube, the activity of Itga7 may be required to 

promote heart looping through binding of Lamc1-containing trimers, and as heart 

morphogenesis proceeds, a shift to Lamc1-Itga3b binding may be required to limit 

heart size, possibly by regulating ERK signalling (Manohar et al., 2004; Missan et al., 

2015). There is some support for distinct temporal roles for specific integrins during 
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heart development in the literature. In rat cardiomyocytes isolated at the foetal-to-

neonatal transition, changes in integrin subunit expression appears to follow/occur 

when cells actively withdraw from the cell cycle (Maitra et al., 2000). Spatial 

restriction in expression of integrin α subunits could represent the need to direct 

changes in proliferative capacity during heart morphogenesis. During heart looping, 

little or no myocardial proliferation occurs (Boer et al., 2012; Pater et al., 2009), 

however when trabeculation begins at E9.5 in the mouse, cell proliferation is 

increased specifically in the ventricles (Boer et al., 2012) which could be 

orchestrated through changing Laminin-integrin interactions 

 

Another, well characterised Laminin-receptor interaction is with the Dystroglycan 

complex which can regulate ERK signalling in the heart (Bassat et al., 2017) 

suggesting another possible mechanism of increased heart size in lamb1a mutants. 

In this context, the YAP/TAZ signalling pathway is downstream of Dystroglycan 

activation (Bassat et al., 2017). The recently proposed biomechanical cross talk 

between the endocardium and myocardium during chamber ballooning involving 

YAP will likely involve the force transmission through ECM receptors (Bornhorst et 

al., 2019). Thus, increased size of Lamb1a-Lamc1 hearts could suggest that Laminins 

or their interacting partners are involved in this mechanism, possibly through 

regulation of YAP (Bornhorst et. al. 2019). 

 

Alternatively, a careful balance between different integrin signals mediated through 

binding multiple ECM components may promote heart morphogenesis and/or 

restrict heart size, such as a balance of signalling through Laminin and Fibronectin-

binding integrins converging to regulate levels of ERK signalling. Further work 

examining the expression of itga3b (and its paralog itga3a), itga6a and itga7 

throughout cardiac looping and trabeculation stages, in combination with analysis of 

proliferation dynamics may provide some insights into the requirement for dynamic 

integrin switching. Combining this characterisation with phenotypic analysis of heart 

development in the relevant mutants/published morphants of these genes and 
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comparing cardiac phenotypes with those observed upon loss of lamb1a and lamc1 

will also help to define the Laminin-Integrin signalling axis which regulates heart 

shape and size. 

 

In addition to the proposed biomechanical role for HA and its interactions with the 

cells of the heart (Chapter 6), HA also has the ability to signal through membrane-

localised receptors. In particular an HA signalling axis is necessary for valve 

development, where binding of HA to CD44 together with Erbb2 activates the small 

GTPase Ras, which is required for EndoMT (Camenisch et al., 2000). CD44 mouse 

mutants have been reported to have no obvious phenotypes (Protin et al., 1999), 

however a number of other HA receptors are encoded for, such as RHAMM, and 

whether genetic compensation occurs in the CD44 mutants or functional 

redundancy exists between receptors was not examined. Whether Hapln1a functions 

to regionally sequester HA in the ECM and prevent activation of HA-signalling 

receptors remains unclear and warrants further investigation. However, a more 

physical role for regionalised ECM expansion in driving asymmetric cardiac 

morphogenesis may be predicted based on similar roles in the developing chick gut 

(Sivakumar et al., 2018). 

 

8.2 ECM and biochemical interactions 
 

Signalling between the myocardium, endocardium and surrounding mesoderm is 

crucial for the co-ordination of heart development. The increased heart size lamb1a 

and lamc1 mutants suggests that defects in this signalling could result in increased 

addition from the second heart field. One class of signalling molecule involved in 

SHF addition that has the potential to be highly mislocalised by changes to the 

constituents of the ECM is the Latent TGF-β Binding Protein (LTBP) family.  

 

LTBPs are processed together with the TGF-β ligand forming a large latent complex 

(LLC) which when secreted is able to associate with other ECM molecules, most 
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commonly Fibronectin or Fibrillin through non-covalent interactions, sequestering 

the TGF-β ligand (Robertson et al., 2015). Upon cleavage of the LTBP, the TGF-β 

signal is then able to be received by cells, thus LTBPs uncouple ligand secretion and 

ligand action. Multiple LTBPs are expressed in the human heart (Davis et al., 2014), 

and the family member with the best characterised role in heart development in 

zebrafish is ltbp3. ltbp3 is expressed at the onset of heart looping morphogenesis in 

the SHF at the arterial pole, and loss of ltbp3 or TGF-β function during SHF addition 

results in a loss of arterial structures (Zhou et al., 2011). Changes in organisation to 

the ECM through loss of Laminin isoforms may indirectly affect organisation of the 

ECM and thus the ability of LTBPs to correctly partition the TGF-β signal. This may 

result in alterations to the temporal activity of the ligand either by premature 

activation, or delay in receipt of the signal due to inaccessibility of the LTBP for 

cleavage. As such, examining whether the activity or localisation of LTBPs is altered, 

leading to increased TGF-β signalling in lamb1a and lamc1 mutants, may help to 

examine the molecular basis for increased heart size in these mutants. 

 

SHF addition requires a highly conserved Fgf8 signalling axis and FGF signalling is 

sensitive to ECM composition, particularly to changes in Heparan Sulfate 

Proteoglycan (HSPG) content (Lin, 2004; Zhang et al. 2015). HSPGs are required for 

collective cell migration in the zebrafish lateral line, as loss of HS synthesis or 

inhibition of sulfation leads to loss of FGF signalling, increased Wnt responsiveness 

and a failure in the correct formation of the neuromasts (Venero Galanternik et al., 

2015). Similarly, in Drosophila, loss of the enzyme required for HS synthesis results in 

a loss of tracheal cell migration, phenocopying  loss of the FGF chemokine (Lin et 

al., 1999). Loss of Ext1 (Exostosin glycosyltransferase 1), a major HS synthesising 

enzyme disrupts FGF signalling and cell proliferation in the SHF in mice (Zhang et 

al., 2015). glypican4 (a class of cell membrane-localised HSPG) mutant zebrafish 

have a reduction in cell number in the heart at 2dpf, due to a failure of SHF addition 

where both BMP and Wnt signalling are altered (Strate et al., 2015). Although FGF 

signalling was not examined and the SHF appeared correctly specified, it seems 
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likely that the interaction between FGF signalling in deploying the SHF was also 

affected by loss of glypican4 (Strate et al., 2015; Superina et al., 2014; Venero 

Galanternik et al., 2015). 

 

Loss of lamb1a or lamc1 could result in a mis-regulation of HSPG localisation or 

activity, which could impact on FGF signalling and result in an increase in heart size. 

Lamb1 and HSPGs interact in the ECM, where they are minimally required in cell 

culture, interacting together to polarise epithelial cells and drive lumen formation in 

embryonic lung cells (Schuger et al., 1996). lamc1 also regulates HSPG function, 

where it appears to pattern the HSPGs to regulate BMP signalling (Dolez et al., 

2010). Loss of lamc1 in zebrafish results in an almost total loss of HSPGs and is 

associated with an increase in BMP responsiveness resulting in changes to 

development of the myotome (Dolez et. al. 2010).  

 

Together these studies demonstrate the high degree of interconnectivity between 

signalling ligands and ECM components during development. This suggests that 

expansion of BMP or FGF signalling though perturbation to the HSPG in the cardiac 

jelly may underlie the increased heart size in Laminin mutants, possibly through 

increased SHF addition. 

 

8.3 Cardiac function and ECM 
 

As well as biochemical interactions between the two tissue layers of the heart, there 

are also biomechanical interactions that are necessary for heart looping 

morphogenesis. Unique to the development of the heart is that form and function 

are interdependent and the sensation of blood flow is critical for correct 

cardiovascular development (Heckel et al., 2015; Hiermeier and Männer, 2017; 

Samsa et al., 2015; Vermot et al., 2009). In particular, the zebrafish model system 

has been invaluable for investigating how blood flow regulates the developmental 

mechanisms required for valve development and this has been informative in 
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investigating how expression of some ECM genes can be regulated by cardiac 

function. 

 

Blood flow sensation through activation of klf2a expression at the atrioventricular 

canal correlates with fn1b expression between 48hpf-56hpf (Steed et al., 2016). Loss 

of klf2a function leads to absence of fn1b expression in the valve, and mutations in 

fn1b results in abnormal valve development through loss of EndoMT (Steed et. al. 

2016). This highlights the coupling of blood flow to the specialisation of the valve 

ECM. I have also identified a role for blood flow in promoting the expression of 

ECM genes in the heart; lamb1b and lama4 expression in the endocardium is blood 

flow-dependent, whilst endocardial expression of lamb1a and lamc1 also appear to 

be regulated by blood flow (Chapter 3). Since lamb1b expression is highly 

reminiscent of fn1b at the valve, and lamb1b expression is also Notch-dependent, 

this together would suggest that a blood flow-Klf2a-Notch signalling axis promotes 

localised ECM synthesis at the valve. This could represent a potential intrinsic 

mechanism of how the cardiac ECM is patterned to generate regionalised changes 

in cell shape and size as heart looping proceeds. Whilst the specific integrin 

receptor subunit for Fibronectin, itga5, is initially expressed throughout the heart at 

30hpf, its expression becomes predominantly localised to the ventricle and AVC at 

55hpf (Chapter 3). However, as fn1b is only expressed at the AVC (Steed et. al. 

2016), this localised ECM specialisation likely limits the action of Itga5 to the AVC, 

where through focal adhesions it drives endocardial cell migration during valve 

formation (Gunawan et al., 2019). 

 

Another biomechanical role for the ECM in cardiac morphogenesis could lie in 

regulating the response of the endocardium to blood flow, as heart size in lamb1a 

heterozygous mutant embryos appear to be sensitised to increased blood viscosity 

(Chapter 5). One mechanism driving this could be that loss of Laminin function 

results in an increased sensitivity to shear stress. This model is supported by studies 

using artery explants, which demonstrates that loss of LN-511 in endothelial cells 
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leads to a hypersensitive response to increasing shear stress (Russo et al., 2016). 

Together this shows how important considerations of both form and function are in 

relation to patterning of the ECM and more broadly heart development. 

8.4 Regulation of ECM synthesis 
 

Tightly-coordinated spatiotemporal control of ECM-related genes is evident during 

cardiac development both in the work presented here and other studies (Chew and 

Lennon, 2018; Mouw et al., 2014; Schéele et al., 2007). Highlighted by FGF and 

HSPGs, signalling molecules and ECM synthesis are interdependent on one another 

(Galaneetrik 2015), making the dissection of pathways which directly regulate ECM 

genes more challenging. 

 

I have demonstrated differential regulation of specific Laminin subunit expression 

during heart development. Expression of myocardial Laminins such as lama5 are 

blood flow and Notch independent, whilst expression of lama4 and endocardial 

expression of lamb1a and lamc1 appear to be blood flow-dependent but Notch 

independent, which should be confirmed through fluorescent in situ hybridisation 

following tnnt2a knockdown. If a blood-flow dependent, Notch-independent 

mechanism regulating Laminin expression is active in the heart, the most obvious 

candidate pathway would be BMP signalling as links between blood flow and BMP 

signalling have been established in zebrafish, with myocardial expression of BMP 

ligands proposed to be received by the endocardium where they regulate 

endocardial ballooning and proliferation (Dietrich et al, 2014). In the fin fold of the 

zebrafish, lama5 expression is required for basement membrane assembly and 

together with lamb1a and lamc1 is regulated by canonical Wnt signalling 

(Nagendran et al., 2014; Webb et al., 2007). Wnt signalling is active during heart 

development, where it is required upstream of BMP signalling to regulate 

development of the atrioventricular valve (Goddard et al., 2017; Verhoeven et al., 

2011). Treatment with BMP inhibitors or other chemical inhibitors such as for Wnt 



8. Discussion 

311 

 

will help to identify the necessary signals which regulate expression of the Laminin 

genes. 

 

Thus, for many of these Laminin components it is unclear how their expression in the 

heart is regulated, both in terms of how it is induced, but also how expression 

subsequently becomes spatially restricted as the heart undergoes morphogenesis. 

Equally important as the initiation of Laminin expression in the heart is the restriction 

of expression from the atrium (and also ventricle for lamb1b) during heart looping. 

There is very little data from which potential mechanisms could be suggested as to 

how expression of Laminins is altered during heart looping, however insights from 

examining regulation of lamb1b provide some. lamb1b expression is dependent on 

flow and downstream of this Canonical Notch signalling (Samsa et al., 2015; Vermot 

et al., 2009) (Chapter 3). Importantly, the expression domain of lamb1b is not 

expanded upon loss of Notch activity, suggesting that Notch activity is not required 

to restrict lamb1b expression to the AVC, but is needed to maintain expression. This 

could suggest that broadly, restriction of Laminin expression may be guided by the 

activity of chamber specific signalling. The most obvious candidate pathway for 

ventricular-specific expression is Neuregulin-Erbb signalling which is required from 

2dpf for trabeculation (Liu et al., 2010). This could suggest that, as the heart begins 

to take shape, the early role of Laminin to promote heart looping morphogenesis 

and restrict heart size is switched to regulate trabeculation. Separately, lamb1b is 

regulated by a distinct pathway which may have evolved following genome 

duplication, suggesting why lamb1b is dispensable for development. 

 

I have demonstrated that the expression of hapln1a in the posterior of the heart disc 

is independent of laterality cues (Chapter 6), further adding to the intrinsic model of 

heart looping morphogenesis (Derrick et al., 2019; Grimes et al., 2019; Lombardo et 

al., 2019; Manning and McLachlan, 1990; Noël et al., 2013). One candidate 

transcription factor that may regulate the expression of hapln1a in the cardiac disc is 

meis2b, which overlaps with hapln1a (Guerra et al., 2018). Examining the expression 
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of hapln1a in meis2b mutants at disc stage may provide a link between these two 

genes, although how the asymmetric expression of meis2b is established in the 

heart disc remains unclear. Antero-posterior patterning of tissues during 

development is commonplace, the archetypical mechanism being through opposing 

gradients of FGF and Retinoic Acid (RA) signalling, exemplified by somitogenesis 

(Aulehla and Pourquié, 2010; Bertrand et al., 2015) and in the otic vesicle (Maier and 

Whitfield, 2014). Both RA and FGF signalling are utilised in distinct aspects of heart 

development, with one of the earliest roles for RA being the restriction of the size of 

the pool of cardiac progenitors (Keegan et al., 2005). During formation, the heart 

disc is located close to the developing otic vesicle and rhombomere 4 which are 

sources of FGF and RA ligands (Grandel et al., 2002; McCarroll and Nechiporuk, 

2013; Nechiporuk et al., 2006), suggesting that these pathways may be able to 

influence cardiac patterning in addition to otic patterning. Pharmacological 

inhibition of FGF or RA signalling pathways following progenitor specification but 

before heart disc formation would begin to investigate the mechanism by which 

anterior posterior asymmetry in the heart disc is established. 

 

I have shown that during heart development, expression of the HA synthase has2 is 

highly dynamic between 21hpf and 30hpf, with initially myocardial expression in the 

disc and subsequently endocardial expression in the heart tube which is then 

restricted to the developing atrioventricular valve (Chapter 6). In mice at E8.5 Has2 

expression is present in the myocardium and endocardium of the heart, but just a 

day later, Has2 expression is reduced in the myocardium, remaining only at the AVC 

myocardium, whilst Versican expression is retained in the myocardium throughout 

early looping (Camenisch 2000). These expression patterns could suggest a level of 

conservation in the regulation and restriction of has2 expression during cardiac 

development between zebrafish and mice. 

 

Valve development and specification is a highly complex series of genetic 

interactions best characterised in mouse. BMP signalling at regions specified to 
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become non-working myocardium results in Tbx2 expression at the IFT, AVC, inner 

curvature and OFT which then out-competes the pan-cardiac expressed Tbx5, to 

form a complex with Nkx2.5 (Habets et al., 2002). Ultimately, this defines regions of 

the heart that are immature (future valve), or mature (marked by nppa/ANF) 

myocardium. A reciprocal interaction between nppa and tbx2b has been identified 

in zebrafish through deletion of the nppa/nppb gene cluster, leading to an 

expansion of tbx2b and has2 into the atrium, associated with expansion of atrial 

cardiac jelly at 2dpf (Grassini et. al. 2018). This expansion can be rescued by 

morpholino-mediated knockdown of bmp4, suggesting that Nppa and Nppb act to 

restrict the valve programme through BMP4 signalling to confine tbx2b and has2 

expression to the AVC (Grassini et. al. 2018). Together this might suggest that tbx2b 

directly drives expression of has2 during heart development, a hypothesis 

supported by one study where misexpression of Tbx2 in mouse using a Myh6 

promoter correlated with a strong up-regulation of Has2 (Shirai et al., 2009). 

However, tbx2b is expressed in the myocardium whilst in zebrafish, has2 is 

expressed in the endocardium, how then could Tbx2b activity in the myocardium 

bind the has2 promoter in the endocardium?  

 

It is possible that early expression of Tbx2 in the cardiac crescent (Harrelson et al., 

2004) and potentially tbx2b the heart tube in zebrafish prior to looping (Sedletcaia 

and Evans, 2011) may promote myocardial has2 expression driving HA deposition 

prior to heart looping, and that later the spatial disconnection of endocardial has2 

and myocardial tbx2 expression results from a distinct genetic programme. 

Alternatively, zebrafish may also exhibit tbx2b-dependent myocardial expression of 

has2 at 30hpf (although this seems unlikely to occur), or that mice and zebrafish 

have distinct mechanisms of has2 regulation during embryogenesis. has2 is also 

regulated post-transcriptionally by miR-23 a miRNA with highly specific restriction at 

the atrioventricular canal during valvulogenesis (Lagendijk et. al., 2011). Loss of miR-

23 results in an up-regulation of has2 and marked increase in deposition of HA 

(Lagendijk et. al., 2011). 
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Separately, a number of studies have reported that failure to restrict has2 expression  

and associated expansion of the cardiac ECM result in looping defects (Grassini et 

al., 2018; Lagendijk et al., 2013, 2011; Patra et al., 2011; Shirai et al., 2009), 

suggesting that whilst restriction of these genes to the AVC is required for its 

development, restriction away from the chambers is also important to promote 

looping. Together, this supports that tight spatiotemporal control of ECM 

composition during heart development is critical in facilitating specialisation of 

different regions of the heart as they take on more distinct roles. This would 

therefore suggest that as heart development proceeds, the ECM must undergo 

continuous, dynamic remodeling achieved through temporal and tissue-specific 

expression patterns of these genes. 

 

8.5 The dynamic ECM as a driver of heart development 
 

Whilst this work has focused on components of the ECM and some enzymes 

required for synthesis of specific ECM constituents, co-ordination of ECM 

degradation is also necessary during development. Three independent forward 

genetic screens in zebrafish have identified the cell surface hyaluronidase cemip2 

(cell migration inducing hyaluronidase 2, formerly tmem2) as a key regulator of 

cardiovascular development (Angelis et al., 2017; Smith et al., 2011; Totong et al., 

2011). Loss of cemip2 results in a dramatic loss of ISVs and a reduction in pERK-

positive endothelial cells (Angelis et al., 2017). This phenotype can be recovered 

through injection of Hyaluronidase (HA’se) or shorter HA fragments into cemip2 

mutants suggesting that degradation of HA acts via ERK signalling to drive 

angiogenesis (Angelis et al., 2017). 

 

Heart looping is profoundly affected in cemip2 mutants, characterised by almost 

linear heart tubes with an absence of constriction at the atrioventricular canal 

(Totong et. al. 2011, Smith et al., 2011). Multiple genes involved in the development 
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of the AV valve show a dramatic expansion in cemip2 mutants, including bmp4, 

has2, and notch1b as well as Notch downstream genes and expanded Wnt activity 

(Hernandez et al., 2019; Smith et al., 2011; Totong et al., 2011). In line with its role 

in HA degradation, loss of cemip2 results in an expanded ECM on both sides of the 

myocardium (Hernandez et al., 2019), an increase in HA and also CS staining 

(Hernandez et al., 2019). However, increase in HA could be due to the expansion of 

endocardial has2 in cemip2 mutants (Smith et al., 2011), making a direct link 

between loss of hyaluronidase activity in the heart, increased cardiac jelly, and 

abnormal looping morphology difficult to directly link.  

 

As in the ISV model, although not as successfully, hyaluronidase treatment is able to 

recover the cemip2 phenotype, suggesting that degradation of the HA-containing 

ECM is required for aspects of heart looping morphogenesis (Hernandez et al., 

2019). Most interestingly, HA’se treatment could rescue the expansion of Wnt 

activity to levels comparable to siblings, further demonstrating the relationship 

between the ECM and signalling pathways (Hernandez et al., 2019). Wnt activity lies 

upstream of BMP in specification of the AVC in both mice and fish (Hurlstone et al. 

2003; Wang et al. 2013; Verhoeven et al., 2011), and has2 expansion in cemip2 

mutants is recovered by knockdown of bmp4 (Smith et al., 2011). Together these 

data suggest a model whereby HA degradation by Cemip2 in the chambers limits 

Wnt and BMP activity to the AVC resulting in restriction of has2 expression to the 

AVC.  

 

How the activity of Wnt could be limited remains unclear, one suggestion is through 

restriction of expression of the Wnt ligand to the valve, similar to expression of 

wnt9b in mice and zebrafish (Goddard et al., 2017). This also suggests that the 

enrichment of CS at the valve precursor (Peal et al., 2009) despite an absence of 

chsy1 expression at 30hpf in the heart tube (Chapter 6) results from localised 

degradation by cemip2, rather than increased deposition as recently proposed 

(Hernandez et al., 2019). 
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This builds upon the model for the spatiotemporal role of PGs during heart 

development suggested by the time course of expression patterns in Chapter 6. 

Initially HA together with the expression of hapln1a in the posterior of the disc and 

asymmetric BMP activity across the left-right axis of the disc is required to drive 

heart jogging. At this stage, the HA laid down is required for heart looping, as 

inhibition of HA synthesis between 18-22hpf results in linear hearts at 48hpf (Derrick 

et al., 2019), and together with expression of chsy1 and vcana at disc stage, would 

suggest that VersicanA-CS, linked to HA may be required for heart looping 

morphogenesis, in agreement with the Has2 and Versican mutant mice (Camenisch 

et al., 2000;, Mjaatvedt et al., 1998) and also Versican mutant medaka (Mittal et al., 

2019). 

 

Following the initial stages of heart looping, the ECM subsequently undergoes 

regional remodelling, partially or wholly through the action of cemip2. This 

degradation of HA is required for proper restriction of Wnt, BMP and Notch 

signalling at the valve (Smith et al., 2011; Hernadez et al., 2019; Totong et al., 2011), 

which together with blood flow and klf2a activity promotes localised ECM synthesis 

at the AVC (Steed et al., 2016). Similarly, has2 expression is restricted to AVC by 

cemip2 (Smith et al., 2011) action where HA deposition is required for the 

development of the atrioventricular cushions (Camneisch et al. 2000), together with 

Vcana (Mjaatvedt et al., 1998; Yamamura et al., 1997) and potentially Hapln1a 

(Wirrig et al., 2007). 

 

Whilst there appears to be a spatiotemporal disconnection between the role of HA 

synthesis during heart development (has2 function required in the disc for the tube 

to loop) (Derrick et al., 2019), evidence shows that cemip2 function is required to 

facilitate formation of the heart tube (Totong et al., 2011), although no expression 

analysis of cemip2 at this timepoint has been carried out. Therefore, both has2 and 

cemip2 function during heart tube formation, which would suggest that HA 
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synthesised by has2 is actively being degraded by cemip2 during heart jogging. A 

number of theories could be possible to explain how these two opposing pathways 

could act to regulate heart tube formation. As cemip2 activity is required to 

generate short fragments of HA (o-HA) which are required for ERK signaling (Angelis 

et al., 2017), degradation of HA may result in the activation of signal transduction 

pathways necessary to generate asymmetric movements in the disc. More generally, 

this mechanism of HA action makes the two separate functions of HA in the ECM 

(physical support and signalling) hard to uncouple. Secondly, the relative activities of 

has2 and cemip2 may be very different during tube formation compared to heart 

looping. It would therefore be expected that inhibition of HA synthesis allows HA 

degradation by cemip2 to become the dominant factor and prevent heart looping 

morphogenesis. Finally, the pan-cardiac expression of vcana and posterior 

expression of hapln1a in the heart disc suggests that HA synthesised by Has2 is 

associated with Vcana and stabilised by Hapln1a and that this could prevent 

degradation of the posterior, future-left sided HA-ECM resulting in the expansion, 

supported by the reduction in Versican protein in Hapln1 mutant mice (Wirrig et al., 

2007). This would place hapln1a, as the factor required to limit cemip2 activity in the 

posterior of the heart disc, allowing the ECM expansion to occur which is then 

required to promote heart development. In fact, this may go so far to even suggest 

that left-sided expansion of the heart tube is not required for asymmetric 

morphogenesis, but the posterior expression of hapln1a prior to formation of the 

heart tube is the key event that drives heart looping morphogenesis, highlighting 

the importance of understanding the very early morphogenetic processes of heart 

development. 

 

The exclusion of vcanb expression from the heart tube, but strong and specific 

expression at the arterial pole suggests that as in Medaka (Mittal et al., 2019) and 

mice (Kern et al., 2007; Mjaatvedt et al., 1998; Yamamura et al, 1997), Versican plays 

multiple roles during heart development. It would appear likely that following the 

teleost specific genome duplication, the roles of the ancestral single Versican gene 
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were divided between vcana (jogging, looping and valvulogenesis) and vcanb (SHF 

addition). Supporting a role for HA and its interaction with Vcanb, inhibition of HA 

synthesis during SHF addition results in a SHF addition defect (Noël, unpublished). 

These initial observations present an exciting avenue for further examining the role 

that the ECM plays in guiding cell migration during development. 

 

Whilst many studies have focussed on the core protein, little work has examined the 

specific GAG attached to these and what role they play in heart development. 

Classically, CS is covalently linked to Versican proteins and the only study which has 

described a role for CS synthesis in heart development has been in zebrafish (Peal et 

al., 2009). Use of timed drug treatments ascribed the role of CS synthesis specifically 

to valvulogenesis based on loss of EndoMT markers (Peal et al., 2009). I have shown 

that chsy1 expression is present in the cardiac cone at 21hpf but not the heart tube 

between 26-30hpf (Chapter 6) and suggest that early CS deposition is required for 

heart looping morphogenesis, which is later remodelled by cemip2 during valve 

formation. Therefore, as the window of CS synthesis inhibition was very broad 

(between 7hpf and 48hpf) (Peal et al. 2009), it seems likely that this inhibition 

prevented the formation of the correct ECM environment at disc stage and 

therefore affected heart looping. This would then result in a secondary effect on the 

development of the valve, and loss of vcana and tbx2b expression in the hearts of 

embryos treated with the CS synthesis inhibitor (Peal et al., 2009) would support this 

idea. Together this supports that the interaction between valve specification and 

valve development is much more complex and is highly sensitive to the early events 

of heart development. 

 

Rapid ECM remodelling is not only required for heart tube formation, looping 

morphogenesis and valve development. As maturation of the heart proceeds, the 

ventricular cardiac jelly undergoes a dynamic remodelling to build the trabeculae 

necessary for increased cardiac output in the adult (Liu et al., 2010, Monte-Nieto et 

al. 2018). As proposed in Chapter 6, the data from myl7:hapln1a injections 
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highlights potentially different spatiotemporal requirements for ECM in distinct 

processes of heart development. Whilst during early tube morphogenesis in 

zebrafish, the ECM of the ventricle is thin and uniform, as heart looping proceeds in 

mice the ventricular ECM undergoes localised expansion to form ECM bubbles 

during the sprouting and touchdown phases of trabeculation. The trabecular 

myocardium then invades the ECM bubbles as the trabeculae grow, and the ECM 

surrounding the trabecular myocardium eventually diminishes (Monte-Nieto et al., 

2018). Interestingly during trabeculation, the production of the HA-rich ECM is 

dependent on Neuregulin signalling and limited by Notch signalling (Monte-Nieto 

et al., 2018). This is in contrast to the role of Notch signalling in ECM deposition 

during valve formation where loss of Notch results in a loss of cushion formation 

(Timmerman et al., 2004, Chi et al., 2007). This suggests that the signalling pathways 

regulating ECM synthesis are context dependent during heart development, most 

likely regulated by the effect of chamber (Tbx5) and non-chamber (Tbx2) 

transcription factors. 

 

I have shown that during heart stages of heart morphogenesis, the atrium is more 

sensitive to perturbations in the composition of Proteoglycan-related ECM 

components, as over-expression of hapln1a in the atrium causes a more profound 

reduction in heart looping when compared to similar levels of ventricular over-

expression (Chapter 6). As Hapln1a protein remains present in the atrial ECM until at 

least 55hpf, despite the loss of hapln1a mRNA expression from the atrium after 

30hpf (Derrick et al., 2019), this would suggest that Hapln1a presence in the 

ventricular myocardium may cause premature and mislocalised expansion of the 

ECM which may impact on the building plan required for trabeculation, but not 

impact upon looping morphogenesis itself. However, light sheet imaging of the 

ventricle ECM compared to atrial ECM at 50hpf suggests that the constituents 

required for Hapln1a to bind and generate improper ECM expansion in the ventricle 

may not be present as the thin ventricular ECM may not contain sufficient HA to 

result in an expansion (Grassini et al., 2018). One could propose then, that spatial-
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temporal restriction of ECM remodelling enzymes, in particular Hyaluronidases such 

as cemip2, which is expressed in the ventricle prior to the onset of trabeculation 

(Smith et al., 2011), is required to facilitate the close contact between the two 

ventricular tissue layers, which is later locally expanded, potentially by re-activation 

of has2 in the trabecular myocardium (Monte-Nieto et al., 2018). 

 

Whilst much focus is placed on the ECM of the ventricle during heart development, 

the role of the ECM in development of the atrium is remains understudied. Further 

characterisation of the atrial ECM at 72hpf using light-sheet imaging demonstrates 

that the left-sided expansion is maintained during heart maturation and this is 

dependent on hapln1a function (Derrick et al., 2019). A thin ventricular ECM can be 

reasoned as promoting close apposition of the cell layers to promote trabeculation 

(as discussed above), it could be possible that an expanded ECM may be required 

to prevent trabeculation from occurring in the atrium or that the later atrial webbing 

may require an ECM which is more capable of load bearing (Foglia et al., 2016). 

Examining cardiac function in hapln1a mutants, specifically the differences in the 

relative impacts on each chamber, together with overall morphology of the heart, 

may provide some clues as to the requirement for ECM regionalisation during heart 

development. 

 

To answer some of these questions relating to the spatio-temporal role of the ECM, 

novel tools will be needed to identify how this is achieved. A promising technology 

is the tamoxifen-dependent Gal4-ERT transcription factor (Akerberg et al., 2014), 

which combines the spatial control of GAL4-UAS system from Drosophila together 

with the inducible nature of the Cre-ER system from mice, which could be applied to 

these questions. Together with a spatial promoter and a subtle UAS containing 

construct, genes such as a hyaluronidase (HYAL) could be placed under the control 

of the hapln1a promoter to generate Tg(hapln1aBAC:Gal4-ERT), Tg(UAS:HYAL) lines 

which would allow temporal expression of HYAL in the hapln1a domain to test the 

role for HA action at distinct points and regions of the heart during looping. 
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This technique could be further extended to examine the temporal requirement of a 

specific gene during development, when an earlier role may prevent later events 

being assayed independently, such as the role for has2 in valve development or 

trabeculation. Under this mechanism, generation of a suitable BAC line that 

recapitulates endogenous expression of has2 could be used to drive has2 

expression using the Gal4-ERT technique in has2 mutant (Tg(has2BAC:Gal4-ERT), 

Tg(UAS:has2)). Induction of the has2 phenotype would then be achieved by removal 

of the 4OHT (4-Hydroxytamoxifen) from the water at the necessary time point to 

examine the temporal role of the gene during the time period of interest. 

 

Changes to the composition of the ECM during development of tissue is a common 

concept in tissue morphogenesis, best characterised in the glomerular basement 

membrane (GBM) of the kidney, where the Laminin composition changes from LN-

111, to 511 and finally to 521 (John and Abrahamson, 2001; Miner and Sanes, 

1994). Similar changes in the Collagen (IV) component of the GBM also occur (John 

and Abrahamson, 2001) Importantly, Lamb2 mutant mice survive for a few months 

past-partum but die later due to proteinuria, and therefore an initial characterisation 

of the lamb2 embryonic phenotype would have described a limited role for Lamb2 

in glomerular development. This suggests that the Laminin component of the 

cardiac jelly could also mature over time and that while I have only characterised the 

phenotype of lamb2 F0 mutants up to 72hpf, Lamb2 may be required later following 

the function of other Laminin isoforms. Relative to siblings, 64% of lamb2 mutants 

survive to adulthood, (Jacoby et al., 2002) suggesting that there may be a relatively 

mild adult phenotype, therefore it would be interesting to examine heart rate and 

pacing in lamb2 F0 mutants. Finally, as loss of lamb2 in mice results in the failure of 

nueromuscular junctions to organise properly, where Schwann cells make excess 

contacts with the basal laminae and enter the synaptic cleft upon loss of Lamb2 

(Patton et al., 1998). This could suggest a role for lamb2 in the innervation of the 
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heart, demonstrating how early ECM expression may be required for later 

developmental processes. 

 

Laminins are also subject to degradation, and this is required for tissue 

morphogenesis (Mouw et al., 2014). The main class of proteases involved in ECM 

remodelling are the matrix metalloproteinases (MMPs) (Mouw et al., 2014), 

zymogens that are activated in the extracellular space where collectively, they are 

able to degrade all ECM proteins, although each member of the MMP family does 

have a level of component specificity (Mouw et al., 2014). 

 

In zebrafish, Laminin at the interface between the gut and the LPM is asymmetrically 

degraded as the lateral plate mesoderm envelopes the developing gut, and this 

regional degradation is required for correct LPM migration (Yin et al., 2010). 

Commensurate with the role of MMPs in degrading ECM, pan-MMP inhibition 

results in a failure of LPM migration, specific knockdown of mmp14a results in an 

increased penetrance of a gut looping failure, suggesting that mmp14a activity 

degrades the Laminin isoforms in the LPM to promote asymmetric gut 

morphogenesis. Similar to the proposed role for regionalised degradation of HA in 

heart development, localised degradation of Laminin may be required for cardiac 

morphogenesis.  

 

Although degradation of the ECM during heart looping to facilitate movement of 

the tissue is unlikely to be required in similar manner to gut looping, preliminary 

data suggests that the temporal requirement of Laminin is indeed in the window 

prior to 55hpf. Immunostaining using a supposed pan-Laminin antibody suggests 

Laminin is present throughout the heart at 30hpf, but absent in the atrium of the 

55hpf heart (Noël, unpublished). However, this antibody does not sufficiently 

distinguish between different subunits (Parsons et al., 2002) and due to the complex 

tissue and temporal dynamics of Laminin subunit expression this makes 

interpretation of protein localisation and dynamics challenging. 
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The loss of expression of lamb1a, lama4 and lama5 from the atrium by 55hpf may 

suggest a similar role to localised Fibronectin synthesis with spatiotemporal 

requirements for Laminin deposition during heart development. However, this 

restriction seems at odds with the global roles of Laminins before 72hpf, as loss of 

lamb1a affects both atrial and ventricular size as early as 55hpf, despite expression 

of lamb1a being absent from the atrium this timepoint. This would suggest that 

Laminin deposition during early morphogenesis, similar to synthesis of HA during 

heart jogging is required for the morphogenesis of the tube and that Laminin 

deposition in the ventricle following heart looping may be required for other 

processes such as trabeculation. An interesting possibility is that cross-talk between 

Laminins and HA may be required for ventricular maturation, similar to roles 

identified for Laminins and HSPGs (Dolez et al., 2010). Examining localisation of HA 

(using the ssNcan-GFP sensor) and Hapln1a in lamb1a and lamc1 mutants would 

begin to test this possibility. 

 

Changes in composition of the cardiac basement membrane over heart 

development are observed for Laminin subunits, as young cardiac endothelial cells 

in mice (ECs, 12-15 weeks) predominantly express Lamb2 chains, whilst in old 

cardiac ECs (18 months) Lamb2 expression is reduced and Lamb1 is the major beta 

chain expressed (Wagner et al., 2018). Differences in Lamb1 and Lamb2 expression 

correlate with the response to acute myocardial infarction (AMI) in young mice, 

where cardiac ischemia results in an increase in Lamb1 and decrease in Lamb2 

expression (Wagner et al., 2018). These two different Laminins (LN-411, LN-421) 

have complementary effects in culture. Human Umbilical Vein Endothelial Cells 

plated on LN-411 had reduced adhesion, fewer branchpoints and reduced EC 

migration compared to LN-421 (Wagner et al., 2018). Furthermore, classical markers 

of EndoMT were clearly up-regulated in cells plated on LN-411 compared to plating 

on LN-421, which was shown to act through ITGB1 (Wagner et al., 2018). LN-411 

therefore appears to facilitate sensitisation towards a more mesenchymal state, 
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which may correlate with the increase in fibrosis and deposition of atheroma during 

ageing and also impact on the response to Myocardial Infarction (MI), suggesting 

that specific ECM composition may influence regenerative processes in the heart, 

and that the ECM is a potential therapeutic target for regenerative studies. 

 

 

8.6 Therapeutic futures 
 

Whilst zebrafish have remarkable regenerative capacity in multiple tissues in 

adulthood, including the heart, the ability of mice to regenerate cardiac tissue is 

only present at P1 (Notari et al., 2018). Removal of a small area of the left ventricle 

in P1 mice results in a clear injury at 3dpa (days post amputation) but the scar is 

resolved by 21dpa. However, if the same procedure is performed one day later, at 

P2, no regeneration of myocardial tissue is observed (Notari et al., 2018). 

Transcriptional profiling of P1 and P2 mice ventricular tissue identified almost 200 

genes that altered transcriptional levels, the majority of which were related to the 

ECM (Notari et al., 2018). Between P1 and P2, levels of Elastin, Laminin, Collagen II 

and IV show a marked increase in the heart, correlating with an increase in tissue 

stiffness. A comparison of the zebrafish and mouse cardiac ECM has highlighted 

major differences in the composition of Collagen, Elastin and GAGs, where zebrafish 

ECM contained less Collagen and more Elastin and GAGs compared to the mouse 

(Chen et al., 2016), in line with the increased elastic modulus observed in P2 versus 

P1 mouse hearts (Notari et al., 2018). Reduction in tissue stiffness in P3 injured mice 

resulted in reduced myocardial fibrosis, suggesting the changes in tissue stiffness 

during the early neonatal period impacts on regenerative capacity, although no 

direct link between ECM composition and stiffness was proved (Notari et al., 2018). 

 

In a separate study regenerative potential of the heart was shown to be contained 

within the ECM of zebrafish following heart injury (Chen et al., 2016). Injection of 

decelluarised, regenerating zebrafish ventricular ECM into mouse hearts post MI 
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induction resulted in a significant recovery of cardiac function, distinct from the 

injection of non-regenerating zebrafish ventricular ECM (Chen et al., 2016). 

Interestingly, inhibition of ErbB2 signalling appears to result in almost total loss of 

the therapeutic effect of regenerating zebrafish ECM, suggesting that the action of 

the regenerative capacity of zebrafish ECM acts through ErbB2 signalling, 

promoting cell proliferation (Chen et al., 2016). 

 

Further implicating the PG components of the ECM in heart regeneration, removal 

of the HSPG proteoglycan Agrin from the cardiac mesoderm in mice, leads to 

compromised heart regeneration in the P1 mouse, with larger and more frequent 

scarring of the ventricle following resection (Bassat et al., 2017). As a potential 

therapeutic, injection of Agrin into the heart following experimental induction of MI, 

results in a reduction in scar size 14dpi (days post injury) and a recovery of heart 

function by 20dpi. In this context, Agrin is proposed to act through the Dystroglycan 

complex component Dag1 to regulate ERK signalling, where Agrin treatment was 

able to increase ERK activation and nuclear YAP in P7 cardiomyocytes, facilitating 

increase in cell proliferation and subsequent regeneration (Bassat et al., 2017). The 

studies described here are by no means exhaustive, but highlight how altering ECM 

constituents can greatly impact on the regenerative potential of the heart and that 

understanding how these pathways act during embryonic heart development may 

inform therapies for the clinic.  

 

The ECM is a vast, complex network of glycoproteins and fibrous proteins, which is 

highly specialised to the tissue which it encompasses and for role that the tissue 

plays in the multicellular organism. I have, for the first time identified asymmetries in 

the embryonic cardiac jelly, which are required to promote heart morphogenesis 

and defined the first functional roles for Laminins in multiple aspects of early cardiac 

development. The implications of this work propose that the ECM is a critical factor 

in the correct development of the vertebrate heart and that some of the earliest 

events during formation of the heart are essential for generating the final form of the 
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mature heart in later life. Furthermore, within the rapidly evolving field of 

regenerative biology, characterisation of the cell-environment interactions will be 

crucial in elucidating mechanisms which facilitate tissue regeneration. Finally, 

defining how cardiac development is achieved through interactions between cells 

and the extracellular matrix will begin to define potential therapeutic strategies to 

alleviate structural malformations of the heart caused by CHD. 
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10. Appendix 
 

Table 10.1 Primer sequences used to generate mRNA ISH probes 

Probe target Sequence Fragment size (bp) 
Short 
name 

lamb1a-F TCCACTTCACCCACCTCATC 
~1000 

EN145 

lamb1a-R GGTCACAGTTCCTTCCGGTA EN146 

has2-F GTTCACGCAGACCTCATCAC 
1050 

CD47 

has2-R CATCCAATACCTCACGCTGC CD48 

rhocb-F CGCCAAGCAAAATCGAAACC 
919 

CD81 

rhocb-R ACCAGAATCAAAAGAGACAGAGA CD82 

lamb2l-F CAGTGTATGTGTCGGCATGG 
1062 

CD87 

lamb2l-R AAGCTCCGTCCTTACACACA CD88 

lamb4-F CTCGCAGCTTCTTCAACCTG 
1051 

CD89 

lamb4-R TACAGGCATAAGGGTCGTCC CD90 

spp1-F TTTAACACTCCTCGTCGCCA 
1015 

CD145 

spp1-R ATTTGTGCTCGGCTGTGTTT CD146 

tbx2b-F ACGTTTTCCCTGAGACCGAT 
955 

CD147 

tbx2b-R TAGGTGTAGGGGTACGGGAA CD148 

itga6a-F CCAGCCTCACGACAAAACAA 
1000 

CD155 

itga6a-R GTTCTCCACAGACAGACCGA CD156 

itga6b-F AATGGAGATGGGTGGCAAGA 
1284 

CD157 

itga6b-R AGAAATTCCTCCCGTGCTCA CD158 

itgb4-F GGAAATGCGATGAGTGTCCC 
1162 

CD161 

itgb4-R AGGTCTGCTGTGCTGTATGT CD162 

itga2b-F TGGCCGGGACATATGCATAT 
1081 

CD163 

itag2b-R TGTTCCAGATCACCCATGCT CD164 

tbx5a-F ACACCTTTCGGCTCCAAAAC 
1061 

CD171 

tbx5a-R CTGAGAGTAGCTTAGGGGCC CD172 

rhoca-F GGACAGGAGGACTATGACCG 
1168 

CD181 

rhoca-R CACAGCTCAATCCACATGCA CD182 

itga10-F GCACCCAGATTCAAGCACAA 988 CD185 
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itga10-R TCTTGTGTGTTGTTGGCCAG CD186 

itga7-F CTTCTCCGTGGCTCTACAC 
479 

CD189 

itga7-R CGAGCAGCAGGAAGTTG CD190 

acana-F CGGATCAAGTGGAGTCTGGT 
1067 

CD215 

acana-R GAAGGGAGGACGTGGGAAAT CD216 

acanb-F ATCAAGACAGCACCCTCAGT 
1035 

CD217 

acanb-R TTTCTGGAAATGGCGTGGTC CD218 

dCas9-F TGATCAGTCCAAGAACGGCT 
~1200 

 

dCas9-R CTTTCACCAGCTCATCGACG  

chsy1-F CACCATTCAGCTCCATCGTG 
801 

 

chsy1_R TCGGCTTTGGGGTACTTCAT  

 


