
On the Implementation of Purely
Functional Data Structures for the

Linearisation case of Dynamic Trees

By:
Juan Carlos Sáenz-Carrasco

A thesis submitted in partial fulfilment of the requirements for
the degree of Doctor of Philosophy

The University of Sheffield
Faculty of Engineering

Department of Computer Science

October 2019

Abstract

Dynamic trees, originally described by Sleator and Tarjan, have been studied
in detail for non persistent structures providing O(log n) time for update and
lookup operations as shown in theory and practice by Werneck.

However, there are two gaps in current theory. First, how the most com-
mon dynamic tree operations (link and cut) are computed over a purely
functional data structure has not been studied in detail. Second, even in the
imperative case, when checking whether two vertices u and v are connected
(i.e. in the same component), it is taken for granted that the corresponding
location indices (i.e. pointers, which are not allowed in purely functional pro-
gramming) are known a priori and do not need to be computed, yet this is
rarely the case in practice.

In this thesis we address these omissions by formally introducing two
new data structures, Full and Top, which we use to represent trees in a
functionally efficient manner. Based on a primitive version of finger trees –
the de facto sequence data structure for the purely lazy-evaluation program-
ming language Haskell – they are augmented with collection (i.e. set-based)
data structures in order to manage efficiently k-ary trees for the so-called
linearisation case of the dynamic trees problem. Different implementations
are discussed, and their performance is measured.

Our results suggest that relative timings for our proposed structures per-
form sublinear time per operation once the forest is generated. Furthermore,
Full and Top implementations show simplicity and preserve purity under
a common interface.

1

Dedication

To my wife Tonita, for the unconditional support, fed with pa-
tience and love (and a teaspoon of sugar).

To my kids Sarah and Juan Pablo, for understanding my absence
from home.

And special thanks to Mum and Dad who unfortunately passed
away during my studies.

2

Acknowledgements

The present work could not be achievable without the support and
encouragement from Mike Stannett. Equally important, I appre-
ciate the advise from Georg Struth to pursue the goals of the high
demands in the research community.

I definitely enjoyed the PhD project thanks to my colleagues at
the Verification and Validation Lab and for sharing the lunch time
with my colleagues at the Algorithms Group.

My studies would not have been possible without the funding from
the Consejo Nacional de Ciencia y Tecnología, CONACYT (Mex-
ican National Council for Science and Technology) under grant
411550, scholar 580617, CVU 214885.

3

Contents

1 Introduction 13
1.1 Problem Statement 14
1.2 Motivation . 18

1.2.1 Applications where dynamic trees opera-
tions take place 18

1.2.2 Dynamic trees in Functional Programming 19
1.3 Benefits from Functional Programming 19
1.4 Source Language 21

1.4.1 Why Haskell? 21
1.5 Terminology . 24
1.6 Contributions . 24
1.7 Structure of this Thesis 25

2 Related Work 27
2.1 Path Decomposition 28

2.1.1 Purely Functional Implementation 29
2.2 Tree Contraction 30
2.3 Linearisation . 30
2.4 Chapter notes . 33

3 Fundamentals 34
3.1 Forest and trees nomenclature 34

4

3.2 Input tree data structure 36
3.3 Data.Set . 37
3.4 2-3 trees . 39
3.5 Monoids . 41

3.5.1 Monoidal annotation 42
3.6 Finger Trees . 42

3.6.1 Structure of Ft 43
3.6.2 Amounts of data stored in the FT data struc-

ture . 46
3.6.3 Operations in Ft 50
3.6.4 Accessing the endpoints of a Ft 53
3.6.5 Inserting at the endpoints of a Ft 54
3.6.6 Appending FTs 57
3.6.7 Searching and splitting in Ft 59

4 Euler-Tour Trees Functionally, FunEtt 67
4.1 Euler-tour trees by Henzinger and King 67

4.1.1 Representation of the input tree 68
4.1.2 Operations on Ett-HK 68

4.2 Euler-tour trees by Tarjan 70
4.2.1 Representation of the input tree 70
4.2.2 Operations on Ett-T 70

4.3 FunEtt . 71
4.3.1 Representation of the input tree 72
4.3.2 FunEtt data structure 72
4.3.3 Operations on FunEtt 74

4.4 Chapter Notes . 84

5 Indexless data structures 85
5.1 Full dynamic trees 85

5.1.1 Full dynamic trees data types 86

5

5.1.2 Full dynamic trees operations 88
5.1.3 Experimental analysis of Full dynamic trees 95

5.2 Top dynamic trees 126
5.2.1 Top dynamic trees data types 127
5.2.2 Top dynamic trees operations 129
5.2.3 Top vs Full experimental results 133

6 Conclusion 142
6.1 Further Directions 143

6

List of Figures

1.1 Example of a forest 15
1.2 Example of pre-link 16
1.3 Example of link applied 16
1.4 Example of pre-cut 16
1.5 Example of cut applied 16

2.1 Input tree . 31
2.2 Input tree, turning edges into directed-edges 31
2.3 Ett is built from input tree 31
2.4 ETT represented by a finger tree 32

3.1 unit forest . 34
3.2 2-node forest . 35
3.3 10-node forest . 35
3.4 Input tree . 37
3.5 Balanced Search Tree or BST 39
3.6 Leafy 2-3 tree . 39
3.7 Nodal 2-3 tree . 40
3.8 Complete 2-3 tree 40
3.9 Finger tree definition, Ft 43
3.10 Node type . 44
3.11 Digit (or affix) type 45
3.12 Ft example . 46
3.13 Number of leaves, Empty bottom 47

7

3.14 Number of leaves, Single bottom 48
3.15 Number of monoidal annotations, Empty bottom . 49
3.16 Number of monoidal annotations, Single bottom . 50
3.17 search an element 63
3.18 split operation 64
3.19 Ordered-set, initial example 66
3.20 Ordered-set, initial annotations 66
3.21 Ordered-set, final example 66

4.1 An input tree . 67
4.2 FunEtt, input tree 73
4.3 FunEtt, initial example 74
4.4 Input tree example for cutTree 78
4.5 Trees result from cutTree 80
4.6 Tree result from linkTree 84

5.1 FunEtt, repeated edges 87
5.2 FunEtt, reduced sets 87
5.3 Input forest example 90
5.4 Full link example 92
5.5 Full cut example 94
5.6 Sample 1 of plotting 96
5.7 Sample 2 of plotting 96
5.8 Sample 3 of plotting 97
5.9 Plotting unit Full forest, means 98
5.10 Plotting unit Full forest, medians 99
5.11 Plotting 2-node Full forest, means 100
5.12 Plotting 2-node Full forest, medians 101
5.13 Plotting 10-node Full forest, means 103
5.14 Plotting 10-node Full forest, medians 103
5.15 Plotting 300-node Full forest, means 104

8

5.16 Plotting 300-node Full forest, medians 104
5.17 Plotting all Full forests construction 106
5.18 Plotting connectivity 10-node forest 108
5.19 Performance of connectedMSet over a 10-node Full

forest, multiple runs. 110
5.20 Performance of connectedMSet over a 300-node

Full forest. 111
5.21 Performance of connectedMSet over a 300-node

Full forest, showing one of the outliers. 112
5.22 Performance of connectedMSet over a 10-node and

300-node Full forest, for different number of runs
per forest. 113

5.23 Performance of link operation over a unit, 2-node,
10-node and 300-node Full forests, sampling ev-
ery 10 means. 115

5.24 Performance of link operation over a unit, 2-node,
10-node and 300-node Full forests, sampling ev-
ery 100 medians. 116

5.25 Performance of cut operation over a one-tree, 2-
node, 10-node and 300-node Full forests, sam-
pling every 10 means. 118

5.26 Performance of cut operation over a one-tree, 2-
node, 10-node and 300-node Full forests, sam-
pling every 100 medians. 119

5.27 Performance of link and cut operations over 10-
node and 300-node Full forests, sampling every
100 medians. 121

5.28 Performance individual link-cut incrementing num-
ber of nodes . 123

9

5.29 Performance individual link-cut incrementing num-
ber of operations, 10-node forest 124

5.30 Performance individual link-cut incrementing num-
ber of operations, 300-node forest 125

5.31 Accumulators of a finger tree 127
5.32 Top accumulator of a Top finger tree 128
5.33 General view of a Top finger tree 128
5.34 FullvsTop, forests construction, 300-node 134
5.35 FullvsTop, forests construction, unit vs 2-node vs

10-node . 135
5.36 FullvsTop, connectivity 10-node and 300-node forests136
5.37 FullvsTop, link in unit and 2-node forests 137
5.38 FullvsTop, link in 10-node forests 138
5.39 FullvsTop, link in 300-node forests 138
5.40 FullvsTop, cut in forests 139
5.41 FullvsTop, individual link-cut in forests where in-

put number of nodes 140
5.42 FullvsTop, individual link-cut in forests where in-

put is number of operations 141

10

List of Tables

3.1 Data.Set operations 38
3.2 Finger tree operations 52
3.3 Accumulation of <> example 56

4.1 Summary Ft operations 74
4.2 Summary of Ft operations applied to FunEtt

when set-union is the monoidal annotation 75
4.3 Bounds of Ft operations applied to FunEtt for

viewl, viewr, / and . cases 75
4.4 Bounds of Ft operations applied to FunEtt for

./ split and search cases 76
4.5 Bounds of cutTree operation 77
4.6 Bounds of linkTree operation 81
4.7 Operations in Ett specifications 84

5.1 Full dynamic trees operations 95
5.2 Tabular performance of unit Full forest construction 99
5.3 Tabular performance of 2-nodeFull forest construc-

tion . 102
5.4 Tabular performance of 10-node and 300-node Full

forests construction 105
5.5 Tabular performance of all Full forests construction107
5.6 Amount of monoidal annotations in a Full dy-

namic tree . 109

11

5.7 Amount of monoidal annotations in a Full dy-
namic tree via its affixes for a Full forest. 111

5.8 Tabular performance of all Full forests connectivity114
5.9 Tabular performance of Full link 117
5.10 Tabular performance of Full cut 120
5.11 Tabular performance of all Full linkcut 122
5.12 Tabular performance of all Full linkcut per op-

eration . 123
5.13 Tabular values of performing link-cut 126
5.14 Top dynamic trees operations 133

12

Chapter 1

Introduction

The topic of this thesis is the purely functional programming ap-
proach to the handling of dynamic trees problem. Although dy-
namic trees problem attracted quite a lot of research in the last
decades, since Sleator and Tarjan [1], there have been no insights
towards the implementational side for the functional programming
setting.

Okasaki [2, 3] pioneered research on efficient purely functional
data structures just over two decades ago but his studies have not
included the case of dynamic trees management, specifically for
the linearisation case. Moreover, cases for lookups when an index
is not provided have not been studied at all.

It is our main contribution that we implemented Full and
Top, data structures to manage dynamic trees operations, thereby
showing that this is feasible for the functional programming
paradigm. We conducted an experimental study comparing our
implementations in Haskell [4].

Before turning to the practical and implementational sides of
the problem, however, we present the different approaches to it
from the theoretical point of view. We show that the procedures
provided by Henzinger and King [5, 6] and Tarjan [7] regarding

13

Euler-tour trees (Etts) can be implemented declaratively, and we
contribute an improvement for the basic structural cases, that is,
the link and cut operations.

Both of our implementations, Full and Top, are built on
top of finger trees, a purely functional data structure devised by
Ross and Hinze [8]. We manage sequence operations for values
stored at the leaves while look up operations are performed in
the internal tree nodes (i.e. monoidal annotations) via binary
search trees (i.e. BSTs). Sequence and BST data structures have
been studied extensively in both the algorithms community and
the data structures community for both functional and imperative
settings, but not much work has been done for the cases where
both structures coexist.

Our data types are capable of managing practically any binary
search tree as the look up engine, providing it supports set oper-
ations (such as membership, insertion and union) for any poly-
morphic type on the leaves as long as it can be ordered. We show
that our techniques are effective in practice by implementing and
evaluating them.

1.1 Problem Statement

A dynamic tree allows three kinds of (basic) operations :

• Insert an edge.

• Delete an edge.

• Answer a question related to the maintained forest property.

The first two types of operations are called updates and the last
one is a query. In the simplest case, this is a global question like

14

Figure 1.1: Example of a forest, called f.

“Are vertex u and vertex v in the same tree?" or “Is vertex v on
vertex u’s path towards the root?", and the answer is just “True"
or “False". The purpose of a dynamic tree algorithm is to main-
tain a forest property faster than by recomputing it from scratch
every time the forest changes. The term dynamic tree problem
was coined by Sleator and Tarjan in [1]. The aims, implemen-
tational issues and data structure design by Sleator and Tarjan
followed the imperative programming paradigm. We focus our
attention in the aforementioned operations under the approach
of purely functional programming considering a forest of fixed n
number of vertices and consider only undirected edges through
this document.

In figs. 1.1 to 1.5 we depict a small example from the above
operations of inserting an edge, for which we shall call it link,
deleting an edge, for which we shall call it cut and looking for
an edge (query property) for which we shall call it connected.
Let us start with link. So, having a forest f (Figure 1.1) we
firstly locate the vertices (i.e. connected==False) where the
new edge is about to be inserted (Figure 1.2) and then apply link
to f. When cutting, the edge is located (i.e. connected==True,
Figure 1.4) within f and then cut is performed (Figure 1.5).

An update in the forest is local. If due to the application the
forest changes globally, we can model this with several updates
as in performing an unbound sequence of operations over such a

15

Figure 1.2: Identifying the vertices, connected==False, in f for which link
is about to be applied.

Figure 1.3: link is applied over f.

Figure 1.4: Identifying the vertices, connected==True, in f for which cut
is about to be performed.

Figure 1.5: cut is performed on f.

16

forest. In the worst case, we could move from one forest to a
totally different one as in a random forest generation. Therefore,
it does not make sense to maintain the forest property of the new
forest by means of data collected from the old forest faster than
by recomputing it with a static forest algorithm. This scenario is
suitable for designing and analysing persistent data structures.

Data structures which allow queries and insertion of edges,
but not deletion of edges are called incremental and decremen-
tal otherwise [9]. In any case, we can refer to any of the above
structures to be semi-dynamic. If we want to distinguish between
semi-dynamic data structures and data structures allowing both
operations, then the latter are called fully dynamic data struc-
tures. We provide implementation and experimental analysis for
the semi and fully dynamic cases.

Note that the term forest property is quite general. A for-
est property can be a predicate on the whole forest (e.g., testing
membership), or a predicate on pairs of nodes (e.g., connectivity).

The forest property we will mainly deal with in this thesis is
connectivity. Two vertices u and v are connected, if both vertices
are members of the same component or tree. We want to be able
to quickly answer each question of the type “Are vertices u and v
connected in the current forest?".

Each time an edge e = (u, v) is to be inserted, we ask the data
structure whether u and v are already connected. If this is not the
case, we decrease the forest tree-counter after inserting e. If e is
to be deleted, we delete it and we increase the forest tree-counter.
The answer to the question whether the whole forest is connected
is “True", if and only if the tree-counter equals 1.

17

1.2 Motivation

Inserting and deleting edges are among the most fundamental and
also most commonly encountered operations in trees, especially in
the dynamic setting. This encourages simplicity and efficiency at
the time of the computation so any application can use them. In
this section, we motivate the approach of functional programming
for these angles. This work forms part of a larger objective, that of
the functional programming analysis on dynamic data structures.

1.2.1 Applications where dynamic trees operations take
place

Since the definition of the dynamic trees problem data structure
by Sleator and Tarjan [1], two major structural operations arise:
link and cut, therefore the term Link-Cut trees for this data struc-
ture. Besides applications like Union-Split-Find problems [10],
dynamic trees computations are frequently needed in a wide spec-
trum of applications, to name a few:

• Flows on Networks; ([11], [12]) link and cut operations are
used to maintain the residual capacities of edges and that of
changing labels in the network.

• Rearrangement of Labelled Trees; recently applied to the
problem of comparing trees representing the evolutionary his-
tories of cancerous tumors. Bernardini et al. ([13]) analyse
two updating operations: link-and-cut and permutation. The
former is due to transform the topology of the input trees
whereas the latter operation updates the labels without mu-
tating its topology.

18

• Geomorphology; Ophelders et al. [14] model the evolution
of channel networks. Linking and cutting trees are used to
model the dynamic behaviour of the growth and shrinking of
areas in a river bed.

1.2.2 Dynamic trees in Functional Programming

Literature has shown a lot about updating edges in trees and
graphs, see for instance the handbook for data structures regard-
ing this topic in [9], but in practical terms relatively little work
has been done for the functional programming, specifically for the
dynamic setting. In the case of graph structures, Erwig [15] in-
troduces a functional representation of graphs where a graph is
defined by induction. Although an interface and some applica-
tions have been provided, none of those refer to the dynamic trees
problem. For the case of trees, Kmett [16] defines a functional
programming version (i.e. in Haskell) of that of the one defined
by Sleator and Tarjan [1]; unfortunately Kmett’s work relies com-
pletely on monads and stateful computation making it difficult
to reason about the operations. Also, the element of a forest is
missing in Kmett’s work.

1.3 Benefits from Functional Programming

Amongst others, we highlight the features we shall put in place in
our proposals in this thesis.

Programming perspective, an excerpt from [17]

• Using functions rather than loops and assignments to express
algorithms.

19

• An algorithm expressed as a function is composed of other,
more basic functions can be studied separately and revised
in other algorithms.

• Functions that build trees can be studied separately from
functions that consume trees.

Reasoning about programs, an excerpt from [17]

• Functional programming is a method of program construc-
tion that emphasises functions and their application rather
than commands and their execution.

• Functional programming has a simple mathematical basis
that support equational reasoning about the properties of
the programs.

Function application, an excerpt from [18]

• In mathematics one visually writes f(x) to express the appli-
cation of function f to the argument x. In Haskell, we write
f x to express the application of function f to argument x.
However, expressing f(x) in Haskell is valid but unusual.

• Function application in Haskell allows us to reduce the num-
ber of brackets in an expression allowing a clarity and read-
ability in the code, specially when expression as large.

Function composition, an excerpt from [18]

• Alike mathematics, two functions f : Y → Z and g : X → Z
can be written as f · g and its application to an argument x
as (f · g)x = f(g x). The order of composition is from right

20

to left as functions are written to the left of the arguments
to which they are applied.

• Grouping functions on the left, provided they can be com-
posed, allows programmers to exploit higher function pro-
gramming and reduce the lines of code in the program with-
out sacrifice readability.

1.4 Source Language

All source code will be presented in Haskell [4], implemented using
the Glasgow Haskell Compiler (GHC). However, the algorithms
can all easily be translated into any other functional language
supporting both strict and lazy evaluation.

Throughout this thesis, we assume that the reader is familiar
with the basics of Haskell and Data Structures. In case of any
problem, we refer to the introductory books by Bird [18] for gen-
eral syntax and semantics, and Okasaki [19] for generalities on
purely functional data structures.

As a check for accuracy in the examples throughout this disser-
tation, all the indented, typeset code is type-checked against our
implementation every time the text is typeset. The code snippets
throughout this dissertation are presented as illustrated here:
function :: Type → Type → Type -- function type signature
function x y = x + y -- function definition

1.4.1 Why Haskell?

Haskell complies with the features of functional programming we
have described earlier in this chapter, in particular the following

21

• Function application in Haskell allows us to reduce the num-
ber of brackets in an expression allowing a clarity and read-
ability in the code, specially when expression as large.

• Grouping functions on the left, provided they can be com-
posed, allows programmers to exploit higher function pro-
gramming and reduce the lines of code in the program with-
out sacrifice readability.

Another interesting feature is its purity, meaning there are no
side-effects. So, we shall not worry about mutating accidentally
the state of a variable or the entire program. That is, maintain-
ing code might an advantage as well as looking for errors due to
changing values to variables can be easily avoided.

Presentation of our specification and implementation is eased
by the analysis and proofs of programs through equational rea-
soning. The following example, adapted from [20], shows the use
of equational reasoning in proving by structural induction that an
equation is valid for properties applied on a (binary) tree data
structure.

Example (equational reasoning over trees)

Problem: Given the code below, prove that
sum(flatten t) = treesum t

holds for all finite defined trees of type Tree Int.

Solution. Firstly, we define the data types and functions sum,
flatten and treesum. Comments (text after two dashes) within
rectangular or regular brackets act as equation labels.
data Tree a = Empty | Node (Tree a) a (Tree a)

22

flatten :: Tree a → List a
flatten Empty = [] -- [flat.1]
flatten (Node l x r) = flatten l ++ [x] ++ flatten r -- [flat.2]

treesum :: Tree Int → Int
treesum Empty = 0 -- [tsum.1]
treesum (Node l x r) = treesum l + x + treesum r -- [tsum.2]

sum :: [Int] → Int
sum [] = 0 -- [sum.1]
sum (x:xs) = x + sum xs -- [sum.2]

Proof The principle of structural induction tells us that if we
want to prove that a property P holds for every finite defined tree
t of type Tree a, it is enough to prove that

• P (Empty) holds outright;

• P (Node l x r) holds whenever P (l) and P (r) both hold.

Part 1: Prove P (Empty) holds outright
sum (flatten Empty) = sum [] by [flat.1]

= 0 by [sum.1]
= treesum Empty by [tsum.1]

Part 2: Prove P (Node l x r) holds if P (l) and P (r) both hold.
As often happens, we need to prove some auxiliary results. In this
case, we need to prove that, for any Int lists xs, ys, zs we have

sum (xs ++ ys ++ zs) = sum xs + sum ys + sum zs -- [lemma]

Taking this for granted (the proof again involves structural
induction, this time over finite defined values of type [a]), we
have
sum (flatten (Node l x r))

= sum (flatten l ++ [x] ++ flatten r) by [flat.2]
= sum (flatten l) + sum [x] + sum (flatten r) by [lemma]
= treesum l + sum [x] + sum (flatten r) by [P(l)]
= treesum l + sum [x] + treesum r by [P(r)]
= treesum l + (x + sum []) + treesum r by [sum.2]
= treesum l + (x + 0) + treesum r by [sum.1]

23

= treesum l + x + treesum r by [arithmetic]
= treesum (Node l x r) by [tsum.2]

�
In terms of presence and usage, functional programming has

gained presence in the language programming community, as in
[21] and [22]. In particular, Haskell currently has some level of
adoption in industry [23].

1.5 Terminology

Throughout the thesis, we will consider a forest F of undirected
k-degree trees with |V| = n vertices, and |E| = e edges. We write
log x as an abbreviation for maximum{1, log2 x} throughout this
thesis, so log x is never smaller than 1.

The term operation is similarly overloaded, meaning both the
functions supplied by an abstract data type and functions defined
originally in relation to the dynamic trees problem. We reserve the
term operation for the latter meaning, and use the term function
for the former.

In Chapter 3 we provide a short summary of the data structures
used in this thesis whilst in Chapter 4 basic terminology for the
dynamic trees problem is presented.

1.6 Contributions

This work should be viewed as an exploration into the dynamic
trees problem under the functional programming approach. In
this section we list the main contributions of the thesis.

• We present, for the first time, a declarative functional imple-
mentation of the procedures for Euler-tour trees. We show

24

feasibility is possible under this approach.

• We make explicit the management of indices location per
operation and per data structure. This has been taken for
granted in the literature. By doing so, we make even clearer
the specification given so far for the linearisation case of dy-
namic trees.

• We present Full to deal with the data structures for the
main update and query operations for the dynamic trees
problem, specifically the linearisation case. We demonstrate
experimentally that both data types allow algorithms to run
in sublinear time for all the basic operations once the for-
est has been created, being this implementation the first ap-
pearance in the purely functional programming setting. This
work has been presented at [25]

• We introduce Top, an improved version of Full by reducing
the number of internal operations in its finger tree data struc-
ture. Performances show that, experimentally, Top outper-
forms Full in the vast majority of the cases from 1.2 up to
3 times. This work has been presented at [24].

• We make publicly available the source code for all of our
implementations as well as the statistical data.

1.7 Structure of this Thesis

Chapter 2

We describe the current approaches that deal with the data struc-
tures that deal with the dynamic trees problem. We brief the work

25

done within the purely functional programming for each approach
and provide some reasons for our choice amongst the approaches.

Chapter 3

A brief description of the functional data structures currently in
the literature that play a basic role in our proposal, of which finger
trees are the core data structure.

Chapter 4

We review Euler-tour trees, specifically the procedures defined by
Henzinger and King [6] and Tarjan [7], and propose a functional
and declarative implementation, that is, FunEtt.

Chapter 5

We devise a variety of data types in order to manage indexless
structures, such as Full and Top, that shall support dynamic
trees operations. We describe their design and implementation as
a solution of Ett to solve the common dynamic tree operations
under the purely functional programming approach.

Chapter 6

We give our conclusions, and suggest some topics for future re-
search.

26

Chapter 2

Related Work

The literature covering the terms dynamic trees, dynamic trees
problem, dynamic trees operations is vast, from Overmars’ work
[26] on dynamic data structures to the classification for dynamic
trees given by Demetrescu et al. in [9, Chapter 35]. The following
quote by Werneck [27, pp 5-6] summarises the operations we shall
study in this thesis

. . .We limit our discussion to dynamic trees. In partic-
ular, all data structures we discuss below [Path Decom-
position, Tree Contraction, Euler Tours] can solve the
dynamic connectivity problem for trees: they maintain
a forest subject to edge insertions and deletions and
support queries asking whether two vertices belong to
the same tree or not . . .

On the implementation side, Tarjan and Werneck [28] show
that maintaining a forest under a sequence of insertions and dele-
tions of edges can be done in O(log n) time per operation. The
bound is amortised when using splay trees [29] and worst case
when using red-black trees [30]. With respect to functional pro-
gramming analysis, several efforts have been carried out [19, 31,

27

32]. Standard implementations in Haskell are accessible at [33],
although our own work requires a slight variant of the standard
implementation (see Chapter 5).

2.1 Path Decomposition

Any two vertices in a tree define a unique path, namely the set of
edges/vertices traversed while moving through the tree from one
vertex to the other. The goal of path decomposition is to split
the tree into a disjoint set of paths; each vertex should belong to
exactly one path in the decomposition. Performing such a decom-
position is straightforward, except where a vertex has two or more
children, in which case we need to choose which of the children, if
any, will be allocated to the same path as its parent. Such action
implies to manage two or more trees either by a single structure,
i.e. extended definition for a BST or a forest data structure. A
well-known data structure that manages path decomposition is
the one devised by Sleator and Tarjan [1], called link-cut trees or
ST trees. These trees were devised originally to manage directed
trees with fixed roots and labels stored at the edges. In this set-
ting, all path-related queries refer to paths between some vertex
and the root of its tree.

As explained in our problem statement in Section 1.1, we are
interested in the link, cut and connected operations. However,
connected is not defined explicitly in the original work by Sleator
and Tarjan [1].

• link(vertex v, w, real x): Combine the trees containing v and
w by adding the edge (v, w) of cost x, making w the parent
of v. This operation assumes that v and w are in different
trees and v is a tree root.

28

• cut(vertex v): Divide the tree containing vertex v into two
trees by deleting the edge (v, parent(v)); return the cost of
this edge. This operation assumes that v is not a tree root.

2.1.1 Purely Functional Implementation

To the best of our knowledge, there is not a formal study for
path decomposition for the purely functional programming realm.
However, there is an attempt through a Haskell implementation
by Kmett [16] who claims the following operations run in O(log n)
each.
link :: (PrimMonad m, Monoid a)

⇒ LinkCut a (PrimState m)
→ LinkCut a (PrimState m)
→ m ()

cut :: (PrimMonad m, Monoid a)
⇒ LinkCut a (PrimState m)
→ m ()

connected :: (PrimMonad m, Monoid a)
⇒ LinkCut a (PrimState m)
→ LinkCut a (PrimState m)
→ m ()

Practically, all the operations in Kmett’s work rely on the ST
monad, which allows mutability on data. Even though the above
code is considered pure, it is hard to reason around the expressions
since they emulate pointers rather than mathematical equations.
Take for instance, the definition for link
link v w = st $ do

access v
access w
set path v w

An attempt to apply the equational reasoning we have seen in 1.4.1
over access and set path is not straightforward. In [18], Bird

29

considers that reasoning with monadic code, as the one above, is
a topic of ongoing research.

2.2 Tree Contraction

The aim of this approach is to reduce the size of the trees in
terms of their edges and vertices in the parallel setting. Three
data structures have been studied in this context, topology trees
[34], RC trees [35] and top trees [36].

Although purely functional programming and Haskell in partic-
ular are considered a naturally suitable paradigm for programming
parallelism and concurrency [37, 38, 39], no analysis or implemen-
tation regarding the tree contraction approach have been fully
studied.

Nevertheless, Morihata and Matsuzaki in [40] define the anal-
ysis and some data types towards the representation of tree con-
traction data structures in the functional programming setting.
However, their work is limited to the analysis on functions that
traverse and reduce the tree structure but the main dynamic tree
operations are not studied.

2.3 Linearisation

Similar to the path decomposition approach, the linearisation ap-
proach is mostly studied through one structure, the Euler-tour
tree, Ett. The term linearisation comes from the shape of the
original data structure (i.e. a tree which is non linear) into a se-
quence seen as a line. That is, for every edge (u, v) in the input
tree, edge (v, u) is generated and both edges form an Ett. In or-
der to build an Ett sequence, we firstly take every vertex v and

30

Figure 2.1: Input tree, with arbitrary node selected as its root

Figure 2.2: Input tree, non directed edges are turned into directed ones.
Direction is selected arbitrary.

replace it for the tuple (not an edge) (v, v). By selecting an ar-
bitrary vertex as root or leftmost element, depicted in Figure 2.1,
we traverse the Euler-tour in any direction as in Figure 2.2 and
add the selected edge to the sequence, see Figure 2.3. As soon as
a vertex is discovered it is added to the sequence only once.

Having a Ett sequence, it is then manipulated through a more
efficient structure such as BST. Once again, in case of amortised
complexity analysis, splay trees are used and for the worst-case
complexity AVL or red-black trees are considered. The term lin-
earisation comes from the shape it takes when the Euler-tour is

Figure 2.3: Ett sequence, built from the directed edges from input tree in
Figure 2.2.

31

disconnected between the last link and the head of such as tour.
Notice that an input tree can be represented by potentially

many Ett depending on the selection of the vertex as root and
the direction of the edges (clockwise or anticlockwise). An input
tree t contains n vertices and n− 1 edges; an Ett is represented
by n vertices and 2× (n− 1) edges. The sequence is comprised of
tuples of vertices and edges altogether, known as elements. The
size of an Ett is 3n − 2 elements. The performance we shall
measure is based on n, the number of elements per sequence.

It is our purpose in this thesis to transform an input tree into
an Ett and that of managing its sequence through a finger tree
(Figure 2.4), a data structure described in Chapter 3, to perform
efficient dynamic tree operations.

Figure 2.4: Finger tree Ft corresponding to Ett sequence from Figure 2.3

The process of transforming input trees into Ett sequences
is not unique for the linearisation approach. Another way, is to
define a forest of singleton trees and from this point apply link
and cut operations until desired sizes have been reached for the
corresponding input trees representation. We further the discus-
sion of this technique in Chapter 5. Definitions of the above link
and cut with auxiliary operations are detailed in Chapter 4.

32

2.4 Chapter notes

We have seen three approaches to dealing with tree data structure
under the sequence of dynamic operations. Path decomposition
focuses on performing computation with values over the edges
when forming paths; its analysis proceeds in a bottom-up fashion.
Tree contraction analyses the tree structure within the parallel
setting where values are stored over the vertices. Our interests in
this thesis solely focus in the last approach, the linearisation case
as it offers the following features

• No values (labels) over edges or vertices are required in order
to perform link, cut and connected.

• Tree representation is a sequence, which is simpler to process
in comparison to a collection of paths or condensed informa-
tion in a contracted tree.

33

Chapter 3

Fundamentals

This chapter presents an overview of the fundamental data struc-
tures we use in our work. We commence with some nomenclature
for forests and trees.

3.1 Forest and trees nomenclature

In this thesis we define a forest as a collection of fixed number of
trees. A singleton-tree is a tree with no edges. A forest comprised
of only singleton-trees is called unit -forest, depicted in Figure 3.1.
We avoid a forest having just one singleton-tree as it is practically
just a node or vertex.

Figure 3.1: A unit forest

A k-tree is a tree of degree k, where the degree of a tree is the
maximum number of edges of any vertex in that tree. The terms
node and vertex are interchangeably in this thesis. An n-node

34

forest is a forest which practically all or all but one of its trees
having n vertices. 2-node forest is depicted in Figure 3.2 whereas
10-node forest is depicted in Figure 3.3.

Figure 3.2: A 2-node forest, all trees but Tm with 2 vertices each

The size of a forest (i.e. ForestSize) is the sum of the number
of nodes (i.e. NumNodesForest) plus the number of edges living
in that forest. Similarly, the size of a tree (i.e. TreeSize) is the
sum of the nodes and edges defined for that tree NumNodesTree.

Figure 3.3: A 10-node forest, all trees but Tm with 10 vertices each

If a forest has only one tree and ForestSize = TreeSize,

35

where NumNodesForest≥ 2, is called one-tree forest.

3.2 Input tree data structure

The basic (rose) tree type, Tree a, is defined in Haskell’s Data.Tree
package [41] as
data Tree a = Node { rootLabel :: a -- [roseTree]

, subForest :: Forest a }

where 1

type Forest a = [Tree a]

This definition has both advantages and disadvantages for our
own work. Since the definition of Tree a does not constrain type
a to be ordered nor offer any kind of balancing, this structure is
fairly inefficient because any querying and updating of an element
requires us to traverse the entire structure to identify the corre-
sponding place in the tree for the operation. As a result, inserting,
deleting or looking up for an element in this kind of tree generally
takes O(n) time per operation for a tree containing n elements.
The main goal of this thesis is to find ways to represent such trees
that allow for more efficient handling - accordingly, we sometimes
refer to trees of this type as input trees, i.e. trees that are provided
as inputs to our representation procedures.

Notice also that this definition does not allow us to generate
empty instances of trees. Instead, the simplest tree comprises a
single vertex with no edges (i.e. a singleton tree). On the other
hand, the Data.Tree package includes useful functions to trans-
form lists into trees and vice versa, as well as auxiliary operations
such as pretty printing.

1The forest structure used in our own work is somewhat different, as we explain in
Chapter 5.

36

Example

Consider the following Tree Int instance, tree. Although the
definition implicitly defines a root, we will often find it useful to
think of trees as rootless entities. Figure 3.4 shows both a rooted
and a rootless representation of tree.
tree = Node 7 -- implicitly defined root vertex

[Node 9
[Node 5 []
, Node 2 []
, Node 4 []
, Node 3 []]]

Figure 3.4: An input tree of six vertices represented in both rooted and
rootless form: hierarchical (left) and as a star (right).

3.3 Data.Set

An ubiquitous problem when dealing with algorithms and data
structures is that of searching for an element. The simple yet
powerful binary search tree, BST, model provides a rich family
of solutions to this problem. In this thesis we shall focus our
attention to the Data.Set data type which is a concrete instance
for an efficient BST functional implementation [42] (enhanced in
[43]). Research on set-like trees is vast; see, e.g. Derryberry [44].

The definition of a set in our work is defined following [45] .
A Set is a BST defined either by an empty-value Tip or by a
node Bin which stores a datum a, together with two subtrees (a

37

recursive call to Set each) and the Size of the tree rooted at that
node:
data Set a = Tip

| Bin !Size !a !(Set a) !(Set a)

The type Size here is a synonym of the integer type Int, hence
it is limited to handle tree sizes between −263 and 263 − 1. Each
exclamation mark (e.g., !Size) is a bang annotation, which means
that the type next to it will be evaluated to weak-head normal
form (by pattern matching on it) or in a strict manner (see [45]).

Following [42] and [45] we list, in Table 3.1, the runtime perfor-
mance for the Data.Set operations we shall use in the remaining
of the thesis.

Function Description Complexity
member testing membership O(log n)
insert inserting an element O(log n)
union disjoint union O(m× (log(n/m) + 1))

Table 3.1: Data.Set operations, n gives the number of vertices in the first
(or only) tree operated upon; for those functions taking two trees as input,
m is the size of the second tree. We assume that m ≤ n, otherwise trees are
swapped

Example

The BST corresponding to the input tree in Fig. 3.4 (and illus-
trated in Fig. 3.5) is defined by
Bin 6 5 (Bin 3 3 (Bin 1 2 Tip Tip) (Bin 1 4 Tip Tip))

(Bin 2 7 Tip (Bin 1 9 Tip Tip))

38

Figure 3.5: The BST corresponding to the input tree in Fig. 3.4. Notice
that the data elements (the numbers within the circles) have been sorted
into ascending order. Numbers next to each circle give the size of the tree
rooted at that node. Small circles correspond to instances of the Tip data
constructor.

3.4 2-3 trees

A 2-3 tree is a tree all of whose internal (non-leaf) nodes hold
either 2 or 3 subtrees. The arrangement of data stored in a 2-3
tree varies depending how its data type is defined. Let us start
with the one where data is held only on the leaves of the tree
(leafy tree), pictured in Figure 3.6.
data TreeL a

= LeafL a
| Node2L (TreeL a) (TreeL a)
| Node3L (TreeL a) (TreeL a) (TreeL a)

Figure 3.6: Leafy tree, a 2-3 tree with data only on the leaves

The case when data is stored only on the internal nodes of
the tree (nodal tree) is defined below and visually represented in
Figure 3.7

39

data TreeN b
= LeafN
| Node2N (TreeN b) b (TreeN b)
| Node3N (TreeN b) b (TreeN b) b (TreeN b)

Figure 3.7: A non Leafy tree, a 2-3 tree with data only on internal nodes

The third case, when holding data in every node and leaf (com-
plete 2-3 tree) is defined as follows
data TreeB a b -- 2-3 trees holding data in Both nodes and leaves

= LeafB b
| Node2B (TreeB a b) a (TreeB a b)
| Node3B (TreeB a b) a (TreeB a b) a (TreeB a b)

Notice we define two type arguments a and b that may or may
not be the same. For illustrative purposes we define two different
type arguments in Figure 3.8.

Figure 3.8: A complete 2-3 tree (of type TreeB Char Int), defined with two
different type arguments for values on the nodes and leaves

40

3.5 Monoids

A monoid is a set S along with a binary operation ? : S → S → S
and a distinguished element ε ∈ S, subject to the axioms

ε ? x = x ? ε = x (3.1)
monoidal indentity

x ? (y ? z) = (x ? y) ? z (3.2)
monoidal associativity

where x, y, z ∈ S. We denote the above equations in Haskell as
follows,
mempty ‘mappend‘ x = x ‘mappend‘ mempty = x -- [mon.identity]
x ‘mappend‘ (y ‘mappend‘ z) = (x ‘mappend y) ‘mappend‘ z -- [mon.assoc]

where mempty is the ε, and mappend is the ? operation.
The Haskell implementation of monoids can be found in the

Monoid type class within the Data.Monoid module [46]:
class Semigroup a ⇒ Monoid a where

mempty :: a
mappend :: a → a → a

As shown, the Monoid class definition is constrained by Semigroup,
which is an algebraic structure with no requirement for an iden-
tity element. It is just a set S with an associative binary operation
represented by the <> symbol.
class Semigroup a where

(<>) :: a → a → a

We shall use <> and mappend interchangably as they refer to the
same binary operation. Both classes declare other methods, how-
ever they are not used in this thesis. Yorgey [47] presents an in-
teresting collection of applications for monoids, specifically as the

41

means to design libraries in functional programming, in particular
for Haskell.

3.5.1 Monoidal annotation

We use the term monoidal annotation to mean the result of per-
forming the binary operation mappend in a monoid. Technically,
a monoidal annotation is simply a type of data, as this represents
the result of mappend or the application of <> or ? functions.
x <> y = z

where z is the monoidal annotation when applying <> over x and
y.

3.6 Finger Trees

A finger tree, Ft, is a complete 2-3 tree which allocates the data
at the leaves in such a way that the structure is always balanced.
They are typically used as a general representation for sequences
[8].

Before describing the finger tree data structure in detail, we
note that the notation used in this Section differs slightly from
that of Hinze and Paterson [8], as do some of the assumptions
we make over such structures. The essential ideas, however, are
the same and we shall explain the differences where they occur
in Chapters 4, and 5. We assume, for FTs, that data is stored
only on the leaf-nodes as the internal nodes are left to opera-
tional purposes, i.e. monoidal annotations. We distinguish the
terms sequence, finger tree and list with the last being the lin-
ear representation of the first, and the finger tree its non-linear
representation, i.e.

42

a Sequence is represented by a

{
List linear, simple, inefficient
FingerTree non-linear, complex, efficient

When discussing lists we shall call an implementation inefficient if in
practice all operations, except for insertion or deletion from the left, require
traversing the entire structure in O(n) time per operation.

3.6.1 Structure of Ft
While finger trees are based on complete 2-3 trees, they are more general
than the latter since they can perform different tasks due to the monoidal
annotations within the internal nodes. A finger tree data structure is defined
as follows.

a FT is either

Empty empty FT

Single containing a single element

Deep

prefix of type Digit, defined below
middle of type Node, defined below
suffix of type Digit, defined below

At the top level of a Ft, level zero, the affixes store data, while from level one
downwards, the affixes allocate further complete 2-3 trees (see Fig. 3.9).

Figure 3.9: The three data constructors in the Ft definition

Next, we explain how to implement a Ft.

43

The Node data type

Recall the two type arguments from complete 2-3 trees (e.g., TreeB Char Int)
in Sect. 3.4. For finger trees we will write v for the internal node type (with v
constrained to be an instance of Monoid). We will write a for the type argument
for data on the leaves. So, the Node data type for FTs is defined by

data Node v a = Node2 v a a
| Node3 v a a a

In Fig. 3.10 below, we represent Node with a (blue) circle tagged with N2 or N3
labels for the cases of Node2 and Node3 data constructors respectively.

Examples

We provide two examples, a simple one with two element-values, e1 and e2. The
second is a recursive example defined by five element-values, e1 . . . e5.

nodeExample1 = Node2 z e1 e2
nodeExample2 = Node2 z (Node3 z e1 e2 e3) (Node2 z e4 e5)

that is, nodeExample1 has type Node v a whereas nodeExample2 has type
Node v (Node v a), and value z is the monoidal annotation of data on leaves
but abstracted away here for simplicity (see Fig. 3.10).

Figure 3.10: Recursive and non-recursive examples of the Node type

The prefix and suffix data types

The following data type, Digit, represents the affixes of a Ft:

data Digit a = One a
| Two a a
| Three a a a
| Four a a a a

44

The monoidal annotation is not included in the Digit type definition, it is per-
formed later when data is inserted or updated. We represent the Digit type with
a white dialogue box and a Roman numeral for each data constructor.

Examples

Consider these definitions (illustrated in Fig. 3.11):

digitExample1 = Four e1 e2 e3 e4
digitExample2 = Three (Node2 z e1 e2) (Node2 z e3 e4) (Node2 z e5 e6)

In these examples digitExample1 has type Digit a whereas digitExample2 has
type Digit (Node v a).

Figure 3.11: Recursive and non-recursive examples of Digit type

The FingerTree data type

Putting all of above data types together, the following is the Haskell definition for
the general case of a finger tree Ft .

data FingerTree v a
= Empty
| Single a
| Deep -- constructor for a FT

v -- monoidal annotation (referred as mon)
(Digit a) -- prefix of FT (referred as pref)
(FingerTree v (Node v a)) -- subtree of FT (referred as mid)
(Digit a) -- suffix of FT (referred as suf)

Ft Example

The sequence e1e2e3e4e5e6e7e8e9 within a Ft can be defined as follows and de-
picted as in Figure 3.12. We help out the example with auxiliary functions for the
Ft affixes.

45

Deep z pref1 mid1 suf1
where

pref1 = Three e1 e2 e3
mid1 = Deep z pref2 mid2 suf2 -- recursive FT call
suf1 = Two e8 e9

pref2 = One (Node2 z e4 e5)
mid2 = Empty
suf2 = One (Node2 z e6 e7)

Figure 3.12: FingerTree holding a sequence of nine elements (e1 . . .e9)

3.6.2 Amounts of data stored in the FT data structure
In order to have a clear picture for some of the operations over FTs, we need to
know the size of such a data structure for the data hold on the leaves (elements of
the sequence) and the internal nodes (monoidal annotations). Following the data
constructors for the FT data type, depicted in Figure 3.13, we have that every affix
contains up to four (Digit) elements, either leaves or subtrees (Node2 or Node3).
Since we have two affixes per FT, we then have

2

h∑
k=0

(4× 3k) (3.3)

where h is the height for a FT of n leaf-nodes. The above formula is the case when
the element at the bottom of the spine is the Empty data constructor.

46

Figure 3.13: Maximum number of leaves in a FT, with Empty bottom

For the case when the Single constructor is at the bottom, we simply add
a unique subtree built from either Node3 or Node2 constructors, but we take the
former for calculating the maximum number of elements. Since the above is the
bottom of the spine, the number of nodes takes the height of the FT plus one more
level. This is depicted in Figure 3.14

2

h∑
k=0

(4× 3k) + 3(h+1) (3.4)

47

Figure 3.14: Maximum number of leaves in a FT, with bottom being Single

For the number of monoidal annotations in a FT, we have those are hold on the
spine and on the Node subtrees. In particular, we interested only in the maximum
amount, so we calculate only the ones on Node3. We depict this in Figure 3.15
Since we are taking into account all the internal nodes, we have

2

h∑
i=1

4

i∑
j=1

3j−1

+ h+ 1 (3.5)

The lower bound of the summation is set to 1 since at level 0, we do not have any
monoidal annotations stored in the FT. These are calculated at runtime only.

48

Figure 3.15: Maximum monoidal annotations in a FT, with Empty bottom

Similar to the amount of leaves in a FT, the above formula is for the case when
the bottom of the spine is Empty. Otherwise, we add all the internal nodes of
Single subtree at the bottom. This can be visualised in Figure 3.16.

2
h∑

i=1

4
i∑

j=1

3j−1

+
h+1∑
k=1

3k−1 + h+ 2 (3.6)

49

Figure 3.16: Maximum monoidal annotations in a FT, with Single bottom

Finally, the maximum number of <>s (i.e. monoidal binary operation) carried
out in a FT occurs one time per Node2 subtrees and two time per Node3 subtrees.
Furthermore, in the spine, for every non-empty subtree we have two more <> op-
erations.

2

h∑
i=1

4

i∑
j=1

(2× 3j−1)

+ 2h (3.7)

And the corresponding Single bottom at the spine, we have

2

h∑
i=1

4

i∑
j=1

(2× 3j−1)

+

h+1∑
k=1

(2× 3k−1) + 2h+ 1 (3.8)

3.6.3 Operations in Ft
So far, we have defined data types that deploy abstract examples since we have
not defined a monoidal annotation explicitly.

50

Prior to performing any operation over FTs it is necessary to define a function
able to retrieve the monoidal annotation from every Ft data type. Devised by
Hinze and Paterson in [8] and implemented in [48], this function is called measure
and defined within a type class

class (Monoid v) ⇒ Measured v a where
measure :: a → v

This type class is called under different names in other instances of Ft, for instance,
in Data.Sequence [49] it is defined as size

class Sized a where
size :: a → Int

In general, the Measured class instance is defined for every data constructor in
FingerTree, Node and Digit

instance (Measured v a) ⇒ Measured v (FingerTree v a) where
measure Empty = mempty -- [mesEmpty]
measure (Single x) = measure x -- [mesSingle]
measure (Deep v _ _ _) = v -- [mesDeep]

For the Node data type, it is

instance (Monoid v) ⇒ Measured v (Node v a) where
measure (Node2 v _ _) = v -- [mesNode2]
measure (Node3 v _ _ _) = v -- [mesNode3]

Since Digit data type does not have the type argument v, we map the func-
tion measure along its residents (i.e. arguments of its data constructors) through
foldMap

instance (Measured v a) ⇒ Measured v (Digit a) where
measure = foldMap measure

where foldMap applies function f on behalf of measure as in the following instance

instance Foldable Digit where
foldMap f (One a) = f a -- [mesOne]
foldMap f (Two a b) = f a <> f b -- [mesTwo]
foldMap f (Three a b c) = f a <> f b <> f c -- [mesThree]
foldMap f (Four a b c d) = f a <> f b <> f c <> f d -- [mesFour]

In order to deal with different combinations of values and data constructors,
in [48] there are plenty of smart constructors. We show here just a sample for the
case when given three values, function node3 returns a data constructor for Node
type.

node3 :: (Measured v a) ⇒ a → a → a → Node v a
node3 x y z = Node3 (measure x <> measure y <> measure z) x y z

51

Function node3 builds up a complete 2-3 tree by calculating the monoidal annota-
tion provided three arguments x, y and z of type a (type of data allocated on the
leaves).

The library Data.FingerTree [48] is the Haskell implementation of [8]. It
contains the data types, constructors, update and transformation function defini-
tions for the general purpose finger tree data structure. Amongst all operations in
Data.FingerTree, we limit our proposals Full and Top to the operations listed
in Table 3.2.

Notice that each operation in such a table is polymorphic in the finger trees
defined in [48]. That is, any operation listed in Table 3.2 is valid when applied to
FTs of atomic elements, i.e. Int as well as valid when applied to FTs of elements of
type (Node (<>) (Node Int)). Since <> has type Monoid v ⇒ v → v → v, we
represent the term monoidal annotation with <>.

Function Description Complexity
viewl view the first element of the tree O(1)

viewr view the last element of the tree O(1)

/ inserting from the left O(1)

. inserting from the right O(1)

./ appending two trees (concatenation) O(log(min(n,m)))

split split a tree into two subtrees O(log n)

search looking for an element and perform a split O(log n)

Table 3.2: Finger tree operations, taken from [8]. In each case, n gives
the number of vertices in the first (or only) tree operated upon; for those
functions taking two trees as input, m is the number of vertices in the second
tree. The result for ./ assumes that m ≤ n (if not, we can swap the order of
the arguments before applying ./). All bounds are amortised.

Bounds in the above table are stated to be amortised by Hinze and Pater-
son in [8]. This is because the output of a specific operation is defined on two
or more rules. In general, when the input is short enough in length, such op-
eration gets its fastest computation and when the input is large enough then
the output is ‘amortised‘ (i.e. divided) amongst the length of the input. We
shall provide an example of the amortisation for each operation in Table 3.2.
Since a FT is defined along with two type arguments, i.e. the one for the
leaves and the one for the monoidal annotations, we shall describe the oper-
ation performances implicit on <>, see Section 3.5.1, when such operation is
not defined and explicit otherwise.

52

3.6.4 Accessing the endpoints of a Ft

Functions viewl and viewr allow viewing and removing, in O(1) time amor-
tised, the endpoints of a FT. Let us start with the viewl definition. Analysis
on viewr applies similarly.
viewl :: (Measured v a) ⇒ FingerTree v a → ViewL (FingerTree v) a
viewl Empty = EmptyL -- [viewl.empty]
viewl (Single x) = x :< Empty -- [viewl.singleton]
viewl (Deep _ (One x) m sf) = x :< rotL m sf -- [viewl.recursiveCase]
viewl (Deep _ pr m sf)

= lheadDigit pr :< deep (ltailDigit pr) m sf -- [viewl.regularCase]

Rules viewl.empty and viewl.singleton are trivial, simply pattern match
their input. Rule viewl.regularCase is performed by functions lheadDigit,
ltailDigit and deep. The first two, run in Θ(1) as both just pattern match
their first argument as we can see below
lheadDigit :: Digit a → a
lheadDigit (One a) = a
lheadDigit (Two a _) = a
lheadDigit (Three a _ _) = a
lheadDigit (Four a _ _ _) = a

Function ltailDigit is defined similarly in [48].
deep :: (Measured v a) ⇒

Digit a → FingerTree v (Node v a) → Digit a → FingerTree v a
deep pr mid sf = Deep ((measure pr <> measure m) <> measure sf) pr mid sf

Performance for deep relies on the performance of <> since Deep data con-
structor simply assembles the remaining parts of this function definition.
For instance, in Data.Sequence, the operation <> is the arithmetic addition
yielding deep for Data.Sequence to run to in O(1). Therefore, a FT for which
it has not been defined its <> operator, we simply state its performance as
O(<>).

For the rule viewl.recursiveCase, rotL, we have
rotL :: (Measured v a) ⇒

FingerTree v (Node v a) → Digit a → FingerTree v a
rotL m sf = case viewl m of

EmptyL → digitToTree sf
a :< m’ → Deep (measure m <> measure sf) (nodeToDigit a) m’ sf

Similar to lheadDigit, nodeToDigit perform in Θ(1). Alike deep, func-
tion digitToTree depends upon <> definition. Both, nodeToDigit and
digitToTree are detailed in [48].

53

Complexity of viewl and viewr

We focus on viewl in this thesis, viewr can be analised similarly. From the
lazy evaluation, all the rules defining viewl shall return the left most element
of a FT in Θ(1) as the tail of such a FT remains unevaluated. Otherwise, the
expressions evaluation turns on to strict. This is when the worst case, under
the rule viewl.recursiveCase comes to play. Suppose we are required to
return the left end of a FT along its tail. Suppose further that at every level
down the tree there are only One data constructors downto the bottom of the
spine being Empty its case. Having n total leaves in the FT, we have O(log n)
cases to evaluate as viewl traverses the height of the FT. Therefore the total
amount of time to perform such a case is O(log n)×O(<>). Once again, we
leave the operation <> implicit as no monoidal annotation has been defined.
Now, the total cost of the above performance is divided by the total number
of elements evaluated as left-most for the viewl, that is, there are O(log n)
elements on the far left yielding to O(1)×O(<>) per viewl operation.

That is, getting the first element in a Ft where its monoidal annotation
is defined by Data.Sequence, which is the arithmetic addition, we have that
each viewl takes O(1), whereas defining Data.Set, seen in Section 3.3, as
the monoidal annotation, the same operation shall take at most O(log n)
time per viewl operation.

3.6.5 Inserting at the endpoints of a Ft

These functions insert, in O(1) amortised time, an element2 at the front (/)
or at the rear (.) of a Ft. We present the / case. Details of . can be found in
[48]. In the following snippet, mon stands for the monoidal annotation, pref
the prefix of Ft, mid the subtree of current Ft and suf the suffix of Ft.
Recall that measure is the function retrieving monoidal annotation values.
a / Empty = Single a -- trivial case [/.1]
a / Single b = deep (One a) Empty (One b) -- balancing trivial case [/.2]
a / Deep mon (Four b c d e) mid suf = -- prefix of FT is full [/.3]

Deep -- FT constructor, persistently
(measure a <> mon) -- updating monoidal annotation
(Two a b) -- a new prefix is built
(node3 c d e / mid) -- new Node is created into mid
suf -- suffix is left intact

a / Deep mon pref mid suf = -- [/.4]

2Polymorphic in FingerTree data type

54

Deep -- FT constructor, persistently
(measure a <> mon) -- updating monoidal annotation
(consDigit a pref) -- new value inserted into prefix
mid -- middle part is left intact
suf -- suffix is left intact

consDigit :: a → Digit a → Digit a
consDigit a (One b) = Two a b -- [consDig.1]
consDigit a (Two b c) = Three a b c -- [consDig.2]
consDigit a (Three b c d) = Four a b c d -- [consDig.3]

Rules /.1 and /.2 are trivial running in Θ(1) as both simply pattern match
the arguments. Similarly, function consDigit runs also in Θ(1) since it just
patterns match its arguments. Rule /.4 relies on the operator <> and the
Deep data constructor, so its performance is O(<>). The remaining rule, /.3,
is the recursive case when inserting from the left into a Ft.

Complexity of /

It is stated in Table 3.2 that / performs in O(1) amortised. In order to
get such performance it is assumed the binary operation <> defined for the
finger tree in matter, performs in constant time. We extend some analysis
to determine the number of <> operations applied within /. Let us take an
initial example of inserting six elements (x1 . . . x6) into an Empty finger tree.
By doing this, we shall enforce the four rules of /.
x1 / x2 / x3 / x4 / x5 / x6 / Empty
= { by /.1 } -- [Op.1]
x1 / x2 / x3 / x4 / x5 / (Single x6)
= { by /.2 } -- [Op.2]
x1 / x2 / x3 / x4 / (deep (One x5) Empty (One x6))
= { by deep function definition } -- [Op.3]
x1 / x2 / x3 / x4 / (Deep (<>1) (One x5) Empty (One x6))
= { by /.4 } -- [Op.4]
x1 / x2 / x3 / (Deep (<>2) (consDigit x4 (One x5)) Empty (One x6))
= { by consDig.1 } -- [Op.5]
x1 / x2 / x3 / (Deep (<>2) (Two x4 x5) Empty (One x6))
= { by /.4 } -- [Op.6]
x1 / x2 / (Deep (<>3) (consDigit x3 (Two x4 x5)) Empty (One x6))
= { by consDig.2 } -- [Op.7]
x1 / x2 / (Deep (<>3) (Three x3 x4 x5) Empty (One x6))
= { by /.4 } -- [Op.8]
x1 / (Deep (<>4) (consDigit x2 (Three x3 x4 x5)) Empty (One x6))
= { by consDig.3 } -- [Op.9]

55

x1 / (Deep (<>4) (Four x2 x3 x4 x5) Empty (One x6))
= { by /.3 } -- [Op.10]
Deep (<>5) (Two x1 x2) (node3 x3 x4 x5 / Empty) (One x6)
= { by node3 function definition } -- [Op.11]
Deep (<>5) (Two x1 x2) ((Node3 (<>6) x3 x4 x5) / Empty) (One x6)
= { by /.1 } -- [Op.12]
Deep (<>5) (Two x1 x2) (Single (Node3 (<>6) x3 x4 x5)) (One x6)

We have obtained six place holders for <>, where some of them represent just
one appearance and other more than one. The following table details the
accumulation for such operator.

Op xi <>i <>acc function Ft depth
1 x6 (N/A) 0 Single 0
2 x5 (<>1) 2 deep 0
3 x5 (<>1) 2 0
4 x4 (<>2) 3 Deep 0
5 x4 (<>2) 3 0
6 x3 (<>3) 4 Deep 0
7 x3 (<>3) 4 0
8 x2 (<>4) 5 Deep 0
9 x2 (<>4) 5 0
10 x1 (<>5) 6 Deep 0
11 x1 (<>6) 8 Node3 0
12 x1 (<>5,6) 9 Empty 1

Table 3.3: Operations involved in performing six insertions into an empty
Ft

Following Table 4.7, we have eight <> operations at level 0 of the Ft depth.
The ninth <> operator corresponds not only to Ft depth 1 but for a second
call to / (by [Op.10-Op.12]). Since the / type is polymorphic, it computes
any type of finger tree 3 in at most eight <> operators per level in the Ft
depth. That is, time complexity for / relies in the time complexity of the
monoidal binary operation <>, which is 8×O(<>) = O(<>).

Suppose x is a valid datum for t where t is a Ft of depth O(log n)
which has all of its prefixes full, that is, every prefix is comprised of Four
data constructors. Furthermore, assume that every Node is built only by
Node3 constructors. Then, defining ins as ins = x / t, it will perform in
8×O(log n)×O(<>). Hence the amortised time per insertion is O(log n)×

3FingerTree a, FingerTree (<>) (Node a), FingerTree (<>) (Node (<>) (Node (<>) a)), etc.

56

O(<>) divided by total number of elements inserted. In the above case we
have inserted a single element always from the left, that is O log n elements,
as we started from the top of the Ft all the way down to the bottom of it.
Alike viewl, inserting an element from the left shall take O(<>) per operation
when monoidal annotation is not defined.

3.6.6 Appending FTs

Let ft1=Deep mon1 pr1 mid1 sf1 and ft2=Deep mon2 pr2 mid2 sf2 be
two finger trees. The operator ./, defined in [8] and implemented in [48],
takes two finger trees, say ft1 and ft2, and appends them from the middle.
In brief, ./ performs

1. generates a new subtree, mid, concatenating mid1, sf1, pr2 and mi2

2. creates a new finger tree ft = Deep (mon1 <> mon2) pr1 mid sf2

The appending process, numeral 1 above, is carried out by recursive calls
of interleaved functions appendTreei and addDigitsi. The former inserts
the elements a via / and .. The latter function compares all combinations
possible from Digit data constructor. Index i ∈ {0 . . . 4} refers to a postfix
in the name of such function in [48].

As a general definition for appendTreei, we have
appendTreei :: (Measure v a) ⇒

FingerTree v a → αi →FingerTree v a →FingerTree v a
appendTreei Empty αi xs = αi /i xs -- [appendTreei.1]
appendTreei xs αi Empty = xs .i αi -- [appendTreei.2]
appendTreei (Single x) αi xs = x / αi /i xs -- [appendTreei.3]
appendTreei xs αi (Single x) =xs .i αi . x -- [appendTreei.4]
appendTreei (Deep mon1 pr1 mid1 sf1) αi (Deep mon2 pr2 mid2 sf2)

= Deep (mon1 <> measurei αi <> mon2)
pr1 (addDigitsi mid1 sf1 αi pr2 mid2) sf2 -- [appendTreei.5]

where α0 indicates zero elements, α1 = a, α2 = a b, α3 = a b c, and α4 =
a b c d

A general function definition for addDigitsi can be
addDigitsi :: (Edges v a) ⇒

FingerTree v (Node v a) → Digit a → αi →Digit a →
FingerTree v (Node v a) → FingerTree v (Node v a)

addDigitsi m1 (One a) αi (One f) m2

57

= appendTreei mid1 (nodek)i . . . mid2 -- [addDigitsi.1]
addDigitsi m1 (One a) αi (Two f g) m2

= appendTreei mid1 (nodek)i . . . mid2 -- [addDigitsi.2]
. . . -- [addDigitsi.(3..14)]
addDigitsi mid1 (Four a b c d) αi (Three i j k) mid2

= appendTreei mid1 (nodek)i . . . mid2 -- [addDigitsi.15]
addDigitsi mid1 (Four a b c d) αi (Four i j k l) mid2

= appendTreei mid1 (nodek)i . . . mid2 -- [addDigitsi.16]

where (nodek) can be either (node3 a b c) or (node2 a b)

Complexity of ./

Since the actual implementation of ./ in [48] is defined throughout 106 lines of
Haskell code (5×appendTree + 16×addDigits + ./), we just show a sample
in this thesis.
pr1 = (One x1)
mid1 = Empty
sf1 = (Four x2 x3 x4 x5)
pr2 = (Three x6 x7 x8)
mid2 = Empty
sf2 = (One x9)
Deep mon1 pr1 mid1 sf1 ./ Deep mon2 pr2 mid2 sf2
= { by ./ } -- [Op.1]
appendTree0
= { by appendTree0 function definition } -- [Op.2]
Deep (mon1 <> mon2) pr1 (addDigits0 mid1 sf1 pr2 mid2) sf2
= { by addDigits0.15 } -- [Op.3]
Deep (<>1) (One x1)

(appendTree3 mid1 (node3 x2 x3 x4)
(node2 x5 x6)
(node2 x7 x8) mid2)

(One x9)
= { by node3 and node2 function definitions } -- [Op.4]
Deep (<>1) (One x1)

(appendTree3 mid1 (Node3 (<>2) x2 x3 x4)
(Node2 (<>3) x5 x6)
(Node2 (<>4) x7 x8) mid2)

(One x9)
= { by appendTree3.1 } -- [Op.5]
Deep (<>1) (One x1)

((Node3 (<>2) x2 x3 x4) /
(Node2 (<>3) x5 x6) /
(Node2 (<>4) x7 x8) / Empty)

58

(One x9)
= { by /.1, /.2, /.4 } -- [Op.6]
Deep (<>1) (One x1)

(Deep (<>5)
Two (Node3 (<>2) x2 x3 x4) (Node2 (<>3) x5 x6)
Empty
One (Node2 (<>4) x7 x8)

(One x9)

Update operation is actually carried out by / and . throughout 106 func-
tion definitions but only 10 of them can be performed since it is one function
call in 5 appendTree definitions and one call in 5 addDigits definitions.
That is, given two finger trees of n and m number of elements at their leaves
respectively, performance of ./ is O(log(min(n,m)))×O(<>).

3.6.7 Searching and splitting in Ft

All Ft operations we have seen so far do not take advantage of the monoidal
annotations. They simply perform the corresponding <> per update. When
looking up for a specific element in Ft we use the value located at specific
monoidal annotation as argument in a predicate. In this section we focus
on function search since it includes a split. A successful search in [8]
implemented in [48] is considered when given a predicate with monoidal
annotations as arguments, turns from False to True, splitting the input Ft
into three components: the left subtree, the element in matter and right
subtree. In order to provide predictable results, [8] states that uniqueness of
the split is guaranteed for monotonic predicates. So, the type signature for
the predicate defines two monoidal annotations, the first one to evaluate to
False and the latter for testing True. To catch up all possible results from
searching, the following defines the data type for such results.
data SearchResult v a

= Position (FingerTree v a) a (FingerTree v a) -- success [srchR.1]
| OnLeft -- failed, predicate is True at both ends [srchR.2]
| OnRight -- failed, predicate is False at both ends [srchR.3]
| Nowhere -- failed, predicate is True at left end

-- and False at the right end [srchR.4]

Since a FingerTree consists of three data types, [48] defines one search
function per data type. We show the initial definitions in each case as we
discuss details on searching for our proposals Full and Top .

59

Initial search on a Ft

Searching in the top structure of a Ft determines whether or not the element
in matter is somewhere in the structure. It does not perform a precise location
for such element, it just asks: Is element x (within the predicate) in Ft?
search :: (Measure v a) ⇒

(v → v → Bool) → FingerTree v a → SearchResult v a
search p t
| p_left && p_right = OnLeft -- [search.1]
| not p_left && p_right =

case searchTree p mempty t mempty of
Split l x r → Position l x r -- [search.2]

| not p_left && not p_right = OnRight -- [search.3]
| otherwise = Nowhere -- [search.4]
where

p_left = p mempty vt
p_right = p vt mempty
vt = edges t

In [search.2] we evaluate the case when given predicate p evaluates from
False to True. All other cases represent a failed search. Function searchTree
returns the precise location by returning the split of Ft,
data Split t a = Split t a t

Searching in FingerTree

Function searchTree [48] determines if the searched element is either in the
prefix, suffix or in the middle.
searchTree :: (Measured v a) ⇒

(v → v → Bool) → v → FingerTree v a → v →
Split (FingerTree v a) a

searchTree _ _ Empty _ = error "searchTree invalid" -- [search.Error]
searchTree _ _ (Single x) _ = Split Empty x Empty -- [searchTree.1]
searchTree p mon1 (Deep _ pr mid sf) mon2
| p mon1pr mon2sm = -- [searchTree.2]

let Split l x r = searchDigit p mon1 pr mon2sm
in Split (maybe Empty digitToTree l) x (deepL r mid sf) -- [Split.1]

| p mon1pm mon2sf = -- [searchTree.3]
let Split ml xs mr = searchTree p mon1pr mid mon2sf

Split l x r = searchNode p
(mon1pr <> measure ml) xs
(measure mr <> mon2sf)

60

in Split (deepR pr ml l) x (deepL r mr sf) -- [Split.2]
| otherwise = -- [searchTree.4]

let Split l x r = searchDigit p mon1pm sf mon2
in Split (deepR pr mid l) x (maybe Empty digitToTree r) -- [Split.3]

where
monmid = measure mid
mon1pr = mon1 <> measure pr
mon1pm = mon1pr <> monmid
mon2sm = monmid <> mon2sf
mon2sf = measure sf <> mon2

If the searched element is within the top affixes (i.e. level 0) or in Single im-
plies no recursion on searchTree. On the other hand, a searchTree applied
to a Ft of depth ≥ 1 ends up in the analysis of searchNode either because
the element in the prefix, [searchTree.2], in the suffix, [searchTree.4],
or at the end of the spine of Ft, via [searchTree.1]. Since searchTree
was called from search after evaluating True ([search.2]), any of the
[searchTree.1,2,3,4] shall return the searched element via Split, otherwise
an error arises in [search.Error]. A Split is a constructor for two subtrees
and searched element. It is helped out by other smart constructors: deepL,
deepR and digitToTree [48] explained further in this section.

Searching in Digit

Looking for an element in an affix is performed by pattern matching the
data constructors for Digit. Once a data constructor is chosen, evaluating
the predicate against the monoidal annotations provided by the elements in
Digit, a Split of the Ft is returned.
searchDigit :: (Edges v a) ⇒

(v → v → Bool) → v → Digit a → v →
Split (Maybe (Digit a)) a

searchDigit _ mon1 (One a) mon2 = Split Nothing a Nothing -- [searchDig.1]
searchDigit p mon1 (Two a b) mon2
| p mona monb =Split Nothing a (Just (One b)) -- [searchDig.2]
| otherwise = Split (Just (One a)) b Nothing -- [searchDig.3]
where

mona = mon1 <> measure a
monb = measure b <> mon2

. . .
searchDigit p mon1 (Three a b c) mon2
. . .
searchDigit p mon1 (Four a b c d) mon2

61

. . .

Searching in Node

The ultimate frontier for searching an element in a Ft with depth ≥ 1
is defined in searchNode. Like searchDigit, this function also patterns
match on its data constructors and splits up the given Ft via the monoidal
annotations provided as arguments in Node2 or Node3.
searchNode :: (Edges v a) ⇒

(v → v → Bool) → v → Node v a → v →
Split (Maybe (Digit a)) a

searchNode p mon1 (Node2 _ a b) mon2
| p mona monb = Split Nothing a (Just (One b)) -- [searchNode.1]
| otherwise = Split (Just (One a)) b Nothing -- [searchNode.2]
where

mona = mon1 <> measure a
monb = measure b <> mon2

. . .
searchNode p mon1 (Node3 _ a b c) mon2

Complexity of search

Function search performs two implicit operations, a look up and a split. Let
t be a Ft of n elements and depth O(log n), where n > 0. We are interested
in search for x, an element located at the deepest prefix. So, predicate in
[search.2] evaluates True and searchTree is called O(log n) times while
performing up to four <> operators when comparing the predicate p, that is,
looking up for an element takes O(log n)×O(<>). In Figure 3.17 we depict
the look up for x

62

Figure 3.17: Search as a look up an element in a Ft

Once element x has been found, Split function performs a bottom-
up computation to construct two subtrees. Function searchTree calls for
[Split1,2,3] which in turn calls smart constructors deepL, digitToTree and
deepR. These constructors glue the corresponding affixes and middle sub-
trees through rotL, deep and rotR helper functions. We present here just
the functions processing the left hand side structures. Provided two affixes
and a subtree (mid), deepL builds up a Ft. In the absence of a prefix (passed
as Nothing), deepL builds the Ft from the mid and the suffix; in case mid is
Empty, then Ft is made of the suffix solely. The last two cases are performed
by rotL and digitToTree.
deepL :: (Measured v a) ⇒ Maybe (Digit a) →

FingerTree v (Node v a) → Digit a → FingerTree v a
deepL Nothing mid sf = rotL mid sf
deepL (Just pr) mid sf = deep pr mid sf

rotL :: (Measured v a) ⇒
FingerTree v (Node v a) → Digit a → FingerTree v a

rotL mid sf = case viewl mid of
EmptyL → digitToTree sf
a :< mid’ →Deep (measure mid <> measure sf)

(nodeToDigit a) mid’ sf

digitToTree :: (Measured v a) ⇒ Digit a → FingerTree v a
digitToTree (One a) = Single a
digitToTree (Two a b) = deep (One a) Empty (One b)
digitToTree (Three a b c) = deep (Two a b) Empty (One c)
digitToTree (Four a b c d) = deep (Two a b) Empty (Two c d)

63

The following illustration summarises the calls to the above smart con-
structors and helper functions.

a Split calls

digitToTree deep

deepL

deep

rotL

{
Deep(<>)pr mid sf

digitToTree deep

Since building up the subtrees is bottom up, it takes O(log n) to get level
zero. Then, taking the amount of <> operators into account, being deep the
largest with two4, the runtime for Split takes is 2 × O(log n) × O(<>) per
subtree. Figure 3.18 illustrates the subtrees construction via Split.

Figure 3.18: Search as a Split of a Ft into two subtrees and an element

Sequence as BST, an application of a finger tree

We follow the implementation provided by Hinze and Paterson in [8] . For
illustrative purposes, we show only the structural definitions and incremen-
tal case, referring the reader to Section 4.7 of [8] for the deletion and ./
operations.

We define our sequence to be a Ft holding element Elem of any type a
with its monoidal annotation being of type Key a.

4see function definition of deep in 3.6.4

64

newtype OrdSeq a = OrdSeq (FingerTree (Key a) (Elem a))
emptyOrdSeq = OrdSeq empty -- constructor OrdSeq followed by an empty FT
newtype Elem a = Elem a deriving (Eq, Ord)
data Key a = NoKey | Key a deriving (Eq, Ord)

By defining NoKey the identity element and Key being the last (maximum)
element selected so far, we can instantiate data type Key as a monoid
instance Monoid (Key a) where

mempty = NoKey -- the identity element
mappend k NoKey = k
mappend _ k = k -- 2nd arg. is the maximum [<>.OrdFT]

-- guaranteed by the update operations

Also we need to define how a single element is measured
instance Measured (Key a) (Elem a) where

measure (Elem x) = Key x -- [measure.Elem]

Finally, the insertion operation is split in two functions, ins and insert.
The former, our contribution to show explicitly all three cases when inserting
an element into a sequence. The latter, defined originally by Hinze and
Paterson [8], performs the case when the input is neither the maximum nor
the minimum element to be in the sequence.
ins :: (Ord a) ⇒ a → OrdSeq a → OrdSeq a
ins x os@(OrdSeq xs)
| Key x ≥ measure xs =OrdSeq (xs . Elem x)
| Elem x ≤ leftmost = OrdSeq (Elem x / xs)
| otherwise = insert x os
where

(leftmost :< _) =viewl xs

insert :: (Ord a) ⇒ a → OrdSeq a → OrdSeq a
insert x (OrdSeq xs) = OrdSeq (left ./ (Elem x / right))
where (left, right) = split (≥ Key x) xs

In the following figures we show the insertion of ten elements, Elem 1 . . .
Elem 10 not necessarily in order, into an empty Ft. We start picturing the
data at the leaves in Figure3.19

65

Figure 3.19: Ordered-set via Ft, data (Elem type) at the leaves

By applying rule [measure.Elem] we obtain the initial monoidal anno-
tations (Keys), as seen in Figure 3.20

Figure 3.20: Ordered set via Ft, initial monoidal annotations

Finally, in Figure 3.21 it is shown the application of the monoidal binary
operation [<>.OrdFT] all over the tree.

Figure 3.21: Ordered set via Ft, data and monoidal annotations in the entire
structure

66

Chapter 4

Euler-Tour Trees Functionally,
FunEtt

In this chapter we discuss the specifications regarding the construction and
manipulation, link and cut, of Euler-tour trees. Specifically, we analyse
the work done by Henzinger and King [5], Ett-HK, and Tarjan [7], Ett-T.
Then, we describe FunEtt, our purely functional programming proposal
implemented in Haskell and show its performance. Finally, we summarise
this chapter with a brief comparison between the tree specifications. For
practical purposes, we refer to the following example as the input (arbitrary)
tree for the three specifications.

Figure 4.1: An input tree

4.1 Euler-tour trees by Henzinger and King
We follow the specification for the representation of the Ett data structure
and its operations from [5].

67

4.1.1 Representation of the input tree

Henzinger and King encode the input tree of n vertices using a sequence of
2n−1 symbols generated by the following procedure called ET, adapted from
[5].

Root the tree at an arbitrary vertex
Call ET(root)

ET(x)
visit x;
for each child c of x do

ET(c);
visit x.

In the above procedure, every visit i to a vertex v is stored as ovi , the ith oc-
currence of v, into the sequence ET. An instance of this procedure to the input
tree in Figure 4.1 results in ET(c) = o71o91o51o92o21o93o41o94o31o95o72 .
Such representation does not offer uniqueness for the vertices nor the edges
allocated in ET.

4.1.2 Operations on Ett-HK

Cutting a tree is referred as deletion of an edge, defined by Henzinger and
King in [5] as

To delete edge {a, b} from T : Let T1 and T2 be the two trees
that result, where a ∈ T1 and b ∈ T2. Let oa1 , ob1 , ob2 represent
the occurrences encountered in the two traversals of {a, b}. If
oa1< ob1and ob1< ob2 , then oa1< ob1< ob2< oa2 . Thus, ET(T2)
is given by the interval of ET(T) ob1 , . . . , ob2and ET(T1) is given
by splicing out of ET(T) the sequence ob1 , . . . , oa2 .

We point out the following features from Ett-HK deletion operation

1. A conditional via the operator < between occurrences ensures that edge
{a, b} is in the sequence ET, otherwise no deletion is performed.

2. Computing ET(T2) requires two implicit look up operations, one for
ob1and one for ob2 . Then, an implicit split is performed when “...is
given by the interval...” is stated.

68

3. Computing ET(T1) requires two implicit look up operations, one for
ob1and one for oa2 . Then, an explicit split and append are performed
when splicing out the above interval.

4. An interesting point is the notion of immutability when sequences for
T1 and T2 are split up from T .

Prior to link two trees in Ett-HK, a rerooting operation specified by
Henzinger and King in [5], is defined as follows,

To change the root of T from r to s: Let os denote any
occurrence of s. Splice out the first part of the sequence ending
with the occurrence before os, remove its first occurrence (or),
and tack the first part on to the end of the sequence, which now
begins with os. Add a new occurrence os to the end.

The features we have found

1. One look up is performed for os.

2. One split is carried out when splicing out the ET(Ts)

3. One deletion for or

4. One append by tacking the first part onto the last part of the split

5. One insertion when adding os at the tail of the new sequence

Linking two trees in Ett-HK are referred as joining two rooted trees

To join two rooted trees T and T ′ by edge e: Let e =
{a, b} with a ∈ T and b ∈ T ′. Given any occurrences oa and ob,
reroot T ′ at b, create a new occurrence oanand splice the sequence
ET(T ′)oan into ET(T) immediately after oa. Henzinger and King
[5]

Finally, the features from Ett-HK joining operation

1. Occurrences oa and ob require two look up operations

2. Extra operations are performed when calling reroot

69

3. When creating oan , all occurrences of oa should be counted, that is,
looking for n− 1 occurrences of a might take linear time in the size of
the sequence. We take this operation as simple look up.

4. One insertion when placing oanat the tail of ET(T ′).

5. Two append and one split operations are performed when splicing out
ET(T ′)oan into ET(T)

6. Immutability is not preserved for ET(T) in above operation

7. Tree T is not rerooted at a during the join operation.

4.2 Euler-tour trees by Tarjan
We follow the specification for the representation of the Ett data structure
and its operations from [7].

4.2.1 Representation of the input tree

A list L representing an arbitrary tree T is formed by

• For every edge {v, w} ∈ T there are two (directed) edges (v, w) and
(w, v) in L

• For every vertex v ∈ T , there is a unique pair (v, v) in L.

Since T is a data structure for a tree, there is a unique edge between two
vertices. Since the edges placed in L are directed, the uniqueness in edges is
preserved. In the above representation, L has 3n− 2 pairs, each pair having
either an edge or a vertex.

The input tree from Figure 4.1 is represented in Ett-HK as list L =
[(7, 7), (7, 9), (9, 9), (9, 5), (5, 5), (5, 9), (9, 2), (2, 2), (2, 9), (9, 4), (4, 4), (4, 9),
(9, 3), (3, 3), (3, 9), (9, 7)].

4.2.2 Operations on Ett-T

The terms catenate and append are interchangeable. Tarjan in [7] defines
the link operation as follows,

70

. . . suppose link({v, w}) is selected. Let T1 and T2 be the trees
containing v and w respectively, and let L1 and L2 be the lists
representing T1 and T2. We split L1 just after (v, v), into lists
L1
1, L

2
1, and we split L2 just after (w,w) into L1

2, L
2
2. Then we form

the list representing the combined tree by catenating the six lists
L2
1, L

1
1, [(v, w)], L2

2, L
1
2, [(w, v)] in order. Thus linking takes two

splits and five catenations; two of the latter are the special case
of catenation with singleton lists . . .

Notice that list L in its original order consists of L1
1L

2
1, achieving the re-

root operation by simply appending the swapped lists as in L2
1L

1
1, provided

that the split was done at the specific vertex. Additionally, the second tree
represented by L2 has also been rerooted as L2

2L
1
2. This is a particular dif-

ference with respect to link ing in Ett-HK where only the second (T ′) tree
is rerooted.

. . . perform cut({v, w}). Let T be the tree containing {v, w}, rep-
resented by list L. We split L before and after (v, w) and (w, v),
into L1, [(v, w)], L2, [(w, v)], L3 (or symmetrically L1, [(w, v)],
L2, [(v, w)], L3). The lists representing the two trees formed by
the cut are L2 and the list formed by catenating L1 and L3. Thus
cutting takes four splits (of which two are the special case of split-
ting off one element) and one catenation . . . Tarjan
[7]

4.3 FunEtt

We introduce FunEtt data structure in this section considering the features
analysed from both Ett-HK and Ett-T. In particular, like Ett-HK we
define an explicit operation for rerooting trees. Like Ett-T, we consider
the list-like representation of the input tree. Unlike the Ett-HK and Ett-
T, we define our proposal to be

1. Immutable, purely functional

2. Explicit, defining operations search (look up and split), append, and
insert altogether the specification

71

4.3.1 Representation of the input tree

In order to represent the input tree by Ett, we define the function rt2et,
short for rose tree to euler tree sequence. Recall the input tree is
managed by [roseTree] in Section 3.2.
rt2et :: (Eq a) ⇒ Tree a → [(a,a)]
rt2et (Node x ts) = case ts of

[] → [(x,x)] -- singleton case [rt2et.1]
(t’:ts’) → root ++ -- tree length > 1 [rt2et.2]

concat (map (λt→pref t ++ rt2et t ++ suff t) ts) -- [rt2et.2]
where
pref v = [(x,rootLabel v)] -- [rt2et.3]
suff v = [(rootLabel v,x)] -- [rt2et.4]
root = [(x,x)]

The well-formed Ett sequence is preserved by [rt2et.1] when input
tree is a singleton tree, otherwise by [rt2et.2] recursively satisfying the
. . . (x, y)(rt2et tree)(y, x) . . . case.

Similar to procedure ET in ETT-HK, rt2et traverses the input tree once,
returning a Euler-tour sequence in O(n) where n is the number of elements
in the input tree. Then, we collect the output from rt2et and pass it as
argument to any of the following helper functions to get a Ft.

• foldr (/) Empty: application of / to the sequence starting from Empty

• fromList: helper function from [48]

4.3.2 FunEtt data structure

In Chapter 3 we showed the benefits and features for dealing with sequences
through finger trees.

Both Ett-HK and Ett-T assume that the locations for splitting (i.e.
cutting) and appending (i.e. linking) the sequences or lists are given apriori,
that is, no computation for looking up edges or vertices is performed or ex-
pressed in the specification. In our proposal, we make explicit the mechanism
for looking up an element within any sequence avoiding extra arguments to
be passed onto link and cut. Since finger trees allow monoidal annotations
on internal nodes, we take advantage on those annotations by defining the
monoid as a BST (i.e. set-like tree), that is, an efficient data structure for
look ups and updates. Then, FunEtt is a Ft with monoidal annotation
Data.Set [45] and measurement definition as follows

72

type FunETT a = FingerTree (Set (a,a)) (a,a)

instance (Ord a) ⇒ Measured (Set (a,a)) (a,a) where
measure (x,y) = insert (x, y) empty -- [measure.TreeEF]

Set insertion in rule measure.TreeEF above is performed only when an
operation asks for the monoidal annotation of the atomic value in FunETT.
That is, a datum on the leaves generates a singleton set of itself at runtime.

The empty-set as the identity for the union operation forms a monoid
over Data.Set, predefined in [45] as
instance Monoid (Set a) where

mempty = empty -- the empty set
x <> y = union x y -- union of disjoint sets x and y

From the above, we have a set per internal node in FunEtt, with the
largest (just the one at the top of Ft) containing 3n − 2 pair-elements and
the smallest being the singleton, generated on demand.

Example of FunEtt

The following input tree is the same tree from Figure 4.1, but presented here
as star-shaped. We selected the top node to be the root, although this is
arbitrary.

Figure 4.2: Input tree (top left) is Euler-tour numbered (top right). Ett
(bottom) is generated by rt2et

By placing the Ett above and inserting it to an Empty Ft element wise,
we have the result in Figure 4.3 below. The dark circles and arrows do not

73

belong to the data structure, they are placed below the leaves for illustrative
purposes only.

Figure 4.3: FunEtt for the Euler-tour tree representation from input tree
in Figure 4.2

4.3.3 Operations on FunEtt

Recalling the performance of operations over a Ft from Chapter 3, in par-
ticular the ones analysed through the <> operator, we show a summary in
Table 4.1.

Function Complexity
viewl, viewr, /, . O(<>)
./ , split, search O(log n)×O(<>)

Table 4.1: Summary of operations bounds over a generic Ft

Now, having defined Data.Set as the monoidal annotation for FunEtt,
we have that the set union is the monoidal binary operation, therefore O(<>)
is O(m × (log(n/m) + 1)), where m + n is the size of the largest set in the
Ft and that m ≤ n. Furthermore, all bounds in Data.Set are worst case,
that is, non amortised. In Table 4.2 we show the above substitution.

74

Function Complexity
viewl, viewr, /, . O(m× (log(n/m) + 1))

./ , split, search O(log n)×O(m× (log(n/m) + 1))

Table 4.2: Summary of Ft operations applied to FunEtt when set-union
is the monoidal annotation

For the remaining of this thesis, we consider the following equation when
m < n,

O(m× (log(n/m) + 1)) = O(m× log(n/m))

and the following equation when m = n,

O(m× (log(n/m) + 1)) = O(n)

Taking the above upper limit bounds, we consider the following analy-
sis in order to get the bounds for cases where experimental results might
fall into. Let us consider the base for the logarithmic cases as b = 10.
Now, running five case analyses for each bound in Table 4.2, that is, m =
{1, 10, 100, 1000, 10000} and n = 10000. Recall that m and n represent the
sizes of the sets allocated in the internal nodes of a particular Ft prior to
the application of mappend or the monoidal binary operation ?. We always
consider m ≥ 1, n ≥ 1 and m ≤ n, otherwise m and n are swapped.

We start with the first operations (first row from Table 4.2),

m n viewl, viewr, /, . result yields to bound

m
(
log n

m

)
1 10,000 1

(
log 10,000

1

)
4 Ω(log n)

10 10,000 10
(

log 10,000
10

)
30 Θ(m log n

m)

100 10,000 100
(

log 10,000
100

)
200 Θ(m log n

m)

1,000 10,000 1, 000
(

log 10,000
1,000

)
1,000 Θ(m log n

m)

10,000 10,000 O(n) 10,000 O(n)

Table 4.3: Bounds of Ft operations applied to FunEtt for
viewl, viewr, / and . cases

Similarly, when applying the same analysis to the second set of operations
from Table 4.2, we have,

75

m n ./ , split, search result yields to bound

log n×m
(
log n

m

)
1 10,000 log 10, 000× 1

(
log 10,000

1

)
16 Ω(log2 n)

10 10,000 log 10, 000× 10
(

log 10,000
10

)
120 Θ(m log n log n

m)

100 10,000 log 10, 000× 100
(

log 10,000
100

)
800 Θ(m log n log n

m)

1,000 10,000 log 10, 000× 1, 000
(

log 10,000
1,000

)
4,000 Θ(m log n log n

m)

10,000 10,000 log 10, 000×O(n) 40,000 O(n log n)

Table 4.4: Bounds of Ft operations applied to FunEtt for ./ split and
search cases

We extend specifications that of Ett-HK for reroot and Ett-T spec-
ification for link and cut. The addendum is mostly to include the explicit
search, explicit split, and explicit append (via ./). Considering further for-
est operations, we rename the update operations to linkTree and cutTree
respectively.

Cutting a FunEtt

Let v and w be two vertices and tree be a FunEtt holding a well-formed
Ett sequence. Then, following cut in Ett-T, operations search and ./ from
Chapter 3 and member (testing membership for sets) operation from [45], we
have
1. cutTree :: Ord a ⇒ a → a → FunETT a → Maybe (FunETT a, FunETT a)
2. cutTree v w tree = if v == w then Nothing else
3. case search pred tree of -- FunEtt: explicit search for (v, w)
4. Position left _ right → -- (v, w) found

-- Ett-T: split L before and after (v, w) so far
-- (v, w) is discarded by the wildcard _ (1st edge deletion)

5. case (search pred2 left) of
-- FunETT: explicit search for (w, v) on left subtree

6. Position leftL _ rightL →
-- FunETT: (w, v) is on the left subtree
-- Ett-T: split L before and after (v, w) and (w, v)
-- (w, v) is discarded by the wildcard _ (second edge deletion)

7. Just (rightL, leftL ./ right)
-- Ett-T : L1[(w, v)]L2[(v, w)]L3 (symmetrical case)

76

-- Ett-T result: L2, L1 and L3 are catenated
8. _ → -- FunETT: (w, v) is on the right subtree
9. case (search pred2 right) of

-- FunEtt: explicit search for (w, v) on right subtree
10. Position leftR _ rightR →

-- Ett-T: split L before and after (v, w) and (w, v)
-- (w, v) is discarded by the wildcard _ (2nd edge deletion)

11. Just (leftR, left ./ rightR)
-- Ett-T : L1[(v, w)]L2[(w, v)]L3 (initial case)
-- Ett-T result: L2, L1 and L3 are catenated

12. _ → error "Ett malformed" -- (v,w) found but not (w,v)
13. _ → case (search pred2 tree) of -- 2nd case for (search pred tree)
14. Position _ _ _ → error "Ett malformed" --(w,v) found but not (v,w)
15. _ → Nothing -- as neither (v,w) nor (w,v) /∈ tree
16. where
17. pred tree _ = (member (v,w)) tree
18. pred2 tree _ = (member (w,v)) tree

Performance of cutTree

The above Haskell script does not have recursive calls on itself, so its traversal
takes a single pass. We state only those lines of code (LOC) containing
runtimes other than O(1). So, following the bounds stated in Table 4.4 we
have

LOC expression runtime

3 case (search pred tree) of Θ(m log n log n
m)

5 case (search pred left) of Θ(m log n log n
m)

7 Just (rightL, leftL ./ right) Θ(m log n log n
m)

9 case (search pred right) of Θ(m log n log n
m)

11 Just (leftR, left ./ rightR) Θ(m log n log n
m)

17,18 (member (v’,w’)) tree’ O(log n)

Table 4.5: Bounds of cutTree operation

That is, operation cutTree takes Θ(m log n log n
m

) time, following the
bounds from Table 4.5 above, where m and n are the sizes of the sets
(monoidal annotations) involved. However, two exceptions might show up.

77

Figure 4.4: Input tree example for the cutTree operation

Firstly, the case of one of the sets involved in cutTree for all the LOCs is
of size one, then the lower bound per operation for cutTree is Ω(log2 n).
On the other hand, O(n log n) is the upper bound per cutTree operation,
provided that all sets involved are of the same size. That is, Ω(log2 n) ≤ Θ(
cutTree) ≤ O(n log n) where n is the total number of nodes for the trees
in the cutTree operation. These bounds are not longer amortised as the
monoidal annotations bounds, via <> operator, are worst case.

A cutTree example

Let tree be a valid FunEtt finger tree representing the input tree in Fig-
ure 4.4. Assuming that /, ., search and ./ operations are correct by [8],
we present the following test-by-hand examples of cutTree application over
tree. Recall that a finger tree holds a sequence of data (i.e. pairs for Fu-
nEtt) at its leaves. So, if we visually “hide” the internal nodes and branches,
tree can be seen as a sequence, rooted at (1,1)
tree = [(1,1),(1,2),(2,2),(2,1),(1,3),(3,3),(3,5),(5,5),(5,3)

,(3,1),(1,4),(4,4),(4,1)]

Performing cutTree on tree with edge (1,3) we have
2. cutTree 1 3 tree = if 1 == 3 then Nothing else
3. case (search pred tree) of
4. Position left _ right → -- underscore represents (1,3)

cutTree performs a case analysis, for which there are two cases: the search
is successful or unsuccessful. Since search is correct by [8], the pair (1,3)
is successfully found at position 4 (0-base index) in tree and omitted for
further processing as it is not part of the result. Position data constructor
above holds two subtrees,
left = [(1,1),(1,2),(2,2),(2,1)]

78

and
right = [(3,3),(3,5),(5,5),(5,3),(3,1),(1,4),(4,4),(4,1)]

cutTree looks for the mirrored edge, (3,1), in the left subtree.
5. case (search pred2 left) of
6. Position leftL _ rightL → --unsuccessful: (3,1) /∈ left subtree
7. Just (rightL, leftL ./ right) -- not performed

Since (3,1) is not in the left subtree, the alternative is to look it up in the
right subtree (line 9.)
8. _ → -- second case for (search pred2 left)
9. case (search pred2 right) of
10. Position leftR _ rightR → -- (3,1) found in subtree right
11. Just (leftR, left ./ rightR) -- two Fts are returned
12. _ → error "Ett malformed" --(1,3) found but not (3,1)
13. _ → case (search pred2 tree) of -- 2nd case for (search pred tree)
14. Position _ _ _ → error "Ett malformed" --(3,1) found but not (1,3)
15. _ → Nothing -- neither (1,3) nor (3,1) /∈ tree
16. where
17. pred tree _ = (member (1,3)) tree
18. pred2 tree _ = (member (3,1)) tree

So, it takes O(18) lines of non recursive code to perform cutTree. Since
finger tree operations are correct by [8], we show for this example that
cutTree is also correct and always terminates as it returns either

• Nothing for the case input vertices are equal, not the case for this
example.

• Nothing for the case when neither (1,3) nor (3,1) are in finger tree
tree.

• error for the case when pair (1,3) is in finger tree tree but (3,1) is
not.

• error for the case when pair (3,1) is in finger tree tree but (1,3) is
not.

• Just (rightL, leftL ./ right), not the case for this example.

• Just (leftR, left ./ rightR), the result for this example which is
Just([(3,3),(3,5),(5,5),(5,3)]

, [(1,1),(1,2),(2,2),(2,1),(1,4),(4,4),(4,1)])
|----------left-------- |./ |------rightR---- |

79

Figure 4.5: Resulting trees after cutTree operation is applied to input tree
in Figure 4.4.

representing the trees in Figure 4.5.

Linking two FunEtts

We follow the Ett-HK approach regarding the reroot operation on one tree,
but in our case it shall be on the first tree argument, that is, linking two
trees, say tv and tw, means that edge (v, w) connects the rerooted tree tv at
v into the no (necessarily) rerooted tree tw since it was originally rooted at
some vertex x.

Let v and w be two vertices, tv and tw be two FunEtt holding well-
formed Ett sequences. Then, following link in Ett-T, operations search,
split, /, ., ./ from Chapter 3 and member (testing membership for sets)
operation from [45], we have
1. linkTree :: Ord a ⇒ a → FunETT a → a → FunETT a → Maybe (FunETT a)
2. linkTree v tv w tw = if v == w then Nothing else
3. case (pairIn (v,v) tw, pairIn (w,w) tv) of
4. (True, _) → Nothing -- v ∈ tw
5. (_ , True) → Nothing -- w ∈ tv
6. (False,False) →
7. case (pairIn (v,v) tv, pairIn (w,w) tw) of
8. (False, _) → Nothing
9. (_ , False) → Nothing
10. (True , True) → Just $
11. let tv’ = reroot tv v
12. Position left _ right = search pred tw
13. in ((left . (w,w)) . (w,v)) ./ tv’ ./ ((v,w) / right)

-- in FunEtt we append L1
2, [(v, v)], [(v, w)], t′v, [(w, v)], L2

2

-- in Ett-T we append L2
1, L

1
1, [(v, w)], L2

2, L
1
2, [(w, v)]

14. where
15. pred tree _ = (member (w,w)) tree -- is (w,w) ∈ tree ?

80

Function pairIn test membership for both vertices v and w rather than
split or search on/for them.
1. pairIn :: (Ord a) ⇒ a → FunETT a → Bool
2. pairIn pair tree = case (search pred tree) of
3. Position _ _ _ → True
4. _ → False
5. where
6. pred tree’ _ = (member pair) tree’

Finally, changing the root on a FunEtt is as follows
1. reroot :: Ord a ⇒ FunETT a → a → FunETT a
2. reroot tree vertex =
3. let (left,right) = split pred tree
4. in right ./ left -- as in Ett-T when swapping L1

1, L
2
1 to L2

1, L
1
1

5. where
6. pred tree’ = (member (vertex,vertex)) tree’

Performance of linkTree

Alike cutTree, operation linkTree does not have recursive calls on itself,
so its traversal takes a single pass. We state only those lines of code where
runtimes differ from O(1). So, following the bounds stated in Table 4.4 we
have

LOC function expression runtime

2 pairIn case (search pred tree) of Θ(m log n log n
m)

6 pairIn (member pair) tree’ O(log n)

3 reroot split pred tree Θ(m log n log n
m)

4 reroot right ./ left Θ(m log n log n
m)

6 reroot (member (vertex,vertex)) tree’ O(log n)

12 linkTree search pred tw Θ(m log n log n
m)

13 linkTree ((left . (v,v)) . (v’,w’))

./ tv’ ./ ((v’,w’) / right) Θ(m log n log n
m)

15 linkTree (member (v,v)) tree O(log n)

Table 4.6: Bounds of linkTree operation

81

That is, operation linkTree takes Θ(m log n log n
m

) time, following the
bounds from Table 4.6 above, where m and n are the sizes of the sets
(monoidal annotations) involved. However, two exceptions might arise. Firstly,
the case of one of the sets involved in linkTree for all the LOCs is of size
one, then the lower bound per linkTree operation is Ω(log2 n). Secondly,
O(n log n) is the upper bound for each linkTree operation, provided that
all sets involved are of the same size. That is, Ω(log2 n) ≤ Θ(linkTree
) ≤ O(n log n) where n is the total number of nodes for the trees in the
linkTree operation. These bounds are not longer amortised as the monoidal
annotations bounds, via <> operator, are worst case.

A linkTree example

Let tv and tw be a valid FunEtt finger trees representing the input trees
in Figure 4.5. Assuming that /, ., search and ./ operations are correct by
[8], we present the following test-by-hand examples of linkTree application
over tv and tw. So, if we visually “hide” the internal nodes and branches,
tv and tw can be seen as the following sequences, rooted at (3,3) and (1,1)
respectively.

tv = [(3,3),(3,5),(5,5),(5,3)]
tw = [(1,1),(1,2),(2,2),(2,1),(1,4),(4,4),(4,1)]

Failed case of linkTree
Let v=2 and w=4, then linkTree over tv and tw is shown below

2. linkTree 2 tv 4 tw = if 2 == 4 then Nothing else
3. case (pairIn (2,2) tw, pairIn (4,4) tv) of
4. (True, _) → Nothing -- (2,2) ∈ tw
. . .

Case analysis in line (4.) above, returns Nothing as v=2 ∈ tw. This is confirmed as True
by the left pairIn (2,2) tw which performs the following snippet.

2. pairIn (2,2) tw = case (search pred tw) of
3. Position _ _ _ → True
4. _ → False
5. where
6. pred tree’ _ = (member (2,2)) tree’

Successful case of linkTree
Let v=3 and w=1, then linkTree over tv and tw is shown below.

82

2. linkTree 3 tv 1 tw = if 3 == 1 then Nothing else
3. case (pairIn (3,3) tw, pairIn (1,1) tv) of
4. (True, _) → Nothing
5. (_ , True) → Nothing
6. (False,False) →
7. case (pairIn (3,3) tv, pairIn (1,1) tw) of
8. (False, _) → Nothing
9. (_ , False) → Nothing
10. (True , True) → Just $
11. let tv’ = reroot tv 3
12. Position left _ right = search pred tw
13. in ((left . (1,1)) . (1,3)) ./ tv’ ./ ((3,1) / right)
14. where
15. pred tree _ = (member (1,1)) tree

After testing all the constraints against pairIn (lines 3-10), subtrees tv’ (line 11), left
and right (line 12) assemble the finger tree (line 13) to be return by linkTree.

tv’ is the resulting tree after applying reroot to tv and to vertex 3. in line 11.
Following snippet describes this process.

2. reroot tv 3 =
3. let (left,right) = split pred tv
4. in right ./ left
5. where
6. pred tree’ = (member (3,3)) tree’

Trees left=[] and right=[(3,3),(3,5),(5,5),(5,3)] are merged (./) and returned by
reroot after applying split to predicate pred and tree tv. That is, tv’ == tv as tv is
already rooted at node 3.

So, it takes O(15) lines of non recursive code to perform linkTree. Since finger tree
operations are correct by [8], we show for this example that linkTree is also correct and
always terminates as it returns either

• Nothing, for the case input vertices are equal, not the case for this example.

• Nothing, for the cases when none of the input vertices are in their corresponding
trees.

• ((left.(1,1)).(1,3)) ./ tv’ ./ ((3,1) / right), the result for this example
which is

Just([(1,1), (1,3), (3,3),(3,5),(5,5),(5,3), (3,1)
[] . (1,1) . (1,3) ./ ---------tv’---------- ./ ((3,1) /

, (1,2),(2,2),(2,1),(1,4),(4,4),(4,1)])
---------------right-------------)

representing the tree in Figure 4.6.

83

Figure 4.6: Resulting tree after linkTree operation is applied to input trees
in Figure 4.5.

4.4 Chapter Notes
This chapter contains original work and is based on the author’s paper presented at [25].
Some insights we contribute to the specifications for linking and cutting trees that of
Henzinger and King [5] and that of Tarjan [7] are listed as follows,

• Pointing to the vertices as arguments to both link and cut operations are now
defined explicitly in the specification. We achieve this through search by extending
the analysis of [8] in Chapter 3 and its implementation in FunEtt data structure.

• The specification is actually the implementation into the Haskell programming lan-
guage. This is, our belief, that FunEtt is the first declarative and purely functional
programming approach to deal with the dynamic trees problem main operations al-
together with its data structure. Furthermore, the present work is extended in order
to include the forest structure in Chapter 5 based on FunEtt.

• A comparison between the operations used in each specification is provided below

Operation, description Ett-HK Ett-T FunEtt
Space for Ett representation 2n− 1 3n− 2 3n− 2
cut look ups 4 2 2
cut splits 2 2 2
cut append 1 1 1
link look ups 4 2 4
link splits 2 2 2
link append 3 5 3
Total operations in specification 16 14 14

Table 4.7: Specifications of the dynamic tree operations link and cut

84

Chapter 5

Indexless data structures

Specifications Ett-HK and Ett-T, described in Chapter 4, do not men-
tion nor describe a forest data structure, which is the container for the trees
managed by operations link and cut. In order to avoid collisions with op-
erations names, we shall call the above operations as linkTree and cutTree
respectively.

In this chapter we extend FunEtt in order to manage link and cut
operations over a forest structure, specifically two new alternatives are de-
fined. We present Full dynamic trees in Section 5.1, a Ft with all of its
monoidal annotations storing sets. Then, in Section 5.2 we adjust the original
Ft data structure, devised by Hinze and Paterson in [8] in order to reduce
the allocation of monoidal annotations in the spine of the Ft. We call this
structure Top dynamic trees. Additionally, we conclude with a comparison
between Full and Top dynamic trees. We describe the main functions and
data types for both data structures leaving the helper functions and smart
constructors accessible at [50].

5.1 Full dynamic trees
We present a data structure for dealing with the case when for every monoidal
annotation in a Ft we store a set in the form of a binary search tree (BST),
specifically the one described in Section 3.3. Commencing with the data types
in Section 5.1.1 we describe the monoidal annotation, leaves, trees and forest
data structures. Then, we move towards the operations over the above data
types in Section 5.1.2, in particular, connected, cut and link altogether

85

their runtime bounds. Thirdly, we present the results of the experimental
analysis carried out on Full dynamic trees in Section 5.1.3.

5.1.1 Full dynamic trees data types

Edges and vertices can be managed under the same BST data structure for
the linearisation case of dynamic trees, as implicitly stated in both Ett-
HK and Ett-T specifications. However, we devise the storage of edges and
vertices separately, that is, one BST for edges and one BST for vertices.
Furthermore, we split the BST for vertices when such values are integers.
data MultiSet a = MultiSet {getEvens :: S.Set a,

getOdds :: S.Set a,
getEdges :: S.Set (a,a)}

Recall that type Set is imported from Data.Set and prefixed here with S.
in order to avoid conflicts with namespaces between Data.FingerTree and
Data.Set. Although splitting the monoidal annotation into three differents
BSTs does not reduce the complexity stated in Table 3.1, we are actually
cutting the height of the S.Sets by a factor of n. From the total number of
pairs, 3n−2, representing the Ett sequence, n is the number of vertices which
is cut even further by isolating the vertices into odds and evens, provided the
type for S.Set is Int, otherwise we define just one S.Set for vertices.

We define the type of the Ft leaves as follows,
newtype MSet a = MSet (a,a)

and the tree as
type TreeMSet a = FingerTree (MultiSet a) (MSet a)

where FingerTree is the data type defined at Data.FingerTree and previ-
ously explained in Section 3.6. Finally, our forest data type is another Ft
having trees of type TreeMSet a as leaves and augmented with two integers,
NumNodes and ForestSize. These numeric values are useful when asking
whether the forest is one-tree forest (i.e. no more edges can be added) or is
a unit forest (i.e. no edges at all).
data ForestMSet a =

ForestMSet NumNodes ForestSize (FingerTree (MultiSet a)(TreeMSet a))

Reduction of the size of the sets in Full data structure is possible by
relaxing the uniqueness of the edges in the leaves of Ft. We store the edge
{v, w} from the input tree as (min v w, max v w) in the Full trees and

86

forests, one per traversal. As an example, Figure 5.1 highlights in thick
borders the two (repeated) edges in Ett .

Figure 5.1: Full Ft with repeated edges identified with thicker border for
data on the leaves and underlined and coloured for edges on sets

Recall that the total number of edges is 2n− 2 out of 3n− 2 total pairs
in the Ett. Since we are about to store just n, half of number of edges, we
are reducing the current total number of pairs for up to 1/3 in the Full Ft.

Figure 5.2 illustrates the reduction of edges in comparison to the example
in Figure 5.1. Notice, however, that the size of the Ett sequence remains as
3n− 2.

Figure 5.2: Full Ft with repeated edges not longer stored in the correspond-
ing sets, however, they remain in the Ett sequence

In order to define the monoidal annotation information of a Full dynamic
tree, the following Measurement instance is stated.
instance (Integral a, Ord a) ⇒ Measured (MultiSet a) (MSet a) where

87

measure (MSet p) = whichSet p

whichSet p@(x,y)
| x==y && even x = MultiSet (S.insert x S.empty) S.empty S.empty
| x==y && odd x = MultiSet S.empty (S.insert x S.empty) S.empty
| otherwise = MultiSet S.empty S.empty (S.insert p S.empty)

That is, given a pair p (i.e. a vertex or an edge) wrapped in the leaf data con-
structor MSet, function whichSet returns the corresponding initial monoidal
annotation which is then lifted up within Ft by the <> operator. Notice that
type argument a of the leaf MSet is constrained to be numeric by type class
Integral.

5.1.2 Full dynamic trees operations

The root of a tree, rootMSet, receives a Ft as input and returns its left-most
vertex (i.e. the first element in the pair) from such a Ft. In case an empty
tree is passed by, Nothing is return.
rootMSet :: Integral a ⇒ TreeMSet a → Maybe a
rootMSet tree = case viewl tree of

EmptyL → Nothing
MSet x :< _ → Just (fst x)

Since viewl is the same as the one stated in Section 4.3.3, its runtime is
Ω(log n) ≤ Θ(rootMSet) ≤ O(n) where n is the total number of vertices
of the tree where viewl takes place. Notice that rootMSet is defined to be
applied to trees only.

Auxiliary functions searchMSet and nodeInMSet test whether a vertex
is in a given Full forest. The former relies on the monoidal annotation
allocated at the top of the spine of the Ft provided.
searchMSet :: (Integral a, Measured (MultiSet a) b) ⇒

(a,a) → FingerTree (MultiSet a) b → SearchResult (MultiSet a) b
searchMSet p@(x,y) ftree
| x==y && even x = let predicate setx _
= (S.member x) (getEvens setx) in search predicate ftree
| x==y && odd x = let predicate setx _
= (S.member x) (getOdds setx) in search predicate ftree
| otherwise = let predicate setx _
= (S.member p) (getEdges setx) in search predicate ftree

Function search within searchMSet is the same function described in Sec-
tion 3.6.7. Therefore, performance for searchMSet is Ω(log2 n) ≤ Θ(

88

searchMSet) ≤ O(n log n) where n is the total number of vertices of the
forest where searchMSet takes place.

Result of the following function nodeInMSet is either Nothing (i.e. vertex
not in the forest) or the pair (tree, root of the tree).
nodeInMSet :: Integral a ⇒ a → ForestMSet a → Maybe (TreeMSet a, a)
nodeInMSet v (ForestMSet _ _ ft) =

case (searchMSet (v,v) ft) of
Position _ tree _ →

case (rootMSet tree) of
Nothing → Nothing -- empty tree, no root
Just rootT → Just (tree, rootT)

_ → Nothing -- vertex v not in forest

Taking into account both searchMSet and rootMSet runtimes described
above, we get that Ω(log2 n) ≤ Θ(nodeInMSet) ≤ O(n log n) where n
is the total number of vertices of the forest where nodeInMSet is applied to.

connected operation in Full dynamic trees

Testing connectivity in Full dynamic trees is via operation connectedMSet,
taking two vertices and a forest and returning the pair comprising a boolean
and the trees altogether their roots. Connectivity is not simply looking for
the edge comprising the vertices but for the vertices living under the same
tree, that said, we compare the roots of the trees for the input vertices being
tested.
connectedMSet :: Integral a ⇒ a → a → ForestMSet a

→ (Bool, Maybe (TreeMSet a, a, TreeMSet a, a))
connectedMSet x y f =

case (nodeInMSet x f, nodeInMSet y f) of
(Nothing , _) → (False, Nothing)
(_ , Nothing) → (False, Nothing)
(Just (tx,rx) , Just (ty,ry)) →
if rx == ry then (True, Just(tx,rx,tx,rx))

else (False, Just(tx,rx,ty,ry))

Following performance from nodeInMSet, we have that connectedMSet lower
and upper bounds are Ω(log2 n) and O(n log n) respectively, where n is the
total number of vertices in the forest where connectedMSet is applied to.

89

Figure 5.3: Input forest example with four input trees

A connected example

Let forest be the collection of t1, t7, t8 and t9 input trees, depicted in
Figure 5.3. Following is the forest monoidal annotation.
MultiSet { getEvens = fromList [2,4,6,8]

, getOdds = fromList [1,3,5,7,9]
, getEdges = fromList [(1,2),(1,3),(1,4),(2,1),(3,1),(3,6)

,(3,8),(4,1),(5,6),(6,3),(6,5),(6,7)
,(7,6),(8,3),(8,9),(9,8)] }

Let vertex 7 be searched via function nodeInMSet.
2. nodeInMSet 7 (ForestMSet _ _ forest) =
3. case (searchMSet (7,7) forest) of
4. Position _ tree _ →
5. case (rootMSet tree) of
6. Nothing → Nothing
7. Just rootT → Just (tree, rootT)
8. _ → Nothing

We assume function searchMSet as correct as it relies on function search
from [8]. Since 7 is a member of forest monoidal annotation, line (7) above
matches the case analysis and that returns the pair (tree, rootT), which
for the case of vertex 7 is (t7,7). For testing connectivity, we try vertices 7
and 8 within forest.
2. connectedMSet 7 8 forest =
3. case (nodeInMSet 7 forest, nodeInMSet 8 forest) of
4. (Nothing , _) → (False, Nothing)
5. (_ , Nothing) → (False, Nothing)
6. (Just (t7,7) , Just (t8,8)) →
7. if 7 == 8 then (True, Just(tx,rx,tx,rx))
8. else (False, Just(t7,7,t8,8))

After both nodeInMSet functions are evaluated (line 2 above), the pair
Just (t7,7), Just (t8,8)) matches the case analysis. Since roots 7 and

90

8 are different, connectedMSet returns the pair (False, Just(t7,7,t8,8).
Assume now we are testing connectivity for vertices 2 and 4. All of the
above is satisfied except the last bit where connectedMSet returns the pair
(True, Just(t1,1,t1,1).

link operation in Full dynamic trees

Update dynamic operations for Full are described through link and cut.
When any of the latter operations fail, we return the forest provided as input,
otherwise a new version of the previous forest is returned.
link :: Integral a ⇒ a → a → ForestMSet a → ForestMSet a
link x y forest@(ForestMSet nnodes size ft) =

case connectedMSet x y forest of
(False, Just(tx,rx,ty,ry)) → linkAll (linkTreeMSet x tx y ty)
_ → forest -- x and y are currently connected in forest

where
linkAll tree = ForestMSet nnodes (size + 1) (tree / (lforest ./ rforest))
Position lforest’ _ rforest’

= searchMSet (x,x) ft -- tx is left behind
Position lforest _ rforest

= searchMSet (y,y) (lforest’ ./ rforest’) --ty is left behind

A new tree (tree) is built from linkTreeMSet with input trees (tx and ty)
provided by connectedMSet once this function tested positive for x and y
being connected at forest. The new forest is built via function linkAll
which has left behind trees tx and ty. New tree is inserted with / to the new
subforest (lforest ./ rforest). Finally, the size of the forest is updated
when (size + 1).
Unless the above forest is one-tree forest, runtime complexity for link is de-
termined by local and global monoidal annotations. That is, linkTreeMSet
runs in Θ(m log n log n

m
) where m and n are the sizes of the sets evaluated on

tx and ty trees, whereas the sets evaluated in connectedMSet, searchMSet,
/, and ./ are regarded to the entire forest. Now, since link has a con-
stant number of operations, the runtime for link is Ω(log2 n) ≤ Θ(link
) ≤ O(n log n), where n is the total amount of nodes in the forest, not at the
trees when applying linkTreeMSet.

A link example

Let forest be the collection of t1, t7, t8 and t9 input trees, depicted in
Figure 5.3. Assume we try to link 2 4 in forest.

91

Figure 5.4: Full link applied to vertices 8 and 7 and input forest from
Figure 5.3.

2. link 2 4 forest@(ForestMSet nnodes size ft) =
3. case connectedMSet 2 4 forest of
4. (False, Just(tx,rx,ty,ry)) → linkAll (linkTreeMSet x tx y ty)
5. _ → forest

Case analysis, in line 5, returns _, which is the lazy-evaluated form for
(True, Just(t1,1,t1,1)). It is not necessary to express such a form com-
pletely as the link is failed due both vertices coexist under the same tree.
Now, we try link 8 7 in forest.
2. link 8 7 forest@(ForestMSet nnodes size ft) =
3. case connectedMSet 8 7 forest of
4. (False, Just(t8,8,t7,7)) → linkAll (linkTreeMSet 8 t8 7 t8)

Since vertices 7 and 8 are members of different trees, line 4 in snippet above
matches the case analysis and linkAll function is called after performing
linkTreeMSet. We showed up in Section 4.3.3 that linkTree returns a valid
finger tree, called here tree, provided input trees and vertices are also valid.
Then, linkAll assembles the output for link as follows.
7. linkAll tree = ForestMSet nnodes (size + 1) (tree / (lforest ./ rforest))

By using searchMSet, t7 and t8 are discarded from forest yielding lforest
to be t9 and rforest to be t1. Finally, a new version of forest is built (line
7) preserving the same number of nodes (recall those are fixed), incrementing
its size by one and pushing tree (i.e. linked t8 and t7) into the merged t9
and t1. The overall process is illustrated in Figure 5.4.

cut operation in Full dynamic trees

When deleting an edge from a forest, there is no need for the edge to be tested
by connectedMSet, instead, we define edgeInMSet as the helper function for

92

cut.
edgeInMSet edge (ForestMSet _ _ ft) =

case (searchEdgeMSet edge ft) of
Position left tree right → Just (tree,left,right)
_ → Nothing -- edge not in forest

Similar to nodeInMSet, bounds for edgeInMSet is Ω(log2 n) ≤ Θ(edgeInMSet
) ≤ O(n log n), where n is the total amount of nodes in the forest.
Alike link, a failed computation for cut returns the input (intact) forest,
otherwise a new forest with size decreased by one is returned as the result.
cutMSet :: Integral a ⇒ a → a → ForestMSet a → ForestMSet a
cutMSet x y forest@(ForestMSet nnodes size ft) =

case edgeInMSet (x,y) forest of
Nothing → forest -- edge not in forest
Just (tree,ltFor,rtFor)

→ buildForest (cutTreeMSet x y tree) ltFor rtFor
where

buildForest (leftTree,rightTree) lFor rFor
= ForestMSet nnodes (size - 1)

(leftTree / rightTree / (lFor ./ rFor))

After the tree is found by edgeInMSet, provided the vertices x and y, a
pair of subforests (lFor,rFor) are also returned, in particular the ones not
containing tree. Then, cutTreeMSet splits tree into two trees (leftTree,
rightTree) after deleting edge (x,y). The new forest to return by cut is
built up by inserting the trees leftTree and rightTree into the merged
subforests (lFor ./ rFor).
Performance for cut is calculated under the same context of link, that is,
local and global monoidal annotations. That said, we have Ω(log2 n) ≤ Θ(
cut) ≤ O(n log n), where n is the total amount of nodes in the forest.

A cut example

Let forest be the collection of t1, t7 and t9 input trees, depicted in
Figure 5.4. Assume we try to cut 2 4 in forest. Although there is a
path between vertices 2 and 4, there is not an edge between them. So,
cut 2 4 forest returns forest (same as input) as cut is unsuccessful. This
is shown below.
2. cutMSet 2 4 forest@(ForestMSet nnodes size ft) =
3. case edgeInMSet (2,4) forest of
4. Nothing → forest

93

Figure 5.5: Full cut applied to vertices 7 and 6 and input forest from
Figure 5.4.

We assume search correct by [8], then edgeInMSet evaluates to Nothing
in the case analysis above. Now, applying cut 7 6 into the forest from
Figure 5.4, we have the following snippet.
2. cutMSet 7 6 forest@(ForestMSet nnodes size ft) =
3. case edgeInMSet (7,6) forest of
4. Nothing → forest
5. Just (t7,ltFor,rtFor)
6. → buildForest (cutTreeMSet 7 6 t7) ltFor rtFor
7. where
8. buildForest (leftTree,rightTree) lFor rFor
9. = ForestMSet nnodes (size - 1)
10. (leftTree / rightTree / (lFor ./ rFor))

Just (t7,ltFor,rtFor) matches edgeInMSet case analysis in lines 3 and
5 above. ltFor and rtFor are the resulting subforests after the search for
edge (7,6) (and its mirrored (6,7)) within edgeInMSet. As we showed up
in Section 4.3.3, calling (cutTreeMSet 7 6 t7), line 6) returns a valid pairs
of trees as long as the vertices and forest provided are also valid. The valid
pairs of trees in this example are leftTree and rightTree. Finally, the
two trees and two sub forests are assembled, in line 10, as a new version of
forest, pictured in Figure 5.5, altogether with the same number of nodes as
before and decreasing its forest size by one.

Summary of Full operations performance

Based in the previous analyses per Full dynamic tree operations and from
the performance stated at Table 4.2, we have in Table 5.1 the summary of
bounds per operation, worst case (non amortised).

94

Operation best case worst case context
root Ω(log n) O(n) trees
connected Ω(log2 n) O(n log n) forest
cut Ω(log2 n) O(n log n) forest
link Ω(log2 n) O(n log n) forest

Table 5.1: Performance of the Full dynamic tree operations, where n is the
number of nodes in the Full forest.

5.1.3 Experimental analysis of Full dynamic trees

Our aim is to benchmark Full dynamic trees described in this chapter,
Section 5.1, when implemented in Haskell for the construction of a forest, its
updates and its queries. We initially describe the experimental setup followed
by the description for each benchmark operation.

Experimental Setup

All benchmarks were performed on a dedicated machine on a 2.2 GHz Intel
Core i7 MacBook Pro with 16 GB 1600 MHz DDR3 running macOS High
Sierra version 10.13.1 (17B1003). We imported the following libraries into
our code from the online package repository Hackage: Data.FingerTree [48],
code for finger trees, and Data.Set [45] for conventional sets. We used the R
programming environment [51] for plotting. The time consumed per function
was taken from the machine internal clock via Data.Time.Clock library [52].

The tree structure, forest structure, update and query operations upon
the structures were implemented by the author in Haskell and compiled with
ghc version 8.0.1 with optimisation -O2. Full source code and all graphs with
the numerical data are available on the author’s repository in GitHub [50].

The running time of a given computation was determined by the mean
and the median of thirty executions. In figs. 5.6 to 5.8 we show a sample of
plottings for different input data (initial, intermediate and final). The size
of input data is displayed on the x axis. The input elements, pairs of edges
and vertices, are of type Int, that is, (Int,Int) where only positive values
evaluated. For all implementations of data types we have seen, types are
polymorphic which must be an instance of Ord, and some of the operations
constrained to Measured.

95

0 5 10 15 20 25 30

0.
00
02
0

0.
00
03
0

0.
00
04
0

Performance of link over unit Top forests, 11 nodes

ru
nt

im
e

(s
ec

on
ds

)

 nth run

mean
median

Figure 5.6: Sample of plotting for an initial running

0 5 10 15 20 25 30

2.
40

2.
41

2.
42

2.
43

2.
44

Performance of link over unit Top forests, 1511 nodes

ru
nt

im
e

(s
ec

on
ds

)

 nth run

mean
median

Figure 5.7: Sample of plotting for an intermediate running

96

0 5 10 15 20 25 30

10
.4
5

10
.5
0

10
.5
5

10
.6
0

10
.6
5

Performance of link over unit Top forests, 3011 nodes

ru
nt

im
e

(s
ec

on
ds

)

 nth run

mean
median

Figure 5.8: Sample of plotting for a final running

In order to distinguish the results between the plottings from the means
to those from the medians we shall show the sampling for means every 10
points and every 100 points for medians. We tried ascending order to fully
test the data structure behaviour. The minimum plotting point is 11 and
the maximum is 3011. All query and update dynamic operations in one
way or another use auxiliary functions such as random lists of pairs. In
all cases, these auxiliary functions are left out from the performance. The
interested reader can find the source code for those auxiliary functions in
module RndDynTs in [50].

Finally, in order to make a forest data structure available for the dynamic
operations we focus our implementations to be strict evaluated. That is,
when asking for connectivity or performing either link or cut, the host
forest is fully evaluated and not just partially. The main reason for that
is that both cut and link call edgeIn and connected respectively. So, if
laziness is the expression evaluator, an update operation needs to wait for
the look up to assembly all the sets in the forest and then find (or not) the
pair in matter. This, adds an unwanted cost to the update operation.

Full forests construction

All query and update dynamic operations rely on a Full forest created in
advanced. In this section we shall show the performance when building Full

97

forests under different tree sizes, especifically, for unit, 2-node, 10-node and
300-node forests.

unit forest construction

Since a unit forest contains only singleton trees, we practically insert
Single (x,x) trees straightforward into an Empty Full forest. The fol-
lowing snippet is illustrative only, details can be found in RndDynTs.
forest = foldr (/) emptyForestMSet (map (λx→Single (MSet(x,x))) nodes)

where nodes is a list of random pair values. Generation of nodes is not taken
in the performance for Full forest creation.

The performance for unit Full forest creation is shown in figs. 5.9 and 5.10.

0 500 1000 1500 2000 2500 3000

0
5

10
15

20

Performance of Creating (Unit) Full Forests

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

number of nodes (sampling every 10 means)

Figure 5.9: Performance of unit Full forest measured by means

98

0 500 1000 1500 2000 2500 3000

0
5

10
15

20
Performance of Creating (Unit) Full Forests

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

number of nodes (sampling every 100 medians)

Figure 5.10: Performance of unit Full forest measured by medians

Experimental results of unit forest construction

At each point in the curve, every 10 for Figure 5.9 and every 100 for Fig-
ure 5.10, a Full forest is created from Empty. The runtime cost is due the /
operator, then result is in between Ω(log n) and O(n) per point as expected,
where n is the number of vertices in the forest. An excerpt of tabular values
for Figure 5.10 is presented in Table 5.2.

number unit runtime
of nodes in milliseconds

11 0.012
111 0.148
211 0.391
.

2,811 17.531
2,911 18.059
3,011 18.216

Table 5.2: An excerpt of tabular values for Figure 5.10.

99

2-node forest construction

Similar to the unit forest, the 2-node forest is constructed by just two in-
sertion into and empty tree and then into an empty forest. Performance for
2-node Full forest creation is shown in figs. 5.11 and 5.12.

0 500 1000 1500 2000 2500 3000

0
5

10
15

20
25

30
35

Performance of Creating (2-node) Full Forests

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

number of nodes (sampling every 10 means)

Figure 5.11: Performance of 2-node Full forest measured by means

100

0 500 1000 1500 2000 2500 3000

0
5

10
15

20
25

30
35

Performance of Creating (2-node) Full Forests

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

number of nodes (sampling every 100 medians)

Figure 5.12: Performance of 2-node Full forest measured by medians

Experimental results of 2-node forest construction

Performing the insertion of 2-node trees into Full forests involves two times
the / operator, leading to almost twice of the running time with respect to
its counterpart unit Full forests. That is, at 3011 nodes, running time for
unit is (18.382 milliseconds) vs (33.797 milliseconds) for 2-node. Performance
for this construction of Full forests is at least Ω(log n) and at most O(n),
where n is the number of nodes in the Full forest. An excerpt of tabular
values for Figure 5.12 is shown in Table 5.3.

101

number 2-node runtime
of nodes in milliseconds

11 0.068
111 0.626
211 1.213
.

2,811 30.747
2,911 32.139
3,011 33.621

Table 5.3: An excerpt of tabular values for Figure 5.12.

10-node and 300-node forest construction

The factor of constant growth in 10-node and 300-node Full forests with
respect to unit and 2-node is not necessarily proportional. That is, having 10
and 300 / operations per tree respectively, does not increment the growth to
30 times the former w.r.t. the latter. This is because the larger the trees the
less tree-inhabitants per forest, therefore the height of the forest decreases
and the number of monoidal annotations in its affixes also reduces. We can
see the performance in figs. 5.13 to 5.16.

102

0 500 1000 1500 2000 2500 3000

0
20

40
60

80
Performance of Creating (10-node) Full Forests

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

number of nodes (sampling every 10 means)

Figure 5.13: Performance of 10-node Full forest measured by means

0 500 1000 1500 2000 2500 3000

0
20

40
60

80

Performance of Creating (10-node) Full Forests

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

number of nodes (sampling every 100 medians)

Figure 5.14: Performance of 10-node Full forest measured by medians

103

0 500 1000 1500 2000 2500 3000

20
0

40
0

60
0

80
0

Performance of Creating (300-node) Full Forests

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

number of nodes (sampling every 10 means)

Figure 5.15: Performance of 300-node Full forest measured by means

0 500 1000 1500 2000 2500 3000

20
0

40
0

60
0

80
0

Performance of Creating (300-node) Full Forests

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

number of nodes (sampling every 100 medians)

Figure 5.16: Performance of 300-node Full forest measured by medians

104

Experimental results of 10-node and 300-node Full forest con-
struction

The runtime at 3011 nodes between 10-node (figs. 5.13 and 5.14) and 300-
node (figs. 5.15 and 5.16) forests is not around 30 times as expected (79.405
milliseconds vs 843.699 milliseconds). Recall that a Full forest is a finger
tree having finger trees (i.e. Full trees) at its leaves. Then, constructing
a Full forest out of 3011 nodes yields to a space to allocate 11 300-node
trees (10 trees of 300 nodes each plus 1 tree of 11 nodes) or 302 10-node
trees (301 trees of 10 nodes each plus 1 tree of 1 node). In one hand, the /
operation is executed more times in constructing a 300-node forest than in
a 10-node forest. On the other hand, the 300-node forest has smaller height
w.r.t. the 10-node forest and less amount of monoidal annotations in its
affixes. Performance for both Full forest constructions is at least Ω(log n)
and at most O(n), n being the number of nodes in the Full forest, with a
constant factor above 10 between 10-node and 300-node Full forests. The
bumpy (outliers) behaviour of the curve in figs. 5.13 and 5.15 is explained
in the next section as it is more evident. An excerpt of tabular values for
figs. 5.14 and 5.16 is shown in Table 5.4.

number 10-node runtime 300-node runtime
of nodes in milliseconds in milliseconds

11 0.250 NA
111 2.343 NA
211 4.520 NA
311 6.776 84.895
411 8.981 91.979
511 11.608 125.420
.

2,811 73.647 780.995
2,911 76.194 809.462
3,011 79.092 849.095

Table 5.4: An excerpt of tabular values for figs. 5.14 and 5.16.

Full forests construction, a summary

In Figure 5.17 we present all the above Full forests construction perfor-
mances in a single chart so it can be visualised their differences.

105

0 500 1000 1500 2000 2500 3000

0
20
0

40
0

60
0

80
0

Performance of Creating Full Forests

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

number of nodes (sampling every 100 medians)

300-node
10-node
2-node
unit

Figure 5.17: Performance of 300-node, 10-node, 2-node, and unit Full forests
construction, measured by medians.

Experimental results of the Full forests construction

By putting all Full forests construction performances together in the same
chart, we can appreciate their growth differences. unit forest being the fastest
and 300-node forest the slowest. This is expected as the more insertions (/)
per forest the more time consuming. Nevertheless there is a significant gap
between the slowest and fastest performances, the runtime growth for each
Full forest construction remains within the lower bound of Ω(log n) and the
upper bound of O(n), where n is the number of nodes in the Full forest.
An excerpt of tabular values for Figure 5.17 is shown in Table 5.5.

106

number unit runtime 2-node runtime 10-node runtime 300-node runtime
of nodes in milliseconds in milliseconds in milliseconds in milliseconds

11 0.012 0.068 0.250 NA
111 0.148 0.626 2.343 NA
211 0.391 1.213 4.520 NA
311 0.651 1.857 6.776 84.895
411 0.876 2.427 8.981 91.979
511 1.155 3.228 11.608 125.420
.

2,811 17.531 30.747 73.647 780.995
2,911 18.059 32.139 76.194 809.462
3,011 18.216 33.621 79.092 849.095

Table 5.5: An excerpt of tabular values for Figure 5.17.

connectivity in Full forests

In order to benchmark connectivity, we not simply look for the edge being
in a specific Full forest but to apply the function connectedMSet to such a
forest. In this way, we are considering the following:

• Vertices x and y belong to the Full forest, by performing nodeInMSet.

• Roots of the trees for vertices x and y are equal, therefore there is
connectivity or

• Roots of the trees for vertices x and y are different, therefore there is
no path between x and y.

We run connectedMSet over five different Full forests,

1. 10-node forest under 500 runs,

2. 10-node forest under 1,000 runs,

3. 300-node forest under 300 runs,

4. 300-node forest under 500 runs, and

5. 300-node forest under 1,000 runs

107

Figure 5.18: Performance of connectedMSet over a 10-node Full forest,
measured by means.

connectivity in 10-node Full forests

We commence with connectedMSet ==False test for a 10-node forest after
a thousand runs, showing its performance in Figure 5.18.

Experimental results of connectivity in 10-node Full forests

We approach the runtime bounds when applying connectedMSet to a Full
forest. So, given the following from Section 5.1.2, Ω(log2n) ≤ Θ(connectMSet
) ≤ O(n log n), where n is the number of nodes in the forest, the curve in Fig-
ure 5.18 is traced within the lower and upper bounds, being 1.131 milliseconds
for its performance at 11 nodes and 857.321 milliseconds the performance at
3011 nodes.

Outliers

Recall that function measure described in (3.5) and (3.6), in Chapter 3, ap-
plies the O(<>) at runtime (on-demand), that is, the set union is applied only
at the Digit data constructors as the monoidal annotations for the Node data

108

constructor were calculated when inserting (/ and .) and when appending
(./). Similarly, the monoidal annotations at the spine are calculated also in
advanced.
In order to determine the reasons for which performance of connectedMSet
has outliers, we show the affixes of the finger tree behind Full forest. Then,
for every Digit data constructor we have a different number of set-unions to
be calculated. So, for One there is no set union computation, for Two there is
just one computation, for Three there are two computations and finally for
Four there are three computations.

Then, in Table 5.6 we show the most notorious cases before, on and af-
ter when the outliers occur and referring them to the number of set union
computations in the affixes. For practicality, we represent with Roman nu-
meral the Digit data constructor, as I for One, II for Two an so on. The
following acronyms are used in such a table: nnodes stands for “number of
nodes (x-axis)”, and nops stands for “number of set union operations in the
affixes”.

row nnodes runtime 4 forest nops: prefix
1 631 180.268 0.678 [III,IV,IV],Empty,[I,I,I] 2+3+3 = 8
2 641 188.810 8.542 [IV,IV,IV],Empty,[I,I,I] 3+3+3 = 9
3 651 141.160 -47.650 [II,II,II],Single,[I,I,I] 1+1+1 = 3
4 661 147.557 6.397 [III,II,II],Single,[I,I,I] 2+1+1 = 4
5 671 156.129 8.571 [IV,II,II],Single,[I,I,I] 3+1+1 = 5
6 1981 653.749 8.775 [III,IV,IV,IV],Empty,[I,I,I,I] 2+3+3+3 = 11
7 1991 672.368 18.618 [IV,IV,IV,IV],Empty,[I,I,I,I] 3+3+3+3 = 12
8 2001 489.392 -182.975 [II,II,II,II],Single,[I,I,I,I] 1+1+1+1 = 4
9 2011 503.759 14.366 [III,II,II,II],Single,[I,I,I,I] 2+1+1+1 = 5
10 2021 506.374 2.615 [IV,II,II,II],Single,[I,I,I,I] 3+1+1+1 = 6
11 2791 864.816 8.924 [III,IV,IV,IV],Single,[I,I,I,I] 2+3+3+3 = 11
12 2801 877.551 47.633 [IV,IV,IV,IV],Single,[I,I,I,I] 3+3+3+3 = 12
13 2811 674.967 -202.583 [II,II,II,II,I],Empty,[I,I,I,I,I] 1+1+1+1+0 = 4
14 2821 722.600 12.734 [III,II,II,II,I],Empty,[I,I,I,I,I] 2+1+1+1+0 = 5
15 2831 731.525 25.534 [IV,II,II,II,I],Empty,[I,I,I,I,I] 3+1+1+1+0 = 6

Table 5.6: Amount of monoidal annotations in a Full dynamic tree via its
affixes

Column forest from Table 5.6 indicates the affixes at height i of the forest
in matter in the format [p0, p1, . . .], bt, [s0, s1, . . .], where pi is the prefix at
height i, si is the suffix at height i, bt is the bottom of the spine (Empty
or Single) and i ∈ {0, 1, 2, . . .}. So, in row 1 we have [Three,Four,Four],
Empty, [One,One,One]. Following the differences, 4, between runtimes from
Table 5.6 we notice that the negative values match the outliers in the curve
from Figure 5.18. Furthermore, the larger the number of nodes the higher

109

the bump in such a curve. This is because the size of the sets at deeper height
in the finger tree behind the Full forest is larger, yielding to set union to
process larger sets. So, the number of monoidal annotations for the prefix
(3.8, taking away the suffix and the spine) is

h∑
i=1

(
4

i∑
j=1

(2× 3j−1)

)

Let use take for instance rows 12 and 13 from Table 5.6: just at height 3,
row 12 contains 108 set union operations whereas at the same height, row 13
has 36 set union operations.

Now, in Figure 5.19 we present the performances of the 10-node Full
forests for both 500 and 1,000 runs when sampling is 100 medians.

0 500 1000 1500 2000 2500 3000

0
20
0

40
0

60
0

80
0

Performance of Connectivity on (10-node) Full Forests

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

number of nodes (sampling every 100 medians)

10-node,1000 runs,conn=True
10-node,1000 runs,conn=False
10-node, 500 runs,conn=True
10-node, 500 runs,conn=False

Figure 5.19: Performance of connectedMSet over a 10-node Full forest,
multiple runs.

Regarding the 300-node Full forests, we present in Figure 5.20 the case
when connectedMSet ==False and the function is executed 1,000 times,
every execution with a different (random) pair of nodes.

110

0 500 1000 1500 2000 2500 3000

0
10
0

20
0

30
0

40
0

Performance of Connectivity on (300-node) Full Forests, 1000 runs, conn=False

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

number of nodes (sampling every 10 means)

Figure 5.20: Performance of connectedMSet over a 300-node Full forest.

Experimental results of testing connectivity in a 300-node Full
forest

We follow the outliers analysis from Figure 5.18. This time, the stairs be-
haviour of the curve in Figure 5.20 is due to the application of connectedMSet
to an apparently repeated tree within the Full forest. That is, every step
shape in the curve is comprised with practically the same tree as is has 300
nodes. So, for instance, the first step in the curve (nodes 301 upto 601) has a
singleton 300-node tree. Then, the second step has two 300-node trees, and
so forth. Table 5.7 show the “first” outlier, between nodes 1491 and 1501.

row nnodes runtime 4 forest nops: prefix
1 1481 166.530 2.1390 [IV],Empty,[I] 3
2 1491 165.958 -0.571 [IV],Empty,[I] 3
3 1501 127.873 -38.085 [I,I],Empty,[I,I] 0
4 1511 131.063 3.190 [I,I],Empty,[I,I] 0
5 1521 127.134 -3.929 [I,I],Empty,[I,I] 0

Table 5.7: Amount of monoidal annotations in a Full dynamic tree via its
affixes for a Full forest.

111

The negative value of 4 in row 3 from Table 5.7 indicates the outlier
between number of nodes (x-axis) 1491 and 1501. The other negative values
(rows 2 and 5) are off the computation of connectedMSet. Figure 5.21 shows
the outlier and the other negative 4s.

1480 1490 1500 1510 1520

13
0

14
0

15
0

16
0

Performance of case analysis for outliers in Connectivity 300-node Full forest

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

number of nodes (sampling every 10 means)

Figure 5.21: Performance of connectedMSet over a 300-node Full forest,
showing one of the outliers.

Finally, in Figure 5.22 the performance for 10-node and 300-nodes Full
forest testing connectivity is shown.

112

0 500 1000 1500 2000 2500 3000

0
20
0

40
0

60
0

80
0

Performance of Connectivity on Full Forests

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

number of nodes (sampling every 100 medians)

10-node,1000 runs,conn=True
10-node,1000 runs,conn=False
10-node, 500 runs,conn=True
10-node, 500 runs,conn=False
300-node,1000 runs,conn=False
300-node,1000 runs,conn=True
300-node, 500 runs,conn=False
300-node, 500 runs,conn=True
300-node, 300 runs,conn=False
300-node, 300 runs,conn=True

Figure 5.22: Performance of connectedMSet over a 10-node and 300-node
Full forest, for different number of runs per forest.

Experimental results of connectivity between 10-nod and 300-node
Full forests

Figure 5.22 shows the gaps between the different n-node Full forests when
testing connectivity. 300-node forests outperform 10-node forests when run-
ning connectedMSet. Such a difference relies on the number of monoidal
annotations performed by the <> operation, that is, a 10-node forest has
more trees in its leaves than a 300-node forest. Having more leaves per forest
implies having more monoidal annotations through the data structure, as the
height is larger. However, for all the cases plotted, performance lies within
the bounds that of connectedMSet, which are Ω(log2 n) the lower bound and
O(n log n) the upper one, where n is the number of nodes in the forest.

An excerpt of tabular values for Figure 5.22 is shown in Table 5.8 where
acronyms 10-n stands for 10-node, 300-n stands for 300-nodes. The integer
next each acronym is the number of runs.

113

num. 10-n 500 10-n 1K 300-n 300 300-n 500 300-n 1K
nodes millisec. millisec. millisec. millisec. millisec.

11 0.655 1.287 NA NA NA
111 7.185 14.536 NA NA NA
211 19.472 36.600 NA NA NA
311 32.345 62.802 0.499 0.81 1.533
411 46.450 89.199 0.460 0.712 1.454
511 65.059 127.219 0.472 0.757 1.522
.

2,811 351.718 690.024 100.168 167.822 333.293
2,911 395.071 796.342 104.855 170.994 341.553
3,011 416.171 845.860 120.629 201.683 407.499

Table 5.8: An excerpt of tabular values for Figure 5.22.

linking trees in Full forests

For this experiment, we apply only link operations over a Full forest until
the maximum number of edges in the forest is reached, that is, from unit to
one-tree forests, from 2-node to one-tree forests, from 10-node to one-tree
forests and from 300-node to one-tree forests.

For all of the cases, the input vertices to the link operation are provided
by a random list which is not taken into account in the performance. Such a
list is defined with the aim that for every pair in the list, the corresponding
link is successful. So, consuming the list of pairs implies that the initial
Full forest becomes a Full one-tree forest.

In figs. 5.23 and 5.24 the above process is shown.

114

0 500 1000 1500 2000 2500 3000

0
20
00

60
00

10
00
0

Performance of Linking Full Forests

number of nodes (sampling every 10 means)

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

unit
2-node
10-node
300-node

Figure 5.23: Performance of link operation over a unit, 2-node, 10-node and
300-node Full forests, sampling every 10 means.

115

0 500 1000 1500 2000 2500 3000

0
20
00

60
00

10
00
0

Performance of Linking Full Forests

number of nodes (sampling every 100 medians)

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

unit
2-node
10-node
300-node

Figure 5.24: Performance of link operation over a unit, 2-node, 10-node and
300-node Full forests, sampling every 100 medians.

Experimental analysis for Full link

Plottings from figs. 5.23 and 5.24 when link is applied over Full forests
outputs different performances as shown below. Since every forest is set to
reach the maximum number or pairs in the Ett, the maximum number of
monoidal annotations is also reached, then the bound for link is O(n log n).
Then, for every point plotted, n nodes are computed, hence the total per-
formance in each curve is O(n× n(log n)) = O(n2 log n). However, there are
constant factors between the n-node forests.

• unit performs the link operation on up to 3001 trees .

• 2-node performs the link operation on up to 1500 trees, taking half of
the time taken by the unit forest.

• 10-node performs the link operation on up to 300 trees, which is about
10 times faster than the unit forest.

• 300-node performs the link operation on up to 10 trees, which is about
300 times faster than unit forest.

116

In this experiment the number of link applications is limited to the
number of leaves per forest. For instance, just 11 link operations on a 300-
node forest or up to 300 link operations on a 10-node forest were applied.
Furthermore, measuring the performance for a specific link operation is not
accurate as each plotting point, such a operation is applied to a dynamic
growth in the size of the host forest. For instance, in the unit forest case,
the first link is applied to an edge-empty forest, whereas by the end of the
sequence of links, the forest is practically edge-full. On the other hand, the
height of the host forest for the former case is O(log n), i.e. 3011 leaves, and
the height for the latter case is zero, since it is the Single finger tree. We
shall see in Section 5.1.3 how this is sorted out.

An excerpt of tabular values for Figure 5.24 is shown in Table 5.9.

number unit runtime 2-n runtime 10-n runtime 300-n runtime
of nodes millisec. millisec. millisec. millisec.

11 0.206 0.103 0.026 NA
111 10.671 4.803 0.873 NA
211 37.087 18.081 3.179 NA
311 84.722 39.884 6.417 0.083
411 146.215 70.997 12.166 0.087
511 230.657 104.620 17.973 0.133
.

2,811 9,123.865 4,299.726 740.431 13.165
2,911 9,929.812 4,714.005 846.462 14.165
3,011 10,483.036 5,076.541 898.199 16.021

Table 5.9: An excerpt of tabular values for Figure 5.24.

cutting trees in Full forests

Sort of opposite to link operation, in this experiment we apply the cut
operation to Full forests in order to reduce the forest size from one-tree
downto unit, from 300-node downto unit, from 10-node downto unit, and
from 2-node downto unit.

For all of the cases, the input vertices to the cut operation are provided
by a random list which is not taken into account in the performance. Such a
list is defined in advance in such a way that every pair in the list allows the
application of cut successful. So, consuming the list of pairs implies that the
initial Full forest becomes a Full unit forest.

117

In figs. 5.26 and 5.40 we show the results for the experiment described
above.

0 500 1000 1500 2000 2500 3000

0
1

2
3

4

Performance of Cutting Full Forests

ru
nn

in
g

tim
e

(s
ec

on
ds

)

number of nodes (sampling every 10 means)

300-node
one-tree
10-node
2-node

Figure 5.25: Performance of cut operation over a one-tree, 2-node, 10-node
and 300-node Full forests, sampling every 10 means.

118

0 500 1000 1500 2000 2500 3000

0
1

2
3

4
Performance of Cutting Full Forests

ru
nn

in
g

tim
e

(s
ec

on
ds

)

number of nodes (sampling every 100 medians)

300-node
one-tree
10-node
2-node

Figure 5.26: Performance of cut operation over a one-tree, 2-node, 10-node
and 300-node Full forests, sampling every 100 medians.

Experimental analysis for cut

We commence the analysis comparing the curves 300-node vs one-tree from
figs. 5.26 and 5.40. The size of the set in the top monoidal annotation of the
Ft for one-tree forest has the maximum number of pairs for the Ett, that
is, 3n − 2. The size of the set in the top monoidal annotation for 300-node
forest is 3n− 2− 10 as it has just 10 edges away to be a one-tree. Although
the forest size of one-tree forest is slightly larger than the 300-node forest,
the performance of the latter is slightly slower. This is because the data
structure of the host finger tree is actually larger as it holds 10 subtrees 300-
node each (plus one small of eleven nodes). On the other hand, the finger
tree data structure for the one-tree forest is Single. Recall, from tables 5.6
and 5.7, that the analysis on the affixes shows up that having larger affixes
slows down the performance. This the case between one-tree and 300-node
forests when applying cut. Regarding 2-node curve, the host finger tree has
half of the n nodes as leaves making the structure the largest in between
the participants in this experiment. Nevertheless, for all curves depicted in
figs. 5.26 and 5.40 the bounds for cutting trees in Full forests are delimited

119

by
• Cost of Ω(log2 n) ≤ (cut) ≤ O(n log n), where n is the number of

nodes in the Full forest.

• The curve applies n nodes per plotting point resulting in the perfor-
mance of O(n2 log n), n being the number of nodes in the Full forest.

Again, this experiment poses some drawbacks. The number of cut oper-
ations is limited to the number of edges in the host forest. The measurement
of the performance of a specific cut operation is not accurate as the forest
size decreases during the sequence of cuts progresses. In the following sec-
tion we show our proposal to measure the performance per cut operation.
An excerpt of tabular values for Figure 5.26 is presented in Table 5.10.

number one-tree runtime 2-n runtime 10-n runtime 300-n runtime
of nodes millisec. millisec. millisec. millisec.

11 0.178 0.063 0.142 NA
111 6.171 1.398 4.153 NA
211 17.064 3.856 13.055 NA
311 34.801 7.393 28.049 35.889
411 61.111 11.939 47.084 61.739
511 92.828 17.224 69.754 94.237
.

2,811 3,187.991 445.086 2,303.065 3,262.757
2,911 3,329.041 481.762 2,395.523 3,463.268
3,011 3,660.431 510.081 2,584.284 3,823.798

Table 5.10: An excerpt of tabular values for Figure 5.26.

linking and cutting trees in Full forests

The aim of this experiment attempts to measure the performance of each
dynamic update on Full forests. In order to do so, we look after the size
of the forest after every operation. So, after each link operation we apply
a cut operation and vice versa. Furthermore, we care also for the tree sizes,
that is, the random list of vertices for linking and cutting is build in such a
way that
• the tree size of the resulting tree after linking is not greater than twice

the n-node forest. For instance, in a 300-node forest, the size of the
resulting tree is not greater than 600 nodes.

120

• the tree size of any of the two resulting trees after cutting is not smaller
than the quarter of the n-node forest.

Additionally, we run the n-node forest with different sizes for the input ran-
dom list. The idea is to show the proportion between the results after such
runnings. The random list of vertices is generated prior to the application
of the dynamic updates and its runtime is not taken into the account of the
performance when linking and cutting. At each plotting point we execute i
times the random list of vertices for link-cut over a 10-node forest and j
times for a 300-node forest, where i ∈ {500, 1000} and j ∈ {300, 500, 1000}.

Plotting in Figure 5.27 shows the performance of the experiment described
above.

0 500 1000 1500 2000 2500 3000

0
50
0

15
00

25
00

35
00

Performance of Linking & Cutting Full Forests

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

number of nodes (sampling every 100 medians)

10-node (1000 runs)
10-node (500 runs)
300-node (1000 runs)
300-node (500 runs)
300-node (300 runs)

Figure 5.27: Performance of link and cut operations over 10-node and 300-
node Full forests, sampling every 100 medians.

Experimental results for link-cut

The growth for all 300-node curves in Figure 5.27 outrun the 10-node curves.
While the size of the Full forest remains practically the same after each
operation, the number of monoidal annotations per forest varies. Recall the

121

total number monoidal annotations in a Ft is

2
h∑

i=1

(
4

i∑
j=1

3j−1

)
+ h+ 1

Then, being h = 1 the height for a 300-node forest and h = 3 the height for a
10-node forest, we have that former holds up to 10 monoidal annotations and
the latter 130. Even though the amount of monoidal annotations is larger in
a 300-node tree in comparison with a 10-node tree, the monoidal annotations
at the forest finger tree take more time to be computed as all the leaves are
evaluated at certain point when linking or cutting. An excerpt of tabular
values for Figure 5.27 is presented in Table 5.11.

num. 10-n 500 10-n 1K 300-n 300 300-n 500 300-n 1K
nodes millisec. millisec. millisec. millisec. millisec.

11 12.308 24.079 NA NA NA
111 42.962 85.524 NA NA NA
211 77.989 152.207 NA NA NA
311 117.056 231.254 30.927 48.005 82.320
411 161.479 318.589 41.609 68.053 122.978
511 199.922 396.193 48.347 73.593 144.137
.

2,811 1,518.818 3,049.764 424.455 700.562 1,331.922
2,911 1,563.308 3,129.308 424.914 698.088 1,393.413
3,011 1,636.775 3,258.576 483.003 820.563 1,517.262

Table 5.11: An excerpt of tabular values for Figure 5.27.

Cost per link-cut operation

We run two experiments in order to see the performance of the link and cut
operations individually. Firstly, we take the total amount of performance
from previous experiment (link-cut over Full forests) and divided it by the
number or runnigs, i.e. i times for 10-node and j times for 300-node forests.
Secondly, we run incrementally each operation over an evolving 10-node forest
with 3011 nodes. Since the forest data structure is purely functional (i.e.
immutable), we get a different forest per application of the link and cut.
In the second and third charts we get straight forward the performance per
operation as we increment the number of operations rather than the number
of the nodes. We appreciate both experiments in figs. 5.28 to 5.30.

122

0 500 1000 1500 2000 2500 3000

0
50
0

15
00

25
00

Performance of Linking & Cutting Full Forests, per operation

ru
nn

in
g

tim
e

(µ
 s
ec
on
ds
)

number of nodes (sampling every 100 medians)

10-node (1000 runs)
10-node (500 runs)
300-node (1000 runs)
300-node (500 runs)
300-node (300 runs)

Figure 5.28: Performance of individual link and cut operations over 10-node
and 300-node forests.

An excerpt of tabular values for Figure 5.28 is presented in Table 5.12.

num. 10-n 500 10-n 1K 300-n 300 300-n 500 300-n 1K
nodes µ sec. µ sec. µ sec. µ sec. µ sec.

11 24.616 24.079 NA NA NA
111 85.925 85.524 NA NA NA
211 155.978 152.207 NA NA NA
311 234.112 231.254 103.090 96.01 82.319
411 322.957 318.589 138.696 136.106 122.978
511 399.846 396.193 161.156 147.187 144.137
.

2,811 3,037.636 3,049.764 1,414.850 1,401.124 1,331.922
2,911 3,126.616 3,129.307 1,416.383 1,396.175 1,393.413
3,011 3,273.550 3,258.576 1,610.009 1,641.127 1,517.262

Table 5.12: An excerpt of tabular values for Figure 5.28.

123

0 200 400 600 800 1000

0
10
00

30
00

50
00

Performance of individual link-cut over a 3,011-node Full forest

ru
nn

in
g

tim
e

(µ
 s
ec
on
ds
)

number of link-cut runs

10-node (1000 runs)
linear reference

Figure 5.29: Performance of individual link and cut operations over a 10-
node forest having 3011 leaves.

124

0 200 400 600 800 1000

0
20
0

60
0

10
00

14
00

Performance of individual link-cut over a 3,011-node Full forest

ru
nn

in
g

tim
e

(µ
 s
ec
on
ds
)

number of link-cut runs

300-node (1000 runs)
linear reference

Figure 5.30: Performance of individual link and cut operations over a 300-
node forest having 3011 leaves.

Experimental results per individual link-cut operation

Figure 5.28 shows the performance per operation when the input is the num-
ber of nodes per forest, not the number of operations over a single forest.
Curves in figs. 5.29 and 5.30 show the sublinear behaviour when performing
link-cut individually over a specific n-node forest and specific forest size.
The linear reference is given by taking the first plotting input and multi-
plying it by the number of runs the operation is applied. A sample of the
plotted values in Figure 5.30 is shown in Table 5.13.

125

nth input runtime of the link-cut runtime of 1st mean × nth input
mean in µ seconds in µ seconds (linear reference)

1 5.584 5.584
11 35.406 61.424
21 69.757 117.264
971 3,460.134 5,422.064
981 3,487.708 5,477.904
991 3,502.422 5,533.744

Table 5.13: Plotting values when performing link-cut over a 10-node forest
with 3,011 leaves, Figure 5.30

5.2 Top dynamic trees
Our Full dynamic tree data structure, in Section 5.1, relies on the data
types and operations those of the finger tree by Hinze and Paterson [8] with
no augmentations, other than defining Data.Set as the monoidal annota-
tion. In this, and the following sections we attempt to reduce the amount of
monoidal annotations in such a finger tree. Our analysis start by identifying
the scope of monoidal annotations there are in a finger tree. We depict this
in Figure 5.31. The finger tree data structure itself is not altered. However,
our new dynamic tree proposal, called Top, is also a finger tree wrapped
with a slightly different data constructors than those in our Full proposal.
We describe the appropriate data types in Section 5.2.1. Then, we define the
changes to some of the finger tree functions that reflect the reduction in the
amount of the monoidal annotations in Section 5.2.2.

126

Figure 5.31: Accumulators identified in a Ft data structure.

5.2.1 Top dynamic trees data types

We notice that global accumulators (i.e. monoidal annotations in the spine
of the Ft) are a repeated version of the sets in the corresponding affixes in
the Ft. Even more, that repeated version implies that two (or one when
at the bottom of the spine) set union operations (<>s) are performed from
the largest subsets at height k of the Ft. Avoiding the computation of <>
at the spine of the Ft, on the other hand, loses information needed when
computing a Ft as a leaf in the forest. Our proposal to overcome this is via
two strategies:

Top1 Searching in a Ft is limited to the affixes, then we devise a new function
definition for search.

Top2 We maintain a monoidal annotation outside the Ft data structure (for
both trees and forest) which allocates the same information as the one
monoidal annotation at the top of the original Ft. This is illustrated
in figs. 5.32 and 5.33.

127

Figure 5.32: Ft data structure for Top finger trees, top accumulator.

Figure 5.33: Ft data structure for Top finger trees, general view.

Strategy Top1 is described in the following section as search is a finger

128

tree operation. Now, the data types for the Top tree and forest are defined
below. We define the monoidal annotation for Top finger trees exactly the
same as in Full finger trees (see Section 5.1). The pairs of vertices and
edges are stored in Leaf data constructor
newtype Leaf a = Leaf (a,a) -- pair for edges and vertices

A Top tree is a Ft of Leafs and monoidal annotation Data.Set. Addition-
ally, it comprises an external (to the Ft) non-empty monoidal annotation.
data TreeTop a

= TreeTop
(MultiSet a) -- top monoidal annotation
(FingerTree (MultiSet a)(Leaf a)) -- finger tree of pairs

A Top forest is a Ft of TreeTop trees and monoidal annotation Data.Set.
Additionally, it comprises an external non-empty monoidal annotation. The
number of nodes and the size of the Top forest are left out its data type and
is calculated by the functions nnodesForest and sizeForest respectively,
defined below.
data ForestTop a

= ForestTop
(MultiSet a) -- top monoidal annotation
(FingerTree (MultiSet a)(TreeTop a)) -- finger tree of TreeTop trees

nnodesForest :: ForestTop a → Int
nnodesForest (ForestTop _ Empty) = 0
nnodesForest (ForestTop (MultiSet evens odds _) _) = S.size evens + S.size odds

sizeForest :: ForestTop a → Int
sizeForest (ForestTop _ Empty) = 0
sizeForest forest@(ForestTop (MultiSet _ _ edges) _)

= S.size edges + nnodesForest forest

Notice that determining the size of the forest or its number of nodes takes
O(1) as it just patterns match its Top monoidal set.

5.2.2 Top dynamic trees operations

We commence with the smart constructor deep that assembles a Ft by
passing to it the affixes and a subtree. By pairing up one function from
Full and one from Top we can spot their differences.
deep prefix middle suffix -- Full deep version

129

= Deep (measure prefix <> measure middle prefix <> measure suffix)
prefix middle suffix

deep prefix middle suffix -- Top deep version
= Deep mempty prefix middle suffix

Recalling the FingerTree data type
data FingerTree v a

= Empty
| Single a
| Deep

v -- top global accumulator
(Digit a)
(FingerTree v (Node v a)) -- first v is global accumulator
(Digit a)

It is the first and the second v (or monoidal annotations) from the above data
type that are replaced by mempty, which is the monoidal identity element (i.e.
empty set). The above is done for the remaining of Top finger tree functions
that compute global accumulators.

As a last comparison, we take the third and fourth rules from the /
operator. Again, we pair up the corresponding function definitions from
Full and Top.
a / Deep v (Four b c d e) m sf = -- Full version

Deep (measure a <> v) (Two a b) (node3 c d e / m) sf
a / Deep v pr m sf = -- Full version

Deep (measure a <> v) (consDigit a pr) m sf

a / Deep v (Four b c d e) m sf = -- Top version
Deep mempty (Two a b) (node3 c d e / m) sf

a / Deep v pr m sf = -- Top version
Deep mempty (consDigit a pr) m sf

From the above snippet, we highlight smart constructor node3 which builds
a 2-3 subtree for the prefix. As we are interested in the monoidal annotations
for this subtree, we leave such constructor intact in Top finger tree function.

searching in Top finger trees

Since monoidal annotations from spine of the Top Ft are left out, we help
out the “new” search function with the definition of an auxiliary function
that collects the monoidal annotations from the affixes, on demand (i.e. at
runtime).

130

collectSetsMid Empty = mempty
collectSetsMid (Single x) = measure x
collectSetsMid (Deep set prefix middle suffix)

= (measure prefix) <> collectSetsMid middle <> (measure suffix)

Performance of collectSetsMid follows the performance of <>, which is
Θ(m log(n

m
)), where m and n are the sizes of the sets evaluated during

collectSetsMid. Since this function is recursive, it traverses the height of
the finger tree in the worst case. Then, the overall performance is
Θ(m log n log n

m
). Now, following the analysis done in Table 4.4 we get the

bounds Ω(log2 n) ≤ (collectSetsMid) ≤ O(n log n). In practice, how-
ever, the above does not pose any additional runtime as we shall see in the
experimental results in Section 5.2.3.

Even though collectSetsMid helps out the search to find out a specific
pair within the Top finger tree, the former function poses a drawback when
looking for the second edge when applying cut. Recall that sets in Full
store the two edges (x, y) and (y, x) as only one, that is (min(x, y),max(x, y)).
Since the search in Top is powered by the affixes only rather than the prefix-
middle-suffix scheme, some edges in the Ett sequence can be lost in those
unique-edge storage. In order to solve this out, we maintain the order of the
edges in the sets for out Top approach.

link operation in Top dynamic trees

Dynamic update operations for Top forests are pretty similar to those in
Full with the difference in updating the forest size and the storage of both
edges in the Ett. Here are the snippets for linkTree and link.
linkTree u tu v (TreeTop msetv tv) =

let from = rerootTree tu u
(Position (ls,left) _ (rs,right)) = searchMSet (v,v) msetv tv
ft = ((left . Leaf (v,v)) . Leaf (v,u))

./ (ftTree from) ./ (Leaf (u,v) / right)
mset = foldr buildMSet (mappend msetv (msetTree tu)) [(v,u),(u,v)]

in TreeTop mset ft

Since we adding just two edges (highlighted bits) w.r.t. linkTree that of
Full trees, bound for this functions are Ω(log2 n) ≤ (linkTree) ≤
O(n log n), where n is the total number of nodes for the trees in the linkTree
operation.
link x y forest@(ForestTop mset ft) =

131

case connected x y forest of
(False, Just(tx,rx,ty,ry)) → linkAll (linkTree x tx y ty)
_ → forest

where
linkAll tree = ForestTop msetn (tree / (lf ./ rf))
msetn = foldr buildMSet mset [(x,y),(y,x)]
Position (_,lf’) _ (_,rf’) = searchMSet (x,x) mset ft
Position (_,lf) _ (_,rf) = searchMSet (y,y) mset (lf’ ./ rf’)

By following the operation linkTree above, we get that lower and upper
bounds for link for Top forests are Ω(log2 n) and O(n log n) respectively,
where n is the number of nodes in the Top forest.

cut operation in Top dynamic trees

Cutting trees by their own and within a Top forest follow the same logic as
link for Top forests. Following are the corresponding snippets.
cutTree u v tree@(TreeTop mset ft) = case searchEdge pair mset ft of

Position (ls,left) _ (rs,right) →
case (searchEdge pair’ ls left) of

Position (lsL,leftL) _ (rsL,rightL) →
(TreeTop rsL rightL, TreeTop (mappend lsL rs)(leftL ./ right))

_ →
case (searchEdge pair’ rs right) of

Position (lsR,leftR) _ (rsR,rightR) →
(TreeTop lsR leftR, TreeTop (mappend ls rsR) (left ./ rightR))

_ → undefined -- error "Tree malformed"
_ → undefined -- error "Tree malformed"

where
pair = (u,v) ; pair’ = (v,u)

cut x y forest@(ForestTop mset ft) =
case edgeInForest (x,y) forest of

Nothing → forest
Just (tree,ltFor,rtFor) →

buildForest (cutTree x y tree) (ftForest ltFor) (ftForest rtFor)
where

msetn = foldr delPairMSet mset [(x,y),(y,x)]
buildForest (leftTree, rightTree) lFor rFor

= ForestTop msetn (leftTree / ((lFor ./rFor) . rightTree))

Similarly, the lower and upper bounds for each operation are Ω(log2 n) and
O(n log n) respectively. However, for cutTree, n is the size of the sets of the
Top tree trimmed and for cut n is the number of vertices in the Top forest.

132

Summary of Top operations performance

Based in the previous analyses per Top dynamic tree operations and from
the performance stated at Table 4.2, we have in Table 5.14 the summary
of bounds per operation. Recall the bounds are not longer amortised as
monoidal annotations comprise worst time bounds.

Operation name in Full best case worst case context
root rootMSet Ω(log n) O(n) trees
connected connectedMSet Ω(log2 n) O(n log n) forest
cut cutMSet Ω(log2 n) O(n log n) forest
link linkMSet Ω(log2 n) O(n log n) forest

Table 5.14: Performance of the Top dynamic tree operations, where n is the
number of nodes in Top forest.

5.2.3 Top vs Full experimental results

Runtime bounds for both Full and Top dynamic trees are equivalent, see
tables 5.1 and 5.14. Rather than presenting the performance for each exper-
iment in Top dynamic trees, we compare the results of our two proposals
under the same experimental setup described in Section 5.1.3.

Forest creation

For forests construction we present the results in two charts in such way the
curves can be distinguishable, commencing with the 300-node forests in Fig-
ure 5.34 followed by remaining unit, 2-node, and 10-node cases in Figure 5.35.

133

0 500 1000 1500 2000 2500 3000

0
20
0

40
0

60
0

80
0

Performance of Creating Forests, Full vs Top

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

number of nodes (sampling every 100 medians)

300-node, Full
300-node, Top

Figure 5.34: Performance of constructing 300-node forests, Full vs Top.

134

0 500 1000 1500 2000 2500 3000

0
20

40
60

80
Performance of Creating Forests, Full vs Top

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

number of nodes (sampling every 100 medians)

10-node, Full
10-node, Top
2-node, Full
2-node, Top
unit, Full
unit, Top

Figure 5.35: Performance of constructing unit, 2-node, and 10-node forests,
Full vs Top.

Experimental results of construction Full vs Top forests

Top dynamic trees outperforms the Full counterpart on all the cases. In
particular, Top 300-node forest runs in practically half of the runtime w.r.t.
Full counterpart (in Figure 5.34).

Connectivity

In the look up operation of connected, we present the results for 10-node
and 300-node cases in Figure 5.36 for both Full and Top dynamic trees.

135

0 500 1000 1500 2000 2500 3000

0
20
0

40
0

60
0

80
0

Performance of Connectivity in forests, Full vs Top

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

number of nodes (sampling every 100 medians)

10-node, Full
10-node, Top
300-node, Full
300-node, Top

Figure 5.36: Performance of connectivity in 10-node and 300-node forests,
Full vs Top.

Experimental results of Full vs Top connectivity

Top dynamic trees outperforms the Full counterpart on all the cases. In
particular, Full 10-node forest runs in practically double of the runtime
w.r.t. Top counterpart (in Figure 5.36).

Linking trees in forests

Due to the differences between all the link runtime performances, we present
the results in three charts. unit and 2-node are shown in Figure 5.37, 10-node
in Figure 5.38 and 300-node is presented in Figure 5.39.

136

0 500 1000 1500 2000 2500 3000

0
20
00

40
00

60
00

80
00

Performance of link in forests, Full vs Top

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

number of nodes (sampling every 100 medians)

unit, Full
2-node, Full
unit, Top
2-node, Top

Figure 5.37: Performance of link operation in unit and 2-node forests, Full
vs Top.

137

0 500 1000 1500 2000 2500 3000

0
20
0

40
0

60
0

80
0

Performance of link in forests, Full vs Top

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

number of nodes (sampling every 100 medians)

10-node, Full
10-node, Top

Figure 5.38: Performance of link operation in 10-node forests, Full vs Top.

0 500 1000 1500 2000 2500 3000

0
5

10
15

Performance of link in forests, Full vs Top

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

number of nodes (sampling every 100 medians)

300-node, Full
300-node, Top

Figure 5.39: Performance of link operation in 300-node forests, Full vs Top.

138

Experimental results of link for Full vs Top forests

For each case of link in figs. 5.37 to 5.39 Top outperforms significantly
Full. The trend is 3 to 1 faster, except for the 300-node case where the
trend is 2 to 1.

Cutting trees in forests

In Figure 5.40 we illustrate all of the cases of cut operation for one-tree,
300-node, 10-node and 2-node forests, Full vs Top.

0 500 1000 1500 2000 2500 3000

0
10
00

20
00

30
00

40
00

Performance of cut in forests, Full vs Top

ru
nn

in
g

tim
e

(m
 s

ec
on

ds
)

number of nodes (sampling every 100 medians)

300-node, Full
unit, Full
unit, Top
300-node, Top
10-node, Full
10-node, Top
2-node, Top
2-node, Full

Figure 5.40: Performance of cut operation for one-tree, 300-node, 10-node
and 2-node forests, Full vs Top.

Experimental results of cut for Full vs Top forests

Except for the 2-node case, all performances of operation cut in Figure 5.40,
the growth of the curve is faster for Full dynamic trees. The differences
amongst each proposal vary from 1.12 to 1.29 Top being faster than Full,
except for the 2-node case.

139

Linking and cutting trees in forests

We conduct two experiments here with the aim to measure individual per-
formance of link and cut operations over 10-node and 300-node forests,
for both Full and Top approaches. The input for the first experiment, in
Figure 5.41, is regarded to the number of nodes. The input for the second
experiment, in Figure 5.42, is the number of link-cut operations over a
forest size of 3,011 nodes.

0 500 1000 1500 2000 2500 3000

0
50
0

15
00

25
00

Performance of individual link-cut operations over Full vs Top forests

ru
nn

in
g

tim
e

(µ
 s
ec
on
ds
)

number of nodes (sampling every 100 medians)

10-node, Full
10-node, Top
300-node, Full
300-node, Top

Figure 5.41: Performance of individual link-cut operations over 10-node
and 300-node forests, Full vs Top.

140

0 200 400 600 800 1000

0
50
0

15
00

25
00

35
00

Performance of individual link-cut operations over (3,011 vertices) Full vs Top forests

ru
nn

in
g

tim
e

(µ
 s
ec
on
ds
)

number of link-cut runs (sampling every 10 runs)

10-node, Full
10-node, Top
300-node, Full
300-node, Top

Figure 5.42: Performance of individual link-cut operations over (3,011 ver-
tices) 10-node and 300-node forests, Full vs Top.

Experimental results of link-cut operations over 10-node and 300-
node forests, Full vs Top

For all of the cases in figs. 5.41 and 5.42, performance of Top shows a lower
cost in time than Full approach, being Top faster, from 1.2 up to 2.0 times
(Figure 5.41) when input is the number of nodes and from 1.6 up to 1.8 times
faster (Figure 5.42) when input is the number of link-cut per operations.
Furthermore, the trend of the plotted curves in all cases is sublinear.

141

Chapter 6

Conclusion

In the analysis of the state of the art for dynamic trees problem imple-
mentation we realised there are some gaps in the literature. We focused in
answering two of those gaps.

Firstly, we focused our attention to the feasibility in implementing, under
the purely functional programming setting, the linearisation case of such a
dynamic trees problem stated by Sleator and Tarjan [1] in Chapter 1. In our
attempt to bridge such a gap we presented in Chapter 5 two data structures,
named Full and Top.

Secondly, making explicit the location of the vertices involved in the most
common operations over dynamic trees, as this has been taken for granted
in current imperative programming implementations (pointer-based). Our
analysis stepped onto the specifications by Henzinger and King [5] and Tarjan
in [7] and as a result we devised FunEtt, a purely functional programming
specification in Chapter 4 and calculate the lower and upper bounds for the
auxiliary and main functions for Full and Top.

Finally, we showed in practice, that our claim for the performance of the
main dynamic operations connected, link and cut over Full and Top data
structures is sublinear per operation.

The achievements in theory and practice for the aforementioned propos-
als, is due to the following contributions

• We demonstrated the performance and implementability of FunEtt in
the purely functional programming Haskell. Practical performance was
conducted by benchmarking experimental analysis on Full dynamic
trees and on Top dynamic trees, in Chapter 5.

142

• Performance claimed in the Abstract is demonstrated in theory (in
Chapter 4) and in practice (in Chapter 5). Specifically, Ω(log2 n) ≤ (
dynOp) ≤ O(n log n), where n is the number of vertices in the forest and
that of dynOp ∈ { connected, cut, link }.

• We showed (in chapters 4 and 5) that the definition of the monoidal annota-
tion of a finger tree is crucial to its performance. We believe this is the first
time this fact is explicitly stated, not assumed. For instance, in [8], Hinze
and Paterson claimed that performance of the insertion operation from the
left or / operator is Θ(log n) amortised. We step on top of that and claimed
that such a performance is Θ(log n) × O(<>) where <> is the monoidal bi-
nary operation definition. Since the applications published in [8] defined only
Θ(1) monoidal annotations such as the arithmetic addition or the max or
min functions, the original claim holds. However, by defining the monoidal
annotation as the set-union, the operator is then O(m log(n

m)) worst case
where m and n are the size of the sets evaluated in the set-union operation.
Hence the overall performance for / is Ω(log n) ≤ Θ(/) ≤ O(n log n), where
n is the number of vertices in the forest.

• Let n be the number of vertices in a forest. We showed experimentally that

– O(n log n) is the worst case per operation for our dynamic operations
(Full and Top) cut and link, where n is the number of vertices in the
forest. This occur when the same operation is applied to a unit forest
turning it onto a one-tree forest or from a one-tree forest downsizing it
to a unit forest. This is depicted in figs. 5.37 and 5.40 in Chapter5.

– Operations cut and link (in both Full and Top) perform sublinear
per operation when applied to a forest which size (number of nodes +
number of edges) never is its maximum (3n− 2) nor its minimum (n).
This is illustrated in figs. 5.41 and 5.42 in Chapter5.

– Outliers in the curves from our experiments where identified and anal-
ysed. The reason behind such behaviour is due to the monoidal opera-
tion of set-union when performed on demand, particularly on the affixes
of the finger tree. This is depicted in figs. 5.18 and 5.20 in Chapter5.

6.1 Further Directions
A lot of work remains to be carried out. In the implementational side, we
highlight the following

143

1. A variation of the dynamic query (Full and Top) could be to ask for
the path (since paths on trees are unique) that actually connects u and
v if they are connected.

2. Design of evaluation strategies when parallelising the two nodeIn func-
tions that comprise connected. Furthermore, parallelism for search
in Top dynamic trees could traverses both affixes at a time.

3. Experimental analysis can be conducted for the case when <> operator
over the affixes is changed from on demand to in advaced approach.
Since theoretical bounds should remain the same, experimental analysis
could not only smooth the outliers in the performance of <>, but in a
truly runtime reduction by a constant factor.

On the other hand, formal proofs and verification can be lead to at least

1. Proof of correctness for every data structure in this thesis

2. Proof of correctness and completeness for every operation upon the
data structures

3. Analysis of the input sequence of dynamic tree operations when behav-
ing as infinite list.

144

Bibliography

[1] D. D. Sleator and R. E. Tarjan, “A data structure for dynamic trees,”
Journal of computer and system sciences, vol. 26, no. 3, pp. 362–391,
1983.

[2] C. Okasaki, “Purely functional data structures,” Ph.D. dissertation,
Carnegie Mellon University, 1996.

[3] ——, “Data.Edison.Coll,” https://hackage.haskell.org/package/
EdisonCore, 2018, [Online; accessed 10-Apr-2019; version 1.3.2.1].

[4] S. Marlow et al., “Haskell 2010 language report,” Available online
http://www.haskell.org/(May 2011), 2010.

[5] M. R. Henzinger and V. King, “Randomized fully dynamic graph algo-
rithms with polylogarithmic time per operation,” in Proceedings of the
27th Annual ACM Symposium on Theory of Computing (STOC), 1997,
pp. 519–527.

[6] ——, “Randomized fully dynamic graph algorithms with polylogarithmic
time per operation,” Journal of the ACM (JACM), vol. 46, no. 4, pp.
502–516, 1999.

[7] R. E. Tarjan, “Dynamic trees as search trees via euler tours, applied
to the network simplex algorithm,” Mathematical Programming, vol. 78,
no. 2, pp. 169–177, 1997.

[8] R. Hinze and R. Paterson, “Finger trees: a simple general-purpose data
structure,” Journal of Functional Programming, vol. 16, no. 02, pp. 197–
217, 2006.

145

https://hackage.haskell.org/package/EdisonCore
https://hackage.haskell.org/package/EdisonCore

[9] C. Demetrescu, I. Finocchi, and G. Italiano, “Dynamic trees,” Handbook
of Data Structures and Applications, Chapman & Hall/CRC Computer
& Information Science Series, 2004.

[10] L. Katherine, “Complexity of the union-split-find problems,” 2007, mas-
sachusetts Institute of Technology, Master dissertation.

[11] R. E. Tarjan, Data Structures and Network Algorithms. Siam, 1983.

[12] D. Nanongkai, T. Saranurak, and S. Yingchareonthawornchai, “Break-
ing quadratic time for small vertex connectivity and an approximation
scheme,” arXiv preprint arXiv:1904.04453, 2019.

[13] G. Bernardini, P. Bonizzoni, G. Della Vedova, and M. Patterson,
“A rearrangement distance for fully-labelled trees,” arXiv preprint
arXiv:1904.01321, 2019.

[14] T. Ophelders, W. Sonke, B. Speckmann, and K. Verbeek, “Kinetic
volume-based persistence for 1d terrains,” 35th European Workshop on
Computational Geometry, 2019.

[15] M. Erwig, “Inductive graphs and functional graph algorithms,” Journal
of Functional Programming, vol. 11, no. 05, pp. 467–492, 2001.

[16] E. Kmett, “LinkCut Trees,” http://hackage.haskell.org/package/
structs-0.1.1, 2017, [Online; accessed 10-Apr-2019; version 0.1.1].

[17] R. Bird and J. Gibbons, Algorithm Design with Haskell. Cambridge
University Press, 2020.

[18] R. Bird, Thinking functionally with Haskell. Cambridge University
Press, 2014.

[19] C. Okasaki, Purely Functional Data Structures. Cambridge University
Press, 1999.

[20] M. Stannett, COM2001: Advanced Programming Topics. A Practical
Guide using Haskell and Java. The University of Sheffield, 2013.

[21] J. Hughes, “Why functional programming matters,” The computer jour-
nal, vol. 32, no. 2, pp. 98–107, 1989.

146

http://hackage.haskell.org/package/structs-0.1.1
http://hackage.haskell.org/package/structs-0.1.1

[22] Z. Hu, J. Hughes, and M. Wang, “How functional programming mat-
tered,” National Science Review, vol. 2, no. 3, pp. 349–370, 2015.

[23] H. Community, “Haskell in Industry,” https://wiki.haskell.org/
Haskell_in_industry, At the time of writing this thesis, [Online; ac-
cessed 10-Apr-2019].

[24] J. C. Saenz-Carrasco and M. Stannett, “Fatfast: traversing fat branches
fast in haskell,” in Symposium on Implementation and Application of
Functional Languages. ACM, 2019, presented.

[25] J. C. Saenz-Carrasco, “Funseqset: Towards a purely functional
data structure for the linearisation case of dynamic trees problem,”
in Workshop on Functional and (Constraint) Logic Programming,
vol. abs/1908.11105, 2019, presented. [Online]. Available: http:
//arxiv.org/abs/1908.11105

[26] M. H. Overmars, The design of dynamic data structures. Springer
Science & Business Media, 1983, vol. 156.

[27] R. F. Werneck, “Design and analysis of data structures for dynamic
trees,” Ph.D. dissertation, Princeton University, 2006.

[28] R. E. Tarjan and R. F. Werneck, “Dynamic trees in practice,” Journal
of Experimental Algorithmics (JEA), vol. 14, p. 5, 2009.

[29] D. D. Sleator and R. E. Tarjan, “Self-adjusting binary search trees,” J.
ACM, vol. 32, no. 3, pp. 652–686, 1985.

[30] L. J. Guibas and R. Sedgewick, “A dichromatic framework for balanced
trees,” in 19th Annual Symposium on Foundations of Computer Science
(SFCS 1978). IEEE, 1978, pp. 8–21.

[31] S. Kahrs, “Red-black trees with types,” Journal of functional program-
ming, vol. 11, no. 4, pp. 425–432, 2001.

[32] R. Hinze, “Constructing red-black trees,” in Proceedings of the Work-
shop on Algorithmic Aspects of Advanced Programming Languages,
WAAAPL, vol. 99, 1999, pp. 89–99.

147

https://wiki.haskell.org/Haskell_in_industry
https://wiki.haskell.org/Haskell_in_industry
http://arxiv.org/abs/1908.11105
http://arxiv.org/abs/1908.11105

[33] G. Aumala et al., “Data.RedBlackTrees,” http://hackage.haskell.org/
packages/search?terms=red+black+tree, 2017, [Online; accessed 10-
Oct-2019].

[34] G. N. Frederickson, “Data structures for on-line updating of minimum
spanning trees, with applications,” SIAM Journal on Computing, vol. 14,
no. 4, pp. 781–798, 1985.

[35] U. A. Acar, G. E. Blelloch, R. Harper, J. L. Vittes, and S. L. M.
Woo, “Dynamizing static algorithms, with applications to dynamic trees
and history independence,” in Proceedings of the fifteenth annual ACM-
SIAM symposium on Discrete algorithms. Society for Industrial and
Applied Mathematics, 2004, pp. 531–540.

[36] S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup, “Minimizing
diameters of dynamic trees,” in International Colloquium on Automata,
Languages, and Programming. Springer, 1997, pp. 270–280.

[37] S. Marlow, “Parallel and Concurrent Programming in Haskell,” in Cen-
tral European Functional Programming School. Springer, 2011, pp.
339–401.

[38] ——, Parallel and concurrent programming in Haskell: Techniques for
multicore and multithreaded programming. " O’Reilly Media, Inc.",
2013.

[39] T. Harris, S. Marlow, and S. P. Jones, “Haskell on a shared-memory
multiprocessor,” in Proceedings of the 2005 ACM SIGPLAN workshop
on Haskell. ACM, 2005, pp. 49–61.

[40] A. Morihata and K. Matsuzaki, “Balanced trees inhabiting functional
parallel programming,” ACM SIGPLAN Notices, vol. 46, no. 9, pp. 117–
128, 2011.

[41] The University of Glasgow, “Data.Tree,” http://hackage.haskell.org/
package/containers-0.6.2.1/docs/Data-Tree.html, 2002, [Online; ac-
cessed 10-Oct-2019; version 0.6.2.1].

[42] S. Adams, “Functional pearls efficient sets—a balancing act,” Journal of
functional programming, vol. 3, no. 4, pp. 553–561, 1993.

148

http://hackage.haskell.org/packages/search?terms=red+black+tree
http://hackage.haskell.org/packages/search?terms=red+black+tree
http://hackage.haskell.org/package/containers-0.6.2.1/docs/Data-Tree.html
http://hackage.haskell.org/package/containers-0.6.2.1/docs/Data-Tree.html

[43] M. Straka, “Adams’ trees revisited,” in Trends in Functional
Programming, 12th International Symposium, TFP 2011, Madrid,
Spain, May 16-18, 2011, Revised Selected Papers, 2011, pp. 130–145.
[Online]. Available: https://doi.org/10.1007/978-3-642-32037-8_9

[44] J. C. Derryberry, “Adaptive binary search trees,” Ph.D. dissertation,
Carnegie Mellon University, 2009.

[45] D. Leijen, “Data.Set,” http://hackage.haskell.org/package/
containers-0.6.2.1/docs/Data-Set.html, 2002, [Online; accessed 10-
Oct-2019; version 0.6.2.1].

[46] A. Gill, “Data.Monoid,” http://hackage.haskell.org/package/base-4.12.
0.0/docs/Data-Monoid.html, 2001, [Online; accessed 10-Oct-2019; ver-
sion 4.12.0.0].

[47] B. A. Yorgey, “Monoids: theme and variations (functional pearl),” in
ACM SIGPLAN Notices, vol. 47, no. 12. ACM, 2012, pp. 105–116.

[48] R. Paterson, “Finger Tree,” http://hackage.haskell.org/package/
fingertree-0.1.4.2, 2018, [Online; accessed 10-Oct-2019; version 0.1.4.2].

[49] ——, “Data.Sequence,” http://hackage.haskell.org/package/
containers-0.6.2.1/docs/Data-Sequence.html, 2014, [Online; accessed
10-Oct-2019; version 0.6.2.1].

[50] J. C. Sáenz-Carrasco, “Haskell and R source code,” http://github.
com/jcsaenzcarrasco/thesis, 2019, [Online; accessed 10-Oct-2019].

[51] R. project, “The R Project for Statistical Computing,” https://
www.r-project.org/, 2019, [Online; accessed 10-Oct-2019].

[52] A. Yakeley, “A time library,” http://hackage.haskell.org/package/
time-1.9.3, 2019, [Online; accessed 10-Oct-2019; version 1.9.3].

149

https://doi.org/10.1007/978-3-642-32037-8_9
http://hackage.haskell.org/package/containers-0.6.2.1/docs/Data-Set.html
http://hackage.haskell.org/package/containers-0.6.2.1/docs/Data-Set.html
http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Monoid.html
http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Monoid.html
http://hackage.haskell.org/package/fingertree-0.1.4.2
http://hackage.haskell.org/package/fingertree-0.1.4.2
http://hackage.haskell.org/package/containers-0.6.2.1/docs/Data-Sequence.html
http://hackage.haskell.org/package/containers-0.6.2.1/docs/Data-Sequence.html
http://github.com/jcsaenzcarrasco/thesis
http://github.com/jcsaenzcarrasco/thesis
https://www.r-project.org/
https://www.r-project.org/
http://hackage.haskell.org/package/time-1.9.3
http://hackage.haskell.org/package/time-1.9.3

Index

binary search tree, 11, 32
BST, 32
example, 33
in Haskell, 32

connectivity, 13

data structure
collection, 32

digit
example, 40

dynamic tree, 11
applications, 14
in functional programming, 14
operations, 11
problem, 12

equational reasoning, 17
Euler-tour tree, 25

finger tree, 11, 37
data type, 40
example, 40
operations, 45
structure, 38

forest, 29
n-node, 30
one-tree, 31
size, 30
unit, 29

forest property, 13
function vs operation, 19

Haskell, 16

input tree
example, 32
in Haskell, 31

link cut trees, 15

measure, 46
monoid, 36

in Haskell, 36
monoidal annotation, 11

node
data type, 39
example, 39

ordered sequence
application, 59

semigroup, 36
sequence, 11
singleton tree, 31

tree
2-3 tree, 34
complete 2-3 tree, 35
Euler-tour, 25
leafy, 34
nodal, 34
singleton, 29
size, 30

150

	Introduction
	Problem Statement
	Motivation
	 Applications where dynamic trees operations take place
	 Dynamic trees in Functional Programming

	Benefits from Functional Programming
	Source Language
	Why Haskell?

	Terminology
	Contributions
	Structure of this Thesis

	Related Work
	Path Decomposition
	Purely Functional Implementation

	Tree Contraction
	Linearisation
	Chapter notes

	Fundamentals
	Forest and trees nomenclature
	Input tree data structure
	!Data.Set!
	2-3 trees
	Monoids
	Monoidal annotation

	Finger Trees
	Structure of Ft
	Amounts of data stored in the !FT! data structure
	Operations in Ft
	Accessing the endpoints of a Ft
	Inserting at the endpoints of a Ft
	Appending !FT!s
	Searching and splitting in Ft

	Euler-Tour Trees Functionally, FunEtt
	Euler-tour trees by Henzinger and King
	Representation of the input tree
	Operations on Ett-HK

	Euler-tour trees by Tarjan
	Representation of the input tree
	Operations on Ett-T

	FunEtt
	Representation of the input tree
	FunEtt data structure
	Operations on FunEtt

	Chapter Notes

	Indexless data structures
	Full dynamic trees
	Full dynamic trees data types
	Full dynamic trees operations
	Experimental analysis of Full dynamic trees

	Top dynamic trees
	Top dynamic trees data types
	Top dynamic trees operations
	Top vs Full experimental results

	Conclusion
	Further Directions

