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Abstract

Surface texture is one of the key parameters in the affective design of prod-

ucts. It can give tactile sensations which influence customers’ appreciation and

preference to the product. Among other tactile sensations, perceptual roughness

is the most important. However, designing a surface texture which satisfies the

aimed tactile-sensation is still challenging. To characterize roughness perception,

roughness parameters have been used and they were found to not reflect the

perceived roughness.

In this research, instead of using roughness parameters, the surface contours

were represented by using image textures. This method was motivated by two

evidences; first, there is a strong indication that visual and tactile perception is

related in some degree; second, the researches in image recognition are more ma-

ture and the knowledge in that field can be useful to model the tactile perception.

There are at least four types of image features; statistical, structural, model-

based methods, and spectral-based features. In this study, the FT spectra-based

features were selected because they are more related to the frequency of textures.

Furthermore, as there are two parts of FT spectra, this research was aimed to

determine the importance of the magnitude and phase spectra of images in the

discrimination of visual and tactile textures.

In order to do so, some sets of tactile stimuli were designed by transforming

pixels’ value of image into the height of stimuli’s asperities. The designs which

are in 3D CAD files were then printed using a 3D printer. Four set of experiments

were made; the first set was to investigate the similarity between visual and tactile

perception in discriminating irregular textures; the second set was to investigate

the influence of magnitude and phase spectra on the hybrid image appearance;

the third set was to measure the magnitude dominance of images using power-

spectra based features; the fourth set was to investigate the presence of natural

textures which are magnitude dominant.

The results show that the magnitudes are more important than the phases

and the magnitude-based features can be used to measure the magnitude and

phase dominance of textures. Beside that, the results also show that both visual

and tactile perception have a similar pattern which indicates that it is possible

to model the tactile perception using image textures.
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Chapter 1

Introduction

This chapter first briefly introduces some basic and necessary knowledges asso-

ciated with tactile sensations. After that, the background, aims and objectives,

and the methodologies of this project are elaborated. A summary of this chapter

will be given at the end section.

1.1 Overview

Functionality is a must feature of products to be considered. However, to win

the market competition, a designer must go beyond functional features because

customers tend to buy products based on their emotional feelings rather than

logical or rational thinking [1, 2]. Consumer are more likely to buy an attractive

product, even it is more expensive [3].

Nowadays, the emotional aspects of products have been put in the design

process. The emotional design is commonly termed as hedonomic/affective design

to mean a design which generates pleasurable human-product interaction [1].

Barnes and Lillford [4] defined affective design as a systematic way to analyse the

relationship between user responses and the physical parameters of the candidate

designs. To get the affective responses the designer prepares some alternative

physical features of a product and provide related adjectives. Users are asked

to make judgements and assign ratings of some adjectives subjectively for each

variation of physical parameters. The best physical criteria of the product is the

highest total ratings gathered.

Most studies of affective design deal with shape [4–6], colour [7, 8], and mate-

rial of products [9, 10]. The surface texture, which was ignored as a parameter of

product quality for many years, attributes apparent sensation and preference on

the product [11–13]. For example, two products with the similar material, shape,

1
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and colour but different tactile texture will be valued differently as seen in the

effect of uses of different lacquer on the plastic product. The tactile texture is a

physical property which is perceived by touching or sliding the fingerpad over the

material surface. Touch tells additional information about the product that can

not be provided by visual observation [14]. Therefore, this tactile texture also

has an important role in object recognition and identification [15, 16].

1.1.1 Tactual perception dimension

Touching and sliding the fingerpad over an object’s surface will create tactile

sensations such as softness, warmth, roughness and slipperiness [17]. These sen-

sations are used to determine the characteristics of the corresponding object. The

number and the type of sensations will likely to vary among different people and

or objects. It is believed that the number of tactile sensations is limited [18],

and can be categorized into two to five orthogonal and major groups or dimen-

sions [19]. The categorization of those dimensions were based on the multidi-

mensional scaling methods [18, 20–22]. By investigating previous related studies,

Okamoto et al. [19] argued that there are at least three fundamental dimensions

of tactile sensations which always appear: fine roughness (smooth-rough), hard-

ness (soft-hard), and warmness (cold-warm). Furthermore, they proposed to add

two more dimensions: friction (dry-moist, slippery-sticky) and macro roughness

(relief-uneven).

All the dimensions, except warmth sensation, are related in some degree to the

vibration generated on the skin at the interface between fingerpad and the object’s

surface during touching or sliding [23]. They are mediated by mechanoreceptive

afferents which are embedded beneath the glabrous (non-hairy) skin such as skin

of the fingerpad. Those afferents will only work in the presence of the static and

or dynamic deformation of the fingerpad. Therefore, the roughness dimension is

the most important among the other ones [24].

1.1.2 Roughness texture of surface

Researchers in psychophysics field have been investigating the relationship be-

tween the human tactile feel and surface roughness parameters that evoke it.

There are three main objectives of the studies: to determine the basic understand-

ing about spatial acuity of the touching skin [25, 26], roles of the mechanoreceptive

afferents in perceiving roughness [27–31], and the relationship between the par-

ticle size and the perceived roughness [24, 32, 33]. To achieve those objectives,
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most of the studies were using stimuli with relatively anisotropic textures with

homogeneous particles such as sandpapers [30, 33, 34], dots embossed on paper

and plastic surfaces [35–38], and metal gratings [38–41].

Few researches studied the roughness perception by using stimuli with non-

homogeneous texture. Eck et al. [42] used the homogeneous particles which

are arranged in unfamiliar pattern (see Figure 1.1) and they reported that the

roughness magnitude perception is related to average inter-dot spacing by bi-

exponential function. In the haptic mode, the value of perceived roughness is

increasing as the inter-dot spacing moves from 1.5mm to 3.5mm and the per-

ceived roughness is decreasing when the inter-dot spacing is getting larger than

3.5mm. The pattern of this result is relatively similar with previous experiments

which were using stimuli with regular spacing [35, 36]. They did not make any

comparison of perceived roughness between regular and non-regular arrangement

of surface textures for each respective inter-dot spacing.

Figure 1.1: Homogeneous particles with unfamiliar texture [42].

1.1.3 Image textures used to represent roughness

Some researches used grayscale images as the pattern of their tactile stimuli.

Each pixel’s value in the image represent the elevation of the local contour of

the stimuli’s surface. By using this method an image texture can be transformed

into a roughness texture. Culbert and Stellwagen [43] are among the first re-

searchers to used image textures to study the tactile perception. They used forty

images recommended by cartographers to create tactual patterns using a special

embossage technique. Elkharraz et al. [44] designed a set of forty eight stimuli by

transforming image pixels into boxels for each stimulus. They 3D printed those

stimuli and then asked subjects to touch and to assign of a value of the affective

response for each stimulus. Tymms et al. [45] used forty six different image tex-

tures as the surfaces’ stimuli which consist of synthesized textures and natural
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ones to investigate the relationship between surface roughness and the perceived

roughness.

By using images as the blueprint of surfaces’ stimuli, image features can be

used to model the surface’s topography instead of using conventional roughness

parameters. There are various approaches and methods for extracting features

from the image textures either directly from the spatial or from the spatial-

frequency domain [46]. Bharati et al. [47] and Alaei et al. [48] proposed four

categories of methods: (1) statistical methods, (2) structural methods, (3) model-

based methods, and (4) transform-based methods.

Statistical techniques are primarily based on grayscale histograms to describe

texture of patch area in images. Haralick [49] mentioned eight approaches within

this statistical methods: autocorrelation function, optical transforms, digital

transforms, textural edgeness, structural elements, spatial gray tone cooccur-

rence probabilities, gray tone run length, and autoregressive models. The first

three approaches are related with spatial frequency. Fine textures are rich in high

spatial frequencies while coarse textures are rich in low frequencies.

Structural-based techniques describe texture as the composition and orienta-

tion of texton (texture element) such as regularly spaced dots or parallel lines [49].

Three commonly used methods within this categories are auto-correlation func-

tion (ACF), edge detection, and morphological operation [48]. These methods are

rarely used since they can only describe very regular textures [47]. Furthermore,

finding a description and representation of primitives is difficult [50].

Model-based techniques generate an empirical or approximation of each pixel

in the image based on a weighted average of pixel values in its neighbourhood [48].

Examples of the model-based methods are auto-regressive model, Markov random

fields, and fractal models [47]. These methods have computational complexity,

miss orientation selectivity, and are not suitable for describing local structures of

images [48].

Transform-based techniques convert the image into new forms using the spa-

tial frequency through some function transformation methods such as FFT and

wavelet transform [47]. These techniques are usually called spectral-based meth-

ods. They are used to measure the overall frequency of the textures [51].

Among the above categories, only the statistical-based methods have been

used in early investigation to find their correlation with affective touch responses.

This method is sensitive to noise and not many of those textures are correlated

to affective touch responses. Elkharraz et al. [44] investigated the correlation

between 196 statistical types of image features with not only roughness but also
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other tactual sensations which consist of 20 adjectives in total. They reported

that among those features, there were only four that are strongly correlated with

the affective responses [52, page 1]. Tymms et al. [45] used three image features

suggested by Elkharraz et al. [44] to model the roughness perception. The re-

sults show that all of them have a correlation less than 0.5 with the perceptual

roughness.

Compared to the statistical features, transform-based features are less sensi-

tive to noise. This type of features are also more related to frequency or spacing of

the roughness particles than the statistical types which make them more promis-

ing to model the tactile touch perception. However, so far there is not any research

that use transform-based features to model the touch affective perception.

Among the transform-based methods, Fourier transform is the best method

to describe the information of overall frequency of an image [53]. Therefore, in

this study, the Fourier transform-based features were selected to investigate the

roughness perception. As a Fourier transform has two spectra (the magnitude

and phase spectrum), the textural features can be extracted from both of them.

However, as there are different suggestions about which one of them is more

important, investigating this problem becomes useful so that the features can be

extracted from the most reliable spectrum.

The novelty of this study is to investigate the features of Fourier spectra which

influence the phase and magnitude dominance of textures, to build a measure to

determine these dominances, and to evaluate the built measure in visual and

tactile perception.

1.2 Problem Statement

Physical roughness parameters have been reported to be insufficient to model

the roughness perception. Some researchers made attempts to use images as the

blueprints of the tactile stimuli so that instead of using roughness parameters they

can use image features to model the roughness perception. Among several types

of features, only the statistical-based features have been explored. It has been

reported that only few of them were correlated with roughness sensation. The

Fourier transform-based features which are related with frequency and, therefore,

are most likely correlated with roughness have not been explored.

As there are two spectra of Fourier transform, the features can be extracted

from both of them. However, not all of these spectra are useful to characterize

the textures which can make a large number of extracted features might have no
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correlation with the roughness. In this sense, it would be beneficial to have a

method to determine the importance of each spectrum and to obtain a number

of features from the most important features which correlate with roughness

perception.

1.3 Aim of Research

This research aims to determine the phase and magnitude dominance of visual and

tactile textures. To achieve this aim, the corresponding objectives are formulated:

(a) To identify the similarity of the visual and tactile perception in perceiv-

ing irregular patterns so that representing surface roughness using image

features becomes relevant.

(b) To determine the importance of magnitudes and phases using image tex-

tures with standard signals and to extract parameters and features from

the most important spectrum of image textures with standard signals.

(c) To measure the phase and magnitude dominance of image textures using

the extracted features.

(d) To identify the similarity of the visual and tactile perception in perceiving

natural textures which are either magnitude or phase dominant.

1.4 Original Contributions

The contributions of this study as listed here are presented against each of the

research objectives.

1. This study shows that both visual and tactile perception have similar pat-

tern in perceiving irregular textures with first-, second-, and third-order

transition probabilities. The visual and tactile stimuli with coarse grain

and wide distance of arrangement were perceived to be rougher.

2. By using thirty six image textures with standard signals, it is shown that

the magnitude spectrum is more important than the phase spectrum. The

phase and magnitude dominance of images having those types of texture

is influenced by the number and arrangement’s distance of the non-zero

frequency components of the magnitude spectrum. One hundred features
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were extracted from the power spectra of the image stimuli to characterize

the magnitude dominance of the image stimuli.

3. This study provide a model to measure the influence of the value of power

spectra-based features to the magnitude dominance of an using an error

function. The output of the model is the influence’s level which range

from 0 to 1.0. A logistic regression model was developed to measure the

magnitude and phase dominance of an image relative to its pair. By using

the influence’s level of power spectra-based features as the inputs of the

developed model, the relative magnitude and phase dominance of an image

can be determined with accuracy more than 85%.

4. Several evidences were obtained from this study that the power-spectra

based features were useful to cluster images with natural texture into two

groups of magnitude and phase dominant textures. The magnitude and

phase dominance of each texture was tested in the visual and tactile ex-

periment and the subjects’ responses show that the magnitude and phase

dominance of all textures was in accordance with their corresponding group.

In other words, the textures in the magnitude dominant group were per-

ceived visually and tactually as magnitude dominant too and it was so

for all textures in the phase dominant group. In general, both visual and

tactile perception have a similar pattern in perceiving textures. However,

as pixels in images are not identical with asperities in surfaces, in some

cases the same texture can be perceived differently by the visual and tactile

perception.

1.5 Outline of the thesis

Chapter 2 reviews surface roughness, tactile perception, comparisons between

visual and tactile perception, and the image features extraction. Several meth-

ods and parameters to characterize the topography of surfaces were surveyed and

discussed here. The basic concept of roughness perception including the related

neural system was described. Some aspects of visual perception such as percep-

tual field and cross-modal interaction between visual and tactile perception were

surveyed and analysed. Then, the existing implementations of image textures

to represent surfaces’ topography were discussed. Finally, a number of types of

image features were surveyed and analysed.
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Chapter 3 compares the patterns of visual and tactile perception in perceiving

irregular textures by examining Julesz’s conjecture. The results of visual and

tactile experiment in which subjects were perceiving and comparing the roughness

of twenty seven of image and surface textures with first-, second-, and third-order

transition probability were analysed and discussed.

Chapter 4 investigates the importance of the phase and magnitude spectra of

images which have textures with standard-signal. Some evidences obtained from

the visual experiment which support that magnitudes are more important than

phases were presented and discussed. A number of parameters and features of

the power spectra of the image stimuli which influence the magnitude and phase

dominance of the image stimuli were explored and analysed. A logistic regression

model to measure the magnitude dominance using power spectra-based features

was developed and its performance was analysed and discussed.

Chapter 5 investigates the effect of scaling transformation on the magnitude

dominance of images. This chapters was intended to examine the findings in

Chapter 4 which show that the frequency of image’s texture influence its magni-

tude dominance. A scaling transformation method used to modify the frequency

of texture was described here. Finally, the results of visual experiment using the

transformed images were analysed and discussed.

Chapter 6 investigates the usefulness of the power spectra-based features to clus-

ter images with natural textures. This chapter also describes an MDS method

which was applied to the values of features prior the clustering process to reduce

the dimension of the features and to determine the ”relative distance” between

images. The results of both visual and tactile experiments to evaluate the clus-

tered images were analysed and discussed here.

Chapter 7 presents an overview and general discussion which stitch all experi-

mental chapters to provide a single story about this research. A summary is given

of the conclusions of this study. Finally, several recommendations were made for

future work.

Appendix A presents the computer codes for creating the image and stimuli tex-

tures used in the experiment reported in Chapter 3 and 6. The codes were put

in three sections. First section is Java� codes to create the stimuli with the first-

, second-, and third-order transition probability. Second section also is Java�
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codes to write an array into an image or .stl file. The third section is Python�

used in Chapter 6 to convert images into .stl files.

Appendix B shows the image stimuli having textures of standard signals used in

the experiment reported in Chapter 4.

Appendix C present the lists of power spectra-based features used in this study.

There are two sections; first section is the list of features developed by Liu

and Jernigan [54]. Second section consists of five subsections. First subsection

lists and describes the features which were calculated from the power spectrum

with the threshold based on its maximum value. Second subsection lists and

describes the features which were calculated from the power spectrum within cir-

cular boundaries. Third subsection lists and describes the features which were

calculated from the power spectrum within the first and second quadrant. Fourth

subsection lists and describes the features which were calculated from the power

spectrum within the wedges. Fifth subsection lists two features which were cal-

culated from the standardized power spectrum.

Appendix D presents seven tables related to the results of the experiment reported

in Chapter 3 and one table related to Chapter 6.



Chapter 2

Literature Review

This chapter will discuss about physical roughness, perceived roughness, and cur-

rent reports about the relationship between the touch perception and the visual

one. Physical roughness refers to the asperities of a surface while perceived rough-

ness or simply roughness refers to the roughness sensation that is perceived by

human when touching a surface. The physical roughness will be elaborated to

show how its parameters were established. The psychophysical and neurophys-

iological studies will be selected and discussed to get an overview how human

perceives the surface roughness and the image texture. Some current theories

of how physical roughness parameters correlate with perceived roughness will be

reviewed to get more precise understanding about roughness perception.

2.1 Physical Roughness

The characterization and description of surface topography which is interchange-

ably referred as surface texture is useful and important in many applications. Due

to the dynamic machining process, the real profile will likely deviate geometri-

cally from the nominal surface, i.e. is the ideal workpiece surface as prescribed

in the drawing. Petropoulos et al. [55] classified geometric deviations into two

categories:

1. Macrogeometric errors

2. Microgeometric deviations

The form errors such as roundness, flatness, and straightness; and waviness fall

within the first type of deviation. The second type of deviations corresponds

to the micro-size irregularities which is called surface roughness or simply as

10
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roughness (see Figure 2.1). The term roughness has the opposite meaning to the

word smoothness. Surface roughness, commonly shortened as roughness, depicts

the level of contour deviations in the normal direction from its mean level.

Figure 2.1: Example of machined surface topography. Length of the axis is 750 µm [56].

Surface roughness is one of the key parameters in modelling the wear char-

acteristics of a bearing, studying the lubrication effects, analysing bonding prop-

erties of joints, predicting the thermal and electrical conductivity of joint inter-

faces in electronics and computer hardware, managing the coating process, and

manufacturing optical components [57]. In most applications such as wear, fric-

tion control, lubrication, and electrical and thermal conductivity the presence of

roughness is not wanted or to be minimized. In machining processes, roughness

cannot be avoided and it is considered as surface flaw. Some surface finishing

processes such as grinding and polishing are needed to minimize the roughness

within certain tolerance to meet the required specification.

However, in some applications the presence of roughness is needed. Struc-

tured roughness is important to make a stronger bonding and or a good sealing

between two contact joints [58, 59]. In the area of product design, certain condi-

tion of surface roughness on the packages contributes playful perception which is

important to attract consumers [60]. In this case, a textured roughness pattern

can be carved across the outer surface of the product to evoke positive affective

feel. An engineered roughness pattern is engraved on a surfaces to provide certain

function such as giving an optimal coefficient of friction [61].

Early methods to characterize roughness were using stylus-based profilometer

techniques [62]. The stylus is moved over the surface throughout several sampling

trace lines to measure the altitude (z) of different points of the surface along that

line (x). The vertical micro-movement of the stylus tip is amplified and then

recorded [63]. The results are two-dimensional (2D) visual displays of the cross
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Figure 2.2: Example of the result of stylus-based measurement [64].

sectional profile (z(x)) of the surfaces which depicts its asperity (Figure 2.2).

The surface texture profile that is obtained from direct measurement is called

total profile. This profile likely contains noise and imperfections such as the

presence of wavelengths that are shorter than radius of the stylus tip. Filtering

processes are needed to remove a range of irrelevant waves in the total profile by

rejecting waves with certain lengths. At least there are three different filtering

processes of a total profile [65]. The first filtering processes applies a band-pass

filter to remove the waves that have shorter wavelength than the diameter of the

stylus tip and to suppress the long-wave components (profile geometry). The

result is called a primary profile that is a superposition of roughness profile and

waviness profile (Figure 2.3). The second filtering process applies a low-pass filter

to obtain the waviness profile within the primary profile. Waviness profile is used

to analyse macrogeometric deviations of the surface. The third filtering process

uses a high-pass filter to select the roughness profile from the primary profile.

Figure 2.3: Filtered profile: primary (top), waviness (middle) and roughness (bottom) profiles

[65].
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2.1.1 2D roughness parameters

The two-dimensional (2D) roughness profile is obtained by measuring five sam-

pling lines across the surface with the maximum spacing between two sampling

lines is 20% of the tip radius [65]. The direction of the trace lines must be cho-

sen appropriately to ensure the roughness profile is typical of the surface under

inspection. For example, in the presence of lay, the trace lines must be perpen-

dicular to the lay. The length of the sampling lines depends on the purpose of

the profile characterization. ISO 4288-1998 provides the guideline for selecting

the sampling length [66].

The 2D roughness profile is quantified and standardized using the two dimen-

sional (2D) roughness parameters. These parameters are formulated based on

four methods of calculations: arithmetic, statistical, morphology and fractal ge-

ometry calculations [55]. Arithmetic methods calculate the roughness parameters

based on peak-to-valley height or amplitude of the profile, amplitudes distribu-

tion and spacing of the profile. The statistical methods have more complicated

calculation than arithmetic method because it needs the altitude values (z(x))

of the roughness profile instead of peaks and valleys information. This method

could be applied after digital processing became available [67]. The roughness

parameters in ISO 4287 are calculated based on arithmetic and statistical meth-

ods [68]. Gadelmawla et al. [69] categorised and listed arithmetic and statistical

roughness parameters into three groups: amplitude parameters, spacing parame-

ters, and hybrid parameters (Table 2.1). Each parameter is formulated based on

single line profile (See [69] for the complete description). Amplitude parameters

reckon the height (z) values of the roughness profile without take into account

their spread over the surface. The values of these roughness parameters will not

change if, for example, the roughness profile stretches or shrinkages in longitudi-

nal direction. Spacing parameters count features of the roughness profile along its

longitudinal direction without taking into account the z values of the roughness

profile. Hybrid parameters reckon the z values and their distribution along the

roughness profile.
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Table 2.1: Arithmetic and Statistical Roughness Parameters [After [69]]

No Parameters Type

Amplitude Spacing Hybrid

1 Arithmetic average rough-

ness (Ra)

High spot count (HSC) Profile slope at mean line

(γ)

2 Root mean square rough-

ness (Rq)

Peak count (Pc) Mean slope of the profile

(∆a)

3 Ten-point height (Rz) Mean spacing of adjacent

local peaks (S)

RMS slope of the profile

(∆q)

4 Maximum height of peaks

(Rp)

Mean spacing at mean line

(Sm)

Average wavelength (λa)

5 Maximum depth of valleys

(Rv)

Number of intersections of

the profiles at mean line

(n(0))

RMS wavelength (λq)

6 Mean height of peaks

(Rpm)

Number of peaks in the

profile (m)

Relative length of the pro-

file (lo)

7 Mean depth of valleys

(Rvm)

Number of inflection points

(g)

Bearing area length (tp)

and bearing area curve

(BAC)

8 Maximum height of the

profiles (Rt) or (Rmax)

Mean radius of asperities

(rp)

Stepness factor of the pro-

file (Sf )

9 Maximum peak to valley

height (Rti)

Waviness factor of the pro-

file (Wf )

10 Mean of maximum peak to

valley height (Rtm)

Roughness height unifor-

mity (Hu)

11 Largest peak to valley

height (Ry)

Roughness height skewness

(Hs)

12 Third point height (R3y) Roughness pitch unifor-

mity (Pu)

13 Mean of third point height

(R3z)

Roughness pitch skewness

(Ps)

14 Profile solidity factor (k)

15 Skewness (Rsk)

16 Kurtosis (Rku)

17 Amplitude density func-

tion (ADF )

18 Auto correlation function

(ACF )

19 Correlation length (β)

20 Power spectral density

(PSD)
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Morphological methods calculate the roughness parameters based on the pri-

mary profile instead of the roughness profile. It means that this method can

separate the waviness profile without filtering process. By adopting this method

ISO 12085-1997 introduced motif parameters and provided the definition of a

motif as a portion of the primary profile between the highest points of two local

peaks which are not necessarily adjacent [70]. There are seven motif parameters,

three of which are roughness motifs and the rest are waviness motifs (See Table

2.2). Motif parameters can be calculated using a procedures as shown in ISO

12085 or an algorithm proposed by Lou et al. [71].

Table 2.2: Motif Parameters

No Roughness motifs Waviness motifs

1 Mean spacing AR AW

2 Mean Depth R W

3 Maximum depth Rx Wx

4 Total depth Wte

When the resolution measurement is becoming higher, the roughness profile

of a surface will be more detail because the smaller asperities will be detected.

Therefore, the roughness profile obtained from the higher resolution stylus is

not simply the magnification of the roughness profile from the lower resolu-

tion stylus although both seem to be similar. This property is called self-affine.

The Weiertrass-Mandelbrot (W-M) fractal function can be used to represent the

roughness profile which is self-affine in nature. The W-M fractal function can be

characterized using two parameters, the fractal dimension (D) and the topothesy

(Λ). These parameters represent intrinsic properties of the profile regardless of

the stylus resolution used. D depicts the ”complexity” of the profile structure

while Λ represents the horizontal separation of profile heights corresponding to

an average slop of one radian [55, 67]. D and Λ are related to profile power

spectra as shown by Thomas et al. [72]. Some discrete calculation methods for

both parameters can be seen in [73].

Selecting the appropriate 2D roughness parameters is important because not

all of the those parameters are useful. Most of them do not have functional sig-

nificance in the application. Using a higher class of roughness which exceeds the

necessary level is not advantageous [55, Page 4]. Some parameters are redundant

because they are correlated with each other. The confusion of selecting the proper

parameters is called parameter rash which may generate expensive cost [74]. The

least significant parameter should be removed to eliminate unwanted cost. For
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example, instead of including the arithmetic average height (Ra) in an analysis it

is preferably to use the root mean square roughness (Rq) because Ra and Rq are

correlated. However, Ra is less sensitive to asperity fluctuation than Rq. There-

fore, a roughness parameter to be useful should represent the surface topography

effectively, have statistical form, and provide function and is not correlated with

another parameter [75].

2.1.2 3D roughness parameters

The 2D roughness profile provides only limited information on the characteristics

of the surface topography. A finite number of 2D roughness parameters cannot

fully describe real surface geometry [62, 69]. Furthermore, most of these parame-

ters are not effective for representing the surface characteristics especially for the

surface with anisotropic roughness [76]. In an anisotropic surface, different scan-

ning directions will produce significantly different data for each parameter. More-

over, 2D parameters provide only little information about functional behaviour

of surfaces because most of the surface function is manifest in 3-dimensions (3D)

[63]. This becomes one of the reasons for developing three-dimensional (3D)

surface topography [62].

The 3D roughness represents the calculation of an area of the surface instead

of a single line [69]. Many 3D measurement methods have been proposed and

developed [77–81] to record the surface asperities in z(x, y). This 3D roughness

profile is quantified in the 3D roughness parameters. The initial numerical pa-

rameters were developed in 1990s and are called Birmingham 14 parameters.

These parameters are categorised into four groups, they are: amplitude parame-

ters, spacing parameters, hybrid parameters and other parameters. Most of them

were derived from 2D characterization methods. New 3D roughness parameter

set is intended to characterise geometrical properties in two different aspects of

surfaces, namely field and feature characteristics. The details of field parameters

formulations can be seen in [82]. The description of the feature parameters can

be seen in [83].

2.2 Roughness Perception

In the previous sections the term roughness refers to physical roughness that has

been defined as the degree of deviations of a surface asperities from the nominal

surface. When the fingerpad slides on a surface, its asperities will generate uneven
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pressure distribution and vibrations on the skin. The mechanoreceptor afferents

within the skin transmit the pressure signals and vibrations signals to the brain

by which then we feel the roughness sensation.

In contrast to the physical roughness which can be quantified using many

parameters, the psychophysical roughness is unidimensional that means it only

has magnitude comparison. In some degree the physical roughness parameters

can be used to predict the magnitude of the perceived roughness. However,

psychophysical roughness is not the projection of the surface topography which is

being touched [84] and the exact physical roughness parameters which determine

roughness perception have remained elusive [35].

Many studies in roughness perception have been conducted to understand

how human perceives the surface roughness. There are two main approaches to

characterize the relationship between properties of roughness stimuli and the cor-

responding roughness sensation, they are psychophysical and neurophysiological

approaches. Psychophysical studies were intended to find the characteristic func-

tion which relates the stimuli quantity and its sensation; for example, the study

to find the relationship between particle size of sandpapers and the subjective

magnitude of the roughness perceived [33]. The neurophysiological studies were

used to investigate what neural codes are responsible in perceiving the rough-

ness. Most of the roughness perception studies were conducted in psychophysical

mode or combination of both psychophysical and neurophysiological modes in

which the objectives are mostly to determine the basic understanding about the

roles of the mechanoreceptive afferents in perceiving roughness, spatial acuity of

the glabrous and non-glabrous skin, and the relationship between the physical

and the perceived roughness.

2.2.1 Mechanoreceptive afferents in glabrous skin

Exploring the roughness of a surface will utilize mechanoreceptors which are em-

bedded in the skin and the mechanoreceptors that are embedded in the muscles,

tendons, and joints [85]. These mechanoreceptors are responsible in sensing the

presence and the characteristics of the object being touched. Without these re-

ceptors in the finger’s skin human will experience numbness on their finger. The

finger will not be able to touch a surface firmly and to feel the texture of the

surface. Finally, the hand cannot hold an object firmly.

There are four mechanoreceptors in the glabrous skin. They are Merkell disc,

Meissner, Pacinian, and Ruffini corpuscles (see Figure 2.4). Those receptors are
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the endings of four classes of afferent fibers, namely Slowly Adapting type 1

(SA1), Slowly Adapting type 2 (SA2), Rapid Adapting (RA) and Pacinian (PC)

afferents [86]. The Merkell cells are the ending of the Slowly Adapting type 1

or SA1 afferents. SA2 afferents are believed to end in Ruffini complexes. RA

afferents end in Meissener corpuscles. PC afferents end in Pacinian corpuscles. A

summary of their properties can be found in Table 2.3.

Figure 2.4: Mechanoreceptors in glabrous skin [87].

(a) SA1 Afferents

Merkell cells which are the receptors of SA1 type can be found at the bot-

tom of epidermal ridges (Figure 2.4). This condition makes the SA1 af-

ferent is sensitive to the stretch but not to the pressure intensity. This is

the reason why SA1 system is responsible for detecting form and perceiving

texture. The innervation density of the Merkell cells in the fingerpad’s skin

is around 100/cm2 which enables the finger detect two asperities separated

by 0.5 mm. The edges, points, corners, curvature, groves, and ridges are

detected by SA1 afferents Johnson [88].

SA1 afferents are continuously sending pulses under indentation to keep feel

the contour of the surface being touched. The frequency of the pulse is ap-

proximately proportional to the indentation amplitude and it will increase
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Table 2.3: Tactual Afferent System and Their Properties (After Johnson [88])

Small receptor field Large receptor field

Merkell Meissner Pacinian Ruffini

Location Tip of epider-

mal sweat ridges

Dermal papillae

(close to skin

surface)

Dermis and

deeper tissue

Dermis

Axon diameter 7-11µm 6-12µm 6-12µm 6-12µm

Conduction ve-

locity

40-65 m/s 35-70 m/s 35-70 m/s 35-70 m/s

Sensory func-

tion

Form and tex-

ture perception

Motion de-

tection; grip

control

Perception

of distant

events through

transmitted

vibrations, tool

use

Tangential

force; hand

shape; motion

direction

Effective stimuli Edges, points,

corners, curva-

tures

Skin motion Vibration Skin stretch

receptive field

area

9 mm2 22 mm2 Entire finger or

hand

60 mm2

Innervation

density (finger

pad)

100/cm2 150/cm2 20/cm2 10/cm2

Spatial acuity 0.5 mm 3 mm 10+ mm 7+ mm

Response to sus-

tained indenta-

tion

Sustained(SA1) None (RA) None(RA) Sustained(SA2)

Frequency

range

0-100 Hz 1-300 Hz 5-1000 Hz 0-? Hz

Peak sensitivity 5 Hz 50 Hz 200 Hz 0.5 Hz

Threshold for rapid indentation or vibration:

Best 8µm 2µm 0.01µm 40µm

Mean 30µm 6µm 0.08µm 300µm

significantly when the finger is moving horizontally [28]. According to Con-

nor et al. [35] the SAI system is a major spatial system primarily responsible

for tactual form and roughness perception when the fingers are touching

the surface directly. The SA1 spatial variation and roughness perception

are highly correlated [89].

(b) SA2 Afferents

The Ruffini corpuscles are the receptors of the SA2 afferents spread within

the dermis layer of the skin. SA2 afferents, like SA1 afferents, are contin-

uously sending pulses under indentation. SA2 afferents are six times less

sensitive to the indentation [88] and their role in roughness perception is
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not clear. These afferents have the lowest innervation density which is only

10/cm2. However, these afferents are responsible in detecting stretch of the

skin, the tangential force [90], hand shape, and the direction of the motion.

(c) RA Afferents

Due to the shallow position of their receptors, the RA afferents can de-

tect soft indentation and minute motion [88]. RA afferents are about four

times more sensitive to the skin deformation then are the SA1 afferents.

RA system will stop sending pulse even the skin is till under indentation.

However, not like SA receptors, RA receptors will evoke detection signals

spontaneously. These afferents is most sensitive to the vibratory stimuli

with the frequency range from 40Hz to 60Hz and the amplitude range from

2 to 20µm. Bensmaıa and Hollins [91] showed that RA channel supports

discrimination of complex waveforms of vibratory stimuli. These waveforms

were discriminated on the basis of uniformity or nonuniformity of the se-

quences of perceived amplitudes within stimulus cycles.

(d) PC Afferents

A Pacinian is a large onion-like corpuscle which comprises corpuscles within

corpuscles separated from one another by fluid. This cascade structure of

corpuscles prevent PC afferents from detecting the low frequency vibratory

stimuli. Each PC corpuscle is connected to a single afferent. These very

sensitive afferents will respond vigorously to the transient deformation of

the skin over an extensive area, the sensitivity can be demonstrated by

blowing gently on the palm [27].

The Pacinian corpuscles, although extremely sensitive to stimuli with small

amplitudes of vibration, are not spontaneously excited [92]. The PC af-

ferents will start sending pulses when the compression pressure inside the

corpuscles reaches its static level [93]. At room temperature of 21−260C the

Pacinian corpuscles detect the vibratory stimuli with the frequency range

from 150Hz to 200Hz [94].

The role of the PC afferents in roughness perception is still in debate. Katz

[95] believed that the sense of vibration is the basis of the roughness percep-

tion. Bensmäıa and Hollins [96] suggested that sliding the fingerpad over

the surface with fine textures will generate high frequencies which can be

detected and discriminated by PC afferents. On the other hand, Lederman

et al. [97] and Johnson [88] reported that strong vibratory sensitivity of PC
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afferents has no effect on perceiving the roughness due to the absence of

gradation in the spatial or temporal response.

In psychophysical studies, the entities which mediate the mechanosensory

information are called channels. Although neurophysiological experiments have

identified four afferents fiber types (SA I, SA II, RA, and PC) in glabrous skin

of the human, early psychophysical experiments detect only three channels have

been shown to mediate mechanoreceptive perception [98]. They are P channel,

NP I (non-Pacinian I) channel, and NP II (non-Pacinian II) channel. According

to the model, each of these channels is associated with one afferent system, P

channel with PC afferents, NP I channel with RA afferents, NP II channel with

SA2 afferents. The role of these channels in sensing and perceiving the tactual

stimuli has been studied mostly using vibration.

From the threshold measurements, the P channel have been shown to de-

tect the vibratory stimuli with the frequency from 40 − 800 Hz with maximum

sensitivity near 300 Hz [99, Page 4]. This channel is able to perform spatial sum-

mation from the stimuli presented in adjacent and temporal summation from the

stimuli presented in consecutive. P channel will not detect the vibratory stimuli

when the the contactor area is less than 0.02 cm2 [98].

The NP I channel operates over the vibratory-frequency range of 10−100 Hz.

The threshold sensitivity of the NP I channel is relatively flat across its operating

frequency. The sensitivity of this channel does not depend on the total area of

the stimulation and does not show either temporal or spatial summation [98].

The NP II channel is responsible to detect the vibratory stimuli with small

contactor area (less than 0.02 cm2). The range of the operating frequency of this

channel is from 15 Hz to 400 Hz [100]. The threshold sensitivity of the NP II

channel will increase as the exposure of the stimulus duration increases [98]. This

channel does not exhibit temporal and spatial summation [101].

By masking various channels and modifying the skin-surface temperature,

Bolanowski Jr et al. [100] reported to find the fourth channel, namely NP III chan-

nel, which is sensitive to very-low vibratory frequency (0.8 Hz) and is mediated

by SA1 afferents. This channel does not show spatial and temporal summation.

Bolanowski Jr et al. [100] reported that although each of these channels has

sensitivity for a specific range of frequency, their absolute sensitivities are partially

overlap. Thus, it is likely that the suprathreshold stimuli, i.e. the stimuli that

exceed the sensitivity threshold, will activate two or more channels at the same
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time and the central nervous system may perceive a stimuli by integrating all the

signals from those triggered channels [101, Page 39].

The initial support for this hypothesis came from the two phenomena which

arise when two vibrotactile stimuli were presented simultaneously called enhance-

ment and summation [102, Page 3]. Enhancement is an increment in the perceived

magnitude of second stimulus due to the presentation of a first stimulus and

summation is an overall increment of perceived magnitude of the two stimuli. In

contrast, when the two stimuli activated the same channel together, the perceived

sensation of the pair was determined by the total energy of the two stimuli, not

by the sum of individual sensation of the stimuli [101]. Enhancement effects are

negligible when the first and second stimulus of the pair are the same intensity

regardless of the stimulus frequency. The sensation increment happens when the

first stimulus is more intense than the second stimulus, otherwise the sensation

decrement happens.

The second support to the hypothesis that two or more channels contribute

in tactile perceptions is the temporal summation phenomena that happens in

vibrotactile stimuli perception. The bigger the frequency of the stimulus applies

the lower the threshold of the tactile sensitivity [103]. Another support came

from the spatial summation phenomena. For the same frequency, the threshold

detection of the vibrotactile stimuli will decrease as the area of the contactor

increase. Although the identification and the characterization of each channel

have been well established, the fundamental questions remain concerning how

they contribute together in the tactile perception.

2.2.2 Un-myelinated mechanoreceptive afferents

The skin is commonly believed as having only four sub-modalities that convey tac-

tile, temperature, and itch signals to the central nervous system. However, there

is strong indication that the affective property becomes the fifth sub-modality.

Affective property of a surface refers to the emotional sensations which is more

difficult to be quantified than roughness sensation [104]. The pleasantness is the

earliest affective tactile sensation being investigated.

Pleasantness sensing is relayed by low-threshold unmyelinated mechanoaf-

ferents (C tactile,CT) [105–107]. McGlone et al. [108] reported that pleasant

sense by hairy skin is processed by posterior insular cortex and mid-anterior or-

bitofrontal cortex. These limbic-related cortex represents an innate non-cognitive

process.
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Although CT afferents are not innervated in the glabrous skin of the hand,

it is observed that glabrous skin is able to sense pleasantness of a surface [108].

Touch perception by glabrous skin is mediated by A-beta afferents and processed

by somatosensory cortex which works analytically. However, the contribution and

or the ability of primary somatosensory cortex to perceive the affective roughness

is still debatable. Case et al. [109] reported that somatosensory cortex (S1) is not

responsible for perceiving the pleasantness of a texture. Therefore, for evaluating

the emotional perception of a fabric touch it might be better using hairy skin

such as forearm [110].

Other researches reported that primary somatosensory cortex (S1) contribute

to the emotional sensation. In a caressing experiment Gazzola et al. [111] reported

that heterosexual males were sensually caressed by either a man or woman. This

experiment have shown that glabrous skin may evoke emotional sensation. The

top-down cognitive factors at the abstract level of words may contribute to the

affective touch perception by S1 [112]. It means that the pleasantness perception

by glabrous skin is affected by noticed pre-experience. In sensing by using finger-

pad, it is reported that the pleasant feel is related with soft and smooth surface,

while unpleasant sensation is related to harsh, rough, and coarse.

2.2.3 Tactile spatial acuity

The pattern and the intensity of the distribution of the receptors being activated

depend on the surface topography. The roughness level and the curvature of

a surface are detected and discriminated based on their pressure distribution.

However, the relationship between the pattern of receptors being activated and

the sensation of surface topography remains unclear [101]. This is one of the

reasons to study the characteristics of the neural codes which build the sensitivity

of the fingerpad. The psychophysical method to characterise the sensitivity of the

fingerpad is by measuring its spatial acuity, i.e. the ability to resolve the spatial

structure of surfaces pressed upon the skin [113].

The early and the most common measure of the spatial acuity is two-point

threshold. However, this measure has been doubted to be the measure of the

actual spatial acuity [114]. Several new measures have been proposed, such as gap

detection, grating resolution, and grating orientation [31]. By using the grating

orientation as a measure of tactile spatial acuity, Craig [115] reported that grating

orientation sensitivity varies as a function of location on the fingerpad which is

consistent with the changes in the receptors’ density. Also, there is no evidence
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that subjects perceive gratings differently when presented in the proximal-distal

(PD) direction than gratings presented in lateral-medial (LM) direction. This

result shows that subjects perceived the roughness of gratings on the basis of

spatial rather than intensive cues [116].

There are evidences which provide strong argument that SAI system is the

critical afferents in detecting spatial acuity in which RA system is three times

poorer [116]. The slowly adapting were found to be very sensitive to spatial

discontinuities and fine detail within the stimulus. RA afferents’ response are

about proportional to the indentation depth but they detect only the gross spa-

tial details. Those evidence are derived from studies in which three modes of

stimulation are performed: static touch, scanned touch, and the Optacon [117].

1. Static touch

Psychophysical studies using gratings show that subjects can discriminate

gaps of 0.5 mm [31]. Studies with other patterns show a similar result.

In grating stimuli experiments, SAI afferents resolve the spatial cues of all

gratings. In contrast RA afferents only begin to discern structure of gratings

with 1.5 mm gaps and bars and some even fail with 3 mm gaps and bars.

So, in static touch the limit of spatial acuity is accounted by SAI.

2. Scanned touch

If compared to static touch, a 10 to 20% improvement in spatial acuity

happens in scanned touch. SAI afferents are still considered as the critical

system for two reasons: first, the responses of SAI afferents to scanned

stimuli with its dimension near the acuity limit are sufficiently acute for

discerning the gaps and second, SA preserve spatiotemporal information

more effectively than RA.

3. Optacon

The optacon is a tactual simulator which is digitally-based controlled com-

prising 144 pins in 6×24 array with spacing 2.2 × 1.2 mm. The pins are

normally submerged and some will rise when they are actuated to make cer-

tain patterns and indent the skin in normal direction for 43 ms. Gardner

and Palmer [118] shown that Optacon only activates RA and PC affer-

ents. A 3.6 mm gap is required to produce 50% different of signal mean

rate. That is why, compared to when SAI stimulated which can recognize

1− 2 mm, gap discerning ability using Optacon is three times poorer.
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Tactile acuity of the skins are different across the body; for the hand’s skin, the

fingertip is the most acute [119]. Peters et al. [113] reported that tactile spatial

acuity depends on the finger size; the smaller the finger size the better the acuity.

In some cases it was found that the threshold detection of spatial structure is

less than 0.5 mm. Loomis [120] reported that the threshold of misalignment in a

three-dot pattern could be less than 0.1 mm. This tactile hyperacuity threshold

can reach the resolution of 10-30 times smaller than the resolution of a two-point

threshold for the respective body part [121].

It is believed that RA and SA1 afferents are used together in sensing tactile

hyperacuity. Even though the innervation density of SA1 receptors is lower than

the hyperacuity threshold, SA1 afferents share big portion in hyperacuity per-

ception [122]. Tactile hyperacuity is determined by the cortical representation of

the fingers in primary somatosensory cortex (S1) [123]. There is no different hy-

peracuity performance between the blind and sighted [124]. Although the tactile

spatial sensitivity has been well studied, it is still not clear when the mechanore-

ceptors sense two separated stimuli as two different asperities or as one asperity

by summing both stimuli (unconsciously).

2.2.4 Perception of roughness magnitude

The neural mechanisms of roughness perception have been studied through psy-

chophysical and neurophysiological experiments. In nature, a roughness stimulus

will likely activate more than two or more afferents. Researchers have been de-

voting to investigate what afferents are responsible in perceiving the roughness

and how their firing patterns correlate to the roughness sensation.

According to Johnson et al. [28] each of four afferents which innervate glabrous

skin of the hand has different function in touch perception. SAI system is a major

spatial system primarily responsible for tactual form and roughness perception

of coarse surfaces [35, 125]. RA system which has a lower spatial acuity than SAI

but higher sensitivity to local vibration provides signal about minute skin motion

and, thereby, has a critical role in grip control. The PC system is responsible for

the perception of external events that are manifested through transmitted high-

frequency vibration. Therefore, Pacinian channel is central to the perception

of fine roughness [125]. The SA2 afferents have poor spatial-resolution which

means they do not contribute to the roughness perception [35]. They are mainly

sensitive to tangential skin stretch that assume responsible to the perception of

hand conformation and to the perception of forces acting on the hand [28].
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The correlation between firing pattern of the mechanoreceptors being acti-

vated and the roughness sensation have been explored through four types of

neural codes which become possible bases for roughness perception: intensive,

modal, temporal, and spatial [126]. Intensive codes are measures of neural activ-

ity such as mean impulse rate. Modal code is based on the relative magnitudes of

response intensity between neuronal population with different transducer proper-

ties. Temporal codes depend on the temporal structure of firing in afferent fibres.

Spatial codes depend on the spatial structure of impulse rate across a population.

Connor et al. [35] and Connor and Johnson [36] reported that the correlations

between mean impulse firing rate of the SA, RA, and PC afferents with the

perceived magnitude of the roughness are low. This is why dot patterns with

different spacing will always be detected as having different roughness even though

their firing rates are the same. So, the roughness perception can be predicted

using mere mean firing rate. However, the firing rate still contribute to the

subjective roughness judgement. The firing rate variation, especially from SA

afferents, correlate with the roughness judgement [35].

Modal codes have been suggested to be useful to predict the perceived rough-

ness magnitude. Although some evidences were presented that the different pro-

portion of channels being activated will produce the different perceived roughness,

there is no simple linear combination of rates across channels that could account

for perceived roughness magnitude [117].

The measure of the temporal variation indicates the change in total number

of afferents being activated at each time in sequential activations. Using two dif-

ferent structures of dot patterns Connor and Johnson [36] showed that roughness

perception is not based on local temporal variation. On the other hand, The cor-

relation between spatial firing rate variations of both SA and RA afferents with

roughness perception is high [36]. Spatial variation is a measure of the amount

of areal fluctuation in firing rate.

However, it is found that subjective roughness is not always based on SAI

spatial mechanism [117]. The surfaces with microscopic roughness are not likely

to be sensed by SAI and also the textured surface can be discriminated through a

rigid probe by crossing it on the surface. The pioneer of the touch research, David

Katz [95], in early 20th century argued that the perception of surface roughness

relies on spatial cues for coarse textures and on temporal cues for the fine ones

[127]. This conception is commonly called duplex theory and some experiments

have been done to prove it [30, 128]. Hollins and Risner [128] conducted three
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experiments to prove the evidence of that theory. In the first experiment the sub-

jects were performing 2IFC (two-interval force choice, see [129, page 42-44]) tasks

to discriminate two fine surfaces (9 and 15µm) and coarse ones (141 and 192µm).

The results showed that performance in discriminating two fine textures by using

movement or static touching is significantly different and in the same way those

performances for differentiating two coarse surfaces are almost the same. The

hand lateral movement is needed to sense and discriminate the roughness of fine

surfaces even though the sliding speed has no influence in perceiving roughness

as long as the skin deforms fast enough to prevent adaptation [17].

Most of the studies of the roughness perception were using coarse surfaces

(such as using gratings and raised dots). In such experiments it was found that

the activation of SA1 afferents to be more correlated to the roughness perception.

Lederman [130] argued that perceived roughness is related to skin deformation

and not to the vibrational cues. Sathian et al. [40] reported that roughness

increased with an increase in groove-width and decreased with an increase in

ridge-width and at the same time SAs and RA afferents increase in response

when the perceived roughness increased. Another report from Dépeault et al.

[131] shown that in the perception of coarse-roughness surfaces the perceived

roughness increased with the increase of the distance of each particles. All this

reports imply that skin deformation and SAs afferents determine the roughness

perception of surfaces with coarse particles.

Although it is well known that human can perceive fine-roughness textures

better by touch than by vision [32], for example, human can discriminate rough-

ness of sandpapers with 5 µm particles from 9 µm particles using touch but not

vision, only few of researches focused on the roughness perception of fine-surface

textures [132]. Libouton et al. [30] reported that the discrimination threshold for

the fine surfaces (<46µm) is (14.7±8.5µm) and for the rough surfaces (>46µm)

is (43.5±32.5µm). In the second experiment the subjects had to assign a mag-

nitude for each of twelve samples with their roughness ranging from 9 µm to

350 µm. The result showed that the absent of lateral movement declines the

roughness perceived and reduces the slope of the psychophysical function, i.e.

particle size vs roughness perceived. In the third experiment the subject was

asked to assign the properties arbitrarily for the surfaces. The result showed that

perceived roughness increases as the particle size gets bigger and reciprocally for

the smoothness. Also from those experiments it is known that the pattern of

perceived roughness before and after 100µm is different. So, the particle size less

than that is considered smooth and greater than that is coarse.
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Surface roughness perception has been studied under active and passive touch.

In the active touch the hand is allowed to move when exploring the surface texture

of a static object, whereas passive touch the finger is at the static position and

the surface of the object is moved. Compared to passive touch, active exploration

elicited greater and more distributed activated neurons outside the somatosensory

cortex. However, the roughness of a surface that is perceived either by passive

touch or by active touch will have the equivalent sensation magnitude [33, 133].

2.2.5 Tactual perceptual field

Perceptual field refers to the spatial array of perceptual contents which have

spatial properties and functions which derive from the spatial properties and

functions of corresponding stimuli [134]. In the visual perception, the field of the

perceptual content contains the image of the two-dimensional (2D) view which

reserves 2D spatial properties and relations of the object being seen such as lateral

angle and outline form that enables humans to predict not only the identity but

also the size of the object within the image.

In the visual perception theory, the image is perceived not merely based on the

information from visual sensory receptors but also on the informative percepts

[135]; for example, two identical ellipses may be perceived differently as seen in

Figure 2.5. This is called principles of perceptual organization [136]. There are

three major views to this theory: structuralism, Gestalt, and Helmhotzean [135].

Gestalt theory is the most studied. Based on the Gestalt view, the visual pattern

can be perceived and discriminated by: area, proximity, similarity, closure, good

continuation, convexity, and symmetry [135].

Some researches have investigated whether touch sensing generates a percep-

tual field analogous to the visual field [31]. The firing intensities pattern of the

receptive field (RF) on the skin which reflects the asperities of a stimulus’s surface

is analogous to the signals of black-and white image in retina. Most of tactile

field studies were using large size stimuli which were applied on the large area of

skin such as palm or some fingers. Haggard and Giovagnoli [137] reported that

tactile patterns applied over relatively large skin regions are sensed as a tactile

field analogous to the visual field. Serino et al. [134] have showed that a spatial

arrangement of multiple tactile stimuli will be perceived as a unique, complex,

spatial percept. Moreover, Lappin and Foulke [138] reported that one finger may

be added to the tactual field. Two fingers from different hands perform better

than two fingers from the same hand in recognizing tactile stimuli.
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(a) An isolated ellipse (b) Elliptical shape in a scenic

context

Figure 2.5: For a variety of factors, the elliptical shape (b) is perceived as round hoop [135]

Whitaker et al. [139] and Harrar and Harris [140] argued that despite having

perceptual fields which are analogous, vision and touch contribute information to

the perception of texture in an independent but complementary manner. Better

recognition in touching the objects with familiar form or texture is believed to be

due to the cognitive influences, not due to integration of basic visual and tactile

sensory encodings. However, some researches have reported that principles of vi-

sual perception prevail in tactile perception. The applicability of Gestalt theory,

in tactile perception has been investigated [141]. Gestalt law of proximity applies

to contour haptic detection [142]. It has been reported that good continuation

principle operates in the haptic task [143–146]. These findings are useful to inves-

tigate how discriminative tactile response correlates with parameters of surface

topography such as roughness and waviness.

2.2.6 Human perception on tactual patterns

While the perception of regular roughness patterns (dots and gratings) is much

studied, the perceived roughness evoked by surfaces with irregular roughness

which are common in nature is less understood. The perceived roughness for this

surface is difficult to predict because the shape, the size, and the arrangement

of each roughness element on a non-homogeneous surface may not be able to be

definitely determined. In particular, while there is a general correlation between

measured and perceived roughness, the correspondence is not one-to-one, and
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textures that have same physical roughness can have very different perceived

roughness. One of the reason is despite being random, roughness elements always

form a specific pattern on the surface.

Humans should be able to not only perceive roughness but also discriminate

its pattern to a certain degree because it is convincing that humans fingers have

the field of tactual perception which is useful to recognize the pattern on a sur-

face. Early studies in the perception of tactile patterns were intended to convert

sound and images to the tactile pattern to help the deaf and blind communicate

[147]. The pattern was generated using Optacon, a regular array of pins placed

below a perforated surface. They are controlled and actuated so that some of

them appear on the surface to form a pattern, such as a letter or Braille, or

others. The array size normally fits the finger pad area. Bliss [148] showed that

subjects were successfully able to read letter shape patterns using Optacon. The

reading performance is influenced by pattern size [149], display time [150], and

the presentation mode [151]. Those factors are underlaid by tactile aspects such

as spatial acuity, temporal resolution, cutaneous masking, perceptual integration,

and limited attention [147].

Researches in the discrimination of tactual textures using non-regular pattern

are very limited. Culbert and Stellwagen [43] were among the first who used

non-regular patterns to investigated the human ability in discriminating tactile

patterns. They created forty tactual stimuli by converting images to embossed

patterns. A hundred and fifty subjects were ordered to perform 200 discrimi-

nation judgements on those embossed patterns. They reported that eleven out

of forty patterns were well discriminated. However, the variables of importance

in mediating the tactual pattern discrimination failed to be figured out in this

research. Heller [152] reported that sighted, congenitally blind, and late blind

individuals have the similar performance in an matching experiment of embossed

shapes. Elkharraz et al. [44], Elkharraz [153] made twenty four different tactile

textures to investigate a set of visual features which correlate to affective re-

sponses of the touch. Although they did not investigate specifically the pattern

discrimination, it showed clearly that subjects were able to discriminate those

textures. All of these results indicate that tactual pattern can be perceived by

touching.
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2.2.7 Cross-modal interactions between visual perception

and touch perception

The primary sense modalities such as visual, auditory, and touch are generally

considered to be separated as each sensory cortices to be fixed or ”hardwired” to

process special task [154]. Many researches suggested that each sensory system

has distinct encoding path. For example, roughness perception is processed in

somatosensory cortex while distance spacing is primarily perceived by occipital

lobe [155]. Whitaker et al. [139] suggested that vision and touch contribute differ-

ent information to the perception of texture. Vision is more related to recognize

texture boundary while touch is responsible to assess roughness and compliance

of the surface. Baumgartner et al. [156] shown that the tactile sense can work

well independently from the visual sense in the material perception experiment.

Heller [152] reported that sighted and late blind individuals performed no better

than early blind in recognizing and matching tactile patterns which means haptic

and visual systems have different channels. Therefore, haptic and visual systems

have different roles in perceiving the world. Haptics is more related to substance

and spatial frequency rather than shape [157].

However, some researches had shown evidences that the brain has some degree

of plasticity so that it can rewire or adjust itself to accommodate or enhance

certain sensory perception [158]. This cross-modal plasticity can be found in

tactile perception which some time is involving both somatosensory cortex and

visual cortex. Merabet et al. [159] investigated the extent of involvement of

early visual cortical areas in tactile perception. They reported that even simple

tactile discrimination tasks induced significant activation in primary visual cortex.

The similar finding also reported by Burton et al. [160]. In the normal tactile

perception of some object properties such as pattern orientation, shape, and size

the visual cortex will be activated [161, 162]. Sathian and Zangaladze [163], Sun

et al. [164] had shown that visual cortex was active and even was necessary

for tactile discrimination of orientation. Although the role of the visual cortex

can be influenced by late-onset blindness or by short-brief interruption of visual

input, the neural plasticity of visual cortex seems strong in normal sighted and

early blindness [165]. Those findings indicate that in relatively coarse textures

it is possible to recognize tactile patterns by touch which is mediated by SA1

channel. The roughness pattern recognition might be similar to image pattern

identification due to in both processes the visual cortex is active.
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The tactual pattern in texture with fine roughness is more likely cannot be

recognized let alone be discriminated. The discrimination of fine texture relies

on vibration cues to which Pacinian afferents are sensitive. SA1 systems which

are sensitive to spatial arrangement of coarse particles will not recognize any

particular continuation of fine particles which may form a shape or a pattern.

However, discrimination of fine texture is still possible not based on pattern but

on the roughness level that is related to vibrational level of cues.

2.3 Relationship between Physical Roughness and

Perceived Roughness

A function which relates the surface texture parameters with human touch sensa-

tion is essential for manufacturers to be able to create materials with surface prop-

erties that would elicit emotions supporting the product’s brand [166]. Among

tactile sensations, roughness is the most studied. However, most of the studies

were using relatively homogeneous stimuli such as gratings or dot patterns. The

perceived roughness were correlated with the particles’ size, the ridges’ width and

the groves’ width. The objectives of these studies were to analyse the patterns

and the roles of the mechanoreceptive afferents in perceiving the roughness of the

stimuli.

Some studies, mostly psychophysical ones, have used stimuli with more natu-

ral roughness that were intended to investigate human tactile perceptions which

are not only roughness. There are two approaches of the studies: first, the studies

which investigated the relationship between the features of vibrations evoked by

the surface and the touching responses, and second, the studies which directly

tried to correlate the physical parameters of the surface to the tactile percep-

tions. In the first studies it is not needed to measure the surface topography;

the stimuli were chosen based on the prediction that they will generate different

pattern of vibrations. A vibration sensor or an artificial finger were used to detect

and record the pattern of the vibration. While in the second studies it is needed

to measure the physical parameters of the surface’s properties such as average

roughness, thermal conductivity, and compliance.

2.3.1 Vibratory cues approach

When asked to feel the roughness, humans will automatically scan their finger

across the surface. The fingerpads’ skin will vibrate and the mechanoreceptors
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will be activated accordingly so that the brain can feel certain level of roughness

judgement for the surface. Furthermore, it is reported that fingerprint might

help in sensing fine textures [167]. This mechanism has inspired researchers to

use vibration sensors to record the vibratory signals generated by the fingerpads’

skin during scanning a surface texture. The commonly used transduction method

is piezoelectric [168]. The sensors are commonly configured in three different

ways: first, mounted on the frame of the stimulus holder in some places [169, 170];

second, attached on the scanning finger [171–173]; third, embedded in an artificial

finger [174].

Some features of the signals’ profile are then extracted and correlated with the

touching sensations. Ye et al. [175] reported that the mean and standard deviation

of the vibration amplitude correlate with the roughness perception. De Boissieu

et al. [176] selected the power spectrum density (PSD) of the recorded vibration

signals as the basis of the tactile texture recognition. They used a three-axial

microelectromechanical systems (MEMS)-based force sensor which is packed in an

artificial finger to scan ten kinds of paper. Two types of classification algorithms

were used to analyse the PSD values so that each type of paper can be recognized.

The similar method can be found in [177].

Chen et al. [174] proposed five computational features of the vibration signals

which were calculated using roughness parameters formulas, Peak Average, Peak

Ratio, Spectral Centroid, Average power, and Shannon Entropy to correlate with

tactile touch sensations. The coefficient of friction of each fabric was also used

in the analysis. The result showed that only Average power matches well with

Roughness-Smooth dimension while other features do not. Average power is the

average value of the vibration energy, larger P will likely produce rougher hand

feel. Tang et al. [178] reported that among four vibration features (arithmetic

average, root mean square, maximum height of peaks, peak ratio), only the arith-

metic average was reported to correlate with perceived roughness; the lower the

values of Ra the smoother the surface feels.

Kikuuwe et al. [171] used a signal processing program based on the FFT

(fast Fourier transform) to analyse the vibration signals recorded from a finger-

mounted tactile sensor during scanning nine different fabrics. They reported that

the system could distinguish each of these fabrics. Hu et al. [179] reported that

a FFT-based technique they developed can be used to classify five fabrics with

different textures accurately.

Although these methods were reported to work effectively in modelling the

relationship between the vibration signals generated and the tactile touch re-
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sponses, these methods are irreversible. It means that these methods can predict

the tactile responses of a surface texture but they can not be used to create the

desired surface texture which can evoke certain values of the perceived roughness.

In order to be reversible, a method must put the measure of surface textures in

the relationship model between the textures and the perceived roughness.

2.3.2 Physical properties approach

Most of the studies of roughness perceptions used stimuli with homogeneous tex-

tures and quantified the roughness simply by measuring the size of particles and

the width of ridges and groves of the grating stimuli. The result of the previous

studies are not enough to predict the roughness sensation of non-homogeneous

textures which are more common in nature because; first, perception of touch has

a complex mechanism [20] as discussed in Subsection 2.2.1 and second, the topog-

raphy of surfaces with non-homogeneous textures can not be simplified as dots

or gratings. The surface textures have been quantified in the standard 2D and

3D roughness parameters. However, only few studies investigated and reported

the correlation between these parameters and the perceived roughness.

Akay et al. [180] and Liu et al. [181] have reported that arithmetic average

roughness correlates with perceived roughness, the bigger the values of Ra the

rougher the surface feels. Barnes et al. [182] investigated eight roughness param-

eters (Ra, Rp, Rsk, Rku, ∆q, λq) to affect touch sensations. Two parameters, i.e.

Rp (maximum height of peaks) and Rz (ten-point height), are better descriptors

to relate the perceived roughness. Rq is believed to correlate with roughness per-

ception too. However, the dependence of roughness sensation on Ra and Rq can

be inferred as a dependence on asperity radius of curvature which is equivalent

of the particle size in sandpaper and dots experiments [17, page 4] that showed

that the bigger the particle diameter the bigger the subjective magnitude of the

roughness [33]. In other word, Ra and Rq values represent the particle size of

a texture. They are not detected as a unique feature which affects roughness

perception. Liu et al. [181] showed that surface’s kurtosis has a negative correla-

tion with the perceived roughness which means the fingertip is able to detect the

ridges but not to detect the narrow deep grooves. Tiest and Kappers [84] used

three roughness parameters (Ra, Rq, Rz) to make correlations with the perceived

roughness and they suggested that there is no strong correlation between physical

roughness and perceived roughness.
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The aforementioned studies used amplitude-based roughness parameters which

take into account the amplitude of the asperities without considering their spa-

tial spread despite that roughness perception is affected by the spatial distance

between peaks that equivalents to the groove width [40]. Moreover, there is no

research so far which studies the roughness perception based on the 3D roughness

parameters. Most of the recent studies do not focus on roughness perception itself

but rather on affective touch sensations. Less attention to physical and perceived

roughness relationship is likely due to the difficulties in designing the stimuli with

predefined roughness parameters.

Elkharraz et al. [44] have demonstrated how to design and manufacture tactile

textures by converting images to the surfaces’ topographies. A surface topogra-

phy was formed by an array of boxels. A boxel is a regular tetragonal prism with

its height determined by a pixel’s value in the respective matrix cell of an im-

age. The generated topography is 2.5-D printed version of the image being used.

This image-to-topography transformation method makes it possible to design and

evaluate the surface roughness in the image processing domain. A similar trans-

formation method has been used by Ikei et al. [183] to show that an image data is

compatible with geometry data which has direct relation to the tactile stimulus.

Thus, an image data is suitable for representing a tactile texture.

2.4 Image Textures

The most recent analysis of tactile texture in the image domain has been per-

formed by extracting and evaluating the image textures which correlate with

affective touch sensations [44, 52]. Texture which can be observed in the pat-

terns of various synthetic and natural surfaces [184] is an important property for

analysing images [49]. Despite its importance, a formal or complete definition of

texture does not exist [47, 49, 184]. Within an image pattern, the texture may be

seen and described subjectively using terms such as coarse, fine, smooth, gran-

ulated, rippled, regular, irregular, and linear [184]. Haralick [49] considered an

image texture as an organized area phenomena which has two dimensions. First

dimension depicts the tonal primitives or local properties while the second di-

mension relates to spatial organization or arrangement of those tonal primitives.

A pixel or a groups of pixels connected with each other can be counted as a tonal

primitive. Haralick [49] referred it as the elementary component of texture but

Whelan and Molloy [184] used pixel itself as basic element of texture. When a

small-area patch of an image has a large intensity variation then the patch has
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texture as dominant feature. When a small-patch area has little intensity varia-

tion then the dominant feature in the area is tone [184]. Haralick [49] described

tone and texture based on the variation of tonal primitives not pixel intensity.

2.4.1 Extraction methods of image features

There are various approaches and methods for extracting and analysing textural

features. Bharati et al. [47] proposed four categories of methods: (1) statistical

methods, (2) structural methods, (3) model-based methods, and (4) spectral-

based methods. The quite similar categories also made by Tuceryan and Jain

[53].

Statistical texture analysis techniques are primarily based on grayscale his-

tograms to describe texture of patch area in images. Haralick [49] mentioned

eight approaches within this statistical methods: autocorrelation function, opti-

cal transforms, digital transforms, textural edgeness, structural elements, spatial

gray tone cooccurrence probabilities, gray tone run length, and autoregressive

models. The first three approaches are related with spatial frequency. Fine tex-

tures are rich in high spatial frequencies while coarse textures are rich in low

frequencies. Elkharraz et al. [52] made three categories for statistical meth-

ods: (a) first order statistics, (b) second order statistics, and (c) higher order

statistics. First-order statistics describe the likelihood of observing a grey value

at a randomly-chosen pixel. The average, median, variance, and percentile are

among the first-order statistics. Second-order statistics are mainly based on cooc-

curence matrix. Higher-order statistics includes grey run length and absolute

gradient. Szczypiński et al. [185] developed MaZda software to compute tex-

ture features based on image histogram, co-occurrence, run-length and gradient

matrices, auto-regressive model, and wavelet transform. In the histogram-based

methods there are five parameters: mean, variance, skewness, kurtosis, and per-

centile. In the gradient-based methods there are four parameters: GrMean, Gr-

Variance, GrSkewness, and GrKurtosis. In the run-length matrix based method

there are five parameters: ShrtREmph, LngREmph, GLevNonUni, RLNonUni,

and Fraction. In the last three methods there is only one parameter for each of

them.

Structural texture analysis techniques assume that textures are structured by

primitives (basic patterns). These methods describe texture as the composition

and orientation of texton (texture element) such as regularly spaced dots or paral-

lel lines. Two main steps that must be performed to create structural textures are
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extraction of texture elements and inference of the placement rule. This method

is rarely used since they can only describe very regular texture [47]. Moreover,

extracting structural features which is commonly called as primitives from data

is difficult [186].

Model-based texture analysis techniques are intended to construct an image

model that can be used to describe texture and synthesize it [53]. A probability

models or a linear combinations of a set of basis functions are commonly used

as the model of an image [187]. The probability models generate an empirical

approximation of each pixel in the image based on a weighted average of pixel

values in its neighbourhood. Examples of the model-based methods are auto-

regressive model, Markov random fields, and fractal models [47, 53].

Spectral-based texture analysis techniques convert the image into new form

using the spatial frequency through some function transformation methods such

as wavelet and FFT transform. Evidence from the psychophysical researches

has shown that human brain does frequency analysis [188, 189]. Those findings

suggest that frequency-based features will be promising to model image textures

which are related to surface roughness. In this method the image is transformed

into distribution of spatial frequencies which describe global periodicity of grey

levels of an image. There are two common types of transformation used in the

texture analysis: first, wavelet transform and, second Fourier transform. The

method of standard wavelet transform has been well presented in [190] and [191].

Although wavelet methods have been reported successfully to be used for classify-

ing textures, they only are suitable for analysing non-stationary transient signals

[192]. Fourier transform is the best method to represent frequency cues of images

[53]. It has been used as texture descriptors in considerably many researches.

2.5 The Importance of Magnitude and Phase in

Signal

The Fourier transformation of any signal such as an image will always consist

of two parts: the magnitude part and the phase part. For example, the Fourier

transform of an image f(x, y) –where f(x, y) is the pixel’s value of the image at

a spatial point with coordinates (x, y), is F (u, v) = |F (u, v)| × e−jφ(u,v) where

|F (u, v)| is the magnitude spectra and e−jφ(u,v) is the phase spectra. The original

image can be recovered by performing the inverse of that Fourier transform.



38

2.5.1 Justifications of the argument that phase is more

important than magnitude

The phase part of Fourier transform of an image, or in general any signal irrespec-

tive of its dimensionality, preserves the essential features and a lot of structural

contents of the image. The inverse transform of the phase part will usually retain

the texture of the image, while the inverse transform of of the magnitude part

will mostly bear no resemblance to the image [193, 194]. In other example if a

Fourier transform was formed from a combination of the phase and the magni-

tude of two different images, the inverse of that Fourier transform will usually

resemble the image which shared the phase part of its Fourier transform [195].

In other words, the phase is more important than the magnitude. Researchers

have been exploring the justification of the relative importance of phase from

signal processing stand-point in a number of contexts such as image coding and

compression, designs of digital filter, speech recognition and enhancement, image

features detection, and image recovery [193, 195–197].

In the data compression techniques that use the discrete Fourier transform

(DFT), both the magnitude and the phase information are encoded using a lower

number of bits to optimize the amount of the data. It has been reported that

the phase needs more bits (higher resolution) than the magnitude so that the

compressed image is not severely distorted. Pearlman and Gray [198] proposed

that the phase must be contained in 1.37 times more bits rate than the magnitude

to achieve the lowest distortion for each compression rate. Tescher [199, page 63]

showed that at the lower level of quantization (less than eight) the RMS error

due to phase quantization is around ten times larger than the RMS error due

to magnitude quantization. Piotrowski and Campbell [194] tried to measure the

effect of the quantization of phase’s values on visual recognition. They reported

that even two levels of quantization still produce a retrieved image which is rec-

ognizable. However, some quantization levels of phase can hinder the retrieved

image to be recognized and the how it happens has not been explained.

The phase has also been reported to be relatively more important than mag-

nitude in the digital filter applications although most of the past researches on

recursive digital filters, whether in first- or two-dimensional domain, utilized only

the magnitude part, such as in Upadhyay and Karmakar [200], Ekstrom and

Woods [201], Friedlander [202]. That the phase was usually ignored in the design

of image filters is unexpected as the importance of the phase has been known

for a long time. Huang et al. [196] argued that phase is extremely important to
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be included in the filter design, as excluding the phase may lead to unsatisfac-

tory design. Horner and Gianino [197] concluded that the phase-only filter has

better performance in terms of all three measures they used (e.g.: criteria of dis-

crimination, correlation peak, and optical efficiency) than the performance of the

magnitude-only filter and the classical match filter. They also reported even in

matched filtering the phase information is considerably more important than the

magnitude information. A similar conclusion has been reported by [203]. They

found that by performing single-frequency filtering in the phase only in speech

signals will preserve the information being conveyed.

Although initially the phase was considered as unimportant in speech enhance-

ment [204, 205], many researches have argued otherwise. Paliwal and Alsteris

[206] showed that short-time speech signals which were synthesized from phase

spectra only can be as intelligible as the signals recovered from magnitude spec-

tra only although the common view argues that the phase has less contribution

in speech recovery. They showed that the phase even becomes more important

than magnitude in longer windows of speech signals. A similar conclusion has

been reported by Paliwal et al. [207]. They opposed the believe that short-time

phase is unimportant. They conducted a series of objective and subjective ex-

periments on four different methods of speech enhancement and they concluded

that the phase spectrum compensation method achieves better speech quality

improvements than the rest of the methods. After that, phase-based speech en-

hancement techniques become more popular and are considered to perform better

than the magnitude-based methods [208].

A quite different approach was made by Ni and Huo [209]. They proposed

a series of statistical derivations of the DFT to support the idea that phase is

more important than magnitude. They demonstrated that the inverse Fourier

transform of a set of complex numbers with random values will produce a set

of random numbers with suppression only when all the phases are zero. The

first element (the DC component) of this suppressed set of numbers is too large

compared to the rest of the elements. This will not happen when the values of

the magnitude is constant. They also made some statistical derivations showing

that a reconstruction with distorted phase in a set of random numbers will be

unlikely to be close to the original. A similar approach which also provide the

same conclusion had been made by [210]. However, those results seem only valid

for signals with random values because in some cases it is clear that the phase

can be less important than the magnitude. Moreover, they did not make any
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confirmation from visual tests to prove that the image from distorted phase will

be perceived as different to the original one.

Based on the belief that the phase is more important than the magnitude,

many researchers developed techniques to recover signals using phase only. Those

methods are useful in certain applications in which only the phase information is

available [195]. However, because a signal cannot in general be uniquely defined

by its phase only, some additional constraints must be available to recover signals

from their phase [211]. For example, if a sequence of signal has no zeros in

reciprocal pairs or on the unit circle then it will have minimum phase and thus can

be uniquely defined to within a scaling factor by its phase [212]. Ma [213] derived

a matrix from the constants of the Fourier transform to define the uniqueness

of a finite length real sequence which is reconstructed from its phase. Ma [213]

concluded that if the matrix is non-singular then that sequence can be uniquely

recovered.

Although the exact set of constraints has not yet been confirmed, many re-

searches have proposed algorithms that can recover an image uniquely from its

phase only. Among the early methods are the iterative schemes and the closed

form solution [195, 211, 212, 212, 214]. In the iterative methods the sequence

will be transformed at least twice in each iteration. It has been reported that if

the FFT length of the sequence is at least twice the length of the sequence the

iterative algorithms will always converge [215, 216]. Some modifications had been

made to improve the convergence speed and the quality of the image being recov-

ered [217] The second method is the closed form solution which is very different

from the iterative scheme. In this method the FFT of the sequence was derived

into a set of matrices multiplication and then by solving a matrix inversion the

target sequence can be achieved [212]. Compared to the iterative methods, the

close form solution guarantees the desired sequence without iterations [211, 212].

Not only from the signal processing point of view, justifications which support

that the phase is more important than the magnitude also come from the result

of psychophysics experiments that involve subjects to perceive images visually.

There is much evidence reported for the importance of this. The first observed

visual evidence of the phase dominance over magnitude is from the field of X-

ray crystallography where phase determines the shape of the electron density

[218]. Piotrowski and Campbell [194] and Oppenheim and Lim [195] performed

simple experiments which shows a similar result. They swapped the phase of

two common different images and the resulted image will clearly resemble the

image which share its phase. Using the same method Skottun [219] showed that
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phase also dominate the influence in the perception of the Muller-Lyer illusion.

More vigorous investigations have been made by other researchers. Victor and

Conte [220] have shown that the discrimination of iso-dipole textures (textures

with identical one-dimensional second order statistics [221]) is based on relative

spatial phase and not on global Fourier amplitudes. Patterns with the same

amplitudes spectra but different in phase spectra will be discriminated. Even

small perturbation such as randomization and quantization on phase will create

salience of the statistical differences between the original image and the phase-

perturbed image [222].

2.5.2 Magnitude can be more important than phase

In spite of so much evidence and proofs, there is still no clear explanation on how

exactly the phase spectra become more important than the magnitude spectra.

From the signal processing stand-point, there are many researches suggested that

the phase is not always important. Lohmann et al. [223] made two quantitative

measurements to know which one between the phases-based hybrid image and the

magnitude-based hybrid image that will be more similar to the original image.

The first measure was called the test in isolation method where the correlation of

phase-based image and the original image was compared to the correlation of the

magnitude-based image and the original image. The second method wai the test

of robustness method. A comparison between the phase-based hybrid image and

the magnitude-based image was made in this method. However, in the second

method, the phase and the magnitude were each combined with its conjugate

pair. They concluded that the believe that the phase is more important than the

magnitude cannot be confirmed.

If the importance of the phase or the magnitude is based on the possibility

to reconstruct an image using the inverse Fourier transform of the phase only

or the magnitude only, it will be difficult to decide convincingly which one is

more important than the other because both of them have received mathematical

supports in terms of the solution availability and its stability [213, 224–227].

Moreover, both the magnitude and the phase have been used as the bases to

develop a large number of algorithms which have been implemented in various

applications. The review of each method can be found in [205] for the phase-

based algorithms and in [228, 229] for the magnitude-based algorithms. The

main reason of the development of the phase-based methods is the belief that

phase is more important than magnitude, whereas most of the magnitude-based
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algorithms for signal reconstructions have been developed due to the absence of

the phase information, so that only the magnitude spectra is available. Only small

portion of those methods were developed based on the believe that the magnitude

has more influence to the result than the phases has. It happened especially in the

field of speech enhancement and recognition in which since Wang and Lim [204]

concluded that the phase is unimportant, many algorithms of speech recognition

and enhancement have been adopting magnitude-based methods [230–232].

Although it seems to be true that the magnitude is more dominant over the

phase, as has it has been reported by Wang and Lim [204], that happened most

likely due to the length of the signals were relatively short so that the magnitude’s

influence tends to be more significant [233, 234]. There are at least three cases

that have been reported which make the magnitude becomes more important

than the phase. The first case is when the phase information is not available, the

magnitude becomes important. This case happens in some applications [212, 235–

237]. However, this reason will be irrelevant to measure the dominance of the

phase over magnitude. The second case is when some distortion or some noise are

presence in the original data, the magnitude become more important than the

phase because signal reconstructions from the phase will be more difficult than

from the magnitude [204]. Therefore, in some applications where the phase spec-

tra are noisy, such as in speech recognition, the phase will be ignored completely

and leave only the magnitude information to be used to develop the algorithm of

image recovery so that the optimal solution can be achieved [238]. The third case

is when the data of the phase is incomplete, to recover an image using such data

will produce an unreliable result [239]. Meanwhile, reconstructing an image from

its distorted magnitude spectra will resemble the original image [210]. Therefore,

in this case the magnitude is more needed than the phase.

In the ideal case, i.e., when the data is relatively free from noise, the phase

usually will be more important than the magnitude. Despite it is still possible

to recover signals from their magnitudes, it will normally be more difficult [237].

Moreover, the constraints that must be provided for the magnitude-based algo-

rithms will be more restrictive than those for the phase-based methods [212].

Therefore, from the signal processing stand-point, it seems that the phase is still

more important than the magnitude.

However, from the visual perception point of view, it has been reported that

the magnitude spectra can be more important than the phase spectra. As the

phase contains topological information about image edges whereas amplitude en-

codes image intensity, it will be possible that in certain cases, the perception of
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images will be more influenced by the image intensity than the edges. Therefore,

visually, the magnitude can be more dominant than the phase. Moreover, it has

been reported that magnitudes seems to bear some main textures’ characteris-

tics. Julesz [240], from his early works on texture discrimination, concluded that

textures which have the same second-order statistics would not be discriminated.

This result implies that images with identical magnitude spectra and therefore

have the same texture will be perceived to be as the same category of images

regardless the phase spectra they have. This believe is supported by Guyader

et al. [241] who also argued that the shape of the magnitude spectra determine

the texture of the image. Therefore, images will be perceived to be more simi-

lar if the shape of their magnitude spectra is the same. Juvells et al. [242] also

reported that magnitudes appear to be more dominant in natural images be-

cause the shapes of the magnitude spectra of those images are basically similar.

However, when their magnitude spectra have substantially different shapes, the

phases will be unimportant.

Although some counterexamples to that argument exist, Julesz [243] had been

vigorously re-examining the importance of the magnitudes and reported that the

discrimination of two different textures is independent of phase. In other word,

magnitudes have bigger influence in the texture discrimination. A report by

Tang and Stewart [190] also suggested that magnitude spectra contain enough

texture information which is useful in the algorithm of the image classification.

The images with relatively similar magnitude spectra will tend to be perceived as

similar images. Other than the shape, the orientation of distribution energy of the

magnitude spectra is believed to also influence the dominance of magnitudes over

phases in the appearance of the hybrid images [244]. The size of the magnitude

spectra is also reported as determining the dominance of the magnitudes. Morgan

et al. [233] conducted an experiment by swapping magnitude patches and phase

patches of two images. The result shown that the smaller the patches the less the

dominance of the phases and therefore the bigger the influence of the magnitudes.

This result shown that the smaller the size of the magnitude spectra the stronger

the dominance of the intensity over the image edges.

2.5.3 Quantitative measurements on phase dominance

Although there have been huge number of researches in the phase and the magni-

tude dominance, there are only few attempts have been made to measure quan-

titatively the influence or the dominance of the magnitude or the phase using
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the Fourier spectra of the image itself. The earlier uses of the Fourier spectra in

relation with the dominance of the phase are to measure the effect of the phase

and magnitude distortion. Hsiao et al. [245] derived a set of error metrics from

the spectral magnitude and phase to measure the intelligibility of images recon-

structed from distorted amplitude and phase spectra. Those metrics seems not

to give an effective result as the effects of amplitude and phase errors appear to

be similar. Another further rigorous elaboration on error metrics was then made

[246]. The error was calculated from the euclidean distance of each corresponding

elements of the original and the distorted Fourier transforms. However, that pro-

posed error metrics was again not effective to depict the effect of the magnitude

distortion, especially when the distortion is relatively large.

A quite similar method to measure the effect of the phase and the magnitude

distortion was proposed by Lattman and DeRosier [247]. They derived two pa-

rameters, i.e.: the R.M.S. error and the correlation coefficient, from the Fourier

transform of the hybrid image and the source images. Their method seems to

work well as the hybrid image will always has bigger correlation and small error

with the source image which shares the phase than the one which contributes

the magnitude. However, they reported that when the sources image have a high

correlation, the methods will give a poor result. As initially intended to measure

the distortion effect on phases and magnitudes only, the method therefore can

not be used to predict in what measure the magnitude will dominate the phase.

An attempt that was intended to measure the dominance of the phase had

been made by Millane and Hsiao [218]. They proposed a ratio between two error-

distances of the circular power spectra of the images to determine the dominance

of the phase. The maximum value of the ratio is 2.2 which will happen if the

power spectra of the two images are the same and the minimum one is 1.2 if the

power spectra of the two images are very different. They argued that the phase

will always be dominance for the ratio greater than 1.0 although if the ratio less

than 1.5, the phase dominance is getting weaker. There are at least two things

to be concerned with that proposed function of ratio. The first, although they

provided two sets of images which exhibit as predicted by the ratio function, more

sets of images are needed to verify the validity of the function along the curve

within more convincing spaces of values. The second, that ratio function can not

allow the ratio value which represents the sets of images which have dominant

magnitude although that kind of sets of images can be easily found even in the set

of natural images. Therefore, this function ratio still needs further investigation.
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There are at least two reasons why the above statistical approaches of the

phase dominance are not effective. The first reason is that the magnitude spec-

trum itself is not the representation of the image. The phase spectrum is also

important, even in most cases the phase is more dominant so that two images

with exactly similar magnitude spectra but different phases will be perceived dif-

ferently. The second reason is that merely element-wise measurement of statistics

of the magnitude spectra does not convey spatial information of the image’s pix-

els. Therefore, measuring the dominance of the phase using statistical properties

of the magnitude spectra will not always provide the correct result. As shown by

Gluckman [248], Mashhadi et al. [249], the images with different pattern can have

magnitude spectra which share the same statistics. They reported that images

with same frequencies (magnitude spectra) but different phases can have same

statistical moments.

2.5.4 Fourier transform-based features

Although the use of the magnitude spectra did not seem to give promising result,

it does not mean that the magnitude spectra will not be useful to predict the

dominance of the phase. As it has been reported by [233] that the smaller the size

of the image patches the weaker the dominance of the phase. In other perspective,

the higher the frequency of the images’ texture, the weaker the influence of its

phase. At some point, the magnitude will be more dominant than the phase.

Beyond that point the magnitude will even become more dominant. It also means

that the image with high frequency of texture will have dominant magnitude.

As each element of the magnitude spectra of an image represents a spatial

frequency, the measurement in that domain can be used to measure the phase

dominance. By definition, the the stronger the phase, the more similar the hy-

brid image to the source image which contributes phase. Therefore, the texture

features which have been used to discriminate images’ textures can be used to

measure the phase dominance of images. Weszka et al. [250] proposed two types

of features, they are the ring-shaped and the wedge-shaped regions of the summa-

tion of the power-spectra (the square of the magnitude spectra). The rings’ sizes

and the wedges’ angles were varied into four values. Liu and Jernigan [54] pro-

posed twenty eight texture features which were extracted in the spatial frequency

domain to classify images under additive noise. Although they reported that not

all of the twenty eight features were useful, at least four of them gave accuracy

of at least 92%. Based on those twenty eight features, Tsai et al. [251] selected
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five of them and made some modifications in them to assess surface roughness.

They showed that among five features only one of them that did not correlate

with the roughness. The similar features were used by Lee et al. [252] to develop

an automatic system of roughness inspection by a computer vision. They used

two power spectra-based features and one spatial domain-based feature.

Although all of them reported that the use of those magnitude spectra-based

features were successful, they could not show that each feature has a high cor-

relation with the image’s textures. They incorporated non-linear methods and

used those features as the input variables so that the successful result could be

achieved. Some researchers utilized some filters to get features that provide bet-

ter results for texture discrimination. Maani et al. [253] proposed a set of features

which based on the circular band-pass filters. Zhang et al. [254] applied the wedge

and Gaussian filters into the magnitude spectra. Despite so many features have

been developed, it is still difficult to discriminate the textures merely by the use of

linear combination of them. Therefore, some of those researchers did not hesitate

to use neural networks instead of regression methods.

Beside the magnitude spectra, again, based on the belief that the phase is

more important than the magnitude, some researchers have made attempts to

extract a set of features from the phase spectra. Eklundh [255] proposed the

ring-shaped and the wedge-shaped regions of the phase features which are similar

to Weszka et al. [250] but calculated in the phase spectra domain. He reported

that those phase features were not useful for texture discrimination. Dong et al.

[256] applied a set of fifty one features which have been listed in Dong et al. [257]

into phase spectra to measure the similarity between images. However, to make

a comparison of their performances, they also applied those features calculation

into the magnitude spectra. They reported that the result was not as initially

expected. Eventually, those features worked better for the magnitude than for

the phase. Ojansivu and Heikkilä [258] proposed a local phase-feature to classify

textures under blur condition. Four elements of the phases are selected based

on the certain criteria. They reported that the performance of the method was

much better than other used methods. When the radius of the blur is two pixels,

this methods still gave the accuracy of more than 90% while the other used

methods provided the accuracy below than 40%. This method has been adopted

in other applications such as identification of face expression [259], signature

verification[260], and fingerprint recognition [261].
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2.6 Summary

In this chapter, the term roughness was defined in two different meanings: first,

physical roughness which represents the surfaces’ asperities that can be measured

and quantified using standard parameters; and second, perceived roughness which

is a sensation fbiblelt by touching or sliding the skin across a rough surface. Both

roughness terms are used to characterize surfaces’ textures. Physical roughness

is more studied and well understood. Many measurement techniques have been

established. The 2D and 3D standard roughness parameters have been defined

to describe the surface topographies in the better representations. Roughness

perception has different situation. Despite having been studied for decades by

many researchers, it is still not well understood how humans perceive and dis-

criminate the roughness of surfaces. Early psychophysical and neurophysiological

studies were devoted mostly to investigate the correlation between particles’ size

and the subjective magnitude of roughness and to understand how neural-codes

that underlie the roughness perception work. The stimuli used had relatively

simple and homogeneous textures. The more recent researches have studied the

roughness perception not only by direct touching but also by using sensors that

record the vibrations evoked when they slide across the surfaces. Some features

of the vibration profiles were extracted and correlated with the touching percep-

tion. However, most of them were using available materials as the stimuli such

as fabrics and sandpapers. In 2009, Elkharraz et al. [52] proposed a method to

design and manufacture stimuli with predefined textures. In this method, the

surfaces’ topography can be represented using images instead of roughness pa-

rameters. Therefore, the image’s features can be used to model the perception of

the roughness. One of the image’s feature types is the Fourier transform-based

features. They convey spatial frequency information of the textures and there-

fore they are most likely to correlate with roughness which also implies vibration.

The features may be extracted from the magnitude or the phase spectra. Due to

there is still no agreed conclusion so far either the magnitudes or the phases that

is more important to represent the image, further investigation is needed both in

the visual and touch perception.



Chapter 3

Magnitude Estimation of

Roughness

3.1 Experiment Rationale

The present study aims to investigate human ability in perceiving and discrimi-

nating irregular roughness patterns on surfaces. This series of experiments were

intended to determine, for both vision and touch:

1. How people perceive roughness of the irregular patterns on the tactile tex-

tures and the images;

2. The relationship between Ra values and the perceived roughness of first-

order tactile textures;

3. The relationship between visual and tactile perception for irregular pat-

terns.

While the perception of regular roughness patterns (dots and gratings) is al-

ready much studied, the perceived roughness evoked by surfaces with irregular

roughness which are common in nature is less understood. The perceived rough-

ness for this surface is difficult to predict because the shape, the size, and the

arrangement of each roughness element on a non-homogeneous surface may not

be able to be definitely determined. In particular, while there is a general cor-

relation between measured and perceived roughness, the correspondence is not

one-to-one, and textures that feel very different can have the same measured

roughness.

Despite being random, roughness elements always form a pattern on the sur-

face. Cutaneous mechanoreceptors are spread across two-dimensional receptive

48
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fields [134] just like vision [31]. Therefore, humans should be able to not only

perceive roughness but also discriminate its pattern to a certain degree.

Early studies in tactile patterns were intended to convert sound and images

to the tactile pattern to help the deaf and blind communicate [147]. The pattern

was generated using Optacon, a regular array of pins placed below a perforated

surface. They are controlled and actuated so that some of them appear on the

surface to form a pattern, such as a letter or Braille, or others. The array size nor-

mally fits the finger pad area. Bliss [148] showed that subjects were successfully

able to read letter-shaped patterns using Optacon. The reading performance is

influenced by pattern size [149], display time [150], and the presentation mode

[151]. Those factors are underlaid by tactile aspects such as spatial acuity, tempo-

ral resolution, cutaneous masking, perceptual integration, and limited attention

[147]. Whereas those aspects are well studied in regular patterns, there is no study

which has investigated their role in perceiving irregular roughness patterns.

In this study the irregular roughness pattern will be created by transforming

a binary image pattern into the boxels formation. A boxel is a regular tetragonal

prism with its height determined by a value in the respective matrix cell. All

values in the matrix are regarded as grayscale values of an image. The surface

topography was formed by boxels. The designed surface textures were, then,

engraved on the top of stimuli plaques. The .stl file of the stimuli were created

using a customized computer program. The plaques were then manufactured

using a 3D printer. This technique is adopted from [52].

The boxels’s size is determined so that it is touched and perceived either

individually or in group as a feature. Its cross section area is therefore smaller

than the spatial acuity of the finger skin which is around 0.87 mm [117]. Because

the position and orientation of the texture elements are random, the skin will

likely be detecting vernier alignments on it. As shown by Loomis [120], the

human fingerpad can detect alignments which are one-fifth shorter than two point

threshold acuity, i.e. approximately 0.17 mm. A detectable alignment will consist

of at least two boxels. In this experiment the cross section size of a boxel is

0.8mm × 0.8mm. The maximum height of the boxels should be at least more

than just noticeable difference (JND) for the smooth surface which is (15±8.5µm)

[30].

This study emulates Julesz’s work on the discrimination of visual patterns.

Visual texture perception theories are well-established compared to those of tac-

tile texture perception. An image is perceived not merely based on the informa-

tion from visual sensory but also on the informative percepts [136]. There are
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three major views to this theory: structuralism, Gestalt, and Helmholtzean views

[135]. Based on the Gestalt views, the visual pattern can be perceived and dis-

criminated by the following properties: area, proximity, similarity, closure, good

continuation, convexity, and symmetry.

Stepping from the Gestalt theory Julesz investigated the discriminability of

the visual texture from Markovian generated patterns [240]. In this type of pat-

tern, the colour of each pixel is determined by a probability rule (it is commonly

called as transition probability) which take into account the colours of its neigh-

bouring pixels. The number of the neighbouring pixels affecting the transition

probability is called order. For example, in a second-order pattern, the transition

probability of the pattern is determined by two pixels, first the corresponding

pixel itself and second, an adjacent pixel on left side (i− 1th cell of an array).

Julesz conjectured that visual patterns can be discriminated if they have dif-

ferences in the first-and second-order probability (i.e. in which the probability

of a pixel having a particular value is affected to different degrees by those of

its first, second and third nearest neighbours). The difference in the third- and

higher-order statistics will not be visually discriminable. His generated patterns

showed the relevance of the theory. However, Julesz did not perform quantitative

experiments; his conclusions were apparently self-evident from the images he used

in his papers.

3.2 Method

3.2.1 Participants

The number of subjects in the experiments of magnitude estimation vary among

the studies [33, 38, 262–264]. There is no explicit rule has been reported to

effectively determine the number of subjects. Rather, trials’ number is preferable

instead of subjects’ number. Kingdom and Prins [129, page 57] mentioned that

400 trials is a reasonable number to estimate both the threshold and and the

slope of a psychometric function (PF). Thus, at least two responses have been

obtained from each subject, and an average response over subjects is taken as

the magnitude scale [265]. The averaging over subjects is preferred due to the

need for central tendencies, not individual differences. To obtain more than 400

trials for each texture which consisted of nine stimuli with two repetitions, at

least twenty three subjects are needed in this study. However, in this study

there were thirty participants which result in 540 trials for every experiment with
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one texture. The participants were recruited from undergraduate and graduate

students at the University of Leeds. All subjects were interviewed to make sure

they were free from diseases or injury that could affect the tactile sensitivity of

their hands. They were naive to the hypothesis. Ethics approval was granted by

the University of Leeds ethics committee.

3.2.2 Stimuli

The image patterns were created by adopting Julesz’s three markovian visual

textures: first-, second-, and third-order statistical images. The textures were

composed from black and white pixels. A computer program written in Java� was

used to generate the images (Appendix A.1). Thus, the probability distribution

was generated from a pseudo-random generator.

In the first type of textures, the probability for being black for each dot is

independent from the colours of the neighbouring pixels. However, the probability

of white dots in each pattern of the nine images was set to be 10%, 20%, 30%,

40%, 50%, 60%, 70%, 80%, and 90% (Figure 3.1).

Figure 3.1: First-order textures with transition probabilities from 10% to 50% in the upper

row, and 60% to 90% in the lower row.

The second type of textures have identical first-order distribution (black and

white dots of equal probability) but differ in their second order probability distri-

bution. The colour of each dot depends on the colour of the left-side dot following
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a Markov process having the transition probabilities:

P (µi−1, µi) =


a

100
, if µi−1 = µi

µi = 0 or 1
100−a

100
, if µi−1 6= µi

(3.1)

where µi is the colour value of the ith dot, i−1 refers to the left adjacent dot, zero

means black and one means white. The colour of the first dot of a horizontal line

is independent of the last dot colour of the previous line. There are nine different

patterns by setting the values of a: 10, 20, 30, 40, 50, 60, 70, 80 and 90 (Figure

3.2).

Figure 3.2: Second-order textures with transition probabilities from 10% to 50% in the upper

row, and 60% to 90% in the lower row.

The third-order textures have identical first-order distribution (each colour

has the equal probability) and second-order probability distribution (the colours

of two adjacent dots are independent) but differ in their third-order probability

distribution which was defined by the following transition probabilities:

P (k|ij) = P [2k − i− j = s(mod2)] = P (s) (3.2)

where i, j and k are the values (which may be zero or one) of successive samples

along the horizontal line from left to right, s is zero or one which refers to black

or white. The values of the transition probabilities (P (s)) were set: 10%, 20%,

30%, 40%, 50%, 60%, 70%, 80%, and 90% (Figure 3.3).

Julesz created two different patterns for each nth-order statistical textures

by setting two contrast values of transition probabilities. These two patterns
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Figure 3.3: Third-order textures with transition probabilities from 10% to 50% in the upper

row, and 60% to 90% in the lower row.

were presented in pair side-by-side or one contained in the other. The tasks in

his experiment were to discriminate both patterns in each pair. In the current

experiment, the transition probability of each statistical-order was varied from

10% to 90%; thus, there were nine different patterns for each nth-order statistical

textures or 27 patterns in total. The subjects’ tasks were to estimate and report

the roughness for each pattern. If two different patterns were perceived to have

the similar roughness it means both patterns were indistinguishable, otherwise

if both patterns have different perceived roughness it means both patterns were

likely to be discriminable.

In the visual experiment, these textures were used directly as stimuli which

were displayed on an lcd monitor. While, in the tactile experiment, the textures

were transformed into 3-D surfaces by converting the dots to the boxels (Figure

3.4). The white dots become boxels with 0.5 mm height and the black dots

become boxels with 0 mm height. The size of each stimulus is 51 mm×25 mm×
3 mm, so there are 102 × 50 boxels for each surface. The tactile stimulus were

printed using Perfactory 3 Mini Multi Lens® with printing resolution up to 30

µm. The material used was resin.

3.2.3 The computer codes for creating textures

As mentioned in the previous section, there are three types of textures: first-,

second-, and third-order textures. Each texture was composed by white and black
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(a) Image pattern (b) Roughness pattern

Figure 3.4: Image (a) to roughness pattern (b) transformation

pixels in an 512 array. In the first-order type of textures, the probability for being

white for each dot is independent from the colours of the neighbouring pixels.

Algorithm 1 shows how the first-order textures were created. The probability of

white pixels (a) is used to determine the transition-probability of the first-order

textures.

Algorithm 1 First-order textures
1: procedure first-order Markov

2: SET :

3: fill array with 0

4: get the probability threshold of white pixel (a)

5: loop:

6: for each row in array do

7: for each element in a row do

8: generate random number (r)

9: if r ≤ a then

10: set the element’s value: 255

11: else

12: set the element’s value: 0

In the second-order textures, the colour of each dot depends on the colour of

the left-side dot following a Markov process having the transition probabilities in

equation 3.1. Algorithm 2 is used to implement this equation. The position of

an element in the array is notated as (i, j), where i is for a column number and

j for a row number. The probability of being white for the first pixel of each row

is set to be 50%.

In the third-order textures, the probability of each dot to be white depends on

the colour of two previous adjacent pixels following equation 3.2. This equation

implies that if the two previous pixels have the same colour, the probability

of being white is equal to the transition probability being set. Otherwise, the

probability of the third pixel to be white is one minus the transition probability.
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Algorithm 2 Second-order textures
1: procedure second-order Markov

2: SET :

3: fill array with 0

4: get the transition-probability (a)

5: loop:

6: for each row in array do

7: for each element in a row do

8: if i = 0 then

9: generate random number (r)

10: if r ≤ 50 then

11: set the element’s value: 255

12: else

13: set the element’s value: 0

14: else

15: generate random number (r)

16: if r ≤ a then

17: (ith) element’s value = (i− 1th) element’s value

18: else

19: (ith) element’s value = 255− (i− 1th) element’s value

Algorithm 3 is used to implement this procedure. Again, the position of an

element in the array is notated as (i, j), where i is for a column number and j for

a row number. The probability of being white for the first and the second pixels

of each row are set to be 50%.

All the algorithms were implemented in Java� language to generate the image

textures (Appendix A.1 ). Another Java� code was written to convert all image

textures into ASCII .stl files (Appendix A.2). A sample of CAD model of the

tactile stimuli is in Figure 3.5. The size of the stimuli’s base is 50mm× 25mm×
2mm. The size of each boxel is 0.3mm× 0.3mm× 1.0mm. The ASCII formatted

.stl files were then converted into binary .stl files using Netfab �. This software

was also used to repair any error in the files such as duplicated lines or meshes.

The files were then brought to the Perfactory 3 Mini Multi Lens® to print the

textures.

Figure 3.5: A sample of CAD model of the tactile stimulus.
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Algorithm 3 Third-order textures
1: procedure third-order Markov

2: SET :

3: fill array with 0

4: get the transition-probability (a)

5: loop:

6: for each row in array do

7: for each element in a row do

8: if i = 0 or i = 1 then

9: generate random number (r)

10: if r ≤ 50 then

11: set the element’s value: 255

12: else

13: set the element’s value: 0

14: else

15: generate random number (r)

16: if (i− 1th) element’s value = (i− 2th) element’s value then

17: if r ≤ a then

18: (ith) element’s value = 255

19: else

20: (ith) element’s value = 0

21: else

22: if r ≤ a then

23: (ith) element’s value = 0

24: else

25: (ith) element’s value = 255

3.2.4 Procedure

There were two sessions of experiments. The first session was a tactile experi-

ment, i.e. touching and estimating the roughness magnitude of the plaques, and

the second session was a visual experiment by seeing the image texture stimuli on

an LCD monitor and estimating the roughness perceived. Each subject completed

a session of visual experiment and a session of tactile experiment. Both experi-

ments had an identical set-up. The order of the sessions was counter-balanced.

Among thirty subjects, fifteen of them started the experiment from the visual

session and then followed by the tactile session and then another fifteen started

in otherwise order of sessions.

Each session consisted of three blocks which were labelled F for the experiment

using first-order textures, S for the experiment using second-order textures, and

T for the experiment using third-order textures. The order of the blocks was

counter-balanced too. There were six combinations for ordering these blocks: F-

S-T, F-T-S, S-F-T, S-T-F, T-F-S, and T-S-F. Each subject completed a block of

visual experiment session and a block of tactile experiment session. There were

five subjects for one combination.

A magnitude estimation (ME) method was adopted in the current experiment.
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Two stimuli were presented side-by-side. In the tactile experiment, to avoid

confusion, the left side stimulus was the reference and the right-side stimulus was

the test. The reference stimuli for each type of texture was using a texture with

transition probabilities 50% of the same type. For example, the experiment using

third-order textures would use a reference stimulus having third-order texture

with transition probabilities 50%. In the visual experiment, both reference and

test stimuli were randomized (Figure 3.6). The subjects were asked to sense and

assign a roughness value for each test stimulus by comparing to the reference one

(the value of which was allocated 50).

Figure 3.6: Image textures in the visual experiment. The subjects were asked to assign a

roughness value for the test stimulus by referring to the reference images.

An exercise to show the subjects how to work with ME method was given prior

to the experiment session. In the exercise, each subject was given a magnitude

estimation training sheet presenting twelve lines with different lengths. The first

line (at the top) is used as the reference (the value is 50). The participants were

asked to estimate and assign a value of each line by referring to the reference line.

In the tactile experiment, the subjects were asked to use the dominant hand

and the same finger during exploring the stimuli’s surfaces. A handedness ques-

tionnaire was given to the participant to know which hand is his/her dominant

one. Before exploring the stimulis’ surfaces, the condition of the fingerpad’s skin

was standardized by washing it using a sanitary wet wipe. The subjects were

asked to wear a sound defender to prevent the ear from listening to any sound

evoked by fingerpad when sliding on a stimulus’s surface.
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3.2.5 Analysis

The actual arithmetic average roughness (Ra) of the pattern is calculated based

on formula 3.3:

Ra =
1

n

n∑
i=1

|yi − y| (3.3)

where n is the number of boxels, yi is the height of the boxel. As there are only

two pixels value (0 and 255), there are also only two heights of boxel, i.e. y1 = 0

and y2 = 255. If the proportion of y1 value is p, then the actual Ra is:

Ra = 2(p− p2)|y2 − y1| (3.4)

Based on formula 3.4, the actual roughness of the first order is increasing from

p equals to 0% to 50% and then is decreasing symmetrically from 50% to 100%

order as shown in Figure 3.7. So, a pattern with the probability of y1 = p will

have the same actual Ra with a pattern with the probability of y1 = 1− p.

Figure 3.7: Percent of Markov Order vs Actual Roughness.

However, both patterns have contrasting topographies, the first one has a flat

surface with a number of hills and the second one has a flat surface with that

number of holes.

Since all the tactile stimuli with second- and third-order statistics textures

have the same p values (50%) and the boxels’ height is 0.5 mm, their Ra values

are identical i.e. 0.25 mm. These stimuli differ only in the spread pattern of the

boxels across their surfaces.
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3.3 Result and Discussion

3.3.1 Visual experiment

The result shown that each type of textures was perceived differently (Figure

3.8). The mean of the scales of the perceived roughness is generally decreasing

in the first-order textures, monotonically increasing in the second-order textures,

and relatively constant in the third-order textures. Their plot lines meet at the

middle point which indicates that the textures with 50% transition probabilities

were perceived to have an equal roughness regardless their type of textures. For

simplicity, each texture will be called as texture-10, texture-20, and so-forth to

indicate their percentage of transition probabilities.

Figure 3.8: Scales of the perceived roughness of the visual textures with first-, second-, and

third-order statistics. The horizontal axis is the category of textures with each point indicates

the percentage of the transient probabilities of the corresponding texture. The vertical axis is

the scales of the perceived magnitude of the textures.

To measure the difference between the perception patterns of each visual tex-

ture, the correlations of the perceived roughness between texture types were used

as the indication. Shepherd’s pi correlation method ([266]) was used to calculate

the correlation. This method was selected due to its robustness to the influential

outliers [267]. The result is presented in Table 3.1. It is seen that the correlation

magnitude between texture types (r value) is less than 0.305. The ranges of cor-

relations between the textures (CI 95%) are also not too far different from the
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Table 3.1: Shepherd’s Pi Correlation between the Visual Texture Types

Order n r CI 95% r2 adj r2 p-val power

first - second 540 -0.305 [-0.38, -0.23] 0.093 0.089 .000 .970

first - third 540 0.182 [0.1, 0.26] 0.033 0.03 .000 .990

second - third 540 -0.12 [-0.2, -0.04] 0.014 0.011 .007 .796

measured correlation (r). A correlation value which is below than 0.30 is con-

sidered as negligible [268]. Therefore, it is more acceptable to consider that each

type of textures was perceived differently than to accept that they were perceived

similarly.

Although it is negligible, the correlation between texture types can give a

glimpse of the relationship between them. As shown in Table 3.1, the correlation

between the first-order and the second-order statistical textures is negative. It

indicates that both of them have trends of subjective roughness with opposite

direction. The first-order and the third-order textures have positive correlation

and, therefore, they have the same direction of roughness pattern. Finally, the

second-order and the third-order textures have negative correlation which means

they have different pattern of subjective roughness. As seen in Figure 3.8 that

the roughness scale of the third-order textures is relatively constant, they will

always give a low correlation with other types of texture as can be seen from the

r values in Table 3.1).

First-order visual textures

In the first-order visual textures, subjects were able to recognize and to discrim-

inate all test textures from the reference one (texture-50) as shown by Table 3.2.

This table is the output of the ANOVA analysis and it shows whether there is

a statistically significant difference between groups of the textures in the mean

of scales of the perceived roughness. It is seen in the table that the value of

F (8, 531) equals to 15.933 and it refers to a significance value (p) of .000 which

is significantly smaller than .05 and, therefore, the null hypothesis that there is

no difference between group means is rejected. The variance of the texture con-

tributes 19.4%, which is large (Table 3.3), to the total variance (EtaSq). This

result supports the conclusion that the scale of the perceived roughness for each

texture is different.

Furthermore, the difference of the scales for all of the first-order statistical

textures can be investigated in more detail from the multi-comparisons of the

mean of scales between all texture groups. A pairwise comparisons test based
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Table 3.2: ANOVA Test for First-Order Visual Textures: Between Textures

Source SS DF MS F Pr(>F) EtaSq

TEXTURE 41.709 8 5.214 15.933 .000 0.194

Within 173.751 531 0.327

Table 3.3: The Criteria of Eta Squared [269–271]

Effect Size EtaSq

Small .01

Medium .06

Large .14

on Tukey’s honestly significant difference (Tukey-HSD [272]) method was used to

analyse the means’ difference of the subjective scale between the texture groups.

The result is shown in Table D.1. To have more clarity, the means’ differences

are plotted in Figure 3.9. It can be seen that the mean difference between the

scales of perceived roughness for every adjacent pair of textures is not significantly

different. At a glance, it gives an impression that the subjective roughness of all

textures is the same.

Figure 3.9: Multiple comparisons of the scales’ means of the perceived roughness between all

pairs of the first-order visual textures. The blue error bars indicate that the difference of scales’

means for the corresponding pair is not statistically significant (p-Tukey > .05). If the error bar

is red, the scales’ means for the corresponding pairs is statistically significant (p-Tukey6 .05).

However, textures with a large difference in transition probability will be likely

to have significantly different perceived roughness (Figure 3.9). For example, the

first texture was perceived to be considerably rougher than texture-60 (their
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means’ difference is around 0.5). In general, the left side textures (their position

in the plots are in the left of the texture-50), were perceived to be rougher than

the right side ones (their position in the plots are in the right of the texture-50).

Therefore, it gives a different impression than the previous one. In here, the scale

of the perceived roughness of the first-order statistical visual textures is seen to

decrease.

Figure 3.10: Boxplot of subjective scale for each of first-order visual texture. The horizontal axis

is the category of textures with each point indicating the percentage of the transient probabilities

of the corresponding texture. The vertical axis is the scales of the perceived roughness of the

textures.

The decreasing pattern of the roughness’ scales can also be seen from Figure

3.10. The figure shows that the median value (the segment line in the middle

of each boxplot) of the subjective scales initially increases until reaches its peak

at texture-30 and then decrease until reaching the lowest point (at texture-90)

which is also lower than the initial value (at texture-10).

Figure 3.10 also shows that the variance of the subjective scale of roughness

varies significantly. The first three textures share a significantly large variance.

It can explain why they have a similar subjective roughness although they have

different median values as shown in Table D.1. Furthermore, the similarity of

subjective roughness of every two neighbouring textures can also be indicated

from their variance boxes which share the same wide portion.

From Figure 3.10, it can be seen that the further the distance of the texture

from the reference, the larger the variance. This result implies that the bigger

the difference between roughness sensation, the wider the spread of the subjects’
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response. Texture-50 has the narrowest variance because it actually has the same

texture as the reference, which therefore would give a small difference in roughness

sensation to subjects.

The first two textures have wide variances which have around 2/3 of their

part above the scale of 1.0 (rougher than the reference texture) and around 1/3

of their part below the scale of 1.0 (smoother than the reference texture). It can

also be seen from Figure 3.11 which shows more obviously that some subjects

perceived the first two textures to be rougher and some subjects perceived those

textures to be less rough than the reference texture. This result indicates that not

all subjects agree that those textures have a rougher sensation than the reference

texture.

Moreover, the average scale of subjective roughness of texture-10 was per-

ceived to be higher than the reference’s roughness, its median value (the line

segments in the centre of the boxplots) is lower than the mean value (the centre

of the boxplots) which, therefore, indicates that the proportion of the number of

subjects who perceived texture-10 to be smoother than the reference texture is

bigger than the number of subjects who perceived otherwise (Figure 3.10). These

opposite perceptions in the same texture will be called as different perspectives

of roughness.

Figure 3.11: Subjects’ roughness sensation on the visual textures with first-order statistics.

The horizontal axis is the category of textures with each point indicates the percentage of

the transient probabilities of the corresponding texture. The vertical axis is the scales of the

perceived roughness of the textures.

This indication of different perspectives of roughness perception can also be
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seen in Figure 3.11. This figure shows the response’s plots with different directions

(slopes). The direction of these lines can be estimated using the correlation

between the transition-probability of the textures and the roughness responses of

each subject as shown in Figure 3.12. From this image it can be seen that 60% of

the subjects have high negative correlations (−0.75 to −1.0) for their responses.

It means that the line plots of their roughness responses have negative slopes.

This also means that the roughness of the first-order statistical visual textures

were perceived mostly to get lower as the percentage of the transition probability

increases.

Ten percent of the subjects perceived these textures oppositely as seen also

from Figure 3.12. They felt that the roughness of the first-order statistical visual

textures increases as the percentage of the transition probability increases. Other

subjects (30% of them) have a relatively small correlation value (−0.5 to +.5)

which indicates three possibilities of different perception patterns. The first,

subjects may have perceived all the textures as relatively the same rough. The

second, the roughness may be perceived as increasing and then decreasing again

at some point. The third possibility is opposite to the second, the roughness

sensation decreased and then at some point increased.

Figure 3.12: The correlation between transition probabilities of the first-order visual textures

and the scales of perceived roughness for each subject. The subject with positive correlation

means that he/she perceived the scale of roughness to increase as the transition probability

increases. Zero correlation indicates the roughness perception is either constant, concave or

convex. Negative correlation indicatesthat the scales of perceived roughness decreases.

To measure the effect of the roughness variance by the subjects to the to-



65

tal roughness variance, an ANOVA analysis was performed. The output of the

analysis is presented in Table 3.4. From this table, it is seen that the value of

F (29, 510) equals to 1.909 which, therefore, will refer to a significance value (p)

of .003 which indicates that each texture has different roughness scales. The vari-

ance of the scales of perceived roughness which comes from subjects contributes

9.8% which is relatively medium (Table 3.3), to the total variance of the data.

However, compared to the variance contribution by the textures which is 19.4%

(Table 3.2), the variance by subjects is considerably smaller. This indicates that

the textures themselves give more effect to the pattern of the roughness response

than the subjects which, therefore, supports an indication that each texture has

a different roughness scale.

Table 3.4: ANOVA Test for First-Order Visual Textures: Between Subjects

Source SS DF MS F Pr(>F) EtaSq

SUBJECT 21.098 29 0.728 1.909 .003 0.098

Within 194.362 510 0.381

Despite the evidence that there are different perspectives of visual roughness

among subjects, as shown in Figure 3.13, the scales of the perceived roughness

of the first-order statistical visual textures generally decrease. Although, in this

figure, the responses of the roughness scales are represented only by their mean

value for each texture (red dots), to fit the polynomial functions, all response

values were used in the calculation. Four polynomial functions that were used to

fit their roughness responses show that it is sufficient to use the third degree of

polynomial function. Higher than that degree, the R2 values will not improve.

The plot of the subjective roughness is seen to be sigmoid. The third-degree

polynomial plot shows that at the beginning, the roughness scale does not re-

ally change, then it changes sharply at texture-40, and then finally starts to be

constant again at texture-80.

Second-order visual textures

In the second-order textures, subjects were also able to recognize and to discrim-

inate all the test textures from the reference one. Table 3.5 shows the result of

the ANOVA analysis with the value of F (8, 531) equals to 25.718 which, there-

fore, refers to a significance value (p) of .00 which is significantly smaller than

.05 and this indicates that the means of the scales of perceived roughness of each

texture are different. The variance of the textures contributes 27.9% which is
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Figure 3.13: Polynomial regressions of the perceived roughness of the visual textures with first-

order statistics. The red scattered-dots are the mean of the scales of perceived roughness of

each texture. There are four polynomial functions with different degrees to fit.

very large (Table 3.3) to the total variance (EtaSq). This result implies that all

the second-order visual textures could be discriminated.

Table 3.5: ANOVA Test for Second-Order Visual Textures: Between Textures

Source SS DF MS F Pr(>F) EtaSq

TEXTURE 16.872 8 2.109 25.718 .000 0.279

Within 43.543 531 0.082

Furthermore, the difference of the scales of perceived roughness for all of

the second-order statistical textures can be investigated in more detail from the

means comparison of the scales of perceived roughness for each texture group. A

pairwise comparisons test based on Tukey-HSD method was used to analyse the

means’ difference of the subjective scale between the texture groups. The result

is presented in Table D.2 and in Figure 3.14. From this figure, it can be seen that

the mean difference between the scales of perceived roughness for every adjacent

pair of textures is not significantly different. At a glance, it gives an impression

that the subjective roughness of all textures is the same.

However, as the difference of the transition probability becomes larger, the

texture will be more likely to have different scales of perceived roughness. For

example, texture-10 and texture-20 were able to be discriminated from initially

texture-60 (Figure 3.14). Then, texture-30 starts to be significantly discriminated

from texture-70. In general, the subjective scale of the roughness magnitude of
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Figure 3.14: Multiple comparisons of the scales’ means of the perceived roughness between

all pairs of the second-order visual textures. The blue error bars indicate that the difference

of scales’ means for the corresponding pair is not statistically significant (p-Tukey > .05). If

the error bar is red, the scales’ means for the corresponding pairs is statistically significant

(p-Tukey6 .05).

the second-order statistical visual textures is monotonically increasing as shown

in Figure 3.8.

Figure 3.15: The boxplot of subjective scale for each of second-order visual texture. The hori-

zontal axis is the category of textures with each point indicates the percentage of the transient

probabilities of the corresponding texture. The vertical axis is the scale of the perceived rough-

ness of the textures.
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The pattern of an increasing scale can also be seen from the boxplot of the

scales of perceived roughness as shown in Figure 3.15. The figure shows that

the median value of the scales becomes higher when the transition probability of

the textures increases. However, the variances of the scales for each texture are

different. The further the distance of the texture from the reference, the larger the

variance. The pattern of the variance can also be seen from the plot of subjects’

response in Figure 3.16. This figure shows that the line plots of the subjects’

responses indicates that the at the beginning, the spread of the response is wide,

then becomes narrower until it reaches texture-50, and finally start becoming

wider again.

Figure 3.16: Subjects’ roughness sensation on the visual textures with second-order statistics.

The horizontal axis is the category of textures with each point indicates the percentage of

the transient probabilities of the corresponding texture. The vertical axis is the scales of the

perceived roughness of the textures.

Figure 3.16 also indicates that each subject may have a different pattern of

perception. This indication can be seen in the line plots in Figure 3.16 which

shows the response’s plots with different directions. The direction of these lines

can be estimated using the correlation between the transition-probability of the

textures and the roughness responses of each subject as shown in Figure 3.17.

From this image it can be seen that most of the subjects (70% of them) have

positive correlations for their responses. It means that the line plots of their

roughness responses have positive directions. This also means that the scales of

roughness of the second-order statistical visual textures were perceived by most

subjects to get higher as the percentage of the transition probability increases.
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Figure 3.17: The correlation between transition probabilities of the second-order visual textures

and the perceived scales of their roughness for each subject. The subject with positive corre-

lation means he/she perceived the the roughness scale to increase as the transition probability

increases. Zero correlation indicates the roughness perception is either constant, concave or

convex. Negative correlations indicate that the scales of perceived roughness decreases

Only less than 7% of the subjects perceived these textures differently as can

be seen also from Figure 3.12. They felt that the scales of roughness of the

second-order statistical visual textures decreases as the percentage of the tran-

sition probability increases. A subject has a relatively small correlation value.

To know whether the responses variance came from the responses’ noise or from

the different subjects’ perspective of the second-order visual textures, an ANOVA

analysis was, then, performed. The output is shown in Table 3.6. From this table

it is seen that subjects have a different pattern of roughness perception as the

significant value (p) is .033 which is a little smaller than the confidence level (.05).

Moreover, the variance of the subjects contributes 8.2% which is medium (Ta-

ble 3.3), to the total variance. However, compared to the variance contribution

by the textures which is 27.9% (Table 3.5), the variance by subjects is smaller.

This indicates that the textures give more effect to the pattern of the roughness

response than the subjects themselves.

Table 3.6: ANOVA Test for Second-Order Visual Textures: Between Subjects

Source SS DF MS F Pr(>F) EtaSq

SUBJECT 4.929 29 0.170 1.562 .033 0.082

Within 55.486 510 0.109
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As shown in Figure 3.18, the subjective scale of the roughness of the second-

order statistical visual textures generally increases. Although, in this figure, the

responses of the roughness scales are represented by their mean value for each

texture (red dots), to fit the polynomial functions, all response values were used.

Four polynomial functions that were used to fit their roughness responses show

that it is sufficient to use the first degree of polynomial function. Higher than

that degree, beside the R2 values do not improve significantly, the function may

also tend to overfit the roughness data. As it is seen in the figure, the subjective

roughness tends to increase linearly as the transition of the probability increases.

Figure 3.18: Polynomial regressions of the perceived roughness of the visual textures with

second-order statistics. The red scattered dots are the scales’ mean of the perceived roughness

of each texture. There are four polynomial functions with different degrees to fit.

Third-order visual textures

In the third-order textures, subjects were not able to recognize and to discriminate

all the test textures from the reference one. As it can be seen in Figure 3.8, the

plot of the subjects’ responses is flat. It means that all textures were perceived to

be the same. To know whether this statement is true or not an ANOVA analysis

was performed and the result is presented in Table 3.7. This table shows that the

value of F (8, 531) equals to .061 which, therefore, will give a significance value (p)

of .777 which is larger than .05 and it indicates that the means of the subjective

scales of each texture are the same. The variance of the textures contributes 0.9%

to the total variance (EtaSq) which is small (Table 3.3). It implies that all the

third-order visual textures could not be discriminated.
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Table 3.7: ANOVA Test for Third-Order Visual Textures: Between Textures

Source SS DF MS F Pr(>F) EtaSq

TEXTURE 0.202 8 0.025 0.061 .777 .009

Within 22.329 531 0.042

Furthermore, the similarity of the scales of perceived roughness for all the

third-order statistical textures can be investigated in more detail from the means

comparison of the subjective roughness scales of each texture group. A pairwise

comparisons test based on Tukey-HSD method was used to serve that purpose.

The output is presented in Table D.3 and in Figure 3.19. The differences between

group means (diff) are mostly less than 0.06 which are relatively small compared

to the means themselves which are around 1.0 (Table D.3). Then, it can be

seen that all p− tukey values are equal to or more than .05 which means that the

difference between means of subjective scales for all the textures is not significant.

Figure 3.19: Multiple comparisons of the scales’ means of the perceived roughness between all

pairs of the third-order visual textures. The blue error bars indicate that the difference of scales’

means for the corresponding pair is not statistically significant (p-Tukey > .05). If the error bar

is red, the scales’ means for the corresponding pairs is statistically significant (p-Tukey6 .05).

The boxplot in Figure 3.20 shows that the medians of each texture’s scale are

at the same level which also indicates that the subjective magnitude scales of all

textures are relatively similar. From this figure, it can be seen that the first four

textures have different variances while the last four textures have relatively the

same medians and variances. It indicates that the first four textures gave more
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diverse sensation to the subjects than the last four textures which have almost

the homogeneous roughness sensation.

Figure 3.20: The boxplot of subjective scale for each of third-order visual texture. The hori-

zontal axis is the category of textures with each point indicates the percentage of the transient

probabilities of the corresponding texture. The vertical axis is the scales of the perceived

roughness of the textures.

The line plot of the roughness responses itself shows a similar pattern (Figure

3.21). In this figure, it is seen that all lines form a relatively horizontal band

which, therefore, indicates that all textures have arguably no different roughness.

However, it is still possible that each individual line has slightly different slope and

position (some parallel lines are above or below others). As each line represents

the subjective roughness from each subject, the information of the line direction

will depict the pattern of his/her subjective roughness.

The direction of these lines can be estimated using the correlation between the

transition-probability of the textures and the roughness responses of each subject

as shown in Figure 3.22. From this image it can be seen that almost a half

of the subjects have positive correlations and another half of the subjects have

negative correlations for their responses. It means that there is a different pattern

of perception among subjects. It seems at a glance that a half of the subjects

perceived the third-order statistical visual textures to have lower roughness as the

transition probability increases, and another half of subjects perceived in opposite

direction.

However, there are 80% of the magnitudes of those correlation that are less

than 0.5 which is considerably low [268]. This results indicates that 80% of the
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Figure 3.21: Subjects’ roughness sensation on the visual textures with third-order statistics.

The horizontal axis is the category of textures with each point indicates the percentage of

the transient probabilities of the corresponding texture. The vertical axis is the scales of the

perceived roughness of the textures.

Figure 3.22: The correlation between transition probabilities of the third-order visual textures

and the perceived scales of their roughness for each subject. The subject with positive corre-

lation means he/she perceived the the roughness scale to increase as the transition probability

increases. Zero correlation indicates the roughness perception is either constant, concave or

convex. Negative correlation indicates that the scales of perceived roughness decreases.

subjects’ responses of the roughness have negligible correlation with the texture

types. In other words, this result support the statement that the roughness scale

of the third-order visual textures does not depend on the textures themselves.
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To know whether this different subjects’ perspective of the roughness is sta-

tistically present or not in the third-order visual textures, an ANOVA analysis

was performed. The output is shown in Table 3.8. This table shows that the

value of F (29, 510) equals to 2.137 which, therefore, will give a significance value

(p) of .001 which is significantly smaller than 0.05 and it indicates that subjects

have a different pattern of roughness perception (Figure 3.22).

The variance of the roughness scales from each subject contributes 10.8% to

the total variance (EtaSq) which is quite large (Table 3.3). However, compared to

the variance contribution by the textures which is 0.9% (Table 3.7), the variance

by subject is significantly larger. This indicates that the textures give consid-

erably little effect to the pattern of the roughness response than the subjects

themselves.

Table 3.8: ANOVA Test for Third-Order Visual Textures: Between Subjects

Source SS DF MS F Pr(>F) EtaSq

SUBJECT 2.441 29 0.084 2.137 .001 0.108

Within 20.090 510 0.039

Four polynomial functions were used to fit the relationship between the tex-

tures and the roughness responses. The plot of those functions is presented in

Figure 3.23. Although, in this figure, the responses of the roughness scales are

represented by their mean value for each texture (red dots), to fit the polynomial

functions, all response values were used. Four polynomial functions that were

used to fit their roughness responses show that it is sufficient to use the third

degree of polynomial function (line plot). Higher than that degree, beside the R2

values does not improve significantly, the function may also tend to overfit the

roughness data. The third-degree polynomial accommodates the concave trend

for the lower percentage of textures and the convex trend for the higher per-

centage of the textures. This can not be done by the lower degree polynomials.

Therefore, its R2 value increases significantly.

However, this R2 value is only 0.43 which means that only 43% of the perceived

roughness was correctly predicted by the third degree of polynomial function.

Moreover, as it is seen in the figure, all lines seem to be similar and linear even

though they have different degrees. This shows that responses can be considered

as constant, meaning that the subjects could not discriminate visual textures

with third-order statistics as has been shown by Table 3.7 and Figure 3.19.
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Figure 3.23: Polynomial regressions of the perceived roughness of the visual textures with third-

order statistics. The red scattered dots are the mean of the roughness of each texture. There

are four polynomial functions with different degrees to fit.

Table 3.9: Sepherd’s Pi Correlation between the Types of Tactile Textures

Order n r CI 95% r2 adj r2 p-val power

first - second 540 -0.342 [-0.41, -0.27] 0.117 0.114 .000 1.0

first - third 540 0.384 [ 0.31, 0.45] 0.147 0.144 .000 1.0

second - third 540 -0.104 [-0.19, -0.02] 0.011 0.007 .000 0.677

3.3.2 Tactile experiment

The results show that each type of tactile texture was perceived differently, espe-

cially the first-order texture (Figure 3.24). The mean of the scales of the perceived

roughness significantly decreases in the first-order textures, slightly increasing in

the second-order textures, and slightly decreasing in the third-order textures.

Their plot lines meet at the middle point which indicates that the textures-50

were perceived to have an equal roughness regardless their type of textures.

The correlation analysis which has been performed also indicates that each

type of texture was perceived differently. The output of the analysis is presented

in Table 3.9. It can be seen that the magnitude of the correlation between texture

types (r) ranges between 0.104 and 0.384 which is considerably low. Therefore,

it is more acceptable to consider that each texture type is uncorrelated and,

therefore, the patterns of their roughness are different.

Although it is low, the correlation between texture types can give a glimpse

of the relationship between them. As shown in Table 3.9, the correlation between

the first-order and the second-order statistical tactile textures is negative. It in-
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Figure 3.24: Perceived magnitude-scales of the roughness of the tactile textures with first-,

second-, and third-order statistics. The horizontal axis is the category of textures with each

point indicates the percentage of the transient probabilities of the corresponding texture. The

vertical axis is the scales of the perceived magnitude of the textures.

dicates that both of them have patterns of subjective roughness with opposite

direction. The first-order and the third-order textures have positive correlation

and, therefore, they have the same direction of roughness pattern. Finally, the

second-order and the third-order textures have negative correlation which means

they have different pattern of subjective roughness. The roughness scales of the

second- and the third-order textures have the same pattern but in opposite direc-

tions (Figure 3.24). That is why they have almost the same value of correlation

with the first-order textures despite having the opposite signs as can be seen from

the r values in Table 3.9.

First-order tactile textures

In the first-order tactile textures, subjects were able to recognize and to discrim-

inate all the test textures from the reference texture (texture-50) as shown by

Table 3.10. This table is the output of the ANOVA analysis and it shows whether

there is a statistically significant difference between groups of the textures in the

mean of subjective scale. It is seen in the table that the value of F (8, 531) equals

to 34.727 and it will refer to a significance value (p) of .000 which is significantly

smaller than .05 and, therefore, the null hypothesis that there is no difference
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Table 3.10: ANOVA Test for First-Order Tactile Textures: Between Textures

Source SS DF MS F Pr(>F) EtaSq

TEXTURE 277.815 8 34.727 167.74 .000 0.716

Within 109.932 531 0.207 - - -

between group means is rejected. The variance of the texture contributes 71.6%

to the total variance (EtaSq) which is very large (Table 3.3). This result suggests

that the subjective scales of the roughness is different for each texture.

Furthermore, the difference of the subjective scales for all the first-order sta-

tistical tactile textures can be investigated in more detail from the means com-

parison of the subjective scales of each texture group. A pairwise comparisons

test based on Tukey-HSD method was used to analyse the means’ difference of

the subjective scale between the texture groups. The result is shown in Table D.4

and in Figure 3.25. It can be seen that the mean difference (diff) between the

roughness scales of every neighbouring textures is mostly significantly different

as their respective significant value (p-Tukey) equals to or more than .05 (null

hypothesis is accepted), except between texture-10 and texture-20 and between

texture-30 and texture-40.

Figure 3.25: Multiple comparisons of the scales’ means of the perceived roughness between all

pairs of the first-order tactile textures. The blue error bars indicate that the difference of scales’

means for the corresponding pair is not statistically significant (p-Tukey > .05). If the error bar

is red, the scales’ means for the corresponding pairs is statistically significant (p-Tukey6 .05).

Texture-10 is seen to have the widest variance (Figure 3.26). It implies that

when the roughness ratio between texture-10 and the reference (texture-50) is
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too large, despite being easier to discriminate, it is difficult for subjects to assign

a fix scale of the roughness sensation. It will also happen to other textures with

a large gap of roughness intensity. Although texture-10 has a considerably wide

variance, it has the highest median which is significantly higher than the medians

of the following textures (Figure 3.26). Therefore, this texture was perceived to be

different from other textures (Table D.4). Furthermore, almost all textures that

are separated by at least one texture have significantly different roughness. Only

the last three textures were perceived to have the same roughness. Therefore,

as it can also be seen in Figure 3.26, all the textures seems to have different

roughness.

The boxplot in Figure 3.26 also shows that the level of medians of each tex-

ture’s scale decreases. At the beginning, the roughness descent looks steep. Start

from the middle, the descent becomes less steep. The last three textures, how-

ever, are seen to have relatively the same median and the same variance which

indicates that the subjects perceived them indifferently. From Figure 3.26 it is

seen that the wide of the variance becomes larger when the distance of the tex-

ture gets further from the reference texture. It is also seen that when the two

textures have a relatively the same median (level of roughness), the wide of their

variances looks similar.

Figure 3.26: The boxplot of subjective scale for each of first-order tactile texture. The horizontal

axis is the category of textures with each point indicates the percentage of the transient proba-

bilities of the corresponding texture. The vertical axis is the scales of the perceived magnitude

of the textures.

The decreasing pattern of subjective scales can also be seen from the plot of
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the subjects’ response itself as shown in Figure 3.27. Despite having different start

points, all line plots of the subjects’ responses looks to have the same decreasing

pattern. From this figure, it can be seen that the spread of the response of

texture-10 is the largest. Then, the response’ spread becomes narrower as the

transition probability of the textures increases. In other perspective, the bigger

the roughness difference from the texture, the wider the spread of the response.

It indicates that subjects had more difficulties to assign the specific scale for the

texture which has a big roughness different from the reference.

Figure 3.27: Subjects’ roughness sensation on the tactile textures with first-order statistics.

The horizontal axis is the category of textures with each point indicates the percentage of

the transient probabilities of the corresponding texture. The vertical axis is the scales of the

perceived magnitude of the textures.

Although it relatively obvious that all lines in Figure 3.27 have the same

direction which is decreasing, it is still important to check whether there is any

line with different orientation such as horizontal. This type of line can show

the presence of different perspective of roughness perception by the subjects.

The direction of those plotted lines in Figure 3.27 can be estimated using the

correlation between the transition-probability of the textures and the roughness

responses of each subject as shown in Figure 3.28. From this image it can be

seen that all subjects have high negative correlations (−0.75 to −1.0) for their

responses. It means that the line plots of all subjects’ responses have negative

slopes. This also means that the roughness of the first-order statistical visual

textures were perceived to get lower as the percentage of the transition probability

increases.
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Figure 3.28: The correlation between transition probabilities of the first-order tactile textures

and the perceived scales of their roughness for each subject. The subject with positive corre-

lation means he/she perceived the the roughness scale to increase as the transition probability

increases. Zero correlation indicates the roughness perception is either constant, concave or

convex. Negative correlation indicate the roughness perception decreases

Table 3.11: ANOVA Test for First-Order Tactile Textures: Between Subjects

Source SS DF MS F Pr(>F) EtaSq

SUBJECT 22.343 29 0.770 1.075 .363 0.058

Within 365.404 510 0.716 - - -

To identify more thoroughly whether there is any difference of subjects’ per-

spective of the first-order tactile textures or not, an ANOVA analysis was then

performed. The output is shown in Table 3.11. This table shows that the value

of F (29, 510) equals to 1.075 which, therefore, refers to a significance value (p) of

.363 which is significantly larger than .05 and it indicates that subjects have no

different pattern of roughness perception even though the variance of the rough-

ness scales from each subject contributes 5.8% to the total variance (EtaSq)

which is medium (Table 3.3). However, compared to the variance contribution

by the textures which is 71.6% (Table 3.10), the variance by subjects is signifi-

cantly smaller. This indicates that the textures them self give more effect to the

pattern of the roughness response than the subjects which, therefore, supports

an indication that each texture has a different roughness scale.

To fit the relationship between the textures and the roughness responses,

four polynomial functions were used. The plot of those functions is presented in

Figure 3.29. All of the response data were used get the best fit. However, in
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this figure, the responses of the roughness scales are represented by their mean

value for each texture (red dots). Four polynomial functions that were used to

fit their roughness responses show that it is sufficient to use the second degree

of polynomial function. Higher than that degree, beside the R2 values does not

improve significantly, the function may also tend to overfit the roughness data.

The roughness scale decreases significantly especially at the beginning. This

result is in line with the correlation between the roughness and the textures of

most of the subjects which are highly negative (Figure 3.27).

Figure 3.29: Polynomial regressions of the perceived roughness of the tactile textures with first-

order statistics. The red scattered dots are the mean of the roughness of each texture. There

are four polynomial functions with different degrees to fit.

Second-order tactile textures

In the second-order tactile textures, subjects were able to recognize and to dis-

criminate all the test textures from the reference texture (texture-50) as shown

by Table 3.12. This table presents the output of the ANOVA analysis. It shows

whether there is a statistically significant difference between texture groups in

their mean of subjective scales. It is seen in the table that the value of F (8, 531)

equals to 11.708 which will give a significance value (p) of .000 that is significantly

smaller than .05 and, therefore, the null hypothesis that there is no difference be-

tween group means is rejected. The variance of the texture contributes 15% to

the total variance (EtaSq) which is large. This result suggests that the subjective

scales of the roughness magnitude is different for each texture.
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Table 3.12: ANOVA Test for Second-Order Tactile Textures: Between Textures

Source SS DF MS F Pr(>F) EtaSq

TEXTURE 6.187 8 0.773 11.708 .000 0.15

Within 35.075 531 0.066 - - -

Furthermore, the difference of the subjective scales for all the second-order

statistical tactile textures can be investigated in more detail from the means

comparison of the subjective scales of each texture group. A pairwise comparisons

test based on Tukey-HSD method was used to analyse the means’ difference of

the subjective scale between the texture groups. The result is shown in Table

D.5 and in Figure 3.30. It can be seen that the difference (diff) between the

means of the roughness scales of neighbouring textures is not significant as their

respective significant value (p-Tukey) equals to or more than .05 (null hypothesis

is accepted). It is seen that the first five textures have no significant different

in the scales’ mean. The jump of the roughness scale happens at texture-60

which has the mean of roughness significantly different from its four preceding

textures. Texture-80 and texture-90 were perceived to be very similar to texture-

60 as the significance value (p-Tukey) of their mean differences is 0.9. However, at

texture-70, the roughness scale decreases again as seen from the its negative mean

difference (diff) with its neighbouring textures (Table D.5). It gives an impression

that the roughness scale is constant at the beginning and then increases suddenly

from texture-60.

The more obvious pattern of the roughness perception can be seen from the

boxplot in Figure 3.31. It shows that the level of medians of the roughness scale

for texture-10 to texture-60 slightly increases. The median decreases at texture-

70. For the last two textures, however, the roughness scale slightly increases

again and reach at the same level as texture-60’s level. Therefore, it seems that

texture-60, texture-80, and texture-90 have the same roughness. Figure 3.31 also

shows that the variance of the first five textures are relatively the same. This

usually happens in the textures whose the roughness gaps is not significant. The

variance of the roughness scales of texture-60, texture-80, and texture-90 are seen

to be the widest. This usually happens when the roughness of the texture has a

significant difference from the reference’s roughness.

The increasing pattern of subjective scales can also be seen from the plot of

the subjects’ response as shown in Figure 3.32. From this figure, it can be seen

that the spread of the responses for each texture is the same. In general, the

pattern of the response increases even though at texture-70 it is seen that the
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Figure 3.30: Multiple comparisons of the scales’ means of the perceived roughness between

all pairs of the second-order tactile textures. The blue error bars indicate that the difference

of scales’ means for the corresponding pair is not statistically significant (p-Tukey > .05). If

the error bar is red, the scales’ means for the corresponding pairs is statistically significant

(p-Tukey6 .05).

Figure 3.31: The boxplot of subjective scale for each of second-order tactile texture. The

horizontal axis is the category of textures with each point indicates the percentage of the

transient probabilities of the corresponding texture. The vertical axis is the scales of the

perceived magnitude of the textures.

pattern decreases. However, the line plot of each subject’s responses is seen to

cross each other. It makes difficult to know whether each subject has different

pattern of perception or not.
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Figure 3.32: Subjects’ roughness sensation on the tactile textures with second-order statistics.

The horizontal axis is the category of textures with each point indicates the percentage of

the transient probabilities of the corresponding texture. The vertical axis is the scales of the

perceived magnitude of the textures.

However, the direction of those plotted lines in Figure 3.32 can be estimated

using the correlation between the transition-probability of the textures and the

roughness responses of each subject as shown in Figure 3.33. From this image it

can be seen that 30% of subjects have high positive correlations (ranges from 0.75

to 1.0) for their responses. It means that the line plots of those subjects’ responses

have positive slopes which indicates that their roughness perception increases as

the percentage of the transition probability increases. Furthermore, more than

50% of subjects also have positive correlations although they are lower than 0.5.

Only 10% of subjects (three peoples) have negative correlations. However, those

correlation is very low (less than 0.3).

An ANOVA analysis was then performed to identify thoroughly whether the

difference between subjects’ responses of the second-order tactile textures is sig-

nificant or not. The output is shown in Table 3.13. This table shows that the

value of F (29, 510) equals to 6.008 which, therefore, will give a significance value

(p) of .000 which is significantly smaller than .05 and it indicates that subjects

have different patterns of the roughness perception. However, as the correlations

between textures and the roughness scales are mostly positive (Figure 3.33), the

identified difference of the subjects’ responses comes from the difference slopes of

each subject’s response.

The variance of the roughness scales from each subject contributes 25.5% to
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Figure 3.33: The correlation between transition probabilities of the second-order tactile tex-

tures and the perceived scales of their roughness for each subject. The subject with positive

correlation means he/she perceived the the roughness scale to increase as the transition proba-

bility increases. Zero correlation indicates the roughness perception is either constant, concave

or convex. Negative correlation indicate the roughness perception decreases

Table 3.13: ANOVA Test for Second-Order Tactile Textures: Between Subjects

Source SS DF MS F Pr(>F) EtaSq

SUBJECT 10.507 29 0.362 6.008 .000 0.255

Within 30.754 510 0.060 - - -

the total variance (EtaSq) which is considerably large (Table 3.3). Compared to

the variance contribution by the textures which is 15.0% (Table 3.10), the variance

by subjects is also significantly larger. It indicates that the subjects’ variance give

more effect to the pattern of the roughness response than the textures’ variance.

This usually will happen when the roughness gap between textures is not too

contrast.

To predict the relationship between the second-order statistical tactile tex-

tures and the roughness responses, four polynomial functions were used to fit the

roughness data. The plot of those functions is presented in Figure 3.34. All of the

response data were used get the best fit. However, in this figure, the responses

of the roughness scales are represented by their mean value for each texture (red

dots). Four polynomial functions that were used to fit their roughness responses

show that it is sufficient to use the first degree of polynomial function (linear

plot). Higher than that degree, beside the R2 values does not improve signifi-

cantly, the function may also tend to overfit the roughness data. As it is seen
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in the figure, the subjective roughness tends to slightly increase linearly as the

transition of the probability increases. This result is in line with the correlation

between the roughness and the textures of most of the subjects which are positive

(Figure 3.32).

Figure 3.34: Polynomial regressions of the perceived roughness of the tactile textures with

second-order statistics. The red scattered dots are the mean of the roughness of each texture.

There are four polynomial functions with different degrees to fit.

Third-order tactile textures

In the third-order statistical tactile textures, subjects seems to be able to rec-

ognize and to discriminate all the test textures from the reference one. As it

can be seen in Figure 3.8, the plot of the subjects’ responses of the third-order

textures slightly increases until reaches the peak point at texture-50 and then

decreases. To identify whether the responses for each textures is different or not

an ANOVA analysis was performed. The result is presented in Table 3.7. This

table shows that the value of F (8, 531) equals to 14.933 which, therefore, will

give a significance value (p) of .000 which is significantly smaller than .05. This

result indicates that the means of the subjective scales of each texture are not

the same. The variance of the textures contributes 18.4% to the total variance

(EtaSq) which is large (Table 3.3). This result implies that the third-order tactile

textures were perceived to be different.

The difference of the roughness scales for all the third-order statistical tactile

textures can be investigated in more detail from the means comparison of the
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Table 3.14: ANOVA Test for Third-Order Tactile Textures: Between Textures

Source SS DF MS F Pr(>F) EtaSq

TEXTURE 11.045 8 1.381 14.933 .000 0.184

Within 49.095 531 0.092 - - -

subjective scales of each texture group. A pairwise comparisons test based on

Tukey-HSD method was used to analyse the means’ difference of the subjective

scale between the texture groups. The result is shown in Table D.6 and in Figure

3.35. It can be seen that the difference (diff) between the means of the roughness

scales of neighbouring textures is not significant except between the response

mean of texture-60 and the response mean of texture-70. The roughness scales

of texture-10 to texture-60 are not significantly different. All p-Tukey values of

the means difference (diff) among those textures is more than .50. The response

decreases considerably from texture-60 to texture-70 as it can be seen from its

significant p-Tukey value in Table D.6. It is also seen that the last three textures

have significantly similar roughness. This result gives an impression that the

roughness scale is constant and then suddenly decreases at texture-70.

Figure 3.35: Multiple comparisons of the scales’ means of the perceived roughness between

all pairs of the third-order tactile textures. The blue error bars indicate that the difference

of scales’ means for the corresponding pair is not statistically significant (p-Tukey > .05). If

the error bar is red, the scales’ means for the corresponding pairs is statistically significant

(p-Tukey6 .05).

The roughness pattern can be seen more clearly from the boxplot in Figure

3.36. This plot shows that the level of medians of the roughness scale slightly in-
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creases along texture-10 to texture-50. The median decreases slightly at texture-

60 and significantly decreases at texture-70. For the last three textures, however,

the roughness scale is the same. It is seen in Figure 3.36 that the variance of

the roughness scales of all textures is not significantly different. This will usually

happen when the roughness difference is not too large.

Figure 3.36: The boxplot of subjective scale for each of third-order tactile texture. The hori-

zontal axis is the category of textures with each point indicates the percentage of the transient

probabilities of the corresponding texture. The vertical axis is the scales of the perceived

magnitude of the textures.

The pattern of the roughness perception of the third-order statistical tactile

textures can also be seen from the plot of the subjects’ response as shown in Figure

3.37. From this figure it is seen that the line plots of the subjects’ response form a

constant from pattern. The response looks slightly decreasing from texture-60 to

texture-70 and then is constant again. Two considerably high response roughness

appear at texture-50 and texture-60. These responses make the mean of the

roughness scale of both textures increase significantly. However, in general, from

this figure, it can also be seen that the spread of the responses for each texture

is relatively the constant.

Because the line plots of some subject’s responses in Figure 3.37 are seen to

cross each other and are not always linear, it suggests that there are different pat-

terns of perception among subjects. The direction of those plotted lines in Figure

3.37 can be estimated using the correlation between the transition-probability of

the textures and the roughness responses of each subject as shown in Figure 3.38.

From this image it can be seen that 90% of the subjects have negative correlations
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Figure 3.37: Subjects’ roughness sensation on the tactile textures with third-order statistics.

The horizontal axis is the category of textures with each point indicates the percentage of

the transient probabilities of the corresponding texture. The vertical axis is the scales of the

perceived magnitude of the textures.

Table 3.15: ANOVA Test for Third-Order Tactile Textures: Between Subjects

Source SS DF MS F Pr(>F) EtaSq

SUBJECT 12.379 29 0.427 4.558 .000 0.206

Within 47.761 510 0.094 - - -

for their responses. It means that the line plots of those subjects’ responses have

negative slopes which indicates that their roughness perception decreases as the

percentage of the transition probability increases. However, only less than 14% of

the subjects have moderate negative correlations. More than 86% of the subjects

have low to negligible correlations. This result indicates that the roughness is in-

dependent of textures in almost all subjects. However, as seen in Figure 3.37 that

the correlation between roughness and textures in every subject is different, each

subjects will be identified as to have a unique pattern of roughness perception.

To identify more thoroughly whether there is any difference of subjects’ per-

spective of the first-order tactile textures or not, an ANOVA analysis was then

performed. The output is presented in Table 3.15. This table shows that the

value of F (29, 510) equals to 4.558 which, therefore, will give a significance value

(p) of .000 which is significantly smaller than .05 and it indicates that subjects

have different patterns of the roughness perception.

The variance of the roughness scales from each subject contributes 20.6% to

the total variance (EtaSq) which is considerably large (Table 3.3). Compared
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Figure 3.38: The correlation between transition probabilities of the third-order tactile textures

and the perceived scales of their roughness for each subject. The subject with positive corre-

lation means he/she perceived the the roughness scale to increase as the transition probability

increases. Zero correlation indicates the roughness perception is either constant, concave or

convex. Negative correlation indicate the roughness perception decreases

to the variance contribution by the textures which is 18.4% (Table 3.14), the

variance by subjects is also larger. It indicates that the subjects’ variance give

more effect to the pattern of the roughness response than the textures’ variance.

This usually will happen when the roughness gap between textures is not too

contrast.

To predict the relationship between the third-order statistical tactile textures

and the roughness responses, four polynomial functions were used to fit the rough-

ness data. The plot of those functions is presented in Figure 3.39. All of the

response data were used get the best fit. However, in this figure, the responses

of the roughness scales are represented by their mean value for each texture (red

dots). Four polynomial functions that were used to fit their roughness responses

show that it is sufficient to use the second degree of polynomial function. Higher

than that degree, beside the R2 values does not improve significantly, the function

may also tend to overfit the roughness data.

However, its R2 value which is 0.57 indicates that only 57% perceived rough-

ness can be correctly predicted by the model. This result shows that the perceived

roughness of third-order statistical tactile textures is difficult to predict. As the

arithmetic average roughness (Ra) of this type of textures are the same and the

surface of specimens is similar, it is most likely that the friction between the
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surfaces and the fingerpad determined the perceived roughness. In this case, the

friction is influenced by the pressure of the finger applied on the surface. When

two surfaces seem similar, some subjects tried to explore their roughness by ap-

plying higher pressure onto the surfaces. This may result in different friction and

distinctive perceived roughness although they have similar surfaces.

Figure 3.39: Polynomial regressions of the perceived roughness of the tactile textures with

third-order statistics. The red scattered dots are the mean of the roughness of each texture.

There are four polynomial functions with different degrees to fit.

3.3.3 Comparison between the roughness scales of the vi-

sual and the tactile textures

As it has been discussed in the previous section, the result of the experiment

shows that there are some similarities between the roughness perception of the

visual and the tactile textures. Each texture in the first-order statistical visual

and tactile groups can be discriminated. Moreover, the roughness scales of the

first-order statistical visual and tactile textures are relatively the same. They

decrease as the transition probability of the texture increases. In the second-order

groups, each texture is still can be discriminated. However, the subjects could

discriminate the visual textures better than the tactile textures. The roughness

scales in both type of textures increase, although in the visual textures, the

increase is sharp while in the tactile textures is not. In third-order groups, the

visual textures could not be discriminated while the tactile textures seems to be

discriminated slightly.
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Table 3.16: Correlation between Roughness and Textures of the Visual and Tactile First-Order

Textures

Experiment level 1 textures

visual roughness -0.427

tactile roughness -0.809

First-order statistical textures

The correlation between the transition probability of the textures (textures) and

the roughness scales (roughness) of the first-order visual textures is lower than the

same correlation of the first-order tactile textures (Table 3.16). The roughness

perception of the first-order visual textures has different perspective. In this

group, each particular texture can be perceived oppositely, some subjects assigned

lower roughness scales than the reference (< 1.0) and some subjects assign higher

scales (> 1.0). As the effect, the mean of the roughness scales of the first-

order visual textures become not far to one which indicates that they were not

significantly different from the reference (see Figure 3.40) despite the fact that

subjects could easily discriminated the textures and assigned significant scales

to them. This result also makes the variance of the roughness response become

relatively high and as a consequence, the correlation between the roughness and

the textures becomes low (−0.43).

This kind of different perspectives did not happen in the tactile textures.

There was no ambiguity of roughness sensation when it comes from tactile tex-

tures. The roughness of each texture was perceived consistently and significantly

different from the roughness of the reference texture as seen in Figure 3.40. For

example, the roughness mean of the first tactile texture (the first blue dot) is 2.5

which is almost a double of the roughness mean of the first visual texture (the

first red dot). Therefore, the correlation between the roughness and the texture

of these tactile textures becomes relatively high (−0.809444).

The roughness responses of the tactile textures decrease sharply at the begin-

ning (Figure 3.40). They can be best fitted by the second degree of polynomial

function (the blue line). Meanwhile, the roughness responses of the visual texture

decrease slowly at the beginning. A third degree polynomial is the best fit for

these responses (the red line).

Although the roughness responses of both texture types are different, they

have at least two similarities. The first, both of the could be discriminated rela-

tively easily by the subjects. The second, the roughness perception of both types

of textures has the same decreasing pattern as it can be seen from the roughness
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Figure 3.40: Polynomial regressions of the perceived roughness of the first-order statistical

visual and tactile textures. The red scattered dots are the mean of the roughness of the visual

textures and the blue scattered dots are the mean of the roughness of the tactile textures.

Table 3.17: Sepherd’s Pi Correlation between Visual and Tactile Textures with First-Order

Textures

n r CI 95% r2 adj r2 p-val power

540 0.407 [0.33, 0.47] 0.165 0.162 .000 1.0

correlation between both textures (Table 3.17). This correlation, although it is

considerably low, has a positive value which indicates that both texture have

patterns of the roughness perception with the same direction (they decrease).

Second-order statistical textures

There was no ambiguity of roughness sensation for second-order statistical tex-

tures in both the visual and the tactile perceptions. Each particular texture was

perceived consistently. The textures with transition probability which is lower

than 50% were perceived to have a relatively lower scale of roughness (less than

1.0). Meanwhile, the textures with higher transition probability were perceived

to be rougher.

Table 3.18: Correlation between Roughness and Textures of the Visual and Tactile Second-

Order Textures

Experiment level 1 textures

visual roughness 0.521183

tactile roughness 0.340053
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Table 3.19: Sepherd’s Pi Correlation between Visual and Tactile Textures with Second-Order

Textures

n r CI 95% r2 adj r2 p-val power

540 0.175 [0.09, 0.26] 0.031 0.027 .000 0.984

However, the second-order visual textures were more discriminable than the

tactile textures as the correlation between the roughness and the textures of the

visual textures is higher (Table 3.18). The correlation is 0.52 which is moderate

positive. This value is higher than the same correlation of the tactile textures

(0.34). The correlation value is also related to the increase rate of the roughness

perception as it can be seen in Figure 3.41. This figure shows that the increase

of the roughness perception in visual textures is higher (the red line) than the

increase in tactile textures (the blue line).

Figure 3.41: Polynomial regressions of the perceived roughness of the second-order statistical

visual and tactile textures. The red scattered dots are the mean of the roughness of the visual

textures and the blue scattered dots are the mean of the roughness of the tactile textures.

The obvious similarity between the visual and tactile textures which have

second-order statistical pattern is that their roughness scale increases and can

be fitted well by using linear functions (Figure 3.41). Although the roughness’

correlation between the visual and the tactile textures is low (Table 3.19), it still

can give an indication that both types of textures have the same direction of

roughness perception as the value is positive.
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Table 3.20: Correlation between Roughness and Textures of the Visual and Tactile Third-Order

Textures

Experiment level 1 textures

visual roughness -0.020

tactile roughness -0.214

Third-order statistical textures

The correlation between the textures and the perceived roughness of the third-

order visual textures is very low (Table 3.20). It is only −0.020 which, therefore,

is negligible. As it can also be seen from Figure 3.42, the regression plot of the

perceived roughness of the visual textures is a relatively horizontal line although

it is a third degree of polynomial and its R2 value is small. These results indicate

that all second-order visual textures have a similar roughness. In other words,

these visual textures were not discriminated.

The same correlation in the second order-tactile textures is ten times larger

(Table 3.20). However, it is still considerably low which indicates that the rela-

tionship between textures and their perceived roughness is weak. The regression

which best to describe this relationship is a second degree of polynomial function

(Figure 3.42). However, the R2 value is only 0.57 which indicates that only 57%

of the perceived roughness is correctly predicted by the function.

Figure 3.42: Polynomial regressions of the perceived roughness of the third-order statistical

visual and tactile textures. The red scattered dots are the mean of the roughness of the visual

textures and the blue scattered dots are the mean of the roughness of the tactile textures.

Although the perceived roughness of the third-order visual and tactile textures
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Table 3.21: Sepherd’s Pi Correlation between Visual and Tactile Textures with Third-Order

Textures

n r CI 95% r2 adj r2 p-val power

540 0.042 [-0.04, 0.13] 0.002 -0.002 .344 0.163

seems to have different patterns, each of them have a relatively low correlation

with the textures which indicates that the perceived roughness of the third-order

visual and tactile textures cannot be discriminated.

3.4 Conclusion

The first-order textures are discriminable. However, the perception is quite am-

biguous; subjects perceived differently for the roughness of each particular tex-

ture. The second-order image textures are also discriminable. This result shows

that the images with coarser dots pattern are perceived to have higher roughness

although they have the same proportion of the black and white dots. This result

aligns with Julesz’s finding Julesz [240, page 86] which mentioned that the sub-

jective impression of second-order textures might be regarded as a difference in

granularity which make this type of textures are easy to be discriminated. The

third-order image textures are not distinguishable. This result conforms with

Julesz’s conjecture [240].

The first-order tactile texture are very well discriminable. As opposed to

the visual perception, the roughness perception of the tactile textures is not

ambiguous. The subjective magnitudes are convincingly to be monotonically

decreasing. The textures with sparse particles are perceived to have rougher

surfaces than the textures with sparse grooves. Furthermore, narrow grooves

are not detectable by the fingerpads. Ra values can not describe the perceived

roughness although some researches reported otherwise. These results indicate

that the perceptions of roughness on image and tactile stimuli that have first-

order statistical pattern have different mechanism. The roughness perception of

tactile stimuli is more straightforward and less ambiguous than the roughness

perception of visual stimuli.

Unlike the second-order visual textures, the corresponding tactile textures

were barely discriminable. Here, the visual perceptions seems better in discrim-

inating the textures. However, the textures with coarse fibres were perceived to

be rougher in both visual and tactile roughness perceptions. This result conform

with the report that sandpapers with coarser particles are perceived to be rougher
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than sandpapers with finer particles. In this case, the Gestalt connectivity theory

prevails in tactile texture perception. The textures with more connected boxels

(fibrous textures) are discriminable from the textures with less connected boxels

(non-fibrous textures).

The third-order tactile textures were not discriminable just like the corre-

sponding image textures. This is may due to the fact that these textures are

almost identical because they have the same actual roughness and indistinguish-

able boxels’s patterns. However, the third-order visual textures were even more

indistinguishable. The visual perception here is sharper in recognizing the tex-

tures. Textures which have a similar pattern will be perceived to have the same

roughness. Meanwhile, the roughness perception is not as sharp as visual percep-

tion in recognizing such a similar textures.

The overall result suggests that both roughness perceptions on the visual and

the tactile stimuli have different mechanisms. However, they have a similar pat-

tern in perceiving the size of the grains or particles. The surface with coarse

grains have rougher sensation in both visual and tactile perceptions. The per-

ceived roughness of the tactile textures depends more on the spread and the size

of particles rather than particle orientation.



Chapter 4

The Influence of Magnitude and

Phase Spectra in the

Discrimination of Images

4.1 Experiment Rationale

Scientists have been investigating for centuries of how humans perceive visual

stimuli [273]. One of the main goals of such studies is to build a machine which

can see. As machines only understand mathematical languages, researchers have

been trying to relate computational models of images with the corresponding

human perceptions.

In the spatial domain, a greyscale image can be represented by a two-dimensional

(2D) matrix A[m,n] with size M ×N , where m ∈ [0,M − 1] and n ∈ [0, N − 1].

Each element at row m and column n in Am,n represents a pixel’s value f [m,n]

of the image which is an integer between 0 to 255.

In studies of visual perception, it is common and acceptable to represent an

image A[m,n] in the domain of spatial frequency αu,v in which u ∈ [0, N − 1]

and v ∈ [0,M − 1] [274]. Each element in 2D matrix αu,v is a complex number

F [m,n] which is the Fourier Transform (FT) of the image f [m,n].

F [u, v] =
1

NM

M−1∑
m=0

N−1∑
n=0

f [m,n]e−2πj(um
N

+ vn
M

) (4.1)

The final result of this equation will be in the form:

F [u, v] = |F [u, v]| × e−jφ[u,v] (4.2)

where |F [u, v]| is the magnitude and φ[u, v] is the phase of F [u, v]. The original

image can be retrieved from each element of its FT matrix αu,v using the inverse

98
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transform operation as follow:

f [m,n] =
1

NM

M−1∑
m=0

N−1∑
n=0

|F [u, v]| × ej[φ[u,v]+2π(um
N

+ vn
M

)] (4.3)

Using combinations of the magnitudes and the phases of Fourier Transforms of

any of two images f1(x, y) and f2(x, y) other two child images can be generated.

Firstly, determine the Fourier Transform of both parent images (Equation 4.4).

F(f1(x, y)) = F1(u, v) = R1(u, v)× e−jφ1(u,v)

F(f2(x, y)) = F2(u, v) = R2(u, v)× e−jφ2(u,v)
(4.4)

From both parent images, then two derivative images which are represented by

f12(x, y) and f21(x, y) can be created by swapping either the magnitudes or the

phases of their parents as follows:

f12(x, y) = F−1[R1(u, v)× e−jφ2(u,v)]

f21(x, y) = F−1[R2(u, v)× e−jφ1(u,v)]
(4.5)

Many researches had reported that the phase is more important than the

magnitude in image reconstruction. It means that the image f12 will be more

likely to be perceived as similar to image f2, and image f21 will be more similar to

image f1 (Figure 4.1). Kermisch [275] and Oppenheim and Lim [195] argued that

it is possible to retrieve an image from its phase component. Huang et al. [196]

showed that phase is very important in image processing filter. From a statistical

point of view, Ni and Huo [209] showed that small changes in phase will distort

the retrieved image significantly while small difference in magnitude will not.

Piotrowski and Campbell [194] tried to measure the effect of the quantization of

the phase’s values to the visual recognition. They reported that even two levels

of quantization still produce a retrieved image which is recognizable. However,

surprisingly, some quantization levels of phase can hinder the retrieved image to

be recognized and how it happens has not been explained.

Although most of works have shown that phase is more important than mag-

nitude, some of them reported otherwise. In some cases, the magnitude is more

dominant than the phase (Figure 4.2). Some argued that there is no clear expla-

nation of how phase is more important than magnitude [223]. Gladilin and Eils

[274] argued that phase is not the only cognitive features of visual stimuli. Zhang

et al. [276] suggested that only the phase that discriminates coarse orientations

is essential in image recognition.

Despite a huge number of researches in the phase and the magnitude domi-

nance, only a few attempts have been made to measure quantitatively the influ-

ence or the dominance of the magnitude or the phase using the Fourier spectra
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Figure 4.1: Phase components have more influence to image recognition (Zisserman, 2014).

of the image itself. The present study aims to investigate the influence of each

Fast Fourier Transformation (FFT) component of images to the visual object

recognition. In this experiment, the circumstances in which the two components

dominate each other will be determined. This experiment is intended to

1. measure and compare the contribution of phase and magnitude components

to the phase’s and magnitude’s dominance,

2. determine the relationship between phase and magnitude components on

visual perception.

4.2 Method

4.2.1 Stimuli

There were four types of stimuli used in this experiment. They were sawtooth,

sinusoidal, square, and triangle which are coded as saw, sin, squ, and tri respec-

tively (Figure 4.3). There are three reasons of why these types of basic signal

were chosen. The first, signals are relatively unusual to the subjects; therefore

they will not have any pre-conception about the image similarity. These types

of signals make all subjects naive to the images and reduce the subjectivity bias.
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Figure 4.2: Magnitude component seems to have more influence to image recognition.

Table 4.1: Two-Dimensional Functions of each Type of the Image Stimuli

No Type f(x, y) | x, y ∈ [0, N ]

1 Sin f(x, y) = A · sin
(

2πf
N

(x cos Φ + y sin Φ)
)

2 Triangle f(x, y) = 2A ·
∣∣∣ f(x cos Φ+y sin Φ)

N
−
⌊
f(x cos Φ+y sin Φ)

N
− 1

2

⌋∣∣∣
3 Square f(x, y) = A

2
+ A

2
· sign

(
sin
(

2πf(x cos Φ+y sin Φ)
N

))
4 Sawtooth f(x, y) = A ·

(
f(x cos Φ+y sin Φ)

N
−
⌊
f(x cos Φ+y sin Φ)

N

⌋)
Note:

In this case A = 255, N = 420, f = 1, 3, 9 and Φ = 0, 0.25π, 0.5π.

However, the sketchy pattern of the parent images still allow the subjects to rec-

ognize them pre-attentively. Second, as they are basic signals, their characteristic

will be more easy to measure. Third, the parameters of these types of signals are

easy to adjust.

The mathematical functions of these image stimuli are listed in Table 4.1. The

size (M × N) of the images is 420 pixels × 420 pixels. Each type of image was

varied in term of frequency (f) and rotation angle (Φ). There are three different

frequencies for each images: one wave, three waves, and nine waves. There are

three rotations for each pattern: 0°, 45°, and 90° of rotation. In total, there will

be thirty six parent images.

All images were transformed using 2-D FFT to get their phase and magnitude

components. Then, the phase of each image was combined with the magnitude of
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Figure 4.3: A sample of twelve images selected from thirty six parent images that were used

as stimuli in this experiment. The complete set of the parent images can be found in Apendix

(B). Here, their sizes are adjusted for sake of clarity. Their actual size is 420× 420. Images in

row A have sawtooth type of signal with their frequency from left is 1, 3, and 9 respectively.

In row B, the signal type is sinusoidal, in row C is square, and in row D is triangle and their

frequencies follow the pattern of row A.

another pattern to create a child pattern using a Two-Dimensional Inverse Fast

Fourier Transform (2-D IFFT). From the combination of those thirty six images

resulted 1, 260 hybrid images. To compare the strength of the influence of the

magnitude and the phase of parent images, each hybrid image was put in a pair

with two related parent images. For simplicity purpose, the parent image which

contributes its magnitude is labelled as MP and the parent image which shares

its phase is coded as PP.

4.2.2 Participants

Twenty eight volunteers were the subjects in this experiment and each of them

performed 1260 tasks. They were students and staff at the University of Leeds.

All participants were interviewed to ensure they are free from impairments that

could affect their ability to perceive the visual patterns. Participants were näıve

to the hypotheses. In all experiments the duration of the stimuli exposure was

not specified to allow subjects to make thorough explorations of the patterns.
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4.2.3 Procedure

The experiment used a full-factorial design method. Therefore, from four types

of image, three different frequencies, and three angle variations, would generate

thirty six different parent images. To form a set of hybrid images, all the mag-

nitudes and the phases of these parent images were swapped. The swapped of

magnitudes and phases from the same images were not used because they will

form the hybrid images which are similar to their parent images. The combi-

nation of the swapped magnitudes and phases produced 1260 (36 × 35) hybrid

images.

All pairs were displayed one by one on a computer screen (Figure 4.4). Each

pair consists of a test image which is the hybrid image and two related parent

images. The position of the test image was always at the top and the position

of the parent images are at the bottom. However, the relative position of each

parent images was randomized for each pair at every presentation. It means that

sometimes the left side was the parent image which contributes its magnitude and

the right side was the parent image which contributes its phase and sometimes

this position’s order was reversed.

Figure 4.4: The scheme of a pair of images displayed on computer screen. Here, the sizes of the

image stimuli are reduced for sake of clarity. The actual size of each image is 420× 420.

The order of the pair presentation was randomized. Therefore, each subject

would see a different order of image pairs. The subject were asked to choose

the parent image which looks most similar to the test (hybrid) image in each
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pair using two alternative-forced choice (2AFC) Match-to-Sample method [277].

There was no special instruction and guidance for the subjects about the criteria

and the degree of similarity. They were free to interpret the definition of similarity

between images. However, all subjects were given a preliminary experiment using

fifteen pairs which were randomly selected from the actual pair of images. This

exercise experiment was not included in the analysis. There was no break during

the session. It took around forty minutes for each subject to complete this visual

experiment.

4.2.4 Analysis

The data recorded were used to analyse the effect of three different parameters

of the periodic images on the phase dominance. Those parameters are the type,

the frequency, and the rotation angle of the signals. Some supplementary analy-

ses were performed to investigate the influence of some features from the power

spectra of the periodic images to the dominance of the magnitude.

Each image has a particular power spectra which bears the unique information

of the image’s texture (Figure 4.5). The first segment line at point zero is the

DC component. It is equivalent to the average of all the pixels’ intensity. All

signals have this line in their power spectrum. Other segment lines in the power

spectrum represent the frequency components of the image. The abscissa of the

line shows the frequency and the length of the segment indicates the strength

of that frequency component. The number of the segment lines indicates the

number of the frequency components which builds the texture of the image.

The profile of the power spectrum of each signal is different. In Figure 4.5,

the sinusoidal signal has only one line segment of the frequency component at

abscissa 1.0 that cannot be seen clearly because it is too close to the line of the

DC component. The number of the line of frequency components increases from

the sinusoidal to the sawtooth image. Therefore, it may potentially be used as

one of the features to characterize the image’s texture.

The power spectrum of the same type of periodic signal will also change when

their frequency is changed. The segment lines of the frequency component look

to shift their position horizontally as their frequency increases (Figure 4.6). The

distance of this shift may also become another feature to define the textures. It is

also seen that the space between each segment lines becomes wider which, there-

fore, can be used to create some features from it such as: the distance between
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Figure 4.5: Four periodic signals which were used to generate the parent images and their

power spectra. The left side plots are the periodic signals. From the top to the bottom is:

sinusoidal, triangle, square, and sawtooth signal. The right side plots are the power spectra of

each corresponding signal at the left side.

two major frequency components, the density of the power spectra, and the to-

tal moment of the spectra. These power spectra-based features were extracted

from the power spectra of the parent images which contribute their magnitude

data. Based on these features, the possibility to construct a measure of the phase

dominance was investigated.

A third of the parent images have 45° rotated signals, and another third have

90° rotated signals. Based on the property of Fourier transform that rotation of a

signal in time (space) domain corresponds to a rotation in frequency domain,

the power spectra of the rotated signals are expected to be the same power

spectra of the corresponding unrotated signals. This happens in the parent images

with 90° signal’s rotation. Their spectra profile is exactly the same with the

spectra profile of the corresponding unrotated images. Unexpected profiles of

the power spectra appear in the images with 45° signal’s rotation. Instead of the
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Figure 4.6: The power spectra of each periodic signals in three different frequencies. From the

top to the bottom is the spectrum of the: sinusoidal, triangle, square, and sawtooth signal.

original power spectra rotated for 45°, the spectra changed completely. It happens

because instead of a specific local texture that is rotated, a whole image changes

completely due to the rotation of its signal. However, some characteristics of

the power spectra still remain. Therefore, a similar set of power spectra-based

features can be applied.

To extract the features, the profile of the power spectra is preferred to the

phase spectra because the former has a more regular pattern than the latter.

Moreover, because the phase spectrum is angular data in radians (within the

range −π and π), it will not provide a direct information to the image’s texture.

So, in this experiment, the power spectra were used to characterize the texture

of the images. One hundred and seven features were extracted from the profile

of the power spectra of the image textures. Twenty eight of them were adopted

from Liu and Jernigan [54] and five features were from Tsai et al. [251]. The rest

of the features were modified from Liu and Jernigan [54]. The details of all those

features can be found in Appendix C.
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Table 4.2: Response Summary

Frequency Percent Valid Percent Cumulative Percent

Valid 0 4092 11.6 11.6 11.6

1 31188 88.4 88.4 100.0

Total 35280 100.0 100.0

Evaluation and selection of the most important features

A feature is an individual property or parameter which can be measured [278].

This term is usually used in the machine learning field. In statistics, feature

is commonly called as predictor or dependent variable. A set of features which

consists of tens to hundreds individual feature is commonly generated to build

a machine learning or a statistical model. However, initially, the effectiveness of

each feature within the set is not known in most of the time. An evaluation and a

selection of a subset of features become important [279]. The irrelevant features

which do not provide any information to the model will be removed [279, 280].

The techniques to eliminate irrelevant features can be grouped based on the

labels’ availability and the search strategy [281]. In terms of availability of the

label’s information, the feature selection technique can be roughly classified into

three groups: supervised methods, semi-supervised methods, and unsupervised

methods. Meanwhile, based on the search strategies, the feature selection can be

divided into three techniques: filter, wrappers, and embedded methods [278, 279].

By using these methods, it is expected to get a set of the most relevant features

in a smaller number as possible. The fewer the related features, the faster the

calculation and the clearer the model.

4.3 Result and Discussion

For every presented pair, the responses gathered from the subjects were coded as

1 if MP was selected and 0 if PP was chosen to be more similar to the test image.

Each subject generated 1260 binary responses for all the sets of image pairs. In

total, 35280 binary responses were collected from twenty eight individuals. The

result shows that response 1 gets 31188 picks (88.4%) while response 0 gets just

4092 picks (11.6%) with no missing data (Table 4.2). This result indicates that the

magnitude is more dominant than the phase and, therefore, contradicts to many

reports which suggested that the phase is more dominant than the magnitude.

Furthermore, all types of MP are magnitude dominant. The sawtooth MPs

with frequency 1 are the least magnitude dominant (Figure 4.7. However they
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Table 4.3: Chi-square Analysis of Magnitude’s Dominance of the MP

Number of observations DOF Critical (P > 95%) χ̃2 P-value Cramer’s V

35280 35 49.802 3152.06 .000 .30

still obtained more than 60% of response 1s (600 picks out of 980 of the total

responses). The sinusoidal MPs with frequency 3 and 9 are the most magnitude

dominant with more than 95% of response 1s.

Figure 4.7: Frequency distribution of the responses for each the type of MP. Each x-axis label

indicates the type, the frequency, and the rotation angle of the signal. The signal’s types are

coded as Saw, Sin, Squ, and Too which stands for Sawtooth, Sinusoidal, Square, and Square-

wave respectively. Each type of MP were paired with 980 of PP. Therefore, this number also

indicates the total number of responses for each type of the stimuli. The error bar represents

the corresponding standard deviation value.

It seems that the magnitude’s dominance among MPs is different. The Chi-

square test supports the indication that there is a significant difference of the

magnitude’s dominance between MPs (Table 4.3). This result also indicates that

there is a relationship between the signal of MP and the magnitude’s dominance.

In other words, the magnitude’s dominance depends on the type of MP. The

level of this relationship can be seen from the Cramer’s V value which is .30 that

according to Cohen [271, page 227] is medium.

However, not all MPs seems to have a different magnitude’s dominance (Figure

4.7. Some of them share a relatively similar one. For example, Saw-1-00 and Saw-

1-45 have the same proportion of responses. Furthermore, the post-hoc analysis

shows that there are 110 pairs of MPs which have an insignificant difference of
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the magnitude’s dominance between them (Table D.1). This result indicates that

the magnitude’s dominance may be influenced by either the type, the frequency,

the rotation angle, or the combination between them of the signals.

4.3.1 The effect of the type of the signals to the magni-

tude’s dominance

The magnitude’s dominance seems to depend on the type of MP and to decrease

from the sinusoidal MPs to the sawtooth Mps (Figure 4.8, the left chart). From

the total of 8820 responses, there are 8453 (96%) responses selected MP with

sinusoidal texture to be more similar to the hybrid images. The triangle MPs

obtained 8215 of 1s (93%) which becomes the second in the rank order of the

magnitude’s dominance. The decrease of the number of 1s from the sinusoidal MP

to the triangle MP is 238 (3%). The square-wave MPs acquired 7307 of 1s which

is 908 (11%) less than the to the triangle MPs. Having the least magnitude’s

dominance, the sawtooth MP still received 7213 of 1s (82%). Furthermore, the

difference of the number of 1s between the sawtooth MPs and the triangle MPs

is only 1% which may indicate that both types of MP have a similar magnitude’s

dominance.

Figure 4.8: Frequency distribution of the responses filtered by the type of MP (left) and filtered

by the type of PP (right). Each of the x-axis label stands for Sinusoidal (Sin), Triangle (Tri),

Square-wave (Squ), and Sawtooth (Saw). They indicate the signal’s type. Every type of MP

(PP) were paired with 8820 of PP (MP) of all types. Therefore, this number also indicates the

total number of responses for each type of the stimuli.
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Table 4.4: Chi-square Test on the Prevalence of Different Magnitude’s Dominance among the

Types of MP

Signal
Observed frequency Expected frequency

0 1 Total 0 1 Total

Saw 1607 7213 8820 1023 7797 8820

Sin 367 8453 8820 1023 7797 8820

Squ 1513 7307 8820 1023 7797 8820

Tri 605 8215 8820 1023 7797 8820

Total no. of observations (n obs) 35280

Degree of freedom (dof) 3 χ̃2 1311.68

P-value .000 Reject H0 true

Effect size (Cramer’s V) .20

Table 4.5: Post-hoc Pairwise Comparison of Chi-squared Test between the Types of MP

Pair of
P-value

P-value

Corrected
Significant?

Reject

H0?

Cramer’s

ValueMP 1 MP2

Saw Squ .0665 .0665 (ns) false .0138

The Chi-square test supports the indication that the types of MP affect the

magnitude’s dominance (Table 4.4). The p-value which is close to zero means that

there is a significant difference of the responses’ proportion among the types of

MP. It also means that each type of MP has a particular value of the magnitude’s

dominance. Based on the Cramer’s V value which is .20, the strength of the

relationship between the type of MP and the magnitude’s dominance is medium.

However, not all types of MP seems to have a different magnitude’s dominance.

For example, the difference of the number of response 1s between the sinusoidal

and the triangle MP is 3% and between the square-wave and the sawtooth MP

is 1% which gives an indication that both pairs of MP has a similar magnitude’s

dominance. The post-hoc pairwise comparison of Chi-squared test shows that

within the types of MP, only the sawtooth MPs and the square-wave MPs which

have no significant difference of the responses proportion between them (Table

4.5). Despite only 3% different, the sinusoidal MPs and the triangle MPs have a

significant difference of responses proportion or magnitude dominance.

The order of the signal’s type, starting from the most to the least magnitude

dominant (Figure 4.8), is the same with the order of the signal’s types based

on the number of the frequency components in their power spectra (Figure 4.5).

In other words, the fewer the number of frequency components, the stronger

the magnitude’s dominance; hence, the weaker the phase’s dominance. It also

indicates that the fewer the number of the frequency components of an image,

the more the informations contained by its power spectrum and the fewer the
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features conveyed by its phase spectrum. Otherwise, the more the number of the

frequency components of an image, the fewer the features conveyed by its power

spectrum and the more information brought by its phase spectrum.

In term of the number of response 0s, the sinusoidal MP has the smallest

number. Only in 367 (4%) cases, the sinusoidal MP was perceived to be less

similar to the test image than the PP. The number of response 0s increases

almost double for the triangle MP and more than four times for the square-wave

MP. There is no significant increase of the number of response 0s between the

square-wave MP and the sawtooth MP.

Compared to the decrease of the number of response 1s, it is obvious that

the increase of the number of response 0s is more obvious in all types of MP.

Therefore, instead of the decrease of the response 1, the increase of the response

0 seems to be more related to the number of frequency components of MP (Figure

4.5 and Figure 4.6). The bigger the number of frequency components, the stronger

the phase dominance of the stimulus.

The type of signal which has a stronger magnitude seems to have a more

dominant of phase too. Figure 4.8 (right) shows that when each type of signal

contributes its phase (PP), the sinusoidal and the tooth of PP also have the

higher number of 0s despite having a higher number of 1s when they contribute

their magnitudes (MP). The square-wave and the sawtooth signals even though

they have relatively stronger phase dominance, their phase contributions are still

weaker than the phase dominance of the sinusoidal and the triangle signals. Thus,

it gives an counter-intuitive indication that a signal which is magnitude dominant

is also phase dominant.

The same indication can also be seen from the distribution of responses’ pro-

portion that is filtered by the pair of signal’s types (Figure 4.9). The magnitude’s

dominance of each type of MP is always high when paired with the same type

of PP or to the type of PP with weaker magnitude’s dominance. Having the

strongest magnitude’s dominance, the sinusoidal MP always obtains a high pro-

portion of 1s when paired with any type of PP. The triangle MP decrease its

magnitude’s dominance only when paired with the sinusoidal PP. In fact, all

types of MP will decrease its magnitude’s dominance when paired with the PP

which has stronger magnitude’s dominance.

From the perspective of phase’s dominance, any tipe of MP with a higher

phase’s dominance will also increase its proportion of 0s when paired with the type

of PP with a stronger phase’s dominance. For example, the sawtooth MP and

the square-wave MP which both of them have the strongest phase’s dominance
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Figure 4.9: The percentage of the number of the response 0 and the response 1 for each type

of MP when they are paired with each type of PP. The total responses for each pair is 2268 if

the signal type is different and 2016 for the pair with the same type of signal. The upper lines

are the plot of the percentage of 1s, and the bottom ones are the plot of the percentage of 0s.

(Figure 4.8), obtained a higher proportion of 0s when paired with the sinusoidal

PP (20% ) and to the triangle PP (> 20%). This result aligns with the previous

finding that the stronger the magnitude’s dominance of an image, the weaker the

phase’s dominance.

4.3.2 The effect of the frequency of MP to the magni-

tude’s dominance

The magnitude’s dominance considerably rises when the frequency of the MP

increases (Figure 4.10:left). At frequency 1, MP obtained the lowest proportion

of response 1s (80%) which is 8% lower than the overall percentage of response 1s

(Table 4.2). Therefore, the dominance of the phase mostly appears in MP with

frequency 1. The magnitude’s dominance rises to 90% at frequency 3 and reaches

95% at frequency 9.

The Chi-square test supports the indication that the magnitude’s dominance

is influenced by the frequency of MP (Table 4.6). The p-value which is closed

to zero means that there is a significant difference of the responses’ proportion

among the frequencies of MP. It also means that each frequency of MP has a

particular value of the magnitude’s dominance. Based on the Cramer’s V value

which is .20, the strength of the relationship between the frequency of MP and
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Figure 4.10: Frequency distribution of the responses filtered by the signal’s frequency of MP

(left) and by the signal’s frequency of PP (right). Each MP (PP) with a particular signal’s

frequency were paired with 11760 of PP (MP) of all types.

Table 4.6: Chi-square Test on the Prevalence of Different Magnitude’s Dominance among MPs

at Different Frequencies

Signal’s

Frequencies

Observed frequency Expected frequency

0 1 Total 0 1 Total

1 2349 9411 11760 1364 10396 11760

3 1163 10597 11760 1364 10396 11760

9 580 11180 11760 1364 10396 11760

Total no. of observations (n obs) 35280

Degree of freedom (dof) 2 χ̃2 1347.89

P-value .000 Reject H0 true

Effect size (Cramer’s V) .20

their magnitude’s dominance is medium.

Furthermore, the post-hoc of pairwise Chi-square analysis shows that all pairs

of frequencies of MP have a significant difference of the magnitude’s dominance

(Table 4.7). This result, therefore, supports the indication that the magnitude’s

dominance rises when the frequency of MP increases. Referred to the profile of

the power spectrum in Figure 4.6, this result shows that the further the distance

of frequency components from the DC component of the stimulus, the stronger

the magnitude’s dominance. In other words, the further the frequency component

from the centre of the power spectrum, the more the features being conveyed.

Although it is not obvious, the texture with higher frequency tends to have a

larger phase’s dominance too (Figure 4.10: right). At frequency 1, PPs obtained
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Table 4.7: Post-hoc Pairwise Comparison of Chi-squared Test between the Frequencies of MP

MP Pairs with
P-value

P-value

Corrected
Significant?

Reject

H0?

Cramer’s

ValueFreq1 Freq2

1 3 .0000 .0000 true true .1414

1 9 .0000 .0000 true true .2276

3 9 .0000 .0000 true true .0944

Table 4.8: Post-hoc Pairwise Comparison of Chi-squared Test between the Frequencies of PP

PP Pairs with
P-value

P-value

Corrected
Significant?

Reject

H0?

Cramer’s

ValueFreq1 Freq2

1 3 .0000 .0000 true true .0296

1 9 .0000 .0000 true true .0496

3 9 .0000 .0000 true true .0198

10% 0s. The phase’s dominance of PPs rises to 12% at frequency 3 and reaches

13% at frequency 9. Despite having a relatively low difference, the Chi-square

test shows that in general, there is a significant different of the phase’s dominance

among frequencies of PP (the p-value is .000). However, the Cramer’s value is

low (.0406) and it indicates that the relationship between the frequencies of PP

and their phase’s dominance is low. In other words, this value agrees with the

fact that the increase of the phase’s dominance is low. The post-hoc pairwise

comparison shows that any pair between two different frequencies of PP will have

a significant difference of the phase’s dominance (Table 4.8).

Each type of MP seems to have the different characteristics of the magnitude’s

dominance under the varying frequency (Figure 4.11:left). Both the sinusoidal

MPs and the triangle MPs have a similar pattern of the magnitude dominance.

At frequency 1, both the sinusoidal and the triangle MPs have around 90% mag-

nitude dominance and even higher at frequency 3 and 9 (close to 100%). Mean-

while, the magnitude dominance of the square-wave and the sawtooth MPs is only

around 78% and 65% at frequency 1 which is considerably lower than magnitude

dominance of the sinusoidal MPs and the triangle MPs. However, it always in-

creases and reaches at around 90% at frequency 3 and around 100% at frequency

9.

The phase’s dominance of each type of PP under varying frequency is even

more contrast (Figure 4.11:right). Both the sinusoidal PPs and the triangle PPs

have a similar pattern of the phase dominance. Although it is not easily no-

ticeable, both types of PP tend to have a weaker phase dominance as the fre-

quency increases. Meanwhile, for the square-wave PPs and the sawtooth PPs, the

phase dominance rises significantly as their frequency increase. The later finding
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Figure 4.11: The number of 0s and 1s for each type of signal in every frequency of MP (left),

and in every frequency of PP (right). Each type of MP is paired with the same type of PP.

Therefore, the effect of pairing of different signals can be suppressed. The total number of

response for each frequency is 672 responses.

seems to be counter-intuitive because, normally, the magnitude dominance and

the phase dominance of an image’s texture can not increase together.

However, these results eventually suggest that within the frequency measure,

there is no relationship between the magnitude’s dominance and the phase’s dom-

inance. The type of signal confound with the frequency to influence both the

magnitude and the phase dominances. An image with a high frequency of tex-

ture can have a phase dominance which is either relatively low or high depends

on the type of the texture.

Each type of MP has a different characteristics of the magnitude’s dominance

(Figure 4.12). For all types of MP, the magnitude’s dominance tends to be weaker

when the frequency of MP is the same with the frequency of PP. However, when

there is a difference between the frequency of MP and the frequency of PP, each

type of MP has a different pattern of magnitude dominance. The sinusoidal MP

and the triangle MP tends to have higher magnitude’s dominance when they are

paired with PP with higher frequency. Meanwhile, there is no noticeable increase

in the magnitude’s dominance when the square-wave MP and the sawtooth MP

are paired with PP with higher frequency.

Figure 4.12 also shows that the low magnitude dominance at almost all fre-

quencies is mostly contributed by the low magnitude’s dominance of the square-

wave and the sawtooth MPs. Moreover, at frequency 1, the magnitude’s domi-
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Figure 4.12: The percentage of the number of the response 0 and the response 1 for each type

of MP when they are paired with each frequency of PP. The total number of responses for

each frequency of MP at each frequency of PP is 1008 responses for the pair with different

frequencies, and is 924 responses for the pair with the same frequency.

nance of these textures is still low even when they paired with PP with higher

frequency. This result indicates that the type of MP has more influence to the

magnitude’s and phase’s dominance than the frequency. In term of power spec-

trum, the number of the frequency component have more informations than its

distance from the DC component (the centre of the power spectrum).

4.3.3 The effect of the rotation angle of MPs to the mag-

nitude dominance

The rotation of signal seems to not influence the magnitude dominance of the MP

(Figure 4.13: left). The magnitude dominance of MP for each rotation angle is

the same at around 88% which is the same with the overall magnitude dominance

of all MPs (Table 4.2). The slight variation of the responses’ proportion among

MPs for each rotation angle is more likely by chance. The result of the Chi-

square test supports this indication. The p-value is .516 which means that there

is no significant difference of the response’s proportions among the groups of

rotation angle. The Cramer’s V value is also very small .006 which, therefore,

indicates that there is no significant relationship between the rotation angle and

the magnitude dominance.

The post-hoc pairwise Chi-square analysis shows that all pairs of the rotation
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Figure 4.13: Frequency distribution of the responses filtered by the rotation angle of MP (left)

and the rotation angle of PP (right). The total number of responses is 1760 for each rotation

angle.

Table 4.9: Chi-square Test on the Prevalence of Different Magnitude’s Dominance among MPs

with Different Rotation Angle

Rotation

Angle

Observed frequency Expected frequency

0 1 Total 0 1 Total

0 1390 10370 11760 1364 10396 11760

45 1334 10426 11760 1364 10396 11760

90 1368 10392 11760 1364 10396 11760

Total no. of observations (n obs) 35280

Degree of freedom (dof) 2 χ̃2 1.32

P-value .516 Reject H0 false

Effect size (Cramer’s V) .006

angles of MP have no significant difference of the magnitude’s dominance (Table

4.10). All p-values are significantly bigger than .05 and the Cramer’s value is

very small. It indicates that each rotation angle of MP has statistically the same

magnitude dominance.

The rotation angle of the phase spectra of PP also seems not to influence the

phase dominance (Figure 4.13: right). The Chi-square analysis shows that the p-

value is .1150 which indicates that there is no significant difference of proportion

of response 0s among PPs for each rotation angle. Furthermore, the Cramer’s

value which is .0111 indicates that there is no significant relationship between the

rotation angle and the phase dominance. Any pair of rotation angles among PPs

has no significant difference of the response’s proportion which, therefore, means
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Table 4.10: Post-hoc Pairwise Comparison of Chi-squared Test between the Rotation Angles of

MP

PP Pairs with
P-value

P-value

Corrected
Significant?

Reject

H0?

Cramer’s

ValueFreq1 Freq2

0 45 .2624 .6704 true false .0073

0 90 .6704 .6704 true false .0028

45 90 .4998 .6704 true false .0044

Table 4.11: Post-hoc Pairwise Comparison of Chi-squared Test between the Rotation Angles of

PP

PP Pairs with
P-value

P-value

Corrected
Significant?

Reject

H0?

Cramer’s

ValueFreq1 Freq2

0 45 .0442 .1326 true false .0131

0 90 .5241 .5241 true false .0042

45 90 .1754 .2631 true false .0088

that for each rotation angle, the phase’s dominance of PP is the same. All results

above agree with there being no change in the profile of power spectra for the

rotated texture and, therefore, its magnitude dominance will not change under

rotation.

However, the difference of the rotation angles between MP and PP influences

the magnitude’s dominance. When MP and PP have a different the rotation

angle, the magnitude dominance of MP is high (Figure 4.14). Meanwhile, when

their rotation angles are the same, the magnitude dominance of MP decreases

at a different rate according the type of the signal. This, again, indicates that

the type of MP has a considerable influence to the magnitude’s dominance. The

sinusoidal and the triangle MPs, again, have the higher magnitude’s dominance

while, the square-wave and the sawtooth MPs appear to have a lower magni-

tude’s dominance. The square-wave and the sawtooth MPs have a proportion of

response 1s that is even lower than 60% in this case. However, it shows that both

signals have a relatively strong phase dominance which is already known from

the previous result.

When the rotation angle is different, the magnitude dominance improves sig-

nificantly. It means that the angular texture of the hybrid image looks more

similar to the angular texture of MP(Figure 4.14). Thus, the magnitude spec-

trum shared by MP conveys not only global frequency of the image texture but

also the angular pattern of the image.
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Figure 4.14: The percentage of the number of the response 0 and the response 1 for each type

of MP when they are paired with each angle of PP. The total number of responses is 1008 when

the rotation angles of MP and PP are different, and it is 924 when the rotation angles are the

same.

4.3.4 The effect of the combination between the type and

the frequency of MPs to the magnitude’s dominance

From the previous section, it was found that the type and the frequency of sig-

nal are the only parameters which influence the magnitude’s dominance. The

combination of both factors seems to have a higher effect to the magnitude’s

dominance than the influence from each of them individually. By selecting only

the responses of pairs with the same rotation angle, the effect of the type and

the frequency of signal becomes more obvious (Figure 4.15). Eventually, not all

MPs are magnitude dominant. The sawtooth MP and the square-wave MP have

a considerably dominant phase at frequency 1. Although in the previous section

it was found that they have the same level of magnitude’s dominance, here it is

seen more obviously that the square-wave MP has a higher magnitude dominance.

The sinusoidal MP still appears to have the highest magnitude dominance.

The magnitude dominance of each frequency in every type of MP is signifi-

cantly different. This indication is supported by the Chi-square test which shows

that all the p-values are zero (Table 4.12). The relationship between the frequency

and the magnitude dominance can be estimated from the Cramer’s value. The

higher the value, the stronger the relationship. Furthermore, the Cramer’s value

also indicates the rate of the increase of the the magnitude dominance. As all

the Cramer’s values are positive, the correlation between the frequency and the
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Figure 4.15: The percentage of response 1s and the response 0s for each type of MP when they

are paired with PP which has the same rotation angle.

Table 4.12: The Chi-square Test on the Prevalence of Magnitude’s Difference within the Com-

bination of the Types and the Frequency of the MP’s Signals

Type of MP χ̃2 P-value Significant?
Reject

H0?

Cramer’s

Value

Saw 662.88 .0000 true true .4890

Sin 131.36 .0000 true true .2177

Squ 421.62 .0000 true true .3900

Tri 58.05 .0000 true true .1447

magnitude’s dominance also positive. Therefore, when the frequency increases,

the magnitude’s dominance also raises. The larger the Cramer’s value, the higher

the increase rate.

Thus, it can be concluded that the sawtooth MP has the highest increasing

rate of the magnitude dominance under the increase of frequency (Table 4.12).

The square-wave MP has the second highest rate. The sinusoidal MP has a

relatively low rate despite having the strongest magnitude dominance. However,

at frequency 3, its magnitude dominance has reached 98% which is considerably

strong and it practically stops increasing at this point. The lowest Cramer’s value

belongs to the triangle-wave MP which, therefore, means that it has the least rate

of the increase of the magnitude dominance.
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Table 4.13: The Structure of the Variables and Their Data Types

Features MP PP
Response

f0 f1 f2 ... f107 ms mf ma ps pf pa

x0
0 x1

0 x2
0 x1

007 ms0 mf0 ma0 ps0 pf0 pa0 r0

x0
1 x1

1 x2
1 x1

107 ms1 mf1 ma1 ps1 pf1 pa1 r1

x0
2 x1

2 x2
2 x1

207 ms2 mf2 ma2 ps2 pf2 pa2

...
...

...
... ms3 ps3

x360 x361 x362 x36107
∗continuous data ∗nominal data

4.3.5 Power spectra-based features to measure the mag-

nitude’s dominance

From the previous sections, it was found that the power spectra is related to

the type and the frequency of signal and, hence, to the magnitude dominance.

The number of their non-zero frequency components is associated with the type

of signal. The less the number of the frequency components, the stronger the

magnitude dominance. The distance of their frequency components from the DC

component has a positive correlation with the frequency of signal. The further the

distance, the larger the frequency and also the stronger the magnitude dominance.

One hundred and seven features (Appendix C) were intended to measure the

number and the distance of frequency components of the power spectra. For

each feature there will be thirty six values which were calculated from thirty six

different power spectra. The values of each feature can be put in a column vector

(Table 4.13). In total, there are one hundred and seven column vectors (f0 to

f107). These values are all continuous data. The parameters of MP which consist

of four types of signal (ms), three different values of frequency (mf) and three

distinctive rotation angle (ma) were considered to be nominal data. The same

treatment was also applied to the parameter of PP. Because the rotation angle

itself is found to not contribute to the magnitude’s dominance, its correlation with

the feature will not be investigated. Finally, the binary responses were coded as

response 0 (r0) and response 1 (r1) and they are categorical data.

The features that are most correlated with the type of signal

To find the correlation between each feature and the type of signal, an Anova

analysis was performed with that feature as the dependent variable and the type

of signal as the independent variable. The p-value obtained from the analysis
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indicates the correlation between that feature and the type of signal. If the p-

value is less than .05, there is a significant different of means among the type of

signal which, therefore, that feature is more likely to correlate with the type of

signal. Because p-value does not indicate the size of correlation, the η2, which

is equivalent to correlation, was used to measure the strength of the relationship

between that feature and the type of signal. The larger the value of η2, the

stronger the correlation. As there are one hundred and seven features, there were

also one hundred and seven Anova analyses.

The most correlated features were selected based on their Anova analysis’s

result. A feature is considered to have a relatively high correlation with the

type of signal if it passed the filter which based on two criteria–i.e., the p-value

must be less than .01 and the η2 must be greater than .10 [282, 283]. As the

η2 value is equivalent to correlation, eliminating the value which is less than .10

is reasonable [268]. Among one hundred and seven features, only thirty of them

passed the filter (Figure 4.16). The pcm and rd m2 have the largest η2. However,

the calculation of both features are based on the distance of frequency component

of the power spectra which, therefore, is more related with the frequency than

with the type of signal. Among the features which are calculated based on the

number of frequency component, only area h2 which appear to have a medium

η2 (.20).

The features that are most correlated with the frequency of signal

A similar method using a series of Anova analyses was used to find the features

which have the highest correlation with the frequency of signal. The features were

set as the dependent variables and the frequency type was set as the independent

variables. The result was also filtered using the same criteria to select the most

correlated features. Finally, forty three features meet the criteria (Figure 4.17).

Six of them have a perfect η2 (1.0), four features have high η2 values (.70 to

.90), and other four features have moderate η2 values (.50 to .70). The features

which have a perfect η2 value, –i.e., smf, pts r2, area r, pts r, and rad m are

calculated based on the distance of the largest frequency component of the power

spectra which, therefore, is not unpredictable to have a strong relationship with

the frequency of signal.

There are ten features which meet both criteria from the type’s (Figure 4.16)

and the frequency’s filter (Figure 4.17). They are emp, fro m, lmp, lsp, mass p,

mo , mom1, pcm, r cog1, and rd m1. However, most of them do not have a high

correlation with either the type of the frequency of the signal.
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Figure 4.16: A set of power spectra-based features that are most correlated with the type of

signal

The features that are most correlated with the combination of the type

and the frequency of signal

The combination of the type and the frequency of signal contributes the most

significant influence to the magnitude dominance. Therefore, the feature which

correlates with this combination of parameters is highly likely to give the most

accurate prediction to the responses. From a series of two-way Anova analyses

to one hundred and seven features, thirty three of them have the η2 greater than

.10 (Figure 4.18). Three of features have a large η2 (> .60)–i.e., rd m1, pcm,

and mom1. These features also pass the correlation filters for the type and the

frequency of signal. The first feature was calculated based on the distance of

the frequency component and the other features were calculated based on the

multiplication between the distance and the value of frequency component which

is equivalent to moment in physics.

Despite having a strong relationship with the frequency and the type of signal,

there is no guarantee that these features will also have a high correlation with the

response. This may happens because each MP was combined with PP which of

course will influence the magnitude’s dominance of the hybrid (child) image. A

certain interaction between two values of feature which belong to MP and PP will

determine the magnitude’s dominance of MP in each hybrid image. A measure
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Figure 4.17: A set of power spectra-based features that are most correlated with the frequency

of signal.

on this interaction must be established so that the probability of the response

can be predicted.

The logistic regression model using the features to predict the re-

sponses

As any level of the magnitude’s dominance implies the opposite level of the phase

dominance, their summation can be limited as 1.0. By assuming that the value of

each feature follows the normal distribution, the contribution conveyed by the fea-

ture to the magnitude dominance can be modelled in the cumulative distribution

function (cdf) of the normal distribution (Equation 4.6).

magf (x) = 0.5

(
1 + erf

(
x− x
σ
√

2

))
, 0.0 6 magf (x) ≤ 1.0 (4.6)

Where f is the feature, x is the mean value of the feature, and σ is the standard

deviation of the feature. The corresponding phase dominance is 1.0 − magf (x)

and can be simplified as in Equation 4.7.

phaf (x) = 0.5

(
1− erf

(
x− x
σ
√

2

))
, 0.0 6 phaf (x) ≤ 1.0 (4.7)

The interaction between two values of a certain feature which belong to MP

and PP in the hybrid image can be estimated by subtracting the magnitude’s
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Figure 4.18: A set of power spectra-based features that are most correlated to the combination

of the type and the frequencies of signal of MP

dominance of MP and the magnitude’s dominance of PP at their values of feature.

If the value is positive then the response will tend to be 1. The higher the

difference between them, the more likely for the response to be 1. Otherwise,

if the difference is negative, the response will tend to be 0. For example, if the

magnitude’s dominance of MP is lower than PP has, the hybrid image will tend to

have less dominance of magnitude as the subtraction between magMP and magPP

is significantly negative (Figure 4.19).

A set of thirty three features which significantly correlate with the type and

the frequency of signal (Figure 4.18) were selected. A further reduction on this

number of features was performed by removing the features which are highly

correlated with each other. The threshold was set at .95 and, eventually, the

number of selected features was reduced to nineteen. Each of these selected

features was, then, standardized and was transformed to include the strength of

the magnitude’s dominance of PP using Equation 4.8.

magf ′(x) = 0.5

(
erf

(
xMP − x
σ
√

2

)
− erf

(
xPP − x
σ
√

2

))
,−1.0 6 magf ′(x) ≤ 1.0 (4.8)

Where magf ′ is the transformed feature, xMP is the value of the feature of MP, and

xPP is the values of the feature of the corresponding PP. The values of feature in

MP and the values of feature in PP are combined to calculate the mean value and

the standard deviation of the feature. All features undergo the same treatment.
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Figure 4.19: The error function used to estimate the relationship between the magnitude’s

dominance and the phase’s dominance. The sum of their values at any point along the feature

axis is always 1.0. For example, a value of the feature which corresponds to an image with 80%

magnitude’s dominance will imply that the phase’s dominance of that image can also be known

directly from that value which, therefore is 20%. It is assumed that as the value of the feature

increases, the magnitude’s dominance also increases.

A binary logistic regression is used to model the relationship between the

features and the response (Equation 4.9).

hβ (x) =
1

1 + e−xβ
(4.9)

where

xβ =


1 x1

1 x2
1 · · · xn1

1 x1
2 x2

2 · · · xn2
...

...
...

1 x1
m x2

m · · · xnm





β0

β1

β2

...

βn


(4.10)

and x is the column vectors of the feature, β is the column vector of the coefficients

of the features, except for β0 which is the intercept, m is the number of the

training samples, and n is the number of the features. By assuming that those

m samples are independent, the likelihood function of the coefficients β for the

logistic regression can be written as in Equation 4.11.

L (β) =

m∏
i

hβ (xi)
yi (1− hβ (xi))

1−yi (4.11)
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A Lasso regularization (Equation 4.12) method was implemented to the log

of Equation 4.11 in order to avoid overfitting by reducing the number and the

values of coefficient βs [284, 285].

`1 (β) =
m∑
i=1

(
yi log hβ (xi) + (1− yi) log (1− hβ (xi))

)
− λ

n∑
j=0

|βj | (4.12)

By implementing a grid search cross validation (GridSearch-CV) method [286,

287] in the data, it was found that the best value of C for the `1 penalty is 5.46

(Figure 4.20). This `1 regularization helps removing the least important features

by making their coefficient to zero which, therefore, aligns with the goal to find

a set of most useful features.

The ordinate value of the point where the vertical line (at C = 5.46) crosses

the curve of the feature becomes the coefficient of that feature (βj) in the logistic

regression model. The maximum value of the coefficient is 5.7 which belongs

to feature mom and the minimum value is −6.1 which belongs to feature pts t

(Figure 4.21). The intercept (β0) is 1.30.

Figure 4.20: Constant C is the inverse of λ (the penalty term’s constant). The larger the C

value, the logistic regression becomes more similar to the ordinary logistic regression. The

coefficients become large. To shrink the coefficient, the C value must be adjusted to the smaller

level. The closer the value of C to the zero, the bigger the penalty applied to the loss-function

which eventually makes the logistic regression’s coefficients shrink.

The features with a positive coefficient indicate that their contribution to the

probability of getting response 1 is positive. In other words, this feature has a
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Table 4.14: The Classification Report of the Logistic Regression

Precision Recall f1-score Support

0 .66 .45 .54 905

1 .82 .91 .86 2422

accuracy .79 3327

positive correlation with the magnitude dominance. Otherwise, if their coefficient

is negative, the features contribute in increasing the chance of obtaining response

0. The larger the coefficient, the bigger the contribution of the feature to the

logistic function.

Figure 4.21: The coefficients of each feature (β) of the logistic regression which is supposed to

give the best performance (See Equation 4.9).

By using those features and coefficients, the logistic regression achieved the

accuracy of 79% (Table 4.14). It means that 79% of the responses were correctly

predicted. The performance in predicting the response 1 (82% correct) is better

than in predicting the response 0 (66% correct). Only 45% (recall) were correctly

predicted from the total number of predictions of response 0. Meanwhile, 91% of

the total of response 1s predicted are correct.

4.4 Conclusion

Images with one-dimensional (1-D) periodic signal are magnitude dominant. This

type of image has a power spectrum with a few frequency components that being

arranged in one line for the signal with 0° and 90° rotation angle, and in two
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lines for the signal with 45° rotation angle. The fewer the number of frequency

component, the stronger the magnitude dominance which, therefore, the weaker

the phase dominance. Having only a single frequency component, the image with

sinusoidal signal becomes the most magnitude dominant. In other words, the

fewer the frequency components, the more the texture’s information conveyed by

the power spectra, and, hence, the less the information contained in the phase

spectra.

The second parameter of 1-D periodic signal which also influence the magni-

tude dominance is the frequency. The higher the frequency of signal, the stronger

the magnitude dominance. The frequency is related with the distance of the

largest frequency component and the distance of arrangement between the fre-

quency components of the power spectra. The larger these distance, the stronger

the magnitude dominance.

The rotation angle of signal has no effect to the magnitude dominance of its

power spectra. The magnitude dominance of an hybrid image composed from two

parent images with the same rotation angle is determined only by the type and the

frequency of both of parent images. Only when the parent images have different

rotation angle, the hybrid image will have the higher magnitude dominance. This,

however, is caused by the appearance of directional textures which again is more

related to the type and the frequency of signal than the rotation angle of signal

itself. Therefore, the magnitude dominance of an image with a 1-D periodic signal

is influenced only by the type and the frequency of signal.

Based on these evidences, the power spectra can be used to measure the

magnitude dominance of images. Some features can be generated to extract

the information about the effective number and the distance of the frequency

components so that the magnitude dominance of an image can be measured. As

the level of magnitude dominance implies the opposite level of phase dominance,

the total of these potentials can be limited as 1.0. Therefore, an image with

0.8 of magnitude dominance will have 0.2 of phase dominance. The magnitude

dominance of an hybrid image can be estimated by the difference of the magnitude

dominances of its parent images.



Chapter 5

The Influence of Scaling

Transformation to the Magnitude

Dominance of Images

5.1 Experiment Rationale

From Chapter 4, it was found that the magnitude dominance of an image can

be estimated from its power spectrum. Moreover, instead of using the phase

spectrum itself, the phase dominance of an image can also be measured from

its power spectrum because the phase dominance is just the opposite level of

magnitude dominance. In the image with a periodic texture, the magnitude

dominance can be determined by the number and the distance of the arrangement

of frequency components in the power spectrum. The bigger the number of

frequency components, the weaker the magnitude dominance. Meanwhile, the

further the distance between non-zero frequency components, the stronger the

magnitude dominance.

In this experiment, those evidences would be examined again. It was hypoth-

esized that by changing the frequency of its texture, any image can be modified

from being phase dominant to become magnitude dominant or vice versa follow-

ing a pattern shown in Figure 5.1. To test this hypothesis, a set of images with

natural textures were used as the stimuli. Because most of natural images have

aperiodic textures, it is common for them to have a low frequency [256] and,

hence, become phase dominant. However, this condition makes these textures

even more suitable to become the stimuli.

To change a natural image from being phase dominant to become magnitude

dominant, one of the possible methods is to increase the frequency of its texture

130
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Figure 5.1: The error function can be used to estimate the magnitude dominance of an image

based on its features. An image cannot be both magnitude dominant and phase dominant at

the same time. However, by changing the frequency of its texture, the magnitude dominance of

an image can be modified. Increasing the frequency will improve the magnitude dominance of

the image and therefore, a phase dominant image can become magnitude dominant. Reducing

the frequency will result the contrary effect.

which can be done by scaling down their size and, then using its replications to

fill the vacant space. The result is a new image with a more periodic texture

for which, therefore, the magnitude dominance becomes higher than the original

image.

However, as the profile of the power spectrum of an image with natural texture

is not regular, the number of non-zero frequency components will not directly

reflect its magnitude dominance. Not only the number and the distance, but the

weight of frequency components will also influence the magnitude dominance.

Besides, as the arrangement of the non-zero frequency components is irregular,

their spacing distance will be difficult to determine and, hence, the frequency

of the image’s texture will not be possible to calculate. Based on this evidence,

the power spectra-based features become even more preferred to characterize the

power spectrum and to measure its magnitude dominance.

The present study aims to investigate the influence of the scaling method to

the magnitude dominance of images. The power spectra of the scaled images

would be characterized using a set of features to predict when the scaled image

shifted from being magnitude dominant to become phase dominant and vice versa.
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This experiment was intended to determine the ratio of the scaled images at these

two shifting points and to determine a number of power spectra-based features

to characterize the magnitude dominance of images.

5.2 Method

Although it would not be exactly known, the magnitude dominance of a com-

mon image was assumed to be lower than its phase dominance. The magnitude

dominance of an image can be modified using a scaling method, i.e. the image

is shrunk and then the emptied space is filled by the shrinking pattern so that

the original size is kept intact. The new texture of the image becomes filled by

a number of tiles of shrunk patterns. The smaller the shrunk image the higher

the frequency of its texture and the stronger the magnitude dominance. At some

point, the texture will shift from being phase dominant to become magnitude

dominant.

To observe and to measure the magnitude dominance of the scaled image,

another image is needed. The magnitude spectrum of the scaled image is com-

bined with the phase spectrum of the other image to form a hybrid image. A

visual observation is needed to compare these images and to determine whether

the hybrid image is more similar to the scaled one or the other one. The scaled

image is considered as magnitude dominant if it is perceived to be more similar

to the hybrid image. Otherwise, it will be phase dominant.

5.2.1 Stimuli

Fourteen images were used in the experiment. Five of them were used as the

parent images which contribute the power spectra. This kind of parent image

was then coded as MP to shorten its mention. They were set to have different

levels of magnitude dominance. However, as it is difficult to find and to collect a

set of natural images which can be sorted in a regular order according to the type

or the frequency, five different images were chosen carefully from Brodatz dataset

so that they would have different frequencies of texture (Figure 5.2). During

the experiment, their texture was modified from the natural one to the more

regular and artificial one by scaling down their size. This transformation was

intended to increase the frequency of the texture and, therefore, their magnitude

was predicted to increase too.
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Figure 5.2: The set of parent images which were used as the source of the power spectra (MP).

From the top left to the bottom right, the patterns are labelled as MP-1 to MP-5 respectively.

Here, the sizes of the image stimuli are reduced for sake of clarity. The actual size of each image

is 256× 256.

Nine images were used as the parent images which contributed the phase

spectra (Figure 5.3). This parent image was coded as PP. As modifying the

phase spectra will result an unpredictable effect, they were kept fixed. However,

these images were selected by putting the different levels of phase dominance

into the consideration. Three groups of images with different phase dominances

were collected. The first group consists of three images with no noticeable global

frequency of texture (Figure 5.3: top row). This type of image was supposed to

have a high phase dominance. Their texture were predicted to always appear in

the hybrid image at some point within the range of the scale of MP. The second

group of images were selected from Brodatz dataset (Figure 5.3: middle row).

Three images within this groups were predicted to have a different level of phase

dominance which are still lower than the first group, yet, higher than the third

group of images which have the lowest phase dominance (Figure 5.3: bottom

row). The third group of images have the lowest phase dominance. Therefore,

their texture was predicted to will never appear in the hybrid image.

5.2.2 Participants

Eighteen volunteers were the subjects in this experiment and each of them per-

formed ninety tasks. They were students at the University of Leeds. All par-

ticipants were interviewed to ensure they are free from impairments that could
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Figure 5.3: The set of parent images which were used as the source of the phase spectra (PP).

From the top left to the bottom right, the image are labelled as PP-1 to PP-9 respectively.

These images were displayed along with the hybrid image and their texture was not modified.

Thus, their phase spectra did not change. Here, the sizes of the image stimuli are reduced for

sake of clarity. The actual size of each image is 256× 256.

affect their ability to perceive the visual patterns. Participants were näıve to

the hypotheses. In all experiments the duration of the stimuli exposure was not

specified to allow subjects to make thorough explorations of the patterns.

5.2.3 Procedure

Forty five hybrid images were created from five MPs and nine PPs. Each hybrid

image was then paired with PP and was displayed on a computer screen (Figure

5.4 and 5.5). The scaled MP was not shown. However, its changing power

spectrum affected the appearance of the hybrid image.

There were two setups of scaling activity. First, the left setup in which the

MPs were initially set to the lowest ratio (0.07). In this condition, all of their

textures became regular and periodic with a high frequency. Their power spectra

became magnitude dominant so that even PP with a high phase dominant will
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disappear from the hybrid image (Figure 5.4: right image). Hence, all PPs would

not be seen on the hybrid image at the beginning. The maximum ratio was set

at 1.0 and, therefore, the slider could not move beyond that limit.

The task given to the subjects was then to move the slider on the screen so

that the texture of the left image (PP) starts appearing on the hybrid image and

to press the button Yes if the left texture was seen. If the slider had been moved

to the most right and the left texture still can not be seen, the subjects were

instructed to press the button No (Figure 5.4). As the magnitude dominance of

MP was decreasing, the first six PPs (in the first and the second rows in Figure

5.2) were predicted to be seen at some point when the slider was being moved

to the right side. However, the bottom row PPs, which have a very low phase

dominance, were predicted to be not seen at all.

Figure 5.4: The scheme of a pair of images displayed on computer screen for the left-setup

experiment. The left image is PP which contribute phase spectrum and was not transformed.

The right image is the hybrid image which is changing if the slider is moved due to its power

spectrum changing too. If the slider is move to the right, the texture of the left image (PP)

will probably and slowly appear in the hybrid image. Here, the sizes of the image stimuli are

reduced for sake of clarity. The actual size of each image is 420× 420 pixels.

Second, the right setup in which the ratio was set from 1.0 and the slider is

initially at the right position (Figure 5.5). At this condition, the first six PPs

were predicted to be seen and the rest to be not seen on the hybrid image. Then,

the subjects were asked to move the slider from the right to the left so that the

ratio decreases. At the position where PP starts disappearing, the subjects were

asked to press button Next. If, from the beginning, the left pattern cannot be
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seen in the right image, the subjects were instructed to press button No directly

without moving the slider. If subjects mistakenly moved the slider despite PP

not being seen in the hybrid image, the button Refresh was provided to restart

the display of the stimuli.

Figure 5.5: The scheme of a pair of images displayed on computer screen for the right-setup

experiment. The slider was initially set the right side which indicates that the scaling ratio of

MP is 1.0. At this condition, the texture of PP will probably appear in the hybrid image (right

side). If the slider is moved to the left side, the texture will slowly disappear. Here, the sizes

of the image stimuli are reduced for sake of clarity. The actual size of each image is 420× 420.

All subjects performed both setups of experiment. In each setup, forty five

pairs of stimuli were presented twice (in two rounds). Therefore, in both setups,

each subject was conducting four rounds of trials (180 adjustment activities). To

minimise the bias, the experiment’s order was counterbalanced. Nine subjects

performed the experiment from the left setup and then the right setup. The

other nine subjects did the experiment in the opposite order of setups.

5.2.4 Analysis

The data collected were used to analyse the effect of scaling transformation to the

magnitude dominance of images. The position of the slider at which the texture

of PP starts either appearing (in left-setup) or disappearing (in the right-setup)

indicates the ratio of the shrinking MP. Ideally, the mean of scaling ratio is the

same for each setup. However, the most likely to happen is the mean of scaling

ratio in the left setup would be larger than the same mean in the right setup. A
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paired t-test would be used to determine whether these means of scaling ratio are

the same or not.

One hundred and seven features were extracted from the power spectra of the

stimuli. The features that are most correlated with the magnitude dominance

will be used in a binary logistic regression to model the magnitude dominance of

the transformed images. As each feature has values from MP and PP, its relative

value was then calculated using Equation 4.8 before being used in the regression

model.

5.3 Result and Discussion

Two types of data were obtained from the collected responses. The first data

are the informations of whether subjects noticed either the appearance or the

disappearance of PP in the hybrid image. The data were coded as 1 if subjects

noticed any one of them and as 0 if did not. In the left-setup experiment, code

1 means that subjects noticed the shift of the magnitude dominance of MP from

being high to become low which was marked by the appearance of PP in the

hybrid image. Meanwhile, in the right-setup experiment, code 1 means that

subjects noticed the shift of the magnitude dominance MP from being low to

become high which was marked by the disappearance of PP in the hybrid image.

The second information is the scaling ratio of the transformed MP. From the

left-setup experiment, the collected scaling ratios indicate the size of transformed

MPs at which their magnitude dominance start becoming lower than their phase

dominance. Meanwhile, from the right-setup experiment, the scaling ratio in-

dicates that the magnitude dominance of MPs was perceived to become higher

than their phase dominance.

5.3.1 The appearance and disappearance of PPs in the

hybrid image

A total of 3240 responses were collected from both setups of experiment with each

of them contributing a half of that number (1620). In the left-setup experiment,

it was predicted that subjects would notice the appearances of PP in two-thirds

of 1620 occasions (1080) as two-thirds of the PPs are phase dominant (Figure

5.3). However, the result shows that PPs were perceived to appear in twenty

nine more occasions than it was predicted (Table 5.1). A similar result was

obtained from the right-setup experiment. In more than two-thirds occasions,
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Table 5.1: The Summary of Responses on Appearance and Disappearance of PPs

Experiment Setup
Observed Number of

Appearances (Predicted)

Observed Number of

Disappearances (Predicted)

Left 1119 (1080) 501 (540)

Right 416 (540) 1204 (1080)

Table 5.2: The Summary of Responses on Appearance and Disappearance of PPs for Each PP

in Both Experiment Setups

PPs

Setup Response 1 2 3 4 5 6 7 8 9

left
0 0 1 0 11 98 2 119 170 100

1 180 179 180 169 82 178 61 10 80

right
0 0 1 0 5 72 1 97 148 92

1 180 179 180 175 108 179 83 32 88

subjects was seeing PP disappear from the hybrid image. Both results suggest

that scaling down the size of images can systematically increase their magnitude

dominance and scaling up their size will reduce it.

All presented stimuli were predicted to obtain response 1s except for PP-7, -8,

and -9 which were predicted to obtain all 0s. These three PPs have a significantly

low phase dominance so that they should never appear in the left-setup experi-

ment and also never disappear in the right-setup one. However, eventually, the

result came with the unpredicted responses instead of with the predicted ones.

As an evidence, despite obtaining all 1s, PP-2, -4, -5, and -6 obtained a number

of 0s in both the left- and the right-setup experiment respectively (Table 5.2).

For PP-2 and PP-6, as their proportion of 0s is less than 5%, those unpredicted

responses were most likely due to chance. However, for PP-4 and PP-5, the re-

sponses seems to not merely due to chance. Another evidence is found in PP-7,

-8, and -9. Despite being predicted to obtain only 0s, they obtained a consider-

ably number of 1s, especially for PP-7 and -9. This result shows the source of the

discrepancy between the number of observed responses and the predicted ones

(Table 5.1).

In general, from a total of 3240 responses, 545 (17%) of them are unpredicted

(Table 5.3). Among them are 354 unpredicted 1s (predicted to be 0s, yet was

found to be 1s). This number accounts for 33% of total predicted 0s. Thus,

despite having a low phase dominance, PP-7, -8, and -9 were perceived to be phase

dominant by appearing 354 times from 1080 corresponding pairs. Unpredicted

0s (predicted to be 1s, yet was found to be 0s) came from 191 (9%) pairs out of

2160 corresponding pairs. It means that PP-2, -4, -5 and -6 were perceived to be
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Table 5.3: The Cross Tabulation of the Predicted and the Observed Responses

Observed

Predicted
0 1

0 726 191

1 354 1969

Table 5.4: Chi-Square Test of Independence of Responses

Difference between
λ

(Pearson)

Num. of

Obs.
DoF χ̃2

cr χ̃2 P-val Cramer’s V

Observed and predicted 1.0 3240 1 3.81 1206.40 .000 .610

Left- and right-setups 1.0 3240 1 3.81 10.73 .001 .058

First- and second-round 1.0 3240 1 3.81 .49 .482 .012

less phase dominant by not appearing in the hybrid image for 191 times despite

being phase dominant.

Those unpredicted responses, however, are eventually significantly different

from the predicted ones (Table 5.4: first row). Both of the p-value and the

Cramer’s V value support this indication. This result, therefore, shows that

those unpredicted responses were actually not really to be unpredicted ones. The

responses’ proportion of PP-5, -7, -8 and -9 were arguably not due to chance.

In other words, the texture of those images influences the subjects’ perception

systematically.

Although the response’s proportions for each PP in the left-setup and the

right-setup experiments seems to be the same (Table 5.2: second row), the result

from a Chi-square test shows that they are significantly different. This result

indicates that these setups influence the responses, especially for PP-5, -7, and

-9. However, as the Cramer’s V value is small (.058), the relationship between

the setups and the responses is relatively weak. In other words, the response’s

proportions between the left-setup and the right-setup is small yet significant.

Meanwhile, between two rounds, the response’s proportion shows no difference

(Table 5.2: third row). The obtained p-value (.49) and the Cramer’s V value

(.012) support this indication. Thus, trial does not influence the response.

5.3.2 The ratio of the resized MPs

The scaling ratios of the resized MPs from both of the left- and the right-setup

experiments are not normally distributed (Figure 5.6). Using a Shapiro-Wilk

test, the obtained p-value is close to 0.00 which indicates that the assumption of

both distributions are normal should be rejected. Both of them have a positive
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skewness; they are 1.31 and 2.48 respectively although it seems that the tail of

their distributions has different direction. The low frequencies spread across the

segment line between ratio value of 0.5 and 1.0 make the skewness of the scaling

ratios of the left-setup experiment becomes positive (the blue histogram). If those

frequencies were removed, the skewness of this distribution becomes −1.37.

The scaling ratios of the left-setup experiment has a mean (µl) which equals to

0.44 and a median (x̃l) which equals to 0.40. The scaling ratios of the right-setup

experiment has a mean (µr) which equals to 0.11 and a median (x̃r) which equals

to 0.15. This result indicates that, in the left-setup experiment, the size of MPs

have to be scaled up from initially 0.07 to 0.40 of their size on average so that

PPs start appearing in the hybrid images and, in the right-setup experiment,

MPs must be scaled down to 0.15 of their size on average so that PPs start

disappearing from the hybrid images.

Figure 5.6: The histogram of the gathered scaling ratios of transformed MPs for the left-setup

and the right-setup experiments. The frequency of scaling ratios is not normally distributed for

both experiments.

The scaling ratio of resized MPs in the left-setup experiment is significantly

larger than the same scaling ratio in the right-setup experiment. This indication

is supported by the t-test results in Table 5.5. The obtained p-value and the

effect-size value indicate a strong difference between µl and µr. Furthermore, it

is seen that the scaling ratio of the resized MPs in the left-setup experiment is

0.28 higher than the same scaling ratio in the right-setup experiment with 95%

confidence level.
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Table 5.5: Paired T-tests on the Prevalence of Different Means of Scaling Ratio between Setups

and between Rounds

Source T dof Tail P-value CI (95% ) Cohen-d

setup (left-right) 41.77 986 greater .000 [.28,∞, ] 1.86

round (first-second) 1.46 1096 two-sided .140 [−.00, .01] .02

Table 5.6: ANOVA tests on the Prevalence of Different Means of Scaling Ratio within MPs and

PPs

Source ddof1 ddof2 F P-unc ηp2

Subject 17 2182 20.938 .000 .140

MP 4 2195 4.197 .002 .008

PP 8 2191 10.483 .000 .037

The gap between µ and x̃ in each experiment setup is significantly smaller

than the difference either between µ’s or between x̃’s of both setups of experiment

(Figure 5.6). As a result, either a parametric or a non-parametric test will provide

the same result although the scaling ratio is not normally distributed. The paired

t-test is preferred to the Wilcoxon signed-rank test because the former provides

not only the same reliable results but also more information than the later.

Two rounds of experiment showed no different means of scaling ratio (Table

5.5: second row). The p-value is significantly larger than .025 and the effect size is

also negligible (.02). Both parameters imply that rounds have no influence to the

experiment’s result. Meanwhile, different subjects gave significantly distinctive

responses of scaling ratio (Table 5.6: first row). Moreover, subjects contributed

14% to the variance of the scaling ratio values which is considerably larger than

the contribution of MPs and PPs. Two latter parameters also influence the scaling

ratios although in the smaller portions (Table 5.6: second- and third rows). This,

however, is not unpredictable as each MP and PP has a different texture which,

therefore, has a different magnitude dominance too.

5.3.3 A Logistic regression to model the relationship be-

tween a set of power spectra-based features and the

visual responses

Despite being related each other, the scaling ratio of the scaled image cannot be

used to measure the magnitude dominance of that image by itself due to two

reasons. First, for the same scaling ratio, two distinctive images will always have

a different magnitude dominance. Second, the information of the scaling ratio is
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only available when the image was scaled, whereas it is uncommon for an image

to come from a scaling process. Besides, to measure the scaling ratio of this type

of image is impossible and not useful. Therefore, instead of using scaling ratios

to model the magnitude dominance, power spectra-based features were adopted

here.

A set of one hundred and seven features which has been used in Chapter 4 were

used again here. For PPs, as their size is fixed, the features were extracted from

their power spectra at its original size. Meanwhile, for MPs, the features were

extracted at each of their scaled sizes. Then, each feature was analysed using

a Wilcoxon signed-rank test to know whether it is highly correlated with the

magnitude dominance or not. In the test, the feature was set as the dependent

variable and the binary response was used as the independent variable. The

feature would be selected if the obtained p-value is less than .001 and the CLS

value is larger than .56 (is equivalent to 10% of correlation) [288, 289]. From one

hundred and seven features being tested, seventy six of them were found to pass

those criteria.

Figure 5.7: The optimal C value is shown by the vertical red dashed-line. The ordinate value

of crossing points between this line and the feature paths become the coefficient value of each

corresponding feature in the logistic regression model which can give the best prediction.

A further possible reduction on the number of features was investigated by

measuring the correlation between themself. The threshold was set at .95. Each

number of features which are correlated to each other were removed except one.

From this step, it was found that among seventy six of features, thirty one of



143

them have a correlation which is higher than .95 which were then being excluded

from the list of useful features (Figure 5.8). Then, only forty six candidates of

feature were selected to be used in the binary logistic regression model (Equation

4.9).

Figure 5.8: Features that are correlated each other above the threshold and would be excluded

from the regression model.

To avoid overfitting and to shrink the values of β, a lasso regularization

method (`1-penalty) was implemented in the regression model (Equation 4.12).

A GridSearch-CV method was used to find out the accuracy of the regression

within a range of C values [286, 287]. The values of constant C ranged from 10−3

to 104. The result showed that the best C value is 13.26 which can provide an

accuracy to the model at around 87% (Figure 5.9). Although the smaller value

of C will reduce the value of βs (Figure 5.7), it will also make the accuracy of

the model decrease (Figure 5.9). Meanwhile, the larger value of C will increase

the value of βs, yet without improving the model’s accuracy.

Based on this C value, the value of βs can be determined from the curves in

the logistic regression path (Figure 5.7). The ordinate value of the point where
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Figure 5.9: Using either training or validation data, the accuracy of the binary logistic regression

model is seen to not improve for the C (1/λ) value larger than 10. A GridSearch-CV method

gave C equals to 28 to obtain the best accuracy.

the vertical line (at C = 13.26) crosses the curve becomes the coefficient of the

corresponding feature (βj) in the logistic regression model. However, as it seems

that some features have a considerably smaller absolute value (magnitude) than

the others, these features, therefore, can be removed from the model without

affecting its accuracy significantly. There were seven features which have β of

zero. The final list of thirty eight features and their coefficients (β) is shown in

Figure 5.10. The maximum value of coefficient is 13.6 which belongs to feature

mass p2 and the minimum value is −23.7 which belongs to feature emp. The

intercept (β0) is −1.6.

Among those features, nineteen of them (50.0%) have a positive coefficient

which means that if their value increases, their contribution to the magnitude

dominance of the image also increases. The rest have a negative coefficient which

indicates that if their value increases, their contribution to the magnitude domi-

nance of the image decreases. However, these features will have a positive corre-

lation with phase dominance.

By using those features and their coefficients, the binary logistic regression

model achieved the accuracy of 87% (Table 5.7). It means that 87% of the

responses were correctly predicted. The performance in predicting the appearance

of PP (response 0: 83% correct) is lower than in predicting the disappearance of
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Figure 5.10: The coefficients of each feature (βj) of the logistic regression which is estimated

to give the best performance.

Table 5.7: The Classification Report of the Binary Logistic Regression Model

Precision Recall f1-score Support

0 .83 .83 .83 258

1 .89 .89 .89 402

Accuracy .87 660

PP (response 1: 89% correct). Furthermore, from the total number of prediction

of response 0, 83% (recall) were correct. Meanwhile, 89% of the total number of

response 1s being predicted were correct. This result indicates that the model

is better in predicting the magnitude dominance than in predicting the phase

dominance.

Clustering performance of the binary logistic model

The scaling ratio correlates strongly with magnitude dominance. Simply by in-

creasing or decreasing its scaling ratio, the magnitude dominance of an image

will change accordingly. Meanwhile, for features, their correlation with magni-

tude dominance varies from strongly negative to highly positive. Therefore, the

correlation between a set of one hundred and seven features and the magnitude

dominance of images becomes obscure.
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Since the beginning, it has been assumed that each feature has a non linear

relationship with magnitude dominance (Figure 5.1). However, to investigate the

performance of this assumption, three clustering techniques were implemented on

the 3240 data points (rows) consisting of one hundred and eight columns (which

are consisted of one hundred and seven features and the corresponding subject’s

response (either 0 or 1)).

The first technique was a K-means clustering method. It was intended to

make two clusters of the subjects’ responses from the 3240 data points using

unsupervised classification processes. Prior to the process, each value of the

features was transformed using Equation 5.1.

x′ = 0.5
(
magf (x)− phaf (x)

)
(5.1)

where, x′ is the transformed value of the corresponding feature, magf (x) and

phaf (x) have been defined in Equation 4.6 and 4.7. In this transformation pro-

cess, the features from both magnitude and phase spectra were taken into account.

To visualize the result on a 2D chart, an MDS method was used to project one

hundred and seven dimensions into two dimensions of data. The result (Fig-

ure 5.11: upper right) shows that the labels made by this method still differs

significantly from actual observation (Figure 5.11: upper left).

The second technique was using a binary logistic regression to create two

clusters of the responses. The data of features have also been transformed using

Equation 5.1 prior to the process. A better result of classification was obtained

as shown by the spread of the labels which is very similar to the distribution of

responses (Figure 5.11: bottom left).

The third technique was also using a binary logistic regression to cluster re-

sponses into two groups. However, the data of features were not transformed

as in the previous techniques. The data of features were taken solely from the

images which contribute magnitude spectra. The performance seems to be better

than the K-Means clustering method but worse than the binary logistic regression

technique with transformed data (Figure 5.11: bottom right).

These results, therefore, indicate that the set of power spectra-based features

are related non-linearly with the magnitude dominance. In this case, two error

functions (Equation 4.6 and 4.7) (which are non-linear) were needed to transform

the data of features from both images which contribute the magnitude and phase

spectra. To accommodate the effect of the magnitude dominance of images MPs

and PPs, Equation 5.1 was also used in this process of data transformation. This

method has been shown to give a better result to the clustering process. Finally,
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Figure 5.11: Scatter plots of 3240 responses. An MDS method was used to transform the

dataset from one hundred and seven into two dimensions so that they can be visualized using

scatter plots. The blue points indicates that the scaled images is magnitude dominant and

the red ones for phase dominant images. Upper left is the plot of subjects’ responses; upper

right is the plot of clustered responses using K-means clustering method; bottom left is the plot

of the clustered response from the binary logistic regression model using transformed-features

(Equation 4.8); bottom right is the plot using the same binary logistic regression model but the

features were from the MPs only.

a binary logistic regression technique is better to model the responses than using

K-Means clustering method.

5.4 Conclusion

The magnitude dominance of images with natural texture can be adjusted by

using the scaling method. This type of image will still be phase dominant even

after being scaled down to around 44%. As the scaling ratio decreases, a high fre-

quency of texture will appear in the scaled images. This type of texture will have

a higher magnitude dominance. When the ratio scaling reaches at around 0.15,
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the scaled images which were phase dominant will become magnitude dominant.

Having a scaling ratio lower than 0.15, most of images with natural textures

which are originally phase dominant will turn to magnitude dominant. To recover

their phase dominance, however, they needs a scaling ratio higher than 0.15, i.e.

around 0.44. This gap indicates that there is a hysteresis in the perception of

image appearance.

Among one hundred and seven power spectra-based features being investi-

gated, thirty eight of them were most correlated with the magnitude dominance

of the scaled images. Four of them, i.e. r cog1, pcm, mass p2, smf have been used

in Chapter 4 to model to magnitude dominance of images having texture with

periodic signals. By using these selected features, the binary logistic regression

model can achieve an accuracy of 86%.



Chapter 6

Magnitude Dominance of Natural

Textures in the Visual and

Tactile Perception

6.1 Experiment Rationale

Although it is widely believed that phase is more dominant than magnitude

[193], especially in the images with a natural texture [256], the phase dominance

of an image does not depend on whether it is natural or not. It has been found in

Chapter 4 and 5 that the phase or the magnitude dominance of an image depends

rather on the frequency components of its power spectrum. From the visual

aspect, the magnitude dominance of an image is influenced by the frequency of its

global texture. The higher the frequency, the stronger the magnitude dominance

and, therefore, the less the phase dominance.

However, as the frequency of texture can not be easily measured, a set of one

hundred and seven power spectra-based features are able to be used to represent

it. They have been shown to perform well in the binary logistic regression model

to predict the magnitude dominance of images. The present study aims to in-

vestigate the presence of natural textures which are magnitude dominant both

in visual and tactile perception. Brodatz texture database was the source of the

natural textures used in this study. The set of features were used to select a group

of images which are magnitude dominant and another group of images which are

phase dominant within the database. The magnitude and phase dominance of

each image would be tested in both visual and touch experiment. Furthermore,

these experiments were intended to

149
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1. obtain some evidences of the presence of images with natural texture which

are magnitude dominant,

2. show that the power spectra-based features can be used to cluster im-

ages with natural textures into a phase dominant and magnitude dominant

group, and

3. to measure and compare the performance of visual and touch perception in

discriminating textures with different levels of magnitude dominance.

6.2 Method

6.2.1 Stimuli

There were three steps to obtain the set of textures that would be used in this

experiment. The first step is to collect a number of grayscale images that have

natural texture. In the next step, only seven of them would be selected. As

in Brodatz album all images are captured from natural objects, this album was

chosen as the source of images. In total, there are one hundred and eleven images

with different textures in that album. Two additional images were added to

the collection; they are a sinusoidal image with frequency 1 Hz and an image

of Chinese character. The former is the most magnitude dominant among other

images in the collection and the later was known to have a relatively high phase

dominant (Table 5.2). Based on those characteristics, both images were suitable

as the reference images. The magnitude dominance of the other images can

be estimated by referring their ”distance” to both images. The natural texture

of images which are magnitude dominant will surround the sinusoidal image.

Meanwhile, the images which are phase dominant will stay close to the image

of a Chinese letter. Then, all images were numbered from 1 to 113. The last

two number for the images with sinusoidal texture (number 112) and the Chinese

character (number 113).

The second step is to characterize each image in the collection using a set of

one hundred and seven features which were extracted from its power spectrum.

Those are the same features which have been used in chapter 4 and 5. A multidi-

mensional scaling (MDS) method was then used to measure the distance between

each image based on the collected values of features. This method was chosen

because it preserves the similarities (closeness) of the data points in both low- and
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high-dimensional space during optimization process [290]. The distance between

images (Di,j) was calculated using Equation 6.1 (adopted from Buja et al. [291]).

StressD (x1, · · · ,xN ) =

 N∑
i 6=j=1

(Di,j − ‖xi − xj‖)2

1/2

(6.1)

where StressD is a loss function to be minimized and xi is a column vector of

features’ values of image i. Di,j is a two-dimensional matrix which was obtained

by minimizing StressD. Based on this matrix, the relative position of each image

represented by its label was then visualized in 2D plot (Figure 6.1).

Figure 6.1: One hundred and thirteen labels of images are arranged based on their relative

closeness. Image 112 has sinusoidal texture and here, it is the most magnitude dominant.

Image 113 is a Chinese letter and it is most likely to have the most phase dominant.

The third step is to put the images in Figure 6.1 into several clusters. The

two-dimensional matrix representing the relative position of each image that was

obtained from the MDS method was used as the input data for the clustering

process. As there was no initial labels, K-means clustering method was chosen

to determine and obtain a reasonable number of clusters trough unsupervised

clustering process [292, 293]. The objective function is given by Equation 6.2.

J =
N∑
n=1

K∑
k=1

wnk ‖xn − µk‖2 (6.2)
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where J represents the sum of the square of the distances between each data

point (xn) and its centre of corresponding cluster (µk), wnk = 1 for data point

xn if it belongs to cluster k; otherwise, wnk = 0, N represents the number of

observations, and K is the number of clusters. By minimizing the value of J

for a given value of K, the clusters and their members of data points can be

determined.

The number of clusters assigned in the clustering process influences the value

of J . Theoretically, the possible k ranges from 1 to N . However, it is uncommon

to have either k = 1 or k closes to N . The reasonable k can be determined by

comparing the values of J for a range of k’s. Commonly, the value of J reaches

its peak at k = 1 and then drops significantly at a certain value of k. At this

point, the value of J starts to flatten out and forming an elbow which means that

the increase in k values does not improve the distance error J . Therefore, it is

common and reasonable to pick this k as the chosen number of clusters.

Figure 6.2: The blue curve shows the total sum of squared distance between two data points

(J) within each cluster for every k number of clusters in range of [1, 16]. The lower value of J

the better. The red line indicates the average width of the silhouettes (s̃(i)) at each k number

of cluster. The higher value of s̃(i) indicates the better degree of cluster separation.

However, sometimes, the value of J decreases monotonically as k increases

as it happens here (Figure 6.2). In this case, selecting the best value of k be-

comes difficult. A method called silhouette analysis was used to overcome this
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problem [294]. In short, this method measures the degree of separation between

clusters. Each cluster is represented by a silhouette that is formed by a collection

of horizontal lines representing the silhouette width s(i) of each data point within

the cluster. For each data point i within a cluster, the silhouette width s(i) is

calculated using Equation 6.3.

s(i) =
b(i)− a(i)

max (a(i), b(i))
(6.3)

where a(i) is the average dissimilarity or distance of data point i to its neigh-

bouring data points within its cluster and b(i) is the average dissimilarity of data

point i to all other data points within the closest cluster.

The silhouette width s(i) has a range of [−1, 1]. Data points with s(i) close

to +1 indicate that they are far away from neighbouring clusters. A data point

with s(i) equals to 0 means that it is very close to the boundary of the closest

cluster. Some data points may have negative values of s(i) which means that

they might have been assigned to the wrong cluster. By averaging all s(i) values,

the degree of separation between clusters can be measured. If the average value

of all s(i)’s near to +1, all clusters are well separated. In contrast, if the average

value closes to 0, the clusters may close each other.

Based on the silhouette method, the best value of k is 3 with the average width

of silhouettes s̃(i) equals to 3.55 (Figure 6.2). Although this value indicates that

the separation made for three clusters is still weak [295], the value of s̃(i) already

reaches its peak which means that other choices of k will result weaker split of

clusters. Therefore, in this experiment, the number of clusters for the images was

selected to be three (Figure 6.3).

It was initially expected that the centres of all clusters form a relatively

straight line which means that their magnitude dominance were well ordered.

However, it is not the case here as all three clusters are radially positioned (Figure

6.3). The first cluster contains image 112 that is strongly magnitude dominant

and therefore, this cluster was considered to comprise images with magnitude

dominant. The second cluster which is next to the first one was regarded as

phase dominant cluster as it contains image 113, i.e., the reference of phase dom-

inant images. The last cluster consists of images that are relatively distant from

image 112 and image 113. This condition makes the dominance of their phase

or magnitude become not easily estimated in an intuitive way although it does

not mean to be impossible to measure. Here, it was assumed that the phase or

magnitude dominance of the image depends on the difference between its distance

to image 112 and its gap with image 113.



154

Figure 6.3: Three clusters were then generated using K-means clustering method. Each cluster

is surrounded by line segments and their member of images have the same colour. All points

in black colour are the centre of gravity of the corresponding cluster. The black numbers were

the image chosen as the stimuli.

Visual stimuli

The number of stimuli determines the cost to manufacture them and the time

spent by the subjects in the experiment. The larger the number of the stimuli, the

higher the production cost and the longer the time needed for subjects to explore

and assess the stimuli which would affect their focus and performance. To avoid

these issues, seven images were considered to be sufficient in this experiment; three

of them to be phase dominant, another three images to be magnitude dominant,

and one image as a dummy was selected from a point at about the middle position

of those six images. It was expected that this dummy image is neutral, meaning

that its phase and magnitude dominance are in balance.

All phase dominant images were picked from the cluster in which image 113

is inside; they are images 58, 31, and 99 (Figure 6.3). They were then labelled as

P1, P2, and P3 respectively. The phase dominance of these images was expected

to vary as they have different distances from image 113; P3 should be the most

phase dominant, P1 to be the least, and P2 is in between. For the magnitude

dominant images, one of them came from the cluster in which image 112 is inside

and other two images came from the cluster beside it; they are image 37, 51, and
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68. Those images were labelled as M1, M2, and M3 respectively. Their magnitude

dominance was expected not to vary widely as their distances to image 112 are

not significantly different. Finally, image 2 was chosen as the dummy image and

it was given label D1. All selected images are displayed in Figure 6.4.

Figure 6.4: In the top row from left to right are M1, M2, M3, and D1. In the middle row from

left to right are P1, P2, and P3. The actual size of each image is 256×256 pixels. Here, their

size is reduced for sake of the space.

By using those images, six hybrid images were created (Figure 6.5). First

three hybrid images were created by combining the power spectrum of each image

M with the magnitude spectrum of D1 and then performing the inverse Fourier

transform to each combination of spectra. These hybrid images were used to test

the magnitude dominance of image Ms. Another set of hybrid images were created

by combining the phase spectra of P1, P2, and P3 and the magnitude spectra

of D1 and then performing inverse Fourier transform to those combinations of

spectra too. These images were used to test the phase dominance of image Ps.

In total, therefore, thirteen visual stimuli were created; six of them are parent

images, the other six are hybrid images, and the last one is the dummy image.

Tactile stimuli

Thirteen grayscale images which were all used as the visual stimuli were adopted

as the blueprints of the surfaces’ contour of the tactile stimuli. Each image was

converted into a 3D-CAD model in stereolithography (.stl) file format (Figure

6.6). Each pixel of the image represents the point in Z-axis of the corresponding

vertex in the 3D model. Therefore, the height of asperities of the 3D model’s
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Figure 6.5: The hybrid images in the first row from left to right was created using the combi-

nation of the phase spectrum of D1 and the power spectra of M1, M2, and M3 respectively. In

the second row from left to right, the hybrid images were created using the power spectrum of

D1 and the phase spectra of P1, P2, and P3 respectively. Their actual size is 256×256 pixels.

Here, its size is reduced for sake of the space.

surfaces is defined by the value of its corresponding pixel of the blueprint image.

The white pixels (255) were set as the valleys (0 mm from the base’s surface)

and the black pixels (0) were set as the peaks of the surface’s contour (0.5 mm).

The resolution of the asperities is 30 µm which the highest resolution of the 3D

printer being used can reach. By using this method, the surface of the tactile

stimuli will look similar to their source images.

Thirteen 3D models of the tactile stimuli were 3D-printed by using polymeric-

based material in Perfactory 3 Mini Multi Lens®. The size of each tactile stim-

ulus is 50 mm×50 mm×2.5mm. As there are 256 pixels for each texture, the

horizontal resolution of each touch stimulus equals to five pixels per mm2. With

the total thickness of 2.5 mm, 2 mm of it is the base thickness and 0.5 mm of it

is for the asperities. The base thickness was determined based on the consider-

ation on the strength of the stimuli. Meanwhile, the high of the asperities was

determined by considering the just noticeable difference (JND) for the smooth

surface which is (15± 8.5µm) [30]. So, in this experiment, the peak of asperities

is around three times of the JND which therefore the asperities would be easily

explored and perceived by the subjects.
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Figure 6.6: A sample of CAD model of the tactile stimulus with texture of D1. All CAD models

of the stimuli were created using a computer code written in Python� programming language

(Appendix A.3).

6.2.2 Participants

Fifteen volunteers became the subjects of this experiment and each of subject

performed eighteen trials in each experiment. They were students at the Uni-

versity of Leeds. All participants were interviewed to ensure they are free from

impairments that could affect their ability to perceive the visual and the tactile

patterns. Participants were näıve to the hypotheses. In all experiments the dura-

tion of the stimuli exposure was not specified to allow subjects to make thorough

explorations of the patterns.

6.2.3 Procedure

There were two sessions of experiments. The first one was visual experiment in

which six pairs of images were displayed on an LCD monitor one by one (Figure

6.7). Subjects used only a mouse to give their responses. The second experiment

was tactile experiment in which six pairs of tactile stimuli were presented one

by one inside a curtained box so that subject could not see the surfaces of the

stimuli. Subjects were asked to touch and slide their fingers across the surface

so that they can make comparisons. A form was provided to each subject for

recording the responses.

Both experiments used 2AFC Match-to-Sample method [277]. The hybrid

texture was used as the ”sample” stimulus, and the parent textures were used as

the ”match” stimuli. In every presentation, subjects were asked to select which

one between two ”match” stimuli that is most similar to the ”sample” stimulus.
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Figure 6.7: The presentation of a pair of visual stimuli. The upper image is the ”sample”

stimulus and two lower images are the ”match” stimuli. The actual size of each stimulus is

256×256 pixels. Here, their size is reduced for sake of clarity.

The presentation order of the pair of stimuli was randomized. Each subject

repeated the comparison activities three times.

There was no special instruction and guidance for the subjects about the cri-

teria and the degree of similarity on both types of stimuli. They were free to

interpret the definition of similarity between image in the visual experiment and

between surfaces in the tactile experiment. However, all subjects were given a

preliminary experiment using three pairs of stimuli which were randomly selected

from the actual pairs in both experiment. The purpose of this experiment is to al-

low subjects to understand and become familiar with the instructions. There was

no feedback given to the subjects after completing their preliminary experiment.

This exercise experiment was not included in the analysis.

In the tactile experiment, the subjects were asked to use the dominant hand

and the same finger during exploring the stimuli’s surfaces. A handedness ques-

tionnaire was given to the participant to know which hand is his/her dominant

one. Before exploring the stimulis’ surfaces, the condition of the fingerpad’s skin

was standardized by washing it using a wet wipe. The subjects were asked to wear

an ear defender to prevent the ear from listening any sound evoked by fingerpad

when sliding on a stimulus’s surface.

6.2.4 Analysis

The data collected from the visual experiment was used to find an evidence of

the presence of images with natural textures which are ”unusually” magnitude
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dominant. The responses were coded as 1 if the parent image with label either

M or P was selected to be more similar to the corresponding hybrid image and

otherwise was coded as 0 if D1 was selected to be more similar to the hybrid

image. The number of response 1s obtained by M labelled images indicates the

strength of the evidence.

Beside that, the visual responses joined with the touch responses were used to

find an evidence that the touch perception would be able to detect the magnitude

dominance of tactile textures in a similar mechanism that the visual perception

has. Therefore, it was predicted that the magnitude dominant images will be still

magnitude dominant when they are transformed into tactile stimuli. Likewise,

the phase dominance of images will not change in the tactile perception.

As the visual and the touch perception do not have an exactly similar mech-

anism (Section 3.4), a further analysis on the influence of the roughness textures

to the surface recognition was made. The topography of the stimuli was charac-

terized by using seven parameters of areal surface texture; they are arithmetic av-

erage height (sa), root-mean square deviation (sq), skewness of topography height

distribution (ssk), kurtosis of topography height distribution (sku), density of sum-

mits (sds), the fastest decay auto-correlation length (sal), and texture aspect ratio

(str). These are 3D parameters and are extensions from those which have been

used in the 2D characterization method [69, 82]. They were selected here because

their measurement is based on 2D array of points which, therefore, is identical to

image. Their corresponding 2D roughness parameters have been used to charac-

terize perceptual roughness [84, 180–182].

The roughness of the tactile stimuli was estimated by performing the calcu-

lation on the images instead of the physical surfaces. If an image is represented

by Equation 6.4,

f(m,n), 1 6 m ≤M and 1 ≤ n ≤ N (6.4)

where M is the number of rows of the image’s pixels and N is their number of

columns, the asperities (yi) of the tactile stimuli can be defined as the value of

the corresponding pixel subtracted by the total average of the pixel (Equation

6.5).

ym,n = f(m,n)−
M∑
m=1

n∑
n=1

f(m,n) (6.5)

Based on Equation 6.5, the following formulae of areal surface textures can be

defined.
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a. sa is the average of absolute deviation of the asperities from the mean line.

This parameter is easy to define and to measure, however it is not suitable

to represent surfaces with regular asperities as they will have a similar value.

sa =
1

MN

M∑
m=1

N∑
n=1

|y(m,n)| (6.6)

b. sq represents the standard deviation of the surface asperities. This param-

eter depicts variation of the asperities dispersed across the surface.

sq =

√√√√ 1

MN

M∑
m=1

N∑
n=1

y2(m,n) (6.7)

c. ssk represents the asymmetry of the asperities’ distribution. It indicates

the common height of asperities. If the distribution is left skewed, most

of asperities are higher than the mean. Otherwise, for the right skewed

distribution, most of asperities are lower than the mean.

ssk =
1

MNs3
q

y3(m,n) (6.8)

d. sku is a measure of the sharpness of the asperities’ distribution. The higher

the value, the sharper the distribution which indicates that the heights of

asperities are closed to the mean.

sku =
1

MNs4
q

y4(m,n) (6.9)

e. sds represents the density of asperities’ peaks across the surface. It belongs

to the category of spacing parameters which means that it takes into account

on not only the height of asperities itself but also the spatial domain. All

following parameters also belong to this category. They were adopted from

Blunt and Jiang [82].

sds =
number of summits

(M − 1) · (N − 1) · dx · dy
(6.10)

f. sal is calculated based on the auto-correlation function (ACF)’s value of the

surface. It represents the shortest distance that the ACF decays to 0.2 in

either X− or Y−axis direction.

sal = min
(τm,τnεR)

(√
τ 2
m + τ 2

n

)
, R = {(τm, τn) : ACF(τm, τn) ≤ 0.2} (6.11)
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g. str represents the uniformity of the surface. The larger the value the more

uniform the surface asperities.

str =
min

(√
τ 2
m + τ 2

n

)
max

(√
τ 2
m + τ 2

n

)
∣∣∣∣∣∣
R(τm,τn)≤0.2

(6.12)

To investigate the relationship between each roughness parameter and the sim-

ilarity of roughness texture, the value of each parameter for every image would

be compared (Equation 6.13).

rp =
sI − sH
sD − sH

(6.13)

where rp is the ratio of roughness’ differences, s indicates to the roughness pa-

rameter, and its subscripts indicate to the image: I is for the parent image with

label M and P, H is for the corresponding hybrid image, and D is for the image

with label D. From these comparisons, it was expected that the smaller the ratio,

the more similar the hybrid image to the stimuli M or P. Otherwise, the larger

the ratio, the more similar the hybrid image to the stimuli D. Paired t-test would

be used to measure the correlation between the ratio of each roughness parameter

and the responses of similarity between stimuli.

6.3 Result and Discussion

A total of 540 responses were collected from both visual and tactile experiment

with each of them contributes a half of that number (270). In the visual exper-

iment, all images with label M obtained 45 of 1s which means that they were

perfectly perceived to be magnitude dominant as has been predicted (Table 6.1).

In the tactile experiment, the result is not really different. In one occasion, M2

was perceived to be less similar to the hybrid image than D1 (which contributed

its phase spectrum). This result gives an evidence that natural textures can be

magnitude dominant which means that their phase spectra are less important

than their magnitude spectra.

In the visual experiment, P1 and P3 obtained 45 of 0s which means that they

were perfectly perceived to be phase dominant as has been predicted. P2 was

perceived five times (11%) not to be more similar to the hybrid image than D1

(which contributed its magnitude spectrum). In the tactile experiment, only P3

which obtained 45 of 0s. P1 received 40 of 0s which is five less than it received
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Table 6.1: Response Summary

Parent Images

Setup Response M1 M2 M3 P1 P2 P3 D1

Visual
0 0 0 0 45 40 45 0

1 45 45 45 0 5 0 5

Tactile
0 0 1 0 40 13 45 1

1 45 44 45 5 32 0 37

Table 6.2: Chi-square Analyses of Responses’ Difference within Round and Mode for P1, P2,

and P3

Source Num. of Obs. DOF Critical (P > 95%) χ̃2 P-value Cramer’s V

Round (1-3) 540 2 5.991 0.015 .992 .005

Mode (vis-tac) 540 1 3.841 6.824 .009 .112

from the visual experiment. P2 was perceived differently in the tactile experiment.

Most subjects (71%) felt that P2 was less similar to the hybrid stimulus than D1.

When its phase spectrum was being used, D1 was never been perceived as

phase dominant in the visual experiment, but once in the tactile experiment. It

means that its phase is less dominant than the magnitudes of M1, M2, and M3.

Meanwhile, when its magnitude spectrum being used, D1 was perceived to be

magnitude dominant five times (4%) in the visual experiment and thirty seven

times (27%) in the tactile experiment.

In general, responses are found to not be influenced by trial’s repetition (Ta-

ble 6.2: top row). It means that in each repetition, the stimuli were perceived

independently. The previous presentation of stimuli did not influence the percep-

tion of the following presentation. However, the mode of experiment is found to

influence the subjects’ perception which is indicated by the significantly different

responses obtained from the visual and the tactile experiment (Table 6.2: bottom

row). In this case, by using those six stimuli, the influence is weak (the Cramer’s

V value = .112). Moreover, for M1, M2, M3, and P3, the influence is not seen;

their responses are the same in both visual and tactile experiment. Meanwhile, for

P1, the influence is noticeable and for P3, it changed the perception –i.e., from

being strongly phase dominant in the visual experiment to become less phase

dominant in the tactile experiment.
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The influence of the distance between parent images to the perception

of surfaces’ similarity

The relative distance of the parent images to D1 on the MDS plot was determined

using Equation 6.14.

d =
√

∆D2
1 + ∆D2

2 (6.14)

The result indicates that the distance between two parent images determines their

degree of similarity with their hybrid image. Having the longest distances, M1,

M3, and P3 were perceived to be most similar to the hybrid image (Figure 6.8).

All subjects in both experiments could perceive their texture in the corresponding

hybrid images (Table 6.1). Having the shortest distance, P2 was perceived to be

less similar to its hybrid image. It was perceived to be not similar with the hybrid

image five times in the visual experiment and thirty two times in the tactile one.

Figure 6.8: The relative distance between texture of the stimuli. Textures with labels M are

magnitude dominant and the ones with labels P are phase dominant. D1 is the intermediate

texture.

In other words, the further the distance from D1, the stimuli with either

M or P label are more similar to the hybrid image. Otherwise, the closer the

distance, either M, P, or D1 will obtain more responses in the same proportion

which indicates that the confusion in perceiving the texture’s similarity increases.

In both experiments, the influence of this distance to the degree of similarity is

significant (Table 6.3). This evidence, therefore, supports the indication that
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Table 6.3: T-test on the Prevalence of Different Means of Distance between the Similar and

Dissimilar Stimuli

Source T DoF Tail P-value CI (95%) Cohen-d

Visual (same-diff.) 6.917 264 two-sided .000 [.01, .02] .428

Tactile (same-diff.) -20.921 100 two-sided .000 [-.08, -.06] 2.257

the magnitude dominance of an image is influenced by its complementary image

(Equation 4.8).

However, in each experiment, the influence of the distance to the similarity

responses is different as shown by the Cohen-d values. The distance has a smaller

influence in the visual experiment than in the tactile one which means that to

have the same level of influence, the larger difference of distance is needed in

the visual stimuli. Meanwhile, the smaller difference of distance between tactile

stimuli will be more noticeable. Beside that, there is a possibility that in a certain

cases the subjects had different perspective of roughness as there are two modes of

tactile perception, i.e. duplex theory (Subsection 2.2.4). For the rough surface,

the pressure from the surface’s asperities is the main source of the roughness

perception. The tactile field of perception may appear here.

However, for the smooth surface (the particle size on it is less than 100 µ

m), the vibration that occurs on the fingerpad becomes the main source of the

roughness perception. Beside that, in the activity of surface comparison, vibration

will be evoked to provide more information about the surfaces although they are

relatively rough. The more similar the surfaces, the more vibrational cues are

needed. In this process, subjects will press the surface strongly and slide the

finger quickly and frequently. This may be the reason of why P2 was perceived

differently in the tactile experiment (Table 6.1).

Influence of the physical roughness to the perceived roughness

To analyse whether the physical roughness influences the perceived roughness, the

surface of the tactile stimuli was characterized using seven parameters of areal

texture and the measured roughness (Table D.8) was then correlated with the

responses of similarity. As there were only thirteen data of roughness collected

for each parameter, the mean of surface roughness between stimuli was compared

using Wilcoxon signed-rank tests. The first test is to measure the difference of

the roughness mean between the parents stimuli with label M or P and the hy-

brid stimuli. The result shows that there is no significant difference between their



165

Table 6.4: T-test on the Prevalence of Different Means of Roughness between the Similar and

Dissimilar Tactile Stimuli

Roughness

Parameters

Between Ms, Ps and Hybrid Images Between D1 and Hybrid Images

W-val P-val RBC W-val P-val RBC

s a 1.0 .059 .91 0.0 .036 -1.00

s q 1.0 .059 .91 0.0 .036 -1.00

s sk 7.0 .529 .33 0.0 .036 1.00

s ku 5.0 .295 -.52 0.0 .036 1.00

s ds 0.0 .036 1.00 2.0 .093 -.81

s al 4.0 .854 .20 0.0 1.000 1.00

s tr 4.0 .855 .20 6.0 .396 -.43

Table 6.5: T-test on the Prevalence of Different Means of Roughness between the Similar and

Dissimilar Tactile Stimuli

Roughness

Parameters
T P-Value Cohen-d Power

s a 7.940 0.0 0.613 0.937

s q 8.145 0.0 0.623 0.944

s sk 13.526 0.0 3.064 1.000

s ku 6.708 0.0 0.553 0.882

s ds 8.682 0.0 0.682 0.973

s tr -8.484 0.0 0.601 0.928

roughness mean (Table 6.4). The second test which compared between the rough-

ness mean of the hybrid and D1 stimuli also shows no significant difference. Both

results, thus, show that there is no significant difference of roughness between

parent stimuli and the hybrid ones. These results also indicate that the tactile

perception was not influenced by the physical roughness as reported by Tiest and

Kappers [84].

However, a different indication appeared from comparison tests for the ratio

of roughness’ difference (Equation 6.13). The result shows that this ratio in the

parent stimuli which were perceived to be similar is different from the same ratio

in the parent stimuli which were perceived to be similar. In short, the ratio of

roughness’ difference correlates with the responses of similarity (Table 6.5). All

roughness parameters shows medium correlation, except for s k which has a high

correlation (its Cohen-d value equals to 3.1 which is high according to Cohen

[271]). Beside that, between P2 and its hybrid image (D1 P2), the values gap

of s k parameter is much larger compared to the values gap of s k parameter

between D1 and D1 P2. These results may explain of why P2 was perceived

mostly to be not similar to the hybrid stimuli compared to D1 (Table 6.1).
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6.4 Conclusion

The magnitude dominance of images has been shown not to depend on whether

their texture is natural or not. Any image can be magnitude or phase dominant

depends on the frequency of its global texture. However, it is not easy to de-

termine and select images which are magnitude or phase dominant using a mere

visual inspection.

The results provide an evidence that the set of 107 power spectra-based fea-

tures can be used to characterize and to cluster natural textures into a phase

dominant and magnitude dominant group. The selected images from each group

have been shown to be visually perceived in accordance with their group. For

example, in the visual experiment, the images in the magnitude dominant group

were perceived to be magnitude dominant too. The level of the magnitude and

phase dominance of the textures are influenced by their ”relative distance” from

D1 (Figure 6.8). The larger the ”distance”, the stronger the magnitude or phase

dominance of the image.

The result of the tactile experiment shows that, in general, the textures were

perceived in accordance with their group too. This evidence indicates that tactile

perception can perceive irregular textures in the same way the visual perception

can. However, in the visual experiment, the subjects’ performance in detecting

the textures’ similarity is better than in the tactile experiment. To have the

same level of magnitude or phase dominance, the tactile texture needs a bigger

”relative distance” to D1 than the visual texture.



Chapter 7

General Discussion and

Conclusion

7.1 Overview

This study was aimed to measure the magnitude and phase dominance of image

textures in both visual and tactile perception. To achieve this, several objectives

were made; the relationship between visual and tactile perception on irregular

patterns was investigated, the contribution of phase and power spectra to the

magnitude’s dominance of images was measured and compared using four types

of standard signals, the prominent and potential features of power spectra which

influence the magnitude dominance were re-examined using a set of images with

natural textures, the selected features were used to cluster the images into a

magnitude dominant and a phase dominant group of images.

To carry out these objectives, four sets of experiments were performed. The

first set consists of a visual and tactile experiment using irregular patterns that

are generated using the formulae of first-, second-, and third-order probability.

This experiment was intended to determine whether the tactile perception has

a similar mechanism with the visual perception. The evidences obtained from

this experiment are important to determine the usefulness of the effort to model

the surface’s asperities and the roughness perception using images. The second

set consists of a visual experiment only and was intended to find the parameters

from the standard test signals which influence their magnitude dominance. Hav-

ing found that the type and the frequency of these signals are the most influential

parameters, the third set of experiments was intended to test both parameters

using a scaling method in which the size of five different images with natural tex-

tures was being modified so that their frequency changes. The results show that

167
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both type and frequency of images strongly influence their magnitude dominance.

However, as these parameters in most cases can not be determined, a set of power

spectra-based features were used to represent them. The relationship between

these features and the magnitude dominance of the scaled images was made by

putting them as the independent variables along with the subjects’ responses as

the dependent variable in a logistic regression model. The results show that this

model could achieve an accuracy of more than 80% in predicting the magnitude

dominance of the images. The fourth set of experiments were performed to get

some evidences that by using these features, any image with natural texture can

be determined whether it is magnitude or phase dominant. The experiments were

also intended to obtain some evidences showing that the magnitude dominance

of any image also prevails in its corresponding tactile texture.

This study may benefit to the affective surface engineering by providing some

evidences showing that: first, surfaces can be well represented using images which

makes it, therefore, possible to use image features that are abundant and relatively

easier to be extracted and analysed than to use the actual roughness parameters

for describing surface textures; second, magnitude-based image features can be

used to characterize, especially, the frequency of image’s textures and therefore,

potentially, can be used to represent both image and surface textures in general;

third, in Fourier spectra the magnitude components are more important than the

phase parts, thus, instead of using phases-based features, magnitudes-based ones

are more recommended to describe either visual or tactile textures in the study

of affective dimension of surfaces.

In short, this study showed a reasonable and potential opportunity to use

magnitude-based features for describing surface textures and for developing mod-

els of the touch sensation of those textures. As has been shown in this study,

one hundred and seven magnitude-based features used in the experiments could

successfully discriminate between the magnitude and phase dominant textures in

both of visual and tactile specimens. This successful effort in using those fea-

tures may be extended to model other dimensions of affective surface other than

roughness such as smoothness, pleasantness, and comfort. Besides that, the use

of this type of features also gives a very useful advantage by making it possible

to reverse the process from analysis to synthesis of surface textures which in this

case is analogous to the image synthesis that has been already well studied. This

reverse process will not be possible if the standard roughness parameters were

used in describing the surfaces. This texture synthesis process will be useful in

designing a product with affective aspects.
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7.2 General Discussion

The topography of a surface is commonly described using a number of parameters

of surface roughness. Based on how the roughness is calculated, the roughness

parameters can be categorised into three groups; they are amplitude parameters,

spacing parameters, and hybrid parameters. Based on how the asperities of the

surface is measured, there are two groups of roughness parameters; 2D parameters

and 3D parameters. The higher the number of the parameters used, the better

the description can get. However, to provide a full description about it using a

finite number of parameters is not possible [69].

A number of these roughness parameters have been used to model the rough-

ness perception and it was reported that they do not have adequate correspon-

dence to the magnitude of perceived roughness [84, 296]. Elkharraz et al. [44] used

image textures to represent the topography of surfaces which therefore make it

possible to use a set of image features instead of roughness parameters to char-

acterize the surface roughness. They attempted to model the affective response

of tactile perception using 115 features of image textures [52]. It was reported

that four out of 115 features can be used to predict the tactile responses. That

method motivated this study to investigate the roughness perception through im-

age recognition. A number of images were used as the visual stimuli and the same

images were used again as the blueprints of the tactile stimuli. By comparing the

performance of the visual and the tactile perception, the effectiveness of using

images as the surface representation can be determined.

Image features can be extracted using at least four types of techniques; sta-

tistical methods, structural methods, model-based methods, and spectral-based

methods. However, in this study, the spectral method was selected because it

is related with spatial frequency of the image textures [53] which, therefore, will

be most likely to be correlated with the roughness perception too since one of

the prominent cues of the roughness perception is the vibration exerted on the

fingerpad [17, 24, 97]. For this method, FFT spectra were selected and used as

the source for features extraction.

As there two parts for every FFT spectra (the magnitude and the phase part),

the features can be extracted from both of them. However, there have been long

debates about which one of these parts is the most important. Despite no clear

explanation, it is commonly believed that phase part is more important than the

magnitude part. Millane and Hsiao [218] proposed a series of formula to measure

the phase dominance of an image, yet the result is not convincing. Therefore, to
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investigate the magnitude and the phase dominance of images becomes the focus

of this study. It was also hypothesized that the magnitude dominance of images

is preserved in the tactile textures that were created from the related images.

To examine that hypothesis, four series of experiments were performed. The

first experiment (Chapter 3) was used to investigate the similarity of how sub-

jects perceive the visual and the tactile stimuli with irregular patterns. Julesz

[240] conjectured that visual patterns can be discriminated if they have differ-

ences in the first-and second-order probability. Images which are different in the

third- and higher-order statistics will not be visually discriminable. To examine

this conjecture, three groups of images having first-, second-, and third-order of

statistics were created. Each group consists of nine images with transition prob-

ability ranges from 10% to 90% (Sub Section 3.2.2). These patterns were used to

create the tactile stimuli so that the scheme of both visual and the tactile exper-

iment is identical. The results obtained from both experiments support Julesz’

conjecture. Subjects could discriminate the first- and the second-order textures

which have different values of transition probability. The third-order textures

were undistinguishable. The results give an indication that surface roughness

can be represented by image textures.

The second experiment (Chapter 4) was visual and was dedicated to investi-

gate the component of power spectra of images with standard 1D signals which

influence the magnitude dominance. Four types of signals were used; they are

sinusoidal, triangle, square-wave, and sawtooth signals. Each type of signal were

varied in terms of rotation angle and frequency. In total, thirty six parent images

were created. The magnitude and the phase of each parent image was cross-

combined to each other to create 1260 unique hybrid images. Each hybrid image

along with its parents were presented in a monitor and subjects were asked to

select which parent image is most similar to the hybrid image. The results shows

that more than 88% responses selected the parent images which contributed their

magnitude part to be most similar to the related hybrid images which means that

the magnitude is more important than the phase. The number and the arrange-

ment’s distance of non-zero frequency components of the magnitude spectra are

the parameters which influence the magnitude dominance. The larger the num-

ber the weaker the magnitude dominance. Meanwhile, the further the distance

between non-zero frequency components the stronger the magnitude dominance.

It was also found that this distance is related with the frequency of the standard

signals. As the magnitude spectra appeared to be more important than the phase

spectra, a set of one hundred and seven power spectra-based features was used as
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the inputs of a logistic regression model to determine the magnitude dominance

of the parent images. The results show that the model could achieve an accuracy

of 79% in predicting the magnitude dominance of the images (Table 4.14).

The third experiment (Chapter 5) was also visual and was intended to get

more evidences of the influence of the number and the arrangement’s distance of

the frequency components on the magnitude dominance. A group of five images

with natural textures were used to test the influence of both parameters. To

modify the texture’s frequency of this type of images, a scaling method was used

(Sub Section 5.2). Another group of nine images were used to test the influence of

the frequency changes of the first group of images on their magnitude dominance.

The results show that by scaling down the size of the image stimuli with natural

texture, their frequency and magnitude dominance increase. Furthermore, the

same set of power spectra-based features to predict the magnitude dominance of

the scaled images could achieve an accuracy of 86%.

The fourth experiment (Chapter 6) was visual and tactile in which the same

set of power spectra-based features was used to measure and to cluster the mag-

nitude dominance of images with natural texture. Three phase dominant images

and three magnitude dominant images were selected from Brodatz album which

consists of one hundred and eleven different images with natural texture. One

additional image was chosen to test the magnitude dominance of those six im-

ages. All of those images were used as the blueprints of the tactile stimuli so

that the identical visual and tactile experiment can be made. The result show

that the subjects’ responses for each image were generally not different from the

prediction. In the visual experiment, all magnitude dominant images were per-

ceived to be perfectly magnitude dominant (Table 6.1). For the phase dominant

images, two of them were also perceived to be perfectly phase dominant. One

image (P2) was perceived to have weaker phase dominance. Those responses is

correlated with the distance of those images to image D1 (Figure 6.8). In the

tactile experiment, all magnitude dominant textures were also perceived to be

magnitude dominant too. For the phase dominant textures, two of them were

also perceived to be phase dominant. Only P2 was perceived to have low phase

dominance. Seven physical roughness parameters were correlated with the per-

ceived roughness, yet only ssk which is significantly correlated to the perceived

roughness. Moreover, as the ssk value of D1 is closer to the ssk value of D1 P2

than to the ssk value of P2 which may explain that P2 was perceived to be less

similar to D1. However, in general, the results indicate that both visual and
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tactile perception have a relatively similar pattern although the visual perception

has the better performance in recognizing and discriminating textures.

7.3 Conclusions and Recommendations

This thesis has shown that magnitude spectra are more important than the phase

spectra which opposes the common believe that phases are more important than

magnitudes. The magnitude dominance of images can be reliably measured using

the magnitude spectra, not the phase spectra. As the dominance of the magnitude

and the phase can be summed up as 1.0, their values can be determined by

calculating the value of one of them.

The magnitude dominance of images is retained in some degree in the corre-

sponding tactile textures. For example, a surface texture which was created from

a magnitude dominant image will be magnitude dominant too. This evidence

indicates that tactile perception is similar to visual perception and this makes it

possible to use image features, especially magnitude spectra-based features, for

modelling and predicting roughness perception in particular and touch sensation

in general.

7.3.1 Conclusions

The most important evidences shown in this study are two; first, the phase and

magnitude dominance of images can be determined using their magnitude spec-

tra, second the tactile perception is able to discriminate irregular patterns in a

relatively similar way that the visual perception does. Furthermore, from the

comprehensive study, the following conclusions were derived:

1. By examining the famous Julesz’s conjecture in the visual and tactile ex-

periment, some evidences were obtained which indicate that the visual and

tactile perception can discriminate irregular patterns in a similar way.

2. The magnitude dominance of images with standard signals is influenced

by the number and the arrangement’s distance of the non-zero frequency

components of their magnitude spectra.

3. The texture’s frequency of any image can be modified by a scaling method

in which the image is resized. This transformation will also change the

magnitude dominance of the image being resized.
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4. The dominance of magnitudes and phases can be summed up as 1.0 and

can be modelled using error function.

5. Power spectra-based features together with a logistic regression model can

be used to determine both the magnitude and the phase dominance of

images.

6. The relative distance between the parent images and the hybrid image on

the MDS plane can be used to estimate the magnitude dominance of each

parent image.

7. The roughness perception can be studied through images by using surface

textures which were created by transforming the grayscale pixels of the

images into .stl files.

8. Although both visual and tactile perception have a similar pattern, their

performances are different. The visual perception is superior in recognizing

and discriminating patterns. Beside that, they also have different mech-

anisms. In the visual perception, the grayscale pixels are perceived based

solely on their intensity. Meanwhile, in the tactile perception, the asperities

may be perceived based on the pressure they exert or on the vibration they

generate.

7.3.2 Recommendations for future work

There are two methods used in this study to convert images into CAD models;

first, boxelling method in which each pixel is converted into a prism; second, the

simple method in which each pixel represent a vertex of asperity in the .stl data.

The later is more suitable and robust for representing textures than the former,

especially for surface textures with a fine resolution. The wear and breakage of

the surface’s asperities can be minimized if the second method was used.

The power spectra-based features were found to be powerful in predicting the

magnitude dominance of images which, therefore, are recommended to be used

to characterize textures. Although they have been tested using natural textures,

it will be useful to test them using both anisotropic and isotropic homogeneous

textures by varying the size and the arrangement’s distance of the particles within

the textures. This examination can also be used to characterize the duplex theory

of roughness perception so that the more complete roughness characterization

may be obtained.
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The results from the last tactile experiment support the indication that tactile

fields were present in the roughness perception. Subjects are most likely to use

these fields to recognize and discriminates pairs of surfaces. Further investigations

are needed to get a strong evidence about the presence of these fields during

touching.

Although other dimensions of the tactile perception have not been explored,

the results from this study suggest that the power spectra-based features can

be used to model and predict the tactile perceptions beyond roughness. Further

investigation needs to be performed for this matter.



Appendix A

Computer Codes to Create

Image Textures and CAD Models

A.1 Java� code to create the first-, second-, and

third-order patterns

The snippet of code to create the first-order patterns:

int[][] array = new int[row][col];

Double[][] dumArray = new Double[row][col];

int pw1 = 0;

pw1 = Integer.parseInt(setPw.getText());

double prob = 0.0;

for (int i = 0; i < row; i++) {

for (int j = 0; j < col; j++) {

Random rnd = new Random();

int val = rnd.nextInt(100) + 1;

if (val <= pw1) {

array[i][j] = 255;

} else {

array[i][j] = 0;

}

}

}

The snippet of code to create the second-order patterns:

int pw3 = Integer.parseInt(setPw.getText());

// fill the matrix with 0;

for (int i = 0; i < row; i++) {

for (int j = 0; j < col; j++) {

array[i][j] = 0;

}

}

for (int i = 0; i < row; i++) {

for (int j = 0; j < col; j++) {

Random rnd = new Random();

int val = rnd.nextInt(100) + 1;
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if (i > 0) {

if (val <= pw3) {

array[i][j] = array[i - 1][j];

} else {

array[i][j] = 255 - array[i - 1][j];

}

}

if ((i == 0) & (j > 0)) {

if (val <= pw3) {

array[0][j] = array[0][j - 1];

} else {

array[0][j] = 255 - array[0][j - 1];

}

}

}

}

The snippet of code to create the third-order patterns:

int pw = Integer.parseInt(setPw.getText());

// fill the matrix with 0;

for (int i = 0; i < row; i++) {

for (int j = 0; j < col; j++) {

array[i][j] = 0;

}

}

for (int i = 0; i < row; i++) {

for (int j = 0; j < col; j++) {

Random rnd = new Random();

int val = rnd.nextInt(100) + 1;

int k = i % 3;

if (k == 0) {

if (i > 2) {

int a = array[i - 2][j] + array[i - 1][j];

if ((a == 0) || (a == 510)) {

if (val <= pw / 2) {

array[i][j] = array[i - 1][j];

} else if (val > pw / 2) {

array[i][j] = 255 - array[i - 1][j];

}

} else if (a == 255) {

if (val <= 100 - pw) {

array[i][j] = array[i - 1][j];

} else if (val > 100 - pw) {

array[i][j] = 255 - array[i - 1][j];

}

}

}

}

if (k != 0) {

if (val <= 50) {

array[i][j] = 255 - array[i - 1][j];

} else if (val > 50) {

array[i][j] = array[i - 1][j];
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}

}

if ((i == 0) & (j > 0)) {

if (val <= 50) {

array[0][j] = array[0][j - 1];

} else {

array[0][j] = 255 - array[0][j - 1];

}

}

}

}

A.2 Java� codes to convert a 2D array into an

image and an .stl file of boxels

The snippet of code to convert a 2D-array into an image:

BufferedImage img = new BufferedImage(row, col,

BufferedImage.TYPE_INT_RGB);

for (int i = 0; i < row; i++) {

for (int j = 0; j < col; j++) {

data = array[i][j];

dumArray[i][j] = (double) data;

Color nC = new Color(data, data, data);

img.setRGB(i, j, nC.getRGB());

}

}

The snippet of code to convert and save a 2D-array into an .stl file of boxels:

// ==START THE ITERATION========

for (int j = 0; j < loopY; j++) {

for (int i = 0; i < loopX; i++) {

if (hMatrix[i][j] != null){ // i and j should be re-check again

// first triangle of top=======================

height = setBaseThickness + hMatrix[i][j] / heightScale;

if (j == 0) {

iheighty = 0;

} else if (j > 0) {

iheighty = setBaseThickness + hMatrix[i][j - 1] / heightScale;

}

if (i == 0) {

iheightx = 0;

} else if (i > 0) {

iheightx = setBaseThickness + hMatrix[i - 1][j] / heightScale;

}

X = startX + iter;

Y = startY + iter;

bytes.add(" facet normal 0.000000e+000 0.000000e

+000 1.000000e+000"+ "\n");

bytes.add(" outer loop" + "\n");

bytes.add("\tvertex " + startX + " " + startY

+ " "+ height + "\n");
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bytes.add("\tvertex " + X + " " + startY

+ " " + height + "\n");

bytes.add("\tvertex " + X + " " + Y

+ " " + height + "\n");

bytes.add(" endloop" + "\n");

bytes.add(" endfacet" + "\n");

// second triangle of top

bytes.add(" facet normal 0.000000e+000 0.000000e

+000 1.000000e+000" + "\n");

bytes.add(" outer loop" + "\n");

bytes.add("\tvertex " + startX + " " + startY +

" "+ height + "\n");

bytes.add("\tvertex " + X + " " + Y + " "

+ height + "\n");

bytes.add("\tvertex " + startX + " " + Y + " "

+ height + "\n");

bytes.add(" endloop" + "\n");

bytes.add(" endfacet" + "\n");

// first triangle of bottom

bytes.add(" facet normal 0.000000e+000 0.000000e+000

-1.000000e+000"+ "\n");

bytes.add(" outer loop" + "\n");

bytes.add("\tvertex " + startX + " " + startY + " "

+ 0 + "\n");

bytes.add("\tvertex " + (startX + iter) + " "

+ (startY + iter) + " " + 0 + "\n");

bytes.add("\tvertex " + (startX + iter) + " "

+ startY + " " + 0 + "\n");

bytes.add(" endloop" + "\n");

bytes.add(" endfacet" + "\n");

// second triangle of bottom

bytes.add(" facet normal 0.000000e+000 0.000000e+000

-1.000000e+000"+ "\n");

bytes.add(" outer loop" + "\n");

bytes.add("\tvertex " + startX + " " + startY

+ " " + 0 + "\n");

bytes.add("\tvertex " + startX + " " + (startY + iter)

+ " " + 0 + "\n");

bytes.add("\tvertex " + (startX + iter) + " "

+ (startY + iter) + " " + 0 + "\n");

bytes.add(" endloop" + "\n");

bytes.add(" endfacet" + "\n");

if (iheighty != height) {

// XZ wall

bytes.add(" facet normal 0.000000e+000 -1.000000e+

000 0.000000e+000"+ "\n");

bytes.add(" outer loop" + "\n");

bytes.add("\tvertex " + startX + " " + startY + " "

+ iheighty + "\n");

bytes.add("\tvertex " + X + " " + startY + " "

+ iheighty + "\n");

bytes.add("\tvertex " + X + " " + startY + " "

+ height + "\n");

bytes.add(" endloop" + "\n");
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bytes.add(" endfacet" + "\n");

// second triangle of XZ wall

bytes.add(" facet normal 0.000000e+000 -1.000000e

+000 0.000000e+000"+ "\n");

bytes.add(" outer loop" + "\n");

bytes.add("\tvertex " + startX + " " + startY

+ " "+ iheighty + "\n");

bytes.add("\tvertex " + X + " " + startY

+ " " + height + "\n");

bytes.add("\tvertex " + startX + " " + startY

+ " "+ height + "\n");

bytes.add(" endloop" + "\n");

bytes.add(" endfacet" + "\n");

}

if (iheightx != height) {

// YZ wall

bytes.add(" facet normal 1.000000e+000 0.000000e+

000 0.000000e+000"+ "\n");

bytes.add(" outer loop" + "\n");

bytes.add("\tvertex " + startX + " " + startY

+ " "+ iheightx + "\n");

bytes.add("\tvertex " + startX + " " + Y

+ " " + height+ "\n");

bytes.add("\tvertex " + startX + " " + Y

+ " "+ iheightx + "\n");

bytes.add(" endloop" + "\n");

bytes.add(" endfacet" + "\n");

// second triangle of YZ wall

bytes.add(" facet normal 1.000000e+000 0.000000e+

000 0.000000e+000"+ "\n");

bytes.add(" outer loop" + "\n");

bytes.add("\tvertex " + startX + " " + startY

+ " "+ iheightx + "\n");

bytes.add("\tvertex " + startX + " " + startY

+ " "+ height + "\n");

bytes.add("\tvertex " + startX + " " + Y

+ " " + height+ "\n");

bytes.add(" endloop" + "\n");

bytes.add(" endfacet" + "\n");

}

if (j == loopY - 1) { // code of back side XZ

// first triangle of back side XZ

bytes.add(" facet normal 0.000000e+000 -1.000000e+

000 0.000000e+000"+ "\n");

bytes.add(" outer loop" + "\n");

bytes.add("\tvertex " + startX + " " + Y + " " + 0+ "\n");

bytes.add("\tvertex " + X + " " + Y + " " + height+ "\n");

bytes.add("\tvertex " + X + " " + Y + " " + 0 + "\n");

bytes.add(" endloop" + "\n");

bytes.add(" endfacet" + "\n");

// second triangle of back side XZ

bytes.add(" facet normal 0.000000e+000 -1.000000e+

000 0.000000e+000" + "\n");

bytes.add(" outer loop" + "\n");

bytes.add("\tvertex " + startX + " " + Y + " " + 0+ "\n");
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bytes.add("\tvertex " + startX + " " + Y + " " + height + "\n");

bytes.add("\tvertex " + X + " " + Y + " " + height + "\n");

bytes.add(" endloop" + "\n");

bytes.add(" endfacet" + "\n");

}

if (i == loopX - 1) {// right side YZ

// first triangle of right side YZ

bytes.add(" facet normal 1.000000e+000 0.000000e+

000 0.000000e+000" + "\n");

bytes.add(" outer loop" + "\n");

bytes.add("\tvertex " + X + " " + startY + " " + 0 + "\n");

bytes.add("\tvertex " + X + " " + Y + " " + height + "\n");

bytes.add("\tvertex " + X + " " + startY + " " + height + "\n");

bytes.add(" endloop" + "\n");

bytes.add(" endfacet" + "\n");

// second triangle of right side YZ

bytes.add(" facet normal 1.000000e+000 0.000000e+

000 0.000000e+000" + "\n");

bytes.add(" outer loop" + "\n");

bytes.add("\tvertex " + X + " " + startY + " " + 0 + "\n");

bytes.add("\tvertex " + X + " " + Y + " " + 0 + "\n");

bytes.add("\tvertex " + X + " " + Y + " " + height + "\n");

bytes.add(" endloop" + "\n");

bytes.add(" endfacet" + "\n");

}

}

startX += iter;

if (i == loopX - 1) {// maxX = startX;

startX = 0.0;

}

// start iteration from left again

}

startY += iter;

// if (j == loopY-1){maxY = startY;}

try {

for (String r : bytes) {

bufWriter.write(r);

}

} catch (IOException er) {

JOptionPane .showMessageDialog(null, er.getMessage());

}

bytes.clear();

}

bytes.add("endsolid " + nmFile[0]);

try {

for (String r : bytes) {

bufWriter.write(r);

}

} catch (IOException er) {

JOptionPane.showMessageDialog(null, er.getMessage());

}

bytes.clear();

bufWriter.close();

writer.close();

}
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A.3 Python � code to convert and save a 2D

array into an .stl file

files = os.listdir(open_path)

def main():

for ii in files:

img = Image.open(open_path + ii).convert(’LA’)

mtx = array(img.convert(’L’))

ii = ii.split(’.’)[0]

ii = ii + ’.stl’

file_name = os.path.join(save_path, ii)

mtx = 255 - mtx # invert white to valley

create_stl(mtx, 50, 50, 256, 2, file_name) # 50 mm, 50 mm, mesh number: 150

def create_stl(img_mtx, x_size, y_size, resolution, t_base, file_name):

row, col = img_mtx.shape

x_max = img_mtx.max()

x_min = img_mtx.min()

img_mtx = (img_mtx - x_min) / (x_max - x_min)

points = []

triangles = []

# --------- writing file mode ------------

use_file = True

stl_mode = True

x_step = row / resolution # (resolution - 1)

y_step = col / resolution # (resolution - 1)

X = array(range(resolution)) * x_step - row / 2

Y = array(range(resolution)) * y_step - col / 2

x_scalar = x_size / row # step along X axis in mm

y_scalar = y_size / col # step along Y axis in mm

z_scalar = 1.0 # 1.5 mm

for i, x in enumerate(X):

for j, y in enumerate(Y):

points.append(array([x * x_scalar, y * y_scalar, t_base + z_scalar * img_mtx[i][j]]))

if i > 0 and j > 0:

p1 = i + j * resolution

p2 = p1 - 1

p3 = p1 - resolution

p4 = p3 - 1

triangles.append([p1, p2, p4])

triangles.append([p1, p4, p3])

x_step = x_size / (resolution - 1)

y_step = y_size / (resolution - 1)

X = array(range(resolution)) * x_step - x_size / 2

Y = array(range(resolution)) * y_step - y_size / 2

for i, x in enumerate(X):

points.append([x, -y_size / 2., 0])

if i > 0:

p1 = i * resolution

p2 = p1 - resolution
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p3 = resolution ** 2 + i

p4 = p3 - 1

triangles.append([p1, p4, p2])

triangles.append([p1, p3, p4])

for i, x in enumerate(X):

points.append([x, y_size / 2., 0])

if i > 0:

p1 = i * resolution + resolution - 1

p2 = p1 - resolution

p3 = resolution ** 2 + resolution + i

p4 = p3 - 1

triangles.append([p1, p2, p4])

triangles.append([p1, p4, p3])

for j, y in enumerate(Y):

points.append([-x_size / 2., y, 0])

if j > 0:

p1 = j

p2 = p1 - 1

p3 = resolution ** 2 + 2 * resolution + j

p4 = p3 - 1

triangles.append([p1, p2, p4])

triangles.append([p1, p4, p3])

for j, y in enumerate(Y):

points.append([x_size / 2., y, 0])

if j > 0:

p1 = resolution ** 2 - resolution + j

p2 = p1 - 1

p3 = resolution ** 2 + 3 * resolution + j

p4 = p3 - 1

triangles.append([p1, p4, p2])

triangles.append([p1, p3, p4])

points += map(array,

[[0, 0, 0], [-x_size / 2., -y_size / 2., 0],

[x_size / 2., -y_size / 2., 0],

[x_size / 2., y_size / 2., 0],

[-x_size / 2.0, y_size / 2.0, 0]])

triangles.append(list(array([0, 1, 2]) + 4 * resolution + resolution ** 2))

triangles.append(list(array([0, 2, 3]) + 4 * resolution + resolution ** 2))

triangles.append(list(array([0, 3, 4]) + 4 * resolution + resolution ** 2))

triangles.append(list(array([0, 4, 1]) + 4 * resolution + resolution ** 2))

data = ’’

if stl_mode:

t = time.localtime()

name = ’object%s%s%s%s%s%s’ % (t.tm_year, t.tm_mon, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec)

data += ’solid %s\n’ % name

for facet in triangles:

# try:

p = [array(points[f]) for f in facet]

# except IndexError:

# sys.stderr.write(str(facet)+"\n")
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# point=unit(cross(p[1]-p[0],p[2]-p[0]))

# point=unit(cross(p[0]-p[2],p[2]-p[1]))

point = [0, 0, 0]

data += ’facet normal %s\n’ % ’ ’.join(map(str, point))

data += ’ outer loop\n’

# if inward_wall:

p = [p[0], p[2], p[1]]

for point in p:

data += ’ vertex %s\n’ % ’ ’.join(map(str, point))

data += ’ endloop\n’

data += ’endfacet\n’

data += ’endsolid %s\n’ % name

else:

def tos(f):

return f

def map_tos(a):

return ’[’ + ’,’.join(map(tos, a)) + ’]’

def map_map_tos(a):

return ’[’ + ’,’.join(map(map_tos, a)) + ’]’

data = "polyhedron(\n points=\n%s,\n triangles\n=%s);" % (map_map_tos(points), triangles)

if use_file:

f = open(file_name, "w")

f.write(data)

f.close()

else:

print(data)

def poly(theta, n=4, r=10):

theta = (int(theta * 180 / pi) % (360 / n)) * pi / 180

theta = theta - 0.5 * (360 / n) * pi / 180

if theta < -pi / 2:

theta = -pi / 2

if theta > pi / 2:

theta = pi / 2

x = r / (0.001 + cos(theta))

return x

def mag(a):

return sqrt(sum(a * a))

def unit(a):

return a / mag(a)

# ---------------------------------------------------------------------------------------------------------------

if __name__ == ’__main__’:

main()



Appendix B

Parent Images with Standard

Signals

All images’ size is adjusted for the sake of clarity. Their actual size is 420× 420.

Signal Angle
Frequency

1 3 9

Sawtooth 0

Sawtooth 45

Sawtooth 90

Sinusoidal 0

Continued on next page
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Table B.1 – continued from previous page

Signal Angle
Frequency

1 3 9

Sinusoidal 45

Sinusoidal 90

Square-wave 0

Square-wave 45

Square-wave 90

Triangle 0

Triangle 45

Continued on next page
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Table B.1 – continued from previous page

Signal Angle
Frequency

1 3 9

Triangle 90



Appendix C

Power Spectra-Based Features

C.1 Features Derived by Liu and Jernigan

Liu and Jernigan [54] derived and investigated twenty eight features to discrimi-

nate and to classify samples of natural images distorted by additive noise. They

presented the detail of how those 28 features were defined. Here, is the abbrevi-

ated names of those textures that are used in this report.

emp : energy in major peak

lmp : laplacian of major peak

lsp : laplacian secondary peak

smp : secondary major peak

smf : squared major peak frequency

rom : relative orientation of major and secondary peak

isp : isotropy of power spectrum

cps : circularity of power spectrum

mph : major peak horizontal frequency

mpv : major peak vertical frequency

sph : secondary peak horizontal frequency

spv : secondary peak vertical frequency

sdb : squared distance between major and secondary peak

pcm : principal component magnitude squared

pcd : principal component direction

rma : ratio of minor to major axis

mi1 : moment of inertia, quadrant I

mi2 : moment of inertia, quadrant II

mra : moment ratio

187



188

pe1 : percentage energy, quadrant I

pe2 : percentage energy, quadrant II

rnc : ratio of non-zero components

lph : laplacian of major peak phase (not-used)

lsh : laplacian of secondary peak phase (not-used)

re1 : relative entropy of power spectrum, R1

re2 : relative entropy of power spectrum, R2

re3 : relative entropy of power spectrum, R3

re4 : relative entropy of power spectrum, R4

C.2 Proposed Features

Let P (u, v) be the power spectrum of the image and let

p(u, v) =
P (u, v)∑M

u6=0

∑N
v 6=0 P (u, v)

(C.1)

be the normalized power spectrum.

C.2.1 Maximum value-based threshold of features

Let

p(u1, v1) = p(u, v)|p(u,v)>c, c={0.5, 0.1, 0.01, 0.001} (C.2)

be the components of the normalized power spectrum above the threshold. The

following power spectra-based features are defined as

fro m : Frobenius norm

fro m =

[∑
u1=1

∑
v1=1

abs
(
p[u1, v1]2

)]1/2

(C.3)

mass : mass of the frequency component greater than threshold

mass =
∑
u1=1

∑
v1=1

p(u1, v1) (C.4)

mom : moment of the frequency component greater than threshold

mom =

[∑
u1=1

∑
v1=1

p(u1, v1) ·
(
u2

1 + v2
1

)]2

(C.5)
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rd m : maximum value of the frequency component greater than threshold

rd m = max
(
u2

1 + v2
1

)1/2
(C.6)

pts t : proportion of the number of the frequency component greater than

threshold in X-axis

pts t =

∑
u=1(1)

MN
(C.7)

pts h : density of the frequency component greater than threshold in X-axis

within a convex hull boundary

pts h =
Conv(p(u, v))∑

u1=1(1)
(C.8)

mass p : density in X-axis of frequency component greater than threshold

mass p =

∑
u1=1 p(u1, v1)∑

u1=1(1)
(C.9)

area h : proportion of the area of the convex hull boundary of the frequency

component greater than threshold

area h =
Conv(p(u1, v1))

MN
(C.10)

corr : absolute value of the correlation between frequency component

greater than threshold in X-axis and those in Y-axis

corr = |Corr(u1, v1)| (C.11)

var d : variance of the frequency component greater than threshold

var d =
[
var2

u1
+ var2

v1

]1/2
(C.12)

where varu is the PCA component in X-axis of frequency component

greater than threshold and varv the same component in Y-axis.

ang p : angle of the vector varu and varv with respect to X-axis

ang p = arctan

(
varv1

varu1

)
(C.13)

dens : the ratio between area within the convex hull boundary of frequency

component greater than threshold and the mass within it

dens =
Conv(p(u1, v1))∑
u1=1

∑
v1=1 p(u1, v1)

(C.14)
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C.2.2 Circular boundary-based threshold of features

Let

p(u1, v1) = p(u, v)|(u2+v2)<c·(u2
m+v2

m), c={1, 2.25, 4} (C.15)

where um, vm = argmax(P (u, v)), be the components of the normalized power

spectrum inside a circular boundary with the radius is equals to the distance

between the peak value of the spectrum and its centre. The following features

are defined as

rad m : radius of the circular boundary

rad m =
√
u2
m + v2

m (C.16)

area r : area of the circular boundary

area r = rad m2 (C.17)

pts r : number of the non-zero components of the power spectrum inside

the circular boundary

pts r =
∑
u1=1

∑
v1=1

(1) (C.18)

mas r : mass of power spectrum within the circular boundary

mas r = 100 ·
∑
u1=1

∑
v1=1

p(u1, v1) (C.19)

mom r : total moment of power spectrum within the circular boundary

mom r =
∑
u1=1

∑
v1=1

p(u1, v1) · (u2
1 + v2

1) (C.20)

dens r : inverse of the density of power spectrum within the circular bound-

ary

dens r =
area r

mas r
(C.21)

th m : angle of the radius vector of the peak value of the spectrum

th m = arctan(vm/um) (C.22)
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C.2.3 Quadrant area-based features

Let

Q1 = {u, v 3 0 6 u < M/2 and 0 6 v < N/2} (C.23)

is the area of the first quadrant, and let

Q2 = {u, v 3M/2 6 u < M and N/2 6 v < N} (C.24)

be the area of the second quadrant. The following features are defined as

r cog1 : radius of the centre of gravity of the spectrum in the first quadrant

r cog1 =
√
cog x12 + cog y12 (C.25)

where cog x1 =
∑

u,v∈Q1
u · p(u, v) and cog y1 =

∑
u,v∈Q1

v · p(u, v).

th q1 : angle of the vector of radius of the centre of gravity of the spectrum

in the first quadrant

th q1 = arctan

(
cog y1

cog x1

)
(C.26)

sum rq1 : mass of the spectrum in the first quadrant

sum rq1 =
∑

u,v∈Q1

p(u, v)|u2+v2<r cog1 (C.27)

count rq1 : number of the non-zero components of the power spectrum in the

first quadrant

count rq1 =
∑

u,v∈Q1

1|u2+v2<r cog1 and p(u,v)>0 (C.28)

r cog2 : radius of the centre of gravity of the spectrum in the second quadrant

r cog2 =
√
cog x22 + cog y22 (C.29)

where cog x2 =
∑

u,v∈Q2
u · p(u, v) and cog y2 =

∑
u,v∈Q2

v · p(u, v).

th q2 : angle of the vector of radius of the centre of gravity of the spectrum

in the second quadrant

th q2 = arctan

(
cog y2

cog x2

)
(C.30)

sum rq2 : mass of the spectrum in the second quadrant

sum rq2 =
∑

u,v∈Q2

p(u, v)|u2+v2<r cog2 (C.31)
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count rq2 : number of the non-zero components of the power spectrum in the

second quadrant

count rq2 =
∑

u,v∈Q2

1|u2+v2<r cog2 and p(u,v)>0 (C.32)

rad cog : sum of radius of the centre of gravity of the spectrum in the first

and second quadrant

rad cog =
√
r cog12 + r cog22 (C.33)

ang : angle between r cog1 and r cog

rad cog = arctan

(
r cog1

rad cog

)
(C.34)

C.2.4 Wedge area-based features

sum wm : mass of the spectrum within the wedge area. The direction of the

centre line of the wedge follows th m.

sum wm =
∑

th m−0.856tan−1(v/u)≤th m+0.85

p(u, v) (C.35)

count wm : number of the non-zero components of the spectrum within the

wedge area. The direction of the centre line of the wedge follows th m.

count wm =
∑

th m−0.856tan−1(v/u)≤th m+0.85

1

∣∣∣∣∣∣
p(u,v)>0

(C.36)

sum wa1 : mass of the spectrum within the wedge area. The direction of the

centre line of the wedge follows th q1.

sum wa1 =
∑

th q1−0.856tan−1(v/u)≤th q1+0.85

p(u, v) (C.37)

count wa1

: number of the non-zero components of the spectrum within the

wedge area. The direction of the centre line of the wedge follows th q1.

count wa1 =
∑

th q1−0.856tan−1(v/u)≤th q1+0.85

1

∣∣∣∣∣∣
p(u,v)>0

(C.38)
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sum wa2 : mass of the spectrum within the wedge area. The direction of the

centre line of the wedge follows th q2.

sum wa2 =
∑

th q2−0.856tan−1(v/u)≤th q2+0.85

p(u, v) (C.39)

count wa2

: number of the non-zero components of the spectrum within the

wedge area. The direction of the centre line of the wedge follows th q2.

count wa2 =
∑

th q2−0.856tan−1(v/u)≤th q2+0.85

1

∣∣∣∣∣∣
p(u,v)>0

(C.40)

C.2.5 Standardized spectrum-based features

Let

p(u, v) =
P (u, v)

max (P (u, v))
(C.41)

be the standardized power spectrum. The following features are defined as

sum : total mass of the standardized spectrum

sum =
∑
u,v

p(u, v) (C.42)

momen : sum of the moment of the standardized spectrum in the first and

second quadrant

momen =
√
mx2 +my2 (C.43)

where mx =
∑

06u,v<M/2(u2+v2)·P (u, v) and my =
∑

M/26u,v<M(u2+

v2) · P (u, v).



Appendix D

Results of Post-hoc Pairwise

Comparisons Tests

Table D.1: Post-hoc pairwise comparisons of chi-squared test between FO visual textures

A B mean(A) mean(B) diff SE T p-Tukey efsize

10 20 1.300333 1.271000 0.029333 0.104 0.281 0.900000 0.051

10 30 1.300333 1.305333 -0.005000 0.104 -0.048 0.900000 -0.009

10 40 1.300333 1.183000 0.117333 0.104 1.124 0.900000 0.204

10 50 1.300333 1.012333 0.288000 0.104 2.759 0.654475 0.500

10 60 1.300333 0.820667 0.479667 0.104 4.594 0.001000 0.833

10 70 1.300333 0.789333 0.511000 0.104 4.894 0.001000 0.888

10 80 1.300333 0.614667 0.685667 0.104 6.567 0.001000 1.191

10 90 1.300333 0.574000 0.726333 0.104 6.957 0.001000 1.262

20 30 1.271000 1.305333 -0.034333 0.104 -0.329 0.900000 -0.060

20 40 1.271000 1.183000 0.088000 0.104 0.843 0.900000 0.153

20 50 1.271000 1.012333 0.258667 0.104 2.478 0.692862 0.449

20 60 1.271000 0.820667 0.450333 0.104 4.313 0.001000 0.783

20 70 1.271000 0.789333 0.481667 0.104 4.614 0.001000 0.837

20 80 1.271000 0.614667 0.656333 0.104 6.287 0.001000 1.140

20 90 1.271000 0.574000 0.697000 0.104 6.676 0.001000 1.211

30 40 1.305333 1.183000 0.122333 0.104 1.172 0.900000 0.213

30 50 1.305333 1.012333 0.293000 0.104 2.806 0.654475 0.509

30 60 1.305333 0.820667 0.484667 0.104 4.642 0.001000 0.842

30 70 1.305333 0.789333 0.516000 0.104 4.942 0.001000 0.897

30 80 1.305333 0.614667 0.690667 0.104 6.615 0.001000 1.200

30 90 1.305333 0.574000 0.731333 0.104 7.005 0.001000 1.271

40 50 1.183000 1.012333 0.170667 0.104 1.635 0.500000 0.297

40 60 1.183000 0.820667 0.362333 0.104 3.471 0.654475 0.630

40 70 1.183000 0.789333 0.393667 0.104 3.771 0.654475 0.684

40 80 1.183000 0.614667 0.568333 0.104 5.444 0.001000 0.988

40 90 1.183000 0.574000 0.609000 0.104 5.833 0.001000 1.058

50 60 1.012333 0.820667 0.191667 0.104 1.836 0.500000 0.333

50 70 1.012333 0.789333 0.223000 0.104 2.136 0.451574 0.387

Continued on next page
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Table D.1 – continued from previous page

A B mean(A) mean(B) diff SE T p-Tukey efsize

50 80 1.012333 0.614667 0.397667 0.104 3.809 0.654475 0.691

50 90 1.012333 0.574000 0.438333 0.104 4.198 0.001000 0.762

60 70 0.820667 0.789333 0.031333 0.104 0.300 0.900000 0.054

60 80 0.820667 0.614667 0.206000 0.104 1.973 0.500000 0.358

60 90 0.820667 0.574000 0.246667 0.104 2.363 0.567662 0.429

70 80 0.789333 0.614667 0.174667 0.104 1.673 0.500000 0.304

70 90 0.789333 0.574000 0.215333 0.104 2.063 0.500265 0.374

80 90 0.614667 0.574000 0.040667 0.104 0.390 0.900000 0.071

Table D.2: Post-hoc pairwise comparisons of chi-squared test between SO visual textures

A B mean(A) mean(B) diff SE T p-Tukey efsize

10 20 0.837333 0.900333 -0.063000 0.052 -1.205 0.900000 -0.219

10 30 0.837333 0.972667 -0.135333 0.052 -2.589 0.654475 -0.470

10 40 0.837333 0.997667 -0.160333 0.052 -3.067 0.654475 -0.556

10 50 0.837333 1.029333 -0.192000 0.052 -3.672 0.654475 -0.666

10 60 0.837333 1.142000 -0.304667 0.052 -5.827 0.001000 -1.057

10 70 0.837333 1.237333 -0.400000 0.052 -7.651 0.001000 -1.388

10 80 0.837333 1.339000 -0.501667 0.052 -9.596 0.001000 -1.741

10 90 0.837333 1.352667 -0.515333 0.052 -9.857 0.001000 -1.788

20 30 0.900333 0.972667 -0.072333 0.052 -1.384 0.900000 -0.251

20 40 0.900333 0.997667 -0.097333 0.052 -1.862 0.500000 -0.338

20 50 0.900333 1.029333 -0.129000 0.052 -2.467 0.699285 -0.448

20 60 0.900333 1.142000 -0.241667 0.052 -4.622 0.001000 -0.839

20 70 0.900333 1.237333 -0.337000 0.052 -6.446 0.001000 -1.169

20 80 0.900333 1.339000 -0.438667 0.052 -8.391 0.001000 -1.522

20 90 0.900333 1.352667 -0.452333 0.052 -8.652 0.001000 -1.570

30 40 0.972667 0.997667 -0.025000 0.052 -0.478 0.900000 -0.087

30 50 0.972667 1.029333 -0.056667 0.052 -1.084 0.900000 -0.197

30 60 0.972667 1.142000 -0.169333 0.052 -3.239 0.654475 -0.588

30 70 0.972667 1.237333 -0.264667 0.052 -5.062 0.001000 -0.918

30 80 0.972667 1.339000 -0.366333 0.052 -7.007 0.001000 -1.271

30 90 0.972667 1.352667 -0.380000 0.052 -7.268 0.001000 -1.319

40 50 0.997667 1.029333 -0.031667 0.052 -0.606 0.900000 -0.110

40 60 0.997667 1.142000 -0.144333 0.052 -2.761 0.654475 -0.501

40 70 0.997667 1.237333 -0.239667 0.052 -4.584 0.001000 -0.832

40 80 0.997667 1.339000 -0.341333 0.052 -6.529 0.001000 -1.184

40 90 0.997667 1.352667 -0.355000 0.052 -6.790 0.001000 -1.232

50 60 1.029333 1.142000 -0.112667 0.052 -2.155 0.438889 -0.391

50 70 1.029333 1.237333 -0.208000 0.052 -3.978 0.654475 -0.722

50 80 1.029333 1.339000 -0.309667 0.052 -5.923 0.001000 -1.075

50 90 1.029333 1.352667 -0.323333 0.052 -6.184 0.001000 -1.122

60 70 1.142000 1.237333 -0.095333 0.052 -1.823 0.500000 -0.331

60 80 1.142000 1.339000 -0.197000 0.052 -3.768 0.654475 -0.684

60 90 1.142000 1.352667 -0.210667 0.052 -4.029 0.654475 -0.731

Continued on next page
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Table D.2 – continued from previous page

A B mean(A) mean(B) diff SE T p-Tukey efsize

70 80 1.237333 1.339000 -0.101667 0.052 -1.945 0.500000 -0.353

70 90 1.237333 1.352667 -0.115333 0.052 -2.206 0.404687 -0.400

80 90 1.339000 1.352667 -0.013667 0.052 -0.261 0.900000 -0.047

Table D.3: Post-hoc pairwise comparisons of chi-squared test between TO visual textures

A B mean(A) mean(B) diff SE T p-Tukey efsize

10 20 1.024000 1.025000 -0.001000 0.037 -0.027 0.9 -0.005

10 30 1.024000 0.998000 0.026000 0.037 0.695 0.9 0.126

10 40 1.024000 1.023333 0.000667 0.037 0.018 0.9 0.003

10 50 1.024000 1.028333 -0.004333 0.037 -0.116 0.9 -0.021

10 60 1.024000 1.062667 -0.038667 0.037 -1.033 0.9 -0.187

10 70 1.024000 1.021333 0.002667 0.037 0.071 0.9 0.013

10 80 1.024000 0.996667 0.027333 0.037 0.731 0.9 0.133

10 90 1.024000 1.000000 0.024000 0.037 0.641 0.9 0.116

20 30 1.025000 0.998000 0.027000 0.037 0.722 0.9 0.131

20 40 1.025000 1.023333 0.001667 0.037 0.045 0.9 0.008

20 50 1.025000 1.028333 -0.003333 0.037 -0.089 0.9 -0.016

20 60 1.025000 1.062667 -0.037667 0.037 -1.007 0.9 -0.183

20 70 1.025000 1.021333 0.003667 0.037 0.098 0.9 0.018

20 80 1.025000 0.996667 0.028333 0.037 0.757 0.9 0.137

20 90 1.025000 1.000000 0.025000 0.037 0.668 0.9 0.121

30 40 0.998000 1.023333 -0.025333 0.037 -0.677 0.9 -0.123

30 50 0.998000 1.028333 -0.030333 0.037 -0.811 0.9 -0.147

30 60 0.998000 1.062667 -0.064667 0.037 -1.728 0.5 -0.314

30 70 0.998000 1.021333 -0.023333 0.037 -0.624 0.9 -0.113

30 80 0.998000 0.996667 0.001333 0.037 0.036 0.9 0.006

30 90 0.998000 1.000000 -0.002000 0.037 -0.053 0.9 -0.010

40 50 1.023333 1.028333 -0.005000 0.037 -0.134 0.9 -0.024

40 60 1.023333 1.062667 -0.039333 0.037 -1.051 0.9 -0.191

40 70 1.023333 1.021333 0.002000 0.037 0.053 0.9 0.010

40 80 1.023333 0.996667 0.026667 0.037 0.713 0.9 0.129

40 90 1.023333 1.000000 0.023333 0.037 0.624 0.9 0.113

50 60 1.028333 1.062667 -0.034333 0.037 -0.918 0.9 -0.166

50 70 1.028333 1.021333 0.007000 0.037 0.187 0.9 0.034

50 80 1.028333 0.996667 0.031667 0.037 0.846 0.9 0.154

50 90 1.028333 1.000000 0.028333 0.037 0.757 0.9 0.137

60 70 1.062667 1.021333 0.041333 0.037 1.105 0.9 0.200

60 80 1.062667 0.996667 0.066000 0.037 1.764 0.5 0.320

60 90 1.062667 1.000000 0.062667 0.037 1.675 0.5 0.304

70 80 1.021333 0.996667 0.024667 0.037 0.659 0.9 0.120

70 90 1.021333 1.000000 0.021333 0.037 0.570 0.9 0.103

80 90 0.996667 1.000000 -0.003333 0.037 -0.089 0.9 -0.016
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Table D.4: Post-hoc pairwise comparisons of chi-squared test between FO tactile textures

A B mean(A) mean(B) diff SE T p-Tukey efsize

10 20 2.707667 1.898333 0.809333 0.083 9.743 0.001000 1.768

10 30 2.707667 1.757333 0.950333 0.083 11.441 0.001000 2.075

10 40 2.707667 1.261667 1.446000 0.083 17.408 0.001000 3.158

10 50 2.707667 1.023333 1.684333 0.083 20.277 0.001000 3.678

10 60 2.707667 0.884000 1.823667 0.083 21.954 0.001000 3.983

10 70 2.707667 0.559667 2.148000 0.083 25.859 0.001000 4.691

10 80 2.707667 0.535000 2.172667 0.083 26.156 0.001000 4.745

10 90 2.707667 0.438667 2.269000 0.083 27.316 0.001000 4.955

20 30 1.898333 1.757333 0.141000 0.083 1.697 0.500000 0.308

20 40 1.898333 1.261667 0.636667 0.083 7.665 0.001000 1.390

20 50 1.898333 1.023333 0.875000 0.083 10.534 0.001000 1.911

20 60 1.898333 0.884000 1.014333 0.083 12.211 0.001000 2.215

20 70 1.898333 0.559667 1.338667 0.083 16.116 0.001000 2.924

20 80 1.898333 0.535000 1.363333 0.083 16.413 0.001000 2.977

20 90 1.898333 0.438667 1.459667 0.083 17.572 0.001000 3.188

30 40 1.757333 1.261667 0.495667 0.083 5.967 0.001000 1.083

30 50 1.757333 1.023333 0.734000 0.083 8.836 0.001000 1.603

30 60 1.757333 0.884000 0.873333 0.083 10.514 0.001000 1.907

30 70 1.757333 0.559667 1.197667 0.083 14.418 0.001000 2.616

30 80 1.757333 0.535000 1.222333 0.083 14.715 0.001000 2.669

30 90 1.757333 0.438667 1.318667 0.083 15.875 0.001000 2.880

40 50 1.261667 1.023333 0.238333 0.083 2.869 0.654475 0.521

40 60 1.261667 0.884000 0.377667 0.083 4.547 0.001000 0.825

40 70 1.261667 0.559667 0.702000 0.083 8.451 0.001000 1.533

40 80 1.261667 0.535000 0.726667 0.083 8.748 0.001000 1.587

40 90 1.261667 0.438667 0.823000 0.083 9.908 0.001000 1.797

50 60 1.023333 0.884000 0.139333 0.083 1.677 0.500000 0.304

50 70 1.023333 0.559667 0.463667 0.083 5.582 0.001000 1.013

50 80 1.023333 0.535000 0.488333 0.083 5.879 0.001000 1.066

50 90 1.023333 0.438667 0.584667 0.083 7.039 0.001000 1.277

60 70 0.884000 0.559667 0.324333 0.083 3.905 0.654475 0.708

60 80 0.884000 0.535000 0.349000 0.083 4.201 0.001000 0.762

60 90 0.884000 0.438667 0.445333 0.083 5.361 0.001000 0.973

70 80 0.559667 0.535000 0.024667 0.083 0.297 0.900000 0.054

70 90 0.559667 0.438667 0.121000 0.083 1.457 0.500000 0.264

80 90 0.535000 0.438667 0.096333 0.083 1.160 0.900000 0.210

Table D.5: Post-hoc pairwise comparisons of chi-squared test between SO tactile textures

A B mean(A) mean(B) diff SE T p-Tukey efsize

10 20 0.907667 0.919667 -0.012000 0.047 -0.256 0.900000 -0.046

10 30 0.907667 0.920000 -0.012333 0.047 -0.263 0.900000 -0.048

10 40 0.907667 0.964333 -0.056667 0.047 -1.208 0.900000 -0.219

10 50 0.907667 0.992667 -0.085000 0.047 -1.812 0.500000 -0.329

Continued on next page
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Table D.5 – continued from previous page

A B mean(A) mean(B) diff SE T p-Tukey efsize

10 60 0.907667 1.151000 -0.243333 0.047 -5.188 0.001000 -0.941

10 70 0.907667 0.999000 -0.091333 0.047 -1.947 0.500000 -0.353

10 80 0.907667 1.182667 -0.275000 0.047 -5.863 0.001000 -1.064

10 90 0.907667 1.170333 -0.262667 0.047 -5.600 0.001000 -1.016

20 30 0.919667 0.920000 -0.000333 0.047 -0.007 0.900000 -0.001

20 40 0.919667 0.964333 -0.044667 0.047 -0.952 0.900000 -0.173

20 50 0.919667 0.992667 -0.073000 0.047 -1.556 0.500000 -0.282

20 60 0.919667 1.151000 -0.231333 0.047 -4.932 0.001000 -0.895

20 70 0.919667 0.999000 -0.079333 0.047 -1.691 0.500000 -0.307

20 80 0.919667 1.182667 -0.263000 0.047 -5.607 0.001000 -1.017

20 90 0.919667 1.170333 -0.250667 0.047 -5.344 0.001000 -0.970

30 40 0.920000 0.964333 -0.044333 0.047 -0.945 0.900000 -0.171

30 50 0.920000 0.992667 -0.072667 0.047 -1.549 0.500000 -0.281

30 60 0.920000 1.151000 -0.231000 0.047 -4.925 0.001000 -0.893

30 70 0.920000 0.999000 -0.079000 0.047 -1.684 0.500000 -0.306

30 80 0.920000 1.182667 -0.262667 0.047 -5.600 0.001000 -1.016

30 90 0.920000 1.170333 -0.250333 0.047 -5.337 0.001000 -0.968

40 50 0.964333 0.992667 -0.028333 0.047 -0.604 0.900000 -0.110

40 60 0.964333 1.151000 -0.186667 0.047 -3.980 0.654475 -0.722

40 70 0.964333 0.999000 -0.034667 0.047 -0.739 0.900000 -0.134

40 80 0.964333 1.182667 -0.218333 0.047 -4.655 0.001000 -0.844

40 90 0.964333 1.170333 -0.206000 0.047 -4.392 0.001000 -0.797

50 60 0.992667 1.151000 -0.158333 0.047 -3.376 0.654475 -0.612

50 70 0.992667 0.999000 -0.006333 0.047 -0.135 0.900000 -0.024

50 80 0.992667 1.182667 -0.190000 0.047 -4.051 0.654475 -0.735

50 90 0.992667 1.170333 -0.177667 0.047 -3.788 0.654475 -0.687

60 70 1.151000 0.999000 0.152000 0.047 3.241 0.654475 0.588

60 80 1.151000 1.182667 -0.031667 0.047 -0.675 0.900000 -0.122

60 90 1.151000 1.170333 -0.019333 0.047 -0.412 0.900000 -0.075

70 80 0.999000 1.182667 -0.183667 0.047 -3.916 0.654475 -0.710

70 90 0.999000 1.170333 -0.171333 0.047 -3.653 0.654475 -0.663

80 90 1.182667 1.170333 0.012333 0.047 0.263 0.900000 0.048

Table D.6: Post-hoc pairwise comparisons of chi-squared test between TO tactile textures

A B mean(A) mean(B) diff SE T p-Tukey efsize

10 20 0.988333 0.976000 0.012333 0.055 0.223 0.900000 0.040

10 30 0.988333 1.164667 -0.176333 0.055 -3.184 0.654475 -0.578

10 40 0.988333 1.011000 -0.022667 0.055 -0.409 0.900000 -0.074

10 50 0.988333 1.189667 -0.201333 0.055 -3.636 0.654475 -0.660

10 60 0.988333 1.142667 -0.154333 0.055 -2.787 0.654475 -0.506

10 70 0.988333 0.781667 0.206667 0.055 3.732 0.654475 0.677

10 80 0.988333 0.881667 0.106667 0.055 1.926 0.500000 0.349

10 90 0.988333 0.803667 0.184667 0.055 3.335 0.654475 0.605

20 30 0.976000 1.164667 -0.188667 0.055 -3.407 0.654475 -0.618

Continued on next page
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Table D.6 – continued from previous page

A B mean(A) mean(B) diff SE T p-Tukey efsize

20 40 0.976000 1.011000 -0.035000 0.055 -0.632 0.900000 -0.115

20 50 0.976000 1.189667 -0.213667 0.055 -3.858 0.654475 -0.700

20 60 0.976000 1.142667 -0.166667 0.055 -3.010 0.654475 -0.546

20 70 0.976000 0.781667 0.194333 0.055 3.509 0.654475 0.637

20 80 0.976000 0.881667 0.094333 0.055 1.703 0.500000 0.309

20 90 0.976000 0.803667 0.172333 0.055 3.112 0.654475 0.565

30 40 1.164667 1.011000 0.153667 0.055 2.775 0.654475 0.503

30 50 1.164667 1.189667 -0.025000 0.055 -0.451 0.900000 -0.082

30 60 1.164667 1.142667 0.022000 0.055 0.397 0.900000 0.072

30 70 1.164667 0.781667 0.383000 0.055 6.916 0.001000 1.255

30 80 1.164667 0.881667 0.283000 0.055 5.110 0.001000 0.927

30 90 1.164667 0.803667 0.361000 0.055 6.519 0.001000 1.183

40 50 1.011000 1.189667 -0.178667 0.055 -3.226 0.654475 -0.585

40 60 1.011000 1.142667 -0.131667 0.055 -2.378 0.572361 -0.431

40 70 1.011000 0.781667 0.229333 0.055 4.141 0.654475 0.751

40 80 1.011000 0.881667 0.129333 0.055 2.335 0.559723 0.424

40 90 1.011000 0.803667 0.207333 0.055 3.744 0.654475 0.679

50 60 1.189667 1.142667 0.047000 0.055 0.849 0.900000 0.154

50 70 1.189667 0.781667 0.408000 0.055 7.368 0.001000 1.337

50 80 1.189667 0.881667 0.308000 0.055 5.562 0.001000 1.009

50 90 1.189667 0.803667 0.386000 0.055 6.970 0.001000 1.264

60 70 1.142667 0.781667 0.361000 0.055 6.519 0.001000 1.183

60 80 1.142667 0.881667 0.261000 0.055 4.713 0.001000 0.855

60 90 1.142667 0.803667 0.339000 0.055 6.122 0.001000 1.111

70 80 0.781667 0.881667 -0.100000 0.055 -1.806 0.500000 -0.328

70 90 0.781667 0.803667 -0.022000 0.055 -0.397 0.900000 -0.072

80 90 0.881667 0.803667 0.078000 0.055 1.409 0.500000 0.256

D.1 Post-hoc pairwise comparisons of Chi-squared

test

Table D.7: Post-hoc pairwise comparisons of chi-squared test between MPs

MP MP P-val P-val Corrected Cramer’s V Significant? Reject H0?

Saw 1 00 Saw 1 45 1.000 1.000 .000 (ns) False

Saw 1 00 Saw 1 90 .332 .368 .022 (ns) False

Saw 1 00 Squ 1 00 .466 .506 .016 (ns) False

Saw 1 00 Squ 1 90 .490 .530 .016 (ns) False

Saw 1 45 Saw 1 90 .308 .344 .023 (ns) False

Saw 1 45 Squ 1 00 .436 .478 .018 (ns) False

Saw 1 45 Squ 1 90 .521 .557 .014 (ns) False

Saw 1 90 Squ 1 00 .847 .869 .004 (ns) False

Continued on next page
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Table D.7 – continued from previous page

MP MP P-val P-val Corrected Cramer’s V Significant? Reject H0?

Saw 1 90 Squ 1 90 .087 .103 .039 (ns) False

Saw 3 00 Saw 3 90 .408 .450 .019 (ns) False

Saw 3 00 Sin 1 45 .120 .139 .035 (ns) False

Saw 3 00 Squ 1 45 .072 .086 .041 (ns) False

Saw 3 00 Squ 3 00 .314 .349 .023 (ns) False

Saw 3 00 Squ 3 90 .443 .485 .017 (ns) False

Saw 3 45 Saw 3 90 .174 .198 .031 (ns) False

Saw 3 45 Sin 1 45 .530 .565 .014 (ns) False

Saw 3 45 Squ 3 00 .238 .269 .027 (ns) False

Saw 3 45 Squ 3 45 .748 .779 .007 (ns) False

Saw 3 45 Squ 3 90 .156 .178 .032 (ns) False

Saw 3 45 Too 1 45 .045 .054 .045 (*) FALSE

Saw 3 90 Sin 1 45 .503 .539 .015 (ns) False

Saw 3 90 Squ 3 00 .904 .925 .003 (ns) False

Saw 3 90 Squ 3 45 .081 .096 .039 (ns) False

Saw 3 90 Squ 3 90 1.000 1.000 .000 (ns) False

Saw 9 00 Saw 9 90 .100 .117 .037 (ns) False

Saw 9 00 Sin 1 90 .120 .139 .035 (ns) False

Saw 9 00 Squ 9 00 .805 .832 .006 (ns) False

Saw 9 00 Squ 9 45 .503 .539 .015 (ns) False

Saw 9 00 Squ 9 90 .559 .591 .013 (ns) False

Saw 9 45 Saw 9 90 .168 .191 .031 (ns) False

Saw 9 45 Sin 1 00 .540 .574 .014 (ns) False

Saw 9 45 Sin 1 90 .141 .162 .033 (ns) False

Saw 9 45 Sin 9 45 .063 .075 .042 (ns) False

Saw 9 45 Too 3 00 .364 .404 .020 (ns) False

Saw 9 45 Too 3 45 .540 .574 .014 (ns) False

Saw 9 45 Too 3 90 .477 .517 .016 (ns) False

Saw 9 45 Too 9 45 .835 .861 .005 (ns) False

Saw 9 45 Too 9 90 .047 .056 .045 (*) FALSE

Saw 9 90 Sin 1 00 .503 .539 .015 (ns) False

Saw 9 90 Sin 1 90 1.000 1.000 .000 (ns) False

Saw 9 90 Squ 9 00 .188 .214 .030 (ns) False

Saw 9 90 Squ 9 45 .372 .412 .020 (ns) False

Saw 9 90 Squ 9 90 .328 .365 .022 (ns) False

Saw 9 90 Too 3 00 .705 .737 .009 (ns) False

Saw 9 90 Too 3 45 .503 .539 .015 (ns) False

Saw 9 90 Too 3 90 .567 .599 .013 (ns) False

Saw 9 90 Too 9 45 .284 .319 .024 (ns) False

Sin 1 00 Sin 1 90 .446 .486 .017 (ns) False

Sin 1 00 Squ 9 45 .099 .115 .037 (ns) False

Sin 1 00 Squ 9 90 .082 .097 .039 (ns) False

Sin 1 00 Too 3 00 .845 .868 .004 (ns) False

Sin 1 00 Too 3 45 1.000 1.000 .000 (ns) False

Sin 1 00 Too 3 90 1.000 1.000 .000 (ns) False

Sin 1 00 Too 9 45 .762 .791 .007 (ns) False

Sin 1 45 Squ 3 00 .624 .657 .011 (ns) False

Continued on next page
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Table D.7 – continued from previous page

MP MP P-val P-val Corrected Cramer’s V Significant? Reject H0?

Sin 1 45 Squ 3 45 .311 .347 .023 (ns) False

Sin 1 45 Squ 3 90 .465 .506 .017 (ns) False

Sin 1 90 Squ 9 00 .221 .250 .028 (ns) False

Sin 1 90 Squ 9 45 .424 .465 .018 (ns) False

Sin 1 90 Squ 9 90 .376 .415 .020 (ns) False

Sin 1 90 Too 3 00 .638 .669 .011 (ns) False

Sin 1 90 Too 3 45 .446 .486 .017 (ns) False

Sin 1 90 Too 3 90 .506 .541 .015 (ns) False

Sin 1 90 Too 9 45 .245 .275 .026 (ns) False

Sin 3 00 Sin 3 45 .304 .341 .023 (ns) False

Sin 3 00 Sin 3 90 1.000 1.000 .000 (ns) False

Sin 3 00 Sin 9 00 .822 .849 .005 (ns) False

Sin 3 00 Sin 9 90 .061 .074 .042 (ns) False

Sin 3 45 Sin 3 90 .421 .463 .018 (ns) False

Sin 3 45 Sin 9 00 .554 .586 .013 (ns) False

Sin 3 45 Sin 9 90 .495 .534 .015 (ns) False

Sin 3 45 Too 9 00 .196 .222 .029 (ns) False

Sin 3 45 Too 9 90 .047 .057 .045 (*) FALSE

Sin 3 90 Sin 9 00 1.000 1.000 .000 (ns) False

Sin 3 90 Sin 9 90 .098 .115 .037 (ns) False

Sin 9 00 Sin 9 90 .148 .169 .033 (ns) False

Sin 9 45 Sin 9 90 .197 .223 .029 (ns) False

Sin 9 45 Too 9 00 .490 .530 .016 (ns) False

Sin 9 45 Too 9 90 1.000 1.000 .000 (ns) False

Sin 9 90 Too 9 00 .647 .679 .010 (ns) False

Sin 9 90 Too 9 90 .247 .277 .026 (ns) False

Squ 1 00 Squ 1 90 .142 .163 .033 (ns) False

Squ 3 00 Squ 3 45 .118 .137 .035 (ns) False

Squ 3 00 Squ 3 90 .857 .878 .004 (ns) False

Squ 3 45 Squ 3 90 .071 .085 .041 (ns) False

Squ 3 45 Too 1 00 .078 .092 .040 (ns) False

Squ 3 45 Too 1 45 .105 .122 .037 (ns) False

Squ 3 45 Too 1 90 .090 .106 .038 (ns) False

Squ 9 00 Squ 9 45 .735 .766 .008 (ns) False

Squ 9 00 Squ 9 90 .800 .829 .006 (ns) False

Squ 9 00 Too 3 00 .074 .088 .040 (ns) False

Squ 9 00 Too 3 90 .048 .058 .045 (*) FALSE

Squ 9 45 Squ 9 90 1.000 1.000 .000 (ns) False

Squ 9 45 Too 3 00 .173 .197 .031 (ns) False

Squ 9 45 Too 3 45 .099 .115 .037 (ns) False

Squ 9 45 Too 3 90 .120 .139 .035 (ns) False

Squ 9 90 Too 3 00 .148 .169 .033 (ns) False

Squ 9 90 Too 3 45 .082 .097 .039 (ns) False

Squ 9 90 Too 3 90 .101 .118 .037 (ns) False

Too 1 00 Too 1 45 .943 .962 .002 (ns) False

Too 1 00 Too 1 90 1.000 1.000 .000 (ns) False

Too 1 45 Too 1 90 1.000 1.000 .000 (ns) False

Continued on next page
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Table D.7 – continued from previous page

MP MP P-val P-val Corrected Cramer’s V Significant? Reject H0?

Too 3 00 Too 3 45 .845 .868 .004 (ns) False

Too 3 00 Too 3 90 .922 .942 .002 (ns) False

Too 3 00 Too 9 45 .551 .584 .013 (ns) False

Too 3 45 Too 3 90 1.000 1.000 .000 (ns) False

Too 3 45 Too 9 45 .762 .791 .007 (ns) False

Too 3 90 Too 9 45 .688 .720 .009 (ns) False

Too 9 00 Too 9 90 .578 .608 .013 (ns) False

Table D.8: The Value of Roughness parameters of the Six Tactile Stimuli

Image
Roughness Parameter

s a s q s sk s ku s ds s al s tr

M1 29.815 36.950 0.456 2.860 0.066 2.236 0.006

M2 70.243 77.187 0.292 1.504 0.668 2.236 0.006

M3 31.864 39.805 0.792 3.178 0.058 9.487 0.026

P1 65.293 72.714 0.282 1.575 0.318 15.033 0.043

P2 56.500 64.356 -0.696 2.056 0.085 1.414 0.004

P3 45.416 55.172 0.745 2.596 0.117 1.414 0.004

D1 47.695 55.419 -0.243 1.983 0.029 1.414 0.004

M1 D1 30.375 37.724 0.075 2.810 0.005 1.414 0.004

M2 D1 34.982 42.800 0.439 2.743 0.011 1.414 0.004

M3 D1 31.274 38.357 0.049 2.586 0.000 1.414 0.004

D1 P1 28.217 34.997 0.157 2.821 0.008 47.170 0.134

D1 P2 34.487 42.282 -0.199 2.577 0.026 1.414 0.004

D1 P3 30.281 37.834 0.344 2.953 0.035 1.414 0.004
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[210] Waldemar Popiński. Statistical view on phase and magnitude information

in signal processing. Artificial Satellites, 47(3):127–136, 2012. 39, 42



223

[211] M Hayes, Jae Lim, and A Oppenheim. Phase-only signal reconstruction.

In ICASSP’80. IEEE International Conference on Acoustics, Speech, and

Signal Processing, volume 5, pages 437–440. IEEE, 1980. 40

[212] Monson Hayes, Jae Lim, and Alan Oppenheim. Signal reconstruction from

phase or magnitude. IEEE Transactions on Acoustics, Speech, and Signal

Processing, 28(6):672–680, 1980. 40, 42

[213] Changxue Ma. Novel criteria of uniqueness for signal reconstruction from

phase. IEEE Transactions on signal processing, 39(4):989–992, 1991. 40,

41

[214] G Merchant and T Parks. Reconstruction of signals from phase: Effi-

cient algorithms, segmentation, and generalizations. IEEE transactions on

acoustics, speech, and signal processing, 31(5):1135–1147, 1983. 40

[215] V Tom, T Quatieri, M Hayes, and J McClellan. Convergence of itera-

tive nonexpansive signal reconstruction algorithms. IEEE Transactions on

Acoustics, Speech, and Signal Processing, 29(5):1052–1058, 1981. 40

[216] Sharon Urieli, Moshe Porat, and Nir Cohen. Image characteristics and rep-

resentation by phase: from symmetric to geometric structure. In Proceed-

ings of 3rd IEEE International Conference on Image Processing, volume 1,

pages 705–708. IEEE, 1996. 40

[217] Athina P Petropulu and Chrysostomos L Nikias. Signal reconstruction from

the phase of the bispectrum. IEEE Transactions on Signal Processing, 40

(3):601–610, 1992. 40

[218] RP Millane and WH Hsiao. The basis of phase dominance. Optics letters,

34(17):2607–2609, 2009. 40, 44, 169

[219] Bernt C Skottun. Amplitude and phase in the müller-lyer illusion. Percep-

tion, 29(2):201–209, 2000. 40

[220] Jonathan D Victor and Mary M Conte. The role of high-order phase cor-

relations in texture processing. Vision Research, 36(11):1615–1631, 1996.

41

[221] Bela Julész, Edgar N Gilbert, and Jonathan D Victor. Visual discrimination

of textures with identical third-order statistics. Biological Cybernetics, 31

(3):137–140, 1978. 41



224

[222] Mitchell GA Thomson, David H Foster, and Robert J Summers. Human

sensitivity to phase perturbations in natural images: a statistical frame-

work. Perception, 29(9):1057–1069, 2000. 41

[223] Adolf W Lohmann, David Mendlovic, and Gal Shabtay. Significance of

phase and amplitude in the fourier domain. JOSA A, 14(11):2901–2904,

1997. 41, 99

[224] John N Mc Donald. Phase retrieval and magnitude retrieval of entire func-

tions. Journal of Fourier Analysis and Applications, 10(3):259–267, 2004.

41

[225] Igor Lyuboshenko and Alexander Akhmetshin. Stable signal and image

reconstruction from noisy fourier transform phase. IEEE transactions on

signal processing, 47(1):244–250, 1999.

[226] Rima Alaifari, Ingrid Daubechies, Philipp Grohs, and Rujie Yin. Stable

phase retrieval in infinite dimensions. Foundations of Computational Math-

ematics, pages 1–32, 2018.

[227] Philipp Grohs, Sarah Koppensteiner, and Martin Rathmair. The mathe-

matics of phase retrieval. arXiv preprint arXiv:1901.07911, 2019. 41

[228] Yonina C Eldar and Shahar Mendelson. Phase retrieval: Stability and

recovery guarantees. Applied and Computational Harmonic Analysis, 36

(3):473–494, 2014. 41

[229] Ju Sun, Qing Qu, and John Wright. A geometric analysis of phase retrieval.

Foundations of Computational Mathematics, 18(5):1131–1198, 2018. 41

[230] Nicolas Sturmel, Laurent Daudet, et al. Signal reconstruction from stft

magnitude: A state of the art. In International conference on digital audio

effects (DAFx), pages 375–386, 2011. 42

[231] Timo Gerkmann, Martin Krawczyk-Becker, and Jonathan Le Roux. Phase

processing for single-channel speech enhancement: History and recent ad-

vances. IEEE Signal Processing Magazine, 32(2):55–66, 2015.

[232] Mahdi Parchami, Wei-Ping Zhu, Benoit Champagne, and Eric Plourde. Re-

cent developments in speech enhancement in the short-time fourier trans-

form domain. IEEE Circuits and Systems Magazine, 16(3):45–77, 2016.

42



225

[233] MJ Morgan, J Ross, and A Hayes. The relative importance of local phase

and local amplitude in patchwise image reconstruction. Biological Cyber-

netics, 65(2):113–119, 1991. 42, 43, 45

[234] R Sarang, MR Jahed Motlagh, and P Eslami. Reconstruction of image

using just magnitude information of fourier transform; is phase information

really more important? In 2006 International Conference on Computa-

tional Inteligence for Modelling Control and Automation and International

Conference on Intelligent Agents Web Technologies and International Com-

merce (CIMCA’06), pages 56–56. IEEE, 2006. 42

[235] James R Fienup. Reconstruction of a complex-valued object from the mod-

ulus of its fourier transform using a support constraint. JOSA A, 4(1):

118–123, 1987. 42

[236] Norman E Hurt. Phase retrieval and zero crossings: mathematical methods

in image reconstruction, volume 52. Springer Science & Business Media,

2001.

[237] Kishore Jaganathan, Yonina C Eldar, and Babak Hassibi. Phase retrieval:

An overview of recent developments. arXiv preprint arXiv:1510.07713,

2015. 42

[238] Radu Balan, Pete Casazza, and Dan Edidin. On signal reconstruction

without phase. Applied and Computational Harmonic Analysis, 20(3):345–

356, 2006. 42

[239] J He and SX Pan. Magnitude reconstruction of complex images from in-

complete fourier phase data. In [Proceedings] IECON’90: 16th Annual

Conference of IEEE Industrial Electronics Society, pages 357–362. IEEE,

1990. 42

[240] Bela Julesz. Visual pattern discrimination. Information Theory, IRE Trans-

actions on, 8(2):84–92, 1962. 43, 50, 96, 170

[241] Nathalie Guyader, Alan Chauvin, Carole Peyrin, Jeanny Hérault, and
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