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Abstract

In this thesis, we propose to use Causal Bayesian Networks (CBNs), which play

a central role in dealing with uncertainty in Artificial Intelligence (AI). Causal

models can be created based on information, data, or both. Regardless of the

source of information used to create the model, there may be inaccuracies, or

the application area may vary. Therefore, the model needs constant improvement

during use.

Most of existing structure learning algorithms are batch. However, industrial

companies store vast amounts of data every day in real-world scenarios. Existing

batch methods cannot process the significant quantity of continuously incoming

data in a reasonable amount of time and memory. Therefore, batch methods

may become computationally expensive and infeasible for large dataset. It is

inappropriate to handle such changes with existing batch-learning approaches, and

instead, a structure should be learned in an online manner.

In this way, we present three online causal structure learning algorithms to fill

this gap. These algorithms can track changes in a causal structure and process data

in a dynamic real-time manner. Standard causal structure learning algorithms as-

sume that causal structure does not change during the data collection process, but

in real-world scenarios, it does often change. The online causal structure learning

algorithms we present here can revise correlation values without reprocessing the

entire dataset and use an existing model to avoid re-learning the causal links in
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the prior model, which still fit data. The algorithms update the correlations of

causes and effects with the estimation of the weight of each causal interaction.

Proposed algorithms are tested on synthetic and real-world datasets. Firstly,

we performed the desired algorithms and Fast Causal Inference (FCI) algorithm

on synthetic datasets generated from structures that change over time. We com-

pared these algorithms in the respect of both the learning performance and learn-

ing speed. And then, we illustrated the benefits of this approach by applying

to real-world data which is a seasonally adjusted commodity price index dataset

(monthly) for the U.S. from 1967 to 2018. The online causal structure learning

algorithms outperformed standard FCI by a large margin in learning the changed

causal structure correctly and efficiently when latent variables were present.
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Chapter 1

INTRODUCTION

1.1 Motivation and Problem statement

In real world scenarios, industrial companies store vast amounts of data in every

day. Existing batch methods cannot process the significant quantity of continu-

ously incoming data in a reasonable amount of time and memory. Batch structure

learning algorithms may become computationally expensive and infeasible for large

dataset. So, we need new methods which are able to learn a structure as online.

In this study, we aim to fill this gap via a machine learning approach. In this

machine learning approach, Algorithms can do structure learning as online from a

new data coming sequentially from a domain.

Bayesian Networks (BNs) are a type of a probabilistic graphical model that can

be viewed as a Directed Acyclic Graph (DAG), where nodes represent uncertain

variables and arcs represent dependency or causal relationship between variables.

The structure of a BN can be learned from data, and there are three main classes

of structure learning: constraint-based, score-based and hybrid learning. The

first type relies on conditional independence tests to construct the skeleton and

orient edges, whereas the second type searches over the space of possible graphs
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Chapter 1. INTRODUCTION

and returns the graph that maximises a fitting score. Hybrid learning refers to

algorithms that combine both constraint-based and score-based learning.

Bayesian Networks have a simple and easily understandable representation of

data in comparison with other representation methods. Bayesian Networks have a

simple and easily understandable representation of data in comparison with other

representation methods. They are robust and consistency in representing and han-

dling with relevant probabilistic relationships between variables. Its logical and

straightforward structure makes it easier to see the connections between the data.

Hence a Bayesian network (BN) has proven to be quite useful in representing

various data analysing, and it is understandable easily visual form, such as for

modelling probable conditional relationships between illnesses and symptoms. Us-

ing this model, the probability that a person has certain illnesses can be calculated

when symptoms are seen in one person.

A very useful aspect of BNs is that there is no technically very little data. The

minimum sample size is not required to perform the analysis and BNs take into

account all available data [61]. Also, Kontkanen et al. [40] shows that Bayesian

networks can show good predictive accuracy even at very small sample sizes. It

is also possible to use data to learn the structure of BN. Furthermore, Bayesian

network models have the advantage that they can easily include information from

different accuracy and different sources in a mathematically consistent manner.

Expert knowledge can be combined with data regarding variables on which no

data exist.

Since BNs are analytically resolved, they can quickly respond to queries after

the model is compiled. The compiled form of a BN contains a conditional prob-

ability distribution for each combination of variable values, and therefore, unlike

simulation models, where the results need to be simulated, it can instantly deliver

any very long distribution. Therefore, BNs have many benefits in comparison to

20



1.1. Motivation and Problem statement

other machine learning methods.

In the literature, we had many kinds of causal structure learning algorithms

which have been developed successfully and applied to many different areas [67,

81, 10, 33, 28]. One of them is the famous Fast Causal Inference (FCI) algorithm

proposed by Spirtes et al. in 1999 [81] was one of the first algorithms that was

able to validly infer causal relations from conditional independence statements in

the large sample limit, even in the presence of latent and selection variables but

ignores changing structure. Although all are successful structure learning algo-

rithms, almost all these algorithms share an important feature. They assume that

causal structure does not change during the data collection process. In real-world

scenarios, a causal structure often changes [43]. To quickly identify these changes

and then learn a new structure are both crucial. Therefore, it is not possible

to determine these changes with existing batch-learning approaches; instead, the

structure must be learned in an online manner.

”Online” does not necessarily imply fast or streaming; online means that infor-

mation is processed as soon as it is received. Therefore, online learning algorithms

should be able to handle data as soon as it is received without beginning from

scratch and without reprocessing past data. There exist some online learning al-

gorithms [46, 45, 73, 76] in the literature, which is capable of detecting changes.

However, they have to begin from scratch when the algorithm detects a change.

Therefore, there are online algorithms which have a capacity of learning causal

model proposed as online algorithms but there is no such an online algorithm yet

which works without beginning from scratch and in the presence of latent variables.

Then,

• How to identify the causal structure change quickly and then learn the new

causal structure in the presence of confounding factors as soon as new data

is present?
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• How to use the prior models while learning structure that changes with data

streams?

In this study, we present three heuristic online algorithms which aim to fill these

gaps, which are constraint-based approaches. We believe that these algorithms will

make a useful contribution to online structure learning in the presence of latent

variables.

All algorithms are separated into three stages. The Online Covariance Matrix

Estimator (OCME) receives each datapoint sequentially as input and estimates a

covariance matrix to provide the raw materials for learning the causal structure.

The Causal Model Change Detector (CMCD) tracks the divergence between recent

data points and the estimated covariance matrix to detect changes in the structure,

or significant errors in estimation so the unfitness between the current model and

a new data point could refer a change or an error. It then uses that information

to adjust the weights on previous data points. The Causal Model Learner (CML)

takes the covariance matrix and learns the causal model then. The three algorithms

proposed to begin to separate in CML part.

The first online causal structure algorithm we propose here is the Online Fast

Causal Inference (OFCI). OFCI is an online version of the Fast Causal Inference

(FCI) algorithm. This algorithm is modified using the FCI instead of the PC

algorithm in DOCL algorithm proposed by Kummerfeld and Danks in 2012[46].

Therefore, the algorithm became an algorithm that can learn in the presence of

hidden variables. Causal insufficiency is a common problem when learning BNs

from data, where data fail to capture all the relevant variables. Variables not

captured by data are referred to as latent variables (also known as unobserved or

unmeasured variables). In the real world, latent variables are impossible to avoid

either because data may not be available or simply because some variables are

unknown unknowns for which we will never seek to record data. Therefore the
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1.1. Motivation and Problem statement

ignoring the existence of latent variables can be a problem in structure learning.

The OFCI asserts that when given a learned causal structure, as new data

points arrive the correlations will be revised with the estimation of the weight

of each causal interaction in OCME part, and the structure will be re-learned

when data present evidence that the underlying structure has changed in CMCD

part. The newer data points are considered more important than older data points

therefore the newer data points are weighted more heavily after a change occurs. In

particular, the method can estimate the causal structure even when its structure

is changed multiple times and allows us the observe the model at any time we

specified.

The second online causal structure algorithm we propose here is Fast Online

Fast Causal Inference (FOFCI). FOFCI is a modified version of OFCI in a way

to minimise the learning cost of the current model. In OFCI, structure learning

is done only at change detection points, and the learned models are not stored or

used for the next learning. However, FOFCI stores the previously learned model

and check similarities between the updated correlation matrix and the previous

model. If some relationships between variables in the previous model still fit the

correlation matrix updated with the incoming data, the independence tests to learn

these relationships are ignored. Thus, FOFCI minimises the learning cost of the

current model. As the similarities between the current model and the incoming

data increase, FOFCI learns much faster than OFCI and FCI. When the current

model is completely changed, the performance of FOFCI is identical to the OFCI.

That means FOFCI and OFCI outputs the same independence model for the same

datasets. The advantage of FOFCI requires far less conditional independence tests

to learn the same model with OFCI. The only disadvantage of FOFCI needs more

memory than OFCI while learning, as it stores also learned models at change

points. It may be an important disadvantage for big datasets.
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Chapter 1. INTRODUCTION

OFCI and FOFCI have to perform a series of conditional independence tests

which play an essential role in their complexity. In probability theory, two ran-

dom events and are conditionally independent given a third event precisely if the

occurrence of and the occurrence of are independent events in their conditional

probability distribution given. The conditional independence tests performed by

the algorithms increase exponentially with the number of variables in the data set

so that these algorithms may become computationally infeasible for large graphs.

In the real world, we have always had a vast amount of data such as genetic

datasets contain thousands of genes or neuroscience datasets contain tens of thou-

sands of voxels. That means millions of conditional independence tests. This fact

indicates that we need algorithms that are fast and flexible.

We, therefore, propose an alternative algorithm to these algorithms for one

who wants to analyse large data sets in the best possible time by allowing them

to have less informative results. The algorithm we offer here is Really Fast Online

Fast Causal Inference (RFOFCI). RFOFCI is a modified version of FOFCI to min-

imise independence tests by ignoring some conditional independence tests given

subsets of Possible-D-SEP sets (which is defined in [88]), which can become very

large for sparse graphs. Therefore, RFOFCI uses dramatically fewer conditional

independence testing than FOFCI. That makes RFOFCI faster than FOFCI for

sparse graphs. Conversely, the output of RFOFCI can be less informative in some

cases, most notably concerning conditional independence information. That means

RFOFCI outputs may not be the same with FOFCI for the same datasets. How-

ever, FOFCI always outputs the same or more converging models by comparing

RFOFCI.

The RFOFCI asserts that when given a learned causal structure, as new data

points arrive the correlations will be revised with the estimation of the weight

of each causal interaction in OCME part, and the structure will be re-learned
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when data present evidence that the underlying structure has changed in CMCD

part. The newer data points are considered more important than older data points

therefore the newer data points are weighted more heavily after a change occurs.

RFOFCI both updates the existing correlations in the light of new data and also

uses the current causal structure in an attempt to speed up learning the new causal

structure.In particular, the method can estimate the causal structure even when its

structure is changed multiple times.A probabilistic scheduler which is optionally

added algorithm, which allow us the observe the learning structure at any time we

required.

1.2 Structure of thesis

The study covers the online causal structure learning algorithms which allow

us to take data points sequentially as long as it is available, to update correlations

between variables when data becomes available and to learn structure at each

change point. Most of all, the algorithms use the previous model information

in the learning process, saving us the extra computational cost of the re-learned

structure at each change.

We believe that these algorithms will provide an optimal solution to the prob-

lem of learning a structure which fits data best. While new data is available, the

learning process in batch-mode learning algorithms has to be started from scratch

regardless of whether there are any changes in structure. Therefore, other problem

arises from repeating learning process such as exponentially increasing computa-

tional cost. Through the algorithms we want to propound, we will be able to adapt

the new data which is coming in sequential order to the current model without the

need to repeat conditional dependency tests in each learning time. The proposed

system is limited to continuous data under the assumption that all data are nor-
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Chapter 1. INTRODUCTION

mally distributed. This problem is much harder for categorical/discrete variables

or non-linear systems, as there will typically not be any compact representation of

the sufficient statistics.

The rest of the thesis is structured as follows:

Chapter 2 covers Literature review. In this part, we are going to state the

research work via preliminary information of research area we chose. Probability

theory, probabilistic graphical models, Markov Networks, Bayesian networks, and

learning Bayesian networks models will be tried to explain in detail, respectively.

Structure learning is separated into two categories. Firstly, score-based ap-

proaches working with scoring functions which measure the fitness data and net-

work are given. Then secondly, constraint-based approaches and independence

tests for learning structure of BNs are explained.

Next, we give the concept of causality, and the difference between Bayesian

and Causal model are explained. We explained both learning the causal model

structure without or in the presence of confounding factors, respectively. PC,

FCI and RFCI algorithms are focused on, which are causal structure learning

algorithms. The notions of interventions and latent variables are stated. Lastly,

online learning which is the fundamentals of our study is presented.

For the first two parts (OCME and CMCD), in this study, we just described

these parts and their functions. OCME and CMCD are identical in DOCL, OFCI

and FOFCI and proposed by Kummerfeld and Danks in 2012 [46]. These parts

will be given in the next chapter, but in-depth mathematical pieces of information

such as properties, diligence, convergence and proofs can be found in Kummerfeld

and Dank’s works [44][46][45].

In Chapter 3, we will describe in detail the Online Covariance Matrix Esti-

mator and Causal Model Change Detector proposed by Kummerfeld and Danks in

2012 [46]. Next, we will give the structure learning (CML) part, which is the part
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that separates Kummerfeld and the three algorithms (OFCI, FOFCI and ROFCI)

to be presented here. We continue with detailed descriptions and structural differ-

ences of three online structure learning algorithms which are OFCI, FOFCI and

RFOFCI, respectively.

In Chapter 4, The experimental results of these algorithms will be presented

as synthetic and real-world data results. The algorithms proposed here performed

on a different type of data by including learning performances and learning time,

which is small, average and large scale.
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Chapter 2

LITERATURE REVIEW

2.1 Probabilistic Graphical Models

In this part, we provide a general overview of probabilistic graphical models

(PGM) and a detailed overview of Bayesian networks. First, we give some stan-

dards and definitions to create basic information about probability and graph the-

ory. The purpose of this part is to review some basic concepts and introduce some

notations later in this text. Probabilistic graphical models provide a graphical

presentation for compact encoding of a complex distribution in a high dimensional

space [39]. A PGM is a compact representation of a joint probability distribution

in which we can obtain marginal and conditional probabilities [89].
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Graph Representation

Season

HayfeverFlu

Muscle-Pain Congestion

A

BD

C

Independencies (� ⊥ � |()

(� ⊥ ( |�, �) (� ⊥ � |�, �)

(" ⊥ �,� |�) (� ⊥ � |�,�)

(" ⊥ � |�)

Factorization %((, �, �, �, ") = %(()%(�/(); %(�, �, �, �) = 1
/
q1 (�, �)

%(� |()%(� |�, �)%(" |�) q2 (�,�)q3 (�, �)q4 (�, �)

(a) (b)

Figure 2.1: (a) A sample Bayesian Network. (b) A sample Markov Network.
(example taken from [39])

We will give two graphical presentations of distributions which are called

Markov networks (MNs) which use an undirected graph to represent relationships,

and Bayesian Networks which use a directed graph to represent relationships, as

shown in Figure-2.1 (a) and (b). In these representations, nodes represent the

variables and edges represent direct probabilistic interactions between nodes.

2.1.1 Probability and Information Theory

The history of probability goes back to the seventeenth century. In those

years, the gambler De Mere consulted to the famous mathematician Pascal to

increase his chance in games. Then, Pascal entered into correspondence with an-

other mathematician Fermat about it. These conversations led to the beginning

of mathematical probability studies. During the 18Cℎ century, this research was

moved from games to science. These probability studies were continued by impor-

tant researchers such as Huygens, Bernoulli, and DeMoivre [25]. The foundation
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of the studies of contemporary probability theory laid to the 1930s.

Graphs are the best way to visualise relationships between random variables,

such as family trees. Graphical models use graphs as a tool. In 2001, Kevin

Murphy also declared that ”Graphical models are a marriage between probability

theory and graph theory”. Probabilistic graphical models are used as a tool for

dealing with uncertainty, independence, and complexity [39] For directly encoding

complex distributions over the high-dimensional spaces, probabilistic models are

useful tools, which is combining probabilities and independence constraints [39].

Probability theory became prominent. Therefore the academic works in this

field have increased because probability has many applications in every research

area. These are some important definitions in probability theory.

Definition 1. Random Variables- is thought that it is an outcome of a mea-

surement process [98].

Definition 2. Bayes theorem- In probability theory and statistics, Bayes’ the-

orem defines the probability of an event based on previously acquired information

about the event [98]. It is defined as mathematically;

%(- |. ) = %(. |-)%(-)
%(. ) (2.1)

where � and � are events and %(. ) ≠ 0.

Definition 3. Probability and Conditional Probability- The probability dis-

tribution of - is expressed with %(-). %(-) is a list of probabilities and G ∈ - is its

possible values. Conditional probability is shown as %(- |. ) that is the probability

of - when given . [98].

%(- |. = H) = %(-,. = H)
%(. = H) (2.2)
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Definition 4. Independence-In probability, we say two events are independent if

knowing one event occurred doesn’t change the probability of the other event.Given

- and . are two random variables, when the joint probability of - and . is equal

the probability of - multiplied by the probability of . , we can say that - and . are

independent written as - q .

%(-,. ) = %(-).%(. ) (2.3)

[87].

Definition 5. Conditional Independence-In probability theory, two random

events and are conditionally independent given a third event precisely if the occur-

rence of and the occurrence of are independent events in their conditional prob-

ability distribution given. Given that -, . and / are random variables, when -

and . are independent given /, we can say that - and . are conditionally

independent on / [87]. It is written in the form of - q . |/.

%(-,. |/) = %(- |/).%(. |/) (2.4)

2.1.2 Graph theory

In this study, we will study with directed graphs whose nodes represent random

variables and edges represent relationships between them.

There are several different kinds of graphs in the literature, such as undirected

and directed. Hence, all of them has a set of vertices and edges classically. Ac-

cording to the type of structure, graphs show differences.

Definition 6. Undirected graph is a graph that the edges between its nodes are

undirected, as shown in Figure-2.2 .
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1

4

2 3

5

Figure 2.2: Undirected Graph (adapted from [87])

Definition 7. Directed Graph- On the contrary to undirected graph, the edges

of a directed graph are in a direction, as shown in Figure-2.3

X

U

Y Z

V

Figure 2.3: Directed Graph (adapted from [87])

Definition 8. Complete graph is a graph whose vertices are connected to all

other vertices [52], as shown in Figure-2.4.
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1

25

4 3

Figure 2.4: Complete Graph

Definition 9. A vertex separation set is a minimal set of vertices whose removal

from the graph makes the graph disconnected. More precisely, List of length ver-

tices; each element of the list contains another list of length vertex. For example,

the element sepset[[x]][[y]] contains the separation set that made the edge be-

tween x and y drop out. Each separation set is a vector with positions of variables

in the adjacency matrix [12].

Definition 10. Induced subgraph of a graph is also graph constructed from a

subset of the graph’s nodes and all the edges joining the two nodes in that subset

[52]. Given � = (+, �) is a graph, an induced subgraph of � is determined by its

node-set, an example is shown in Figure-2.5.

original graph

not an induced subgraph not connected

Figure 2.5: induced subgraphs

Definition 11. Clique is a subset of nodes of an undirected graph, where its
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induced subgraph is complete [52]. Given � is a graph, a clique of a graph � is a

complete subgraph of �, and the clique of the largest possible size is referred to as

a maximum clique. An example is shown in Figure-2.6.

Figure 2.6: cliques

2.1.3 Directed Acyclic Graphs

A directed acyclic graph (DAG) is a kind of directed graph and includes edges

and vertices having no graph cycles. DAGs are a good representation method of

conditional independence relationships among random variables [82]. Suppose -

and . are random variables, If there is a directed edge from - to . , we say that

- is the Parent of . and . is Child of - and denote the set of all parents of a

vertex - by ?0(-).

Definition 12. Given a DAG �, directed acyclic graphs represent conditional

independence implied by recursive decomposition, a joint distribution -1, ..., -= is

%(-1, -2, ..., -=) =
=∏
8=1

%(-8 |?08) (2.5)

such that %(-8 |?08) is conditional probability distribution -8 given ?0(-8) [11].

Definition 13. Markov Condition- The Markov condition for a graph defines

that any variable in a graph is independent of its non-descendants, given its par-

ents. Given a directed acyclic graph � over + and a probability distribution %(+)
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satisfy Markov Condition if and only if for any , ∈ + is independent of + [87].

That is;

, ⊥ +\(�4B24=30=CB(,) ∪ %0A4=CB(,)) |%0A4=CB(,) (2.6)

A

C

B

D

Figure 2.7: Markov Condition example

Given a directed acyclic graph as shown in FIGURE 2.7. The following condi-

tional relationships satisfies Markov Condition.

� ⊥ � (2.7)

� ⊥ {�, �}|� (2.8)

Definition 14. Markov Blanket-A Markov blanket (boundary) was first pro-

posed by Pearl [65] in a Bayesian network, and is defined as that in a faithful

Bayesian network. Given a directed acyclic graph �, a set of nodes + . For every

node � ∈ + , its Markov blanket is the set of parents, children and spouses (parents

of the children of �), as shown in Figure-2.8.
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A

Markov Blanket of A

Figure 2.8: Markov Blanket of � = parents+children+children’s other parent’s
example

2.2 Markov Networks (MNs)

A Markov network (or undirected graphical model) is a set of random variables

which have a Markov property defined by an undirected graph. The joint proba-

bility distribution of the model can be factorized according to the cliques of the

graph � as follow;

%(- = G) = 1

/
.

∏
C∈cl(�)

q(C) (2.9)

such that / is a normalisation factor, cl(�) is the set of cliques of � and the

function q(C) is known as factor or clique potential. Markov networks are useful in

the domains where interaction between variables is symmetrical and the direction

is not important [98].
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2.3 Bayesian Networks(BNs)

”Bayesian” name comes originally from Bayes’ theorem of Thomas Bayes.

Bayes’ rule is the fundamental point of approach to update and improve prob-

abilities by considering new findings [66]. The Bayesian Network term started to

be used by Judea Pearl after 1985. Pearl in 1988 and Neapolitan in 1989 defined

and summarised Bayesian Networks field and properties in their books “Probabilis-

tic Reasoning in Intelligent Systems” [65] and “Probabilistic Reasoning in Expert

Systems” [62], respectively.

According to the definition of Koller and Friedman in ”Probabilistic Graphical

Model” book, Bayesian Networks are directed acyclic graphs (DAG), whose nodes

represent random variables and whose edges correspond to probabilistic relation-

ships between two nodes. This probabilistic model can either be evaluated as a

data structure which uses the skeleton to compactly show joint probability distri-

butions in a factorised way or compact representation of conditional independence

set about a distribution [39], see example Figure-2.9 and Figure-2.10.
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Sprinkler

Grass wet

Rain

Sprinkler

Rain T F

F 0.4 0.6

T 0.01 0.99

Sprinkler

T F

0.2 0.8

Grass wet

Sprinkler-Rain T F

F F 0.4 0.6

F T 0.01 0.99

T F 0.01 0.99

T T 0.01 0.99

Figure 2.9: A simple Bayesian network and conditional probability table
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The joint probability distribution of the BN Fig-2.9 is;

%((, ',,) = %(()%(' |()%(, |(, ')

Let’s;

%(, = C |( = C)=?

%(, = C |( = C) =
∑
'=C , 5

%(( = C, ',, = C)
%(( = C)

=
%(( = C, ' = C,, = C)

%(( = C) + %(( = C, ' = 5 ,, = C)
%(( = C)

=
%(( = C)%(' = C |( = C)%(, = C |( = C, ' = C)

%(( = C)

+%(( = C)%(' = 5 |( = C)%(, = C |( = C, ' = 5 )
%(( = C)

= 0.0041

Figure 2.10: Conditional probability distribution example

2.4 Some Principles of BNs

2.4.1 D-separation

Dependence and independence are crucial to understanding the structure of a

Bayesian network. Additionally, Independencies are essential to answer questions

and reduce the cost of computation. As mentioned previously, Judea Pearl has

a big contribution to Bayesian Networks. He extended the relationship between

random variables to disjoint subsets of nodes via d-separation [75]. 3− B4?0A0C8>=

(3 stands for direction) is a simple graphical test rule introduced by Pearl to

deduce conditional independence relationships from a directed acyclic graph [59].

Therefore, the necessary semantics to define the network can be obtained.
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Definition 15. D-separation-(definition adapted from Pearl, 1995 [66]); Given

that � is a directed acyclic graph and +8 random variables (8 = 1, 2, ..., =). �, �

and � are three disjoints subsets of +8. ? is a path (any series of edges, regardless

of direction) between any node 8 in � and any node 9 in �. If there is a node F

on ? and it satisfies these conditions;

• ? has a chain 8 → F → 9 or a fork 8 ← F → 9 , where middle node F is in

� or

• ? has an inverted fork (or collider) 8 → F ← 9 F, where middle node F is

not in � and no descendant of F is in �.

It can be said that � blocks ?. If and only if � blocks every path from a node in �

to a node in �, � is 3 − B4?0A0C43 from � from �. [54].

1

3

2

4

5

6

Figure 2.11: a BN for 3 − B4?0A0C8>= example

To make it more clear, let investigate it on a simple example. Suppose we have

a BN as shown in example Figure-2.11. Some relationships are;

• 1 q 6, all paths between 1 and 6 are blocked because there are two paths

between them, which are 1 → 3 → 4 → 6 and 1 → 3 → 5 → 6. They are

blocked because 3 and 5 are blocked, respectively.

• 16 q 6—3, because both 3 and 4 are unblocked.3 does not meet second and 4

does not meet the first condition.
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• 16 q 6—2, because both 3 and 4 are unblocked. 2 is a descendant of 3, and

it does not meet second.

• 16 q 6—{3, 4}, because although 3 is unblocked, 4 is now blocked. Therefore,

one of these condition is satisfied.

• 26 q 6, because 3 and 4 are unblocked. They are not in ∅ therefore, the first

condition is not satisfied.

• 2q 6—4, because of 4 satisfied first condition.

• 26 q 6—{4,5}, because 5 does not satisfied the second condition.

2.4.2 Faithfulness

In a DAG, the Markov condition gives a set of independence relations, and these

relationships may entail further relationships as well as those given by the Markov

condition. For instance, a distribution over the graph in FIGURE 2.12 satisfy

Markov Condition. 1 and 4 might be independent in the distribution although the

graph does not require this independence.

Definition 16. Faithfulness-Given a directed acyclic graph � distributed over

the set of vertices + , and a probability distribution % are faithful to one another

G. if every one and all independence relations valid in % are those entailed by the

Markov condition on � [87] [81], see example Figure-2.12.
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1

2 3

4

Figure 2.12: Faithfulness example

2.4.3 Markov Equivalence Class

Many DAGs might define the exactly the same conditional independence in-

formation. These DAGs are called Markov equivalent and form a Markov equiv-

alence class. For example, consider DAGs on the variables {-1, -2, -3}. Then

-1 → -2 → -3, -1 ← -2 ← -3 and -1 ← -2 → -3 form a Markov equiv-

alence class, since they all refer the single conditional independence relationship

-1 q -3 |-2, that is, -1 is conditionally independent of -3 given -2. Another

Markov equivalence class is given by a single DAG -1 → -2 ← -3, since this

is the only DAG that implies the conditional independence relationship -1 q -3
alone. Markov equivalence classes of DAGs can be described uniquely by a

completed partially directed acyclic graph (CPDAG) [14].

2.4.4 Exact and Approximate Inference

There are many exact inference algorithms in Bayesian Networks. How-

ever, they just provide an effective solution when worked with networks that have

small cliques [98]. As inference in BNs are NP-hard problem [16], approximate

inference algorithms are typically used rather than exact inference algorithms
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[98]. Well-known approximate inference algorithms are importance sampling,

loopy belief propagation, generalised belief propagation, and variational methods.

2.5 Learning Bayesian Networks

In this part, we will give a brief and general introduction to Bayesian network

learning. Bayesian network learning algorithms aim to find the network that best

encodes the joint probability distribution in the data [7]. There are two main

learning tasks: estimating the parameters of a model and learning the structure of

a network. First, we introduce the parameter learning problem and then structure

learning. In this study, we will only consider data that is fully observed (no missing

value). It can be found out more about learning with missing data in [48].

2.5.1 Learning the Parameters

One of the important part of BNs learning process is the parameter learning. In

the parameter estimation, when the structure of the network is given, the param-

eters are determined from data. For the given structure, the parameters indicates

the conditional probability distributions [77]. Maximum likelihood estimation and

Bayesian estimates are two main approaches in parameter learning [98].

Maximum likelihood estimation (MLE)

A well-known approach for finding data generating parameters is Maximum

likelihood estimation [77]. Given observed values -1 = G1, -2 = G2, . . .

,-= = G=, the likelihood of \ is the function

;8: (\) = 5\ (G1, G2, ..., G=) = 5 (G1, G2, ..., G= |\) (2.10)
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considered as a function of \. In a nutshell, the maximum likelihood estimate of

\ is that value of \ that maximises ;8: (\).

If the distribution is discrete, the maximum likelihood is the principle of pre-

dicting the probability distribution of the parameter that best fit the data [98].

The probability of parameters is predicted by using their frequency in the obser-

vational data [98]. If the -8 are iid, then the likelihood simplifies to

;8: (\) =
∑
8=1

=;>6( 5 (G8 |\) (2.11)

.

Bayesian estimation (BE)

MLE views \ as quantities whose values are unknown but fixed parameter. In

Bayesian estimation , \ is assumed to be a random variable which has some

known prior distribution. In other words, \ is a quantity whose variation can be

described by the prior probability distribution %(\) [98].

2.5.2 Learning the Structure: Score-based methods

One of the most studied ways of Bayesian Network structure learning is score-

based techniques. It addresses the problem as a model selection. The score

based methods of Bayesian Networks searches highest scored directed acyclic graph

(DAG), where a certain score function measures the fitness data and model. This

is an NP-hard problem and subject is an advanced research topic. Even using the

latest theoretical advances [18], the method is impractical even when you set a

limit for learning where the best DAG has no more than two parents nodes.
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Given the dataset �, the score of a possible structure is

(2>A4(�, �) = %A (�/�) = %A (�/�)%A (�)
%A (�) (2.12)

Akaike Information Criterion (AIC) proposed in 1973 [2] is considered as one

of the most well-known score function. AIC provides a simple and effective means

for the selection of the best-approximating model to the true model [6]. The basic

formula is defined as:

��� = −2/# ∗ !! + 2 ∗ :/# (2.13)

Where N is the number of examples in the training dataset, LL is the log-likelihood

of the model on the training dataset, and k is the number of parameters in the

model. Concerning general linear models, AIC is known to perform relatively well

for small samples, however, the criterion does not tend to select the true model

in large samples. Nevertheless, the form of this expression is very similar to BIC

(below). We see that the penalty for AIC is less than for BIC. This causes AIC to

pick more complex models. However, this can result in better predictive accuracy.

Another well-known score function is considered as Bayesian Information Cri-

terion (BIC), which is a method for scoring and selecting a model. Its name is

derived from the field of study which is Bayesian probability and inference. Like

AIC, it is appropriate for models to fit under the maximum likelihood estimation

framework. The basic formula is defined as:

��� = −2 ∗ !! + ;>6(#) ∗ : (2.14)

Where log() has the base-e called the natural logarithm, LL is the log-likelihood

of the model, N is the number of examples in the training dataset, and k is the

number of parameters in the model. The quantity calculated is different from AIC,
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although can be shown to be proportional to the AIC. Unlike the AIC, the BIC

penalizes the model more for its complexity, meaning that more complex models

will have a worse (larger) score and will, in turn, be less likely to be selected.

Another well-known score function is the Minimum Description Length (MDL).

Jorma Rissanen proposed MDL in 1978. MDL is simply negative of BIC. Although,

MDL and BIC are proposed in the same year. They are independent studies.

As the number of variables is large, direct searching could be intractable, so

network searching space grows exponentially depending on the number of variables.

For = variables, there are =(= − 1) possible directed edges and possible structures

and 2=(=−1) possible structures for every subsets of these edges. Searching the all

possible structures is mindless and instead, heuristic methods are used.

Well-known heuristic score based algorithm is hill-climbing. Hill Climbing

search is a greedy search algorithm. Its idea is to produce a model step-by-step

by enabling maximum improvement in an objective quality function at every step.

As you see in Fig 2.13, in hill-climbing search, the first step might be an empty,

full or a random network. The parameters of the local probability distribution

functions are estimated by Probability Tables given a BN structure. Generally,

maximum-likelihood estimation is used. The loop in the algorithm is that;

• Trying each possible single-edge addition, removal or reverse

• Making a network increasing the graph score the highest

• Iterate until the process stop.

The process stops until there is no single edge change increasing the score., see

example Figure-2.13.
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. . .
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D E

. . .

score=95 score=103 score=114

Figure 2.13: Hill-Climbing example taken from [57]

This is a maximum likelihood estimation of the probability entries from the

dataset. Algorithm attempts every possible single-edge addition, removal, or re-

versal, which increases the score of the network, and iterates. The process stops

when there is no single edge change that increases the score. Hill-climbing does

not guarantee good results every time. The algorithm may not settle at a global

maximum every time. Hill Climbing algorithm can get stuck in local minima. If

you get bed results. There available more advances methods such as Tabu Search,

Simulated annealing and Genetic algorithm. When the initial searching condition

does not properly get, Score-based structure learning algorithms may get stuck in

a local maximum.

TABU search is a slight modification to Hill Climbing search. As Hill Climbing

search may get stuck in a local minimum, TABU search solves this problem by

48



2.5. Learning Bayesian Networks

maintaining a TABU list which is the list of previously visited states. TABU search

will not allow any addition or removal of the edge which makes the network go to

the state that is already in TABU list.

Genetic Algorithms (GAs) are probably the most popular evolutionary algo-

rithms with a wide variety of applications [96]. GAs are often viewed as function

optimizers and solve the vast majority of known optimization problems [96]. GAs

stochastically transform candidate solution sets into new to find one solution that

suitably solves the problem at hand. solution groups to find a solution that solves

the existing problems appropriately. The quality of each candidate solution is

expressed by using a user-defined objective function called fitness.

Simulated annealing is based on the metal annealing processing [34]. Unlike

gradient-based methods and other deterministic search methods, the main advan-

tage of simulated annealing is that it can avoid getting stuck in local optima [96].

As the initial structure is known with some edges in advance, the probability

of score-based algorithms to settle down on the global maximum will increase.

Several learning algorithms in this approach have been developed. However, the

Bayesian network score-based learning is adversely affected by exponential time

and NP-hard problems. Consequently, the SB approach makes it difficult to apply

to a large network.

2.5.3 Learning the Structure: Constraint-based methods

Constraint-based algorithms, which is also known as conditional independence

test-based, approaches [50], tackle BNs as a representation of independence. The

constraint-based algorithms learn the network structure by investigating the prob-

abilistic relationships entailed by the Markov property of Bayesian networks by

using conditional independence tests. After that, a graph is structured, which

satisfies d-separation statements [75]. These methods aim to test conditional de-
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pendence and independence in the data and then obtain the best network, which

represents these dependence/independence [39].

Let explain by an example.

Example 1. Suppose we have - and . variables and ( is a subset of variables.

The test is to check - q. |( or not [41]. The results of the test are the constraints,

and the graph has to satisfy them.

Constraint-based algorithms have a similar structure learning for causal models.

These algorithm consists of three main steps [75]:

first the skeleton of the network (the undirected graph underlying the net-

work structure) is learned. Since a comprehensive search (independence test

between all nodes) is not computationally unfeasible for all other than the

simplest datasets, all learning algorithms use some kind of optimization, such

as limiting the search to the Markov blanket of each node (which includes

the parents, the children and all the nodes that share a child with that par-

ticular node).Identify the direction of all edges having a v-structure (A

v-structure is an ordered triplet of nodes (-./) such that there is an edge

from - to . and from / to . , but no edge between - and / , - 9→-8←-:).

The rest of the edges must satisfy acyclicity constraint.

Well-known constraint-based algorithms Grow-Shrink [57], Incremental Associa-

tion [91], Fast Incremental association [97], Interleaved incremental association

[91], Max-min parents and children[92], Chow-Liu [15], Boundary DAG [9], In-

ductive causation [67], SGS algorithm [9], Wermuth-Lauritzen algorithm [9] and

PC-algorithm [9].
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2.5.4 Independence Tests

The algorithms based on independence tests perform a quantitative study of the

dependence and independence relationships between the variables in the domain.

In simple terms, the main idea in BNs is to find conditional independence between

data variables and to reduce probability calculations by using these independencies.

Suppose we have two variables - and . . The question, which is for determining

whether - and . are independent or not. %(-,. )=?%(-).%(. ), where %(-) and

%(. ) are stated as marginal probability distributions, %(-,. ) is joint probability

distribution.

Many conditional independence tests are available for using in constraint-based

learning algorithms. Indeed, these tests must be specified to the test argument

such as discrete or continuous data.

In general, Pearson correlation d does not represent the independence or de-

pendence, but a linear relationship between between two continuous variables. If

we assume that paired two random variables are either independent or just lin-

early related, then Pearson correlation can be used to measure independency. It

is known as the best method of measuring the association between variables of in-

terest because it is based on the method of covariance. It gives information about

the magnitude of the association, or correlation, as well as the direction of the

relationship.

�0 : d = 0→ Cℎ4A4 8B => A4;0C8>=Bℎ8? 14CF44= E0A801;4B (2.15)

�1 : =>C �0 → Cℎ4A4 8B 0 A4;0C8>= (2.16)

Let n be the number of observations. Exact C test for Pearson’s correlation
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coefficient d.

C = d

√
= − 2

1 − d2
(2.17)

is approximately distributed as C (= − 2) under �0.

Let n be the number of observations. Fisher’s Z test,

I =

√
= − 3

2
;>6( 1 + d

1 − d ) (2.18)

is approximately distributed as # (0, 1) under �0.

We looked at how you can calculate linear dependencies between two continuous

variables with covariance and correlation. Both methods use the means of the

two variables in their calculations. However, mean values and other population

moments make no sense for categorical (nominal) variables.

For instance, if you denote ”Clerical” as 1 and ”Professional” as 2 for an oc-

cupation variable, what does the average of 1.5 signify? You have to find another

test for dependencies—a test that does not rely on numeric values. You can use

contingency tables and the chi-squared test. Let’s take a closer look at these two

methods.

Contingency tables are used to examine the relationship between subject scores

for two qualitative or categorical variables. They show the actual and expected

distributions of cases in a cross-tabulated format for the two variables, see table

2.1.

If the columns are not contingent on the rows, then the row and column fre-

quencies are independent. The test of whether columns are contingent on rows is

called the chi-squared test of independence. The null hypothesis for this test is that

there is no relationship between row and column frequencies—in other words, that

the variables are independent. Therefore, there should be no difference between

the observed (O) and expected (E) frequencies.
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Table 2.1: Contingency table example

Death Penalty

Victim’s Race Defendant’s Race Yes No

White White 19 132
Black 11 52

Black White 0 9
Black 6 97

The chi-squared test simply calculates the sum of the squares of differences

between observed and expected frequencies divided by expected frequencies. This

formula is also referred to as the Pearson chi-squared formula.

-2 =
1

=
∗

=∑
8=1

($ − �)2
�

(2.19)

There exist premade tables that list the critical points for chi-squared distri-

butions. If your calculated chi-square value is greater than a critical value in such

a table for the defined degrees of freedom and a specific confidence level, you can

reject the null hypothesis with that confidence. For a table with R rows and C

columns, the degree of freedom is calculated as the following product:

�� = (� − 1) ∗ (' − 1) (2.20)

In conclusion, we have to be aware that we may not see big differences be-

tween these independence tests results because as it is seen, they have similar

formulations.

2.5.5 Learning the Structure: Hybrid methods

Hybrid methods try to achieve the best of both learning methods: learn a

skeleton with a Constraint-based approach and constrain on the DAGs considered
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in the Score based. Both approaches have their advantages and disadvantages.

Constraint-based approaches are relatively fast, deterministic and have a well-

defined stopping criterion; however, they rely on an arbitrary level of severity to

test dependency, and they may be unstable as an error at the start of the search

can have a domino effect that causes many errors to be found in the final network.

Score based approaches have the advantage of flexibly involving the background

information of users on structures in the form of previous possibilities and can also

deal with missing records in the database (e.g. EM technique). Score based meth-

ods are preferred when dealing with small data sets, but they are slow to converge

and the finding optimal BN structures are often impossible due to computational

complexity for larger groups of variables. The computing load becomes obstruc-

tive.

Therefore, the key idea is to restrict search locally around the target variable

by using the advantage of CB methods over SB methods. They can create a lo-

cal graph around the target node without having to build the entire BN first.

Tsamardinos et al. proposed the Max-Min Hill Climbing (MMHC) [92]. Their

study shows that MMHC outperformed both in terms of time efficiency and qual-

ity to many algorithms such as the PC algorithm [81], the sparse candidate algo-

rithm [24], Greedy equivalence search [10], and the greedy hill-climbing search on

a variety of networks.

Perrier et al. proposed [72] a hybrid algorithm that can learn an optimal BN

when an undirected graph is given as a structural constraint. They defined this

undirected graph as a super-structure. This algorithm can learn optimal BNs

containing up to 50 vertices when the average degree of the super-structure is

around two, that is, a sparse structural constraint is assumed.

To extend to the feasibility of BN with a few hundred of vertices and an average

degree up to four, Kojima et al. proposed [38] to divide the superstructure into
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several clusters and perform an optimal search on each of them to scale up to

larger networks. Despite interesting improvements in terms of score and structural

hamming distance on several benchmark BNs, they report running times about 103

times longer than MMHC on average, which is still prohibitive. Therefore, there

is a great deal of interest in hybrid methods capable of improving the structural

accuracy of both CB and SB methods on graphs containing up to thousands of

vertices. However, they make the strong assumption that the skeleton contains at

least the edges of the true network and as small as possible extra edges.

2.5.6 Evaluating Structural Accuracy

How can we measure the accuracy of a structure learning algorithm? One

usual solution is choosing an existing network, gold standard (or randomly) and

generate the dataset from its joint probability distribution. Further, the algorithm

is applied upon generated dataset and learned the structure of the network. For

evaluation purposes, structural accuracy of learned networks can be measured with

a variety of different metrics that compare the structure of both the learned and

true models. We use a very basic method by comparing manually (with simple

Matlab code) the learned BN with the initial one. The first metric is the accuracy

of edges in the learned model and second is directions.

In the literature, there exist different techniques based upon one of the meth-

ods, e.g. the Bayesian Dirichlet equivalent uniform (BDeu), Bayesian information

criterion (BIC), Kullback-Leibler divergence (KL) and Structural Hamming Dis-

tance (SHD) based along with sensitivity and specificity based methods [63]. Each

method has pluses and cons, some of them are complex to compute, but they

take into account Markov equivalent classes, e.g. KL-divergence based methods.

Furthermore, others are simple but do not consider Markov equivalent class e.g.

sensitivity and specificity based methods.
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BDeu score proposed by Heckerman et al [27]. The scoring function used in the

learning algorithms, measures how likely the network is given the data. BIC can be

regarded as the likelihood of the learned structure after having seen the data with

a penalty term of model complexity measured by the number of parameters. Both

BDeu and BIC have the limitation that they are only reasonable under certain

assumptions. In BDeu, parameter independence is violated when data is missing.

To directly measure how close the true network and the learned network,

Kullback-Leibler (KL) divergence can be used. KL (also known as cross-entropy)

[42] is a non-symmetric measure that quantifies divergence between the joint prob-

ability distributions associated respectively with the true network and the learned

network. KL divergence rewards equally all statistically equivalent models, but it

does not take into account causal relationships which distinguish between obser-

vationally equivalent models.

BDeu and KL-div do not rely on the true structure of the original as it is

unknown. They just rely on the dataset by assuming this data represents the true

structure. However, BN structure learning algorithms are often evaluated against

networks created by experts.

One of the most popular methods is the structural hamming distance (SHD)

proposed by Tsamardinos [92], based on directly the true network and the learned

model. the raw counts of errors in the learned model. The SHD of a model is a type

of graph edit distance and is equal to the number of edge deviations between the

model and the true model. Its use is fully oriented toward discovery, rather than

inference. the SHD is composed of the sum of five sub-error measures: extra edge,

missing edge, extra direction, missing direction, wrong direction. The Structural

Hamming Distance considers directed acyclic graphs (DAGs) and partially directed

acyclic graphs (PDAGs) and counts how many edges do not coincide. However, it

has limitations partially ancestral graphs (PAGs) which we will work.
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2.5.7 Correlation and Causation

intuitive description

Association is the statistical dependence between events or characteristics. Pos-

itive association means a direct relationship and negative is opposite. However,

these relations do not always imply causation. To repeat, Pearl emphasises that

the purpose of the many sciences is that understanding mechanisms through vari-

ables and values they take and estimating the values of these variables if naturally

occurring mechanisms are exposed to external manipulations [85].

For example, Epidemiologists collect data on dietary habits and life expectancy

in the general population. They aim to find out which nutritional factors affect

people’s life expectancy and estimate the effects of recommending people to change

their diet. [85]. Therefore, the finding answers to queries about the mechanisms

are causal inference [85].

Let emphasise with a simple and good example inspired by the internet. Chief

in a clothing store decides to rearrange the inventory on his floor. He arranges

the athletic wear and shoes in a notable spot in the store, the swimwear next to

the first register and the business wear to a less visible spot. Over the next few

weeks, he recognises some changes in his employees. They are active, eat healthier

and take walks on their breaks. Could the athletic wear in a prominent spot cause

the employees to have the motivation to be healthier? He tries to be sure by

exchanging the athletic and business wears amongst themselves. Over the next

few weeks, he cannot see any change. Therefore, he asks them what the reason

that caused them to suddenly want to work out and live a healthier lifestyle was.

Was it the athletic wear? However, employees said no. It was the swimsuits by

the front register reminding them that spring break was coming.
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mathematical description

The main aim of standard statistical analysis is to estimate parameters in a

distribution under conditions that remain the same, which lets researchers estimate

the probabilities of future events [70]. Causal analysis is a more general version of

this analysis because it allows us to make deductions under conditions that change

[70].

Correlation and causation are different things. We can tell by looking at the

experiences we have encountered in life that correlation does not imply causation.

Nevertheless, they have a strong relationship. Correlation measures the strength of

the relationships between variables which would be negative or positive. The cor-

relation between two variables can be calculated quantitatively via the coefficient

of correlation [95]. The most popular one is Pearson’s coefficient of correlation;

AGH =
2>E(G, H)
fG .fH

(2.21)

where G and H are samples and 2>E(G, H) is covariance showing how much G and

H change together.However, during this process, the relationship among variables

are ignored, but we have an experimental ground to believe that some factors

are direct causes of others or other pairs are related to a common cause [95].

Causation indicates an observed action which causes the second action. Causation

is an abstract term going to show the progress on of the world. Therefore, we may

need an analysis method that combines the correlation coefficient and causation.

2.6 Non-Causal and Causal Models

A BN only contains statistical information. Meaning that anything you can

infer from the joint probability table you can infer from the directed probabilistic
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relationship, nothing more, nothing less.

A causal relationship is something else entirely. A Causal Bayesian Network

must specify what happens under any variable intervention. A causal Bayesian

network is a directed acyclic graph (DAG), in which each node corresponds to a

distinct variable +8 in the domain, and each edge corresponds to causal effect from

the parent node to the child node. The parent node of an edge is the node at the

tail of the edge, and the child node is the node at the head of the edge [49].

In causal Bayesian networks, the meaning of causality is as follows: When we

change the parent variable by fixing its state to different values, we can observe

the change in the probability distribution of the child variable. If there is no causal

effect from variable +G to variable +H , there will be no edge from variable +G to

variable +H in the causal Bayesian network [67] [49].

While the DAGs and the probability theory form the computational part of

BNs, Causality between variables is the most philosophical part. Therefore the

causality is required to be studied carefully and considered deeply. The important

point is that although BNs are mostly used to represent causal relationships, it

does not always have to be. If a BN is a causal model, the relationship between

nodes must be causal.

The evolution in BNs studies in parallel with those of causality. In 1921,

Sewall Wright used for the first time Causal models for model genetic inheritance

in his seminal study is ”Correlation and Causation” [95]. Additionally, he used

causal models via directed graphs in 1934. Another important contributor to

Causal models is Judea Pearl. He has the studies for causal and counterfactual

inference. Causal inference is a process of estimating the causal quantities. The

counterfactual inference is an important part of causal inference.Counterfactual

inference simply is to determine the probability that the event H would not have

occurred (H = 0) had the event G not occurred (G = 0), given the fact that event
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G did occur (G = 1) and event Hvdid happen (H = 1), which can be represented as

%(HG=0 = 0|G = 1, H = 1), where H |G = 0 is a counterfactual notion, which denotes

the value of H when the setting is G = 0 and the fixing effects of other variables are

unchanged, so it is different from the conditional probability (%H |G = 0).

In the 1990s, the studies were done by essential researchers such as Spirtes,

Glymour, Scheines [87] and Pearl [71] had a vital role for viewing BNs as causal

graphs.

After that, Pearl did a fundamental study which is ”C ausal diagrams for empir-

ical research”. The way of using graphical models as a mathematical language was

shown to combine statistical and subject information [66]. He defined a symbolic

calculus (3>(G)) allowing us to quantify causal effects from experimental data. In

the causal model, the do-calculus [69] simulates the physical interventions that

force some variables - to take certain constants G. Formally, the intervention that

sets the values of - to G is denoted by 3>(- = G). The intervention 3>(- = G)

manipulates the causal graph. Although, it is complicated to define fully, the basic

idea of do-calculus is as defined below.

Definition 17. do-calculus (definition adapted from Pearl, 2012 [69]); Given �

is a directed acyclic graph associated with a causal model and +8 is a set of random

variables (8 = 1, 2, ...=). -, . , /, and , ⊂ +8 are any disjoints four subsets of

nodes. The union of them equals +8. Three rules are valid for every interventional

distribution compatible with �;

• Rule 1. (Addition or Removing of Observations) If . q / |-,,

%(H |3>(G), 3>(I), F) = %(H |3>(G), I, F) (2.22)

• Rule 2. (Action or Observation exchange) If . q / |-,,
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%(H |3>(G), I, F) = %(H |3>(G), F) (2.23)

• Rule 3. (Addition or Removing of Actions) If . q / |-,,

%(H |3>(G), 3>(I), F) = %(H |3>(G), F) (2.24)

-1 SEASON

-3SPRINKLER -2 RAIN

-4 WET

-5 SLIPPERY

Figure 2.14: do-calculus example, Figure 1.2, Pearl 2000

%G3=>= (G1, G2, G4, G5) = %(G1)%(G2 |G1)%(G4 |G1) ∗ %(G4 |G2, -3 = >=)%(G5 |G4) (2.25)

This probability comes from Bayesian conditioning. It is an observation -3 =

>=. After observing that the sprinkler is on, we wish to infer that the season is

dry, that it probably did not rain, and so on; no such inferences should be drawn

in evaluating the effects of a contemplated action “turning the sprinkler on.
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-1 SEASON

-3SPRINKLER=ON -2 RAIN

-4 WET

-5 SLIPPERY

Figure 2.15: do-calculus example, Figure 1.4, Pearl 2000

%" (H |3>(G)) (2.26)

This is the causal action, “turning the sprinkler On”. The system must “re-

spond to interventions in accordance with the principle of autonomy.”

2.7 Learning Causal Models

In the early 1990s, researchers developed constrained algorithms such as IC [71]

and PC [81] to learn the structure of causal graph models. Significant research

advances have been made over the last few decades, allowing the structure and

parameters of causal graph models to be learned from observational and interven-

tional data.

First, we consider a situation where there are no confounding factors so that

all relevant variables are observed in the data. We then discuss the challenges

associated with latent variables and approaches for dealing with them. We finally

62



2.7. Learning Causal Models

move to the task of learning in the presence of latent variables.

2.7.1 Learning Causal Models without Confounding Fac-

tors

In this stage, we approach the learning of Causal Bayesian networks from data.

In this kind of learning systems, we suppose that the causal knowledge about all

independence relationships is sufficient, that means no unmeasured hidden vari-

ables and no unmeasured selection variables [14]. The causal relationships are

expressed via directed acyclic graphs. Its vertices are random variables and edges

are direct causal effects. More precisely, � and � are vertices, if there is a directed

edge from � to � that is, � → �, it is expressed as � is a direct cause of �, and

� is a parent of �. Else if there is a path from � to �, it is expressed that � is an

indirect cause of � and � is an ancestor of � [67][68].

Definition 18. Causal Markov Condition (Assumption) says that a phe-

nomenon is conditionally independent of the others (non-descendants) when given

its direct causes [26]. Therefore, a node is conditionally independent of the whole

network when given its Markov blanket (see fig 2.8) [26].

If the structure of a Bayesian network accurately depicts causality, the Markov

(see fig 2.7 and the Causal Markov conditions are equivalent. However, a network

can accurately include the Markov condition without representing causality, in

this case, it should not be assumed to include the causal Markov condition. While

the difference between the Markov and the Causal Markov conditions might ap-

pear purely syntactic, it is fundamental from a philosophical perspective [39]. The

Markov conditions for Bayesian networks state properties that a particular dis-

tribution has. The causal Markov condition makes a statement about the world:

If we relate variables by the causal relationship, these independence assumptions
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will indicate the experimental distribution we observe in the world [39].

The well-known algorithm for the learning of causal structure without con-

founding factors is PC-algorithm, which is based on the current causal structure

learning algorithms.

2.7.2 PC Algorithm

Peter Spirtes and Clark Glymour proposed a constrained based causal structure

learning algorithm in 1990. In this algorithm, independence constraints are used

to find out the causal structure by assuming that causal knowledge about all

independence relations is sufficient [21]. Roughly, the PC-algorithm consists of

two main steps. Step 1 starts with setting up the initial skeleton, which is a graph

with a link between all its nodes. After that, the adjacencies between variables are

searched. And then, all independencies according to the size of the conditioning

set is decided [21]. Firstly, the pair of variables are checked, and independents

edges are deleted. It continues until all possible relationships have been solved.

Then, step 2 starts, which is a decisive step for the direction of edges. Firstly,

unshielded triples are to subjected to a collider test. For example, �, �, � vertices,

if �, � and �,� are dependent and B is not conditioning set for, the direction of

edges are done as � → � ← �, see example Figure-2.16. Otherwise, nothing is

done.

� ∉ conditioning set for � q �

A

C

B

Figure 2.16: unshielded triples example

After that, the four rules that are proposed by Christopher Meek in 1995 are
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applied for orienting edges in this way, as is shown in Figure-2.17;

Rule1 =⇒ Rule3 =⇒

Rule2 =⇒ Rule4 =⇒

Figure 2.17: Meek [58] orientation rules

Although, this algorithm is asymptotically reliable and computationally effi-

cient, it takes many risks in all procedure (causation prediction search). For ex-

ample, to decide the undirected edge between two variables the process is to test

every subset of the adjacency set of these two variables. However, the dependence

or independence of these two variables might be completely irrelevant for causal

relations (causation prediction search). It just provides a graph under assumption

in the set of variables that are causally sufficient by ignoring the existence latent

and selection variables.

2.7.3 Hidden Variables and Confounders

Hidden variables, also known as latent, are unobserved variables, as opposed

to observable variables, that are not directly observed but are rather inferred

from other variables that are observed such as Gravity fields, subatomic particles,

antibodies [94]. Sometimes there was great evidence that hidden variables are

real physical entities, such as quarks and sometimes is abstract like psychological

stress. The data we can observe does not always provide all the information we

need to model the system adequately we can use latent variables to give us more

expressive power.

Selection variables are hidden variables that are in a specific state for each

record in the observed data, such as a selection variable, for example, in a mail
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survey, it can correspond to ”the person who completed and sent the survey”;

the presence of these variables can lead to biased results, since respondents to the

survey may not represent the population as a whole.

The purpose of statistical analysis, usually done with hidden variables, is to

reduce the dimensionality of the data [78]. Although this is a practical requirement

in many cases, it is sometimes a challenging idea to discover the truth, especially

when the truth concerns the causal relationship between hidden variables [78]. For

example, there are several methods of achieving effective size reduction, assuming

that the latent workings are independent. Since complete independence between

random variables is a firm assumption, models derived from such methods may

never correspond to exact causal mechanisms, even if such models fit the data

good [78]. When the number of hidden variables is uncertain as to which variables

measure them, Or, the researcher, who aims to make a causal explanation that

the measured variables affect other measured variables, faces the most challenging

and difficult discovery problem of the existing methods [78].

Hidden variables represent data that was not observed. We can, however, use

a learning algorithm to determine the relationships between the observed variables

and unobserved (latent) variables such as FCI and RFCI.

2.7.4 Learning Causal Models in the Presence of Confound-

ing Factors

In this part, we will mention the graphical representations, including latent and

selection variables. Therefore we need to sufficient representation for modelling

hidden variables and uncertainty [93].

To understand causal structure learning algorithms including hidden variables,

we need to give basic definitions and concepts. We introduce notation and termi-

nology to describe independence models and graphs. Given � = (+, �) is a graph
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such that + is a set of vertices in the form of {+1, ..., +?} and � is a set of edges.

The vertices show random variables and edges show independence and ancestral

relationships between variables [14]. In the structure learning part, differently

from previous part, we will have many different type of edge style like;

• directed→ shows direct cause

• bi-directed ↔ shows two-way relationship between two vertices

• undirected − shows there is latent variable

• non-directed ◦−◦ shows arbitrary means could be any type of edge but data

is not enough to make an assumption

• partially undirected ◦−

• partially directed ◦→

◦ symbol will be used to refer the arbitrary edge mark. As you know, directed

graphs contains directed edges. If a graph can contain directed, undirected and

bi-directed edge, it is said as mixed graph [14]. If there exists an edge between

two variables, they are adjacent . If all pair of variables are adjacent each other

denoted by 039 (�, -8), it is said that the graph is complete . If there is and edge

between -8 and - 9 which are two random variables in � and they are adjacent,

then it forms a cycle . If there is a directed path from -8 to - 9 and they have

edge in between, then -8 → - 9 forms directed cycle and -8 ↔ - 9 forms almost

directed cycle [14]. If there is a directed path from -8 to - 9 , it is said that -8 is

an ancestor of - 9 and - 9 is an descendant of -8.

Definition 19. Ancestral Graphs (AGs) are mixed graphs used with three kinds

of edges: directed edges → , bidirected edges ↔, and undirected edges − [99]. It is

required to satisfy some additional constraints:
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• If there is an edge from a vertex u to another vertex v, with an arrowhead

at v that is D → E or D ↔ E ), then there does not exist a path from v to

u consisting of undirected edges and/or directed edges oriented consistently

with the path.

• If a vertex v is an endpoint of an undirected edge, then it is not also the

endpoint of an edge with an arrowhead at v.

Definition 20. Suppose ? is a path in a graph �, +G is a vertex and non-end

point on ?. If the two edges intersect to +G on ? are both into +G, +G is a collider

otherwise non-collider [99].

Definition 21. Maximal Ancestral Graph (MAG) is both an ancestral and

maximal graph which has no any inducing path between any two non-adjacent

nodes in the graph. It includes directed, undirected, and bi-directed edges [99], see

example Figure-2.18.

Example 2.

-3

-2
-1 Y

-5

-4

Figure 2.18: MAG example

Where -1, -2, -3, -4, -5 are vertices and . is a latent variable. MAGs allow

to represent the directed acyclic graphs over a set of vertices including latent

variables.
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Definition 22. Partial Ancestral Graph (PAG) represents a Markov equiv-

alence class of MAGs. It includes directed, undirected, partially directed, and bi-

directed edge [56], see example Figure-2.19.

Example 3.

-3

-2
-1 Y

-5

-4

Figure 2.19: PAG example

Where -1, -2, -3, -4, -5 are vertices and . is a latent variable. We introduced

PAGs in this part so the algorithms we will propose here search for a PAG. So, the

PAGs we will consider (excluding the possibility of selection variables) can have

the following edges: →, ◦→, ◦−◦, and ↔.

2.7.5 FCI Algorithm

In 1999, Spirtes et al. [83] proposed the Fast Causal Inference (FCI) algorithm.

FCI is a modified and extended version of the PC algorithm, allowing arbitrarily

hidden and selection variables [13]. It accepts the existence of hidden and selection

variables and has been designed to show conditional independence and causal

information between random variables [13].

As all constraint-based algorithms, FCI has two main parts which are indepen-

dence test and orientation of edges. The FCI algorithm has the first part that is

identical to the first part of PC [30]. The FCI starts with a complete undirected
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graph and estimates the initial skeleton. The edges in the initial skeleton are pre-

sented as � rather than a line − contrary to the PC algorithm. The reason is

that the subsets of adjacency the set of variables are no longer enough for decid-

ing of dependencies between variables due to the existence of hidden variables.

Therefore, we may have extra edges in the initial skeleton stage [30]. After, the

orientation part, which begins with E− BCAD2CDA4B check, is passed. The algorithm

orients unshielded triples �� �� � as � �> � <� � if and only if � is not

in conditioning set for � q � and � q �.

After this stage, by comparing to the PC algorithm, the computational com-

plexity of FCI starts to increase [14]. In this step, the Possible-D-SEP sets are

calculated, which is defined as follow.

Definition 23. Possible-D-SEP- Suppose � is a graph, which contains�,�>,↔

edge styles and +G is a vertex in �. Possible-D-SEP(+G , �) function computes as

follows: +H vertex is in Possible-D-SEP(+G , �), if and only if there is a path ?

between +G and +H in � such that for every subpath < 0, 1, 2 > of ?, 1 is a 2>;;834A

on this subpath or it is a triangle in � [30].

We denote obtained graph as �1 and compute Possible-D-SEP sets. Next, we

reorient all edges as � and then update skeleton and information in separation

sets.

Finally, orientation rules are applied for doing directed to many circles in the

graph, which are proposed by Zhang in 2008 [100], see example Figure-2.20.

Example 4.
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1 q 5|{2, 3, 4}

3 ∉ 039 (1),

3 ∉ 039 (5),

!1 and !2 → latent

6

3

2 4

!1 !2

1 5

PC-Skeleton ⇒

6

3

2 4

!1 !2

1 5

Possible-D-SEP ⇒

6

3

2 4

1 5

Figure 2.20: Possible-D-SEP example

After possible d-separation sets are computed for every variable in the graph,

a conditional independence test is applied to decide whether an edge between two

variables should be removed. Subsequently, v-structures are newly determined

and oriented on the final skeleton. Finally, as many as possible, undetermined

edge marks are determined using the ten orientation rules given by Zhang [100].

FCI has many stages and takes a big space for giving all steps. The algorithms

proposed here use FCI for learning in the final part. We only gave an oracle version

algorithm (Algorithm 1) here.
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Algorithm 1 FCI algorithm (oracle version)
Require: Conditional independence information among all variables in variables -1, -2, ..., -A

1: Form a complete graph � on the set of variables, where there is an edge ◦−◦ between each

varibles pair.

2: Find first skeleton with independence tests and separations sets.

3: Orient unshielded triples in the skeleton based on separation sets.

4: Find Possible d separation sets as defined in definition 1 to find the final skeleton. Update

graph and separation sets.

5: Orient unshielded triples in the skeleton based on separation sets.

6: Use rules ('1)-('10) of Zhang [100] to orient as many edge marks possible.

7: return %��, %, conditional dependencies of -1, -2, ..., -A

As is known, the structure learning for Bayesian Networks (BNs) is an NP-hard

problem, therefore proposed algorithms for structure learning are optimisation

algorithms. As in other optimisation algorithms, FCI has some deficiencies. It is

computationally impossible to use the FCI algorithm when it has to work with

large graphs [13]. For dealing with this problem, Colombo et al. propounded

an algorithm named as the Really Fast Causal Inference (RFCI) in 2011 [13] by

removing possible d-separation sets and adding some independence tests instead.

2.7.6 RFCI algorithm

RFCI algorithm is a modified version of FCI. FCI algorithm is weak for dealing

with a graph have a large number of variables because of some process of learning

structure. The RFCI algorithm is faster than FCI because it reduces conditional

independence tests process. In RFCI, Possible-D-SEP sets are not computed;

therefore, conditioning tests are reduced [29]. Colombo et al. modified the orien-

tation rules for E-structures and discriminating path in this algorithm [29].

The first part of RFCI is identical FCI and PC. As it was mentioned, RFCI does

not compute Possible-D-SEP sets. Contrary to FCI, RFCI uses a different method
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and adds additional tests before the orientation part to ensure soundness [12]. The

first of these additional tests are as follows;

Definition 24. (*=Bℎ84;343 CA8?;4 AD;4). Suppose given a graph � = (+, �) is

composed of a set of vertices + = -
⋃
!
⋃
( such that !, ( and � are latent, se-

lection variables and a set of edges, respectively. Suppose that (i) (8: is a minimal

separating set for -8 and - 9 when given (, (ii) -8 and - 9 are conditionally depen-

dent when given ((8:\{- 9 })
⋃
(. Then -8 is in ancestor subset -8 and -: if and

only if - 9 is in (8: [30].

On the other hand, it may be detected a relationship like - q . when given

separation set for - and / . This situation may occur when - and . are not

d-separated when given adjacency subsets of - and . respectively but may not

be m-separated when adjacency subset of - and / [12]. At that case, the edge

between - and . are removed. Nevertheless, this edge removing step can cause

new unshielded triples [30]. For solving this problem, it is worked with lists defined

in detail in the study of Colombo et al. in 2012 [14].

Before passing the orientation part we have one more conditional independence

test part.

Lemma 1. Discriminating path rule (taken from [13] and it will be new rule

iv). Let the distribution of + = -
⋃
!
⋃
( be faithful to a DAG G. Let Π8: =<

-8, ..., -; , - 9 , -: > be a sequence of at least four vertices that satisfy: (01) -8 and

-: are conditionally independent given (8:
⋃
(, (02) any two successive vertices

-ℎ and -ℎ+1 on Π8: are conditionally dependent given (. ′\{-ℎ, -ℎ+1})
⋃
( for all

. ′ ⊆ (8: , (03) all vertices -ℎ between -8 and - 9 (not including -8 and - 9 satisfy

-ℎ ∈ 0=(�, -: ) and -ℎ ∉ 0=(�, {-ℎ−1, -ℎ+1}
⋃
(), where -ℎ−1 and -ℎ+1 denote

the vertices adjacent to -ℎ on Π8: . Then the following hold: (11) if - 9 ∈ (8: ,

then - 9 ∈ 0=(�, -:
⋃
() and -: ∉ 0=(�, - 9

⋃
(), and (12) if - 9 ∉ (8: , then

- 9 ∉ 0=(�, -; , -:
⋃
() and -: ∉ 0=(�, - 9

⋃
().
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For each triple 0 <� 1 � 2 with 0− > 2, it is searched for a discriminating

path ? =< 3, ..., 0, 1, 2 > for 1 of minimal length, and controlled vertices in every

pair on ? are conditionally dependent when given all subsets of separation set for 3

and 2. If there is no conditional independence relationships, the path 0 <� 1� 2

is oriented as in rule (R4) proposed by Zhang in 2008 [100]. Otherwise, if there is

one or more conditional independence relationships, matching edges are removed

and their d-separation sets are held. RFCI uses fewer conditional independence

tests than FCI, and its tests condition on a smaller number of variables [13]. As

a result, RFCI is much faster than FCI and its output tends to be more reliable

for small samples, since conditional independence tests of high order have low

power [13]. In some situations the output of RFCI is slightly less informative, in

particular with respect to conditional independence information [13].

We are inspired by RFCI and computed the computational cost of the possible

d-separations of the algorithms. Then we analysed that if we remove the possible

d-separations from the algorithms, how much our graphs will be less informa-

tive. So we presented a version (RFOFCI) which does not include the possible

d-separations.

2.8 Online Learning

This section includes the main contributions to online learning algorithms for

BNs developed up to now. All these algorithms aim to change or evolve what

is already known structure when new data incomes. Nevertheless, there is no

recognition of what is considered to be an online algorithm in the field of learning

BNs, nor is there a widely accepted definition of these algorithms. [73].

Until now, we had supposed we have stationary domains. After this point, we

are going to touch on data which are changing over time because this conjecture
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is not reasonable in real-world online applications. For example, unobservable

impacts may suddenly change, or unknown events may arise.

Online learning is a learning paradigm in which the training data points are

placed in an ordered sequence [8]. The current model is quickly updated to generate

the best model up to now when a new data point incomes. Online learning has the

same aim as classic structure learning, and it also aims to optimise the performance

of the given learning task [8]. Batch learning is costly if a new data point arrives,

and if all the available data are used again. Therefore, it causes unnecessary

memory and running time efficient and is not suitable for a real-world scenario.

For example, predicting stock market trends and weather forecasting is real-world

scenario samples of sequential prediction problems. Additionally, unlike statistical

machine learning, these algorithms do not make stochastic assumptions about the

observed data.

Nevertheless, Online Structure Learning for Probabilistic Graphical models is

not a straightforward task because the new data is not always following the learned

model from the previous data. Therefore, it needs to be modified such as with

weights. One solution to this problem is to be weighted more heavily to the new

data points. So the poor fit between a new data point and the current model may

indicate that the structure is changed. These weights given are determined by the

distance between the new data and the current model.

Why we are studying with Online Machine Learning approach;

• In a growing number of machine learning applications, one must make online,

real-time decisions and continuously improve performance with the sequen-

tial incoming data.

• The number of conditional independence tests performed by the algorithm

grows exponentially with the number of variables in the dataset. This af-

fects both the speed and the accuracy of the algorithm on small samples
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so conditional independence tests on large numbers of variables have little

power.

• A trial and error approach often leads to too large a test problem to handle

computationally, and online learning is a powerful and popular way of dealing

with problems.

• An online learning algorithm monitors a sample stream and makes a forecast

for each item in the stream

• The algorithm immediately gets feedback about each estimate and uses it to

increase the accuracy on subsequent feedbacks.

• Maintaining the privacy of sensitive data that different parties have is often

a critical question. However, in many practical applications, BNs require a

gradual acquisition of data at different timescales, where conventional col-

lective learning algorithms are not appropriate or not implemented [74].

• The goal is to fix with the functionality of online learning so that the next

iteration of production contains fewer or less serious inferential errors [17].

An online learning algorithm should meet some constraints which are a short fixed

time per recording is required, it can create a model using up to one data scan,

and regardless of the total number of records shown, a fixed amount of main

memory must be used [73]. More simply and clearly, learning algorithms to use

the information in the learning process whenever they want.

2.8.1 Online Parameter Learning

In previous offline learning part, the learning parameter for BNs was explained.

In this part, it will be exemplified online versions of some well-known parameter
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learning algorithms. We will start with a popular one of methods for learning

parameters, called Expectation Maximisation.

1977, Dempster et. al proposed Expectation Maximization (EM) algorithm

[19]. The EM algorithm is a recursive method to detect the maximum probability

or maximum posterior that estimates parameters in statistical models where the

model is dependent on unobserved hidden variables. It has two steps called E

and M symbolising the first letters of Expectation Maximization. In step E, a

function is created for the expectation of log-likelihood. In M step, parameters are

computed for maximising the expected log-likelihood found on the E step.

EM tries to find parameters Θ̂ that maximise log probability log %(G;Θ) of

observed data. The advantages of EM are its simplicity and ease of implementa-

tion. It works efficiently when we have fewer missing values and works with data

sets which have not too many variables [64]. Bilmess propounded a study on EM

algorithm and its application to Hidden Markov Models (HMM) in 1998 [4]. In

2008, Mongillo et. al has developed an online version of this method [60]. Another

important online parameter learning algorithm for HMM are propounded by Feti

et. al in 2014, called Stochastic variational inference (SVI) which is a mini-

batch based variational Bayes method [22]. Another algorithm proposed by Omar

in 2016 can also be given as the most recent example. The Moment Matching

Algorithm which is an online technique which means that updating the model

parameters requires a certain amount of time after each new observation is taken

[64].

2.8.2 Online Score-based Approaches

The earliest studies on online structure learning for BNs are Buntine’s ap-

proach (1991) [5], Lam and Bacchus’s approach (1994) [47], Friedman

and Goldszmidth’s approach (1997) [23]. It is enough to explain the first two
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approach because other algorithms follow the same idea.

Buntine’s approach is a generalization of the K2 algorithm [98]. In the study

of Buntine [5], any empirical assessment to verify the effectiveness of the approach

are not provided. The approach used the score-based Bayesian network structure

learning technique; therefore, the algorithm has limitation and not scalable for

high-dimensional domains.

In Lam and Bacchus’s approach, firstly a partial network is learned and then

the Minimum description length principle is used to refine the existing network.

It is also scored based method and has the same limitation as to other score-based

methods.

All these algorithms share the same idea. They are setting up a network with

what they have seen so far, and the learning algorithm is triggered when new data

arrives. Then, the algorithm searches for the current network location.

2.8.3 Online Constraint-based Approaches

Unfortunately, there is not enough source on online algorithm uses constraint-

based Bayesian network structure learning techniques. Some of the existing sources

assume that there is no latent variable. The critical problem with learning cause

and effect from observational (as opposed to interventional) data is the presence

of hidden confounders. In practice, it is difficult to know whether all confounders

have been taken into account. So such methods should be used only as guides for

identifying possible cause and effect. Therefore, an algorithm uses constraint-based

Bayesian network structure learning techniques and takes into account latent, and

selection variables would give much more effective outputs.

As we mentioned, there are a few sources in literature in this way.

In 2012, Kummerfeld and Danks proposed an algorithm that is Dynamic

Online Causal Learning (DOCL) [46]. It is a new causal structure learning
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algorithm and processes data in a dynamic and real-time functioning [46]. This

algorithm is divided into three parts which are the Online Covariance Matrix

Estimator (OCME), the Causal Model Change Detector (CMCD) and the Causal

Model Learner (CML).

The OCME takes each data point in sequence and predicts a covariance matrix

to provide ”raw materials” to learn to be causal [46]. The CMCD monitors the

difference between the new data points and the predicted covariance matrix to

discover changes in the environment or significant errors. This information is then

used to adjust the weights on the previous data points [46]. The CML takes the

covariance matrix and learns the causal model at that point in time [46]. We will

give in detail these parts in proposed algorithms chapter. This relationships are

expressed with following diagram, see example Figure-2.21.

INPUT OCME

CMCD
CML OUTPUT

Figure 2.21: DOCL algorithm diagram

In 2013, Kummerfeld and Danks again proposed a similar algorithm, called

as Locally Stationary Structure Tracker (LoSST) algorithm [45]. It also

uses constraint-based Bayesian network structure learning techniques. Working

process is so similar to DOCL. In DOCL, they assume that the data are generated

independently of the underlying causal model, however, they do not assume that

this causal model is stationary over time [46]. In contrast to DOCL, inLoSST, they
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assume only that the generating process is locally stationary [45]. Both algorithm

are compared with PC algorithm and got more effective results.

2.9 The Contributions and Limitations in the

Related Work

Bayesian network structure learning has attracted great attention in recent

years. In a nutshell, structure learning can be defined as finding DAGs, PDAGs,

or PAGs that fit the data. Our main study is on causal models which is represented

by PAGs, but importantly not that not all algorithms assume that the direction

of the edges represent causation.

The critical point for the current research is the assumption that both of the

causal structure learning approaches assume that the data comes from a single

generating causal structure, and therefore these methods cannot be used directly

for learning when a causal structure changes during the data collection process.

Both types of approaches are not able to keep up with systems in a developing and

changing world. Therefore, we need new tools to handle this, which are capable

of giving results in a reasonable amount of time. Nevertheless, they only require

sufficient statistics as input data and can, therefore, provide part of the solution

to this problem. They need a mechanism which can detect changes, respond to it,

and then learn the new causal model.

In the literature, there exist two main methods for online tracking of some fea-

ture in a structure, which are temporal difference learning (TDL) [90] and Bayesian

change-point detection (CPD) [1]. Nevertheless, both methods have not been ap-

plied to detect changes in a causal structure, so they need some modifications to

do this.

The standard TDL algorithm provides a dynamic estimate of a univariate ran-
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dom variable using a simple update rule. In this update, the error in the current

estimate is updated with a learning rate coefficient. Therefore, the static learning

rate plays an important role and controls how quickly or slowly, a model learns a

problem. If it is chosen too small, the TDL algorithm converges slowly. If it is

chosen too large, the algorithm will be so sensitive even when the environment is

stable. TDL algorithm can detect slow change but not high stability or dramatic

changes. That feature is essential for causal structure learning as causal structures

often have non-deterministic connections.

In contrast, CPD algorithms are useful for dramatic changes that indicate

breaks between periods of stability [1]. CPD algorithms must store large parts

of input data. These algorithms assume that the model only has a dramatically

changing environment separated by periods of stability. Both algorithm types have

not been applied to tracking causal structure. To do so, they need the necessary

modifications.

Talih and Hengartner [55] do other related work. In their work, the data sets

are taken sequentially as input and divided into a fixed number of data intervals,

each with an associated undirected graph that differentiates one edge from its

neighbours. In contrast to our work, in their work, they focus on a particular

type of graphical structure change (a single edge added or removed), only work

in batch mode and use undirected graphs instead of directed acyclic graphical

models. Next, Siracusa [79] uses a Bayesian approach to find posterior uncertainty

on possible directed edges at different points in a time series. Our work differs

from their work because we use frequentist methods instead of Bayesian methods,

and we can work in real-time in an incoming data stream.

Some methods aim to estimate the time-varying causal model. The DOCL

algorithm proposed by Kummerfeld and Danks is applied to tracking causal struc-

ture [46]. They demonstrated the adequate performance of algorithms in tracking
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changes in structure. It is important to note that we use their algorithm for change

detection. Therefore, their work is the source of inspiration for our work.

On the other hand, the work of Kummerfeld and Danks [46] differs from ours

in two ways. First of all, DOCL does not allow for the possibility of latent and

selection variables. However, the critical problem with learning cause and effect

from observational (as opposed to interventional) data is the presence of hidden

confounders. Next, DOCL runs the learning algorithm whenever there is a change

in the structure, and this learned graph is used only to display the changing re-

lationships between variables. However, in our algorithm, the relationships in the

learned graphs are saved for the next change point and take an active part in

learning the next change point.

Another related method is proposed by Bendtsen [3], which is the regime aware

learning algorithm to learn a sequence of Bayesian networks that model a system

with regime changes. These methods are not able to cope with real-world data

as they suffer from a large number of statistical tests and ignore the existence of

confounding factors. We present a new approach which is capable of detecting

changes even multiple times and learning structure in the light of sequentially

incoming data in the presence of confounding factors.
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PROPOSED ALGORITHMS

In this chapter, we will propose three novel algorithms which can track changes

in a causal structure and process data in a dynamic real-time manner. In a nutshell,

these three algorithms take sequentially data as input, update covariance matrix

in the light of sequentially incoming data and detect fitness between structure

and data, and finally outputs PAGs when detecting outliers between data and

structure. Until the algorithms detect outliers, they work same and then they

differentiate after from this point.

Therefore, we will give first the joint part of three algorithms and then pass to

algorithms description.

3.1 Problem Definition

Given a set of continuous variables + , we assume that we have a true underlying

causal model over + at each moment in time. We specify a causal model by a pair

〈�, �〉, where � denotes a DAG over + , and � is a set of linear equations. These

kinds of causal models are also known as recursive Causal Structural Equation

Models (SEMs) [46]. We assume that the data are independently generated from
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the true underlying causal model at each moment in time, though we do not assume

that this causal model is stationary through time.

In a nutshell, the online causal structure learning algorithms proposed here

take a new data point as input at each time step and outputs a graphical model

(PAG). We have separated the proposed algorithm into three distinct parts which

are online covariance matrix estimation (OCME), causal model change detection

(CMCD) and causal structure learner (CML) parts, respectively. OCME and

CMCD parts are identical for three algorithms; therefore, we will start with these

parts and then will give algorithms in CML part. We had mentioned shortly

OCME, CMCD and CML parts in the previous section.

Table 3.1: Online Algorithms Module Details

Sum of weights: 1A =
∑A
:=1 0:

Weighted mean: `A
8
=
∑A
:=1

0:
1A
- :
8

Updating the mean: `A+1
8

=
1A
1A+1

`A
8
+ 0A+1
1A+1

-A+1
8

Weighted covariance: CA
+8 ,+9

=
∑A
:=1

0:
1A
(-A
8
− `A

8
) (-A

9
− `A

9
)

Updating the Weighted covariance: CA+1
-8 ,- 9

= 1
1A+1

= [1ACA-8 ,- 9
+ 1AX8X 9 ...

... + 0A+1 (-A+18
− `A+1

8
) (-A+1

9
`A+1
9
)]

Correction term: X8 = `
A+1
8
− `A

8
=
0A+1
1A+1
(-A+1
8
− `A

8
)

Mahalanobis distance: �A = (-A − ®̀)(CA )−1 (-A − ®̀))

p-value of the distance: )2 (G > �A+1 |? = #, < = (A − 1)

Weighted pooled p-value: dA = Φ(
∑A
8=1 08Φ

−1 (?8 , 1),
√∑

02
8
)

Weight for next data point: 0A+1 =


0A , 8 5 dA ≥ )
0A W)

W) +dA−) , >Cℎ4AF8B4

The table 3.1 which shows all notations and the set of linear equations and

next we will explain OCME, CMCD and CML parts in detail.
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3.2 OCME

Kummerfeld and Danks propose the Online Covariance Matrix Estimator (OCME)

in 2012 [46], which is the first stop of the algorithm. OCME starts with sequen-

tially taking each datapoint that is available online as input [45, 46]. Algorithms

have a ”burn-in” period. Burning is intended to give the algorithms time to achieve

equilibrium distribution. Typically, the first examples are not fully valid, so they

are not enough to give an idea us about the structure. The burn-in samples allow

us to discard these first samples that are not yet stationary. Burn-in is a collo-

quial term we used that describes the practice of throwing away some iterations at

the beginning of the online algorithms will be proposed here. We determined the

length of the burn-in period with 10 data samples, but any number of data points

can be specified as a starting covariance matrix � over the variables + . During

the burn-in period, the individual ?-values for each data point is 0.05. Let 0A be

the weight on the A Cℎ datapoint is 1.

As OCME does not store any of the incoming new data points, its memory

needs only $ (#2) for the estimated covariance matrix,where N is the number of

variables. In batch algorithms, this memory is $ (#"+#2), where M is the sample

size. That is the batch mode algorithms require the memory both all data-samples

and the estimated covariance matrix [45, 46]. Thus, the proposed algorithms have

a substantial memory advantage compared to batch mode learning algorithms.

In particular, let -A be A Cℎ multivariate datapoint and let -A
8

be the value of +8

for that data point. The data points are weighted distinctly for tracking possible

structure change. As we do not assume a stationary causal model, the data points

should be weighted differently in a way to weight more recent datapoints more

heavily after a change occurs and reduce confidence in previous data points. These

weights are determined by the CMCD part given in detail next part depending on

the distance between the new data point and the current model.
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Let 0A be the weight on the A Cℎ datapoint where 08 ∈ (0,∞) and let 1A =
∑A
:=1 0:

be the sum of weights on the each datapoint. The weighted average of +8 after

datapoint A is:

`A8 =

A∑
:=1

0:

1A
- :8 (3.1)

As OCME is an online estimation method, Kummerfeld and Danks [46] translated

it into means update equation:

`A+18 =
1A

1A+1
`A8 +

0A+1
1A+1

-A+18 (3.2)

The weighted covariance between +8 and + 9 after datapoint A is computed with:

CA
+8 ,+ 9

=

A∑
:=1

0:

1A
(-A8 − `A8 ) (-A9 − `A9 ) (3.3)

As OCME is an online estimation method, Kummerfeld and Danks [46] translated

it into an update equation. The covariance matrix update equation as online is:

CA+1
-8 ,- 9

=
1

1A+1
= [1ACA

-8 ,- 9
+ 1AX8X 9 + 0A+1(-A+18 − `A+18 ) (-A+19 `A+19 )] (3.4)

where X8 = `
A+1
8
− `A

8
=

0A+1
1A+1
(-A+1

8
− `A

8
). If 0: = 2 for all : and some constant 2>0,

then the estimated covariance matrix using this method is identical to the batch

mode estimated covariance matrix.

If 0A = U1A , then the algorithm acts like )� (0) [90] learning for each covariance

with a learning rate of U.

Definition 25. The classic Temporal difference learning (TDL) algorithm TD(0)

[90], provides a dynamic estimate `C (-) of a univariate random variable - using
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a simple update rule:

�C+1(-) ← (1 − U)�C (-) + U-C (3.5)

where � is expected value (mean), -C is the value - at time C. That is, one updates

the estimate by U times the error in the current estimate.

Therefore, the fitness between the new incoming data and covariance matrix

determines their weight in an estimated covariance matrix update equation. If

the covariance matrix is fitting the data, a similar weight is used to preserve the

structure of the covariance matrix. If it is not fitting, the weight of the recent

datapoint is weighted more heavily after a change occurs and reduce confidence in

previous data, so this indicates that the structure has changed.

Any causal structure learning algorithm needs a sample size with an estimated

covariance matrix. In the proposed algorithms, we also need to update the sample

size in the light of incoming data point and its weight. Various data points can

receive different weights. We compute sample size, which is called an effective

sample size [46], by adjusting the previous the effective sample size based on dat-

apoint’s relative weight. Therefore, we first need to update the learning rate to

track the weighted sum of mean error values. And then, we need to compare this

against a distribution which depends on the effective sample size and data size.

We assume that every new data point contributes 1 to the sample size, and the

effective sample size is updated according to weight.

More specifically, let (A be the effective sample size at time A. We assume the

incoming datapoint contributes 1 to the effective sample size and update accord-

ingly:

(A+1 =
0A

0A+1
(A (3.6)

87



Chapter 3. PROPOSED ALGORITHMS

The causal model change detector (CMCD) detects whether the structure has

changed or not by looking at the fitness of the current structure with the incom-

ing data and give weight accordingly. If there is unfitness, it indicates that the

structure has changed and this is a change in the new incoming data direction. So,

CMCD assures that 0A+1 >0A for all A. Therefore, the effective sample size does

not necessarily have to be equal to the true sample size (which should be less than

or equal to the actual sample size). If the structure is not changed, that means

datapoints weights are constant, and then the effective sample size equals the true

sample size.

Therefore, we no longer need to remember previous data points, so OCME

provides us with the sufficient statistics `A+1, �A+1, and (A+1 (covariance matrix,

sample size and mean). They are enough to remember for information about

previous data points.

3.3 CMCD

Kummerfeld and Danks propose the Causal Model Change Detector (CMCD)

in 2012 [46]. In OCME, the fitness between the current estimated covariance

matrix and the input data to detect the changes in the underlying causal model is

tracked by the CMCD for adjusting to the previous and new datapoints’ relative

weight [45, 46]. The Mahalanobis distance [53] gives the fit between each incoming

data point and the current estimated covariance matrix.

More precisely, as we assumed that the data has a multivariate Gaussian dis-

tribution, the mahalanobis distance between the incoming datapoint -A and the

current estimated covariance matrix CA with the current estimate of the means ®̀
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is given by Mahalanobis distance �A [53]:

�A = (-A − ®̀)(CA)−1(-A − ®̀)) (3.7)

A large Mahalanobis distance for any particular data point can merely indicate

an outlier; consistently large Mahalanobis distances over multiple datapoints state

that the current estimated covariance matrix fits poorly to the underlying causal

model. Therefore, the new data points should be weighted more heavily [45, 46].

The approach is to first calculate the individual ?-values for each data point

for Mahalanobis distance. Next, a weighted pooling method to aggregate those

each ?-values into a pooled ?-value by using Liptak’s method [51] is used.

More precisely, the Mahalanobis distance of a +−dimensional datapoint from

a covariance matrix estimated from a sample of size # is distributed )2. The ?−

value for the Mahalanobis distance �A+1

?A+1 = )
2(G > �A+1 |? = #, < = (A − 1) (3.8)

where )2 is Hotelling’s )−squared distribution, (A is the effective sample size and

? = + and < = # − 1 are parameters.

A big Mahalanobis distance could indicate an outlier. The several large Maha-

lanobis distances signify that the current estimated covariance matrix has a poor

fit to the underlying causal model, so new data points are required to be weighted

more heavily. These ?−values establish the likelihood of -A given ®̀ and �A , but

what we need is the likelihood of the weighted data points - incoming sequentially

given ®̀ and �A . The distribution of a sum of weighted chi-square variables �A is

analytically intractable, and so we cannot use the �A values directly. Instead,

Liptak’s method [51] for weighted pooling of individual ?−values is used. This

method, also known as weighted Z-test, was generalised by Liptak (1958) to give
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different weights to each study according to their power.

Let Φ(G, H) be the cumulative distribution function of a Gaussian with mean 0

and variance H evaluated at G. Then the pooled, weighted ?−value is:

dA = Φ(
A∑
8=1

08Φ
−1(?8, 1),

√∑
02
8
) (3.9)

Finally we need to determine the weight of the next point 0A+1 given the the

pooled ?−value dA . There are many ways to convert the pooled ?−value dA into

a weight 0A+1. The simple strategy is used here is: if dA is greater than some

threshold ) (i.e., the data sequence is sufficiently likely given the current model),

then keep the weight constant; if dA is less than ) , then increase 0A+1 linearly and

inversely reducing the weight of all previous datapoints by some constant factor.

Mathematically, this information is:

0A+1 =


0A , 8 5 dA ≥ )
0AW)

W)+dA−) , >Cℎ4AF8B4

(3.10)

3.4 CML

The parts up until now are to track the changes in structure. The last part

is the Causal Model Learner (CML) [46] which learns the causal model from the

estimated (from weighted data) sufficient statistics (covariances, sample size and

means) provided in OCME. Kummerfeld and Danks’s [46] algorithm uses the PC

algorithm [81] as a standard constraint-based causal structure learning algorithm.

Instead, alternative causal structure learning algorithms could be used. There-

fore, a system that can detect this process before learning is required. In this

point, CMCD comes into play and tracks changes in the structure in the light of

sequentially incoming data. When CMCD detects changes in the environments,
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the causal model structure learning algorithm learns the structure.

Additionally, Kummerfeld and Danks developed a probabilistic re-learning

scheduler which utilises the pooled ?−values calculated by the CMCD module

to determine when to re-learn the causal graph [45, 46]. In Kummerfeld and

Danks works [45, 46], CML uses PC algorithm [84]. By contrast them, CML uses

FCI and two different modified FCI algorithms instead of PC [84] in three algo-

rithms proposed. By proposing these three algorithms, we are aiming for three

things. First algorithm OFCI we will propose to allow us to learn in the presence

of latent variables. However, when OFCI detects changes and makes new learn-

ing, the previous model is ignored and learned again. Second algorithm FOFCI

we will propose, it is also the most important algorithm of this study, allow us

to use previously learned structure while learning new structure. When FOFCI

detects changes and makes new learning, the previous model is saved and used

to reduce the cost for learning the edges that do not change in the new model.

Third algorithm RFOFCI we will propose, it is an alternative algorithm to the

second algorithm, allow us a fast causal structure learning algorithm to deal with

large networks. RFOFCI ignores some independence tests to make learning faster.

However, it’s outputs mostly are less convergent (informative) to the true graph

than OFCI and FOFCI.

3.5 Online Fast Causal Inference (OFCI)

In Kummerfeld and Danks’s work, OCME takes the new data point sequen-

tially as input and estimates current covariance matrix with weights determined

by CMCD section by looking distance the new data point and current covariance

matrix. A final, if the algorithm detects an anomaly then CML learns the struc-

ture with the PC algorithm. PC algorithm assumes that there are no unmeasured
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confounders and the true causal structure is known. Unfortunately, in almost all

real-world problems the actual underlying causal structure is not known. Spirtes

et al. [86] proved that the FCI algorithm is sound in the presence of arbitrarily

many latent variables. Spirtes et al. [80] extended the soundness proof to allow

for selection variables as well. Therefore they proposed an algorithm which is a

suitable study for solving real-world problems. In contrast with the method of

Kummerfeld and Danks’s work, CML uses FCI instead of PC in OFCI. Just like

Kummerfeld and Danks’s work, OFCI re-learns the causal model after a change

occurs. In Kummerfeld and Danks work [46], CML uses the effective sample size.

In Kummerfeld and Danks’s work, in all stages of the algorithm is used the

effective sample size including the PC algorithm. In OFCI, we replaced the PC al-

gorithm with FCI and we obtained better results for actual sample size rather than

the effective sample size. However, the actual sample size is just used for the FCI

algorithm, other states continue to use the effective sample size like Kummerfeld

and Danks’s work.

In a nutshell, OCME sequentially takes each datapoint as input and then up-

dates the estimated covariance matrix to provide inputs for the structure learning

algorithm. Although the algorithm appears to have three distinct components,

OCME and CMCD work simultaneously. OCME updates estimated covariance

matrix and effective sample size in the light of the inputs provided by CMCD.

This simple Figure 3.1 represents a process of OFCI.
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Figure 3.1: Basic flowchart of OFCI algorithm
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3.6 Fast Online Fast Causal Inference (FOFCI)

Kummerfeld and Danks’s work and OFCI algorithms detect and respond to

change points but their work learns the structure with updated covariance matrix

from scratch. Although it is essential to identify these change points, re-learning

from scratch each time increases the cost because we know some parts will be stable

after changes. So if we only search for the changing parts of the model, then learn

model in the light of changes may not meet some constraints to say online learning.
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Domingos and Hulten stated desirable properties of online learning [20]. It states

that we may able to gather new data every day and that it would be interesting

to revise the current model in the light of this new data without spending an

unreasonable amount of time and memory [20]. FOFCI allow us to revise the

current model in light of this new data without spending an unreasonable amount

of time and memory.

Learning graphical model structure is computationally expensive, and so one

should balance the accuracy of the current model against the computational cost

of re-learning. For these reasons, we propose FOFCI to reduce the computational

cost of re-learning and make the proposed algorithms more online [35]. Although

OFCI is an online algorithm and does active learning, it ignores all of its previous

outputs. According to us, to speak of a real online learning mechanism, all parts

of the algorithm must be actively involved in learning at every change point. That

makes the algorithm more online. The FOFCI algorithm differs from both OFCI

and Kummerfeld and Danks’s work [46] for causal model learning the part. In

those two algorithms, the OCME and CMCD parts continue to update sufficient

statistics as long as only the new data point is available. However, the CML part

has no other role than to learn the updated information.

In contrast, FOFCI uses a modified version of the FCI algorithm. We modified

the FCI algorithm in a way to use the information of the previous model while

learning a new model to reduce learning complexity. Modified FCI has three

main parts which are the check of prior model information, independence test and

orientation of edges.

Definition 26. The Modified FCI takes the sepset of the prior model as input.

If conditional independence is found between two variables, an edge between them,

and the set responsible for this conditional independence is saved in sepset. The

separation set is the set that carries the information of the skeleton of a model.
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Therefore, sepset is vital in examining the joint parts between the new covariance

matrix and the current model. The algorithm starts with the analysing of the

sepset of the previous model. First, the algorithm makes independence test for

every subset in separation set. Therefore, the modified FCI starts with a sparse

graph, rather than a complete graph, compared to the classic FCI. The rest of this

algorithm is identical to the classic FCI [81].

It continues to estimate the initial skeleton. The dependent edges in the initial

skeleton are shown in � rather than a line −. The reason is that the subsets of

adjacency the set of variables are no longer enough for deciding of dependencies

between variables due to the existence of hidden variables. Therefore, we may have

extra edges in the initial skeleton stage [30]. After, the orientation part, which

begins with E − BCAD2CDA4B check, is passed. The algorithm orientates unshielded

triples. After this stage, the Possible-D-SEP sets are calculated, which is defined

as 2.8.5 FCI Algorithm.

Next, we reorient all edges as � and then update skeleton and information in

separation sets. Finally, orientation rules are applied for doing directed to many

circles in the graph, which are proposed by Zhang in 2008 [100].

As can be seen in the experimental results section, this sometimes reduces the

independence test by fifty percent. Thus, it saves us from the unnecessary test

repetition that can find thousands for large networks. This allows us to start

analysing on a more straightforward graph rather than starting from a complete

graph like in the classic FCI. The rest of the algorithm continues the same as in

the classic FCI. This simple Figure 3.2 represents a process of FOFCI.

In particular, as it is seen in the Figure 3.2, OCME first updates the estimated

covariance matrix in response to incoming data points, CMCD tracks the fitness

between the current estimated covariance matrix and the input data. Unlike Kum-

merfeld and Danks’s work and OFCI, CML takes the covariance matrix, and also
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Figure 3.2: Basic flowchart of FOFCI algorithm
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separation sets of the previous learned casual model as input. Structure learning

part starts with checking of causal links in separation set in the prior model. If all

or some causal links of the prior model still fits incoming data, we do not need to

apply the independence tests which are required to find these causal links.

Then, the structure learning algorithm finds the initial skeleton by starting

with the graph obtained after this analysis and updates the separation sets at

the same time. After learning the causal model, the separation sets which are

updated according to the new model are stored to use in the next change point.

The process of FOFCI will be identical to OFCI in cases where the causal structure

is completely changed. By comparing to OFCI and DOCL, FOFCI seems to need

more memory space to store separation sets of learned models, but it performs

significantly better than two algorithms in terms of time and space complexity.

The re-learning should be most frequent after an inferred underlying change,

though there should be a non-zero chance of re-learning even when the structure

appears to be relatively stable. Kummerfeld’s work and OFCI have the limitations

such as the over the computational cost of re-learning of stable parts in cases where

only some parts of the causal structure are changed.

Therefore, FOFCI fills this gap. Optionally, a probabilistic re-learning sched-

uler is added to the algorithm, which utilises the pooled p-values calculated in the

CMCD module to determine when to re-learn the causal model.

3.7 Really Fast Online Fast Causal Inference

(RFOFCI)

The size of the Possible-D-SEP sets, which is defined in [88] plays an essen-

tial role in the complexity of the FCI algorithm. As the number of variables in a

dataset increases, the number of conditional independence tests performed by the

97



Chapter 3. PROPOSED ALGORITHMS

algorithm exponentially grows. Then, the computational complexity of FOFCI

dramatically increases because of both computing all Possible-D-SEP sets and

testing conditional independence given all subsets of these sets, which can become

very large for sparse graphs. Although the FOFCI algorithm is good to learn the

changing causal models, it suffers from exponential run-time. Therefore, FOFCI

may not be feasible on data sets with large numbers of variables. In this way, we

simplified the modified FCI algorithm by removing Possible-D-SEP sets indepen-

dence test part. We named that as Further Modified FCI so that readers don’t

interfere with the Modified FCI. This version does not search the Possible-D-

SEP sets but the except of the algorithm the Possible-D-SEP sets is identical to

the Modified FCI.

In this study, we introduce RFOFCI to fill this gap [36]. RFOFCI is an alter-

native fast algorithm to the online algorithms previously proposed [37] for one who

wants to deal with data sets that are too large or complex to be dealing within the

best possible time. The RFOFCI algorithm differs from FOFCI for CML the part

by avoiding the conditional independence tests given subsets of Possible-D-SEP

sets.

In particular, as it is seen in the Figure 3.3, RFOFCI uses a modified version

of the FCI algorithm. In this modified version, the algorithm takes the separation

sets of the previous model as input, unlike the classic FCI. In the first part of

the algorithm, it is found out whether the causal links of the previous model’s

separation sets still fit the updated covariance matrix. If some of them still fit, the

independence tests that will be applied to determine these relations are eliminated.

Unlike the classic FCI and FOFCI, this simplified version does not search Possible-

D-SEP sets parts. Therefore, we can start analysing on a more straightforward

graph rather than starting from a complete graph like in the classic FCI.

RFOFCI is faster than FOFCI and OFCI. Sometimes, the output of RFOFCI
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Figure 3.3: Basic flowchart of RFOFCI algorithm
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is slightly less informative than FOFCI and OFCI, but the causal interpretation

of its output is still sound. As can be seen in the experimental results section, this

sometimes reduces the independence test by ninety per cent.
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Chapter 4

EXPERIMENTAL RESULTS

In this chapter, we represent the performance results of the proposed algorithms

which are OFCI, FOFCI and RFOFCI and previously presented algorithm whic

is FCI are compared under a variety of conditions. These results compare the

performance of our proposed algorithms to FCI.

4.1 Synthetic Datasets Application

Our goal is not only to present algorithms that work in real-world scenarios,

that is tracking the change of causal structure, but also to propose an algorithm

that can compete with and take over the existing batch structure learning. So

these methods can also work as a batch structure learning algorithm, even the

causal structure has not changed and competes in terms of cost. We used the FCI

algorithm [83] as a batch learning algorithm to compare. The desired algorithms

optionally include a probabilistic re-learning scheduler that allows us to learn the

causal graph again at any time. This feature is required to fairly compare our

online algorithms and FCI.

The re-learning scheduler is scheduled for the change points we specified for
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both settings. As we mentioned in the proposed algorithm section, algorithms

have three distinct parts which OCME, CMCD and CML. While algorithms are

working, the CMCD saves changing points determined by Mahalanobis distance

and continue to CML part. The algorithms first check the existence of an optional

learning schedule as input in CML part. If we add a learning schedule which

includes sample size numbers as input, the algorithms learn structure when they

reach this sample size. Otherwise, the algorithms learn structure at the changing

points determined by Mahalanobis distance. This is important to note that the

input schedule works independently from updating sufficient statistics. So, it is

optional to add a scheduler and allows to learn anytime we specified. Instead, we

also see from the Mahalanobis distance graphs that the CMCD part of algorithms

successfully detects the main graph change points, which are 10000, 20000 and

30000 so the algorithms always respond with a high spike at these points.

In this study, we used the data which is assumed to have a multivariate Gaus-

sian distribution. Synthetic datasets are used to verify the accuracy of our online

algorithm inference approach when given a known ground truth network. Results

are evaluated under the condition where the true partial ancestral graph is changed

during the data collection process. We designated one, two and three main change

points. Up until the first change point, online and batch algorithms should perform

similarly.

We have created each synthetic dataset by following the same procedure by

using the pcalg package for R [32]. First, we generated four random DAGs,

which each DAG has the same number of nodes and is different from each other.

Each random DAG is generated to a data with a given number of vertices ?′,

expected neighbourhood size � (#) and sample size 10000 for number of variables

?′ ∈ {8,10,13,15,18,25,30,35,40,100,125,175,200}. Next, we concatenated these

datasets which are generated from these four different graphs that have the same
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characteristics (vertices, � (#) and sample size) to obtain a dataset with 40000

samples. Our goal here is to obtain a large amount of data that is suitable for

the real world, where the structure changes at some point. Therefore the dataset

is created by aggregating four different graphs’ distributions. Thus, we want to

present algorithms that can detect these changes in the environment. That means

there are three change points in each data. We do this to see the performance

of OFCI, FOFCI and RFOFCI in the case where the causal structure is changed

multiple times, which is suitable to a real-world. We restrict each graph to have

two latent variables that have no parents and at least two children. (Selection

variables are not considered in this study.)

We separated datasets according to the number of variables to three simulation

settings to make easy to analyse : small-scale ?′ ∈ {8,10,13,15,18}, average-scale

?′ ∈ {25, 30, 35, 40} and large-scale ? ∈ {100, 125, 175, 200}. We only named the

scales according to ourselves and we did not get references from anywhere. We

also tried to examine all of them together, but due to the size of the data sets, the

study looked much more complicated and we decided to examine it separately.

4.1.1 Small Scale

To generate synthetic datasets corresponding to a network, we appeal to the

pcalg R package, see code 4.1. Firstly, we generated 40 different random directed

acyclic graphs (DAGs) with 5 replicates (160 in total) by using the randDAG

function by the following process mentioned above. There is no specific reason to

test 40 different random directed acyclic graphs (DAGs) with 5 replicates (160 in

total). We will try to explain step by step how we get the data. First of all, we

will start by defining the function we used in the first step.

Definition 27. randDAG: It is a function in pcalg R package [31], which is

generating random directed acyclic graphs (DAGs) with fixed expected number of
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neighbours � (#).

Usage:

• randDAG(?′, � (# ), method =”regular”)

Arguments:

• p′ : integer, at least 2, indicating the number of nodes in the DAG.

• K (T ) : a positive number, corresponding to the expected number of neighbours per node, more precisely

the expected sum of the in- and out-degree.

• method: a string, specifying the method used for generating the random graph.

• regular: Graph where every node has exactly N incident edges.

Listing 4.1: Random True PAG Generating R Code

1 g <- randDAG(p', E(N), "regular")

2 cov.mat <- trueCov(g)

3 true.corr <- cov2cor(cov.mat)

4 L <- c(L1,L2)

5 true.pag <- dag2pag(suffStat = list(C=true.corr, n=10ˆ4), indepTest = ...

gaussCItest, graph=g , L=L, alpha=0.05)

After, we defined different nodes to be latent variables. The true covariance

matrix of a generated DAG we generated are computed by using the trueCov

function. To obtain sufficient statistics for generating PAGs, we transformed co-

variance matrix into a correlation matrix via cov2cor function. With the dag2pag

function in pcalg R package, the generated DAGs are converted with randomly se-

lected latent variables into their corresponding (unique) Partial Ancestral Graphs

(PAGs) by using the true correlation matrices with a large virtual sample size and

alpha.
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Figure 4.2: Corresponding PAG, L(1,3)

Fig 4.1 shows: an example random DAG produced by randDAG function and

Fig 4.2 shows: corresponding (unique) Partial Ancestral Graph (PAG) for this

DAG and the chosen latent variables L(1,3).
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Figure 4.3: Random DAG
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Figure 4.4: Corresponding PAG, L(4,7,8)

Another example, Fig 4.3 shows: an example random DAG produced by randDAG

function and Fig 4.4 shows: corresponding (unique) Partial Ancestral Graph

(PAG) for this DAG and the chosen latent variables L(4,7,8).

After this step, we remove the latent variables from the covariance matrix of

the DAG and obtain a covariance matrix true.cov1, the basically it is removing

two variables from the data. See code 4.2.

Listing 4.2: Latent Variable Remove R Code from Covariance Matrix

1 covariance.matrix<-trueCov(g)

2 true.cov1 <- cov.mat[-L,-L]

We generate data by using this covariance matrix true.cov1 and sample size.

We use a simple Matlab function, which we wrote below. It generates generate =

samples from a 3 dimensional multivariate Gaussian distribution with a given a

specific covariance matrix true.cov1.

See code 4.3; we first generate data from a standard Gaussian. After, we
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subtract the column mean and its sample covariance matrix from the corresponding

column elements of a matrix X, respectively. Last, we are multiplying them by

the Cholesky factor of true.cov1. Therefore, when we compute covariance and

correlation matrices of X, we will obtain the same with the true graph.

Instead of producing data directly from some actual distribution, we have gen-

erated data in this way. The main reason for this is full fairness. we want to

obtain data which has the same covariance and correlation matrices with those of

the true graph. The input of the FCI is the correlation matrix. However, OFCI

and FOFCI is a dataset.

First, we generate a random graph, and then we calculate the graph’s co-

variance matrix, next we generate multivariate normal distribution data by this

matrix. When we calculate the covariance matrix of this data for a backward

control, we sometimes get a different covariance matrix from the originally used

covariance matrix to obtain data. We chose this way to eliminate this possibility

of differences and to compare on equal terms. Therefore we wrote a generating

function, see code 4.3, to guarantee the same covariance matrix retrospectively.

Listing 4.3: Data Generating Code from Covariance Matrix

1 function data matrix=datagenerateV2(n=10ˆ4, true.cov1)

2 d=size(true.cov1,2);

3 Sigma=true.cov1;

4 X = rand(n,d);

5 X = bsxfun(@minus, X, mean(X));

6 X = X * inv(chol(cov(X)));

7 X = X * chol(Sigma);

8 data matrix=X;

9 end

For small scale experimental results, we generated randomly 40 partial ancestral

graphs for each number of variables ?′ ∈ {8,10,13,15,18}. Then, datasets are

generated of these true PAGs that each has = =40000 sample size and the ?-value
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for independence tests set to U = 0.05 with � (#) =3 (at most). Therefore, we

obtained 40 datasets which all have the changing causal structure in 10000, 20000

and 30000 data points.

The resulting evaluation of the desired algorithm is based on the exact true

graph means includes direction of edges, which is a PAG used for generating dataset

rather than the Markov equivalence class of the true graph. If we base on Markov

equivalence classes of the true DAG we used to obtain PAG, we would be ignor-

ing the ability of the desired algorithm to detect the existence of latent variables.

Whereas, the online algorithm is advantageous to detect the place of latent vari-

ables while learning. Additionally, such as - → . → / and - ← . ← / are

both causal graphs. These two graphs are Markov equivalent, but their causal

relationship is entirely different. Therefore, it might be the wrong evaluation in

this kind of situation.

Fig 4.5 represents the mean of missing or extra edge number by comparing to

true graph (that is the learning ability to true graph) when the causal structure

changes three times during the data collection process. In the graph, zero means

that there is no missing edge and the algorithm works perfectly. High numbers

represent the poor fit to the true causal model.
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Figure 4.5: Average number of missing and/or extra edges FCI (blue) and OFCI
(red) versus to True PAGs including the direction of the edges, p’ is indicating the
number of nodes

Fig 4.5 represents the mean of missed edge number when the causal structure

changes three times during the data collection process. Each line in the Fig 4.5 (b)

shows the mean of the number of missed edges of the online (red) and FCI (blue)

algorithm for two datasets that have 40000 sample size and changing structure

in 10000, 20000 and 30000 data points. Zero means that there is no missed edge

with the true underlying causal model. In other words, the algorithm can learn

the true model. High numbers indicate poor fit and uninformative network. By

representing this graph, our purpose is to emphasise complex outputs of the batch

structure learning algorithm when the structure is changed a few times.

As can be seen Fig 4.5, the algorithm works perfectly for situations where the

structure changes completely, because if the structure is completely changed, it

adjusts its weight accordingly and the previous structure has little effect on the

changed structure. However, this will not be the same for causal models that are

not completely changed (just partially changed causal model). So adjusting the

weights will be more difficult if the structure has been partially changed.

As is clear from the graphs, the performance of the online algorithm and FCI
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could not be distinguished from each other until 10000 data points in which the

first changing point of the causal structure. The desired algorithm optionally in-

cludes a probabilistic re-learning scheduler that allows us to re-learn the causal

graph at any time we required. In this way, we scheduled learning process for

{500, 1000, 3500, 5000, 7500, 9000, 10000, 11000, 13000, 15000, 17500, 18000,

19000, 20000, 20500, 23000, 25000, 27500, 28000, 29000, 30000, 30500, 33000,

35000, 37500, 38000, 39000, 40000} datapoints for the online algorithm. These

numbers are selected randomly to represents the behaviour of the algorithms in

detail until change point. Intervals represent just data points. The online algo-

rithm re-learned the causal structure, and FCI was rerun after these data points.

After the underlying causal structure is changed in 10000, 20000 and 30000 data

points, the online algorithm significantly outperformed FCI. As the datasets are a

mix of four different distributions that indicate a large number of synthetic vari-

ables, FCI works poorly after the first changing datapoint. The Online algorithm

measures major Mahalanobis distance for changing data points as it can be seen

from the example in Fig 4.6. Therefore, it leads to higher weights and learns the

new underlying causal structure.

The algorithm does not store any of datapoints coming sequentially. Its mem-

ory requirements are just for the estimated covariance matrix. Therefore, the

algorithm has significant storage advantages for computational devices that can-

not store all data. Additionally, the online algorithm has an essential advantage

in terms of computational time for complex networks. To emphasise, we compare

the time differences of the structure learning processing (in seconds) between the

online and FCI algorithm in Table 4.1. The table represents learning processing

time (in seconds) for 30 different datasets having sample sizes: 20000, 30000 and

40000. The 20000 sample size dataset has one causal structure change, the 30000

and 40000 sample size datasets have the structure changing two and three times,
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respectively.

For datasets with just eight variables, the FCI algorithm outperforms the on-

line algorithm by a small amount. However, for complex networks, the online

algorithm outperforms FCI significantly. Especially, as the size of datasets grows,

the performance gap grows greater.
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Figure 4.6: Effective sample Size change while learning
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Figure 4.7: Pooled p-values change while learning
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Figure 4.8: Mahalanobis distances change while learning

In Fig 4.6, Fig 4.7 and Fig 4.8, we aim to represent the changing of sample

size, pooled ?-values and Mahalanobis distances during the learning process. We

just used 18 variables, 40000 sample size example.
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Table 4.1: Average Running Time in seconds for 20000, 30000 and 40000 points

Dataset (|+0AB |) 20000

FCI OFCI Better?

Dataset (8) 1.5 4.5 ×

Dataset (10) 4.5 4.5 X

Dataset (13) 27.5 6 X

Dataset (15) 57 16 X

Dataset (18) 259 10.5 X

30000

FCI OFCI Better?

Dataset (8) 4.5 6.5 ×

Dataset (10) 13.5 7 X

Dataset (13) 74 14.5 X

Dataset (15) 225.5 36 X

Dataset (18) 1093.5 94.5 X

40000

FCI OFCI Better?

Dataset (8) 7 9.5 ×

Dataset (10) 23 10 X

Dataset (13) 171.5 22.5 X

Dataset (15) 542.5 51.5 X

Dataset (18) 2475 202 X

We compare structure learning time differences (in seconds) between OFCI and

FCI in Table 4.1. The Table 4.1 represents learning processing time (in seconds) for

40 different datasets having sample sizes: 20000, 30000 and 40000. For datasets

with just dataset(8), the FCI outperforms OFCI by a small amount. However,

for complex networks, OFCI outperforms FCI significantly because OFCI updates

just the estimated covariance matrix. Especially, as the size of datasets grows, the
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performance gap becomes greater.

4.1.2 Average Scale

To generate synthetic datasets corresponding to a network, we appeal to the

pcalg R package. For average scale experimental results, the simulation setting

is as follows. For each value of ?′ ∈ {25, 30, 35, 40}, we generated 160 random

DAGs with � (#) =2 (at most). We generated a data set that has = =40000 sample

size and the ?-value for independence tests set to U = 0.05 by using the randDAG

function by following the process mentioned above. In 4.1.1 Small Scale part, we

tried to explain step by step how we get the data. We follow the same process for

average and large scale datasets.

114



4.1. Synthetic Datasets Application

PAG 1

A

C D

B

E

F G

I

H

1st

=====⇒
Ihange

PAG 2

A

C D

B

E

F G

I

H

PAG 2

A

C D

B

E

F G

I

H

2nd

=====⇒
Ihange

PAG 3

A

C D

B

E

F G

I

H

PAG 3

A

C D

B

E

F G

I

H

3rd

=====⇒
Ihange

PAG 4

A

C D

B

E

F G

I

H

Figure 4.9: Representative example of 4 different PAGs for generating data process.

Figure 4.9 shows a representative example of our data generating process. We

generated random partial ancestral graphs (PAGs) for these experimental results.
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In this process, we produced a random PAG as the first step, then modified this

graph, assuming that the structure changed over time. We changed the graph three

times in total, we got 4 PAGs at final. We limited these changes to be between 4-8

edges for the average scale. In other words, there are 4-8 edges differences between

the first PAG and the second PAG, and the other edges are identical. There are

4-8 edges differences between the second PAG and the third PAG, and the other

edges are identical. There are 4-8 edges differences between the third PAG and

the fourth PAG, and the other edges are identical. Thus, we have ensured that

only local parts (not entirely) change at each change point and that the change

between the first PAG and the last PAG become significant.

As illustrated in the Figure 4.9, the joint edges between the graphs at each

change point are shown as blue and the different edges as red. In this way, we ob-

tain four different PAGs and generate random variables by using their covariance.

In real-world datasets, some edges or adjacencies in the model may stay stable

during data collection and learning process. As we see from 4.1.1 Small Scale part,

OFCI is a structure learning algorithm that works successfully when the causal

structure changes entirely over time. However, OFCI has the advantage only

when the causal structure is completely changed. If the structure does not change

completely, that is to say, that some parts of the structure still fit the incoming

data, OFCI must repeat some independence tests to learn the unchanged parts

again.

In the real world scenario, it is more likely that some parts of a structure

change than all of it. Since the complexity of structure learning in the Bayesian

networks increases exponentially depending on the number of variables, we need

to save on the high cost of re-learning for the unchanging parts in large structures.

Therefore, we proposed the FOFCI and RFOFCI algorithms which allow us to use

prior learned model information while learning the new changed structure. When
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the structure is changed, the OFCI updates the covariance matrix and learn the

new changed structure in the light of this information. the FOFCI and RFOFCI

algorithms save the learned models in each change point and use these models as

well as the updated covariance matrix to reduce complexity.

First, we investigated the performances of OFCI, FOFCI and RFOFCI, consid-

ering the number of differences in the output by comparing to the Markov equiv-

alence class of the true DAG. We made an average scale schedule review. The

re-learning scheduler is scheduled for the main change points, which are 10000,

20000, 30000, 40000 for all algorithms. Normally, OFCI, FOFCI and RFOFCI are

triggered for re-learning by large p-values but comparing for each change point

requires a very long review. From the Mahalanobis graphs, we already see that

the algorithms successfully perceive the main change points with higher peaks,

which is much higher from other points. Therefore, we scheduled to re-learn to

main change points are 10000, 20000, 30000, 40000 to see how successful it has

approximated the true graph at the end of each change point.As the FCI is not an

online algorithm, we rerun (reset) FCI at these change points.

The re-running FCI after these change points is not a fair approach for online

algorithms. So online algorithms here proposed to take and process data individ-

ually but we have looked at it collectively for the FCI. In the real world, the data

will be collected and analysed when available. Therefore, it is impossible to work

with the FCI in cases where the data set is not complete. For example, if the

data set is insufficient, all variables may be dependent. It will be impossible to

compute exponentially. Nevertheless, we still compared them according to their

learning performance at these points.
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Figure 4.10: The average number or missing and/or extra edges, p’ is indicating
the number of nodes

Figure 4.10 shows the average number of missing or extra edges over 5 repli-

cates, and we see that this number was almost identical for all algorithms. As

expected, OFCI and FOFCI perform the same to learn the true causal model.

they outperform RFOFCI to learn the true causal model in some cases. It should

be identical for OFCI and FOFCI learning performance. So the only difference

between them is that FOFCI should learn the same model with OFCI with far

fewer independence tests by using the models learned in previous exchange points.

With this experimental result, we have confirmed this. In graph 4.10, zero means

that there are no missing or extra edges, and the algorithm work correctly. High

numbers represent the poor fit to the true causal model.

As we mentioned in the section where we examined the results for small scale,

the algorithm works perfectly for situations where the structure changes com-

pletely, because if the structure is completely changed, it adjusts its weight ac-

cordingly and the previous structure has little effect on the changed structure.

However, this is not same for causal models that are not completely changed as

seen Figure 4.10. So now it will be more difficult for the algorithm to determine
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the weights than the completely changed structure and there will be more errors

in the learned structure.

However, there is a situation that should not be confused here in the small

scale part since we compared only two algorithms (because OFCI and FOFCI

work identically in completely changing structures) we can show their learning

performances over time. The structure of the two graphs, which are Fig 4.5 and

Fig 4.10, is different from each other. In Fig 4.10, we gave directly the learning

performance results of algorithms at each change point rather than the overtime.

The reason for the increase in the fig 4.10 is only related to the dimension of

the data. As the dimension of the data increases, the number of incorrect edges

increases. if we performed the algorithms change over time (which would be a very

complicated figure), we would able to see that learning performances improved as

new data arrived.
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Figure 4.11: The average percentage differences of the number of conditional in-
dependence tests required for FCI and other algorithms to learn a model

Figure 4.11 shows The average percentage differences of the number of condi-

tional independence tests required for FCI and other algorithms to learn a model in

average scale settings. We first determined the number of necessary independence
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tests to learn a model of FCI, OFCI, FOFCI and RFOFCI. Then, we calculated

how many percent less independence the other algorithms need to learn a model

from FCI. To explain with a very simple mathematical calculation; Let us as-

sume that if the FCI performs 10000 independence tests to learn a graph which

has 40 nodes and other algorithms perform 1000 tests for the same graph, other

algorithms learn better or the same with ninety percent fewer independence tests.

We see that RFOFCI requires significantly fewer independence tests compared

to OFCI and FOFCI to learn the causal model for all the same parameter settings.

In Figure 4.11, high numbers represent the success of the algorithm in pruning

search space. For example, RFOFCI learns the structure by applying over the

ninety percent less independence tests than FCI for 25 variable graphs. RFOFCI

outperforms OFCI and FOFCI in a large margin.

Table 4.2: The average percentage differences of the number of conditional inde-
pendence tests required for FCI and other algorithms to learn a model

Dataset OFCI FOFCI RFOFCI Better?

Dataset (25) 46.3 50.6 96.3 X

Dataset (30) 3.8 18.4 87.6 X

Dataset (35) 2.3 14.4 66.7 X

Dataset (40) 6.5 12.0 77.0 X

It can be seen in detail in Table 4.4. We continued with a comparison of

average percentage reduction of conditional independence test number performed

by OFCI, FOFCI and RFOFCI (in seconds) under the same simulation settings.

Table 4.5 shows the average running times.
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Table 4.3: Average Running Time in seconds for 40000 sample size data

Dataset OFCI FOFCI RFOFCI Better?

Dataset (25) 16.3 14.8 13.8 X

Dataset (30) 19.5 18.9 15.4 X

Dataset (35) 26.0 21.8 20.9 X

Dataset (40) 33.4 28.0 22.1 X

We see that RFOFCI is faster for all parameter settings. RFOFCI learned the

causal models faster than OFCI and FOFCI. As the scale expands, the difference

between them also grows.

The algorithm does not store any of datapoints coming sequentially. Its mem-

ory requirements are just for the estimated covariance matrix and sample size.

Therefore, the algorithm has significant storage advantages for computational de-

vices that cannot store all data.

4.1.3 Large Scale

The simulation setting is as follows. For each value of ? ∈ {100, 125, 175, 200},

we generated 160 random DAGs with � (#) =2. We generated a data set that has

= =40000 sample size and the ?-value for independence tests set to U = 0.05. As

we noted in 4.1.2 Average Scale, we applied the same procedure for generating

datasets with an average scale part.

We generated random partial ancestral graphs (PAGs) for these experimental

results. In this process, we produced a random PAG as the first step, then modified

this graph, assuming that the structure changed over time. We changed the graph

three times in total, we got 4 PAGs at final. We limited these changes to be between

8-12 edges for the large scale. In other words, there are 8-12 edges differences

between the first PAG and the second PAG, and the other edges are identical.

There are 8-12 edges differences between the second PAG and the third PAG, and
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the other edges are identical. There are 8-12 edges differences between the third

PAG and the fourth PAG, and the other edges are identical. Thus, we have ensured

that only local parts (not entirely) change at each change point and that the change

between the first PAG and the last PAG become significant. we investigated the

performances of OFCI, FOFCI and RFOFCI, considering the number of differences

in the output by comparing to the Markov equivalence class of the true DAG. We

made a large scale schedule review. The re-learning scheduler is scheduled for the

main change points, which are 10000, 20000, 30000, 40000 for all algorithms.

In real-world datasets, some edges or adjacencies in the model may stay stable

during data collection and learning process. Therefore, while generating random

PAGs, we give attention to generate sample graphs which have local differences.
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Figure 4.12: The average number of missing or extra edges over 5 replicates, p’ is
indicating the number of nodes

Figure 4.12 shows the average number of missing or extra edges over five repli-

cates, and we see that this number was almost identical for all algorithms. As

expected, OFCI and FOFCI perform the same and outperform RFOFCI to learn

the true causal model in some cases. Zero means that there are no missing or

extra edges, and the algorithm works correctly. High numbers represent the poor
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fit to the true causal model. In Fig 4.12, we gave directly the learning performance

results of algorithms at each change point rather than the overtime. The reason

for the increase in the fig 4.12 is only related to the dimension of the data. As

the dimension of the data increases, the number of incorrect edges increases. if we

performed the algorithms change over time (which would be a very complicated

figure), we would able to see that learning performances improved as new data

arrived.
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Figure 4.13: The average percentage differences of the number of conditional in-
dependence tests required for FCI and other algorithms to learn a models

Figure 4.13 shows the average percentage difference of independence test num-

ber in large-scale settings. We first determined the number of necessary inde-

pendence tests to learn the causal model for FCI, OFCI, FOFCI and RFOFCI.

Then, we calculated the percentage difference of the independence test of these

algorithms according to FCI. In Figure 4.13, we see that RFOFCI requires signifi-

cantly fewer independence tests compared to OFCI and FOFCI to learn the causal

model for all the same parameter settings.
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Table 4.4: The average percentage differences of the number of conditional inde-
pendence tests required for FCI and other algorithms to learn a model

Dataset OFCI FOFCI RFOFCI Better?

Dataset (100) 10.1 14.1 81.9 X

Dataset (125) 4.9 10.8 42.9 X

Dataset (175) 36.2 39.4 61.6 X

Dataset (200) 19.6 22.4 82.6 X

It can be seen in detail in Table 4.4. We continued with a comparison of

average percentage reduction of conditional independence test number performed

by OFCI, FOFCI and RFOFCI (in seconds) under the same simulation settings.

Table 4.5 shows the average running times in the small and large-scale setting.

Table 4.5: Average Running Time in seconds for 40000 sample size data

Dataset OFCI FOFCI RFOFCI Better?

Dataset (100) 113.8 101.6 98.6 X

Dataset (125) 171.1 154.8 148.0 X

Dataset (175) 338.5 307.9 298.3 X

Dataset (200) 501.4 377.7 373.3 X

We see that RFOFCI is faster for all parameter settings. RFOFCI learned the

causal models faster than OFCI and FOFCI. As the scale expands, the difference

between them also grows.
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Figure 4.14: Pooled p-values

We also represented pooled p-values Figs 4.14. The datasets are a mix of four

different distributions that indicate a large number of synthetic variables.
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Figure 4.15: Mahalanobis distances

CMCD part of three algorithms measures significant Mahalanobis distance at

changing datapoints as can be seen from the example in Figure 4.15. Therefore,

it leads to higher weights and learns the new underlying causal structure.
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4.2 Real World Data Application

We have applied the FOFCI algorithm to seasonally adjusted price index data

available online from the U.S. Bureau of Labor Statistics to confirm the efficiency

of the change detection part of the online learning algorithms. Since there is no

true graph in real life, we do not have a true graph to compare the learned structure

of this data set. Thus, we approached an assumption that the high peaks in the

Figure 4.16 may indicate the economic changes during the period.

We have limited the data to commodities extending to at least 1967 and re-

sulting in a data set of 6 variants: Apparel, Food, Housing, Medical, Other, and

Transportation. Data were collected monthly from 1967 to 2018 and reached 619

data points. Due to significant trends in the indices over time, we used the month-

to-month differences.

As we do not have a true graph, we do not have a mechanism to measure

fitness between outputs and the true model. The selection of data and variables

was chosen entirely based on the work of Kummerfeld and Danks [45]. Data is

taken from U.S. Bureau of Labor Statistics https://www.bls.gov/rda/ website

with its data finder tool. We do not know (maybe no one knows) how many data

samples or variables we need to analyze. Therefore, we have only one choice. It is to

examine whether economic crises may affect the connections between variables and

whether there are changes in time and to analyze the points of change by looking at

the Mahalanobis graph. This is examined the CMCD part of our study. This part

is identical in three algorithms, which are OFCI, FOFCI and RFOFCI. Therefore,

we did not analyze OFCI and RFOFCI algorithms in this section because it had

no logic. As this part of these three algorithms that detect changing, structures

are identical, the Mahalanobis graphs of all three are identical. Therefore it is

sufficient to show the results for only one.
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Figure 4.16: Mahalanobis distances

Figure 4.16 shows Mahalanobis distance that has been collected for each month.

Notably, we assume the proposed algorithm detects a shift in the volatility of the

causal relationships among these price indexes around recession of 1969-1970, the

black Monday start in 1986, the black Monday end in 1986, 1990s early recession,

Asian financial crisis in 1997, Global financial crisis in 2007-2008 and Russian

financial crisis in 2014. The reason the graph looks quasi-periodic is that the se-

lection of data and variables was chosen entirely based on the work of Kummerfeld

and Danks [45]. We do not know (maybe no one knows) how many data samples or

variables we need to analyze. We do not have enough economic background. We

just assume that the changing relationships of these variables may be detected by

Mahalanobis distance. Our assumption that the peak points in the Mahalanobis

graph coincided with some economic crises strengthened our assumption. Never-

theless, as you will see from figure 4.20, the dependency is changed a lot between

variables. That may indicate that the variable or data sample is not enough.
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Figure 4.17: Pooled p-values
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Figure 4.18: P-values
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Figure 4.19: Effective sample size

Figure 4.17, Figure 4.18 and Figure 4.19 shows the drivers of these changes:

the pooled p-values, the p-values and the effective sample size. This real-world

case study also shows the importance of using pooled p-values.

We do not have a true graph in the real world to compare with the output of

the algorithm. Therefore, we will just display 8 change point outputs for this here

and all change points outputs in Appendix A. As this study aims to propose an

efficient algorithm for real-world cases, we will not measure financial performance;

analysing and interpreting on this data. In graphs, A is Apparel, F is Food, H is

Housing, M is Medical, O is Other Goods and Services, and T is Transportation.

We may just assume that the changing relationships of these variables may be

detected by Mahalanobis distance. Our assumption that the peak points in the

Mahalanobis graph coincided with some economic crises strengthened our assump-

tion. As seen from figure 4.20, the dependency is changed a lot between variables

and many edges are unknown head. That may indicate that there are hidden

variables or data sample is not enough to make an assumption.

129



Chapter 4. EXPERIMENTAL RESULTS

F

M H T

A

O

1BC2ℎ0=64 ↔ 7Cℎ2ℎ0=64

F

A M

O

T

H

A

O

M

T

F

H

9Cℎ2ℎ0=64 ↔ 11Cℎ2ℎ0=64

A

M

F

O

H

T

A

O

F

M

H

T

12Cℎ2ℎ0=64 ↔ 14Cℎ2ℎ0=64

A

H

M

T OF

A

M T H O

F

20Cℎ2ℎ0=64 ↔ 26Cℎ2ℎ0=64

A M

T

O

H F

Figure 4.20: FOFCI Real-world data change point outputs

We assume that Figure 4.20 change points outputs might relate some crises

such as 7Cℎ change point matches Black Monday start year 1986, 9Cℎ change point

is Black Monday end year 1988, 11Cℎ and 12Cℎ change points are Early recessions

90s, 14Cℎ change point is Asian financial crisis in 1997 and 20Cℎ change point is

Global financial crisis in 2007-2008.
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The simulations were performed on a dual-core Intel Core i5 with 2.6 GHz and

16 GB RAM on macOS using Matlab R2018a.
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Chapter 5

GENERAL CONCLUSION

5.1 Discussion and Future Research

In last ten-year, data stream has become an active research area. There are

a lot of studies dealing with different methods to analyse rapidly arriving data

in real time. the new and old data instances can be stored and processed with

batch algorithms for learning model but requires too much computing and memory

space. There are very strong constraints and requirements in real world, which

can affect the learning process.

In a real-world scenario, when we do not have enough large databases, we

need alternative memory. In this kind of situation, It is not possible to examine

this data more than once; therefore, the secondary memory may be unreasonable.

Sometimes, an intelligent agent must use a domain model to perform a performance

task, even if the entire dataset is not available. These changing world conditions

make it difficult for intelligent agents to survive. Therefore, online learning brings

a natural solution to deal with these changing world situations. It keeps a domain

model throughout the entire learning process and uses an only fixed amount of

main memory.
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In this study, we deal with the problem of Causal Bayesian Network structure

learning from data streams. We addressed the constraint-based Bayesian network

structure learning technique to learn the structure of Causal Bayesian Network

because it can handle a large number of variables. Except for Kummerfeld and

Danks’s work [46] (their study does not allow hidden variables) and our works [37],

to the best of our knowledge, there is not an existing online algorithm which uses

constraint-based structure learning technique to learn causal information between

random variables when allowing arbitrarily many latent and selection variables.

Therefore, we purpose to reveal a novel and significant algorithm in such settings.

In this thesis, we introduced three online structure learning algorithms which

are OFCI, FOFCI and RFOFCI. We have presented these three algorithms in the

following order: OFCI, FOFCI and RFOFCI.

We first introduced the OFCI algorithm, which is a modified version by using al-

gorithm plug-and-play feature. We replaced the PC with the FCI algorithm, which

allows for the existence of hidden and selection variables to make the algorithm

suitable for most real-world applications. In a nutshell, OFCI is Kummerfeld and

Danks’s work-PC+FCI and outputs a PAG. However, Kummerfeld and Danks’s

work and OFCI algorithms only detect and respond to change points. So they

start learning from a complete graph at each time. Although it is very vital to

identify these change points, re-learning each time increases the cost because we

know some parts will be stable after changes. So if we only search for the changing

parts of the model, then one can talk about learning online. Otherwise, it will just

remain as an algorithm which can track the structure changes.

In this way, we proposed the FOFCI to reduce the computational cost of re-

learning and make the proposed algorithms more online. The FOFCI algorithm

differs from both OFCI and Kummerfeld and Danks’s work [46] for causal model

learning the part. The FOFCI allows us to use prior model skeleton information
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and saves us from repeating the independence tests required to find out the con-

nections that existed in the previous model and still fit the new data. The results

show the efficacy of the proposed algorithms compared to FCI.

Last, we introduced an alternative fast algorithm to the online algorithms pre-

viously proposed [37] for one who wants to deal with data sets that are too large

or complex to be dealing with in best possible time for learning causal models,

which is called RFOFCI. We evaluated the performance of this algorithm by test-

ing them on synthetic and real data. The results show the efficacy of the RFOFCI

compared to online algorithms OFCI and FOFCI previously proposed.

We evaluated the performance of these algorithms by testing them on synthetic

and real data. We separated the synthetic data experimental results into three

scales to show the performance differences in different settings. For small scale

synthetic datasets, the outputs of OFCI and FOFCI are identical to each other

and better than FCI. Also, FOFCI requires fewer conditional independence tests

than OFCI and FCI to learn the causal model for both small and large numbers

of variables. Additionally, we showed that FOFCI is faster than OFCI due to the

smaller search space of the FOFCI algorithm.

For average and large scale synthetic data sets, the outputs of OFCI, FOFCI

and RFOFCI are almost identical to each other for most cases. Also, FOFCI re-

quires substantially fewer conditional independence tests than OFCI and FOFCI

to learn the causal model for both average and large numbers of variables. Ad-

ditionally, we showed that RFOFCI is faster than OFCI and FOFCI concerning

fewer conditional independence test number.

The online algorithms proposed here are useful for learning changing causal

structure. We showed that the algorithms are useful for tracking changes and

learning new causal structure in a reasonable amount of time. However, the algo-

rithms have limitations. Sometimes, the new model learning process of algorithms
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takes a long time because they require most of the data samples to learn the

true model. This means that online algorithms will perform poorly if the causal

structure changes rapidly. As it can be seen from Figure 4.10 and Figure 4.12,

the output of RFOFCI is slightly less informative in some situations, regarding

conditional independence information.

OFCI, FOFCI and RFOFCI have a plug-and-play design. That indicates that

it has a structure that allows you to easily replace any structure learning algorithm

with the existing one and bring it online. This allows us to adapt to every new

and effective learning algorithm in structure learning algorithms to the system.

This feature allows us for easy modification to use alternative algorithms. A range

of alternative structure learning algorithms could be used for the learning part,

constraint-based methods such as RFCI [32] and score-based methods such as

greedy search algorithms, depending on the assumptions one can make. Thus,

the developments in structure learning algorithms will automatically improve the

performance of this online structure learning algorithm. Besides, it is essential to

note that the slowest part of the algorithm is the Causal Model Change Detector

part. Our development in this study was only for Causal Model Learner part,

not for CMCD. CML was already the quickest part of the method. Therefore, an

improvement in the CMCD part will make significantly more contribution than

those of structure learning part. For example, the fitness between the new coming

data point and the current estimated (weighted) covariance matrix is given by the

Mahalanobis distance in the desired algorithm. Therefore, an alternative distance

measure algorithm may perform differently.

OFCI, FOFCI and RFOFCI can track sufficient statistics for a linear Gaussian

system efficiently. This problem is much harder for categorical/discrete variables

or non-linear systems, as there will typically not be any compact representation

of the sufficient statistics. One potential advantage of this approach is a way to
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learn conditional independence constraints in an online fashion, and then those

constraints can be fed into any structure learning algorithm we want.
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Real-World Data Structure

Change Process
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Appendix B

Online Algorithms Matlab Code

(created it ourself)

B.1 FCI Algorithm Matlab Code (created it our-

self)

Listing B.1: FCI Algorithm Matlab Code (created it ourself) [83], which we im-

plemented from R FCI algorithm in pcalg package [31]

1 %I have rewrite and fixed possible d separation part

2 function [graph, sepset, skeleton] = Algorithm FCI(corlength, cormatrix, ...

samplesize, alpha, verbose)

3 % LEARN STRUCT PDAG PC Learn a partially oriented DAG (pattern) using the PC ...

algorithm

4 % P = learn struct pdag pc(cond indep, n, k, ...)

5 % n is the number of nodes.

6 % k is an optional upper bound on the fan-in (default: n)

7 % cond indep is a boolean function that will be called as follows:

8 % feval(cond indep, x, y, S, ...)

9 % where x and y are nodes, and S is a set of nodes (positive integers),

10 % and ... are any optional parameters passed to this function.

11 % The output P is an adjacency matrix, in which

12 % P(i,j) = -1 if there is an i->j edge.
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13 % P(i,j) = P(j,i) = 1 if there is an undirected edge i <-> j

14 % The PC algorithm does structure learning assuming all variables are observed.

15 % See Spirtes, Glymour and Scheines, "Causation, Prediction and Search", 1993, ...

p117.

16 % This algorithm may take O(nˆk) time if there are n variables and k is the max ...

fan-in,

17 % but this is quicker than the Verma-Pearl IC algorithm, which is always O(nˆn).

18 [G, sepset, complexity timer]=Algorithm OFCI Skeleton Search(cormatrix, ...

corlength, alpha, samplesize, verbose);

19 G=G.*1;

20 [¬, unfTripl, sepset]=pc cons internV2(G, cormatrix, sepset, samplesize, alpha, ...

verbose);

21 pag = R0 V4(G, sepset, unfTripl, verbose);

22 [pag, sepset, indtestnumber] = pdsep V2(pag, sepset, corlength, alpha, verbose, ...

cormatrix, samplesize);

23 skeleton=pag;

24 graph = R0 V4 2(pag, sepset, verbose);

25 flag=1;

26 while(flag)

27 flag=0;

28 [graph, flag] = R1(graph, flag, verbose);

29 [graph, flag] = R2(graph, flag, verbose);

30 [graph, flag] = R3(graph, flag, verbose);

31 [graph, flag] = R4(graph, sepset, flag, verbose);

32 [graph, flag] = R8(graph, flag, verbose);

33 [graph, flag] = R9(graph, flag, verbose);

34 [graph, flag] = R10(graph, flag, verbose);

35 end

36 total=complexity timer+indtestnumber;

37 fprintf('the total number of independence test = %d \n', total);

38 end

39

40 function [graph, flag] = R1(graph, flag, verbose)

41 % If x*->yo-*c and x,z not adjacent ==> x*->y->z

42 [Xs,Ys] = find(graph == 2 & graph' ≠ 0);

43 ind=[Xs Ys];

44 for i = 1:length(ind)

45 a = ind(i,1);

46 b = ind(i,2);

47 tmp1 = intersect(find(graph(b,:) ≠ 0), find(graph(:,b)==1));

48 tmp2 = intersect(find(graph(a,:) == 0), find(graph(:,a) == 0));
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49 indC = intersect(tmp1,tmp2);

50 indC = setdiff(indC, a);

51 if (¬isempty(indC))

52 for j = indC

53 if verbose

54 fprintf('\nRule 1'); fprintf('\n Orient: %d', a); fprintf(' *-> %d',b); ...

fprintf('o-* %d', j); fprintf(' as: %d -> ', b); fprintf(' %d ', j); ...

fprintf(' \n ');

55 end

56 graph(b,j) = 2;

57 graph(j,b) = 3;

58 flag = 1;

59 end

60 end

61 end

62 end

63

64 function [graph, flag] = R2(graph, flag, verbose)

65 % If x*->yo-*c and x,z not adjacent ==> x*->y->z

66 [Xs,Zs] = find(graph == 1 & graph' ≠ 0);

67 ind=[Xs Zs];

68 for i = 1:size(ind,1)

69 a = ind(i,1);

70 c = ind(i,2);

71 tmp1 = intersect(find(graph(a,:) == 2), find(graph(:, a) == 3));

72 tmp2 = intersect(find(graph(c,:) ≠ 0), find(graph(:, c) == 2));

73 tmp12 = intersect(tmp1,tmp2);

74 tmp3 = intersect(find(graph(a,:) == 2), find(graph(:, a) ≠ 0));

75 tmp4 = intersect(find(graph(c,:) == 3), find(graph(:, c) == 2));

76 tmp34 = intersect(tmp3,tmp4);

77 if (¬isempty(tmp12) | |¬isempty(tmp34))

78 if verbose

79 fprintf('\nRule 2');

80 fprintf('\n Orient: %d -> anynode', a); fprintf('*-> %d ', c);

81 fprintf(' or ');

82 fprintf('%d *-> anynode',a); fprintf('-> %d ', c);

83 fprintf(' with %d *-o %d ', a, c);

84 fprintf('as: %d *-> %d \n', a, c);

85 end

86 graph(a,c) = 2;

87 flag = 1;

145



Appendix B. Online Algorithms Matlab Code (created it ourself)

88 end

89 end

90 end

91

92 function [graph, flag] = R3(graph, flag, verbose)

93 % If x*->y<-*z, x*-o8o-*z, x,z not adjacent, 8*-oy ==> 8*->y

94 [Ths, Ys] = find(graph == 1);

95 nedges = length(Ths);

96 for i = 1:nedges

97 a = find(graph(:,Ths(i)) == 1 & graph(:,Ys(i)) == 2);

98 len = length(a);

99 f = false;

100 for j = 1:len

101 for k = j+1:len

102 if(graph(a(j),a(k)) == 0 && graph(Ths(i),Ys(i)) == 1)

103 if verbose

104 fprintf('\nRule 3'); fprintf(' Orient: %d', Ys(i)); fprintf(' *-> %d\n', Ths(...

i));

105 end

106 graph(Ths(i),Ys(i)) = 2;

107 flag = 1;

108 f = true;

109 break;

110 end

111 end

112 if(f)

113 break;

114 end

115 end

116 end

117 end

118

119 function [graph, flag] = R4(graph, sepset, flag, verbose)

120 % Start from some node X, for node Y

121 % Visit all possible nodes X*->V & V->Y

122 % For every neighbour that is bi-directed and a parent of Y, continue

123 % For every neighbour that is bi-directed and o-*Y, orient and if

124 % parent continue

125 % Total: n*n*(n+m)

126 % For each node Y, find all orientable neighbours W

127 % For each node X, non-adjacent to Y, see if there is a path to some
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128 % node in W

129 % Create graph as follows:

130 % for X,Y

131 % edges X*->V & V -> Y --> X -> V

132 % edges A <-> B & A -> Y --> A -> B

133 % edges A <-* W & A -> Y --> A->W

134 % discriminating: if path from X to W

135 [rows,cols] = find(graph ≠ 0 & graph' == 1);

136 ind=[rows cols];

137 while (¬isempty(ind))

138 b = ind(1,1);

139 c = ind(1,2);

140 ind(1,:) = [];

141 tmp1 = intersect(find(graph(b,:) == 2), find(graph(:, b) ≠ 0));

142 tmp2 = intersect(find(graph(c,:) == 3), find(graph(:, c) == 2));

143 indA = intersect(tmp1,tmp2);

144 while (¬isempty(indA) && graph(c, b) == 1)

145 a = indA(1);

146 indA(1)=[];

147 Done = false;

148 while ((¬Done) && (graph(a, b) ≠ 0) && (graph(a,c) ≠ 0) && (graph(b, c) ≠ 0))

149 md path = minDiscrPath(graph, a, b, c);

150 N md = length(md path);

151 if (N md == 1)

152 Done = true;

153 else

154 if (ismember(b, sepset{md path(1), md path(N md)}) | | ismember(b, sepset{md path...

(N md), md path(1)}))

155 if verbose

156 fprintf('\nRule 4'); fprintf('\nThere is a discriminating path between %d', ...

md path(1)); fprintf('and %d', c); fprintf('for %d', b); fprintf(',and %d...

', b); fprintf('is in Sepset of %d', c); fprintf('and %d', md path(1)); ...

fprintf('. Orient: %d', b); fprintf('-> %d \n', c);

157 end

158 graph(b, c) = 2;

159 graph(c, b) = 3;

160 flag = 1;

161 else

162 if verbose

163 fprintf('\nRule 4'); fprintf('\nThere is a discriminating path between %d', ...

md path(1)); fprintf('and %d', c); fprintf('for %d', b); fprintf(',and %d...
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', b); fprintf('is in Sepset of %d', c); fprintf('and %d', md path(1)); ...

fprintf('.Orient: %d', a); fprintf('<-> %d', b); fprintf('<-> %d \n', c);

164 end

165 graph(a, b) = 2;

166 graph(b, c) = 2;

167 graph(c, b) = 2;

168 flag = 1;

169 end

170 Done = true;

171 end

172 end

173 end

174 end

175 end%function

176

177 function [graph,flag] = R8(graph, flag, verbose)

178 [r,c] = find(graph == 2 & graph' == 1);

179 nedges = length(r);

180 for i = 1:nedges

181 out = find(graph(:,r(i)) == 3);

182 if(any(graph(out,c(i)) == 2 & graph(c(i),out)' == 3))

183 if verbose

184 fprintf('\nRule 8'); fprintf('\nOrient: %d', r(i)); fprintf(' -> %d', out); ...

fprintf(' -> %d', c(i)); fprintf('or %d', r(i)); fprintf('-o %d', out); ...

fprintf('-> %d', c(i)); fprintf('with %d', r(i)); fprintf('o-> %d', c(i))...

, fprintf('as %d', r(i)); fprintf(' -> %d \n', c(i));

185 end

186 graph(c(i),r(i)) = 3;

187 flag = 1;

188 end

189 end

190 end

191

192 function [graph,flag] = R9(graph, flag, verbose)

193 % unshieldedTriples=[];

194 % R9: Equivalent to orienting X <-o Y as X <-> Y and checking if Y is an

195 % ancestor of X (i.e. there is an almost directed cycle)

196 [row1,col1] = find(graph == 2 & graph' == 1);

197 ind=[row1 col1];

198 nedges = length(row1);

199 for i = 1:nedges
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200 a = row1(i); c = col1(i);

201 ind(1,:)=[];

202 indB=find((graph(a,:) == 2 | graph(a,:) == 1) & (graph(:,a)' == 1 | graph(:,...

a)' == 3) & (graph(c,:) == 0 & graph(:,c)' == 0));

203 indB=setdiff(indB, c);

204 while ((¬isempty(indB)) && (graph(c, a) == 1))

205 b = indB(1);

206 indB(1) = [];

207 upd = minUncovPdPath(graph, a, b, c);

208 if (length(upd) > 1)

209 graph(c, a) = 3;

210 if verbose

211 fprintf('\nRule 9'); fprintf('\nThere exists an uncovered potentially ...

directed path between %d and %d', a, c); fprintf('. Orient: %d -> %d \n'...

, a, c);

212 end

213 flag = 1;

214 end

215 end

216 end%for i=nedges

217 end%function

218

219 function [graph,flag] = R10(graph, flag, verbose)

220 [rows,cols] = find(graph == 2 & graph' == 1);

221 ind = [rows cols];

222 while (¬isempty(ind))

223 a = ind(1,1);

224 c = ind(1,2);

225 ind(1,:) = [];

226 [¬,indB] = find((graph(c, :) == 3 & graph(:, c) == 2));

227 if (length(indB) ≥ 2)

228 counterB = 0;

229 while ((counterB < length(indB)) && (graph(c,a) == 1))

230 counterB = counterB + 1;

231 b = indB(counterB);

232 indD = mysetdiff(indB, b);

233 counterD = 0;

234 while ((counterD < length(indD)) && (graph(c, a) == 1))

235 counterD = counterD + 1;

236 d = indD(counterD);
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237 if ((graph(a, b) == 1 | | graph(a, b) == 2) && (graph(b, a) == 1 | | graph(b, a) ...

== 3) && (graph(a, d) == 1 | | graph(a, d) == 2) && (graph(d, a) == 1 | | ...

graph(d, a) == 3) && graph(d, b) == 0 && graph(b, d) == 0)

238 if verbose

239 fprintf('\nRule 10 '); fprintf('\nOrient: %d', a); fprintf('-> %d \n', c);

240 end

241 flag = 1;

242 graph(c, a) = 3;

243 end

244 end

245 end

246 end

247 end

248 end

B.2 FCI Algorithm initial skeleton search algo-

rithm Matlab Code (created it ourself)

Listing B.2: FCI Algorithm initial skeleton search algorithm Matlab Code (created

it ourself) [83], which we implemented from R pcalg package [31]

1 % > skeleton

2 % function (suffStat, indepTest, alpha, labels, p, method = c("stable",

3 %"original", "stable.fast"), m.max = Inf, fixedGaps = NULL,

4 %fixedEdges = NULL, NAdelete = TRUE, numCores = 1, verbose = FALSE) {

5 function [G, sepset, complexity timer]=Algorithm OFCI Skeleton Search(cormatrix,...

p, alpha, n, verbose)

6 complexity timer=0;

7 %seq p <- seq len(p)

8 seq p=1:p;

9 %G <- matrix(TRUE, nrow = p, ncol = p)

10 G=true(p,p);

11 %diag(G) <- FALSE

12 G=setdiag(G,false);

13 %fixedEdges <- matrix(rep(FALSE, p * p), nrow = p, ncol = p)

14 fixedEdges=zeros(p,p);

15 %sepset <- lapply(seq p, function(.) vector("list", p))

16 sepset = cell(p,p);
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17 %done <- FALSE

18 done=false;

19 %ord <- 0L

20 ord=0;

21 %while (!done && any(G) && ord ≤ m.max) {

22 while (¬done && ¬isempty(nonzeros(G)))

23 %n.edgetests[ord1 <- ord + 1L] <- 0

24 ord1 = ord+1;

25 done=true;

26 %ind <- which(G, arr.ind = TRUE)

27 [X,Y]=find(G);

28 %ind <- ind[order(ind[, 1]), ]

29 ind=sortrows([X Y],1);

30 %remEdges <- nrow(ind)

31 remEdges=length(ind);

32 %if ord==0

33 %fprintf('Order= %d ', ord); fprintf(' remaining edges: %d \n', remEdges);

34 G l = G;

35 %for (i in 1:remEdges) {

36 for i=1:remEdges

37 %for i= 4:6

38 %x <- ind[i, 1]

39 x = ind(i, 1);

40 %y <- ind[i, 2]

41 y = ind(i, 2);

42 %if (G[y, x] && !fixedEdges[y, x]) {

43 if (G(y,x) && ¬fixedEdges(y, x))

44 %nbrsBool <- G[, x]

45 nbrsBool = G l(:,x);

46 %nbrsBool[y] <- FALSE

47 nbrsBool(y)=false;

48 %nbrs <- seq p[nbrsBool]

49 nbrs = seq p(nbrsBool);

50 %length nbrs <- length(nbrs)

51 length nbrs = length(nbrs);

52 %if (length nbrs ≥ ord) {

53 if (length nbrs ≥ ord)

54 %if (length nbrs > ord)

55 %done <- FALSE

56 done = false;

57 %S <- seq len(ord)
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58 S = 1:ord;

59 %repeat {

60 %while

61 deneme=false;

62 while ¬deneme

63 deneme=true;

64 %n.edgetests[ord1] <- n.edgetests[ord1] + 1

65 pval = gaussCItest(x, y, nbrs(S), cormatrix, n);

66 complexity timer=complexity timer+1;

67 if isempty(nbrs(S))

68 if verbose

69 fprintf('x= %d indep of y= %d given S= ', x, y); fprintf(' p= %d \n', ...

pval);

70 end

71 else

72 if verbose

73 fprintf('x= %d indep of y= %d given ', x, y); fprintf(' S= %d ', nbrs(S)); ...

fprintf(' p= %d \n', pval);

74 end

75 end

76 %fprintf('\n');

77 %x= 1 y= 2 S= : pval = 0

78 %if (pval ≥ alpha) {

79 if (pval ≥ alpha)

80 %G[x, y] <- G[y, x] <- FALSE

81 G(x, y) = false;

82 G(y, x) = false;

83 %sepset[[x]][[y]] <- nbrs[S]

84 sepset{x,y} = myunion(sepset{x,y}, nbrs(S));

85 %fprintf('x= %d and y= %d separation set is: ', x, y); fprintf(' S= %d \n', nbrs...

(S));

86 %break}

87 break;

88 %else {

89 else

90 %nextSet <- getNextSet(length nbrs, ord, S)

91 [nextSet, wasLast] = getNextSet(length nbrs, ord, S);

92 %if (nextSet$wasLast)0

93 if (wasLast)

94 %break

95 break;
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96 else

97 %S <- nextSet$nextSet

98 S = nextSet;

99 deneme=false;

100 end

101 end

102 end%while ¬deneme

103 end

104 end

105 end

106 %ord <- ord + 1L

107 ord = ord +1;

108 end

109 end

B.3 OFCI Algorithm Matlab Code (created it

ourself)

Listing B.3: OFCI algorithm Matlab Code (created it ourself)

1 %%FCI rule 9 changed with using source r fci code

2 %%fci changed

3 function output = Algorithm OFCI(data, schedule, alpha, batch, plotgraphs, ...

verbose)

4 %initialize

5 skelstore={};

6 sepsetstore={};

7 datasize=size(data);

8 mu=mean(data(1:10,:)); %zeros(1,datasize(2));

9 %mu=mean(data);

10 %d=zeros(1,datasize(2));

11 tcov=round(cov(data(1:10,:)),8);

12 %tcov=cov(data);

13 output.graphtimes=[];

14 output.graphs{1}=[];

15 a=ones(1,datasize(1));

16 b=ones(1,datasize(1));

17 b(1)=2;
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18 sample size=ones(1,datasize(1));

19 %sensitivity for graph search

20 %alpha=.05;

21 tcovstore={};

22 tcorstore={};

23 pdag count=0;

24 M error=ones(1,datasize(1))*datasize(2);

25 pverr=ones(1,datasize(1));

26 experrvalpr=.1;

27 experrval=ones(1,datasize(1))*experrvalpr; %expected error value (unbiased ...

estimated based on observations)

28 %current sample size is also used, but is initialized separately

29 trigger=0;

30 %for CMCD-Causal Model CHANGE DETECTOR

31 initstbias=0; %this is something like an initial stability bias

32 pval=ones(1,datasize(1))*.5;

33 ntrack=zeros(1,datasize(1));

34 Q=ones(1,datasize(1))*initstbias;

35 sumsqrw=ones(1,datasize(1));

36 poolp=zeros(1,datasize(1));

37 burnin=10;%burnin=datasize(2)*1.05; %this determines the length of the burn-in ...

period %! ! ! using parfindFOUR

38 burnin MD=chi2inv(.5,datasize(2)); %this is the Mahalanobis Distance to use ...

during the burn-in period

39 plearn=zeros(1,datasize(1));

40 make graph=0;

41 fol=.005; %frequency of learning parameter, for probabilistic scheduler.

42 %scale and lower bound parameter for transforming poolp values to weights

43 scpara=.95; %normal parameter: .95

44 ratpar=3; %! ! ! using parfindFOUR %normal parameter: 1.5

45 %parameter for ratio-type downweighting. as ratpar ->1, curve steapens/...

downweights more heavily.

46 %also determines maximum downweight ratio, equal to 1/ratpar (i.e.,

47 %ratpar=1 downweights to an effective sample size of 0 at poolp(j)=1,

48 %ratpar=2 cuts effective sample size in half at poolp(j)=1

49 for j=1:datasize(1)

50 %calc accumulating error rate of correlation

51 %use Mahalanobis error to calc error of new point from old tcov and mu

52 %prob want regular M error here, not normed error. Take account for

53 %datasize(2) in the distributional part.

54 %M error(j) = (data(j,:)-mu)*inv(tcov)*(data(j,:)-mu)';
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55 % trying it a new way

56 M error(j) = (data(j,:)-mu)/tcov*(data(j,:)-mu)';

57 norm M error(j)=M error(j)/datasize(2);

58 %Update tcovariance Matrix

59 %use learning rate to update tcov

60 %replaces commented out update of b(j+1) below

61 if j>1

62 b(j)=b(j-1)+a(j);

63 end

64 %regular OCME-Online Covariation Matrix Estimation

65 d=(a(j)/b(j))*(data(j,:)-mu);

66 mu=mu+d;

67 for i=1:datasize(2)

68 for k=1:datasize(2)

69 tcov(i,k)=(1/b(j))*((b(j)-a(j))*tcov(i,k)+(b(j)-a(j))*d(i)*d(k)+a(j)*(data...

(j,i)-mu(i))*(data(j,k)-mu(k)));

70 end

71 end

72 tcovstore{j}=tcov;

73 %update learning rate

74 %need to track the weighted sum of M error values, and compare this

75 %against a distribution which depends on: sample size, datasize(2)

76 if j>1

77 sample size(j)=(a(j-1)/a(j))*sample size(j-1)+1;

78 else

79 sample size(j)=1;

80 end

81 %not sample size, actually. need to track sum of squared weights directly.

82 %P = normcdf(X,mu,sigma)

83 %P = chi2cdf(X,V)

84 %X = norminv(P,mu,sigma)

85 %calc... norminv(chi2cdf(M error(j),datasize(2)),0,1)

86 %if j>1

87 %the min is to prevent ntrack(j)=Inf, which causes HUGE PROBLEMS

88 %ntrack(j)=norminv(min(chi2cdf(M error(j),datasize(2)),.999),0,1);

89 %Q(j)=Q(j-1)+a(j)*ntrack(j);

90 %sumsqrw(j)=sumsqrw(j-1)+a(j)ˆ2;

91 %poolp(j)=normcdf(Q(j),0,sqrt(sumsqrw(j)));

92 %during the burn-in period:

93 if j>1&&sample size(j-1)≤burnin

94 %gotta make sure the right things get burned in
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95 pval(j)=.5;

96 %the min is to prevent ntrack(j)=Inf, which causes HUGE PROBLEMS

97 ntrack(j)=norminv(min(pval(j),.999),0,1);

98 Q(j)=Q(j-1)+a(j)*ntrack(j);

99 sumsqrw(j)=sumsqrw(j-1)+a(j)ˆ2; %sum of squared weights

100 poolp(j)=normcdf(Q(j),0,sqrt(sumsqrw(j)));

101 a(j+1)=a(j);

102 if trigger==1

103 experrval(j)=(experrval(j-1)*(sample size(j)-1)+chi2cdf(M error(j),datasize...

(2))-.5)/(sample size(j));

104 else

105 experrval(j)=experrvalpr;

106 end

107 pcheck=1;

108 trigger=1;

109 end

110 %after the burn-in period is over:

111 if j>1&&isnan(M error(j))==0&&M error(j)≥0&&sample size(j-1)>burnin %j>burnin ...

for the burn-in period

112 trigger=0;

113 %Calculating pooled p values and turning them into weights

114 if poolp(j-1)≤0

115 pcheck=0;

116 end

117 %experrval(j)=(experrval(j-1)*(sample size(j)-1)+chi2cdf(M error(j),datasize(2))...

-(.5+pverr(j-1)))/(sample size(j));

118 %pverr(j)=max(min((priorss*priorerrval+sample size(j)*experrval(j))/(priorss + ...

sample size(j)),pverr(j-1)),0);

119 pval(j)=fcdf((sample size(j)-datasize(2))/(datasize(2)*(sample size(j)-1))*...

M error(j),datasize(2),sample size(j)-datasize(2));

120 %pval(j)=max(chi2cdf(M error(j),datasize(2))-min(pverr(j),pcheck),0); %***...

Rewrite this in terms of F-distribution/hotelling's t-square***

121 %pval(j)=chi2cdf(M error(j)-.03*12*1/sqrt(sample size(j-1))*20,datasize(2));

122 %the min/maxes are to prevent ntrack(j)=Inf, which causes HUGE PROBLEMS

123 ntrack(j)=norminv(max(min(pval(j),.9999),.0001),0,1); %inverse normal cdf of the...

pvalue

124 Q(j)=Q(j-1)+a(j)*ntrack(j); %weighted sum of inverse normal cdf of p-values

125 sumsqrw(j)=sumsqrw(j-1)+a(j)ˆ2; %sum of squared weights

126 poolp(j)=normcdf(Q(j),0,sqrt(sumsqrw(j))); %pooled pvalue is the appropriate ...

normal cdf of Q(j)

127 %plearn(j)=plearn(j-1)+fol*poolp(j);%fol is frequency param, square for scaling
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128 plearn(j)=plearn(j-1)+fol*(poolp(j)-poolp(j)*plearn(j-1));%fol is frequency ...

param

129 %this needs to be squashed so that a regular-ish p-value (.5)

130 %doesn't cause massive downweighting.

131 if poolp(j)<scpara

132 a(j+1)=a(j);

133 else

134 a(j+1)=1/(1-1/ratpar*((1/(1-scpara))*poolp(j)-(1/(1-scpara)-1)))*a(j);

135 %previous versions:

136 %the min is to prevent sample sizes from getting below a

137 %certain value, since bad stuff happens if it does

138 %a(j+1)=max((expinv((1/(1-scpara))*poolp(j)-(1/(1-scpara)-1))+1)*a(j),a(j));

139 %a(j+1)=min(b(j)*.02,max((expinv((1/(1-scpara))*poolp(j)-(1/(1-scpara)-1))ˆ(.5)...

+1)*a(j),a(j)));

140 end

141 %a(j+1)=max(expinv(poolp(j)ˆ2)*b(j),a(j)); %expinv is for rescaling the poolp.

142 % threshold method

143 %if poolp(j)<.99

144 %a(j+1)=a(j);

145 %a(j+1)=b(j)*.1;

146 end

147 %learn PDAG matrix from the correlation matrices

148 if isempty(schedule)

149 %probabilistic scheduler

150 if rand(1)<plearn(j) && j>24

151 make graph=1;

152 %Δ alpha MTDL=0;

153 plearn(j)=0;

154 end

155 else

156 %Do full run for particular time steps

157 if ismember(j,schedule)==1

158 make graph=1;

159 else

160 make graph=0;

161 end

162 end

163 %PC search for graph, then plot it

164 if make graph==1

165 %calc correlations

166 [¬,ExpCorrC] = cov2corr(tcov);
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167 pdag count=pdag count+1; %index the pdags amongst themselves

168 %pdag index(pdag count)=j; %index the pdags amongst the timesteps

169 %use the bayes net toolbox to calculate the pdag matrix

170 %pdag{pdag count} = learn struct pdag pc('cond indep fisher z', length(cor), ...

length(cor), cor, floor(sample size(j)), alpha);

171 %plot pdag

172 output.graphtimes(pdag count)=j;

173 %yes=floor(sample size(j))

174 tcorstore{pdag count}=ExpCorrC;

175 % uncomment the below eventually!!!!!!!!!!!!!!!!!!!!!

176 [output.graphs{pdag count}, sepset, skeleton]=Algorithm FCI(length(ExpCorrC),...

ExpCorrC, floor(j), alpha, verbose);

177 %output.graphs{pdag count}=ones(10);

178 sepsetstore{pdag count}=sepset;

179 skelstore{pdag count}=skeleton;

180 if plotgraphs

181 figure('NextPlot','new')

182 draw graph pag(abs(output.graphs{pdag count}))

183 title(j)

184 end

185 make graph=0;

186 end

187 end

188 %comparing poolp w/ batch equivalent weighting to the known analytic

189 %solution: chi-square distribution with DOF=#data*variables

190 x=0;

191 chisquaretest=zeros(1,datasize(1));

192 for j=1:length(M error)

193 if j<burnin

194 x=x+burnin MD;

195 else

196 x=x+M error(j);

197 end

198 chisquaretest(j)=chi2cdf(x,j*datasize(2));

199 end

200 if ¬batch

201 plot(sample size)

202 title('sample size')

203 figure('NextPlot','new')

204 plot(norm M error,'red')

205 hold on
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206 plot(MTDL)

207 hold off

208 figure('NextPlot','new')

209 plot(poolp)

210 hold on

211 plot(chisquaretest,'red')

212 title('Comparing pooled p-value to batch analytic solution')

213 legend('pooled p-value','analytic p-value')

214 hold off

215 figure('NextPlot','new')

216 plot(pval)

217 title pval

218 output.skelstore=skelstore;

219 output.tcorstore=tcorstore;

220 output.sepsetstore=sepsetstore;

221 output.sumsqrw=sumsqrw;

222 output.poolp=poolp;

223 output.chisquaretest=chisquaretest;

224 output.Q=Q;

225 output.a=a;

226 output.M error=M error;

227 output.ntrack=ntrack;

228 output.tcovstore=tcovstore;

229 output.b=b;

230 output.sample size=sample size;

231 output.pverr=pverr;

232 output.experrval=experrval;

233 output.plearn=plearn;

234 output.pval=pval;

235 if isempty(schedule)

236 output.plearn=plearn;

237 end

238 end

B.4 Modified FCI Algorithm Matlab Code (cre-

ated it ourself)

Listing B.4: Modified FCI Algorithm Matlab Code (created it ourself)
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1 %I have rewrite and fixed possible d separation part

2 function [graph, sepset, skeleton] = Algorithm Modified FCI(sepset, corlength, ...

cormatrix, samplesize, alpha, verbose)

3 % LEARN STRUCT PDAG PC Learn a partially oriented DAG (pattern) using the PC ...

algorithm

4 % P = learn struct pdag pc(cond indep, n, k, ...)

5 % n is the number of nodes.

6 % k is an optional upper bound on the fan-in (default: n)

7 % cond indep is a boolean function that will be called as follows:

8 % feval(cond indep, x, y, S, ...)

9 % where x and y are nodes, and S is a set of nodes (positive integers),

10 % and ... are any optional parameters passed to this function.

11 % The output P is an adjacency matrix, in which

12 % P(i,j) = -1 if there is an i->j edge.

13 % P(i,j) = P(j,i) = 1 if there is an undirected edge i <-> j

14 % The PC algorithm does structure learning assuming all variables are observed.

15 % See Spirtes, Glymour and Scheines, "Causation, Prediction and Search", 1993, ...

p117.

16 % This algorithm may take O(nˆk) time if there are n variables and k is the max ...

fan-in,

17 % but this is quicker than the Verma-Pearl IC algorithm, which is always O(nˆn).

18 [G, sepset, complexity timer]=Algorithm FOFCI Online Skeleton Search(sepset, ...

cormatrix, corlength, alpha, samplesize, verbose);

19 G=G.*1;

20 [¬, unfTripl, sepset]=pc cons internV2(G, cormatrix, sepset, samplesize, alpha, ...

verbose);

21 pag = R0 V4(G, sepset, unfTripl, verbose);

22 [pag, sepset, indtestnumber] = pdsep V2(pag, sepset, corlength, alpha, verbose, ...

cormatrix, samplesize);

23 skeleton=pag;

24 graph = R0 V4 2(pag, sepset, verbose);

25 flag=1;

26 while(flag)

27 flag=0;

28 [graph, flag] = R1(graph, flag, verbose);

29 [graph, flag] = R2(graph, flag, verbose);

30 [graph, flag] = R3(graph, flag, verbose);

31 [graph, flag] = R4(graph, sepset, flag, verbose);

32 [graph, flag] = R8(graph, flag, verbose);

33 [graph, flag] = R9(graph, flag, verbose);
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34 [graph, flag] = R10(graph, flag, verbose);

35 end

36 total=complexity timer+indtestnumber;

37 fprintf('the total number of independence test = %d \n', total);

38 end

39

40 function [graph, flag] = R1(graph, flag, verbose)

41 % If x*->yo-*c and x,z not adjacent ==> x*->y->z

42 [Xs,Ys] = find(graph == 2 & graph' ≠ 0);

43 ind=[Xs Ys];

44 for i = 1:length(ind)

45 a = ind(i,1);

46 b = ind(i,2);

47 tmp1 = intersect(find(graph(b,:) ≠ 0), find(graph(:,b)==1));

48 tmp2 = intersect(find(graph(a,:) == 0), find(graph(:,a) == 0));

49 indC = intersect(tmp1,tmp2);

50 indC = setdiff(indC, a);

51 if (¬isempty(indC))

52 for j = indC

53 if verbose

54 fprintf('\nRule 1'); fprintf('\n Orient: %d', a); fprintf(' *-> %d',b); ...

fprintf('o-* %d', j); fprintf(' as: %d -> ', b); fprintf(' %d ', j); ...

fprintf(' \n ');

55 end

56 graph(b,j) = 2;

57 graph(j,b) = 3;

58 flag = 1;

59 end

60 end

61 end

62 end

63

64

65 function [graph, flag] = R2(graph, flag, verbose)

66 % If x*->yo-*c and x,z not adjacent ==> x*->y->z

67 [Xs,Zs] = find(graph == 1 & graph' ≠ 0);

68 ind=[Xs Zs];

69 for i = 1:size(ind,1)

70 a = ind(i,1);

71 c = ind(i,2);

72 tmp1 = intersect(find(graph(a,:) == 2), find(graph(:, a) == 3));
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73 tmp2 = intersect(find(graph(c,:) ≠ 0), find(graph(:, c) == 2));

74 tmp12 = intersect(tmp1,tmp2);

75 tmp3 = intersect(find(graph(a,:) == 2), find(graph(:, a) ≠ 0));

76 tmp4 = intersect(find(graph(c,:) == 3), find(graph(:, c) == 2));

77 tmp34 = intersect(tmp3,tmp4);

78 if (¬isempty(tmp12) | |¬isempty(tmp34))

79 if verbose

80 fprintf('\nRule 2');

81 fprintf('\n Orient: %d -> anynode', a); fprintf('*-> %d ', c);

82 fprintf(' or ');

83 fprintf('%d *-> anynode',a); fprintf('-> %d ', c);

84 fprintf(' with %d *-o %d ', a, c);

85 fprintf('as: %d *-> %d \n', a, c);

86 end

87 graph(a,c) = 2;

88 flag = 1;

89 end

90 end

91 end

92

93 function [graph, flag] = R3(graph, flag, verbose)

94 % If x*->y<-*z, x*-o8o-*z, x,z not adjacent, 8*-oy ==> 8*->y

95 [Ths, Ys] = find(graph == 1);

96 nedges = length(Ths);

97 for i = 1:nedges

98 a = find(graph(:,Ths(i)) == 1 & graph(:,Ys(i)) == 2);

99 len = length(a);

100 f = false;

101 for j = 1:len

102 for k = j+1:len

103 if(graph(a(j),a(k)) == 0 && graph(Ths(i),Ys(i)) == 1)

104 if verbose

105 fprintf('\nRule 3'); fprintf(' Orient: %d', Ys(i)); fprintf(' *-> %d\n', Ths(...

i));

106 end

107 graph(Ths(i),Ys(i)) = 2;

108 flag = 1;

109 f = true;

110 break;

111 end

112 end
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113 if(f)

114 break;

115 end

116 end

117 end

118 end

119

120 function [graph, flag] = R4(graph, sepset, flag, verbose)

121 % Start from some node X, for node Y

122 % Visit all possible nodes X*->V & V->Y

123 % For every neighbour that is bi-directed and a parent of Y, continue

124 % For every neighbour that is bi-directed and o-*Y, orient and if

125 % parent continue

126 % Total: n*n*(n+m)

127 %--------------------------------------------------------------------------

128 % For each node Y, find all orientable neighbours W

129 % For each node X, non-adjacent to Y, see if there is a path to some

130 % node in W

131 % Create graph as follows:

132 % for X,Y

133 % edges X*->V & V -> Y --> X -> V

134 % edges A <-> B & A -> Y --> A -> B

135 % edges A <-* W & A -> Y --> A->W

136 % discriminating: if path from X to W

137 [rows,cols] = find(graph ≠ 0 & graph' == 1);

138 ind=[rows cols];

139 while (¬isempty(ind))

140 b = ind(1,1);

141 c = ind(1,2);

142 ind(1,:) = [];

143 tmp1 = intersect(find(graph(b,:) == 2), find(graph(:, b) ≠ 0));

144 tmp2 = intersect(find(graph(c,:) == 3), find(graph(:, c) == 2));

145 indA = intersect(tmp1,tmp2);

146 while (¬isempty(indA) && graph(c, b) == 1)

147 a = indA(1);

148 indA(1)=[];

149 Done = false;

150 while ((¬Done) && (graph(a, b) ≠ 0) && (graph(a,c) ≠ 0) && (graph(b, c) ≠ 0))

151 md path = minDiscrPath(graph, a, b, c);

152 N md = length(md path);

153 if (N md == 1)
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154 Done = true;

155 else

156 if (ismember(b, sepset{md path(1), md path(N md)}) | | ismember(b, sepset{md path...

(N md), md path(1)}))

157 if verbose

158 fprintf('\nRule 4'); fprintf('\nThere is a discriminating path between %d', ...

md path(1)); fprintf('and %d', c); fprintf('for %d', b); fprintf(',and %d...

', b); fprintf('is in Sepset of %d', c); fprintf('and %d', md path(1)); ...

fprintf('. Orient: %d', b); fprintf('-> %d \n', c);

159 end

160 graph(b, c) = 2;

161 graph(c, b) = 3;

162 flag = 1;

163 else

164 if verbose

165 fprintf('\nRule 4'); fprintf('\nThere is a discriminating path between %d', ...

md path(1)); fprintf('and %d', c); fprintf('for %d', b); fprintf(',and %d...

', b); fprintf('is in Sepset of %d', c); fprintf('and %d', md path(1)); ...

fprintf('.Orient: %d', a); fprintf('<-> %d', b); fprintf('<-> %d \n', c);

166 end

167 graph(a, b) = 2;

168 graph(b, c) = 2;

169 graph(c, b) = 2;

170 flag = 1;

171 end

172 Done = true;

173 end

174 end

175 end

176 end

177 end%function

178

179 function [graph,flag] = R8(graph, flag, verbose)

180 [r,c] = find(graph == 2 & graph' == 1);

181 nedges = length(r);

182 for i = 1:nedges

183 out = find(graph(:,r(i)) == 3);

184 if(any(graph(out,c(i)) == 2 & graph(c(i),out)' == 3))

185 if verbose

186 fprintf('\nRule 8'); fprintf('\nOrient: %d', r(i)); fprintf(' -> %d', out);...

fprintf(' -> %d', c(i)); fprintf('or %d', r(i)); fprintf('-o %d', out)...
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; fprintf('-> %d', c(i)); fprintf('with %d', r(i)); fprintf('o-> %d', c...

(i)), fprintf('as %d', r(i)); fprintf(' -> %d \n', c(i));

187 end

188 graph(c(i),r(i)) = 3;

189 flag = 1;

190 end

191 end

192 end

193

194 function [graph,flag] = R9(graph, flag, verbose)

195 % unshieldedTriples=[];

196 % R9: Equivalent to orienting X <-o Y as X <-> Y and checking if Y is an

197 % ancestor of X (i.e. there is an almost directed cycle)

198 [row1,col1] = find(graph == 2 & graph' == 1);

199 ind=[row1 col1];

200 nedges = length(row1);

201 for i = 1:nedges

202 a = row1(i); c = col1(i);

203 ind(1,:)=[];

204 indB=find((graph(a,:) == 2 | graph(a,:) == 1) & (graph(:,a)' == 1 | graph(:,...

a)' == 3) & (graph(c,:) == 0 & graph(:,c)' == 0));

205 indB=setdiff(indB, c);

206 while ((¬isempty(indB)) && (graph(c, a) == 1))

207 b = indB(1);

208 indB(1) = [];

209 upd = minUncovPdPath(graph, a, b, c);

210 if (length(upd) > 1)

211 graph(c, a) = 3;

212 if verbose

213 fprintf('\nRule 9'); fprintf('\nThere exists an uncovered potentially ...

directed path between %d and %d', a, c); fprintf('. Orient: %d -> %d \n'...

, a, c);

214 end

215 flag = 1;

216 end

217 end

218 end%for i=nedges

219 end%function

220

221 function [graph,flag] = R10(graph, flag, verbose)

222 [rows,cols] = find(graph == 2 & graph' == 1);
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223 ind = [rows cols];

224 while (¬isempty(ind))

225 a = ind(1,1);

226 c = ind(1,2);

227 ind(1,:) = [];

228 [¬,indB] = find((graph(c, :) == 3 & graph(:, c) == 2));

229 if (length(indB) ≥ 2)

230 counterB = 0;

231 while ((counterB < length(indB)) && (graph(c,a) == 1))

232 counterB = counterB + 1;

233 b = indB(counterB);

234 indD = mysetdiff(indB, b);

235 counterD = 0;

236 while ((counterD < length(indD)) && (graph(c, a) == 1))

237 counterD = counterD + 1;

238 d = indD(counterD);

239 if ((graph(a, b) == 1 | | graph(a, b) == 2) && (graph(b, a) == 1 | | graph(b, a) ...

== 3) && (graph(a, d) == 1 | | graph(a, d) == 2) && (graph(d, a) == 1 | | ...

graph(d, a) == 3) && graph(d, b) == 0 && graph(b, d) == 0)

240 if verbose

241 fprintf('\nRule 10 '); fprintf('\nOrient: %d', a); fprintf('-> %d \n', c);

242 end

243 flag = 1;

244 graph(c, a) = 3;

245 end

246 end

247 end

248 end

249 end

250 end

B.5 FCI Algorithm online initial skeleton search

algorithm Matlab Code (created it ourself)

Listing B.5: FCI Algorithm online initial skeleton search algorithm Matlab Code

(created it ourself)

1 % > skeleton
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2 % function (suffStat, indepTest, alpha, labels, p, method = c("stable",

3 % "original", "stable.fast"), m.max = Inf, fixedGaps = NULL,

4 % fixedEdges = NULL, NAdelete = TRUE, numCores = 1, verbose = FALSE) {

5 function [B, sepset, complexity timer]=Algorithm FOFCI Online Skeleton Search(...

sepset, cormatrix, p, alpha, n, verbose)

6 %seq p <- seq len(p)

7 complexity timer=0;

8 seq p=1:p;

9 %G <- matrix(TRUE, nrow = p, ncol = p)

10 B=true(p,p);

11 %diag(G) <- FALSE

12 B=setdiag(B,false);

13 %fixedEdges <- matrix(rep(FALSE, p * p), nrow = p, ncol = p)

14 fixedEdges=zeros(p,p);

15 done=false;

16 %ord <- 0L

17 ord=0;

18 dontest=cell(size(cormatrix,1));

19 %n.edgetests <- numeric(1)

20 for i=1:length(sepset)

21 for j=i+1:length(sepset)

22 sepset{i,j}=myunion(sepset{i,j},sepset{j,i});

23 sepset{j,i}=[];

24 end

25 end

26 [S1,S2]=find(¬cellfun('isempty', sepset));

27 ind seps=sortrows([S1 S2],1);

28 remEdges seps=size(ind seps,1);

29 % fprintf('sepset length= %d \n', remEdges seps);

30 for i=1:remEdges seps

31 s1 = ind seps(i, 1);

32 s2 = ind seps(i, 2);

33 pval = gaussCItest(s1, s2, [], cormatrix, n);

34 complexity timer=complexity timer+1;

35 if (pval ≥ alpha)

36 if verbose

37 fprintf('x= %d indep of y= %d given S= ', s1, s2); fprintf(' p= %d \n', pval)...

;

38 end

39 B(s1,s2)=false;

40 B(s2,s1)=false;
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41 sepset{s1,s2}=[];

42 end

43 if B(s1,s2)==true

44 lngth sp=length(sepset{s1,s2});

45 flag=0;

46 for k=1:lngth sp

47 condSets = nchoosek(sepset{s1,s2}, k);

48 nofCondSets = size(condSets, 1);

49 for iCondSet = 1:nofCondSets

50 condSet = condSets(iCondSet, 1:k);

51 pval 2 = gaussCItest(s1, s2, condSet, cormatrix, n);

52 complexity timer=complexity timer+1;

53 if (pval 2 ≥ alpha)

54 if verbose

55 fprintf('s1= %d still indep of s2= %d given ', s1, s2); fprintf(' S= %d ', ...

condSet); fprintf(' p= %d \n', pval 2);

56 end

57 B(s1,s2)=false;

58 B(s2,s1)=false;

59 sepset{s1,s2}=condSet;

60 flag=1;

61 break;

62 else

63 if verbose

64 fprintf('do not test dependency between s1= %d and s2= %d given ', s1, s2); ...

fprintf(' S= %d', condSet); fprintf(' p= %d \n', pval 2);

65 end

66 if length(condSet)==lngth sp

67 dontest{s1,s2}=condSet;

68 %fprintf('dont test s1= %d and s2= %d given ', s1, s2); fprintf(' S= %d \n', ...

condSet);

69 sepset{s1,s2}=[];

70 end

71 end

72 end

73 if(flag==1)

74 break

75 end

76 end

77 end

78 end
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79 while (¬done && ¬isempty(nonzeros(B)))

80 %done <- TRUE

81 done=true;

82 %ind <- which(G, arr.ind = TRUE)

83 [X,Y]=find(B);

84 %ind <- ind[order(ind[, 1]), ]

85 ind=sortrows([X Y],1);

86 %remEdges <- nrow(ind)

87 remEdges=length(ind);

88 if ord==0

89 fprintf('Order= %d ', ord); fprintf(' remaining edges: %d \n', remEdges);

90 end

91 G l = B;

92 %for (i in 1:remEdges) {

93 for i=1:remEdges

94 %for i= 4:6

95 %x <- ind[i, 1]

96 x = ind(i, 1);

97 %y <- ind[i, 2]

98 y = ind(i, 2);

99 %if (G[y, x] && !fixedEdges[y, x]) {

100 if (B(y,x) && ¬fixedEdges(y, x))

101 %nbrsBool <- G[, x]

102 nbrsBool = G l(:,x);

103 %nbrsBool[y] <- FALSE

104 nbrsBool(y)=false;

105 %nbrs <- seq p[nbrsBool]

106 nbrs= seq p(logical(nbrsBool));

107 %if verbose

108 %fprintf('the neighbours of x= %d and y= %d given ', x, y); fprintf(' N= %d \n',...

nbrs);

109 %length nbrs <- length(nbrs)

110 length nbrs = length(nbrs);

111 %if (length nbrs ≥ ord) {

112 if (length nbrs ≥ ord)

113 %if (length nbrs > ord)

114 %done <- FALSE

115 done = false;

116 %S <- seq len(ord)

117 S = 1:ord;

118 %repeat {
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119 %while

120 deneme=false;

121 while ¬deneme

122 deneme=true;

123 if ¬isempty(dontest{x,y})

124 if all(ismember(nbrs(S), dontest{x,y}))

125 [nextSet, wasLast] = getNextSet(length nbrs, ord, S);

126 if (wasLast)

127 break;

128 else

129 S = nextSet;

130 deneme=false;

131 end

132 end

133 end

134 pval 3 = gaussCItest(x, y, nbrs(S), cormatrix, n);

135 complexity timer=complexity timer+1;

136 if isempty(nbrs(S))

137 if verbose

138 fprintf('x= %d indep of y= %d given S= ', x, y); fprintf(' p= %d \n', pval 3)...

;

139 end

140 else

141 if verbose

142 fprintf('x= %d indep of y= %d given ', x, y); fprintf(' S= %d ', nbrs(S)); ...

fprintf(' p= %d \n', pval 3);

143 end

144 end

145 %fprintf('\n');

146 %x= 1 y= 2 S= : pval = 0

147 %if (pval ≥ alpha) {

148 if (pval 3 ≥ alpha)

149 %G[x, y] <- G[y, x] <- FALSE

150 B(x, y) = false;

151 B(y, x) = false;

152 %sepset[[x]][[y]] <- nbrs[S]

153 sepset{x,y} = myunion(sepset{x,y}, nbrs(S));

154 %fprintf('x= %d and y= %d separation set is: ', x, y); fprintf(' S= %d \n', nbrs...

(S));

155 %break}

156 break;
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157 %else {

158 else

159 %nextSet <- getNextSet(length nbrs, ord, S)

160 [nextSet, wasLast] = getNextSet(length nbrs, ord, S);

161 %if (nextSet$wasLast)0

162 if (wasLast)

163 %break

164 break;

165 else

166 %S <- nextSet$nextSet

167 S = nextSet;

168 deneme=false;

169 end

170 end

171 end%while ¬deneme

172 end

173 end

174 end%for i=1:remEdges

175 %}}}}}%for(remedges)

176 %ord <- ord + 1L

177 ord = ord +1;

178 %}%while}}

179 end

180 end

B.6 FOFCI algorithm Matlab Code (created it

ourself)

Listing B.6: FOFCI algorithm Matlab Code (created it ourself)

1 %%FCI rule 9 changed with using source r fci code

2 %%fci updated rules seperated

3 function output = Algorithm FOFCI(data, schedule, alpha, batch, plotgraphs, ...

verbose)

4 %initialize

5 skelstore={};

6 sepsetstore={};

7 datasize=size(data);
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8 mu=mean(data(1:10,:)); %mu=mean(data);

9 tcov=round(cov(data(1:10,:)),8);%tcov=cov(data);

10 output.graphtimes=[];

11 output.graphs{1}=[];

12 a=ones(1,datasize(1));

13 b=ones(1,datasize(1));

14 b(1)=2;

15 sample size=ones(1,datasize(1));

16 %sensitivity for graph search

17 %alpha=.05;

18 tcovstore={};

19 tcorstore={};

20 pdag count=0;

21 M error=ones(1,datasize(1))*datasize(2);

22 pverr=ones(1,datasize(1));

23 experrvalpr=.1;

24 experrval=ones(1,datasize(1))*experrvalpr; %expected error value (unbiased ...

estimated based on observations)

25 %current sample size is also used, but is initialized separately

26 trigger=0;

27 %for CMCD-Causal Model CHANGE DETECTOR

28 initstbias=0; %this is something like an initial stability bias

29 pval=ones(1,datasize(1))*.5;

30 ntrack=zeros(1,datasize(1));

31 Q=ones(1,datasize(1))*initstbias;

32 sumsqrw=ones(1,datasize(1));

33 poolp=zeros(1,datasize(1));

34 burnin=10;%burnin=datasize(2)*1.05; %this determines the length of the burn-in ...

period %! ! ! using parfindFOUR

35 burnin MD=chi2inv(.5,datasize(2)); %this is the Mahalanobis Distance to use ...

during the burn-in period

36 plearn=zeros(1,datasize(1));

37 make graph=0;

38 fol=.005; %frequency of learning parameter, for probabilistic scheduler.

39 %scale and lower bound parameter for transforming poolp values to weights

40 scpara=.95; %normal parameter: .95

41 ratpar=3; %! ! ! using parfindFOUR %normal parameter: 1.5

42 %parameter for ratio-type downweighting. as ratpar ->1, curve steapens/...

downweights more heavily.

43 %also determines maximum downweight ratio, equal to 1/ratpar (i.e.,

44 %ratpar=1 downweights to an effective sample size of 0 at poolp(j)=1,
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45 %ratpar=2 cuts effective sample size in half at poolp(j)=1

46 for j=1:datasize(1)

47 %calc accumulating error rate of correlation

48 %use Mahalanobis error to calc error of new point from old tcov and mu

49 %prob want regular M error here, not normed error. Take account for

50 %datasize(2) in the distributional part.

51 M error(j) = (data(j,:)-mu)*pinv(tcov)*(data(j,:)-mu)';

52 % trying it a new way

53 % M error(j) = (data(j,:)-mu)/tcov*(data(j,:)-mu)';

54 norm M error(j)=M error(j)/datasize(2);

55 %Update tcovariance Matrix

56 %use learning rate to update tcov

57 %replaces commented out update of b(j+1) below

58 if j>1

59 b(j)=b(j-1)+a(j);

60 end

61 %regular OCME-Online Covariation Matrix Estimation

62 d=(a(j)/b(j))*(data(j,:)-mu);

63 mu=mu+d;

64 for i=1:datasize(2)

65 for k=1:datasize(2)

66 tcov(i,k)=(1/b(j))*((b(j)-a(j))*tcov(i,k)+(b(j)-a(j))*d(i)*d(k)+a(j)*(data(j...

,i)-mu(i))*(data(j,k)-mu(k)));

67 end

68 end

69 tcovstore{j}=tcov;

70 %update learning rate

71 %need to track the weighted sum of M error values, and compare this

72 %against a distribution which depends on: sample size, datasize(2)

73 if j>1

74 sample size(j)=(a(j-1)/a(j))*sample size(j-1)+1;

75 else

76 sample size(j)=1;

77 end

78 %not sample size, actually. need to track sum of squared weights directly.

79 %P = normcdf(X,mu,sigma)

80 %P = chi2cdf(X,V)

81 %X = norminv(P,mu,sigma)

82 %calc... norminv(chi2cdf(M error(j),datasize(2)),0,1)

83 %if j>1

84 %the min is to prevent ntrack(j)=Inf, which causes HUGE PROBLEMS
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85 %ntrack(j)=norminv(min(chi2cdf(M error(j),datasize(2)),.999),0,1);

86 %Q(j)=Q(j-1)+a(j)*ntrack(j);

87 %sumsqrw(j)=sumsqrw(j-1)+a(j)ˆ2;

88 %poolp(j)=normcdf(Q(j),0,sqrt(sumsqrw(j)));

89 %during the burn-in period:

90 if j>1&&sample size(j-1)≤burnin

91 %gotta make sure the right things get burned in

92 pval(j)=.5;

93 %the min is to prevent ntrack(j)=Inf, which causes HUGE PROBLEMS

94 ntrack(j)=norminv(min(pval(j),.999),0,1);

95 Q(j)=Q(j-1)+a(j)*ntrack(j);

96 sumsqrw(j)=sumsqrw(j-1)+a(j)ˆ2; %sum of squared weights

97 poolp(j)=normcdf(Q(j),0,sqrt(sumsqrw(j)));

98 a(j+1)=a(j);

99 if trigger==1

100 experrval(j)=(experrval(j-1)*(sample size(j)-1)+chi2cdf(M error(j),datasize...

(2))-.5)/(sample size(j));

101 else

102 experrval(j)=experrvalpr;

103 end

104 pcheck=1;

105 trigger=1;

106 end

107 %after the burn-in period is over:

108 if j>1&&isnan(M error(j))==0&&M error(j)≥0&&sample size(j-1)>burnin %j>burnin ...

for the burn-in period

109 trigger=0;

110 %Calculating pooled p values and turning them into weights

111 if poolp(j-1)≤0

112 pcheck=0;

113 end

114 %experrval(j)=(experrval(j-1)*(sample size(j)-1)+chi2cdf(M error(j),datasize(2))...

-(.5+pverr(j-1)))/(sample size(j));

115 %pverr(j)=max(min((priorss*priorerrval+sample size(j)*experrval(j))/(priorss + ...

sample size(j)),pverr(j-1)),0);

116 pval(j)=fcdf((sample size(j)-datasize(2))/(datasize(2)*(sample size(j)-1))*...

M error(j),datasize(2),sample size(j)-datasize(2));

117 %pval(j)=max(chi2cdf(M error(j),datasize(2))-min(pverr(j),pcheck),0); %***...

Rewrite this in terms of F-distribution/hotelling's t-square***

118 %pval(j)=chi2cdf(M error(j)-.03*12*1/sqrt(sample size(j-1))*20,datasize(2));

119 %the min/maxes are to prevent ntrack(j)=Inf, which causes HUGE PROBLEMS
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120 ntrack(j)=norminv(max(min(pval(j),.9999),.0001),0,1); %inverse normal cdf of the...

pvalue

121 Q(j)=Q(j-1)+a(j)*ntrack(j); %weighted sum of inverse normal cdf of p-values

122 sumsqrw(j)=sumsqrw(j-1)+a(j)ˆ2; %sum of squared weights

123 poolp(j)=normcdf(Q(j),0,sqrt(sumsqrw(j))); %pooled pvalue is the appropriate ...

normal cdf of Q(j)

124 %plearn(j)=plearn(j-1)+fol*poolp(j);%fol is frequency param, square for scaling

125 plearn(j)=plearn(j-1)+fol*(poolp(j)-poolp(j)*plearn(j-1));%fol is frequency ...

param

126 %this needs to be squashed so that a regular-ish p-value (.5)

127 %doesn't cause massive downweighting.

128 if poolp(j)<scpara

129 a(j+1)=a(j);

130 else

131 a(j+1)=1/(1-1/ratpar*((1/(1-scpara))*poolp(j)-(1/(1-scpara)-1)))*a(j);

132 %previous versions:

133 %the min is to prevent sample sizes from getting below a

134 %certain value, since bad stuff happens if it does

135 %a(j+1)=max((expinv((1/(1-scpara))*poolp(j)-(1/(1-scpara)-1))+1)*a(j),a(j));

136 %a(j+1)=min(b(j)*.02,max((expinv((1/(1-scpara))*poolp(j)-(1/(1-scpara)-1))ˆ(.5)...

+1)*a(j),a(j)));

137 end

138 %a(j+1)=max(expinv(poolp(j)ˆ2)*b(j),a(j)); %expinv is for rescaling the poolp.

139 % threshold method

140 %if poolp(j)<.99

141 %a(j+1)=a(j);

142 %a(j+1)=b(j)*.1;

143 end

144 %learn PDAG matrix from the correlation matrices

145 if isempty(schedule)

146 %probabilistic scheduler

147 if rand(1)<plearn(j) && j>24

148 make graph=1;

149 %Δ alpha MTDL=0;

150 plearn(j)=0;

151 end

152 else

153 %Do full run for particular time steps

154 if ismember(j,schedule)==1

155 make graph=1;

156 else
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157 make graph=0;

158 end

159 end

160 %PC search for graph, then plot it

161 if make graph==1

162 %calc correlations

163 [¬,ExpCorrC] = cov2corr(tcov);

164 pdag count=pdag count+1; %index the pdags amongst themselves

165 %pdag index(pdag count)=j; %index the pdags amongst the timesteps

166 %use the bayes net toolbox to calculate the pdag matrix

167 %pdag{pdag count} = learn struct pdag pc('cond indep fisher z', length(cor), ...

length(cor), cor, floor(sample size(j)), alpha);

168 %plot pdag

169 output.graphtimes(pdag count)=j;

170 tcorstore{pdag count}=ExpCorrC;

171 if pdag count==1

172 [output.graphs{pdag count}, sepset, skeleton]=Algorithm FCI(length(ExpCorrC),...

ExpCorrC, floor(j), alpha, verbose);

173 sepsetstore{pdag count}=sepset;

174 skelstore{pdag count}=skeleton;

175 else

176 [output.graphs{pdag count}, sepset, skeleton]=Algorithm Modified FCI(...

sepsetstore{pdag count-1}, length(ExpCorrC), tcorstore{pdag count}, floor...

(j), alpha, verbose);

177 sepsetstore{pdag count}=sepset;

178 skelstore{pdag count}=skeleton;

179 end

180 if plotgraphs

181 figure('NextPlot','new')

182 draw graph pag(abs(output.graphs{pdag count}))

183 title(j)

184 end

185 make graph=0;

186 end

187 end

188 %comparing poolp w/ batch equivalent weighting to the known analytic

189 %solution: chi-square distribution with DOF=#data*variables

190 x=0;

191 chisquaretest=zeros(1,datasize(1));

192 for j=1:length(M error)

193 if j<burnin
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194 x=x+burnin MD;

195 else

196 x=x+M error(j);

197 end

198 chisquaretest(j)=chi2cdf(x,j*datasize(2));

199 end

200 if ¬batch

201 plot(sample size)

202 title('sample size')

203 figure('NextPlot','new')

204 plot(norm M error,'red')

205 hold on

206 plot(MTDL)

207 hold off

208 figure('NextPlot','new')

209 plot(poolp)

210 hold on

211 title('pooled p-value')

212 legend('pooled p-value')

213 hold off

214 figure('NextPlot','new')

215 plot(pval)

216 title pval

217 output.skelstore=skelstore;

218 output.tcorstore=tcorstore;

219 output.sepsetstore=sepsetstore;

220 output.norm M error=norm M error;

221 output.sumsqrw=sumsqrw;

222 output.poolp=poolp;

223 output.chisquaretest=chisquaretest;

224 output.Q=Q;

225 output.a=a;

226 output.M error=M error;

227 output.ntrack=ntrack;

228 output.tcovstore=tcovstore;

229 output.b=b;

230 output.sample size=sample size;

231 output.pverr=pverr;

232 output.experrval=experrval;

233 output.plearn=plearn;

234 output.pval=pval;
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235 if isempty(schedule)

236 output.plearn=plearn;

237 end

238 end

B.7 Modified FCI∗ Algorithm Matlab Code (cre-

ated it ourself)

Listing B.7: Modified FCI∗ Algorithm Matlab Code (created it ourself)

1 %I have rewrite and removed possible d separation part

2 function [graph, sepset, skeleton] = Algorithm Modified FCI star(sepset, ...

corlength, cormatrix, samplesize, alpha, verbose)

3 % LEARN STRUCT PDAG PC Learn a partially oriented DAG (pattern) using the PC ...

algorithm

4 % P = learn struct pdag pc(cond indep, n, k, ...)

5 % n is the number of nodes.

6 % k is an optional upper bound on the fan-in (default: n)

7 % cond indep is a boolean function that will be called as follows:

8 % feval(cond indep, x, y, S, ...)

9 % where x and y are nodes, and S is a set of nodes (positive integers),

10 % and ... are any optional parameters passed to this function.

11 % The output P is an adjacency matrix, in which

12 % P(i,j) = -1 if there is an i->j edge.

13 % P(i,j) = P(j,i) = 1 if there is an undirected edge i <-> j

14 % The PC algorithm does structure learning assuming all variables are observed.

15 % See Spirtes, Glymour and Scheines, "Causation, Prediction and Search", 1993, ...

p117.

16 % This algorithm may take O(nˆk) time if there are n variables and k is the max ...

fan-in,

17 % but this is quicker than the Verma-Pearl IC algorithm, which is always O(nˆn).

18 [G, sepset, complexity timer]=Algorithm FOFCI Online Skeleton Search(sepset, ...

cormatrix, corlength, alpha, samplesize, verbose);

19 skeleton=G;

20 G=G.*1;

21 graph = R0 V4 2(G, sepset, verbose);

22 flag=1;

23 while(flag)
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24 flag=0;

25 [graph, flag] = R1(graph, flag, verbose);

26 [graph, flag] = R2(graph, flag, verbose);

27 [graph, flag] = R3(graph, flag, verbose);

28 [graph, flag] = R4(graph, sepset, flag, verbose);

29 [graph, flag] = R8(graph, flag, verbose);

30 [graph, flag] = R9(graph, flag, verbose);

31 [graph, flag] = R10(graph, flag, verbose);

32 end

33 fprintf('the total number of independence test = %d \n', complexity timer);

34 end

35

36 function [graph, flag] = R1(graph, flag, verbose)

37 % If x*->yo-*c and x,z not adjacent ==> x*->y->z

38 [Xs,Ys] = find(graph == 2 & graph' ≠ 0);

39 ind=[Xs Ys];

40 for i = 1:length(ind)

41 a = ind(i,1);

42 b = ind(i,2);

43 tmp1 = intersect(find(graph(b,:) ≠ 0), find(graph(:,b)==1));

44 tmp2 = intersect(find(graph(a,:) == 0), find(graph(:,a) == 0));

45 indC = intersect(tmp1,tmp2);

46 indC = setdiff(indC, a);

47 if (¬isempty(indC))

48 for j = indC

49 if verbose

50 fprintf('\nRule 1'); fprintf('\n Orient: %d', a); fprintf(' *-> %d',b); ...

fprintf('o-* %d', j); fprintf(' as: %d -> ', b); fprintf(' %d ', j); ...

fprintf(' \n ');

51 end

52 graph(b,j) = 2;

53 graph(j,b) = 3;

54 flag = 1;

55 end

56 end

57 end

58 end

59

60 function [graph, flag] = R2(graph, flag, verbose)

61 % If x*->yo-*c and x,z not adjacent ==> x*->y->z

62 [Xs,Zs] = find(graph == 1 & graph' ≠ 0);
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63 ind=[Xs Zs];

64 for i = 1:size(ind,1)

65 a = ind(i,1);

66 c = ind(i,2);

67 tmp1 = intersect(find(graph(a,:) == 2), find(graph(:, a) == 3));

68 tmp2 = intersect(find(graph(c,:) ≠ 0), find(graph(:, c) == 2));

69 tmp12 = intersect(tmp1,tmp2);

70 tmp3 = intersect(find(graph(a,:) == 2), find(graph(:, a) ≠ 0));

71 tmp4 = intersect(find(graph(c,:) == 3), find(graph(:, c) == 2));

72 tmp34 = intersect(tmp3,tmp4);

73 if (¬isempty(tmp12) | |¬isempty(tmp34))

74 if verbose

75 fprintf('\nRule 2');

76 fprintf('\n Orient: %d -> anynode', a); fprintf('*-> %d ', c);

77 fprintf(' or ');

78 fprintf('%d *-> anynode',a); fprintf('-> %d ', c);

79 fprintf(' with %d *-o %d ', a, c);

80 fprintf('as: %d *-> %d \n', a, c);

81 end

82 graph(a,c) = 2;

83 flag = 1;

84 end

85 end

86 end

87

88 function [graph, flag] = R3(graph, flag, verbose)

89 % If x*->y<-*z, x*-o8o-*z, x,z not adjacent, 8*-oy ==> 8*->y

90 [Ths, Ys] = find(graph == 1);

91 nedges = length(Ths);

92 for i = 1:nedges

93 a = find(graph(:,Ths(i)) == 1 & graph(:,Ys(i)) == 2);

94 len = length(a);

95 f = false;

96 for j = 1:len

97 for k = j+1:len

98 if(graph(a(j),a(k)) == 0 && graph(Ths(i),Ys(i)) == 1)

99 if verbose

100 fprintf('\nRule 3'); fprintf(' Orient: %d', Ys(i)); fprintf(' *-> %d\n', Ths(...

i));

101 end

102 graph(Ths(i),Ys(i)) = 2;
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103 flag = 1;

104 f = true;

105 break;

106 end

107 end

108 if(f)

109 break;

110 end

111 end

112 end

113 end

114

115 function [graph, flag] = R4(graph, sepset, flag, verbose)

116 % Start from some node X, for node Y

117 % Visit all possible nodes X*->V & V->Y

118 % For every neighbour that is bi-directed and a parent of Y, continue

119 % For every neighbour that is bi-directed and o-*Y, orient and if

120 % parent continue

121 % Total: n*n*(n+m)

122 %--------------------------------------------------------------------------

123 % For each node Y, find all orientable neighbours W

124 % For each node X, non-adjacent to Y, see if there is a path to some

125 % node in W

126 % Create graph as follows:

127 % for X,Y

128 % edges X*->V & V -> Y --> X -> V

129 % edges A <-> B & A -> Y --> A -> B

130 % edges A <-* W & A -> Y --> A->W

131 % discriminating: if path from X to W

132 [rows,cols] = find(graph ≠ 0 & graph' == 1);

133 ind=[rows cols];

134 while (¬isempty(ind))

135 b = ind(1,1);

136 c = ind(1,2);

137 ind(1,:) = [];

138 tmp1 = intersect(find(graph(b,:) == 2), find(graph(:, b) ≠ 0));

139 tmp2 = intersect(find(graph(c,:) == 3), find(graph(:, c) == 2));

140 indA = intersect(tmp1,tmp2);

141 while (¬isempty(indA) && graph(c, b) == 1)

142 a = indA(1);

143 indA(1)=[];
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144 Done = false;

145 while ((¬Done) && (graph(a, b) ≠ 0) && (graph(a,c) ≠ 0) && (graph(b, c) ≠ 0))

146 md path = minDiscrPath(graph, a, b, c);

147 N md = length(md path);

148 if (N md == 1)

149 Done = true;

150 else

151 if (ismember(b, sepset{md path(1), md path(N md)}) | | ismember(b, sepset{md path...

(N md), md path(1)}))

152 if verbose

153 fprintf('\nRule 4'); fprintf('\nThere is a discriminating path between %d', ...

md path(1)); fprintf('and %d', c); fprintf('for %d', b); fprintf(',and %d...

', b); fprintf('is in Sepset of %d', c); fprintf('and %d', md path(1)); ...

fprintf('. Orient: %d', b); fprintf('-> %d \n', c);

154 end

155 graph(b, c) = 2;

156 graph(c, b) = 3;

157 flag = 1;

158 else

159 if verbose

160 fprintf('\nRule 4'); fprintf('\nThere is a discriminating path between %d', ...

md path(1)); fprintf('and %d', c); fprintf('for %d', b); fprintf(',and %d...

', b); fprintf('is in Sepset of %d', c); fprintf('and %d', md path(1)); ...

fprintf('.Orient: %d', a); fprintf('<-> %d', b); fprintf('<-> %d \n', c);

161 end

162 graph(a, b) = 2;

163 graph(b, c) = 2;

164 graph(c, b) = 2;

165 flag = 1;

166 end

167 Done = true;

168 end

169 end

170 end

171 end

172 end%function

173

174 function [graph,flag] = R8(graph, flag, verbose)

175 [r,c] = find(graph == 2 & graph' == 1);

176 nedges = length(r);

177 for i = 1:nedges
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178 out = find(graph(:,r(i)) == 3);

179 if(any(graph(out,c(i)) == 2 & graph(c(i),out)' == 3))

180 if verbose

181 fprintf('\nRule 8'); fprintf('\nOrient: %d', r(i)); fprintf(' -> %d', out); ...

fprintf(' -> %d', c(i)); fprintf('or %d', r(i)); fprintf('-o %d', out); ...

fprintf('-> %d', c(i)); fprintf('with %d', r(i)); fprintf('o-> %d', c(i))...

, fprintf('as %d', r(i)); fprintf(' -> %d \n', c(i));

182 end

183 graph(c(i),r(i)) = 3;

184 flag = 1;

185 end

186 end

187 end

188

189 function [graph,flag] = R9(graph, flag, verbose)

190 % unshieldedTriples=[];

191 % R9: Equivalent to orienting X <-o Y as X <-> Y and checking if Y is an

192 % ancestor of X (i.e. there is an almost directed cycle)

193 [row1,col1] = find(graph == 2 & graph' == 1);

194 ind=[row1 col1];

195 nedges = length(row1);

196 for i = 1:nedges

197 a = row1(i); c = col1(i);

198 ind(1,:)=[];

199 indB=find((graph(a,:) == 2 | graph(a,:) == 1) & (graph(:,a)' == 1 | graph(:,...

a)' == 3) & (graph(c,:) == 0 & graph(:,c)' == 0));

200 indB=setdiff(indB, c);

201 while ((¬isempty(indB)) && (graph(c, a) == 1))

202 b = indB(1);

203 indB(1) = [];

204 upd = minUncovPdPath(graph, a, b, c);

205 if (length(upd) > 1)

206 graph(c, a) = 3;

207 if verbose

208 fprintf('\nRule 9'); fprintf('\nThere exists an uncovered potentially ...

directed path between %d and %d', a, c); fprintf('. Orient: %d -> %d \n'...

, a, c);

209 end

210 flag = 1;

211 end

212 end
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213 end%for i=nedges

214 end%function

215

216 function [graph,flag] = R10(graph, flag, verbose)

217 [rows,cols] = find(graph == 2 & graph' == 1);

218 ind = [rows cols];

219 while (¬isempty(ind))

220 a = ind(1,1);

221 c = ind(1,2);

222 ind(1,:) = [];

223 [¬,indB] = find((graph(c, :) == 3 & graph(:, c) == 2));

224 if (length(indB) ≥ 2)

225 counterB = 0;

226 while ((counterB < length(indB)) && (graph(c,a) == 1))

227 counterB = counterB + 1;

228 b = indB(counterB);

229 indD = mysetdiff(indB, b);

230 counterD = 0;

231 while ((counterD < length(indD)) && (graph(c, a) == 1))

232 counterD = counterD + 1;

233 d = indD(counterD);

234 if ((graph(a, b) == 1 | | graph(a, b) == 2) && (graph(b, a) == 1 | | graph(b, a) ...

== 3) && (graph(a, d) == 1 | | graph(a, d) == 2) && (graph(d, a) == 1 | | ...

graph(d, a) == 3) && graph(d, b) == 0 && graph(b, d) == 0)

235 if verbose

236 fprintf('\nRule 10 '); fprintf('\nOrient: %d', a); fprintf('-> %d \n', c);

237 end

238 flag = 1;

239 graph(c, a) = 3;

240 end

241 end

242 end

243 end

244 end

245 end

B.8 RFOFCI Algorithm Matlab Code (created

it ourself)
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Listing B.8: RFOFCI algorithm Matlab Code (created it ourself)

1 %%FCI rule 9 changed with using source r fci code

2 %%fci updated rules seperated

3 function output = Algorithm RFOFCI(data, schedule, alpha, batch, plotgraphs, ...

verbose)

4 %initialize

5 skelstore={};

6 sepsetstore={};

7 datasize=size(data);

8 mu=mean(data(1:10,:)); %mu=mean(data);

9 tcov=round(cov(data(1:10,:)),8);%tcov=cov(data);

10 output.graphtimes=[];

11 output.graphs{1}=[];

12 a=ones(1,datasize(1));

13 b=ones(1,datasize(1));

14 b(1)=2;

15 sample size=ones(1,datasize(1));

16 %sensitivity for graph search

17 %alpha=.05;

18 tcovstore={};

19 tcorstore={};

20 pdag count=0;

21 M error=ones(1,datasize(1))*datasize(2);

22 pverr=ones(1,datasize(1));

23 experrvalpr=.1;

24 experrval=ones(1,datasize(1))*experrvalpr; %expected error value (unbiased ...

estimated based on observations)

25 %current sample size is also used, but is initialized separately

26 trigger=0;

27 %for CMCD-Causal Model CHANGE DETECTOR

28 initstbias=0; %this is something like an initial stability bias

29 pval=ones(1,datasize(1))*.5;

30 ntrack=zeros(1,datasize(1));

31 Q=ones(1,datasize(1))*initstbias;

32 sumsqrw=ones(1,datasize(1));

33 poolp=zeros(1,datasize(1));

34 burnin=10;%burnin=datasize(2)*1.05; %this determines the length of the burn-in ...

period %! ! ! using parfindFOUR

35 burnin MD=chi2inv(.5,datasize(2)); %this is the Mahalanobis Distance to use ...

during the burn-in period

36 plearn=zeros(1,datasize(1));
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37 make graph=0;

38 fol=.005; %frequency of learning parameter, for probabilistic scheduler.

39 %scale and lower bound parameter for transforming poolp values to weights

40 scpara=.95; %normal parameter: .95

41 ratpar=3; %! ! ! using parfindFOUR %normal parameter: 1.5

42 %parameter for ratio-type downweighting. as ratpar ->1, curve steapens/...

downweights more heavily.

43 %also determines maximum downweight ratio, equal to 1/ratpar (i.e.,

44 %ratpar=1 downweights to an effective sample size of 0 at poolp(j)=1,

45 %ratpar=2 cuts effective sample size in half at poolp(j)=1

46 for j=1:datasize(1)

47 %calc accumulating error rate of correlation

48 %use Mahalanobis error to calc error of new point from old tcov and mu

49 %prob want regular M error here, not normed error. Take account for

50 %datasize(2) in the distributional part.

51 %M error(j) = (data(j,:)-mu)*inv(tcov)*(data(j,:)-mu)';

52 M error(j) = (data(j,:)-mu)*pinv(tcov)*(data(j,:)-mu)';

53 % trying it a new way

54 %M error(j) = (data(j,:)-mu)/tcov*(data(j,:)-mu)';

55 norm M error(j)=M error(j)/datasize(2);

56 %Update tcovariance Matrix

57 %use learning rate to update tcov

58 %replaces commented out update of b(j+1) below

59 if j>1

60 b(j)=b(j-1)+a(j);

61 end

62 %regular OCME-Online Covariation Matrix Estimation

63 d=(a(j)/b(j))*(data(j,:)-mu);

64 mu=mu+d;

65 for i=1:datasize(2)

66 for k=1:datasize(2)

67 tcov(i,k)=(1/b(j))*((b(j)-a(j))*tcov(i,k)+(b(j)-a(j))*d(i)*d(k)+a(j)*(data...

(j,i)-mu(i))*(data(j,k)-mu(k)));

68 end

69 end

70 tcovstore{j}=tcov;

71 %update learning rate

72 %need to track the weighted sum of M error values, and compare this

73 %against a distribution which depends on: sample size, datasize(2)

74 if j>1

75 sample size(j)=(a(j-1)/a(j))*sample size(j-1)+1;
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76 else

77 sample size(j)=1;

78 end

79 %not sample size, actually. need to track sum of squared weights directly.

80 %P = normcdf(X,mu,sigma)

81 %P = chi2cdf(X,V)

82 %X = norminv(P,mu,sigma)

83 %calc... norminv(chi2cdf(M error(j),datasize(2)),0,1)

84 %if j>1

85 %the min is to prevent ntrack(j)=Inf, which causes HUGE PROBLEMS

86 %ntrack(j)=norminv(min(chi2cdf(M error(j),datasize(2)),.999),0,1);

87 %Q(j)=Q(j-1)+a(j)*ntrack(j);

88 %sumsqrw(j)=sumsqrw(j-1)+a(j)ˆ2;

89 %poolp(j)=normcdf(Q(j),0,sqrt(sumsqrw(j)));

90 %during the burn-in period:

91 if j>1&&sample size(j-1)≤burnin

92 %gotta make sure the right things get burned in

93 pval(j)=.5;

94 %the min is to prevent ntrack(j)=Inf, which causes HUGE PROBLEMS

95 ntrack(j)=norminv(min(pval(j),.999),0,1);

96 Q(j)=Q(j-1)+a(j)*ntrack(j);

97 sumsqrw(j)=sumsqrw(j-1)+a(j)ˆ2; %sum of squared weights

98 poolp(j)=normcdf(Q(j),0,sqrt(sumsqrw(j)));

99 a(j+1)=a(j);

100 if trigger==1

101 experrval(j)=(experrval(j-1)*(sample size(j)-1)+chi2cdf(M error(j),datasize...

(2))-.5)/(sample size(j));

102 else

103 experrval(j)=experrvalpr;

104 end

105 pcheck=1;

106 trigger=1;

107 end

108 %after the burn-in period is over:

109 if j>1&&isnan(M error(j))==0&&M error(j)≥0&&sample size(j-1)>burnin %j>burnin ...

for the burn-in period

110 trigger=0;

111 %Calculating pooled p values and turning them into weights

112 if poolp(j-1)≤0

113 pcheck=0;

114 end
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115 %experrval(j)=(experrval(j-1)*(sample size(j)-1)+chi2cdf(M error(j),datasize(2))...

-(.5+pverr(j-1)))/(sample size(j));

116 %pverr(j)=max(min((priorss*priorerrval+sample size(j)*experrval(j))/(priorss + ...

sample size(j)),pverr(j-1)),0);

117 pval(j)=fcdf((sample size(j)-datasize(2))/(datasize(2)*(sample size(j)-1))*...

M error(j),datasize(2),sample size(j)-datasize(2));

118 %pval(j)=max(chi2cdf(M error(j),datasize(2))-min(pverr(j),pcheck),0); %***...

Rewrite this in terms of F-distribution/hotelling's t-square***

119 %pval(j)=chi2cdf(M error(j)-.03*12*1/sqrt(sample size(j-1))*20,datasize(2));

120 %the min/maxes are to prevent ntrack(j)=Inf, which causes HUGE PROBLEMS

121 ntrack(j)=norminv(max(min(pval(j),.9999),.0001),0,1); %inverse normal cdf of ...

the pvalue

122 Q(j)=Q(j-1)+a(j)*ntrack(j); %weighted sum of inverse normal cdf of p-values

123 sumsqrw(j)=sumsqrw(j-1)+a(j)ˆ2; %sum of squared weights

124 poolp(j)=normcdf(Q(j),0,sqrt(sumsqrw(j))); %pooled pvalue is the appropriate ...

normal cdf of Q(j)

125 %plearn(j)=plearn(j-1)+fol*poolp(j);%fol is frequency param, square for scaling

126 plearn(j)=plearn(j-1)+fol*(poolp(j)-poolp(j)*plearn(j-1));%fol is frequency ...

param

127 %this needs to be squashed so that a regular-ish p-value (.5)

128 %doesn't cause massive downweighting.

129 if poolp(j)<scpara

130 a(j+1)=a(j);

131 else

132 a(j+1)=1/(1-1/ratpar*((1/(1-scpara))*poolp(j)-(1/(1-scpara)-1)))*a(j);

133 %previous versions:

134 %the min is to prevent sample sizes from getting below a

135 %certain value, since bad stuff happens if it does

136 %a(j+1)=max((expinv((1/(1-scpara))*poolp(j)-(1/(1-scpara)-1))+1)*a(j),a(j));

137 %a(j+1)=min(b(j)*.02,max((expinv((1/(1-scpara))*poolp(j)-(1/(1-scpara)-1))ˆ(.5)...

+1)*a(j),a(j)));

138 end

139 %a(j+1)=max(expinv(poolp(j)ˆ2)*b(j),a(j)); %expinv is for rescaling the poolp.

140 % threshold method

141 %if poolp(j)<.99

142 %a(j+1)=a(j);

143 %else

144 %a(j+1)=b(j)*.1;

145 %end

146 end

147 %learn PDAG matrix from the correlation matrices
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148 if isempty(schedule)

149 %probabilistic scheduler

150 if rand(1)<plearn(j) && j>24

151 make graph=1;

152 %Δ alpha MTDL=0;

153 plearn(j)=0;

154 end

155 else

156 %Do full run for particular time steps

157 if ismember(j,schedule)==1

158 make graph=1;

159 else

160 make graph=0;

161 end

162 end

163 %PC search for graph, then plot it

164 if make graph==1

165 %calc correlations

166 [¬,ExpCorrC] = cov2corr(tcov);

167 pdag count=pdag count+1; %index the pdags amongst themselves

168 %pdag index(pdag count)=j; %index the pdags amongst the timesteps

169 %use the bayes net toolbox to calculate the pdag matrix

170 %pdag{pdag count} = learn struct pdag pc('cond indep fisher z', length(cor), ...

length(cor), cor, floor(sample size(j)), alpha);

171 %plot pdag

172 output.graphtimes(pdag count)=j;

173 tcorstore{pdag count}=ExpCorrC;

174 if pdag count==1

175 [output.graphs{pdag count}, sepset, skeleton]=Algorithm FCI(length(ExpCorrC),...

ExpCorrC, floor(j), alpha, verbose);

176 sepsetstore{pdag count}=sepset;

177 skelstore{pdag count}=skeleton;

178 else

179 [output.graphs{pdag count}, sepset, skeleton]=Algorithm Modified FCI star(...

sepsetstore{pdag count-1}, length(ExpCorrC), tcorstore{pdag count}, floor...

(j), alpha, verbose);

180 sepsetstore{pdag count}=sepset;

181 skelstore{pdag count}=skeleton;

182 end

183 if plotgraphs

184 figure('NextPlot','new')
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185 draw graph pag(abs(output.graphs{pdag count}))

186 title(j)

187 end

188 make graph=0;

189 end

190 end

191 %comparing poolp w/ batch equivalent weighting to the known analytic

192 %solution: chi-square distribution with DOF=#data*variables

193 x=0;

194 chisquaretest=zeros(1,datasize(1));

195 for j=1:length(M error)

196 if j<burnin

197 x=x+burnin MD;

198 else

199 x=x+M error(j);

200 end

201 chisquaretest(j)=chi2cdf(x,j*datasize(2));

202 end

203 if ¬batch

204 plot(sample size)

205 title('sample size')

206 figure('NextPlot','new')

207 plot(norm M error,'red')

208 hold on

209 plot(MTDL)

210 hold off

211 figure('NextPlot','new')

212 plot(poolp)

213 hold on

214 title('pooled p-value')

215 legend('pooled p-value')

216 hold off

217 figure('NextPlot','new')

218 plot(pval)

219 title pval

220 output.skelstore=skelstore;

221 output.tcorstore=tcorstore;

222 output.sepsetstore=sepsetstore;

223 output.norm M error=norm M error;

224 output.sumsqrw=sumsqrw;

225 output.poolp=poolp;
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226 output.chisquaretest=chisquaretest;

227 output.Q=Q;

228 output.a=a;

229 output.M error=M error;

230 output.ntrack=ntrack;

231 output.tcovstore=tcovstore;

232 output.b=b;

233 output.sample size=sample size;

234 output.pverr=pverr;

235 output.experrval=experrval;

236 output.plearn=plearn;

237 output.pval=pval;

238 if isempty(schedule)

239 output.plearn=plearn;

240 end

241 end
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Abbreviations

AGs Ancestral Graphs

AI Artificial Intelligence

AIC Akaike Information Criterion

BDeu Bayesian Dirichlet equivalent uniform

BE Bayesian estimation

BIC Bayesian Information Criterion

BIC Bayesian information criterion

BNs Bayesian Networks

CB Constraint Based

CBNs Causal Bayesian Networks

CMCD Causal Model Change Detector

CML Causal Model Learner

CPD Bayesian change-point detection

DAG Directed Acyclic Graph
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Abbreviations

DOCL Dynamic Online Causal Learning

EM Expectation Maximization

FCI Fast Causal Inference

FOFCI Fast Online Fast Causal Inference

GAs Genetic Algorithms

HMM Hidden Markov Models

KL Kullback-Leibler divergence

LL log-likelihood

LoSST Locally Stationary Structure Tracker

MAG Maximal Ancestral Graph

MDL Minimum Description Length ()

MLE Maximum likelihood estimation

MMHC Max-Min Hill Climbing

MNs Markov networks

OCME Online Covariance Matrix Estimator

OFCI Online Fast Causal Inference

PAG Partial Ancestral Graph

PDAGs Partial Directed Acyclic Graph

PGM probabilistic graphical models
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Abbreviations

RFCI Really Fast Causal Inference

RFOFCI Really Fast Online Fast Causal Inference

SB Score Based

SEMs Causal Structural Equation Models

SHD Structural Hamming Distance

SVI Stochastic variational inference

TDL temporal difference learning

195



Abbreviations

196



Bibliography

[1] Ryan Prescott Adams and David J. C. MacKay. Bayesian Online Change-

point Detection. oct 2007.

[2] Hirotogu Akaike. Information Theory and an Extension of the Maximum

Likelihood Principle, pages 199–213. Springer New York, New York, NY,

1998.

[3] Marcus Bendtsen. Regime Aware Learning. Pgm, 52:1–12, 2016.

[4] Jeff A. Bilmes. A Gentle Tutorial of the EM Algorithm. 1198(510):126, 1998.

[5] Wray Buntine. Theory refinement on Bayesian networks. pages 52–60, jul

1991.

[6] K.P. Burnham and D.R. Anderson. Model Selection and Multimodel In-

ference: A Practical Information-Theoretic Approach. Springer New York,

2003.
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[29] M Kalisch and P Bühlmann. Estimating High-Dimensional Directed Acyclic

Graphs with the PC-Algorithm. Journal of Machine Learning Research,

8:613–636, 2007.
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