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SUMMARY

One of the main aims of the manufacturing industry has been to maximise the material

removal rate of machining processes. However, this goal can be restricted by the

appearance of regenerative chatter vibrations. In milling, one approach for regenerative

chatter suppression is the implementation of variable-helix cutters. However, these

tools can lead to isolated unstable regions in the stability diagram. Currently, variable-

helix unstable islands have not been extensively researched in the literature. Therefore,

the current thesis focuses on studying and experimentally validating these islands.

For the validation, an experimental setup that scaled not only the structural dynamics

but also the cutting force coefficients was proposed. Therefore, it was possible to attain

larger axial depths of cut while assuming linear dynamics. The variable-helix process

stability was modelled using the semi-discretization method and the multi-frequency

approach. It was found that the variable helix tools can further stabilise a larger width

of cut due to the distributed time delays that are a product of the tool geometry.

Subsequently, a numerical study about the impact of structural damping on the variable-

helix stability diagram revealed a strong relationship between the damping level and

instability islands. The findings were validated by performing trials on the experimental

setup, modified with constrained layer damping to recreate the simulated conditions.

Additionally, a convergence analysis using the semi-discretization method (SDM) and

the multi-frequency approach (MFA) revealed that these islands are sensitive to model

convergence aspects. The analysis shows that the MFA provided converged solutions

with a steep convergence rate, while the SDM struggled to converge.
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In this work, it is demonstrated that variable-helix instability islands only emerge at

relatively high levels of structural damping and that they are particularly susceptible

to model convergence effects. Meanwhile, the model predictions are compared to and

validated against detailed experimental data that uses a specially designed configura-

tion to minimise experimental error. To the authors’ knowledge, this provides the first

experimentally validated study of unstable islands in variable helix milling, while also

demonstrating the importance of accurate damping estimates and convergence studies

within the stability predictions.
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1. Introduction

1.1. Background

Machining is a set of manufacturing processes that mechanically transform raw ma-

terials into desired shapes by controlled material removal [1]. The machining group

encompasses processes such as boring, drilling, milling, and turning. In particular, one

of the most versatile machining processes is milling. It comprises removing material

from a workpiece by feeding it to a rotatory cutter with one or many teeth. Its versa-

tility means that with milling it is possible to make many other machining processes,

such as drilling, boring, gear cutting, and slotting.

Depending on the orientation between the cutter-rotation axis and the workpiece ma-

chined face, milling can be classified as peripheral or face milling. In face milling, the

cutter-rotation axis is perpendicular to the workpiece machined face, as shown in Fig-

ure 1.1 a). In peripheral milling, the cutter-rotation axis is parallel to the workpiece

machined face (Figure 1.1 b)).

Peripheral milling, that is the subject of this thesis, can further be classified as up-

and down-milling depending on the relationship between the cutting and workpiece

feed velocities (Figure 1.2). In up-milling, the cutting velocity at the start angle of

the cutter teeth is opposite to the workpiece feed velocity, as shown in Figure 1.2 a).

In down milling, the teeth cutting velocity at the exit angle is parallel to the feed

velocity, as illustrated in Figure 1.2 b). In Figure 1.2 a) and b), the amount of material

removed by every tooth (known as a chip and shown in dashed lines), subsequently
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Figure 1.1.: a) Face milling process, b) Peripheral milling process

increase or decrease for the up- or down-milling when the teeth travel along the cutting

region. Furthermore, the mechanistic cutting force model implemented in most of the

milling cases assumes that the forces are proportional to the chip cross-sectional area.

Consequently, in up-milling, the teeth leave the cutting region with maximum cutting

forces, while in down-milling they do it with forces almost null. As a result, down-

milling is recommended for tight-tolerance requirements as finishing, while the up-

milling for roughing tasks that require larger-material removal. However, down-milling

should be avoided in screw-feed type machine tools without backlash compensation,

because it may cause unsteady cutting-table motions leading to high magnitude impact

forces [2, 3].

In industry, one of the main aims is to maximise the productivity of machining by

increasing material removal rates. In milling, this is achieved by increasing the cut-

ting speeds and depths of the cut. However, one of the main obstacles that emerge

by increasing these parameters is unwanted and unstable vibrations known as chat-

ter. Chatter vibrations are detrimental for the integrity of the workpiece, cutter, and

machine tool [4]. Chatter may reduce the tool life because of the excessive high-
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Figure 1.2.: a) Up-milling process, b) Down-milling process

amplitude vibrations along with a temperature increment that promotes tool wear.

These vibrations stimulate the impact of the cutter with the workpiece, resulting in

poor surface roughness and undesirable marks on the final component. For example, A

thin-walled workpiece may experience considerable large distortions from the desired

shapes [5,6]. Also, the continuous impact of the tool with the workpiece may aggravate

residual stresses conditions of the machined surface product of the non-uniform plas-

tic deformation. Furthermore, it may experience a localised thermal expansion and

phase transformation caused by the high-temperature gradient [7]. Therefore, chat-

ter vibrations have turned into one of the primary manufacturing challenges to boost

productivity.

The vibrations experienced in milling operation are forced and self-excited chatter

vibrations. The former type of vibration is produced whenever the fundamental fre-

quency component of the periodic cutting force, or any of its harmonics, is near the

system’s natural frequencies. On the other hand, self-excited chatter vibrations can be

produced by mode-coupling and/or regeneration of the chip thickness. First, mode-

coupling chatter vibration occurs when the vibration in one direction of the cutting

3



plane excites vibrations in the other direction of the same plane. As a result, the

mode-coupling chatter frequency can reach values near the system’s natural frequen-

cies, resulting in an unstable cutting process. Regenerative chatter in milling occurs

whenever the waviness printed on the workpiece surface by one tooth, is out of phase

with the waviness left by the previous tooth. Hence, the chip thickness, and therefore

the forces, may grow exponentially resulting in a poor surface finish, tool wear, and

catastrophic damage to the machine.

Comparing the forced and self-excited chatter vibrations, forced vibrations can be

simply predicted by applying the process force model to the transfer function model of

the machine tool. The resulting vibrations can be obtained by numerical integration.

On the other hand, self-excited chatter vibrations are harder to predict and may be

more detrimental for machining operations because of the above-mentioned instability.

In terms of self-excited vibrations, in most cases, regenerative chatter vibration appears

at a lower depth of cut than mode-coupling as described by Stone [8]. Therefore, it is

first necessary to suppress regenerative chatter to attain the depths of cut where mode

coupling vibration emerges. Hence, there has been a substantial amount of research

studying the regenerative chatter problem.

In the late 1950s, the machine chatter theory was first developed by Tobias and Fish-

wick [9,10]. Many researchers for more than a century have contributed to regenerative

chatter theory development, including Altintas and Budak [11, 12], Merritt [13], and

Tlusty [14, 15]. The authors implemented Nyquist and Bode plots to show the con-

nection between the cutting forces and the dynamic chip thickness that leads to a

relationship between the critical chip depth of the cut and the spindle speed. This

relationship is embodied into a stability lobe diagram (Figure 1.3), which makes it

possible to select the parameters for a cutting process with the highest achievable ma-

terial remove rate.
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However, these methodologies have slowly rooted in the industry sector, in which, for

example, most of the small and medium enterprises still nowadays avoid chatter by re-

ducing the machining parameters. One reason for the slow acceptance of these methods

is the high complexity of these techniques and the necessity of further test with spe-

cialised equipment (e.g. tap testing kit, dynamometer) to fine-tune the chatter models.

Therefore, this also requires having trained personnel to define adequate procedures

and to interpret the results.

Nowadays, these constrain have softened with the appearance of software packages such

as CutPro and Metalmax, which facilitates the milling process optimisation [16, 17].

Most of these software require as an input the cutting conditions, the frequency re-

sponse function of the machine tool and workpiece, and the cutting-force coefficients

that characterise the machining system. Subsequently, they implement integrated

solver engines based on chatter prediction techniques such as the MFA or the SDM

to determine chatter-free cutting conditions. After, these process requirements can be

used in computer-aided manufacturing (CAM) environment, to generate the numerical

control (NC) program of the higher level milling task such as pocketing and trochoidal

milling [18,19].

More advanced software such as MACHpro allows virtual machining, in which the

NC programs are further simulated taking into account the three-dimensional tool-

workpiece engagement along complex cutting trajectories [20,21]. The software’s engine

predicts chatter at discrete steps of these trajectories, optimising the cutting process

and updating the NC codes.

One limitation of these software is the lack of packages for analytical chatter stability

prediction with irregular milling cutters (e.g. variable helix and harmonically varied

cutters), relying mainly on milling simulations to characterise unstable processes. This

may be linked to the fact that analytical methodologies to study irregular milling

cutters have developed at a slower rate than conventional milling tools because of
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their higher dynamic complexity [22, 23]. Also, implementing these cutters requires

geometrical optimisation to achieve the desired chatter performance, otherwise, they

may lead to unwanted results. Therefore, these tools are generally implemented in

specialised sectors (e.g. aerospace industry), for applications where conventional tools

underperform. As a result, there are still phenomenons that occur in the stability charts

of non-conventional milling cutters that have not been analytical and experimentally

studied. Conditions such as stable and unstable islands have not been profoundly

studied and validated yet, so there is no record of the method’s accuracy capturing

these conditions.

Figure 1.3.: Stability lobe diagram.

For applications that require cutting conditions beyond stability boundaries, unavoid-

able chatter vibrations can be suppressed by using active and/or passive approaches.
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Active approaches monitor process state variables using sensors, and feed the sensor

signals to a controller that changes cutting parameters (e.g. spindle speed), or suppress

the vibration using actuators. Alternatively, regenerative chatter can also be passively

suppressed or avoided by an adequate machine tool system design. This approach in-

cludes implementing devices to increase the structural stiffness and/or damping levels,

that lead to higher feasible material removal rates.

In milling, another promising approach for regenerative chatter disruption is the use

of milling tools with irregular shapes. The concept behind this approach relies on

the fact that consecutive wavinesses printed on the workpiece surface by conventional

cutters are characterised by a constant time delay. With irregular milling tools, this

value is broken into multiple or distributed time delays, leading to alterations in the

regenerative-chatter stability. These alterations may be beneficial or detrimental for the

process stability, therefore these tools require an adequate optimisation for particular

cases [24].

Some of the most implemented designs in the literature are shown in Figure 1.4. Figure

1.4 a) shows a conventional milling tool for comparison purposes. Figure 1.4 b) presents

a variable-pitch milling tool that is characterised by having non-equal pitches on the

tip of the tool and equal helix angles. Therefore, the pitches, and consequently the time

delays, vary between flutes but not throughout the axis of the tool. On the contrary,

variable-helix milling tools (Figure 1.4 c)) possess equal pitches on the tooltip, but non-

equal helix angles on the flutes. Thus, the pitches change throughout the tool, having

distributed time delays. Further, milling tools with variable helix and pitch (Figure 1.4

d)), combine both concepts implementing non-equal pitches and helix angles. In more

complex tool configurations, such as the harmonically varied helix milling tools (Figure

1.4 e)), the flute helix angles are varied along the tool following periodic functions. In

contrast, in serrated milling tools (Figure 1.4 f)) the tool diameter changes throughout

the cutter following a periodic function.
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Figure 1.4.: Circumferential view of milling tool geometry. a) Conventional milling

tool, b) Variable-pitch milling tool, c) Variable-helix milling tool (Tool

implemented in the current project), d) Variable pitch and helix milling

tool, e) Harmonically varied milling tool, f) Serrated milling tool (Cross

section aa© shows the tool’s serration).

While several works have documented outstanding chatter stability using these tools,

some of them have reported the appearance in simulations of isolated unstable regions

in the stability diagram [25–27]. These unstable regions emerge due to the delay
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alteration induced by the tool geometry. For variable-helix milling tools, that is the

subject of this thesis, Figure 1.5 shows a schematic illustrating an oversimplification of

the island occurrence mechanism. While the island appearance is indeed more complex,

this schematic illustrates how the tool geometry can lead to these isolated unstable

regions. As it is shown in Figure 1.4 c), these tools possess equally spaced pitches at

the tooltip as conventional milling tools. Therefore, the stability lobe diagram for both

tools at lower axial depths of cut is similar, as illustrated in Figure 1.5. However, while

increasing the axial depths of cut, the regenerative effect experience by the variable-

helix milling process may be disrupted as a result of the teeth pitch variations caused

by the non-equal helix angles. This behaviour may lead to unstable isolated regions in

the stability diagram.

While this phenomenon was explained using the lower region of a lobe, it may occur

in any region of the stability diagram because of the strong relationship between the

delays and the process stability condition [25, 27]. However, although variable-helix

milling tools can lead to these isolated unstable conditions, their capability to stabilise

at higher axial depths of cut allows increasing considerably the material removal rate.

Consequently, it is fundamental to understand, predict and avoid these conditions to

increase the variable-helix milling productivity.

To the best knowledge of the author, variable-helix instability islands have not been

rigorously studied in the literature, other than through simulation studies. Therefore,

the present thesis seeks to address this shortfall.

1.2. Aim and objectives

The main aim of the current research is to experimentally validate isolated unstable

regions that emerge in the stability lobe diagram using variable-helix milling tools. To

achieve this aim, the primary objectives are:
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Figure 1.5.: Simplified schematic describing the variable-helix instability island mech-

anism. These islands appear in the stability diagram due to the further

stabilization at higher axial depths of cut induced by the non-equal helix

angles on the tool.

1. To perform an extensive literature review about variable-helix instability islands.

2. To develop a one-degree-of-freedom scaled experiment for validation of the variable-

helix stability diagram at larger depths of cut.

3. To investigate the tool-geometrical factors and structural-dynamic conditions

that lead to the variable-helix instability island occurrence.

4. To study the model convergence of the multi-frequency approach and semi-

discretization method around a variable-helix instability island.

5. To validate the variable-helix unstable islands with the tuned experimental setup.
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1.2.1. Thesis outline

The rest of the thesis structure organisation is as follows:

Chapter 2 presents the literature review of the thesis, beginning with some of the

most important chatter prediction research. Next, chatter detection techniques are

addressed, revising the different sensors implemented for chatter detection, and the

different signal processing for this purpose. After discussing the different active and

passive chatter suppression techniques, the literature reviewed is focused on the main

topic of the research that is unstable islands found with variable-helix milling tools.

Afterwards, Chapter 3 presents the theoretical background for regenerative chatter

modelling. It starts with regenerative chatter modelling for a single-point cutting

process. Later, the two analytical methods implemented in the research are presented,

these being the multi-frequency approach (MFA) and the semi-discretization method

(SDM). Finally, Chapter 3 assesses the MFA and SDM programs implemented in the

investigation using a case study found in the literature.

Next, Chapter 4 presents the one-degree-of-freedom scaled experimental setup imple-

mented for the analysis and validation of the variable-helix instability islands. This

section first presents the flexure device, workpiece material, and the custom variable-

helix milling tool used in the project. Later, Chapter 4 analyses the helix angle influence

on the cutting force coefficients, and therefore on the stability lobe diagram. Finally, a

particular region of the stability diagram with a potential instability island is validated

using the experimental configuration.

Chapter 5 demonstrates in simulations the effect of structural damping on the presence

of variable-helix instability islands. Later, a convergence analysis using the MFA and

SDM is performed around an island. Next, the structural damping of the original

experimental configuration is increased using constraint-layer damping to recreate the
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simulated conditions. Finally, the instability island is validated with the modified

experimental setup.

Chapter 6 finally presents the conclusions reached throughout the project and the

potential future works.
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2. Literature Review

2.1. Introduction

Since early times, machinists have dealt with the fundamental task of defining the

optimal parameters for maximum machining productivity. In most situations, the

operator executes this through a cumbersome and ineffective set of trial-and-error tests.

Aware of this, Taylor F., chair of the American society of mechanical engineers (ASME),

conducted a secretive and extensive experimental investigation about it. Taylor later

summarised the results gathered from over twenty-six years in the report ‘On the

art of cutting metals’ [28]. Taylor stated in this work that ‘probably no rules or

formulae can be devised which will accurately guide the machinist in taking maximum

cuts and speeds possible without producing chatter.’ The machining community took

this statement as a challenge, and have tried over the years to prove it inaccurate.

Nowadays, with over a century of investigation, the community has revealed many

key aspects about the nature of chatter. Therefore, this understanding has led to the

development of tools to guide the machinist to achieve productive machining processes.

For instance, H. Ernst first presented the shear-plane concept of chip formation in

1938 [29]. This idea prompted Merchant in [30, 31] to establish the static orthogonal

cutting model. This model relates the tool geometry, material properties and process

conditions to the cutting forces. Afterwards, Arnold [32, 33] studied the vibration

mechanism in steel. These studies then worked as a backbone for Tobias and Fishwick’s

[9,10,34,35] and Tlusty and Polacek’s [14,36–38] regenerative chatter models. Several

authors later deepened the regenerative effect knowledge implementing many control
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theory techniques. Then, authors such as Altintas [39], Insperger [40], and Ding [41]

developed analytical chatter stability predictions such as the Multi-frequency approach,

Semi-discretization Method and the Fully Discretized Method.

With the current computer developments, these methods have been powerful tools

for machine-tool system optimisation. Furthermore, it even allows the monitoring

and suppression of chatter in real-time using different sensors and chatter detection

techniques. Sensors such as accelerometers, microphones, and dynamometers have

been broadly implemented in the literature, along with different chatter related signal

statistics for chatter detection. The chatter prediction and real-time detection have

led to active and/or passive chatter suppression approaches that allow to even further

expand the capabilities machine tools. In summary, despite early pessimist conjectures

about machining chatter, many of the key features behind its physics can now be

explained. Though new challenges have appeared, tools have been developed that

provide the means to maximise industrial machining productivity.

The following sections present the thesis’s literature review. First, section 2.2 presents

the chatter prediction approaches. Later, sections 2.4, and 2.5 deal with chatter detec-

tion, active, and passive chatter suppression techniques. Finally, section 2.6 presents a

review on milling with irregular-shape tools. This section in particular introduces the

focus of this thesis, which is the instability island that appears in the stability diagram

while using variable-helix milling cutters.

2.2. Chatter Prediction

After Taylor’s investigation, Ernst [29] and Merchant [30, 31] studied chip formation,

leading to the static orthogonal cutting theory that relates the cutting forces to the

tool geometry and process parameters. Subsequently, Arnold et al. [32, 33] studied

the dynamic force-speed relation in self-induced vibrations while cutting steel. These
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investigations then later helped Tlusty and Polacek [36] and Tobias and Fishwick [10,34]

to develop, almost simultaneously, two fundamental chatter models.

First, Tlusty and Polacek [36] proposed a simplified static cutting force model in which

the forces are proportional to chip thickness. This model was mainly based on Mer-

chant’s investigation [30, 31], and the linear proportional constant was named as total

thrust variation factor. The total thrust variation factor was basically the product of

the cutting stiffness and the width of cut. The authors found that the smallest thrust

factor for chatter occurrence happens on the minimum real part of the structural fre-

quency response function. Tlusty and Polacek highlighted that this approach even

allowed the inclusion of multiple degrees of freedom in the solution.

In contrast, Tobias and Fishwick [10, 34] proposed a more general dynamic cutting

force model that included a term known as the penetration rate. This term coupled

the cutting forces with the vibratory and spindle rotational speeds. The development

of this method was based on previous works performed by Arnold [32]. In addition, the

model also considered the time delay between consecutive surface waves and multiple-

teeth engagement. Tobias showed that, while Tlusty’s stability predictions were on

the safe side (grey shaded area in Figure 2.1 (a)), they were more conservative in

several regions of the stability diagram [9]. In addition, the author explained that these

differences are more noticeable at lower spindle speeds because of the penetration rate

term. Finally, Tobias emphasised the potential of merging both approaches to build a

more robust model [9].

Tlusty replied later [14,37,38] stating that the main aim of previous works was to find

the lowest stability limit for an optimal process design. He then enhanced the model

based on Tobias’s comments, considering aspects such as the phase shifting between

the chip thickness and force excitation.

Based on the Tlusty approach, Merritt in [13] showed later that the single point cutting

processes can be represented as a feedback loop as shown in Figure 2.2. Thus, control
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Figure 2.1.: (a) Stability Lobe Diagram (b) Process damping mechanism

theory tools like gain-phase plots of the transfer function can be implemented to analyse

the chatter stability of cutting systems. In this research, Merritt neglected the low

spindle-speed behaviour presented by Tobias, implying that this condition could be

better explained by Kegg in [42]. Kegg in this article explicated that at lower spindle

speeds, the wavelength of the waves imprinted on the workpiece surface by the cutter

decrease. This then leads to a rubbing between the cutter flank face and these waves

as depicted in Figure 2.1 (b). This condition is known today as process damping.
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Figure 2.2.: Regenerative feedback loop

Further studies using control theory techniques were carried out. For instance, Sridhar

et al. performed a similar investigation than Merritt using milling models with two

degrees of freedom [43]. The author presented the process as a connected block diagram

that showed the relationship between the different variables. Later, Olgac et al. [44]

studied the chatter stability of a single point processes using root-locus plot analysis

of time-delayed systems. In this work, Olgac also discussed a phenomenon called dual-

frequency resonance that occurs in the intersection of two lobes as shown in Figure 2.1

(a).

Thanks to all these investigations, a more comprehensive machining chatter knowledge

was developed. In particular, it was shown that regenerative chatter can be modelled

as delayed-differential equations (DDE) with periodic coefficients such as,

q̇(t) = L(t)q(t) + R(t)q(t− T ), (2.1)

in which q is a generalised state vector, L(t) and R(t) matrix encompassing process

related parameters, and T is the fundamental process period. T can be the spindle

rotating period for milling process with non-conventional milling tools, or the tooth-

passing period for conventional milling cutters. These equations were often solved

using time domain simulations (e.g. Smith and Tlusty in [15, 45]), but they were
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computationally demanding and impractical. Thus, several analytical approaches have

emerged through the years to efficient and reliable predict machining process stability.

For instance, the multi-frequency approach (MFA) [46], the time finite element (TFEA)

[47], the Chebyshev polynomial approach [48], the semi-discretization method (SDM)

[40], and the fully discretized method (FDM) [41] are between the most implemented

techniques.

For example, Altintas and Budak in [39] presented the first analytical stability pre-

diction method in the frequency domain for vertical-tooth milling. The methodology

applies the Fourier transform to the time domain equation 2.1 leading to,

F(ω) =
1

2
aKt[A(ω) ∗

{(
1− e−iωT

)
G(ω)F(ω)

}
], (2.2)

where Kt is a cutting force constant, A(ω) is a matrix that considers the periodic

angular rotation of the tool, a is the axial depth of cut, G(ω) the system’s frequency

response function, and ∗ denotes the convolution operation. The method then ex-

panded the matrix A(ω) into its Fourier series, including only the zeroth-order term

into the solution. Later, equation 2.2 was expressed as an eigenvalue problem leading

to the critical axial depths of cut and spindle speeds to build the stability lobe dia-

gram of the process. The frequency approach has the benefit of operating directly on

raw frequency response functions, without having to estimate modal parameters. The

zeroth-order approach has additional advantage of allowing to directly predict the sta-

bility lobe diagram in a few seconds without requiring any iterative search algorithm.

In general, the method can be reliably used in machining processes with immersions

larger than a quarter of the tool diameter, and tooth passing frequencies not exceeding

the structural natural modes of vibration. However, although the method worked in

most situations, the authors suggested that it required further investigation for helical

tools and low cutting immersions. Subsequently, Merdol et al. [46] later tackled these

issues, including more harmonics of A(ω) in the solution in what is known as the multi-

frequency approach MFA. With this enhancement, the method could then predict the

stability lobe diagram of highly intermittent milling process at lower immersion and/or
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higher spindle speeds. Nevertheless, the method is more time consuming requiring an

iterative search of the stability boundaries. Bachrathy and Stepan in [49,50] extended

the MFA to more complex milling tool designs. The authors implemented the multi-

dimensional bisection method to reduce the computational burden. They showed that

the method provided robust stability predictions even with raw, not fitted, noisy fre-

quency response functions. Further MFA enhancements have been performed by Sims

in [51] and Otto et al. in [52], in which it was modified for variable helix and pitch

milling tools.

As an alternative, Bayly et al. [47, 53] proposed the Time Finite Element Analysis

(TFEA) to predict chatter in milling at low immersions. This method assumed q̇(t),

q(t−T ) and q̇(t) in equation 2.1 as Hermite polynomials. Then, the resulting error in

equation 2.1 was weighted by a set of test functions, and its integration was set to zero.

Consequently, the process was approximated as a periodic discrete system or map that

related the process state vector at one instant Q0, with the same state vector but at

subsequent fundamental periods QT using the transition matrix Φ as,

QT = ΦQ0. (2.3)

Therefore, the stability of the system could be assessed using the Floquet theory of

periodic systems by analysing the eigenvalues of this matrix. Using this method, the

authors could predict with significantly higher efficiency the stability of a highly in-

termittent milling process (e.g. low-radial immersion), capturing extra lobes in the

stability diagram. These conditions were non-detected by the zeroth-order frequency

approach, requiring the inclusion of higher A(ω) harmonics that increased the com-

putational time. The authors indicated that TFEA provided an efficient and accurate

approach for low cutting immersions, while for full and near-full immersions, the fre-

quency domain analysis represented the ideal option in these terms. Butcher et al.

proposed a similar approach in [48], but approximating delay state vectors as Cheby-

shev polynomials. Again, the original DDE system was reduced to a group of periodic

linear equations for the Chebyshev coefficients. In this case, in addition to providing a
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faster chatter prediction for lower immersions, the methodology allowed the implemen-

tation of non-linear cutting force models in the chatter stability predictions. Likewise,

the stability of the system was then tested using the Floquet theory.

At a similar time, Insperger et al. [40, 54] introduced the semi-discretization method

(SDM) for time-delay systems. In this method, fundamental period T is divided into

m discrete time intervals such as T = m∆t as shown in Figure 2.3. In that case, the

state vector q(t) in equation 2.1 at a specific discrete time ti can be just stated as qi.

Then, for a small ∆t value, equation 2.1 can be approximated as,

q̇i = Liqi +
1

2
Ri [qi−m+1 + qi−m] , (2.4)

in which qi−m = q(ti − T ) and qi−m+1 = q(ti − T + ∆t). By doing this, the system

is reduced to a series of equations at discrete times, in which the process stability

condition can be analysed using the Floquet theory of the transition matrix Φ [55].

The SDM proved to be more accurate than the zeroth order frequency approach because

instead of averaging the time-variant directional matrix, the method considered it at

each discrete sampling interval. Therefore, the accuracy of the SDM is only limited by

its sampling interval. Unlike the MFA, the method has the disadvantage of requiring

the identification of the structural modal parameters. Consequently, any error incurred

in the identification process may also condition the SDM accuracy. Like the MFA, the

SDM also requires an iterative search to capture the stability boundaries. Hence, the

computation time depends on the number of modes in the system and the sampling

interval. Higher orders of the SDM have been proposed by Insperger et al. [56] and

Jiang et al. [57], in which the authors implemented linear and quadratic interpolation

to approximate q(t−T ) and the periodic matrix L(t) and R (equation 2.1), improving

the overall convergence rate of the SDM. Further SDM modification for variable helix

and pitch milling tools was done by Sims et al. in [58]. Here, the single time delay T

in equation 2.1 becomes multiple discrete delays or even distributed delays that vary

along the axial axis of the tool.

20



Figure 2.3.: Semi-Discretization Method

Subsequently, Ding et al. [41] proposed the fully discretized method (FDM). This

method differs from the SDM in that instead of separately approximating the delayed

term q(t−T ) and the time-variant matrix R(t), the FDM approximates their product

by linear interpolation. The authors showed that the FDM had a faster convergence

rate than the SDM. Higher orders of the FDM have been proposed by Ding et al. [59],

Quo et al. [60], Ozoegwu et al. [61], Tang et al. [62], and Liu et al. [63] showing

even better results. However, Insperger in [64] compared the convergence performance

between the SDM and FDM. The author concluded that FDM is not a pure full-

discretization method. Insperger stated that FDM can be considered as an alternative

form of SDM. The author even proved that the first-order SDM has a faster convergence

rate than the FDM.

In summary, current developments in regenerative chatter predictions would not be

possible without previous investigation that exposed the true physics of chatter. Re-

search about chip formations led to force models, implemented to further modelling

of chatter vibrations. Afterwards, the relationship between the cutter geometry and

process parameters was visually embodied using block diagrams. Consequently, the
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process stability was then studied using control theory means. This synergy then

led to developments in analytical approaches for chatter stability such as the MFA,

TFEM, SDM, and FDM. With these techniques, the machinist can estimate the cut-

ting conditions for an optimal and chatter-free process. For the current thesis, islands

of instability that emerge on the stability diagram of milling with variable-helix tools

will be studied using two chatter prediction techniques. These techniques are the SDM

and MFA, and in particular, the approaches proposed by Sims in [58] and [51]. While

these methods were designed for variable helix and pitch milling tools, they are flexible

enough to be implemented with just variable-helix milling tools by setting equal pitches

at the tooltip. Consequently, it will be possible to compare the performance of these

methods in reliably capturing these unusual conditions. Methods such as the FDM

and TFEM will be left out of scope for this thesis, leaving it for future works.

Most analytical chatter predictions techniques allow to determine the chatter stability

boundaries of the cutting process based on linear cutting force models. This consid-

erably reduces the complexity of the problem and provides reliable solutions under a

specific range of cutting conditions.

Chatter prediction methods divide the spectrum of cutting conditions into stable and

unstable regions. Therefore, it enables to study the different vibratory patterns that

emerge when transitioning from a stable to an unstable cutting process. Similar analysis

has also been done using enhanced non-linear models, exposing further behaviours none

captured by the standard linear approaches. Therefore, the following section introduces

some of the most relevant works related to bifurcation analysis of milling process.

2.3. Bifurcation analysis of milling process

Being able to predict unstable and stable regions in the stability diagram, several

authors have researched the bifurcations that occur in milling. A bifurcation occurs
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when a qualitatively different solution of a dynamic system appears when a control

parameter (e.g., axial depth of cut, spindle speed) is changed [65]. Authors such as

Tlusty et al. [15], Balachandran et al. [66], and Zhao et al. [67], early studied milling

bifurcations using numerical simulations. Davies et al. [68] first introduced the use of

once-per-revolution sampling and Poincaré map to study the bifurcations that occur in

milling. A Poincaré map is the intersection between a dynamic system’s periodic orbit

(limit cycle) and a Poincaré section (a subspace of lower dimension) that is transversal

to the system’s flow (Figure 2.4). Honeycutt et al. [69] stated that the bifurcation found

in milling are secondary Hopf instability (traditional chatter), and period-n motions

(e.g., period one, and period-doubling bifurcations).

Figure 2.4.: Poincaré map

For periodic stable milling trials, the once-per-revolution values of a state vector should

be the same when the process achieves its stationary state [68, 69]. Therefore, the

dominant frequency in the process is the fundamental frequency related to periodic

forcing. The system response to periodic forces results in a limit cycle that intersects

the Poincaré section on the same location every fundamental period T , as illustrated

in Figure 2.5 and 2.6 (a).
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Figure 2.5.: Schematic showing the Poincaré map of a milling process experiencing

a: (a) stable condition, (b) unstable period doubling bifurcation, and (c)

unstable secondary Hopf bifurcation. T represents the process fundamental

period.

As an example of an unstable Period-n bifurcation, Period-2 (or period-doubling) bifur-

cations are characterised by jumping of the cutter in one fundamental forcing period.

Therefore, the limit cycle generated by the periodic force intersects the same location

of the Poincaré section every two fundamental forcing periods T , as indicated in Figure

2.5 (b). For two teeth milling cutters, just one tooth of the tool is cutting in the process

every two T cycles (Figure 2.6 (b)).

For unstable secondary Hopf bifurcations [68, 69], a quasi-periodic motion emerges

because of the appearance of a chatter frequency that co-exists with the fundamental

cutting frequency. The periodic orbit then becomes a toroid that intersects the Poincaré
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Figure 2.6.: Schematic of milling process and Poincaré plot for a stable (a) and unstable

period-doubling case (b)

section at different locations at every fundamental forcing period as shown in Figure

2.5 (c).

Bifurcation analysis has also been implemented to study nonlinearities in the milling

process. Nonlinearities in milling can come from sources such as the cutting nonlinear

force models [70–72], higher-order structural dynamic stiffness models [70, 73], or/and

large displacement [74] that can lead to a loss of tool engagement [75,76].

The linear cutting force model assumes a linear relationship between the cutting forces

F and the uncut chip thickness h being the cutting force stiffness the proportionality

constant. However, as it is shown in Figure 2.7 (a), this model does not encompass the

complete force dynamics at low and high feed values, showing for example, that there

is a force component Fe even at feed equal to zero [77]. Therefore, enhanced models

have been proposed such as the power cutting force model [73, 78] or the third order

polynomial model [70, 74] that better represent the force feed dynamic behaviour as

shown in Figure 2.7 (b) and (c). Bifurcation analysis in milling using these models

led to bifurcations behaviours overlooked by the linear models. For example, Zoltan et

al. [73] reported uncertain or unsafe zones close to the stability boundaries. In these
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regions, better known as bistable zones, stable trials can become subcritical secondary

Hopf bifurcation under small perturbations.

Figure 2.7.: Force vs chip thickness approximation using: (a) linear model, (b) poly-

nomial, and (c) power functions.

Nonlinearities in the structural dynamic models have also been studied by authors

such as Hanna et al. [70]. The authors studied the effect of cubic-polynomial stiffness

dynamic and cutting force model on the stability of milling process. Hanna found that

by including these nonlinearities, several unstable regions were transformed into stable

and conditionally stable zones. Weremczuk et al. [79] performed a similar study, addi-

tionally exploring the nonlinearities on the bifurcation scenarios. Weremczuk showed

that the nonlinearities induced by the force model have a more critical impact on the

stability lobe diagram. In simulations, the author could find entire new unstable lobes

by including the nonlinear terms, while also showing how stable trials change into

subcritical Hopf Bifurcations.

The losing of tool engagement can also induce nonlinearities in the milling process. For

example, Zhao et al. [67] studied the milling process implementing a time-domain sim-

ulation which incorporated the regenerative effect and loss of tool-workpiece contact.
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The authors identified period-doubling bifurcation at low radial immersion and pre-

sented bifurcation diagrams to show the stable to unstable transition. Gabor et al. [80]

further studied nonlinearities in a high spindle speed milling process. The author re-

ported stable period-2 vibrations outside the unstable period-2 motions predicted by

linear models. This phenomenon, named as a fly-over effect, occurs when the tool en-

gages cutting the workpiece in one main cycle, and subsequently flies over the contact

region in between. For example, for a two teeth cutter, this means that only one tooth

is removing material from the workpiece while the other flies over the cutting region

because of the tool vibrations. In addition, for larger amplitude vibration, the time

delay (single, multiple or distribute time delays) may depend on previous values of the

state variables [81]. This then leads to time and state dependant delayed differential

equations which are nonlinear even in the delay term [82]. Bachrathy et al. studied the

state-dependent regenerative effect in milling. Bachrathy et al. [75, 76] reported that

traditional small oscillation models can overestimate the stable region near-resonant

spindle speed velocities. The author could find fold bifurcations regions that create not

globally stable, unsafe cutting zones.

In summary, bifurcation analysis has been implemented in milling to study the types

of instabilities that emerge while transitioning from a stable to unstable cutting condi-

tion. Stable periodic cutting processes are characterised by limit cycle solutions that

intersect a Poincaré section in the same locations every fundamental forcing period.

This fundamental period varies from the tooth pass period for conventional milling

tools to the spindle pass period for non-conventional ones. For linear chatter predic-

tion models, unstable bifurcation cases can be divided into period-n bifurcations and

secondary Hopf bifurcation or chatter. In the foremost, the limit cycle solution inter-

sects the Poincaré section every n times. In the latter, a not harmonic frequency of

the forcing excitation emerges, leading to multiple intersections of the limit cycle with

the Poincaré section resembling an elliptical shape. Chatter prediction methods that

employ nonlinear models have also been studied using bifurcation analysis. Sources of
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nonlinearities in milling processes can come from cutting force models and/or struc-

tural dynamics. Regarding the cutting force model, sources of nonlinearities can come

from a nonlinear relationship between the cutting forces and the chip thickness, or

enhanced models that allow the inclusions of phenomenons such as the loosing of tool

engagement and/or large-amplitude vibrations. Nonlinear structural dynamic sources

can come from the use of cubic spring models and/or mass changing models that ad-

just the FRF according to the material removed from the workpiece. By using these

enhanced models, several authors have reported more complex unstable bifurcation

conditions and even chaotic behaviours in bifurcation diagrams.

However, while these enhanced non-linear models provide more accurate chatter pre-

diction results, they generally increase the complexity of the modelling equations and

the computational time to solve them. On the other hand, linear milling systems pro-

vide reliable results within a range of system parameters. For example, Figure 2.7

shows that the linear cutting force model provides a fair approximation for uncut chip

thickness from h1 to h2. Lower and higher values may diverge from the linear cutting

condition. The same analysis can be done for other sources of nonlinearities in which

an adequate cutting condition selection reliably allows the linear model assumption.

For the current thesis, the aim is to validate instability islands that emerge when using

variable helix milling tools. These islands appear in the stability lobe diagram because

of the non-equal helix angles of the tool flutes that alter the chatter condition of the

process at higher axial depths of cut. To validate this condition, an instrumented

experimental setup is developed. This device has a hall effect sensor that sends a pulse

every time it detects a rotating reference in the spindle. These pulses are used as a

reference to get once-per-revolution values of the obtained sensorial data. Therefore, it

enables to construct recursive or Poincaré plot to analyse types of bifurcation providing

an insight into the process dynamics inside and around these islands. To reduce the

complexity of the problem, the experimental setup is developed as a linear one-degree-

of-freedom flexible workpiece. Also, the machine tool is assumed as infinitely rigid. To
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assess this condition, several impact tests are performed on the flexible workpiece and

machine tool.

To attain larger depths of cut while assuming linear structural dynamics, a low cutting-

force stiffness material is implemented to scale the cutting forces. For this purpose, a

thermoplastic named as copolymer acetal is employed as workpiece material. To use

the linear cutting force models, it is first investigated in the literature the recommended

cutting parameters (such as tool geometry, cutting speeds, chip thickness) that guar-

antee linearity. Later, a set of milling trials following the mechanistic identification

approach are performed to assess this assumption and to determine the cutting force

coefficients.

To fulfil this goal, the next section first presents some relevant works related to sensors

and signal processing techniques to detect chatter milling processes. Aspects such as

the type and the number of sensors and the chatter signal features are vital parameters

for a reliable chatter detection system.

2.4. Chatter Detection

Reliable chatter detection is an important aspect to safeguard the workpiece and ma-

chine tool integrity. In a production environment, chatter detection can be required

online chatter avoidance. By determining the chatter onset, or even forecasting its oc-

currence, the spindle speed and depths of cut can be automatically adjusted to values

with better chatter stability performance. Development environment can also require

chatter detection to fine-tune the machining parameters and process design for specific

workpiece components, particularly in high-value manufacturing such as aerospace. In

research, chatter detection plays a vital role in the model validation process, allowing

accurate classification of the stability of machining trials.
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Either in offline or online applications, an inadequate sensor choice and detection tech-

nique may lead to wrong conclusions and catastrophic results. To detect chatter,

process variables can be monitored using sensors such as accelerometers, displacement

sensors, microphones, and dynamometers. The state of the process variables can also

be indirectly estimated using related variables such as motor current consumption. In

addition, the use of sensors requires signal processing techniques to extract features

related to chatter. Hence, this section presents some of the most utilised sensors and

techniques for this purpose.

2.4.1. Sensors for Chatter Detection

Chatter detection techniques rely heavily on the information provided by sensors. In

machining, sensors such as accelerometers, microphones, dynamometers, and displace-

ment sensors are broadly used for this purpose. Therefore, knowing the capabilities

and limitations of these devices is essential for a suitable selection. In fact, in most

cases multiple sensors are recommended so they can compensate for their limitations

in specific applications.

For instance, accelerometers are one of the most implemented sensors for chatter de-

tection because they can robustly reflect the chatter onset at large and low cutting

immersions. This reliability is reinforced by their rapid response, suitable for online

chatter detection, as mentioned by Cao et al. in [83]. For example, Faseen in [84]

compared several sensors for chatter detection in milling. The author highlighted that

the fastest response was found using a piezoelectric accelerometer and an eddy current

sensor. Nevertheless, Faseen highlighted that accelerometers proved less intrusive with

a straightforward implementation. However, applications that require coolant may

complicate the sensor’s use if a waterproof installation can not be guaranteed.

Regarding microphones, Delio [85] showed the capability of sound signals to better

reflect the chatter onset. Delio reached this conclusion when comparing microphones
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and force sensors on milling processes at low and high cutting immersions [86, 87].

However, the author stated that background noise may affect signal quality, so noise

filtering could be required [84, 88–90]. This adds an extra step in the implementation

when compared with accelerometers. In addition, applications requiring spindle and

workpiece rotations may complicate the sensor installation. This is because the sensor

requires to be orientated and close to the cutting process [91, 92]. The use of coolant

may also add another constraint if the microphone is not impermeable.

Chatter detection can be performed using cutting force signals from a table or rotating

dynamometer [93–98]. However, several research articles have reported poor force

signal performance on reflecting chatter onset [86,99,100]. For example, for low milling

cutting immersions, the sensor struggles to reflect chatter due to the short time spent

in cutting [85]. If the force magnitudes are also low, it requires a dynamometer with

higher sensitivity transducers to capture the dynamics. In addition, to avoid sensor

dynamic interference on the measurements, the frequency bandwidth must be as high

as possible. For higher cutting force magnitudes, the implementation of larger and

more intrusive dynamometers may be required. Therefore, this may lead to a narrower

frequency bandwidth due to the additional mass. Another option could be the use of

rotating dynamometers, but these sensors increase the tool overhang, thus the flexibility

of the spindle-tool holder-tool chain.

Cutting forces can further be indirectly measured from the drives and spindle mo-

tor current consumptions [101]. This technique has been implemented by several re-

searchers for chatter detection and tool-condition monitoring [21,102]. This can be done

by equating electrical and mechanical power consumption, leading to a cutting forces

and motor current linkage. Contrary to dynamometers, this sensor-less approach does

not interfere with the machining process in any sense, while providing a good chatter

sensitivity at higher and lower immersions [101–104]. However, the thermal depen-

dency of the motor energy utilisation may obscure the chatter feature extraction [105].

Moreover, the tool-toolholder-spindle dynamics are required for the modelling, adding

31



extra steps for its implementation. Furthermore, the lag time between the chatter

onset and the signal arrival may complicate its real time application.

In summary, an adequate sensor selection is critical because it can facilitate the signal

processing and feature extraction tasks. This then lead to accurate assertions about

the stability condition of the process [106]. In the literature, chatter detection has

been performed using sensors such as accelerometers, microphones, and dynamometers.

These sensors possess weaknesses and strengths, so more than one of them is often

recommended to guarantee effective chatter detection. Thus, the weaknesses of one

sensor can be compensated, leading to a more robust detection system. For example,

Kuljanic et al. [107, 108] studied a multi-sensor approach for chatter detection. The

author found that best results were obtained using microphones, an axial force sensor,

and accelerometers in the milling process.

2.4.2. Signal processing and feature extraction for chatter detection

To avoid or suppress chatter, signal processing techniques are required for conditioning

and extraction of chatter related features. For instance, techniques such as time-domain

analysis, fast Fourier transform, wavelet transform, and Hilbert-Huang transform, have

been extensively used for signal processing. Depending on the approach, various metrics

and criteria can be defined to characterise the process stability condition. Finally, the

chatter characterisation is then performed defining a threshold limit to the features

extracted from the signals.

As an example of time-domain analysis, Schmitz [91] implemented the variance of once-

per-revolution samples of sound signals as a feature. A periodically sampled signal from

a stable milling process is identified by having a low statistical variance because it pro-

duces information synchronised with spindle rotation. On the other hand, unstable

trials manifest a larger once-per-revolution variance because of the asynchronous mo-

tion associated with the process. Later, Shepard [109] followed the same methodology
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as Schmitz but using cutting-force signals. Shepard explained that using microphones

in a noisy industrial environment may decrease the signal-to-noise ratio. However, the

experimental validation revealed several inconsistencies while categorising the stability

of some trials, a condition that may be linked to the poor force sensor performance on

reflecting chatter.

Furthermore, time-domain analysis has also been implemented for in-process chatter

detection. Here, the non-stationary nature of the physical variables requires faster

computational times to calculate the features or even to forecast the chatter-stability

variations. For example, Li et al. [110] proposed a non-dimensional chatter indicator

composed by the root mean square (RMS) calculations of the acceleration signal. First,

the individual RMS of five revolutions of the signal was determined. Then, the peak-

to-peak distance from these five RMS values was divided by their arithmetic mean

value. Finally, the index was calibrated using experimental trials in which a set of

thresholds were defined to categorise stable, marginally stable, and unstable chatter-

ing processes. In this work, the authors first attempted to implement a dynamometer

along with the accelerometers, but the method did not perform adequately using force

data. Tangjitsitcharoen et al. [111,112], on the other hand, proposed an approach that

implemented the variance ratio of orthogonal cutting forces for chatter identification in

ball-end milling. This method comprised a pattern recognition algorithm that classifies

stable and unstable milling trials depending on the variance-ratio values. The author

suggested that while force magnitudes vary with the machining parameters (e.g. depths

of cut and cutting speeds), their variance ratio remain almost unchanged. As a result,

the computational requirements of the approach were minimal because it mainly com-

prised comparing the incoming collected data to pre-calculated thresholds. However,

while these thresholds can be used in a wide range of cutting tests, the method requires

a large number of cutting tests to determine them.

Yamato et al. [101] proposed an on-line sensor-less chatter detection approach for turn-

ing, that implements mechanical energy and electric power factors. Yamato highlighted
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that in most research, the threshold definition is unclear and dependent on the cutting

conditions and machine tool. In practical industrial scenarios, it is also required a

chatter detection method independent of the machining conditions and with a simple

preparation. Therefore, the approach proposed by the authors uses the motor current

and voltage phase difference to monitor the phase variation between the cutting forces

and the tool displacements. This parameter is strongly related to chatter vibrations,

and in this approach, it only depends on the frequency disturbances on the system.

While these time-domain approaches proved to be computationally efficient, they do

not provide any information about the chatter frequency. This is an essential parame-

ter to either avoid or suppress chatter. Therefore, the fast Fourier transform (FFT) has

also been broadly used in the literature to analyse the stability condition of machining

processes. This approach calculates the signal’s frequency spectrum by expanding the

signal into a series of infinite-duration sine and cosine waves. In milling, for exam-

ple, chatter occurs when non-harmonic frequency components of the excitation forces

become dominant. Therefore, the chatter frequencies can be straightforwardly deter-

mined, providing a significant advantage over time-domain analysis [1]. For example,

Zaghbani et al. [113] implemented a frequency-domain descriptor to analyse the sta-

bility of high-speed robotic milling. Essentially, this index is the ratio between the

signal’s total energy within the steady-state region, to the energy of the signal in a

fundamental period. Because a stable milling process is periodic, this descriptor quan-

tifies non-periodic variation in the cutting system. Furthermore, it has the advantage

of being bounded between 0 (unstable) to 1 (stable), in which the milling trials with the

higher index values provided the best surface finish. The reliability of the method was

proven by implementing different sensors such as accelerometers and dynamometers.

Furthermore, the FFT can provide a deeper insight into the cutting process mechanics.

For example, Patwari et al. [114] implemented the FFT to investigate the process insta-

bilities induced by the serration formation on the chip thickness of titanium Ti6Al4V in

end milling. Using a scanning electron microscope, the authors found that the chip ex-
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hibited equally spaced serrated teeth along its main section. It was also found that the

teeth frequency depended on the machining system dynamics and the cutting process

parameters. Preliminary tests revealed that chatter vibrations were induced whenever

the serration frequency was close to the dominant natural frequency of the system.

One of the major disadvantages of the FFT is that because of the unchanging nature

of the sinusoidal basis, it cannot be implemented with non-stationary signals. How-

ever, this shortcoming can be overcome by implementing the short-time fast Fourier

transform (STFT), that windows the signal at equally spaced periods. Consequently,

it enables to better capture signal transitory states, allowing to even track the chatter

frequencies on the cutting process.

Filippov et al. [115] studied turning chatter behaviour using the STFT of acoustic

emission and acceleration data. The authors analysed the time-variant vibration pat-

terns along a slender long shaft, to detect the chatter features that emerge because

of the changing dynamics. It was proposed a chatter detection index based on the

variance of the signal within the chatter-expected frequency band. The experimen-

tal results showed that the acoustic emission signal was more sensitive to the all the

stability variations induced by the changing dynamics of the slender shaft, while the

acceleration signal mostly detected stable-to-unstable transitions of the process.

An analogous approach was followed by Uekita et al. [116] for deep-hole drilling, apply-

ing instead spectral kurtosis operation to the chatter-expected frequency band of the

acceleration spectrum. With this approach, the authors could also monitor the cutter

condition by tracking chatter features related to tool wear. However, the method re-

liability strongly depends on the accuracy of the modelling equations, that require a

substantial number of pre-trials to determine the different model coefficients.

The STFT, however, has an unavoidable trade-off between frequency and time res-

olution results of using equal-size windowing [117]. Having good localisation (high

resolution) in the time domain produces a poor localisation in the frequency domain
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and vice versa. However, this issue can be overcome by implementing the wavelet

transform (WT). Contrary to the STFT, this method tackles the resolution problem

by using basis functions with variable window sizes. In addition, instead of implement-

ing basis of infinite time duration, this technique expands the signal into a series of

finite-duration waves. This allows good frequency resolution at low frequencies, keep-

ing a decent time resolution at higher ones [118]. Thus, this method has become a

reliable alternative to the short-time FFT for online chatter detection.

For example, Tangjitsitcharoen [119] proposed and experimentally validated an online

chatter detection approach for ball-end milling based on the WT. The author imple-

mented as an index the average-to-absolute ratio of the cutting-force variances in the

chatter expected frequency band. The chatter onset was characterised using a thresh-

old or critical value. While the index calculation comprises a larger set of pre-tests, the

advantage of this method is that the thresholds are not cutting-condition dependent.

Therefore, the same critical values can be reliably used with other spindle speeds or

depths of cut.

Zhang et al. [120] proposed an early-stage chatter detection approach for milling, that

employed the variational mode decomposition (VMD), the wavelet packet decompo-

sitions (WPD), and the entropy of force signals. The VMD can decompose a multi-

component signal into a series of sub-signals with specific bandwidth properties in the

spectral domain. Additionally, the WPD can split the signal into both low and high

passbands. Therefore, both methods were implemented to divide the force signal into

two distinct bandwidth groups. Then, the entropy of these groups was determined to

estimate their energy distribution levels. Finally, a chatter index was build using these

energy values, in which a lower or higher entropy represented a more stable or unstable

process state. Although the method showed to be effective in detecting early-stage

chatter, the analysis results strongly depend on the researcher experience selecting the

suitable wavelet functions and the decomposition levels.
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The early-stage chatter detection in boring processes was also studied by Yao et al.

in [121]. The authors proposed a method based on the WPD and the support vector

machine (SVM). In this method, it was first decomposed the acceleration signal into

three frequency-band levels. Then, two chatter features were defined based on the

standard deviation of wavelet transform and the wavelet packet energy in the chatter-

expected frequency band. Afterwards, an SVM was trained to classify the stability of

the cutting process as stable, early-stage chatter, and fully developed chatter. Further

model validations showed an accuracy rate of 95% detecting these conditions, in which

it could detect chatter even one second before it fully developed. However, as the

author suggested, although these chatter features have good performance, they might

not be the optimal choices in terms of computing efficiency.

Later, Chen et al. [122] followed a similar approach for online chatter detection of the

end milling process. However, in this case, the authors implemented a support vector

machine recursive feature elimination (SVM-RFE). This variation of the SVM applies

sequential backward elimination to select the optimal feature combination from a pool

of options. The author found that using the impulse factor and the auto-correlation

function of the signal, the method achieved an accuracy rate of 100% with the lowest

computational time from all the combinations.

However, Yuan et al. [123] pointed out the complexity in calculating the chatter fea-

tures implemented in the literature. The authors highlighted that most of these indexes

required extensive pre-experimentation and that they were difficult to interpret. There-

fore, it was proposed a chatter detection technique for micro-end milling that uses the

wavelet correlation function of two orthogonal acceleration signals as a chatter feature.

The authors explained that when chatter occurs, these signals are strongly correlated

at the chatter frequency. Therefore, the stability of the process can be assessed by

comparing the correlation of these orthogonal signals to a pre-calculated threshold.

While it showed to be a simple but effective approach, one of its major drawbacks is

requiring multiple sensors.
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Figure 2.8.: Intrinsic mode functions [127].

One disadvantage of the WT is the arbitrary selection of the mother wavelet, which

requires knowledge of the treated function [124]. Furthermore, it does not provide

information about the instantaneous chatter frequency that is a critical parameter

for chatter avoidance or suppression techniques. However, these drawbacks can be

avoided by implementing the Hilbert-Huang transform (HHT) [125,126]. The HHT is

a methodology that decomposes a signal into near or completely orthogonal components

known as intrinsic mode functions (IMF) (Figure 2.8). To achieve this, it implements a

technique known as empirical mode decomposition EDM to breakdown the signal into

IMF without leaving the time domain. This provides an important advantage while

analysing non-stationary and non-linear signals. Subsequently, it applies the Hilbert

Spectral Analysis (HSA) to the IMF to get their instantaneous frequency values.

Cao et al. [128] proposed a hybrid chatter detection approach that implements the

WPT and HHT of acceleration data. In this method, the signal was first decomposed

using WPT in several subs-signals containing specific frequency bands from the origi-

nal. As a result, the noise that is spread across broadband frequencies is then narrowed

in these frequency bands. Afterwards, the sub-signal composed by the chatter expected
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frequency band was reconstructed, and its frequency spectrum was determined using

the HHT. Finally, the author implemented the mean and standard deviation of this

spectrum as a chatter index. One of the major disadvantages of this method is that

the mean index implemented for chatter detection was not independent of the cutting

conditions. Therefore, changes in the machining parameters required further calibra-

tion.

Liu et al. [129] proposed a chatter detection method based on the HHT and FFT of

cutting force signals. In this approach, after determining the IMF, the authors applied

the FFT to every IMF to analyse their frequency content. Contrary to Cao’s method,

the standard deviation and an energy ratio index of the IMF spectrum were proposed

as chatter features to avoid the cutting condition dependency.

Wan et al. [124] investigated the characteristics of chatter at different development

stages. For this purpose, the authors proposed a robust chatter detection method

that first applied an adaptive filter to remove spindle-related frequency components

while amplifying chatter expected frequency bands. Next, Wan used the variance

ratio between the filtered and original acceleration signals as chatter index, defining

thresholds to characterise marginally stable and fully developed chatter conditions.

Finally, the chatter frequencies of the unstable trials were tracked using the HHT.

Consequently, this method does not require monitoring a chatter expected frequency

bands, that most of the time are arbitrarily defined around the natural frequency of

the cutting system. Additionally, the authors experimentally showed the robustness

of the method for classifying chatter conditions against transitory events related to

unexpected variations in the cutting parameters or discontinuities in the workpiece

geometry.

Susanto et al. in [130] evaluated the stability of end-milling process on thin-walled

workpieces using the HHT of acceleration and strain gauge data. The authors also ex-

plored the robustness of the HHT to detect process disturbances produced by changes
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in lubrication, work hardening, and metal inclusions in the workpiece. The author ex-

perimentally showed the superiority of the HHT over the STFT, while detecting chatter

and these irregularities. In addition, the HHT showed to have better performance when

used with the strain gauge sensor.

In summary, several techniques have been implemented for chatter detection, such as

time-domain analysis, FFT, STFT, WT, and HHT. Depending on the method, fea-

tures can be extracted to reflect the chatter onset. For example, time-domain analysis

implements many data statistics for chatter characterisation of stationary and nonsta-

tionary signals. In contrast, frequency approaches implement the FFT to analyse the

signal spectrum. From this spectrum, it constructs indicators with the data gathered

on the expected-chatter frequency band. The STFT follows a similar approach, but

windowing the nonstationary signals. Nevertheless, its unavoidable time-frequency res-

olution compromise has led to methods such as the WT and HHT. The WT possesses

the disadvantages of the arbitrariness in the mother wavelet choice and its inability to

determine the chatter frequency. These disadvantages can be overcome by implement-

ing the HHT. However, one shortcoming of the HHT is that it does not have an inverse

function compared with the WT. Furthermore, the HHT is a rather new method when

contrasted with the WT. This means faster algorithms and more developments have

been performed for WT than the HHT [125].

Based on the revised literature in this section, the sensors and signal processing tech-

niques to be implemented during the experimental observations are defined. The cur-

rent approach comprises using a microphone, accelerometer, and a Hall effect sensor

for chatter detection. As mentioned before, microphones provide reliable chatter in-

formation at higher and lower depths of cut. However, chatter related features can

be obscured by environmental noise. In case this issue happens, it was decided to use

an accelerometer to complement the microphone data, aiming a more robust chatter

detection system. Also, the Hall effect sensor allows gathering once per revolution

data samples of the acceleration data. With this information, it is possible to build
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a Poincaré map to further study the instabilities that occur in unstable trials. This

approach then allows a more rigorous analysis from the gathered experimental data.

To define the signal processing technique, it is first considered that the cutting tests in

the experimental observations are performed with constant cutting parameters. Thus,

aside from the initial and final transitory regions of the trials, the signals from the

sensors can be considered stationary. Therefore, the FFT can be reliably implemented

as a signal processing technique because none ever-changing dynamic is taking place

in the cutting process.

This method and all the approaches found in the literature involve a subjective as-

sessment of the chatter stability boundary. Based on this subjective assessment, a

threshold is defined to show the chatter onset. In the current study, a stable milling

trial is characterised by having a frequency spectrum in which the fundamental forcing

frequency component, or any of its harmonics, dominates or have a larger magnitude.

Whenever a chatter frequency (an incommensurate frequency with the spindle pass

frequency) has a larger magnitude, the milling trial is categorised as unstable.

Whichever technique is implemented, its results are mainly implemented to actively or

passively mitigate chatter conditions, or simply as a chatter analysis tool. Therefore,

the next section introduce some of the active and passive chatter mitigation techniques

found in the literature.

2.5. Chatter Mitigation

The maximum material removal rate for a milling process is limited by chatter vibra-

tions. The manufacturing industry has sought ways to passively or actively mitigate

these vibrations by improving machine tool designs or using additional supporting sys-

tems. By doing this, cutting processes can be performed beyond the stability bound-

aries obtained without these improvements. Active suppression approaches rely heavily

41



on sensorial information to vary process state variables using actuators [131]. The re-

lationship between the sensor signals and the actuator outputs is defined by a control

law that ranges in approach such as classical [132], robust [133], optimal [134], and

adaptative control [135]. Online active suppression techniques may also be required

for cutting processes based on predictions with high uncertainties. These methods

can be implemented with passive approaches such as tuned dampers, mass or friction

dampers, viscoelastic inserts on hollow tools, or the use of milling tools with irregular

shapes. Therefore, the current section presents a literature review about active and

passive approaches to mitigate unwanted chatter vibrations.

2.5.1. Active Chatter Mitigation

Once the chatter indicators extracted from the sensor’s signals show the onset of chat-

ter, active chatter mitigation techniques suppress the unwanted vibrations that emerge

from this condition [131]. These techniques monitor different process variables such

as force, acceleration, sound, and displacement using sensors. Afterwards, the sensor

signals are processed and fed to a controller that generates outputs to the actuators

depending on the system state. These actuators can be piezoelectric stacks, magnetic

and electrostrictive actuators, etc.

Xinhua et al. [134] proposed a delayed state feedback controller based on the discrete

optimal control method to suppress milling chatter. Through numerical simulations,

the authors tested the approach efficiency in different bifurcation situations. Results

suggested that the method achieved the goal of enhancing either the regenerative or

forced milling stability.

Dijk et al. [133] proposed a robust control methodology for high-speed milling using

µ-synthesis. In this approach, the depth of cut and spindle speed were treated as

uncertainties in a prior-stated range, guaranteeing robust milling stability. The author
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analysed the controller system behaviour through simulations, but experimental trials

were not performed.

Monnin et al. in [136, 137] presented a two-stage optimal control strategy to mitigate

milling chatter vibrations. The first stage damps the critical resonance peak, increasing

the lower limit of stability of the stability diagram. The second one generates further

resonance peaks at particular frequencies, creating higher stability zones around the

selected control-design spindle speed. Simulations and experimental results showed the

feasibility and effectiveness of the proposed strategy.

Fei et al. [138] proposed an active chatter control strategy for high-speed milling based

on H∞ almost disturbance decoupling method [139]. This method finds the feedback

controller that guarantees a stable closed-loop system while attenuating the distur-

bances to a certain degree. The attenuation accuracy was measured using the H∞

norm, expressed in terms of a parameter ε1. The author explores the effectiveness of

the method under different ε1 values, reaching acceptable results in a broad range.

However, the author stated that at low ε1 values, the controller is more sensitive to

external perturbations that may lead to undesirable results.

Wan et al. [132] proposed a spindle system for chatter vibration suppression in milling

via active damping. This system implements non-contacting two degree of freedom

electromagnetic actuators integrated into the spindle design. Additionally, displace-

ment sensors were placed near the actuator to measure the spindle shaft vibrations.

These measurements were fed to a proportional-derivative controller. Experimental

results with and without the active damping controller showed that the spindle system

could effectively suppress chatter vibrations.

Li et al. developed in [135] a model predictive control methodology to suppress chatter

in milling process using piezoelectric stack actuators and displacement sensors. The

time-varying delayed system was approximated to a linear-time invariant system using
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Padé approximation. System simulations with and without the controller showed the

chatter suppression effectiveness of the approach.

2.5.2. Passive chatter Mitigation

Passive chatter mitigation increases stability by improving the structural machine-

tool design, or by using additional devices to absorb or dissipate the excessive energy.

Devices such as tuned dampers, mass or friction dampers, have been used for this

purpose. Structural modification includes implementing irregular tools such as variable

pitch and helix tools, to disrupt the regeneration effect.

Kim et al. [140] introduced a mechanical damper into a hollow milling tool to reduce

chatter vibrations. The relative movement between the tool and the damper caused

by the cutting forces generates friction that dissipates the extra energy. Semercigil et

al. followed a similar concept [141] but using an impact damper. Ziegert et al. [142]

further increased the dissipative effect by inserting a multi-fingered cylindrical insert

in the hollow milling tool. Here, besides the friction between the insert outer face and

the inner face of the cutter, friction is also generated between the finger’s side faces.

Miguelez et al. [143] studied the effect of dynamic absorbers on the chatter stability of

boring bars. The author compared two analytical tuning absorber methods, the first

one proposed by Den Hartog [144] and the second by Sims [145]. Numerical results

suggested that the Sims approach provides wider stability regions than the Den Hartog

method. Moradi et al. [146] designed an orthogonal two-degree-of-freedom tunable

vibration absorbers to improve chatter milling stability. Moradi developed an algorithm

for optimal and robust absorber tuning that includes dynamic model uncertainties.

Saadabad et al. [147] optimised the dynamic parameters of a bi-dimensional vibration

absorber for peripheral milling. The milling model included tool wear and process

damping for more realistic results.
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Tuned-mass dampers also provide a reliable passive chatter suppression option. For

example, Yang et al. [148] designed and optimally tuned a multiple mass damper for

turning chatter mitigation. The author compared the stability effect of having on

the system a single and a multiple tuned-mass damper. Results showed that multiple

tuned-mass damper provides a more robust system when compared with single ones.

Burtscher et al. [149] presented a tuned-mass damper with variable mass. The system

comprised a case attached to the main structure by spring and dampers. This case

was then filled with oil, adapting its eigenfrequency to the machine-tool dominant

ones. A genetic algorithm was implemented for tuning the system to provide the best

performance within the workspace.

More radical approaches have recently been taken to suppress chatter. For instance,

Zhang et al. in [150, 151] explored the feasibility of submerging the workpiece in a

viscous fluid to mitigate milling unwanted vibrations. Zhang could substantially in-

crease the system damping while decreasing the cutting force coefficients. Experimen-

tal results suggested that it considerably improved the milling chatter stability while

reducing process noise.

Butt et al. [152] suppressed milling chatter in thin-walled workpieces by using contact-

less eddy-current damping. Butt designed a device mounted on the stationary spindle

chassis that holds several neodymium magnets. These magnets induce eddy-current

damping forces on the metallic thin-wall being milled. This device was attached to

the spindle using motors that rotate it, making it able to machine rounded and more

complex thin-wall workpieces.

Wang et al. [153] investigated the possibility of improving milling chatter stability by

attaching masses to the workpiece. The author proposed a method that builds an

finite-element model using a modal analysis of the original workpiece. This model is

later implemented to predict the workpiece dynamic variations due to the added masses

and process material removal. These predictions were then implemented to construct

45



stability diagrams of the pose-dependant process. After, the mass weights, locations,

and cutting process parameters are optimised to maximise the material removal rate.

In summary, for applications that require milling cutting conditions beyond stability

limits, unwanted chatter vibrations can be suppressed using active and/or passive mit-

igation approaches. Active approaches monitor the cutting process using sensors such

as accelerometers, dynamometers, microphones and feed their signals to a controller.

This controller changes the cutting process by sending output signals to actuators based

on a control law. The control law can follow approaches such as classical, robust, op-

timal, and adaptative. In contrast, passive approaches increase chatter stability by

improving machine tool design and/or implementing further devices to dissipate or ab-

sorb excessive vibrational energy. Additional devices to mitigate chatter can be tuned

dampers, mass or friction dampers. Machine tool improvements seek to increase the

structural stiffness and/or damping or to use irregular milling tools to suppress regen-

erative chatter. As will be later shown in this thesis, the use of irregular milling tools

provides outstanding chatter stability improvements. However, these tools lead to un-

usual isolated unstable regions in the stability lobe diagram that need to be avoided

to guarantee a chatter-free process. One conclusion drawn from this section is that

the effect of the dynamic paraments such as damping or stiffness on these unstable

conditions requires further study. For example, as explained in subsequent chapters,

these islands are particularly sensitive to structural damping levels and modelling con-

vergence. Therefore, the use of a chatter prediction method with unconverged solutions

to tune dampers in a passive approach may lead to overlooked unstable islands, and

consequently undesired results. For active approaches, the effect of the actuators on

the process can be seen as a virtual damper or/and spring that locally modify the

process dynamics. In the same way, the use of models with unconverged solutions may

lead to inadequate control actions, resulting in undesired outcomes.

The next section presents the literature review on two types of irregular milling tools,

named as variable-pitch milling tools and variable-helix milling tools. That section
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presents the most relevant research about these tools and highlights the works in which

isolated unstable islands have been found because of the geometrical tool configuration.

2.6. Irregular Milling Tools

Regenerative chatter occurs when consecutive waves imparted by the cutter on the

workpiece surface are out of phase. Particularity in milling with conventional cutters,

this phenomenon occurs between waves left by consecutive teeth. Therefore, irregular

milling tools have been implemented to disrupt this phenomenon, allowing to change

the system stability behaviour. Nevertheless, these modifications could be beneficial

or detrimental depending of the tool configuration. Therefore, a geometrical optimi-

sation of the tool is required for most cases. Different cutter configurations have been

implemented such as variable pitch, variable helix, and even variable helix and pitch

milling tools. This section provides a literature review of some relevant works in this

area.

2.6.1. Variable Pitch Milling Tools

Hahn was one of the first researchers who proposed a variable-pitch milling tools for

chatter suppression [154]. The author highlighted that disrupting the single time delay

into multiple discrete ones could lead to more stable milling processes. Later, Slav-

icek [155] modelled a variable-pitch milling process applying orthogonal chatter theory,

and using a two-teeth linear cutter. Stability predictions suggested that it is possible

to double the minimum axial depth of cut using these tools. Afterwards, Opitz in [156]

considered a rotating tool using an averaged directional factor. As Slavicek, the au-

thor also studied a simple variable-pitch tool configuration with two teeth. Thereafter,

Vanherck [157] extended Slavicek’s work on linear cutters by showing in simulations

47



the effect of multiple pitches on milling chatter stability. Varterasian in [158] experi-

mentally studied random distribution of pitch angles around the milling tool. Tlusty

in [38] optimized variable-pitch milling tool using time domain simulations.

Afterwards, Altintas in [159] presented and experimentally validated an analytical

zeroth-order frequency solution for variable-pitch milling tools. The author showed how

varying the tool pitches lead to improvements or detriments of the stability boundaries.

Budak in [160,161] proposed a method for optimal pitch selection of linearly arranged

variable-pitch tools at a defined spindle speed. Budak showed that the ratio between

the variable-pitch stability boundary to the minimum conventional tool stability limit

can be substantially maximised. Later, Olgac et al. [162] studied the variable-pitch

milling dynamics and stability implementing cluster treatment of characteristics roots

technique.

Sellmeier et al. [163] investigated the effect of the system time-dependent terms on

the variable-pitch stability diagram at higher immersions. Sellmeier could find several

unusual conditions (e.g. stable islands at high depths of cut) in the diagram when

compared with conventional tools.

Comak in [164] proposed an iterative optimization method for variable pitch milling

tools. In this method, the stability problem was solved for a range of pitches using the

zero-order SDM. The method resulted on a three-dimensional stability lobe diagram,

in which the third dimension is the pitch parameter. Experimental results validated

the optimization outcomes.

Stepan et al. [165] also proposed an iterative method for variable-pitch face-milling tool

design. Contrary to Comak in [164], the author considered time-dependant dynamics

and more accurate frequency prediction approaches. Iglesias in [166] compared Stepan’s

iterative approach with the methods proposed by Slavicek [155] and Budak [160,161].

Numerical and experimental results suggested by Stepan outperformed both methods in
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terms of optimal pitch optimisation. The author could experimentally present evidence

that the period doubling instabilities related to the pitch pattern arrangement.

In summary, variable-pitch milling cutters differ from conventional milling tools in

that they possess non-equal pitches but equal helix angles on the flutes. Therefore, the

single time delay that characterises conventional milling tools is then disrupted into

multiple discrete delays, allowing them to suppress regenerative chatter. Nevertheless,

the chatter stability of these cutters strongly depends on the pitch arrangement around

the tool. As a result, their implementation may lead to undesired results if the tools

are not adequately optimised for a particular cutting condition.

Variable-pitch milling tools are one of the first irregular milling tool configurations

implemented to suppress regenerative chatter. Therefore, compared with other config-

urations, there are a vast amount of research papers regarding the chatter dynamics and

stability of these tools. While the focus of the current thesis is milling with variable-

helix cutters, variable-pitch cutters represented the ideal starting point to study the

dynamics of irregular milling tools. In fact, early variable-helix research simplified

the problem complexity by using pitch averages and solving the problem as a variable

pitch one [167, 168]. This then allowed to implement well established variable-pitch

design methodologies (e.g. Budak et al. [160,161]). However, there has been nowadays

a growing number of research papers regarding variable-helix milling tools, propos-

ing chatter prediction methodologies as well as reporting unusual conditions such as

unstable islands while using these cutters. Therefore, the next section focuses on pre-

senting the literature review about variable-helix milling tools, providing an insight in

the methodologies implemented to analyse these cutters.

2.6.2. Variable Helix Milling Tools

Variable helix tools were first described by Stone [167], but they received scant atten-

tion for the proceeding four decades. Turner and co-workers [168] reinvigorated the
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research when they reported some experimental trials with variable helix tools, along

with comparisons to time-domain simulations and an approximate stability model.

Variations between the experimental and predicted results were quite significant, and

it was suggested that this could be attributed to process damping effects.

Following this, Sims et al. [58] modified the semi-discretisation method to consider vari-

able helix tools. They validated their results against time-domain simulations rather

than experimental data, but they did predict islands of instability, unlike the previous

studies. In a later study, Yusoff in [24, 169–171] used genetic algorithms to optimise

the tool geometry and additionally studied the role of the tool geometry in process

damping. They performed some experimental validation of these results, but there

was limited evidence for islands of instability in the tests or predictions that they

described.

Later, Otto et al. [172, 173] enhanced the regular-tool multi-frequency approach to

variable helix and pitch tools. This model considered non-linear cutting force behaviour

and cutter run-out in a three-dimensional machine tool and workpiece dynamics. They

assessed the validity of the model using data found in the literature.

After, Jin [174] adapted the variable-pitch zeroth-order frequency approach [159] for

variable helix tools. As Turner [168], Jin considered the variable helix tool as a variable

pitch by averaging the pitches along the flutes. The validity of the model was justified

by implementing data encountered in the literature. Jin in [175] applied the same

strategy to the semi-discretization method. Wang then implemented this strategy

in [176] with the variation of using the largest pitch. Later, based on Wang’s approach,

Xie [26] studied in simulations the effect of the radial depth of cut on the stability-lobe

diagram. In this work, Xie predicted instability islands at a low radial depths of cut

in the flip and Hopf regions of the stability diagram. However, the author did not

provide further information regarding if the islands in the Hopf region were caused

by the highly intermittent nature of the process (parametric islands) or the non-equal
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helix angles of the tool.

Afterwards, Sims in [27] proposed an alternative formulation that allowed to visualise

the stability of the process using filters. Contrary to Xie in [26], Sims predicted in-

stability islands at full-slotting, suggesting that they result from the non-equal helix

angles. Even though this work did not provide experimental data, it explored the

potential modelling and validation challenges for these tools.

Later, Sims implemented this work as a backbone to formulate [51] the stability model

of these tools employing a harmonic transfer function approach. The first key dif-

ference between this work and alternative multi-frequency approaches is the explicit

appearance of a phase-changing term in the modelling equations. The second relies on

taking advantage of the problem symmetry and the high-frequency behaviour of the

dynamic response function to further simplify the problem. The author verified this

formulation against simulation data found in the literature.

Otto et al. [177] enhanced and validated the analytical formulation introduced in

[172, 173]. In this work, the authors took a similar approach adopted by Sims in [51]

to formulate the stability models. Nevertheless, differences between both approaches

appear while solving the problem. While Otto identifies the stability boundaries using

a winding number of the determinant, Sims implements the generalised Nyquist sta-

bility criterion. The latter on enjoying the advantage of not involving calculation of

determinants and/or eigenvalues. They verified the formulation against experimental

results and presented theoretical comments on the effect of run-out on stability of the

process.

Afterwards, based on the comments made by Otto, Jinbo and co-workers [178,179] re-

took the study of the run-out effect on the variable-helix and pitch stability. Initially,

they characterised the mechanistic force models, including the joint impact of eccen-

tricity and run-out, by using non-linear optimisation. Then, the authors predicted

the stability of the process by utilising the generalised Runge-Kutta method. Next,
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they performed experimental validation to confirm the simulations. In the preliminary

results at a low radial depth of cut, the authors could find changes on the stability

frontiers of the system when including these parameters.

To summarise, Stone first described the potential of variable-helix milling tools to

suppress regenerative chatter. After forty years of scarce attention, Turner stimulated

the research presenting numerical and experimental data. Later, the semi-discretization

method was changed by Sims to consider milling tools with non-equal helix angles,

while Yusoff implemented this approach to optimise their geometry. Subsequently,

Otto extended the multi-frequency approach of conventional milling tools to consider

variable helix milling tools, nonlinear cutting force models, and runout. Further studies

presented by Jin, Wang, and Xie implemented the zeroth-order frequency approach and

the semi-discretization method to study these tools. In these cases, the variable-helix

milling tool was approximated as a conventional or variable-pitch one by taking the

average or largest pitch along and around the tool. Sims later provided insight into the

variable-helix milling dynamics, using filters to allow visualisation of the stability of the

process. Based on this work, Sims proposed the multi-frequency method for these tools

using a harmonic transfer function approach. The author emphasised a phase-changing

term in the equations, not seen in previous multi-frequency methods. Otto proposed

a similar approach, and presented a theoretical analysis of the effect of runout on the

stability of these tools. Based on Otto’s comments, Jinbo et al. performed a numerical

and experimental study on the runout effect on the stability of these tools, revealing

runout induced variations on the stability at low radial immersion.

From the revised literature, it was noticed that several authors predicted in simulations

unusual isolated unstable regions in the stability lobe diagram. However, the authors

did not provide experimental evidence to validate, or reasons explaining these condi-

tions. Therefore, the next section presents the literature review about unstable islands

beginning with the ones found with conventional milling cutters, and later presenting

the studies regarding variable helix instability islands.
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2.6.3. Instability Islands

Instability islands with conventional milling tools have been broadly studied and val-

idated by the research community. For example, Szalai [180] and Govekar [181] first

reported instability islands in the flip-lobe region. However, the authors did not relate

these islands to the helix angle of the flutes. Later, Zatarain [25] enhanced the multi-

frequency approach for vertical-flute-milling tools to include the helix angle. In that

work, the author noted that at axial depths of cuts that are multiples of the axial pitch,

all the harmonics of the directional-factor Fourier expansion become null. Therefore,

the zero-order term of the expansion dominates during the process. Because the zero-

order solution does not present the added flip lobe, it takes the shape of equally spaced

lenticular unstable regions divided by stable areas. A validation performed using a

scaled experiment confirmed these findings.

Later, Insperger et al. [182] performed a similar analysis than Zatarain but implement-

ing the semi-discretization method. The authors explained the phenomenon using the

Floquet theory of periodic delayed systems. The study showed again that at these mul-

tiples, the time-periodic system becomes autonomous. Therefore, the system cannot

experience flip instability. Further, they also classified the unstable islands in two cat-

egories, named as helix-induced and parametric instability islands. The former regards

the condition exposed by Zatarain [25], while the latter, first identified by Szalai and

Stepan [180], is independent of the helix angles. Contrary to the helix-induced kind,

parametric islands emerge in highly interrupted processes, even in the Hopf region of

the stability diagram.

Next, Patel [183] studied both types of instability islands at various cutting conditions.

Patel showed that the entry and exit angle of the flutes on the workpiece strongly

affects the island locations in the stability diagram. Contrasting with Zatarain in [25],

the author used a 3-teeth tool for the validation process. This is because the frequency
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spectra from a two-flutes process with run-out has a similar spectrum than a period-

doubling motion making it difficult to distinguish between the two phenomena.

Afterwards, Khasawneh et al. [184] investigated the period-doubling islands in milling

with simultaneously engaged helical flutes. Contrasting with earlier works, they studied

in simulations these islands at higher axial and radial depth of cuts. The authors showed

that the period-doubling region could appear at high radial immersion when multiple

teeth are simultaneously cutting. They found this with either zero or non-zero helix

angles. Additionally, the author showed the active relationship between parity in the

number of flutes and the process stability in this region.

As part of the research presented in this thesis, Ureña et al. [185] first attempted to

validate a variable-helix instability island using a one-degree-of-freedom scaled experi-

ment. This experimental configuration scaled not only the dynamic of the system but

also the cutting-force stiffnesses. The authors performed stability predictions utilising

the semi-discretization method, reporting low spindle-speed instability islands away

from the flip region. To accomplish this, they implemented a 16 mm variable-helix

three-flute tool with equal pitches at the tip. They defined the milling process as

up-milling and half-immersion. Therefore, they concluded that these islands emerged

because of the distributed delays along the tool caused by the non-equal helix angles.

Experimental results corroborated this revealing secondary-Hopf bifurcations inside

the island. However, although the results were close to the predictions, it showed the

island connected to another lobe. The authors attributed this to convergence issues,

dynamic-model inaccuracies, or unmodeled phenomenons.

2.7. Summary

This section presented the literature review regarding several aspects of the milling

process relevant to this thesis. It included approaches for prediction, detection, and

54



mitigation of chatter currently researched or being implemented in industry. The

literature review showed how the early cutting models proposed led to chatter stabil-

ity predictions such as the MFA, SDM, and FDM. It also showed how these cutting

force models have been enhanced to include nonlinearities that better reflect the real

process’s physics. Afterwards, this chapter presented different sensors and signal pro-

cessing techniques implemented for chatter detection. Later, it was addressed chatter

mitigation problem, showing different approaches such as the active and passive ones.

Regarding passive chatter mitigation approaches, it was also discussed how the imple-

mentation of irregular milling tools can be use cancel regenerative chatter.

Later, some of the most relevant works regarding variable-pitch and variable-helix

milling tools were presented. The literature review from these tools, and in particu-

lar for variable-helix milling tools, revealed an unusual condition in the stability lobe

diagram manifested as isolated unstable regions. As the literature hinted, these unsta-

ble islands differ greatly from those found with conventional milling tools. Contrary

to regular milling islands, variable-helix instability islands have not been thoroughly

researched in the literature. To the best knowledge of the author, no research study

has explored the convergence performance of the current chatter stability prediction

methods around these conditions. In addition, apart from the validation attempt per-

formed by Ureña et al. [185], no investigation has provided solid experimental data or

explanation on why these conditions happen.

Therefore, the current thesis aims to address this knowledge void by implementing a

scaled experiment to numerically and experimentally study in depth these conditions.

To achieve this, Chapter 3 first presents the theoretical background of two chatter

stability prediction approaches, these being the SDM and the MFA. These methods

will be then implemented throughout the thesis to capture the instability islands and

to compare their convergence performance doing so. Next, Chapter 4 presents in detail

the scaled experiment used in this thesis to numerically and experimentally study the

stability of variable-helix milling tools. Afterwards, Chapter 5 first explores the effect
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of structural damping on the variable-helix stability diagram, and how this parameter

is linked to the variable-helix instability islands. Subsequently, a convergence analysis

around an instability is performed using the MFA and SDM. Finally, a set of milling

trials using the experimental setup are executed to validate the unstable condition.
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3. Theoretical Background

3.1. Introduction

The current chapter presents the theoretical background of chatter stability analysis of

milling tools. Section 3.2 studies a simple case of regenerative chatter on a single-point

cutting process [36]. This section aims to expose the main aspects of this phenomenon

[13]. Furthermore, regenerative chatter is shown as a feedback mechanism using a

block diagram. Later, key aspects of the process stability are discussed using the

stability lobe diagram. Afterwards, two analytical stability prediction techniques for

irregular milling tools are presented in the subsequent sections, the first being the

Multi-Frequency Approach (MFA), while the second the Semi-Discretization Method

(SDM). As mentioned in Chapter 2, the MFA was first introduced by Merdol et al.

in [46], while the SDM by Insperger et al. in [40,54].

In particular, this chapter presents the MFA and SDM modified by Sims in [58] and [51]

for variable pitch and variable helix milling tools. In terms of novelty, the current

chapter further enhances the MFA to consider helix-induced non-equal cutting force

stiffnesses in the models, enabling to study its impact on the stability of the variable-

helix milling process. Finally, a case study found in the literature is analysed using

both methods to validate the developed simulation programs.
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3.2. Regenerative Chatter on Single-Point Cutting Process

Chatter is commonly categorised into primary and secondary. The first chatter category

encompasses instabilities induced by the cutting process itself. For example, primary

chatter conditions can be induced by friction between the cutter and the workpiece,

mode coupling, or thermo-mechanical effects on chip formation. On the other hand,

secondary chatter condition, or regeneration chatter, occurs when the wavinesses im-

printed on the workpiece surface by subsequent cutter passes are out of phase. Because

the focus of this thesis is on regenerative chatter, the current section aims to provide

an insight into the characteristics of this phenomenon.

For this purpose, the schematic of a single-point cutter shaping a cylindrical workpiece

is shown in Figure 3.1. In this schematic, the workpiece rotates around a rigid pin

at a velocity Ω, while the cutter is allowed to vibrate in the y-direction. This model

neglects any type of vibrations on the workpiece. Therefore, while the cutter removes

a certain amount of materials from the workpiece, it left printed waves on the surface

because of these vibrations. Consequently, regenerative chatter then occurs whenever

subsequent surface waves are out of phase. This phenomenon can lead to exponentially

growing cutting forces that may affect the tool and workpiece integrity.

Figure 3.2 shows a schematic with a closer look of this mechanism after several work-

piece rotations. With reference to this schematic, the term hm is the desired nominal

chip thickness, while h(t) is the instantaneous one. This instantaneous chip thickness

encompasses can then be express as,

h(t) = hm + (y(t− τ)− y(t)) , (3.1)

in which y(t) the current tooth vibration, and y(t−τ) is the vibration left on the work-

piece surface in the previous revolution, characterized by the time delay τ . It is worth

mentioning that for cutting processes with multiple teeth as milling, the hm becomes

hm sin Θj to consider the angular immersion Θ of the flute j. Now, according to the
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Figure 3.1.: Schematic illustrating a single point cutting process.

Figure 3.2.: Magnified single point cutting process on an unfolded workpiece describing

the regenerative mechanism.
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orthogonal cutting theory [77], the process cutting forces are assumed proportional to

the cross-sectional area of the chip thickness as follows,

F (t) = bKsh(t) (3.2)

in which Ks is a proportionality constant and b is the depth of cut. Moreover, by taking

the Laplace transform of the current vibration L(y(t)) = Y (s) and the cutting forces

L(F (t)) = F (s), these variables are linked by the system’s complex transfer function

G(s) as follows,

Y (s) = G(s)F (s), (3.3)

where s is a complex variable, and Y (s) and F (s) are the subsequent complex functions

representing the vibration and forces. The relationship between the complex vibration,

force, and the instantaneous chip thickness can be obtained by applying the Laplace

transform to equations 3.1 and 3.2 obtaining,

H(s) = Hm(s) + (e−τs − 1)Y (s) (3.4)

F (s) = bKsH(s). (3.5)

As Merritt presented in [13], the regenerative chatter can be represented as a feedback

loop mechanism as it is shown in the block diagram of Figure 3.3. In this diagram, the

direct path relates the instantaneous chip thickness with the current vibration. In the

feedback path, this vibration is then subtracted by itself modulated by the complex

exponential e−τs characterised by the time delay τ . This difference is then added to the

nominal chip thickness to close the positive feedback block diagram. Now, combining

the equations 3.3 and 3.5 gives the following transfer function,

H(s)

Hm(s)
=

1

1 + bKsG(s)(1− e−τs)
, (3.6)

Therefore, the system stability can be studied analysing the poles of equation 3.6 as,

1 + bKsG(s)(1− e−τs) = 0, (3.7)

From control theory [186], the stability boundaries of the system are found whenever

the real part of s vanishes. Therefore, by substituting s = iωc (i =
√
−1) into equation

3.7, the closed-loop characteristic equation can be rewritten as,
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Figure 3.3.: Block diagram showing the interrelationship between the different cutting

parameters. The terms Y (s) and Y (s)e−τ represent the current and de-

layed vibrations altering the chip thickness H(s).

bcrKsG(iω)(1− e−τiωc) = −1, (3.8)

where bcr is the critical depth of cut in which the system becomes marginally stable,

vibrating at a frequency ωc known as the chatter frequency. Now, by defining ε = τωc

as the angular phase shift between two consecutive waves, the critical axial depth of

cut can be expressed as,

bcr =
−1

KsG(iω)(1− e−εi)
. (3.9)

Consequently, because of the axial depth of cut and Ks are a real positive values, the

term G(iω)(1− e−εi) has also to be real but negative to cancel the negative sign in 3.9.

This can only be achieved if the vector G(iω)(1 − e−εi) is horizontally orientated in

the Nyquist plot shown in Figure 3.4. This then means that G(iω)e−εi is the complex

conjugate of G(iω), so their imaginary terms cancel each other. Therefore, this term

can be reduced to the following expression,

G(iω)(1− e−εi) = 2Re (G(iω)) . (3.10)

Additionally, the minimum limiting chip width can be obtained using the minimum

real component of the frequency response function as,
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Figure 3.4.: Nyquist diagram

bmin =
−1

2KsRe (G(iω)) |min
. (3.11)

By cutting below bmin, the process is guaranteed to be stable as shown in Figure 3.5.

Subsequently, the ratio between the chatter frequency ωc = 2πfc and the rotational

frequency fΩ can be expressed as,
fc
fΩ

= k +
ε

2π
(3.12)

where k and ε/2π are the subsequent integer and fractional number of waves per

revolution. Moreover, the angle ε can be straightforwardly deduced from the diagram

3.4, and written as,

ε = 2π − 2tan−1

[
Re(G(iω))

Im(G(iω))

]
. (3.13)

Therefore, by knowing the system frequency-response function and the cutting param-

eters, it is possible to build a stability lobe diagram of the process. It is evident that

multiple solutions are obtained for a set of parameters due to the term k in the equa-

tion 3.12. Note that, the phase difference between the inner and outer waves on the
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Figure 3.5.: Stability lobe diagram

chip surface ε will be 0 or 2π when the fc to fΩ ratio is an integer number. Under this

condition, both waves are parallel to each other resulting in a constant chip thickness.

However, if the phase difference does not meet these conditions, the chip thickness

changes continuously. The essence of this analysis can be extended to cutters with

multiple teeth as in milling. However in this case, the non-continuous cutting process

performed by the teeth, increases the complexity of the analysis. This complexity is

even higher for milling tools with irregular shapes, that requires further modelling to

capture the distributed time delays along the tool. Therefore, the next section presents

two modelling techniques for irregular milling tools. The first one being the MFA and

the second one the SDM. In particular, these modelling techniques can be applied to

milling tools with variable pitch and variable helix angles. This thesis places more

emphasis on milling tools with variable helix angles as this is the main subject of the

investigation.
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3.3. Multi-Frequency Approach

The mechanistic force model and the multi-frequency stability approach presented in

this section follows the methodology proposed by Sims in [51] for a one-degree-of-

freedom system. This method was also based on the multi-frequency approach for

conventional milling tools proposed by Merdol in [46]. The current section improves

Sims’s modelling equations by allowing vibrations in normal and feed direction of the

workpiece relative to the tool. Also, it enhances the modelling equations by enabling

the inclusion of different cutting force coefficients on the tool flutes. This then allows

one to explore the effect of the helix angle on the cutting force coefficients, and therefore

on the stability of the variable-helix milling process in subsequent chapters.

3.3.1. Dynamic Cutting Force Model

Based on the geometry of the tool shown in Figure 3.6 (c), we first define the angular

location φj(a) of any tooth j as,

φj(a) = φj0 + βja,

where φj0 is the angular location of the flute j at the tip of the tool, βj is the pitch

gradient of the same flute, and a is the axial depth of cut. Also, the pitch gradient can

be related to the helix angle γj and the radius of the tool r by:

βj =
tan γj
r

.

It is worth mentioning that γj is different for every tooth j. Therefore, the angular pitch

differences between the flutes of the tool at any axial depth of cut can be expressed as,

∆φj(a) = ∆φj0 + (βl − βj) a (mod 2π), (3.14)

l = 1 + j (mod N), (3.15)

where N is the number of teeth, and ∆φj0 is the pitch at the tip of the tool expressed

as (φl0 − φj0). In addition, mod denotes modular arithmetic to wrap ∆φj(a) around

64



Ω

Workpiece

h

New Surface

Previous Surface

x

y

𝑓𝑡𝑗

𝑓𝑟𝑗
𝜃𝑠𝑡

𝜃𝑒𝑥

𝜃𝑗

a) b)

2𝜋

0

Δ𝜙3(a)

Δ𝜙2(a)

Δ𝜙1(a)

𝑏 𝑎

𝜙

𝜙10

𝜙20

𝜙30

c)

Δ𝜙10

Δ𝜙20

Δ𝜙30

𝜙1(𝑎)

𝛾1

𝛾2

𝛾3

Figure 3.6.: (a) Schematic of the process; (b) Chip thickness removed by the tooth j;

(c) Geometrical parameters of the variable helix tool.
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the modulus 2π, and l around the modulus N . For variable-helix tools ∆φj0 is the

same for every two consecutive teeth, so it is taken as a constant. Subsequently, once

the tool starts to rotate at a constant spindle velocity Ω, the angle θj of the tooth j

with respect to the axis +y (Figure 3.6(a)), can be determined as,

θj(t, a) = Ωt+ φj(a) (mod 2π).

As shown in Figure 3.6 (a) and (b), the flute j removes a chip thickness hj(t, a) at the

angle θj(t, a). This generates forces acting on the tool in the normal (ftj) and radial

(frj) direction. According to the mechanistic modelling of cutting forces [77], these

forces are linearly proportional to the cutting area of the flute giving:

ftj(t, a) = Kj
t hj(t, a)da, (3.16)

frj(t, a) = Kj
rftj , (3.17)

in which Kj
t and Kj

r are the constant cutting-force coefficients of the flute j. Now, the

chip thickness can be calculated as,

hj(t, a) = g(θj(t, a)) (∆x(t, a) sin θj(t, a) + ∆y(t, a) cos θj(t, a)) ,

where,

∆x(t, a) = x(t)− x(t− τj(a)),

∆y(t, a) = y(t)− y(t− τj(a))

and,

τj(a) =
∆φj(a)

Ω
. (3.18)

Meanwhile, g(θj(t, a)) represents a binary function that is 1 whenever the flute j is

inside the angular cutting region, and 0 otherwise. This angular region is defined by

the start angle θst and the exit angle θex. Expressing the normal and tangential forces

around the reference frame of Figure 3.6 (a) we obtain,

fxj(t, a) = −ftj(t, a) cos θj(t, a)− frj(t, a) sin θj(t, a),

fyj(t, a) = ftj(t, a) sin θj(t, a)− frj(t, a) cos θj(t, a).
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Summing the cutting forces contributed by all teeth and integrating the infinitesimal

element da from 0 to the axial depth of cut b gives:

F =

N∑
j=1

∫ b

0

α(θj(t, a))∆qj(t, a)da, (3.19)

where α(θj(t, a)) and ∆qj(t, a) are the directional matrix and generalised vibration

vector given by,

α(θj(t, a)) = 1
2K

j
t g(θj(t, a))

−{sin(2θj(t, a)) +Kj
r [1− cos(2θj(t, a))]

}
−
{

[1 + cos(2θj(t, a))] +Kj
r sin(2θj(t, a))

}
[1− cos(2θj(t, a))]−Kj

r sin(2θj(t, a)) sin(2θj(t, a))−Kj
r [1 + cos(2θj(t, a))]

 ,
(3.20)

and,

∆qj(t, a) =

x(t)− x(t− τj(a))

y(t)− y(t− τj(a))

 . (3.21)

3.3.2. Process Stability

To determine the process stability, the directional matrix on equation 3.20 is first

expanded into its Fourier series as,

α(θj(t, a)) =

∞∑
n=−∞

ein(φj0+βja)Aj(n)einΩt, (3.22)

in which,

Aj(n) =
1

2π

θex∫
θst

α(θ)e−inθdθ. (3.23)

Equation (3.22) reveals an exponential term ein(φj0+βja) named as phase changing [51],

that was not mentioned in previous multi-frequency derivations [77]. It is worth men-

tioning that due to the non-equal cutting force coefficients on the teeth, the matrix

Aj(n) is now flute dependent. Subsequently, by replacing equations 3.22 and 3.21 into

3.19 it is obtained,Fx
Fy

 =

N∑
j=1

b∫
a=0

∞∑
n=−∞

einφj(a)

Axxj (n) Axyj (n)

Ayxj (n) Ayyj (n)

 einΩt

x(t)− x(t− τj(a))

y(t)− y(t− τj(a))

 da.
(3.24)
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where the expressions for the terms Axx(n), Axy(n), Ayx(n), and Ayy(n) of the matrix

Aj(n) are given in the appendix A.1. Equation 3.24 can also be expressed in matrix

form as,

F =

N∑
j=1

b∫
a=0

∞∑
n=−∞

einφj(a)Aj(n)einΩt [q(t)− q(t− τj(a))] da. (3.25)

Next, by applying the Fourier transform to equation 3.25, the following frequency

domain expression of the force is acquired,

F(iω) =

∞∫
t=0

e−ωt
N∑
j=1

b∫
a=0

∞∑
n=−∞

einφj(a)Aj(n)einΩt [q(t)− q(t− τj(a))] da dt. (3.26)

Afterwards, taking advantage of the no inter-dependency between any of the summa-

tions or limits of integration, this equation can be rewritten as,

F(iω) =

N∑
j=1

b∫
a=0

∞∑
n=−∞

einφj(a)Aj(n)

∞∫
t=0

e−(iω−inΩ)t [q(t)− q(t− τj(a))] da dt, (3.27)

that after expanding the expression inside the time domain integral leads to,

F(iω) =
∑N

j=1

∫ b
a=0

∑∞
n=−∞ e

inφj(a)Aj(n)
[∫∞
t=0

e−(iω−inΩ)tq(t)dt−
∫∞
t=0

e−(iω−inΩ)tq(t− τj(a))dt
]
da.

(3.28)

Now, applying the first and second shift theorems to the terms within the brackets [51],

this equation can be simplified as follows,

F(iω) =

N∑
j=1

b∫
a=0

∞∑
n=−∞

einφj(a)Aj(n)
[
Q(iω − inΩ)− e−τj(a)(iω−inΩ)Q(iω − inΩ)

]
da,

(3.29)

that factorising by the generalised frequency-domain vibration vector Q(iω − inΩ)

results in,

F(iω) =

N∑
j=1

b∫
a=0

∞∑
n=−∞

einφj(a)Aj(n)
[
1− e−τj(a)(iω−inΩ)

]
Q(iω − inΩ)da. (3.30)
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Therefore, by multiplying both sides of equation 3.30 by the structural frequency re-

sponse function G(iω), the closed loop relationship between the vibration Q(iω) and

itself modulated can be obtained as,

Q(iω) = G(iω)

N∑
j=1

b∫
a=0

∞∑
n=−∞

einφj(a)Aj(n)
[
1− e−τj(a)(iω−inΩ)

]
Q(iω − inΩ)da.

(3.31)

A more general expression of G(iω) at any harmonic p is obtained by rewriting ω as

ω + pΩ leading to,

Q(iω + ipΩ) = G(iω + ipΩ)
∑N

j=1

∫ b
a=0

∑∞
n=−∞ e

inφj(a)Aj(n)
[
1− e−τj(a)(iω−inΩ+ipΩ)

]
Q(iω − inΩ + ipΩ)da.

(3.32)

In addition, defining a new variable σ related to p and n as σ = p − n, this equation

can be restated as,

Q(iω + ipΩ) = G(iω + ipΩ)
∑N

j=1

∫ b
a=0

∑∞
p−σ=−∞ e

i(p−σ)φj(a)Aj(p− σ)
[
1− e−τj(a)(iω+iσΩ)

]
Q(iω + iσΩ)da,

(3.33)

that enables a matrix form notation with p representing the rows and σ the columns

as:

q̂p(iω) = Q(iω + ipΩ),

ĝp,p(iω) = G(iω + ipΩ), (3.34)

ĥp,σ(iω) =

N∑
j=1

b∫
a=0

einφj(a)Aj(n)
[
1− e−τj(a)(iω+iσΩ)

]
, (3.35)

q̂p(iω) = ĝp,p(iω)

∞∑
σ=−∞

ĥp,σ(iω)q̂σ(iω). (3.36)

Comparing equation 3.35 with the original formulation [51], it is evident that in this

case Aj(n) must remain inside the summation on j. Subsequently, for compactness

purpose, equation (3.36) can be written in the following way:

Q̂(iω) = ĜH(iω)Q̂(iω). (3.37)
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Equation 3.37 represents a multi-input-multi-output system with positive feedback loop

defined by the doubly infinite transfer function matrix ĜH(iω). Then, according to the

Generalised Nyquist Stability Criterion [187], the system is stable if det
(
I − ĜH(iω)

)
(where I is the identity matrix) is non-zero and does not encircle the origin in a clock-

wise sense. While this seems intractable due to the nature of ĜH(iω), further simpli-

fications can be done by exploiting the periodicity of ĜH(iω) and the high frequency

behaviour of G(iω).

In order to explore the periodicity of equation 3.37, consider the situation when ω1 =

ω + rhΩ. It can be shown that,

ĝp,p(iω1) = G(iω + ipΩ + irhΩ), (3.38)

and,

ĥp,σ(iω) =

N∑
j=1

b∫
a=0

ei(p−σ)φj(a)Aj(p− σ)
[
1− e−τj(a)(iω+irhΩ+iqΩ)

]
. (3.39)

Now, comparing these results with equations 3.34 and 3.35, it can be concluded that,

ĝp,p(iω + irhΩ) = ĝp+rh,p+rh(iω), (3.40)

and,

ĥp,σ(iω + irhΩ) = ĥp+rh,σ+rh(iω). (3.41)

Therefore, the terms of the harmonic transfer function ĜH are offset diagonally by one

row and one column every time the frequency ω increases by Ω. In addition, assum-

ing that the structural dynamic G(iω) ends towards zero at a maximum considered

frequency ωmax, then ĝp,p(iω) = G(iω + ipΩ) will be zero unless,

−ωmax < ω + pΩ < ωmax (3.42)

Afterwards, given the conditions stated in equations 3.40 and 3.41, it can be concluded

that the range of ωmax requires only be [-Ω/2, Ω/2] before the harmonic transfer
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function is duplicated and offset diagonally. Therefore, the maximum frequency to be

computed gives rise to a maximum required value for p,

−ωmax
Ω
− 1

2
< p <

ωmax
Ω

+
1

2
, (3.43)

that allows to truncate the number of columns in ĝ and ĥ because other rows will have

zero harmonic transfer function.

3.4. Semi-Discretization Method

As previous mention in Chapter 2, the stability of the milling process can also be

predicted using the semi-discretization method (SDM). This method was first intro-

duced by Insperger [40, 54], and later modified by Sims in [58] for variable helix and

variable pitch tools. The current section summarises the method presented by Sims

in [58], first presenting the discretized cutting force model. Later, it shows the state

space representation of the dynamic system. Furthermore, it introduces the state-space

representation between the displacements and delays terms, which couples the cutting

forces with the dynamic system. Next, the stability problem is solved using the Floquet

theory of the transition matrix. Finally, the instability bifurcations that occur in the

milling process are discussed, analysing the eigenvalues of the transition matrix.

3.4.1. Cutting Force Model

In order to obtain the cutting force model lets first define the sampling time period

as T . By doing this, discrete time values can then be expressed as k̄T , in which

k̄ = 1, 2, . . . , ∞. Additionally, discrete local times within each tool revolution can

be defined as mT , where m = 1, 2, . . . , M , and M is the number of T samples per

revolution. Consequently, the constant spindle speed Ω (rad/s) and sampling period T

relationship can be stated as,

T =
2π

MΩ
(3.44)

71



Furthermore, the axial depth of cut b is discretized into l layers of size ∆a obtained as

∆a = b/l. Afterwards, for each layer l and tooth j, the dynamic chip thickness can be

approximated as,

hl,j = g
(
θl,j(mT )

) (
ho sin

(
θl,j(mT )

)]
k̄ = 1, 2, . . .

+
(
x(k̄T )− x

(
k̄T − τl,j

))
sin
(
θl,j(mT )

)
+
(
y(k̄T )− y

(
k̄T − τl,j

))
cos
(
θl,j(mT )

)
m = 1, 2, . . . ,M

(3.45)

where x and y are the workpiece displacements in x-direction and y-directions. The

periodic angular location θ of the flute j on the later l can be obtained as,

θl,j(mT ) = θl,j(0T ) +
2πm

M
m = 1, 2, . . . ,M, (3.46)

and the binary function g from the equation 3.45 that defined when a flute is engaged

cutting with workpiece is expressed as,

g
(
θl,j(mT )

)
= 1→ θst < θl,j(mT ) < θex

g
(
θl,j(mT )

)
= 0→ θst < θl,j(mT ) · or · θl,j(mT ) > θex

. (3.47)

Because only the dynamic component of the chip thickness is linked to the regenerative

process stability, its static part ho sin
(
θl,j(mT )

)
can be neglected from the equation

3.45. Furthermore, time delay for the flute j at the layer l can be expressed as follows,

τl,j = T · round

(
M

∆θl,j
2π

)
, (3.48)

where the round function gives as an output its input argument rounded to the nearest

integer. It is worth mentioning that for conventional milling tools, this time delay

is a constant value independent of the axial depth of cut and flute. Therefore, a

intermediate state variable ∆ is introduced to described the differences between the

current and m previous discrete time displacements as,

∆xm(k̄T ) = x(k̄T )− x(k̄T −mT )

∆ym(k̄T ) = y(k̄T )− y(k̄T −mT ).
(3.49)
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Furthermore, the normal and radial forces acting on every tooth are proportional to

the chip thickness as,
Ft(l,j) = Kt∆ahl,j

Fr(l,j) = KrFt(l,j)
. (3.50)

These forces can then be expressed in the x and y directions of the global reference

frame ((Figure 3.6) a)) obtaining, Fx(k̄T )

Fy(k̄T )

 = R(mT )

 ∆x(k̄T )

∆y(k̄T )

 with m = 1, 2, . . . ,M, (3.51)

in which the time-varying periodic matrix R is formed by the following terms:

r1,k̄(mT ) =
1

2
∆aKt

N∑
j=1

L∑
l=1

h
(
k̄, τl,j

)
axx
(
θl,j(mT )

)
r2,k̄(mT ) =

1

2
∆aKt

N∑
j=1

L∑
l=1

h
(
k̄, τl,j

)
axy
(
θl,j(mT )

)
r1,M+k̄(mT ) =

1

2
∆aKt

N∑
j=1

L∑
l=1

h
(
k̄, τl,j

)
ayx
(
θl,j(mT )

)
r2,M+k̄(mT ) =

1

2
∆aKt

N∑
j=1

L∑
l=1

h
(
k̄, τl,j

)
ayy
(
θl,j(mT )

)
. (3.52)

In this equation, the delay term is defined by the unit step function h as,

h
(
k̄, τl,j

)
= 1→ k̄ =

τl,j
T

h
(
k̄, τl,j

)
= 0→ k̄ 6= τl,j

T

(3.53)

and the averaged directional factors are obtained using the following expression,

axx = g
(
θl,j
)M

4π
[cos 2θ − 2Krθ +Kr sin 2θ]

θl,(mT )+π/M

θl,j(mT )−π/M

axy = g
(
θl,j
)M

4π
[− sin 2θ − 2θ +Kr cos 2θ]

θl,j(mT )+π/M
θl,j(mT )−π/M

ayx = g
(
θl,j
)M

4π
[− sin 2θ + 2θ +Kr cos 2θ]

θl,j(mT )+π/M
θl,j(mT )−π/M

ayy = g
(
θl,j
)M

4π
[− cos 2θ − 2Krθ −Kr sin 2θ]

θl,(mT )(mT )+π/M

θi,j(mT )−π/M .

(3.54)
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3.4.2. State Space Formulation

Assuming that the tool does not rotate along the x-axis and y-axis of Figure 3.6, all the

layers along the tool experience the same displacements x and y. Therefore, assuming

D number of total states to represent x and y vibrations, the continuous state space

form of the dynamic system can be stated as,

{q̇s}[D×1] = Asqs + Bs

 Fx

Fy

 x

y

 = Csqs(k̄T )

, (3.55)

Additionally, this continuous system can be discretised obtaining,

qm(k̄T + T ) = Amqm(k̄T ) + Bm

 Fx(k̄T )

Fy(k̄T )

 x(k̄T )

y(k̄T )

 = Csqm(k̄T )

(3.56)

where the exponential function can be used to obtain the matrix Am, and Bm as, [Am][D×D] [Bm][D×2]

X[2×D] W[2×D]


[(D+2)×(D+2)]

= exp

T
 [As][D×D] [Bs][2×D]

[0][2×D] [0][2×2]


A discrete time state space representation of the tool vibration and delay state rela-

tionship can be stated as,

qz(k̄T + T ) = Azqz(k̄T ) + Bz

 x(k̄T )

y(k̄T )

 ∆x(k̄T )

∆y(k̄T )

 = Czqz(k̄T ) + Dz

 x(k̄T )

y(k̄T )

 ,

(3.57)
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where,

Az =



 {0 . . . 0}[M−1] 0

[I][(M−1)×(M−1)] {0 . . . 0}
T
[M−1]

 [0]

[0]

 {0 . . . 0}[M−1] 0

[I][(M−1)×(M−1)] {0 . . . 0}
T
[M−1]




Bz =

{1 {0 . . . 0}T[M−1]

}
{0 . . . 0}T[M−1]

{0 . . . 0}T[M ]

{
1 {0 . . . 0}T[M−1]

}
Cz =

− [I][M×M ] [0]

[0] − [I][M×M ]


Dz =

{1 . . . 1}T[M ] {0 . . . 0}
T
[M ]

{0 . . . 0}T[M ] {1 . . . 1}
T
[M ]

 .
(3.58)

3.4.3. System Coupling and Solution

The final system model can be found combining the forces in the equation 3.51, and the

state space representation of the dynamic system and delay to displacement relationship

in equations 3.56, and 3.57 to obtain, qm(k̄T + T )

qz(k̄T + T )

 = A

 qm(k̄T )

qz(k̄T )

+ BC(mT )

 qm(k̄T )

qz(k̄T )

 , (3.59)

in which the matrices A, B, and C are determined with the following expressions [186],

A =

 Am [0]

BzCs Az


B =

 Bm

[0][2M×2]


C(mT ) = [R(mT )DzCs R(mT )Cs]

(3.60)
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Therefore, the variation of the system states along consecutive tool revolutions is finally

stated as, qm(k̄T +MT )

qz(k̄T +MT )

 = (A + BC(MT ))(A + BC((M − 1)T ))(. . .)(A + BC(T ))

 qm(k̄T )

qz(k̄T )

 ,

(3.61)

or expressed in a more compact form as,

Qi+1 = ΦQi, (3.62)

in which Φ represents the transition matrix [188]. Consequently, the system stability

is governed by the characteristic multipliers or eigenvalues µ of Φ. As shown in Figure

3.7, asymptotically stable cutting systems are obtained whenever these eigenvalues are

within a unit circle. On the other hand, marginally stable systems are characterised

by having at least one eigenvalue µ on the unit circle, while the rest are within the

circle. In this condition, the eigenvalue on the unit circle defines the system stability

boundary. Furthermore, the system becomes unstable if at least one eigenvalue is

outside the unit circle, leading to chatter vibrations.

At this point, all stability analysis was performed for the approximated discrete-time

system on equation 3.59. Nevertheless, the eigenvalues of the discrete-time system µ

can be transformed to continue ones [186] using the following relationship,

λ =
lnµ

T
= σc ± jωc, (3.63)

in which σc and ωc are the subsequent real and imaginary component of the continues-

time eigenvalue λ. The system vibration can also be determined from the imaginary

part of λ as,

fsv =
{
±fc + kc

2π

T

}
rad /s =

{
±ωc

2π
+ kc

Ω

60

}
Hz, kc = . . . ,−1, 0, 1, . . . , (3.64)

adjusted to 2π multiples of the spindle pass frequency Ω due to the non-unique trans-

formation from discrete to continuous system. Now, for unstable milling systems, the
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Figure 3.7.: Diagram (a) shows a unitary circle defining the stability of the discrete

map. Depending on how the eigenvalues leave the circle, the types of

bifurcations that can be experienced in milling are secondary Hopf (a),

period-doubling (c), and period one (d) bifurcations.

eigenvalues µ can bifurcate outside the unitary circle in three different ways as shown

in Figure 3.7. The first one corresponds to a secondary Hopf bifurcation that occurs

whenever the solution involves a complex conjugate eigenvalue µ leaving the unit circle

as in Figure 3.7 b). This type of instability is characterized by the following chatter

frequency,

fHopf =
{
±fc + kc

2π

T

}
rad/s =

{
±ωc

2π
+ kc

Ω

60

}
Hz, kc = . . . ,−1, 0, 1, . . . . (3.65)

The second type of instability bifurcation corresponds to the period doubling bifurca-
tion. In this case, the eigenvalue µ is lesser than −1, leading to a chatter frequency of,

fPD =
{
π

T
+ kc

2π

T

}
rad/s =

{(
1

2
+ kc

)
Ω

60

}
Hz, kc = . . . ,−1, 0, 1, . . . . (3.66)
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Finally, the last type of bifurcation is the period one bifurcation. This type of bifur-

cation occurs when µ is larger than one (Figure 3.7 d)), giving a chatter frequency of,

fPO =
{

0 + kc
2π

T

}
rad/s =

{
0 + kc

Ω

60

}
Hz, kc = . . . ,−1, 0, 1, . . . (3.67)

3.5. Case study

The current section aims to verify the correct operation of the SDM and MFA programs

developed for the chatter prediction of variable helix and pitch milling tools. This is

achieved by using the machining scenario presented by Wang in [176], which presents

simulation data using structural dynamic models vibrating in the feed and normal

directions. Consequently, this then allows for verifying the enhancements performed

to the MFA (Sims in [51]) in this chapter.

The machining scenario provided by Wan is outlined in Table 3.1, and the results are

shown in Figure 3.9. Dashed black lines represent the outcomes obtained from the

SDM, while the blue lines the result from the MFA. The ωmax implemented in this

simulation (equation 3.43) was 1000 Hz. At this frequency, the FRF of the system in

the x and y directions (Figure 3.6) decayed 95% and 98% of the maximum peaks at

the resonant frequencies (Figure 3.8). Consequently, this frequency value was chosen

as an acceptable value to truncate the harmonic transfer function ĜH(iω) in equation

3.37. For this comparison, the M value (equation 3.44) was chosen as 360 because

no significant change in the stability boundaries was noticed beyond this value. Even

though there are slight differences at spindle speeds higher than 4500 rpm and lower

than 2250 rpm, in general, the overall simulation outcomes suggest that the MFA and

SDM follow the same chatter stability boundaries. In addition, these results match the

stability charts predicted by Wang in [176] using a simplified version of the SDM.

Further experimental validation of the models will be performed in the forthcoming

sections using a scaled experimental setup for variable-helix milling cutters. This setup
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was tuned to enable the presence of variable-helix islands of instability, conditions

rarely found in simulation throughout the literature. As a matter of fact, to the best

knowledge of the author, no formal experimental verification has been done about it.

It is worth mentioning that while these chatter prediction methods are developed for

variable helix and pitch milling mechanisms (Figure 3.6), they can be straightforwardly

used with non-equal helix ones by simply keeping equally spaced the pitches between

the flutes at the tooltip.

Parameter Value

ωnx, ωny 563.55Hz, 516.21Hz

mx, my 1.4986kg, 1.199kg

ζx, ζy 5.58%, 2.5%

φ10, φ20, φ30, φ40 0◦, 70◦, 180◦, 250◦

γ1, γ2, γ3, γ4 30◦, 40◦, 30◦, 40◦

Radial Immersion 50%

Tool Diameter 19.5 mm

Kt 697 N/mm2

Kr 256 N/mm2

Cutting Condition Down-milling

Table 3.1.: Machining scenario for the two degree of freedom case.

79



0 500 1000 1500 2000
Frequency (Hz)

0

0.5

1

1.5

2

|R
e
c
e
p
ta

n
c
e
|

×10
-6

G
xx

G
yy

Figure 3.8.: Frequency response function in the X and Y directions from the case study

implemented to validate the SDM and MFA programs.
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3.6. Summary

In summary, Sections 3.3 and 3.4 have presented the MFA and SDM methods to predict

chatter stability with variable helix and pitch milling tools. From this, it can be seen

that both methods begin with the same assumptions regarding the physical system

under consideration (for example, linear cutting force coefficients). The SDM method

then requires a modal model of the frequency response function, whereas the MFA

method operates directly on the numerical frequency response function. The SDM

involves a decision on the number of modes to be included in the model, as well as the

number of discretization steps M in the solution. In contrast, the MFA requires an

assumption on the truncation frequency ωmax to automatically adjust the number of

harmonics p in the solution (equation 3.37). This differs from previously reported multi-

frequency solutions [46], in which the number of harmonics was constant indistinctly

of the spindle speed and manually chosen. Finally, the programs developed following

both techniques were verified using the machining scenario and simulations found in

the literature.

The next chapter first presents the instrumented experimental setup used in this thesis

to validate chatter predictions. This setup comprises a customised variable-helix milling

tool and an instrumented flexure device supporting a workpiece with low cutting force

coefficients. In particular, the implemented material is a thermoplastic known as a

copolymer acetal. This innovative approach allows for attaining larger axial depths

of cut while assuming linear structural dynamics. Therefore, the system enables the

appearance of islands of instability in the variable-helix stability lobe diagram predicted

using SDM and MFA. The islands are then validated conducting cutting trials, and

the effectiveness of the methods while capturing these condition is tested.

The forthcoming chapter also studies the effect of the helix-induced cutting-coefficient

variations on the stability lobe diagram. In the literature, one of the main assump-

tions of chatter prediction methods is assuming identical cutting force coefficients on
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the teeth of variable-helix milling tools. However, it is known that the magnitude of

these coefficients strongly depends on the geometry of the milling cutter, and in par-

ticular, of the helix angle. For this purpose, tailored one-flute milling tools are utilised

to determine the individual cutting-force coefficients of a custom-made variable helix

milling cutter. Chatter stability predictions using the non-equal coefficient MFA (Sec-

tion 3.3) are then compared to the conventional MFA, to evaluate the impact of these

modifications on the variable-helix stability lobe diagram.
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4. Validation of Variable-Helix Stability Diagram

4.1. Introduction

In milling, one approach to suppress regenerative chatter is the use of tools with non-

uniform helix angles. Here, variations of the helix angles between adjacent teeth can

change the chatter stability, albeit with more complex dynamics and stability of the

system. This is because it leads to periodic, piecewise, distributed-time delayed differ-

ential equations with no closed-form solution. Consequently, there have been several

studies that have developed alternative analytical formulations of variable helix chat-

ter stability (e.g. the SDM and MFA presented in Chapter 3). Whilst some of these

have included detailed experimental validation, in general, there is limited validation of

the different analysis methods [26,51,58,170,176–179]. In particular, the potential for

variable helix tools to stabilise at higher axial depths of cut is of significant practical

value but needs detailed experimental validation.

Contrary to the conventional milling process, the stability lobe diagram of variable-

helix milling cutters can exhibit a process re-stabilisation at axial depths of cut beyond

the chatter boundaries. This occurs because of the continuous pitch variations along

the axial length of the tool, induced by the non-equal helix on the flutes. As a result,

this property may lead to undesirable islands of instability in the stability charts.

These conditions are rarely found in the literature, and to the best knowledge of the

author, no experimental data has been provided to validate their existence. Most of the

information found in the literature comprises chatter predictions verified using cutting

process simulations [26,27,189–191].
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Hence, the present chapter aims to fulfil this void in the knowledge by experimentally

validating an island of instability using a novel scaled experimental configuration. This

setup comprises a one-degree-of-freedom flexible device supporting a low cutting-force

stiffness material, known as copolymer acetal. By implementing a single-degree-of-

freedom device, the before-mentioned high complexity of the problem is considerably

reduced, preventing that other phenomenon (e.g. mode coupling) to obscure these

islands. In addition, using a low cutting-coefficient material, it enables the assumption

of linear structural dynamics even at higher depths of cuts. Using a metal along

with the flexible device may generate high amplitude vibrations (even at relatively

lower depths of cut), that may lead to non-linear dynamic states. As presented in

Chapter 2, non-linear conditions such as large-amplitude vibrations or the loosing of

tool engagement may require the use of more advanced techniques to solve the state

dependant delay differential equations.

To develop the experimental setup, Section 4.2 discusses the relationship between the

chip thickness and cutting forces while cutting this material. It will be shown how the

material properties, cutting conditions, and geometrical parameters of the tool influence

this relationship. Subsequently, it defines the range of these variables in which a linear

assumption is valid. To verify these hypotheses, the experimental linear mechanistic

approach for conventional milling cutters will be implemented. The premises of this

method is that, for shear-type chip formation, there is a linear relationship between

the uncut chip thickness and the cutting forces in an stable process, being the cutting

coefficients the proportional constants. Consequently, deviation from this relationship

may suggest a non-shear induced complex chip formation.

Later, the one-degree-of-freedom assumption of the flexible rig supporting the work-

piece will be verified using impact tests in Section 4.3. The overall sought dynamic

behaviour is that the only source of flexibility that leads to regenerative chatter is the

vibration of the workpiece in the normal direction. The feed direction, on the other

hand, will be assumed as infinitely rigid. Thus, the frequency response functions of the
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device obtained from the tap testing experiments in these directions will be compared.

In addition, to fulfil the one-degree-of-freedom assumption, it is required the machine

tool to be significantly stiffer than the workpiece. Therefore, the only flexibility source

leading to chatter comes from the workpiece. Otherwise, the combined workpiece-tool

dynamics of the cutting system should be considered solving the problem, promoting

further non-modelled behaviours. For the current purpose, the infinitely rigid machine

tool condition will be assessed by comparing the frequency response function of the

machine tool and flexible workpiece.

Subsequently, Section 4.4 will predict the variable-helix stability diagram using the

MFA that was enhanced in Chapter 2 to consider non-equal cutting force coefficients.

This stability chart will then be compared to the one obtained from the unmodified

MFA, to study the impact of this model enhancement on the stability chart. Regarding

the milling cutters, in this study, a customised 16 mm of diameter 3-teeth variable-helix

milling tool with helix angles of 25◦, 15◦, and 10◦ will be implemented. In addition,

three additional tailored 16 mm of diameter one-flute tools with helix angles of 25◦, 15◦,

and 10◦ will be used to separately determine the cutting force constants of every tooth

of the variable-helix milling cutter. Also, the cutting force coefficients of an additional

16 mm of diameter 3-teeth conventional milling tool with a helix angle of 25◦ will be

calculated for comparison reasons. All the milling tools utilised in this thesis are made

of solid carbide.

Afterwards, the entire setup will be validated in Sections 4.5 and 4.6 performing milling

trials around a potential island of instability, in which the performance of the SDM

and MFA capturing this condition will be tested against the preliminary results. Fi-

nally, there will be presented the conclusions and discussions in Section 4.7 about the

assumptions, experimental procedures, and results obtained throughout this chapter.
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4.2. Workpiece Material

The current thesis aims to predict and validate islands of instability on the stability lobe

diagram of variable-helix milling tools. For this purpose, it implements a workpiece

material with lower cutting force coefficients. Thus, it enables achieving larger axial

depths of cuts, wherein overall the process is more prone to develop these unstable

isolated conditions. To predict the variable-helix stability lobe diagram, the SDM and

MFA (Chapter 3) will be implemented. These techniques have in common assuming a

linear relationship between the cutting forces and the chip thickness (equations 3.17 and

3.50), in which the cutting force coefficients are the proportional constants [30,31]. This

section aims to investigate the machining conditions and tool geometrical parameters

that ensure reliable implementation of the linear cutting force models with the chosen

material. This step is crucial because, even for metal alloys, machining processes

performed beyond the linearity limits require advanced yet complex models to capture

the full process dynamics [192], as explained in Section 2.3.

To explain the key requirements to use the mechanistic linear cutting-force model,

lets first refer to the schematic (a) in Figure 4.1. This schematic shows a single-

edge orthogonal cutting process in which a cutter removes an amount of material of

thickness dc from a workpiece, generating the forces Fc and Ft. One of the fundamental

assumptions of this model is that the material mostly yields because of a shear force

along an infinitely thin plane defined by the line through the points A and B in Figure

4.1 (b) [77]. This plane is orientated at an angle φs known as the shear angle. The

linear orthogonal cutting force model assumes that the shear angle φs, and consequently

the normal (σs) and shear (τs) stresses, remain as constant. As a result, the cutting

forces can be assumed as proportional to the uncut chip thickness duc. While this

analysis was first performed on metal alloys, there are research in the literature from

over six decades ago highlighting that some plastics satisfy these constraints under

certain conditions [193–195]. In these studies, it was shown that parameters such as
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(a)

(b)

Figure 4.1.: Schematic diagram showing: (a) Orthogonal cutting (two-dimensional) (b)

Shear stress τs and angle φs in orthogonal cutting [30,31,193].

the tool rake angle and the cutting speed strongly influence the relationship between

the cutting forces and the chip thickness. Hence, these investigations are used in

this thesis as a reference to define the tool the geometry and cutting conditions that

could ensure linearity throughout the prediction and validation of the variable-helix

instability islands.

4.2.1. Chip Formation in Thermoplastics and Thermosets

Contrary to metals, thermoplastics and thermosets experience five types of chip for-

mation [196]. Two of these types are continuous mechanisms while the remaining ones

discontinuous. The continuous types are known as flow and shear types, while the

discontinuous classes as simple shear, complex, and crack types. The continuous flow

kind, a condition not found in metals, is characterised by removing the chip under

high elastic deformations. It mainly occurs at lower cutting speeds when the material
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shows a higher elasticity. Similar to metals, the continuous shear-type chip formation

is produced by shearing the material at small intervals along the shearing plane. This

plane is orientated at the minimum-work direction to tear up the chip, and the shear

strain along this plane is considerably lower than the limiting rupture strain. In con-

trast, the simple discontinuous-shear type is distinguished by experience larger shear

intervals and shear strains at the shear plane higher than the limiting rupture strain.

Therefore, the chip formation is frequently interrupted resulting in a poor final surface

quality on the workpiece. The discontinuous-complex type mainly occurs using cutters

with a negative rake angle. This type is characterised by producing the chip from a

combined effect of large compressive and shear stresses. Furthermore, the discontin-

uous crack type occurs in brittle materials at larger depths of cut, using cutters with

an excessively large rake angle. Here, cracks develop on the tooltip while the chip is

forming. This then results in a chip collapse causing hackle marks on the workpiece

surface.

Regarding the two continuous chip formation types, there have been reports that the

assumption of constant shear angle is valid in many thermoplastics and thermosets

under certain cutting conditions [193,197,198]. In particular, the thermoplastic known

as copolymer acetal showed to have unique properties that bridge the gap between

metals and plastics [193]. Based on the recommendations provided by these studies,

this thermoplastic was then chosen as workpiece material for the current thesis.

4.2.2. Machinability of Copolymer Acetal

Copolymer acetal is a semi-crystalline thermoplastic that provides a high machinability,

with a low environmental sensitivity to factors such as humidity. Harper and Chanda

[199,200] considered this material as an engineering plastic with working temperatures

of up to 120 ◦C. More advanced engineering plastics like PEEK and PPS have higher

working temperatures of about 230 ◦C, but lower machinability. Also, they can cost 15
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times the price of acetal [201–203]. Table 4.1 outlines some relevant thermomechanical

properties of copolymer acetal. Furthermore, as a comparison, it also presents the same

properties for aluminium 6061-O, and titanium Ti 6Al-4V. The Young’s modulus of the

copolymer acetal is approximately forty-two times smaller than titanium and twenty-

five times smaller than aluminium. Similar relationships can also be found between the

shear modulus values. However, the mechanical properties of acetal strongly depend

on the temperature and strain rate, affecting also the chip formation while cutting this

material [204–207].

As an instance, Figure 4.2 (a) shows the stress-strain curves of acetal at 20 ◦C, 40 ◦C,

and 60 ◦C. This figure reveals a decreasing trending on the ultimate and yield strength

while the temperature is increased. The temperature also affects the Young’s modulus

of the thermoplastic, as shown in Figure 4.3. For example, a change in temperature

from 25 ◦C to 40 ◦C represents a decrease of 15% on the Young modulus. As a

comparison, Figure 4.2 (b) depicts the stress-strain curves of titanium at 880 ◦C, 1100
◦C, in which a similar decreasing strength tendency can be observed.

In addition, copolymer acetal exhibits a considerably higher specific heat with a lower

density when contrasted to titanium and aluminium. Therefore, temperature incre-

ments in acetal will be higher when equal volumes of each material are exposed to

the same amount of heat. Also, the thermal conductivity of copolymer acetal is lower

than its metallic counterparts, even though the ones for acetal and titanium are not

quite distant when compared to aluminium. Consequently, over 99% of the heat gen-

erated while cutting this thermoplastic with a metallic tool is transferred to the cutter,

while the difference to the workpiece. Furthermore, because this heat cannot be dif-

fused toward the interior workpiece mass, only the surface layer of the thermoplastic

experiences a major increase in temperature [193]. Lakshmi in [213] observed this phe-

nomenon measuring the maximum workpiece temperature in the cutting interface of

single-edge cutting of acetal at various depths of cut and cutting speeds. At the cutting

speed of 36 m/min, the author performed cutting trials at different chip thickness from
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Material

Property
Copolymer

Acetal

Aluminium

(6061-O)

Titanium

(Ti 6Al-4V)

Densitiy

(g/cm3)
1.41 2.7 4.43

Tensile yield strength

(MPa)
68.33 55.2 880

Tensile ultimate strength

(MPa)
66.74 124 950

Young’s Modulus

(GPa)
2.7 68.9 113.8

Elongation at break

(%)
30 25 14

Poisson’s ratio

(-)
0.37 0.33 0.342

Shear strength

(MPa)
55.2 82.7 550

Shear modulus

(GPa)
1.01 26 44

Specific heat

(J/kg/◦C)
1460 896 526.3

Thermal conductivity

(W/m/◦C)
0.31 180 6.7

Coefficient of linear

thermal expansion

(µ◦C−1)

92 23.6 8.6

Melting temperature

(◦C)
170 616.85 1660

Table 4.1.: Mechanical properties of copolymer acetal, aluminium 6061-O, and tita-

nium Ti 6Al-4V [199,200,208,209].
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Figure 4.2.: Temperature and strain rate effect on the stress-strain plots of Acetal and

Titanium Ti 6Al-4V [204,210–212].
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Figure 4.3.: Variation of the Young’s modulus with temperature for acetal [204,212].
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0.2 to 0.8 mm. Later, at the chip thickness of 0.2 mm, the author carried out cuts at

cutting speeds ranging from 36 m/min to 141 m/min. Both sets of trials shown an

almost constant temperature that did not exceed 45 ◦C for the constant spindle speed

test, while 35 ◦C for the constant chip thickness one. In these cases, the majority of

the heat generated was conducted and dissipated by the metallic tool. In titanium for

example, a similar condition can be observed resulting in rapid tool wear and poor

surface integrity, because of the higher cutting force magnitudes when compared to

acetal.

The mechanical properties of acetal are also strain-rate dependant. For example, Figure

4.2 (c) shows the stress-strain curve for acetal at different strain rates. At higher strain

rates, a more brittle fracture occurs resulting in a higher ultimate and yield strength

with a shorter ultimate elongation. This occurs because the material does not have

enough time to flow and accommodate the applied load [204, 212]. Conversely, the

strength lowers as the strain rate decreases showing a more ductile material behaviour

with a longer ultimate elongation at break. A similar response is observed for titanium

in Figure 4.2 (d), but not as pronounced as in acetal.

In essence, the mechanical properties of the workpiece material experience two different

local stimuli while being cut. The first one relates to the shear and tensile strength

reduction caused by the temperature increment linked to the heat generated in the

cutting zone. On the other hand, the material also undergoes a higher strain (cutting

speed) resulting in higher tensile and shear strengths. Hence, as suggested in [196,198,

213], the resultant overall effect of the temperature and strain rate while cutting this

material is better assessed using the shear stress τs at the shear plane. These research

showed that at a specific cutting speed (strain rate), for example, a constant shear

stress condition within a range of uncut chip thickness means that the superposition

of the strain-rate and temperature effects compensate each other. Therefore, this then

allowed the authors to implement the linear cutting force model to predict the cutting

forces within this uncut chip thickness range. However, it was suggested that to ensure
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linearity, the tool’s rake angle and the range of cutting speeds and chip thicknesses

should be carefully selected for a particular material [193].

Rao et al. in [197] proved that the constant shear angle assumption is valid for the

continuous type chip formations while performing single-edge orthogonal cutting of

acetal and nylon. Under this assumption, the authors could predict the cutting forces

using the linear orthogonal model. However, the results for acetal showed that at rake

angles larger than 15◦, the chip formation changed from continuous to discontinuous.

Kobayashi in [193] attributed this to the higher strain rate induced by sharp-edge tools

with larger rake angles, that lead to a more brittle chip fracture. Kobayashi further

explored the machinability of acetal on single-edge cutting at different rake angles and

cutting speeds. Figure 4.4 presents some results provided by the author, showing the

relationship between Fc and dc at various rake angles and cutting speeds of 97 m/min

and 70 m/min. The author normalised Fc by the width of the cut to compare the

results with similar tests results presented by Rao in [197]. At 97 m/min, rake angles

larger than 15◦ lead to non-linear behaviours between dc and Fc. Rake angle values

below 15◦ provided more linear results for a broad range of dc. As Rao, the author

reported a continuous chip formation in the linear region, while the opposite in the non-

proportionality areas. In addition, for a chip thickness dc of 0.123 mm, the relationship

between the Fc, Ft and V at different rake angles is shown in Figure 4.5. In general,

for rake angles between 0◦ to 20◦, the relation between Fc, Ft and V in the range from

50 m/min to 400 m/min can be assumed as linear. Below 50 m/min, the plot moves

upward with a slight curvature.

While the current thesis regards a multiple-edge cutting process like milling, the pre-

vious analysis and results on the single-edge cutting of acetal can be implemented as

a reference to define several experimental parameters. For example, the primary rake

angles of the teeth, cutting speeds, and the feeds per tooth. By doing this, the primary

aim is to keep the tool geometry and cutting conditions within a range that allows

implementing the linear cutting force model to predict the chatter stability charts of
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Figure 4.4.: Relationship between cutting force parallel to direction of cut and depth

of cut for acetal at V = 97 m/min and V = 70 m/min [193,197].

Figure 4.5.: Variation of cutting forces with cutting speed and tool rake angle for acetal.

Depth of cut was 0.123 mm [193,197].
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variable-helix milling tools. Following Kobayashi and Rao’s data, for the current the-

sis, the teeth primary rake angles were chosen as 10◦. Furthermore, the cutting speeds

for all the tests were kept between 50 m/min to 400 m/min, while the feed per tooth

between 0.05 mm/tooth to 0.2 mm/tooth. Subsequently, the next section tests the lin-

earity assumptions using the mechanistic approach presented by Altintas in [77]. Also,

this test provides the cutting force coefficients required to predict chatter stability using

linear cutting force models.

4.2.3. Cutting force coefficients

The mechanistic force model implemented in this investigation (equation 3.17) assumes

that the cutting forces are proportional to the uncut chip thickness. This may not be

true for all the milling cases, leading to the use of non-linear models to describe the

process [71,79,214,215]. Hence, in [77] Altintas presented a method to test the linearity

assumption. In this method, the average forces linearly relate to the feed per tooth,

being the cutting force coefficients proportional to the line slopes. Because this method

can only be applied to conventional milling tools, this section utilised single-flute milling

cutters to estimate separately the coefficients of a variable-helix milling tool.

Following this approach, three one-flute tools of 16 mm of diameter and helix angles

of 25◦, 15◦, and 10◦ were employed to determine the cutting force coefficients inde-

pendently. The same methodology was applied to the conventional tool of 25◦ of helix

angle. This approach also allowed detecting any significant variation in the coefficients

because of the helix angle. All the solid carbide tools implemented in the experiment

were part of the same material batch, guaranteeing homogeneity in the results.

Therefore, per every tool, a group of full-slotting trials at 5 mm of axial depth of cut

was performed at feed-per-tooth values of 0.05, 0.1, 0.15 and 0.2 mm/tooth. The entire

procedure was executed at spindle speeds of 1300, 2800, and 4300rpm to further study

any variation due to cutting speed. By doing so, the minimum cutting speed attained

95



Spindle

Speed

(rpm)

Cutting

Speed

(m/min)

Number of

cutting flutes

Helix Angles

(deg.)

Kt

(N/mm2)

Kn

(N/mm2)

Ka

(N/mm2)

1300 65.34

3 25 142.19 18.89 58.93

1 25 136.55 11.44 55.98

1 15 131.86 15.16 28.61

1 10 130.70 17.10 14.51

2800 140.74

3 25 104.00 13.27 45.59

1 25 102.96 15.97 50.72

1 15 106.42 16.15 2.72

1 10 97.12 14.70 1.74

4300 216.14

3 25 102.36 17.46 46.49

1 25 100.02 13.96 46.78

1 15 101.17 17.76 26.52

1 10 99.12 17.56 21.58

Table 4.2.: Cutting Force Coefficients for a conventional milling tool of 25◦ of helix

angle, and one-flute tools with helix angles of 25◦, 15◦, and 10◦.

in this experiment was of 65 m/min, while the maximum speed was of 216 m/min.

Table 4.2 summarises the results obtained from these experimental tests.

Regarding Table 4.2, for the spindle speed of 1300 rpm, the cutting force coefficients

decrease in magnitude while decreasing the helix angle. For Kt and Kr these changes

appeared to be small, while the Ka experienced a more dramatic change. The same

pattern occurs for the spindle speeds of 2800 and 4300 rpm. In addition, the magnitude

of the coefficients decreases when the spindle speed increases. This variation may be

because of the workpiece softening resulting from the temperature increments at higher

speeds, a behaviour common in metal alloys.
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Figure 4.6.: Experimental results showing the relationship between the feed-per-tooth,

and the average forces for a conventional milling tool with 25◦ of helix

angle.

Subsequently, Figure 4.6 shows the relation between the feed per tooth and the average

forces for the conventional tool at 1300 rpm. It is clear from this plot that the feed per

tooth is proportional to the average forces in the feed, normal, and axial directions.

Therefore, the assumption of a linear-force model with this plastic is reasonable [193,

196,216]. The same behaviour was found in the results obtained from the one-flute-tool

tests, as it is shown in Appendix B.1.

4.3. Experimental Flexure Device

One of the main aims of the current project is to validate a variable-helix island of

instability. To do so, it is assumed that the structural dynamics of the cutting system

behaves as a one-degree-of-freedom flexible workpiece. This then reduces the complex-

ity of the analysis removing further aspects that may obscure the study of variable-helix
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Figure 4.7.: (a) Experimental Configuration,(b) Schematic of the Instrumentation.

instability islands (e.g. mode-coupling vibrations). Authors like Zatarain, Smith, and

Yusoff [25, 171, 217] have successfully implemented similar one-degree-of-freedom sys-

tems, but the higher force magnitudes while cutting the metal-alloy workpieces limited

their studies to lower depths of cut.

The setup proposed in this project for the variable-helix chatter stability validations

is shown in Figure 4.7 (a) and (b). It comprises a copolymer acetal block of 150mm

of length, 50mm of depth, and 40mm of height attached to the flexure device using

screws. This flexure is then mounted on a CNC machine (XYZ 1060 HS VMC) and

fixed using clamps.

To detect chatter in milling trials, the flexure was instrumented with a uni-axial ac-

celerometer (KISTLER model 8776A50) attached with wax, and a microphone (PCB-

377B20 with a pre-amplifier PCB-426E01) as shown in the schematic of Figure 4.7 (b).

To study the types of bifurcation occurring in the unstable tests, once-per-revolution

values were obtained from the acceleration time series by using the data collected from

a Hall-effect sensor. This sensor was configured to provide a voltage pulse every time it
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detected a rotating reference on the spindle, as shown in Figure 4.7 (a). Finally, all the

sensors were connected to a data acquisition device (NI DAQ USB-4431) and sampled

at a rate of 6 kHz. The data acquisition device was then linked to a laptop by USB.

4.3.1. Tap test analysis of flexure device

The FRF of the flexure device with the attached workpiece was determined using a

hammer impact test. From this experiment, it was also possible to assess the valid-

ity of assuming a one-degree-of-freedom flexible workpiece. To explain the procedure

followed, Figure 4.8 (a), (b), and (c) show the workpiece’s reference frame, the ac-

celerometer placements, and the locations where the structure was impacted.

With reference to Figure 4.8 (b), the chatter stability simulations in this project as-

sumed that the system is flexible in the y-direction while infinitely rigid in the x-

direction. While this condition is not fully possible in reality, this test aims to compare

the device’s FRFs in the x and y directions at different z-locations (Figure 4.8 (a)), to

evaluate if this premise is valid at some degree.

Therefore, four locations were defined on the workpiece face perpendicular to the y-

axis. These locations in the z-axis are 0 mm, 14 mm, 28 mm, and 46 mm (Figure 4.8

(a)). Subsequently, the accelerometer was placed on the opposite workpiece face on

the z-location of 0 mm, as shown in Figure 4.8 (b). Next, the workpiece was impacted

on the previously defined locations, while always keeping the accelerometer in the

same position. Afterwards, a similar procedure was followed for the workpiece faces

perpendicular to the x-direction, as depicted in Figure 4.8 (c).

The FRFs obtained for the y-direction are shown in Figure 4.9 (a). The continuous

black line represents the dynamic response at 0 mm, the dashed blue line at 14 mm, the

dotted line at 28 mm, and the dashed and dotted line at 46 mm. These results suggest
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Figure 4.8.: Figure describing the impact test procedure on flexure device. This figure

shows: (a) The locations where the structure was impacted, (b) The work-

piece reference frame and the accelerometer placement for the y-direction

test, and (c) the accelerometer location for the x-direction tests.
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that the dynamic response along the height of the workpiece does not experience signif-

icant variations. This behaviour is better reflected by normalised modal displacements

shown in Figure 4.10, that shows that the displacement difference between the top and

bottom of the workpiece is within less than 10%.Thus, it is reasonable to assume that

the workpiece is stiff enough to assume that it will vibrate as a whole with the upper

metallic platform of the flexure device.

Furthermore, Figure 4.9 (b) shows the flexure’s FRFs in the x and y directions. The

continuous black line and the dashed blue line represent the y-direction FRFs at the

z-locations of 0 mm and 46 mm. Additionally, the dotted red line and the green

dashed and dotted line represent the x-direction FRFs at the heights of 0 mm and 48

mm. These results suggest that flexure is considerably stiffer in the x-direction when

compared to the y-direction, allowing to assume x-direction as rigid.

The estimated flexure device’s modal natural frequency, damping ratio, and stiffness

were of 290 Hz, 0.67%, and 3.55 kN/mm. This device is 86 times more flexible than

the system comprising the cutting tool, tool holder, and the spindle at the tooltip. The

FRF of this system is presented in Figure 4.11, showing a dominant resonant frequency

of 4331 Hz in x and y directions. Therefore, the assumption of a rigid machine tool is

also valid, meaning that the only source of instability in the processes comes from the

workpiece vibrations in the y-direction.

4.4. Variable-helix chatter stability predictions with unequal

cutting force coefficients

Having determined the cutting force coefficients in Section 4.2.3 and flexure device’s

FRF in Section 4.3, the current section aims to determine the effect of using different

cutting force coefficients on the stability lobe diagram of variable helix milling tools.

While several research projects have previously studied the effect of the helix angles on
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Figure 4.9.: (a) FRF of the flexure device in the y-direction at different location along

the workpiece, (b) Comparison between the flexure’s FRFs along the y-

and x- directions (ωmax = 450 Hz).
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the cutting forces either on conventional and variable-helix milling cutters [218–220],

none of them has shown how the coefficient variations affect the process stability.

Consequently, to explore this issue, the current section implements the modified MFA

(Chapter 3) that allows cutting force modelling with non-equal coefficients on the

teeth. Then, chatter stability predictions are calculated assuming a non-equal coeffi-

cient variable-helix cutter with 25◦, 15◦, and 10◦ of helix angles. Subsequently, as a

comparison, they are also estimated using the standard unmodified MFA. The machin-

ing scenario in this study is shown in Table 4.3, in which the single-flute cutting force

coefficients implemented for the simulations are the ones estimated at 1300rpm (Table

4.2). The MFA was configure with a ωmax (equation 3.43) of 450 Hz, and subsequent

axial depth of cut and spindle speed increments of ∆a = 0.1 mm, and ∆Ω = 15 rpm.

The chatter stability predictions are shown in Figure 4.12. These results suggest that

the stability boundary variations because of the helix-induced non-equal coefficients

are negligible. One of the main reasons of this minor effect could be the relatively

small helix angle differences. For example, Ozturk in [218] explored the effect of the

helix angle on the cutting force coefficients in a broader angular range, finding more

significant variations on the coefficients. However, the author did not study how this

is reflected on the process stability using a variable-helix milling tool.

For the current thesis, based on the results found in this section, the stability pre-

dictions perform in subsequent chapters will implement the cutting force coefficients

obtained from the conventional milling tool. At this stage, several assumptions have

been made regarding the material machinability, one-degree-of-freedom behaviour of

the flexure device, and the effect of helix angles on the cutting force coefficients. There-

fore, the next three sections aim to validate experimentally these premises by first

analysing the chatter stability of the variable-helix cutter tool with 25◦, 15◦, and 10◦

of helix angles using the SDM and MFA. Afterwards, a set of cutting trials are per-

formed around a potential island of instability in the stability chart to determine if the

104



Parameter Value

ωny 290 Hz

ky 3.55 kN/mm

ζy 0.67%

φ10, φ20, φ30 0◦, 120◦, 240◦

γ1, γ2, γ3 25◦, 15◦, 10◦

Radial Immersion 50%

Tool Diameter 16 mm

Material Copolymer Acetal

Conventional Milling

Tool Coefficients:

Kt 142.2 N/mm2

Kr 18.9 N/mm2

Single Flute Milling

Tool Coefficients:

K25
t , K15

t , K10
t 136.55 N/mm2, 131.55 N/mm2, 130.70 N/mm2

K25
r , K15

r , K10
r 11.44 N/mm2, 15.16 N/mm2, 17.10 N/mm2

Cutting Condition Up-milling

Normal Direction (flexible) y (Figure 4.7)

Feed Direction (rigid)
+x (Figure 4.7

pointing outside the page)

Table 4.3.: Machining Scenario

105



1

1

1

1
1

1
1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1 1
1

1

1
1

1

1

1

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
Spindle Velocity (RPM)

0

5

10

15

20

25
D

e
p

th
 o

f 
C

u
t 

(m
m

)
Regular Milling Tool Coefficients

One Flute Tool Coefficients

   Unstable Region

Stable Region

Figure 4.12.: Chatter stability predictions using the modified MFA to consider non-

equal cutting force coefficients on the teeth. The results are compared

with the MFA predictions obtained using equal cutting force coefficients

on the flutes.

system behaves as expected. Finally, conclusions are drawn regarding the simulations

and experimental outcomes, and it is discussed the accuracy of the chatter prediction

methods and potential dynamic modifications on the setup that may lead to islands of

instability.

4.5. Stability Predictions with SDM and MFA

The machining scenario implemented for the simulations is summarised in Table 4.3.

As previously mentioned in Section 4.4, the cutting force coefficients used for the

chatter predictions are the ones obtained with the conventional milling tool with 25◦

of helix angle. Furthermore, the SDM and MFA were configured to predict stability at

axial depth of cut steps ∆a of 0.1 mm, and spindle speed increments ∆Ω of 15 rpm.

Additionally, the SDM was configured with an m parameter (equation 3.44) of 500,
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while the MFA with an ωmax (equation 3.43) of 450 Hz. This frequency is shown in

Figure 4.9, along with the system’s frequency response function. Due to the nature of

the MFA, the number of harmonics p used in the solution at every spindle speed Ω is

automatically adjusted following the relationship in equation 3.43.

The simulation’s outcomes using both methods are shown in Figure 4.13 (a) and (b).

The continuous blue lines and discontinuous black lines in these plots represent the

subsequent predictions for the SDM and MFA. Also, the parameter k in these plots

indicates the number of waves per revolution printed on the workpiece surface by the

tool flutes. As a comparison, Figure 4.13 (a) and (b) also show in discontinuous red

lines the stability predictions for a conventional milling tool with 25 degrees of helix

angle. From these plots, it is evident that the conventional and variable-helix milling

tools behave similarly at lower axial depths of cut because the variable-helix cutter

has equal pitches at the tooltip. However, at higher axial depths, the pitches between

the flutes tend to continuously change altering the regenerative stability condition of

the process. Consequently, this may lead to further stabilisation of the variable-helix

milling process at higher depths of cuts when compared to conventional ones.

For example, at the spindle speed of 2500 rpm (k = 2 lobe in Figure 4.13 (a)), the lower

chatter stability boundary predicted for both tools and methods is of approximately 2

mm. After this axial depth of cut value, the process becomes unstable for both tool

configurations and chatter prediction approaches. Subsequently, while the process at

larger depths of cut continues being unstable for the conventional milling tool, the

variable-helix cutter experiences a further process stabilisation at 17 mm for the SDM,

and 18 mm for the MFA. Consequently, these results suggest that by adequately fine-

tuning a variable-helix milling tool for a particular application, it is possible to achieve

axial depths of cut that could be unattainable with conventional ones without chatter.

Furthermore, Figure 4.13 reveals several discrepancies between the stability predictions

with the SDM and MFA. The most remarked differences are the isolated instability
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Figure 4.13.: Stability lobe diagrams obtained using the MFA and SDM for a conven-

tional milling tool with 25◦ of helix angle, and a variable-helix cutter with

helix angles of 25◦, 15◦, and 10◦ . The stability lobe diagram was divided

into a low-spindle speed region from 1000 to 6000 rpm (a), and a high

spindle speed area from 6000 to 20000 rpm (b) to show the flip or added

lobe.
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Figure 4.14.: The stability predictions obtained using SDM suggest the appearance of

an instability island, while the MFA suggests otherwise.

islands predicted by the SDM for the k = 4 and k = 5 lobes, conditions not found by

the MFA. These islands are shown in Figure 4.14. It is worth mentioning that these

instability islands occurred far away from the flip lobe of the stability diagram that

is shown in Figure 4.13 (b). Additionally, the radial immersion of tool engagement is

50%. Thus, as explained in Chapter 2 for conventional milling tools, these conditions

suggest that these isolated unstable regions are not either parametric or helix-induced

islands of instability. Consequently, it was concluded that its appearance could be

mainly because of the non-equal helix angles on the milling tool. Therefore, the k = 4

island was chosen as the ideal condition for the experimental validation stage in the

forthcoming section.

4.6. Experimental procedure and results

The instability island revealed by the SDM in the previous section is shown in Figure

4.14. Around this condition, a series of 126 cutting trails were defined comprising 14
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spindle velocities starting from 1070 rpm to 1460 rpm at increments of 30 rpm. The

milling tests were executed at a feed per tooth of 0.1 mm/tooth, such as the minimum

cutting speed attained in these trials was of 53.7 m/min, and the highest of 73.3 m/min.

Per every spindle speed, two acetal workpieces were required to complete the nine tests

at different axial depths of cut. On the first workpiece, six milling trials were performed

from 18 mm to 8 mm at steps of 2 mm of the axial depth of cut. On the other hand,

three milling tests were executed on the second workpiece from 6 mm to 2 mm at steps

of 2 mm of the axial depth of cut.

At every spindle speed condition, the cutting bed of the machine tool was first placed

in its initial position as shown in Figure 4.15 (a). In this location, the tool axis was

aligned with the z axis of Figure 4.15 (a). Furthermore, the tooltip was 18 mm in the

z-axis (axial depth of cut) and 13 mm in the x-axis. Afterwards, the data acquisition

system and the spindle were initiated and the workpiece was fed into the milling tool

38 mm in the x-direction producing a half immersion cut of 25 mm of cutting length.

Next, the cutting bed stopped feeding the workpiece, and the axial depth of cut was

decreased by 2 mm. Subsequently, another half immersion cut of 25 mm of length was

completed, as illustrated in Figure 4.15 (c). This operation was executed six times on

the first workpiece resulting in a final workpiece geometry as depicted in Figure 4.15

(d) and (e).

After switching off the data acquisition system and the spindle, the workpiece was

removed from the flexure device. Next, the second workpiece was fixed on the flexure

and the cutting bed was placed again in its initial location. The axial depth of cut

(z-axis) on this occasion was 6 mm. Subsequently, the acquisition system and spindle

were started and the remaining three milling trials at the particular spindle speed were

completed.

This entire procedure was repeated at the subsequent spindle speeds and the final

results are shown in the stability lobe of Figure 4.16. In this diagram, green dots
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Figure 4.15.: Experimental Procedure.

represent stable cuts, orange diamonds marginally stable cuts, and red squares unstable

ones. Additionally, the discontinuous black lines represent the stability predictions

obtained with the MFA, while the continuous blue lines the SDM ones. The overall

experimental outcome in Figure 4.16 suggest a reasonable good agreement between the

results and both predictions. However, the MFA predictions seem to better resemble

the preliminary results when compared with the SDM.

For each test described in Figure 4.16, the acceleration once-per-revolution samples

were used to construct a delayed Poincaré section as shown in section 2.2. It was later

used to qualitatively classify the process stability. In addition, the Fast Fourier Trans-

form of the audio and acceleration signals were computed. The criteria to categorise the

stability condition of the trials are as follows. If the delayed Poincaré section appears

as a dot, it suggests a stable process because it gives the same solution every revolu-

tion. Note that for a variable-helix tool, the fundamental period is the tool rotational

period rather than the tooth-passing one. Therefore, a stable Fast-Fourier-Transform
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Figure 4.16.: Instability island and results obtained from the milling trials.

(FFT) spectrum shows the spindle-pass frequency or any of its harmonics as dominant

in the process. For the acceleration signal, it was observed that whenever the Poincaré

section suggested a stable trial, the acceleration FFT indicated the same.

However, whenever the stability condition suggested by the sound and acceleration

FFT does not agree, the trial were concluded as marginally stable. Thus, in a fully

stable test, the Poincaré section along with the acceleration and sound FFT indicate

a stable process.

As an example, Figure 4.17 shows the detailed behaviour at 1100 rpm for depths of

cut from 2 to 8 mm. The plots located on the left of Figures 4.17 (a), (b), (c), and

(d) show the acceleration time series in blue lines with the once per revolution samples

superimposed as red dots. In addition, it shows the steady state region in a green

rectangle used to build the Poincaré plot shown on the right side of Figures 4.17 (a),

(b), (c), and (d). It can be seen that the cut at 2 mm (Figure 4.17 (a)) is unstable as

the simulation predicted, with the once-per-revolution sampled acceleration indicating

quasi-periodic motion that is indicative of a Hopf bifurcation [80] and the acceleration
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and microphone spectra indicating a chatter frequency of 289.7 Hz as indicated in

the Fourier transform of the Figure 4.18 (a). At 4 mm and 6 mm (Figure 4.17 (b)

and (c)), the cutting process is still unstable, until 8 mm (Figure 4.17 (d)) when the

system becomes stable. The system continues being stable until 16 mm when it became

unstable again exhibiting a chatter frequency of 263.9 Hz as it is shown in the Figure

4.18 (b).

As another example, for the spindle speed of 1400 rpm, the cutting trial at 2 mm is

a period double unstable cut with a chatter frequency of 280 Hz, as it is shown in

the Figure 4.19 (a). This represents the 6th harmonic of the double of the spindle

pass frequency 23.33 Hz. When the axial depth of cut is increased to 4 mm (Figure

4.19 (b)), again a quasi-periodic response is found in the Poincaré plot suggesting the

appearance of a Hopf bifurcation. Next, the subsequent milling cuts at 6 and 8 mm

(Figures 4.19 (c) and (d)), become stable as indicated in the Poincaré plot. As is shown

in the Figure 4.16, the cutting trials at 1400 rpm remain stable until 16 mm when the

cutting process becomes unstable.

Contrary to the SDM predictions, the experimental results shown in Figure 4.16 suggest

that no instability island is located in this cutting region. The instability sector showed

by the SDM as an island appears connected to another lobe as suggested by the MFA.

It is clear from the predictions in Figures 4.13 and 4.14 that at lower axial depths of

cut and higher spindle speeds, both methods provide similar solutions. For example,

stability predictions at spindle speeds higher than around 1500 rpm (Figure 4.13) are

similar for both methods at low and high axial depths of cut. However, at spindle

speeds below this value, both methods considerably differ when the axial depth of cut

is increased beyond approximately 5 mm.

From both simulations, the MFA shows to better follow the shape described by the

experimental results, although its predictions appear to be slightly skewed to the right.

This condition at higher axial depths of cut appears to be caused by a changing in
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Figure 4.17.: Time series (blue line) and once per revolution samples (red dots) of the

acceleration data at a spindle speed of 1100 rpm and axial depth of cut

of 2mm (a), 4mm (b), 6mm (c), and 8mm (d). The steady state region

of the process is defined by the green rectangle.
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Figure 4.18.: Frequency spectrum of the audio signal for the milling trial at 1100rpm

and 2mm (a) and 16mm (b) depth of cut.
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Figure 4.19.: Time series (blue line) and once per revolution samples (red dots) of the

acceleration data at a spindle speed of 1400 rpm and axial depth of cut

of 2mm (a), 4mm (b), 6mm (c), and 8mm (d). The steady state region

of the process is defined by the green rectangle.
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the natural frequency of the system, that is induced by the material removed from

the workpiece. However, while the SDM resembles the same shifting phenomenon, it

seems to be unable to predict the lobe connection detected by the MFA. This behaviour

suggests that the SDM struggles to converge to a solution due to the additional high-

frequency vibrations induced by the distributed time delays at higher depths of cut.

This condition seems to be aggravated at lower spindle speeds since larger spindle-pass

periods allow these vibrations to remain longer. To explore this issue in more detail,

the next chapter includes a convergence study for both methods.

4.7. Conclusions and Discussion

From the previous analytical and experimental study, the following conclusions can be

achieved. First, it can be concluded that the linear mechanistic cutting force model can

be implemented to predict the cutting forces of copolymer acetal. In the current thesis,

it was proposed a custom-made 3-teeth variable-helix milling cutter with helix angles

of 25◦, 15◦ and 10◦. The cutting force coefficients of this tool were independently de-

termined using customised one-flute tools and the standard mechanistic identification

method. Additionally, a conventional 3-teeth milling tool with a helix angle of 25◦ was

employed to further comparison. The trials performed on copolymer acetal following

the mechanistic approach revealed that the average cutting forces linearly relates to

the feed per tooth, being the cutting force coefficients proportional to the line slopes.

This relationship was found using the single-flute and three-flute tools at several cut-

ting speeds, agreeing with the data found in the literature. Additional chatter stability

validations using a variable-helix milling tool further confirmed the reliability of imple-

menting the linear models. Furthermore, simulations were performed using the MFA

that was modified to consider non-equal cutting force coefficients. The simulation’s

outcomes led to the conclusion that the impact of the helix-induced coefficient varia-

tions on the chatter stability boundaries can be neglected for the specific tool under
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study. While there were fluctuations between the coefficients because of the helix angle,

these variations were translated into minor changes on the stability boundaries.

Regarding the dynamic behaviour of the experimental setup, the workpiece and ma-

chine tool impact test results confirmed that the one-degree-of-freedom flexible work-

piece assumption is valid. The workpiece’s FRF in the flexible direction exhibited an

isolated resonant frequency of 290 Hz. Impact tests performed along the height of the

workpiece and flexure device revealed negligible changes, showing that the workpiece

and flexure were linearly vibrating as a complete entity with no rotation. This then

guaranteed a one-degree-of-freedom behaviour, while cutting the workpiece at larger

axial depths of cut. Moreover, the workpiece FRF in the direction orthogonal to the

flexible one revealed that the workpiece is considerable more rigid, further validating

the one-degree-of-freedom hypothesis. In addition, the machine tool’s FRF showed

that workpiece system is 86 times more flexible than the machine. Consequently, it

can be assumed a rigid machine tool whose structural dynamics can be neglected from

the chatter stability analysis.

From the chatter stability simulations performed using the SDM and MFA, it was

found several discrepancies between the methods at lower spindle speeds. The most

remarkable difference was an unstable island predicted by the SDM, a phenomenon not

captured by the MFA. In general, the results from the experimental tests conducted

around this condition mostly agreed with both predictions at lower axial depths of

cut. However, the MFA better fits the overall shape of the preliminary outcomes at

higher axial depths of cut, although the results appeared to be slightly skewed. This

shifting on the chatter boundaries at a higher axial depth of cut seems to be caused

by the changes on the system’s natural frequency because of the material removed

from the workpiece. For example, per every spindle speed in the stability lobe diagram

of Figure 4.16, two copolymer acetal workpiece were implemented. In the first one,

there were executed the trials from 18 mm to 8 mm at steps of 2 mm. The remaining

three trials from 6 mm to 2 mm were conducted on the second workpiece. It is clear
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from Figure 4.16 that the shifting is more pronounced on the trials performed on

the first workpiece where more material was subtracted. In addition to reducing the

workpiece mass, this condition could also alter the dynamic structural stiffness of the

system because of the workpiece geometry modifications. These continuous changes

on the workpiece natural frequencies seem to alter locally the chatter boundaries [221].

Future works can implement enhanced models such as the ones proposed by Shi and

Budak in [222, 223], in which the FRF of the flexible workpiece is updated based on

the material removed in the cutting process.

The SDM inability to predict the lobe connection could be related to convergence issues,

emerging from the formulation nature of the stability problem. As shown in Chapter

3, the accuracy of the SDM relies on the value M (equation 3.44), that represents

the number of equally spaced elements in which the spindle rotation is divided. This

parameter remained constant indistinctly of the spindle speed. On the other hand,

the MFA accuracy depends on the number of harmonics p, that are considered when

solving the stability problem. However, contrary to the SDM, this parameter is not

fixed. The MFA takes advantage of the FRF property of tending to zero at higher fre-

quencies, to self-adjust p to the spindle speed based on a truncation frequency ωmax.

For the chatter stability simulations presented in Figure 4.16, both SDM and MFA

predictions showed to be similar at higher spindle speeds, where a fewer number har-

monics p or lower M values are necessary to predict the boundaries. However, at lower

spindle speeds, a higher number of harmonics p or M values are required to capture

the full process dynamics. This occurs due to the higher frequency content on the

workpiece vibrational spectrum resulting from the longer spindle-pass periods. In ad-

dition, this condition seems to be aggravated at higher axial depths of cut because of

the helix-induced time delay variations along the axial length of the tool that further

modulate the frequency spectrum. It seems that the MFA self-adjusted nature makes

the approach more robust to these changes when compared with the SDM.
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However, although the MFA better adjusted the preliminary results, the discrepancies

found with the SDM made it unclear whether the studied region contained an island, or

further unmodeled experimental uncertainties altered the preliminary results. There-

fore, the next section first seeks to perform a convergence analysis of both methods

to provide an insight into the performance of these techniques, predicting the chatter

stability of variable-helix milling tools. In addition, the next chapter pursues to shed

some light on the dynamic conditions that lead to islands of instability in the stability

lobe diagram, and in particular, structural damping. Several research articles have

suggested that this parameter plays an essential role in the chatter stability behaviour

of variable-helix milling tools at lower spindle speeds [27].

4.8. Summary

In summary, this section experimentally and investigated the potential of variable-

helix milling tools to stabilise at higher axial depths of cut. In particular, it studied

the islands of instability that emerge in the stability lobe diagram because of the non-

equal tool helix angles. To do this, a scaled experiment was implemented comprising a

one-degree-of-freedom flexure device holding a low-cutting force coefficient workpiece.

By using this setup, it was possible to assume linear structural dynamics at higher

depths of cut. Furthermore, this section also studied the impact of the flute helix

angle on the cutting coefficients and therefore on the stability lobe diagram. For the

case studied, it was shown that the helix-related variations on the coefficients can be

translated into negligible changes in the stability diagram.

During the investigation, considerable discrepancies between the SDM and MFA pre-

dictions were found. While the SDM showed an instability island in the stability lobe

diagram, the MFA did not present this condition. However, though the final results

showed a good agreement with both predictions, the MFA better matched the experi-

mental results.
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Consequently, the next chapter presents an converge study for the SDM and MFA. In

addition, it investigate the role of structural damping on the appearance of instability

islands. These two aspects are of vital importance because as it was shown in Chapter

2, chatter vibrations can be passively or actively suppressed by increasing the level of

structural damping. Therefore, implementing non-converged stability approaches may

lead to undetected instability islands causing undesired outcomes.
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5. Damping Analysis and Validation of

Variable-Helix Instability Island

5.1. Introduction

Preliminary experimental results presented in Chapter 4 first attempted to validate

a potential instability island revealed by the SDM. This presumed island was not

captured by the MFA, that showed that it was connected to another lobe. The exper-

imental validation around this condition in Chapter 4 agreed with the MFA, arousing

the question of whether the SDM may be experiencing convergence difficulties. There-

fore, the current chapter seeks to address the issues exposed in Chapter 4 regarding

variable-helix islands of instability and the SDM convergence. To do this, it first

demonstrates that islands of instability only emerge at relatively high levels of struc-

tural damping. Subsequently, by performing a convergence analysis using the SDM

and MFA, it also proves that instability islands are particularly susceptible to model

convergence effects. At this stage, the damping and convergence analysis revealed a

damping-induced variable-helix instability island using the cutter with 25◦, 15◦, and

10◦ of helix angles. Moreover, an additional customised solid-carbide variable-helix

tool with helix angles of 25◦, 15◦, and 15◦ is introduced in this chapter, whose stability

analysis also revealed a similar instability island. Therefore, the model predictions with

both tools are validated using the experimental configuration presented in Chapter 4,

with the modification of using constrained layer damping (CLD) to adjust the damp-

ing to desired levels. To the author’s knowledge, this provides the first experimental

and analytic study of unstable islands in variable-helix milling, while also showing the
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importance of accurate damping estimates and convergence studies within the stability

predictions.

The organisation of this chapter is as follows. Section 5.2 performs a structural damping

analysis in which the structural damping is systematically increased in simulations to

show the effect of this parameter on the chatter stability of variable-helix tools. This

section also presents the structural modifications performed to the experimental setup

to increase the damping using the CLD. Next, Section 5.3 performs a convergence

analysis for the SDM and MFA around an instability island found using the CLD

treated setup. Finally, Section 5.4 presents the procedure and experimental results

obtained from the instability island’s validation.

5.2. Damping analysis

One of the first authors to highlight the importance of damping on milling process

with variable helix cutters was Sims in [27]. In this work, the author suggested that

the system’s structural dynamic is crucial in the variable-helix stability condition at

a high axial depth of cut. This conclusion was achieved by analysing in simulations

a regenerative-delayed-transfer function of a two teeth variable-helix tool. The author

found that the real and imaginary components of this function are inversely propor-

tional to the axial depth of cut and frequency. Thus, this means that the regenerative

effect has less influence on the process stability because of the continuous variation of

the time delays along the tool. Therefore, the dynamic response of the system has a

higher impact on the process stability. This then led to the question that if the variable-

helix milling process could be more sensitive to structural damping than conventional

ones.

Based on these suggestions, the present section explores the role of damping on the

existence of islands of instability while milling with variable-helix cutters. For this
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purpose, the chatter stability behaviour of the milling tool with helix angles of 25◦,

15◦, and 10◦ is investigated under different levels of structural damping. It is worth

mentioning at this stage that the system’s frequency response function implemented

for the chatter stability predictions slightly changed from the ones used in Chapter 4.

This was caused by changes to the workpiece geometry to allow more cutting trials

per copolymer acetal block. The new dimensions of the workpiece are a length of 170

mm, a depth of 44 mm, and a height of 38 mm. While doing these modifications,

we attempted to keep the workpiece’s mass as similar as possible to the original one,

aiming to not significantly change the natural frequency of the system. Furthermore,

a grinding procedure was applied to the internal faces of the side walls that connect

the workpiece supporting platform and the fixed base of the flexure device (Figure

5.1). This was performed as a pre-treatment for a damping modification that required

these surfaces as smooth as possible. These modifications are explained in subsequent

sections. The FRF of the flexure device supporting the new workpiece is shown as

a discontinuous black line in Figure 5.2. It is worth mentioning that this FRF only

reflects the flexure dynamics after the grinding procedure, with no additional damping

modifications. Furthermore, as a comparison, the same figure shows the FRF of the

original system as a continuous blue line. The modal dynamic parameters estimated

from the new FRF are a natural frequency of 296.82 Hz, a damping ratio of 0.153%,

and stiffness of 3.85 kN/mm.

Consequently, the chatter stability predictions obtained using the MFA are shown in

Figure 5.3 (a) and (b). The machining scenario implemented to perform these simula-

tions is summarised in Table 5.1. Similarly as in Chapter 4, the MFA was configured

with an ωmax of 450 Hz, ∆a of 0.1 mm, and ∆Ω of 15 rpm. From this plot, the dis-

continuous black line represents the stability predictions using the conventional tool,

while the continuous blue line the ones with the variable helix cutter. Additionally,

the value of k represents the number of waves per revolution imprinted by the tool on

the workpiece surface. Subsequently, to explore the effect of damping on the chatter
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Figure 5.1.: Flexure device before CLD treatment
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Figure 5.2.: Frequency response function of the flexure device with new workpiece ge-

ometry.

125



Parameter Value

ωny 296.82 Hz

ky 3.85 kN/mm

ζy 0.153%

φ10, φ20, φ30 0◦, 120◦, 240◦

γ1, γ2, γ3 25◦, 15◦, 10◦

Radial Immersion 50%

Tool Diameter 16 mm

Material Copolymer Acetal

Kt 142.2 N/mm2

Kr 18.9 N/mm2

Cutting Condition Up-milling

Normal Direction (flexible) y (Figure 4.7)

Feed Direction (rigid)
+x (Figure 4.7

pointing outside the page)

Table 5.1.: Machining Scenario

stability of this tool, the damping ratio was multiplied by a factor df while unchang-

ing the remaining modal parameters, tool geometry, force coefficients, and simulation

variables. Afterwards, the chatter stability of the updated system was determined and

the outcomes at different df values are shown in Figure 5.4 (a) and (b).

In general, the plot shown in Figures 5.4 (b) suggests that the damping effect at higher

spindle speeds (k = 0 and k = 1 lobes) only increases the minimum limiting axial

depths of cut. On the other hand, low spindle speed lobes (k ≥ 2 in Figure 5.4 (a))

reveal the appearance of several islands of instability at higher damping levels. For

the k = 2 lobe, the predictions indicate that both ends of the lobe become closer while

increasing the damping. However, the ends of the lobe around the spindle speed of

2500 rpm and 15 mm of the depth of cut become closer at a faster rate than the other
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Figure 5.3.: MFA chatter stability predictions of the CLD treated system for the

variable-helix milling tool with helix angles of 25◦, 15◦, and 10◦ for the

spindle speed ranges from (a) 500 rpm to 3250 rpm and (b) 3250 rpm to

20000 rpm.
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Figure 5.4.: Damping effect on the MFA chatter stability predictions of a variable-

helix milling tool with helix angles of 25◦, 15◦, and 10◦ for the spindle

speed ranges from (a) 500 rpm to 3250 rpm and (b) 3250 rpm to 20000

rpm. The damping ratio was increased by a factor df as ζn = df (0.153%).
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lobe regions. While the same behaviour occurs for the higher order lobes at k = 3 and

k = 4, there are particular damping levels in which the lobes split into several unstable

islands. For example, for the k = 3 lobe, when damping is ten times its original

values, this lobe is divided into three regions. The first one is a small instability island

starting at around 5 mm, another larger instability island at 12 mm, and an unstable

region from 23 mm to 25 mm. The same behaviour occurs for the k = 4 lobe, but

in this occasion at a damping ratio of seven times the original value. For this lobe

in particular, when df is increased to 10, the small instability island located around

1500 rpm and 5 mm disappears. It is also noticed how the size of the instability island

between 15 mm and 10 mm reduces in size when df increases from 7 to 10.

5.2.1. Structural dynamics

Based on the finding presented in Section 5.2, the current section seeks to increase the

structural damping of the flexure device to recreate the conditions necessary for the

appearance of an island of instability. For this purpose, constrained layered damping

(CLD) are applied to the flexure device as shown in Figure 5.5 (b). CLD comprises a

layer of viscoelastic material attached by an adhesive to the most significant curvature

regions of a host structure [224–227]. Then, when the structure deforms, it induces

a shear deformation in the viscoelastic material that dissipates energy. To further

increase the shear effect, a metallic laminate is attached to the other side of this layer

to constrain its deformation.

In this device, Figure 5.1 suggests that the primary sources of flexibility in this structure

are the metallic side walls. For instance, when a force is applied to the workpiece, these

plates bend pivoting around the grooves on the walls. Therefore, it was decided to

place the CLD on the inside faces of the side walls. To install the CLD on the targeted

locations, the aimed surfaces were first subjected to a grinding procedure. This was

done seeking to remove unevennesses from the designated regions. As the supplier
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suggested, the surface roughness of these regions was left within 0.1 mm to guarantee

an effective performance. Subsequently, the areas were cleaned using a solvent to

remove any residue or contaminant that may affect the CLD adherence. Next, the

CLDs were attached to the host structure and kept under pressure using vices for

about twenty-four hours. Afterwards, the pressure vices were removed from the flexure

device, as it is shown in Figure 5.5 (b). Finally, an impact hammer test was performed

to the CLD-treated system with the workpiece attached, to determine the FRF of the

enhanced configuration. The obtained results are shown in Figure 5.5 (a), in which the

estimated modal parameters are a natural frequency of 285.5 Hz, a modal stiffness of

3.65 kN/mm, and a damping ratio of 1.54%. This damping level is approximately ten

times the value in the initial structure with the new workpiece. Finally, Figure 5.6 (a)

and (b) show the stability lobe diagrams obtained with the CLD treated setup and the

milling tools with helix angles of 25◦/15◦/15◦ and 25◦/15◦/10◦.

5.3. Convergence analysis

The present section aims to compare the convergence performance of the SDM and

MFA around one of the instability islands found with the CLD treated system in

Section 5.2.1. In particular, the island under study in this section is the one presented

in Figure 5.6 (b), located in the k = 3 lobe between 12 and 22 mm of axial depth of

cut. This instability island is shown in Figure 5.7.

From this island, the spindle speed of 1560 rpm was chosen to compare the SDM

and MFA. At this spindle speed, the stability problem for the MFA was first solved

assuming p = 1 (equation 3.43) harmonics in the solution. Afterwards, this value was

increased by one harmonic until p = 30, and at every iteration, the upper and lower

chatter stability boundaries of the island were predicted. Next, a similar procedure

was followed for the SDM, in which number of samples per revolution M (equation
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Figure 5.6.: MFA chatter stability predictions of the CLD treated system and the

variable-helix milling tools with: (a) 25◦, 15◦ and 15◦ and (b) 25◦, 15◦,

and 10◦ of helix angle.
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3.44 in Chapter 3) was normalised at multiples of the natural frequency η as,

M =
60ηfn

Ω
, (5.1)

in which fn is the system’s natural frequency in Hz and Ω is the spindle speed in rpm.

The obtained results are shown in Figure 5.8, where the y-axis denotes the axial depth

of the cut, the upper x-axis represents the number of harmonics p, and the lower x-axis

the multiples of the natural frequency η.

From Figure 5.8, the blue dots and upper x-axis show that the minimum p value to

at least detect one of the island boundaries is p = 11. Below this harmonic value, the

MFA does not detect the instability condition in the milling process. At p = 11, the

MFA only detects the lower boundary of the island, but fails to capture the further

stabilization at higher depths of cut. Nevertheless, the MFA starts to detect the upper

stability boundary of the island at p = 12. Later, while increasing p, these boundaries

decreased or increased until they settle at 22 and 12 mm. The first boundary to
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Figure 5.8.: Convergence Analysis for the MFA and SDM.

converge was the lower one at a p = 14, while the upper boundary at p = 15. For higher

values of p, the stability boundaries remain unchanged at 22 and 12 mm, indicating

that the minimum convergence p value is 15. At the spindle speed of 1560 rpm, this

represents an ωmax of 403 Hz in the equation 3.43 presented in Chapter 3.

On the other hand, the results for the SDM (red dots and lower x-axis in Figure 5.8)

suggest that the method struggles to converge to final solutions. For instance, the

lower stability boundary converges to the same solutions as the MFA at η = 30. At

this value, the upper boundary is 0.8 mm away from the solution estimated by the

MFA. At higher sampling frequencies, the upper boundary slowly moved toward the

value predicted by MFA, but it never achieves this at the largest simulated η value of

100.

As a computing performance comparison between MFA and SDM, chatter stability

simulations were performed at 1560 rpm using the minimum convergence parameters

for the MFA, and a η = 30 for the SDM. This was implemented on a computer with

16 GB of RAM, and an Intel(R) Core(TM) i7-6700k running at 4 GHz. From these

simulations, the MFA could predict the boundaries in 0.55 minutes while the SDM in
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32.1 minutes. This then means the MFA was 58 times faster than the SDM. How-

ever, although the computing-time difference may be caused by code optimisation,

the convergence analysis revealed that the MFA provides a converged and more accu-

rate solution than the SDM. This crucial property is of more vital importance while

predicting the chatter stability boundaries of high-precision milling processes.

A convergence analysis was also performed for the SDM and MFA using the conven-

tional milling tool with 25◦ of helix angle. In this case, the chatter stability boundaries

were predicted while varying p from 1 to 30 for the MFA, and η from 4 to 30 for the

SDM.

The convergence results are shown in Figure 5.9. For the MFA, the method predicts

an stability boundary at 7.8 mm when p = 11, and remains at this axial depth of cut

value until p = 13. At p = 14, the stability boundary converges to 8.6 mm where it

stays until the end of the simulation. Comparing this behaviour with the variable-helix

milling tool, p = 14 also represents the minimum number of harmonics required by the

lower stability boundary of the island to converge to a final solution in Figure 5.8.

Regarding the SDM, it initially predicts a stability boundary of 9.6 mm at η = 4, but

gradually converges toward the boundary calculated by MFA at higher values of η.

SDM finally settles at 8.6 mm when η = 23. In contrast to the variable-helix milling

tool, this η value is less than the minimum required by the lower island boundary to

settle in a final solution (η = 30 in Figure 5.8).

Another comparison can be done by manually selecting and keeping as constant the

value of p indistinctly of the spindle speed as Altintas in [77]. In contrast, the approach

presented in Chapter 3 automatically adjust the p value at a spindle speed Ω by the

maximum FRF frequency ωmax (equation 3.43).

Simulations performed using different p values are shown in Figure 5.10, in which

the continuous blue line represents the chatter stability predictions implementing the

MFA of Chapter 3, and the discontinuous red, green, and black subsequent stability
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Figure 5.9.: Convergence Analysis for the MFA and SDM using the conventional milling

tool.

predictions using a fixed number of harmonics of p = 10, p = 11, and p = 12. For

p = 12, the results suggest that while the method captures the island of instability,

lower spindle-speed regions of the unstable island appear to be skewed to the left.

Afterwards, at p = 11, the method detects the island as connected to a small unstable

region on the upper left corner of the diagram. Finally, the method fails to capture

the island of instability at p = 10 and presents it as an unstable lobe. Consequently,

while implementing the fixed harmonic p approach, it is recommended to perform a

convergence analysis at the lowest analysed spindle speed, to determine the maximum

number of harmonics to predict the stability lobe diagram. Otherwise, the method

could fail in capturing the stability boundaries, resulting in unwanted chatter vibrations

in practice. The reason for performing this analysis at the lowest spindle speed is that

it represents the largest fundamental excitation period of the periodic dynamic cutting

system. Therefore, the tool and workpiece are allowed to vibrate for a longer period

before completing the main cutting cycle. This condition is translated into a higher

frequency content in the vibrational spectrum. Consequently, this requires more p
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Figure 5.10.: Chatter stability prediction around an instability island at different p

values. The method implemented in these simulations assumes a fixed

number of harmonics p at every spindle speed. As a comparison, the

predictions obtained using the method proposed in Chapter 3 are overlaid

as continuous blue lines.

harmonics in the solution to capture the full process dynamics.

5.4. Experimental validation of a variable-helix island of

instability

A similar experimental procedure as in Chapter 4 is followed in this section to ex-

perimentally validate the instability island predicted using the CLD-treated workpiece

dynamic. Due to the increment on the length of the workpiece, a group of seven trials

can be performed on the workpiece instead of six. Furthermore, in contrast with the

experiment in Chapter 4, the milling trails on this occasion are executed at non-equally

spaced axial depths of cut to allow performing more tests in regions of particular in-

terest. Additionally, extra tests were done around specific areas to better estimate
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Figure 5.11.: Experimental results from the validation of the chatter stability prediction

of a island of instability obtained with a milling tool with 25◦, 15◦ and

10◦ of helix angles.

the boundaries near the island. The trials were executed using a feed per tooth of

0.05 mm/tooth, half immersion, and up-milling condition. The results are summarised

in the stability lobe of Figure 5.11. Here, green dots represent stable tests while red

squares are unstable ones. Marginally stable cases are shown as orange diamond mark-

ers. Overall, good agreement was found between the experiments and the estimated

stability boundaries. Most importantly, the experiments show an instability island

close to the predicted behaviour.

For example, a detailed analysis of the results obtained at 1540 rpm is described in

Figure 5.12. Here, the left column shows the acceleration time series in blue lines, with

once-per-revolution samples superimposed as red dots. The green square indicates the

steady-state region, manually chosen to build the Poincaré section shown on the right

side.

It is clear from Figure 5.12 (a) that the process at 6 mm is stable. This was also

reflected in the acceleration and sound FFT spectrums. At 13 mm, the Poincaré section
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Figure 5.12.: Time series (blue line) and once per revolution samples (red dots) of the

acceleration data at a spindle speed of 1540 rpm and axial depth of cut

of 6mm (a), 13mm (b), 16mm (c), 19mm (d), and 20mm (e). The steady

state region of the process is defined by the green rectangle.
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reveals a small transition to a quasi-periodic motion, associated with a secondary Hopf

bifurcation [228]. As the axial depth of cut is increased to 16 mm, the magnitude of this

quasi-periodic motion also increases. At 19 mm, even though the acceleration FFT and

Poincaré section suggested that the process was stable, the sound signal FFT revealed

the opposite. Figure 5.13 (a) and (b) show that the dominant frequency at 19 mm

does not coincide with multiples of the tool-rotation frequency (25.67 Hz). Therefore,

the trial was declared as marginally stable. Later at 20 mm, the process becomes fully

stable, showing that the dominant frequency corresponds to a tool-passing-frequency

harmonic.

Additionally, Figure 5.14 shows the surface profile for the milling trials at 10 mm (a), 13

mm (b), 16 mm (c), 19 mm (d), and 20 mm (d). The y axis from these plots represents

the surface profile in µm, while the x axis is the tested length. Because of several

accessibility issues performing the tests, the measurements were performed diagonally

to the feed direction. In general, these results agree with previous conclusions about

the stability condition of the trials.

While the preliminary outcomes manifested the presence of an island of instability,

it is noticeable that this island appears to be smaller than the predicted one. These

discrepancies may result from the frequency and temperature dependency of the CLD

viscoelastic material [229–231]. First, the loading frequency plays a key role because it

relates to the strain-rate dependency of the material. This is caused by the molecule

rearrangements inside the material while being deformed. Secondly, an increment or

decrement in temperature can subsequently result in a strengthening or weakening of

the molecular bonds, impeding or promoting their relative motion. Consequently, these

combined effects can change the material loss factor and shear modulus, altering the

overall damping effect [229, 232]. To explore the impact of this issue on the current

island, a stability simulation was performed by artificially increasing the damping of

the original system by 30%. The remaining simulation parameters were left unchanged.

Figure 5.15 shows the original and modified islands of instability, as well as the ex-
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Figure 5.13.: Frequency spectrum of the audio signal for the milling trial at 1540rpm

and 19mm (a) and 20mm (b) depth of cut.
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perimental results. The simulation outcomes suggest a better approximation to the

experimental results. As in Section 4.7, the preliminary outcomes appear to be shifted

to the left. Again, this may be caused by the mass removed from the workpiece, that

locally alters the chatter stability boundaries.

To further validate the modelling approach, a similar procedure was performed for the

island of instability found in the k = 3 lobe with the milling tool of 25◦, 15◦, and 15◦

(Figure 5.6 (a)). The experimental results are summarised in Figure 5.16. Even though

the results appeared to be slightly shifted up and to the right from the predictions,

the overall shape suggests an isolated island. The discrepancies could be attributed

to small variations in the boundary conditions (e.g. clamping forces) that may change

the workpiece natural frequency.

For this tool, a ramped-axial-depth-of-cut test was also performed using a ramped

workpiece with a similar mass as the original one. The experiment was configured such

as the axial depth of cut varied from 3 mm to 17 mm across the 170 mm length of the

cut. The results are shown in Figure 5.17. Here, the acceleration data (blue lines) and

the once-per-revolution samples (red dots) are plotted against the axial depth of cut

(lower x axis) and time (upper x axis). The test starts as a stable process after a small

transitory region. Later, at about 4.5 mm of axial depth of cut, a period-doubling

bifurcation hints that the process is moving towards a more unstable state inside the

island. Afterwards, a continuous secondary Hopf bifurcations from 4.5 to 14 mm of the

axial depth of cut shows that the process is unstable inside the island. After this, the

process becomes stable until the end of the trial. These results agree with the stability

predictions presented in Figure 5.16.
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Figure 5.14.: Workpiece surface profile data at a spindle speed of 1540 rpm and axial

depth of cut of 6mm (a), 13mm (b), 16mm (c), 19mm (d), and 20mm (e).
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Figure 5.17.: Acceleration and once-per-revolution values of the ramped workpiece test

with the tool of 25◦,15◦, and 15◦ of helix angles, at 1760rpm.

5.5. Summary

The current chapter presented the damping and convergence analysis and the exper-

imental validation of instability islands using a one-degree-of-freedom scaled experi-

ment. The analysis was performed using a milling tool of 16 mm of diameter and helix

angles of 25, 15, and 10 degrees. For the damping analysis, the dynamic parameters

of the original experimental setup were initially implemented to determine a stability

diagram. Afterwards, the structural damping was systematically increased in the sim-

ulations while keeping the remaining dynamic parameters constant. The simulation

outcomes revealed that at particular levels of damping, the lobes in the diagram split

into several isolated unstable regions. If the damping is then further increased, these

regions can be eliminated from the diagram. To validate this phenomenon, constrained

layer damping was used to increase the damping of the experimental setup. By doing

so, this parameter was increased 10 times, while keeping small changes in the other dy-

namic parameters. As a result, it was possible to recreate one of the stability diagrams
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constructed in the damping analysis, in which several unstable islands were found.

Subsequently, a convergence analysis around one unstable island was performed using

the SDM and MFA. In this study, at a particular spindle speed, the lower and upper

stability boundaries of the island were calculated using both methods. The results

revealed that the SDM struggled to converge to final solutions when compared to the

MFA. While both methods converged to the same solution for the lower boundary, the

SDM slowly approached but did not converge to a definite upper boundary value as

did the MFA. These results then suggest that the isolated unstable region shown by

the SDM in Chapter 4 was indeed connected to the main lobe, as the MFA predicted.

Before the validation process, stability predictions were also obtained for a milling

tool of 16 mm of diameter and helix angles of 25, 15, and 15 degrees. Again, several

instability islands were found in the spindle speed vs axial depth of the cut diagram.

Next, a set of experimental trials were carried out around particular instability islands

for both tools, aiming to capture these conditions. The final results suggested that the

islands were in the tested regions. A ramped workpiece test was further performed for

the island obtained with the 25, 15, and 15 degrees of the helix angle tool. At a partic-

ular spindle speed, this workpiece configuration allowed to increase gradually the axial

depth of cut across the entire island height. Time-series and once-per-revolution ac-

celeration plots showed the stable-to-unstable stability transitions while getting inside

the island, and from unstable to stable while leaving it.
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6. Conclusions and Future Works

6.1. Thesis Summary

The current thesis began with Chapter 1, presenting a brief introduction to different

aspects regarding milling. It first defined milling process and discussed the different

milling configurations. Afterwards, the vibrations that occur in milling were discussed,

giving special emphasis to the type studied in this work named regenerative chatter

vibrations. Later, Chapter 1 discuss the different approaches for chatter suppression,

showing that the focus of the project is the one using variable-helix milling cutters.

Afterwards, the instability islands that emerge using these tools are presented, and

they are compared with the islands found with conventional milling tools. The last

section showed the thesis aim and objectives, along with a thesis outline.

Chapter 2 presented the thesis literature review, beginning from some early chatter

studies. The chapter then showed how these early works served as a backbone for most

advanced chatter prediction methods such as the MFA, SDM and the FDM. Later, the

chapter presented several chatter detection techniques, discussing the different sensors

and signal processing methods implemented for this purpose. Afterwards, active and

passive chatter suppression approaches were discussed, a section in which the literature

reviewed was focused on the passive approach of using variable-helix milling tools.

Finally, the literature review about islands of instability in the milling process was

outlined, presenting the most relevant works about this topic.
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Next, the theoretical background of regenerative chatter was introduced in Chapter

3. This chapter started studying the regenerative effect on a single point cutting pro-

cess. By using this simple example, key features of regenerative chatter stability were

described. Subsequently, it presented the two analytical chatter stability prediction

approaches for variable-helix milling cutters, these being the SDM and the MFA. The

programs used throughout the project were then tested using a case study found in the

literature.

Afterwards, Chapter 4 aimed to validate the variable-helix stability lobe diagram at a

larger axial depth of cut using a scaled experiment. The experimental setup consisted

of an instrumented one-degree-of-freedom flexure device that held a workpiece made

of copolymer acetal. With this setup, it was possible not only to scale the system

dynamics but also the cutting force coefficients allowing to reach larger depths of

cut while assuming linear dynamics. Besides, Chapter 4 explored the effect of the

flutes helix angles on the cutting force coefficients, concluding that these effects were

translated into minimal variations in the stability lobe diagram. Chapter 4’s last section

validated the variable-helix stability diagram around a potential instability island.

Finally, Chapter 5 demonstrated the effect of structural damping on the occurrence of

variable-helix unstable islands. It was shown in simulations that increasing the level of

structural damping to certain levels, the lobes in the stability diagram may split into

isolated unstable regions. Then, the convergence of the SDM and MFA were tested

around a defined unstable island. It was found that the SDM struggled to converge to

island boundaries at a particular spindle speed, while the MFA could settle on solutions

at a faster convergence rate.
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6.2. Conclusions and Original Contributions

In this thesis, the dynamics of variable helix milling tools have been explored using

a novel stability analysis approach with rigorous experimental validation. It can be

concluded that:

1. Variable-helix tools can exhibit large islands of instability on the stability lobe

diagram.

2. The islands of instability have been shown to be highly dependent on the struc-

tural damping values within the system.

3. The stability analysis methods for variable-helix tools are particularly susceptible

to convergence issues.

4. Using a multi-frequency solution approach based upon a harmonic transfer func-

tion ensures a guaranteed convergence of the stability prediction, overcoming this

convergence issue. The approach relies upon the Fourier series and the first and

second shift theorems.

Some of the original contributions to knowledge found in this thesis are:

1. Enhancement of the MFA to consider non-equal cutting force coefficients on the

flutes, as well as vibrations in the feed and normal direction.

The MFA for variable helix and pitch milling tools proposed by Sims in [51] was

initially developed assuming vibrations only in the feed direction. Additionally,

it assumes equal cutting force coefficients on the tool flutes regardless of the he-

lix angle. However, it is known from the literature that the helix angle affects

these coefficients, so variable-helix milling tools possess non-equal cutting con-

stants on the flutes. Consequently, the modelling equations implemented in the

current thesis were enhanced in Chapter 3 to allow this condition. In Chapter
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4, the stability lobe diagram of a variable-helix milling tool with 25◦, 15◦ and

10◦ of helix angle was predicted using the modified and the original MFA. For

modified MFA, the coefficients of every tool flute were separately estimated us-

ing single-tooth milling cutters. Furthermore, for the original MFA, the cutting

force coefficients were determined using a conventional milling tool with 25◦ of

helix angle. A subsequent comparison between the chatter predictions from both

methods revealed minor discrepancies. However, these minor variations could be

related to the smaller helix angle differences between tool flutes. It was found

in the literature studies about the effect of the helix angle on the magnitude

of the coefficients, that exposed considerably larger coefficient variations with

more pronounce tool configurations [218–220]. Future works may seek to explore

this phenomenon with other more complex irregular milling cutter configurations

(e.g. harmonically varied and serrated tools), in which helix angle on the flutes

experience further non-constant variations (Figure 1.4).

2. The experimental validation for the first time of variable-helix instability islands

using an scaled experiment.

These unstable islands were validated using an instrumented scaled experiment

that comprises a one-degree-of-freedom flexure device, and the novelty of em-

ploying a workpiece made of lower-cutting-force coefficients. This novel approach

allows us to assume low-order linear structural dynamics through a broader spec-

trum of axial depths of cut in the stability charts. Additionally, it substantially

lessens the tool-wear mechanism throughout the experiments, facilitating the iso-

lation of tool geometry effect on the stability lobe diagram. Consequently, this

experimental setup provides a reliable, faster, and cost-effective way to validate

chatter-stability models of non-conventional milling tools. Previous studies us-

ing one-degree-of-freedom devices and variable-helix milling tools utilised metal

alloys as workpiece materials [25, 171, 217]. Therefore, the high-magnitude cut-

ting forces did not allow studying the processes at larger depths of cut without
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inducing in the system a highly nonlinear vibratory state. As a result, the re-

stabilisation property of variable-helix cutters at larger axial depths of cut had

not been experimentally explored across the literature. This characteristic plays

a key role in the emergence of instability islands in the stability lobe diagram.

The material implemented in the current thesis was a thermoplastic known

as copolymer acetal. It was found throughout the literature that the linear

mechanistic cutting force model has been extensively implemented to predict

the machining forces with this thermoplastic within specific cutting conditions

[25, 171, 217]. However, cutting trials performed outside these regions exhibited

complex non-linear force behaviours that require enhanced models to describe the

cutting mechanics. To test linearity in the current thesis, a set of experiments

using single-flute milling tools were defined using the mechanistic identification

method of cutting force coefficients. The cutting conditions selected for these

tests were based on experimental data found in the literature that provided an

overall perspective about cutting force behaviour of this thermoplastic. The pre-

liminary results from the tests validated the linearity assumption, showing a lin-

ear relationship between the average cutting forces and the feed per tooth within

the selected cutting conditions. Consequently, the cutting force coefficients were

calculated using the proportionality constants from these linear relationships [77].

Subsequently, the one-degree-of-freedom assumption of the experimental setup

was tested analysing the FRF of the flexure with the workpiece attached and the

machine tool. These FRF measurements were obtained from impact tests. The

tap testing revealed that only source of flexibility leading to regenerative chatter

was the workpiece compliance in the normal direction. Afterwards, the exper-

imental configuration was instrumented with an accelerometer and microphone

for chatter detection. Additionally, a Hall Effect sensor was employed to gather

once-per-revolution samples of the acceleration data. Therefore, it was possible

to analyse the bifurcations that emerge from unstable trials.
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Although a potential island of instability was found in Chapter 4 using a milling

tool with 25◦, 15◦, and 10◦ of helix angle, it was later found that the island

was connected to another lobe. Nevertheless, these experimental results further

validated the assumptions made regarding the dynamic behaviour of the system

and the machinability of the thermoplastic. Additionally, they validated the

property of the variable-helix milling tools to further re-stabilise at larger axial

depths of cut when compared with conventional ones. Subsequently, a damping

analysis in Chapter 5 helped to recreate the conditions leading to a variable-helix

instability island with the before mentioned tool. Further chatter predictions

performed using another variable-helix milling cutter with 25◦, 15◦, and 15◦ of

helix angle also reveal islands of instability. In these cases, experimental results

around these conditions agreed with the island predictions, representing the first-

ever experimentally captured islands of instability in the literature.

The scaled experimental setup with reduced dynamics considerably simplified

the complexity of the problem. This then isolated the effect of the tool geometry

and damping that lead to the variable-helix islands of instability. However, to

recreate these unstable conditions in industrial setups while machining metal

alloys raises several challenges. First, the higher cutting forces generated with

metal alloys can excite multiple modes of vibrations of the machine tool and

workpiece in different directions. Therefore, the combined dynamics of both the

machine tool and workpiece must be included in the stability analysis, leading to

further unstable coupling behaviours that could undermine the re-stabilisation

property of the variable-helix milling tools. Additionally, it was shown that this

condition mainly emerges at larger axial depths of cut, where the regenerative

effect is mostly altered by the continuous pitch variation. However, increasing the

depths of cut to such levels may induce a symmetry-breaking condition in which

the higher force vibrations change the tool-workpiece engagement, as shown by

Totis in [233]. This then results in further non-linearities in the cutting process
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that are not captured by linear dynamic milling models. To avoid this issue, it can

be implemented variable-helix milling tools with higher pitch gradient (equations

3.3.1 and 3.14). Therefore, a greater regenerative-effect alteration can be achieved

at lower axial depths of cut. As a result, it may be possible to generate islands

of instability at relatively lower axial depths of cut, where the before-mentioned

issues are not so prominent. However, the chip evacuation should be taken into

consideration when designing the geometrical configuration of the variable helix

milling cutter.

3. Proving the effect of the structural damping on the occurrence of variable-helix

milling islands of instability.

Similar as with conventional milling tools, increasing the structural damping of a

dynamic cutting system with variable-helix milling tools leads to an increment of

the absolute minimum axial depth of cut of the stability lobe diagram. However,

with a variable-helix milling process, this may also promote a splitting of the

lobes into several unstable isolated regions. Simulations performed in Chapter 5

using different levels of structural damping showed that some regions within the

unstable lobes converged faster to stable states than others when the damping

was increased. This behaviour was particularly noticeable at lower spindle speeds

when the lobes were narrower. This splitting condition may be related to the con-

tinuous helix-induced pitch variations between the teeth along the axial length of

the variable-helix tool. From previous studies about the optimisation of variable-

pitch milling tool, it is known that some pitch configurations may lead to a bet-

ter chatter performance than others [160,161]. Some researches have also shown

how undesired vibrations can be attenuated, or even completely suppressed, by

simply fine-tuning the pitch arrangement of a variable-pitch milling tool [234].

These studies implemented indexes to quantify the regenerative-effect levels of

a cutting process in particular locations of the stability lobe diagram [170, 235].

With variable helix milling tools, because of the pitch angles vary along the axial
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length of the cutter, there should be unstable regions in the stability lobe dia-

gram with higher and lower regenerative impact [236–238]. Therefore, unstable

areas with a lower regenerative effect may converge faster to stable conditions

when the damping is increased, leading to the before-mentioned splitting of the

lobe. Nevertheless, this phenomenon requires further investigations, so it will be

the subject of future works.

Using dampers to dissipate excessive vibratory energy is one of the most imple-

mented ways to suppress chatter in the industry. Extensive research has been

done about active and passive damping approaches [239], that has shown signif-

icant improvements in the chatter performance of milling processes. However,

special caution should be taken while implementing these methods with variable-

helix milling tools, or irregular milling cutters in general. For example, thin-

walled components have been machined with irregular milling tools [151, 152].

Because of the lower dynamic stiffness of the workpiece, active fixtures have been

employed to increase the damping and stiffness of the workpiece. However, while

this approach can provide substantial chatter improvement, it may cause islands

of instability that can pass undetected if they are not analysed with converged

chatter prediction methods.

4. Demonstrating that these islands are particularly sensitive to convergence issues

of the implemented chatter prediction method.

This finding is of significant importance because it shows that using a non-

converged chatter prediction method may lead to considerable inaccuracies in

stability lobe diagram of variable-helix milling tools. In Chapter 4, for exam-

ple, the SDM predicted an island of instability in the stability chart while the

MFA showed otherwise. Further experimental results later agreed with the MFA

predictions, suggesting that SDM may have convergence issues around this condi-

tion. Subsequently, a convergence analysis was performed around a variable-helix

154



instability island, that was found from a damping analysis in Chapter 5. The

simulation outcomes confirmed the initial assumptions about SDM convergence,

showing that the method struggles to settle into solutions when compared with

the MFA.

5. The redaction of the conference papers: Stability of variable helix milling: model

validation using scaled experiments and Convergence Analysis of the Multi-Frequency

Approach around an Instability Island, published in the 8th CIRP Conference on

High Performance Cutting and the 17th CIRP Conference on Modelling of Ma-

chining Operations.

6.3. Future Works

Based on the experience acquired through the thesis development, the following rec-

ommendations can be made for eventual future research:

• During the validation process, one of the main challenges experienced by the au-

thor was the variations of structural damping. These oscillations maybe because

of the CLD temperature sensitivity, manufacturing inaccuracies, and/or unequal

clamping between the workpieces. Even though these fluctuations were small,

they may affect in some sense the experimental results, due to the sensitivity of

the islands to the dynamic parameter. Experiments performed using the same

setup without the CLD provided an even closer agreement. Therefore, an im-

proved experimental setup can be developed to allow a more controlled linear

damping variation, e.g. eddy current damping, that may overcome this problem.

Further modifications can be done to explore also the stiffness variations effects

on variable-helix instability islands.

• While the current study focused on the instability islands that emerge while us-

ing variable-helix milling tools, future works may explore unstable or even stable
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islands with more complex tool setups. Irregular configurations such as the vari-

able helix and pitch tools, serrated milling cutters, and harmonically varied helix

milling tools may generate interesting phenomenons in the stability lobe diagram.

For example, computer simulations in the literature have shown that harmoni-

cally varied helix milling tool (Figure 1.4) can lead to islands of instability [189].

Regarding serrated milling tools, these characteristics can be studied using dif-

ferent serration patterns (e.g. circular, sinusoidal, or trapezoidal). In every case,

advanced multi-variable optimisation techniques such as the genetic algorithms

can be implemented for searching unstable islands in the stability charts. For

this purpose, the structural damping and key geometrical features of the tool can

be used as variables in the optimisation problem. The objective functions can

be based on regenerative indexes measuring the severity of regenerative effect in

particular regions of the stability lobe diagram.

• In Chapter 4, for the cutting system implemented, it was mentioned that the flute

helix effects on the cutting force coefficients and the stability lobe diagram were

negligible. Nevertheless, this assumption may not be true for milling systems us-

ing more complex cutter configurations such as harmonically varied and serrated

milling tools. In these cases, the coefficients may become functions dependent

on the axial and/or radial depths of cut to take into account the local variations

throughout the flutes. These models can be calibrated utilising experimental

data and advanced optimisation techniques (e.g. evolutionary algorithms).

• The experimental configuration used in this project assumed a one-degree-of-

freedom flexible workpiece, to avoid that further phenomena such as mode cou-

pling may obscure the experimental results. Future works may also explore the

variable-helix islands occurrence using a flexible two-degree-of-freedom system.

For example, it can be implemented a scaled two-degree-of-freedom setup similar

to the one proposed by Rubeo et al. in [240]. This experimental configura-

tion even allows changing the damping, mass, and stiffness of the workpiece to
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satisfy experimental requirements. Therefore, it may enable tuning the work-

piece structural dynamics for a specific variable-helix milling tool, to generate

islands of instability in the stability lobe diagram. Using a flexible configuration

like this while machining metal alloys may require reducing the radial depths of

cut of the milling processes. This to allow attaining larger axial depths of cut

where instability islands are more prone to emerge. Consequently, this may also

demand taking into account the tool runout while predicting these unstable is-

lands. For example, Otto et al. in [173] predicted the stability lobe diagram of

a variable-helix cutter with and without runout. While the differences between

the diagrams at full slotting were negligible, the author found several discrep-

ancies at 25% of radial immersion. Machining metal alloys may further require

implementing coolant instead of dry cuts, as in the current study. Therefore,

this reduces the cutting temperatures and forces, limiting the tool wear that may

negatively affect the preliminary results.

• Future works may also seek to determine variable-helix instability islands using

enhanced chatter prediction models. These improved models can include non-

linearity sources from either the cutting force process (e.g. power or polynomial

force models), or the structural dynamics (e.g. cubic stiffness). Comparing the

stability predictions and performing a bifurcation analysis using both the linear

and non-linear models can provide insight on the impact of these non-linearities

on variable-helix unstable islands.
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A. APPENDIX A
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Figure B.1.: Experimental results showing the relationship between the feed-per-tooth,

and the average forces for the one-flute tool with 10◦ of helix angle.
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Figure B.2.: Experimental results showing the relationship between the feed-per-tooth,

and the average forces for the one-flute tool with 15◦ of helix angle.
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Figure B.3.: Experimental results showing the relationship between the feed-per-tooth,

and the average forces for the one-flute tool with 25◦ of helix angle.
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Figure B.4.: Experimental results showing the relationship between the feed-per-tooth,

and the average forces for the one-flute tool with 10◦ of helix angle.
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Figure B.5.: Experimental results showing the relationship between the feed-per-tooth,

and the average forces for the one-flute tool with 15◦ of helix angle.
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Figure B.6.: Experimental results showing the relationship between the feed-per-tooth,

and the average forces for the one-flute tool with 25◦ of helix angle.
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Figure B.7.: Experimental results showing the relationship between the feed-per-tooth,

and the average forces for a conventional milling tool with 25◦ of helix

angle.
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Figure B.8.: Experimental results showing the relationship between the feed-per-tooth,

and the average forces for the one-flute tool with 10◦ of helix angle.
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Figure B.9.: Experimental results showing the relationship between the feed-per-tooth,

and the average forces for the one-flute tool with 15◦ of helix angle.
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Figure B.10.: Experimental results showing the relationship between the feed-per-

tooth, and the average forces for the one-flute tool with 25◦ of helix

angle.
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Figure B.11.: Experimental results showing the relationship between the feed-per-

tooth, and the average forces for a conventional milling tool with 25◦

of helix angle.
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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

Keywords: Assembly; Design method; Family identification

1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract

Regenerative chatter is widely known to be one of the main obstacles to improving the productivity of machining. In milling, one approach to
suppress regenerative chatter is the use of milling tools with non-uniform helix angles. There have been a number of studies that have developed
alternative analytical formulations of variable helix chatter stability. Whilst some of these have included detailed experimental validation, in
general, there is a limited validation of the different analysis methods. In particular, the potential for variable helix tools to stabilise at higher
axial depths of cut is of significant practical value but needs detailed experimental validation. The present study aims to provide variations to
commonly used configurations, by implementing copolymer acetal as a workpiece material mounted on an intentionally flexible platform. Using
this configuration, the force magnitudes can be reduced to lower levels, whilst also ensuring that low-order linear structural dynamics can be
assumed even at high axial depths of cut. This provides a pathway to validate the stability predictions for variable helix tools, even if further work
is then needed in order to understand non-linearity and other un-modelled effects. Based on the experimental data, the accuracy of the model
predictions, and the validity of the model assumptions are discussed. Finally, conclusions are drawn regarding the potential for well-designed
variable helix tools to offer significant performance improvements in practical applications.

c© 2018 The Authors. Published by Elsevier Ltd.
Peer-review under the responsibility of the International Scientific Committee of the 8th CIRP Conference on High Performance Cutting
(HPC 2018).

Keywords: Milling; Variable Helix Tools; Machining Dynamics; Copolymer Acetal; Chatter

1. Introduction

Regenerative chatter is widely known to be one of the
main obstacles to improving the productivity of machining. In
milling, it occurs when the waviness printed on the workpiece
surface by one tooth, is out of phase with the waviness left by
the previous tooth. Hence, the chip thickness, and therefore
the forces, may grow exponentially. This can result in a poor
surface finish, tool wear, as well as catastrophic damage to the
machine. In the long run approach to suppress regenerative
chatter is the use of milling tools with non-equal helix angles.

There have been a number of studies that have developed
alternative analytical formulations of variable helix chatter
stability [1–3]. Whilst some of these have included detailed
experimental validation [4,5], in general, there is a limited
validation of the different analysis methods. In particular, the
potential for variable helix tools to stabilize at higher axial
depths of cut is of significant practical value but needs detailed
experimental validation.

The present study seeks to address this issue, using a
workpiece material with low cutting stiffness in contrast to
previous studies. Consequently, low-order linear structural
dynamics can be assumed even at high axial depths of cut due
to the relatively low cutting forces. Copolymer acetal was used
as the workpiece material, mounted on an intentionally flexible
platform. This provides a pathway to validate the stability
predictions for variable helix tools, even if additional work is
then needed in order to comprehend non-linearity and other
un-modelled effects.

The first and second section of this paper presents the ex-
perimental configuration implemented in the experiment
and a case study. Subsequently, section three shows and
discusses the results obtained from some of the cutting trials.
Finally, conclusions are drawn regarding the potential for well-
designed variable helix tools to offer significant performance
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1. Introduction

Regenerative chatter is widely known to be one of the
main obstacles to improving the productivity of machining. In
milling, it occurs when the waviness printed on the workpiece
surface by one tooth, is out of phase with the waviness left by
the previous tooth. Hence, the chip thickness, and therefore
the forces, may grow exponentially. This can result in a poor
surface finish, tool wear, as well as catastrophic damage to the
machine. In the long run approach to suppress regenerative
chatter is the use of milling tools with non-equal helix angles.

There have been a number of studies that have developed
alternative analytical formulations of variable helix chatter
stability [1–3]. Whilst some of these have included detailed
experimental validation [4,5], in general, there is a limited
validation of the different analysis methods. In particular, the
potential for variable helix tools to stabilize at higher axial
depths of cut is of significant practical value but needs detailed
experimental validation.

The present study seeks to address this issue, using a
workpiece material with low cutting stiffness in contrast to
previous studies. Consequently, low-order linear structural
dynamics can be assumed even at high axial depths of cut due
to the relatively low cutting forces. Copolymer acetal was used
as the workpiece material, mounted on an intentionally flexible
platform. This provides a pathway to validate the stability
predictions for variable helix tools, even if additional work is
then needed in order to comprehend non-linearity and other
un-modelled effects.

The first and second section of this paper presents the ex-
perimental configuration implemented in the experiment
and a case study. Subsequently, section three shows and
discusses the results obtained from some of the cutting trials.
Finally, conclusions are drawn regarding the potential for well-
designed variable helix tools to offer significant performance
improvements in practical applications.
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1. Introduction

Regenerative chatter is widely known to be one of the
main obstacles to improving the productivity of machining. In
milling, it occurs when the waviness printed on the workpiece
surface by one tooth, is out of phase with the waviness left by
the previous tooth. Hence, the chip thickness, and therefore
the forces, may grow exponentially. This can result in a poor
surface finish, tool wear, as well as catastrophic damage to the
machine. In the long run approach to suppress regenerative
chatter is the use of milling tools with non-equal helix angles.

There have been a number of studies that have developed
alternative analytical formulations of variable helix chatter
stability [1–3]. Whilst some of these have included detailed
experimental validation [4,5], in general, there is a limited
validation of the different analysis methods. In particular, the
potential for variable helix tools to stabilize at higher axial
depths of cut is of significant practical value but needs detailed
experimental validation.

The present study seeks to address this issue, using a
workpiece material with low cutting stiffness in contrast to
previous studies. Consequently, low-order linear structural
dynamics can be assumed even at high axial depths of cut due
to the relatively low cutting forces. Copolymer acetal was used
as the workpiece material, mounted on an intentionally flexible
platform. This provides a pathway to validate the stability
predictions for variable helix tools, even if additional work is
then needed in order to comprehend non-linearity and other
un-modelled effects.

The first and second section of this paper presents the ex-
perimental configuration implemented in the experiment
and a case study. Subsequently, section three shows and
discusses the results obtained from some of the cutting trials.
Finally, conclusions are drawn regarding the potential for well-
designed variable helix tools to offer significant performance
improvements in practical applications.

2212-8271 c© 2018 The Authors. Published by Elsevier Ltd.
Peer-review under the responsibility of the International Scientific Committee of the 8th CIRP Conference on High Performance Cutting (HPC 2018).



450	 L. Ureña et al. / Procedia CIRP 77 (2018) 449–452
2 L. Ureña et al. / Procedia CIRP 00 (2018) 000–000

2. Variable Helix Milling Model and Stability

The state-space form of a single-degree-of-freedom milling
system can be expressed as [6],

ẋ(t) = Ax(t) + B(t, a)x(t) − B(t, a)x(t − T ) (1)

With the vector x and matrices A and B defined as:

ẋ(t) =
(
x(t)
ẋ(t)

)
,A =

(
0 1
−ωnx

2 −2ζxωnx

)
,B(t, a) =

(
0 0

− aKth(t,a)
mx

0

)

The term x refers to the displacement of the workpiece in the
normal direction (Figure 2). On the other hand, the terms ωnx,
ζx and mx refer to the modal natural frequency, damping ratio
and mass of the flexure system in the x direction. The y (feed)
direction is assumed to be rigid. Subsequently, h(t, a), a, Kt and
T represent the chip thickness, axial depth of cut, tangential
cutting stiffness, and the spindle-pass period. In addition, the
chip thickness can be expresses as,

h(t, a) =
∑N

j=1 g(φ j(t, a)) cos(φ j(t, a))
[
sin(φ j(t, a)) − Kra cos(φ j(t, a))

]
,

in which φ j(t, a) is the angular position of the teeth j, Kra the
ratio of radial cutting stiffness to the tangential one, N the
number of teeth, and g is a binary function that is 1 when the
tooth is engaged in the workpiece and 0 otherwise.

The stability lobe diagram of the milling process can be
obtained by using the Semi-Discretization Method (SDM) as
described in [7,8]. In this method, the spindle-pass period T is
divided into m discrete time intervals ∆t such as T = m∆t. This
then leads to a series of equations at discrete time interval as,

zi+1 = [Φ]zi.

According to the Floquet theory, the milling process is unstable
if any of the eigenvalues of the transition matrix [Φ] have a
modulus greater than one, marginally stable if the modulus is
equal to 1, and stable if all the modulus are less than 1.

3. Experimental Configuration

The experimental configuration implemented in the current
project is shown in Figure 1. It consists of an instrumented flex-
ure device mounted on a CNC machine (XYZ 1060 HS VMC).
Whilst many studies have used an intentionally flexible work-
piece (e.g. [9,10]), they have typically used Aluminium alloy or
other engineering alloys as the workpiece material. As a con-
sequence, whilst the structural dynamics can be approximated
with a low-order linear model, the resulting stability boundaries
can be very low due to the flexibility of the structure and rel-
atively high cutting force coefficients. To overcome this, the
present study uses copolymer acetal as the workpiece material.
Consequently, both the workpiece structural stiffness and its
cutting stiffness are intentionally controlled in order to achieve
thorough experimental validation.

4. Workpiece Material

Acetal is a semi-crystalline thermoplastic that provides a
high machinability and low sensitivity to environmental factors
such as temperature or humidity. In the plastic triangle [11,12],
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Fig. 1. Experimental Configuration

it falls within the category of engineering plastic with working
temperatures of up to 100 ◦C. More advanced engineering
plastics like PEEK and PPS possess higher working tempera-
tures of about 150 ◦C but lower machinability with a cost of 15
times the price of acetal [13,14].

In addition, acetal can also be divided into two categories
named as copolymer and homopolymer. Even though these
two materials behave similarly, the main disadvantage of the
homopolymer is the high centerline porosity compared with
copolymer side. To avoid any difficulty due to this issue, it was
decided to select copolymer acetal as the workpiece material.

5. Instrumentation

In order to detect chatter in the cutting trials, the flexure was
instrumented with a uniaxial accelerometer (KISTLER model
8776A50) attached with wax, and a microphone (PCB-377B20
with pre-amplifier PCB-426E01) as shown in Figure 2. In
addition, to study the types of bifurcation evident in the
unstable tests, once-per-revolution values were obtained from
the acceleration time series by using the data obtained from
a Hall-effect sensor. This sensor was configured such that it
provides a voltage pulse periodically with the rotation of the
spindle.

The sensors were connected to a data acquisition device
(NI DAQ USB-4431) with a sampling frequency of 6kHz. The
dynamic response of the flexure (with attached workpiece) was
tested using an impact hammer, giving a natural frequency
of 290 Hz, damping ratio of 0.67%, and modal stiffness of
3.55 kN/mm.

6. Case study

A custom end mill with 3 teeth, 16 mm diameter and
angles of 25, 15 and 10 degrees on the flutes was used. This
configuration was chosen in order to ensure unusual stabil-
ity prediction when machining the workpiece. The cutting
force coefficients were measured using standard techniques
[15], giving Kt = 142.2 kN/mm2, Kr = −18.9 kN/mm2 and
Ka = 58.9 kN/mm2. The SDM was configured to predict
stability in up-milling with 8 mm radial immersion, and a feed
direction normal to the flexural mode of vibration. Predictions
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were made with steps of 0.1 mm in the axial length of the tool,
increments of 5 rpm in the spindle velocity and an angular
discretization of the tool of 1 degree. The predicted chatter
stability is shown in the Figure 3.

With reference to Figure 3, as the spindle speed reduces,
the ‘lobe number’ (denoted k in Figure 3) increases. This
integer denotes the number of oscillations per tool rotation.
Above k=4 the lobes are predicted to become isolated islands
of instability, which is a form of stability that is rarely seen with
traditional uniform-helix tools. Consequently, a small region
around k=5 was selected for experimental validation. In this
region, a set of 135 cutting trails were configured, consisting
of 15 spindle velocities starting from 1070 rpm to 1490 rpm at
increments of 30 rpm. For every spindle velocity, 9 cuts were
performed from 2 mm to 18 mm at step increments of 2 mm.
This section of the stability lobe diagram is shown in Figure 4.

7. Results

The results obtained from the cutting trials are shown in
the stability lobe of the Figure 4. In this diagram, green dots
represent stable cuts and crosses represent unstable trials. It
can be seen that a reasonably good agreement between the
results and the simulations was found. As an example, Figure
5 shows the detailed behaviour at 1100 rpm for depths of cut
from 2 to 8 mm. The plots a), c), e), g), on the left side of
this figure show the acceleration data in blue lines with the
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once per revolution samples superimposed with red dots. In
addition, it shows the steady state region in a green rectangle
used to build the Poincare plot shown in the plots b), d), f), h).
It can be seen that the cut at 2 mm (Figure 5 a)) is unstable
as the simulation predicted, with the once-per-revolution
sampled acceleration indicating quasi-periodic motion that is
indicative of a Hopf bifurcation [16] and the acceleration and
microphone spectra indicating a chatter frequency of 289.7 Hz
as indicated in the Fourier transform of the Figure 7 a). At
4 mm and 6 mm (Figure 5 d) and f)), the cutting process is
still unstable with a chatter frequencies of 288 Hz and 286 Hz.
Subsequently, the system becomes stable at 8 mm (Figure 5 h)).
The system continues being stable until 16 mm which exhibits
a chatter frequency of 263.9 Hz as it is shown in the Figure 7 b).

As another example, for the spindle speed of 1400 rpm,
the cutting trail at 2 mm is a period double unstable cut with a
chatter frequency of 280 Hz, as it is shown in the Figure 6 b).
This represents the 6th harmonic of the double of the spindle
pass frequency 23.33 Hz. When the axial depth of cut is in-
creased to 4 mm (Figure 6 d)), again a quasi-periodic response
is found in the Poincare plot suggesting the appearance of a
Hopf bifurcation. Next, the subsequent milling cuts at 6 and
8 mm (Figures 6 f) and h)), become stable as indicated in the
Poincare plot. As is shown in the Figure 4, the cutting trials at
1400 rpm remain stable until 16 mm when the cutting process
becomes unstable with a chatter frequency of 265.7 Hz.

8. Conclusion

One of the strategies for disrupting regenerative chatter vi-
brations is the implementation of irregular tools in milling and
in particular the use of variable helix tools. In this project, the
implementation of copolymer acetal as workpiece material is
proposed for the validation of stability processes with variable
helix milling tools. This provides two important advantages
in the validation process; First, the relatively low cutting stiff-
ness allows one to assume low-order linear structural dynamics
even at a high axial depth of cut. Second, this implementation
increases drastically the usability of the tools, minimising the
risk that potential geometrical discrepancies of the tools or even
wear may affect the final results. This can considerably accel-
erate the validation stage of the geometrical design of variable
helix tools for practical purposes.
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2. Variable Helix Milling Model and Stability

The state-space form of a single-degree-of-freedom milling
system can be expressed as [6],

ẋ(t) = Ax(t) + B(t, a)x(t) − B(t, a)x(t − T ) (1)

With the vector x and matrices A and B defined as:

ẋ(t) =
(
x(t)
ẋ(t)

)
,A =

(
0 1
−ωnx

2 −2ζxωnx

)
,B(t, a) =

(
0 0

− aKth(t,a)
mx

0

)

The term x refers to the displacement of the workpiece in the
normal direction (Figure 2). On the other hand, the terms ωnx,
ζx and mx refer to the modal natural frequency, damping ratio
and mass of the flexure system in the x direction. The y (feed)
direction is assumed to be rigid. Subsequently, h(t, a), a, Kt and
T represent the chip thickness, axial depth of cut, tangential
cutting stiffness, and the spindle-pass period. In addition, the
chip thickness can be expresses as,

h(t, a) =
∑N

j=1 g(φ j(t, a)) cos(φ j(t, a))
[
sin(φ j(t, a)) − Kra cos(φ j(t, a))

]
,

in which φ j(t, a) is the angular position of the teeth j, Kra the
ratio of radial cutting stiffness to the tangential one, N the
number of teeth, and g is a binary function that is 1 when the
tooth is engaged in the workpiece and 0 otherwise.

The stability lobe diagram of the milling process can be
obtained by using the Semi-Discretization Method (SDM) as
described in [7,8]. In this method, the spindle-pass period T is
divided into m discrete time intervals ∆t such as T = m∆t. This
then leads to a series of equations at discrete time interval as,

zi+1 = [Φ]zi.

According to the Floquet theory, the milling process is unstable
if any of the eigenvalues of the transition matrix [Φ] have a
modulus greater than one, marginally stable if the modulus is
equal to 1, and stable if all the modulus are less than 1.

3. Experimental Configuration

The experimental configuration implemented in the current
project is shown in Figure 1. It consists of an instrumented flex-
ure device mounted on a CNC machine (XYZ 1060 HS VMC).
Whilst many studies have used an intentionally flexible work-
piece (e.g. [9,10]), they have typically used Aluminium alloy or
other engineering alloys as the workpiece material. As a con-
sequence, whilst the structural dynamics can be approximated
with a low-order linear model, the resulting stability boundaries
can be very low due to the flexibility of the structure and rel-
atively high cutting force coefficients. To overcome this, the
present study uses copolymer acetal as the workpiece material.
Consequently, both the workpiece structural stiffness and its
cutting stiffness are intentionally controlled in order to achieve
thorough experimental validation.

4. Workpiece Material

Acetal is a semi-crystalline thermoplastic that provides a
high machinability and low sensitivity to environmental factors
such as temperature or humidity. In the plastic triangle [11,12],
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it falls within the category of engineering plastic with working
temperatures of up to 100 ◦C. More advanced engineering
plastics like PEEK and PPS possess higher working tempera-
tures of about 150 ◦C but lower machinability with a cost of 15
times the price of acetal [13,14].

In addition, acetal can also be divided into two categories
named as copolymer and homopolymer. Even though these
two materials behave similarly, the main disadvantage of the
homopolymer is the high centerline porosity compared with
copolymer side. To avoid any difficulty due to this issue, it was
decided to select copolymer acetal as the workpiece material.

5. Instrumentation

In order to detect chatter in the cutting trials, the flexure was
instrumented with a uniaxial accelerometer (KISTLER model
8776A50) attached with wax, and a microphone (PCB-377B20
with pre-amplifier PCB-426E01) as shown in Figure 2. In
addition, to study the types of bifurcation evident in the
unstable tests, once-per-revolution values were obtained from
the acceleration time series by using the data obtained from
a Hall-effect sensor. This sensor was configured such that it
provides a voltage pulse periodically with the rotation of the
spindle.

The sensors were connected to a data acquisition device
(NI DAQ USB-4431) with a sampling frequency of 6kHz. The
dynamic response of the flexure (with attached workpiece) was
tested using an impact hammer, giving a natural frequency
of 290 Hz, damping ratio of 0.67%, and modal stiffness of
3.55 kN/mm.

6. Case study

A custom end mill with 3 teeth, 16 mm diameter and
angles of 25, 15 and 10 degrees on the flutes was used. This
configuration was chosen in order to ensure unusual stabil-
ity prediction when machining the workpiece. The cutting
force coefficients were measured using standard techniques
[15], giving Kt = 142.2 kN/mm2, Kr = −18.9 kN/mm2 and
Ka = 58.9 kN/mm2. The SDM was configured to predict
stability in up-milling with 8 mm radial immersion, and a feed
direction normal to the flexural mode of vibration. Predictions
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were made with steps of 0.1 mm in the axial length of the tool,
increments of 5 rpm in the spindle velocity and an angular
discretization of the tool of 1 degree. The predicted chatter
stability is shown in the Figure 3.

With reference to Figure 3, as the spindle speed reduces,
the ‘lobe number’ (denoted k in Figure 3) increases. This
integer denotes the number of oscillations per tool rotation.
Above k=4 the lobes are predicted to become isolated islands
of instability, which is a form of stability that is rarely seen with
traditional uniform-helix tools. Consequently, a small region
around k=5 was selected for experimental validation. In this
region, a set of 135 cutting trails were configured, consisting
of 15 spindle velocities starting from 1070 rpm to 1490 rpm at
increments of 30 rpm. For every spindle velocity, 9 cuts were
performed from 2 mm to 18 mm at step increments of 2 mm.
This section of the stability lobe diagram is shown in Figure 4.

7. Results

The results obtained from the cutting trials are shown in
the stability lobe of the Figure 4. In this diagram, green dots
represent stable cuts and crosses represent unstable trials. It
can be seen that a reasonably good agreement between the
results and the simulations was found. As an example, Figure
5 shows the detailed behaviour at 1100 rpm for depths of cut
from 2 to 8 mm. The plots a), c), e), g), on the left side of
this figure show the acceleration data in blue lines with the
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once per revolution samples superimposed with red dots. In
addition, it shows the steady state region in a green rectangle
used to build the Poincare plot shown in the plots b), d), f), h).
It can be seen that the cut at 2 mm (Figure 5 a)) is unstable
as the simulation predicted, with the once-per-revolution
sampled acceleration indicating quasi-periodic motion that is
indicative of a Hopf bifurcation [16] and the acceleration and
microphone spectra indicating a chatter frequency of 289.7 Hz
as indicated in the Fourier transform of the Figure 7 a). At
4 mm and 6 mm (Figure 5 d) and f)), the cutting process is
still unstable with a chatter frequencies of 288 Hz and 286 Hz.
Subsequently, the system becomes stable at 8 mm (Figure 5 h)).
The system continues being stable until 16 mm which exhibits
a chatter frequency of 263.9 Hz as it is shown in the Figure 7 b).

As another example, for the spindle speed of 1400 rpm,
the cutting trail at 2 mm is a period double unstable cut with a
chatter frequency of 280 Hz, as it is shown in the Figure 6 b).
This represents the 6th harmonic of the double of the spindle
pass frequency 23.33 Hz. When the axial depth of cut is in-
creased to 4 mm (Figure 6 d)), again a quasi-periodic response
is found in the Poincare plot suggesting the appearance of a
Hopf bifurcation. Next, the subsequent milling cuts at 6 and
8 mm (Figures 6 f) and h)), become stable as indicated in the
Poincare plot. As is shown in the Figure 4, the cutting trials at
1400 rpm remain stable until 16 mm when the cutting process
becomes unstable with a chatter frequency of 265.7 Hz.

8. Conclusion

One of the strategies for disrupting regenerative chatter vi-
brations is the implementation of irregular tools in milling and
in particular the use of variable helix tools. In this project, the
implementation of copolymer acetal as workpiece material is
proposed for the validation of stability processes with variable
helix milling tools. This provides two important advantages
in the validation process; First, the relatively low cutting stiff-
ness allows one to assume low-order linear structural dynamics
even at a high axial depth of cut. Second, this implementation
increases drastically the usability of the tools, minimising the
risk that potential geometrical discrepancies of the tools or even
wear may affect the final results. This can considerably accel-
erate the validation stage of the geometrical design of variable
helix tools for practical purposes.
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Fig. 5. Acceleration Data, One-Per-Rev values and Poincare Plot for: a) b)
2mm, c) d) 4mm, e) f) 6mm, g) h) 8mm (Spindle Speed: 1100rpm, Feed per
Tooth: 0.1 mm/tooth).

Fig. 6. Acceleration Data, One-Per-Rev values and Poincare Plot for: a) b)
2mm, c) d) 4mm, e) f) 6mm, g) h) 8mm (1400rpm, Feed per Tooth: 0.1
mm/tooth).
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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction

As it is well-known in the scientific community, chatter
highly restricts the productivity of machining. Variable helix
tools have been proposed as one mechanism to avoid chatter.
Here, variation of the helix angles between adjacent teeth, or
along the axis of one tooth, can modify the chatter stability,
albeit with more complex dynamics and stability of the system.
This is because it leads to periodic, piecewise, distributed-time-
delayed differential equations with no closed-form solution
that requires sophisticated techniques for stability predictions.

Currently, stability predictions of variable-helix-milling
processes are broadly performed in the literature using time
and frequency domain approaches. The time domain ap-
proaches use techniques based on dynamic simulations [1].
One of the most common approaches to stability analysis is
the Semi-Discretisation Method (SDM) which was developed
by Stepan and his co-workers [2] and extended to consider
variable helix tools in [3].

∗ Corresponding author. Tel.: +44-0114-222-7700.
E-mail address: ueluis1@sheffield.ac.uk (L. Ureña).

Some analysis methods make use of the Fourier trans-
form and series expansion to express the time variable terms
of the problem in the frequency domain. For example, the
zero-order approach uses the first term of the Fourier expansion
of the directional matrix to straightforward predictions of
the stability boundaries [4, 5, 6]. Later, enhancements of this
method included several harmonics of the directional matrix
and frequency response of the system to achieve a more general
solution known as the Multi-Frequency Approach (MFA) [7].

Further improvements to the MFA sought to improve the
computational load required to determine the stability bound-
aries and to analyse more complex-tool configurations [7, 8, 9].
In particular, the current project studied the MFA proposed
by Sims in [10] for variable-helix-milling tools. This method
implemented the Fourier transform, harmonic transfer function
approach, and the shift theorems to analyse the system stability.
This analysis led to an infinite-size matrix-harmonic-transfer
function, that is truncated to a frequency range, taking ad-
vantage of the periodicity of this function, and the nature of
the receptance. Subsequently, this methodology solved the
stability problem by using the general Nyquist-stability criteria,
guaranteeing convergence of the solution on the assumption
of a maximum frequency at which the frequency response is
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non-zero.

The present study seeks to extend the work described in
[10] by demonstrating the convergence of the method, particu-
larly in the case of an unstable island for a variable helix tool.
Furthermore, the stability prediction is compared to experi-
mental data and benchmarked against the semi-discretisation
method.

Consequently, at a specific spindle speed and discretisa-
tion of the axial depth of cut around an instability island,
simulations using both methods estimated the lower and
upper stability boundaries. Initially, these simulations used
coarse sampling iterations (SDM) or low maximum frequency
(MFA) for the estimations. Later, systematic refinements of
these parameters gradually caused the estimated boundaries
to stabilise at a final solution. Finally, by using the minimum
required parameters for convergence, a comparison between
the time required to construct the instability island showed the
performance of both methods under the defined conditions.

The organisation of the current contribution is as follows. The
next section presents the mechanistic force modelling of the
variable-helix milling process used by the semi-discretisation
and multi-frequency approach to predict stability. Next, section
3 shows the convergence study using both methods around an
instability island. Section 4 validates the results obtained from
the simulations, while the last section presents the conclusions
and further comments about the performed analysis.

2. Milling Dynamic Modelling and Stability

The milling process model implemented in this project
firstly assumed that the link formed by the tool-tool holder-
spindle was infinitely rigid. Secondly, it assumed that the work-
piece behaves as a flexible one-degree-of-freedom workpiece,
in which the feed direction (x) is infinitely rigid while the nor-
mal one (y) is flexible. Consequently, the primary source of
chatter during the milling simulations were the vibrations of
the workpiece due to the process forces. These forces can be
expressed as follows,

Fy =
Kt

2

N∑

j=1

∫ b

0
α j(t, a)∆y j(t, a)da, (1)

in which, Kt represents the tangential cutting stiffness, N is the
number of flutes of the milling tool, and b is the axial depth
of cut along the axial-axis direction a of the tool. Besides, the
directional factor α(t, a) and the vibration ∆y j(t, a) in the y
direction can also be expressed as,

α(t, a) = g(θ j(t, a))
[
sin(2θ j(t, a)) − Kn

(
1 + cos(2θ j(t, a))

)]
,

∆y j(t, a) = y(t) − y(t − τ j(a)),

where θ j(t, a) is the angular position of the tooth j, Kn is
the ratio of radial to normal cutting stiffness, τ j(a) the time
delay between the current and previous tooth, and g is a binary
function that is 1 when the tooth is engaged in the workpiece

and 0 otherwise. Note that in contrast to regular helix tools, the
time delay is a function of the axial depth a and the tooth j.

2.1. Semi-Discretization Method

In this section, the semi-discrete method is briefly sum-
marised, following the derivation described in [11] and the
modifications described in [3]. Considering the milling process
forces from equation 1 in the dynamic system, we obtain,

ẏ(t) = Ây(t) + B̂
N∑

j=1

∫ b

0
α j(t, a)y(t)da − B̂

N∑

j=1

∫ b

0
α j(t, a)y(t − τ j(a))da,

(2)
in which the vector y and matrices A and B represented,

ẏ(t) =
(
y(t)
ẏ(t)

)
, Â =

(
0 1
−ωny

2 −2ζyωny

)
, B̂ =


0 0

Ktω
2
ny

2ky
0

 , (3)

where ωny, ζy and ky represented modal natural frequency,
damping ratio and stiffness of the system, respectively. Addi-
tionally, dividing the axial depth of cut b into K elements of
height ∆a, the equation 2 can be stated as a summation as fol-
lows,

ẏ(t) = Ây(t) + B̂
N∑

j=1

K∑

k=1

α jk(t)y(t)∆a − B̂
N∑

j=1

K∑

k=1

α jk(t)y(t − τ jk)∆a.

(4)
Afterwards, the method required the discretisation of the spin-
dle pass period T into m elements of size ∆t, such as T = m∆t
and ∆t = ti − ti−1. Therefore, for the discrete time ti, the time
delays can be approximated as,

y(ti − τ jk) ≈ y
(
ti +
∆t
2
− τ jk

)

≈ wa
jky(ti − τ jk + ∆t) + wb

jky(ti − τ jk)

≈ wa
jkyi−m jk+1 + wb

jkyi−mjk (5)

where the delayed index mjk is an integer obtained by,

mjk = int
(
τ jk

∆t
+

1
2

)
,

and the weights can be calculated as,

wa
jk =
τ jk

∆t
−
(
mjk +

1
2

)

wb
jk = 1 − wa

jk.

Subsequently, substituting the approximated delay from the
equation 5 into the equation 4 and expressing the time inter-
val ∆t as ti+1 − ti, this then led to a set of equations at discrete
time interval as follows,

zi+1 = [Φ]zi,

in which [Φ] represents the transition matrix. Consequently, ac-
cording to the Floquet theory, a milling process was marginally
stable if the modulus of any of the eigenvalues of this matrix
is equal to 1, unstable if the modulus were higher than 1, and
stable if all the modulus were smaller than 1.
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2.2. Multi-Frequency Approach

To summarise the multi-frequency approach proposed by
Sims in [10], lets first express the location of the tool flute j
respecting to a fixed reference frame as,

φ j(a) = φ j0 + β ja,

in which φ j0 is the location of this flute at the tip of the tool,
which can account for non-equal tooth spacing such as that for
a variable pitch tool. Meanwhile, β j is the pitch gradient related
to the helix angle γ j and the tool radius r as,

β j =
tan γ j

r
,

where γ j is different for every flute j, and when multiplied by
the axial depth of cut provides the change in pitch regarding
the pitch on the tip of the flute. Once the milling tool started
to rotate at a spindle speed Ω, at the instant t, the expression to
obtain the angular position of the tooth j is as follows,

θ j(t, a) = Ωt + φ j(a).

Later, expanding the directional factor α into its Fourier series
we obtain,

α(θ(t, a)) =
∞∑

n=−∞
e jn(φk(a))A(n)e jnΩt, (6)

in which,

A(n) =
1

2π

θex∫

θst

α(θ)e− jnθdθ.

An important point highlighted by [10] is that, contrary to tradi-
tional multi-frequency stability analysis, a depth-of-cut depen-
dent term e jnφ j(a) named as the phase-changing term, explic-
itly appeared in the final Fourier expansion. Subsequently, sub-
stituting the equation 6 in the expression 1, and applying the
Fourier transform to this equation along with using the first and
second shift theorems, gives:

Fy(iω) =
∞∑

n=−∞
X(iω − inΩ)A(n)

N∑

j=1

b∫

a=0

einφ j(a)
[
1 − e−τ j(a)(iω−inΩ)

]
da.

(7)
Later, multiplying both sides of the equation 7 by the frequency
response function of the system G(iω), the obtained equation is
as follows,

Y(iω) = G(iω)
∞∑

n=−∞
Y(iω − inΩ)A(n)

N∑

j=1

b∫

a=0

einφ j(a)
[
1 − e−τ j(a)(iω−inΩ)

]
da.

(8)
A more general expression for the frequency response at any
harmonic p of the spindle pass frequency can be obtained by
rewriting ω as ω + pΩ. Additionally, by defining q as p − n,
enables one to rewrite the equation 8 in a matrix form with rows
p and columns q (p = −∞, · · · ,∞; q = −∞, · · · ,∞ ) as,

ŷp(iω) = ĝp,p(iω)
∞∑

q=−∞
ĥp,q(iω)ŷq(iω)

in which,

ŷp(iω) = Y(iω − ipΩ),
ĝp,p(iω) = G(iω − ipΩ),

ĥp,p(iω) = A(n)
N∑

j=1

b∫

a=0

ei(n)φ j(a)
[
1 − e−τ j(a)(iω−iqΩ)

]
da,

ŷp(iω) = ĝp,p(iω)
∞∑

q=−∞
ĥp,q(iω)ŷq(iω). (9)

For compactness purpose, the expression 9 can be finally
expressed as,

Ŷ(iω) = ĜH(iω)Ŷ(iω).

According to the Generalised Nyquist Stability Criterion [12],
the system is stable if det

(
I − ĜH(iω)

)
(where I is the iden-

tity matrix) is non-zero and does not encircle the origin in a
clockwise sense. However, because ĜH(iω) is a doubly-infinite
matrix, this seems to be an impossible task. Nevertheless, by
taking advantage of the periodicity of ĜH(iω), and the high-
frequency behaviour of G(iω), the solutions can be bounded to
a frequency region defined as,

− ωmax

Ω
− 1

2
< p <

ωmax

Ω
+

1
2
, (10)

in which ωmax represents the maximum frequency in which the
frequency response function of the system tends towards zero.

3. Comparison of methods

Sections 2.1 and 2.2 have briefly summarised the two sta-
bility methods under consideration. From this, it can be seen
that both methods begin with the same assumptions regarding
the physical system under consideration (for example, linear
cutting force coefficients). The SDM method then requires a
modal model of the frequency response function, whereas the
MFA method operates directly on the numerical frequency re-
sponse function. The SDM requires a decision on the number
of modes to be included in the model, as well as the number of
discretisation steps m in the solution. In contrast, the MFA re-
quires an assumption on the maximum frequency of interest in
the frequency response function. This differs from previously
reported multi-frequency solutions [13] which did not rely on
Equation 10 and hence assumed that the number of harmonics
must also be manually chosen.

4. Convergence Analysis

To explore the convergence and validity of the stability pre-
dictions, a scaled experiment was considered. The machining
scenario along with a schematic of the set up are presented in
the Table 1 and Figure 1.

Subsequently, numerical simulations resulted in the sta-
bility lobes diagram of Figure 2. The blue lines from this plot

L. Ureña et al. / Procedia CIRP 00 (2019) 000–000 2

non-zero.

The present study seeks to extend the work described in
[10] by demonstrating the convergence of the method, particu-
larly in the case of an unstable island for a variable helix tool.
Furthermore, the stability prediction is compared to experi-
mental data and benchmarked against the semi-discretisation
method.

Consequently, at a specific spindle speed and discretisa-
tion of the axial depth of cut around an instability island,
simulations using both methods estimated the lower and
upper stability boundaries. Initially, these simulations used
coarse sampling iterations (SDM) or low maximum frequency
(MFA) for the estimations. Later, systematic refinements of
these parameters gradually caused the estimated boundaries
to stabilise at a final solution. Finally, by using the minimum
required parameters for convergence, a comparison between
the time required to construct the instability island showed the
performance of both methods under the defined conditions.

The organisation of the current contribution is as follows. The
next section presents the mechanistic force modelling of the
variable-helix milling process used by the semi-discretisation
and multi-frequency approach to predict stability. Next, section
3 shows the convergence study using both methods around an
instability island. Section 4 validates the results obtained from
the simulations, while the last section presents the conclusions
and further comments about the performed analysis.

2. Milling Dynamic Modelling and Stability

The milling process model implemented in this project
firstly assumed that the link formed by the tool-tool holder-
spindle was infinitely rigid. Secondly, it assumed that the work-
piece behaves as a flexible one-degree-of-freedom workpiece,
in which the feed direction (x) is infinitely rigid while the nor-
mal one (y) is flexible. Consequently, the primary source of
chatter during the milling simulations were the vibrations of
the workpiece due to the process forces. These forces can be
expressed as follows,

Fy =
Kt

2

N∑

j=1

∫ b

0
α j(t, a)∆y j(t, a)da, (1)

in which, Kt represents the tangential cutting stiffness, N is the
number of flutes of the milling tool, and b is the axial depth
of cut along the axial-axis direction a of the tool. Besides, the
directional factor α(t, a) and the vibration ∆y j(t, a) in the y
direction can also be expressed as,

α(t, a) = g(θ j(t, a))
[
sin(2θ j(t, a)) − Kn

(
1 + cos(2θ j(t, a))

)]
,

∆y j(t, a) = y(t) − y(t − τ j(a)),

where θ j(t, a) is the angular position of the tooth j, Kn is
the ratio of radial to normal cutting stiffness, τ j(a) the time
delay between the current and previous tooth, and g is a binary
function that is 1 when the tooth is engaged in the workpiece

and 0 otherwise. Note that in contrast to regular helix tools, the
time delay is a function of the axial depth a and the tooth j.

2.1. Semi-Discretization Method

In this section, the semi-discrete method is briefly sum-
marised, following the derivation described in [11] and the
modifications described in [3]. Considering the milling process
forces from equation 1 in the dynamic system, we obtain,

ẏ(t) = Ây(t) + B̂
N∑

j=1

∫ b

0
α j(t, a)y(t)da − B̂

N∑

j=1

∫ b

0
α j(t, a)y(t − τ j(a))da,

(2)
in which the vector y and matrices A and B represented,

ẏ(t) =
(
y(t)
ẏ(t)

)
, Â =

(
0 1
−ωny

2 −2ζyωny

)
, B̂ =


0 0

Ktω
2
ny

2ky
0

 , (3)

where ωny, ζy and ky represented modal natural frequency,
damping ratio and stiffness of the system, respectively. Addi-
tionally, dividing the axial depth of cut b into K elements of
height ∆a, the equation 2 can be stated as a summation as fol-
lows,

ẏ(t) = Ây(t) + B̂
N∑

j=1

K∑

k=1

α jk(t)y(t)∆a − B̂
N∑

j=1

K∑

k=1

α jk(t)y(t − τ jk)∆a.

(4)
Afterwards, the method required the discretisation of the spin-
dle pass period T into m elements of size ∆t, such as T = m∆t
and ∆t = ti − ti−1. Therefore, for the discrete time ti, the time
delays can be approximated as,

y(ti − τ jk) ≈ y
(
ti +
∆t
2
− τ jk

)

≈ wa
jky(ti − τ jk + ∆t) + wb

jky(ti − τ jk)

≈ wa
jkyi−m jk+1 + wb

jkyi−mjk (5)

where the delayed index mjk is an integer obtained by,

mjk = int
(
τ jk

∆t
+

1
2

)
,

and the weights can be calculated as,

wa
jk =
τ jk

∆t
−
(
mjk +

1
2

)

wb
jk = 1 − wa

jk.

Subsequently, substituting the approximated delay from the
equation 5 into the equation 4 and expressing the time inter-
val ∆t as ti+1 − ti, this then led to a set of equations at discrete
time interval as follows,

zi+1 = [Φ]zi,

in which [Φ] represents the transition matrix. Consequently, ac-
cording to the Floquet theory, a milling process was marginally
stable if the modulus of any of the eigenvalues of this matrix
is equal to 1, unstable if the modulus were higher than 1, and
stable if all the modulus were smaller than 1.
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represented the stability lobe diagram for the variable helix
tool, while the black lines the one for a regular milling tool of
25 degrees of helix angle. Additionally, the value of k in this
plot denoted the number of waves per revolution imprinted
by the tooth on the workpiece surface. Consequently, milling
trials performed below these stability lines represented stable
cuts while trials above them unstable ones. For the k = 3 of the
variable helix stability lobe, the plots revealed the appearance
of closed contours or islands, in which milling trials inside this
island were unstable trials while outside stable ones.

Parameter Value
ωny 285.5 Hz
ky 3.67 kN/mm
ζy 1.54%

φ10, φ20, φ30 0◦, 120◦, 240◦

γ1, γ2, γ3 25◦, 15◦, 10◦

Radial Immersion 50%
Tool Diameter 16 mm

Material Copolymer Acetal
Kt 142.2 N/mm2

Kr 18.9 N/mm2

Cutting Condition Up-milling

Table 1: Machining Scenario

Accelerometer 

Microphone 

Hall Effect Sensor 

Reference for 
the H.E.S.

Magnetic 
Base

a)(a)

Computer

NI USB-4431

12V supplier 
and BNC adapter

Accelerometer
KISTLER 8778A500

Microphone
PCB 426E01

Hall 
Effect 
Sensor

Magnetic base 
support

Spindle 
Chassis

Tool 
Holder

Milling Tool

Workpiece

Flexure

y
Z

Reference

(b)

Fig. 1: (a) Experimental Configuration,(b) Schematic of the Instrumentation

It should be noted that these islands are different from the
regular tool islands presented by Insperger in [14] and Patel
et al. in [15]. For example, Patel et al showed that a constant
regular helix angle introduced a stable region between the so-
called flip and Hopf lobes, which could not be predicted with
classical stability models. However, the islands of instability
illustrated in the present study are a direct consequence of the
time delay varying along the axis of the flute: a phenomenon
which does not occur with a regular helix tool, even if the
constant helix angle is included in the analysis. This behaviour
was previously suggested by Sims et al [3] using time domain
and semi-discretisation methods, but without experimental
validation.

Therefore, the present study pursued to study the conver-
gence of the MFA inside this low-spindle-speed instability
island. Additionally, simulations at higher spindle speed aimed

Fig. 2: Stability Lobe Diagram: The blue lines represented the stability bound-
ary for the variable helix tool while the black one for the regular one. For k = 3,
the stability showed the appearance of an instability island.

to provide a better understanding of the convergence in this
region. Therefore, the present study focusses on two regions:
one of them being at 30000 rpm, and the second one at 1560
rpm located just inside the instability island. The stability lobes
diagram of Figure 2 showed these spindle speeds as vertical
red lines.

For the high spindle speed tests, simulations estimated
the stability boundary, utilising an axial discretisation of the
tool of 0.2 mm. For the frequency value fmax (equation 10),
it initially used a low-frequency value close to the natural
frequency of the system, then it later increased it until 780 Hz
at increments of 7.5 Hz. The obtained results are shown in
the plot of Figure 3. In this plot, the upper x-axis represents
the frequency fmax, while the y-axis the axial depth of cut. It
is clear that from this plot that at a high spindle speed, even
at values of fmax close to the natural frequency, the stability
boundary converged to the solution that in this case is of 4.4
mm.

Additionally, the same figure shows the results obtained
for the SDM approach as a function of multiples of the
natural frequency η (lower x-axis). This plot also presented the
normalised relationship between η and the number of iterations
m per revolutions. From this plot, the stability boundary started
at a value of 6.8 mm for a η value of 4. Later, the boundary
drastically decreased in magnitude while increasing η until η
was equal to 18 when the boundary settled in 4.4 mm as in
the MFA. Values of η larger than 18 shown not change in the
estimated stability boundary.

It is clear that from this plot that at a high spindle speed,
even at values of fmax close to the natural frequency, the
stability boundary converged to the solution that in this case
is of 4.4 mm. On the other hand, for the SDM, the stability
boundary started at a value of 6.8 mm for an η value of 4.
Later, the boundary drastically decreased in magnitude while
increasing η until η was equal to 18 when the boundary settled
in 4.4 mm as in the MFA. Values of η larger than 18 shown not
change in the estimated stability boundary.
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Fig. 3: Convergence Analysis for the MFA and SDM at 30000 rpm.

Later, for the low spindle speed test, simulations estimated the
lower and upper stability boundaries of the instability island
following a similar procedure for MFA and SDM as in the
previous test. The results obtained are shown in Figure 4 a)
and b). From the plot in Figure 4 a), it is clear how the upper
and lower stability boundaries estimated by MFA initially
started at values of 24.1 mm and 11.6 mm for fmax = 285 Hz.
Later, while increasing the fmax value, the upper and lower
stability boundaries decreased or increased until they settled at
values of 22 and 12 mm. The first boundary to converge was
the lower boundary at a frequency fmax of 346 Hz, while the
upper boundary settled at fmax = 368 Hz. This frequency value
represented a p harmonic value of approximately 14.

On the other hand, the results for the SDM (Figure 4 b))
showed that the method struggles to converge to the final
solutions. For example, the lower stability boundary converged
to the same solutions as the MFA at η = 30. Nevertheless,
at this value, the upper stability boundary was 2 mm away
from the solution estimated by the MFA. At higher sampling
frequencies than that, the upper boundary slowly moved toward
the value predicted by MFA, but it never achieved this value at
the maximum simulated value of η = 70.

As a performance comparison example between MFA
and SDM, simulations were performed at 1560 rpm using the
minimum convergence parameters for the MFA, and a η = 30
for the SDM. This was implemented on a computer with 16
GB of RAM, and an Intel(R) Core(TM) i7-6700k running at
4 GHz. From these simulations, the MFA could predict the
boundaries in 0.55 minutes, while the SDM approximately
32.1 minutes, meaning that the MFA was 58 times faster than
the SDM. On the other hand, at the higher spindle speed of
30000 rpm, the MFA proved to be 32 times faster than the
SDM.

5. Experimental validation

The validation procedure implemented in the project con-
sisted of four up-milling trials at 1560 rpm aimed to capture
the stability boundaries of the island at this spindle speed.
Consequently, knowing from the previous section that the
stability boundaries at this spindle speed were at approximately

12 and 22 mm, trials at 10, 13, 19, and 23 mm of the axial
depth of cut were defined to find the stability transitions from
stable to unstable and vice-versa.

The Figure 5 showed instability island obtained by using
the MFA diagram with a fmax of 368 Hz and axial discretisation
of 0.2 mm. The red squares represented the unstable trials
while the greed dots the stable ones. Also, Figure 6 a), c), e),
and d) showed the acceleration data in blue colour lines as well
as the once-per-revolution values as red dots. The green squares
in these plots defined the steady state regions of the trials.
Using the once-per-revolution values around these regions, the
recursive or Poincaré plot of the trials were built and shown in
Figure 6 b), d), f), and h).

It is evident from these plots that the trials at 10 and 23
mm were stable because the once-per-revolution values pro-
vided the same solution with every revolution, meaning a
periodic process. On the other hand, the trials at 13 and 19 mm
were subsequently characterised as unstable period doubling
and secondary Hopf bifurcations due to the nature of their
Poincaré plots. Consequently, these results suggested that the
stability boundaries of the island were located between 10 and
13 mm, and 19 and 23 mm, just as the simulations predicted.

6. Conclusions

The current project studied the convergence of the MFA
proposed by Sims in [10], around an instability island obtained
by using a variable helix milling tool of 16 mm of diameter and
helix angles of 25, 15 and 10 degrees. Besides, the dynamic
parameters and cutting stiffness from a scaled experiment
were used to perform the simulations. Further simulations
were executed at a higher spindle speed to have a better
understanding of the convergence behaviour of the method and
all the results obtained were compared with the SDM.

The results at the high spindle speed showed that the
MFA is approximately 32 times faster than the SDM. The
MFA proved to converge using values of fmax close to the
natural frequency. On the other hand, the SDM converged
to the final solution at sampling frequencies of 18 times the
natural frequency of the system. Afterwards, this performance
improvement was also evident while predicting the stabilities
boundaries around the low-spindle-speed instability island.
The MFA could converge to the stability boundaries using a
value of fmax of 368 Hz (p = 14 in the equation 10). On the
other hand, the SDM struggled to converge to the solutions and
even the upper boundaries could not settle in a final solution
through the performed simulations. Furthermore, the MFA
approach was found to be between 30 and 60 times faster than
the SDM and did not require a prior computation of the modal
parameters of the system.

The simulations were validated using a scaled experiment
in which the results suggested the appearance of the bound-
aries, and therefore the island in the stability lobe diagram.
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represented the stability lobe diagram for the variable helix
tool, while the black lines the one for a regular milling tool of
25 degrees of helix angle. Additionally, the value of k in this
plot denoted the number of waves per revolution imprinted
by the tooth on the workpiece surface. Consequently, milling
trials performed below these stability lines represented stable
cuts while trials above them unstable ones. For the k = 3 of the
variable helix stability lobe, the plots revealed the appearance
of closed contours or islands, in which milling trials inside this
island were unstable trials while outside stable ones.

Parameter Value
ωny 285.5 Hz
ky 3.67 kN/mm
ζy 1.54%

φ10, φ20, φ30 0◦, 120◦, 240◦

γ1, γ2, γ3 25◦, 15◦, 10◦

Radial Immersion 50%
Tool Diameter 16 mm

Material Copolymer Acetal
Kt 142.2 N/mm2

Kr 18.9 N/mm2

Cutting Condition Up-milling

Table 1: Machining Scenario
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Fig. 1: (a) Experimental Configuration,(b) Schematic of the Instrumentation

It should be noted that these islands are different from the
regular tool islands presented by Insperger in [14] and Patel
et al. in [15]. For example, Patel et al showed that a constant
regular helix angle introduced a stable region between the so-
called flip and Hopf lobes, which could not be predicted with
classical stability models. However, the islands of instability
illustrated in the present study are a direct consequence of the
time delay varying along the axis of the flute: a phenomenon
which does not occur with a regular helix tool, even if the
constant helix angle is included in the analysis. This behaviour
was previously suggested by Sims et al [3] using time domain
and semi-discretisation methods, but without experimental
validation.

Therefore, the present study pursued to study the conver-
gence of the MFA inside this low-spindle-speed instability
island. Additionally, simulations at higher spindle speed aimed

Fig. 2: Stability Lobe Diagram: The blue lines represented the stability bound-
ary for the variable helix tool while the black one for the regular one. For k = 3,
the stability showed the appearance of an instability island.

to provide a better understanding of the convergence in this
region. Therefore, the present study focusses on two regions:
one of them being at 30000 rpm, and the second one at 1560
rpm located just inside the instability island. The stability lobes
diagram of Figure 2 showed these spindle speeds as vertical
red lines.

For the high spindle speed tests, simulations estimated
the stability boundary, utilising an axial discretisation of the
tool of 0.2 mm. For the frequency value fmax (equation 10),
it initially used a low-frequency value close to the natural
frequency of the system, then it later increased it until 780 Hz
at increments of 7.5 Hz. The obtained results are shown in
the plot of Figure 3. In this plot, the upper x-axis represents
the frequency fmax, while the y-axis the axial depth of cut. It
is clear that from this plot that at a high spindle speed, even
at values of fmax close to the natural frequency, the stability
boundary converged to the solution that in this case is of 4.4
mm.

Additionally, the same figure shows the results obtained
for the SDM approach as a function of multiples of the
natural frequency η (lower x-axis). This plot also presented the
normalised relationship between η and the number of iterations
m per revolutions. From this plot, the stability boundary started
at a value of 6.8 mm for a η value of 4. Later, the boundary
drastically decreased in magnitude while increasing η until η
was equal to 18 when the boundary settled in 4.4 mm as in
the MFA. Values of η larger than 18 shown not change in the
estimated stability boundary.

It is clear that from this plot that at a high spindle speed,
even at values of fmax close to the natural frequency, the
stability boundary converged to the solution that in this case
is of 4.4 mm. On the other hand, for the SDM, the stability
boundary started at a value of 6.8 mm for an η value of 4.
Later, the boundary drastically decreased in magnitude while
increasing η until η was equal to 18 when the boundary settled
in 4.4 mm as in the MFA. Values of η larger than 18 shown not
change in the estimated stability boundary.
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(a) (b)

Fig. 4: Convergence Analysis for the MFA (a) and SDM (b).

1
1

1

1

1 1

1

1

1

1

1

111

1

1

1

1

1

1

1 1 1

1440 1470 1500 1530 1560 1590 1620 1650
Spindle Speed (rpm)

0
2
4
6
8

10
12
14
16
18
20
22
24

Ax
ia

l D
ep

th
of

 C
ut

 (m
m

)

Helix Angles: 25, 15, 10 deg.
Unstable Trials
Stable Trials

Unstable Region

Stable Region

Fig. 5: Instability Island.

References

[1] Z. Li, Q. Liu, Solution and analysis of chatter stability for end milling in
the time-domain, Chinese Journal of Aeronautics 21 (2) (2008) 169–178.

[2] T. Insperger, G. Stépán, Semi-Discretization for Time-Delay Systems, Vol.
178, 2011.

[3] N. D. Sims, B. Mann, S. Huyanan, Analytical prediction of chatter stability
for variable pitch and variable helix milling tools, Journal of Sound and
Vibration 317 (3-5) (2008) 664–686.

[4] Y. Altintas, E. Budak, Analytical Prediction of Stability Lobes in Milling,
CIRP Annals - Manufacturing Technology 44 (1) (1995) 357–362.

[5] Y. Altintas, Manufacturing Automation, 2011.
[6] G. Jin, Q. Zhang, H. Qi, B. Yan, A frequency-domain solution for effi-

cient stability prediction of variable helix cutters milling, Proceedings of
the IMechE, Part C: Journal of Mechanical Engineering Science 228 (15)
(2014) 2702–2710.

[7] A. Otto, G. Radons, Frequency domain stability analysis of milling pro-
cesses with variable helix tools, Nineth International Conference on High
Speed Machining 1 (0) (2012) 1–6.

[8] D. Bachrathy, G. Stepan, G. Stépán, G. Stepan, Improved prediction of sta-
bility lobes with extended multi frequency solution, CIRP Annals - Manu-
facturing Technology 62 (1) (2013) 411–414.

[9] G. Stepan, J. Munoa, T. Insperger, M. Surico, D. Bachrathy, Z. Dombovari,
Cylindrical milling tools: Comparative real case study for process stability,
CIRP Annals - Manufacturing Technology 63 (1) (2014) 385–388.

[10] N. D. Sims, Multi-frequency Chatter Analysis Using the Shift Theorem,
IUTAM Symposium on Nonlinear and Delayed Dynamics of Mechatronic
Systems 22 (2017) 3–9.

[11] T. Insperger, G. Stépán, Semi-discretization method for delayed systems,
International Journal for Numerical Methods in Engineering 55 (5) (2002)
503–518.

[12] M. C. Smith, On the generalized nyquist stability criterion, International
Journal of Control 34 (5) (1981) 885–920.

[13] S. D. Merdol, Y. Altintas, Multi Frequency Solution of Chatter Stability for

Fig. 6: Acceleration data and once-per-revolution values (y direction) of the
milling trials at 1560 rpm, and depth of cuts of a) b) 10 mm, c) d) 13 mm, e) f)
19 mm and e) f) 23 mm.

Low Immersion Milling, Journal of Manufacturing Science and Engineer-
ing 126 (3) (2004) 459.
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