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Abstract

Lip motion accuracy is of paramount importance for speech intelligibility, especially for
users who are hard of hearing or foreign language learners. Furthermore, generating
a high level of realism in lip movements is required for the game and film production
industries. This thesis focuses on the mapping of tracked lip motions of front-view 2D
videos of a real speaker to a synthetic 3D head. A data-driven approach is used based on
a 3D morphable model (3DMM) built using 3D synthetic head poses. The 3DMMs have
been widely used for different tasks such as face recognition, detect facial expressions
and lip motions in 2D videos. However, investigating factors such as the required facial
landmarks for the mapping process, the amount of data for constructing the 3DMM,
and differences in facial features between real faces and 3D faces that may influence
the resulting animation have not been considered yet. Therefore, this research centers
around investigating the impact of these factors on the final 3D lip motions.

The thesis explores how different sets of facial features used in the mapping process
influence the resulting 3D motions. Five sets of the facial features are used for mapping
the real faces to the corresponding 3D faces. The results show that the inclusion of
eyebrows, eyes, nose, and lips improves the 3D lip motions, while face contour features
(i.e. the outside boundary of the front view of the face) restrict the face’s mesh, distorting
the resulting animation.

This thesis investigates how using different amounts of data when constructing the
3DMM affects the 3D lip motions. The results show that using a wider range of synthetic
head poses for different phoneme intensities to create a 3DMM, as well as a combination of
front- and side-view photographs of real speakers to produce initial neutral 3D synthetic
head poses, provides better animation results compared to ground truth data consisting
of front- and side-view 2D videos of real speakers.

The thesis also investigates the impact of differences and similarities in facial features
between real speakers and the 3DMMs on the resulting 3D lip motions by mapping



x

between non-similar faces based on differences and similarities in vertical mouth height
and mouth width. The objective and user test results show that mapping 2D videos
of real speakers with low vertical mouth heights to 3D heads that correspond to real
speakers with high vertical mouth heights, or vice versa, generates less good 3D lip
motions. It is thus important that this is considered when using a 2D recording of a real
actor’s lip movements to control a 3D synthetic character.
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Chapter 1

Introduction

Over the last few decades, facial animation has received significant attention by researchers

and become an active pursuit in a variety of applications of human-computer interaction.

The lips play a major role in the portrayal of expressions through facial animation. In

addition, they play an instrumental role in speech intelligibility, especially for hard-of-

hearing individuals and foreign language learners. Therefore, generating visual speech

animation with the behaviour of real people needs an extremely good presentation of lip

motion and deformation. This can be achieved when the face image is linked with a 3D

face model. There are two main traditional approaches used for reconstructing 3D face

models. The first is based on capturing performance of real faces using RGB or RGB-D

cameras and then reconstructing the 3D face model using the captured data. The other

approach involves scanning and then blending 3D real faces using a linear model [161].

Comprehensive research has been conducted on reconstructing 3D face models from

optical sensor measurements of a subject’s performance. Face performance can be

captured from the subject and represented in a 3D domain either based on illumination

data only [103, 167] or with the aid of markers [25, 123]. These techniques involve

capturing the face using a camera and then reconstructing the face geometry either

via triangulation or colour and depth values based on the type of camera used. In the

past, calibrated dense camera arrays with complex indoor lighting setups, which are

expensive to set up and operate, were used [19, 96, 123]. Recently, low-cost devices such
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as monocular RGB and RGB-D cameras have been used for offline and online monocular

face reconstruction and tracking [100, 240, 241]. However, the quality of these techniques

is affected by lighting conditions that may produce undesired pixels with noisy depth

values. This makes capturing faces more complicated. In addition, these techniques are

highly challenging since they are based on forming the image by convolving multiple

physical dimensions in a single colour measurement. Therefore, current state-of-the-art

approaches employ face models and statistical analysis of the distribution of 3D facial

shapes.

A large body of research has been conducted on modelling the structure and expression

of faces based on low-dimensional subspaces. In some works, a blendshape expression

model based on a set of 3D face models, each representing a particular expression, has

been used. Facial animation can be achieved by morphing between the neutral face

and a specific expression, or by morphing between various expressions. Several studies

used delta variations to linearly add each expression to the neutral face [37, 101, 162,

241, 253]. Blendshape models can be constructed using multi-monocular cameras in

general surroundings [101], monocular RGB cameras [241] or RGB-D sensor devices [37].

Although these methods can achieve globally pleasant results with regards to the static

realism of the face rendering, all of these approaches require professional camera setups

for gathering data to train the blendshape model, and the lip shapes that can be acquired

during speech are still not fully included.

There is another body of research based on the most commonly used prior, presented

by Blanz and Vetter [32], which constructs a 3D face model by learning from a low-

dimensional face subspace created from high-resolution laser scans of real faces with

neutral expressions (3D morphable model (3DMM)). Geometry and the illumination-

corrected textures of the faces are included in such models. These methods applied this

reconstruction for 2D face recognition, pose normalisation and illumination[125, 153],

face reanimation [30] and facial expression tracking [12] in 2D images, but they were

rarely extended to track lip motions during speech [67, 186] due to the expensive devices

that are required for gathering the data from real speakers, in addition to the complexity
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of techniques for preprocessing the gathered data. These methods lack person-specific

facial characteristics. In addition, they ignore anatomical and physical plausibility in the

reconstructions. Some work has been conducted to personalize the model, though, either

by increasing the number of 3D laser scans to model the skin reflectance, gender and age

variations [34, 35, 125, 153], or by fitting person-specific shape correctives to the generic

face models [37, 162], where performance of the resulting animation is mainly limited

to noise levels and resolution of the input device. However, the key problem with these

methods is that they are based on using 3D scans of real faces, which require controlled

lighting conditions and high-cost devices during the scanning process, as well as complex

techniques for preprocessing the scanned data.

To remedy these shortcomings, an approach for visual speech animation that uses

tracked lip motion in front-view 2D videos of a real speaker to drive the lip motion of a

synthetic 3D head is proposed. Inspired by the parametric face model presented by Blanz

and Vetter [32], a 3D morphable model built using 3D synthetic head poses that are based

on photographs of a real person can alleviate the shortcoming of preprocessing 3D laser

scans of real head poses [23, 132, 228, 212] and personalising the generated 3D models

[34, 35, 125, 153]. The 3D synthetic heads share vertex correspondences, which simplify

tracking and analysing the lip motions over time at a detailed level. The generated

3D head model will be animated using 2D videos of a real speaker, which will remedy

the limitations of using different input devices that distort the resulting animation due

to their noise level and resolution [100, 240, 241]. Furthermore, such a technique does

not require manual labelling or training as in [74, 100, 101, 129]. In addition, using 2D

images or videos opens the door to representing historical or recently-deceased people for

films and games.

1.1 Motivation

Over recent years, visual speech animation has received significant attention, and actively

investigated in several applications of speech intelligibility enhancement such as assistive
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technology for foreign language learners and support for the hard of hearing individuals.

Because of the major role that the external articulators (i.e. the lips, teeth, and tongue)

especially the lips play for providing a significant proportion of the visual speech signals

perceived from the face [178, 226]. This integral information improves the intelligibility of

speech in adverse listening conditions either external adversity such as noisy environments

[85, 169, 180, 223] or internal adversity such as hard of hearing people [139, 210, 221, 244]

or non-native listeners [114, 115]. Many algorithms have been proposed to represent

talking heads, for example, a synthesised talking tool (Baldi) presented by Massaro [172]

that has been utilised for training vocabulary either for foreign students [173] or deaf

students [17, 46] , where different versions of this head have been proposed for Italian

[64] and Arabic [191].

However, it is still a big challenge to achieve optimal integration between the auditory

signals and lip-sync, where any slight inconsistency between the two signals can lead

to an illusion even for native speakers (the McGurk effect [179]). Building a synthetic

visual speech system can be based on three main stages: reconstructing a 3D face model,

parametrising the 3D face model, and animating the 3D face model using modelling

techniques. Reconstruction of a 3D face model can be achieved by using RGB or RGB-D

cameras that may produce undesired pixels which lead to a noise animated signal, face

rigs created by an artist that should be mapped to the best matched character in facial

features to avoid any potential imperfect animation as in [235], or 3D scanning of real

faces that require high cost devices for gathering and complex techniques for preprocessing

the gathered data. The parametrising stage links between reconstructing the 3D face

model and the modelling techniques, where the face can be animated by interpolating

the motion of these landmarks. Therefore such landmarks should be carefully selected

to ensure animating the parts of the face involved in speech production to achieve high

realism.

For modelling the 3D face, two types of information have been utilised to represent

visual speech animation: phonetic information extracted from audio signals which are

then classified into the corresponding mouth shapes (i.e. the position of the tongue, teeth
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and lips during utterance of a particular sound (viseme) [92]) (viseme driven approaches)

[57], and motion capture data collected from real speakers which are then organised based

on phonetic information [236] or processed using statistical models [101] (data driven

approaches). Data driven approaches are more favored due to providing synthesised

signals in accordance with visual signals of a real speaker which increases the realism.

However, these approaches require a large amount of data that include all possible

phonetic contexts for training which is a high cost and time consuming to be gathered.

Therefore, it is highly desirable to build a cheap and reliable a 3D visual speech system

that mimics real speech motions.

synchronising audiovisual sequences in the visual speech animation domain is funda-

mental for various applications including that of human computer interaction. Realistic

3D mouth motions promote the reliance and emotional of people toward machine by 30%

over using text only [189]. Therefore, mapping visual speech signals extracted from a

character to a 3D face rig is an urgent need to avoid any ambiguity in the final animation,

where such ambiguous animated signal leads to loss of the convergence between customers

and 3D animation. Such representation can provide a basis for entertainment applications

such as games and films.

1.2 Problem Statement

Realising realism in visual speech animation is fundamental because people can spot

any subtle abnormalities in the animated signal. Thus, creating natural-looking mouth

animation remains a major challenge for developers aiming to animate a 3D talking head.

One of the major challenges is including all variations of visemes during real speech

motions, which is termed coarticulation [22], where the current viseme is influenced by

the surrounding visemes. To comprise these effects in the synthesized system, a 3D

talking head should be driven by motion data captured from a real speaker. This thesis,

therefore, investigates how well can a 3DMM that created using synthetic 3D head poses

efficiently produce visual speech, driven by tracked lip motions in 2D videos of a real
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speaker. This includes investigating the required facial features landmarks labelled on

both real faces and 3D heads, and the required data for reconstructing and training

the 3DMM to achieve a sufficient animation. Furthermore, investigating the impact of

differences in facial features between real faces and 3D faces on the final animation.

1.3 Thesis Aims

This thesis investigates animating 3D lips using 2D videos with the aid of a 3DMM. In

driving the 3D lips process with a captured 2D data from videos of a real speaker, a

key element is to achieve 3D lip motions as smooth as a real speaker’s. The goal is to

detect the lip motions during speech in 2D videos, without any aid from the user for

labelling or training as in the performance capture using illumination data approaches

[74, 100, 101, 129]. This thesis uses a data-driven approach that maps tracked lip motions

in 2D videos of a real speaker to corresponding 3D landmarks labelled on a 3DMM built

using 3D synthetic head poses. To achieve this aim, firstly data of 3D head poses is

required to build the 3DMM. The used 3DMM in this thesis is based on 3D synthetic

head poses generated using commercial software (FaceGen [1]) to train the model, which

saves time and effort. Furthermore, the FaceGen models have corresponding vertex data

in each head, which simplifies creating a large number of face poses to train the model.

Then, front-view 2D videos of a real speaker are mapped to the corresponding 3D head

using Huber et al’s [126] method that reconstructs 3D faces from 2D images and videos

using a 3DMM which was created using neutral poses of real faces.

The main concept of the mapping between real faces and 3D faces is based on

minimising the differences between the 2D landmarks detected from the input 2D frame

and the corresponding 3D landmarks [32, 135]. Different number of facial landmarks

have been used to animate faces, for example 74 landmarks [42], 75 landmarks [41], or 83

landmarks [232]. However, none of the previous studies has investigated the impact of

each set of facial landmarks on the resulting animation. Therefore, it is valuable to test

the functionality of each set of facial feature landmarks in the mapping process. This
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requires investigating different sets of facial feature points. The main research question

from conducting such task, then: Which facial landmarks should be used in the mapping

process, and how do they influence the resulting 3D lip motions?

In order to effectively mimic human lip motion during speech through fitting a 3DMM

to video streams of the real speaker, the main visual appearance of mouth poses (visemes)

during speech need to be included in the 3DMM. Most of the previous researches have

been extensively studied using 3DMMs that are based on different numbers of 3D scans

of real faces in a 2D face recognition domain for normalising pose and illumination

in 2D images [32, 34, 125, 153]. Some of the models were extended to include facial

expression poses [50, 126] and mouth shape poses [30] to reanimate faces [30], or detect

facial expressions [12] or lip motions during speech [67, 186] in 2D images. However,

these techniques do not give any thought to investigate the impact of using different

amounts of data during constructing and training the models on the resulting animation.

This thesis investigates how using two sets of photographs to create the initial neutral

3D head pose (i.e. front- and side-view photographs), and different datasets of viseme

intensities for training the 3DMM influence the resulting 3D lip motions. The resulting

animation is measured against the ground truth data that contains front- and side-view

2D videos of real speakers [10]. This investigation will answer the research question

of: How does using different amounts of data during constructing (Front-view or front-

and side-view photos ) and training (different intensities of the same viseme shape ) the

3DMM affect the 3D lip animation results?

This thesis also explores the impact of spatial relationships between facial features of

real speakers on the resulting 3D lip motions by mapping between a real speaker’s face

and a non-corresponding 3DMM. Doing so will provide a better understanding of the

impact of similarities and differences in facial features between real faces and 3DMMs

on the 3D animation. Consequently, criteria of facial feature classification that enables

animating 3D lips of a talking head using videos of different non-corresponding real

speakers’ videos can be defined. These criteria can be followed to animate historical or

recently-deceased people for films and games. This is achieved by firstly classifying facial
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features of the real speakers, and then mapping 2D front-view videos of the real speakers

to their corresponding 3D heads and 3D heads that correspond to different real speakers

who are classified under different classes. This investigation will answer the research

question of: How does the differences between the facial features of the real speakers in

the 2D videos and the 3D heads affect the resulting 3D lip animation?

1.4 Contributions

The novel contributions of this thesis are:

• Animating 3D lips using 2D videos with the aid of a 3DMM: The major

theme of the thesis is driving a 3D talking head using extracted information from

2D video frames of a real speaker. The presented method proposes generating

accurate speaker-specific lip representations that retain the original characteristics

of a speaker’s lips via fitting a 3DMM to front-view video frames of a real speaker.

This is achieved by following (implementation) Huber et al’s [126] method, which

reconstructs 3D faces from video frames via a 3DMM. In the current study, the

3DMM is built using synthetic 3D head poses that are generated using photographs

of the corresponding real speaker. Then the 3DMM is mapped to front-view 2D

videos of the corresponding real speaker. This work is presented in Chapter 3.

• Identifying a set of facial features landmarks for achieving desired 3D

lip motions: Introducing a study that investigates the functionality of each set

of facial features landmarks in the mapping process between a 3DMM and front-

view video frames of the corresponding real speaker. Five sets of facial features

landmarks were used to map a 3DMM to front-view 2D videos of the corresponding

real speaker. To evaluate the resulting animation, two geometric articulatory

measurements which are width and height of the mouth aperture were calculated

from 2D videos of both the real speaker and the corresponding 3D animation and

then compared against each other. The test results showed that all facial features

points that include eyebrows, eyes, nose, and lips should be used to produce the
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best performance of 3D lip motions while adding the contour (i.e. boundary of

the outside edges of the face) landmarks restricts the face’s mesh, which leads to

undesired lip motions. This work is also presented in Chapter 3.

• Identifying the required amount of data to construct and train the

3DMM for producing efficient 3D lip motions : Introducing a study that

investigates how using front- and side-view photographs, rather than just a front-

view photograph for construction of the initial neutral 3D head pose enhances the

animation results. Furthermore, it investigates how using different intensities of

the same viseme shape when training the 3DMM produces better animation results.

For each real speaker, different 3DMMs were created using the above differentiating

factors which are using two sets of photographs to generate the neutral 3D head

pose and using different numbers of viseme intensities to train the 3DMM. Then

front-view videos of the real speaker were mapped to each corresponding 3DMM.

The resulting 3D lip motion was evaluated in comparison with front-view videos of

the real speaker, using two geometric articulatory measurements (width and height

of the mouth aperture). The results indicate that using both front- and side-view

photographs to create the initial 3D head pose, as well as using a large number of

3D head poses to train the 3DMM, provides the best performance of the 3D lip

motions. This study is presented in Chapter 4 and has been published as:

– R. Algadhy, Y. Gotoh, and S. Maddock, "3D Visual Speech Animation Using

2D Videos", in Proceedings of International Conference on Acoustics, Speech

and Signal Processing (ICASSP). IEEE, 2019.

• Evaluation of 3D lip motions from the side-view: Conducting a side-view

evaluation of performance of the resulting 3D lip animation in comparison with

ground-truth data which is side-view videos of the corresponding real speaker.

This investigates whether or not the 3D lips are protruded adequately when only

front-view videos are used in the mapping process. One geometric articulatory

measurement was used to test the performance of the animated 3D motion, which
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is the upper lip protrusion parameter. The results confirmed that using both front-

and side-view photographs to create the initial 3D head pose, and using a large

number of 3D head poses to train the 3DMM, give the best performance of the 3D

lip motions. This work is presented in Chapter 4.

• First study of investigating the influence of differences in facial features

between real faces and 3D faces on the final animation: A study that

investigates the impact of the spatial relations of real speakers’ facial features on

the animated 3D lip motion is presented in this thesis. Furthermore, a specific

criteria of facial features’ classification is defined which guides the solution to fit a

3DMM to 2D video of a non-corresponding real speakers without influencing the

final 3D lip motion. Facial features of the real speakers of the Audiovisual Lombard

Speech Grid corpus [10] were classified into three categories which are low, middle,

and high. In this thesis, two facial features were tested that related to the vertical

height and width of the mouth. Based on the classes of each feature, front-view 2D

videos of each real speaker were mapped to the corresponding 3D head and the

non-corresponding 3D heads that relate to the real speakers who classified under

the other two classes. The resulting 3D lip motions were tested objectively and

subjectively. The objective test results indicate that mapping between videos of

real speakers that have low vertical mouth height and 3DMMs that correspond to

real speakers that have high vertical mouth height, or vice versa, provides undesired

3D lip motions. The results were mixed for the mapping between non-similar faces

based on the difference in mouth width, which confirms that this feature does not

have a significant impact on the resulting 3D lip motions. User evaluation results

found that the 3D heads that correspond to real speakers that have high vertical

mouth height or mouth width, have the worst lip motions when they were mapped

to real speakers that have low mouth features. This work is presented in Chapter 5.
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1.5 Thesis Structure

The remainder of this thesis is presented in Chapters 2 to 6. The content of these chapters

can be summarised as follows:

• Chapter 2: Background. This chapter presents the anatomical structures and

behaviour relevant to the processes that underlie speech perception and production.

A review of facial animation techniques and visual speech animation techniques

are also presented in this chapter.

• Chapter 3: Mapping Process. This chapter presents the process of construct-

ing the 3DMM and the framework for mapping between the 3D heads and the

corresponding real faces used in this thesis. This chapter starts with an explanation

of how the 3DMM is constructed using the synthetic 3D head poses, followed

by a description of the technical implementation of the fitting 3D heads to their

corresponding real faces. A study that investigates the role of each set of the

facial features in the mapping process is presented as well in this chapter. The

experimental evaluation of the animated 3D lip motion resulting from using different

sets of facial features landmarks in the mapping process is then presented.

• Chapter 4: 3D Visual Speech Animation Using 2D Videos. First, the

chapter illustrates the 3D data set that used to construct the 3DMMs, covering the

set of 3D head poses used to train the 3DMMs, and the photographs of the real

speaker used to reconstruct the initial 3D head pose. Evaluation of the resulting 3D

lip motion is then presented by illustrating the geometric articulatory measurements

and the methodology that is used to test the performance of the 3D lip motion

from front- view only, followed by a presentation of the results and a discussion. In

addition to, evaluation of the resulting 3D lip motion from side-view, followed by a

presentation of the results and a discussion.

• Chapter 5: Mapping Non Similar Faces. This chapter starts with a review

of facial features techniques, followed by an experimental design of fitting 3D heads
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to similar and non similar faces. Chapter 5 also demonstrates an experimental

evaluation of the resulting 3D lip motion, which compares the performance of non

similar faces with similar faces.

• Chapter 6: Conclusions. The final chapter concludes the thesis and highlights

possible directions for future work.



Chapter 2

Background

Speech synthesis does not require only a knowledge of modelling and encoding organs

and tissues of the vocal tract, but also an understanding of how these organs interact

physically with each other for speech production and how the produced speech is perceived.

The production of speech passes through different stages, starting from communicative

intent (the speaker’s thoughts), through a linguistic format that is articulated by the

vocal tract’s resonance and the physical movements of the external articulators, to finally

produce speech sounds [105]. There is a link here between the process of real speech

production and a sequence of questions regarding the representation of speech synthesis:

what does the speaker want to say, how is this represented internally, and how a vocal

tract model should be controlled to produce proper movements of the speech articulators?

In the same way, the effectiveness of any synthetic speech signal is measured by comparing

it with a ground truth signal, therefore, the perceived signal can affect the design of such

artificial speech systems.

Speech communication is a harmonic process between speaker and listener. The

speaker transforms thoughts and emotions into a linguistic format such as words, which

are then converted to motor signals by controlling the movements of the vocal tract

articulators. As the speaker adopts the speech production by forcing the air through the

vocal tract cavity, causes changes in positions of the speech articulators, which results in

producing speech sounds. The listener receives the speech signals by hearing and vision,
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where the brain processes these audiovisual signals to be decoded into the corresponding

linguistic format for speech perception [105].

The process of speech communication as described above is a complex interaction of

physical movements of the speech articulators and the linguistic format of a language for

producing and perceiving speech. The speech system consists of production mechanisms

(anatomy, acoustics, etc) and perception (audiovisual speech signals). For this reason,

the first two sections of this chapter review the background of speech production and

perception relevant to the speech synthesis systems.

Visual speech animation combines the techniques of facial animation and speech

synthesis. Facial animation techniques involve modelling and encoding expressions of

the face [196], while speech synthesis techniques involve modelling mouth shapes in

synchronisation with acoustic speech signals. Visual speech animation is sourced from

the strong correlation between the two techniques in a graphical and acoustical realistic

speech synthesis manner, which includes both lips, tongue and teeth movements and

facial expressions [171].

The rest sections of this chapter present a review of facial animation techniques,

visual speech animation techniques, as well as evaluation approaches of visual speech

animation. Section 2.3 presents a general review of the main procedures for animating

faces. The procedures are broken down into 3D face reconstruction, parameterising

face models, and modelling techniques. The first two procedures that are relevant to

the scope of the thesis are addressed in more detail. Section 2.4 reviews visual speech

animation techniques by exploring their processes. This review aims to highlight the

main techniques and evidence from the literature that refers to the impact of using

different sources of audiovisual data for feeding the synthesis engines on the resulting

animation. Also, how the amount of training dataset can influence the final animation

(Section 2.4.3). Section 2.5 covers approaches that are used to measure the effectiveness

of visual speech animation techniques.
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2.1 Speech Production

Speech production is a process that conveys information and expresses thoughts and

emotions into speech. This contains word selection, organisation of grammatical forms,

and then production of sounds by physical movements of the vocal articulators (lips,

teeth, tongue, etc.). This section presents a review of the anatomy of the oral cavity

associated with speech production with an emphasize on the lip shapes and motions, the

physical structure of the main speech articulators, the classification of speech utterance,

and speech motor control, converting the utterances of speech to low-level muscular

control regarding a series of articulatory movements and the produced audio signals

(coarticulation (Section 2.1.5)).

2.1.1 Anatomy of the Oral Cavity

The oral cavity is bounded between the external border that includes the lips and

cheeks, and the internal border that includes the oropharynx. The lips surround the oral

cavity and separate it from the external environment. They are formed anatomically by

connective tissues and muscular skeleton, which are covered by the skin externally and

the labial mucosa internally. The red part of the lip is termed vermilion. The vermilion

border is demarcated by the sharp junction between the skin and the vermilion. The

nasolabial grooves separate the upper lip from the cheeks, while the lower lip is separated

from the chin by the labiomental groove. The midline of the upper lip is a vertical groove,

which is termed a philtrum. Giving a bow shape to the lip which is known as a cupid’s

bow [44, 116]. The middle of the lips thicken and then thin to the corners where they

are joined at the oral commissure [20, 44]. Figure 2.1 shows the external view of the lips

anatomy.

There is a variety of lip shapes between people due to age, sex, and ethnicity effects.

Aged people have a smaller lip area and thinner lips than young people, and females

have thinner lips than males [68], especially for the upper lip [104]. Hashim et al. [113]

reported Saudi males have a longer lower lip (i.e., the distance between the midpoint of the
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Figure 2.1 The external anatomical review of the lips.

inner contour of the lower lip and the bottom of the chin) and more protruded lips than

Saudi females. Statistical comparisons of face dimensions between African-Americans

and Caucasians showed that African-Americans have a significantly greater measurement

of lip length (i.e., the distance between the corners of the lips) [177, 267, 268]. In a

comparative study of Turkish and North-American adults, Uysal et al. [245] reported a

more significant protrusion and shortness in the upper and lower lips in Turkish subjects

for males only. Another comparative study between Korean and European-American

adults showed that Korean subjects have more protruded lips [128].

The lips play a vital role in providing a significant proportion of the visual speech

cues perceived from the face [121, 178, 179, 225, 227]. Most of the speech gestures are

controlled by the lips (i.e., lip motions). For example, pressing the lips together produces

the bilabial plosive sounds, touching the lower lip with the upper teeth produces the

labiodental sounds, and rounding the lips produces some vowel sounds [250]. Table 2.1

shows the muscles of the lips and their actions. The lip shapes affect the sound radiation

from the mouth, and they can influence the length of the vocal tract, consequently



2.1 Speech Production 17

Name Action

Buccinator Compresses the cheek against the teeth,
and retracts the corner of the lip down.

Depressor anguli oris Draws the corner of the lip downward.
Depressor labii inferious Depresses the lower lip.
Incisive inferior Pulls the lower lip toward the teeth.
Incisive superior Pulls the upper lip toward the teeth.
Levator anguli oris Moves the corner of the mouth up.
Levator labii superioris Raises the upper lip.
Levator labii
superioris alaeque nasi Raises the upper lip and nostril.

Mentalis Raises and protrudes the upper lip.
Obicularis oris Closes the lips, compresses the lips, and protrudes the lips.
Platysma Pulls the corner of the mouth down and back.
Risorius Pulls the corner of the mouth back.
Zygomaticus major Draws the corner ofthe mouth laterally and upward.

Zygomaticus minor Draws the outer part of the upper lip upward,
laterally and outward.

Table 2.1 Muscles of the lips (The table is adapted from Edge [78]).

affect the vocal tract resonance frequencies [117]. More detailed discussion on the muscle

structure and function during speech can be found in [234].

The roof of the mouth is formed by the palate, which separates the oral cavity from

the nasal cavity. It is divided into the hard palate and the soft palate (velum). The hard

palate is located at the front and forms two-third of the roof of the mouth. It forms

the maxilla with a bone surface that covered by a mucosal tissue and holds the upper

teeth and the alveolar ridge that shapes the back arch of the upper incisors [20, 44]. The

alveolar ridge plays a role in producing consonants, particularly for fricatives such as /s/

[117].

The soft palate originates from the bone palate that forms the hard palate ends.

The soft tissues of the soft palate separate the nasal cavity from the oral cavity. The

palatoglossus and palatopharyngeal folds run on the sides of the soft palate and cover

the palatoglossus and the palatopharyngeus muscles that surround the tonsillar fossa.

The velum is located at the posterior part of the soft palate, where it is responsible for

raising and lowering the soft palate, opening and closing the passage to the nasal cavity.
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The muscle that responsible for these actions is the levator veli palatini [168]. The free

edge of the velum in the midline is called the uvula [117].

The tongue is formed by extrinsic and intrinsic muscles. The extrinsic muscles are

connected to cartilage and bones and responsible for changing the tongue position, while

the intrinsic muscles start and end within the tongue’s soft tissue and are responsible

for changing the shape of the tongue [111]. The tongue plays a vital role in speech

production, where it is responsible for producing most of the speech sounds, except the

glottal and bilabial consonants. Furthermore, it is an essential part of the oral anatomy

that mainly contributes to forming the acoustic cavity for producing normal speech by

restricting the air passage through the oral cavity [156].

Most of the speech sounds are produced by a combination of mouth articulators

such as lips, teeth, tongue, etc. The following section describes the kinematics of these

articulators to produce speech sounds.

2.1.2 Speech Production Phases

Most speech sounds are produced by forcing the air stream from the lungs towards the

trachea, the nasal cavity and the oral cavity, which includes the hard and soft palates,

the tongue, the teeth, and the lips ( see Section 2.1.1). Figure 2.2 illustrates the involved

organs in the speech production process. Some modifications are made by the vocal

tract organs on the air passage, resulting in production of different sounds. The speech

production process involves four phases: initiation, phonation, oro-nasal process and

articulation. The following points summarise each process according to Giegerich [106]

and Trujillo [243]:

• Initiation starts when the air is exhaled from the lungs and forced through the vocal

tract and the oral and nasal cavities. This process is required for producing all

speech sounds in the English language, since they result from a pulmonic egressive

air stream, while in some other languages, speech sounds result from the opposite

air stream direction (ingressive).
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• Phonation occurs when the air passes through the larynx, in which the gap between

the vocal folds (glottis) is opened and closed, causing vibrations of the vocal

cords. A variety of different speech sounds can be produced when the shape of the

glottis is altered by the vocal folds’ movements: slightly opened glottis produces

voiced sounds (increased vibration); widely opened glottis produces voiceless sounds

(reduced vibration). The vocal cords’ movements determine other acoustic features,

which are the: Fundamental Frequency (F0) - determined by the number of the

vocal folds’ movements in one second; Intensity (loudness of sound) - determined by

the energy of the vocal folds’ movements; and the Quality - determined by patterns

of the folds’ movements.

• Oro-nasal starts after the phonation process, in which air passes through the nasal

cavity or the oral cavity. In normal breathing the air goes through the nasal cavity,

while in speech sounds production it is directed to the oral cavity, since the nasal

cavity is closed by the velum. The state of the velum can regulate the production

of speech sounds: oral sounds such as /v/, /f/ and /l/ are produced when the

velum is raised; nasal sounds such as /m/ and /n/ are produced when the velum is

lowered.

• Articulation shapes part of the vocal tract above the vocal cords to produce

more distinguishable speech sounds. This process concerns the movements of the

articulators (tongue, teeth, lips, etc.) to direct the air into either the oral or the

nasal cavities. The articulators can be active, such as the velum and the tongue, or

passive, such as the alveolar ridge and the hard palate as presented in Table 2.2.

The passage of air is constrained by articulatory movement that regulates either

contact between passive and active articulators (e.g. contact between the tongue

and the teeth), or airflow through the nasal cavity or the oral cavity (e.g. lowered

or raised velum as explained in the previous process).
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Figure 2.2 The speech organs, reproduced under Creative Commons Licence [Flemming].

Place of Articulation Active Articulator Passive Articulator Example Sounds
Bilabial upper and lower lips none [p b m]

Labiodental lower lip upper front teeth [f v]
Dental tongue tip upper front teeth [θ ð]

Alveolar tongue tip or blade alveolar ridge [t d n l s z]
Postalveolar tongue tip or blade rear of alveolar ridge [ô S]

Retroflex tongue tip hard palate [ú ã ï]
Palatal tongue front hard palate [ j ñ]
Velar tongue back soft palate [ k ě ŋ]

Uvular tongue back uvula [q å]
Pharyngeal tongue root rear wall of pharynx [è]

Glottal vocal folds none [h P]
Table 2.2 Place of Articulation (The table is adapted from Moore [182]).

2.1.3 Vocal Tract Acoustics

As is apparent from the summary of speech production phases given above, different

speech sounds can be produced by articulatory movement that regulates the passage of

the air through the oral or nasal cavities. In the following, phonetic terminology that is

utilised to classify the acoustic signals is presented, followed by a classification of the

visual signals.
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Phonetic Terminology

Phonemes are the basic units of speech sounds, which form words when they are combined

together, and they can be classified into one of the following categories [206]:

• Vowel: is produced when the vocal tract is opened, and is defined by the position

of the tongue (location and height) and the roundedness of the lip. A vowel can

be formed by a single sound (monophthong) such as /i/ in a word (hit), or by a

combination of two vowels (diphthongs) such as /oy/ in a word (boy). A standard

transcription of all possible vowel sounds has been established by the International

Phonetic Association (IPA) (Figure 2.3). In the (IPA) chart, the position of a

vowel reflects the position of the tongue during production of that vowel. The

upper-left point on the chart presents that the tongue is closer to the front of the

mouth, and it is closer to the back of the mouth on the upper right of the chart.

The roundedness of the lip is presented in this chart as follows: symbols on the left

of the chart represent unrounded vowels, and symbols on the right presents the

rounded vowels.

• Consonant: is produced when the vocal tract is completely or partially closed. A

consonant can be classified into: nasal, which is produced when the air passage is

directed to the nasal cavity by the velum (e.g.: /m/ and /n/); fricative, which is

produced when the air passes through a narrow exit (e.g.: /f/ and /s/); affricative,

which is produced when the air passage is constricted and then released (e.g.:

/ch/ and /jh/); and plosive, which is produced when the air passage is completely

stopped and then released (e.g.: /b/ and /d/).

• Semi-vowel: is a sound that has a phonetic nature of vowel sounds and is produced

by the same manner of consonant sounds such as /w/ and /y/.
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Figure 2.3 The vowel chart of the International Phonetic Alphabet (IPA).

2.1.4 Visual Phonetics Articulatory

As described in the previous sections, articulatory phonetics relates the production of

different sounds by physical movements of the vocal articulators (lips, teeth, tongue,

etc.). The visual extent of these articulatory movements can enhance the intelligibility of

speech [219, 223].

Given that the intelligibility of speech communication is increased when visual

signals are combined with audio signals, it is therefore sensible that such visual signals

are classified. This classification involves recognising speech elements based on the

articulatory configuration of a specific phoneme (viseme). In other words, phonemes of

speech are classified into visual units called visemes. Figure 2.4 shows viseme classes

extracted for a speaker of the GRID corpus [8]. The term viseme was introduced by

Fisher [92] to identify visually perceived consonants. Several viseme-to-phoneme mappings

based on a many-to-one relationship have been proposed in the literature, but there is

no consensus or standard classification system. Two approaches can be distinguished

for building a map. The first approach involves defining viseme classes based on the

linguistic knowledge of a language and articulatory rules (e.g. the lips’ position and
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ah big ah b,m,p ch,jh,sh

d,s,t ee eh f,v

i k n oh

ooh,q r th w

Figure 2.4 Viseme classes extracted for a speaker of the GRID corpus [8].

place of articulation) to predict phonemes that have similar visual appearances [13, 133].

The second approach involves using data-driven approaches to define viseme classes,

in which a real speaker’s visual speech data are recorded and analysed [26, 77, 181].

However, the many-to-one viseme mapping approach has multiple limitations. First, it

does not consider the synchronisation between the audio signals and visual signals of a

phoneme, where the two signals do not always correspond to each other. Second, some

phonemes can be produced without using visual articulators. Such phonemes could not

be classified under the same viseme class; for example, /k/ and /g/ are velar consonant

sounds produced at the back of the soft palate. Finally, this approach does not consider

coarticulation effects on visual speech. Thus, a many-to-many relationship mapping

scheme should be considered instead [131].
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2.1.5 Coarticulation

Coarticulation refers to the process that the brain follows to organise sequences of speech

sounds (consonants and vowels) into speech units called syllables. In other words, it is the

utterance of two or more syllables together that exert on each other. Coarticulation can

be identified as backward or forward coarticulation. Backward coarticulation (carry-over

coarticulation) occurs when the articulatory gesture of a sound is affected by the previous

gesture in the speech sequence (e.g. lip protrusion while uttering the phoneme /s/ in

the word "boots"). Forward coarticulation (anticipatory coarticulation) occurs when the

articulatory gesture of a particular sound is affected by a gesture of a later sound in the

speech sequence (e.g. lip rounding while uttering the phoneme /s/ in the word "stew")

[22].

Hence, the visual appearance of a particular phoneme is shaped not only by its

articulation properties but also by the neighbouring phonemes in the speech sequence.

In other words, a single phoneme can have different visual appearance shapes, which

means it can be classified into different viseme classes. Consequently, mapping phonemes

to visemes should be a many-to-many relationship [131]. Mattys et al [176] have taken

the first step in this direction by redefining some of the phoneme classes presented by

Auer and Bernstein [14] and considering the phonetic context of consonants. However, a

viseme set generated following this approach is inadequate for defining atomic units of

visual speech. Thus, the classification of visual speech units could only be determined

by considering the visual features rather than phonemes’ segmentation. Hilder et al

[118] proposed such an approach by classifying different allophones of a phoneme into

a different viseme labels that automatically take the visual coarticulation into account.

Although there is no direct mapping between phonemes and visemes, which makes this

method far from straightforward for analysing and synthesising visual speech, Taylor et

al [236] used such mapping to animate a 3D talking head.

Modelling the coarticulation has received considerable attention from researchers

[27, 57, 187, 207]. Öhman presented a numerical model that identifies vocalic and
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consonant gestures with more cognitive and robust blending. In this model, the behaviour

of the tongue muscles during the non-symmetric vowel-consonant-vowel syllable (V1CV2)

utterance is predicted as follows:

s(x; t) = v(x; t) + k(t)[c(x) − v(x; t)]wc(x) (2.1)

where s(x, t) represents the shape of the vocal tract at a point x positioned on the tongue

body at a time t between the shapes of the initial vowel V1 and the final vowels V2. v(x, t)

and c(x) represent the vocal tract shapes of the surrounding vowels and consonants,

respectively. k(t) represents the emergence of the consonant, and wc(x) measures the

dominance’s amount of a vowel shape that distorts the target consonant shape. k(t)

varies from zero for the initial vowels V1 to one for the consonant and then set to zero

again to present the final vowels V2.

Although this model does not account for more complex coarticulation effects, such as

consonant-consonant coarticulation, it is considered the first step toward general modelling

of coarticulation and speech synthesis applications. Revéret et.al [207] applied this model

to general coarticulation to animate their 3D talking head. Such a model is unsatisfactory

because they marked 30 points on one side of the face and then were mirrored for tracking

the lip motions. Resulting in a very symmetric animation which is unrealistic, where

most people speak asymmetrically [140]. Also, Löfqvist [164] extended this model to

general speech, where each articulator is defined by several related dominance functions

that simulate the effect of a corresponding viseme on speech production. A speech

utterance trajectory can be determined by the shape of the resulting dominance functions.

Cohen and Massaro [57] implemented Löfqvist’s model of coarticulation for visual speech

synthesis, and their model is considered the most commonly applied model for visual

speech synthesis [65, 147, 157]. However, the main weakness of the model is the failure

to represent lip closure for bilabial sounds [22, 175]. Deng et.al [71] presented a model

that learns speech co-articulation from motion captured data and audio for expressive

speech animation. The model fails to handle different rates of speech and dynamics.
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Another major limitation of this model is that it is relying on predefined labels of key

viseme shapes in the training data, which is painstaking manual work that may lead to

ambiguities in the training data.

2.2 Speech Perception

Speech is produced as audio waves that are interpreted by a listener. The produced audio

signals contain the meaning of the speech, which enable to communicate remotely without

the need of face to face communication. However, there are two main information streams

assist speech perception which are audio signals including a series of speech sounds, and

visual signals including visual articulators of the speaker such as lips [172]. Studies in

audiovisual speech intelligibility have proved conclusively that visual information such as

the movements of the lips assist the perception of speech significantly [169, 223]. In fact,

the visual signals do not just help deaf or hard-of-hearing people to understand what the

speaker says, they also improve the intelligibility of speech and enhance sensitivity to

acoustic information for hearing people in a noisy environment [169, 188, 217]. Le Goff et

al [158] have proved that using degraded audio signals, two-third of the missing auditory

intelligibility can be provided by the natural face, half of the missing intelligibility can be

provided by their facial model (without tongue movements) and their lip model provided

a third of it. For foreign language learners, pronunciation is considered an essential

factor for listening and speaking. Intelligible pronunciation does not only aid students to

understand and be understood, but also enhances their self confidence to be involved

in an engaging manner [47]. In order to achieve correct pronunciation, an extremely

accurate position of various articulators such as tongue, teeth and lips is required. In

particular, the articulation of rounded vowels requires good perception of lip protrusion

to be pronounced correctly. This is often difficult for some English language learners

such as Turkish learners, since they are not able to make the essential muscular effort

to produce the phonemes /ao/ and /ow/ ( IPA notation: / O: / and /oU/ respectively )

accurately [119].
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Extensive research has shown that the perception of speech can be changed when

visual signals are combined with incorrect audio signals (McGurk effect) [179], providing

compelling evidence of audiovisual speech synchrony for speech perceptibility [213, 224].

For example, when a video of lip movements of "ga" dubbed with the audio signal of

"ba", it is perceived as a syllable "da". This suggests that such a presented example of

McGurk would not be expected to appear when constructing any speech synthesis system.

However, this phenomenon confirms importance of good linking between visual signals

and audio signals for speech perception. Incompatibility between these two signals leads

to speech disambiguation, which confirms achieving competent models for generating

speech movements are essential in animation.

2.3 Facial Animation

Facial animation concerns techniques for modelling and encoding facial expressions.

Three procedures are followed to animate faces: designing the 3D mesh of the face,

parameterising the 3D facial mesh and animating the 3D mesh in a controllable manner

to simulate facial expressions. In the first procedure, deformable face geometry is of

paramount importance, as it helps represent all facial expressions in a realistic manner.

This can be achieved using different devices, such as RBG-D cameras or 3D face scanning

[269]. The second procedure involves parameterising specific nodes on the face mesh

to simplify modelling the facial expressions or generating the speech movements, such

as coarticulation effects. The final procedure regards how much the nodes should be

displaced to generate a particular facial expression or mouth motion. Various modelling

techniques to produce facial animations have been published; these can be divided into

two categories: geometrical techniques and physical techniques.
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2.3.1 3D Face Reconstruction

Input Modalities

In this method, 3D face models are reconstructed by capturing the face using optical

sensors and then representing the captured data in a 3D domain based on the illumination

data. Previously, a multi-view setup was used to capture the performance of real faces,

where the subject is surrounded by pairwise stereo cameras. The 3D face is reconstructed

by exploring the face geometry captured by each stereo pair via triangulation and then

aggregating all the geometries obtained by each camera in a consistent manner. Marker

data [7, 25, 122] or high illumination [249, 254, 148] can be used during the recording to

aid reconstruction. However, these techniques require expensive materials for building

and operating; therefore, research tends to use lightweight cameras instead. Lightweight

and low-cost cameras, such as RGB and RGB-D cameras, are typically used.

RGB cameras are equipped with complementary metal oxide semiconductors or charge

coupled device (CCD) sensors to capture the three channels of an image and encode them

separately into red, green and blue. Modern cameras use three CCD sensors to capture

each channel signal and use a Bayer filter to arrange them in a square array. The 3D face

can be reconstructed using physical dimensions of each colour channel, such as geometry,

illumination and surface reflectance. Because this type of camera is easily accessible,

it has been widely used by researchers for offline [99, 100, 129] or online [40, 41, 166]

3D face reconstructions and motion capture. However, 3D face reconstruction from

monocular data is challenging due to the complexity of the image deformation process,

which involves representing multiple physical dimensions in one colour measurement.

Therefore, researches tend to use straightforward techniques for image deformation, such

as image-based 3D face reconstruction, and apply data-driven priors.

RGB-D cameras are provided by passive or active depth sensors that capture both

color and depth data. This solves a problem of depth ambiguity in the monocular

reconstruction techniques, since a coarse geometry can be estimated. Accordingly, these

cameras have been used for 3D face reconstruction and tracking approaches [162, 192, 253].



2.3 Facial Animation 29

Most passive depth cameras are based on a stereo camera setup, where a 3D point is

reconstructed via triangulation between two views of the point on a calibrated stereo

setup. Matching between pixels in the two views is challenging. Therefore, other features

of epipolar geometry, such as colour and edges, can be used. However, if these features

cannot be detected, the reconstruction process will fail.

To solve this problem, a projector can be placed instead of one of the stereo system

cameras. Another problem can be released using projectors is that geometric features

and structures can not be reconstructed as long as they are smaller than the projected

pattern. These issues can be tackled by using cameras that have both passive and

active sensors. Generally, these cameras have poor depth data and a low signal-to-noise

ratio compared to data captured by 3D scanning devices. In addition, undesired pixels

that appear between the background and foreground at depth discontinuities cannot be

modelled and therefore complicate the process of face reconstruction. Thus, most 3D

face reconstruction approaches rely on image formation or 3D scanning devices.

Image Formation Models

This method involves the reconstruction of a 3D face model from an image in an inverse

rendering through a sequence of mathematical processes. To define a face’s geometry,

a mapping from 2D space to 3D space (R2 to R3) is required, where the range is

x(u) = (x(u), y(u), z(u)), x(u) ⊂ R3, and the domain is u = (u, v) ⊂ R2 which is called

UV space. The face geometry can be represented in a 3D space as triangle or quad

meshes. A triangle mesh M = (V, F ) consists of a set of points V = p = (x, y, z) and

a set of triangles (face) F = (pi, pj, pk) where pi, pj, pk ∈ V . A given image can be

treated as a geometry surface that consist of pixels that define the distance between a

known reference frame and a visible point in the scene. The image can be represented as

I = (x, y, f(x, y)) [222].

The mapping process between the 3D geometry and a 2D image is achieved through

projection camera models, such as orthographic projection [28, 97] , Weak Perspective

projection [38, 218, 246] or Full Perspective projection [100, 129, 230, 256]. Some material
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properties describe light reflections on the skin should be modeled. Modeling the light

reflections on faces is challenging since faces reflect a different amount of brightness and

a specific amount of diffuse, due to various factors such as oily skin or sweat [150]. To

tackle these issues, the face can be represented as a simple appearance model that ignores

subsurface effects [36, 134]. Moreover, some models, such as Spherical Harmonics [185]

and Environment Maps [6], can be used to compute incident illumination on faces.

3D scanning

Another method that is frequently used to construct 3D face models is laser scanning

devices. There are several devices available to capture faces [33]. The 3DMD device,

designed for medical imaging, uses four cameras to capture the face and produce high-

quality coloured textures. The FR1 device captures faces in real time using a single

camera and a projected infrared pattern and provides non-coloured images. The FR2

device captures faces using three cameras and an LCD stripe pattern and provides colour

texture map images. Konica Minolta 910 captures faces using a single camera and laser

stripe and generates 3D data via triangulation. Polhemus captures faces using a single

camera that is fixed on a handheld wand and a laser strip for triangulating the 3D data.

3D scan devices provide a 3D surface from a single viewpoint. 3D scans are registered

to compose 3D models that represent a 3D surface from various viewpoints. 3D models

can be rigid models that describe the texture and geometry of an object or morphable

models [32, 80] that adjust the texture and shape of an object by morphing between the

scanned data. However, the main stage of constructing 3D models from the 3D scanned

data is the establishment of correspondences among the vertices of the scanned data to

make the data consistent so that all meshes have the same number of vertices, the same

triangulation and the same anatomical structure of each vertex. For example, if the index

i of a vertex in a mesh corresponds to the nose root, it is essential that the vertex of the

nose root in every single mesh in the data is represented with the same index number.

Multiple approaches to aligning the data have been published: the rigid alignment

approach uses affine transformations, such as a least squares linear system or the Iterative
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Closest Point (ICP) [23, 212], to align two different meshes; the non-rigid alignment

approach involves deforming the 3D models using interpolation techniques, such as Thin

Plate Splines [127] or motion segmentation techniques such as optical flow [32]. Although

these approaches easily state the correspondence problem, it is still challenging to achieve

an accurate and robust alignment for highly inconstant face meshes. For example, some

smooth regions of the face, such as the forehead or cheek, have a very detailed anatomical

meaning, which complicates measurements of the correspondence and thus affects the

resulting animation. Once the vertex correspondences are established among the 3D

data, a 3D morphable model can be constructed.

The most widely used approach to building the 3D morphable model is the approach

presented by Blanz and Vetter [32]. Their approach is based on learning a low-dimensional

face subspace from high-resolution 3D scanned data. Several models based on this

approach have been built using different input modalities [43, 144], different number of

3D scans [34, 35, 125, 153], different facial expressions either collected from one person [30]

or several persons [12]. Blanz and Vetter’s model is composed of 200 scans of real faces

with neutral poses. It consists of the geometry and the illumination textures of the real

faces. The non-rigid alignment approach was applied to align the 3D face data. A principle

component analysis (PCA) was applied to the geometry and the illumination components

separately, resulting in two models: one for the shape and the other for the texture.

The principle components of a dataset and their corresponding standard deviations

are computed using the PCA within a multi-variate Gaussian distribution framework.

Using this approach, new faces with different skin reflectance can be synthesised. 3D

morphable models enable the construction of a high-quality representation of 3D faces

from insufficient sources of data, such as 2D images or noisy 3D scanned data. They also

provide a mechanism for encoding any 3D face in a low dimensional space, which gives a

compact representation that simplifies the analysis of 3D faces.
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2.3.2 Parameterising Face Models

The purpose of parameterising face models is to facilitate the representation of facial

expressions using a small number of vertices. Early work was presented by Parke [195]

involved using parameters to personalise the face model (conformation parameters) and

modify the model to produce sets of emotional or physical facial expressions, such as

smiles and blinks (expression parameters). There are some properties which should be

taken into account to define facial parameters that are capable of representing changes

in facial expressions:

• Complete: parameters should represent all possible facial expressions.

• Independence: parameters should work independently such that the outcome of

each parameter does not affect the outcomes of the other parameters

• Minimal: a small number of parameters should be used to represent facial expres-

sions accurately and to be easily interpreted.

• Intuitive: each parameter should be labelled based on its function (e.g. blink or

jaw rotation).

• Physically Plausible: all parameters should represent the observable expression, in

which unrealistic facial expressions cannot be presented when the parameters are

combined.

Different sets of parameters for facial expression have been introduced [69, 138, 141,

145, 151, 159, 195, 251] in an attempt to include these properties. Two standard sets of

parameters exist: the Facial Action Coding Scheme [81] and Moving Pictures Experts

Group-4 (MPEG-4) [51]. The Facial Action Coding Scheme is a set of parameters that

describes the movements of the facial muscles, the tongue and the jaw based on the facial

anatomy analysis. Forty-four basic action units (AUs) are included in this set. Complex

compound facial expressions can be recreated with a combination of these units. The

AUs are independent, but it is not guaranteed that the animation of the face’s mesh
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will also be independent. Although this is potentially problematic, this set was used to

model the facial expressions [95, 141].

MPEG-4 facial parameterisation was derived from this set. MPEG-4 is an international

standard of ISO/IEC for describing and representing facial motions and speakers’ gestures

during speech to achieve an adequate animation [233]. Two types of parameters are defined

in the standard: facial definition parameters for identifying the face size, shape and texture;

and facial animation parameters for defining facial deformation and expressions. MPEG-4

uses a standard parameter, which makes it reliable and widely used by researchers for

facial animation [45, 242]. Another method that is based on a statistical technique for

parameterisation relies on extracting parameters that have the most variations in the

dataset by applying PCA to the data [32, 60, 108, 207].

2.3.3 Modelling Techniques

Facial animation modelling techniques can be classified into two categories: geometric

techniques and physical techniques. Geometric techniques involve the deformation of a

facial surface by manipulating a geometric control structure. The most popular approach

is interpolation, also known as morph targets or blend shapes, in which the animation is

achieved by applying an interpolation function to a set of face poses (key-frames) created

by the animator or software to generate the middle face pose or key-frame over time

[194]. These values can be controlled using parametric curves, such as Bezier curves [197].

However, this technique fails to generate more complex facial expressions, which leads to

inadequate and insufficient animation. To remedy this, Joshi et al. [137] localised the

morph targets, for example, to generate an eye blink pose so that only the region around

the eye would be manipulated.

The physical techniques involve modelling the function and structure of the face. These

techniques accurately provide details of the facial movements, but they are extremely

difficult to implement due to the complex structure of the facial anatomy, which contains

muscle, skin, fatty tissue and bone. Facial expressions are produced by contractions of

the muscles, which create stretching, wrinkles and creases. Hence, the elastic nature of
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the face must be considered when modelling facial expressions. These techniques can be

divided into two areas: tension networks that involve treating the face mesh as a network

of masses and springs [159, 204]; and finite element models that involve modelling the

skin’s elastic properties [54, 151, 152].

2.4 Visual Speech Animation

Over the last decades, facial animation and visual speech synthesis have received a lot

of attention by researchers [175], because of the development of necessary computing

power to achieve appropriate mouth animations. Combining a high quality of a synthetic

visual speech signal with a synthetic or original auditory speech signal improves the

intelligibility of speech in noise [5, 193], especially for hard of hearing people and foreign

language learners. In fact, hard of hearing people rely on audiovisual speech to enhance

speech perception, because it provides additional visual information since they perceive

audio signals in a distorted way. Foreign language learners find difficulty in perceiving

or producing new phonemes that are not in their native language. Therefore, achieving

accurate visualisation of the speech articulators can help to improve their pronunciation

which leads to a better perception of their acoustic signals. In addition to that visual

speech animation plays a vital role in many different applications of human interaction

such as animated story narration and virtual avatar.

Prediction of appropriate articulations can be achieved by providing synthesis engines

with audiovisual speech signals such as set of synthesis rules (e.g classifying phonemes into

visemes) or a collection of original articulators’ movements. Recently, researchers have

focused attention on applying deep learning approaches to generate speech animation.

Generally, based on that the audiovisual speech synthesis approaches can be classified

into three main categories which are viseme driven approaches, data driven approaches

and deep learning based approaches. The next three sections review these approaches in

more detail.
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2.4.1 Viseme Driven Approaches

Viseme driven approaches involve segmenting audio speech signals into phonemes, which

are then classified into visual units called visemes (see Section 2.1.4). These approaches

are often based on classifying many phonemes into one viseme, in which phonemes

that have the same visual appearance are mapped to the same viseme (see Section

2.1.4). Recently, Taylor et al [236] proposed a method based on a deep learning to

automatically classify many phonemes into many visemes. Viseme parameters are then

interpolated using dominance functions [57, 171] or with co-articulation rules incorporated

[57, 79, 200].

The previous approaches are based on determining the weight of the target phoneme

against the neighboring segments and their influence on the corresponding control

parameters (Cohen and Massaro model) [57]. However, this model can not deliver

realistic animation results especially for labiodental and bilabial consonant. To tackle

these issues, Cosi et.al [63] modified this model by adding a shape function and a temporal

resistance function to model more speech features such as speech rate. Although this

model enhanced animating the speech articulators for labiodental and bilabial consonants,

they still behave unrealistically. Moreover, this model requires a manual control for

the optimization process to achieve the method convergence. Goff and Benoit [157]

analysed trajectories of 8 parameters measured from a French talker to calculate the

model parameters. Nevertheless, an analysis of a larger corpus of lip shapes is required to

refine the dominance functions. King and Parent [146] modified the dominance functions

by representing visemes as dynamic shapes (curves) instead of key-frames. However,

their model fails to consider coarticulation effects on the tongue and teeth over time.

The rule-based models [21, 199, 200] take into account only visemes that have an

impact on the neighbouring ones (backward and forward coarticulations (see Section

2.1.5)). Xu et.al [259] produced speech animation by blending curves of each pair of

diphone (adjoin two phones in an utterance) coarticulation. Recently, Edwards et.al [79]

categorised visual speech production rules into constraints, conventions and habits. Each
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category describes a set of linguistic rules that are followed to achieve the final animation

correctly. Charalambous et.al [52] animated their model by varying a viseme weight using

dynamic linguistic rules and emotional features extracted from audio signals. However,

these models typically fail to fully take co-articulation effects into account, thus leading

to unrealistic lip motions. For this reason, data-driven approaches are more favored

as they are based on animating faces according to captured data from real speakers,

which guarantee considering coarticulation effects. The next section covers data-driven

approaches for visual speech animation.

2.4.2 Data Driven Approaches

Data driven approaches involve capturing motion data from a real speaker to produce a

synthesized talking head [16, 82, 165, 190] or to reanimate faces in images and videos

[30, 70, 258, 263]. The original facial features can be captured using marker based

techniques or markerless techniques. Marker based techniques involve capturing the

original facial features by tracking the markers that are placed on the talker’s face. These

markers are either placed using colours [82] or fluorescent markers [110]. Markerless

techniques involve tracking the facial features in 3D using motion capture systems such

as the VICON system [3], in 2D frames by using image processing techniques such as

snakes [237], or using facial modelling techniques such as active appearance model [60].

Recent works have established high quality of facial features’ tracking results [247], and

have improved to commercial softwares such as Faceware Technologies [2].

The captured data is either organised based on phonetic information (sample-based

approaches) [39, 43, 61, 107, 143, 155, 236], or processed using statistical models to control

the facial motion that is learned from the training data (learning-based approaches)

[101, 142, 202, 260, 261]. Data driven approaches allow to estimate visual speech motion

occurring in actual speech, since they are based on processing captured motion data from

real speakers. However, in the sample based approaches, the quality of the animated

visual speech is based on organising the phonetic information units correctly, where

incorrect usage of a single unit in a sentence significantly affects the perceived quality
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of the entire sequence. Bregler et al [39] presented a method for constructing a new

sequence of visemes by concatenating triphones (a sequence of three successive phones)

from a given video sequence. This method does not involve dynamic factors in speech,

because it models the effect of coarticulation with the segmented triphone from video,

instead of using ad hoc co-articulation models. However, this approach cannot be

considered a generative approach, because faces need to be trained before applying

the coarticulation. Cao at al [43] extended the combination of the triphones approach

to longer phoneme segments. They proposed a greedy graph search algorithm that

examines a set of continuous motion segments which match the phonemes in the dataset.

Kshirsagar and Thalmann [155] proposed an approach for synthesising a speech motion

using visyllables segments instead of phoneme segments. Taylor at al. [236] presented

a method for generating a dynamic continues visual speech animation by connecting

parameters of Active Appearance Model(AAM) based on a given phonetic input sequence.

Learning-based approaches are based on training data that is collected from real speakers.

Such data is difficult to predict how much is required and sufficient to generate the

desired results. The lack of this information has provided the motivation to investigate

the impact of using different amounts of data during training on the resulting animation,

as will be presented in Chapter 4.

2.4.3 Deep Learning Based Approaches

A recent line of visual speech animation research has focused on deep learning approaches

because of their efficiency in learning representations progressively from raw features,

which can improve the accuracy level dramatically over using hand crafted features [154].

Previously, researchers tend to use Hidden Markov Models (HMMs) rather than neural

networks due to their insufficiency for processing speech into intuitive states. However,

with the recent development in deep learning, neural networks have become more popular

in modern models. The broad use of these methods is mostly aimed to perform a sequence

to sequence prediction [229]. A typical example of this is Fan et.al’s model [88], which

uses bidirectional long short-term memory (BLSTM) [120] (an architecture of recurrent
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neural network (RNN)) to model audiovisual stereo data for animating a realistic 3D

head. They used the deep BLSTM neural network for learning a regression model by

minimising the sum of square error between a phoneme sequence extracted from audio

signals and a shape features sequence extracted from the lower part of the face images.

New faces of the talking head were then rendered by predicting the shape features from

the text of any input audio signals (natural or synthesized speech). Following similar

deep architecture, Suwajanakorn et.al [231] synthesized photorealistic videos. Inspired

by these approaches, Zhou et.al [266] proposed a deep neural network architecture based

on three stages of LSTMs: the first stage predicts phonemes’ sequence from audio, the

second stage predicts landmarks of the lower part of the face from video frames, and

the last stage uses the outputs of the previous stages to predict speech motion curves

and JALI parameters to drive a JALI or a face-rig. However, approaches of this kind

carry with them various well-known limitations, such as they are subject dependent and

require a large amount of data for training to be adapted to new faces.

Taylor et.al [235] followed the same deep learning approach but using a sliding window

predictor which allows to include coarticulation effects and context neighborhoods, where

their results showed how the sliding window architecture significantly outperformed the

LSTM for generating realistic visual speech animation. However, this approach does not

provide fully automatic speech animation, since the animation technique is based on

feeding the system with visual speech signals extracted from a character for the learning

process and then retargeting to a face rig to predict the final animation, which can lead

to a potential imperfect animation. Consequently, the initial computational step needs

to be adjusted for each character. A possible solution is to train the model using videos

of multiple speakers who have different facial characteristics and then select the most

matched characteristics to the face rig at the prediction stage. Again, a comprehensive

dataset is required to train the model which is highly cost and time consuming. This

issue may refer to the importance of investigating the impact of differences in facial

features between real faces and 3D faces on the resulting animation, which has provided

the motivation to investigate this at a detailed level, as will be presented in Chapter 5.
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Convolutional neural networks (CNN) have been used by Karras et.al [142] to animate

a 3D face mesh by audio signals only. They learned a deep neural network system to

map audio waveforms to vertices of a 3D face mesh model. Their model is based on

audio signals without a transcript, where the model was divided into sub networks that

model two acoustic features which are formants (resonance frequencies of the vocal

tract) and an excitation signal (characteristics of a talker’s sound such as pitch and

timbre). One major drawback of this approach is that the proposed model performs

sufficiently as long as the input audio signal is within the range of the training dataset,

and also the resulting animation is well synced with the audio as long as the tempo of

the input audio signal is not too fast. Chung et.al [55] proposed a model based on CNN

that uses features of audio signals extracted using Mel-frequency cepstral coefficients

(MFCCs) and a still frame image to generate speaker independent videos. The resulting

video frames are blurry due to using an L1 loss at the pixel level, which makes the

deblurring stage is required. Recently, Liu et.al [163] proposed a framework that uses

CNN architecture to perform a sequence to sequence prediction that maps audio and

text to facial features extracted from pixels and landmarks for synthesizing talking faces.

However, this framework is based on an offline speech recognition software for processing

audio and text, which impedes applying end to end training. Also, different postures

of faces can not be converged well in the encoder that was used to extract the facial

features, which makes this approach restricted with standard faces only.

Although, deep learning approaches have revolutionised visual speech animation,

synthesizing talking faces with lip sync is still a challenging task due to several issues.

First, the efficiency of deep learning approaches is based heavily on the training data,

where using more data enhances the results; however, feature extraction of audiovisual

data for training with a low level of noise is still challenging. Second, the complex

structure of the human face [203] makes representing a face sufficiently using current

linear based approaches hard [235]. Finally, synchronising lip movements with audio

signals is a demand in visual speech animation [264], hence, exploring a deep learning
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approach that takes the lip sync and coarticulation effects into account is still an open

issue.

2.5 Evaluation Approaches for Visual Speech Ani-

mation Quality

The evaluation of visual speech can be categorised into two approaches: objective

approaches involve algorithmic metrics, and subjective approaches involve human par-

ticipants. The quality of a synthesised speech model can be evaluated objectively by

comparing the trajectories of the motion captured from an animated face against the

trajectories of the motion captured from a real face using different methods, such as

a dynamic time warping [215], a root mean square error (RMSE) [252], or the peak

signal to noise ratio (PNSR) [143] to measure the similarity. The subjective evaluation is

the most frequently used method to judge the quality of synthetic visual speech signals

using different approaches, which include a subjective assessment [39, 62, 87], comparing

between synthetic signal and ground truth signal visually [58, 239], comparing between

different versions of synthetic signals visually [236, 238], testing the user’s ability for

perceiving an uttered sentence in a noisy environment with the aid of the synthetic signal

(intelligibility test) [62, 191], and choice testing, where users are asked to determine

whether a presented animation is real or synthetic [24, 86]. Each of these tests evaluates

how the resulting lip movements are synchronised to speech, in which good results

indicate a high-quality synthetic signal and poor results indicate a weak synthetic signal.

Generally, the subjective evaluation can be categorised into two tests. The first

test is the intelligibility test, which examines the quality of lip synchronisation of a

talking head by presenting videos of the synthetic signal versus the ground truth signal

in a noisy environment. The second test is the naturalness test, which examines the

smoothness of the animated lip movement compared to a human lip motion and the

likelihood that those sounds would be produced by asking the participants to rate the

quality of the lip motions or to compare between different synthetic signals or between
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the ground truth signal and the synthetic one. The first method provides an overall

impression of the quality of the 3D talking head lip-sync, but there remains a lack of

clarity concerning which viseme or speech segments are synchronised accurately and

which are synchronised poorly. The first procedure of the second method provides user

information about the overall quality of the 3D talking head lip-sync but leaves no space

for comparison with other systems. It also does not provide any information about the

strengths and weaknesses of the synthetic signal (i.e. which viseme is poorly synthesised).

The second procedure provides more information about the weaknesses and strengths

and a more quantitative measure of the overall effectiveness of the synthesised signal.

However, it does not provide enough information about the quality of synthetic signal

perception [66].

2.6 Summary

Visual speech animation can be achieved via an extensive understanding of speech produc-

tion and perception, and facial animation and speech synthesis techniques. Understanding

the mechanism of producing the speech by a speaker and receiving the uttered signal by a

listener provides a good background for modeling and controlling vocal tract articulators,

in addition to evaluating the quality of such models. Knowledge of facial animation

techniques helps to understand the basic principles of building speech synthesis systems,

where this includes reconstruction of 3D face models, parameterisation of the models,

and modelling techniques.

The 3D face model reconstruction is the first stage for animating faces that depends

on using cameras, 2D image deformation, or 3D face scans. Reconstructing a 3D face

model using laser scan devices has proven to be effective in providing sufficient 3DMMs

from a low-dimensional face subspace presented to detect facial expressions or lip motions,

and reanimate faces in 2D video frames, but they need time to be gathered and processed.

Instead, in Chapter 3 of this thesis, 3D head poses that are generated using commercial

software, are used to create a 3DMM for detecting lip motions of a real speaker in 2D
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videos. Parameterising 3D face models is a mediation stage between the construction stage

and the modelling stage. This stage is essential especially for visual speech animation

due to coarticulation effects that influence the speech articulators in different ways (i.e.

width and height of the lips). Such an issue provides the motivation to investigate the

functionality of each set of facial features landmarks in the animation process. This

investigation is presented in Chapter 3 as well.

Realism in visual speech animation is still a challenging task because people can

detect any slight defect in audiovisual synchronisation. Several approaches of visual

speech animation have been proposed which are based on phonetic information (viseme

driven approaches), or motion data captured from real speakers (data driven approaches).

Data-driven approaches are favored by researchers due to providing speech animation

according to the lip motions of a real speaker, including coarticulation effects. However,

the quality of the resulting animation depends on the amount of training dataset which

is difficult to predict how much is required. A recent line of research promotes the use of

deep learning approaches in speech animation, as evidence has been found for improved

visual speech animation when audio and visual signals were introduced in the training

dataset. Again, these approaches depend heavily on the amount of data for the training

process which is difficult to extract and processed. Furthermore, for subject independent

approaches, a potential imperfect animation may be generated due to mismatch between

facial features of the real speaker and a face rig. For these reasons, an investigation of

using different amounts of data during constructing a neutral 3D head pose and training

the 3DMM on the resulting animation is introduced in Chapter 4. Followed by another

investigation that studies the impact of differences in facial features between real faces

and 3D faces on the final animation (Chapter 5).



Chapter 3

Mapping Process

3.1 Introduction

This chapter presents the mapping process between 2D video frames of a real speaker and

the corresponding 3D head through a 3D morphable model. The aim of this mapping

is to animate the lips of 3D talking head according to lip motion of a real speaker

in 2D video frames. In this chapter, the stages of this process are presented. The

first stage is constructing the 3D morphable model which includes collecting 3D head

data and morphing between these 3D heads (see the red dotted box in Figure 3.1).

The presented 3DMM based on synthetic 3D head poses that was generated using a

commercial software, which establishes vertex correspondences among the generated head

models. This functionality simplifies processing these models, therefore generating a large

number of data becomes customisable and controllable. This stage will be presented in

Section 3.2.

As a preparation for the second stage, a review of accuracy level for a range of facial

features tracking systems is presented in Section 3.3. Then the second stage which

is mapping 2D video frames of a real speaker to the corresponding 3D head model

is presented in Section 3.4. This includes tracking the facial landmarks in 2D videos,

estimating the head pose and fitting the head pose shape (see the green dotted box in



44 Mapping Process

Figure 3.1). Furthermore, an overview of the 2D dataset that will be used for creating,

animating and evaluating the 3D talking head will be presented in Section 3.5.

Finally, a study that investigates the functionality of each set of the facial features

landmarks in the mapping process is presented in Section 3.6. The aim of this study is

to determine the required facial features set that will be used to achieve the desired 3D

lip motions. Then the resulting 3D lip motions will be evaluated from both front-view

and side-view. These stages are presented in Chapter 4. Another study that involves

investigating the impact of mapping between non-similar faces on the resulting 3D

animation is presented in Chapter 5.

3.2 Constructing the 3D Morphable Model

A 3D Morphable head Model (3DMM) is a statistical model of head shape, built from a

set of synthetic 3D head poses. Principal Component Analysis (PCA) [136, 255] is only

applied to the shape data to construct a model that spans a subspace of head pose shape

learned from synthetic 3D head poses. Morphing between these head poses in PCA space

can be used to transfer head poses from one pose to a different pose, or generate new

head poses. This section presents the stages of constructing the model and defines the

components of a Morphable Model used throughout this thesis.

3.2.1 Collecting Head Data

A 3D Morphable head Model (3DMM) requires a set of head poses for training. These

are often generated by taking scans of real people. Instead, FaceGen software [1] is

used to produce synthetic head poses that are derived from hundreds of high-resolution

3D scans of human faces. The produced head models have correspondences of vertices,

which makes processing these models uncomplicated. A lack of this functionality is

considered one of the major obstacles for analysing 3D scans of real faces. Although

many techniques have been considered [212, 216, 265], it is still challenging, in addition

to the consumed time for collecting such data. This software is based on a statistical
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Figure 3.1 Schematic view of the proposed methodology to animate a 3D talking head.

technique called Principal Component Analysis (PCA) [136, 255] (more details in the

next section 3.2.2) to convert a subspace of shapes or textures into a set of values of
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linearly uncorrelated variables (principal components (PCs)) by using an orthogonal

transformation. Morphing between 3D head shapes (i.e. longer thinner head and shorter

wider head) or textures (i.e. skin tone) can be generated by adding or subtracting PCs

to or from the mean. FaceGen software provides a high resolution of 3D head mesh as

shown in Figure 3.2, which contains a mouth mesh (inner mouth, tongue and teeth) that

can be exported separately. The number of vertices of the 3D head is 5968, 5850 vertices

for the head and 118 vertices for the mouth.

FaceGen was chosen based on the number of 3D head poses that contain a wide range

of mouth visemes, and also the provided high resolution 3D head mesh. An initial neutral

head pose can be generated using photographs of a real person, either a front-view only

photograph or front and side views as shown in Figure 3.3. Next some facial points

can be placed on the front-view photograph only or front- and side-view photographs.

The software can then be used to deform the face into a range of poses as explained

in the previous paragraph. The software includes 16 default viseme poses (shown in

Figure 3.4), which are parameterised so that different intensities of each viseme can be

generated, i.e. different amounts of openness for an open-mouthed viseme. Figure 3.5

shows an example of different intensities of viseme ah. This functionality is used for

generating the 3D datasets. Each head pose created using FaceGen automatically has

vertex correspondence, something which is more complex to achieve with scanned data.

FaceGen also generates tongue and teeth poses, but they are excluded since this thesis is

concentrating on lip shape.

3.2.2 3D Morphable Model

Principle Component Analysis (PCA) is a statistical technique that is widely used

to identify and express patterns of data to highlight their similarities and differences.

Furthermore, it is used to analyse and compress datasets that contain a large number

of interdependent variables by transforming them into uncorrelated variables which

called principal components (PCs) (eigenvectors of the covariance matrix) that hold the

maximal variation in the dataset [136, 255].
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Figure 3.2 Wireframe view of a neutral 3D head pose, generated using FaceGen software.

Given a set of head poses, Principal Component Analysis (PCA) can be applied to

the vertices to generate a 3DMM. Only shape needs to be considered, since every head

pose shares the same texture. The geometry of the head is represented by a shape vector

S = (X1, Y1, Z1, . . . , Xn, Yn, Zn)⊤, containing the X, Y , Z coordinates of the vertices

(5850 vertices), where n is the number of FaceGen poses used to build the 3DMM. The

3DMM consists of a PCA model of the shape, which is represented as:

M := {F , σ, V } (3.1)

where F ∈ R3N is the mean vector of the example meshes (mean pose) with N being

the number of mesh vertices, and σ ∈ Rn−1 denotes the standard deviation, where

V = [v1, . . . , vn−1] ∈ R3N×n−1 is a set of principal components in the model.
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Figure 3.3 Generating initial 3D head pose using FaceGen software.



3.2 Constructing the 3D Morphable Model 49

ah big ah b, m, p ch, j, sh

d, s, t ee eh f, v

i k n oh

ooh, q r th w

Figure 3.4 Viseme poses generated using FaceGen software.
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1 2 3 4 5

6 7 8 9 ah

Figure 3.5 An example of different intensities of viseme ah, generated using FaceGen
software.
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A new pose can be generated as follows:

S = F +
K∑

i=1
αiσivi (3.2)

where K ≤ n − 1 is the number of principal components and αi ∈ RK is the shape

coefficient [125].

For analysing the variations in the built head model, the directions of largest variance

in the PCA space can be visualised by Equation 3.2, where αi is set to a specific value

and all other parameters are set to zero. The resulting head mesh S can then be

rendered. Figure 3.6 shows the mean of the head model along with the top three principal

components of shape variation. From this figure, it can be observed that the principal

modes of variation capture trends of lip shape deformation due to viseme intensities.

3.3 Facial Features Tracking

The first stage in driving 3D visual speech using 2D information is to track the visual

speech information in 2D videos. This can be done using facial landmarks related to

speech production. Since this thesis is concerned with animating 3D lips based on 2D

information, developing an automatic facial features tracking approach is beyond the

scope of this research. Consequently, a number of facial features tracking systems were

tested to choose an appropriate tracker. The tested systems were: Faceware Analyser

[2, 211], Face Plus Plus [89] and random cascaded-regression copse (R-CR-C) [91]. Table

3.1 and Figure 3.7 show the differences between the tested systems in terms of the number

of the facial features landmarks.

In order to validate each tracking system, video frames of a female speaker (ID: S17)

and a male speaker (ID: S48) from the Audiovisual Lombard Grid Speech corpus [10]

were used. For each real speaker, frames from the front view video files were chosen

to be mapped to each corresponding 3D synthetic head. The frames contain different

phonemes of different visemes. For example, rounded viseme (phoneme /ao/), open
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Figure 3.6 Visualisations of the mean head pose and the first three principal components
of head shape for the 3DMM that contains 161 head poses. Each visualised as additions
and subtractions from the mean.
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Faceware Analyser

Face Plus Plus

R-CR-C

Figure 3.7 A comparison of facial features landmarks tracking systems. The facial
landmark points labelled on a real speaker for each tracking system.
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Tracking system Landmarks description

Faceware Analyaser

Facial features: 51;
Mouth: Inner contour: 12; Outer contour: 14;
Nose: 3;
Eyes: 12;
Eyebrows:10

Face Plus Plus

Facial features: 64;
Mouth: Inner contour: 6; Outer contour: 12;
Nose: 10;
Eyes: 20;
Eyebrows:16

R-CR-C

Facial features: 51;
Mouth: Inner contour: 8; Outer contour: 12;
Nose: 9;
Eyes: 12;
Eyebrows:10

Table 3.1 Description of landmarks for each tracking system.

spread viseme (phoneme /ay/), bilabial viseme (phoneme /b/), spread viseme (phoneme

/ih/), alveolar viseme (phoneme /s/), and protruding-rounded (phoneme /uw/). Each

3DMM was trained using 161 poses, and front- and side-view photographs were used to

generate the initial neutral 3D head pose in FaceGen software. The resulting 3D head

animation was then compared to the original ground-truth 2D video frames.

For the comparison, the facial features in the ground-truth 2D video frames and

the front-view (2D) of the corresponding 3D animation were tracked using Faceware

Analyser software [2]. This software provides processing video files as a batch, which

speeds the evaluation process. The tracked facial features were used to calculate two

geometric articulatory measurements. The first was a width measurement defined by the

horizontal distance between the right and left inner corners of the lips. The second was

a height measurement defined by the distance between the top and the bottom middle

of the inner mouth contour. The Euclidean distance between the midpoint of the inner

corners of the eyes and the nose tip’s point was used to normalise the landmarks, in

order to correct the distance between the camera and the real speaker or the synthetic

3D head. The maximum and minimum mouth measurements of all visual articulatory
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features for each real speaker and the corresponding 3D head in the video frames were

used for normalisation, giving a [0-1] scale. Given the width and height values for each

frame of animation, for the 2D video frames of a real speaker and the corresponding 3D

animation, the root mean square error (RMSE) over each phoneme frames was used to

evaluate the effectiveness of each tracking system.

Figure 3.8 shows an example of consecutive frames of the phoneme/ih/ for a real

speaker (ID: S48) and the corresponding 3D head that was fitted to using Faceware

Analyser landmarks set (second row), Face Plus Plus landmark set (third row), and

R-CR-C landmarks set (forth row). This Figure shows how using Faceware Analyser and

Face Plus Plus landmark sets in the mapping process gives poor performance. Due to

including the first set, a small number of nose landmarks which lead to stretching the

nose mesh area, and the second set a large number of eyebrows, eyes, and nose landmarks

which restrict the movement of the upper part of the face.

Table 3.2 shows the RMSE results averaged over each phoneme frames for width

and height of the mouth aperture of the real speakers and their corresponding 3D heads

for each tracking system. The 3D head models that were fitted to their corresponding

real speakers using R-CR-C tracking system give the lowest RMSE scores for width and

height for the two real speakers. R-CR-C was selected based on the number of landmarks

that encode the mouth and the nose bridge, which are essential for producing adequate

3D lip motions as is presented in Section 3.6, in addition to the level of accuracy that is

provided by the system for different face pose angles.

3.4 Mapping 2D to 3D

To generate the 3D animation, 2D video of a speaker needs to be mapped to the 3DMM.

An approach to fit the 3DMM to 2D video frames of a real speaker can be applied

to perform this function. Mapping 2D to 3D is an active research area, either based

on illumination or depth data [74, 100, 101] or tracked markers on real faces [25, 123].

For the algorithms based on illumination or depth data, the appearance and ranges of
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Phoneme
Faceware Face Plus Plus R-CR-R

S17 S48 S17 S48 S17 S48
W H W H W H W H W H W H

/ao/ 0.234 0.095 0.164 0.441 0.248 0.120 0.685 0.341 0.162 0.036 0.062 0.025
/ay/ 0.529 0.205 0.175 0.051 0.190 0.217 0.041 0.046 0.048 0.082 0.039 0.028
/b/ 0.153 0.157 0.382 0.104 0.210 0.192 0.305 0.257 0.098 0.138 0.149 0.025
/ih/ 0.232 0.292 0.367 0.125 0.338 0.032 0.244 0.063 0.036 0.025 0.156 0.029
/s/ 0.078 0.066 0.190 0.205 0.218 0.081 0.388 0.363 0.066 0.047 0.047 0.106

/uw/ 0.241 0.212 0.216 0.107 0.264 0.165 0.548 0.350 0.185 0.077 0.107 0.084
Table 3.2 The RMS error averaged over frames of different phonemes for width (W) and
height (H) of the mouth of the real speakers and their corresponding 3D heads that were
mapped to each other using different facial features tracking systems. Values in bold
means the decreased RMS error.

lip motions are hard to detect, thus it requires user-specific training or labeling (see

[74, 100, 101, 129]). As a result, two different approaches of reconstructing 3D faces from

2D images with the aid of landmarks were tested in order to select a suitable approach

that provides a proper detection of lip motion during speech. The first approach is

presented by Bas et al [18], which is based on fitting a 3DMM to 2D images using edges

and landmarks. The second approach is presented by Huber et al [126], which is based

on only landmarks for the fitting process.

In order to validate each approach, the procedure presented in the previous (Section

3.3) was followed. Figure 3.9 shows an example of consecutive frames of the phoneme

/ih/ for a real speaker (ID: S17) and the corresponding 3D head that were fitted to using

Bas et al.’s method (second row) and Huber et al.’s method (third row). This Figure

shows how the 3D head model fails to detect the real speakers’ mouth shape, when Bas

et al.’s method was used for the mapping process. The 3D lips are slightly opened, due to

fit the 3D head to the edges of the real speaker, which extends the 3D mesh, resulting in

restricting forming the lips. Figure 3.10 illustrates how the 3D head model gave a poor

performance when it was fitted to the real speaker (ID: S48) using Bas et al.’s method.

This gives the 3D lips a considerably opened mouth shape during the utterance of the

phoneme /uw/.
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Real speaker

Faceware Analyser

Face Plus Plus

R-CR-C

Figure 3.8 Consecutive frames of the phoneme /ih/ during utterance of the word "bin" for
a real speaker (ID: S48) (first row), and the corresponding 3D heads that are animated
using Faceware landmark set (second row), Face Plus Plus landmark set (third row) and
R-CR-R landmark set (forth row).

Table 3.3 shows the RMSE results averaged over each phoneme frames for width and

height of the mouth aperture of the real speakers and their corresponding 3D heads for

the two tested approaches. The 3D head models that were fitted to their corresponding

real speakers using Huber et al.’s method give the lowest RMSE scores for width and

height. Therefore, Huber et al.’s method was chosen based on the level of accuracy for

lip motion detection during speech provided by this approach. Furthermore, it does not

require any aid from the user as in Bas et al.’s method that requires manual adjustments

for landmarks and edges weights.
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Phoneme
Bas et al.’s Method Huber et al.’s Method
S17 S48 S17 S48

W H W H W H W H
/ao/ 0.468 0.600 0.711 0.240 0.162 0.036 0.062 0.025
/ay/ 0.183 0.244 0.047 0.874 0.048 0.082 0.039 0.028
/b/ 0.417 0.203 0.410 0.276 0.098 0.138 0.149 0.025
/ih/ 0.201 0.338 0.500 0.626 0.036 0.025 0.156 0.029
/s/ 0.332 0.301 0.484 0.494 0.066 0.047 0.047 0.106

/uw/ 0.188 0.541 0.622 0.194 0.185 0.077 0.107 0.084
Table 3.3 The RMS error averaged over frames of different phonemes for width (W) and
height (H) of the mouth of the real speakers and their corresponding 3D heads that
were mapped to each other using two different approaches. Values in bold means the
decreased RMS error.

To generate the 3D animation, the facial features of a real speaker in a front-view 2D

video frame need to be tracked, and the corresponding 3D landmarks need to labelled on

the corresponding 3D head. Given the tracked 2D landmarks and the corresponding 3D

landmarks, a pose of the face is estimated and fitted to the real speaker’s mouth shape.

The following sections explain the 2D facial landmarks tracking process and how the

pose of the 3DMM is estimated and fitted to the mouth shape of a real speaker using

the camera matrix method presented by Huber et al [126].

3.4.1 2D Facial Landmarks Tracking

In order to track the facial features of a real speaker in a video, the random cascaded-

regression copse (R-CR-C) approach presented by Feng et al [91] is used, which regresses

a set of extracted facial feature landmarks from the input image f(I, θ) to fit a predictive

shape model δθ to the true shape. Given a set of labelled 2D images as a training

set T = {I1, . . . , IN}, random sub-sampling is applied on T to generate W subsets

W = {T1, . . . , TW }. Then a single CR thread is trained using each subset defining a

copse as follows:

U = {R1, R2, . . . , RW }, (3.3)
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Real speaker

Bas method

Huber method

Figure 3.9 Consecutive frames of the phoneme /ih/ during utterance of the word "bin" for
a real speaker (ID: S17) (first row), and the corresponding 3D heads that are animated
using Bas et al’s method (second row) and Huber et al’s method (third row).

Real speaker

Bas method

Huber method

Figure 3.10 Consecutive frames of the phoneme /uw/ during utterance of the word "soon"
for a real speaker (ID: S48) (first row), and the corresponding 3D heads that are animated
using Bas et al’s method (second row) and Huber et al’s method (third row).
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each CR thread R is formed by D weak regressors for each subset W as follows:

Rw = {rw,1, rw,2, . . . , rw,D} (3.4)

where rw,d = {Aw,d, bw,d} (d = 1, . . . , D), Ad presents the projection matrix and bd

presents the offset of the dth regressor. A series of linear regressors Rd are used to learn

this mapping from a training dataset, where

Rd : δθ = Adf(I, θ) + bd (3.5)

Based on that, when a video is run, a learned landmark detection model using the

Ibug-Helen test set [214] will detect and track the facial features of the real speaker.

3.4.2 Pose Estimation

Given 51 2D landmarks and the corresponding 3D landmarks a pose of the face is

estimated using the Gold Standard Algorithm [112]. It computes a least squares ap-

proximation of the camera matrix that is used to reconstruct the 3D shape from given

2D-3D point pairs [125]. Figure 3.11 shows the facial landmarks labelled on a video

frame of a real speaker (left) and on the corresponding 3D head model (right) that

correspond to a set of Ibug1 facial landmarks (the contour landmarks were excluded).

Firstly, the labelled 2D landmarks in the video frame xi ∈ R3 and the corresponding

3D head model landmarks Xi ∈ R4 are presented in homogeneous coordinates, then

they are normalised using similarity transforms that transform the centroid of the 2D

and 3D landmarks to the origin, making the the Root Mean Square distance from their

origin
√

2 for the 2D landmarks and
√

3 for the 3D landmarks as presented in the following:

x̃i = Txi, T ∈ R3×3 and X̃i = UXi, U ∈ R4×4

1https://ibug.doc.ic.ac.uk/resources/facial-point-annotations
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Figure 3.11 The facial landmark points labelled on a real speaker (left) and the corre-
sponding 3D head model (right).

Using the Gold Standard Algorithm [112], a normalised camera matrix can be

computed C̃ ∈ R3×4 as follows:

X̃T
i 0T

0T X̃T
i


C̃T

1

C̃T
2

 =

x̃i

ỹi

 (3.6)

where C̃T
1 and C̃T

2 are the first and the second rows of C̃ while the third row is

[0, 0, 0, 1], and x̃i and ỹi present the coordinates of x̃i. Then the final camera matrix that

minimises∑
i ∥xi − CXi∥2 is denormalised as follows:

C = T −1C̃U (3.7)
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3.4.3 Shape Fitting

The most likely vector of PCA shape coefficients, α, is found by minimising the following

cost function:

E =
3L∑
i=1

(y3D,i − y2D,i)2

2σ2
2D

+ ∥α∥2
2 (3.8)

where L is the number of landmarks, y2D,i is the 2D landmarks represented in homogeneous

coordinates, σ2
2D is an ad hoc variance of these landmarks, and y3D,i is the projected 3D

landmarks to a 2D plane using the camera matrix [125]. In more detail, y3D,i = Pi(V̂hα+v),

where Pi is the i-th row of matrix P which includes copies of the matrix C on its diagonal,

and V̂h is a matrix of a modified PCA basis that contains the rows that correspond to

the landmarks that the shape is mapped to. In addition to inserting a row of zeros after

each third row of the matrix V , and then multiplying the basis vectors by the square root

of their corresponding eigenvalue. With this, the cost function presented in Equation 3.8

can be represented as a standard linear least squares form. Using such an uncomplicated

linear system makes iteration of the pose estimation, and the shape fitting stages for

refining the estimates run fast. For refining the face pose, the pose estimate can employ

the shape estimate instead of using the mean face. The shape estimate can employ the

refined camera matrix to enhance fitting the shape.

3.5 A 2D Dataset for Creating, Animating and Eval-

uating the 3DMM

In order to personalise the 3DMM, either front-view photograph or front- and side-view

photographs of a real speaker are required, which can be supplied to FaceGen software

for creating the initial neutral 3D head pose (see the red dotted box in Figure 3.12).

Furthermore, 2D front-view videos of a real speaker are required to animate the 3DMM

(see the green dotted box in Figure 3.12). Besides, the resulting 3D lip motions should be

evaluated; front- and side-view 2D videos of the corresponding real speaker can be used

to compare against (see the brown dotted box in Figure 3.12). The width and height of
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the animated 3D lips can be assessed using the front-view videos (see the grey dotted box

in Figure 3.12), while the side-view videos can be used to assess the 3D lip protrusion

(see the yellow dotted box in Figure 3.12). Thus, a corpus that contains both front- and

side-view 2D videos that include rich phonetic features of real speakers is required.

The Audiovisual Lombard Grid Speech corpus [10] will be used in this thesis. The cor-

pus is provided by the University of Sheffield to support joint computational behavioural

studies in speech perception. The form of the corpus was based on the Grid corpus [59],

which is inspired by the coordinate response measure (CRM) corpus [183]. The sentence

of the CRM corpus is in the form: "READY" <call sign> GO TO <colour> <digit>.

The CRM corpus was formed by eight call signs, four colours and eight digits, resulting

in 2048 sentences that were uttered by eight speakers. The Grid corpus altered the

CRM sentence structure with richer phonetic features, by including four commands, four

colours, four preposition, 25 letters, ten digits and four adverbs. Table 3.4 presents the

structure of the GRID corpus sentences. Each sentence contains a 6 word sequence and is

formed as follows: "<command> <color> <preposition> <letter> <digit> <adverb>".

An example sentence is: "bin blue at A 3 please". Consequently, this corpus contains

greater variety and richer high-level semantic details due to including the filler words

(command, preposition, and adverb), which are not static.

The corpus consists of both front- and side-view videos of 54 speakers (30 female

and 24 male) uttering sentences from the GRID corpus [59]. Each speaker utters 100

sentences, 50 in a Lombard condition and 50 in plain conditions. Figure 3.13 shows the

helmet that was used to record the front- and side-view videos for each real speaker.

Audio files are sampled at 48 kHz. Front video files are sampled at 24 fps (frames per

second) with the frame sizes of 720 × 480, while side video files are sampled at 30 fps

with a frame size of 864 × 480. Figure 3.14 shows example frames of recorded videos

from front- and side-view cameras. Only front-view videos of plain sentences are used for

mapping between the 3DMM and the corresponding real speaker, while both front- and

side-view videos are used for evaluating performance of the 3DMM.
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Figure 3.12 Flow diagram of using 2D dataset for creating, animating and evaluating the
3DMM.

command color preposition letter digit adverb
bin blue at A-Z 1-9, again
lay green by excluding zero now

place red in W please
set white with soon
Table 3.4 The structure of the GRID sentences [59].

Figure 3.13 The used helmet for recording the front- and side-view videos of real speakers.

A pool of 27 speakers (12 male and 15 female) of the Audiovisual Lombard Grid

Speech corpus was selected to validate the performance of the 3D head models. This pool

contains videos of real speakers who their faces are not obscured by glasses or facial hair,
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Figure 3.14 Selected examples of front- and side-view frames of the dataset.
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heads are not tilted downward, and bottom chin points are visible. The purpose of this

step was to facilitate the facial landmark annotation process in the Facegen software tool

(see Section 3.2.1). This is considered the main limitation of this thesis, where choosing

an inappropriate photograph of a real speaker leads to an insufficient neutral 3D head

pose, consequently resulting in undesired 3D lip motions.

There is a variety of facial appearances between individuals due to the basic differences

in facial features. For example, person A has thicker lips than person B, and person C

has a longer nose than person D. Therefore, facial features of real speakers of the selected

pool were classified to investigate different mouth shapes of the real speakers on the

resulting 3D lip motions.

To analyse the facial features of the real speakers, a method that presented by

Roelfose et al [209] was applied. They used morphometrical methods to classify facial

features of South African males photos to investigate common and rare features in this

community. For each speaker, video frames were investigated to select the appropriate

frame, where the face has a neutral pose shape. Faceware Analyser software was used to

process the video frames to extract 12 facial landmarks that are shown in Figure 3.15.

Then 13 measurements were taken using the Euclidean distance between the extracted

landmarks to calculate a total of 12 indices (see Figure 3.16). Each index was calculated

by dividing the smaller measurement by the larger measurement and multiplying the

quotient by 100. Ranges of each index then were used to classify the features into different

morphological categories (low, middle and high). In order to create the classes for each

index, the distributional properties of the data were investigated using box-whisker plots

as presented in Table 3.5.

Based on the facial features classification of the real speakers, six real speakers (four

female (IDs: S15, S17, S24, and S32) and two male (IDs: S20 and S48)) were selected. In

order to investigate the performance of the 3DMM using different sets of facial landmarks

(see Section 3.6) and using different amounts of data during creating and training the

3DMM (see Chapter 4). Since this thesis looks into animating lips of a 3D head using

2D videos of a real speaker, classes of two indices relate to mouth features, which are
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Figure 3.15 Used biometric landmarks of the face ( L1 = nasion, L2 = endocanthion, L3
= exocanthion, L4 = alare, L5 = subnasale, L6 = labiale superius, L7 = stomion1, L8=
stomion2 L9 = labiale inferius, L10 = gnathion, L11 = cheilion, L12 = zygion)

vertical mouth height (index 7) and mouth width (index 10) were considered to select

the six speakers. For example, some of the selected speakers have low (ID: S48), middle

(ID: S32) and high (ID: S17) vertical mouth height, and some of them have low (ID:

S32), middle (IDs: S15, S24, and S48) and high (ID: S20) mouth width.

For each real speaker, front-view videos of four plain sentences were selected to be

mapped to the corresponding 3D head. The selected sentences contain four commands,

four prepositions, four different letters and digits, and four adverbs (see Table 3.4) to give

phonetic variation in the pool. Although all 25 letters and ten digits were not included

in the four selected sentences, which may reduce the chance of presenting the included

phonetic features, the filler words (commands, prepositions, and adverbs) provide a

variety of the English phonemes.
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Figure 3.16 Measurements taken from each frame.

3.6 Investigating Facial Feature Landmarks in the

Mapping Process

Estimation of a 3D face pose from a 2D image can be achieved by minimising the

difference between the 2D landmarks identified on the real face and the corresponding

3D landmarks labelled on the 3D face. Different numbers of feature points have been

used for 3D facial expression recognition, for example 74 points [42], 75 points [41], or 83

points [232]. Therefore, it is worth investigating the functionality of each set (lips, nose,

eyes, eyebrows, and contours of the face) of the facial features landmarks in the mapping

process for 3D lip motion detection. The questions that arise in this context are:

1. What is the role of each feature set of the facial features in the mapping process?

2. Is it possible to animate the lips of a 3D head using the lip’s landmarks only?
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Index Calculation Low Middle High
Facial (100 * (D1/D2)) Short, wide

<83.68
83.68−89.52 Long, narrow

>89.52
Intercanthal (100 * (D4/D3)) Close

<33.59
33.59−35.50 Far apart >35.50

Nasal (100 * (D6/D5)) Narrow
<73.55

73.55−95.97 Wide >95.97

Nasofacial (100 * (D5/D1) Short
<42.23

42.23−47.49 Long >47.49

Nose-face width (100 * (D6/D2)) Narrow
<28.91

28.91−32.66 Wide >32.66

Lip area (100 * (D7/D8)) Thin
<29.79

29.79−35.53 Thick >35.53

Vertical mouth
height

(100 * (D7/D1)) Low, thin
<13.58

13.58−16.22 High, thick >16.22

Upper lip
thickness

(100 * (D9/D1)) Thin <3.93 3.93−5.61 Thick >5.61

Lower lip
thickness

(100 * (D10/D1)) Thin <9.23 9.23−11.44 Thick >11.44

Mouth width (100 * (D8/D3)) Narrow
<49.18

49.18−54.80 Wide >54.80

Chin size (100 * (D11/D1)) Short
<22.79

22.79−27.18 Long >27.18

Nose-upper-lips (100 * (D12/D13)) Narrow
<25.88

25.88−29.08 Wide >29.08

Table 3.5 Metrical features (indices) of the audio-visual lombard grid speech corpus’s
speakers.

In this experiment front-view videos of real speakers were mapped to their corre-

sponding 3D heads using different sets of facial features landmarks. Five sets were used

to map the real faces to the corresponding 3D heads. Figure 3.17 shows the sets.

3.6.1 Evaluation

In order to validate the performance of the animated 3D lip motion, videos of four

female speakers (IDs: S15, S17, S24 and S32) and two male speakers (IDs: S20 and

S48) from the Audiovisual Lombard Grid Speech corpus [10] were used (see Section 3.5).

For each real speaker, four plain sentences from the front view video files were chosen
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F1: Lips

F2: F1 + nose

F3: F2 + eyes

F4: F3 + eyebrows

F5: F4 + contours

Figure 3.17 Sets of landmarks that used to map real faces to the corresponding 3D heads.
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W

H

Figure 3.18 Definition of the critical landmarks to measure the width (W) and height
(H) of mouth aperture.

to be mapped to each corresponding 3D synthetic head that is generated using front

and side-view photographs and trained using 161 poses. The chosen sentences contain

different words (e.g different verbs (bin, lay, place and set) and letters (a, b, etc.)), in

order to contain the maximum number of English phonemes. The resulting 3D head

animation was then compared to the original ground-truth 2D videos. This was done for

each set of landmarks shown in Figure 3.17.

For the comparison, Faceware Analyser software [2] was used to track the facial

features in the ground-truth 2D video and the front-view (2D) of the corresponding 3D

animation. Two geometric articulatory measurements, as shown in Figure 3.18, were

calculated from the extracted facial features, following the previous literature [4]. These

are:

• Width of mouth aperture measurement (W), which is defined by the horizontal

distance between the right and left inner corners of the lips.

• Height of mouth aperture measurement (H), which is defined by the distance

between the top and the bottom middle of the inner mouth contour.

In order to correct the distance between the camera and the real speaker or the talking

3D head, all the landmarks were normalised by using the Euclidean distance between
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the midpoint of the inner corners of the eyes and the nose tip’s point following a study

in [9]. These points are considered reference of a measure in imaging systems, since they

are not affected by the articulations or the facial expressions [48]. All visual articulatory

features for the real speakers and their corresponding 3D heads were normalised by their

corresponding maximum and minimum mouth measurements in the videos. This gives

all the articulatory measurements on a [0-1] scale. Given the width and height values for

each frame of animation, for both the 2D video for a real speaker and the corresponding

3D animation, the root mean square error (RMSE) over a sentence was used to evaluate

the role of each set of the facial features in the mapping process following a study in [252].

More discussion about evaluating the quality of visual speech is presented in Section 2.5.

3.6.2 Results and Discussion

Figure 3.19 shows an example of consecutive frames of a real speaker (ID: S 24) and the

corresponding 3D head that was fitted to the real speaker’s face using different sets of

landmarks, during utterance of the phoneme /b/ of the word "bin" from sentence "bin

white in N 3 now". This Figure shows that the performance of the animated 3D lips

improves when F3 set was used for the mapping process, and further improves when F4

set was used which contains the eyebrows landmarks, due to keeping the spatial distance

between the facial features of the 3D head during the animation process. In case of

using the set F2, the lips were completely distorted, because vertices of the cheeks’ mesh

were extended. Using the set F3 that contains the eyes landmarks restricted the cheeks,

thus the lip motions were enhanced. Also, it can be noticed that the 3DMM gives poor

estimation to the real speaker’s pose when F5 set was used. This is because of using the

contour landmarks that slightly shrinks and restricts the mesh of the 3D face, resulting

in a partially opened mouth shape. Figure A.1 shows another example of consecutive

frames of a real speaker (ID: S 48) and the corresponding 3D head that was fitted to the

real speaker’s face using different sets of landmarks, during utterance of the phoneme /b/

of the word "bin" from sentence "bin white with V 7 soon". This Figure shows how the

3D mouth shape matched the real speaker when the set F3 was used for the animation
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Speaker ID F1: Lips F2: F1+Nose F3: F2+Eyes F4: F3+eyebrows F5: F4+Contour
W H W H W H W H W H

S15 0.518 0.140 0.296 0.183 0.146 0.117 0.131 0.087 0.153 0.099
S17 0.252 0.192 0.116 0.118 0.095 0.119 0.092 0.095 0.129 0.106
S20 0.366 0.347 0.187 0.201 0.278 0.167 0.244 0.155 0.245 0.192
S24 0.303 0.158 0.287 0.137 0.276 0.136 0.219 0.123 0.254 0.105
S32 0.339 0.128 0.247 0.156 0.165 0.071 0.111 0.056 0.157 0.087
S48 0.378 0.111 0.198 0.125 0.125 0.068 0.149 0.071 0.180 0.091

Table 3.6 The RMS error averaged over 4 sentences for width (W) and height (H) of
the mouth of the real speakers and their corresponding 3D heads that were mapped to
each other using different sets of facial features landmarks. Values in bold means the
decreased RMS error. Width and height error=±0.001.

process. However, the texture was distorted around the mouth area as illustrated in

Figure A.2, that confirms the importance of using the eyebrows landmarks.

Table 3.6 shows the RMSE results averaged over 4 sentences for width and height

of the mouth aperture of the real speakers and their corresponding 3D heads. The 3D

head models that were fitted to their corresponding real speakers using F4 set give the

lowest RMSE scores for height for four out of six of the speakers and width for five out

of six of the speakers. For the width, a t-test suggests a significant difference in RMSE

results for the 3D heads that were fitted to the real speakers’ faces using F4 set versus F1

set (p=0.0059) and F5 set (p=0.0065), this is perhaps due to stretching the mesh of the

lip when F1 set was used and shrinking when F5 set was used. There is no significant

difference for F2 set (p=0.1061) and F3 set (p=0.1300). Also, there is a significant

difference for height between the 3D heads that are fitted to the real faces using F4 set

and F1 set (p=0.0193), F2 set (p=0.0130) and F3 set (p=0.0220), although there is no

significant difference for F5 set (p=0.1074). Due to slight changes in lip closure when

contour landmarks are used. Based on these results, the F4 set will be used to animate

the 3D heads in the rest of this thesis.
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3.7 Summary

This chapter presented how the 3D Morphable Model was constructed using synthetic 3D

head poses that were generated using a commercial software (FaceGen), which provides

vertices correspondences for the generated models, solving a problem of the variability

in vertices numbers of the scanned 3D real faces. First, the synthetic 3D head poses

dataset was introduced which was used to train the 3D Morphable Model, that was

generated by applying PCA to the vertices of the head poses. The stages for mapping

between 2D video frames of a real speaker and the 3D head model were then presented.

This mapping process was achieved following the method presented by Huber et al [125]

that automatically fits 3D faces to 2D images using markers on both 2D and 3D faces.

Furthermore, the dataset that are used to create the initial 3D head pose, animate the

3D heads and evaluate the resulting 3D lip motion was reviewed. In addition to, a study

was presented that investigates the role of each set of the facial features in the mapping

process. The results confirmed that using facial features landmarks, including eyebrows,

eyes, nose, and lips gives the best performance of the 3D lip motions, while including the

contour landmarks impedes achieving the desired lip motions due to restriction of the

face mesh. In the next chapter, the implementation and evaluation of performance of the

animated 3D lips using the facial features landmarks (i.e. F4 set presented in Section

3.6 ) will be presented. Also, experiments with different data sets being used to build

different 3DMMs for a real speaker will be presented.
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Real speaker

Using set F1:
Lips

Using set F2:
F1 + nose

Using set F3:
F2 + eyes

Using set F4:
F3 + eyebrows

Using set F5:
F4 + contours

Figure 3.19 Consecutive frames of the phoneme /b/ during utterance of the word bin
from sentence "bin white in N 3 now" for a real speaker (ID: S 24) and the corresponding
3D head animated using each set of facial features landmarks.





Chapter 4

3D Visual Speech Animation Using

2D Videos

4.1 Introduction

The intelligibility of speech communication is increased when visual signals such as facial

expressions and lip motions are combined with speech [158]. It is therefore paramount

that such visual signals are well integrated with an original, or synthetic, auditory speech

signal to produce a realistic talking virtual character. This chapter presents an approach

for visual speech animation that involves driving the lip motion of a synthetic 3D head,

in accordance with tracked lip motion in front-view 2D videos of a real speaker. This

is achieved through a mapping between corresponding landmarks identified in the 2D

videos, and a 3DMM built using 3D synthetic head poses (see Section 3.2). The 3D

synthetic head poses are generated using commercial software (FaceGen [1]) to train the

model as explained in Chapter 3. The 3DMM is fitted to front-view 2D video of a real

speaker (from [10]) using the method in Huber et al.’s work [125], which uses a 3DMM

to reconstruct 3D faces from images by minimising the difference between 2D and the

corresponding 3D landmarks. Using geometric features such as landmarks to estimate

shape is independent of illumination effects and limited resolution. This makes detection

of lip motions in 2D videos accessible and does not require manual labelling or training
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as in the mapping algorithms based on depth (i.e. RGB_D) data [74, 100, 101, 129].

Given a shape estimate, a linear method can be derived to fit the estimated shape to the

real face pose in a manner which is repetitive and fast.

3DMMs [32] have been widely used for different applications such as 3D visual speech

animation [67, 186], face recognition [31, 102], controlling 3D avatars for gaming [49],

visual dubbing [98], and face reanimation [30, 240, 205]. For these kinds of applications,

a large number of publicly available 3D scanned datasets that include either real neutral

face poses only [34, 198] or neutral poses and different expressions [102, 262] were used.

Such models and approaches, however, do not consider how using different amounts of

data in different stages of constructing a 3DMM influences the final animation results.

For example, how scanning the face from different views (i.e. front and side-views) and

using different numbers of face scans would affect the resulting animation. For this

reason, a series of experiments were conducted to investigate this. The experiments

address two main questions:

1. Would using both front- and side-view photographs, rather than just a front-view

photograph, in the construction of the initial 3D head pose produce better animation

results?

2. Would using different intensities of the same viseme shape (e.g. different amounts

of mouth openness for the same viseme) when constructing the 3DMM produce

better animation results?

In this chapter, four different 3DMMs are generated for each real speaker using either

front-view photograph only or front- and side-view photographs to create the initial

3D head pose, and using different numbers of 3D head poses to train each 3DMM (see

the red dotted box in Figure 4.1). Then 2D front-view videos of the real speaker are

mapped to each corresponding 3DMM (see the green dotted box in Figure 4.1). Finally,

the front-view videos of a real speaker are used to evaluate the performance of each

corresponding 3DMM (see the left diagram in the brown dotted box in Figure 4.1).

Additionally, the lip protrusion of each 3DMM will be evaluated using the side-view
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videos in this chapter as well (see the right diagram in the brown dotted box in Figure

4.1). The experiments examine to what extent the side-view photograph contributes to

give a closer 3D head shape to the real speaker, which enhances the resulting 3D lip

motions. Furthermore, they investigate the effects of using different intensities of each

viseme on width and height of the mouth aperture, which provide a variety of mouth

shapes during speech.

This chapter is organised as follows: Section 4.2 will present the data sets used to

build different 3DMMs for a speaker. Section 4.3 will present the front-view evaluation

of the 3D lip motions. This includes the evaluation of the final synthetic 3D animation

results for each 3DMM, in comparison with ground-truth data (the front-view videos

of a real speaker [10]) (Section 4.3.1), and the discussion of the results (Section 4.3.2).

Section 4.4 will provide the side-view evaluation of the resulting animation, including

the evaluation of the final synthetic 3D animation results for each 3DMM, in comparison

with ground-truth data (the side-view videos of a real speaker [10]) and the discussion of

the results. Finally, Section 4.5 summaries this chapter.

4.2 The Data Sets of 3DMM

Four data sets were used to build different 3DMMs for a speaker. Table 4.1 summarises

the data sets, and the red dotted box in Figure 4.1 explains the stages of preparing these

data sets. The differentiating factors are whether a front-view photo only or front- and

side-view photos are used in constructing the neutral head pose and whether 17 (16

visemes and a neutral pose) or 161 poses (10 intensity variations of 16 visemes and a

neutral pose) are used for a 3DMM.

Figure 4.2 shows the front and side photographs of a real speaker (ID: S32) and the

corresponding 3D heads that were generated using a front-view photograph only (left),

and front- and side-view photographs (right). More figures are presented in Appendix

B (Figures B.1 - B.3) that show how the 3D face is flattened when only the front-view

photograph is used to generate the initial neutral 3D head pose, and how the lips are
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Figure 4.1 Schematic view of animating and evaluating 3D lips of each 3DMM.

more protruded when both the front and side-view photographs are used, giving the 3D

head a natural shape which is closer to the real speaker. Each of the data sets was used
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in producing a 3DMM, which was subsequently used in the process described in Chapter

3.

Number of poses Front-view Front- & side-views
17 poses Dataset 1 Dataset 3
161 poses Dataset 2 Dataset 4

Table 4.1 17 or 161 poses in combination with front-view only or front- and side-views
photos are used to prepare four data sets.

4.3 Front-view Evaluation of 3D Lip Motion

In this section, the front-view videos are used to evaluate the performance of different

3DMMs that created for each real speaker. Either front-view photograph only or front-

and side-view photographs are used to create the initial neutral 3D head pose, and 17

poses or 161 poses are used to train the model. The aim of this section is to investigate

whether using a side-view photograph with the front-view photograph to create the

initial neutral 3D heads pose, and training the 3DMM with different numbers of viseme

intensities enhances the resulting 3D lip motions.

4.3.1 Evaluation

The evaluation process presented in Section 3.6.1 was followed to evaluate the performance

of the animated 3D lip motion of each 3DMM. This includes using videos of four female

and two male speakers from the Audiovisual Lombard Grid Speech corpus [10], choosing

four plain sentences from the front-view videos for each speaker to be mapped to each

corresponding 3D head, and comparing 2D videos of the resulting 3D animation to the

original ground-truth 2D videos. This was done for each of the 3DMMs built for the 4

data sets summarised in Table 4.1. Faceware Analyser software [2] was used to track

the facial features of both the real speakers and the corresponding 3D animation in

2D videos. Two articulatory measurements (see Figure 3.18) that represent the width

and height of the mouth aperture were calculated. Then the extracted features were
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Figure 4.2 First row: Front (left) and side (right) photographs of a real speaker (ID:
S32); Second row: front and side view of the corresponding 3D heads generated using
front photograph only (left) and front and side photographs (right) – the lips are more
protruded in the image on the right.
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normalised to correct the distance between the camera and the speaker, and scaled to

give the articulatory measurements on a [0-1] scale as explained in Section 3.6.1. Given

the width and height values for each frame of animation, for the 2D videos of a real

speaker and the corresponding 3D animation, the root mean square error (RMSE) over a

sentence was used to evaluate the effectiveness of each 3DMM.

4.3.2 Results and Discussion

This section presents results of mapping front-view 2D videos of each real speaker to

each corresponding 3DMM. The 3DMMs were created using front-view photograph only

or front- and side-view photographs to generate the initial neutral 3D head pose; and

then 17 or 161 3D head poses were used to train the 3DMMs as explained in Section

4.2. Figure 4.3 shows an example of consecutive frames of the phoneme /w/ during

utterance of the letter "Y" from the sentence "place green in Y zero again" for a real

speaker (ID: S17) and the corresponding 3D head for each data set. This figure shows

that the performance of the animated 3D lips improves when front- and side-view photos

are used to generate the initial neutral 3D head pose in FaceGen (see the last two rows

in Figure 4.3), where the mouth aperture becomes smaller. This gives the 3D lips a

closer shape to the corresponding real speaker. For example, the thickness of the lips

in Figure B.1 shows the front and side photographs of the same real speaker and the

corresponding 3D heads that were generated using the front-view photograph only (left)

and the front- and side-view photographs (right). Also, the performance of the 3D lips

further improves and becomes closer to the real speaker when a larger number of 3D

head poses (i.e. different viseme intensities) are used to train the 3DMM.

Figure B.4 illustrates how the 3D head model fails to detect the phoneme /b/ during

utterance of the word "bin" from the sentence "bin white in N 3 now" for a real speaker

(ID: S 24) when less information was used to generate the 3D head model. The lips are

partially opened when the front-view photograph only was used to generate the initial

neutral 3D head pose (i.e. Dataset 1 and Dataset 2). When the front- and side-view

photographs were used, the lips become closer (e.g. Dataset 3) and the performance
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is enhanced when a larger number of poses were used to train the 3D head model (i.e.

Dataset 4). Figure B.5 illustrates how the 3D lips become more protruding during

uttering the phoneme /uw/ of the word "soon" from the sentence "bin white with V 7

soon" when front- and side-view photographs were used (i.e. Dataset 3), and have closer

shape to the real speaker when a larger number of poses were used to train the model

(i.e. Dataset 4).

Figure 4.4 shows the trajectories of the width and the height parameters of the mouth

aperture for the real speaker (ID: S17) and the corresponding 3D heads whilst uttering

the sentence "place green in Y zero again". Whilst all the trajectories generated using

the animation pipeline generally follow the real speaker’s trajectory, the trajectories of

the 3D heads that contain 161 poses and which are generated using front- and side-view

photos (i.e. Dataset 4) are much closer to the ground truth trajectory. Thus, using

different intensities of viseme data in the construction of the 3DMM, as well as one extra

photograph in the construction of the 3D head, improves the performance of the resulting

3D lip motions.

For the width parameter (W), the trajectories of the 3D head that is generated using

the front-view photo only and trained with 161 poses (i.e. Dataset 2) is closer to the

ground truth’s trajectory especially for spread phonemes such as /ey/, /iy/ and /s/,

due to using larger number of poses for training the model which gives the model more

variations of spread mouth shapes. For the height parameter (H), the model that is

generated using front- and side-view photos and trained with 17 poses (i.e. Dataset 3)

performs properly for the protruding rounded phonemes such as /w/ and /ow/, due to

using side-view photo for creating the initial neutral 3D head pose which gives the lips

more protruding shape as shown in Figure B.1. This is confirmed by Table 4.2 that

shows the RMSE results for each phoneme for the two corresponding 3D heads of the

real speaker (ID: S17). Also, the same behaviour can be observed in Figure B.6 that

shows the trajectories of the width and the height parameters of the mouth aperture for

a real speaker (ID: S32) and the corresponding 3D heads whilst uttering the sentence

"place blue at Y 4 now".
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Real speaker

Using Dataset 1:
17 poses,
front-view photo

Using Dataset 2:
161 poses,
front-view photo

Using Dataset 3:
17 poses, front-
and side-view photos

Using Dataset 4:
161 poses, front-
and side-view photos

Figure 4.3 Consecutive frames of the phoneme /w/ during utterance of the letter y from
sentence "place green in Y zero again" for a real speaker (ID: S17) and the corresponding
3D head for each data set.

Table 4.3 shows the RMSE results averaged over 4 sentences for width and height of

the mouth aperture of the real speakers and their corresponding 3D heads. The 3DMMs

that contain 161 poses and are generated using front-view photo only (i.e. Dataset 2) give

closer results to the 3DMMs that are generated using Dataset 4 for most of the speakers.

Due to including larger number of poses that give more variations in mouth width which

makes the model closer to the real speaker. This can be clearly observed from Figure

4.5 that shows the error bars of the width parameter (W) of the mouth aperture of the
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Figure 4.4 Width and height of mouth trajectories of 2D frames of the real speaker
(ID:S17) and the corresponding 3D heads. Top two compare height and width between
17 and 161 poses (both with front- and side-view photos), while the bottom two compare
height and width between front- view photo only and front- and side-view photos (both
with 161 poses).
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ID Phoneme
Front photo Front + side photos
161 poses 17 poses
W H W H

S17

ey 0.040 0.120 0.100 0.097
iy 0.145 0.052 0.149 0.051
s 0.082 0.075 0.137 0.049

ow 0.051 0.059 0.048 0.050
w 0.122 0.140 0.128 0.114

Table 4.2 The RMS error averaged over frames of spread phonemes (/ey/, /iy/, and /s/)
and protruding rounded phonemes (/w/ and /ow/) for width (W) and height (H) of the
mouth of a real speaker (ID: S17) and the corresponding 3D heads created using Dataset
2 and Dataset 3 during utterance of sentence "place green in Y zero again". Values in
bold indicate the lowest RMS errors for width and height in each row.

corresponding 3D heads of each real speaker. Uncertainty in the reported measurement

is calculated by adding and subtracted 2 pixels to and from all the articulatory features

for both the real speakers and their corresponding 3D heads.

The 3DMMs that are generated using front- and side-view photos and trained with

17 poses (i.e. Dataset 3) give better results than the 3DMMs that are generated using

front-view photo only and trained with 17 poses (i.e. Dataset 1) for most of the speakers,

which emphasizes on the importance of using the side-view photo to construct the initial

neutral 3D head pose in enhancing the final animation.

This interpretation is similar to the height parameter (H), where the 3DMMs that

contain 17 poses and which are generated using both front- and side-view photos (i.e.

Dataset 3) give closer results for most of the speaker. This is due to using the side-view

photos to create the initial neutral 3D head pose which gives the lips more thickness

shape that is closer to the real speaker (see Figure 4.3), and subsequently affects the

closure of the lips (see Figure B.4). This is noticeable from Figure 4.6 that shows the

error bars of the height parameter (H) of the mouth aperture of the corresponding 3D

heads of each real speaker.

For the 3D heads that contain 161 poses, a t-test suggests a significant difference in

RMSE results for the 3D heads that use front- and side-view photos versus front-view
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ID
Front photo Front+side photos

17 poses 161 poses 17 poses 161 poses
W H W H W H W H

S15 0.152 0.120 0.154 0.117 0.129 0.102 0.131 0.087
S17 0.121 0.137 0.115 0.128 0.120 0.109 0.092 0.095
S20 0.239 0.166 0.247 0.158 0.229 0.156 0.244 0.155
S24 0.287 0.141 0.223 0.151 0.260 0.142 0.219 0.123
S32 0.117 0.067 0.115 0.075 0.210 0.067 0.111 0.056
S48 0.199 0.086 0.175 0.080 0.203 0.075 0.149 0.071

Table 4.3 The RMS error averaged over 4 sentences for width (W) and height (H) of the
mouth of the real speakers and their corresponding 3D heads. Values in bold indicate the
lowest RMS errors for width and height in each row. Width and height error=±0.001.

photos only (p=0.0292 for width and p=0.0009 for height). Also, there is a significant

difference for height between the 3D heads containing 161 poses and 17 poses that are

generated using front- and side-view photos (p=0.0135), although there is no significant

difference for the width (p=0.0967). This is due to limited changes in this parameter

over time during uttering some phonemes, in comparison with the height parameter (H)

that detects the closure of the lips.

In summary, the evaluation produced two sets of results: using both a front- and

side-view photos in the construction of the neutral 3D head pose improves the results

in comparison to just using the front-view photo. In addition, increasing the number

of 3D head poses (different viseme intensities) to train the 3DMM further improves the

performance of the 3D lip motions. An example video of the resulting 3D lip motions

available at: https://www.youtube.com/watch?v=PzBxbDugvmA. These findings sup-

port the usefulness of using both front- and side-view photos to construct the neutral

pose of the 3D head, and different intensities of each viseme to train the 3DMM. In the

next section, further evaluation work of the resulting animation will be presented that

makes use of side-view videos.

https://www.youtube.com/watch?v=PzBxbDugvmA
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4.4 Side-View Evaluation of 3D Lip Motion

In the second language learning (L2) field, four skills of students should be improved

which are writing, reading, speaking, and listening [29, 124, 160]. The fundamental factor

of improving listening and speaking is pronunciation, due to its role in understanding

and being understood, also increasing self-confidence and promoting social interactions of

students in the surrounded environment [47, 94, 184]. There is a diversity in the phonetic

system of languages, which makes learners are required to learn new movements of the

speech articulators and do lots of effort to achieve sufficient pronunciation. A typical

example, Turkish learners often encounter difficulties in producing rounded vowels, due to

their inability to make the essential muscular effort for producing such sounds sufficiently

[119]. Another example is Japanese learners who are not able to pronounce rounded

sound vowels that require lip protrusion, due to lacking distinction between rounded and

unrounded vowels in their daily conversation [76].

3D talking heads can provide aid for learning pronunciation, where they can be

presented as virtual tutors on the computer screens in an engaging manner of the learning

process, starting from reading, to the pronunciation, ending with conversation practice

such as [174]. However, much investigation and accurate evaluation are needed before

presenting a new synthetic speech tool that can provide an unquestionable and efficient

aid to the pronunciation teachers, where any lack of consistency between the audio

signal and the visual signal leads to an ambiguous animated signal, resulting in incorrect

learning. This provided the motivation to investigate the impact of using different

amounts of data during constructing the 3DMM on the quality of lip protrusion of the

animated 3D heads.

The quality of 3D visual speech animation can be assessed objectively by re-synthesizing

a set of sentences according to ground truth speech signals. For each sentence, quality

measurement is defined by computing the similarity between the ground-truth and the

synthesized speech signal. This can be achieved using the location of specific feature

points in the face to calculate different geometric articulatory features for example width
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and height of the mouth [53] or the mouth aperture [208] and chin height [109]. Such

approaches, however, do not consider measuring the quality of lip protrusion of the

synthesised signal. Therefore, in this section front-view videos are used to generate the

3D lip motion, and side-view videos are used to evaluate the resulting 3D lip motion (i.e.

lip protrusion). Different amounts of data in the mapping process are investigated. To

facilitate this, a data set that contains both front- and side-view videos of speakers [10]

is used.

Unlike the previous section, where the results are evaluated only from a front viewpoint,

the results are evaluated from side views in this section. The aim is to investigate whether

or not adequate lip protrusion effects are produced when using only front-view videos in

the mapping process for the 3DMM.

4.4.1 Evaluation

In order to validate the lip protrusion of our 3D talking heads, videos of four female

speakers (IDs: S15, S17, S24 and S32) and two male speakers (IDs: S20 and S48) from

the Audiovisual Lombard Grid Speech corpus [10] were used. The front-view videos

were used for the mapping process and the side-view videos were used in the evaluation

process. For each real speaker, four plain sentences from the front-view video files were

chosen to be mapped to each corresponding 3D synthetic head (built using FaceGen,

as explained in Chapter 3). The selected sentences contain various words (e.g different

verbs, colours, letters, etc) in which the maximum number of English phonemes are

included. A side view of the resulting 3D animation was then compared to the original

ground-truth 2D side-view videos to measure lip protrusion. This was done for each

of the 3DMMs built for the 4 data sets summarised in Table 4.1 that is presented in

Section 4.2. Figure 4.7 shows a schematic view of the stages of evaluating the resulting

3D motions from the side-view.
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Front-view 2D video of 
real speaker

Datasets (3DMMs)Mapping Side-view 2D video of 3D 
lip motions

Evaluating

Side-view 2D video of real 
speaker

Figure 4.7 Schematic view of the stages of the evaluation process of 3D lip motion from
the side-view.

Extraction of Side-View Features

For each video, ground-truth 2D side-view video or the side-view (2D) of the corresponding

3D animation, a reference plane parallel to the frontal plane is determined manually

(see [4, 75, 149]). This is illustrated as a black line in Figure 4.8. From this a crop

area for the mouth is calculated according to the dimensions specified by the red dotted

square shown in Figure 4.8. The lip profile is then segmented from the background (by

mapping to black and white and thresholding (see Figure 4.9)) and a lip protrusion value

is calculated, defined by the horizontal distance between the foremost point of the upper

lip and the previous calculated reference plane, shown by the green line in Figure 4.8.

Given the upper lip protrusion value for each frame for both the 2D video for a real

speaker and the corresponding 3D animation, the root mean square error (RMSE) over a

sentence was used to evaluate the effectiveness of each 3DMM (see Section 4.4.2).

Normalisation of the Extracted Features

Following the same procedure that is presented in Chapter 3 (see Section 3.6.1), in order

to correct the distance between the camera and the real speaker or the talking 3D head,

all the landmarks were normalised by using the Euclidean distance between the root

of the nose and the nose tip’s point, since these were not affected by the articulations



94 3D Visual Speech Animation Using 2D Videos

Figure 4.8 Definition of the critical measurements to determine the lip protrusion pa-
rameter in the side-view of a real speaker. The black vertical line represents a reference
plane, the green horizontal line represents the measured distance for the lip protrusion,
and the red dotted square represents the cropped mouth area.

[48]. The nose landmarks for both the real speakers and their corresponding 3D heads

are detected following a similar procedure to detecting the upper lip protrusion. All

visual articulatory features for the real speakers and their corresponding 3D heads were

normalised by their corresponding maximum and minimum lip protrusion measurement

in the videos, giving a [0-1] scale. Also, since the camera system used in the recording

process was positioned differently on each real speaker’s head (see Figures 3.13 and 3.14),

the virtual camera used in calculations for the side-view videos of the animated 3D heads

was assumed to be directed at the mouth and the vertical angle was manually adjusted

to give a visual approximation to the real camera positioning for each mapped speaker.

Figure 4.10 shows an example of consecutive frames for the side-view 2D video of a real

speaker (ID: S 32), and different angles of the virtual camera for the corresponding 3D

head. The virtual camera angle was adjusted vertically but not horizontally.
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Figure 4.9 Cropped mouth area from side view frame of a real speaker (left), and the
corresponding binary image and calculated contours with highlighted points for the lip
protrusion parameter calculation (right).

4.4.2 Results and Discussion

Figure 4.11 shows an example of consecutive frames of the phoneme /w/ during utterance

of the word "white" from the sentence "bin white at A 9 now" for a real speaker (ID:

S17) and the corresponding 3D head for each data set used in building the 3DMM. This

Figure shows how the lips are flattened when the front-view photo only was used to

generate the initial neutral head pose in FaceGen, and 17 poses of the 3D head were used

to train the 3DMM (i.e. Dataset 1). The performance of the animated lips improves

(i.e. is more protruded) when front- and side-view photos are used to generate the initial

neutral 3D head pose and further improves when a larger number of 3D head poses (i.e.

different viseme intensities) are used for training the 3DMM. Figure B.1 shows how using

front- and side-view photos contribute to enhance the protrusion of the lips. Figure 4.12

shows how the lips become more protruding during utterance of the phoneme /w/ of

the word "white" from the sentence "bin white in N 3 now" for a real speaker (ID: S24),

when further information is added during generating the initial neutral 3D head pose

and training the 3DMM (i.e. Dataset 4).

Figure 4.13 shows the trajectories of the upper lip protrusion parameter (UL) for

the side-view video of a real speaker (ID: S17) and the corresponding 3D head for the

utterance "bin white at A 9 now". Generally, the trajectories of the 3D head that contains

161 poses and which are generated using front- and side-view photos (i.e. Dataset 4)
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a

b

c

d

e

f

Figure 4.10 Consecutive frames for the side-view of a real speaker (ID: S 32) (a); and
the corresponding 3D head ( the virtual camera positioned at the centre 0◦ (b), 12◦(c),
15◦(d), 17◦(e), and 21◦(f) respectively).
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Real speaker

Using Dataset 1:
17 poses,
front-view photo

Using Dataset 2:
161 poses,
front-view photo

Using Dataset 3:
17 poses, front-
& side-view photos

Using Dataset 4:
161 poses, front-
& side-view photos

Figure 4.11 Consecutive frames of the phoneme /w/ for the utterance of the word "white"
from the sentence "bin white at A 9 now" for a real speaker (ID: S17) and the 3D head
produced for each data set.
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Real speaker

Using Dataset 1:
17 poses,
front-view photo

Using Dataset 2:
161 poses,
front-view photo

Using Dataset 3:
17 poses, front-
& side-view photos

Using Dataset 4:
161 poses, front-
& side-view photos

Figure 4.12 Consecutive frames of the phoneme /w/ for the utterance of the word "white"
from the sentence "bin white in N 3 now" for a real speaker (ID: S24) and the 3D head
produced for each data set.
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are much closer to the ground truth trajectories. The trajectories of the 3D head that

contains 161 poses and which are generated using a front-view photograph (i.e. Dataset

2) show how the model performs properly for the bilabial phoneme /b/ and the rounding

phonemes /w/ and /aw/. This is due to including a larger number of viseme intensities.

The trajectories of the 3D head that contains 17 poses and which are generated using front-

and side-view photos (i.e. Dataset 3) are more adequate for the open lips phonemes /ay/,

/ae/, /ey/ and /ay/. This confirms the importance of using the side-view photograph

to create the initial 3D head pose that gives the 3D head a more protruding lips shape.

Thus, using side-view photo to construct the initial 3D head pose, as well as a larger

number of poses to train the 3DMM, enhances the performance of the resulting 3D lip

motions.

Table 4.4 shows the RMSE results averaged over 4 sentences for the upper lip

protrusion parameter of the real speakers and their corresponding 3D heads. The

3DMMs that contain 161 poses and which are generated using both front- and side-view

photographs (Dataset 4) give the lowest RMSE scores for all the speakers. For some

speakers, the 3DMMs that contain 161 poses and which are generated using only front-

view photo (Dataset 2) give lower RMSE scores, in comparison with the 3DMMs that

contain 17 poses and which are generated using both front- and side-view photographs

(Dataset 3). Therefore, using larger number of poses for training the 3DMMs improves the

resulting 3D lip motions, in addition to using side-view photo in the construction of the

initial neutral 3D head pose in FaceGen software. This can be observed from Figure 4.14

that shows error bars of the upper lip protrusion parameter (UL) of the corresponding 3D

heads of each real speaker. Uncertainty in the lip protrusion measurement is calculated by

adding and subtracted 2 pixels to and from all the features that were used to determine

this measurement.

For the 3D heads that contain 161 poses, a t-test suggests a significant difference in

RMSE results for the 3D heads that use front- and side-view photos (Dataset 4) versus

front-view photos only (Dataset 2) (p=0.0094) for the upper lip protrusion. Also, there
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Figure 4.13 Upper lip protrusion trajectories of 2D frames of the side-view video of a real
speaker (ID:S17) and the corresponding 3D head, whilst uttering the sentence "bin white
at A 9 now". Top: comparison of upper lip protrusion for models constructed with 17
and 161 poses (both with front- and side-view photos) against the real speaker; Bottom:
comparison of upper lip protrusion for models constructed using front-view photo only
and front- and side-view photos (both with 161 poses) against the real speaker.
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is a significant difference between the 3D heads containing 17 and 161 poses that are

generated using front- and side-view photos (Datasets 3 and 4, respectively) (p=0.0114).

ID
Front photo Front+side photos

17 poses 161 poses 17 poses 161 poses
UL UL UL UL

S15 0.318 0.291 0.278 0.236
S17 0.262 0.217 0.219 0.157
S20 0.248 0.256 0.256 0.246
S24 0.312 0.307 0.244 0.224
S32 0.303 0.338 0.349 0.266
S48 0.291 0.275 0.297 0.258

Table 4.4 The RMS error averaged over 4 sentences for upper lip (UL) protrusion of the
real speakers and their corresponding 3D heads. Values in bold indicate lowest RMSE.
UL error=±0.001.

The side-view evaluation of the 3D lip motions for each 3DMM confirmed how using

the side-view photograph to create the initial 3D head pose and larger number of 3D head

poses to train the 3DMMs enhanced the performance of the resulting 3D lip motions.

Further experiments can be conducted to improve the results, which involve using different

horizontal and vertical angles for the virtual camera to predict the angle of the camera

system that was used to record the real speakers’ data. Moreover, the lower lip protrusion

of the 3DMMs can be analysed to investigate the impact of using different amounts of

data during creation of the 3DMMs on the lower lip as well.

4.5 Summary

This chapter has presented a 3D talking head based on fitting a 3DMM, created using

synthetic data, to 2D video frames of a real speaker. Different amount of data were

used to create different 3DMMs for each real speaker. For each 3DMM, two sets of

photographs (front-view photograph only or front- and side-view photographs) were used

for generating the initial neutral 3D head pose. Then different numbers of 3D head poses

(17 or 161 poses) were used for training. The evaluation of the effectiveness of each
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3DMM from both front and side-views was presented. The performance of the animated

3D lip motion was evaluated using ground truth data to compare against.

For the front view evaluation, two articulatory measurements were extracted and

calculated from front-view 2D videos of the real speakers and the 3D lip motions: the

width and height of the mouth aperture. One articulatory measurement which is the

upper lip protrusion was extracted and calculated from side-view 2D videos of the real

speakers and their corresponding 3D heads for the side-view evaluation. The RMSE was

used over each sentence to calculate the difference between the articulatory measurements

of the real speaker and the 3D animation. In comparison with the ground truth videos,

the results of the front and side-view evaluations show that using both front- and side-view

photos in the construction of the neutral pose of the 3D head improves the results in

comparison to just using a front-view photo. In addition, increasing the number of 3D

head poses (using different viseme intensities) to train the 3DMM further improves the

performance of the 3D lip motions from both front and side-view. These results confirm

the importance of using both front- and side-view photos for constructing the neutral

pose of the 3D head, and different intensities of each viseme for training the 3DMM. The

next chapter will investigate the impact of the spatial relations of real speakers’ facial

features on the resulting 3D lip motion.





Chapter 5

Mapping Non Similar Faces

5.1 Introduction

In Chapter 4, a data-driven approach to animating a 3D talking head using the tracked

2D lip motions of a corresponding real speaker was presented. This technique illustrates

how using different amounts of data during the creation of a 3DMM that corresponds to

a real speaker affects the performance of 3D lip motions. This chapter will investigate

the impact of mapping between a real speaker and a non-corresponding 3DMM on the

resulting 3D lip motions. Realistic 3D lip motions are used for many applications, such

as movies and games where there is a convergence between customers and 3D animation

presented through historical or believable characters that promote emotional, immersive

content. For this kind of application, mapping between non-similar faces (i.e. mapping

between videos of a real speaker and a non-corresponding 3DMM) has been chosen as

a case study to determine the extent to which real speakers match 3DMMs in facial

features to achieve sufficient 3D lip motions. The results of this study provide a greater

understanding of the impact of similarities and differences in facial features between real

speakers and 3DMMs on the resulting 3D lip motions. The results could therefore define

criteria of facial feature classification that enable the animation of lips on a 3D head

using videos of several real speakers.
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To define these criteria, a classification of the facial features of real speakers is

necessary. Thus, a facial metrical analysis of speakers of the Audio-Visual Lombard Grid

Speech Corpus [10] was applied. The facial features of each speaker were classified into

three classes: low, middle and high. Two dimensions of mouth features were investigated

in this thesis: vertical mouth height and mouth width. Based on this, the mapping

between real speakers and non-corresponding 3DMMs was investigated. 2D videos of a

real speaker were mapped to a 3DMM that corresponded to a different speaker who was

classified under the same or a different class.

This chapter is organised as follows: facial features classifications of real speakers is

presented in Section 5.2. History of facial features classifications is reviewed in Section

5.2.1. Metrical analyses of facial features of the audio-visual Lombard Grid Speech

corpus’s speakers is presented in Section 5.2.2. Measurements used to describe indices

of the facial features are presented in Section 5.2.3. The evaluation of this process is

presented in Section 5.3, where Section 5.4 presents the objective test results and Section

5.5 presents the subjective test results. Finally, Section 5.6 concludes this chapter.

5.2 Facial Features Classification

5.2.1 Background

The most commonly used method of identifying individuals is facial photographs. Several

methods can be used to analyse facial morphology in two photographs to be compared

(face mapping [56]): superimposition, morphological characteristics, anthropometrical

measurements and morphometrics (combination of morphology and measurements).

• Superimposition: In this method, a known image is placed on top of another to

compare the two [15]. The outlines of the face on the two images are traced to

be fitted over each other. For example, the face outline of an individual is placed

over a suspect’s face. More reference points on the face can be used. Additionally,
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a combination of mixers, monitors and video cameras can be used to fade two

photographs into each other.

• Morphological Characteristics: In this method, facial features are classified

morphologically into relevant categories. Then, a match between two or more

photographs can be detected by comparing the various categories. Penry and

Ryan [201] suggested dividing the face into different morphological regions and

then classifying each region into categories or classes. In this study, faces were

investigated by examining the morphological characteristics and then categorising

them into proper classes. The face outlines were categorised into three classes:

angular, rounded and mixed. The facial features were classified by dividing the

face into sections, as described below:

1. The head is divided into four equal horizontal portions: top of the head to

the hairline, hairline to cranium, cranium to bottom of the nose and bottom

of the nose to end of the chin.

2. The face is divided into three equal horizontal portions: hairline to cranium,

cranium to bottom of the nose and bottom of the nose to end of the chin.

3. The area between the bottom of the nose and the end of the chin is horizontally

divided into three equal portions.

Based on these portions, facial features can be classified. For example, the ears are

one-third of the length of the face [201]. In the case of a thin face, if the ears are

more than one-third, they are classified as large. Following the same procedure,

the rest of the facial features can be classified.

• Anthropometric Measurements: In this method, several measurements be-

tween facial landmarks are taken. Then, the facial features are classified using

indices to avoid using an absolute size that can be altered when enlarging the

photographs. Hrdlicka [220] used the indices to classify whole body parts; he was

inspired by Martin and Saller [170], who used the indices to calculate the propor-
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tions of facial features in 1914. Hrdlicka [220] included some indices that describe

faces and skulls, such as the cephalic index (cranial breadth/cranial length *100)

and the total facial index (menton-nasion height/diameter bizygomatic maximum

*100). However, Hrdlicka [220] conducted his studies on living subjects rather than

photographs. Farkas [90] compared the measurements taken from a live subject

and those taken from photographs to validate their reliabilities.

• Morphometrical Methods: In this method, the measurements and morphology

of the face are combined to generate a reliable analytic procedure for facial identi-

fication. Iscan [130] classified facial features into different morphological classes

using measurements from photographs (this procedure is called photoanthropom-

etry). He used standard facial landmarks visible in photographs so that several

measurements between landmarks could be taken and indices could be calculated.

Different morphological classes can be identified from these indices to calculate the

proportions of the face.

5.2.2 Chosen Approach

To analyse the facial features of the Audio-Visual Lombard Grid Speech Corpus’s speakers,

a method presented by Roelfose et al. [209] was followed. They used morphometrical

methods to classify the facial features of South African males in photos to investigate

common and rare features in this community. This method is based on both measurements

and morphology of the face, which provide a reliable procedure for facial features

classification. Furthermore, it is based on indices measurements which solve the problem

of using an absolute size that can be changed when the photos are enlarged.

Because lip shapes are affected by facial movements such as smiling and crying, the

lips must be assessed when the subject has a neutral face shape: the eyes are open, the

lips make gentle contact and the jaw, neck and facial muscles should not be stretched or

contracted [44]. Thus, videos of the Audio-Visual Lombard Grid Speech Corpus were

investigated for each speaker (27 speakers) to select the appropriate frame (all video
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frames were chosen when the speakers were silent). The selected frames were processed

using Faceware Analyser software to obtain x and y coordinates for each landmark.

Figure 3.15 shows the landmarks that were utilised to take the facial measurements.

A description of the used landmarks is presented below, where L1, L2, etc. refer to

landmark 1, landmark 2, etc.

L1 Nasion (n): This landmark is placed on the midpoint between the inner corners of

the eyes.

L2 Endocanthion (en): This landmark is placed on the inner corner of the eye.

L3 Exocanthion (ex): This landmark is placed on the outer corner of the eye.

L4 Alare (al): This landmark is placed on the border of the nostril wing of the nose.

L5 Subnasale (sn): This landmark is placed on the lower border of the nasal septum.

L6 Labiale superius (ls): This landmark is placed on the midpoint of the outer contour

of the upper lip.

L7 Stomion1 (sto1): This landmark is placed on the midpoint of the inner contour of

the upper lip.

L8 Stomion2 (sto2): This landmark is placed on the midpoint of the inner contour of

the lower lip.

L9 Labiale inferius (li): This landmark is placed on the midpoint of the outer contour

of the lower lip.

L10 Gnathion (gn): This landmark is placed on the bottom of the chin.

L11 Cheilion (ch): This landmark is placed on the outer corner of the lips.

L12 Zygion (zy): This landmark is placed on the zygomatic arch.
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To calculate the indices, several measurements were taken from the frames of the speakers.

As shown in Figure 3.16, 13 measurements were taken from each frame using the Euclidean

distance between the predetermined facial landmarks (Figure 3.15). A brief description

of each measurement is presented below, where D1, D2, etc. refer to distance 1, distance

2, etc.

D1 Gnathion to nasion (L10_L1): This measurement is used to determine the height

of the face. It is measured from the midpoint between the inner corners of the eyes

to the lower visible point of the chin.

D2 Zygion to zygion (L12_L12): This measurement determines the width of the face

below the level of the eyes.

D3 Exocanthion to exocanthion (L3_L3): This measurement assesses the distance

between the outer corners of the eyes.

D4 Endocanthion to endocanthion (L2_L2): This measurement assesses the distance

between the inner corners of the eyes.

D5 Nasion to subnasale (L1_L5): This measurement determines the length of the nose

from the middle of the nasal root to the lower border of the nasal septum.

D6 Alare to alare (L4_L4): This dimension measures the width of the nose between

the borders of the nostril wings of the nose.

D7 Labiale superius to labiale inferius (L6_L9): This measurement determines the

height of the lips. It assesses the distance between the midpoint of the outer contour

of the upper lip and that of the lower lip.

D8 Cheilion to cheilion (L11_L11):This measurement determines the width of the

mouth. It assesses the distance between the outer corners of the mouth.

D9 Labiale superius to stomion1 (L6_L7): This measurement determines the thickness

of the upper lip. It assesses the distance between the midpoints of the outer and

inner contours of the upper lip.
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D10 Labiale superius to stomion2 (L8_L9): This measurement determines the thickness

of the lower lip. It assesses the distance between the midpoints of the inner and

outer contours of the lower lip.

D11 Labiale inferius to gnathion (L9_L10): This measurement determines the vertical

height of the chin. It assesses the distance between the midpoint of the outer

contour of the lower lip and the lowest midpoint on the chin.

D12 Subnasale to Labiale superius (L5_L6): This measurement assesses the distance

between the lower border of the nasal septum and the midpoint of the outer contour

of the upper lip.

D13 Subnasale to gnathion (L5_L10): This measurement assesses the distance between

the lower border of the nasal septum and the lowest midpoint on the chin.

5.2.3 Basic Statistics and Indices for Each Speaker

The described measurements in the previous section were used to calculate 12 indices.

Each index was computed by dividing the smaller measurement by the larger measurement

and multiplying the quotient by 100. The reason for using the indices was to nullify the

effect of absolute size. This means that any difference in the size of the face on the frame

will not affect the outcome of the results. For each index, the mean, standard deviation

and ranges were computed (Table 5.1).

The ranges of each index were used to categorise the features into different morpho-

logical classes. The classes of each index were created by investigating the distributional

properties of the data with box-whisker plots. Outliers were defined as any value more

than 1.5 away from the top or bottom of the box (interquartile range). The classes were

determined by the outliers. For example, for the index of the mouth width, the mean

was 52.18, and the standard deviation was 4.02 ( Table 5.1). The outliers for this index

were 49.18 and 54.80. Using these values, three ranges were determined, with the lowest

comprising values less than 49.18 (thus covering the range between 44.57 and 49.17), the

middle class comprising values between 49.18 and 54.80 and the third class comprising
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values greater than 54.80 (thus covering the range between 54.81 and 58.98). Values

less than 49.18 constituted a narrow mouth width, between 49.18 and 54.80 middle, and

values greater than 54.80 constituted a wide mouth width in relation to the distance

between the outer corners of the eyes. Figure 5.1 shows the classification of the 12 indices

for each speaker in the corpus with 80% of the calculated confidence intervals for each

class of each index, where yellow, orange and red circles represent low, middle and high

classes, respectively.

Index Mean Standard
Deviation Min Max

I1- Facial 86.24 4.96 77.106 97.51
I2- Intercanthal 34.69 2.56 29.93 40.55
I3- Nasal 80.75 9.05 67.24 95.97
I4- Nasofacial 44.58 4.14 34.20 52.16
I5- Nose-face width 30.78 2.50 25.10 36.54
I6- Lip area 32.87 5.11 23.13 42.60
I7- Vertical mouth height 15.22 2.50 11.94 21.20
I8- Upper lip thickness 4.85 1.46 2.48 8.32
I9- Lower lip thickness 10.31 1.33 8.31 13.27
I10- Mouth width 52.13 4.02 44.57 58.98
I11- Chin size 24.97 3.30 17.87 32.06
I12- Nose-Upper-Lips 27.56 2.88 18.98 32.68

Table 5.1 Basic descriptive statistics for the indices.

5.3 Mapping between Non Similar Faces

In this experiment, the effect of differences and similarities in the facial features between

real speakers and 3DMMs on the resulting 3D lip motions was investigated objectively

and subjectively. 2D video frames of a real speaker were mapped to a corresponding

3DMM and a 3DMM that corresponded to a different real speaker. The mapping between

non-similar faces was based on the classes of two of the 12 indices: index 7 (vertical

mouth height) and index 10 (mouth width). As proven in the previous chapters, the best

performance of 3D lip motions can be achieved when front- and side-view photographs

are used to create the initial 3D head pose, and 161 poses are used to train the 3DMM.
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Therefore, the same procedure was followed to generate a 3DMM for each speaker

classified under one of the three classes of indices 7 and 10.

5.4 Objective Evaluation

For each speaker, four plain sentences from the front-view video files were chosen to

be mapped to the corresponding 3D head and the non-corresponding 3D heads. For

example, referring to index 7 in Figure 5.1, a real speaker (ID: S17) was classified into

the high class. 2D videos of this speaker were mapped to the corresponding 3D head

and the 3D heads that corresponded to other speakers in the same class (high class) (i.e.

speaker IDs: S19, S22, S35 and S46), low class (i.e. speaker IDs: S23, S31, S47 and S48)

and middle class (i.e. speaker IDs: S32, S42, S54 and S55). An example of this process

is shown in Figure 5.2. Next, 2D videos of the resulting 3D lip motions of each head

were compared with the original ground-truth 2D videos. For comparison, the procedure

presented in Section 3.6 was followed. This included tracking the facial features in the

ground-truth 2D video and the front-view (2D) of the 3D animation, normalising and

scaling the extracted features and calculating two geometric articulatory measurements:

width (W) and height (H) of the mouth aperture.

Results and Discussion

Index 7 (Vertical Mouth Height)

Tables 5.2 shows the RMSE results averaged over four sentences for the width and height

of the mouth aperture of real speakers in the low class of index 7 and their corresponding,

non-corresponding middle and non-corresponding high 3D heads. From this table, it is

clear that the RMSE results varied when 2D videos of real speakers were mapped to

the non-corresponding low 3D heads or the non-corresponding middle 3D heads . When

the 2D videos were mapped to the non-corresponding high 3D heads, the corresponding

3D heads gave the lowest RMSE scores for height for all speakers and for width for two
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2D video

S 23 S 31

S 47 S 48

Low class

S 32 S 42

S 54 S 55

S 17

S 19 S 22 S 35 S 46

Middle class High class

Corresponding 3D head

Non-corresponding 3D head

Non-corresponding 3D headNon-corresponding 3D head

Mapping

Figure 5.2 An example of the mapping process between 2D video frames of a real speaker
(ID: S17) who classified under the high class of index 7, the corresponding 3D head, and
the non-corresponding 3D heads.

out of four speakers who were classified in the low to middle class (ID: S31) and the

middle class (IDs: S48) of index 10 (mouth width). The corresponding 3D heads of the

real speakers (IDs: S23 and S47) failed to give the lowest score for width because their

corresponding real speakers were classified under the middle to high class of index 10,

which is very close to most of the non-corresponding high 3D heads.

For the corresponding low 3D head of each real speaker and the non-corresponding

low 3D heads, a t-test suggested no significant difference in RMSE results for width and

height. Additionally, no significant difference was found between the corresponding low

3D heads and the non-corresponding middle 3D heads for all speakers for height and

three out of four speakers for width. The significant difference in width given by the

corresponding low 3D head of a real speaker (ID: S31) was due to its low mouth width.
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A significant difference was found between three out of four of the corresponding low 3D

heads and the non-corresponding high 3D heads for height. The corresponding low 3D

head of a real speaker (ID: S48) suggested no significant difference. This may be due

to the large distance between the nose tip and the upper lip (index 12), which reduces

the height of the mouth aperture. For width, three out of four of the corresponding 3D

heads showed a significant difference. The corresponding low 3D head of a real speaker

(ID: S23) suggested no significant difference; this may because it was classified in the

middle to high class of indices 10 and 12.

Figure 5.3 provides an example of consecutive frames of the phoneme /ih/ during the

utterance of the word "in" from the sentence "bin white in O 7 now" for a real speaker

(ID: S47) who was classified in the low class of index 7, the corresponding 3D head, the

non-corresponding middle 3D heads and the non-corresponding high 3D heads. This

figure illustrates how the non-corresponding high 3D heads failed to detect the uttered

phoneme and that the mouth was completely closed due to lip thickness, while the

corresponding 3D head and the non-corresponding middle 3D heads gave the closest

mouth shapes to the real speaker. These findings and the clear visual discrimination in

the 3D lip motions presented by each 3D head suggest that an appropriate animation

can be achieved by mapping between 2D videos of real speakers and the corresponding

3D head or non-corresponding middle 3D heads but not the non-corresponding high 3D

heads.

Figure 5.4 shows the trajectories of the width and the height parameters of the

mouth aperture for the real speaker (ID: S31) classified under the low class of index 7,

the corresponding 3D head, the non-corresponding middle 3D head (ID: S32) and the

non-corresponding high 3D head (ID: S19), whilst uttering the sentence "set white at D

zero please". Whilst all the trajectories generated using the animation pipeline generally

follow the real speaker’s trajectory, the trajectories of the corresponding 3D head and

the non-corresponding middle 3D head closer to the ground truth trajectories. For the

width, the trajectory of the non-corresponding high 3D head shows a marked rise for

bilabial phoneme /p/, which confirms that the lips stretch due to sharp touch between
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the upper and lower lips caused by the lip thickness. Also, for the height, the trajectory

of this 3D head shows steep drops for dental phonemes such as /s/, /t/ and /d/, which

confirms that the lips are semi-closed during uttering these phonemes.

Real speaker (ID: S47)

The corresponding
3D head (ID: S47)

The non-corresponding
middle 3D head (ID: S48)

The non-corresponding
high 3D head (ID: S22)

Figure 5.3 Consecutive frames of the phoneme /ih/ during utterance of the word "in"
from sentence "bin white in O 7 now" for a real speaker (ID: S47) who is classified under
the low class of index 7, the corresponding 3D head, the non-corresponding middle and
the non-corresponding high 3D heads.

Table 5.3 shows the RMSE results averaged over four sentences for the width and

height of the mouth aperture of real speakers classified in the middle class of index 7

(vertical mouth height), their corresponding 3D heads, the non-corresponding low 3D

heads and the non-corresponding high 3D heads. This table shows variations in the

RMSE results for width due to variations in the mouth width of real speakers. When

2D videos of the real speakers were mapped to their corresponding 3D heads and the

non-corresponding middle 3D heads, t-test results suggested no significant difference in

RMSE results for height for all speakers and for three out of four speakers for width. The

corresponding 3D head of a real speaker (ID: S54) suggested a significant difference for

the width; this may be due to a large mouth width (index 10). For the non-corresponding
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Figure 5.4 Width and height of mouth trajectories of 2D frames of the real speaker
(ID: S 31) classified under the low class of index 7, the corresponding 3D head, the
non-corresponding middle 3D head (ID: S 32) and the non-corresponding high 3D head
(ID: S 19), whilst uttering the sentence "set white at D zero please".
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high 3D heads, t-test results showed a significant difference in the RMSE scores for width

for the corresponding 3D head of a real speaker (ID: S32); this is probably due to its

small mouth width.

For the height, t-test results showed a significant difference for two of the corresponding

middle 3D heads; this may because their corresponding real speakers (IDs: S32 and

S42) were classified in the low class and the low to middle class of index 10, respectively.

This makes the mouth of the non-corresponding high 3D heads shrink to fit the real

speakers’ mouths; thus, the lips are not closed or opened adequately. Figure 5.5 confirms

these findings by showing an example of consecutive frames of the phoneme /b/ during

the utterance of the word "bin" from the phrase "bin white at U three again" for a

real speaker (ID: S32) classified in the middle class of index 7, the corresponding 3D

head, the non-corresponding low 3D heads and the non-corresponding high 3D heads.

These findings may confirm that the resulting 3D lip motions become sufficient and

adequate when 2D videos of the real speakers classified in the middle class of index 7 are

mapped to the corresponding 3D head, the non-corresponding middle 3D heads and the

non-corresponding low 3D heads and when they are mapped to the non-corresponding

high 3D heads that relate to real speakers who have a similar mouth width.

Table 5.4 shows the RMSE results averaged over four sentences for the width and

height of the mouth aperture of real speakers classified in the high class of index 7

(vertical mouth height), their corresponding 3D heads, the non-corresponding low 3D

heads and the non-corresponding middle 3D heads. From this table, it can be observed

that the corresponding 3D head of a real speaker (ID: S19) gave the lowest RMSE scores

for width for real speakers (IDs: S22 and S46); this may due to similarities in mouth

width. Additionally, the non-corresponding low 3D heads (IDs: S23, S47 and S48) gave

the lowest scores because their corresponding real speakers were classified in the middle

class and the middle to high class of index 10, and most of the real speakers (IDs: S17,

S19, S22 and S46) were classified in the middle to high class or the high class. This was

confirmed by t-test results that showed no significant difference for width between the

corresponding 3D heads and the non-corresponding low 3D heads.
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Real speaker (ID: S32)

The corresponding
3D head (ID: S32)

The non-corresponding
low 3D head (ID: S23)

The non-corresponding
high 3D head (ID: S19)

Figure 5.5 Consecutive frames of the phoneme /b/ during utterance of the word "bin"
from sentence "bin white at U three again" for a real speaker (ID: S32) who classified
under the middle class of index 7, the corresponding 3D head, the non-corresponding low
3D head and the non-corresponding high 3D head.

For the height, the corresponding high 3D heads gave the lowest score for most of

the speakers from different classes. T-test results showed no significant difference in the

RMSE scores for height between four out of five of the corresponding high 3D heads

and the non-corresponding middle 3D heads. However, there was a significant difference

between three out of five of the corresponding high 3D heads and the non-corresponding

low 3D heads. Based on these findings, it can be concluded that mapping between 2D

videos of real speakers classified in the high class of index 7 and the non-corresponding

low 3D heads cannot achieve any reasonable 3D lip animations. While it is possible to

achieve reasonable 3D lip motion using 2D videos of real speakers who have a middle

vertical mouth height, to animate 3D heads corresponding to real speakers who have a

high vertical mouth height, they must be similar in other facial features, such as lower
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or upper lip thickness (indices 8 and 9, respectively), mouth width (index 10) or the

distance between the nose and the upper lip (index 12).

This is indicated by Figure 5.6 , which shows how the lips of the non-corresponding

3D heads fail to give the mouth shape of the phoneme /b/. This figure also shows

how the non-corresponding middle 3D head (ID: S54) gives a semi-opened mouth shape

due to its high mouth width, which is similar to that of the real speaker (ID: S22).

However, it fails to deliver the correct mouth shape due to its middle upper and lower

lip thickness. Figure 5.7 shows an example of consecutive frames of the phoneme /p/

during utterance of the word "please" from the phrase "lay white with A 5 please" for a

real speaker (ID: S46) classified in the high class of index 7, the corresponding 3D head,

the non-corresponding middle 3D heads and the non-corresponding low 3D heads. This

figure illustrates how the non-corresponding middle 3D (ID: S54) heads gave a mouth

shape more similar to that of the real speaker due to similarities in mouth width (index

10) and middle lower lip thickness. The non-corresponding low 3D heads (ID: S48) gave

a more accurate mouth shape (semi-closed mouth shape) because of the large distance

between the nose and the upper lip (index 12), the middle mouth width (index 10) and

the middle upper and lower lip thickness (indices 8 and 9), while the non-corresponding

low 3D heads (ID: S31) failed to give the correct mouth shape due to the low to middle

mouth width and upper and lower lip thickness. The distortion in the texture around

the mouth’s corners of the non-corresponding low 3D heads (IDs: S48 and S31) was due

to differences in mouth width between the real speaker and the 3D heads.

Figure 5.8 shows the trajectories of the width and the height parameters of the

mouth aperture for the real speaker (ID: S22) classified under the high class of index

7, the corresponding 3D head, the non-corresponding middle 3D head (ID: S55) and

the non-corresponding low 3D head (ID: S48), whilst uttering the sentence "set white

with S 1 now". The trajectories of the corresponding 3D head closer to the ground truth

trajectories for both width and height. For the width, what can be clearly seen in this

figure is the steady decline of the trajectories of the non-corresponding low 3D head.

For the height, the trajectories of the non-corresponding low 3D head show a marked
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increase for the rounding lips phonemes such as /w/ and /aw/, alveolar phonemes such

as /th/, and dental phonemes such as /s/, /t/, and /n/, which confirms that the lips are

widely opened during uttering these phonemes that require semi-opened mouth shape.

Real speaker (ID: S22)

The corresponding
3D head (ID: S22)

The non-corresponding
low 3D head
(ID: S47)

The non-corresponding
middle 3D head
(ID: S55)

The non-corresponding
middle 3D head
(ID: S54)

Figure 5.6 Consecutive frames of the phoneme /b/ during utterance of the word "bin"
from sentence "bin green by Q zero again" for a real speaker (ID: S22) who classified
under the high class of index 7 (first row), the corresponding 3D head (second row), the
non-corresponding low 3D head (third row) and the non-corresponding middle 3D head
(last row).

Index 10 (Mouth Width)

Table 5.5 shows the RMSE results averaged over four sentences for width and height

of the mouth aperture of real speakers classified in the low class of index 10 (mouth

width), their corresponding 3D heads, the non-corresponding middle 3D heads and the

non-corresponding high 3D heads. From this table, it can be observed that the 3D head
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Real speaker (ID: S46)

The corresponding
3D head (ID: S46)

The non-corresponding
middle 3D head
(ID: S54)

The non-corresponding
low 3D head
(ID: S48)

The non-corresponding
low 3D head
(ID: S31)

Figure 5.7 Consecutive frames of the phoneme /p/ during utterance of the word "please"
from sentence "lay white with A 5 please" for a real speaker (ID: S46) who classified
under the high class of index 7 (first row), the corresponding 3D head (second row), the
non-corresponding middle 3D head (third row) and the non-corresponding low 3D heads
(last two rows).

that corresponded to a real speaker (ID: S32) gave the lowest RMSE score for three out

of four speakers for width and for all speakers for height, when it was mapped to 2D

videos of real speakers who classified under the low class. This may be due to its middle

vertical mouth height (i.e. index 7). This explains why it failed to give the lowest score

for width for a real speaker (ID: S35) with a high vertical mouth height.

The RMSE results varied when 2D videos of the real speakers were mapped to the

non-corresponding middle 3D heads and the non-corresponding high 3D heads. For

mapping between 2D videos of real speakers and the non-corresponding middle 3D

heads, the 3D head of a real speaker (ID: S32) gave the lowest score for both width and

height because its middle vertical mouth height was similar to or the same as most of
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Figure 5.8 Width and height of mouth trajectories of 2D frames of the real speaker
(ID: S 22) classified under the high class of index 7, the corresponding 3D head, the
non-corresponding middle 3D head (ID: S 55) and the non-corresponding low 3D head
(ID: S 48), whilst uttering the sentence "set white with S 1 now".
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the non-corresponding middle 3D heads with middle to high (IDs: S7, S15 and S24)

or middle (ID: S55) vertical mouth heights. What is striking in this table is that the

corresponding 3D head of a real speaker (ID: S32) gave the lowest RMSE score for both

width and height, when the 2D videos were mapped to the non-corresponding middle

3D heads. Additionally, some of the non-corresponding high 3D heads gave the lowest

scores for width for real speakers with similar vertical mouth heights. For example, the

non-corresponding high 3D head (ID: S20) gave the lowest score for a real speaker (ID:

S16) with the same vertical mouth height (i.e. low to middle).

Figure 5.9 gives an example of consecutive frames for the real speaker (ID: S16),

the corresponding 3D head and the non-corresponding high 3D head (ID: S20) during

utterance of the phoneme /ih/ of the word "bin" from the phrase "bin white with M 2

soon". Also, the non-corresponding high 3D head (ID: S22) gave the lowest score for

a real speaker (ID: S35); this may because they both had high vertical mouth heights.

However, a t-test suggested a significant difference in the RMSE results between the

corresponding 3D head of a real speaker (ID: S32) and the non-corresponding high 3D

heads for both width and height. There was also a significant difference between the

corresponding 3D head of a real speaker (ID: S38) and the non-corresponding high 3D

heads for width.

These finding confirm that 2D videos of real speakers who have middle or wide mouth

widths can be used to animate 3D heads that correspond to real speakers who have

narrow mouth widths, as long as they have similar vertical mouth heights, lip thicknesses

and distances between the nose and the upper lip. For example, Figure 5.10 gives an

example of consecutive frames of a real speaker (ID: S38) classified in the low class of

index 10, the corresponding 3D heads and the non-corresponding 3D heads. This Figure

reveals that the non-corresponding high 3D head (ID: S54) produced a mouth shape

more similar to the real speaker than the non-corresponding middle 3D head (ID: S55)

due to closer classes of indices 7, 8, 9 and 12 of the corresponding real speakers (see

Figure 5.1), while the non-corresponding high 3D head (ID: S22) failed to give a more

accurate shape because of its lip thickness.
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Real speaker (ID: S16)

The corresponding
3D head (ID: S16)

The non-corresponding
middle 3D head
(ID: S20)

Figure 5.9 Consecutive frames of the phoneme /ih/ during utterance of the word "bin"
from sentence "bin white with M 2 soon" for a real speaker (ID: S16) who classified under
the low class of index 10 (mouth width), the corresponding 3D head (second row), the
non-corresponding high 3D head (third row).

Table 5.6 shows the RMSE results averaged over four sentences for the width and

height of the mouth aperture of real speakers classified in the middle class of index

10, their corresponding 3D heads, the non-corresponding low 3D heads and the non-

corresponding high 3D heads. From this table, it can be observed that three of the

corresponding heads (IDs: S7, S15 and S55) gave the lowest scores for width, when the

2D videos of real speakers were mapped to the non-corresponding low 3D heads and

the non-corresponding middle 3D heads. However, t-test results showed a significant

difference in RMSE results between the corresponding 3D head of a real speaker (ID:

S15) versus all the non-corresponding 3D heads for height and width. Also, there was a

significant difference in the RMSE results for width between the corresponding 3D head

of a real speaker (ID: S7) and the non-corresponding low 3D heads and between the

corresponding 3D head of a real speaker (ID: S24) and the non-corresponding high 3D

heads.
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Real speaker (ID: S38)

The corresponding
3D head (ID: S38)

The non-corresponding
high 3D head
(ID: S54)

The non-corresponding
middle 3D head
(ID: S55)

The non-corresponding
high 3D head
(ID: S22)

Figure 5.10 Consecutive frames of the phoneme /uw/ during utterance of the word "two"
from sentence "bin white in I 2 soon" for a real speaker (ID: S38) who classified under
the low class of index 10 (mouth width), the corresponding 3D head (second row), the
non-corresponding middle 3D head (third row) and the non-corresponding high 3D heads
(last two rows).

These findings may prove that 2D videos of real speakers who have middle mouth

width can be used to animate 3D heads that correspond to real speakers that have narrow,

middle or wide mouth widths, as long as they have similar lip thicknesses or distances

between the nose and the upper lip. Figure 5.11 shows an example of consecutive frames

of the phoneme /th/ from the word "three" during uttering the phrase "bin white in

N 3 now" by a real speaker (ID: S24) classified in the middle class of index 10, the

corresponding 3D heads, the non-corresponding low 3D heads and the non-corresponding

high 3D heads. This figure shows how the 3D heads gave the correct mouth shape

regardless of the mouth width. The mouth aperture of the non-corresponding middle
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3D head (ID: S32) (third row) is slightly wide compared to the real speaker due to its

middle vertical mouth height (index 7).

Real speaker (ID: S24)

The corresponding
3D head (ID: S24)

The non-corresponding
low 3D head
(ID: S32)

The non-corresponding
low 3D head
(ID: S35)

The non-corresponding
high 3D head
(ID: S19)

Figure 5.11 Consecutive frames of the phoneme /th/ during utterance of the word "three"
from sentence "bin white in N 3 now" for a real speaker (ID: S24) who classified under
the middle class of index 10 (mouth width), the corresponding 3D head (second row),
the non-corresponding low 3D head (third and forth rows) and the non-corresponding
high 3D heads (last row).

Table 5.7 shows the RMSE results averaged over four sentences for the width and

height of the mouth aperture of real speakers classified in the high class of index 10

(mouth width), their corresponding 3D heads, the non-corresponding low 3D heads and

the non-corresponding middle 3D heads. From this table, it can be noticed that the

corresponding 3D head (ID: S19) gave the lowest RMSE scores for width for most of the

speakers, when it was mapped to 2D videos of real speakers who are classified under the
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high class. This may due to the middle distance between the nose tip and the upper lip

and the high vertical mouth height. This also explains the significant difference suggested

by the t-test result for height. Also, it can be noticed that the non-corresponding low 3D

head (ID: S16) gave the lowest RMSE score for width for most of the speakers. This

is probably due to the large distance between the nose tip and the upper lip. Another

notable finding shown in this table is that the non-corresponding middle 3D head (ID:

S7) gave the lowest RMSE score for most of the speakers. This may be due to the

middle to high vertical mouth height (index 7), upper lip thickness (index 8), lower lip

thickness (index 9) and distance between the nose tip and the upper lip (index 12). The

t-test results suggested no significant difference for width and height between four out

of five of the corresponding 3D heads, the non-corresponding high 3D heads and the

non-corresponding middle 3D heads, while there is no significant difference between the

non-corresponding low 3D heads, the corresponding 3D heads for height and three out of

five of the corresponding 3D heads for width.

Such findings suggest that animating the wide mouths of 3D heads can be achieved

using 2D videos of real speakers who have narrow or middle mouth widths as long as they

have similar lip thicknesses, shapes and distances between the nose and the upper lip.

Figure 5.12 shows an example of consecutive frames of a real speaker (ID: S54) classified

in the high class of index 10, the corresponding 3D head, the non-corresponding low 3D

head and the non-corresponding middle 3D head during utterance of the letter "B" from

the phrase "lay white by B 8 again". This figure shows how all the 3D heads gave the

correct mouth shape for the phoneme /b/, including the non-corresponding low 3D head.

Summary

This section summaries the objective test results for index 7 (vertical mouth height) and

index 10 (mouth width). The evaluation produced these sets of results:

• 3D heads correspond to real speakers who have low vertical mouth height can be

animated using only 2D videos of real speakers who have similar or middle vertical

mouth height.
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Real speaker (ID: S54)

The corresponding
3D head (ID: S54)

The non-corresponding
low 3D head
(ID: S38)

The non-corresponding
middle 3D head
(ID: S55)

Figure 5.12 Consecutive frames of the phoneme /b/ during utterance of the letter "B"
from sentence "lay white by B 8 again" for a real speaker (ID: S54) who classified under
the high class of index 10 (mouth width), the corresponding 3D head (second row), the
non-corresponding low 3D head (third row) and the non-corresponding middle 3D heads
(last row).

• 3D heads correspond to real speakers who have middle vertical mouth height can be

animated using 2D videos of real speakers who have similar or low vertical mouth

height. Also, they can be animated using 2D videos of real speakers who have high

vertical mouth height as long as they have a similar mouth width.

• 3D heads of real speakers who have high vertical mouth height can be animated

using 2D videos of real speakers who have similar vertical mouth height. Also, they

can be animated using 2D videos of real speakers who have middle vertical mouth

height as long as they are similar in other facial features such as upper and lower

lip thickness, the distance between the nose and the upper lip, and mouth width.

• 3D heads of real speakers who have different mouth widths can be animated using

2D videos of real speakers who have similar or different mouth widths, as long
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as they are identical in other facial features such as vertical mouth height, lip

thickness, and distance between the nose and the upper lip.

These findings confirm that the vertical mouth height has a significant impact on the

mapping process, while other features should be considered with the mouth width

indicating its decreased effect on the mapping process.

5.5 Subjective Evaluation

Subjective test is conducted to compare the naturalness of animations generated by

mapping between 2D videos of real speakers and 3D heads with either the corresponding

or non-corresponding 3D heads defined in Section 5.4. This test investigates the impact

of similarities and differences in the vertical mouth height and the mouth width features

between real speakers and 3DMMs on the resulting 3D lip motions. The baseline

animation modalities that will be used to guide the evaluation comparison are the

animation of the corresponding 3D head and the non-corresponding 3D heads. For

example, 2D video of a real speaker from the Audio-Visual Lombard Grid corpus

who is classified under one class of index 7 or index 10 will be used to animate the

corresponding 3D head and the non-corresponding 3D heads that relate to other speakers

who are classified under the other two classes. Videos of the animated 3D heads will

be synchronised with clean audio signal of the real speaker. The clean audio is used to

enable the subjects to judge the extent to which the animated lip movement is as smooth

as a real speaker’s and how likely it was that the movement would produce those sounds.

The evaluation will address two main points:

• The impact of differences between the real speakers and the 3D heads in the vertical

mouth height and the mouth width on the resulting 3D lip animation.

• The ranges of differences and similarities in the vertical mouth height and the

mouth width between real speakers and 3D heads that provide sufficient 3D lip

motions.
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Stimuli

Seventy-two 2D videos of 3D talking heads were played in this test. Three separate

animations were presented side by side for each set (24 sets in total presented in a random

order for each participant). Twelve sets showed the resulting animation for mapping

between non-similar faces based on the classes of index 7, while the other 12 sets showed

the resulting animation for mapping between non-similar faces based on the classes of

index 10. For each set, three 2D videos of 3D animations were presented side by side.

All three heads were animated using 2D videos of one real speaker classified in one of

the three classes. One animation corresponded to that real speaker, and the other two

corresponded to different real speakers classified in the other two classes. Figure 5.13

illustrates the structure of the stimuli. The subjects used a play button to repeat each

sentence and watched each video three times. After each set of videos, the subjects were

asked to choose which 3D talking head had the most natural lip movements and which

had the least. The selection scores of a subject for the best and the worst choices were

used to evaluate the impact of the vertical mouth height and the mouth width on the

resulting animation. Figure 5.14 shows the graphical user interface that was used to

present 2D videos of the animation to the subjects.

Subjects

Two groups of participants with normal hearing and vision were recruited from the

Department of Computer Science, University of Sheffield, and tested individually in an

acoustically isolated booth with visual signals presented on a computer screen combined

with acoustic signals presented binaurally through headphones. The first group consisted

of native English speakers Ne (12 native English speakers), and the second group

consisted of non-native English speakers NNe (15 non-native English speakers from

different Arabic countries [i.e. Bahrain, Egypt, Iraq, Libya and Saudi Arabia]; IELTS

score ϵ [5.5,9]). Where N and NN denote native English speakers and non-native

English speakers, respectively, and the subscript e denotes English. The non-native
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Naturalness Test

12 sets for Index 
10

12 sets for Index 
7

24 sets
3 sentences for 

each set

36 
sentences

4
L-L

4
M-M

4
H-H

36 
sentences

Stimulus Description Stimulus Description

L-L Low 2D speaker to corresponding low 3D head M-H Middle 2D speaker to high 3D head

L-M Low 2D speaker to middle 3D head H-H High 2D speaker to corresponding high 3D head

L-H Low 2D speaker to high 3D head H-L High 2D speaker to low 3D head

M-M Middle 2D speaker to corresponding middle 3D head H-M High 2D speaker to middle 3D head

M-L Middle 2D speaker to low 3D head

4
L-M

4
M-L

4
H-L

4
L-H

4
M-H

4
H-M

4
L-L

4
M-M

4
H-H

4
L-M

4
M-L

4
H-L

4
L-H

4
M-H

4
H-M

Figure 5.13 Structure of stimuli.

English speakers were recruited to participate in this experiment to investigate how

the synthesised signals would be perceived and evaluated by the non-native speakers;

since such animation has been utilised for customer services and entertainment such

as films and games [257], and also proved to be effective in using for pronunciation

training systems [11, 72, 73, 83, 84, 172, 248]. This study was ethically approved via the

University of Sheffield’s ethics review procedure (application number: 024196).

Results

Figure 5.15 shows the most and least natural choice rates given by the two groups for the

corresponding 3D heads for index 7 (a) and index 10 (b). Generally, the differences in

vertical mouth height (index 7) between real speakers and 3D head models have a greater
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Figure 5.14 Screenshot of the graphical user interface for the naturalness test.

influence on the resulting animation, where the two groups voted for the corresponding

3D heads as most natural. The two groups were able to distinguish the corresponding

3D heads from the non-corresponding 3D heads with a modest, slightly better than the

chance level of accuracy: the Ne group chose 39.58% of the corresponding 3D heads

stimuli as the most natural lip motions, whereas the NNe group chose 37.22% of the

corresponding 3D heads stimuli. This is confirmed by a t-test result that showed no

significant difference between the two groups for selecting the corresponding 3D heads as

the best choice (p=0.6514).

For the mouth width (index 10), the Ne group outperformed the NNe group for

voting for the corresponding 3D heads as most natural. This may because the stimuli

were presented in their language, suggesting that the differences in mouth width have

less impact on the 3D lip motions, which made the non-native group (NNe) were not

able to select the corresponding 3D heads as the best choice. However, no significant

difference was found between the two groups for voting for the corresponding 3D heads

as most natural (p=0.1482).
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Figure 5.16 shows the most and least natural choice rates for the corresponding 3D

heads and the non-corresponding 3D heads for each class of index 7 for the two groups.

The Ne group found the corresponding 3D heads of each class to be most natural, while

the NNe voted only for the corresponding high 3D heads. The two groups were able

to distinctively choose the corresponding high 3D heads as having the most natural lip

motions. This is confirmed by t-test result that showed no significant difference between

the two groups for choosing the corresponding high 3D heads as having most natural

lip motions (p=0.0981). However, for the high class, t-test results showed no significant

difference between the corresponding 3D heads and the non-corresponding low 3D heads

for the Ne group (p=0.3225) and the NNe group (p=0.1643). Also, no significant

difference was found between the corresponding 3D heads and the non-corresponding

middle 3D heads for the Ne group (p=0.2229) and the NNe group (p=0.0611). The two

groups found the animation generated by mapping 2D videos of a real speaker classified

in the low class to the non-corresponding high 3D heads to be the least natural. A

t-test result showed no significant difference between the two groups for voting for the

non-corresponding high 3D heads as least natural (p=0.7882). This confirms the objective

test results provided in Table 5.2. However, no significant difference was found between

the non-corresponding high 3D heads and the corresponding low 3D heads for the two

groups (p=0.1362 for Ne and p=0.1442 for NNe) or between the non-corresponding high

3D heads and the corresponding middle 3D heads for the two groups (p=0.1891 for Ne

and p=0.1781 for NNe).

Figure 5.17 shows the most and least natural choice rates for the corresponding 3D

heads and the non-corresponding 3D heads for each class of index 10 for the two groups.

For the high class, t-test results showed a significant difference between the corresponding

3D heads and the non-corresponding middle 3D heads for the Ne group (p=0.0280).

The Ne group found the corresponding 3D heads of the middle and the high classes to

be the most natural. For the low class, the two groups found the non-corresponding

high 3D heads to have the least natural lip motions. This was confirmed by t-test

result that showed no significant difference between the two groups for selecting the
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non-corresponding high 3D head as having the least natural lip motions (p=0.7575). A

significant difference was suggested by the t-test results between the corresponding 3D

heads and the non-corresponding high 3D heads for the two groups (p=0.0448 for the

Ne group and p=0.0046 for the NNe group). Also, a significant difference was found

between the non-corresponding high 3D heads and the non-corresponding middle 3D

heads for the two groups (p=0.0012 for the Ne group and p=0.0009 for the NNe group).

This may prove that reasonable 3D lip motions cannot be achieved when 2D videos of

real speakers with narrow mouth widths are mapped to 3D heads that relate to real

speakers with wide mouth widths.

a b
Figure 5.15 Results for the best, unselected and worst rates for the corresponding 3D
heads for the Ne and NNe groups: (a) Rates for index 7; (b) Rates for index 10.

Discussion

This study presented a two-fold aim: investigating the impact of similarities and differences

in the facial features between real speakers and 3DMMs on the resulting 3D lip motions,

and defining the ranges of differences in facial features between real speakers and 3D

heads that allow adequate 3D lip motions to be achieved. The main observations and

discussion points are listed below.
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a

b
Figure 5.16 Results for the best and worst choice rates for the corresponding 3D heads
and the non-corresponding 3D heads for each class of index 7 for the Ne and NNe groups:
(a) Rates of the best answer ; (b) Rates of the worst answer.
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a

b
Figure 5.17 Results for the best and worst choice rates for the corresponding 3D heads
and the non-corresponding 3D heads for each class of index 10 for the Ne and NNe

groups: (a) Rates of the best answer ; (b) Rates of the worst answer.
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• Native English-speaking participants were able to distinguish between the corre-

sponding and non-corresponding 3D heads slightly better than non-native English-

speaking participants for the two tested indices (indices 7 and 10). The non-native

English-speaking participants were able to select the corresponding 3D heads as

most natural for index 7 only. This may be because the non-native participants

had lower linguistic competence than the natives, which made them were not able

to spot any slight inaccuracy in visual speech animation. This suggests that the

differences between real speakers and 3DMMs in the vertical mouth height (index

7) have a greater influence on the resulting animation than the mouth width (index

10).

• The two groups were able to distinguish between the corresponding 3D heads and

the non-corresponding low 3D heads for the high class of index 7, where the subjects

chose the lip motions of the corresponding high 3D heads as the most natural.

However, the results for the least natural choice for this class were contrary for

the NNe group and convergent for the Ne group. This indicates that selecting one

of three choices is more difficult than choosing between two options. This could

also apply to the most natural choice answers for the low class, where the results

were close for each 3D head alternate, although the subjects were able to select

the non-corresponding high 3D heads as the least natural. This indicates that the

difference between the corresponding 3D low heads and the non-corresponding high

3D heads is distinguishable, which was also confirmed by the objective test results

(see Section 5.4).

• For the low class of index 10, the two groups were able to distinctly choose the non-

corresponding high 3D heads as the least natural, which confirms that the difference

is significant and distinguishable between these classes for this index. These findings

are not comparable with the objective test results due to an unbalanced number

of male and female speakers in each class of the tested indices. Consequently,

presenting all possible methods of mapping to the subjects was restricted by this
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factor, as it is not reasonable to display a 3D head of a real male speaker combined

with a female audio signal to the participants. This suggests that in order to

accurately investigate the effects of differences and similarities in the facial features

between real speakers and 3DMMs on the resulting 3D visual speech animation, a

large amount of data is essential. However, the most natural choice answers for

this class indicate confusion between the corresponding 3D heads and the non-

corresponding 3D heads. For example, the NNe group chose the non-corresponding

low 3D heads as the most natural for the high class. The performance of the NNe

group for the high class of index 10 is chaotic for the most and least natural choice

answers; this may be because the variations in this index (mouth width) are not

noticeable to non-native participants in comparison to index 7 (vertical mouth

height), which has a greater effect on lip closure.

5.6 Summary

In this chapter, an investigation of the effects of differences and similarities in facial

features between real speakers and 3DMMs on the mapping process was presented. The

facial features of real speakers were represented in 12 indices, and each index was classified

into three classes: low, middle and high. In this thesis, two indices representing vertical

mouth height (index 7) and mouth width (index 10) were investigated separately by

mapping between real speakers from different classes to their corresponding 3D heads and

3D heads that corresponded to different speakers in the same class or different classes.

The resulting 3D lip motions were evaluated objectively and subjectively. The results

of the objective test suggest that for index 7, the mapping between real speakers with

low vertical mouth height and the 3D heads that correspond to real speakers with high

vertical mouth height, or vice versa, leads to unpleasant 3D lip motions. For index

10, the results varied between the classes, which confirms that mouth width does not

have significant effects on the mapping process, whilst other facial features should be

considered, such as lip thickness. The subjective evaluation results suggest that native
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English-speaking participants are able to distinguish between the corresponding and the

non-corresponding 3D heads slightly better than non-native speakers. For the two tested

indices, the two groups of participants chose the non-corresponding high 3D heads as

having the most unnatural lip motions when they were mapped to real speakers classified

in low classes. For index 7, the two groups selected the corresponding high 3D heads

as having the most natural lip motions. This is not the case with index 10, where only

the native-speaking participants were able to select the corresponding high 3D heads as

having the most natural lip motions. This may confirm that mouth width does not have

considerable effects on the resulting 3D lip motions due to limited changes in this feature

during speech in comparison with index 7, which affects lip closure.





Chapter 6

Conclusions

This thesis has investigated driving the 3D lips of a 3D head using tracked lip motions

from 2D videos of a real speaker with the aid of a 3DMM. Mapping between the tracked

landmarks in the 2D videos and the corresponding 3D landmarks was achieved by

implementing a method that presented by Huber et al. [125] that reconstructs 3D faces

from images and videos using a 3DMM. The 3DMM used in this thesis was built using

synthetic 3D head poses generated with the commercial software FaceGen [1], which

provides two functionalities that are essential to tracking and analysing lip motions in a

detailed manner: the software can be supplied with a front-view photograph or front- and

side-view photographs to create the initial 3D head pose to personalise the 3DMM, and

the generated 3D heads have similar vertex correspondences that facilitate the generation

of a large number of 3D head poses that are used to train the 3DMM.

It is important to determine which set of facial features can be used in the mapping

process to achieve adequate 3D lip motions. In Chapter 3, different sets of facial features

were used to map 2D videos of a real speaker to the corresponding 3DMM. The test

results showed that using feature points that represent the lips, nose, eyes and eyebrows

for the mapping process produced the desired 3D lip motions. Including the contour

landmarks impedes adequate 3D lip motions by restricting the face mesh, which affects

the lip movements. These findings confirm that adequate lip motions can be achieved

using all sets of facial features. Each set plays a vital role in which a combination set of
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them controls the movement of smooth regions of the face’s mesh, such as the cheek and

the forehead that would affect the resulting lip motions.

It was also important to determine how using different amounts of data while con-

structing the 3DMM can influence the resulting 3D lip motions. In Chapter 4, four

3DMMs were created for each real speaker using different amounts of data. Either the

front-view photograph only or the front- and side-view photographs were used to create

the initial 3D head pose, and the 3DMM was trained using either 17 poses (neutral

3D head pose and 16 viseme) or 161 poses (neutral 3D head pose and 10 variations of

each viseme). Each 3DMM was fitted to the front-view videos of the corresponding real

speaker; then, the performance of each 3DMM was evaluated in comparison with the real

speaker’s videos. Two articulatory measurements were extracted and calculated from 2D

videos of the real speakers and the 3D lip motions, which are the width and height of the

mouth aperture. The RMSE was used to measure the difference between the articulatory

measurements of the real speaker and the 3D animation. The test results of the objective

evaluation confirmed that using the front- and side-view photographs to create the initial

3D head pose and training the 3DMM with 161 poses enhanced the resulting 3D lip

motions. These results indicate how using a side-view photograph for creating the initial

neutral head pose gives the 3D head closer shape to the corresponding real speaker and

how this affects the resulting 3D lip motions. In addition, training the model with a

larger number of head poses gives the 3D head model an ability to accurately detect the

lip movements of the real speaker, resulting in smooth 3D lip motions.

Also, Chapter 4 presented a side-view evaluation of the performance of each 3DMM

compared to the real speaker’s videos. The upper lip protrusion was measured, extracted

and calculated from side-view 2D videos of the real speakers and the 3D lip motions.

The RMSE was used to measure the difference between the articulatory measurement

of the real speaker and the 3D animation. The results also confirmed that using the

front- and side-view photographs to create the initial 3D head pose and 161 poses to

train the 3DMM improved the performance of the 3DMM. These findings prove using
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extra data during the construction of the model achieve adequate 3D lip protrusion when

only front-view 2D videos are used for the mapping process.

Chapter 5 investigated the impact of differences and similarities in facial features

between the real speakers and the 3DMMs on the 3D lip animation by mapping 2D

videos of a real speaker to corresponding and non-corresponding 3D heads. The facial

features of the Lombard speech grid corpus’ speakers [10] were analysed and represented

into 12 indices, and each index was classified into three classes: low, middle and high.

Two indices related to the mouth features were investigated: vertical mouth height and

mouth width. The mapping between non-similar faces was achieved with the three classes

of each index. The resulting 3D lip motions were tested objectively and subjectively. In

regard to the vertical mouth height index, the results showed that mapping between

real speakers classified in the low class and 3D heads of speakers classified in the high

class, or vice versa, produced undesirable 3D lip motions. In regard to the mouth width

index, there were variations in the results of mapping between the classes, suggesting

a reduced effect on the mapping process. Two groups of subjects participated in this

study: native English speakers and non-native English speakers (native Arabic speakers).

For the two tested indices, the non-corresponding high 3D heads were chosen by the

two groups as having the worst lip motions when they were fitted to 2D videos of real

speakers classified in the low class. For vertical mouth height index, the corresponding

high 3D heads were chosen by the two groups as having the most natural lip motions.

For the mouth width index, only the native-speaking subjects chose the corresponding

high 3D heads as having the most natural lip motions, confirming a reduced effect on

the resulting 3D lip motions due to limited variations in this index during speech.

6.1 Original Contributions

• Animating 3D lips using 2D videos with the aid of a 3DMM: A 3D talking

head was animated, according to tracked lip motions of a real speaker in 2D videos.

This is achieved through a mediation of a 3DMM. Most previous works related
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to reconstructing 3D faces from images by utilising illumination or depth data, or

required 3D scans of real faces for personalising the generated 3D models and detect

lip motions accurately. Here, the 3DMM was constructed using synthetic 3D head

poses that generated using photos of a real speaker. Then the mapping between the

2D landmarks in front-view videos of the real speaker and the corresponding 3D

landmarks labelled on the 3DMM was accomplished following a method presented

by Huber et al [125] that reconstructs 3D faces from images using a 3DMM.

• Identifying a set of facial features landmarks for achieving desired 3D

lip motions: The effect of each set of facial features landmarks on the resulting

animation was examined. This investigation illustrated the functionality of each set

of the facial landmarks in the mapping process, where the 3D heads were fitted to

the corresponding real speakers using different sets of facial features. The objective

test results revealed that utilising a set that contains eyebrows, eyes, nose, and

lips landmarks gives more accurate and smoother lip motions, while including the

contour landmarks produces insufficient animation.

• Identifying the required amount of data to construct and train 3DMMs

for producing efficient 3D lip motions: Presenting a study that investigated

the impact of using different amount of data for creating the initial 3D head pose,

and training the 3DMM on the 3D lip motions. The study investigated whether

using front-view photograph or front- and side-view photographs for creating the

initial 3D head pose would improve the resulting 3D lip motions. Also, training

the 3DMM with a larger number of poses would further enhance the results. In

comparison with front-view 2D videos of the corresponding real speakers, the

results showed that the performance of the 3D lip motion enhanced when front-

and side-view photographs were used to create the initial 3D head pose, and when

the 3DMM was trained with a larger number of poses.

• Evaluation of 3D lip motions from the side-view: Producing a study that

evaluated the 3D lips’ protrusion of the 3DMMs that were created using different
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amount of data for generating the initial 3D head pose and training the model.

Side-view 2D videos of the corresponding real speakers were used to compare against

to investigate the accuracy level of the 3D lips protrusion when front-view videos

are used for the mapping process. The quantitative evaluation confirmed that using

further information during constructing and training the 3DMM enhances the final

animation.

• First study of investigating the influence of differences in facial features

between real faces and 3D faces on the final animation: Introducing a study

that investigated whether the 3D lip motions are influenced when front-view 2D

videos of a real speaker are mapped to a non-corresponding 3DMM. The mapping

between non-similar faces was implemented based on differences and similarities of

two features of the mouth, which are vertical mouth height and mouth width. The

objective and subjective evaluation results confirmed that a poor animation can

be achieved when 2D videos of real speakers who have low vertical mouth height

are mapped to 3D heads that correspond to real speakers who have high vertical

mouth height, or vice versa. Suggesting a significant impact of differences in this

index on the resulting 3D lip motions.

6.2 Limitations and Future Work

The main practical limitation is that the initial 3D head pose of each real speaker is

created based on placing facial points on a well-positioned face in a good quality of

front-view photo or front- and side-view photos. This enables the personalizing of the

generated 3DMM, but any misleading in the facial landmarks annotation process due to

choosing inappropriate photographs introduces a potential source of errors. Care must

be taken when posing the initial neutral 3D head setup for the deforming face shapes to

preserve the efficiency of the final animation. Fortunately, this is a parameterising step

that only needs to be achieved once per speaker. Moving forward, one possible direction
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for future work is to use image processing techniques or computer vision techniques to

enhance the quality of the photographs or the real speakers’ head position.

By using front-view 2D videos of a real speaker, a robust model of speech animation

that mimics real speech motions is achieved. It is currently valuable to add facial

expressions. An interesting future direction would be investigating other facial feature

motions during speech, such as eyebrow movements and facial expressions, to make the

head appears more realistic. A training set that includes facial expression poses could be

used to animate the upper part of the face. It is also worth exploring whether training

the model with these poses enhances the resulting 3D lip motions or whether the face

must be segmented into sub-regions to morph each region independently.

The side-view evaluation of the 3D lip motions presented in Chapter 4 requires further

investigation. An exploration of how using more vertical and horizontal angles for the

virtual camera to predict the angle of the used camera for recording the real speakers

would enhance the results. Furthermore, protrusion of the lower lip of the 3D heads can

be evaluated as well.

Another study could extend the mapping between the non-similar faces (conducted

in Chapter 5) by including all indices of facial features to examine the impact of each

feature on the resulting 3D lip motions. Furthermore, using a large amount of data that

includes more speakers would expand the pool of the resulting 3D motions, and further

studies should examine the impact of differences and similarities between real speakers

and 3DMMs subjectively by presenting all the cases of mapping between non-similar

faces.

Another direction for future work would be adding a tongue and teeth to the 3D

talking head to determine whether they can be animated using observed data from 2D

videos and to investigate the impact of using a large number of poses to train the 3D

head model. Furthermore, the impact of differences and similarities in facial features

between real speakers and the animated 3D heads (Chapter 5) on the resulting 3D mouth

motions can be tested subjectively by testing the intelligibility of the 3D talking heads.
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Mapping 2D to 3D

Investigating Functionality of Facial Feature Land-

marks in the Mapping Process

Consecutive Frames of the 3D Lip Motions
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Real speaker

Using set F1:
Lips

Using set F2:
F1 + nose

Using set F3:
F2 + eyes

Using set F4:
F3 + eyebrows

Using set F5:
F4 + contours

Figure A.1 Consecutive frames of the phoneme /b/ during utterance of the word bin from
sentence "bin white with V 7 soon" for a real speaker (ID: S 48) and the corresponding
3D head animated using each set of facial features landmarks.
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Figure A.2 An example of texture distortion around the mouth area, due to using the
set F3 for animating the 3D lips.





Appendix B

3D Visual Speech Animation Using

2D Videos

This appendix provides more example figures of the Front and side-view of initial natural

3D head poses, and frames and trajectories of the 3D lip motion (Chapter 4).

Front and Side-view of Initial Natural 3D Head Poses

This section shows more examples of the front and side-view photographs of real speakers

(IDs: S17, S48 and S24) and their corresponding 3D heads that generated using a

front-view photograph only (left), and front- and side-view photographs (right).

Consecutive Frames of the 3D Lip Motions

The following figures show more examples of consecutive frames of the real speakers and

the corresponding 3D heads that generated using the four datasets that presented in

section 4.2.
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Figure B.1 First row: Front (left) and side (right) photographs of a real speaker (ID:
S17); Second row: front and side view of the corresponding 3D heads generated using
front photograph only (left) and front and side photographs (right) – the lips are more
protruded in the image on the right.
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Figure B.2 First row: Front (left) and side (right) photographs of a real speaker (ID:
S48); Second row: front and side view of the corresponding 3D heads generated using
front photograph only (left) and front and side photographs (right) – the lips are more
protruded in the image on the right.
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Figure B.3 First row: Front (left) and side (right) photographs of a real speaker (ID:
S24); Second row: front and side view of the corresponding 3D heads generated using
front photograph only (left) and front and side photographs (right) – the lips are more
protruded in the image on the right.
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Real speaker

Using Dataset 1:
17 poses,
front-view photo

Using Dataset 2:
161 poses,
front-view photo

Using Dataset 3:
17 poses, front-
and side-view photos

Using Dataset 4:
161 poses, front-
and side-view photos

Figure B.4 Consecutive frames of the phoneme /b/ during utterance of the word bin from
the sentence "bin white in N 3 now" for a real speaker (ID: S24) and the corresponding
3D head for each data set.

3D lip Motions Trajectories

The figure below shows width and height of mouth trajectories of 2D frames of the

real speaker (ID:S32) and the corresponding 3D heads, during utterance of the sentence

"place blue at Y 4 now". Top two compare height and width between 17 and 161 poses
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Real speaker

Using Dataset 1:
17 poses,
front-view photo

Using Dataset 2:
161 poses,
front-view photo

Using Dataset 3:
17 poses, front-
and side-view photos

Using Dataset 4:
161 poses, front-
and side-view photos

Figure B.5 Consecutive frames of the phoneme /uw/ during utterance of the word
soon from the sentence "bin white with V 7 soon" for a real speaker (ID: S48) and the
corresponding 3D head for each data set.

(both with front- and side-view photos), while the bottom two compare height and width

between front- view photo only and front- and side-view photos (both with 161 poses).
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Figure B.6 Width and height of mouth trajectories of 2D frames of the real speaker
(ID:S32) and the corresponding 3D heads. Top two compare height and width between
17 and 161 poses (both with front- and side-view photos), while the bottom two compare
height and width between front- view photo only and front- and side-view photos (both
with 161 poses).
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