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Abstract

In the paper ‘On Chromatic Number of Infinite Graphs’ (1968), Erdős and Hajnal defined
the Shift Graph to be the graph whose vertices are the n-element subsets of some totally
ordered set S, regarded as increasing n-tuples, such that A = (a1, ..., an) and B = (b1, ..., bn)
are neighbours iff a1 < b1 = a2 < b2 = a3 < ... < bn−1 = an < bn or the other way round.
In the paper ‘On Generalised Shift Graphs’ (2014), Avart, Łuczac and Rödl extend this
definition to include all possible arrangements of the ais and bis, known as ‘types’. In this
thesis, we will consider a selection of these types and study the corresponding graphs. All
the types we consider will be written as 1k3m2k, where k +m = n, which means that the
final m entries of (a1, ..., an) are identified with the first m entries of (b1, ..., bn). Such a
graph with totally ordered set S and type 1k3m2k is denoted G(S, 1k3m2k).

There are two related questions here. One is when the (undirected) graphs G(S, 1k3m2k)
and G(S ′, 1k3m2k) are distinct (non-isomorphic) for distinct linear orderings S, S ′. The
other is to what extent we can recognise S inside the graph (called ‘reconstruction’). A
positive solution to the latter also yields one for the former, since if we can recognise S in
its graph, and S ′ in its graph, and they are distinct, then so must the graphs be. We focus
on these main cases: S is finite, S is an ordinal, S is a more general totally ordered set. The
tools available for reconstruction depend on whether S is a total ordering, a dense total
ordering, or an ordinal. There are additional technical complications in the case where S
has endpoints, and similarly for S containing relatively small finite segments.

Since these graphs are undirected, we expect in general only to recover a linear ordering up
to order reversal. The natural notion here is of ‘linear betweenness’, and we spend some
time studying linear betweenness relations in their own right, also considering the induced
relations on n-tuples. Betweenness relations on n-tuples correspond to shift graphs of the
special form G(S, 1n2n) (i.e. in which no identifications are made).

The main contribution of the thesis is to show how it is possible in many instances to
reconstruct the underlying linear order (often just up to order-reversal) from the generalized
shift graph. A typical example of this is Theorem 4.4. The techniques are to employ
graph-theoretical features of the relevant shift graph, such as co-cliques or pairs of co-
cliques fulfilling various conditions to ‘recognize’ points and relations of the underlying
linear order. There are many variants depending on the precise circumstances (dense or
not, with or without endpoints, well-ordered, only partially ordered).

We show that for ordinals α and β, if G(α, 1k3m2k) is isomorphic to G(β, 1k3m2k) then
α = β. Note that the fact that (in the infinite case) α is not isomorphic to its reversed
ordering means that the betweenness relation is enough to give us the ordering. This result
does not necessarily extend to all total orderings in full generality, but we obtain many
partial results. A suite of techniques is used, which may be adapted suitably depending
on circumstances, endpoints or not, density, or finiteness.

In a more open-ended chapter, we generalise as much of the material for total orders to
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partial orders, the easiest case being that of trees.

Work by Rubin [15] considers reconstruction in a slightly different sense: that a structure
can be reconstructed from its automorphism group. So we have two ‘levels’ of reconstruc-
tion: of the graph from its automorphism group, and then if possible of the underlying
total order from the graph. With this in mind, we study the automorphism groups of
many of the graphs arising, managing in several cases to give quite explicit descriptions,
so answering Rubin’s reconstruction question - i.e. whether or not a structure can be ‘re-
constructed’ from its automorphism group (as in for example [17]) - where possible. For
instance, we show that it is possible to determine S from Aut(G(S, 132)) if and only if
G(S, 132) contains no two points sharing exactly the same neighbour sets.

Finally we return to colouring questions as in the original paper of Erdős and Hajnal, and
show that the chromatic number of G(κ, 132) is equal to κ for any strong limit cardinal κ.
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1 Introduction

1.1 Background Material and Known Results

Shift graphs were introduced by Erdős and Hajnal in [7] in order to give certain examples
in the theory of graph colourings (and compactness type questions about these). Originally
these are constructed in the finite case, or for ordinals. The basic example is as follows: a
positive integer n, and a finite or infinite ordinal α are given, and the vertices of the graph
consist of n-tuples with elements in S, enumerated in increasing order, and A = (a1, . . . , an)
is joined to B = (b1, . . . , bn) if either bi = ai+1 for all i < n, or ai = bi+1 for all i < n.
This pattern of identifications is encapsulated by the ‘type’ 1333...32, having n − 1 3s,
the 3s indicating the entries of the two sequences which are identified, and the 1 and 2
telling us that the first and last points are not identified with any element of the other
set. Avart, Luczak, and Rödl [3] extended this to more general ‘types’, which correspond
to other arrangements of the ai and bi, thus defining the generalised shift graph. The
formal definition of ‘type’ is given at the beginning of Chapter 2 (Definition 2.27), and
the generalised shift graph on a total linear ordering S with type τ is an undirected graph
written G(S, τ).

A disjoint type τ is a type where the two n-tuples are disjoint, i.e. τ contains no 3s.
A Specker Graph is a Shift Graph G(κ, τ) where τ is a disjoint type.

Erdős and Hajnal [6] showed:

• The chromatic number χ(G(κ, τ)) of any uncountable Specker graph of cardinality κ
is equal to κ for κ an infinite cardinal,

• For every positive integer s there is a disjoint type τ such that no Specker graph
G(κ, τ) embeds any odd cycle of length ≤ 2s+ 1, and

• For any infinite cardinal κ, the chromatic number ofG(κ, 132) is the min{α : exp(α) ≥
κ}.

In Erdős and Rado [8] showed that for any infinite cardinal κ, the chromatic number of
G(κ, 112122) is κ.

Komjath has remarked (personal communication) that for any infinite cardinal λ and n ≥ 0,
χ(G(λ, 13n2)) ≤ κ iff λ ≤ expn(κ) = 22

...2κ (n times)

Avart, Łuczak, and Rödl [3] defined a simple type as a disjoint type that can be partitioned
into subsections of the form 1n2n or 2n1n. For example, 112221111222 is a simple type,
and can be partitioned into the subsections 1122 21 111222, but 112122 is not. They then
show that if τ is simple with a total number of n 1s (and n 2s), then χ(G(k, τ)) = bk/nc
for finite k. They showed that for any finite z, a disjoint type τ is either simple, or
χ(G(z, τ)) ≤ 2 log2(z).
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The width of a type τ is the number of 1s plus the number of 3s. Intuitively, this is the
value of n for the graph G(S, τ) whose vertices are n-tuples.

We can define a subtype τ ′ of a disjoint type τ of width n as follows: Let X be a subset of
{1, ..., n}. Then if τ ′ is obtained by removing all ith occurrences of 1 and ith occurrences
of 2 from τ , for all i ∈ X, then τ ′ is a subtype of τ .

If τ ′ is a subtype of τ , then for every integer x

χ(G(x, τ)) ≤ χ(G(x, τ ′))

In the final section of [3], they suggest types of the form 1n3m2n. They prove the following
results:

For any n,m ≥ 1 and k ∈ N we have

log(m/n)
k

n
≤ χ(G(k, 1n3m2n)) ≤ log(m/n) k

For any n,m ≥ 1 and infinite κ we have

χ(G(κ, 1n3m2n)) = min{α : exp(bm/nc)(α) ≥ κ}

Finally, they define the type δa,b as a 1s followed by b copies of 21, and ending with a 2s
(so for example δ3,4 is the type 11121212121222), and show that for any a ≥ 1 and b ≥ 1,

log(db/ae)
k

2b
≤ χ(G(k, δa,b)) ≤ C(log(db/ae) k)

(
db/ae+1

2
)

for some constant C depending on a and b.

1.2 Reconstructions

In this thesis we generalise the notion of Shift Graph by allowing the underlying set S to
be any totally ordered set, and allowing any type of the form 1n3m2n as in the final section
of [3]. Our main theme is reconstruction. This has been extensively studied by Rubin
in a series of papers, for instance [15]. For a general class C of structures one wishes to
know what information about a member X of C is provided by its automorphism group.
Under favourable circumstances, one may be able to prove statements of the form: for
any X1, X2 ∈ C, Aut(X1) ∼= Aut(X2) ⇒ X1

∼= X2 (or possibly, just that X1 and X2 are
elementarily equivalent). Thus one can say in this case that the ‘essential’ information
about a structure is carried by its automorphism group.

In the present context, we have the opportunity to consider reconstruction at two levels.
First, from the discussion above, it is clear that given a total ordering (S,<), and a type

7



τ , we can define a corresponding graph G(S, τ). We have ostensibly ‘lost’ the information
about what S was, as we now just have an (undirected) graph. However, it may be that
under certain circumstances, we can show that G(S1, τ) ∼= G(S2, τ) ⇒ (S1, <) ∼= (S2, <),
so that the more general linear order can be ‘recovered’ from the graph. One can also
ask whether the type can be recovered. We give results of this kind for both ordinals and
linear orders. In addition, in the spirit of Rubin’s work ([14], [15], [16], [17], [18]) , one can
ask whether the graph (and hence in certain cases also the total order) can be recovered
from its automorphism group. This problem is addressed in the final chapter, where some
of the automorphism groups are given explicit descriptions. We remark that if any set of
two or more elements of the graph share exactly the same neighbour sets, permuting these
elements will result in the a non-trivial automorphism, and the graph G can therefore not
be recovered from Aut(G).

We also consider the notion of interpretability. Intuitively this says that one structure can
be ’recognised’ in another, for instance that a total order can be recognised inside a shift
graph, or vice versa. The definition we follow comes from Hodges [10], and formalises the
above intuition. Two versions are given, first-order and second-order, depending on which
formulae arise in the definition. We indicate which of our interpretations are known to
be first-order. The rest will be second-order (although in fact these may be first-order,
but they appear second-order and we do not know whether they can be reformulated in
a first-order way). Thus when we say something is ‘second-order interpretable’, what we
really mean is that it is ‘at least second-order interpretable’.

1.3 Structure of Thesis and Summary of Results and Techniques

We start by defining the generalised shift graph in the preliminaries, followed by looking
at some very simple cases including τ = 3, τ = 3n, τ = 12, and τ = 123. We also look at
the case where τ = 132, and compare this to the line graph on a set S (Definition 2.26).

In Section 2.4 we introduce some general notation which will be used throughout the thesis
within the various reconstruction proofs. Most of the proofs will use this notation in some
form or another.

In Chapter 3, we look at total betweenness relations in their own right. We deduce some
basic results (many of which have already been shown elsewhere), including Theorem 3.15
and Corollary 3.16, which state that exactly two total orderings arise from a betweenness
relation B on a set S, such that if one of them is < the other is >. We also consider
variations on the betweenness definition, namely how betweenness can function as a relation
on more than 3 points. Finally, we show that given these alternative betweenness relations
on a set S, we can reconstruct the standard betweenness B on S, in Lemmas 3.22, 3.23,
3.28, and 3.29, and in Theorem 3.32.

We then tackle the main problem in the thesis: whether or not it is possible to recover S
in the shift graph G(S, τ).
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We start with the case where S is an infinite linear ordering without endpoints, in Chapter
4. We tackle the problem by considering infinite co-cliques in G(S, 132), and similarly in
G(S, 1n32n) (the notion of 132 and 1n32n is defined in Section 2.2, starting with Definition
2.28). In each case, we start with a lemma describing a pair of co-cliques C and D in G,
which will eventually ‘represent’ a single point in S (such as, for example, Lemma 4.1).
We then look at the union of these co-cliques, and we let A = C ∪D. We use sets of the
form A to represent single points of S, and intersections between varying sets of this form
to determine betweenness on points of S.

Due to us essentially talking about sets of sets in these proofs, we see that they are (most
likely) not first-order. In the G(S, 1n32n) case, we rely on some of the betweeness results
from earlier; namely, that we can determine betweenness from betweenness on n-tuples
(defined in Section 3, Definition 3.19).

For the G(S, 13n2) case, we use a different trick (Theorem 4.8). Again, we construct infinite
co-cliques C,D with our desired properties, and let A = C ∪D; however, we see that for
two such sets A,A′, their intersection is non-empty if and only if there is an edge between
their corresponding vertices in G(S, 13n−12). Thus we can recursively obtain G(S, 13i2) for
1 ≤ i ≤ n, and hence G(S, 132) and S.

A similar trick can be used in the case G(S, 1n3m2n) to obtain G(S, 1n3k2n), where n ≡ k
mod m, again reducing the problem to G(S, 1n3m2n) for m < n, as in Lemma 4.9. In
this final case, we start by considering dense S, followed by utilising some results on total
betweenness relations (namely that we can obtain betweenness from n-betweenness) to
obtain S from G(S, 1n3m2n). Finally, we show that S can be obtained from G(S, 1n3m2n)
where m < n, in Theorem 4.12, utilising some of the results in Chapter 3. We then briefly
look at partial orderings in Section 4.2, more specifically trees without endpoints, which
behave similarly.

In the ordinal shift graphs chapter, we approach the finite cases one at a time in Theorems
5.1, 5.2, and 5.3, starting with a similar method to Chapter 4 which provides a uniform
way of obtaining Z from G(Z, 13n2).

For infinite ordinals an alternative method is used for proving that we can recover α
from G(α, 132), arguing transfinitely. We essentially start at 0 and ‘move our way up’,
obtaining each ordinal recursively and taking limits as needed. Because of this, we will see
that once we have reconstructed the graph, we can actually reconstruct each individual
vertex within the graph (for example the vertex (0, 1) in G(ω, 132)). This is shown in the
discussion following Theorem 5.7.

We initially consider limit ordinals, as endpoints pose some technical problems in the
successor case. Once again, we start with lemmas (5.5 and 5.6) about sets of points in
G(α, 13n2) which satisfy some particular properties, and these sets will end up ‘represent-
ing’ ordinals < α. Unlike in the general total ordering case, we construct these inductively,
starting with 0 and taking unions to obtain limits. We can thus determine α by considering
the union of all of these sets, as in Theorem 5.7. We then treat the 1n32n case Theorem in
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5.10, followed by the 1n3m2n case in Theorem 5.12, both approached in a similar manner.

We then consider successor ordinals α = α0 + k (where α0 is a limit). The method here
is typically to ‘remove’ the endpoints one at a time, by for instance comparing the set
{(0, y) : y > 0} to the set {(x, α0 + k − 1) : x < α0 + k − 1}, and noticing that they
do not satisfy the same properties. Once we can tell the difference, we can remove the
latter set, and repeat k times to obtain the graph G(α0, 132) ‘inside’ the graph G(α, 132),
and then determining α0 as in the limit case (Theorems 5.14 and 5.15). This can fairly
easily be extended to the 1n32n case, except that we will see that G(α0 + k1, 1

n32n) ∼=
G(α0 + k2, 1

n32n) for all k1, k2 ≤ n, as in Theorem 5.17. Finally, using a sequence of
lemmas (5.19 to 5.21) to show that if two points x, z in G(α, 1n3m2n) share exactly one
neighbour, and there is no point v sharing exactly one neighbour with both x and z, then
x and z must have a certain relationship to one another; namely, they must be neighbours
in the graph G(α, 12n3m−n22n), and so we can recursively reduce the problem to graphs of
the form G(α, 1n3m2n) with m < n, and showing that α is interpretable from this graph
in Theorem 5.22. Again, assuming α = α0+ k, we have some restrictions on k here - so we
take k > n× z, where z ≡ m mod n.

In Chapter 6 we consider whether it is possible to detemine a graph of this form from its
automorphism group, and show that Aut(G(S, 13n2)) ∼= Aut(S,B) for any total ordering
S and n ≥ 1 (Theorems 6.6 and 6.8). We also conjecture that if S is any total ordering
without endpoints:

Aut(G(S, 1n32n)) =
∏
I⊆S

(Sym(I) Wr Aut(S,B))

for I a convex subset of S and n ≥ 1.

In the final chapter we show that χ(G(κ, 1n32n)) = κ for any strong limit κ (Theorem 7.15).
We build up to this result, first by defining measurable cardinals and proving the result
for κ measurable using a fairly perspicuous proof (Theorem 7.9), and then by extending
the ideas in this proof to the strong limit case.
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2 Preliminaries

2.1 Set Theory and Basic Graph Theory

In these thesis we use basic notions in formal logic and set theory as given in [5] (Chapter
2) or [12] (Chapter 1). We also use the elementary theory of ordinals given in both of
these. We use the terms ‘linear order’ and ‘total order’ interchangeably.

Definition 2.1. A first-order language L is a collection of symbols including:

• Parentheses (, ), logical connective symbols ¬, →, ∨, ∧, and the equality symbol =
(optional)

• Quantifier symbols: ∀, ∃

• Function symbols: for each positive integer n, some set (possibly empty) of symbols,
called n-place function symbols

• Relation symbols: for each positive integer n, some set (possibly empty) of symbols,
called n-place predicate symbols

• Variables: v1, v2, ... (one for each positive integer n)

• Constant symbols: some set (possibly empty) of symbols

A second-order language additionally contains the following symbols:

• Relation variables: for each positive integer n, we have the n-place predicate variables
Xn

1 , X
n
2 , ...

• Function variables: for each positive integer n, we have the n-place function variables
F n
1 , F

n
2 , ...

In this thesis the most common language we use is the language of graphs, that is, the
language with a single binary relation E representing the edge relation. We also use
the language of set theory, consisting of a single binary relation ∈, and the language of
orderings, consisting of a single binary relation <.

An expression in a first-order language is a finite sequence of symbols from that language.
We are interested in expressions that “make sense”, and so we define the following:

Definition 2.2. The set of terms is defined inductively: variables and constants are terms,
and if F is a function symbol, then F (t1, ..., tn) is a term, where t1, ..., tn are terms.

Definition 2.3. An atomic formula is an expression of the form R(t1, ..., tn), where R is
an n-ary relation symbol and t1, ..., tn are terms, or an expression of the form t1 = t2, where
t1 and t2 are terms.
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Definition 2.4. A formula is an expression built up from from atomic formulae by use
(zero or more times) of the logical connectives and the quantifier symbols.

Definition 2.5. A sentence is a formula where every variable is bound by a quantifier (i.e.
it has no free variables).

Definition 2.6. A second-order formula is a formula in a second-order language where we
can also quantify over function and relation variables.

We would now like to interpret these formulae inside a model.

Definition 2.7. A model (or structure) A for a given first-order language L is a set A
(called the universe (or domain) of A) along with functions, relations, and constants which
interpret the function, relation, and constant symbols in L. More specifically:

• A assigns an n-ary operation fA ⊆ A to each n-ary function symbol f

i.e. fA : An → A

• A assigns an n-ary relation RA ⊆ A to each n-ary relation symbol R, i.e. RA is a set
of n-tuples of members of the universe

• A assigns a member cA of the universe A to each constant symbol c

The idea is that A assigns meaning to non-logical symbols of the language.

We would now like to determine when a formula ϕ is true (holds) in a model A.

Definition 2.8. Let ϕ be an atomic formula of the form R(t1, ...tn) with parameters in A.
Then we say that ϕ is true in A, written A |= ϕ if R(t1, ...tn) holds in A. For detail see [5].

For any given model A, every sentence will either hold or fail in that model. A formula,
does not hold or fail in a model, but for any interpretation of the variables in the formula,
it either holds or fails.

Definition 2.9. We now define inductively what it means for a formula ϕ (with an inter-
pretation of the variables) to hold in A:

• A |= ¬ϕ if ϕ does not hold in A

• A |= ϕ→ ψ if either ϕ does not hold in A, or ψ holds in A

• A |= ϕ ∨ ψ if ϕ and ψ both hold in A

• A |= ϕ ∧ ψ if either ϕ or ψ hold in A

• A |= ∀xϕ(x) if either ϕ(x) holds for every x in the universe A of A

• A |= ∃xϕ(x) if either ϕ(x) holds for some x in the universe A of A

12



Definition 2.10. Two models A and B are elementarily equivalent, denoted by A ≡ B, if
they satisfy the same first-order sentences, i.e. A |= ϕ⇔ B |= ϕ for every sentence ϕ.

Definition 2.11. Let A andB be models for the same language L with respective universes
A and B. Then A ⊆ B if A ⊆ B and for every atomic formula ϕ with parameters in A,
A |= ϕ⇔ B |= ϕ.

Definition 2.12. Let S be any set. Then a total order or linear order ≤ on S is a binary
relation such that:

• If a ≤ b and b ≤ a then a = b for all a, b ∈ S (antisymmetry)

• If a ≤ b and b ≤ c then a ≤ c for all a, b, c ∈ S (transitivity)

• For all a, b ∈ S, either a ≤ b or b ≤ a (total condition)

Definition 2.13. Let X be a totally ordered set. Then X is well-ordered if every non-
empty subset has a minimal element.

Any two well-orderings X and Y are comparable, so that there is an order-isomophism
that maps X to an initial segment of Y (in which case X ≤ Y ), or vice versa [12].

For every proper class of isomorphic well-orderings, we would like to choose a representative
called an ordinal.

Ordinals are defined using transfinite induction, such that each ordinal is the set containing
all previous ordinals, for example 3 = {0, 1, 2} (for details see [12]).

Ordinals generalise the numbers 0,1,2,3,... to include transfinite numbers. The set of all
natural numbers (with 0) is called ω, and from there we continue with ω+1, ω+2, ω+3, ....

The proper class of all ordinals is itself well-ordered.

Definition 2.14. An ordinal α is a cardinal if there is no bijection from α into any β < α.

Notice that since the class of ordinals is well-ordered, then so is the class of cardinals.

Definition 2.15. Let S be any set. Then the cardinality of S, denoted by card(S), is the
unique cardinal κ isomorphic to S.

Definition 2.16. The power set P(X) of a set X is the set of all subsets of X.

In general any ordinal is equal to the set of its predecessors, and this convention is also
followed in the finite case, e.g. 5 = {0, 1, 2, 3, 4}. We use ω for {0, 1, 2, 3, ...} and N for
{1, 2, 3, ...}, and we use ω1 for the least uncountable ordinal.
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Definition 2.17. A graph G is an ordered pair (V (G), E(G)) such that:

• V (G) is a set, known as the vertices of G

• E(G) is a symmetric binary relation on V (G), known as the edge relation on V (G)

Definition 2.18. A directed graph G is an ordered pair (V (G), E(G)) such that:

• V (G) is a set, known as the vertices of G

• E(G) is a (not necessarily symmetric) binary relation on V (G), known as the edge
relation on V (G), such that if aEb holds then there is an edge from a to b

In this thesis, all graphs are simple (there are no edges going from a to itself for all
a ∈ V (G)) and undirected unless stated otherwise. We sometimes use G and V (G) inter-
changably.

Definition 2.19. Let v be some vertex in a graph G. Then the neighbour set Nv of v is
defined as the set of neighbours of v in G.

Definition 2.20. Let G be any graph with vertex set V (G). A set of vertices S ⊆ V (G)
is a clique if there is an edge between every pair of vertices in S.

Definition 2.21. Let G be any graph. A set of vertices S ⊆ V (G) is a co-clique if S there
is no edge between any pair of vertices in S.

Definition 2.22. Let κ be any cardinal. The complete graph Kκ consists of κ vertices
such that there is an edge between every pair of vertices.

Definition 2.23. Let v be a vertex in a graph G. Then the degree of v, denoted by d(v),
is the number of edges incident to v.

Definition 2.24. Let G be a graph. A path in G is a finite or infinite sequence of edges
ei in E(G) such that for distinct vertices vi, the edge ei has endpoints vi and vi+1.

Definition 2.25. Let G be a graph. A connected component of G is a subgraph G′ of G
such that for any two vertices x, y ∈ G′ there is a path from x to y, and such that for every
x ∈ G′ there is no path from x to any y ∈ G\G′.

Definition 2.26. Let G be any graph. Then the line graph L(G) on G is another graph
such that:

• The vertices of L(G) are the edges of G, and

• There is an edge between two vertices of L(G) if and only if their corresponding edges
in G share an endpoint in G
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2.2 Shift Graphs

Definition 2.27. Let k, ` ∈ N be fixed, k ≤ `. We say that a sequence τ = (τi)
`
i=1 is a

type of width k and length ` if τi ∈ {1, 2, 3} and |{i : τi ∈ {1, 3}}| = |{i : τi ∈ {2, 3}}| = k.
[3]

This says that a type is a sequence of 1s, 2s, and 3s such that the number of 1s is equal to
the number of 2s. This type effectively encodes the edges in the graph by showing what
the pattern needs to be between two k-tuples arranged in increasing order for there to be
an edge between them.

We thus interpret this type as follows.
Definition 2.28. Let x and y be increasing k-tuples with entries in some totally ordered set
(S,<). Note that a k-tuple x = (x1, x2, ..., xk) is said to be increasing if x1 < x2 < ... < xk,
so x and y correspond to k-sets, but enumerated in increasing order.

Let x ∪ y = {z1, ..., z`}, with z1 < z2 < ... < z`. Then we say that the pair x, y has type τ
(denoted by t(x, y) = τ) iff:

τi = 1⇒ zi ∈ x \ y,
τi = 2⇒ zi ∈ y \ x, and
τi = 3⇒ zi ∈ x ∩ y

for 1 ≤ i ≤ `

Throughout this thesis, unless otherwise stated we assume that any n-tuple (x1, ..., xn) of
a totally ordered set S is ordered by the induced ordering. We also adopt the following
(non-standard) notation: Sn = {(x1, ..., xn) : xi ∈ S, x1 < x2 < ... < xn}.

The ordering S doesn’t need to be total; this notation is also applicable if S is a partial
order. Of course, in this case, the n-tuple is only defined on points that are pairwise
comparable, i.e. xi < xj or xj < xi for all i, j ∈ {1, ..., n} with i 6= j.

Definition 2.29. The graph G(S, τ) is defined to be the graph whose vertices are the
k-element subsets of S for some k (determined through τ), and where there is an edge
between x and y in V (G(S, τ)) iff t(x, y) = τ . We call such a graph a shift graph.

Example 2.30. Consider the graph G(5, 1221) consisting of the 2-tuples with entries in the
set {0, 1, 2, 3, 4}. There is an edge between any two vertices x = (x1, x2) and y = (y1, y2)
if x1 < y1 < y2 < x2. The full graph is:
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Notice that, intuitively, we would simply see the dots and lines in the example above - we
would not know, for example, that the point at the top is the vertex (1, 3) (this is part of
the information we are trying to recover). Note that several points in this structure can be
permuted by an automorphism (for example the isolated points, and the larger connected
component can be reversed).

Example 2.31. Consider the graph G(ω, 12312). Then τ = 12312 has width 3 and length
5. Now let x = (1, 5, 6) and y = (3, 5, 8).

( 1 < 5 < 6 < )
‖

( 3 < 5 < 8 )

Then x∪y = {1, 3, 5, 6, 8}, and thus t(x, y) = τ . We see how the pattern above corresponds
to the pattern given by 12312. Now, let x′ = (1, 3, 5) and y′ = (2, 4, 6).

( 1 < 3 < 5 < )
( 2 < 4 < 6 )

Then x′ ∪ y′ = {1, 2, 3, 4, 5, 6}, and so t(x′, y′) 6= τ . In fact, t(x′, y′) = 121212. We can see
how the pattern above does not correspond to the the pattern given by 12312, because the
middle coordinates aren’t equal. Thus in the graph G(ω, 12312), there is an edge between
the vertices x and y but not between x′ and y′.

Example 2.32. Consider the graph G(R, 13332). Then |{i : τi ∈ {1, 3}}| = |{i : τi ∈
{2, 3}}| = 4, and so the vertices of G(R, 13332) consist of strictly increasing elements of
R4. There is an edge between two vertices x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4) iff
x1 < y1 = x2 < y2 = x3 < y3 = x4 < y4 or vice versa. Any graph like this with type
133...32 is an example of the shift graph [7] (as opposed to the generalised shift graph where
the types can vary more, as defined at the start of Chapter 2).

We now present a finite example of the shift graph, namely G(6, 132):
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Again, we have labelled this graph for convenience, but these labels are not part of the
graph.

We have so far seen that these graphs contain a certain symmetry, which can be attributed
to the symmetry in the underlying finite ordering.

In this thesis, we will mostly focus on the type 1n3m2n. Note the following cases which
provide the ‘simplest’ case in various scenarios (some of which are trivial), and which we
will often consider separately:

τ = 1n2n, τ = 3n, τ = 1n32n, τ = 13n2

2.3 Some Very Simple Cases

We will look at for which values of τ and S, S ′ we have G(S, τ) ∼= G(S ′, τ) ⇒ S ∼= S ′,
starting with some very simple cases.

Perhaps the most natural “simple” case is the graph G(S, 3). It is easy to see that this is
simply one giant co-clique of size card(S), and similarly for G(S, 3n). Thus G(α, 3n) is a
set of

(|α|
n

)
isolated points, and so G(α, 3n) ∼= G(β, 3m) for all infinite ordinals α, β with

|α| = |β| and for all finite n,m ≥ 1. Hence G(S, τ) ∼= G(S ′, τ) 6⇒ S ∼= S ′ for the types
3n, n ∈ N.

Another natural “simple” example to consider is the graph G(S, 12). It is easy to see that
this is simply one giant clique of size card(S). Thus, G(S1, 12) ∼= G(S2, 12) for every pair
of ordered sets S1, S2 with equal cardinality. Hence G(S, τ) ∼= G(S ′, τ) 6⇒ S ∼= S ′ for the
type 12.

Adding a ‘3’ onto the end of this type gives us a similar graph, although instead of one
complete graph the connected components are all complete graphs (cliques) of possibly
different cardinalities. If α is any ordinal, G(α, 123) will contain complete graphs of all
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cardinalities less than the ordinal α. Once again, we do not have G(S, 123) ∼= G(S ′, 123)⇒
S ∼= S ′, as for example G(ω + ω, 123) ∼= G(ω + ω + α, 123) for all α < ω1.

We now turn our attention to the graph G(S, 132) for any set S. This is generally the
‘simplest’ case we consider.

One way to view G(S, 132) is as a modification on a line graph on the complete graph
Kcard(S), although in this case Kcard(S) a directed graph with an edge going from a to b
if a > b for distinct a, b ∈ S. Additionally, there is only an edge between two vertices in
G(S, 132) if the corresponding edges in Kcard(S) are not only incident to one another, but
the vertex they share in Kcard(S) is the head of one edge and the tail of the other. Thus
the vertices (1, 2) and (2, 3) are neighbours in G(R, 132) as the edge going from 2 to 1
and the edge going from 3 to 2 are incident to one another with one being the head of
the point 2 and the other being the tail, whereas this is not the case for (1, 3) and (2, 3).
Thus G(R, 132) is a modification on the line graph on the directed graph K2ℵ0 with an
edge going from a to b if a > b for distinct a, b ∈ R.

We can similarly view G(S, 1n32n) as the family of increasing paths of n+ 1 points in the
complete graph with two such adjacent if the sink of one is the source of the other, and
modifications of this remark also apply in G(S, 1n3m2n).

In general, we can determine the size of the underlying set Z of a finite shift graph G(Z, τ)
quite easily by counting the vertices. G(Z, 132) has

(|Z|
2

)
vertices, and G(Z, 1n3m2n) has( |Z|

m+n

)
vertices.

2.4 Notation

We will now introduce some general notation which will be used throughout.

Given a set V of increasing n-tuples (s1, ..., sn) with si ∈ S for some linearly ordered set
S, we define the following sets for each x ∈ S:

Cx := {(s1, ..., sn−1, x) ∈ V : sn−1 < x},
i.e. Cx is the set of all n-tuples ending in x.

Dx := {(x, s2, ..., sn) ∈ V : x < s2},
i.e. Dx is the set of all n-tuples beginning in x.

Ax := Cx ∪Dx,

i.e. Ax is the set of all n-tuples either beginning or ending in x.
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Given a set V of n-tuples (s1, ..., sn) with si ∈ S for some set S, for k < n we generalise
the above to k-tuples x1, ..., xk ∈ S as follows:

Cx1,...,xk := {(s1, ..., sn−k, x1, ..., xk) ∈ V : sn−k < x1},
i.e. Cx is the set of all n-tuples ending in x1, ..., xk.

Dx1,...,xk := {(x1, ..., xk, sk+1, ..., sn) ∈ V : xk < sk+1},
i.e. Dx is the set of all n-tuples beginning in x1, ..., xk.

Ax1,...,xk := Cx1,...,xk ∪Dx1,...,xk

i.e. Ax1,...,xk is the set of all n-tuples either beginning or ending in x1, .., xk.

Given a set V of n-tuples (s1, ..., sn) with si ∈ S for some set S, we can define the following
sets which satisfy similar properties to Cx, Dx:

xCy := {(x, s2, ..., sn−1, y) ∈ V : x < s1, sn−1 < y} = Dx ∩ Cy
i.e. xCy is the set of all n-tuples beginning in x and ending in y.

xDy := {(s1, s2, ..., sn−1, x) ∈ V : sn−1 < x} ∪ (y, s2, ..., sn) : y < s2} = Cx ∪Dy,

i.e. xDy is the set of all n-tuples ending in x or beginning in y.
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Finally, given a set V of n-tuples (s1, ..., sn) with si ∈ S for some set S, for 2k ≤ n we can
once again generalise the above for k-tuples x1, ..., xk and y1, ..., yk as follows:

x1,...,xkCy1,...,yk := {(x1, ..., xk, sk+1, ..., sn−k, y1, ..., yk) : xk < sk+1, sn−k < y1},
i.e. x1,...,xkCy1,...,yk is the set of all n-tuples beginning in
x1, ..., xk and ending in y1, ..., yk.

x1,...,xkDy1,...,yk := {(s1, ..., sn−k, x1, ..., xk) : sn−k < x1} ∪ (y1, ...yk, sk+1, ..., sn−k) : yk < sk+1},
i.e. x1,...,xkDy1,...,yk is the set of all n-tuples ending in
x1, ..., xk or beginning in y1, ..., yk.

Each of these can be applied to a graph with any type 1n3k2n.

2.5 Definability and Interpretability

Definition 2.33. If L is a first-order language and A is an L-structure, then X ⊆ An is
first-order definable (with parameters) if there is a first-order formula ϕ of L and finitely
many a1, ..., am ∈ A such that X = {(x1, ..., xn) : A |= ϕ(x1, ..., xn, a1, ..., am)}. If m = 0
then it is ∅-definable, or definable without parameters. A similar definition applies to
second-order definable, where ϕ is a second-order formula.

Example 2.34. The language of graphs has one binary relation symbol ∼ (for adjacency).
A graph is a model in which ∼ is symmetric and irreflexive. The set of vertices of degree
2 is ∅-definable:

x ∈ X ↔ (∃y∃z)(x ∼ y ∧ x ∼ z ∧ y 6= z ∧ (∀t)(x ∼ t→ t = y ∨ t = z))

Example 2.35. In the language of graphs, ‘x, y are in the same connected component
C(x, y)’ is second-order definable, but not first-order definable (for details of how to use
Ehrenfeucht-Fraïssé games to prove it’s nof first-order definable see [19]).

We start by defining Connected(X):

(∀Y ∀Z)((X = Y ∪ Z) ∧ (Y ∩ Z = ∅) ∧ (Y 6= ∅) ∧ (Z 6= ∅)→ (∃y ∈ Y )(∃z ∈ Z)(y ∼ z))
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Note that X = Y ∪ Z can be expressed as (∀x)(x ∈ X ↔ x ∈ Y ∨ x ∈ Z), and similarly
with Y ∩ Z. We now define C(x, y):

C(x, y)↔ (∃X)(Connected(X) ∧ x ∈ X ∧ y ∈ X)

Example 2.36. The set of neighbours of a is first-order definable with a as a parameter.

Example 2.37. Connectedness is not first-order definable. To see this, consider Z as a
graph, with E(n, n+1) for all n ∈ Z. Then, using Ehrenfeucht-Fraïssé games, we can show
that Z ≡ Z+ Z [13].

Definition 2.38. Let M and N be structures with underlying sets M and N respectively.
Then N is first-order interpretable (without parameters) in M if for some n ∈ N, there is:

1. A ∅-definable subset D of Mn

2. An ∅-definable equivalence relation E on D

3. A bijection γ : N → D/E, such that for every m-ary relation R of the language of
N there is a formula ϕ in the language of M with mn free variable, such that for every
a1, a2, ..., am, where ai have length n and 1 ≤ i ≤ m, all entries in M , all a1 in D,

N |= R(γ−1(a1)E, γ
−1(a2)E, ..., γ

−1(am)E)⇐⇒M |= ϕ(a1, ..., am)

Second-order interpretability is defined similarly:

Definition 2.39. Let M and N be structures with underlying sets M and N respectively.
We say that N is second-order interpretable in M if for some n ∈ N, there is:

1. A (second-order) definable subset D of Mn

2. A (second-order) definable equivalence relation E on D

3. A bijection γ : N → D/E, such that for every ∅-definable subset R of Nm, the subset of
(Mn)m given by R̂ = {(a1, ..., am) ∈ (Mn)m : (γ−1(a1/E), ..., γ

−1(am/E)) ∈ R} is (second-
order) definable in Mn. In other words, N can be identified with a definable subset D of
Mn, divided by a suitable ∅-definable equivalence relation.

We now consider some examples of this.

Example 2.40. G(Q, 11322) is first-order interpretable inside (Q, <).

In this case our structure M is (Q, <) and N is G(Q, 11322). We take D to be the set
{(x, y, z) ∈ Q3 : x < y < z}, where in this case n = 3. E is trivial (equality), and the
domain of N is D.

Our m-ary relation is the edge relation, and m = 2. Thus R((x1, y1, z1), (x2, y2, z2)) ⇔
z1 = x2 ∨ x1 = z2.
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Example 2.41. (Q, B) is second-order interpretable inside G(Q, 132), where B is the
betweenness relation on Q (defined in Chapter 3: Definition 3.6).

In this case our structure M is G(Q, 132) and N is (Q, B). We identify Q with sets of the
form Ax, i.e. elements of P(G(Q, 132)), n = 1, and again, E is trivial.

Then our m-ary relation is the betweenness relation, and m = 3. Thus, assuming R(x, y, z)
means ‘x lies between y and z’, and u ∼ v means ‘there is an edge between u and v’, in
the language of M , we have: R(x, y, z)⇔ ∃u ∈ Ax ∩ Ay ∧ ∃v ∈ Ax ∩ Az : u ∼ v

Details of the definability of these notions and their correctness is given in Theorem 4.2.

Definition 2.42. If A,B are first-order structures such that A ⊆ B, then A is first-order
definable in B if the domain A of A is definable inside B, and for every relation R of A,
there is a first-order formula ϕ of L(B) such that for all a1, ..., an,

A |= R(a1, ..., an)⇔ B |= ϕ(a1, ..., an)

This is a stronger version of interpretability, where n = 1 and E is trivial.
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3 Betweenness Relations

Since we are dealing with undirected graphs, the graph G(S, τ) will be the same as the
graph G(S ′, τ) where S ′ is the reversed ordering of S. Consequently, we cannot in general
expect to recover the ordering from the graph, but only ‘up to order reversal’. The correct
context for this is the corresponding ‘total betweenness relation’, which we now axiomatise
as in [1]. We write xB[y, z] to mean ‘x is between y and z’.

The material in this chapter is well-known, but in [1] and [11] the details are omitted, and
so I am including them here for completeness.

Remark 3.1. We use the standard, reflexive definition of betweenness as in [1], but as-
sociated with any such reflexive relation there is automatically a strict one. We will use
whichever is most convenient in the context.
Remark 3.2. We sometimes refer to orderings by their ground sets (for example we write
Q when we mean (Q, <)).

Throughout the thesis we will be using the following definitions regarding total orderings:

Definition 3.3. Let S be a total ordering. Then amaximal finite section is a convex subset
Y of S which is finite and maximal. A non-trivial maximal finite section is a maximal finite
section of size greater than 1.

This may or may not exist for a given S. For example, Z contains no non-trivial maximal
finite sections, but Q+ 3 +Q contains one of size 3.

Definition 3.4. Given a, b in some total order S, the distance dist(a, b) between a and b
with a < b is the cardinality of the set [a, b). In this thesis, distance is always positive.

We can expand the definition of a maximal finite section to include infinite sets as follows:
Definition 3.5. Let x ∈ S, where S is some total ordering. Then the finite component x
lies in is the set of all points in S of finite distance from x.

If this set is finite, then it is a maximal finite section.

3.1 Total Betweenness and Total Orderings

Definition 3.6. A total betweenness relation is a ternary relation B defined on a set S
which satisfies:

(i) ∀x, y, z ∈ S, xB[y, z]⇒ xB[z, y] (symmetry)

(ii) ∀x, y, z ∈ S, xB[y, z] ∧ yB[x, z]⇔ x = y

(iii) ∀x, y, z ∈ S, xB[y, z]⇒ ∀w, xB[y, w] ∨ xB[z, w]
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(iv) ∀x, y, z ∈ S, xB[y, z] ∨ yB[x, z] ∨ zB[x, y] (total condition)

Remark 3.7. yB[z, y] for all y, z ∈ S

This follows from Definition 3.6 (ii), as x = y ⇔ xB[y, z] ∧ yB[x, z], i.e. yB[y, z], and so
yB[z, y] by symmetry.

Lemma 3.8. xB[y, y]⇒ x = y

Proof. We know that yB[x, y] by Remark 3.7.

We now have xB[y, y] and yB[x, y], so from the left to right implication in (ii), it follows
that x = y.

Lemma 3.9. From the above axioms, we can deduce the following:

∀x, y, z, w ∈ S, yB[x,w] ∧ zB[y, w]⇒ zB[x,w] (transitivity)

Proof. We first deal with all cases in which not all of x, y, z, w are distinct. There are 6
cases.

Assume that yB[x,w] and zB[y, w], and we require zB[x,w]. If x = z or z = w then
using (i) and Remark 3.7 we see that zB[x,w]. If x = y then from zB[y, w] it follows that
zB[x,w]. If y = z then from yB[x,w] it follows that zB[x,w]. If x = w then by applying
Lemma 3.8 to yB[x,w] we deduce that x = y which is a case already done. If y = w then
applying 3.8 to zB[y, w] we deduce that y = z, which has also already been done.

Now let us suppose that all of x, y, z, w are distinct. As usual, we are assuming that
yB[x,w] and zB[y, w], and aiming to get zB[x,w]. By (iii), from yB[x,w] we get yB[x, z]
or yB[w, z]. If yB[w, z] then as zB[y, w], by (i) and (ii), y = z, contrary to y and z distinct.
Therefore yB[x, z]. Using (iii) once more, from zB[y, w] we get zB[y, x] or zB[w, x]. If
zB[y, x] then from yB[x, z] and property (ii), y = z, contrary to y and z distinct. Therefore
zB[w, x], as required.

Theorem 3.10. A set S with linear ordering ≤ induces a total betweenness relation B on
S.

Proof. Define B as follows: yB[x, z] if (x ≤ y and y ≤ z) or (z ≤ y and y ≤ x).

Remark 3.11. S as above with the reverse ordering ≥ induces this same total betweenness
relation B on S.
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Lemma 3.12. : Let S be a set with betweenness relation B, and let a, b, c, d ∈ S, with
b 6= c. Then

(i) bB[a, c] ∧ cB[b, d]⇒ bB[a, d] ∧ cB[a, d].

(ii) bB[a, c] ∧ cB[a, d]⇒ bB[a, d] ∧ cB[b, d].

Proof. (i) By Axiom (iii), from bB[a, c] we get bB[a, d] ∨ bB[c, d]. But as cB[b, d], from
bB[c, d] we derive b = c using Axiom (ii), contrary to hypothesis. Hence bB[a, d]. The
proof that cB[a, d] is similar.

(ii) From cB[a, d] we get cB[a, b] ∨ cB[d, b] by Axiom (iii). If cB[a, b] then as bB[a, c] we
get b = c again. Consequently, cB[d, b], and to get bB[a, d] we can now use part (i).

Definition 3.13. Let B be a total betweenness relation on a set S and let x, y ∈ S be
distinct. Let Ry be the set of all points p in S such that yB[x, p], and let its complement
be Ly.

The idea is that x < y, and that Ry should be the set of points greater than or equal to y,
and Ly the set of points less than y. Notice that Ly ∪Ry = S, and Ly ∩Ry = ∅.

Lemma 3.14. If yB[a, b] where a, b 6= y, then one of a, b lies in Ry and the other lies in
Ly.

Conversely, if a ∈ Ly and b ∈ Ry, then yB[a, b].
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Proof. By Axiom (iii), since yB[a, b], we know yB[a, x] ∨ yB[b, x] for all x; in particular,
for the fixed x in Definition 3.13. It follows that a or b lies in Ry (or both). Suppose
for a contradiction that both lie in Ry. Thus both yB[a, x] and yB[b, x] hold. By Axiom
(iv), xB[a, b]∨ aB[x, b]∨ bB[x, a]. By Axiom (iii), xB[a, y]∨xB[b, y]∨ aB[x, y]∨ aB[b, y]∨
bB[x, y]∨bB[a, y]. We now use Axiom (ii) to deduce that y is equal to x, a, or b, all of which
are ruled out. For instance, if xB[a, y] then since yB[a, x] we get x = y, and similarly in
the other 5 cases (though in the 4th and 6th cases we appeal directly to yB[a, b]).

Now suppose that a ∈ Ly and b ∈ Ry. Thus yB[x, b]∧¬yB[x, a]. By Axiom (iii), yB[x, a]∨
yB[b, a]. Since ¬yB[x, a] we deduce that actually, yB[b, a], as required.

Theorem 3.15. Let B be a total betweenness relation on a set S and let x and y be two
fixed, distinct points in S. Then there exists exactly one linear ordering ≤ of S with x ≤ y
and such that B is induced from ≤ as in Theorem 3.10.

Proof. We will find a total ordering of S in which x ≤ y which induces the given between-
ness relation B.

We define Ly, Ry as above. Note that by this definition, x ≤ y since x ∈ Ly and y ∈ Ry.
We can now define a relation ≤ on S by saying that z1 ≤ z2 iff

z1 ∈ Ly and z2 ∈ Ry

or z1, z2 ∈ Ly and z2B[z1, y]

or z1, z2 ∈ Ry and z1B[z2, y]

We will start by showing ≤ is linear. To show this we have to check:

Reflexivity: z ≤ z. This holds since zB[z, y] by (ii).

Antisymmetry: Suppose z1 ≤ z2 and z2 ≤ z1. Since Ly and Ry are disjoint, z1, z2 lie in the
same one of Ly, Ry. Hence z1B[z2, y] and z2B[z1, y], and from (ii) it follows that z1 = z2.

Transitivity: Suppose z1 ≤ z2 ∧ z2 ≤ z3. If z1 ∈ Ly and z2 ∈ Ry then by definition
of �, also z3 ∈ Ry, so z1 ≤ z3 is immediate. Similarly if z2 ∈ Ly and z3 ∈ Ry. The
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remaining cases that need to be considered are just that all of z1, z2, z3 lie in the same one
of Ly, Ry. If z1, z2, z3 ∈ Ly, then z2B[z1, y]∧ z3B[z2, y] so by 3.9, z3B[z1, y], and z1 ≤ z3. If
z1, z2, z3 ∈ Ry, then z1B[z2, y] ∧ z2B[z3, y] so by 3.9, z1B[z3, y], and again, z1 ≤ z3.

Linearity: To see that ≤ is total, take any z1, z2 ∈ S. If z1 ∈ Ly and z2 ∈ Ry then z1 ≤ z2,
and similarly the other way round. So suppose that they both lie in the same one of
Ly, Ry. By (iv) z1B[z2, y]∨z2B[z1, y]∨yB[z1, z2]. The first two give comparability of z1, z2
by definition, and in the third case, by Lemma 3.14 z1, z2 lie in different ones of Ly, Ry

(which we have ruled out), unless at least one of them equals y, in which case z1, z2 ∈ Ry

(since y /∈ Ly) and if y = z1, then z1B[z2, y] by Remark 3.7 (and similarly if y = z2).

Hence ≤ is linear.

Thus by Theorem 3.10, ≤ induces a betweenness relation B≤. We would now like to show
that B = B≤.

To show this, we need to show that z2B[z1, z3] ⇔ z2B≤[z1, z3]. Now, B≤ is defined as
follows: z2B≤[z1, z3] if (z1 ≤ z2 ≤ z3) or (z3 ≤ z2 ≤ z1).

Hence we would like to show that [(z1 ≤ z2 ≤ z3) ∨ (z3 ≤ z2 ≤ z1)]⇒ z2B[z1, z3].

First assume [(z1 ≤ z2 ≤ z3) ∨ (z3 ≤ z2 ≤ z1)]. If z1 = z2 or z2 = z3, then z2B[z1, z3] by
Remark 3.7, so we now assume that z1, z2, and z3 are all distinct. We have to show that
z2B[z1, z3].

We have two cases.

Case 1: (z1 ≤ z2 ≤ z3)

Since z1 ≤ z2, we know that one of the following holds:

(1) z1 ∈ Ly ∧ z2 ∈ Ry, or
(2) z1, z2 ∈ Ly and z2B[z1, y], or
(3) z1, z2 ∈ Ry and z1B[z2, y]
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Also since z2 ≤ z3, we know that

(i) z2 ∈ Ly ∧ z3 ∈ Ry, or
(ii) z2, z3 ∈ Ly and z3B[z2, y], or
(iii) z2, z3 ∈ Ry and z2B[z3, y]

We tackle these one at a time:

(1) : First suppose z1 ∈ Ly ∧ z2 ∈ Ry. Then we must have z2, z3 ∈ Ry and z2B[z3, y]. By
Lemma 3.14 we have that yB[z1, z2]. By Lemma 3.12 (i) applied to yB[z1, z2] ∧ z2B[y, z3],
we obtain z2B[z1, z3] as required.

(2) : Second, suppose z1, z2 ∈ Ly and z2B[z1, y]. We now have 2 options:

(i) If z2 ∈ Ly ∧ z3 ∈ Ry, then we know yB[z2, z3] by 3.14. Again by Lemma 3.12 (i), this
time letting a = z1, b = z2, c = y, d = z3, we obtain z2B[z1, z3] as required.

(ii) If z2, z3 ∈ Ly and z3B[z2, y], since z2B[z1, y] and z3B[z2, y] we can use Lemma 3.12
(ii), which states that

bB[a, c] ∧ cB[a, d]⇒ bB[a, d] ∧ cB[b, d]

Letting a = y, b = z3, c = z2, d = z1, we thus obtain z2B[z3, z1], and so by symmetry
z2B[z1, z3] as required.

(3) : Finally, suppose z1, z2 ∈ Ry and z1B[z2, y]. We now only have one option:

(iii) We must have z2, z3 ∈ Ry and z2B[z3, y]. Again, we can use Lemma 3.12 (ii), which
states that:

bB[a, c] ∧ cB[a, d]⇒ bB[a, d] ∧ cB[b, d]

By symmetry, z2B[y, z3] and z2B[z3, y]. Letting a = y, b = z1, c = z2, d = z3, we thus
obtain z2B[z1, z3].

Hence [(z1 ≤ z2 ≤ z3) ∨ (z3 ≤ z2 ≤ z1)]⇒ z2B[z1, z3], and so B = B≤.

Corollary 3.16. Any total betweenness relation B on a set S arises from exactly two
orderings on S, such that if one of them is ≤, then the other one is ≥.
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Proof. Theorem 3.15 states that if B is a total betweenness relation on a set S and distinct
x, y ∈ S, then there exists exactly one ordering ≤ of S with x ≤ y and such that B arises
from S. Clearly B also arises from the ordering ≤∗ which is the reverse of ≤, and in this
ordering y ≤∗ x. Since the ordering which gives rise to B is uniquely determined once we
know how x and y are related, it follows that these are the only two possibilities.

3.2 Partial Betweenness Relations

Definition 3.17. A (strict) partial betweenness relation is a ternary relation B defined
on a set S which satisfies:

• ∀x, y, z ∈ S, xB[y, z]→ (x 6= y ∧ x 6= z ∧ y 6= z).

• ∀x, y, z ∈ S, xB[y, z]→ xB[z, y]

• ∀x, y, z, w ∈ S, (yB[x,w] ∧ zB[y, w])→ zB[x,w]

This is ‘partial’ betweenness since it is does not contain the total condition, i.e. it is not
the case that for all x, y, z ∈ S either xB[y, z] or yB[x, z] or zB[y, x].

We now apply this to the generalised shift graph.

Definition 3.18. Two n-tuples x1, ..., xn and y1, ..., yn with x1 < ... < xn and y1 < ... < yn
are comparable if either xn < y1 or yn < x1.

Definition 3.19. Partial betweenness on n-tuples. Let (S,<) be a totally ordered set. We
define betweenness Bn on increasing n-tuples of S as follows:

(y1, ..., yn)B
n[(x1, ..., xn), (z1, ..., zn)] if and only if

x1 < ... < xn < y1 < ... < yn < z1 < .... < zn

or z1 < ... < zn < y1 < ... < yn < x1 < .... < xn

Note that the n-tuples must be pairwise comparable for this to hold.

Note that Bn is a partial betweenness relation.
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Definition 3.20. We now define a new relation, called n-betweenness Bn on a totally
ordered set (S,<). This is a relation on n + 2 points (not necessarily increasing) in S,
where {y1, ..., yn}Bn[x, z] holds iff the set of points {y1, ..., yn} lies between x and z. In this
case we call x and z the endpoints of the set {y1, ..., yn, x, z}.

Note that {y1, ..., yn}Bn[x, z] → {yπ(1), ..., yπ(n)}Bn[x, z], where π is any permutation on
{1, ..., n}, and that {y1, ..., yn}Bn[x, z]→ {y1, ..., yn}Bn[z, x].

Also note that for 1-betweenness there is a slight difference of notation, in that we write
yB[x, z] as opposed to {y}B1[x, z].

Definition 3.21. We can combine the above definitions as follows: Bm
n is defined as

partial n-betweenness on increasing m-tuples, i.e. this is a relation on n + 2 m-tuples
where {Y1, ..., Yn}Bn[X,Z] holds iff each m-tuple in the set {Y1, ..., Yn} lies between the
m-tuples X and Z, and the Yis are pairwise comparable.

Similarly, note that {Y1, ..., Yn}Bn[X,Z] → {Yπ(1), ..., Yπ(n)}Bn[X,Z], where π is any per-
mutation on {1, ..., n}, and that {Y1, ..., Yn}Bn[X,Z]→ {Y1, ..., Yn}Bn[Z,X].

Lemma 3.22. Let (S,<) be a total ordering without endpoints with induced betweenness
relation B, and let n ∈ N. Then (S,B) is 1st-order interpretable from (Sn, Bn).

Proof. We define an equivalence relation ≡ on Sn on n-tuples X = (x1, ..., xn), X
′ =

(x′1, ..., x
′
n), Y = (y1, ..., yn), Z = (z1, ..., zn):

X ≡ X ′ iff ∀ Y, Z ∈ Sn(XBn[Y, Z]↔ X ′Bn[Y, Z]).

Then it is clear that this holds if and only if x1 = x′1 and xn = x′n, so the equivalence
classes precisely correspond to intervals of size at least n. This is a first-order formula, as
are the ones which follow.

We can also express inclusion and disjointness of intervals (comparability) as follows:
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X ⊆ X ′ ⇔ ∀ Y, Z ∈ Sn : X ′Bn[Y, Z]→ XBn[Y, Z]

comp(X, Y ) ⇔ ∃ Z ∈ Sn : XBn[Y, Z]

Now we want to represent points x of S by families of intervals of the form {(x1, ..., xn) :
x1 = x} or {(x1, ..., xn) : xn = x}. Since this will however give a second-order interpreta-
tion, we instead consider pairs of members of these sets at a time, which will sufficiently
well represent the whole set. So we use the following formula:

ρ(X,X ′) ⇔ ∃Y ∈ Sn : comp(X, Y ) ∧ comp(X ′, Y ) ∧ ∀Z ∈ Sn (XBn[Y, Z] ↔
X ′Bn[Y, Z])

(If Y lies to the right of X,X ′)

(If Y lies to the left of X,X ′)

We note that if X = (x1, ..., xn) and X ′ = (x′1, ..., x
′
n) share their left endpoint, for in-

stance, so that x1 = x′1, then this formula holds, since we may take Y > X,X ′, and then
whichever Z we take, if XBn[Y, Z] then zn < x1, and hence also zn < x′1 so Z < X ′,
giving X ′Bn[Y, Z], and similarly in the other direction (if xn = x′n then we instead take
Y < X,X ′). Conversely, suppose that X and X ′ do not share either their left or right
endpoints. Then we see that the formula is false. Otherwise there is a suitable Y which is
disjoint from both X and X ′. There are two cases, one in which Y is to the left of both X
and X ′ (similarly to the right of both), and the other in which it is greater than one and
less than the other.

If Y < X,X ′ then as xn 6= x′n, suppose that xn < x′n, and then there is Z such that z1 = x′n.
Clearly XBn[Y, Z] but not X ′Bn[Y, Z], violating the formula.

If on the other hand, X < Y < X ′ we can easily violate the formula by taking Z to the
right of X ′ (or indeed to the left of X).

We observe that for three sets, if ρ(X,X ′) and ρ(X,X ′′) and ρ(X ′, X ′′), then all ofX,X ′, X ′′
share the same endpoint, since if for instance x1 = x′1 6= x′′1, then as X,X ′′ share an
endpoint, xn = x′′n, and as X ′, X ′′ share an endpoint, x′n = x′′n, so all three share their right
endpoints (and in fact, X ≡ X ′).

31



Two pairs (X,X ′) and (Y, Y ′) which both satisfy the formula ρ are said to have the same
parity, if X and X ′ share the same left endpoint and so do Y and Y ′, or else the same
statement for right endpoints. We next aim to characterise when two pairs of members of
Sn satisfying ρ have the same parity. The following formula gets us part way to this aim.

parity1((X,X
′), (Y, Y ′))⇔ ρ(X,X ′) ∧ ρ(Y, Y ′) ∧ ∀X ′′(ρ(X,X ′′) ∧ ρ(X ′, X ′′)

→ ∃Y ′′(ρ(Y, Y ′′) ∧ ρ(Y ′, Y ′′) ∧ (X ′′ ⊆ Y ′′))

We can see that this formula holds if and only if either (X,X ′) share the same left endpoint
and so do (Y, Y ′) and x1 ≥ y1, or (X,X ′) share the same right endpoint and so do (Y, Y ′)
and xn ≤ yn. First suppose that x1 = x′1 ≥ y1 = y′1. Then any possible X ′′ is of the form
(x′′1, ..., x

′′
n) where x′′1 = x1, and we can take (y′′1 , ..., y

′′
n) such that y′′1 = y1 and y′′n ≥ x′′n.

Then the interval given by X ′′ has endpoints x1, x′′n, which is contained in that given by
Y ′′, which has endpoints y1, y′′n. A similar calculation applies in the second case, arguing
with respect to right endpoints.

Conversely, suppose that the formula holds, and without loss of generality, suppose that
X,X ′ share left endpoints, but Y, Y ′ share right endpoints. Then there is X ′′ which shares
its left endpoint with X, but whose right endpoint exceeds the right endpoint of Y , and
this cannot be contained in any possible Y ′′.

Hence Y and Y ′ also share left endpoints. Clearly X ′′ ⊆ Y ′′ implies that y1 ≤ x1.

The symmetrised version is as follows:

sameparity((X,X ′), (Y, Y ′))⇔ parity1((X,X
′), (Y, Y ′)) ∨ parity1((Y, Y

′), (X,X ′))

Then this holds if and only if (X,X ′) share the same left endpoint and so do (Y, Y ′), or
(X,X ′) share the same right endpoint and so do (Y, Y ′), so it precisely expresses the fact
that (X,X ′) and (Y, Y ′) have the same parity.

If we have decided on the parity, we can now represent the points of S by ρ-classes of pairs
of members of Sn. Intuitively, this picks out all the members of Sn with a fixed greatest
entry, or alternatively, all the members with a fixed least entry. It would be preferable to
be able to identify the classes of different parities representing the same point. We can do
this as follows:

sameendpoint((X,X ′), (Y, Y ′))⇔ ρ(X,X ′) ∧ ρ(Y, Y ′)
∧ ¬sameparity((X,X ′), (Y, Y ′)) ∧ ¬comp(X, Y )

∧ ∃Z : Z ⊃ X ∧ ρ(X,Z) ∧ ρ(X ′, Z)
∧ ∀Z ′(Z ′ ⊆ Z) ∧ ¬ρ(X,Z ′)→ comp(Z ′, Y )

This is intended to say that X and X ′ share the same right endpoint xn and Y , Y ′ share
the same left endpoint y1, and y1 = xn (or the other way round). Assume for instance
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that the former holds. Since ¬comp(X, Y ), y1 ≤ xn, and the hypothesis on Z ensures that
it also has xn as a right endpoint, and then any Z ′ as given does not have xn as right
endpoint. So the formula guarantees that y1 = xn.

Now, two pairs ((X,X ′), (Y, Y ′)) and ((Z,Z ′), (W,W ′)) satisfying sameendpoint ‘encode’
the same point if either ρ(X,Z) and ρ(Y,W ), or ρ(X,W ) and ρ(Y, Z). This forms an
equivalence relation E on intervals of size at least n, with equivalence classes corresponding
to elements of S. Let (X1, X2), (Y1, Y2), (Z1, Z2) be representatives of equivalence classes
encoding points x, y, z ∈ S respectively. Then yB[x, z] iff there are X, Y, Z such that
ρ(X,X1)∧ ρ(X,X2)∧ ρ(Y, Y1)∧ ρ(Y, Y2)∧ ρ(Z,Z1)∧ ρ(Z,Z2), and these all have the same
parity, and X ⊂ Y ⊂ Z or X ⊃ Y ⊃ Z.

Lemma 3.23. Let (S,<) be a total ordering without endpoints with induced betweenness
relation B, and let n ∈ N. Then (S,B) is 1st-order interpretable in (S,Bn).

Proof. We start by giving a formal proof using the definition of what it means to be 1st-
order interpretable (Definition 2.38), followed by a more intuitive explanation of the proof.

Following Definition 2.38, let M = (S,Bn) and N = (S,B), and thus M = N = S.
D = M , E is equality, and so the bijection γ going from N to D\E = M is the identity
map. Furthermore, n = 1 and m = 3, and the formula ϕ containing mn = 3 free variables
(x, y and z) is as follows:

ϕ := ∃ p1 ∃ p2 ... ∃ p2n+2 :
( n+1∧
i=1

{pi+1, ..., pi+n}Bn[pi, pi+n+1]
)
∧[ ∨

1≤i<j<k≤2n+2

((x = pi ∧ y = pj ∧ z = pk) ∨ (x = pk ∧ y = pj ∧ z = pi))
]

Thus M |= ϕ if and only if N |= yB[z, x], where the ternary relation R(x, y, z) is yB[z, x].

Intuitively, given distinct points x, y, and z, we choose distinct points p1, ..., p2n+2 such
that x, y, and z appear among these somewhere. This is possible since S has no endpoints.
Furthermore we may make this choice so that p1 < p2 < ... < p2n+2. It is clear that now
that ϕ holds.

Conversely, suppose that ϕ holds. We note that the hypothesis allows us to find which are
the two endpoints given any n + 2 distinct points of S (using the version of betweenness
assumed).

By assumption, there are (distinct) points pi validating the formula. Then for each i with
1 ≤ i ≤ n + 1, pi and pi+n+1 are the endpoints of {p1, ..., pi+n+1}. To ease the argument,
let us suppose that p1 < p2, p3, ..., pn+1 < pn+2. Then p2 and pn+3 are the endpoints
of {p2, p3, ..., pn+3}, from which it follows that p1 < p2 < p3, p4, ...pn+1 < pn+2 < pn+3.
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Repeating this argument determines the ordering on all pi, and since x, y, z appear among
them, we can also determine which of these lies between the other two.

We can extend this result to betweenness on m-tuples:

Lemma 3.24. Let S be a total ordering without endpoints. Then (S,B) is 1st-order
interpretable from (Sm, Bm

n ).

Proof. Similar to Lemma 3.23.

We finally define a new form of partial betweenness, and show that standard betweenness
is definable from this new betweenness. This will come in useful for several future results.

Definition 3.25. Let S be a linearly ordered set under <. Then Bdist(m) is a par-
tial betweenness relation defined on S as follows: yBdist(m)[x, z] iff x < y < z and
dist(x, y), dist(y, z) ≥ m, or z < y < x and dist(x, y), dist(y, z) ≥ m.

Definition 3.26. We now define the notion of comparability. We say that for x, y ∈ S,
x and y are comparable if there exists a z ∈ S such that xBdist(m)[y, z] ∨ yBdist(m)[x, z] ∨
zBdist(m)[x, y]. In this case we say that x, y are comparable.

Lemma 3.27. Let S be any total ordering of size ≥ 4m. Then x, y ∈ S are comparable if
and only if dist(x, y) ≥ m.

Proof. First assume x, y are comparable.

Then xBdist(m)[y, z] or yBdist(m)[x, z] or zBdist(m)[x, y] for some z, and so dist(x, y) ≥ m.

Conversely suppose dist(x, y) ≥ m. If S has no endpoints in one or both directions, then
there will always be a z of distance at least m from x and y, and so we have xBdist(m)[y, z]
or yBdist(m)[x, z].

Let S be finite of size at least 4m. Assume without loss of generality that x < y. Then if
the distance between x and the ‘left endpoint’ of S is at least m, choose z to be the left
endpoint. If dist(x, y) ≥ 2m then choose z to be a point in the middle of x, y, such that
zBdist(m)[x, y].

In the remaining case, both the distance between x and the left endpoint of S is less than
m, and dist(x, y) < 2m. Then, since S has size at least 4m, there exists a z > y in S with
dist(y, z) ≥ m. Hence x, y are comparable.
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Lemma 3.28. Let Z = {0, 1, ..., z − 1} be a finite ordinal of size ≥ 4m. Then (Z,B) is
definable in (Z,Bdist(m)).

Proof. Since Z ≥ 4m, by Lemma 3.27 any two points in Z are comparable if and only if
the distance between them is greater than or equal to m.

Let x ∈ S. Define the set C1(x) as the set of all y comparable to x, and the set C2(x) as
the set of all y not comparable to x.

We have two cases here; either x is distance ≥ m from an endpoint, in which case C1(x)
has two components, everything lying to the right of x at distance ≥ m and everything
lying to its left at distance ≥ m, or x is distance < m from an endpoint.

We can distinguish these two cases by noting that x is distance < m from an endpoint if
there do not exist y, z ∈ S such that xBdist(m)[y, z]. If this is the case, we let D1(x) = C1(x).
Now consider all the points in C2(x) that are comparable to all of D1(x). This is the set
of all points between x and the endpoint it is closest to, including x. Let this set be E(x).
Finally, let D2(x) be the set C2(x)\E(x), and let D(x) = D1(x) ∪ D2(x). Thus D(x) is the
set of all points to one side of x, and E(x) the set of points to its other side (including x).

Now assume x has distance at least m from both endpoints, i.e. there exist y, z ∈ S such
that xBdist(m)[y, z]. We define the following equivalence class on C1(x): let y and z in
C1(x) be equivalent if for all t, xBdist(m)[y, t] if and only if xBdist(m)[z, t]. Then y and z are
equivalent in this sense if and only if they are both comparable with x and they are on the
same ‘side’ of x and of distance at least m from x. Both these equivalence classes will be
nonempty as x is distance as least m from each end of S. Call these equivalence classes
D1(x) and E1(x).

Now let y ∈ E2(x) if and only if y is comparable to all of D1(x), and y ∈ D2(x) if and only
if y is comparable to all of E1(x). Let D(x) = D1(x)∪D2(x), and let E(x) = E1(x)∪E2(x).
Again, D(x) is the set of all points to one side of x, and E(x) the set of points to its other
side.
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Now let F(x) = {D(x), E(x)} for each x, and consider F(x),F(y),F(z) for x, y, z ∈ Z.
Then yB[x, z] if and only if there exists X ∈ F(x), Y ∈ F(y), and Z ∈ F(z), such that
X ⊆ Y ⊆ Z or X ⊇ Y ⊇ Z.

Lemma 3.29. Let S be a total ordering without endpoints. Then (S,B) is definable in
(S,Bdist(m)).

Proof. Let x ∈ S. Again define the set C1(x) as the set of all y comparable to x, and C2(x)
be the set of all y not comparable to x. Let y and z be equivalent if for all t, xBdist(m)[y, t]
if and only if xBdist(m)[z, t]. Then y and z are equivalent in this sense if and only if they
are both comparable with x, and they are on the same ‘side’ of x and of distance at least
m from x. Hence there are two equivalence classes, which we call D1(x) and E1(x).

We now have two cases:

Case 1: The set C2(x) is comparable to all of D1(x) and E1(x).

In this case, C2(x)′ = C2(x)∪{x} is a maximal finite section of size ≤ 2m. We can determine
the size of C2(x)′ as it is simply the number of points in the graph that are comparable with
all of D1(x) and E1(x). Thus we pick a formal labelling of these points with an ordering
<, which is forced upon us by the existing Bdist(m) configuration.

Case 2: The set C2(x) is not comparable to all of D1(x) or all of E1(x).

In this case C2(x)∪{x} is a finite section of size 2m+1, and additionally, there are at least
m discrete points to the right of x and m discrete points to its left.

Now, consider the set of all points in C2(x) that are comparable to all of D1(x). No point
lying between x and D1(x) will be in this set, so this gives us the set of points between x and
E1(x). Call this set E2(x), and similarly, let D2(x) be the set of all points in C2(x) that are
comparable to all of E1(x). Again, let D(x) = D1(x)∪D2(x), and let E(x) = E1(x)∪E2(x),
so that D(x) is the set of all points to one side of x, and E(x) the set of points to its other
side.
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Now, given any a, b, c ∈ C2(x), I claim we can determine which lies between the other
two. First suppose without loss of generality that two of a, b lie in D2(x) and c lies in
E2(x). Then we know c doesn’t lie between a and b. Now consider c′ ∈ E2(x) such that
c′ is comparable to exactly one of a, b. Such a c′ always exists because, supposing b lies
closer to x than a does, and dist(a, x) = k < m, then we can let c′ be the point in E2(x)
of distance m − k from x. It follows that for any two a, b in D2(x) or in E2(x), we can
determine whether aB[b, x] or bB[a, x].

Now suppose a, b, c all lie in D2(x). Then we can determine betweenness on any pair in
a, b, c and x by the method above. Thus we can determine betweenness on a, b, c as follows:
bB[a, c] if and only if bB[a, x] and cB[b, x] (this can be easily justified by the methods in
Section 3.1).

So what happens if one of D1(x), E1(x) is comparable to all of C2(x), but not the other? I
claim we can ignore those cases, because if the maximal finite section has size ≤ 2m, then
we are in Case 1 above (and we will notice this when picking a more central point in this
maximal finite section), and if the maximal finite section has size ≥ 2m + 1, then again,
when we pick a more central point in the maximal finite section we will obtain betweenness
on the entire section as in Case 2

We now expand this Lemma to n-tuples on S:

Definition 3.30. Let X = (x1, ..., xn), Y = (y1, ..., yn) be n-tuples. Then dist(X, Y ) ≥ m
iff xn < y1 and dist(xn, y1) ≥ m, or yn < x1 and dist(yn, x1) ≥ m.

Definition 3.31. Let Bk
dist(m) be betweenness on k-tuples of a set S without endpoints,

defined for all X = (x1, ..., xk), Y = (y1, ..., yk), Z = (z1, ..., zk) where dist(X, Y ) ≥
m, dist(X,Z) ≥ m, and dist(Y, Z) ≥ m.

Thus Bk
dist(1) is the same as Bk.
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We can also extend the notion of comparability to Bk
dist(m) as follows: two tuples X and Y

are comparable if dist(X, Y ) ≥ m (formally: X and Y are comparable if there exists some
Z such that XBk

dist(m)[Y, Z] or Y B
k
dist(m)[X,Z] or ZB

k
dist(m)[X, Y ]).

Theorem 3.32. Let S be a total ordering without endpoints. Then if S has no non-
trivial maximal finite section of size less than m + n, then (S,Bdist(m+n)) is interpretable
in (Sn, Bn

dist(m)).

Proof. Given an n-tuple X = (x1, ..., xn), let C(X) be the set of all n-tuples comparable to
X.

Now split C(X) into two halves, D(X) and E(X) as in Lemma 3.29 for each X ∈ Sn.

Let X0 ∈ Sn be fixed, with corresponding sets D(X0) and E(X0). It will be true that
for every other set Y ∈ Sn, either D(Y ) ⊆ D(X0) or D(X0) ⊆ D(Y ), or E(Y ) ⊆ D(X0)
or D(X0) ⊆ E(Y ). For every such Y , let D(Y ) be such that either D(Y ) ⊆ D(X0) or
D(X0) ⊆ D(Y ). Thus all the Ds in the graph will end up on the same side as one another,
and similarly with the Es. Without loss of generality assume D(X0) < X0 < E(X0).

We now have two cases for each X ∈ Sn, where X = (x1, ..., xn): either D(X) has a
‘maximum’ d1, or not. If D(X) does have a maximum, then every element of D(X) ends in
something less than or equal to d1, and dist(d1, x1) = m. If D(X) doesn’t have a maximum,
then D(X) has no point of distance exactly m from x1.

In clarification, I remark that if D(X) has no maximum, there could be any number of
points < m (perhaps none) lying between all of D(X) and x1. Any n-tuple beginning with
one of these points is comparable to all of D(X), meaning there is no tangible difference
between tuples beginning with one of these points and tuples beginning with x1.

We can distinguish between the two cases as follows: if there exists an n-tuple Z ∈ D(X)
such that there aren’t infinitely many n-tuples Y with Y B[X,Z], then D(X) has a maxi-
mum, and otherwise it doesn’t.

Since every maximal finite section has size at least m + n, there is an n-tuple X in every
maximal finite section such that D(X) has a maximum. Similarly, in any finite component
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with a left endpoint, there is an n-tuple X of distance at least m from the this edge so
that D(X) has a maximum.

We now define an equivalence relation, ≡, on Sn as follows: given X, Y ∈ Sn, X ≡ Y if
D(X) = D(Y ). Thus n-tuples (x1, ..., xn) and (y1, ..., yn) are equivalent if either x1 = y1
(if D(X) has a maximum), or x1, y1 lie within distance < m of the minimum of a finite
component, in which case D(X) doesn’t have a maximum.

The idea is that every time D(X) doesn’t have a maximum, we define the equivalence class
for x1 to be to the minimum of the finite component x1 lies in.

The ≡-classes are now points x ∈ S, corresponding to the set of all n-tuples beginning
with x. These can take any value in S, except for values of distance less than m from the
minimum point of a finite component. Let the set of values x can take be S ′.

We define comparability on equivalence classes as follows: x and y are comparable if there
is some representative in x that is comparable to some representative in y. Any pair of
equivalece classes x, y are thus comparable to one another if and only if dist(x, y) ≥ m+n.
Now consider x, y, z, all pairwise comparable. Then yB[x, z] if and only if there exists a
representative X of x that is comparable to some representative Z of z but not to any
representative Y of y, or there exists a representative Z of z that is comparable to some
representative X of x but not to any representative Y of y.

We have thus recovered (S ′, Bdist(m+n)). We would like to expand this to S, which we
can do as follows: formally add m − 1 points between the minimum point of every finite
component, and its successor, and choose some natural ordering on these points < with
induced betweenness Bm+n. Thus (S,Bdist(m+n)) is interpretable from (Sn, Bn

dist(m)).

3.3 Betweenness Relations on Trees

We now expand some of the betweenness theorems to partial betweenness on trees.

We start with some basic definitions.
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Definition 3.33. A tree (T,<) is a partially ordered set such that for each t ∈ T , the set
{s ∈ T : s < t} is totally ordered, and any two elements have a common lower bound.
A proper tree is a tree which is not a totally ordered set i.e. a proper tree has 2 distinct
vertices x and y such that ¬x < y and ¬y < x.

Definition 3.34. A tree (T,<) is dense if for any s, t ∈ T with s < t, the interval [s, t] is
dense.

Definition 3.35. Let T be a tree. Then two distinct vertices x, y ∈ T are comparable,
denoted by comp(x, y), if either x < y or y < x. If x and y are subsets of T whose elements
are comparable, then x and y are comparable if every element of x is comparable to every
element of y.

Note that x is not comparable to itself.

Definition 3.36. Let T be a tree. Then x ∈ T is a leaf if there is no y ∈ T with x < y.

Definition 3.37. Let (T,<) be a tree. Then a point x is a ramification point if x is the
greatest lower bound of some incomparable y, z ∈ T .

Definition 3.38. We can form a least extension T+ of T so that any two members of T+

have a greatest lower bound (so that it is a meet semilattice).

This is a special case of the Dedekind-MacNeille completion [4]. In fact, all ‘new’ points
will be the greatest lower bound of two incomparable members of T .

We call points of T+\T gaps.

Note that |T+| ≤ max(ℵ0, |T |).

Definition 3.39. Let (T,<) be a tree. If x ∈ T+ we define ∼ on {y : y > x} as follows:
y ∼ z if there exists a t such that x < t ≤ y, z.

This is an equivalence relation. Reflexivity and symmetry are clear. To see that it is
transitive suppose y1 ∼ y2 ∼ y3. Then y1, y2 ≥ t1 > x, and y2, y3 ≥ t2 > x, and so
t1, t2 ≤ y2. Since predecessors of y2 are linearly ordered, either t1 ≤ t2 or t2 ≤ t1, and so
min{t1, t2} ≤ y1, y3.

Equivalence classes are called cones at x.

Definition 3.40. Let (T,<) be a tree. Then T has a root x if x is a minimal point in T .

Note that a tree can only have one such minimal point.
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Let T n be the set of all strictly increasing n-tuples in T .

Definition 3.41. Partial betweenness on n-tuples for trees. Let (T,<) be a tree. We
define betweenness on n-tuples of T as follows: given (x1, ..., xn), (y1, ..., yn), (z1, ..., zn),
(y1, ..., yn)B

n[(x1, ..., xn), (z1, ..., zn)] if and only if (y1, ..., yn)Bn[(x1, ..., xn), (z1, ..., zn)] holds
on some linearly ordered subset of T .

Definition 3.42. We now expand n-betweenness Bn to trees: {y1, ..., yn}Bn[x, z] holds iff
the set of points {y1, ..., yn} lies between x and z in some linearly ordered subset of T .
Again, we call x and z the endpoints of the set {y1, ..., yn, x, z}.

Note that {y1, ..., yn}Bn[x, z] → {yπ(1), ..., yπ(n)}Bn[x, z], where π is any permutation on
{1, ..., n}, and that {y1, ..., yn}Bn[x, z]→ {y1, ..., yn}Bn[z, x].

Again note that for 1-betweenness there is a slight difference of notation, in that we write
yB[x, z] as opposed to {y}B1[x, z].

Definition 3.43. Again, we can combine the above definitions as follows: Bm
n is defined

as partial n-betweenness on m-tuples, i.e. this is a partial relation on n+2 m-tuples where
{Y1, ..., Yn}Bn[X,Z] holds iff each m-tuple in the set {Y1, ..., Yn} lies between the m-tuples
X and Z in some linearly ordered subset of T .

Similarly, note that {Y1, ..., Yn}Bn[X,Z] → {Yπ(1), ..., Yπ(n)}Bn[X,Z], where π is any per-
mutation on {1, ..., n}, and that {Y1, ..., Yn}Bn[X,Z]→ {Y1, ..., Yn}Bn[Z,X].
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Lemma 3.44. Let (T,<) be a proper tree without endpoints with induced partial be-
tweenness relation B, and let n ∈ N. Then (T,<) is 1st-order interpretable in (T n, Bn).

Proof. We can show that (T,B) is 1st-order interpretable in (T n, Bn) just as in the proof
of Lemma 3.22. Thus it remains to show that (T,<) is interpretable in (T,B).

First note that t1 and t2 are not comparable if for every t3, none of t1, t2, t3 are between
the other two, because T has no endpoints.

Since T is a proper tree, there exist x, y, z such that x and y are not comparable to one
another, but are both comparable to z. In this case we know that z < x, y. Such x, y, z
always exists since T is a proper tree.

Now suppose we are given distinct comparable t1, t2 ∈ T and we would like to determine
whether t1 < t2 or t2 < t1. We have 3 cases:

• t1, t2 are both comparable to both x and y. In this case, t1 < t2 if t2B[t1, x].

• t1 is comparable to both x and y, and t2 is only comparable to one of x, y (assume x
without loss of generality). Then t1 < t2 by default.

• t1, t2 are both comparable to only one of x, y. Then t1 < t2 if t1B[z, t2], where z is
as above.

Hence for any comparable t1, t2, we can determine whether t1 < t2 or t2 < t1, and so (T,<)
is interpretable from (T n, Bn).

Lemma 3.45. Let (T,<) be a tree without leaves with induced betweenness relation B,
and let n ∈ N. Then (T,B) is 1st-order definable from (T,Bn). Moreover, if T is a proper
tree then (T,<) is 1st-order definable from (T,Bn).

Proof. The proof that (T,B) is 1st-order definable from (T,Bn) is similar to that of Lemma
3.23, and the proof that (T,<) is 1st-order definable from (T,Bn) if T is a proper tree is
similar to that of Lemma 3.44.

The reason we require T to not have leaves is similar to why we have mainly looked at
total orderings without endpoints, namely, that there are quite a few complications as
soon as endpoints are considered. T must be a proper tree in order to determine < rather
than B, as we must be able to consider 3 elements x, y, z in T as in Lemma 3.44, i.e. z
is comparable to x and x, but x and y are not comparable to one another (in which case
z < x and z < y).

Lemma 3.46. Let T be a tree without endpoints. Then (T,B) is definable from (Tm, Bm
n ).

Moreover, if T is a proper tree that does not have a minimal element which ramifies, then
(T,<) is 1st-order definable from (Tm, Bm

n ).
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Proof. The proof that (T,B) is 1st-order interpretable from (Tm, Bm
n ) is similar to that

of Lemma 3.24, and the proof that (T,<) is 1st-order definable from (Tm, Bm
n ) if T is a

proper tree that doesn’t have a minimal element which ramifies is similar to that of Lemma
3.44.

3.4 The Graph G(S, 1n2n)

Proposition 3.47. Let S be any total ordering with no endpoints. Then (S,<) is 1st-
order interpretable from the relation (Sn, <n), where (x1, ..., xn) <n (y1, ..., yn) if and only
if x1 < ... < xn < y1 < ... < yn.

Proof. Let a ∈ Sn, and define a+ := {y ∈ Sn : a <n y}, i.e. a+ is the set of all members of
Sn which are greater than a.

We now define the following equivalence relationon Sn: a ∼ b iff a+ = b+ (one can check
that this is an equivalence relation). The idea is that we identify two increasing n-tuples
if they have the same set of strict upper bounds, which depends only on the final entry.

The equivalence classes of ∼ are in natural 1-1 correspondence with members of S. Fur-
thermore, we can also recover the ordering, since the greatest member of a is less than or
equal to the greatest member of b if and only if b+ ⊆ a+.

Note that this is first-order:

a+ = b+ ↔ (∀y)(a <n y ↔ b <n y)

And similarly,

b+ ⊆ a+ ↔ (∀y)(b <n y → a <n y)

Remark 3.48. Similarly, the total ordering S can be reconstructed from the directed
graph G(S, 1k2k) with an edge from (y1, ..., yk) to (x1, ..., xk) if and only if x1 < ... < xk <
y1 < ... < yk.

Theorem 3.49. Let (S,<) be a dense total ordering without endpoints, BS the associated
betweenness relation, and let n ≥ 2 lie in N. Then (S,BS) is 1st-order definable inside
G = G(S, 1n2n).

Proof. In the graph G, there is an edge between (a1, ..., an) and (b1, ..., bn) iff either an < b1
or bn < a1.
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Let A be the n-tuple (a1, ..., an), and let NA be the set of neighbours of A in G. Then NA

is the disjoint union of two sets: the set of n-tuples whose greatest element is less than a1,
and the set of n-tuples whose least element is greater than an. From this it follows that

NA = NB if and only if a1 = b1 and an = bn

In this case, we write A ≡ B (we see that this is an equivalence relation). Thus we can
identify the ≡-classes with pairs (a1, an) such that a1 < an.

Note that this is first-order, as we can write

NA = NB ⇔ ∀C(A ∼ C ⇔ B ∼ C)

for elements A,B,C.

Furthermore,

NA ⊆ NB if and only if a1 ≤ b1 and bn ≤ an

and for this reason, it makes sense to identify each ≡-class with a closed interval [a1, an],
rather than the pair of its endpoints, since then the relation [a1, an] ⊆ [b1, bn] of inclusion
is definable.

Let I be the family of all these closed intervals:

I := {[a, b] : a < b, a, b ∈ S such that there exist a1 < ... < an with a1 = a and an = b}

We would now like to define the relations “A ∪ B ∈ I” and “A ∩ B ∈ I” for intervals
A = [a1, an] and B = [b1, bn].

Let A ∨ B be the least upper bound under inclusion of these two intervals. This always
exists (for example if a1 < bn then this will be the interval [a1, bn]), and is given by the
interval C such that A ⊆ C and B ⊆ C, and for every D ∈ I, if A ⊆ D and B ⊆ D, then
C ⊆ D.

Let A∧B be the greatest closed interval C lying in both A and B. This exists if and only
if the intersection of A and B is nonempty and not a singleton, and is given by the interval
C such that C ⊆ A and C ⊆ B, and for every D ∈ I, if D ⊆ A and D ⊆ B, then D ⊆ C.

Intersection: We now define A ∩ B as follows: A ∩ B ∈ I if and only if A ∧ B exists, in
which case A ∩B = A ∧B, and otherwise A ∩B is undefined.
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Consider the statement that A∧B does not exist, and for any A′ strictly containing A and
such that A ∨B = A′ ∨B, A′ ∧B exists.

This describes two intervals overlapping in a singleton. To see this, note that if they do
overlap in a singleton, whenever you try to increase one of the intervals while retaining
the same least upper bound (now just the union), you have to increase the ‘bit in the
middle’ where they overlap, so that the greatest lower bound now exists. If however, they
are disjoint, then you can increase one of them a little bit (in the middle) so that it is
still disjoint from the other, and the greatest lower bound still doesn’t exist. Again, here
we utilise the fact that S is dense, as otherwise the statement above would not necessarily
describe two intervals overlapping in a singleton.

Union: This enables us to define A ∪B in cases where this is an interval. Namely, we let
A ∪ B = A ∨ B provided either A ∧ B exists (so is an interval), or A and B overlap in a
singleton.

We can now exploit the definability of intervals overlapping in a point to gain access to
points of S inside G. Let us call a pair (A,B) which overlap in a singleton pointed. We
note that this happens provided that either a1 = bn or b1 = an, and we say that a pointed
pair ([x, y], [y, z]) points to y.

Note that for n = 1, this entire argument becomes trivial as (A,B) is pointed iff A = B.

We would now like to identify any y ∈ S with the set of all pairs of intervals ([x, y], [y, z])
in I pointing to y.

First define the following equivalence relation ≡ρ: We say that (A,B) ≡ρ (C,D) if (A,C)
and (B,D) are pointed and B 6= C or (A,D) and (B,C) are pointed and A 6= D.

Since (A,B) ≡ρ (B,A) we can switch round the pairs, and assume always that A = [a, x]
and B = [x, b] for some a, b, x.

We would like to show that (A,B) ≡ρ (C,D) if and only if A = [a, x], B = [x, b], C = [c, x],
and D = [x, d] for some a, b, c, d, x. If this is the case, it is immediate that ≡ρ is an
equivalence relation.

Let’s assume then for a contradiction that (A,B) ≡ρ (C,D) and A = [a, x], B = [x, b], C =
[c, y], and D = [y, d] for some a, b, c, d, x, y with x 6= y.

Suppose first that (A,C) and (B,D) are pointed. This implies that a = y or x = c, and
also that b = y or x = d. There appear to be 4 options. However, as a 6= b and c 6= d,
there are only 2, which are that a = y and x = d, or that x = c and b = y. But the first
implies that A = D, which we have ruled out, and the second that B = C, also impossible.

One argues similarly if (A,D) and (B,C) are pointed. Hence ≡ρ is an equivalence relation.
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It now remains to recover the betweenness relation, which can be done as follows:

For pointed pairs (A,B), (C,D), (E,F ), the element of S pointed to by (C,D) lies between
the elements of S pointed to by (A,B) and (E,F ) if and only if there exist (A′, B′), (C ′, D′),
(E ′, F ′) respectively equivalent to (A,B), (C,D), (E,F ) such that

A′ ⊆ C ′ ⊆ E ′ and F ′ ⊆ D′ ⊆ B′

or E ′ ⊆ C ′ ⊆ A′ and B′ ⊆ D′ ⊆ F ′

See diagram for intuition:

Thus we can reconstruct (S,BS) from G. Note that this is first-order.

We remark that although the dense case without endpoints seems restrictive (in the count-
able case it is just Q), in the uncountable case there is a vast range of possible orderings
to which it could apply.

We would now like to expand this theorem to all total orderings without endpoints. We
start with some definitions.

Definition 3.50. Let S be a total ordering. Then the comparability relation C on Sn is
the relation which holds for two n-tuples (x1, ..., xn) and (y1, ..., yn) if and only if x1, ..., xn <
y1, ..., yn or y1, ..., yn < x1, ..., xn.

Definition 3.51. Let S be any total ordering, and let I(S) be the set of all closed intervals
on S that are not singletons. Then the comparability relation C on I(S) is the relation
which holds for two intervals [x1, xn] and [y1, yn] if and only if xn < y1 or yn < x1.
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Note that comparability on n-tuples of S is the same thing as the edge relation inG(S, 1n2n).

Theorem 3.52. Let (S,<) be any total ordering without endpoints, BS the associated
betweenness relation, and let n ≥ 2 lie in N. Then (S,BS) is 1st-order definable inside
G = G(S, 1n2n).

Proof. Similarly to the proof of Theorem 3.49, define ≡-classes on closed intervals [a1, an]
in S of cardinality at least n, and again let I be the family of these closed intervals. Note
that disjointness and inclusion are easily definable in I.

We would like to represent points of S inside G by means of ‘pointed pairs’ as in the proof
of Theorem 3.49. The problem here arises if a pair of intervals which may appear suitably
‘pointed’ in fact overlap at a number of points between 2 and n− 1.

Let us call a pair (A,B) ∈ I awkward if:

(i) A and B are not disjoint (i.e. representatives from A and B are not neighbours in G)

(ii) There is no C in I contained in both A and B

It is clear that awkward pairs are intervals A,B which overlap in a set of size < n.

Since clearly A ∪ B ∈ I, we can express that D = A ∪ B. We simply say that A ⊆ D
and B ⊆ D, and for any E such that A ⊆ E and B ⊆ E, we have D ⊆ E. In the dense
case, |A∩B| must be 1, and everything goes through straightforwardly. If S is (in places)
non-dense, then we have to use a different trick. We would like to decrease A as far as
possible while retaining awkwardness, until the intersection does have size 1. The trouble
is that if A is too small, reducing its size may mean that it isn’t in I any more. So we first
have to increase it a bit, and after that decrease it again.

Let A′ be a proper superset of A such that (A′, B) is awkward. Such A′ exists because one
can extend in the direction away from B, since S has no endpoints. Repeat this n times.
Then such A′ has size at least 2n, and overlaps with B at at most n − 1 points (so if we
‘remove’ at most n − 2 points from A′ so that A′ and B overlap at a singleton, we know
A′ still has size at least n). Now if possible, find A′′ ⊂ A′ so that (A′′, B) is still awkward,
and A′′ ∪ B = A′ ∪ B (if this isn’t possible, then (A′, B) already overlap at a singleton).
Since the union is preserved, the endpoints of A′ and A′′ away from B must agree, so the
only way that A′ can strictly decrease is in the intersection with B. So this must go down.
Repeating n (at most) times, eventually it isn’t possible to decrease any more, and this
must mean that A′′ and B intersect in a singleton.

The rest of the proof is similar to the proof of Theorem 3.49.
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4 Reconstructions of the Shift Graph

We now turn our attention to reconstructing the underlying set S from the shift graph
G(S, 1n3m2n). We start by considering general linear orderings, and then briefly looking
at partial orderings that behave in a similar way.

4.1 Linear Ordering Shift Graphs

We now consider shift graphs in which the underlying set is any linear order. We will focus
on infinite linear orderings.

Lemma 4.1. Let (S,<) be any total ordering without endpoints. Then any pair of co-
cliques C and D in G(S, 132) with the following properties:

i) C =
⋂
{Nv : v ∈ D}

ii) D =
⋂
{Nv : v ∈ C}}

and where |C|, |D| ≥ 2 must be of the form

Cx = {(v, x) : v < x}
Dx = {(x,w) : x < w}

where x ∈ S.

Proof. First we see that Cx, Dx satisfy i) and ii). Now, let C and D be a pair of sets
satisfying i) and ii). Then we remark that if (c1, c2) ∈ C and (d1, d2) ∈ D, then either

c1 < c2
‖
d1 < d2

or
c1 < c2
‖

d1 < d2

Note that we cannot have (c1, c2), (c
′
1, c
′
2) ∈ C with c2 = d1 and c′1 = d2 for the same

(d1, d2) ∈ D, as otherwise (d1, d2) is the only point of D adjacent to both (c1, c2) and
(c′1, c2), contrary to the assumption that both C and D contain at least 2 elements.

Thus either for all (c1, c2) ∈ C and (d1, d2) ∈ D we have c2 = d1, or for all (c1, c2) ∈ C and
(d1, d2) ∈ D we have c1 = d2.

Without loss of generality we assume the former. We then note that, by the definition of C
and D, any pair ending in c2 must lie in C, and any pair beginning with c2 must lie in D.
Thus any pair of subsets of G satisfying i) and ii) must be of the form Cx = {(v, x) : v < x}
and Dx = {(x,w) : x < w}.
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Theorem 4.2. Let (S,<) be any total ordering without endpoints, and B the associated
betweenness relation. Then (S,B) is 2nd-order interpretable inside G = G(S, 132).

Proof. We are interested in identifying co-cliques C and D with the following properties:

i) C =
⋂
{Nv : v ∈ D}

ii) D =
⋂
{Nv : v ∈ C}

where |C|, |D| ≥ 2.

By Lemma 4.1, a pair of subsets of V (G) satisfying i) and ii) must be of the form

Cx = {(v, x) : v < x}
Dx = {(x,w) : x < w}

where x ∈ S.

Let Ax = Cx ∪Dx for every such pair {Cx, Dx} and x ∈ S. Thus V (G) =
⋃
{Ax : x ∈ S},

and for each x 6= y, Ax ∩ Ay contains exactly one element, namely (x, y) or (y, x).

Now, given Ax, Ay, Az, we see that yB[x, z] iff the element of Ax ∩Ay is a neighbour of the
element of Ay ∩Az, and neither of these elements is a neighbour of the element of Ax∩Az.

Thus we can reconstruct S with the betweenness relation from G, and so we can reconstruct
S up to order reversal by Theorem 3.15.

Lemma 4.3. Let (S,<) be a dense total ordering without endpoints, and let n be a positive
integer. Then any pair of co-cliques C and D in G(1n32n) with the following properties:

i) C =
⋂
{Nv : v ∈ D}

ii) D =
⋂
{Nv : v ∈ C}

and where C and D are nonempty must either be of the form

Cx = {(v1, v2, ..., vn, x) : vn < x}
Dx = {(x,w1, w2, ..., wn) : x < w1}

where x ∈ S, or of the form

xCy = {(x, v1, v2, ..., vn−1, y) : x < v1 < v2 < ... < vn−1 < y}
xDy = {(w1, w2, ..., wn, x) : wn < x} ∪ {(y, w′1, w′2, ..., w′n) : y < w′1}

where x, y ∈ S.
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Proof. First we see that Cx, Dx and xCy, xDy satisfy i) and ii). Now, let C and D be
a pair of sets satisfying i) and ii). Then we remark that if c = (c1, ..., cn+1) ∈ C and
d = (d1, ..., dn+1) ∈ D, then either

c1 < c2 ... < cn+1

‖
d1 < d2 ... < dn+1

in which case we say c is “left adjacent” to d, or

c1 < c2 ... < cn+1

‖
d1 < d2 ... < dn+1

in which case we say c is “right adjacent” to d.

Note that c, d are adjacent provided c is left or right adjacent to d.

We now have two cases:

Case 1: there exist c, c′ ∈ C and d ∈ D such that c is left adjacent to d, and d is left
adjacent to c′.

c1 < c2 ... < cn+1

‖
d1 < d2 ... < dn+1

‖
c′1 < c′2 ... < c′n+1

Then any n + 1-tuple lying in C is adjacent to d, so must end with d1 or begin with
dn+1, and hence any n+ 1-tuple beginning with d1 and ending with dn+1 is adjacent to all
members of C, and so lies in D.

Similarly, any n+1-tuple in D is adjacent to c and c′, so must begin with d1 and end with
dn+1. The set of all n + 1-tuples which are neighbours of all of these is precisely the set
of all n + 1-tuples beginning with dn+1 or ending with d1, it follows that C is the set of
everything adjacent to D.

The argument is similar if d, d′ ∈ D and c ∈ C.

Case 2: neither of the above hold.

Then for every c ∈ C, either every d ∈ D is left adjacent to c or every d ∈ D is right
adjacent to c.

Similarly, for every d ∈ D, either every c ∈ C is left adjacent to d or every c ∈ C is right
adjacent to d.
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Without loss of generality assume there is a d ∈ D such that every c ∈ C is right adjacent
to d.

c1 < c2 ... < cn+1

‖
d1 < d2 ... < dn+1

Then c1 = dn+1, and moreover all members of C must begin with this same c1. Thus all
n + 1-tuples ending in dn+1 lie in D, and similarly all n + 1-tuples beginning in c1 lie in
C.

Theorem 4.4. Let (S,<) be a dense total ordering without endpoints, B the associated
betweenness relation, and let n be a positive integer. Then (S,B) is 2nd-order interpretable
inside G = G(S, 1n32n).

Proof. Consider co-cliques C and D with the following properties:

i) C =
⋂
{Nv : v ∈ D}

ii) D =
⋂
{Nv : v ∈ C}

where C and D are nonempty.

By Lemma 4.3, a pair of subsets of V (G) satisfying i) and ii) must either be of the form

Cx = {(v1, v2, ..., vn, x) : vn < x}
Dx = {(x,w1, w2, ..., wn) : x < w1}

where x ∈ S, or of the form

xCy = {(x, v1, v2, ..., vn−1, y) : x < v1 < v2 < ... < vn−1 < y}
xDy = {(w1, w2, ..., wn, x) : wn < x} ∪ {(y, w′1, w′2, ..., w′n) : y < w′1}

where x, y ∈ S.

Let F be the family of all pairs {C,D} satisfying i) and ii). Let F1 be the family of all
pairs {Cx, Dx}, where Cx, Dx are as above, and let F2 be the family of all pairs {xCy, xDy},
where xCy, xDy are as above. Then F = F1 ∪ F2.

Given some {C,D} ∈ F , we would like to determine whether {C,D} ∈ F1 or {C,D} ∈ F2.
I claim that {C,D} ∈ F2 if and only if there exist pairs of sets {C ′, D′}, {C ′′, D′′} ∈ F
with {C ′, D′}, {C ′′, D′′} 6= {C,D} such that for some X ′ ∈ {C ′, D′} and X ′′ ∈ {C ′′, D′′},
we have X ′ ∪X ′′ ∈ {C,D}.

To see this, suppose {C,D} ∈ F2. Then {C,D} = {xCy, xDy} for some x, y. Now let
{C ′, D′} = {Cx, Dx} and {C ′′, D′′} = {Cy, Dy}, and let X ′ = Cx and X ′′ = Dy. Thus we
have xDy = Cx ∪Dy, i.e. Cx ∪Dy ∈ {xCy, xDy}.
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Conversely, suppose {C,D} /∈ F2, i.e. {C,D} = {Cx, Dx} for some x. We will show that
Cx cannot be the union of two sets of the form Cy, Dy, yCz, yDz.

• Cx cannot be the union of any Cy with another set, as Cx ∩ Cy = ∅ for all x 6= y.

• Cx cannot be the union of any Dy with another set, as if x ≤ y then Dy contains
points of the form (y, z1, ..., zn) with x ≤ y < z1 which do not lie in Cx, and if x > y
then Dy contains the points of the form (y, z1, ..., zn) where zn 6= x which do not lie
in Cx.

• We see that Cx cannot be the union of any yDz with another set, as if x < z then
yDz contains points of the form (z, w1, ..., wn) where x < z < w1 which do not lie in
Cx, and if x > y then yDz contains points of the form (v1, ..., vn, y) where vn < y < x
which don’t lie in Cx (note that we have covered all cases here since y 6= z).

Thus Cx must be the union of two sets yCz and y′Cz′ , for some y, z, y′, z′. Now, by the
construction of these sets, we must have z = z′ = x. But then Cx contains some point
(w1, ..., wn, x) where w1 6= y, y′, and so Cx 6=y Cz ∪ y′Cz′ , a contradiction.

Hence, given G we can uniquely determine F1. All pairs {C,D} ∈ F1 can be indexed by
some point in S, such that each pair is of the form {Cx, Dx} for some x ∈ S. Thus we have
determined the set S (or representatives of the set S), but not the betweenness relation on
S. Let Ax = Cx ∪Dx for every such pair. Thus G =

⋃
{Ax : x ∈ S}, and for each x 6= y,

Ax ∩ Ay contains the set of vertices (x, v2, ..., vn, y) if x < y with x < v2 < ... < vn < y, or
(y, v2, ..., vn, x) if y < x, with y < v2 < ... < vn < x. Such v2, ..., vn always exists since S is
dense.

Now, given Ax, Ay, Az, we see that yB[x, z] iff every element of Ax ∩ Ay is a neighbour of
every element of Ay ∩ Az, and no element of Ax ∩ Ay or Ay ∩ Az has any neighbours in
Ax ∩ Az.

Thus we can reconstruct S with the betweenness relation from G (and so we can reconstruct
S up to order reversal by Theorem 3.15).

Theorem 4.5. Let (S,<) be any total ordering without endpoints, B the associated be-
tweenness relation, and let n be a positive integer. Then, if S contains no non-trivial max-
imal finite section under size 2n, (S,B) is 2nd-order interpretable inside G = G(S, 1n32n).

Proof. We start by introducing sets Cx, Dx, xCy, xDy as in Theorem 4.4.

We let F be the family of all pairs {C,D} satisfying i) and ii), and F1 be the family of
all pairs of the form {Cx, Dx} and F2 be the family of all pairs of the form {xCy, xDy}.
We can uniquely determine the set F1 as in Theorem 4.4, and all such pairs can again be
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indexed by some point in S, such that each pair is of the form {Cx, Dx} for some x ∈ S.
Let Ax = Cx ∪Dx for every such pair.

We now have a problem that for x 6= y, Ax∩Ay is not necessarily nonempty; if dist(x, y) ≤
n, then Ax ∩Ay = ∅. If dist(x, y) > n, then Ax ∩Ay is the set of vertices (x, v2, ..., vn, y) if
x < y with x < v2 < ... < vn < y (or (y, v2, ..., vn, x) if y < x, with y < v2 < ... < vn < x).

Now, given Ax, Ay, Az, we have 3 possible cases:

Case 1: Ax ∩Ay, Ax ∩Az, and Ay ∩Az are all nonempty. Here, similarly to Theorem 4.4,
we see that yB[x, z] iff every element of Ax∩Ay is a neighbour of every element of Ay∩Az,
and neither has any neighbours in Ax ∩ Az.

Case 2: Exactly one of Ax∩Ay, Ax∩Az, and Ay∩Az is nonempty. In this case, whichever
of Ax ∩ Ay, Ax ∩ Az, and Ay ∩ Az is nonempty represents the ‘outer two’ points, and so
yB[x, z] iff only Ax ∩ Az is nonempty.

This is because, without loss of generality, if y is between x and z, then dist(x, z) ≥
dist(x, y) and dist(x, z) ≥ dist(y, z), and so if one of Ax ∩ Ay, Ay ∩ Az is nonempty, then
Ax ∩ Az must be nonempty also.

Case 3: Exactly two of Ax ∩ Ay, Ax ∩ Az, and Ay ∩ Az are nonempty. In this case one of
the nonempty intersections represents the ‘outer two’ points. Without loss of generality,
suppose Ax ∩ Az and Ay ∩ Az are both nonempty, but Ax ∩ Ay = ∅. Then, since one of
Ax ∩ Az and Ay ∩ Az represents the ‘outer two’ points, z is not between x and y.

Then y lies between x, z iff there exists a v such that Av ∩ Ay = ∅ but Av ∩ Ax 6= ∅, and
¬xB(v, z). Such a v will always exist as, assuming yB[x, z], since dist(y, z) ≥ n + 1 we
must have dist(x, z) ≥ n + 2. Then we can let v be any point of distance at least n + 1
(and less than dist(x, z)) from x in the direction of z.

Case 4: All of Ax ∩ Ay, Ax ∩ Az, and Ay ∩ Az are empty.

In this case, the distance between the two ‘outer points’ is ≤ n.
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Again, we consider {v : Av ∩ Ax = ∅}. These are all things of distance at most n from x.
Since every maximal finite section has size at least 2n, the size of this set must be at least
n. Now, if there exists a w /∈ {v : Av ∩ Ax = ∅} such that Aw ∩ Ay = ∅ and Aw ∩ Az = ∅,
then x is an ‘endpoint’ of x, y, z, i.e. ¬xB[y, z]. It will always be possible to determine at
least one ‘endpoint’ this way as the distance between the two endpoints is at most n, and
so if e is an endpoint of e, p1, p2, we can simply let w be the point of distance n + 1 away
from e in the same direction as p1 and p2. If there exists such a w for two of x, y, z, then
we have determined the two ‘endpoints’ and thus betweenness on x, y, z.

Suppose such a w only exists for one of x, y, z. Without loss of generality suppose x is an
‘endpoint’ of x, y, z, i.e. w /∈ {v : Av ∩Ax = ∅} and Aw ∩Ay = ∅, Aw ∩Az = ∅. Then x lies
quite close to the ‘edge’ of the maximal finite section; close enough that z has distance at
most n to the end of the maximal finite section (otherwise we would be able to determine
two ‘endpoints’ in this way). Now, yB[x, z] iff there is a v′ /∈ {v : Av ∩ Ax = ∅} such that
Av′ ∩ Ay 6= ∅ and Av′ ∩ Az = ∅. We know such a v′ always exists, as y is distance at most
n− 1 from the edge, and so v′ is distance at most 2n from the edge, which is the maximal
distance we have allowed for.

Remark 4.6. The reason we can’t have non-trivial maximal finite sections of size less than
2n in Theorem 4.5 is that if there is a maximal finite section smaller than this containing
points x, y, z, it is not always possible to determine which lies between the other two.

Suppose Y is a maximal finite section of size n+ k for 1 ≤ k < n, and let x, y, z ∈ P . We
consider the various cases as in Theorem 4.5:

• If we are in Case 1, Case 2, or Case 3 above, then we can determine which lies
between the other two as in Theorem 4.5.
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• If we are in Case 4 and x, y, z are all close enough to the ‘middle’ of the maximal
finite section, we can determine the two ‘endpoints’ of x, y, z as in Theorem 4.5.

If x, y, z are all close to the ‘edge’ of the maximal finite section and the distance between
the middle point of x, y, z and this edge is less than k, then we can also determine which
lies between the other two using the same method as in Theorem 4.5. This is because in
this case the distance between the middle point and the other edge will be > n, as the
entire maximal finite section has size n+ k, and so there exists a v′ as in the proof.

The problem occurs if we can only determine one endpoint of x, y, z, and the distance
between the middle point of x, y, z and the edge x, y, z are all close to is ≥ k. Assuming
x < y < z and x is the point closest to this edge, in this case, we might not be able to find
a point v′ such that Av′ ∩ Ay 6= ∅, but Av′ ∩ Az = ∅. Thus for every single point p in the
S, either p lies in the maximal finite section, in which case Ap ∩ Ay = Ap ∩ Az = ∅, or p
doesn’t, in which case Ap ∩Ay and Ap ∩Az are both nonempty, and moreover there are no
edges between these intersections. We therefore cannot determine betweenness on x, y, z.

If the non-trivial maximal finite section Y has size less than n, we can determine that
yB[x, z] for any y ∈ Y and x, z lying either side of Y , but for any x, y, z ∈ Y , we can
not determine which lies between the other two. This is because in this case, we have
Ax∩Ay = ∅, Ax∩Az = ∅, Ay∩Az = ∅, but for any v ∈ S, either Av∩Ax, Av∩Ay, Av∩Az
will all be empty or they will all be nonempty. Thus there is no way whatsoever of
distinguishing the points in Y from one another, and so Y can be permuted however we
like in the automorphism group.

This means that any permutation π : Y → Y can be extended to an automorphism
ϕ : G→ G fixing all g ∈ G\Y .

Lemma 4.7. Let S be any total ordering without endpoints, and let n be a positive integer.
Then any pair of co-cliques C and D in G(S, 13n2) satisfying:

i) C =
⋂
{Nv : v ∈ D}

ii) D =
⋂
{Nv : v ∈ C}

and where |C|, |D| ≥ 2 must be of the form

Cx1,...,xn = {(v, x1, x2, ..., xn) : v < x1}
Dx1,...,xn = {(x1, x2, ..., xn, w) : xn < w}

where x1, ..., xn ∈ S.

Proof. First we see that Cx1,...,xn and Dx1,...,xn satisfy i) and ii). Now, let C and D be a pair
of sets satisfying i) and ii). Then we remark that if (c1, ..., cn+1) ∈ C and (d1, ..., dn+1) ∈ D,
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then either

c1 < c2 < c3 < ... < cn < cn+1

‖ ‖ ‖
d1 < d2 < d3 < ... < dn < dn+1

or

c1 < c2 < c3 < ... < cn < cn+1

‖ ‖ ‖
d1 < d2 < d3 < ... < dn < dn+1

Note that we cannot have both of the above for the same d1, ..., dn+1, because if ci+1 = di
for 1 ≤ i ≤ n and c′i = di+1 for 1 ≤ i ≤ n, where (c1, ..., cn+1), (c

′
1, ..., c

′
n+1) ∈ C and

(d1, ..., dn+1) ∈ D, then (d1, ..., dn+1) is the only point of D adjacent to both (c1, ..., cn+1)
and (c′1, ..., c

′
n+1), contrary to the assumption that both C andD contain at least 2 elements.

Thus either for all (c1, ..., cn+1) ∈ C and (d1, ..., dn+1) ∈ D, we have ci+1 = di for 1 ≤ i ≤ n,
or for all (c1, ..., cn+1) ∈ C and (d1, ..., dn+1) ∈ D, we have ci = di+1 for 1 ≤ i ≤ n.

Without loss of generality we assume the former. We then note that, by the definition of
C and D, any n+1-tuple ending in c2, ..., cn+1 must lie in C, and any n+1-tuple beginning
with c2, ..., cn+1 must lie in D. Thus any pair of subsets of G satisfying i) and ii) must be
of the form Cx1,...,xn = {(v, x1, x2, ..., xn) : v < x1} and Dx1,...,xn = {(x1, x2, ..., xn, w) : xn <
w}.

Theorem 4.8. Let S be any total ordering without endpoints, and let n be a positive
integer. Then (S,B) is 2nd-order interpretable inside G = G(S, 13n2).

Proof. Consider co-cliques C and D satisfying:

i) C =
⋂
{Nv : v ∈ D}

ii) D =
⋂
{Nv : v ∈ C}

where |C|, |D| ≥ 2.

By Lemma 4.7, any pair of subsets of G satisfying i) and ii) must be of the form

Cx1,...,xn = {(v, x1, x2, ..., xn) : v < x1}
Dx1,...,xn = {(x1, x2, ..., xn, w) : xn < w}

Again, this forms a family F of pairs {Cx1,...,xn , Dx1,...,xn} for x1, ..., xn ∈ S. Now let
Ax1,...,xn = Cx1,...,xn ∪Dx1,...,xn for every such n-tuple, and let F ′ be the family of all such
Ax1,...,xn .
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We start by reconstructing G(S, 13n−12) from G(S, 13n2).

Consider the following isomorphism ϕ : F ′ → G(S, 13n−12):

ϕ : Ax1,...,xn 7→ (x1, ..., xn)

where the relation “the elements Ax1,...,xn and Ax′1,...,x′n have a common element in F ′” is
mapped to the relation “there is an edge between the vertices (x1, ..., xn) and (x′1, ..., x

′
n) in

G(S, 13n−12)” .

To see that this is an isomorphism, first note that this is a bijection as each Ax1,...,xn
corresponds to exactly the n-tuple (x1, ..., xn). Now let Ax1,...,xn ∩ Ax′1,...,x′n 6= ∅, i.e. there
is some element lying in both, and without loss of generality assume x1 < x′1. Then
G(S, 13n2) contains some vertex (v1, ..., vn+1) ∈ Ax1,...,xn and (v1, ..., vn+1) ∈ Ax′1,...,x′n . Since
x1 < x′1 the first n coordinates of (v1, ..., vn+1) must be x1, ..., xn, and the last n coordinates
must be x′1, ..., x′n, thus giving us

x1 < x2 < x3 < ... < xn−1 < xn
‖ ‖ ‖
x′1 < x′2 < x′3 < ... < x′n−1 < x′n

i.e. if Ax1,...,xn∩Ax′1,...,x′n 6= ∅ then (x1, ..., xn) and (x′1, ..., x
′
n) are neighbours in G(S, 13n−12).

Conversely, suppose Ax1,...,xn ∩ Ax′1,...,x′n = ∅, i.e. we do not have

x1 < x2 < x3 < ... < xn−1 < xn
‖ ‖ ‖
x′1 < x′2 < x′3 < ... < x′n−1 < x′n

Then (x1, ..., xn) and (x′1, ..., x
′
n) are not neighbours in G(S, 13n−12).

Thus we can reconstruct G(S, 132) from G(S, 13n2) recursively for any n ∈ N, and re-
construct S from G(S, 132) by Lemma 4.2. We can also recover n as it takes precisely
n− 1 recursions to “reach” G(S, 132). We can “recognise” when we have reached G(S, 132)
because it has the property that every pair of members of F ′ has a nonempty intersection,
which is false for G(S, 13n2) where n > 1.

Lemma 4.9. Let S be a total ordering without endpoints, and let n > m be positive
integers. Let n ≡ k mod m where m ≥ k ≥ 1 (so if m divides n we let k = m). Then
G(S, 1m3k2m) is 2nd-order interpretable inside G(S, 1m3n2m).

Proof. We start by reconstructing G(S, 1m3n−m2m) from G(S, 1m3n2m).

Elements of G(S, 1m3n2m) consist of n+m-tuples, where there is an edge between

(x1, ..., xm, y1, ..., yn) and (y1, ..., yn, z1, ..., zm)

with xi, yi, zi ∈ S.
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G(S, 1m3n−m2m) consists of vertices of the form (x1, ..., xm+(n−m)), i.e. vertices of the form
(x1, ..., xn), with an edge between (x1, ..., xn) and (y1, ..., yn) if and only if

x1 < x2 < ... < xm < xm+1 < xm+2 < ... < xn
‖ ‖ ‖
y1 < y2 < ... < yn−m < yn−m+1 < ... < yn

We can construct the family F of pairs of maximal co-cliques {Ca1,...,an , Da1,...,an} as in
Theorem 4.8. Let Aa1,...,an = Ca1,...,an ∪Da1,...,an for every n-tuple in S, and let F ′ be the
family of all such Aa1,...,an . Similarly to Theorem 4.8, there is an isomorphism ϕ : F ′ →
G(Sm, 1m3n−m2m):

ϕ : Ax1,...,xn 7→ (x1, ..., xn)

where the relation “the elements Ax1,...,xn and Ax′1,...,x′n have a common element in F ′” is
mapped to the relation “there is an edge between the vertices (x1, ..., xn) and (x′1, ..., x

′
n) in

G(S, 1m3n−m2m)”.

To see that this is an isomorphism, first note that this is a bijection as each Ax1,...,xn
corresponds to exactly the n-tuple (x1, ..., xn). Now let Ax1,...,xn ∩ Ax′1,...,x′n 6= ∅, i.e.
there is some element lying in both, and without loss of generality assume x1 < x′1.
Then G(S, 1m3n−m2m) contains some vertex (v1, ..., vn+m) ∈ Ax1,...,xn and (v1, ..., vn+m) ∈
Ax′1,...,x′n . Since x1 < x′1 the first n coordinates of (v1, ..., vn+m) must be x1, ..., xn, and the
last n coordinates must be x′1, ..., x′n, thus giving us

x1 < x2 < ... < xm < xm+1 < xm+2 < ... < xn
‖ ‖ ‖
x′1 < x′2 < ... < x′n−m < x′n−m+1 < ... < x′n

i.e. if Ax1,...,xn ∩ Ax′1,...,x′n 6= ∅ then (x1, ..., xn) and (x′1, ..., x
′
n) are neighbours in

G(S, 1m3n−m2m). Conversely, suppose Ax1,...,xn ∩ Ax′1,...,x′n = ∅, i.e. we do not have

x1 < x2 < ... < xm < xm+1 < xm+2 < ... < xn
‖ ‖ ‖
x′1 < x′2 < ... < x′n−m < x′n−m+1 < ... < x′n

Thus (x1, ..., xn) and (x′1, ..., x
′
n) are not neighbours in G(S, 1m3n−m2m).

We repeat this t times until n− tm = k ≤ m, leaving us with G(S, 1m3k2m).

Thus the general problem of reconstructing S from G(S, 1m3n2m) where n > m has been
reduced to the general problem of reconstructing S from G(S, 1m3k2m) where k ≤ m.
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Lemma 4.10. Let (S,<) be a dense total ordering without endpoints, and let k ≤ m be
positive integers. Then any pair of co-cliques C and D in G(1m3k2m) with the following
properties:

i) C =
⋂
{Nv : v ∈ D}

ii) D =
⋂
{Nv : v ∈ C}

and where C and D are nonempty must either be of the form

Cx1,...,xk = {(v1, v2, ..., vm, x1, ..., xk) : vm < x1}
Dx1,...,xk = {(x1, ..., xk, w1, w2, ..., wm) : xk < w1}

where x1, ..., xk ∈ S, or of the form

x1,...,xkCy1,...,yk = {(x1, ..., xk, v1, v2, ..., vm−k, y1, ..., yk) : xk < v1 < v2 < ... < vm−k < y1}
x1,...,xkDy1,...,yk = {(w1, w2, ..., wm, x1, ..., xk) : wm < x1} ∪ {(y1, ..., yk, w′1, w′2, ..., w′m) : yk < w′1}

where x1, ..., xk, y1, ..., yk ∈ S.

Proof. First we see that Cx1,...,xk , Dx1,...,xk and x1,...,xkCy1,...,yk x1,...,xkDy1,...,yk satisfy i) and
ii). Now, let C and D be a pair of sets satisfying i) and ii). Then we remark that if
c = (c1, ..., cm+k) ∈ C and d = (d1, ..., dm+k) ∈ D, then either

c1 < c2 ... < cm < cm+1 < cm+2 ... < cm+k

‖ ‖ ‖
d1 < d2 ... < dk < d1+k < ... < dm+k

in which case we say c is “left adjacent” to d, or

c1 < c2 ... < ck < c1+k ... < cm+k

‖ ‖ ‖
d1 < d2 ... < dm < dm+1 < dm+2 ... < dm+k

in which case we say c is “right adjacent” to d.

Note that c, d are adjacent provided c is left or right adjacent to d.

We now have two cases:

Case 1: there exist c, c′ ∈ C and d ∈ D such that c is left adjacent to d, and d is left
adjacent to c′.

c1 < ... < cm+1 < ... cm+k

‖ ‖
d1 < ... dk < ... dm+1 < ... dm+k

‖ ‖
c′1 < ... c′k < c′1+k < ... < c′m+k
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Then any m + k-tuple lying in C is adjacent to d, so must end with d1, ..., dk or begin
with dm+1, ..., dm+k, and hence any m + k-tuple beginning with d1, ..., dk and ending with
dm+1, ..., dm+k is adjacent to all members of C, and so lies in D.

Similarly, any m + k-tuple in D is adjacent to c and c′, so must begin with d1, ..., dk and
end with dm+1, ..., dm+k. The set of all m+ k-tuples which are neighbours of all of these is
precisely the set of all m+ k-tuples beginning with dm+1, ..., dm+k or ending with d1, ..., dk,
and it follows that C is the set of everything adjacent to D.

The argument is similar if d, d′ ∈ D and c ∈ C.

Case 2: neither of the above hold.

Then for every c ∈ C, either every d ∈ D is left adjacent to c or every d ∈ D is right
adjacent to d.

Similarly, for every d ∈ D, either every c ∈ C is left adjacent to d or every c ∈ C is right
adjacent to d.

Without loss of generality assume there is a d ∈ D such that every c ∈ C is right adjacent
to c.

c1 < c2 ... < ck < c1+k ... < cm+k

‖ ‖ ‖
d1 < d2 ... < dm < dm+1 < dm+2 ... < dm+k

Then c1 = dm+1, ...ck = dm+k, and moreover all members of C must begin with this same
c1, ..., ck. Thus all m+ k-tuples ending in dm+1, ..., dm+k lie in D, and similarly all m+ k-
tuples beginning in c1, ..., ck lie in C.

Theorem 4.11. Let S be a dense total ordering without endpoints, and let k ≤ m be
positive integers. Then S is 2nd-order interpretable inside G = G(S, 1m3k2m).

Proof. Consider co-cliques C and D satisfying:

i) C =
⋂
{Nv : v ∈ D}

ii) D =
⋂
{Nv : v ∈ C}

where C and D are nonempty.

By Lemma 4.10, any pair of subsets satisfying i) and ii) must either be of the form

Cx1,...,xk = {(v1, v2, ..., vm, x1, ..., xk) : vm < x1}
Dx1,...,xk = {(x1, ..., xk, w1, w2, ..., wm) : xk < w1}
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where x1, ..., xk ∈ S, or of the form

x1,...,xkCy1,...,yk = {(x1, ..., xk, v1, v2, ..., vm−k, y1, ..., yk) : xk < v1 < v2 < ... < vm−k < y1}
x1,...,xkDy1,...,yk = {(w1, w2, ..., wn, x1, ..., xk) : wn < x1} ∪

{(y1, ..., yk, w′1, w′2, ..., w′n) : xk < w′1}

where x1, ..., xk, y1, ..., yk ∈ S.

Let F be the family of all pairs {C,D} satisfying i) and ii). Let F1 be the family of all
pairs {Cx1,...,xk , Dx1,...,xk}, where Cx1,...,xk , Dx1,...,xk are as above, and let F2 be the family of
all pairs {x1,...,xkCy1,...,yk , x1,...,xkDy1,...,yk}, where x1,...,xkCy1,...,yk , x1,...,xkDy1,...,yk are as above.
Then F = F1 ∪ F2.

Given some {C,D} ∈ F , we would like to determine whether {C,D} ∈ F1 or {C,D} ∈ F2.
I claim that {C,D} ∈ F2 if and only if there exist pairs of sets {C ′, D′}, {C ′′, D′′} ∈ F
with {C ′, D′}, {C ′′, D′′} 6= {C,D} such that for some X ′ ∈ {C ′, D′} and X ′′ ∈ {C ′′, D′′},
we have X ′ ∪X ′′ ∈ {C,D}.

To see this, suppose {C,D} ∈ F2. Then {C,D} = {x1,...,xkCy1,...,yk , x1,...,xkDy1,...,yk} for
some x, y. Now let {C ′, D′} = {C ′x1,...,xk , D

′
x1,...,xk

} and {C ′′, D′′} = {Cy1,...,yk , Dy1,...,yk}, and
let X ′ = Cx1,...,xk and X ′′ = Dy1,...,yk . Thus we have x1,...,xkDy1,...,yk = Cx1,...,xk ∪Dy1,...,yk , i.e.
Cx1,...,xk ∪Dy1,...,yk ∈ {x1,...,xkCy1,...,yk , x1,...,xkDy1,...,yk}.

Conversely, suppose {C,D} /∈ F2, i.e. {C,D} = {Cx1,...,xk , Dx1,...,xk} for some x1, ..., xk.
We will show that Cx1,...,xk cannot be the union of two sets of the form Cy1,...,yk , Dy1,...,yk ,
y1,...,ykCz1,...,zk , y1,...,ykDz1,...,zk .

• Cx1,...,xk cannot be the union of any Cy1,...,yk with another set, as Cx1,...,xk∩Cy1,...,yk = ∅
for all x1, ..., xk, y1, ..., yk where xi 6= yi for some 1 ≤ i ≤ k.

• Cx1,...,xk cannot be the union of any Dy1,...,yk with another set, as if xk ≤ y1 then
Dy1,...,yk contains points of the form (y1, ..., yk, z1, ..., zm) which do not lie in Cx1,...,xk ,
and if xk > y1 then Dy1,...,yk contains the points of the form (y1, ..., yk, z1, ..., zm) where
(zm−k+1, ..., zm) 6= (x1, ..., xk), which do not lie in Cx1,...,xk .

• We see that Cx1,...,xk cannot be the union of any y1,...,ykDz1,...,zk with another set, as
if xk < z1 then y1,...,ykDz1,...,zk contains points of the form (z1, ..., zk, w1, ..., wm) which
do not lie in Cx1,...,xk , and if xk > yk then y1,...,ykDz1,...,zk contains points of the form
(v1, ..., vm, y1, ..., yk) which don’t lie in Cx1,...,xk .

Thus Cx1,...,xk must be the union of two sets y1,...,ykCz1,...,zk and y′1,...,y
′
k
Cz′1,...,z′k , for some

y1, ..., yk, z1, ..., zk, y
′
1, ..., y

′
k, z
′
1, ..., z

′
k. Now, by the construction of these sets, we must have

zi = z′i = xi for all 1 ≤ i ≤ k. But then Cx1,...,xk contains some point (w1, ..., wm, x1, ..., xk)
where w1 6= y1, y

′
1, and so Cx1,...,xk 6=y1,...,yk Cz1,...,zk ∪ y′1,...,y

′
k
Cz′1,...,z′k , a contradiction.

Thus, given G we can uniquely determine F1. All pairs {C,D} ∈ F1 can be indexed
by some k-tuple in S, such that each pair is of the form {Cx1,...,xk , Dx1,...,xk} for some
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x1, ..., xk ∈ S. Thus we have determined the set Sk (or representatives of the set Sk), but
not the betweenness relation on S.

Let Ax1,...,xk = Cx1,...,xk∪Dx1,...,xk for every such pair. ThusG =
⋃
{Ax1,...,xk : x1, ..., xk ∈ S}.

Since the dense case is much simpler than the general case, we will consider this separately
(even though the dense case is a subset of the general case).

Then for each x1, ..., xk 6= y1, ..., yk, Ax1,...,xk ∩ Ay1,...,yk is non-empty iff x1, ..., xk and
y1, ..., yk are non-overlapping, in which case Ax1,...,xk ∩ Ay1,...,yk contains the set of ver-
tices (x1, ..., xk, v1, ..., vm−k, y1, ..., yk) if xk < y1 with xk < v1 < ... < vm−k < y1, or
(y1, ..., yk, v1, ..., vm−k, x1, ..., xk) if yk < x1, with yk < v1 < ... < vm−k < x1. Such
v1, ..., vm−k always exists since S is dense.

Now, let X = x1, ..., xk, Y = y1, ..., yk, Z = z1, ..., zk be comparable. Given AX , AY , AZ , we
see that Y B[X,Z] iff every element of AX ∩AY is a neighbour of every element of AY ∩AZ ,
and neither has any neighbours in AX ∩ AZ . Thus we can get partial betweenness Bk on
k-tuples Sk, and so by Lemma 3.22 we can reconstruct (S,B).

Thus we can reconstruct S with the betweenness relation from G (and so we can reconstruct
S up to order reversal by Theorem 3.15).

Theorem 4.12. Let S be a total ordering without endpoints containing no non-trivial
maximal finite section of size less than m, and let k ≤ m be positive integers. Then (S,B)
is 2nd-order interpretable inside G = G(S, 1m3k2m).

Proof. The first part of the proof is identical to that of Theorem 4.11. Construct sets
Ax1,...,xk as before.

Let X = x1, ..., xk and Y = y1, ..., yk. Then AX ∩ AY is non-empty iff X and Y are non-
overlapping AND dist(X, Y ) ≥ m − k, in which case Ax1,...,xk ∩ Ay1,...,yk contains the set
of vertices (x1, ..., xk, v1, ..., vm−k, y1, ..., yk) if xk < y1 with xk < v1 < ... < vm−k < y1, or
(y1, ..., yk, v1, ..., vm−k, x1, ..., xk) if yk < x1, with yk < v1 < ... < vm−k < x1.

Thus we obtain betweenness on k-tuples in S of distance at least m− k from one another,
i.e. (Sk, Bk

dist(m−k)). Since S contains no non-trivial finite section of size less than m, by
Theorem 3.32, we can interpret (S,Bdist(m)), and so by Lemma 3.29, (S,B) is interpretable
in G = G(S, 1m3k2m).

Thus we can reconstruct S with the betweenness relation from G (and so we can reconstruct
S up to order reversal by Theorem 3.15).

Corollary 4.13. Let S be a total ordering without endpoints containing no non-trivial
maximal finite sections of size less than m. Then (S,B) is 2nd-order interpretable inside
G(S, 1m3n2m). If m = 1, then S can be any total ordering without endpoints.
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Proof. If n ≤ m, (S,B) is 2nd-order interpretable inside G(S, 1m3n2m) by Theorem 4.12.

If n > m, then by Lemma 4.9 G(S, 1m3k2m) is interpretable inside G(S, 1m3n2m), where
n ≡ k mod m. Now, since k ≤ m, and S contains no non-trivial maximal finite sections of
size less than m, by Theorem 4.12 (S,B) is 2nd-order interpretable inside G(S, 1m3k2m),
and hence from G(S, 1m3n2m).

If m = 1, then (S,B) is 2nd-order interpretable inside G(S, 13n2) by Theorem 4.8.
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4.2 Partial Ordering Shift Graphs

We can extend these results to trees, except that with trees we can interpret the original
ordering, as opposed to just the betweenness relation, although once again we will focus
only on trees without endpoints.

We can also determine some additional general properties on T from G(T, 132), namely
that T does not have a root which ramifies iff G(T, 132) has one connected component
(and similarly for other types of the form 1n3m2n).

We start by defining the shift graph on trees.

Let T be a tree. We can now define the shift graph G(T, τ) similarly to the shift graph
G(S, τ) for a total ordering S:

Definition 4.14. Let x and y be comparable k-element subsets (listed in increasing order)
of the tree (T,<). Let x ∪ y = {z1, ..., z`}, with z1 < z2 < ... < z`. Then we say that the
pair x, y has type τ (denoted by t(x, y) = τ) iff:

τi = 1⇒ zi ∈ x \ y,
τi = 2⇒ zi ∈ y \ x, and
τi = 3⇒ zi ∈ x ∩ y

Definition 4.15. The graph G(T, τ) is, as before, defined to be the graph whose vertices
are the k-element subsets of T in which all elements are comparable, and where there is an
edge between x and y iff t(x, y) = τ .

We can treat these shift graphs on trees in much the same way as we have been treating
the shift graphs on linear orderings, with some minor adjustments.

We also have an easy way of categorising whether or not G(T, 132) has one connected
component or not, and similarly for G(T, 1n3m2n).

Lemma 4.16. Let T be a tree without leaves. Then G(T, 132) has one connected compo-
nent if and only if T does not have a root which ramifies.

Proof. First suppose that r is the root, and it ramifies, so there are at least 2 cones at
r. We show at that any path starting at (r, x) where r < x has all co-ordinates of its
vertices lying in C ∪ {r}, where C is the cone at r containing x. We do this by induction
on the vertices in the path. So suppose that (y, z) ∈ P and that we already know that
y, z ∈ C ∪ {r}. Then the next point in the path is either (z, t) or (t, y) for some t. In
the first case, t > z ∈ C ∪ {r}, so certainly also t ∈ C ∪ {r}. In the second case, t < y,
so y 6= r. If t = r, then t ∈ C ∪ {r}. Otherwise, the greatest lower bound of t and y is
t, which is greater than r, so by definition of ‘cone’, t and y lie in the same cone at r, in
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other words, t ∈ C. Finally, since r ramifies, there are at least two cones at r, C1 and C2

say. If a path starts with (r, x) where x ∈ C1, then all co-ordinates of entries of the path
must lie in C1 ∪ {r}, and hence (r, y) cannot lie in the path if y ∈ C2. Hence G(T, 132) is
disconnected.

Conversely, suppose that T has no leaves, and either has no root, or else has a root which
does not ramify. Let (x1, x2) and (y1, y2) be any members of G(T, 132). Thus x1 < x2 and
y1 < y2.

As T is a tree there is z ≤ x1, y1. If T has no root, there is t < z, and s < t in T . Then
we have a path from (x1, x2) to (y1, y2) as follows:

(x1, x2) ∼ (t, x1) ∼ (s, t) ∼ (t, y1) ∼ (y1, y2)

Now suppose that T has a root r which does not ramify. Since T has no leaves, there are
x4 > x3 > x2 and y4 > y3 > y2. Since r does not ramify and x2, y2 > r, there is just one
cone at r, so there is t > r such that r < t ≤ x2, y2, and this time we get our path as
follows:

(x1, x2) ∼ (x2, x3) ∼ (x3, x4) ∼ (t, x3) ∼ (r, t) ∼ (t, y3) ∼ (y3, y4) ∼ (y2, y3) ∼ (y1, y2)

We now define a ‘stump’:

Definition 4.17. Let T be a tree without leaves, and write S for the set of all vertices
comparable with all members of T . This set is called the stump.

Lemma 4.18. Let T be a tree without leaves. Then G = G(T, 13n2) is connected if and
only if |S| ≥ n+ 1, or |S| ≤ n and there is no minimal ramification point ≥ S.

Proof. First suppose |S| ≤ n and there is a minimal ramification point r ≥ S. Note that
r must be the greatest point of S. Let the other members of S be s1 < ... < sk < r where
k < n (k might be 0). Then there are at least two cones at r, C1 and C2. We show at
that any path starting at (s1, ...sk, r, x1, ..., xn−k) has all co-ordinates of its vertices lying
in C ′ = C ∪ {s1, ..., sk, r}, where C is the cone at r containing (x1, ..., xn−k). We do this
by induction on the vertices in the path. Suppose (y1, ..., yn+1) ∈ P and that we already
know that y1, ..., yn+1 ∈ C ′. Then the next point in the path is either (y2, ..., yn+1, t) or
(t, y1, ..., yn) for some t. In the first case, t > yn+1, so since k < n, yn+1 > r, and so t ∈ C,
so certainly t ∈ C ′. In the second case, t < y1, so y1 6= s1. If t ∈ {s1, ..., sk, r}, then
t ∈ C ′. Otherwise, the greatest lower bound of t and y1 is t, which is greater than r, so by
definition of ‘cone’, t ∈ C. Since there are at least two cones at r, suppose x1, ..., xn−k ∈ C1

and y1, ..., yn ∈ C2. If a path starts with (r1, ...rk, r
′, x1, ..., xn−k), then all co-ordinates of
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entries of the path must lie in C ′1, and hence (s1, ...sk, r, y1, ..., yn−k) cannot lie in the path.
Hence G(T, 13n2) is disconnected.

Next suppose |S| ≤ n and there is no minimal ramification point ≥ S. Since T has no
leaves, there are zn+1 > ... > z1 > xn+1 and wn+1 > ... > w1 > yn+1. Since T is a tree there
is some p ≤ z1, w1. Since T has no minimal ramification point above S, and both z1, w1 /∈ S
due to size restrictions, there are t1, ..., tn < p. Then the path goes from (x1, ..., xn+1) ∼
· · · ∼ (z1, ..., zn+1) ∼ · · · ∼ (t1, ..., tn, p) ∼ · · · ∼ (w1, ..., wn+1) ∼ · · · ∼ (y1, ..., yn+1).

Finally suppose |S| ≥ n + 1. Since T has no leaves, there are zn+1 > ... > z1 > xn+1

and wn+1 > ... > w1 > yn+1. Since T has a stump of length at least n + 1, there exist
s0, s1, ..., sn comparable to all members of T such that s0 < s1 < ... < sn ≤ xn+1, yn+1.
This time we get our path as follows:

(x1, ..., xn+1) ∼ (x2, ..., xn+1, z1) ∼ · · ·
∼ (xn+1, z1, ..., zn) ∼ (z1, ..., zn+1) ∼ (sn, z1, ..., zn) ∼ (sn−1, sn, z1, ..., zn−1) ∼ · · ·

∼ (s1, ..., sn, z1) ∼ (s0, s1, ..., sn) ∼ (s1, ..., sn, w1) ∼ · · ·
∼ (sn−1, sn, w1, ..., wn−1) ∼ (sn, w1, ..., wn) ∼ (w1, ..., wn+1) ∼ (yn+1, w1, ..., wn) · · ·

∼ (y2, ..., yn+1, w1) ∼ (y1, ..., yn+1)

Lemma 4.19. Let T be a tree without leaves. Then G(T, 1n32n) has one connected
component if and only if |S| ≥ n+1, or |S| ≤ n and there is no minimal ramification point
≥ S.

Proof. First suppose |S| ≤ n and there is a minimal ramification point r ≥ S. Note that
r must be the greatest point of S. Let the other members of S be s1 < ... < sk < r where
k < n (k might be 0). Then there are at least two cones at r, C1 and C2. We show at
that any path starting at (s1, ...sk, r, x1, ..., xn−k) has all co-ordinates of its vertices lying
in C ′ = C ∪ {s1, ..., sk, r}, where C is the cone at r containing (x1, ..., xn−k). We do this
by induction on the vertices in the path. Suppose (y1, ..., yn+1) ∈ P and that we already
know that y1, ..., yn+1 ∈ C ′. Then the next point in the path is either (yn+1, t1, ..., tn) or
(t1, ..., tn, y1) for some t1, ..., tn. In the first case, t1 > yn+1, so since k < n, yn+1 > r, and
so t1 ∈ C, so certainly t ∈ C ′. In the second case, tn < y1, so y1 6= s1. If tn ∈ {s1, ..., sk, r},
then t ∈ C ′. Otherwise, the greatest lower bound of tn and y1 is tn, which is greater than
r, so by definition of ‘cone’, tn ∈ C. Since there are at least two cones at r, suppose
x1, ..., xn−k ∈ C1 and y1, ..., yn ∈ C2. If a path starts with (r1, ...rk, r

′, x1, ..., xn−k), then all
co-ordinates of entries of the path must lie in C ′1, and hence (s1, ...sk, r, y1, ..., yn−k) cannot
lie in the path. Hence G(T, 1n32n) is disconnected.
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Next suppose suppose |S| ≤ n and there is no minimal ramification point ≥ S. Since T
has no leaves, there are z2n > ... > z1 > xn+1 and w2n > ... > w1 > yn+1. Since T is a
tree there is some p ≤ z1, w1. Since T has no minimal ramification point above S, and
both z1, w1 /∈ S due to size restrictions, there are t1, ..., t2n−1 < p. Then the path goes
from (x1, ..., xn+1) ∼ · · · ∼ (z1, ..., z2n) ∼ · · · ∼ (t1, ..., tn) ∼ · · · ∼ (w1, ..., wn+1) ∼ · · · ∼
(y1, ..., yn+1).

Finally suppose that |S| ≥ n+1. Since T has no leaves, there are z2n > ... > z1 > xn+1 and
w2n > ... > w1 > yn+1. Since T has a stump of length at least n+1, there exist s0, s1, ..., sn
comparable to all members of T such that s0 < s1 < ... < sn ≤ xn+1, yn+1. This time we
get our path as follows:

(x1, ..., xn+1) ∼ (xn+1, z1, ..., zn) ∼ (zn, zn+1, ..., z2n) ∼ (sn, z1, ..., zn) ∼ (s0, s1, ..., sn)

∼ (sn, w1, ..., wn) ∼ (wn, wn+1, ..., w2n) ∼ (yn+1, w1, ..., wn) ∼ (y1, ..., yn+1)

Lemma 4.20. Let T be a tree without leaves. Then G(T, 1n3m2n) has one connected
component if and only if |S| ≥ n+1, or |S| ≤ n and there is no minimal ramification point
≥ S.

Proof. First suppose |S| ≤ n and there is a minimal ramification point r ≥ S. Note that
r must be the greatest point of S. Let the other members of S be s1 < ... < sk < r where
k < n (k might be 0). Then there are at least two cones at r, C1 and C2. We show at that
any path starting at (s1, ...sk, r, x1, ..., xn+m−k) has all co-ordinates of its vertices lying in
C ′ = C ∪{s1, ..., sk, r}, where C is the cone at r containing (x1, ..., xn+m−k). We do this by
induction on the vertices in the path. Suppose (y1, ..., yn+m) ∈ P and that we already know
that y1, ..., yn+m ∈ C ′. Then the next point in the path is either (yn+1, ..., yn+m, t1, ..., tn)
or (t1, ..., tn, y1, ..., ym) for some t1, ..., tn. In the first case, t1 > yn+1, so since k < n,
yn+m > r, and so t1 ∈ C, so certainly t ∈ C ′. In the second case, tn < y1, so y1 6= s1.
If tn ∈ {s1, ..., sk, r}, then t ∈ C ′. Otherwise, the greatest lower bound of tn and y1 is
tn, which is greater than r, so by definition of ‘cone’, tn ∈ C. Since there are at least
two cones at r, suppose x1, ..., xn+m−k ∈ C1 and y1, ..., yn+m−k ∈ C2. If a path starts
with (r1, ...rk, r

′, x1, ..., xn+m−k), then all co-ordinates of entries of the path must lie in
C ′1, and hence (s1, ...sk, r, y1, ..., yn+m−k) cannot lie in the path. Hence G(T, 1n3m2n) is
disconnected.

Next suppose that |S| ≥ n+ 1. We split into two cases:

Case 1: n ≥ m

Since T has no leaves, there are z2n > ... > z1 > xn+1 and w2n > ... > w1 > yn+1. Since
r does not ramify and has a stump of length at least n + 1, there exist s0, s1, ..., sn+m
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comparable to all members of T such that s0 < s1 < ... < sn+m ≤ xn+m, yn+m, and this
time we get our path as follows:

(x1, ..., xn+m) ∼ (xn+1, ..., xn+m, z1, ..., zn) ∼ (zn−m, zn−m+1, ..., zn, ..., z2n) ∼
(sn, ..., sn+m, z1, ..., zn) ∼ (s0, s1, ..., sn+m) ∼ (sn, ..., sn+mw1, ..., wn) ∼

(wn−m, wn−m+1, ..., wn, ..., w2n) ∼ (yn+1, ..., yn+m, w1, ..., wn) ∼ (y1, ..., yn+m)

Case 2: n < m

Since T has no leaves, there are z(k+2)n > ... > z1 > xn+m and w(k+2)n > ... > w1 >
yn+m. Since T has a stump of length at least n+m, there exist s1, ..., s(k+1)n, r1, r2, ..., rk′
comparable to everything in T such that r1 < r2 < ... < rk′ < s1 < ... < s(k+1)n ≤
xn+m, yn+m (note that these indices add up tom+n, as k′+(k+1)n = kn+k′+n = m+n),
and this time we get our path as follows:

(x1, ..., xn+m) ∼ (xn+1, ..., xn+m, z1, ..., zn) ∼ (x2n+1, ..., xn+m, z1, ..., z2n) ∼ · · ·
∼ (xkn+1, ..., xn+m, z1, ..., zkn) ∼ (x(k+1)n+1, ..., xn+m, z1, ..., z(k+1)n) ∼ (zn−k′+1, ..., z(k+2)n) ∼

(skn+1, ..., s(k+1)n, zn−k′+1, ..., z(k+1)n) ∼ (s(k−1)n+1, ..., s(k+1)n, zn−k′+1, ..., zkn) ∼ · · ·
∼ (sn+1, ..., s(k+1)n, zn−k′+1, ..., z2n) ∼ (s1, ..., s(k+1)n, zn−k′+1, ..., zn) ∼

(r1, r2, ..., rk′ , s1, ..., s(k+1)n) ∼
(s1, ..., s(k+1)n, wn−k′+1, ..., wn) ∼ (sn+1, ..., s(k+1)n, wn−k′+1, ..., w2n) ∼ · · ·

∼ (s(k−1)n+1, ..., s(k+1)n, wn−k′+1, ..., wkn) ∼ (skn+1, ..., s(k+1)n, wn−k′+1, ..., w(k+1)n) ∼
(wn−k′+1, ..., w(k+2)n) ∼ (y(k+1)n+1, ..., yn+m, w1, ..., w(k+1)n) ∼ (ykn+1, ..., yn+m, w1, ..., wkn) ∼

· · · ∼ (y2n+1, ..., yn+m, w1, ..., w2n) ∼ (yn+1, ..., yn+m, w1, ..., wn) ∼ (y1, ..., yn+m)

Finally suppose |S| ≤ n and there is no minimal ramification point ≥ S. The path here
is similar to that of Lemmas 4.18 and 4.19, with the modifications as in Case 1 and 2
above.

Definition 4.21. A (strict) betweenness relation on trees is a ternary relation BT defined
on a tree T which satisfies:

• ∀x, y, z ∈ T, xB[y, z]→ (x 6= y ∧ x 6= z ∧ y 6= z).

• ∀x, y, z ∈ T, xB[y, z]→ xB[z, y]

• ∀x, y, z, w ∈ T, (yB[x,w] ∧ zB[y, w])→ zB[x,w]
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• ∀ T ′ ⊆ T such that T ′ = {x : x < t}, some fixed t ∈ T :

∀x, y, z ∈ T ′, xB[y, z] ∨ yB[x, z] ∨ zB[x, y]

Lemma 4.22. Let (T,<) be any tree without endpoints. Then any pair of co-cliques C
and D in G(T, 132) with the following properties:

i) C =
⋂
{Nv : v ∈ D}

ii) D =
⋂
{Nv : v ∈ C}}

where |C|, |D| ≥ 2 must be of the form

Cx = {(v, x) : v < x}
Dx = {(x,w) : x < w}

where x ∈ S.

Proof. Similar to the proof of Lemma 4.1

Theorem 4.23. Let (T,<) be any proper tree without endpoints. Then (T,<) is 2nd-order
interpretable inside G = G(S, 132).

Proof. We would like to identify co-cliques C and D with the following properties:

i) C =
⋂
{Nv : v ∈ D}

ii) D =
⋂
{Nv : v ∈ C}

where |C|, |D| ≥ 2.

By Lemma 4.22, any pair of subsets of V (G) satisfying i) and ii) must be of the form

Cx = {(v, x) : v < x}
Dx = {(x,w) : x < w}

where x ∈ S.

Now, let Ax = Cx∪Dx for every such pair {Cx, Dx} and a ∈ S. Thus G =
⋃
{Ax : x ∈ T}.

We now note that for x 6= y, x and y are comparable if and only if Ax ∩ Ay is nonempty.
Furthermore, if this is the case, Ax ∩ Ay contains exactly one element, namely (x, y) or
(y, x).

Now, given Ax, Ay, Az with pairwise nonempty intersections, we see that yB[x, z] iff Ax∩Ay
is a neighbour of Ay ∩ Az, and neither is a neighbour of Ax ∩ Az.
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Provided the tree isn’t a total ordering (i.e. it splits somewhere), we can do more than this.
We can actually work out the ordering on the tree (as opposed to the partial betweenness
relation), and we can do so as follows:

Since T splits, there exist 3 points, x, y, and z, such that x is comparable to y, and x is
comparable to z, but y is not comparable to z. In this case, x < y and x < z. Now, the set
V<x of all points v such that xB[v, y] is exactly the set of all things less than x, and thus
its complement V>x is the set of all things greater than x. Now let a, b ∈ T . We have three
options: a ∈ V<x and b ∈ V>x, in which case a < b (and similarly for a ∈ V>x, b ∈ V<x). If
a and b are both in V<x, then if bB[a, x] then a < b and if aB[b, x] then b < a. Finally, if
a and b are both in V>x then if aB[b, x] then a < b and if bB[a, x] then b < a. This gives
us the ordering < on T .

Lemma 4.24. Let (T,<) be any tree without endpoints. Then any pair of co-cliques C
and D in G(T, 1n32n) with the following properties:

i) C =
⋂
{Nv : v ∈ D}

ii) D =
⋂
{Nv : v ∈ C}

where C and D are nonempty must either be of the form

Cx = {(v1, v2, ..., vn, x) : vn < x}
Dx = {(x,w1, w2, ..., wn) : x < w1}

where x ∈ S, or of the form

xCy = {(x, v1, v2, ..., vn−1, y) : a < x1 < x2 < ... < xn−1 < b}
xDy = {(w1, w2, ..., wn, x) : wn < x} ∪ {(x,w′1, w′2, ..., w′n) : x < w′1}

where x, y ∈ S.

Proof. Similar to the proof of Lemma 4.3.

Definition 4.25. Let T be a tree. Then a maximal finite section of is a convex subset
Y of T such that y < t for every y ∈ Y and for some fixed t ∈ T (i.e. elements of Y are
pairwise comparable). A non-trivial maximal finite section is a maximal finite section of
size greater than 1.

Definition 4.26. In a maximal finite section of a tree, the distance dist(a, b) between a
and b is the size of the set {x : a ≤ x < b}.
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Theorem 4.27. Let (T,<) be a tree without endpoints, and let n be a positive integer.
Then, if T contains no non-trivial maximal finite section of size under 2n, (T,<) is 2nd-
order interpretable inside G = G(T, 1n32n).

Proof. We would like to identify co-cliques C and D with the following properties:

i) C =
⋂
{Nv : v ∈ D}

ii) D =
⋂
{Nv : v ∈ C}

where C and D are nonempty.

By Lemma 4.24, such a pair must either be of the form

Cx = {(v1, v2, ..., vn, x) : vn < x}
Dx = {(x,w1, w2, ..., wn) : x < w1}

where x ∈ S, or of the form

xCy = {(x, v1, v2, ..., vn−1, y) : a < x1 < x2 < ... < xn−1 < b}
xDy = {(w1, w2, ..., wn, x) : wn < x} ∪ {(x,w′1, w′2, ..., w′n) : x < w′1}

where x, y ∈ S.

Let F be the family of all pairs {C,D} satisfying i) and ii). Let F1 be the family of all
pairs {Cx, Dx}, where Cx, Dx are as above, and let F2 be the family of all pairs {xCy, xDy},
where xCy, xDy are as above. Then F = F1 ∪ F2.

Given some {C,D} ∈ F , we would like to determine whether {C,D} ∈ F1 or {C,D} ∈ F2.
I claim that {C,D} ∈ F2 if and only if there exist pairs of sets {C ′, D′}, {C ′′, D′′} ∈ F
with {C ′, D′}, {C ′′, D′′} 6= {C,D} such that for some X ′ ∈ {C ′, D′} and X ′′ ∈ {C ′′, D′′},
we have X ′ ∪X ′′ ∈ {C,D}.

To see this, suppose {C,D} ∈ F2. Then {C,D} = {xCy, xDy} for some x, y. Now let
{C ′, D′} = {C ′x, D′x} and {C ′′, D′′} = {Cy, Dy}, and let X ′ = Ca and X ′′ = Dy. Thus we
have xDy = Cx ∪Dy, i.e. Cx ∪Dy ∈ {xCy, xDy}.

Conversely, suppose {C,D} /∈ F2, i.e. {C,D} = {Cx, Dx} for some x. We will show that
Cx cannot be the union of two sets of the form Cy, Dy,y Cz,yDz.

• Cx cannot be the union of any Cy with another set, as Cx ∩ Cy = ∅ for all x 6= y.

• Cx cannot be the union of any Dy with another set, as if x ≤ y then Dy contains
points of the form (y, z1, ..., zn) with x < y < z1 which do not lie in Cx, and if y < x
then Dy contains the points of the form (y, z1, ..., zn) where zn 6= x which do not lie
in Cx.
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• We see that Cx cannot be the union of any yDz with another set, as if x < z then
yDz contains points of the form (z, w1, ..., wn) where x < z < w1 which do not lie in
Cx, and if x > y then yDz contains points of the form (v1, ..., vn, y) where vn < y < x
which don’t lie in Cx (note that we have covered all cases here since y 6= z).

Thus Cx must be the union of two sets yCz and y′Cz′ , for some y, z, y′, z′. Now, by the
construction of these sets, we must have z = z′ = x. But then Cx contains some point
(w1, ..., wn, x) where w1 6= y, y′, and so Cx 6=y Cz ∪ y′Cz′ , a contradiction.

Thus, given G we can uniquely determine F1. All pairs {C,D} ∈ F1 can be indexed by
some point in T , such that each pair is of the form {Cx, Dx} for some x ∈ T . Thus we have
determined the set T (or representatives of the set T ), but not the betweenness relation
on T . Let Ax = Cx ∪ Dx for every such pair. Thus G =

⋃
{Ax : x ∈ S}, and for each

x 6= y, Ax ∩ Ay is nonempty iff comp(x, y) and dist(x, y) > n, and contains the set of
vertices (x, v2, ..., vn, y) if x < y with x < v2 < ... < vn < y, or (y, v2, ..., vn, x) if y < x,
with y < v2 < ... < vn < x.

We can thus determine betweenness on any set of 3 comparable vertices x, y, z with
dist(x, y) > n, dist(y, z) > n, dist(x, z) > n as follows: given Ax, Ay, Az of pairwise
nonempty intersections, we see that yB[x, z] iff every element of Ax ∩Ay is a neighbour of
every element of Ay ∩ Az, and neither has any neighbours in Ax ∩ Az.

Now, similarly to Lemma 4.5, because there is no maximal finite section of size under 2n,
we now obtain n-betweenness on all of T . Thus, by Lemma 3.45, we obtain betweeness on
T .

Similarly to Lemma 4.23, provided T splits somewhere we can work out the ordering on T
as follows: Since T splits, there exist 3 points, x, y, and z, such that x is comparable to
y, and x is comparable to z, but y is not comparable to z. In this case, x < y and x < z.
Now, since we can work out the betweenness relation on everything else, this will give us
the tree (T,<).

Theorem 4.28. Let T be any tree without endpoints, and let n be a positive integer.
Then (T,<) is 2nd-order interpretable inside G = G(T, 13n2).

Proof. Consider co-cliques C and D satisfying:

i) C =
⋂
{Nv : v ∈ D}

ii) D =
⋂
{Nv : v ∈ C}

and let C and D contain at least 2 elements.
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By a slight alteration to Lemma 4.7 any pair of subsets of G satisfying i) and ii) must be
of the form

Ca1,...,an = {(x, a1, a2, ..., an) : x < a1}
Da1,...,an = {(a1, a2, ..., an, y) : an < y}

Again, this forms a family F of pairs {Ca1,...,an , Da1,...,an} for a1, ..., an ∈ S. Now let
Aa1,...,an = Ca1,...,an ∪ Da1,...,an for every such n-tuple, and let F ′ be the family of all such
Aa1,...,an .

We can now reconstruct G(S, 13n−12) from G(T, 13n2).

Consider the following isomorphism ϕ : F ′ → G(T, 13n−12):

ϕ : Aa1,...,an 7→ (a1, ..., an)

where the relation “the elements Aa1,...,an and Aa′1,...,a′n have a common element in F ′” is
mapped to the relation “there is an edge between the vertices (a1, ..., an) and (a′1, ..., a

′
n) in

G(T, 13n−12)” .

To see that this is an isomorphism, first note that this is a bijection as each Aa1,...,an
corresponds to exactly the n-tuple (a1, ..., an). Now let Aa1,...,an ∩Aa′1,...,a′n 6= ∅, i.e. there is
some element lying in both, and without loss of generality assume a1 < a′1. ThenG(T, 13n2)
contains some vertex (x1, ..., xn+1) ∈ Aa1,...,an and (x1, ..., xn+1) ∈ Aa′1,...,a′n . Since a1 < a′1
the first n coordinates of (x1, ..., xn+1) must be a1, ..., an, and the last n coordinates must
be a′1, ..., a′n, thus giving us

a1 < a2 < a3 < ... < an−1 < an
‖ ‖ ‖
a′1 < a′2 < a′3 < ... < a′n−1 < a′n

i.e. if Aa1,...,an∩Aa′1,...,a′n 6= ∅ then (a1, ..., an) and (a′1, ..., a
′
n) are neighbours in G(S, 13n−12).

Conversely, suppose Aa1,...,an ∩ Aa′1,...,a′n = ∅, i.e. we do not have

a1 < a2 < a3 < ... < an−1 < an
‖ ‖ ‖
a′1 < a′2 < a′3 < ... < a′n−1 < a′n

Then (a1, ..., an) and (a′1, ..., a
′
n) are not neighbours in G(S, 13n−12).

Thus we can reconstruct G(T, 132) from G(T, 13n2) recursively for any n ∈ N, and re-
construct T from G(T, 132) by Theorem 4.23. We can also reconstruct n by counting the
number of recursions before “reaching” G(T, 132). We can “recognise” G(T, 132) because it
has the property that every pair of members of F ′ has a nonempty intersection, which is
false for G(T, 13n2) where n > 1. Again, assuming T splits, we can determine the ordering
as opposed to the betweenness relation.
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Lemma 4.29. Let T be a tree without endpoints, and let n > m be positive integers. Let
n ≡ k mod m where m ≥ k ≥ 1 (so if m divides n we let k = m). Then G(S, 1m3k2m) is
2nd-order interpretable inside G(S, 1m3n2m).

Proof. Similar to Lemma 4.9.

This way we can obtain a similar result to Theorem 4.12.

Theorem 4.30. Let T be a tree without endpoints, and let k ≤ m be positive integers.
Assume T has no non-trivial maximal finite section of size less than m. Then (T,<) is
2nd-order interpretable inside G = G(T, 1m3k2m).

Proof. Similar to Theorem 4.12. Again, assuming T is a proper tree we can obtain (T,<),
rather than (T,B), as in Theorem 4.23.

Corollary 4.31. Let T be a tree without endpoints containing no non-trivial maxi-
mal finite sections of size less than m. Then (T,<) is 2nd-order interpretable inside
G(S, 1m3n2m). If m = 1, then T can be any tree without endpoints.

Proof. If n ≤ m, (S,B) is 2nd-order interpretable inside G(S, 1m3n2m) by Theorem 4.30.

If n > m, then by Lemma 4.29 G(T, 1m3k2m) is interpretable inside G(T, 1m3n2m), where
n ≡ k mod m. Now, since k ≤ m, and T contains no non-trivial maximal finite sections of
size less than m, by Theorem 4.30 (T,<) is 2nd-order interpretable inside G(T, 1m3k2m),
and hence from G(T, 1m3n2m).

If m = 1, then (T,<) is 2nd-order interpretable inside G(T, 13n2) by Theorem 4.28.

Remark 4.32. The case where T has endpoints or ‘leaves’, or where T is a more general
partial order, remains open.
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5 Ordinal Shift Graphs

We now consider shift graphs in which the underlying set is an ordinal, and show that in
general, it is possible to determine α from G(α, 1n3m2n). The case in which this is a limit
ordinal works out with the fewest complications. We shall see that the infinite successor
case presents more technical problems than the limit case, and that in certain successor
cases the underlying ordinal cannot be determined. What we mean by this is that for
distinct ordinals α, α′, G(α, 1n3m2n) ∼= G(α′, 1n3m2n) - thus we ‘cannot determine’ what
the underlying set is from the graph (although we might have some idea, as there may only
be finitely many distinct ordinals giving rise to isomorphic graphs, so we know it is one of
these).

5.1 Finite Ordinals

First we briefly consider finite ordinals. In some ways this may seem very simple, as
here we can distinguish them all merely by means of counting; if z is the finite ordinal
{0, 1, ..., z − 1}, then the graph G(z, 1n3m2n) has

(
z

n+m

)
verties. This may, however, be

regarded as not completely satisfactory, since though for each finite ordinal and type, there
will be a formula distinguishing that case, and the formulae will get longer and longer as
the finite ordinal increases. So it is far more illuminating to try to do things uniformly,
meaning that the formulae will stay consistent no matter what the size of the finite set. It
turns out that some of the same techniques as used for other total orders or ordinals can be
employed, thereby giving extra information, so this is the approach we adopt. Note that
there is an immediate difference here with the case of any infinite ordinal, namely that the
finite ordering is isomorphic to its reversed ordering, so we can only ever expect to recover
the betweenness relation, as in many of the cases we studied in the previous chapter.

Theorem 5.1. Let z = {0, 1, ..., z − 1} be a finite set. Then given G(z, 132), there is a
uniform procedure for interpreting the betweenness relation on z from the graph.

Thus we can reconstruct {Ai : i ∈ z} as in Theorem 4.2 with the betweenness relation such
that Ai corresponds to i ∈ z.

Proof. In all cases for 1 ≤ x ≤ z − 2, Ax is taken to be {(v, x) : v < x} ∪ {(x,w) : x < w}.
This is easiest to represent when 2 ≤ x ≤ z− 3, using ideas from the linear orders chapter.
We start by identifying co-cliques C and D with the properties C =

⋂
{Nv : v ∈ D},

D =
⋂
{Nv : v ∈ C} of size ≥ 2. As before we can show that these all have the form

Cx = {(v, x) : v < x}, Dx = {(x,w) : x < w} for some x ∈ {2, ..., z − 3}, and so we can let
Ax = Cx ∪Dx in these cases.

We then work out the betweenness relation as in Theorem 4.2: xB[w, y] if and only if
Aw ∩ Ay is not a neighbour of Aw ∩ Ax or Ax ∩ Ay, but the latter two are neighbours of
one another.
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Now there are exactly two points, (0, z−2) and (1, z−1), of degree 1, so we can characterize
each of A1 and Az−2 as consisting of a vertex which is adjacent to a vertex of degree 1, and
all its neighbours.

Although it is possible to determine the set A0 constisting of all points beginning with
0 and the set Az−1 consisting of all points ending with z − 1, this is both laborious and
unnecessary, and it suffices to let A0 consist of the unique member of Az−2 of degree 1, and
Az−1 consist of the unique member of A1 of degree 1. We can then extend the definition
of betweenness to fit A0, A1, Az−2, Az−1 so as to interpret the whole of z.

Theorem 5.2. Let Z = {0, 1, ..., z − 1} be a finite ordinal of size at least 4n. Then given
G(Z, 1n32n), there is a uniform procedure for interpreting the betweenness relation on Z
from the graph.

Proof. First we adopt the following notation: let 0n mean “any member of the set {0, ..., n−
1}”, and let z − 1n mean any member of the set {z − n− 1, ..., z − 1}”.

By identifying co-cliques with the following properties:

i) C =
⋂
{Nv : v ∈ D}

ii) D =
⋂
{Nv : v ∈ C}

we can isolate pairs of the form

Cx = {(v1, ...vn, x) : vn < x}
Dx = {(x,w1, ..., wn) : x < w1}

where x ∈ {n + 1, ..., z − n− 2}, and again let Ax = Cx ∪Dx for every such x. Note that
pairs of the form xCy, xDy also satisfy i) and ii), but that we can eliminate these as in
Lemma 4.3.

Now given Ax, Ay, Aw, all of distance at least n apart, we can determine which lies between
the other two as follows: yB[x,w] if and only if Ax ∩ Aw is not a neighbour of Ax ∩ Ay or
Ay ∩ Aw, but the latter two are neighbours of one another.

This gives us Bdist(n) on Z \ {0n, z − 1n}. By Lemma 3.28, we can determine B on Z \
{0n, z− 1n} from this. We then ‘add’ n points on to either end, with labels 0, ..., n− 1 and
z − n− 1, ..., z − 1 and the usual ordering.

Theorem 5.3. Let Z = {0, 1, ..., z − 1} be a finite set, and let Z > 2n. Then given
G(Z, 13n2), there is a uniform procedure for interpreting the betweenness relation on Z
from the graph.
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Proof. By identifying co-cliques C and D with the following properties:

i) C =
⋂
{Nv : v ∈ D}

ii) D =
⋂
{Nv : v ∈ C}

where |C|, |D| ≥ 1, we can isolate pairs of the form

Cx1,...,xn = {(y, x1, ..., xn) : y < x1}
Dx1,...,xn = {(x1, ..., xn, y′) : xn < y′}

where x1, ..., xn ∈ {1, ..., z − 2}.

Note that pairs of the form x1,...,xnCy1,...,yn , x1,...,xnDy1,...,yn also satisfy i) and ii), but that
we again can eliminate this case in a similar way to Lemma 4.3.

Now let Ax1,...,xn = Cx1,...,xn ∪Dx1,...,xn , such that Ax1,...,xn is the set of all vertices beginning
or ending with x1, ..., xn.

We start by noting that Ax1,...,xn and Ay1,...,yn have a non-empty intersection if and only if
either

x1 < x2 < ... < xn−1 < xn
‖ ‖
y1 < y2 < ... < yn−1 < yn

in which case their intersection is the point (x1, ..., xn, yn), or

x1 < x2 < ... < xn−1 < xn
‖ ‖

y1 < y2 < ... < yn−1 < yn

in which case their intersection is the point (y1, ..., yn, xn).

Let F be the family of Ax1,...,xn for 1 ≤ x1, ..., xn ≤ z − 2

We can thus construct the following isomorphism ϕ : F → G(z \ {0, z − 1}, 13n−12)

ϕ : Ax1,...,xn 7→ (x1, ..., xn)

where the relation “the elements Ax1,...,xn and Ay1,...,yn have a non-empty intersection in F
is mapped to the relation “there is an edge between the vertices (x1, ..., xn) and (y1, ..., yn)
in G(Z \ {0, z − 1}, 13n−12). After repeating this process n − 1 times we obtain all the
Ais in G(Z \ {0n, z − 1n}, 132), and so by Theorem 5.1 we can work out the betweenness
relation on these. Note that Z \ {0n, z − 1n} is nonempty since Z > 2n. Finally, we ‘add’
n points to either end of Z \ {0n, z − 1n} to obtain Z.

Remark 5.4. The more general 1n3m2n case remains open, but it looks like z can in general
be obtained from G(z, 1n3m2n), using similar methods to those in Chapter 4. Additionally,
the finite case shares some similarities with the ‘endpoints’ case, which also remains open.
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5.2 Limit Ordinals

In this section, we will start by considering all graphs of the form G(α, 13n2), where n ≥ 1.
We will start by defining a set having some desired properties - namely, the set of all
vertices beginning with 0. We can also repeat this inductively for any ordinal less than α.
These are presented as Lemmas, after which the reconstruction theorem follows. We then
repeat with G(α, 1n32n) and G(α, 1n3m2n), using a similar structure.

Lemma 5.5. Let α be a limit ordinal. Then there is a unique sequence of pairwise disjoint
subsets Dγ of G(α, 132) for γ < α such that:

(i) The induced subgraph on Dγ is a maximal co-clique of V (G) \
⋃
δ<γ Dδ

(ii) Any two vertices of Dγ have disjoint neighbour sets in V (G) \
⋃
δ<γ Dδ.

Proof. First note that {(0, β) : β > 0} satisfies (i) and (ii). Now let D0 be any set satisfying
(i) and (ii). Suppose D0 6⊆ {(0, β) : β > 0}. Then D0 must contain some vertex (δ, β)
with δ > 0. Now, since D0 is a maximal co-clique, it must contain (0, β); but then (δ, β)
and (0, β) have a common neighbour, (β, β′) for some β′ > β (which always exists as α is
a limit), a contradiction of the second condition above. If D0 ( {(0, β) : β > 0} then D0

would not be maximal, and so D0 = {(0, β) : β > 0}.

Now assume inductively that we have chosen Dδ for δ < γ and Dδ = {(δ, β) : β > δ}. Then
V (G) \

⋃
δ<γ Dδ = {(β0, β1) : β0 ≥ γ}. Then G restricted to this vertex set is isomorphic

to G′ = G(α′, 132), where γ+α′ = α, and α′ is still a limit ordinal. By the same argument
as for D0, there is a unique Dγ ⊆ V (G′) ⊆ V (G) such that the induced subgraph on Dγ is
a maximal co-clique and any two vertices in Dγ have disjoint neighbour sets.

Hence there is a unique sequence of pairwise disjoint subsets Dγ of G(α, 132) for γ < α
satisfying (i) and (ii), and this sequence is Dγ = {(γ, β) : β > γ}.

Lemma 5.6. Let α be a limit ordinal. Then there is a unique sequence of pairwise disjoint
subsets Dγ of G(α, 13n2) for γ < α such that:

(i) The induced subgraph on Dγ is a maximal co-clique of V (G) \
⋃
δ<γ Dδ

(ii) Any two vertices of Dγ have disjoint neighbour sets in V (G) \
⋃
δ<γ Dδ.

Proof. First note that {(0, β1, ..., βn) : β1 > 0} satisfies (i) and (ii). Now let D0 be any set
satisfying (i) and (ii), and suppose D0 6⊆ {(0, β1, ..., βn) : β1 > 0}. Then D0 must contain
some vertex (δ, β1, ..., βn) with δ > 0. Now, since D0 is a maximal co-clique, it must
contain (0, β1, ..., βn); but then (δ, β1, ..., βn) and (0, β1, ..., βn) have a common neighbour,
(β1, ..., βn, β) for some β > βn (which always exists as α is a limit ordinal), a contradiction
of the second condition above. If D0 ( {(0, β1, ..., βn) : β1 > 0} then D0 would not be
maximal, and so D0 = {(0, β1, ..., βn) : β1 > 0}.
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Now assume inductively that we have chosen Dδ for δ < γ and Dδ = {(δ, β1, ..., βn) : β1 >
δ}. Then V (G)\

⋃
δ<γ Dδ = {(β0, β1, ..., βn) : β0 ≥ γ}. Then G restricted to this vertex set

is isomorphic to G′ = G(α′, 132), where γ + α′ = α, and α′ is still a limit ordinal. By the
same argument as for D0, there is a unique Dγ ⊆ V (G′) ⊆ V (G) such that the induced
subgraph on Dγ is a maximal co-clique and any two vertices in Dγ have disjoint neighbour
sets.

Hence there is a unique sequence of pairwise disjoint subsets Dγ of G(α, 132) for γ < α
satisfying (i) and (ii), and this sequence is Dγ = {(γ, β1, ..., βn) : β1 > γ}.

Theorem 5.7. Any limit ordinal α is 2nd-order interpretable inside G = G(α, 13n2) for n
a positive integer.

Proof. We may define Dγ ⊆ V (G) as in Theorem 5.6, and then α is the least ordinal γ
such that Dγ = ∅, and α is the order-type of the family (Dγ : γ < α).

Remark 5.8. Given v ∈ G as in Theorem 5.7, we can determine the unique (n+ 1)-tuple
“corresponding to” v as follows: first, find the unique Dγ1 containing v. Then, consider
the set V2 of Nv in V (G)\

⋃
ξ<γ1

Dξ. This set V2 lies entirely inside one Dγ2 for some
γ2 > γ1. Now, pick any element v2 of V2, and consider Nv2 in V (G)\

⋃
ξ<γ2

Dξ. This set,
once again, lies entirely within one Dγ3 for some γ3 > γ2. Repeat this process n times, until
we consider Nvn in V (G)\

⋃
ξ<γn

Dξ. Finally, this set lies entirely within some Dγn+1 . We
now have a sequence, γ1, γ2, ..., γn+1. Thus we see that v was “generated” by the n+1-tuple
(γ1, γ2, ..., γn+1), which is represented by (Dγ1 , Dγ2 , ..., Dγn+1).

We can illustrate the above with a more concrete example. Suppose our graph G is
G(ω, 132), and that v is the pair (5, 10). Now, the smallest Dγ containing v is D5. If
we consider the set of neighbours of v which lie in V (G)\

⋃
ξ<5Dξ, we see that this is

precisely the set D10. We thus have that the original pair was (5, 10) as required, which is
represented by (D5, D10).

Let us take a more complicated example. Suppose our graph G is G(ω, 133332), and that v
is is the 5-tuple (1, 3, 5, 7, 9). Now, the smallest Dγ1 containing v is D1. If we consider the
set of neighbours of (1, 3, 5, 7, 9) which lie in V (G)\

⋃
ξ<1Dξ, i.e. which lie in V (G)\D0,

we see that this is the set V2 := {(3, 5, 7, 9, y) : 9 < y}. This set lies entirely in D3 (but is
not equal to D3, as the second, third, and fourth “coordinates” must be 5, 7, 9).

Pick any element v2 of V2, for example, (3, 5, 7, 9, 10). Once again, if we consider Nv2 inside
V (G)\

⋃
ξ<3Dξ, we see that it is the set V3 := {(5, 7, 9, 10, y) : 10 < y}, and that this set

lies entirely within D5.
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Again, choose an element v3 of V3, say (5, 7, 9, 10, 11). Once again, if we consider Nv3 inside
V (G)\

⋃
ξ<5Dξ, we see that it is the set V4 := {(7, 9, 10, 11, y) : 11 < y}, and that this set

lies entirely within D7.

Choose an element v4 of V4, say (7, 9, 10, 11, 12). Once again, if we consider Nv4 inside
V (G)\

⋃
ξ<7Dξ, we see that it is the set V5 := {(9, 10, 11, 12, y) : 12 < y}. Finally, we see

that this set lies entirely within D9.

We thus have 1, 3, 5, 7, 9 as our sequence γ1, γ2, ..., γn+1, and therefore that the original ver-
tex v is the n+1-tuple (1, 3, 5, 7, 9) as required, which is represented by (D1, D3, D5, D7, D9).

This cannot be done in general for 1n3m2n with n > 1.

Lemma 5.9. Let α be a limit ordinal. Then there is a unique sequence of pairwise disjoint
subsets Dγ of G(α, 1n32n) for γ < α such that:

(i) The induced subgraph on Dγ is a maximal co-clique of V (G) \
⋃
δ<γ Dδ

(ii) Any two vertices of Dγ have identical or disjoint neighbour sets in V (G) \
⋃
δ<γ Dδ.

Furthermore, Dγ is equal to the set of all (β0, β1, ..., βn) ∈ V (G) for which nγ ≤ β0 < nγ+n.

Proof. First note that {(β0, β1, ..., βn) : β0 < n} satisfies (i) and (ii). Now let D0 be any set
satisfying (i) and (ii), and suppose D0 6⊆ {(β0, β1, ..., βn) : β0 < n}. Then D0 must contain
some vertex (δ, β1, ..., βn) with δ 6= 0, 1, ..., n− 1. Now, since D0 is a maximal co-clique, it
must contain (0, β1, ..., βn); but since δ ≥ n , N(δ,β1,...,βn) and N(0,β1,...,βn) are not equal as
(0, 1, ..., n−1, δ) lies in N(δ,β1,...,βn) and not in N(0,β1,...,βn), yet have a non-empty intersection
as (βn, βn+1, ..., βn+ n) lies in both, contradicting the second condition above. Note that
since α is a limit, βn < α and so βn + 1, ..., βn + n ∈ α. If D0 ⊂ {(β0, β1, ..., βn) : β0 < n}
then D0 would not be maximal, and so D0 = {(β0, β1, ..., βn) : β0 < n}.

Now assume inductively that we have chosen Dδ for δ < γ and Dδ = {(β0, ..., βn) : nδ ≤
β0 < nδ + n}. Then V (G) \

⋃
δ<γ Dδ = {(β0, ..., βn) : β0 ≥ nγ}. Then G restricted to this

vertex set is isomorphic to G′ = G(α′, 1n32n), where nγ + α′ = α, and α′ is still a limit
ordinal. By the same argument as for D0, there is a unique Dγ ⊆ V (G′) ⊆ V (G) such that
the induced subgraph on Dγ is a maximal co-clique and for any two vertices v1, v2 ∈ Dγ,
either Nv1 = Nv2 or Nv1 ∩Nv2 = ∅, and this equals {(β0, ..., βn) : nγ ≤ β0 < nγ + n}.

Hence there is a unique sequence of pairwise disjoint subsets Dγ of G(α, 1n32n) for γ < α
satisfying (i) and (ii), and this sequence is {(β0, ..., βn) : nγ ≤ β0 < nγ + n}.

Theorem 5.10. Any limit ordinal α is 2nd-order interpretable inside G = G(α, 1n32n) for
n a positive integer.

Proof. We may define Dγ ⊆ V (G) as in Theorem 5.9, and then α is the least ordinal γ
such that Dγ = ∅, and α is the order-type of the family (Dγ : γ < α).
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Lemma 5.11. Let α be a limit ordinal. Then there is a unique sequence (Dγ : γ < α) of
pairwise disjoint sets of vertices in G(α, 1n3m2n) with the following properties:

(i) The induced subgraph on Dγ is a maximal co-clique of V (G) \
⋃
δ<γ Dδ

(ii) Any two vertices of Dγ have identical or disjoint neighbour sets in V (G) \
⋃
δ<γ Dδ.

Furthermore, Dγ is equal to the set of all (β0, β1, ..., βn) ∈ V (G) for which nγ ≤ β0 < nγ+n.

Proof. First note that {(β0, β1, ..., βn+m−1) : β0 < n} satisfies (i) and (ii). Now let D0 be
any set satisfying (i) and (ii), and suppose D0 6⊆ {(β0, β1, ..., βn+m−1) : β0 < n}. Then
D0 must contain some vertex (δ, β1, ..., βn+m−1) with δ 6= 0, 1, ..., n − 1. Now, since D0 is
a maximal co-clique, it must contain (0, β1, ..., βn+m−1); but since δ ≥ n , N(δ,β1,...,βn+m−1)

and N(0,β1,...,βn+m−1) are not equal as (0, 1, ..., n−1, δ, β1, ..., βm−1) lies in N(δ,β1,...,βn+m−1) and
not in N(0,β1,...,βn+m−1), yet have a non-empty intersection as (βn, βn+1, ..., βn+m−1, βn+m−1+
1, ..., βm+n−1+n) lies in both, contradicting the second condition above. Note that since α
is a limit, βn+m−1 < α and so βn+m−1+1, ..., βm+n−1+n ∈ α. If D0 ( {(β0, β1, ..., βn+m−1) :
β0 < n} then D0 would not be maximal, and so D0 = {(β0, β1, ..., βn+m−1) : β0 < n}.

Now assume inductively that we have chosen Dδ for δ < γ and Dδ = {(β0, ..., βn+m−1) :
nδ ≤ β0 < nδ+n}. Then V (G)\

⋃
δ<γ Dδ = {(β0, ..., βn+m−1) : β0 ≥ nγ}. ThenG restricted

to this vertex set is isomorphic toG′ = G(α′, 1n32n), where nγ+α′ = α, and α′ is still a limit
ordinal. By the same argument as for D0, there is a unique Dγ ⊆ V (G′) ⊆ V (G) such that
the induced subgraph on Dγ is a maximal co-clique and for any two vertices v1, v2 ∈ Dγ,
either Nv1 = Nv2 or Nv1 ∩Nv2 = ∅, and this equals {(β0, ..., βn) : nγ ≤ β0 < nγ + n}.

Hence there is a unique sequence of pairwise disjoint subsets Dγ of G(α, 1n3m2n) for γ < α
satisfying (i) and (ii), and this sequence is {(β0, ..., βn+m−1) : nγ ≤ β0 < nγ + n}.

Theorem 5.12. Any limit ordinal α is 2nd-order interpretable inside G = G(α, 1n3m2n)
for positive integers m,n.

Proof. By the Lemma there is a unique sequence (Dγ : γ < α) having the stated properties,
and we can identify α as the least ordinal such that

⋃
γ<αDγ = G.

The theorems above apply only to limit ordinals. We would now like to generalise the
result for the type τ = 132 to all ordinals.

5.3 Successor Ordinals

In this section, we will start by taking an example, namely, the graph G(α0 + 5, 132),
where α0 is a limit ordinal. We can work out that there is a +5 at the end by looking at
the degrees of vertices. Similarly, we can apply the same logic to G(α0 + k, 132), and so
generalise this to all successor ordinals. A similar method is applied in the case of 13n2.
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We then take G(α0 + k, 11322) as an example, and show that α0 + k can be reconstructed
iff k ≥ 3. Similarly, we can once again generalise this case to G(α0 + k, 1n32n), which can
be reconstructed iff k ≥ n+ 1.

Finally, we generalise to G(α0 + k, 1n3m2n). We start by showing that for m < n < k, α is
interpretable from G(α0 + k, 1n3m2n).

Next we consider the case where m ≥ n. Our goal here is to ‘reconstruct’ G(α0 +
k, 12n3m−n22n) inside G(α0 + k, 1n3m2n). We can do this by isolating n +m-tuples over-
lapping in this way:

(x1, ... xn, y1, ... yn, yn+1, yn+2, ... ym)
‖ ‖ ‖

(y′1, y′2, ... y′m−n, y′m−n+1, ... y′m, z1, ... zn)

Two vertices of this form will share a neighbour (y1, ..., ym, y′m−n+1, ..., y
′
m). However, this

is not the only arrangement of vertices sharing a neighbour - so we impose the following
conditions one at a time, thus isolating the case above:

i) the two vertices x and z must share exactly one neighbour

ii) there must be no other vertex v sharing a neighbour with both x and z

We see in this proof that we must have n ≥ 2 in G(α0 + k, 1n3m2n).

We finish off with Corollary 5.23, grouping all these cases together and thus the general
result for all successor ordinals.

Example 5.13. Before we consider the successor case, let us first take the following ex-
ample: consider the graph G(α0 + 5, 132), where α0 6= 0 is some limit ordinal.

First note that for the degree of a vertex (x, y) to be finite in general, we must both have
dist(0, x) < ω, and dist(y, α0 + 4) < ω.

We now count the number of vertices of each finite degree. Starting with all pairs of the
form (n, α0 + 4), we get:

1 vertex of degree 0, namely the vertex (0, α0 + 4)
1 vertex of degree 1, namely the vertex (1, α0 + 4)
1 vertex of degree 2, namely the vertex (2, α0 + 4)

...

Now considering pairs of the form (n, α0 + 3), we get:
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1 vertex of degree 1, namely the vertex (0, α0 + 3)
1 vertex of degree 2, namely the vertex (1, α0 + 3)
1 vertex of degree 3, namely the vertex (2, α0 + 3)

...

Again, considering pairs of the form (n, α0 + 2), we get:

1 vertex of degree 2, namely the vertex (0, α0 + 2)
1 vertex of degree 3, namely the vertex (1, α0 + 2)
1 vertex of degree 4, namely the vertex (2, α0 + 2)

...

Considering pairs of the form (n, α0 + 1), we get:

1 vertex of degree 3, namely the vertex (0, α0 + 1)
1 vertex of degree 4, namely the vertex (1, α0 + 1)
1 vertex of degree 5, namely the vertex (2, α0 + 1)

...

Finally, considering pairs of the form (n, α0), we get:

1 vertex of degree 4, namely the vertex (0, α0)
1 vertex of degree 5, namely the vertex (1, α0)
1 vertex of degree 6, namely the vertex (2, α0)

...

Now, adding all these up, we see that we have a total of:

1 vertex of degree 0
2 vertices of degree 1
3 vertices of degree 2
4 vertices of degree 3
5 vertices of degree 4
5 vertices of degree 5
5 vertices of degree 6

...
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Thus there are

j + 1 vertices of degree j for all j < 4

5 vertices of degree j for all j ≥ 4

And so supposing we hadn’t known what the original ordinal was, we would have been
able to determine that it had form α + 5, where α is some limit.

We see that this holds in general for any G(α0 + k, 132), where k is finite.

Theorem 5.14. Any infinite ordinal α is 2nd-order interpretable inside G = G(α, 132).

Proof. Let α = α0 + k where α0 6= 0 is a limit ordinal and k < ω.

We start by determining k; this can be done by looking at the degrees of the vertices of G.

Claim 1: k is the largest finite number such that for some finite j there are exactly k
vertices of degree j. If no such number exists, then k = 0.

Proof of Claim 1. For finite x, the vertex (x, α0+ k− 1) has degree x. If x were infinite,
the degree would also be infinite. In general, the vertex (x, α0+k−v−1) has degree x+v.
Counting the total number of vertices of each degree, we see that there are

j + 1 vertices of degree j for all j < k − 1

k vertices of degree j for all j ≥ k − 1

This proves Claim 1.

We would now like to work out α0. We do this by “recognising” G(α0, 132) inside G(α0 +
k, 132) as an induced subgraph.

We will start by “recognising” G(α0 + k − 1, 132) inside G(α0 + k, 132), and repeating the
process k times. We can then determine α0 as in the proof of Theorem 5.7.

Claim 2: In G(α0 + k, 132), excluding isolated points, any maximal co-clique whose
neighbour sets are pairwise disjoint is of the form {(0, γ) : 0 < γ < α0 + k − 1} or
{(δ, α0 + k − 1) : 0 < δ < α0 + k − 1}.

Proof of Claim 2: First of all, each of these is a co-clique, because no two vertices of
the form (0, γ) are joined, not are any two of the form (δ, α0 + k − 1). Each of them is a
maximal co-clique, as we cannot add any vertex (x, y) with x > 0 to the first and retain its
being a co-clique, and similarly for the second. The neighbour sets are pairwise disjoint,
as any neighbour of (0, γ) must begin with γ; similarly in the second case.
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We will now show that any maximal co-clique S with pairwise disjoint neighbour sets is
equal to one of these two sets. Let (a, b) ∈ S with a > 0. Then (0, b) is not joined to any
member of S, since if it was, then it would have to be (b, c), but this is joined to (a, b).
By maximality of S, (0, b) ∈ S. If b < α0 + k − 1, then (0, b) and (a, b) have overlapping
neighbour sets, a contradiction. We deduce that b = α0+ k− 1. To sum up, any (a, b) ∈ S
has a = 0 or b = α0 + k − 1 (but not both, as we have excluded isolated points).

Hence S is the union of two subsets, those pairs beginning with 0, and those ending in
α0 + k − 1. In fact, for every β < α, either (0, β) or (β, α0 + k − 1) lies in S. To see this,
suppose (0, β) does not lie in S. By maximality, it must have a neighbour in S, and this
can only be (β, α0 + k − 1).

It follows that α can be written as the disjoint union of two subsets A and B such that
S = {0} × A ∪ B × α0 + k − 1. Since the neighbour sets of S are pairwise disjoint, if
(0, a) and (b, α0 + k − 1) lie in S, then b ≤ a, as otherwise (a, b) would be a common
neighbour. Thus A is closed upwards, and B is closed downwards. Since α0 + k − 1 ∈ A,
A is non-empty. Let β be its least member. If 1 < β < α0 + k − 1, consider (1, β + 1).
Since S is a maximal co-clique, this is joined to a member of S. If it is joined to (0, a) then
a = 1 ∈ A, contrary to β > 1 the least member of A. If it is joined to (b, α0 + k− 1), then
b = β + 1 ∈ B, contrary to members of B being ≤ members of A.

This proves Claim 2.

We can distinguish between these sets, {(0, γ) : 0 < γ < α0 + k − 1} and {(δ, α0 + k − 1) :
0 < δ < α0 + k − 1}, since {(δ, α0 + k − 1) : 0 < δ < α0 + k − 1} has vertices of all finite
degrees, whereas {(0, γ) : 0 < γ < α0 + k − 1} only has vertices of finite degrees up to k.

Now we remove {(δ, α0 + k − 1) : 0 < δ < α0 + k − 1} from G(α0 + k, 132), along with all
isolated points, leaving us with the graph G(α0 + k− 1, 132). Repeat this process k times,
so that we are left with the graph G(α0, 132). We can now determine α0 as in the proof of
Theorem 5.10. Thus we can determine the ordinal α from the graph G(α, 132).

We can extend this theorem to all types of the form 13n2 fairly easily:

Theorem 5.15. Any infinite ordinal α is 2nd-order interpretable inside G = G(α, 13n2).

Proof. Let α = α0 + k, where α0 is a limit ordinal and k is finite.

A path in G is said to be ‘balanced’ if all its vertices have the same (finite) degree. A
maximal balanced path is one which is as long as possible. If k ≤ n, then this length is k,
and if k > n, it is n. So the problem is determining which of these two cases applies, and
determining k in each.
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Now, a maximal balanced path must be of the form:

(r, r + 1, ..., r + k − 1, βk, ..., βn−1, α0) ∼ (r + 1, r + 2, ..., r + k − 1, βk, ..., βn−1, α0, α0 + 1)

∼ ...

∼ (r + k − 1, βk, ..., βn−1, α0, ..., α0 + k − 1)

if k ≤ n, or of form:

(r0, r1, ..., rn−1, α0 + s0) ∼ (r1, r2, ..., rn−1, α0 + s0, α0 + s1)

∼ ...

∼ (rn−1, α0 + s0, α0 + s1, ..., α0 + sn−1)

if k > n, where ri − si is constant.

We remark that interior vertices in a maximal balanced path have neighbours which have
finite degree. However, it is possible for the endpoints of these paths to have neighbours
(not in the path, of course) which have infinite degree.

This is possible since we know explicitly what the options are for maximal balanced paths.

Consider the following condition on a vertex v. It must be the endpoint of a maximal
balanced path, and have EXACTLY ONE neighbour of infinite degree. Call this property
Unique∞(v). This happens for k ≤ n if r = 1, since v = (1, 2, ..., k, βk, ..., βn−1, α0) has the
vertex (0, 1, 2, ..., k, βk, ..., βn−1) as its unique neighbour of infinite degree, and for k > n,
if r0 = 1 then (1, r1, ..., rn−1, α0 + s0) has just one neighbour of infinite degree, namely
(0, 1, r1, ..., rn−1) and if sn−1 = k − 2, (rn−1, α0 + s0, ..., α0 + sn−2, α0 + k − 2) has just one
neighbour of infinite degree, namely (α0 + s0, ..., α0 + sn−2, α0 + k − 2, α0 + k − 1).

For a vertex v fulfilling Unique∞(v), let v∞ stand for its unique neighbour of infinite degree.

We can tell the difference between the two cases k ≤ n and k > n as follows:

For any maximal balanced path P , there is at most one endpoint v fulfilling Unique∞(v).
This holds if and only if k ≤ n, and furthermore, k can then be recovered as the length of
such a path.

Now suppose that k > n. Then a path can have two endpoints fulfilling Unique∞(v),
and we can tell which is which as follows. The first case ‘small end’ is characterised
by saying that there are only finitely many neighbours of v∞ which have finite degree.
To see this, let v = (1, r1, ..., rn−1, α0 + s0) be our vertex at the ‘small end’ such that
v∞ = (0, 1, r1, ..., rn−1). The neighbours of v∞ having finite degree are precisely vertices of
the form (1, r1, ..., rn−1, α0 + s) for 0 ≤ s ≤ k − 1. But for a Unique∞ vertex at the large
end, v = (rn−1, α0 + s0, ..., α0 + sn−2, α0 + k− 2), and v∞ = (α0 + s0, ..., α0 + sn−2, α0 + k−
2, α0+k− 1), which has infinitely many neighbours of finite degree, namely all of the form
(r, α0 + s0, ..., α0 + sn−2, α0 + k − 2) for r < ω. So we can distinguish these two types of
endpoint, and we can recover k as the number of possible neighbours of v∞ of finite degree
in the first case, since s can take k possible values.
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We now turn our attention to α0. We consider separately the cases where k = 1 and where
k ≥ 2.

Case 1: k ≥ 2

We will show that x ∈ G(α0, 13
n2)⇔ there’s a path x, y, z, u, v in G such that:

• z 6= x, v

• x, v have infinite degree

• u has degree 2

• v has exactly k neighbours of finite degree which have degrees 1, 2, ..., k

First suppose that x ∈ G(α0, 13
n2). Then x = (β0, ..., βn), where βn < α0. Let

y = (β1, ..., βn, α0 + k − 2)

z = (β2, ..., βn, α0 + k − 2, α0 + k − 1)

u = (1, β2, ...βn, α0 + k − 2)

v = (0, 1, β2, ..., βn)

We see that all finite degree neighbours of v are of the form (1, β2, ..., βn, α0 + i) where
i = 0, ..., k − 1, meaning these neighbours have degree 1, 2, ..., k.

Now suppose that x, y, z, u, v are as stated. v must be of the form (β0, ..., βn) for some
β0, ..., βn. Neighbours of v are either of the form (β, β0, ..., βn−1), or of the form (β1, ..., βn, γ).
Thus if these have finite degree then β < ω and βn−1 ≥ α0, OR β1 < ω and γ ≥ α0.

As v has infinite degree, we must either have β0 ≥ ω or βn < α0.

If β0 ≥ ω, then neighbours of v of finite degree are of the form (β, β0, ..., βn−1). But β
could have infinitely many values, and we know v only has finitely many neighbours of
finite degree.

Thus β0 < ω, and so βn < α0.

The neighbours of v of finite degree are (β1, ..., βn, α0 + i), and we know β1 < ω. Thus to
fulfil the stipulations, we must have β1 = 1 (as otherwise there will be a neighbour of v of
finite degree greater than k).

Thus v = (0, 1, β2, ..., βn), where βn < α0.

Thus u = (1, β2, ..., βn, α0 + k − 2), which is where we use k ≥ 2.

Since v 6= z, we must have z = (β2, ..., βn, α0 + k − 2, α0 + k − 1).

Then y = (γ1, β2, ..., βn, α0 + k − 2), for some γ1 < β2.

And so, since x 6= z, we must have x = (γ0, γ1, β2, ..., βn), where βn < α0. Thus x ∈
G(α0, 13

n2), as desired.
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Case 2: k = 1

We consider a maximal co-clique C in G such that its members have pairwise disjoint
neighbour sets and the only vertices of C having finite degree are isolated. The aim is to
recover the set of all vertices beginning with 0, which clearly satisfies these properties.

Now the isolated vertices in this case have the form (0, β1, ..., βn−1, α0). These must all
clearly lie in C, so we concentrate on the other members of C.

First we show that if v = (β0, ..., βn) ∈ C is not isolated, then β0 = 0 or βn = α0. If
not, then 0 < β0, and (0, β1, ..., βn) shares a neighbour with v, namely (β1, ..., βn, βn + 1)
(here using βn < α0). It follows that (0, β1, ..., βn) does not lie in C. Since C is a maximal
co-clique, (0, β1, ..., βn) must be joined to some member of C, which must have the form
(β1, ..., βn, β). However, this is joined to v, so this gives a contradiction.

Let C1 = {(0, β1, ..., βn) ∈ C : βn < α0} and C2 = {(β1, ..., βn, α0) ∈ C : 0 < β1}. We have
therefore shown that C is the (disjoint) union of C1, C2, together with the set of isolated
vertices.

Given β1, ..., βn such that β1 > 0 and βn < α0 we see that exactly one of (0, β1, ..., βn) and
(β1, ..., βn, α0) lies in C. For if the first does not lie in C, then as C is a maximal co-clique,
it must be joined to a member of C, but this can only be (β1, ..., βn, α0). The two points
cannot both lie in C since they are joined.

We now show that C2 = ∅. If not, it has a member (β1, ..., βn, α0) say. Since C has
no non-isolated vertices of finite degree, β1 ≥ ω. Now (1, β1, ..., βn) is a neighbour of
(β1, ..., βn, α0), so is not a neighbour of any member of C1. Hence (0, 1, β1, ..., βn−1) doesn’t
lie in C1. Therefore by the above calculation, (1, β1, ..., βn, α0) lies in C2. But this has
finite degree, and is non-isolated, so this contradicts the stipulation on C.

Hence C2 = ∅. We deduce that C = {(0, β1, ..., βn) : βn < α0}, and this fulfils all the rules
for our set.

We can now recover G(α0, 13
n2) inside G(α0 + k, 13n2) as follows: starting this time with

a maximal co-clique whose neighbour sets are pairwise disjoint and which is disjoint from
C1, the above calculations show that this must be equal to the set of all vertices ending in
α0, and the complement of this set in G(α0 + k, 13n2) gives us all vertices NOT ending in
α0, which is precisely G(α0, 13

n2).

We can thus isolate G(α0, 13
n2) in G(α0+k, 13

n2), and so determine α using Theorem 5.7.

Theorem 5.16. Let α = α0 + k where α0 6= 0 is a limit ordinal and k < ω. Then α is
2nd-order interpretable inside G = G(α, 11322) if k ≥ 3. In the case where k = 1 or 2, we
have G(α0 + 1, 11322) ∼= G(α0 + 2, 11322).
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Proof. We will start with the case k ≥ 3.

Consider the induced subgraph Gfin ⊆ G consisting of all vertices Vfin of finite degree, i.e.
vertices of the form a = (a1, a2, a3) where a1 < ω and a3 ≥ α0. Now, N(a) is the union of
two subsets:

N`(a) = {(b1, b2, b3) : b3 = a1}
Nr(a) = {(b′1, b′2, b′3) : a3 = b′1}

Note that N`(a) is empty for a1 = 0, 1, and Nr(a) is empty for a3 = α0 + k− 2, α0 + k− 1.

Identify two members of Gfin if they have the same neighbour sets by the relation ∼.
∼-classes now correspond to pairs (a1, a3) such that 2 ≤ a1 < ω or a1 = 01, and α0 ≤
a3 ≤ α0 + k − 3 or a3 = α0 + k − 2α0+k−1, where for (a1, a3) and (a′1, a

′
3), corresponding

neighbour sets have a trivial (empty) intersection unless a1 = a′1 or a3 = a′3. Note that this
holds since a1, a′1 < ω and a3, a′3 ≥ α0 - otherwise we could have had a1 < a3 < a′1 < a′3 for
example. Here we use 01 to mean “0 or 1” and α0 + k − 2α0+k−1 to mean “α0 + k − 2 or
α0 + k − 1”.

Turn Gfin(∼) into a graph with relation E and say that (a1, a3)E(a′1, a′3) if their neighbour
sets are unequal, but intersect non-trivially.

Then (a1, a3)E(a
′
1, a
′
3) iff a1 = a′1 or a3 = a′3 or a1, a′1 ∈ {0, 1} or a1, a′1 ∈ {α0 + k − 2, α0 +

k − 1}. Thus a clique under E is a set of vertices (a1, b) for fixed a1, or a set of vertices
(b, a3) for fixed a3. If the clique is maximal, b takes all possible values.

Now we can verify that for a fixed x < ω, X = {(x, a3) : a3 ≥ α0}, and for a fixed y ≥ α0,
Y = {(a1, y) : a1 < ω} are maximal cliques under the relation E, and X is finite of size
k. Thus we can recover k as the unique size of such a maximal clique which is finite (and
non-trivial).

Once we have recovered k, we would like to ‘recognise’ G(α0, 11322) inside G(α0+k, 11322).

Now expand the relation ∼ to all of G in the natural way, and similarly expand the relation
E to all of G. Consider an infinite maximal clique under relation E in Gfin, i.e. of the
form Y = {(a1, y) : a1 < ω, α0 < y ≤ α0+k− 3} for fixed y, and expand this to a maximal
clique Y ′ under relation E in G. Then Y ′ will be of the form {(a1, y) : a1 < ω}, where y
is fixed and α0 ≤ y ≤ α0 + k − 3. Remove every such clique Y ′ from G. We are now left
with G(α0 + 2, 11322).

Now we turn our attention to the case where k = 1 or 2.

Claim: G(α0 + 1, 11322) ∼= G(α0 + 2, 11322).

Proof of Claim. Let G1 = G(α0 + 1, 11322) and G2 = G(α0 + 2, 11322). We would
like to find an isomorphism θ from G1 to G2. Let θ fix all points of G(11322, α0). The
remaining points in G1 are of the form (a, b, α0) and in G2 are of the form (a, b, α0) or
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(a, b, α0 + 1). Now all of these points for fixed a have the same neighbour sets, namely
(a1, a2, a) for a1 < a2 < a (which will be empty if a = 0 or 1). Since b can take infinitely
many values, we find ANY bijection θ taking {(a, b, α0) : a < b < α0} to {(a, b, α0) : a <
b < α0} ∪ {(a, b, α0 + 1) : a < b < α0 + 1} for each a, and this will be an isomorphism.

Finally, we determine α0 from G(α0 + 1, 11322).

In the following, we use the notation 01 to indicate “0 or 1” - this is because 0 and 1
effectively act as a single point here. Thus for example, {(01, γ1, γ2) : β ≤ γ2 ≤ α0} really
means {(0, γ1, γ2) : β ≤ γ2 ≤ α0} ∪ {(1, γ1, γ2) : β ≤ γ2 ≤ α0}.

First we show that any maximal co-clique whose neighbour sets are pairwise either equal
or entirely disjoint is of the form {(01, γ1, γ2) : 2 ≤ γ2 ≤ α0} or {(δ1, δ2, α0) : δ1 < α0}.
We can see that this is a co-clique, because no two vertices of the form (01, γ1, γ2) are
joined, nor are any two of the form (δ1, δ2, α0). Each of them is maximal, as we cannot
add any vertex (x1, x2, x3) to the first and retain its being a co-clique, and similarly for
the second. The neighbour sets are either equal or pairwise disjoint, as any neighbour
of (01, γ1, γ2) must begin with γ2, and so two vertices of the form (01, γ1, γ2), (01, γ

′
1, γ2)

have identical neighbour sets, whereas two vertices of the form (01, γ1, γ2), (01, γ1, γ
′
2) have

disjoint neighbour sets, and similarly in the second case.

We will now show that any maximal co-clique S with neighbour sets either equal or pairwise
disjoint is equal to one of these two sets S. Let (x1, x2, x3) ∈ S with x1 ≥ 2. Then
(01, x2, x3) is not joined to any member of S, since if it was, it would have to be (x3, y1, y2),
but this is joined to (x1, x2, x3). Then (01, x2, x3) ∈ S by maximality. If x3 < α0, then the
neighbour sets of (01, x2, x3) and (x1, x2, x3) are not disjoint, and so they must be equal;
but this is not possible since x1 ≥ 2 and so (0, 1, x1) is a neighbour of (x1, x2, x3) but not
(01, x2, x3). We deduce that x3 = α0. To sum up, any (x1, x2, x3) ∈ S has x1 = 01 or
x3 = α0 (or both).

Hence S is the union of two subsets, those tuples beginning with 0 or 1, and those ending
in α0. In fact, for every β < α, either (01, b, β) or (β, b′, α0) lies in S, for some b, b′. To see
this, suppose (0, b, β) does not lie in S. Then by maximality, it must have a neighbour in
S, and this can only be of the form (β, b′, α0).

Now, α can be written as the (not necessarily disjoint) union of two subsets A and B such
that S = {(0, x, a) : a ∈ A}∪{(b, y, α0) : b ∈ B}. Since the neighbour sets of S are pairwise
disjoint, if (0, x, a) and (b, y, α0) both lie in S then b ≤ a+1, as otherwise (a, a+1, b) would
be a common neighbour. Thus A is closed upwards, and B is closed downwards. Since
α0 ∈ A, A is nonempty. Let β be its least member. If 2 < β < α0, consider (2, β+1, β+2).
Since S is a maximal co-clique, this is joined to a member of S. If it is joined to (0, x, a),
then a = 2 ∈ A, contrary to β being the least member of A. If it is joined to (b, y, α0),
then b = β+2, contrary to the assertion that b ≤ a+1 (since β is the least member of A).

This proves the Claim.
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We can distinguish between these sets, {(01, γ1, γ2) : 1 ≤ γ2 ≤ α0} and {(δ1, δ2, α0) : δ1 <
α0}, since{(δ1, δ2, α0) : δ1 < α0}, contains vertices of finite degree which are not isolated
points, and {(01, γ1, γ2) : 1 ≤ γ2 ≤ α0} does not.

Now we remove {(δ1, δ2, α0) : δ1 < α0} from G(α0 + 1, 11322), leaving us with the graph
G(α0, 11322), and so we can determine α0 by Theorem 5.10.

One can extend this theorem fairly easily:

Theorem 5.17. Let α = α0 + k where α0 6= 0 is a limit ordinal and k < ω. Then α is
2nd-order interpretable inside G = G(α, 1n32n) if k ≥ n + 1. For all k, k′ ≤ n, we have
G(α0 + k, 1n32n) ∼= G(α0 + k′, 1n32n).

Proof. We will start with the case k ≥ n+ 1.

Consider the induced subgraph Gfin ⊆ G consisting of all vertices Vfin of finite degree, i.e.
vertices of the form a = (a1, ..., an+1) where a1 < ω and an+1 ≥ α0. Now, N(a) is the union
of two subsets:

N`(a) = {(b1, ..., bn+1) : bn+1 = a1}
Nr(a) = {(b′1, ..., b′n+1) : an+1 = b′1}

Note that N`(a) is empty for a1 = 0, ..., n − 1, and Nr(a) is empty for an+1 = α0 + k −
n, ..., α0 + k − 1.

We would like to identify the set of all vertices a = (a1, ..., an+1) ∈ Gfin such that exactly
one of N`(a) and Nr(a) is nonempty. Let us call the sets of all such vertices G`

fin and Gr
fin

respectively.

First note that if both N`(a) = Nr(a) = ∅, then a is an isolated point.

Excluding isolated points, identify two members of Gfin if they have the same neighbour
sets by the relation ∼.

We will show that

a ∈ G`
fin ∪Gr

fin ⇔ every pair of neighbours n1, n2 of a
have a common neighbour v such that v 6∼ a

⇒: Since either N`(a) or Nr(a) is empty, any two neighbours of a must either begin with
the same point an+1 or end with the same point a1. Without loss of generality assume the
former. Then take v to be any vertex ending in an+1 and not beginning in a1, and such
that n ≤ v1 < ω. Note that in the latter case the argument relies on n ≥ 2.

⇐: Assume a /∈ G`
fin∪Gr

fin, i.e. both N`(a) and Nr(a) are nonempty, and take n1 ∈ N`(a)
and n2 ∈ Nr(a). Then every common neighbour v of n1 and n2 must begin with a1 and end
with an+1, i.e. v ∼ a. Thus not every pair of neighbours of a have a common neighbour v
such that v 6∼ a.
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Now, there is a natural restriction of ∼ to G`
fin ∪ Gr

fin, with ∼-classes corresponding to
pairs (a1, an+1) with either n ≤ a1 < ω or α0 ≤ an+1 < α0 + k − n.

For (a1, an+1) and (a′1, a
′
n+1) respectively, corresponding neighbour sets have a trivial (empty)

intersection unless a1 = a′1 or an+1 = a′n+1. Note that this holds since a1, a′1 < ω and
an+1, a

′
n+1 ≥ α0 - otherwise we could have had a1 < an+1 < a′1 < a′n+1 for example.

Turn Gfin(∼) into a graph with relation E and say that (a1, an+1)E(a
′
1, a
′
n+1) if their

neighbour sets are unequal, but intersect non-trivially.

Then (a1, an+1)E(a
′
1, a
′
n+1) iff a1 = a′1 or an+1 = a′n+1, but not both. Thus a clique under

E is a set of vertices (a1, b) for fixed a1, or a set of vertices (b, an+1) for fixed an+1. If the
clique is maximal, b takes all possible values.

Now let a ∈ G`
fin∪Gr

fin, and let b be a neighbour of a. Then the set of all neighbours v of b
lying in Gfin forms a maximal clique under the relation E. We can see this as if a ∈ G`

fin,
then n ≤ a1 < ω and an+1 ≥ α0 + k − n, and so bn+1 = a1. Every v either has vn+1 = b1
or v1 = bn+1, and so every such v ∈ Gfin must start with bn+1 = a1. This is obviously a
clique, and since we are considering the set of all neighbours of b, this clique is maximal.
The case where a ∈ Gr

fin is similar.

It is easy to see that if a ∈ G`
fin, then the clique is finite of size k, whereas if a is in Gr

fin,
then the clique is infinite. Thus k can be recovered as the unique size of such a maximal
clique which is finite.

Once we have recovered k, we would like to ‘recognise’ G(α0, 1
n32n) inside G(α0+k, 1

n32n).

Now expand the relation ∼ to all of G in the natural way, and similarly expand the relation
E to all of G. Consider an infinite maximal clique under relation E in Gr

fin, i.e. of the
form Y = {(a1, y) : a1 < ω} where y is fixed such that α0 ≤ y ≤ α0 + k − n − 1, and
expand this to a maximal clique Y ′ under relation E in G. Then Y ′ will be of the form
{(a1, y) : a1 < y}, where α0 ≤ y ≤ α0 + k − n − 1 is fixed. Remove every such clique Y ′
from G. We are now left with G(α0 + n, 1n32n).

Repeat this m times, where k ≡ k′ mod n (and mn + k′ = k), until we are left with
G(α0 + k′, 1n32n).

We now turn our attention to the case where k ≤ n.

Claim: G(α0 + 1, 1n32n) ∼= G(α0 + 2, 1n32n) ∼= ... ∼= G(α0 + n, 1n32n).

Proof of Claim. Let G1 = G(α0 + 1, 1n32n) and G2 = G(α0 + k, 1n32n) for some
1 < k ≤ n. We would like to find an isomorphism θ from G1 to G2. Let θ fix all the points
of G(α0, 1

n32n). The remaining points in G1 are of the form (a, b2, ..., bn, α0), and in G2

are of the form (a, b2, ..., bn, α0 + j), where 0 ≤ j < k. Now all of these points for fixed
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a have the same neighbour sets, namely (a1, ..., an, a) for an < a. Since the bis can take
infinitely many values, we can find ANY bijection θ taking {(a, b2, ..., bn, α0) : bn < α0} to
{(a, b2, ..., bn, α0 + j) : bn < α0, j ≤ k} for each a, and this will be an isomorphism.

Finally, we determine α0 from G(α0 + 1, 1n32n).

We start by identifying the set {(x, y2, ..., yn, α0) : yn < α0}.

In the following, we use the notation 0n−1 to indicate “0 or 1” - this is because the set
{0, 1, ..., n− 1} effectively acts as a single point here. Thus for example, {(0n, γ1, γ2) : β ≤
γ2 ≤ α0} really means {(0, γ1, γ2) : β ≤ γ2 ≤ α0} ∪ {(1, γ1, γ2) : β ≤ γ2 ≤ α0} ∪ ... ∪ {(n−
1, γ1, γ2) : β ≤ γ2 ≤ α0}.

First we show that any maximal co-clique whose neighbour sets are pairwise either com-
pletely equal or entirely disjoint is of the form {(0n−1, γ1, ..., γn) : n ≤ γn ≤ α0} or
{(δ1, ..., δn, α0) : δ1 < α0}. We can see that this is a co-clique, because no two vertices
of the form (0n−1, γ1, ..., γn) are joined, nor are any two of the form (δ1, ..., δn, α0). Each
of them is maximal, as we cannot add any vertex (x1, x2, ..., xn+1) to the first and retains
its being a co-clique, and similarly for the second. The neighbour sets are either equal
or pairwise disjoint, as any neighbour of (0n−1, γ1, ..., γn) must begin with γn, and so two
vertices of the form (0n−1, γ1, ..., γn), (0n−1, γ

′
1, ..., γn) have identical neighbour sets, whereas

two vertices of the form (0n−1, γ1, ..., γn), (0n−1, γ1, ..., γ
′
n) have disjoint neighbour sets, and

similarly in the second case.

We will now show that any maximal co-clique S with neighbour sets either equal or pair-
wise disjoint is equal to one of these two sets S. Let (x1, ..., xn+1) ∈ S with x1 ≥ n. Then
(0n−1, x2, ..., xn+1) is not joined to any member of S, since if it was, it would have to be
(xn+1, y1, ..., yn), but this is joined to (x1, ..., xn+1). Then (01, x2, ..., xn+1) ∈ S by maxi-
mality. If xn+1 < α0, then the neighbour sets of (0n−1, x2, ..., xn+1) and (x1, x2, ..., xn+1)
are not disjoint, and so they must be equal; but this is not possible since a ≥ n and so
(0, 1, ..., n−1, x1) is a neighbour of (x1, x2, ..., xn+1) but not (0n−1, x2, ..., xn+1). We deduce
that xn+1 = α0. To sum up, any (x1, ..., xn+1) ∈ S has x1 = 0 or xn+1 = α0 (or both).

Hence S is the union of two subsets, those tuples beginning with 0 or 1, and those ending
in α0. In fact, for every β < α, either (0n−1, x1, ..., xn−1, β) or (β, y1, ..., yn−1, α0) lies in
S, for some x1, ..., xn−1, y1, ..., yn−1. To see this, suppose (0, x1, ..., xn−1, β) does not lie in
S. Then by maximality, it must have a neighbour in S, and this can only be of the form
(β, y1, ..., yn−1, α0).

Now, α can be written as the (not necessarily disjoint) union of two subsets A and B such
that S = {(0n−1, x1, ..., xn−1, a) : a ∈ A}∪{(b, y1, ..., yn−1, α0) : b ∈ B}. Since the neighbour
sets of S are pairwise disjoint, if (0n−1, x1, ..., xn−1, a) and (b, y1, ..., yn−1, α0) both lie in S
then b ≤ a+ n, as otherwise (a, a+ 1, ..., an, b) would be a common neighbour. Thus A is
closed upwards, and B is closed downwards. Since α0 ∈ A, A is nonempty. Let β be its
least member. If n < β < α0, consider (n, β + 1, β + 2, ..., β + n). Since S is a maximal
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co-clique, this is joined to a member of S. If it is joined to (0n−1, x1, ..., xn−1, a), then
a = n ∈ A, contrary to β being the least member of A. If it is joined to (b, y1, ..., yn−1, α0),
then b = β + n, contrary to the assertion that b ≤ a + 1 (since β is the least member of
A). This proves the Claim.

We can distinguish between these sets, {(0n−1, γ1, ..., γn) : n ≤ γn ≤ α0} or {(δ1, ..., δn, α0) :
δ1 < α0}, since {(δ1, ..., δn, α0) : δ1 < α0}, contains vertices of finite degree which are not
isolated points, and {(0n−1, γ1, ..., γn) : n ≤ γn ≤ α0} does not.

Now we remove {(δ1, ..., δn, α0) : δ1 < α0} from G(α0+1, 1n32n), leaving us with the graph
G(α0, 1

n32n), and so we can determine α0 by Theorem 5.10.

Theorem 5.18. Let α = α0 + k be a successor ordinal with α0 a limit and finite k > n.
Then α is interpretable in G = G(α, 1n3m2n) for all m ≤ n.

Proof. Consider the induced subgraph Gfin ⊆ G consisting of all vertices Vfin of finite
degree, i.e. vertices of the form a = (x1, ..., xm, y1, ..., yn−m, z1, ..., zm) where x1, ..., xm < ω
and z1, ..., zm ≥ α0. Now, N(a) is the union of two subsets:

N`(a) = {(v1, ..., vn, x1, ..., xm) : v1, ..., vn < x1}
Nr(a) = {(z1, ..., zm, w1, ..., wn) : w1, ..., wn > zm}

Note that N`(a) is empty for x1 = 0, ..., n − 1, and Nr(a) is empty for zm = α0 + k −
n, ..., α0 + k − 1.

Identify two members of Gfin if they have the same neighbour sets by the relation ∼. ∼-
classes now correspond to pairs (x1, ..., xm, z1, ..., zm) such that n− 1 ≤ x1, ..., xm < ω and
α0 ≤ z1, ..., zm ≤ α0+k−n. For (x1, ..., xm, z1, ..., zm) and (x′1, ..., x

′
m, z

′
1, ..., z

′
m), correspond-

ing neighbour sets have a trivial (empty) intersection unless x1 = x′1, x2 = x′2, ..., xm = x′m
or z1 = z′1, z2 = z′2, ..., zm = z′m. Note that this holds since x1, ..., xm, x′1, ..., x′m < ω and
z1, ..., zm, z

′
1, ..., z

′
m ≥ α0 - otherwise we could have had x1, ..., xm < z1, ..., zm < x′1, ..., x

′
m <

z′1, ..., z
′
m for example.

Turn Gfin(∼) into a graph with relation E and say that

(x1, ..., xm, z1, ..., zm)E(x
′
1, ..., x

′
m, z

′
1, ..., z

′
m)

if their neighbour sets are unequal, but intersect non-trivially.

Now we can verify that for fixed v1, ..., vm < ω, V = {(v1, ..., vm, z1, ..., zm) : z1 ≥ α0}, and
for fixed w1, ..., wm ≥ α0, W = {(x1, ..., xm, w1, ..., wm) : xm < ω are maximal cliques under
the relation E, and V is finite of size

(
k
m

)
. Thus we can recover k from the unique size of

such a maximal clique which is finite (and non-trivial).
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We now turn our attention to the case where k ≤ n.

Claim: G(α0 + 1, 1n3m2n) ∼= G(α0 + 2, 1n3m2n) ∼= ... ∼= G(α0 + k, 1n3m2n).

Proof of Claim. Let Gx = G(α0 + x, 1n3m2n). We would like to find an isomor-
phism θ from Gx to Gx+1. Let θ fix all points of G(α0 + x − 1, 1n3m2n). The remain-
ing points in Gx are of the form (a1, ..., am, b1, ..., bn−1, α0 + x) and in Gx+1 are of the
form (a1, ..., am, b1, ..., bn−1, α0 + x) or (a1, ..., am, b1, ..., bn−1, α0 + x + 1). Now all of these
points for fixed a1, ..., am have the same neighbour sets, namely (y1, y2, ..., yn, a1, ..., am) for
y1 < ... < yn < a1, ..., am (which will be empty if a1 ≤ n). Since the bis can take infinitely
many values (or none!), we again find ANY map θ taking {(a1, ..., am, b1, ..., bn−1, α0) :
am < b1 < ... < bn < α0} to {(a1, ..., am, b1, ..., bn−1, α0) : am < b1 < ... < bn−1 <
α0}∪{(a1, ..., am, b1, ..., bn−1, α0+x) : am < b1 < ... < bn−1 < α0+x+1} for each a1, ..., am,
and this will be an isomorphism.

Lemma 5.19. Let α = α0 + k be a successor ordinal with α0 a limit and k < ω. Then
for n < m, any two points in G = G(α, 1n3m2n) which share a neighbour must be either
of the form

(x1, ... xn, y1, ... yn, yn+1, yn+2, ... ym)
‖ ‖ ‖

(y′1, y′2, ... y′m−n, y′m−n+1, ... y′m, z1, ... zn)

or of the form

(y1, ... ym, x1, ... xn)
‖ ‖

(y1, ... ym, z1, ... zn)

for y1 ≥ n, or of the form

(x1, ... xn, y1, ... ym)
‖ ‖

(z1, ... zn, y1, ... ym)

for ym ≤ α0 + k − n− 1.

Furthermore, the neighbour in the first case is the point (y1, ..., yn, y
′
1, ..., y

′
m), the neigh-

bours in the second case are the points (w1, ..., wn, y1, ..., ym) for w1, ..., wn < y1, and the
neighbours in the third case are the points (y1, ..., ym, v1, ..., vn) for v1, ..., vn > ym.

Proof. Let x = (x1, ..., xn, y1, ..., ym) be a vertex in G. Then any neighbour of x must either
be of the form

(x1, ... xn, y1, ... ym)
‖ ‖

(y1, ... ym, v1, ... vn)
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or of the form

(x1, ... xm, ... xn, y1, ... ym)
‖ ‖

(v1, ... vn, x1, ... xm)

Without loss of generality assume the former, and let n(x) = (y1, ...ym, v1, ...vn). Now, any
neighbour of n(x) must again be of one of the forms above.

Case 1:

(y1, ... yn, yn+1, ... ym, v1, ... vn)
‖ ‖ ‖ ‖

(yn+1, ... ym, v1, ... vn, z1, ... zn)

Relabelling, we get:

(y1, ... yn, yn+1, ... ym, v1, ... vn)
‖ ‖ ‖ ‖

(y′1, ... y′m−n, y′m−n+1, ... y′m, z1, ... zn)

and thus the two points sharing a neighbour are of the form

(x1, ... xn, y1, ... yn, yn+1, yn+2, ... ym)
‖ ‖ ‖

(y′1, y′2, ... y′m−n, y′m−n+1, ... y′m, z1, ... zn)

with neighbour (y1, ...ym, z1, ...zn).

Case 2:

(y1, ... ym, v1, ... vn)
‖ ‖

(z1, ... zn, y1, ... ym)

Then the two points sharing a neighbour are of the form

(x1, ... xn, y1, ... ym)
‖ ‖

(z1, ... zn, y1, ... ym)

with common neighbour (y1, ...ym, z1, ...zn). Note that we must have ym ≤ α0 + k − n− 1,
as otherwise we could not have distinct z1, ..., zn > ym.
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The remaining case is similar to case 2 except we start by assuming

(x1, ... xm, ... xn, y1, ... ym)
‖ ‖

(v1, ... vn, x1, ... xm)

and therefore end up with

(y1, ... ym, x1, ... xn)
‖ ‖

(y1, ... ym, z1, ... zn)

for y1 ≥ n,

Lemma 5.20. Let α = α0 + k be a successor ordinal with α0 a limit and k < ω. Then
any two points in G = G(α, 1n3m2n) which share exactly one neighbour must be either of
the form

(x1, ... xn, y1, ... yn, yn+1, yn+2, ... ym)
‖ ‖ ‖

(y′1, y′2, ... y′m−n, y′m−n+1, ... y′m, z1, ... zn)

or of the form

(y1, ... ym, x1, ... xn)
‖ ‖

(y1, ... ym, z1, ... zn)

for y1 = n, or of the form

(x1, ... xn, y1, ... ym)
‖ ‖

(z1, ... zn, y1, ... ym)

for ym = α0 + k − n− 1.

Furthermore, the neighbour in the first case is the point (y1, ..., yn, y′1, ..., y′m), the neighbour
in the second case is the point (0, ..., n− 1, y1, ..., ym), and the neighbour in the third case
is the point (y1, ..., ym, α0 + k − n, ..., α0 + k − 1).

Proof. By Lemma 5.19, any two points in G sharing a neighbour must be of the form

(x1, ... xn, y1, ... yn, yn+1, yn+2, ... ym)
‖ ‖ ‖

(y′1, y′2, ... y′m−n, y′m−n+1, ... y′m, z1, ... zn)
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or of the form

(y1, ... ym, x1, ... xn)
‖ ‖

(y1, ... ym, z1, ... zn)

for y1 ≥ n, or of the form

(x1, ... xn, y1, ... ym)
‖ ‖

(z1, ... zn, y1, ... ym)

for ym ≤ α0 + k − n− 1 (and ym < α0 if k ≤ n).

In the first case, they have exactly one common neighbour, namely the point

(y1, ..., yn, y
′
1, ..., y

′
m)

In the second case, neighbours are of the form (w1, ..., wn, y1, ..., ym) for w1, ..., wn < y1.
Thus there is exactly one common neighbour if and only if y1 = n, in which case the
neighbour is the point (0, ..., n− 1, y1, ..., ym)

Similarly, in the third case neighbours are of the form (y1, ..., ym, v1, ..., vn) for v1, ..., vn >
ym. Thus there is exactly one common neighbour if and only if ym = α0 + k − n − 1, in
which case the neighbour is the point (y1, ..., ym, α0 + k − n, ..., α0 + k − 1).

Lemma 5.21. Let α = α0 + k be a successor ordinal with α0 a limit and k < ω. Let
m > n ≥ 2. Then any two points x, z in G = G(α, 1n3m2n) which share exactly one
neighbour, and such that there is no point v ∈ G such that v shares exactly one neighbour
with both x and z, must be of the form:

(x1, ... xn, y1, ... yn, yn+1, yn+2, ... ym)
‖ ‖ ‖

(y′1, y′2, ... y′m−n, y′m−n+1, ... y′m, z1, ... zn)

with common neighbour (y1, ..., yn, y′1, ..., y′m−n).

Proof. By Lemma 5.20, any two points sharing exactly one neighbour must be of the form

(x1, ... xn, y1, ... yn, yn+1, yn+2, ... ym)
‖ ‖ ‖

(y′1, y′2, ... y′m−n, y′m−n+1, ... y′m, z1, ... zn)

with neighbour (y1, ..., yn, y′1, ..., y′m−n), or of the form

(y1, ... ym, x1, ... xn)
‖ ‖

(y1, ... ym, z1, ... zn)
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for y1 = n, with neighbour (0, ..., n− 1, y1, ..., ym), or of the form

(x1, ... xn, y1, ... ym)
‖ ‖

(z1, ... zn, y1, ... ym)

for ym = α0 + k − n− 1. with neighbour (y1, ..., ym, α0 + k − n, ..., α0 + k − 1).

In the first case, there cannot be a point v ∈ G such that v shares exactly one neighbour
with both x and z.

In the second case, take v = (y1, ..., ym, v1, ..., vn) with v1, ..., vn 6= x1, ..., xn and v1, ..., vn 6=
z1, ..., zn.

Similarly, in the third case take v = (v1, ..., vn, y1, ..., ym) with v1, ..., vn 6= x1, ..., xn and
v1, ..., vn 6= z1, ..., zn.

Note that we must have n ≥ 2 in this case. If n = 1, we could have the following:

Suppose we are in G(α0 + k, 13m2).

Take x to be the point (1, y1, ..., ym−2, α0 + k − 3, α0 + k − 2), and z to be the point
(1, y1, ..., ym−2, α0+k−3, α0+k−1), where the yis can be anything but are the same for x and
z. Then x and z share exactly one neighbour, namely the point (0, 1, y1, ..., ym−2, α0+k−3).
Additionally, there is no point v such that v shares exactly one neighbour with both x and
z, as we have ‘run out’ of points on the right hand side. Normally the point v would look
like (1, y1, ..., ym−2, α0 + k − 3, w), where w > α0 + k − 3.

So why isn’t this a problem when n ≥ 2?

When considering the example above, the reason for there being no such point v is that
we can ‘fix’ α0 + k − 3 so that it is exactly ‘two away from the end’, and since n = 1, this
final point in the m + 1-tuple can take either of these values. If n ≥ 2, we would have a
minimum of two points to fill on the right hand side. So x and z will look something like:

x = (n+ 1, y2, y3, ...ym, x1, ..., xn)
z = (n+ 1, y2, y3, ...ym, z1, ..., zn)

where ym is ‘fixed’ at being something like α0 + k − n− 2 (or similar)

Now, the common neighbour of x and z will be the point (0, 1, ..., n, n+1, y2, ..., ym). Since
we must have two points x and z having this common neighbour, the point ym is ‘fixed’
and must be strictly less than α0+k−n−1, as otherwise the points x1, ..., xn and z1, ..., zn
would not be able to differ. Now, since there must be at least n+1 points to ‘choose’ from,
and n values to insert, we end up with

(
n+1
n

)
. For n ≥ 2,

(
n+1
n

)
will always be at least 3
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(this is easy to see, as
(
n+1
n

)
= n+ 1 and n+ 1 is at least 3). Thus, we will always be able

to find a point v as described above, as v needs to be of the form:

v = (n+ 1, y2, y3, ...ym, v1, ..., vn)

with v1, ..., vn differing from x1, ..., xn and z1, ..., zn.

Theorem 5.22. Let α = α0 + k be a successor ordinal with α0 a limit, and k finite. Let
m > n ≥ 2, and k be such that k > n · z, where z ≡ m mod n. Then G(α, 12n3m−n22n) is
interpretable from G = G(α, 1n3m2n) for all m ≥ n.

Proof. Say that xE1z for two points x, z in G if their neighbour sets intersect at exactly
one point, and such that there is no point v ∈ G such that v shares exactly one neighbour
with both x and z.

By Lemma 5.21, these are of the form

(x1, ... xn, y1, ... yn, yn+1, yn+2, ... ym)
‖ ‖ ‖

(y′1, y′2, ... y′m−n, y′m−n+1, ... y′m, z1, ... zn)

with mutual neighbour (y1, ..., yn, y′1, y′2, ..., y′m).

Now, there is an isomorphism between the graph G(α, 1n3m2n) with relation E1, and the
graph G(α, 12n3m−n22n) with the usual edge relation. This isomophism should be fairly
obvious, as vertices in the graph G(α, 12n3m−n22n) also consist of (m+n)-tuples with edges
of the form

(x1, ... x2n, y1, y2, ... ym−n)
‖ ‖ ‖

(y1, y2, ... ym−n, z1, ... z2n)

and there is an edge between two vertices in G(α, 12n3m−n22n) if and only if the relation
E1 holds for those same two vertices in G(α, 1n3m2n).

Note that we must have k > n · z, where z ≡ m mod n, as we repeat this process z times
to get G(α, 1zn3m−zn2zn) so that we get a graph of the form G(α, 1n

′
3m
′
2n
′
), with m′ < n′.

We can thus apply Theorem 5.18 to determine α. Note that by Theorem 5.18, we must
have k > n′, i.e. k > n · z.

Now we repeat this until we have a graph G(α, 1n3m2n) with m < n.
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Corollary 5.23. Let α = α0+k be a successor ordinal with α0 a limit and finite k. Then,
for some restrictions on k, α is interpretable in G = G(α, 1n3m2n) for all finite m,n.

If n = 1, then α is interpretable by Theorem 5.15. If m = 1 and k > n, α is interpretable
by Theorem 5.17 (if k ≤ n this can’t be done). If m ≤ n and k > n, then α is interpretable
by Theorem 5.18 (if k ≤ n this can’t be done). If m ≥ n and k > n · z, where z ≡ m mod
n, then G(α, 1zn3m−zn2zn) is interpretable by Theorem 5.22, and thus α is interpretable by
Theorem 5.18. If k ≤ n · z this can’t be done, by the claim following Theorem 5.18.

Thus we have shown that any ordinal α is interpretable inside the shift graph with type
1n3m2n. The cases where the type is any string of 1s, 2s, and 3s not of the form 1n3m2n,
and where the number of 1s equals the number of 2s, remain open (for example 1232112).
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6 Automorphism Groups

We now approach the question of whether it is possible to work out a generalised shift
graph from its automorphism group. The simple answer is ‘no’, but it is interesting to
look at these different groups and see how the automorphism groups vary depending on
the graph and underlying set.

The simplest automorphism groups are those coming from ordinals in which case as we
have shown, the ordinal can often be recovered from the shift graph, for instance those of
type 13n2 as in Theorem 5.7.

Things get a little more interesting in the ordinal graph G = G(α, 1n32n) with n ≥ 2.
This is very similar to G(α, 13n2), in that we can say something about each vertex in G
- more specifically, for each vertex in G, there is a unique pair (x, y) where x, y ∈ α such
that the n+1-tuple generating this vertex must begin with x and end with y. The middle
coordinates can however be permuted as we wish to give an automorphism of the graph.
We will show more formally below that in general Aut(G(S, 1n32n)) 6∼= Aut(G(S)), but
intuitively, we can think of this as follows: any ‘twins’ (vertices that share exactly the
same neighbour sets) can be completely freely permuted. Thus, for fixed x and z, the
vertices of the form (x, y1, ..., yn−1, z), whose neighbour sets are of the form {(v1, ..., vn, x) :
vn < x} ∪ {(z, w1, ..., wn) : w1 > z}, all share the same neighbour sets for any y1, ..., yn−1,
and can thus be permuted freely. For example, in G(Q, 1113222), the vertices (1, 2, 3, 5),
(1, 3, 4, 5), and (1, 2, 4, 5) can all be permuted, meaning that the automorphism group
contains the copy of S3 which permutes these vertices. Thus we see that for any ordinal
α, Aut(G(α, 1n32n)) 6∼= Aut(α), for n > 1, as Aut(α) = {id} whereas Aut(G(α, 1n32n))
clearly contains all the permutations as described above.

Similarly, in the ordinal case with G(α, 1n3m2n), we can determine the first n and last n
coordinates of each n+m-tuple, and so whether Aut(G(S, 1n3m2n)) ∼= Aut(S) or not will
depend on whether m < n.

In order to approach these automorphism groups, we must first recall the notion of wreath
product, denoted by Wr.

Definition 6.1. Let X and Y be sets, and let G ≤ Sym(X) and H ≤ Sym(Y ), where
Sym(X) is the group of permutations on X.

We define G Wr H to be the set of all permutations of X × Y which have the form (f, h),
where f is a mapping from Y to G, and h ∈ H, and which acts as follows:

(f, h)(x, y) = (f(y)(x), h(y))

It can be straightforwardly verified that (f, h) defined like this is a permutation of X × Y ,
as follows on noting that f(y) ∈ G which is a permutation of X and h is a permutation of
Y , and then verifying bijectivity.
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Intuitively, we can think of the wreath product as follows: Let the diagram above rep-
resent X and Y , where a permutation on X corresponds to ‘shuffling’ points around on
a horizontal line, and vice versa. Then h shuffles the horizontal lines up and down, as
h acts on Y (and H is a bunch of permutations of Y ), and f shuffles the points inside
individual horizontal lines, i.e. individual copies of X, but it does this for all Y copies of
X simultaneously.

We take a couple of examples to illustrate the difference in automorphism groups for
different types:

Example 6.2. The automorphism group of G(7, 11322) is

(S5 Wr Z2)× (S3 Wr Z2)× S16.

There are three kinds of connected components.

• There are 16 isolated points

• One connected component whose automorphism group is S3 Wr Z2

• An additional component whose automorphism group is S5 Wr Z2.
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However, the automorphism group of G(Z, 132) for finite Z is simply Z2 as the entire graph
can be reversed but there are no ‘interchangeable’ vertices. The automorphism group of
G(Z, 13n2) on the other hand is Z2×S(z−2

n−1)
for all finite values of n, as the entire graph can

be reversed and additionally the singletons, of which there are
(
z−2
n−1

)
, are interchangeable.

Example 6.3. Aut(G(Q, 11322)) = Sym(Q) Wr Aut(Q, B)

This is because we can interpret Q inside G, and all vertices of the form (a, b1, c) and
(a, b2, c) are interchangeable and can be permuted ad lib inside Aut(G(Q, 11322)). There-
fore Aut(G(Q, 11322)) is built up from Aut(Q, B) and Sym(Q), and so the automorphism
group is Sym(Q) Wr Aut(Q, B).

A similar result holds for the generalisation to all types of the form 1n32n: Aut(G(Q, 1n32n)) =
Sym(Q) Wr Aut(Q, B)

Example 6.4. Let’s consider any automorphism g of G(Z, 11322). We know that g must
respect the interpretation of (Z, B), so corresponds to some h ∈ Aut(Z, B). To see what
else can happen, let’s consider h = id. Given a < c, g can permute {(a, b, c) : a < b < c}.
This will give a copy of Sk, k = c− a− 1 (if c− a = 1, this doesn’t even arise). Thus

Aut(G(Z, 11322)) =
∞∏
k=1

(Sk Wr Aut(Z, B))

We can extend the example above to all types as follows: consider any automorphism
of G(Z, 1n32n). Then vertices of the form (x, y1, ..., yn−1, z) and (x, y′1, ..., y

′
n−1, z) can be

permuted ad lib. However, there are some restrictions on the number of options we have
for the yis, namely,

(
z−x
n−1

)
. Thus

Aut(G(Z, 1n32n)) =
∞∏
k=1

(S( k
n−1)

Wr Aut(Z, B))

Remark 6.5. We note that if the ordering S is ‘asymmetrical’, then
Aut(S,B) = Aut(S,<). For example, Aut(Q+R, B) = Aut(Q+R, <), whereasAut(Q, B) 6=
Aut(Q, <).

We take the following example: consider the right long line L+ = ω1 × R consisting of the
order completion of ω1 copies of R. L+ is order-complete, dense without endpoints, and
every initial segment is isomorphic to R. Then Aut(L+, B) = Aut(L+, <).

Aut(G(L+, 1n32n)) = Sym(R) Wr Aut(L+, <)

Let G(S) be the shift graph on S for some type τ , such that S is interpretable in G(S, τ) =
G(S). Consider Aut(S) and Aut(G(S)).
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First note that each automorphism on S induces an automorphism on G(S), since G(S) is
interpretable in S. Let us call this natural homomorphism θ, and note that θ : Aut(S)→
Aut(G(S)) is injective but isn’t necessarily surjective.

Fix a graph G(S) and an interpretation of S in that graph. This induces a homomorphism
ψ going from Aut(G(S)) to Aut(S).

Let ψ : Aut(G(S))→ Aut(S) be a homomorphism such that for each ϕS ∈ Aut(S), ψ(θ(ϕS)) =
ϕS. Such a ψ always exists as S is interpretable in G(S). Note that ψ is surjective, but
not necessarily injective. It is clear that Aut(G(S)) ∼= Aut(S) if and only if this homomor-
phism ψ, provided by the interpretation, is injective. Thus, we can determine for various
values of τ , whether or not Aut(G(S)) ∼= Aut(S).

Theorem 6.6. Let S be a total ordering without endpoints, B the associated betweenness
relation, and let G = G(S, 132). Then Aut(G) ∼= Aut(S,B).

Proof. Let ψ : Aut(G)→ Aut(S) be a homomorphism provided by the interpretation. We
would like to show that ψ is injective, which we will do by showing that Ker(ψ) = idG.

First note that if ϕG : Ax 7→ Ay, then ψ : ϕG 7→ ϕS where ϕS(x) = y.

We will now show that for (x1, x2) 6= (y1, y2), if ϕG((x1, x2)) = (y1, y2), then ϕG : Ai → Aj
for some distinct i, j. This is obvious as if ϕG((x1, x2)) = (y1, y2), we must have ϕG :
Ax1 → Ay1 and ϕG : Ax2 → Ay2 , and since (x1, x2) 6= (y1, y2), we will either have x1 6= y1
or x2 6= y2, hence ϕG : Ai → Aj for distinct i, j.

Thus if ϕG ∈ Ker(ψ) and ϕG 6= idG, there must be some distinct (x1, x2), (y1, y2) ∈ G
such that ϕG((x1, x2)) = (y1, y2), but such that ψ : ϕG → idS. However, as we have shown
above, this cannot happen, hence ϕG = idG.

Theorem 6.7. Let S be a total ordering without endpoints, and let G = G(S, 1n32n),
n ≥ 2. Then Aut(G) 6∼= Aut(S,B).

Proof. We show that Aut(S,B) has no element of order 3, but Aut(G(S, 1n32n)) does.

First suppose Aut(S,B) has an element g of order 3. Then g is either order-preserving
or order-reversing. Assume g is order-preserving. As g 6= id, it moves something. Let
g(x) 6= x, and assume without loss of generality that g(x) > x. Then g2(x) > g(x) and
g3(x) > g2(x), and so g3(x) > x, a contradiction.

Now suppose g is order-reversing. Then g2 is order-preserving. Thus if g has order 3, then
g2 must also have order 3, which can’t happen by the above argument.

However, Aut(G(S, 1n32n)) does have an element of order 3. Choose x < y < z < s < t.
Then (x, y, t), (x, z, t), (x, s, t) are vertices inG, and the permutation ((x, y, t)(x, z, t)(x, s, t))
has order 3.
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We now extend this to a more general case of G(S, 13n2):

Theorem 6.8. Let S be a total ordering without endpoints, and let G = G(S, 13n2). Then
Aut(G) ∼= Aut(S,B).

Proof. Let ψ : Aut(G) → Aut(S,B) be a homomorphism provided by the interpretation.
We would like to show that ψ is injective, which we will do by showing that Ker(ψ) = idG.

First note that if ϕG : Ax1,...,xn 7→ Ay1,...,yn , then ψ(ϕG) = ϕS where ϕS(x1) = y1,...,
ϕS(xn) = yn. However, there are also a bunch of other restrictions this gives - namely,
that ϕG : Ax1,z2,...,2n 7→ Ay1,z′1,...,z′n for all z2, ..., zn (and some z′j corresponding to each zi),
and so on. Essentially, the restrictions on tuples Ax1,...,xn are similar to the restrictions on
tuples (x1, ..., xn) in G(S, 13n−12). As in Lemma 4.7, G(S, 13n−12) is interpretable inside
G(S, 13n2), and so we can construct a series of homomorphisms (and thus an induced
homomorphism ψ as required) as follows:

Let G(S, 13n2) = Gn, and similarly G(S, 13k2) = Gk for all k < n. Elements of Gk are in
general denoted by ϕGk .

Suppose we have ϕGn((x1, ..., xn+1)) = (y1, ..., yn+1) in Aut(Gn). Then we must have
ϕGn : Ax1,...,xn → Ay1,...,yn and ϕGn : Ax2,...,xn+1 → Ay2,...,yn+1 . To see this, assume that
ϕGn((x1, ..., xn, xn+1)) = (y1, ..., yn, yn+1) but ϕGn((x1, ..., xn, x′n+1)) 6= (y1, ..., yn, y

′
n+1),

some y′n+1. Then (z, x1, ..., xn) is a neighbour of both (x1, ..., xn, xn+1) and (x1, ..., xn, x
′
n+1),

but ϕGn((z, x1, ..., xn)) is not a neighbour of ϕGn((x1, ..., xn, xn+1)) and ϕGn((x1, ..., xn, x′n+1)).
But homomorphisms must preserve neighbour relations, a contradiction.

Now, this means for distinct (x1, ..., xn+1), (y1, ..., yn+1), if ϕGn((x1, ..., xn+1)) = (y1, ..., yn+1)
then ϕGn : A(i1,...,in) → A(j1,...,jn), for some distinct (i1, ..., in), (j1, ..., jn). Thus Ker(ψn) =
idGn−1 , and so we can consider all of Aut(Gn) in terms of automorphisms of entire sets of
the form Ax1,...,xn .

We now use the standard homomorphism from Gn to Gn−1 where Ax1,...,xn → (x1, ..., xn),
and Ax1,...,xn∩Ay1,...,yn 6= ∅ if and only if there is an edge between (x1, ..., xn) and (y1, ..., yn)
in Gn−1. Thus if ϕGn : Ax1,...,xn → Ay1,...,yn in Gn, we have ϕGn−1((x1, ..., xn)) = (y1, ..., yn)
in Gn−1. Now, as before, we either have ϕGn−1 : Ax1,...,xn−1 → Ay1,...,yn−1 , or ϕGn−1 :
Ax2,...,xn → Ay2,...,yn . Again, we get that Ker(ψn−1) = idGn−2 , and so we can consider all of
Aut(Gn−1) in terms of automorphisms of entire sets of the form Ax1,...,xn−1 .

Repeating this process n times we obtain a chain as follows:

Aut(Gn)
ψn−→ Aut(Gn−1)

ψn−1−−−→ ...
ψ3−→ Aut(G2)

ψ2−→ Aut(G1)
ψ1−→ Aut(S)

Using the proof of Lemma 6.6, we can show the final step in this chain, i.e. ψ1 is injective.
Thus if we let ψ = ψn ◦ ψn−1 ◦ ... ◦ ψ1, we get an induced homomorphism ψ : Aut(Gn) →
Aut(S), whose kernel is idS by composition, and so Aut(G) = Aut(Gn) = Aut(S,B).
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Conjecture 6.9. Our examples suggest that in the case where S is any total ordering
without endpoints,

Aut(G(S, 1n32n)) =
∏
I⊆S

(Sym(I) Wr Aut(S,B))

where I is a convex subset of S and n ≥ 1. However, we leave this open.

The more general 1n3m2n case also remains open.

107



7 Chromatic Number of the Cardinal Shift Graph

We will now consider the chromatic number of G(α, 1n3m2n), where α is an ordinal. It
might be an interesting question to look at the chromatic number of the Finite, Linear
Ordering, and Partial Ordering Shift Graphs. In [3] it is stated that Erdős and Hajnal
showed that for any infinite cardinal κ,

χ(G(κ, 132)) = min{α : exp(α) ≥ κ}

and that in general χ(G(κ, 13m2)) = min{α : exp(m)(α) ≥ κ}. This of course covers just
types of the form 13m2. Here we will give a fairly perspicuous proof that χ(G(κ, 1n32n)) = κ
for κ measurable, and a modification for κ a strong limit. We will start with the measurable
case, which is more direct.

Definition 7.1. Let G be a graph. Then the chromatic number of G, denoted by χ(G),
is the minimal number of colours required to colour the vertices of G so that no two
neighbours share the same colour.

Remark 7.2. Any clique of size κmust be coloured with κmany colours, and any co-clique
of size κ can be coloured with 1 colour.

Definition 7.3. Let κ be a cardinal. Then U is an ultrafilter on κ if:

1. U ⊆ P(κ)

2. ∅ /∈ U

3. x ∩ y ∈ U for x, y ∈ U (i.e. U is ω-complete)

4. For each x ∈ P(κ) either x ∈ U or κ\x ∈ U

Definition 7.4. U is principal if there is some α < κ such that {α} ∈ U .

This is a way for an ultrafilter to be trivial, as the sets in U are precisely the sets containing
α.

Definition 7.5. U is κ-complete if
⋂
α<λXα ∈ U for λ < κ and Xα ∈ U .

This brings us to the following definition:

Definition 7.6. An uncountable cardinal κ is measurable iff it has a κ-complete, non-
principal ultrafilter.
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Lemma 7.7. Let κ be a measurable cardinal, and let U be a κ-complete, non-principal
ultrafilter on κ. Then every set in U has size κ.

Proof. Suppose X ∈ U with |X| = λ < κ. For each y ∈ X, let Xy = X\{y}.

Then
⋂
y∈X Xy is empty, a contradiction on U being κ-complete.

Lemma 7.8. Let κ be a measurable cardinal, and let U be a κ-complete, non-principal
ultrafilter on κ. Then if X ∈ U , any partition on X into < κ pieces contains exactly one
set in U .

Proof. Let {Xα : α < λ} be a partition of X ∈ U into λ < κ pieces.

Suppose for a contradiction that no such Xα lies in U . For each α < λ, let Yα = X\Xα. By
condition 4. in the definition of U , each Yα must lie in U . But

⋂
α<λ Yα = ∅, a contradiction

on U being κ-complete.

Theorem 7.9. χ(G(κ, 132)) = κ for every measurable cardinal κ.

Proof. Let G = G(κ, 132), and assume for a contradiction that χ(G) = λ < κ. Let U be a
κ-complete, non-principal ultrafilter on κ. We choose by transfinite induction a decreasing
sequence (Tα : α < κ) of members of U . We shall write tα for the least element of Tα.

Let T0 = κ, and so t0 = 0.

Now suppose that Tα (and hence also tα) has been chosen, and consider the set {(tα, t) : t >
tα} which is a set of κ vertices of G, which is coloured by (at most) λ colours. By Lemma
7.7, the set {t : t > tα} lies in U (since its complement has size < κ). We can partition
the set {t : t > tα} such that for each set T in the partition, {(tα, t) : t > tα, t ∈ T}
is monochromatic. Since there are at most λ many sets in this partition, by Lemma
7.8 exactly one of these lies in U . Let T ∈ U be such that {(tα, t) : t > tα, t ∈ T} is
monochromatic.

Let Tα+1 = Tα ∩ T for some such T , which also lies in U . Then tα 6∈ Tα+1, so that Tα+1 is
a proper subset of Tα, and also tα < tα+1. If γ is a limit ordinal < κ, we let Tγ =

⋂
α<γ Tα.

This is a proper subset of each Tα for α < γ, and hence again tγ > tα. The fact that
Tγ ∈ U follows by κ-completeness of U .

Now let Sα = {(tα, t) : t ∈ Tα+1}. By construction, Sα is monochromatic. Furthermore, if
α < β, then tβ ∈ Tα+1, so that (tα, tβ) ∈ Sα. Thus (tα, tβ) is joined to some (all actually)
members of Sβ. Hence the colours assigned to Sα and Sβ are different. Therefore κ colours
in all must have been used, which gives a contradiction.
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Theorem 7.10. χ(G(κ, 1n32n)) = κ for every measurable cardinal κ and for every n ≥ 1.

Proof. Assume for a contradiction that χ(G) = λ < κ, and choose a decreasing sequence of
sets Tα for α < κ, all lying in U , again writing tα for the least member of Tα. Let T0 = κ.
Assuming that Tα has been chosen, find T ∈ U such that {(tα, tα+1, ..., tα+n−1, t) : t ∈ T}
is monochromatic, and let Tα+1 = Tα ∩ T . At limits we take intersections as before. Note
that in this case, tα+1 ≥ tα + n. To conclude the proof, we let Sα = {(tα, tα + 1, ..., tα +
n − 1, t) : t ∈ Tα+1}, and for the same reason as in the proof of Theorem 7.9, these sets
must all be coloured by different colours, which gives a contradiction.

Recall the following definition:

Definition 7.11. A cardinal κ is a strong limit if for all λ < κ, 2λ < κ.

Lemma 7.12. If κ is a strong limit cardinal, then λγ < κ for all λ, γ < κ.

Proof. Since κ is a strong limit cardinal, 2λ < κ for all λ < κ. But

λγ ≤ 2(λ
γ) = (2λ)γ = 2λ·γ.

But λ · γ < κ, so 2λ·γ < κ by the definition of strong limit. Hence λγ < κ.

We can improve Theorem 7.10 by showing that it holds not just for measurable cardinals,
but for all strong limit cardinals as well. We will require the following definition:

Definition 7.13. Let λ, κ be cardinals. Then κ[λ] is the set of all functions from κ to λ.

First, we start with the 132 case.
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Theorem 7.14. χ(G(κ, 132)) = κ for every strong limit cardinal κ.

Proof. In this proof we adapt the method of Theorem 7.9. There we made a choice at each
stage of a ‘large’ set (in the ultrafilter). Here, we shall not in general know which set to
take, so instead, we take all of them, and arrange them as the points on the next level of
a tree. If the resulting tree has a long enough branch, then we can derive a contradiction
as before. In fact the vertices will be subsets of κ, the tree order will be reverse inclusion,
and distinct vertices on the same level will be disjoint.

Assume for a contradiction that χ(G(κ, 132)) = λ < κ. We will choose a series of subsets
T(s) of κ by transfinite induction, each representing a node of the tree, where (s) is a
sequence of points in λ. Again, let t(s) be the least element of T(s) for each (s). Each
branch of the tree is a decreasing sequence of subsets of κ.

Let the root of the tree be T0 = κ, with minimal point t0 = 0.

Now consider a partition of κ\{0} into monochromatic sets of the form {(0, x) : x > 0}.
Given our assumption that χ(G(κ, 132)) = λ, there are at most λ many sets of this form.
Let us label them T1, T2, T3, ... with minimal points t1, t2, t3, ... respectively. These are all
on level 1 of the tree. Now, for each Tα of this form, α ≤ λ, again consider monochromatic
sets of the form {(tα, x) : x > tα}. Again, there are at most λ many of these. Call these sets
Tα,1, Tα,2, Tα,3, ... with respective minimal points tα,1, tα,2, tα,3, .... These are all the nodes
on level 2 of the tree which are joined to Tα. Continue like this recursively for all levels of
the tree. Thus at level γ, each verticex is of the form T(s) where (s) is a sequence of points
in λ of length γ, and where restricting (s) to its first α < γ entries gives us a vertex T(s′)
on level α of the tree such that T(s′) < T(s). Note that since each vertex of the tree splits
into at most λ many branches, at level γ of the tree there are at most λγ many nodes.

Since κ is a strong limit, λγ < κ by Lemma 7.12. Hence the tree must have height κ, and
therefore it must have a branch of length λ+. But by the construction of the tree, this gives
us λ+ many monochromatic sets, all joined by an edge, a contradiction on the chromatic
number of G(κ, 132) being λ.
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Theorem 7.15. χ(G(κ, 1n32n)) = κ for every strong limit cardinal κ and every positive
integer n.

Proof. This proof is similar to that of Theorem 7.14.

Again, we assume for a contradiction that χ(G(κ, 1n32n)) = λ < κ. We will choose a series
of subsets T(s) of κ by transfinite induction as before.

Let T0 = κ with minimal element t0, and consider a partition of κ\{0} into monochrnomatic
sets of the form {(0, x1, ..., xn) : x1 > 0}. Given our assumption that χ(G(κ, 132)) = λ,
there are at most λ many sets of this form, so again, label them T1, T2, T3, ... with minimal
points t1, t2, t3, ... respectively. These are all on level 1 of the tree. Again, for each Tα of
this form, α ≤ λ, again consider monochromatic sets of the form {(tα, x1, ..., xn) : x1 > tα}
(there are at most λ many of these). Call these sets Tα,1, Tα,2, Tα,3, ... with respective
minimal points tα,1, tα,2, tα,3, .... These are all the nodes on level 2 of the tree which are
joined to Tα. Continue like this recursively for all levels of the tree as in Theorem 7.14.

Thus at level γ, each verticex is of the form T(s) where (s) is a sequence of points in λ of
length γ, and where restricting (s) to its first α < γ entries gives us a vertex T(s′) on level
α of the tree such that T(s′) < T(s). Note that since each vertex of the tree splits into at
most λ many branches, at level γ of the tree there are at most λγ many nodes.

Again, since κ is a strong limit, λγ < κ by Lemma 7.12. Hence the tree must have height
κ, and therefore it must have a branch of length λ+. But by the construction of the tree,
this gives us λ+ many monochromatic sets, all joined by an edge, a contradiction on the
chromatic number of G(κ, 1n32n) being λ.
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Conclusions and Future Work

Our main results concern interpretability of linear orders (sometimes just up to order-
reversal) within shift graphs. For ordinals, we have proved that any ordinal α is inter-
pretable inside G(α, 1n3m2n), which is covered in a succession of cases in Theorems 5.7,
5.10, 5.12, 5.14, 5.15, 5.16, 5.17, 5.22, and Corollary 5.23. The techniques and precise
results obtained vary according to the type, 132, 13n2, 1n23n, or 1m3n2n, as well as whether
the ordinal is a limit ordinal or a successor. The finite case is treated separately in Theo-
rems 5.1, 5.2, and 5.3. Rather different techniques are used for the case of general linear
orders, and once again there are several different cases which need to be distinguished,
in Theorems 4.2, 4.4, 4.5, 4.8, 4.11, 4.12, and Corollary 4.13. These are extended where
possible to trees in Theorems 4.23, 4.27, 4.28, 4.30, and Corollary 4.31.

It is conjectured that these results can be extended to all graphs of the form G(z, 1n3m2n).
The obstacles to doing this are illustrated by the arguments that we were compelled to
adopt in some of the above (and the reason why so many cases had to be considered, with
specific restrictions concerning density, lack of endpoints, absence of certain sub-intervals,
and so on). One first needs to tackle to possible presence of endpoints. This has already
arisen in the ordinals case (for left and sometimes right endpoints), particularly the finite
case. The techniques required are likely to need to be adapted from these cases, as well as
from those where there are no ‘short’ discrete subintervals.

We have shown that Aut(G(S, 13n2)) ∼= Aut(S,B) for any total ordering S and n ≥ 1, and
conjectured that graphs of the form G(S, 1n32n) can be reconstructed from their automor-
phism groups up to order reversal, where if S is any total ordering without endpoints:

Aut(G(S, 1n32n)) =
∏
I⊆S

(Sym(I) Wr Aut(S,B))

for I a convex subset of S and n ≥ 1. The more general 1n3m2n case is left open.

It has already been shown that for any infinite cardinal κ, the chromatic number of
G(κ, 132) is the min{α : exp(α) ≥ κ}, and for any infinite cardinal λ and n ≥ 0,
χ(G(λ, 13n2)) ≤ κ iff λ ≤ expn(κ) = 22

...2κ (n times). We have extended these results
to show that the chromatic number of G(κ, 1n32n) is κ for any strong limit cardinal κ and
n ∈ N.

The most obvious next step leading on from this work is to consider total orderings with
endpoints. We may be able to use techniques similar to the ones used in the successor
ordinals chapter, although these will need to be adjusted. There may also be cases with
endpoints in which we cannot determine the underlying ordering.

It should also be possible to extend the results on finite ordinals to all types of the form
1n3m2n, with some additional restrictions on z, using similar tools.
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Other future work might consist of considering G(P, 1n3m2n) for all partial orderings P .
It would be interesting to look at the chromatic number of the ordinal, finite, linear, and
partial ordering graphs. Going further, one might also consider the more general shift
graph, that is, not with type 1n3m2n.

It might also be interesting to consider directed graphs - on the surface they seem easier to
deal with, as we are given additional information about each pair of vertices - for example,
in
−→
G(α, 132) we can very easily recognise the set {(0, x) : x > 0} as the set of all vertices

that don’t point at anything - but they might present other problems of their own. It is,
however, likely that we will be able to recover the underlying set with the original total
ordering, as opposed to the betweenness relation, in this case.
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