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Preface 

 
The current thesis represents the work of three years and was prepared at the Evolutionary 

Genomics group, The GLOBE Institute, University of Copenhagen, and BioArCh, Department of 

Archaeology, University of York. This work was supervised by Professor Tom Gilbert, Section of 

EvoGenomics, and co-supervised by Dr. Nathan Wales, BioArCh, University of York. The work 

was funded by the European Union's Horizon 2020 research and innovation programme, grant 

agreement no. 676154 (ArchSci2020). 

 
This dissertation comprises of five sections: a general introduction, followed by three 

research chapters and the thesis conclusions. The first research chapter is a manuscript that 

discusses the population history of the extinct Honshū wolves based on the nuclear DNA obtained 

from one Honshū wolf museum specimen. The second research chapter investigates the potential 

of using fluid-preserved seabirds as a substrate for metagenomics studies. The last research chapter 

is a published paper that analyses the human, microbial, and non-human eukaryotic DNA 

recovered from a chewed birch bark pitch. 

 
Four appendix chapters that I was involved in are included at the end of this thesis, but 

should not be considered part of the body of work submitted for examination. 

 

 

 

 

 
 

Jonas Niemann, December 2019 
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English summary 

 
The recognition that DNA from long dead organisms can be extracted and sequenced from 

a multitude of substrates has revolutionised the field of bioarchaeology. Apart from yielding 

profound discoveries into the biology, migrations, and admixture of past populations based on the 

host DNA, some artefacts are now recognised as repositories for dietary and host- associated 

microbial DNA and thus hold vital clues to the health status and lifestyle of the individual. This 

thesis is composed of three studies on three quite distinct substrates – historic hide, fluid-preserved 

museum specimens, and an ancient birch “chewing gum” – where I applied population genomic 

and metagenomic analyses to infer the population history and microbiome compositions of past 

organisms. After briefly introducing the broad themes of this dissertation in Chapter 1, Chapter 2 

of this dissertation explores the population history of the Honshū wolves, a poorly-understood grey 

wolf subspecies that was endemic to the Japanese archipelago and went extinct at the beginning 

of the 20th century. The nuclear genome from the museum hide of one specimen was ge at an 

average depth of coverage of 3.8×, and I discovered that Honshū wolves were likely the relict of a 

Pleistocene Siberian wolf population that was up to now believed to have gone extinct about 10,000 

years ago. Chapter 3 and Chapter 4 discuss the metagenomic potential of two novel substrates. In 

Chapter 3 we sequenced gut samples of six historic fluid-preserved birds with the aim of capturing 

the host-associated microbial profile. While I was able to characterise the gut microbiome of one 

specimen, further research is necessary to improve the feasibility of performing metagenomic 

analyses on fluid-preserved samples. Finally, in Chapter 4 I analysed the DNA extracted from a 

5,700 year old chewed birch bark pitch. We obtained a complete human genome at an average 

depth of coverage of 2.3× and found that the female who chewed the birch pitch genetically closely 

resembles Western hunter-gatherers. The birch “chewing  gum” also proved to be a rich source of 

microbial and non-human eukaryotic DNA, and I was able to recover the genomes of bacterial 

taxa that are closely associated with the oral microbiome as well as DNA from mallard, hazelnut, 

and birch that are likely derived from a recent meal and the birch pitch material itself.  

In conclusion, this dissertation sheds light on wolf and human evolution as well as 

introduces two novel substrates with potential for future metagenomic analyses. These projects 

demonstrate that researchers must continue exploring whether unusual archaeological and historic 

substrates contain genetic material that can be used to resolve long standing questions, thereby 

unlocking new opportunities to understand the history of our world. 



VII  

Dansk resumé 

Erkendelsen af at DNA fra for længst døde organismer kan blive ekstraheret og sekventeret 

fra adskillige typer af materialer har revolutioneret bioarkæologi som videnskabeligt feltet. Udover 

at have givet dybdegående opdagelser indenfor biologi, migration, og genetisk opblanding af 

fortidige populationer baseret på endogent DNA, har nogle fortidige objekter nu også vist sig at 

indeholde DNA fra fødeindtag samt værtsbaseret mikrobielt DNA, som derved kan give 

fundamental indsigt i det pågældende individs helbred og livsstil. Denne PhD afhandling består af 

tre studier som bygger på tre vidt forskellige typer af materialer - historiske skind, sprit/formalin-

konserverede museumsobjekter, og et gammel birkebark “tyggegummi” - for hvilke jeg har 

anvendt både populationsgenomiske og metagenomiske analyser til at tolke populationshistorie 

samt den mikrobielle sammensætning i fortidige organismer. 

Efter en kort introduktion af de brede temaer for denne afhandling i kapitel 1, vil kapitel 2 

udforske de populationshistoriske aspekter af Honshū ulvene, en endnu forholdsvist ukendt 

underart af gråulve, som var endemisk for det japanske øhav og uddøde i begyndelsen af det 20. 

århundrede. Kernegenomet fra et individ, repræsenteret af et skind fra et museum, opnåede en 

gennemsnitlig dækningsdybde på 3,8×, og jeg fandt frem til at Honshū ulvene sandsynligvis er et 

levn fra en Pleistocæn sibirisk ulvepopulation, som indtil nu menedes at være uddød for ca. 10.000 

år siden. I kapitel 3 og kapitel 4 diskuteres det metagenomiske potentiale for to nye typer af 

materialer. Kapitel 3 omhandler sekventeringen af tarmprøver fra seks historiske sprit/formalin-

konserverede fugle med det formål at fastslå den værtsbaserede mikrobielle profil. Jeg var i stand 

til at karakterisere tarmfloraen for én prøve, men yderligere forskning vil være nødvendig for at 

forbedre muligheden for at udføre metagenomiske analyser af sprit/formalin- konserverede prøver. 

Endelig omhandler kapitel 4 analysen af DNA ekstraheret fra en 5.700 år gammel tygget birke-

begklump. Vi fik udtrukket et komplet menneskegenom med en gennemsnitlig dækningsdybde på 

2,3× og fandt ud af at kvinden, som havde tygget på begklumpen er genetisk beslægtet med 

vesteuropæiske jæger-samlere. Birkebark “tyggegummiet” viste sig også at være en rig kilde til 

mikrobielt og ikke-menneskeligt eukaryotisk DNA, og jeg var i stand til at gendanne taxonomiske 

grupper af bakterier, der er tæt associeret med det orale mikrobiom, samt DNA fra gråand, 

hasselnød og birk, som sandsynligvis stammer fra henholdsvis et nyligt måltid og fra birke-

begklumpen selv. Denne PhD afhandling belyser aspekter af henholdsvis ulvens og menneskets 

evolution, og introducerer desuden to nye materialer til brug for fremtidige metagenomiske 

analyser. 
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Introduction 
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Preface 
 

This dissertation explores a wide range of palaeogenomic topics and analytical 

approaches, and therefore it is necessary to provide a brief account of how these projects 

developed and build on one another. At the beginning of my PhD I set out to study the genomes 

of two extinct species – Maclear’s rat (Rattus macleari) and great auk (Pinguinus impennis) – 

with the aim to explore the effect of population collapse on the genome and the viability of the 

controversial concept of de-extinction. While these two projects are still in progress, ultimately 

they had to be sidelined due to extensive delays with the data generation at our collaborator’s 

facility in China. Thus so as to keep moving forward, I elected to apply my newly acquired 

skills in palaeogenomics to analyse several other interesting related datasets that were available 

for study. The first of these was a population genomic analysis of the now extinct Japanese 

wolf. During my analyses on the palaeogenomic dataset, I also appreciated the wealth of 

microbial information that can be present in such materials. Thus I also became interested in 

understanding the diversity of the microbial communities that resided in past organisms. This 

“metagenomic” approach is one of the most rapidly developing themes in ancient DNA 

research, so I readily accepted the opportunity to undertake the study of historic bird gut 

microbiomes and Late Mesolithic/Early Neolithic chewing gum. 

In summary, this dissertation revolves around the analysis of aDNA retrieved from three 

non-bone substrates - hides, fluid-preserved specimens, and birch bark pitch - and the 

opportunities and limitations that come with each substrate. 

My chapters are not chronologically ordered by the age of the samples, but are listed in 

order of the skills I acquired and reflect therefore my growth as a bioinformatician during my 

time as a PhD student.  

Below I introduce the main themes of my dissertation with general background 

information on the development of palaeogenomics. Given the heterogeneous nature of the 

dissertation topics, the discussion swiftly shifts between themes, with the understanding that 

the research chapters delves into more detail in the respective introductory sections. 
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1.1 History of palaeogenomics 

 

 
Until the 1980s researchers mostly relied on morphometric data of fossils and 

mummified remains to study the biology of extinct specimens. This changed dramatically with 

the recognition that DNA could persist long after the death of an organism, otherwise known 

as ancient DNA (aDNA). The first group that was able to recover DNA from long-dead 

organisms was Russel Higuchi and colleagues, who succeeded in sequencing two fragments 

with an overall length of 229 base pairs extracted from the dried muscle tissues from a quagga 

(Equus quagga quagga) museum sample (Higuchi et al. 1984), an equid subspecies that went 

extinct in 1883. Soon after, Pääbo and colleagues published an article on the first ancient human 

DNA sequence extracted from an Egyptian mummy in 1985 (Pääbo 1985). The first study on 

ancient plant DNA was published in 1988 by Rollo and colleagues, who extracted DNA from 

Peruvian maize ears that were dated to approximately 1,000 BP (Rollo et al. 1988). 

Around 2005, the ground-breaking technological advances of next-generation 

sequencing (NGS) or high-throughput sequencing (HTS) allowed the sequencing of DNA on a 

much larger scale, facilitating the generation of whole genome data. 

This also had a profound impact on aDNA research, and in 2008 the first mammalian 

whole genome, a woolly mammoth, was sequenced (Miller et al. 2008). Further studies on the 

woolly mammoth genome revealed insights into the population decline (Palkopoulou et al. 

2015) and genomic erosion (Rogers and Slatkin 2017). aDNA also enabled population genetic 

analyses on other extinct species such as the thylacine (White, Mitchell, and Austin 2018), 

passenger pigeon (Guiry et al. 2020), and moa (Allentoft and Rawlence 2012), uncovering 

information on their relatedness to extant taxa and their demographic history that is inaccessible 

with morphological approaches. In the last decade there has been an explosion of published 

ancient whole genomes, with a single study in October 2019 publishing 524 ancient human 

genomes (Narasimhan et al. 2019).  

 

 
1.1.1 Challenges of aDNA 

 
 

The generation of short DNA fragments from the first aDNA sequencing efforts meant 

that analyses were often limited to the construction of simple phylogenies. The sequencing of 

entire ancient genomes, however, enabled an in-depth look into the genetic makeup of 

https://paperpile.com/c/q1VuHI/Vwzz
https://paperpile.com/c/q1VuHI/21GV
https://paperpile.com/c/q1VuHI/3d1L
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individuals and populations that lived thousands of years ago, allowing, for example, the 

detection of past admixture, migration routes, population expansions and declines, rise of 

adaptive traits and deleterious mutations, and the prediction of phenotypic features of long- 

extinct organisms. 

The generation of short DNA fragments from the first aDNA sequencing efforts meant 

that analyses were often limited to the construction of simple phylogenies. The sequencing of 

entire ancient genomes, however, enabled an in-depth look into the genetic makeup of 

individuals and populations that lived thousands of years ago, allowing, for example, the 

detection of past admixture (Sánchez-Quinto and Lalueza-Fox 2015), migration routes (Furholt 

2018), population expansions and declines (Palkopoulou et al. 2015), rise of adaptive traits and 

deleterious mutations (Fry et al. 2020), and the prediction of phenotypic features of long-extinct 

organisms (Roca et al. 2009). However, the analysis of ancient DNA is not without its 

challenges. Once a cell dies and the DNA repair mechanism is disrupted, the DNA strands form 

cross-links, undergo chemical alterations, and start to disintegrate into smaller fragments 

(Mitchell, Willerslev, and Hansen 2005). Over time, only traces of very short, degraded DNA 

molecules remain. In a typical aDNA sequencing run, endogenous DNA comprises the 

minority of reads, while the remainder is derived from contaminants such as bacteria and fungi 

colonizing the substrate post-mortem, or originates from the humans handling the sample 

(Poinar et al. 2006). As a consequence, sequencing the genome of an ancient organism is much 

more costly than generating one for a modern specimen, as the low proportion of endogenous 

sequences and the short read length requires a substantial number of sequencing data in order 

to obtain a genome with a passable depth of coverage (Hansen et al. 2017). Furthermore, aDNA 

studies also rely on reference genomes of closely related species, as the short length of aDNA 

fragments prevents the de-novo assembly of ancient genomes (Millar et al. 2008). This can be 

highly problematic if the closest extant relative is highly divergent from the ancient organism. 

Another problem is the risk of short, damaged sequences aligning to multiple regions of the 

genome or even to the incorrect reference genome. Since some aDNA studies in the 1990s  

(Cano, Poinar, and Poinar 1992; Poinar, Cano, and Poinar 1993; An et al. 1995) turned out to 

be based on contaminant rather than authentic aDNA (Austin et al. 1997; Hebsgaard, Phillips, 

and Willerslev 2005), strict guidelines had to be introduced to minimize the risk of modern 

contamination. These include extracting the DNA in designated laboratories under sterile 

conditions (Yang and Watt 2005; Fulton 2012) and implementing protocols that maximise the 

endogenous DNA yield (Boessenkool et al. 2012; Sandoval-Velasco et al. 2017). Nowadays, 

there are dozens of these aDNA laboratory facilities worldwide dedicated to the extraction of 
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aDNA from a large range of substrates, such as bones (Brown et al. 2016), hair (Gilbert et al. 

2007), tanned soft tissues (O’Sullivan et al. 2016), teeth (Wadsworth et al. 2017) and dental 

plaque (dental calculus) (Warinner, Speller, and Collins 2015), desiccated plant material 

(Hagenblad et al. 2017), and archaeological artefacts (von Holstein et al. 2014).  

 

 
1.1.2 Noteworthy archaeological applications of aDNA 

 
 

The ability to extract aDNA from hundreds of thousands of years old specimens had a deep 

impact on archaeological sciences. Probably the best known example is the generation of the 

first draft Neanderthal genome in 2010 (Green et al. 2010) and the ensuing recognition that 

interbreeding between Neanderthals and modern humans occurred as recently as 47,000-

65,000 years ago (Sankararaman et al. 2012), resulting in a Neanderthal contribution of about 

1.8-2.6% to all contemporary non-African human populations (Prüfer et al. 2017). 

The discovery of another archaic human called Denisovan was only made possible 

through the sequencing the aDNA extracted from a finger bone (Krause et al. 2010; Reich et 

al. 2010), as solely bone fragments and teeth of this hominin group have been found (Sawyer 

et al. 2015; Slon et al. 2017; Chen et al. 2019). It could be shown that several Asian and 

especially Oceanian modern human populations also have Denisovan ancestry (Sankararaman 

et al. 2016) and there is furthermore evidence for interbreeding between Neanderthals and 

Denisovans (Brown et al. 2016), unfolding a highly complex picture of human history that 

would be unattainable without the analysis of aDNA. 

Further aDNA studies also shed light, for instance, on the population turnover in 

Neolithic Europe (Brace et al. 2019) and the initial peopling of the Americas (Moreno-Mayar 

et al. 2018), complementing earlier archaeological findings. In addition to aDNA research on 

humans, palaeogenomics studies of mammals like dogs (Ameen et al. 2019), pigs (Ottoni et al. 

2013), and goats (Daly et al. 2018), as well as ancient crops (Ramos-Madrigal et al. 2016; 

Russell et al. 2016; Ramos-Madrigal et al. 2019), have shaped our knowledge of these 

archaeologically-relevant species. Nowadays, archaeologists are highly aware of the true value 

of aDNA studies, and organic material from archaeological sites is often handled with the 

prospect of potential future biomolecular analyses. The majority of aDNA studies are based on 

bone or tooth samples. In my three research chapters, I explore the potential of three alternative 

substrates—hides, fluid-preserved specimens, and birch bark pitch—which I will introduce 

below. 

https://paperpile.com/c/q1VuHI/Qqih
https://paperpile.com/c/q1VuHI/025W
https://paperpile.com/c/q1VuHI/z8ad
https://paperpile.com/c/q1VuHI/ETAz%2B5Twd
https://paperpile.com/c/q1VuHI/ETAz%2B5Twd
https://paperpile.com/c/q1VuHI/0wP3%2BBxo8%2BNiWx
https://paperpile.com/c/q1VuHI/0wP3%2BBxo8%2BNiWx
https://paperpile.com/c/q1VuHI/z0AE
https://paperpile.com/c/q1VuHI/z0AE
https://paperpile.com/c/q1VuHI/iNDj
https://paperpile.com/c/q1VuHI/Wcxy
https://paperpile.com/c/q1VuHI/bfjW
https://paperpile.com/c/q1VuHI/bfjW
https://paperpile.com/c/q1VuHI/WQO5
https://paperpile.com/c/q1VuHI/weaE
https://paperpile.com/c/q1VuHI/weaE
https://paperpile.com/c/q1VuHI/grCQ
https://paperpile.com/c/q1VuHI/B6OK%2BWK7m%2BHZpd
https://paperpile.com/c/q1VuHI/B6OK%2BWK7m%2BHZpd
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1.1.3 Hides and skins 

 

Since Russel Higuchi and colleagues were able to extract aDNA from a skin sample of 

the extinct quagga (Higuchi et al. 1984), hides and skins have been among the most widely 

used substrates for historical specimens. Due to the fast decomposition of skin after death of 

the organism, this substrate only preserves under extreme conditions such as low temperatures, 

anoxia, and dryness and is therefore rarely found in pre-historical context (Brandt et al. 2014). 

Zoological hides collections however present an important DNA repository of specimens from 

the last centuries and offer an opportunity to study organisms from historical or even extinct 

populations. While tooth or bone material, particularly the petrous bone, commonly yields less 

degraded and more endogenous DNA than skin, the removal of skin patches from museum 

specimens is less intrusive than the drilling of bones as it is possible to take skin samples while 

preservíng the overall morphology of the specimen, for example by targeting inconspicuous 

body sites such as toe or paw pads (Burrell et al. 2015). 

 

 

1.1.4 Fluid-preserved specimens 

 

My first application of metagenomics to historic specimens was using bird intestines 

preserved in fluid jars. The storage of organic material in preservative fluids has been 

documented since Babylonian times (Ransome 2004), but only since the mid-17th century have 

zoological and botanical specimens been fluid-preserved in alcohol for the purpose of almost 

perfectly maintaining their appearance centuries after their collection (Reid 1994).  

Previous attempts to sequence DNA from historical fluid-preserved specimens have 

produced mixed results. While some studies (Persing et al. 1990; Stuart et al. 2006) were able 

to successfully retrieve DNA from specimens that had been preserved for up to 100 years, 

others failed to recover endogenous DNA from specimens that were only preserved for a few 

weeks (Seutin, White, and Boag 1991). It has been hypothesised that the cause for the 

unsuccessful attempts is the use of DNA degrading fixative and preservative agents such as 

formaldehyde. Formaldehyde, or formalin when in an aqueous solution, is prevalent in fluid-

preservation due to its exceptional fixation properties, but also causes cross-linking of DNA 

strands and its usage therefore hinders or even prevents DNA extraction (Fang, Wan, and 

Fujihara 2002). Nevertheless, the sheer wealth of fluid-preserved specimens presents a great 

opportunity for studying the microbiomes of historical organisms, such as recovering the 



7  

microbial profile of species that have since gone extinct or detecting general changes of the 

microbiome over time with a time series analysis. 

 

 

1.1.5 Birch bark pitch 
 

 
The other microbiome-related substrate examined in this dissertation is ancient birch 

bark (Fig. 3). Birch pitch/tar/mastic is a viscoelastic material manufactured by heating birch 

bark in a process called dry distillation. In prehistory this material was probably mostly used 

as an adhesive, for example to haft axe- or arrowheads (Kozowyk et al. 2017). The oldest 

examples of birch pitch date back to the Middle Pleistocene and were recovered from 

Neanderthal sites in Germany (Koller, Baumer, and Mania 2001; Pawlik and Thissen 2011) 

and Italy (Mazza et al. 2006). Several more lumps of birch pitch dating back to the Mesolithic 

and Neolithic have also been found in Scandinavia (Hernek and Nordqvist 1995; Regnell et al. 

1995), Germany (Schlichtherle and Wahlster 1986; Alexandersen 1989), and Switzerland 

(Schoch, Kroll, and Pasternak 1995). 

 

 

Fig. 1: Birch pitch with visible tooth marks from Raahe, Finland. Taken from Salminen,  

2013 
 

Characteristic for these finds are the tooth marks that are often imprinted on the lumps 

of birch pitch. While it is still unclear why these pieces of birch pitch were chewed, with 

proposed explanations ranging from dental hygiene to enhanced malleability (Aveling and 

Heron 1999), it resulted in cells from the oral cavity becoming entrapped in the pitch. Kashuba 

and colleagues were the first to publicly report on the viability of recovering DNA from chewed 

birch pitch. They succeeded in obtaining genome-wide data from three of the eight sampled 

specimens from a site called Huseby Klev that was dated to 10,040-9,610 BP (Kashuba et al. 

2019). 

https://paperpile.com/c/q1VuHI/DTxe
https://paperpile.com/c/q1VuHI/A8ry%2BVg6P
https://paperpile.com/c/q1VuHI/bt6H
https://paperpile.com/c/q1VuHI/ThGG%2BzNm4
https://paperpile.com/c/q1VuHI/ThGG%2BzNm4
https://paperpile.com/c/q1VuHI/Pk00%2BGHFJ
https://paperpile.com/c/q1VuHI/QZ9w
https://paperpile.com/c/q1VuHI/8UgQ
https://paperpile.com/c/q1VuHI/s81T
https://paperpile.com/c/q1VuHI/s81T
https://paperpile.com/c/q1VuHI/IlWO
https://paperpile.com/c/q1VuHI/IlWO
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1.2  Metagenomic analyses 

 
In my second and third research chapter I expanded the focus of my work from the 

genome of the organisms themselves to their associated microbial components through 

computational metagenomic analyses. The term metagenomics was coined by Joshua 

Lederberg and refers to the study of all available DNA sequences present in environmental 

samples (Lederberg and McCray 2001). While metabarcoding, which exclusively uses 

phylogenetic markers such as the prokaryotic 16S rRNA to identify source organisms, is 

sometimes included under the umbrella term of metagenomics, I specifically refer to shotgun 

metagenomics, i.e. the untargeted sequencing of all DNA fragments in the sample, when I use 

the term metagenomics in this introduction. 

A common procedure for metagenomic studies begins with the extraction of the DNA 

present in the sample of interest and converting it to an NGS library. Subsequently this library 

can be sequenced on an NGS platform, yielding reads that require bioinformatic processing to 

reveal the information within them. 

There are two main approaches to analyze metagenomic data. The first is read-based 

metagenomics, in which each sequence is assigned to a taxon from a database on the basis of 

sequence identity. Common strategies to accomplish this are aligning sequence k-mers to a k- 

mer database, such as KrakenUniq (F. P. Breitwieser, Baker, and Salzberg 2018), aligning the 

sequences against a clade-specific marker gene database, for example MetaPhlAn (Truong et 

al. 2015), or aligning all sequences against entire reference genomes, with programs such as 

MALT (Vågene et al. 2018) or MGMapper (Petersen et al. 2017). 

The second, more computationally challenging approach; to analyze metagenomic data 

is assembly-based metagenomics, in which overlapping sequences are first merged into contigs 

(Florian P. Breitwieser, Lu, and Salzberg 2017). The original sequences are subsequently 

aligned to the resulting contigs, which are then grouped into clusters depending on the average 

depth of alignment and sequence similarity of the alignments. While some of these clusters can 

then be assigned to known taxa, the true strength of the assembly-based approach is that even 

taxa which have not been sequenced yet can be detected. 

 

 

 

 

https://paperpile.com/c/q1VuHI/KTqA
https://paperpile.com/c/q1VuHI/Ju8y
https://paperpile.com/c/q1VuHI/vu36
https://paperpile.com/c/q1VuHI/vu36
https://paperpile.com/c/q1VuHI/lJmw
https://paperpile.com/c/q1VuHI/QWMc
https://paperpile.com/c/q1VuHI/3ipM
https://paperpile.com/c/q1VuHI/3ipM
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1.2.1 Ancient and historical metagenomes 

 
 

The ability to identify microbes in ancient and historical samples from DNA traces has added 

a new dimension to the field of bioarchaeology. While the analysis of endogenous host aDNA enables 

a look at the genetic makeup of the specimen, the identification of ancient microbes and non-host 

eukaryotic DNA can furthermore inform on the health and diet of long-dead organisms (Adler et al. 

2013; Harbeck et al. 2013). Among others, metagenomic aDNA has been successfully extracted from 

dental calculus, coprolites, and sediment, which I will briefly discuss below.  

Dental calculus is built-up plaque that has mineralised along the gumline (Schroeder 1969; 

Hardy et al. 2009). During calcification, food remains and microbes from the oral cavity can become 

entrapped between the layers of calculus. As dental plaque can rapidly mineralize and is relatively 

resistant to exogenous bacteria (Mann et al. 2018), it provides an excellent source for dietary and oral 

microbial aDNA (Adler et al. 2013; Weyrich, Dobney, and Cooper 2015).  

Coprolites on the other hand are desiccated or fossilised palaeofaeces and have been long 

appreciated in the field of bioarchaeology as they allow the identification of parasites and food 

remnants using macroscopic and microscopic inspection. Aside from confirming these findings 

(Hofreiter et al. 2000) and detecting taxa that could not be detected by visual examination (Wood et 

al. 2016), metagenomic analyses of coprolites further enable the characterisation of the distal gut 

microbiome (Tito et al. 2012). The gut microbiome is closely linked to the health of the individual and 

can therefore provide vital clues to the health status of the individual (Ghaisas, Maher, and 

Kanthasamy 2016).  

Ancient DNA can also be recovered from environmental DNA (eDNA), such as lake and 

marine sediment, offering a glimpse into the fauna, flora, and microbial diversity of past ecosystems. 

Sedimentary aDNA (sedaDNA) can preserve relatively well due to anoxia, low temperature, and lack 

of irradiation (Armbrecht et al. 2019). Indeed, with an estimated age of 400,000 years before present, 

one of the oldest authenticated aDNA comes from permafrost sediment samples (Willerslev et al. 

2003). Besides describing the biodiversity of ancient environments, sedaDNA can also be utilized for 

a more targeted approach such as in 2016, when Graham and colleagues estimated the extinction time 

point of woolly mammoths on St. Paul Island by tracking the presence of mammoth DNA across a 

series of lake sediment cores (Graham et al. 2016).  

 While dental calculus, coprolites, and sediment are the standard substrates for aDNA 

metagenomic studies, there could be many other uninvestigated substrates out there of interest for 

biologists and archaeologists. In chapter three and four I explore the potential of two substrates that 

have not been used in ancient or historical metagenomic studies before.  
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1.2.2 Caveats of ancient metagenomic methods 

 
 

Independent of the substrate are there several challenges for the analysis of ancient and 

historical metagenomes. De-novo assemblies, i.e the merging of sequences without the use of 

reference genomes, are not always possible for highly degraded DNA sequences, as most 

commonly used assembly tools, such as MetaVelvet (Namiki et al. 2012), MEGAHIT (Li et al. 

2015), and IDBA-UD (Peng et al. 2012) require relatively long sequences to accurately create 

contigs. 

As the endogenous DNA content of most ancient and historical substrates tends to be 

low (Poinar et al. 2006; Der Sarkissian et al. 2014), the DNA of bacteria and fungi that 

colonized the substrate after deposition is often found in high abundance in aDNA data and it 

can be a challenging task to distinguish between post-mortem contaminants and endogenous 

taxa (Warinner et al. 2017). 

For reference-guided metagenomics approaches, there are major database limitations 

that need to be considered for the interpretation of the results. While current estimates of the 

total number of microbial species are in the order of 1011 to 1012 (Locey and Lennon 2016), as 

of December 2019 there are just 487,286 microbial reference genomes available on the 

GenBank sequence database (Benson et al. 2015), and only 17,924 of these are complete 

reference genomes (GenBank release 235.0, December 2019). 

The genomes of microbial taxa that inhabit human tissues, for instance from the Human 

Microbiome Project (HMP) (Gevers et al. 2012), dominate the reference genome databases, 

while taxa from highly complex communities such as soil and oceans are severely 

underrepresented (Quince et al. 2017). The DNA sequences of a species that is not present in 

the utilised database can therefore be misassigned to a species with high sequence homology, 

which is especially problematic if the assigned taxon is pathogenic and thus of greater 

importance for the interpretation of the health status of the individual. Horizontal gene transfer 

and genome rearrangements present further problems that can cause false positive and false 

negative assignments (Warinner, Speller, and Collins 2015; Warinner et al. 2017). 

 

https://paperpile.com/c/q1VuHI/HoPn
https://paperpile.com/c/q1VuHI/F45I
https://paperpile.com/c/q1VuHI/F45I
https://paperpile.com/c/q1VuHI/F45I
https://paperpile.com/c/q1VuHI/QIb3
https://paperpile.com/c/q1VuHI/ZvmK%2BoGB3
https://paperpile.com/c/q1VuHI/vYc5
https://paperpile.com/c/q1VuHI/FOoF
https://paperpile.com/c/q1VuHI/HRjL
https://paperpile.com/c/q1VuHI/DDJf
https://paperpile.com/c/q1VuHI/WWMo
https://paperpile.com/c/q1VuHI/6GmC%2BvYc5
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Fig. 2: a) Characteristic deamination pattern of ancient DNA. b) Lack of C-to-T and G- 

to-A substitutions at the end of the sequences, disproving the presence of ancient DNA damage 

(Figure taken from Eisenhofer, Cooper, and Weyrich 2017) 

 
One current challenge for metagenomic research is that many reference genomes of 

eukaryotic taxa are contaminated with the DNA of other organisms (Delmont and Eren 2016; 

Fierst and Murdock 2017). This happens because eukaryotic genomes tend to be much larger 

and more repetitive than microbial genomes, making the genome assembly exceptionally 

challenging and vulnerable to errors such as incorporating the DNA from other organisms 

present in the DNA extracts. Ultimately, this leads to a significant risk of false positive 

assignments to eukaryotic taxa in metagenomics studies (Laurence, Hatzis, and Brash 2014; 

Lu and Salzberg 2018). 

Given the multitude of challenges for metagenomics in modern and ancient samples, 

rigorous authentication of the assignments is crucial in ancient metagenomics. In order to 

establish that a particular assigned species is not a modern contaminant, mapDamage (Jónsson 

et al. 2013) is often used to quantify the DNA damage of the aligned sequences (Fig. 4). A 

further tool called PMDtools (Skoglund et al. 2014) can then be used to filter out sequences that 

do not exhibit any DNA damage and are therefore potentially derived from contaminants. 

 

https://paperpile.com/c/q1VuHI/vEQ1
https://paperpile.com/c/q1VuHI/PysW%2BfOzp
https://paperpile.com/c/q1VuHI/PysW%2BfOzp
https://paperpile.com/c/q1VuHI/VYtc%2BfUgE
https://paperpile.com/c/q1VuHI/VYtc%2BfUgE
https://paperpile.com/c/q1VuHI/TTx2
https://paperpile.com/c/q1VuHI/TTx2
https://paperpile.com/c/q1VuHI/eoAf
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Fig. 3. Schematic illustration of edit distance distribution. Sequences (grey bars) with 

mismatches (red bars) are visualised in a histogram (bottom). A declining edit distance 

distribution is expected when the sequences are aligned to the correct reference genome (a). 

Aligning sequences to the incorrect reference genome shifts the distribution to the right (b). 

Created by author 

 
Another commonly used statistic to validate a metagenomic assignment is the edit 

distance distribution, which I implemented extensively in the analysis of historic bird 

microbiomes and the chewed birch bark pitch. The edit distance encapsulates the number of 

mismatches of the aligned sequences (Fig. 5). In effect, aligning the DNA sequences to the 

correct reference genome should result in few or no mismatches per sequence, thus a large 

proportion of sequences with many mismatches indicates a poor match between the DNA 

sequences and the reference genome. While it should be cautioned that DNA damage and 

changes of the genome over time can skew the distribution towards a higher proportion of 

mismatches per sequence, a declining edit distance distribution indicates that the reference 

genome belongs to the correct or a closely related species (Key et al. 2017; Huebler et al. 2019). 

https://paperpile.com/c/q1VuHI/isyQ%2BMsnH
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Fig. 4. Evenness of coverage should be observed in order to authenticate an assignment (a). 

Stacking of aligned sequences and large gaps are indicators for a false positive assignment (b). 

Created by author. 

 

Finally, alignments of true positive assignments should also exhibit a homogenous 

distribution of aligned sequences across the genome (Lindner et al. 2013; Warinner et al. 2017). 

If the majority of sequences are aligned to only a few segments of the genome, the DNA 

sequences were likely misassigned to a species with homologous genomic regions (Fig. 6). 

While it is feasible to assess the evenness of coverage of the alignment by creating a coverage 

plot of the whole genome for prokaryotic taxa, the nuclear genomes of eukaryotic species are 

often too large and the depth of coverage too low to evaluate the distribution of aligned 

sequences to visualise the genome coverage in that way. Instead, the mitochondrial genome can 

be used as a proxy, as the copies of the mitochondrial genome exceed that of the nuclear 

genome several-fold, or the coverage histogram of the nuclear genome can be inspected for an 

overabundance of sites with a high coverage.

https://paperpile.com/c/q1VuHI/lwtF%2BvYc5
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1.3 Thesis structure and objectives 

 

  This dissertation is divided into three main research papers, followed by a final 

summary chapter that reviews the key findings of each.  

  Chapter two consists of research on the extinct Honshū wolf. In the project I analysed 

its nuclear genome in order to study the evolutionary history of Japanese wolves and their 

relationship with past and extant grey wolves and dogs.. The distinct morphology of Honshū 

wolves and previous mitochondrial studies suggest that they were only distantly related to 

modern wolves, but until now their ancestry has been unclear.  

  Chapter three explores the feasibility of recovering the microbiome from fluid-

preserved specimens. While the wet collections of natural history museums have been used for 

morphometric as well as genetic analyses in the past, the profiling of historical microbiomes 

from ethanol-preserved specimens could provide vital clues to the health and lifestyle of past 

populations of innumerable species.  

  Finally, research chapter four encompasses the palaeogenomic and ancient 

metagenomic aspects of chapter two and three, where I analysed the human, microbial, and 

dietary DNA recovered from an approximately 5,700-year-old chewed birch bark pitch from 

Denmark with the aim to investigate the DNA preservation of the different sources in this novel 

substrate as well as shed light on the population history of the human from Late 

Mesolithic/Early Neolithic Denmark. birch bark pitch. On top of our discoveries on a human 

from Late Mesolithic/Early Neolithic Denmark, we were also able to recover the DNA of a 

multitude of oral microbes and eukaryotic taxa. 
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PhD contributions 
 

 

Chapter 2: Complete genome of historic Honshū wolf reveals Pleistocene heritage 

 
This chapter is a manuscript that has been submitted for publication. Mikkel Sinding performed 
the sampling and laboratory work. Shyam Gopalakrishnan performed the adapter removal and 
alignment of the raw data. For this project I carried out all of the remaining bioinformatic 
analyses, i.e. the admixture analyses, the D-statistics analyses, the phasing of the data, the 
haplotype-aware clustering of the phased data, and the estimation of past admixture events. I 
furthermore created all figures and tables. I decided the best analysis strategy with Shyam 
Gopalakrishnan and interpreted the results with input from Shyam Gopalakrishnan and Mikkel 
Sinding. I wrote the manuscript with contributions from Nathan Wales, Tom Gilbert, Mikkel 
Sinding, and Shyam Gopalakrishnan. 

 
 

Chapter 3: Unsealing the jars - characterizing gut microbial DNA preservation in fluid- 
preserved museum specimens 

 
Chapter 3 is the first draft of an ongoing project. Jessica Thomas performed the sampling and 
Jessica Thomas and Marcela Sandoval carried out the laboratory work. I performed all of the 
bioinformatic analyses, i.e. the adapter removal and quality control of the raw data, the 
alignment of the data to the various reference genomes, the metataxonomic assignments, the 
principal coordinate analysis, and the authentication of the assignments. I furthermore created 
all figures and tables. I decided the best analysis strategy with input from Nathan Wales. I 
wrote the manuscript with contributions from Nathan Wales and Tom Gilbert.  

 
 

Chapter 4: A 5700 year-old human genome and oral microbiome from chewed birch 
pitch 

 
Mikkel Sinding and Theis Jensen performed the sampling and laboratory work. Hannes 
Schroeder carried out the adapter removal of the raw data, the alignment to the human 
reference genome, and the F-statistics analysis. I carried out the admixture and principal 
component analysis. Shyam Gopalakrishnan and I carried out the phenotype prediction 
analysis. Anna Fotakis performed the MetaPhlan analysis. Åshild Vågene performed the 
MALT analysis. Mikkel Winther Pedersen performed the HOLI analysis. I aligned the assigned 
sequences from MALT and HOLI to the respective reference genomes, decided the best 
authentication strategy, and validated the assignments to microbial and eukaryotic taxa. 
Katrine Højholt Iversen carried out all of the virulence analyses. I created Figure 2, 3, and 4, 
Supplementary Figures 8-15, and Table 1 and Supplementary Table 1 with Theis Jensen. 
Hannes Schroeder wrote the main manuscript with input from the first authors. I authored the 
Supplementary Text on authenticating metagenomics assignments with input from Hannes 
Schroeder. 
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Introduction to the study organism 
 
 
Evolutionary history of wolves 

One chapter of my dissertation is explicitly focused on the evolutionary history of 

wolves and dogs. The origin of dogs and their relationships with wolf populations is a 

longstanding question for archaeologists and evolutionary biology. 

No carnivore has shaped human history as much as the grey wolf (Canis lupus). Feared 

and persecuted in most of Eurasia throughout history, its domesticated form, the dog (Canis 

lupus familiaris), has been our closest companion for thousands of years, facilitating several 

human activities, such as hunting, guarding, herding, and transportation (Lord, Schneider, and 

Coppinger 2016). But even though the grey wolf is among the most researched organisms, 

much of its population history is still disputed. 

The earliest fossil records of C. lupus were found in Alaska and Siberia and date back 

to the early Pleistocene, suggesting that the origin of wolves lies in Beringia (Tedford, Wang, 

and Taylor 2009). 

 

 

 

 

 

Fig. 1: The present (darkest grey) and past (lighter grey) worldwide distribution of the 

grey wolf (Canis lupus). Taken from (Jansson 2013) 
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Fossil records point to the presence of multiple wolf populations that inhabited the 

mammoth steppe in Siberia during the Late Pleistocene and Early Holocene. Isotope and 

morphometric analyses of skull and dentition features, suggest that unlike extant grey wolves, 

the Siberian Pleistocene wolf had a hypercarnivorous diet and was more specialized in hunting 

large prey (Baryshnikov, Mol, and Tikhonov 2009; Leonard et al.  2007). With the 

disappearance of the steppe habitat in the Late Pleistocene, the Siberian Pleistocene 

populations—along with its megafaunal prey such as the woolly mammoth—went extinct and 

were subsequently replaced by present-day grey wolves (Leonard et al. 2007). Nowadays, these 

can be found across the holarctic in vastly different ecosystems, such as the deserts of the 

Arabian peninsula or the Tibetan highlands (Fig. 1). However, due to conflicts with livestock 

owners and their reputation as man-killing beasts, grey wolves have been severely persecuted 

in the past two centuries and have been eradicated in large parts of their former continental 

ranges of Western Europe and North America, as well as islands such as those of Japan (Fritts 

et al. 2003). The first chapter of this thesis explores the relationship between one extinct grey 

wolf subspecies from Japan and ancient and modern grey wolves and dogs.
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The Japanese wolf 

Within the broad context of wolf evolution, I explored the history of one of the most 

enigmatic wolf populations, the Honshū wolf or Japanese wolf (Canis lupus hodophilax). This 

wolf population was endemic to the Japanese islands of Honshū, Kyushu, and Shikoku (Fig. 

2). It was one of the smallest subspecies of grey wolf, as it stood only 56-58 cm to the withers. 

In fact, its morphological appearance was so strikingly different from continental grey wolves 

that its taxonomic status used to be controversial, and led Yoshinori Imaizuma to argue that the 

Japanese wolf should be considered a distinct species (Imaizuma 1970). This has since been 

disproven, however, based on mitogenomic studies. 

 
 

 

 
Fig. 2. The former habitat of the Japanese wolf (C. lupus hodophilax) extended over 

three of Japan’s main islands: Honshū, Shikoku, and Kyushu. The Tsugaru strait separated 

the habitat of the Japanese wolf and the Hokkaido wolf (C. lupus hattai). Modified from 

(Matsumura, Inoshima, and Ishiguro 2014) 

 
Unlike wolves in most of Eurasia, Honshū wolves were not perceived as a threat in 

medieval Japan. Instead they were appreciated for killing crop-damaging wildlife such as deer 

and boars, revered as deities with dedicated shrines, and the birth of pups was occasion for 

celebration (Fritts et al. 2003). Their reputation as benign guardians of travellers and farmers 

changed dramatically, however, when rabid dogs were introduced from Korea to Japan in the 
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late 17th century and infected the local wolf population. This led to a sharp increase in wolf 

attacks on livestock and humans, and in response the first bounty system was introduced in 

1701. When Japan underwent fundamental societal changes during the Meiji restoration (1868- 

1912), the sudden rise of deforestation and urbanization added fuel to the fire, and the 

eradication of wolves in Japan became a national policy. The combination of firearms and baits 

laced with strychnine proved to be so effective that the population collapsed within one 

generation, and the last Honshū wolf reportedly died in 1905 in Nara Prefecture (Walker 2009). 

 
Today, a few skins and bones are all that remain of the Honshū wolf. Previous research 

has revealed poor DNA preservation in several of these due to conservation practices that never 

accounted for future aDNA studies (Walker 2009). Nevertheless, Ishiguro and colleagues were 

able to extract and sequence the mitochondrial D-loop control region of seven Honshū wolf 

bone samples. The generated data was then compared to the control region of 78 dogs, and the 

authors observed that some domestic Japanese dog individuals carried the Honshū wolf 

haplotype, suggesting that male dogs and female wolves hybridized in the past, which is highly 

unusual for wolf-dog hybridizations (Ishiguro, Inoshima, and Shigehara 2009). Further studies 

of the Japanese wolf mitogenome by Matsamura and colleagues revealed that the Japanese 

wolves appear to be ancestral to extant grey wolf populations, and colonized the Japanese 

archipelago about 25,000–125,000 years before present (Matsumura, Inoshima, and Ishiguro 

2014). A later study by Koblmüller and colleagues confirmed the ancestral phylogenetic 

placement, but based on a phylogenomic study with a larger wolf reference panel combined 

with the sea level changes in the Tsushima strait between Korea and Japan, they estimated a 

much later colonization event of less than 20,000 years ago (Koblmüller et al. 2016). All 

previous studies on the Honshu wolf are based on the mitochondrial genome, which is a single 

genetic marker from the maternal lineage and consequently does not allow an in-depth analysis 

of admixture and gene flow. We therefore generated nuclear DNA from a Honshu wolf museum 

specimen that was dated to the 19th century in order to gather new insights into the population 

history of this enigmatic subspecies in light of a dataset comprising of modern and ancient wolf 

and dog genomes. 
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Abstract 

 
The Japanese or Honshū wolf was one the most distinct grey wolf subspecies due to 

its small stature and endemicity to the islands of Honshū, Shikoku, and Kyūshū. Long revered 

as a guardian of farmers and travellers, it was persecuted from the 17th century following a 

rabies epidemic, which led to its extinction in the early 20th century. Its uncertain relationship 

with present-day and ancient wolf populations has puzzled researchers for years, although 

research based on mitochondrial genomes suggests a basal placement of the Honshū wolf to 

all extant grey wolves. To refine the evolutionary history of the species, we sequenced the 

nuclear genome of one Honshū wolf specimen from the 19th century to an average depth of 

coverage of 3.7✕. We find Honshū wolves were closely related to a lineage of Siberian wolves 

that went extinct in the Late Pleistocene, thereby extending the survival of this ancient lineage 

by over 10,000 years. We also detected significant gene flow between Japanese dogs and 

the Honshū wolf, corroborating previous reports on Honshū wolf dog interbreeding. 
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Introduction 

 
The origin of present-day dogs and Eurasian wolves is highly contentious, as genomic 

analyses using both modern and ancient wolf samples have yet to identify any sample that 

pre-dates the Holocene (ca. 10,000 year ago) that genetically resemble their modern forms. 

Rather, the genomic data published to date from Pleistocene Eurasian wolf subfossil records 

points to the presence of a genetically more basal megafaunal wolf population across the 

Holarctic, that ceased to exist at the end of the Pleistocene (Skoglund et al. 2015). At present, 

researchers have been unable to locate the ancestral homeland of modern Eurasian wolves. 

 
Despite the long distance dispersal ability of wolves, there was a complete population 

replacement (genetic turnover) from Pleistocene wolves to extant wolves around the 

Pleistocene-Holocene transition in Siberia (Thalmann et al. 2013; Koblmüller et al. 2016; 

Ersmark et al. 2016; Loog et al. 2019; Pilot et al. 2019). This suggests that the Pleistocene 

ancestors of present-day wolves and dogs were isolated during the Last Glacial Maximum 

(LGM) from the megafaunal form and subsequently colonised Eurasia and North America 

following the extinction of the megafaunal form. 

 

 
Fig 1: Geographical distribution of the extinct Honshū and Ezo wolf. The Tsugaru strait separates the 

former habitat of the Ezo wolf - Sakhalin and Hokkaidō - and the former habitat of the Honshū wolf - 

Honshū, Shikoku, and Kyūshū. Yayoi and Jōmon dogs are now extinct Japanese dog breeds that are 

ancestral to modern Japanese dogs (Ishiguro 2012). Map created in ArcGIS, wolf and dog outlines 

modified from (Ishiguro 2012) 
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The Japanese archipelago is one potential candidate for the LGM refugium of the 

ancestors of modern wolves and dogs, as land bridges between the Korean peninsula and 

Japan’s largest island, Honshū, formed during the Pleistocene and the beginning of the 

Holocene (Ohshima 1990). Hokkaidō, the second largest and northernmost island of Japan, 

was also connected to Beringia during periods of low sea level, which occurred for instance in 

the Late Pleistocene (Ohshima 1990). Until their extinction at the beginning of the 20th century, 

Japan was inhabited by two highly phenotypically distinct endemic wolf subspecies: the 

Japanese or Honshū wolf (Canis lupus hodophilax), and the Ezo wolf (Canis lupus hattai). 

While the Honshū wolf could be found on Honshū, Kyūshū, and Shikoku, the habitat of the 

Ezo wolf was restricted to Hokkaidō and Sakhalin (Fig. 1) (Ishiguro, Inoshima, and Shigehara 

2009). The Honshū wolf was among the smallest grey wolf subspecies in the world and 

appreciated in medieval Japan for killing crop-destroying wildlife (Fritts et al. 2003). A rabies 

epidemic in the 17th century caused an increase in wolf attacks, setting the human persecution 

of the Honshū wolf in motion, which culminated in their extinction by 1905 (Walker 2009). 

 
The deep Tsugaru strait between Honshū and Hokkaidō is a major zoogeographical 

barrier between the two islands, also known as Blakinston’s Line (Dobson 1994). As a result, 

the fauna on Honshū, with its snow macaques (Macaca fuscata) and Asian black bears (Ursus 

thibetanus), has similarities to Southeastern Asia, while the fauna on Hokkaidō, which includes 

the Ussuri Brown bear (Ursus arctos lasiotus), resembles the biological diversity in 

Northeastern Asia. As a consequence of this barrier, there is no evidence for an overlap 

between the habitats of the Japanese and the Ezo wolf that most likely colonized the Japanese 

archipelago from the Korean peninsula and Siberia respectively.  

The exact phylogenetic placement of both subspecies is speculative, as only the 

mitochondrial genomes have been sequenced in previous studies (Koblmüller et al. 2016; 

Matsumura, Inoshima, and Ishiguro 2014). These suggest a basal phylogenetic placement of 

the Honshū wolf to all modern wolves, and a placement of the Ezo wolf in the North American 

wolf clade. The mitochondrial genome is however only one marker, and it does not allow the 

quantification of admixture, which is especially of interest given that both subspecies are 

potential candidate populations that link Pleistocene wolves and present-day Eurasian wolves. 

  In order to explore the evolutionary history of the enigmatic Honshū wolf population, 

we sequenced the nuclear genome of one of the two subspecies, the Honshū wolf (Canis 

lupus hodophilax), to reassess the relationship between Honshū wolves and other wolves and 

to test the hypothesis that Japan was the LGM refugium for the ancestors of present-day 

wolves. 

https://paperpile.com/c/DN1ih0/p6z5
https://paperpile.com/c/DN1ih0/p6z5
https://paperpile.com/c/DN1ih0/p6z5
https://paperpile.com/c/DN1ih0/p6z5
https://paperpile.com/c/DN1ih0/KYy5
https://paperpile.com/c/DN1ih0/KYy5
https://paperpile.com/c/DN1ih0/KYy5
https://paperpile.com/c/DN1ih0/jM6s
https://paperpile.com/c/DN1ih0/jM6s
https://paperpile.com/c/DN1ih0/y09U
https://paperpile.com/c/DN1ih0/y09U
https://paperpile.com/c/DN1ih0/ATcE
https://paperpile.com/c/DN1ih0/ATcE
https://paperpile.com/c/DN1ih0/ujNZ%2BzeXO
https://paperpile.com/c/DN1ih0/ujNZ%2BzeXO
https://paperpile.com/c/DN1ih0/ujNZ%2BzeXO
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Results and Discussion 

We generated a 3.7✕ genome of a Honshū wolf sample, obtained from the Natural 

History Museum, London, shot in the 1800s in Chichibu District, Kotsuki, Northwest of Tokyo, 

Japan. First, we investigated the evolutionary relationship between the historic Honshū wolf 

and other wolves and dogs with a whole-genome admixture analysis using NGSadmix (Fig. 

2). For all predicted ancestry clusters, the Honshū wolf consistently has a highly similar to 

identical admixture profile to the Pleistocene Siberian wolves in the reference panel. In 

contrast to all other modern wolf populations, we find the Pleistocene wolf clade contributed 

substantially to the Honshū wolf genome. Irrespective of the number of ancestry clusters used 

in the NGSadmix analysis, none of the present-day wolf populations show a genetic 

contribution to the Honshū wolf that exceeds the contribution from the Pleistocene wolves. 

However, there is some evidence of gene flow with dogs. 

 
 

Fig. 2: Admixture plot for K=10. Vertical bars represent single individuals, different colours indicate  

estimated ancestry components. The Honshū wolf forms a cluster with all other Pleistocene wolves  

(see also Figure S1). 

 

 
To further explore the admixture landscape between the Honshū wolf and ancient and 

present-day wolf and dog populations, we subsequently used D-statistics to formally test for 

gene flow between these groups. The D-statistic, also known as ABBA-BABA test, estimates 

gene flow between closely related species by comparing the number of shared derived and 

ancestral alleles between an ingroup (H1, H2, and H3) and the outgroup. In the D-statistic 

implemented in angsd, negative values express gene flow between H1 and H3, positive values 

indicate gene flow between H2 and H3, and F-values around 0 indicate that there is no excess 

allele sharing between H1 or H3 and H2 (Zheng and Janke 2018). The D-statistics provide 

support for excess allele sharing between the Honshū wolf and Greenland dogs, Asian dogs, 

Pleistocene wolves, and Chinese wolves. We already observed shared genetic ancestry 

between Pleistocene wolves and the Honshū wolf in the NGSAdmix analysis, so to further 

investigate wolf and dog populations that might be more genetically similar to the Honshū wolf 
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than other Pleistocene wolves, we created a scatter plot for the D-statistics with the Honshū 

wolf and Pleistocene wolf in H3. The results suggest that the Honshū wolf and Pleistocene 

wolves are equally distantly related to modern Eurasian and North American wolves, with the 

exception of some Chinese wolves that share more variant sites with the Honshū wolf than 

they do with any Pleistocene wolf. A potential explanation for this is the substantial admixture 

between East Asian wolves and dogs (Zhang et al. 2016). 

 
 
 

  

 
 

  Fig. 3: D-statistics scatter plot for the Portugese wolf in H1, samples from the reference 

dataset in H2 (X), and Honshū wolf (y-axis) or the Pleistocene wolf Bunge-Toll (x-axis) in H3. Vertical 

and horizontal error bars correspond to three standard errors for the tests in the y- and x-axis, 

respectively. The test involving samples with error bars that intersect the grey dotted line differ 

insignificantly between the Honshū wolf and Bunge-Toll in H3. 

 

All dog individuals included in this analysis share significantly more alleles with the 

Honshū wolf than with the Pleistocene wolf, with Japanese dogs, Greenland dogs, and 

Chinese dogs having the closest genetic affinity with the Honshū wolf. We therefore 

hypothesize that our Honshū wolf individual was most likely admixed with Japanese dogs, as 

the excess of shared alleles with the Greenland dogs can be explained by the introgression 

https://paperpile.com/c/DN1ih0/TueY
https://paperpile.com/c/DN1ih0/TueY
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from Pleistocene wolves to Arctic dogs (Skoglund et al. 2015), and the Chinese dogs could 

likewise be shown to have a significant wolf contribution (Zhang et al. 2016). 

 

Fig. 4. Heatmap and phylogeny based on shared chromosome segments. Lower left half of the 

coancestry matrix is based on the unlinked model, while the upper triangle shows values for the linked 

model. Higher values in the scale express a higher relatedness. Coloured boxes behind sample name 

indicate individual’s population (legend upper left). 

 
In order to more robustly identify population structure among the wolf and dog samples, 

we used the haplotype-aware clustering tool fineSTRUCTURE (Lawson et al. 2012). 

Haplotype-aware analyses incorporate the information of which variants were inherited from a 

single parent and can therefore be highly informative for admixture analyses. In the phylogeny 

based on a similarity matrix, the Honshū wolf was positioned in the same clade as three other 

Pleistocene wolves - Tumat, Yana, and Bunge-Toll, further corroborating our earlier findings 

(Fig. 4). To further verify our findings of genetic affinity of the Honshū wolf to the Pleistocene 

Siberian wolves, we performed unsupervised dimension reduction on the haplotype data using 

principal component analysis (PCA). The Honshū wolf clustered together with all Pleistocene 

https://paperpile.com/c/DN1ih0/HvtU
https://paperpile.com/c/DN1ih0/HvtU
https://paperpile.com/c/DN1ih0/TueY
https://paperpile.com/c/DN1ih0/TueY
https://paperpile.com/c/DN1ih0/aMxD
https://paperpile.com/c/DN1ih0/aMxD
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wolves along the first principal component (PC1). Among all the wolves included in the 

analysis, it placed closest to the dog cluster in the first two principal components (Fig. 5). 

  

Fig. 5: Principal component analysis based on the fineSTRUCTURE coancestry matrix. The 

Honshū wolf forms a cluster with all other Pleistocene wolves and displays a close affinity with dogs. 

 

To further examine the population history of the Honshū wolves we tested eight 

putatively related populations: Japanese dogs, Chinese dogs, Greenland dogs, sled dogs, 

Honshū wolves, Pleistocene wolves, Eurasian wolves, and North American wolves. The 

chromosomes of a subset of each of these populations were then painted with the best fitting 

haplotypes of all remaining individuals. The resulting chromosome paintings could then be 

used as input for GLOBETROTTER (Hellenthal et al. 2014), which uses the haplotype sharing 

information to describe and date admixture events involving pre-defined populations 

(surrogate populations) leading to the population of interest (target population). As 

GLOBETROTTER requires the data of multiple individuals in the target population to infer 

admixture dates, we were unable to use the Honshū wolf as a target population. Instead, we 

chose to run GLOBETROTTER with Japanese dogs as the target population in order to 

potentially detect gene flow between the Honshū wolves and local dog populations. Using the 

Chinese dogs, Greenland dogs, sled dogs, Honshū wolves, Pleistocene wolves, Eurasian 

wolves, and North American wolves as surrogate populations, we estimated that the modern 

Japanese dog genome can be best described as a mixture of 93% Chinese dog and 7% 

Honshū wolf. The most likely scenario leading to this admixed population is a single admixture 

https://paperpile.com/c/DN1ih0/h8Nv
https://paperpile.com/c/DN1ih0/h8Nv
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event, occurring approximately 25 generations ago, between a population that is 9% Chinese 

dog and 91% Honshū wolf, and a population that is 100% Chinese dog. While these 

preliminary results indicate that Honshū wolves significantly contributed to modern Japanese 

dog genomes, it is most likely that the large contribution of Japanese dogs to the Honshū wolf 

genome confounds the results. Further studies with larger sample sizes of Honshū wolves are 

therefore needed to positively determine the introgression from Honshū wolves to Japanese 

dog breeds. 

Finally, using the Markov chain Monte Carlo algorithm implemented in SOURCEFIND, 

we modelled each of the eight populations used in the GLOBETROTTER analysis - Japanese 

dogs, Chinese dogs, Greenland dogs, sled dogs, Honshū wolves, Pleistocene wolves, 

Eurasian wolves, and North American wolves - as a mixture of the remaining seven 

populations, i.e. all the populations except the one being modelled. The chromosome painting 

of the population of interest was split into 100 subsections, and each subsection was assigned 

to the best fitting counterpart from one of the other populations. 

Using this method we estimated that the Honshū wolf genome can be partitioned into 

a 52% contribution from Pleistocene wolves, 47% contribution from dogs, and a 1% 

contribution from present-day Eurasian wolves. Furthermore we detected a 15% contribution 

from the Honshū wolf to the Japanese dog genome, but found no evidence for haplotype 

sharing between the Honshū wolf and Chinese dogs. As explained above, the inference of 

shared ancestry in highly admixed and ill-defined populations such as wolves and dogs is 

computationally challenging, and the inclusion of more Honshū wolf genomes is necessary to 

obtain more statistically sound estimates of gene flow between dogs and the Honshū wolf. 

That being said, a previous mitochondrial study also documented the introgression from the 

Honshū wolf to some Japanese dogs (Ishiguro, Inoshima, and Shigehara 2009). 

 

Fig. 6: Estimated proportional contribution (y-axis) from the surrogate populations (right) to the 

respective target population (x-axis). 

https://paperpile.com/c/DN1ih0/KYy5
https://paperpile.com/c/DN1ih0/KYy5
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Conclusion 

The results of our analyses show that the recently extinct Honshū wolf is not in the 

same phylogenetic clade as present-day Eurasian wolves and that only insubstantial gene 

flow occurred between present-day wolves and the Honshū wolf. We therefore deem it unlikely 

that the habitat of Honshū wolves was an LGM refugium for the common ancestor of modern 

wolves and dogs, as the colonization of Japan by the Honshū wolf is estimated to predate the 

LGM. 

However, we made the unexpected discovery that the Honshū wolf specimen we 

sampled can be best described as a hybrid between Pleistocene wolves and Japanese dogs. 

Until now, Pleistocene wolves were thought to have gone extinct around the beginning of the 

Holocene, but the strong genetic affinity between Honshū wolves (Canis lupus hodophilax) 

and Pleistocene wolves suggests rather that the Japanese archipelago had been a refugium 

for Pleistocene wolves for thousands of years, where their descendants only went extinct 

about 100 years ago. 

As the Honshū wolf specimen was one of the last of its kind after centuries of human 

persecution, which resulted in a drastic population decline in the 19th century, it is more than 

likely that the extent of dog introgression we detected was significantly lower in the Honshū 

wolf population before they were actively hunted. It is therefore necessary to sequence and 

analyse the genomes of additional Honshū wolf specimens, especially those that predate the 

population decline, to obtain a more accurate representation of the genetic makeup of the 

Honshū wolf. As of now, the high proportion of dog variants in the Honshū wolf specimen 

hinders our ability to quantify or even reliably detect Honshū wolf introgression into Japanese 

dog breeds. 

Finally, Hokkaidō and Sakhalin island remain potential candidates for LGM refugia, as 

our analyses only covered the more southern islands Honshū, Shikoku, and Kyūshū. 

Analysing the yet understudied Ezo wolf genome might therefore be the key to resolve the 

mystery of the absent ancestors of present-day dogs and wolves. 
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Material & Methods 

 

 
Sampling collection 

  We sampled dry tissue from the inside of the paw of a tanned hide from a Honshū 

wolf, in the collections of the Natural History Museum - London, the specimen was shot in the 

1800s in Chichibu District, Kotsuki, Japan and enter the museum records in 1886. 

 
 

DNA extraction and Shotgun Sequence Data Generation 

  2 sup samples of about 500mg historical tanned museum hides were extracted and 

purified according to (Carøe et al. 2017), in short digested in a proteinase K containing buffer 

following (Gilbert et al. 2007), treated using phenol and chloroform, DNA was bound to a 

Minelute columns (Qiagen) using a modified binding apparatus as described in (Dabney et al. 

2013) with a buffer following (Allentoft et al. 2015). The column was subsequently washed in 

PE buffer (Qiagen) and eluted in EB buffer (Qiagen) according to the manufacturer’s 

guidelines. Double stranded DNA libraries were made using  the “single-tube” library building 

protocols BEST (Carøe et al. 2017). The libraries were sequenced on Illumina HiSeq 2500 

(Illumina, San Diego, CA, USA), using PE250 bp (modern DNA) and SR50 bp (historic DNA) 

chemistry. 

 
Alignment 

  We used the PALEOMIX (v1.2.12) (Schubert et al. 2014) pipeline to process short 

reads obtained for all ancient and modern samples included in this study. As part of this 

pipeline, we trimmed the reads and removed adapters using AdapterRemoval2 (v2.2.0) 

(Schubert, Lindgreen, and Orlando 2016). Paired-end reads overlapping more than 10 base 

pairs - calculated using the sequences at the 3’ end of the first read and the 5’ end of the 

second read of the pair - were merged into a single long read (--collapse option). Adapter 

trimmed reads that were shorter than 25 bp were discarded. These processed reads were 

mapped against the wolf reference genome (Gopalakrishnan et al. 2017) and to the dog 

reference genome (CanFam3.1) using the alignment tool, bwa aln (v0.7.15; aln algorithm) (Li 

and Durbin 2009). Duplicate reads and reads that mapped to multiple locations in the reference 

https://paperpile.com/c/DN1ih0/ZTDx
https://paperpile.com/c/DN1ih0/ZTDx
https://paperpile.com/c/DN1ih0/Kmuj
https://paperpile.com/c/DN1ih0/Kmuj
https://paperpile.com/c/DN1ih0/Kmuj
https://paperpile.com/c/DN1ih0/8LDj
https://paperpile.com/c/DN1ih0/8LDj
https://paperpile.com/c/DN1ih0/3VC4
https://paperpile.com/c/DN1ih0/3VC4
https://paperpile.com/c/DN1ih0/3VC4
https://paperpile.com/c/DN1ih0/3VC4
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genome were discarded using picard tools (v1.128, https://broadinstitute.github.io/picard). In 

order to improve the local mapping of reads that span indels, we used GATK (v3.8.0) 

(McKenna et al. 2010) to perform an indel realignment step on the mapped reads for each of 

the samples, using no external indel databases. All analyses were performed using the 

alignments against 

the wolf reference genome, unless stated otherwise. The wolf reference genome was used in 

order to avoid potential reference biases when comparing a mix of ancient and modern 

samples. 

 
Genotype likelihoods and admixture analysis 

We computed the genotype likelihoods at variant sites using ANGSD v0.929-19 

(Korneliussen, Albrechtsen, and Nielsen 2014). Sites with base qualities lower than 20 and 

sequences with a mapping quality lower than 20 were discarded. Only biallelic transversions 

with data present in at least 30 out of the 37 samples were retained. All sites with minor allele 

frequencies below 0.01 were excluded. The final dataset consisted of 4,915,722 sites. The 

genotype likelihoods were then used to estimate admixture proportions between the different 

samples using NGSAdmix (Skotte, Korneliussen, and Albrechtsen 2013). The admixture 

proportions were estimated for 2 to 12 clusters. For each cluster, 100 replicates were 

computed and the admixture proportions of the replicate with the best likelihood were plotted 

using pong. 

 
 

D-statistics 

To further explore the gene flow between the Honshū wolf, Pleistocene wolves, and 

extant wolves and dogs, we computed D-statistics using ANGSD. Only biallelic transversions 

with a coverage higher than 3 and a base quality above 20 were considered. The Andean fox 

(Lycalopex culpaeus) was used as the outgroup for all D-statistics configurations. A weighted 

block jackknife procedure over 5Mb blocks was used to assess the significance of the tests. 

We visualized the D-statistics with the Portuguese wolf in H1, modern wolves and dogs in H2, 

and the Honshū wolf and Pleistocene wolf in H3 in a scatter plot. 

 
Genotype Calling 
  For each sample, we used the aligned reads to generate a VCF file using GATK’s 

HaplotypeCaller (v3.8.0, (Poplin et al. 2018)). We ran HaplotypeCaller for each sample 

separately using a minimum base quality score of 20 and a minimum mapping quality score 

of 30. Further, we ran haplotype caller with the options “--output_mode EMIT_ALL_SITES 

https://paperpile.com/c/DN1ih0/9RIB
https://paperpile.com/c/DN1ih0/9RIB
https://paperpile.com/c/DN1ih0/9RIB
https://paperpile.com/c/DN1ih0/nz38
https://paperpile.com/c/DN1ih0/nz38
https://paperpile.com/c/DN1ih0/xxAl
https://paperpile.com/c/DN1ih0/xxAl
https://paperpile.com/c/DN1ih0/p9JG
https://paperpile.com/c/DN1ih0/p9JG
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-- ERC BP_RESOLUTION” to obtain genotype calls at all sites including sites that were not 

variable in the sample. Subsequently, we generated a GVCF file using the GenerateGVCFs 

function in GATK, while still outputting genotypes at all sites. As a final step in the variant 

calling, we combined the GVCFs from the different samples to get joint variant calls using 

the SelectVariants function, and at this step, we retained only bi-allelic SNP variants while 

discarding indels, multi-allelic SNPs and structural variants. 

Only biallelic sites with a minimum coverage of 5, a missingness of less than 50% 

across all individuals, and a minimum quality score of 20 were retained for further analyses. 

Heterozygous sites with an allele ratio of below 0.33 and above 0.66 were excluded. The final 

dataset consisted of 30,466,729 sites. 

In order to more sensitively detect gene flow and admixture, we simultaneously phased 

the filtered variant sites of the 136 individuals using ShapeIt2 (Delaneau et al. 2013). The 

recombination maps for each chromosome of the dog genome were downloaded from 

https://github.com/clcampbell/dog_recombination (Campbell et al. 2016). 

 
 
 

fineSTRUCTURE 

To obtain an estimate for the global mutation and switch rate we ran ChromopainterV2 

on four chromosomes of ten individuals and calculated a weighted average. These estimates 

were then used in a second ChromopainterV2 analysis to identify shared haplotypes among 

the samples, whereas each individual can be a donor and recipient of haplotypes. A Markov 

chain Monte Carlo (MCMC) clustering algorithm was then used with 1 million burn in iterations 

followed by another 1 million iterations to cluster individuals based on their haplotype sharing. 

Every 1000th iteration was sampled. The MCMC iteration with the highest observed posterior 

likelihood was used to infer a phylogeny using a hill-climbing algorithm with 10,000 iterations. 

A Principal Component Analysis (PCA) was then performed on the resulting linked coancestry 

matrix. 

 
GLOBETROTTER 

 

Based on the fineSTRUCTURE clustering, we chose seven populations to infer 

potential admixture events occuring in the ancestral history of Japanese and Korean dog 

breeds. The previously estimated global mutation and switch rates were used to run 

Chromopainter v2 with the target and surrogate populations as recipients and the remaining 

populations as donors. 

https://paperpile.com/c/DN1ih0/gl3q
https://paperpile.com/c/DN1ih0/gl3q
https://github.com/clcampbell/dog_recombination
https://github.com/clcampbell/dog_recombination
https://paperpile.com/c/DN1ih0/nJrs
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SOURCEFIND 

The Chromopainter v2 results for the previously defined eight wolf and dog populations 

were furthermore used to predict the admixture proportions for each population, where the 

remaining six populations act as potential source populations. Unlike GLOBETROTTER, 

SOURCEFIND (Chacón-Duque et al. 2018) uses a Markov chain Monte Carlo algorithm to 

estimate the most likely mixture model resulting in the target population. A total of 200,000 

MCMC iterations were used, with 50,000 burn-in iterations. Every 5,000th iteration was then 

sampled, and the mean of each source population contribution was calculated for the resulting 

30 sampled iterations. 
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Supplementary Materials 

Figure S1: Extended admixture results 
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Supplementary Tables 

 
Table S1: Whole genome data 

Name Population ID Source 

Honshu wolf Honshu wolf 1886_Honshu This study 

Afghan Dog AfghanDog (Shannon et al. 2015) 

Alaska 1 Wolf Alaska1 (Sinding et al. 2018) 

Alaskan Husky 1 Dog AlaskanHusky_SY001 (Wiedmer et al. 2016) 

Alaskan Husky 2 Dog AlaskanHusky_SY018 (Wiedmer et al. 2016) 

Alaskan Malamute Dog AlaskanMalamuteDog (Decker et al. 2015) 

Alaska 2 Wolf AlaskanWolf (Cahill et al. 2016) 

Anhui Dog AnhuiDog (Wang et al. 2016) 

Banks Island Wolf BanksIsland (Sinding et al. 2018) 

Basenji Dog BasenjiDog (Freedman et al. 2014) 

Belgian Malinois Dog BM (Wang et al. 2013) 

Boxer Dog BoxerDog (Lindblad-Toh et al. 2005) 

Qinghai 1 Wolf CAN11 (W. Zhang et al. 2014) 

Qinghai 2 Wolf CAN16 (W. Zhang et al. 2014) 

Xinjiang 1 Wolf CAN24 (W. Zhang et al. 2014) 

Xinjiang 2 Wolf CAN30 (W. Zhang et al. 2014) 

Tibet 2 Wolf CAN32 (W. Zhang et al. 2014) 

Inner Mongolia 3 Wolf CAN6 (W. Zhang et al. 2014) 

Inner Mongolia 4 Wolf CAN7 (W. Zhang et al. 2014) 

Tibet 1 Wolf CAN9A (W. Zhang et al. 2014) 

Yana Pleistocene wolf CGG23 In preparation 

Bunge-Toll Pleistocene wolf CGG29 In preparation 

Tirektyakh Pleistocene wolf CGG32 In preparation 

Ulakhan Salur Pleistocene wolf CGG33 In preparation 

Zhokhov Ancient dog CGG6 In preparation 

Chihuahua Dog ChihuahuaDog (Wang et al. 2016) 

China Vietnam Dog ChinaVietnam4Dog (Wang et al. 2016) 

Chow Chow 1 Dog ChowChow01 (Decker et al. 2015) 

Chow Chow 2 Dog ChowChow02 (Decker et al. 2015) 

China 1 Dog CI1 (Wang et al. 2013) 

China 2 Dog CI2 (Wang et al. 2013) 

https://paperpile.com/c/D7uTUn/vWej
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China 3 Dog CI3 (Wang et al. 2013) 

Cherry Tree Cave Ancient dog CTC (Botigué et al. 2017) 

Dalian Dog DalianDog (Wang et al. 2016) 

East Siberian Laika Dog EastSiberianLaikaDog (Wang et al. 2016) 

Egypt 1 Dog EG44 (Auton et al. 2013) 

Egypt 2 Dog EG49 (Auton et al. 2013) 

Ellesmere Wolf Ellesmere1 (Gopalakrishnan et al. 2018) 

Galgo Español Dog GalgoDog (Wang et al. 2016) 

Gansu 1 Dog Gansu2Dog (Wang et al. 2016) 

Gansu 2 Dog Gansu3Dog (Wang et al. 2016) 

Greenland Wolf Greenland_wolf_A1 (Gopalakrishnan et al. 2018) 

Greenland Sled dog Dog GreenlandDog (Wang et al. 2016) 

Greenland Sled Dog Aasiaat 1 Dog Greenlandic_dog_Mums In preparation 

Greenland Sled Dog Aasiaat 2 Dog Greenlandic_dog_Pondus In preparation 

Grey Norwegian Elkhound Dog GreyNorwegianElkhoundDog (Wang et al. 2016) 

German Shepherd 1 Dog GS (Wang et al. 2013) 

German Shepherd 2 Dog GShepDog (Wang et al. 2016) 

Guangdong Dog GuangdongDog (Wang et al. 2016) 

Guizhou Dog GuizhouDog (Wang et al. 2016) 

Altai Wolf GW1 (Wang et al. 2013) 

Chukotka Wolf GW2 (Wang et al. 2013) 

Bryansk Wolf GW3 (Wang et al. 2013) 

Inner Mongolia 1 Wolf GW4 (Wang et al. 2013) 

Hebei Dog HebeiDog (Wang et al. 2016) 

Herxheim Ancient dog HXH (Botigué et al. 2017) 

Spain Wolf IberianWolf (Z. Zhang et al. 2016) 

India 1 Dog ID125 (Auton et al. 2013) 

India 2 Dog ID137 (Auton et al. 2013) 

India 3 Dog ID165 (Auton et al. 2013) 

India 4 Dog ID168 (Auton et al. 2013) 

India 5 Dog ID60 (Auton et al. 2013) 

India 6 Dog ID91 (Auton et al. 2013) 

Greenland Sled Dog Illulissat 1 Dog Ilulissat_GS16 In preparation 

Greenland Sled Dog Illulissat 2 Dog Ilulissat_GS31 In preparation 

Borneo 1 Dog IN18 (Auton et al. 2013) 

https://paperpile.com/c/D7uTUn/XrP3
https://paperpile.com/c/D7uTUn/35vs
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Borneo 2 Dog IN23 (Auton et al. 2013) 

Borneo 3 Dog IN29 (Auton et al. 2013) 

India Wolf IndiaWolf (Z. Zhang et al. 2016) 

Inner Mongolia 2 Wolf InnerMongoliaWolf (Wang et al. 2016) 

Iran Wolf IranWolf (Z. Zhang et al. 2016) 

Japanese Chin Dog JapaneseChin (Marchant et al. 2017) 

Korean Jindo Dog KoreanJindo (Kim et al. 2012) 

Lapponian Herder Dog LapponianHerderDog (Wang et al. 2016) 

Lebanon 1 Dog LB74 (Auton et al. 2013) 

Lebanon 2 Dog LB79 (Auton et al. 2013) 

Lebanon 3 Dog LB85 (Auton et al. 2013) 

Mexico 1 Wolf Mexican_wolf (Z. Zhang et al. 2016) 

Mexican Naked Dog Dog MexicanNakedDog (Wang et al. 2016) 

Mexico 2 Wolf MexicanWolf (Gopalakrishnan et al. 2018) 

Mexico Coyote Mexico (Gopalakrishnan et al. 2018) 

Newgrange Wolf Newgrange (Frantz et al. 2016) 

North Baffin Wolf NorthBaffin (Sinding et al. 2018) 

China Wolf Novembre_Chinese_Wolf (Freedman et al. 2014) 

Croatia Wolf Novembre_Croatian_Wolf (Freedman et al. 2014) 

Dingo Dog Novembre_Dingo (Freedman et al. 2014) 

Israel Wolf Novembre_Israeli_Wolf (Freedman et al. 2014) 

Pekingese Dog Pekingese (Decker et al. 2015) 

Peruvian Naked Dog Dog PeruvianNakedDog (Wang et al. 2016) 

Papua New Guinea 1 Dog PG115 (Auton et al. 2013) 

Papua New Guinea 2 Dog PG122 (Auton et al. 2013) 

Papua New Guinea 3 Dog PG84 (Auton et al. 2013) 

Portugal Wolf PortugueseWolf (Z. Zhang et al. 2016) 

Qatar Dog QA27 (Auton et al. 2013) 

Greenland Sled Dog Qaanaaq 1 Dog Qaanaaq_Q11 In preparation 

Greenland Sled Dog Qaanaaq 2 Dog Qaanaaq_QSON In preparation 

China 4 Dog SAMN03168368 (Wang et al. 2016) 

China 5 Dog SAMN03168369 (Wang et al. 2016) 

China 6 Dog SAMN03168370 (Wang et al. 2016) 

China 7 Dog SAMN03168372 (Wang et al. 2016) 

Nigeria 1 Dog SAMN03168373 (Wang et al. 2016) 

https://paperpile.com/c/D7uTUn/D2la
https://paperpile.com/c/D7uTUn/D2la
https://paperpile.com/c/D7uTUn/JsMO
https://paperpile.com/c/D7uTUn/G8x1
https://paperpile.com/c/D7uTUn/D2la
https://paperpile.com/c/D7uTUn/lI1K
https://paperpile.com/c/D7uTUn/vWej
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Nigeria 2 Dog SAMN03168374 (Wang et al. 2016) 

Nigeria 3 Dog SAMN03168375 (Wang et al. 2016) 

Jämthund Dog SAMN03168383 (Wang et al. 2016) 

Finnish Lapphund Dog SAMN03168391 (Wang et al. 2016) 

Liaoning Dog SAMN03168394 (Wang et al. 2016) 

Samoyed Dog SamoyedDog (Wang et al. 2016) 

Shanxi 1 Dog Shanxi1Dog (Wang et al. 2016) 

Shanxi 1 Wolf Shanxi1Wolf (Wang et al. 2016) 

Shanxi 2 Dog Shanxi2Dog (Wang et al. 2016) 

Shanxi 2 Wolf Shanxi2Wolf (Wang et al. 2016) 

Shanxi 3 Dog Shanxi3Dog (Wang et al. 2016) 

Shanxi 4 Dog Shanxi4Dog (Wang et al. 2016) 

SharPei 1 Dog SharPei01 (Metzger et al. 2017) 

SharPei 2 Dog SharPei02 (Metzger et al. 2017) 

Shiba Inu 1 Dog ShibaInuFemale (Kolicheski et al. 2017) 

Shiba Inu 2 Dog ShibaInuMale (Kolicheski et al. 2017) 

ShihTzu Dog ShihTzu (Marchant et al. 2017) 

Siberian Husky 3 Dog SiberianHusky_SYXX (Wiedmer et al. 2016) 

Siberian Husky 2 Dog SiberianHusky01 (Decker et al. 2015) 

Siberian Husky 1 Dog SiberianHuskyDog (Wang et al. 2016) 

Greenland Sled Dog Sisimut 1 Dog Sisimiut_02_06_16 In preparation 

Greenland Sled Dog Sisimut 2 Dog Sisimiut_19_05_16 In preparation 

Sloughi Dog SloughiDog (Wang et al. 2016) 

South Baffin Wolf SouthBaffin (Sinding et al. 2018) 

Swedish Lapphund Dog SwedishLapphundDog (Wang et al. 2016) 

Taimyr Pleistocene Wolf Taimyr (Skoglund et al. 2015) 

Jalingo City Dog TarabaDog (Wang et al. 2016) 

Greenland Sled Dog Tasiilaq 1 Dog Tasiilaq_51602 In preparation 

Greenland Sled Dog Tasiilaq 2 Dog Tasiilaq_51603 In preparation 

Tumat Wolf Tumat In preparation 

Victoria Island Wolf VictoriaIsland (Sinding et al. 2018) 

Tibetan Mastiff Dog Wang_TM (Wang et al. 2013) 

Xinjiang Dog XinjiangDog (Wang et al. 2016) 

Yunnan 1 Dog Yunnan1Dog (Wang et al. 2016) 

Yunnan 2 Dog Yunnan2Dog (Wang et al. 2016) 

https://paperpile.com/c/D7uTUn/Eu3y
https://paperpile.com/c/D7uTUn/Eu3y
https://paperpile.com/c/D7uTUn/ov8N
https://paperpile.com/c/D7uTUn/ov8N
https://paperpile.com/c/D7uTUn/JsMO
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Table S3. Populations used in GLOBETROTTER and SOURCEFIND analyses 

 

ID Assigned population Donor/Surrogate 

AfghanDog Eurasian dog Donor 

Alaska1 North American wolf Donor 

AlaskanHusky_SY001 Sled dog Surrogate 

AlaskanHusky_SY018 Sled dog Donor 

AlaskanMalamuteDog Sled dog Donor 

AlaskanWolf North American wolf Surrogate 

AnhuiDog Chinese village dog Donor 

BanksIsland North American wolf Surrogate 

BasenjiDog African dog Donor 

BM Eurasian dog Donor 

BoxerDog European dog Donor 

CGG23 Pleistocene wolf Donor 

CGG29 Pleistocene wolf Surrogate 

CGG32 Pleistocene wolf Donor 

CGG33 Pleistocene wolf Surrogate 

CGG6 Ancient sled dog Donor 

ChihuahuaDog Latin American dog Donor 

ChinaVietnam4Dog Chinese village dog Donor 

ChowChow01 Chinese dog Donor 

ChowChow02 Chinese dog Donor 

CI1 Chinese village dog Donor 

CI2 Chinese village dog Donor 

CI3 Chinese village dog Donor 

CTC Ancient European dog Donor 

DalianDog Chinese village dog Donor 

EastSiberianLaikaDog Siberian dog Donor 

EG44 Egyptian village dog Donor 

EG49 Egyptian village dog Donor 

Ellesmere1 North American wolf Donor 

GalgoDog Latin American dog Donor 

Gansu2Dog Chinese village dog Donor 
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Gansu3Dog Chinese village dog Donor 

Greenland_wolf_A1 North American wolf Donor 

GreenlandDog Greenland dog Surrogate 

Greenlandic_dog_Mums Greenland dog Donor 

Greenlandic_dog_Pondus Greenland dog Surrogate 

GreyNorwegianElkhoundDog Scandinavian dog Donor 

GS European dog Donor 

GShepDog European dog Donor 

GuangdongDog Chinese village dog Donor 

GuizhouDog Chinese village dog Donor 

GW1 Eurasian wolf Surrogate 

GW2 Eurasian wolf Donor 

GW3 Eurasian wolf Donor 

GW4 Eurasian wolf Surrogate 

HebeiDog Chinese village dog Donor 

Honshu Honshu wolf Surrogate 

HXH Ancient European dog Donor 

IberianWolf Eurasian wolf Donor 

ID125 Indian village dog Donor 

ID137 Indian village dog Donor 

ID165 Indian village dog Donor 

ID168 Indian village dog Donor 

ID60 Indian village dog Donor 

ID91 Indian village dog Donor 

Ilulissat_GS16 Greenland dog Surrogate 

Ilulissat_GS31 Greenland dog Donor 

IN18 Indonesian village dog Donor 

IN23 Indonesian village dog Donor 

IN29 Indonesian village dog Donor 

IndiaWolf Eurasian wolf Surrogate 

InnerMongoliaWolf Eurasian wolf Donor 

IranWolf Eurasian wolf Donor 

JapaneseChin Chinese dog Surrogate 

KoreanJindo Japanese dog Surrogate 
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LapponianHerderDog Scandinavian dog Donor 

LB74 Middle-Eastern village dog Donor 

LB79 Middle-Eastern village dog Donor 

LB85 Middle-Eastern village dog Donor 

Mexican wolf Mexican wolf Donor 

Mexican_wolf Mexican wolf Donor 

MexicanNakedDog Latin American dog Donor 

Newgrange Ancient European dog Donor 

NorthBaffin North American wolf Donor 

Novembre_Chinese_Wolf Eurasian wolf Donor 

Novembre_Croatian_Wolf Eurasian wolf Donor 

Novembre_Israeli_Wolf Eurasian wolf Donor 

Pekingese Chinese dog Surrogate 

PeruvianNakedDog Latin American dog Donor 

PG115 Papuan village dog Donor 

PG122 Papuan village dog Donor 

PG84 Papuan village dog Donor 

PortugueseWolf Eurasian wolf Surrogate 

QA27 Middle-Eastern village dog Donor 

Qaanaaq_Q11 Greenland dog Donor 

Qaanaaq_QSON Greenland dog Surrogate 

SAMN03168368 Chinese village dog Donor 

SAMN03168369 Chinese village dog Donor 

SAMN03168370 Chinese village dog Donor 

SAMN03168372 Chinese village dog Donor 

SAMN03168373 Nigerian dog Donor 

SAMN03168374 Nigerian dog Donor 

SAMN03168375 Nigerian dog Donor 

SAMN03168383 Scandinavian dog Donor 

SAMN03168391 Scandinavian dog Donor 

SAMN03168394 Eurasian wolf Donor 

SamoyedDog Siberian dog Donor 

Shanxi1Dog Chinese village dog Donor 

Shanxi1Wolf Eurasian wolf Donor 
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Shanxi2Dog Chinese village dog Donor 

Shanxi2Wolf Eurasian wolf Donor 

Shanxi3Dog Chinese village dog Donor 

Shanxi4Dog Chinese village dog Donor 

SharPei01 Chinese dog Donor 

SharPei02 Chinese dog Donor 

ShibaInuFemale Japanese dog Surrogate 

ShibaInuMale Japanese dog Surrogate 

ShihTzu Chinese dog Surrogate 

SiberianHusky_SYXX Sled dog Donor 

SiberianHusky01 Sled dog Surrogate 

SiberianHuskyDog Sled dog Donor 

Sisimiut_02_06_16 Greenland dog Donor 

Sisimiut_19_05_16 Greenland dog Surrogate 

SloughiDog African dog Donor 

SouthBaffin North American wolf Donor 

SwedishLapphundDog Scandinavian dog Donor 

TarabaDog Nigerian dog Donor 

Tasiilaq_51602 Greenland dog Donor 

Tasiilaq_51603 Greenland dog Surrogate 

Tumat Pleistocene wolf Donor 

VictoriaIsland North American wolf Donor 

Wang_TM Chinese dog Donor 

XinjiangDog Chinese dog Surrogate 

Yunnan1Dog Chinese village dog Donor 

Yunnan2Dog Chinese village dog Donor 

 

Table S4. GLOBETROTTER results for the best fitting admixture event (1-date admixture) 

Generations Source 1 proportion R2 Fit Best Matching Source 1 Best Matching Source 2 

24.95247758 0.07 0.6976536549 Honshu wolf Chinese dogs 

 

proportion Chinese dogs Honshu wolf 

0.07 0.08957398834 0.9104260117 

proportion Honshu wolf Chinese dogs 

0.93 0.008228450642 0.9917715494 
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Abstract 

 

 
Fluid-preserved collections are a vital part of natural history museums. Aside from their 

valuable contribution to the conservation of anatomical features of a wide range of organisms, 

previous biomolecular studies furthermore demonstrated that it is possible to extract host DNA 

from fluid- preserved specimens. In this pilot study we expand on these findings and investigate 

the DNA preservation of fluid-preserved gut microbiomes, i.e. DNA originating from the 

sampled organism itself and not from its microbiome. To do this, we sequenced stomach and 

intestine tissues of six historical seabird specimens dating from 1873 to 1944. We succeeded 

in recovering the gut microbiome of a razorbill dating back to 1916, highlighting the potential 

for future metagenomic studies on fluid-preserved samples. 

 

 

 

Introduction 

 

 
Natural history collections are not only valuable for documenting the phenotypic 

diversity and anatomy of species, but since the emergence of high-throughput sequencing and 

recent advances in the analysis of heavily degraded DNA, they have increasingly been used to 

obtain and analyse the genomes of ancient and historical samples (Green and Speller 2017), in 

a sense “unlocking the vault” (Bi et al. 2013). While most studies focus on the endogenous 

DNA of the specimen (Dabney et al. 2013; Noonan et al. 2006), there have also been efforts 

over the last few decades to examine single pathogens (Bos et al. 2011) as well as entire 

microbial communities (microbiomes) from archaeological remains (Warinner et al. 2014). For 

https://paperpile.com/c/icvzG3/y1wp
https://paperpile.com/c/icvzG3/y1wp
https://paperpile.com/c/icvzG3/TjfK
https://paperpile.com/c/icvzG3/TjfK
https://paperpile.com/c/icvzG3/2rSt%2BRFbB
https://paperpile.com/c/icvzG3/2rSt%2BRFbB
https://paperpile.com/c/icvzG3/GZld
https://paperpile.com/c/icvzG3/GZld
https://paperpile.com/c/icvzG3/IpLc
https://paperpile.com/c/icvzG3/IpLc
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example, analyses of ancient DNA (aDNA) extracted from dental calculus (Warinner, Speller, 

and Collins 2015; Preus et al. 2011), coprolites (Poinar et al. 2001; Iñiguez et al. 2006), and 

mummies (Lugli et al. 2017) has shed light into the past diet and health of archaic and 

prehistoric humans. In these materials, it is hypothesised that mineralisation, and/or rapid tissue 

desiccation, preserves both the microbial and host DNA, ultimately enabling the long term 

preservation of the dietary or microbial taxa present in the sample (Weyrich et al. 2017). 

In addition to skeletal remains and dried/tanned materials such as skins, museum 

collections often also contain extensive ‘wet’ collections of formalin-, ethanol- or other spirit-

preserved soft tissues. In particular, zoologists have preserved animals in alcohol since at least 

the 17th century (Down 1989), and today most natural history museums house large collections 

of fluid-preserved organisms. For example, the Zoological Museum of Copenhagen alone holds 

more than 10,000 fluid-preserved bird specimens. Researchers have already succeeded in 

recovering the genomes of fluid-preserved specimens (Shokralla, Singer, and Hajibabaei 2010; 

Miller et al. 2013) and even host-associated pathogens (Hühns et al. 2017; Devault et al. 2014). 

It is important to recognize that all specimens in natural history collections once served as host 

to a diverse microbial communities. At present it is unknown whether such microbiomes are 

preserved alongside the tissues of the fluid-preserved organisms; however, if microbial tissues 

or biomolecules persist in the collection jars, researchers would have a valuable new option to 

explore past biological diversity. For example, given that fluid- preserved samples date back 

centuries, the recovery of fluid-preserved microbiomes could not only be used to catalogue the 

diversity of microbes found associated with host organisms, but also be used to identify shifts 

in any species’ microbial profile over time. Also, as fluid preservation generally retains the 

external and internal structure of the specimen, there is the potential to selectively sample 

organ-specific microbiomes of historical specimens, and identify their diet by sampling the 

https://paperpile.com/c/icvzG3/ywIb%2BQn6w
https://paperpile.com/c/icvzG3/ywIb%2BQn6w
https://paperpile.com/c/icvzG3/ywIb%2BQn6w
https://paperpile.com/c/icvzG3/37AS%2BDeQ5
https://paperpile.com/c/icvzG3/37AS%2BDeQ5
https://paperpile.com/c/icvzG3/WymQ
https://paperpile.com/c/icvzG3/WymQ
https://paperpile.com/c/icvzG3/WB0a
https://paperpile.com/c/icvzG3/WB0a
https://paperpile.com/c/icvzG3/Y9xx
https://paperpile.com/c/icvzG3/Y9xx
https://paperpile.com/c/icvzG3/O9Vq%2B1fbH
https://paperpile.com/c/icvzG3/O9Vq%2B1fbH
https://paperpile.com/c/icvzG3/O9Vq%2B1fbH
https://paperpile.com/c/icvzG3/ISgU%2BJHGI
https://paperpile.com/c/icvzG3/ISgU%2BJHGI
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content of the digestive system. Moreover, as many specimens were collected before the 

Industrial Revolution, the discovery of antibiotics, and recent global warming, fluid-preserved 

specimens may represent a potential treasure trove with regards to information on the impact 

of humans on the environment. 

So far no metagenomic studies have characterised historic-era fluid-preserved 

microbiomes, and indeed it is currently unclear whether fluid-preserved, historic soft tissues 

even retain microbiome information. This could potentially be due simply to microbial DNA 

not being preserved in such materials. While good preservation of host DNA has been observed 

in samples that were stored and fixed in 95-100% ethyl alcohol for 2-5 years (Mandrioli, 

Borsatti, and Mola 2006; Chakraborty, Sakai, and Iwatsuki 2006), certainly there are some 

tissue preservation practices that are known to induce DNA damage, such as the widespread 

use of formaldehyde during fixation (Down 1989; Srinivasan, Sedmak, and Jewell 2002) or 

exposure to ultraviolet light. An even greater challenge is perhaps that a range of preservatives 

and additives (e.g. seawater, brandy, vinegar, mercury; see Simmons, J. (2014) Fluid 

Preservation: a comprehensive review: pp 199-279) have been used in the past, many of which 

were unrecorded, and thus have unknown ramifications for the DNA preservation. 

To explore the potential of fluid-preserved specimens for microbiome research, we 

performed a targeted investigation of soft tissues of six historical seabird specimens, dating 

from 1873 to 1944. We assessed whether it is possible to recover the gut microbiome profile 

from these samples, using shotgun sequencing of liquid-preserved stomach and intestine tissue, 

and subsequent analysis with metagenomic pipelines to distinguish authentically historic 

microbiomes. 

https://paperpile.com/c/icvzG3/Y9xx%2B9oUj
https://paperpile.com/c/icvzG3/Y9xx%2B9oUj


78  

Material and methods 

 
Sample Collection 

 

Samples were obtained from museum specimens stored in the Zoological Collections 

at the Natural History Museum of Denmark, Copenhagen (Table 1). Specimens had been 

collected between 1873 and 1944. For tissue sampling, specimens were removed from their 

storage jars, placed in a sterile tray and dissected using a sterile, disposable scalpel. A new 

scalpel was used for each specimen. Once the gut cavity was open, samples were collected 

from the intestines or stomach. Liquid contents were pipetted into labelled tubes, and solid 

samples were placed in labelled tubes using a scalpel. 

 
 

Table 1. List of specimens with sample type and collection year 

 

Sample ID Species name Common name Tissue type Sample type Collection year 

1-I Phalacrocorax carbo Great cormorant Intestines liquid 1873 

1-S Phalacrocorax carbo Great cormorant Stomach liquid 1873 

2-I Alca torda Razorbill Intestines liquid 1908 

2-S Alca torda Razorbill Stomach solid 1908 

3-I Cepphus grylle Black guillemot Intestines liquid 1908 

3-S Cepphus grylle Black guillemot Stomach solid 1908 

4-I Uria aalge Common murre Intestines liquid 1944 

4-S Uria aalge Common murre Stomach solid 1944 

5-I Alca torda Razorbill Intestines liquid 1884 

5-S Alca torda Razorbill Stomach liquid 1884 

6-I Alca torda Razorbill Intestines liquid 1916 

6-S Alca torda Razorbill Stomach solid 1916 
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DNA Extraction and Shotgun Sequence Data Generation 

 

All laboratory work prior to polymerase chain reaction (PCR) amplification was carried 

out in the designated ancient DNA (aDNA) laboratories of the Natural History Museum of 

Denmark. Strict aDNA protocols were followed to avoid contamination. For each DNA 

extraction and library build, no-template controls were used to test for contamination by 

exogenous DNA. All post-PCR work was carried out in separate laboratory facilities (Knapp, 

Clarke, Horsburgh, & Matisoo-Smith, 2012). 

 
 

Genomic DNA extraction method was dependent on sample type. For liquid samples 

initial steps to adjust the salt concentration were performed by adding 10% sample volume of 

3M sodium acetate, followed by 0.7 volumes of room temperature isopropanol and vortexed to 

mix well. The samples were then centrifuged for 30 seconds at 12,500 ✕ g. The liquid was 

transferred into a new tube and 1ml 70% ethanol was added. Samples were centrifuged again 

at 12,500 ✕ g for 15 minutes. The ethanol was then discarded and samples left to air dry to 

remove residual ethanol. For those which were solid, excess ethanol was removed and the first 

few steps of the extraction method were skipped. 

 
 

Due to the nature of the samples collected, a modified version of Dabney et al.’s (2013) 

extraction protocol was used in which the initial digestion was carried out following the 

protocol by Gilbert et al. (2007). This digestion buffer is better suited to extraction from these 

tissues types than the Dabney et al. (2013) digestion buffer, which was optimised for DNA 

extraction from bone. Digestion of the samples was performed overnight at 56°C with rotation, 

using 1ml of the digestion buffer from Gilbert et al. (2007). Subsequent DNA purification and 
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elution was conducted following the approach described by Dabney et al. (2013). 

 
 

After extraction, 20µL of DNA extract were built into Illumina libraries using a single- 

stranded library preparation protocol that has been specifically designed for the sequencing of 

ancient or damaged DNA (Gansauge and Meyer 2013) Libraries were prepared as originally 

described in (Gansauge and Meyer 2013) but without first removing deoxyuracils. 

Libraries were indexed and amplified in 100 μl PCR reactions, containing 15 μl of aDNA 

library template, 10 μl 10X PCR buffer, 10 μl MgCl2 (25 mM), 0.8 μl BSA (20 mg/ml), 0.8 μl 

dNTPs (25 mM), 2 μl of each primer (10 μM, inPE forward primer and indexed reverse primer), 

and 0.8 μl AmpliTaq Gold DNA Polymerase (Applied Biosystems, Foster City, CA). 

Thermocycling conditions were 5 min at 95°C, followed by 16-20 cycles of 30s at 95°C, 30s at 

60°C and 40s at 72°C, and a final 7 min elongation step at 72°C. The number of cycles was 

estimated for each sample using qPCR. Following amplification, samples were purified using 

Qiaquick columns (Qiagen) according to the manufacturers instructions and quantified using a 

2200 TapeStation Instrument. Samples were pooled in equimolar amounts and sequenced on 

one lane of Illumina Hiseq2500 platform in 80bp single read chemistry mode. 

 
 

Data processing 

 

 
The kmer-based trimming tool BBDUK of the BBTools (Bushnell 2014) package with 

the kmer length set to 10 was used for low-quality and adapter trimming. PRINSEQ-lite 

(Schmieder and Edwards 2011) was then used to discard low complexity sequences using the 

DUST method with a sequence complexity score higher than 6, whereas a score of 7 and above 

indicating low complexity, and sequences shorter than 25bp. 

https://paperpile.com/c/icvzG3/V3ZG
https://paperpile.com/c/icvzG3/V3ZG
https://paperpile.com/c/icvzG3/V3ZG
https://paperpile.com/c/icvzG3/V3ZG
https://paperpile.com/c/icvzG3/TQua
https://paperpile.com/c/icvzG3/TQua
https://paperpile.com/c/icvzG3/S478
https://paperpile.com/c/icvzG3/S478
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To identify human DNA that might have contaminated the sample during preparation 

or DNA extraction, bwa aln (Li and Durbin 2009) with the seed function disabled (-l 1024) was 

used to align the samples to the human reference genome hg38. Non-human reads were 

extracted using bedtools (Quinlan and Hall 2010), and bwa aln was used with the settings as 

described above to align the sequences against the suitable published reference: sample 1 was 

aligned to the Phalacrocorax carbo (great cormorant) (Zhang et al. 2014), samples 2, 5, and 6 

were aligned to the Alca torda (razorbill) (Feng et al., in review), sample 3 was aligned to the 

Cepphus grylle (black guillemot) (Feng et al., in review), and sample 4 was aligned to the Uria 

lomvia (thick-billed murre) (Feng et al., in review)m, the closest relative to Uria aalge 

(common murre). The alignments were then authenticated as described below. 

 
 

Metataxonomic assignment 

 

MALT v0.4.1 (MEGAN Alignment Tool) (Vågene et al. 2018) was used to characterize 

the microbial profile of the samples. All archaeal, viral, and bacterial reference sequences that 

are either complete or representative were downloaded from NCBI on 06.05.2019 and indexed 

using malt-build to build a custom database. Malt-run was then used with minimum percent 

identity (--minPercentIdentity) set to 95, the minimum support (--minSupport) parameter set to 

10, and the top percent value (--topPercent) set as 1, other parameters were set to default. The 

resulting rma6 files were visualized with MEGAN6 (Huson et al. 2007), the assigned reads of 

the five most abundant taxa of each sample were extracted and then aligned to its respective 

reference genome. MALT was also used to screen for non-host metazoan DNA in the sample 

by using a custom database with all metazoan mitochondrial sequences obtained from NCBI 

on 14.05.2020. 

https://paperpile.com/c/icvzG3/3MK3
https://paperpile.com/c/icvzG3/3MK3
https://paperpile.com/c/icvzG3/d33X
https://paperpile.com/c/icvzG3/d33X
https://paperpile.com/c/icvzG3/tZTp
https://paperpile.com/c/icvzG3/tZTp
https://paperpile.com/c/icvzG3/2mkv
https://paperpile.com/c/icvzG3/2mkv
https://paperpile.com/c/icvzG3/O3aG
https://paperpile.com/c/icvzG3/O3aG
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Authentication of taxonomic assignments 

 

A mapping quality score filter of 30 was applied to the alignment and the 

MarkDuplicates function of Picard-tools v2.20.2 (Broad Institute n.d.) was used to remove 

duplicate reads. To authenticate the alignments, mapDamage 2.0.4 (Jónsson et al. 2013) was 

used to estimate the post-mortem deamination rates and bedtools was then used to calculate the 

breadth and average depth of coverage. To assess the evenness of coverage, the average depth 

of coverage of the microbial alignments was calculated in 1000 bp windows and then visualized 

using Circos v0.69-6 (Krzywinski et al. 2009). The edit distance distribution was obtained using 

samtools, visualized with R, and the distributions were then used to calculate the negative 

difference proportion (Huebler et al. 2019). Only taxa with a negative difference proportion 

larger than 0.9, with cytosine deamination, and an even coverage were regarded as being 

present in the samples. 

https://paperpile.com/c/icvzG3/edmA
https://paperpile.com/c/icvzG3/edmA
https://paperpile.com/c/icvzG3/PWJf
https://paperpile.com/c/icvzG3/PWJf
https://paperpile.com/c/icvzG3/xm3Z
https://paperpile.com/c/icvzG3/xm3Z
https://paperpile.com/c/icvzG3/Ewzy
https://paperpile.com/c/icvzG3/Ewzy
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Results 

 
Sequencing output 

 

Table 2. List of generated sequences per sample after quality filtering 
 
 

 

Sample ID 
 

Raw reads 
 

Filtered reads 
 

Fragment length 
 

hg38 reads 
 

Bird reads 

1-I 33,170,984 16,869,767 44 456,714 42,281 

1-S 45,972,838 28,615,754 52 992,508 23,293 

2-I 27,385,338 7,170,718 39 220,922 228,691 

2-S 26,785,906 4,667,828 36 177,437 29,310 

3-I 30,755,048 15,703,757 43 684,585 29,880 

3-S 27,628,076 7,996,017 35 1,354,307 70,644 

4-I 41,269,956 18,660,685 41 649,716 48,826 

4-S 43,241,500 6,262,800 38 621,968 34,043 

5-I 33,399,220 17,877,997 47 3,479,775 65,311 

5-S 41,694,030 2,507,557 44 207,214 34,785 

6-I 29,306,390 19,806,778 66 112,725 16,545,114 

6-S 35,131,018 24,252,592 62 140,489 17,581,152 

 

 

 

 
We generated a total of 415,740,304 paired-end reads, with an average of 34.6 million 

reads per sample (Table 2). However, for most samples a large proportion of the reads (between 

30-95%, library dependent) had to be discarded during quality control, as they were either 

adapter-dimers or of very short read length (<25bp). This high level likely indicates that the 

DNA in the samples had undergone considerable degradation in the time since, a feature which 

is also suggested by the deamination profiles, which are unusually high for historic samples (Fig 1b). 
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Endogenous host DNA 

 
Between 0.1% and 83.5% of the sequences of each sample could be aligned to the reference 

genome of the corresponding seabird species (Figure 1a). Out of the six samples, the razorbill that 

was collected 1916 (Sample 6-I and 6-S) had the largest proportion of endogenous DNA. After 

removing duplicates and applying a mapping quality filter of 30, 29.4 million sequences (45.6% 

of the total number of reads) aligned to the razorbill genome, covering 56% of the genome with an 

mean depth of coverage of 1.6✕. Its edit distance distribution is strictly declining, which is expected 

when the sequences are aligned to the correct reference genome. The only other two samples with 

a strictly declining edit distance distribution are sample 2-I and 5-S (both razorbills from 1884 and 

1908, Figure 1b). We also observed significant cytosine deamination at the first read positions for 

sample 2-I, 5-S, 6-I, and 6-S (Figure 1c). The three other individuals did not exhibit a strictly 

declining edit distance in either of their two samples, which indicates we did not recover 

significant amounts of endogenous DNA from the great cormorant, black guillemot, or common 

murre samples.  

 

Human DNA 

 

 The proportion of sequences aligning to the human reference genome ranged between 0.2 and 

14.8% per sample. The cytosine deamination pattern for each of the samples was insignificant, 

indicating that the contamination did not occur during the collection of the specimens 

(Supplementary Table S2). The alignments of sample 2 and sample 5 did not exhibit a decreasing 

edit distance distribution and had a short mean read length and are therefore likely false positive 

assignments. The mean depth of coverage was too low to determine whether the human DNA of 

the remaining samples originates from the same individual.  
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Non-host metazoan DNA 

 

 Aside from sample 3-I, none of the samples had a significant number of sequences that were assigned 

to non-avian mitochondrial reference genomes. 538 sequences from sample 2-I were assigned to the 

mitochondrial genome of the Gasterosteus aculeatus (three-spined stickleback). All non-human and non-

avian sequences of sample 2-I were subsequently aligned to the reference genome of the three-spined 

stickleback, resulting in 259,729 sequences with a mapping quality above 30 aligning to the genome. The 

alignment to the nuclear reference genome the three-spined stickleback genome showed significant 

cytosine deamination patterns (Supplementary Fig. S3) and a strictly decreasing edit distance distribution 

(Supplementary Fig. S4).
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Fig. 1. Endogenous host DNA. a) Proportion of reads assigned to human, host, and microbial reference 

genomes per sample. b) Edit distance distribution of the reads aligning the host reference genome. c) 

Cytosine deamination observed at the first five positions of the reads aligning to the host reference 

genome. 
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Microbial DNA 
 
 
 
 

 

 
 
 

 

Fig. 2. Microbial profile. a) Microbial composition on order level for the 12 samples. b) PCoA 

using Bray-Curtis on species level for the 12 samples. 
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A total of ~8 million out of the 170 million non-human and non-endogenous sequences 

of all samples (between 0.6-9.2% per sample) could be assigned to microbial, archaeal, and 

viral taxa (Figure 2a). A PCoA on species level revealed two major clusters of samples 

separating sample 6-I and 6-S from the remaining samples (Fig. 2b). 

This is reflected in a large overlap of the most abundant taxa assigned to sample 1 to 5, 

with the wastewater bacterium Cloacibacterium normanense (Allen et al. 2006) one of the three 

most abundant taxa in nine samples (part of the order Flavobacteriales in Figure 2a). The 

majority of taxa in samples 1 to 5 are not associated with gut microbiomes, suggesting that they 

are not derived from the microbiome of the samples, but are either contaminants or spurious 

assignments. 

In contrast to samples 1 to 5, the microbial profiles of sample 6-I and 6-S are heavily 

dominated by Catellicoccus marimammalium, with 85% and 95% of the assigned microbial 

sequences, respectively. After removing PCR duplicates and applying a mapping quality filter 

of 30, we observed an average depth of coverage of 5.2X and 35.5X and a breadth of coverage 

of 78.4% and 89.9%, respectively (Fig. 3). C. marimammalium was also detected in high 

abundance in sample 2-I where it made up 3.3% of the microbial sequences. C. 

marimammalium is an avian gut bacterium that has been previously proposed as a suitable 

biomolecular indicator to monitor gull fecal contamination of recreational waters due to its 

prevalence and abundance in seabird and waterfowl feces. 

https://paperpile.com/c/icvzG3/FvpB
https://paperpile.com/c/icvzG3/FvpB
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Fig. 3. Coverage plot for Catellicoccus marimammalium detected in sample 2-I (red), 

6-I (blue), and 6-S (black). 

 
 

The remaining most abundant taxa that we detected in sample 6-I and 6-S are the 

piscine pathogens Aeromonas salmonicida, Aliivibrio salmonicida, Carnobacterium 

maltaromaticum, and Lactobacillus fuchuensis, as well as Clostridium frigidicarnis that has 

previously been recovered from spoiled meat (Broda et al. 1999). Among the 11 most abundant 

taxa identified in sample 6-S are also three Enterococcus species - E. faecium, E. faecalis, and 

E. columbae - that are all associated with the gastrointestinal tract, with E. columbae being part 

of the intestinal flora of pigeons (Devriese et al. 1990). No archaeal taxa were identified in high 

abundance in any of the samples, and none of the viral taxa passed the evenness of coverage 

criterion. 

https://paperpile.com/c/icvzG3/F3TJ
https://paperpile.com/c/icvzG3/F3TJ
https://paperpile.com/c/icvzG3/lcO1
https://paperpile.com/c/icvzG3/lcO1
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Discussion 

 
Our results show that it is, in principal, possible to recover genetic signatures of gut 

microbiomes from seabird specimens which had been collected and preserved in fluid up to 

100 years ago. However, just as importantly, our data shows clearly that half of the specimens 

tested did not yield unambiguous traces of endogenous or gut metagenomic DNA. In fact, only 

one of the six specimens yielded a large proportion of both host and gut microbiome DNA, 

while another yielded host and dietary DNA. 

Several features of the shotgun sequencing data highlight the challenging nature of 

recovering and analysing DNA from fluid-preserved specimens. The DNA fragments 

sequenced were very short (between 25-58bp on average per sample after removing adapter 

sequences), and frequently contained high proportions of adapter dimers (up to 56%) (Table 

2). Highly fragmented DNA is often observed by researchers studying historic and ancient 

samples, and it is clear that the fluid-preservation methods applied to the samples studied here 

must have either caused DNA fragmentation through one of many possible pathways (Lindahl 

1993) or even cross-linking of longer DNA molecules, thereby making them inaccessible to 

extraction methods. The high levels of adapter-dimers seen is also often seen in other aDNA 

datasets (e.g. Carøe, Gopalakrishnan, and Vinner 2018), reflecting the dual challenges of 

working with small amounts of short molecules, that firstly may require many cycles of library 

amplification until they reach a concentration that can be sequenced (exasperating the level of 

dimers) and secondly the challenge of purifying away such dimers without losing the insert- 

containing libraries. In many cases, this problem can be ameliorated through careful titration 

of adapter molarity in library preparation, but when very few template DNA molecules are 

isolated from a specimen, adapter-dimers are nearly inevitable. 

 

https://paperpile.com/c/icvzG3/zxAB
https://paperpile.com/c/icvzG3/zxAB
https://paperpile.com/c/icvzG3/zxAB
https://paperpile.com/c/icvzG3/BKiF
https://paperpile.com/c/icvzG3/BKiF
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To improve the feasibility of fluid-preserved microbiome analyses, further studies  are 

 

necessary to determine what effect different preservatives have on the preservation of microbial 

 

DNA in order to a-priori select specimens with a higher likelihood of yielding a sufficient 

amount of well-preserved DNA. This sample set so far has failed to provide clear evidence for 

visual markers that correspond with microbial DNA preservation in fluid. While the colouration 

of eye lenses has been suggested as an indicator of the fixation in formaldehyde (Simmons 

2014), our inspection of the eyes of the specimens yielded only inconclusive results 

(Supplementary Figure 2). Further metagenomic screening of fluid-preserved museum 

specimens are necessary to determine if collection date, the appearance of the specimen, or 

other factors provide hints on DNA preservation. 

Our data also show high levels of contamination by non-endogenous microbes in most 

of the samples. As we observed strictly declining edit distance distributions, evenness of 

coverage, and post-mortem deamination patterns for the aforementioned microbes, it is unlikely 

that they were misassigned. Understanding the origins of these microbial contaminants could 

have ramifications for future metagenomic studies of museum collections and potentially 

curation practices. As discussed below, we considered several hypotheses for how microbial 

contamination could have occurred, including whether the specimens began rotting prior to 

immersion in the preservatives, if curators inadvertently transferred microorganisms during the 

preparation of the samples, if unsterilized collection jars might harbor these communities, or if 

fluid preservatives may be contaminated, particularly through the re-use of alcohol from other 

fluid-preserved specimens (Hawks 2003).  

For these samples, rotting of the specimens appears to be an insignificant factor, as none 

of the most abundant contaminant taxa are associated with the decomposition of carcasses. 

Furthermore, the microbial profiles across samples 1 to 5 are strikingly similar, indicating that 
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the contamination originates from the same source, such as reagents that were used to produce 

the preservation fluid, with which the jars were regularly refilled.  

One of the most telling features of the contaminant DNA is that it bears the same 

hallmarks of degraded DNA, with cytosine deamination and high levels of fragmentation 

(Pääbo 1989). The similar degradation patterns of the contaminant microbial DNA and 

endogenous DNA suggests the contaminants are not due to sampling the specimens for this 

project or from unavoidable contaminants in laboratory reagents (e.g. Salter 2014). Thus, it 

appears the contaminant DNA was present in the collection jars along with the historic 

specimens for an indeterminate amount of time. It is important to note that indistinguishable 

degradation signals complicates the recognition of authentic endogenous microbial taxa, and 

future studies should take appropriate precautions such as sampling and sequencing the 

preservation liquid in order to differentiate between contaminants and microbial taxa of 

interest.  

The contamination could have occurred during the preparation of the samples, due to 

rotting of the material prior to immersion in the preservatives, the use of contaminated batches 

of fluid preservatives, or even the re-use of alcohol from other fluid-preserved specimens 

(Hawks 2003). One of the most critical aspects of this contaminant DNA is that it bears the 

same hallmarks of degraded DNA, with cytosine deamination and high levels of fragmentation 

(Pääbo 1989). This degradation signal complicates the recognition of authentic endogenous 

microbial taxa, and future studies should take appropriate precautions such as sampling and 

sequencing the preservation liquid in order to differentiate between contaminants and microbial 

taxa of interest. 

One curious observation in the microbial dataset is that the most abundant taxa are 

gram-negative bacteria. Presently it is unclear if the high proportion of these species is an 

accurate depiction of the microorganisms present in the specimens, or if it instead is a bias 

https://paperpile.com/c/icvzG3/IFrT
https://paperpile.com/c/icvzG3/IFrT
https://paperpile.com/c/icvzG3/3jaN
https://paperpile.com/c/icvzG3/3jaN
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caused by the tendency of gram-negative cell walls to lyse in ethanol  (Jones 1989). Given that 

even low concentrations of ethanol inhibits microbial growth (e.g. Fletcher 1983), it is unlikely 

that the metagenomic signals originate from taxa that were biologically active in the 

preservation fluid. 

In the metagenomic analysis we observed a large proportion of unassigned reads, 

ranging from 15-93% per sample. Aside from the fact that very short fragments can often not 

be confidently assigned to the correct source reference genome, the number of unassigned reads 

can also be attributed to the fact that microbiomes of non-model organisms are often complex 

but not well described. This underrepresentation in public reference genome databases can lead 

to spurious taxonomic assignments and a large proportion of unassigned sequences. Due to the 

growing interest in metagenomes in recent years and thus an increasing rate of microbial 

genome sequencing, this issue should become less problematic in coming years. In future 

projects, researchers may consider exploring assembly-based approaches to reduce the 

proportion of unassigned reads. We were unable to use this approach in this study due to the 

very short fragment lengths and low depth of coverage; however, with sufficient amounts of 

sequencing data, it may be possible to characterize a more complete  microbial profile in 

historic specimens. 

  While this project has focused on understanding the preservation of historic 

microbiomes in fluid-preserved collection jars, it is important to highlight that such 

metagenomic experiments often produce novel data that is useful for other researchers. For 

example, in the process of generating sequencing data to characterize the gut microbiome of 

an Atlantic razorbill collected in 1916, we simultaneously recovered a substantial amount of 

DNA from the host, amounting to an average depth of coverage of 1.6✕ on the nuclear genome. 

To our knowledge there are no whole genome sequencing projects of the razorbill aside from 
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the generation of the reference genome, thus our data from an historical specimen could provide 

valuable information to future research on this understudied seabird. The three-spined 

stickleback DNA identified in sample 2-I furthermore indicates that it is possible to retrieve 

dietary information from fluid-preserved specimens. Razorbills and other members from the 

Alcidae family have previously been observed to feed on three-spined sticklebacks that can be 

found in coastal regions as well as fresh water (Huettmann et al. 2005; Lance and Thompson 

2005; Olson et al. 1979). 

 

In summary, this project demonstrates that fluid-preserved specimens have the potential 

to represent a novel substrate with which to study historical microbial communities, although 

they must be approached with measured optimism. We were for example able to recover the 

genomes of multiple gut microbes of a fluid-preserved razorbill that was collected in 1916, as 

well as the nuclear genome of the host bird to average depth of coverage of 1.6X. While we 

observed that the DNA recovered from most of the specimens we analyzed was heavily 

degraded, future studies should be able to improve the viability of this material, facilitating the 

analysis of so far overlooked microbial communities. 
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Supplementary materials 
 
 

Fig S1. Picture of the five jars containing the six specimens. 
 
 
 

Fig S2. Pictures of the six specimens’ eyes. White colouration of the eyes is 

associated with the fixation in a fluid that is not formaldehyde. 

  



99  

 

 
 

 Fig S3. Cytosine deamination pattern of the Gasterosteus aculeatus DNA recovered from 

sample 2-I.  
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 Fig. S4. Edit distance distribution of the Gasterosteus aculeatus DNA recovered from sample  

2-I.
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Supplementary tables 

 
Table S1. Species alignment 

 
Sample 

 
Species name 

 
Common name 

 
#Sequences 

Avg. 
read 

length 

Breadth of 
coverage 

Avg. 
depth of 
coverage 

 
δs - Δ% 

 
1-I 

Phalacrocorax 
carbo 

 
Great cormorant 

 
23,095 

 
32 

 
0.00 

 
0.00 

 
0.10 

 
0.53 

 
1-S 

Phalacrocorax 
carbo 

 
Great cormorant 

 
12,242 

 
28 

 
0.00 

 
0.00 

 
0.47 

 
0.51 

2-I Alca torda Razorbill 172,657 43 0.00 0.01 0.38 1.00 

2-S Alca torda Razorbill 16,257 26 0.00 0.00 0.12 0.52 

3-I Cepphus grylle Black guillemot 16,815 27 0.00 0.00 0.13 0.51 
 

3-S Cepphus grylle Black guillemot 42,279 27 0.00 0.00 0.56 0.66 

 
4-I 

 
Uria aalge 

Common 
murre/guillemot 

 
27,759 

 
28 

 
0.00 

 
0.00 

 
0.06 

 
0.52 

 
4-S 

 
Uria aalge 

Common 
murre/guillemot 

 
17,612 

 
27 

 
0.00 

 
0.00 

 
0.26 

 
0.53 

5-I Alca torda Razorbill 36,220 36 0.00 0.00 0.62 0.62 

5-S Alca torda Razorbill 21,961 32 0.00 0.00 1.00 1.00 

6-I Alca torda Razorbill 14,487,714 66 0.38 0.82 0.14 1.00 

6-S Alca torda Razorbill 14,923,770 60 0.35 0.77 0.17 1.00 

 
  
 

 Table S3. Alignments to the human reference genome 

  

 Reads Fragment length (bp) C-T 5′(%) −Δ% 

1-I 313,047 43 0.01 1.00 

1-S 701,149 60 0.01 1.00 

2-I 113,477 36 0.02 0.71 

2-S 84,551 34 0.02 0.71 

3-I 488,568 46 0.01 1.00 

3-S 947,089 40 0.01 1.00 

4-I 420,518 42 0.01 1.00 

4-S 342,173 48 0.01 1.00 

5-I 2,652,760 52 0.01 1.00 

5-S 80,186 42 0.01 1.00 

6-I 48,135 40 0.04 0.55 

6-S 60,503 38 0.04 0.55 
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Chapter 4 

A 5700 year-old human genome and oral 

microbiome from chewed birch pitch 
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ARTICLE

A 5700 year-old human genome and oral
microbiome from chewed birch pitch
Theis Z.T. Jensen 1,2,10, Jonas Niemann1,2,10, Katrine Højholt Iversen 3,4,10, Anna K. Fotakis 1,

Shyam Gopalakrishnan 1, Åshild J. Vågene1, Mikkel Winther Pedersen 1, Mikkel-Holger S. Sinding 1,

Martin R. Ellegaard 1, Morten E. Allentoft1, Liam T. Lanigan1, Alberto J. Taurozzi1, Sofie Holtsmark Nielsen1,

Michael W. Dee5, Martin N. Mortensen 6, Mads C. Christensen6, Søren A. Sørensen7, Matthew J. Collins1,8,

M. Thomas P. Gilbert 1,9, Martin Sikora 1, Simon Rasmussen 4 & Hannes Schroeder 1*

The rise of ancient genomics has revolutionised our understanding of human prehistory but

this work depends on the availability of suitable samples. Here we present a complete ancient

human genome and oral microbiome sequenced from a 5700 year-old piece of chewed birch

pitch from Denmark. We sequence the human genome to an average depth of 2.3× and find

that the individual who chewed the pitch was female and that she was genetically more

closely related to western hunter-gatherers from mainland Europe than hunter-gatherers

from central Scandinavia. We also find that she likely had dark skin, dark brown hair and blue

eyes. In addition, we identify DNA fragments from several bacterial and viral taxa, including

Epstein-Barr virus, as well as animal and plant DNA, which may have derived from a recent

meal. The results highlight the potential of chewed birch pitch as a source of ancient DNA.
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B irch pitch is a black-brown substance obtained by heating
birch bark and has been used as an adhesive and hafting
agent as far back as the Middle Pleistocene1,2. Small lumps

of this organic material are commonly found on archaeological
sites in Scandinavia and beyond, and while their use is still
debated, they often show tooth imprints, indicating that they were
chewed3. Freshly produced birch pitch hardens on cooling and it
has been suggested that chewing was a means to make it pliable
again before using it, e.g. for hafting composite stone tools.
Medicinal uses have also been suggested, since one of the main
constituents of birch pitch, betulin, has antiseptic properties4.
This is supported by a large body of ethnographic evidence, which
suggests that birch pitch was used as a natural antiseptic for
preventing and treating dental ailments and other medical con-
ditions3. The oldest examples of chewed pitch found in Europe
date back to the Mesolithic period and chemical analysis by Gas
Chromatography-Mass Spectrometry (GC-MS) has shown that
many of them were made from birch (Betula pendula)3.

Recent work by Kashuba et al5. has shown that pieces of
chewed birch pitch contain ancient human DNA, which can be
used to link the material culture and genetics of ancient popu-
lations. In the current study, we analyse a further piece of chewed
birch pitch, which was discovered at a Late Mesolithic/Early
Neolithic site in southern Denmark (Fig. 1a; Supplementary
Note 1) and demonstrate that it does not only contain ancient
human DNA, but also microbial DNA that reflects the oral
microbiome of the person who chewed the pitch, as well as plant
and animal DNA which may have derived from a recent meal.
The DNA is so exceptionally well preserved that we were able to
recover a complete ancient human genome from the sample
(sequenced to an average depth of coverage of 2.3×), which is
particularly significant since, so far, no human remains have been

recovered from the site6. The results highlight the potential of
chewed birch pitch as a source of ancient human and non-human
DNA, which can be used to shed light on the population history,
health status, and even subsistence strategies of ancient
populations.

Results
Radiocarbon dating and chemical analysis. Radiocarbon dating
of the specimen yielded a direct date of 5,858–5,661 cal. BP
(GrM-13305; 5,007 ± 11) (Fig. 1b; Supplementary Note 2), which
places it at the onset of the Neolithic period in Denmark. Che-
mical analysis by Fourier-Transform Infrared (FTIR) spectro-
scopy produced a spectrum very similar to modern birch pitch
(Supplementary Fig. 4) and GC-MS revealed the presence of the
triterpenes betulin and lupeol, which are characteristic of birch
pitch (Fig. 1c; Supplementary Note 3)3. The GC-MS spectrum
also shows a range of dicarboxylic acids and saturated fatty acids,
which are all considered intrinsic to birch pitch and thus support
its identification7.

DNA sequencing. We generated approximately 390 million DNA
reads for the sample, nearly a third of which could be uniquely
mapped to the human reference genome (hg19) (Supplementary
Table 2). The human reads displayed all the features characteristic
of ancient DNA, including (i) short average fragment lengths, (ii)
an increased occurrence of purines before strand breaks, and (iii)
an increased frequency of apparent cytosine (C) to thymine (T)
substitutions at 5′-ends of DNA fragments (Supplementary
Fig. 6) and the amount of modern human contamination was
estimated to be around 1–3% (Supplementary Table 3). In
addition to the human reads, we generated around 7.3 Gb of
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sequence data (68.8%) from the ancient pitch that did not align to
the human reference genome.

DNA preservation and genome reconstruction. With over 30%,
the human endogenous DNA content in the sample was extremely
high and comparable to that found in well-preserved teeth and
petrous bones8. We used the human reads to reconstruct a com-
plete ancient human genome, sequenced to an effective depth-of-
coverage of 2.3×, as well as a high-coverage mitochondrial genome
(91×), which was assigned to haplogroup K1e (see Methods). To
further investigate the preservation of the human DNA in the
sample we calculated a molecular decay rate (k, per site per year)
and find that it is comparable to that of other ancient human
genomes from temperate regions (Supplementary Table 3).

Sex determination and phenotypic traits. Based on the ratio
between high-quality reads (MAPQ ≥ 30) mapping to the X and Y
chromosomes, respectively9, we determined the sex of the indi-
vidual whose genome we recovered to be female. To predict her
hair, eye and skin colour we imputed genotypes for 41 SNPs
(Supplementary Data 1) included in the HIrisPlex-S system10 and
find that she likely had dark skin, dark brown hair, and blue eyes
(Supplementary Data 2). We also examined the allelic state of two
SNPs linked with the primary haplotype associated with lactase
persistence in humans and found that she carried the ancestral
allele for both (Supplementary Data 1), indicating that she was
lactase non-persistent.

Genetic affinities. We called 593,102 single nucleotide poly-
morphisms (SNPs) in our ancient genome that had previously
been genotyped in a dataset of >1000 present-day individuals
from a diverse set of Eurasian populations11, as well as >100
previously published ancient genomes (Supplementary Data 3).
Figure 2a shows a principal component analysis (PCA) where she
clusters with western hunter-gatherers (WHGs). Allele-sharing
estimates based on f4-statistics show the same overall affinity to
WHGs (Fig. 2b). This is also reflected in the qpAdm analysis12

(see Methods) which demonstrates that a simple one way model
assuming 100% WHG ancestry cannot be rejected in favour of

more complex models (Fig. 2c; Supplementary Table 6). To for-
mally test this result we computed two sets of D-statistics of the
form D(Yoruba, EHG/Barcın; test, WHG) and find no evidence
for significant levels of EHG or Neolithic farmer gene flow
(Supplementary Fig. 7; Supplementary Tables 7, 8).

Metataxonomic profiling of non-human reads. To broadly
characterise the taxonomic composition of the non-human reads
in the sample, we used MetaPhlan213, a tool specifically designed
for the taxonomic profiling of short-read metagenomic shotgun
data (see Methods; Supplementary Data 4). Figure 3a shows a
principal coordinate analysis where we compare the microbial
composition of our sample to that of 689 microbiome profiles
from the Human Microbiome Project (HMP)14. We find that our
sample clusters with modern oral microbiome samples in the
HMP dataset. This is also reflected in Fig. 3b which shows the
order-level microbial composition of our sample compared to two
soil samples from the same site and metagenome profiles of
healthy human subjects at five major body sites from the HMP14,
visualised using MEGAN615.

Oral microbiome characterisation. To further characterise the
microbial taxa present in the ancient pitch and to obtain species-
specific assignments we used MALT16, a fast alignment and
taxonomic binning tool for metagenomic data that aligns DNA
sequencing reads to a user-specified database of reference
sequences (see Methods; Supplementary Data 5). As expected, a
large number of reads could be assigned to oral taxa, such as
Neisseria subflava and Rothia mucilaginosa, as well as several
bacteria included in the red complex (i.e. Porphyromonas gingi-
valis, Tannerella forsythia, and Treponema denticola) (see
Table 1). In addition, we recovered 593 reads that were assigned
to Epstein–Barr virus (Human gammaherpesvirus 4). We vali-
dated each taxon by examining the edit distances, coverage dis-
tributions, and post-mortem DNA damage patterns (see
Supplementary Note 5).

Pneumococcal DNA. We also identified several species belong-
ing to the Mitis group of streptococci (Table 1), including
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Streptococcus viridans and Streptococcus pneumoniae. We recon-
structed a consensus genome from the S. pneumoniae reads
(Fig. 4) and estimated the number of heterozygous sites (2,597)
(see Methods) which indicates the presence of multiple strains.
To assess the virulence of the S. pneumoniae strains recovered
from the ancient pitch, we aligned the contigs against the full
Virulence Factor Database17 in order to identify known
S. pneumoniae virulence genes (see Methods). We identified 26 S.
pneumoniae virulence factors within the ancient sample,
including capsular polysaccharides (CPS), streptococcal enolase
(Eno), and pneumococcal surface antigen A (PsaA) (see Sup-
plementary Data 6).

Plant and animal DNA. Lastly, we used a taxonomic binning
pipeline specifically designed for ancient environmental DNA18

to taxonomically classify the non-human reads in the sample that
mapped to other Metazoa (animals) and Viridiplantae (plants).
We only parsed taxa with classified reads accounting for >1% of
all reads in each of the two kingdoms and a declining edit dis-
tance distribution after edit distance 0 (Supplementary Data 7).
We then validated each identified taxon as described above (see
Supplementary Note 5). Using these criteria, we identified DNA
from two plant species in the ancient sample, including birch
(Betula pendula) and hazelnut (Corylus avellana). In addition, we
detected over 50,000 reads that were assigned to mallard (Anas
platyrhynchos).

Discussion
We successfully extracted and sequenced ancient DNA from a
5700-year-old piece of chewed birch pitch from southern Den-
mark. In addition to a complete ancient human genome (2.3×)
and mitogenome (91×), we recovered plant and animal DNA, as
well as microbial DNA from several oral taxa. Analysis of the
human reads revealed that the individual whose genome we
recovered was female and that she likely had dark skin, dark
brown hair and blue eyes. This combination of physical traits has

been previously noted in other European hunter-gatherers19–22,
suggesting that this phenotype was widespread in Mesolithic
Europe and that the adaptive spread of light skin pigmentation in
European populations only occurred later in prehistory23. We
also find that she had the alleles associated with lactase non-
persistence, which fits with the notion that lactase persistence in
adults only evolved fairly recently in Europe, after the introduc-
tion of dairy farming with the Neolithic revolution24,25.

From a population genetics point of view, the human genome
also offers fresh insights into the early peopling of southern
Scandinavia. Recent studies of ancient hunter-gatherer genomes
from Sweden and Norway23 have shown that, following the
retreat of the ice sheets around 12–11 ka years ago, Scandinavia
was colonised by two separate routes, one from the south (pre-
sumably via Denmark) and one from the northeast, along the
coast of present-day Norway. This is supported by the fact that
hunter-gatherers from central Scandinavia carry different levels of
WHG and EHG ancestry, which reached central Scandinavia
from the south and northeast, respectively23. Although we only
analysed a single genome, the fact that the Syltholm individual
does not carry any EHG ancestry confirms this scenario and
suggests that EHGs did not reach southern Denmark at this point
in prehistory.

The Syltholm genome (5700 years cal. BP) dates to the period
immediately following the Mesolithic-Neolithic transition in
Denmark. Culturally, this period is marked by the transition from
the Late Mesolithic Ertebølle culture (c. 7300–5900 cal. BP) with
its flaked stone artefacts and typical T-shaped antler axes, to the
early Neolithic Funnel Beaker culture (c. 5900–5300 cal. BP) with
its characteristic pottery, polished flint artefacts, and domes-
ticated plants and animals26. In Denmark, the transition from
hunting and gathering to farming has often been described as a
relatively rapid process, with dramatic shifts in settlement pat-
terns and subsistence strategies27. However, it is still unclear to
what extent this transition was driven by the arrival of farming
communities as opposed to the local adaptation of farming
practices by resident hunter-gatherer populations.
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Our analyses have shown that the Syltholm individual does not
carry any Neolithic farmer ancestry, suggesting that the genetic
impact of Neolithic farming communities in southern Scandi-
navia might not have been as instant or pervasive as once
thought28. While the mtDNA we recovered belongs to hap-
logroup K1e, which is more commonly associated with early
farming communities29–31, there is mounting evidence to suggest
that this lineage was already present in Mesolithic Europe32–34.
Overall, the lack of Neolithic farmer ancestry is consistent with
evidence from elsewhere in Europe, which suggests that geneti-
cally distinct hunter-gatherer groups survived for much longer
than previously assumed35–37. These WHG “survivors” might
have triggered the resurgence of hunter-gatherer ancestry that is
proposed to have occurred in central Europe between 7000 and
5000 BP12.

In addition to the human data, we recovered ancient microbial
DNA from the pitch which could be shown to have a human oral
microbiome signature. Previous studies38–40 have demonstrated
that calcified dental plaque (dental calculus) provides a robust
biomolecular reservoir that allows direct and detailed investiga-
tions of ancient oral microbiomes. However, unlike dental cal-
culus, which represents a long-term reservoir of the oral
microbiome built up over many years, the microbiota found in
ancient mastics are more likely to give a snapshot of the species
active at the time. As such, they provide a useful source of
information regarding the evolution of the human oral micro-
biome that can complement studies of ancient dental calculus.

The majority of the bacterial taxa we identified (Table 1) are
classified as non-pathogenic, commensal species that are con-
sidered to be part of the normal microflora of the human mouth

Table 1 List of non-human taxa identified in the Syltholm pitch, including the 40 most abundant oral bacterial taxa, viruses, and
eukaryotes. Bacteria in the red complex are denoted with an asterisk. Depth (DoC) and breadth of coverage (>1x) were
calculated using BEDTools72. Deamination rates at the 5’ ends of DNA fragments were estimated using mapDamage 2.0.959.
-Δ% refers to the negative difference proportion introduced by Hübler et al79. (see Supplementary Note 5).

Species Reads Fragment length (bp) DoC SD DoC >1x (%) C-T 5′(%) −Δ%
Bacteria
Neisseria subflava 308,732 56 7.5 6.2 83.7 14.5 0.9
Rothia mucilaginosa 296,610 52 6.9 5.6 82.3 14.0 0.9
Streptococcus pneumoniae 176,782 57 4.7 6.3 65.7 13.8 0.9
Neisseria cinerea 153,683 58 4.9 5.1 71.7 15.1 1.0
Lautropia mirabilis 117,040 53 2.0 1.9 71.9 13.0 1.0
Neisseria meningitidis 100,540 51 2.3 4.3 42.4 14.9 0.9
Aggregatibacter segnis 95,670 58 2.8 2.8 73.3 14.5 0.9
Neisseria elongata 68,407 54 1.6 1.9 67.6 15.1 0.9
Prevotella intermedia 65,324 56 1.2 1.4 55.0 16.2 0.9
Streptococcus sp. ChDC B345 52,614 61 1.6 2.7 50.3 13.8 0.9
Streptococcus sp. 431 43,787 59 1.2 1.9 47.5 13.6 0.8
Aggregatibacter aphrophilus 43,231 56 1.1 1.6 50.4 15.0 0.8
Streptococcus pseudopneumoniae 38,832 61 1.1 2.4 34.9 14.4 0.9
Capnocytophaga leadbetteri 36,461 59 0.9 1.1 49.8 14.0 0.8
Corynebacterium matruchotii 36,070 52 0.7 0.9 44.0 13.0 1.0
Gemella morbillorum 32,284 63 1.2 1.5 56.4 16.3 1.0
Streptococcus viridans 27,840 60 0.8 1.5 36.5 14.5 1.0
Neisseria gonorrhoeae 27,704 53 0.7 2.0 21.3 15.0 1.0
Neisseria sicca 27,290 57 0.6 1.4 22.5 13.7 0.9
Fusobacterium nucleatum 26,783 64 0.8 1.1 47.8 14.1 0.9
Prevotella fusca 26,295 57 0.5 0.7 34.6 15.7 1.0
Kingella kingae 25,811 55 0.7 1.0 44.2 14.4 1.0
Ottowia sp. 894 25,425 52 0.5 0.7 34.6 14.4 1.0
Streptococcus sp. NPS 308 24,937 59 0.8 1.4 37.5 14.3 0.8
Actinomyces oris 24,029 52 0.4 0.7 29.8 12.7 1.0
Streptococcus australis 23,777 60 0.7 1.3 31.5 13.8 1.0
P. propionicum 22,864 50 0.3 0.6 26.8 13.2 0.9
Haemophilus sp. 036 19,707 62 0.7 1.5 28.4 14.5 1.0
Porphyromonas gingivalis* 17,651 55 0.4 0.7 32.2 17.2 1.0
Capnocytophaga gingivalis 16,734 58 0.3 0.6 27.1 15.0 1.0
Neisseria polysaccharea 14,442 57 0.4 1.4 15.0 15.8 1.0
Tannerella forsythia* 14,187 55 0.2 0.5 19.8 15.3 1.0
Streptococcus sp. A12 13,232 59 0.4 0.9 24.9 14.6 0.9
Capnocytophaga sputigena 12,587 58 0.2 0.5 19.9 14.7 0.9
Neisseria lactamica 11,971 56 0.3 1.0 14.2 14.2 0.8
Treponema denticola* 11,379 59 0.2 0.5 19.5 14.0 0.8
Rothia dentocariosa 10,944 54 0.2 0.5 20.0 13.6 1.0
Tannerella sp. HOT-286 10,397 53 0.2 0.5 15.7 14.0 1.0
Actinomyces meyeri 10,105 51 0.3 0.5 21.3 14.0 1.0
Filifactor alocis 9,948 61 0.3 0.6 25.6 15.0 1.0
Viruses
Epstein-Barr virus 593 51 0.2 0.4 13.3 17.8 1.0
Eukaryotes
Anas platyrhynchos 55,986 51 <0.1 0.05 0.2 15.6 1.0
Corylus avellana 8,615 55 <0.1 0.04 0.1 19.7 1.0
Betula pendula 3,291 54 <0.1 0.02 <0.1 16.1 1.0
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and the upper respiratory tract, but may become pathogenic
under certain conditions. In addition, we identified three species
(Porphyromonas gingivalis, Tannerella forsythia, and Treponema
denticola) included in the so-called red complex, a group of
bacteria that are categorised together based on their association
with severe forms of periodontal disease41. Furthermore, we
identified several thousand reads that could be assigned to dif-
ferent bacterial species in the Mitis group of streptococci,
including Streptococcus pneumoniae, a major human pathogen
that is responsible for the majority of community-acquired
pneumonia which still causes around 1–2 million infant deaths
worldwide, every year42.

S. pneumoniae has a remarkable capacity to remodel its gen-
ome through the uptake of exogenous DNA from other

pneumococci and closely related oral streptococci42. Under-
standing this process and the distribution of pneumococcal
virulence factors between different strains can help our under-
standing of S. pneumoniae pathogenesis. We identified 26 S.
pneumoniae virulence factors within our ancient sample,
including several that are involved in host colonisation (e.g.
adherence to host cells and tissues, endocytosis) and the evasion
and subversion of the host’s immune response (Supplementary
Data 6). While more research is needed to fully understand the
evolution of this important human pathogen and its ability to
cause disease, our capacity to recover virulence factors from
ancient samples opens up promising avenues for future research.

In addition to the bacterial taxa, we identified 593 reads that
could be assigned to the Epstein–Barr virus (EBV). Previous
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and visualised in 100 bp windows using Circos73.
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studies43,44 have demonstrated the great potential of ancient
DNA for studying the long-term evolution of blood borne viruses.
Formally known as Human gammaherpesvirus 4, EBV is one of
the most common human viruses infecting over 90% of the
world’s adult population45. Most EBV infections occur during
childhood and in the vast majority of cases they are asymptomatic
or they carry symptoms that are indistinguishable from other
mild, childhood diseases. However, in some cases EBV can cause
infectious mononucleosis (glandular fever)46 and it has also been
associated with various lymphoproliferative diseases, such as
Hodgkin's lymphoma and hemophagocytic lymphohistiocytosis,
as well as higher risks of developing certain autoimmune diseases,
such as dermatomyositis and multiple sclerosis47,48.

Lastly, we identified several thousand reads that could be
confidently assigned to different plant and animal species,
including birch (B. pendula), hazelnut (C. avellana), and mallard
(A. platyrhynchos). While the presence of birch DNA is easily
explained as it is the source of the pitch, we propose that the
hazelnut and mallard DNA may derive from a recent meal. This
is supported by the faunal evidence from the site, which is
dominated by wild taxa, including Anas sp. and hazelnuts6,49. In
addition, there is evidence from many other Mesolithic and Early
Neolithic sites in Scandinavia for hazelnuts being gathered in
large quantities for consumption50. Together with the faunal
evidence, the ancient DNA results support the notion that the
people at Syltholm continued to exploit wild resources well into
the Neolithic and highlight the potential of ancient DNA analyses
of chewed pieces of birch pitch for palaeodietary studies.

In summary, we have shown that pieces of chewed birch pitch
are an excellent source of ancient human and non-human DNA. In
the process of chewing, the DNA becomes trapped in the pitch
where it is preserved due to the aseptic and hydrophobic properties
of the pitch which both inhibits microbial and chemical decay. The
genomic information preserved in chewed pieces of birch pitch
offers a snapshot of people's lives, providing information on
genetic ancestry, phenotype, health status, and even subsistence. In
addition, the microbial DNA provides information on the com-
position of our ancestral oral microbiome and the evolution of
specific oral microbes and important human pathogens.

Methods
Sample preparation and DNA extraction. We sampled c. 250 mg from the spe-
cimen for DNA analysis. Briefly, the sample was washed in 5% bleach solution to
remove any surface contamination, rinsed in molecular biology grade water and
left to dry. We tested three different extraction methods using between 20–50 mg of
starting material: For method (1), 1 ml of lysis buffer containing 0.45M EDTA (pH
8.0) and 0.25 mg/ml Proteinase K was added to the sample and left to incubate on a
rotor at 56 °C. After 12 h the supernatant was removed and concentrated down to
~150 µl using Amicon Ultra centrifugal filters (MWCO 30 kDa), mixed 1:10 with a
PB-based binding buffer51, and purified using MinElute columns, eluting in 30 µl
EB. For method (2) the sample was digested and purified as above, but with the
addition of a phenol-chloroform clean-up step. Briefly, 1 ml phenol (pH 8.0) was
added to the lysis mix, followed by 1 ml chloroform:isoamyl alcohol. The super-
natant was concentrated and purified, as described above. For method (3) the
sample was dissolved in 1 ml chloroform:isoamylalcohol. The dissolved sample was
then resuspended in 1 ml molecular grade water and purified as described above.
DNA extracts prepared using a Proteinase K-based lysis buffer followed by a
phenol-chloroform based purification step produced the best results in terms of the
endogenous human DNA content (see Supplementary Table 1); however, following
metagenomic profiling the extracts were found to be contaminated with Delftia
spp., a known laboratory contaminant52. The contaminated libraries were excluded
from metagenomic profiling.

Negative controls. We included no template controls (NTC) during the DNA
extraction and library preparation steps. The NTCs prepared with the additional
phenol-chloroform step were also found to be contaminated with Delftia spp., sug-
gesting that the contaminants were introduced during this step. In addition, we
included two soil samples from the site, weighing c. 2 g each, as negative controls. DNA
was extracted as described above using 3ml EDTA-based lysis buffer followed by 9ml
25:24:1 phenol:chloroform:isoamyl alcohol mixture to account for the larger amount of
starting material. The sequencing results are reported in Supplementary Table 1.

Library preparation and sequencing. 16 µl of each DNA extract were built into
double-stranded libraries using a recently published protocol that was specifically
designed for ancient DNA53. One extraction NTC was included, as well as a single
library NTC. 10 µl of each library were amplified in 50 µl reactions for between 15
and 28 cycles, using a dual indexing approach54. The optimal number of PCR
cycles was determined by qPCR (MxPro 3000, Agilent Technologies). The
amplified libraries were purified using SPRI-beads and quantified on a 2200
TapeStation (Agilent Technologies) using High Sensitivity tapes. The amplified and
indexed libraries were then pooled in equimolar amounts and sequenced on 1/8 of
a lane of an Illumina HiSeq 2500 run in SR mode. Following initial screening,
additional reads were obtained by pooling libraries #2, #3, and #4 in molar frac-
tions of 0.2, 0.4, and 0.4, respectively and sequencing them on one full lane of an
Illumina HiSeq 2500 run in SR mode.

Data processing. Base calling was performed using Illumina’s bcl2fastq2 conver-
sion software v2.20.0. Only sequences with correct indexes were retained. FastQ files
were processed using PALEOMIX v1.2.1255. Adapters and low quality reads (Q <
20) were removed using AdapterRemoval v2.2.056, only retaining reads >25 bp.
Trimmed and filtered reads were then mapped to hg19 (build 37.1) using BWA57

with seed disabled to allow for better sensitivity58, as well as filtering out unmapped
reads. Only reads with a mapping quality ≥30 were kept and PCR duplicates were
removed. MapDamage 2.0.959 was used to evaluate the authenticity of the retained
reads as part of the PALEOMIX pipeline55, using a subsample of 100k reads per
sample (Supplementary Fig. 6). For the population genomic analyses, we merged the
ancient sample with individuals from the Human Origin dataset11 and >100 pre-
viously published ancient genomes (Supplementary Data 1). At each SNP in the
Human Origin dataset, we sampled the allele with more reads in the ancient sample,
resolving ties randomly, resulting in a pseudohaploid ancient sample.

MtDNA analysis and contamination estimates. We used Schmutzi60 to deter-
mine the endogenous consensus mtDNA sequence and to estimate present-day
human contamination. Reads were mapped to the Cambridge reference sequence
(rCRS) and filtered for MAPQ ≥ 30. Haploid variants were called using the endo-
Caller program implemented in Schmutzi60 and only variants with a posterior
probability exceeding 50 on the PHRED scale (probability of error: 1/100,000) were
retained. We then used Haplogrep v2.261 to determine the mtDNA haplogroup,
specifying PhyloTree (build 17) as the reference phylogeny62. Contamination
estimates were obtained using Schmutzi’s mtCont program and a database of
putative modern contaminant mitochondrial DNA sequences.

Genotype imputation. We used ANGSD63 to compute genotype likelihoods in
5 Mb windows around 43 SNPs associated with skin, eye, and hair colour10 and
lactase persistence into adulthood (Supplementary Data 2). Missing genotypes were
imputed using impute264 and the pre-phased 1000 Genome reference panel65,
provided as part of the impute2 reference datasets. We used multiple posterior
probability thresholds, ranging from 0.95 to 0.50, to filter the imputed genotypes.
The imputed genotypes were uploaded to the HIrisPlex-S website10 to obtain the
predicted outcomes for the pigmentation phenotypes (Supplementary Data 3).

Principal component analysis. Principal component analysis was performed
using smartPCA66 by projecting the ancient individuals onto a reference panel
including >1000 present-day Eurasian individuals from the HO dataset11 using the
option lsq project. Prior to performing the PCA the data set was filtered for a
minimum allele frequency of at least 5% and a missingness per marker of at most
50%. To mitigate the effect of linkage disequilibrium, the data were pruned in a 50-
SNP sliding window, advanced by 10 SNPs, and removing sites with an R2 larger
than 0, resulting in a final data set of 593,102 SNPs.

D- and f-statistics. D- and f-statistics were computed using AdmixTools67. To
estimate the amount of shared drift between the Syltholm genome and WHG
versus EHG and Neolithic farmers, respectively, we computed two sets of f4-sta-
tistics of the form f4(Yoruba, X; EHG/Barcın, WHG) where “X” stands for the test
sample. Standard errors were calculated using a weighted block jackknife. To
confirm the absence of EHG and Neolithic farmer gene flow in the Syltholm
genome and to contrast this result with those obtained for other Mesolithic and
Neolithic individuals from Scandinavia, we computed two sets of D-statistics of the
form D(Yoruba, EHG/Barcın; X, WHG) testing whether “X” forms a clade to the
exclusion of EHG and Neolithic farmers (represented by Barcın), respectively.

qpAdm. Admixture proportions were modeled using qpAdm12, specifying Meso-
lithic Western European hunter-gatherers (WHG), Eastern hunter-gatherers
(EHG) and early Neolithic Anatolian farmers (Barcın), as possible ancestral source
populations. We present the model with the lowest number of source populations
that fits the data, as well as the model with all three admixture components (see
Supplementary Table 6). When estimating the admixture proportions for WHGs
and EHGs, the test sample was excluded from their respective reference
populations.
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MetaPhlan. We used MetaPhlan213 to create a metagenomic profile based on the
non-human reads (Supplementary Data 4). The reads were first aligned to the
MetaPhlan2 database13 using Bowtie2 v2.2.9 aligner68. PCR duplicates were
removed using PALEOMIX filteruniquebam58. For cross-tissue comparisons 689
human microbiome profiles published in the Human Microbiome Project Con-
sortium14 were initially used, comprising samples from the mouth (N= 382), skin
(N= 26), gastrointestinal tract (N= 138), urogenital tract (N= 56), airways and
nose (N= 87). The oral HMP samples consist of attached/keratinised gingiva (N=
6), buccal mucosa (N= 107), palatine tonsils (N= 6), tongue dorsum (N= 128),
throat (N= 7), supragingival plaque (N= 118), and subgingival plaque (N= 7).
Pairwise ecological distances among the profiles were computed at genus and
species level using taxon relative abundances and the vegdist function from the
vegan package in R69. These were used for principal coordinate analysis (PCoA) of
Bray–Curtis distances in R using the pcoa function included in the APE package70.
Subsequently, we calculated the average relative abundance of each genus for each
of the body sites present in the Human Microbiome Project and visualised the
abundance of microbial orders of our sample and the HMP body sites with
MEGAN615.

MALT. To further characterise the metagenomic reads we performed microbial
species identification using MALT v. 0.4.1 (Megan ALignment Tool)16, a rapid
sequence-alignment tool specifically designed for the analysis of metagenomic data.
All complete bacterial (n= 12,426) and viral (n= 8094) genomes were downloaded
from NCBI RefSeq on 13 November 2018, and all complete archaeal (n= 280)
genomes were downloaded from NCBI RefSeq on 17 November 2018 to create a
custom database. In an effort to exclude genomes that may consist of composite
sequences from multiple organisms, the following entries were excluded:

GCF_000922395.1 uncultured crAssphage
GCF_000954235.1 uncultured phage WW-nAnB
GCF_000146025.2 uncultured Termite group 1 bacterium phylotype Rs-D17
The final MALT reference database contained 33,223 genomes and was created

using default parameters in malt-build (v. 0.4.1). The sequencing data for the
ancient pitch sample, two soil control samples and associated extraction and library
blanks were de-enriched for human reads by mapping to the human genome
(hg19) using BWA aln and excluding all mapping reads. Duplicates were removed
with seqkit v.0.7.171 using the ‘rmdup’ function with the ‘–by-seq’ flag. The
remaining reads were processed with malt-run (v. 0.4.1) where BlastN mode and
SemiGlobal alignment were used. The minimum percent identity
(–minPercentIdentity) was set to 95, the minimum support (–minSupport)
parameter was set to 10 and the top percent value (–topPercent) was set as 1.
Remaining parameters were set to default. MEGAN615 was used to visualise the
output ‘.rma6’ files and to extract the reads assigned to taxonomic nodes of interest
for our sample. A taxon table of the raw MALT output for all samples and blanks,
as well as species level read assignments to bacteria, archaea and DNA viruses for
the ancient pitch sample are shown in Supplementary Data 5, where reads listed are
the sum of all reads assigned to the species node, including reads assigned to
specific strains within the species. Reads assigned to RNA viruses were not
considered for further analyses, since our dataset consisted of DNA sequences only.
Due to the limited number of reads assigned to archaeal species (Supplementary
Data 5), we did not consider Archaea in downstream analyses of species
identification. To validate the microbial taxa, we aligned the assigned reads to their
respective reference genomes and examined the edit distances, coverage
distributions, and post-mortem DNA damage patterns (see Supplementary
Note 5).

Pneumococcus analysis. We reconstructed a S. pneumoniae consensus genome
(Fig. 4) by mapping all reads assigned to S. pneumoniae by MALT16 to the S.
pneumoniae TIGR4 reference genome (NC_003028.3). To investigate the presence
of multiple strains we estimated the number of heterozygous sites using samtools57

mpileup function, filtering out transitions, indels, and sites with a depth of coverage
below 10. Coverage statistics of the individual alignments (MQ ≥ 30) were obtained
using Bedtools72 and plotted using Circos73 in 100 bp windows. Mappability was
estimated using GEM274 using a k-mer size of 50 and a read length of 42, which is
comparable to the average length of the trimmed and mapped reads in the ancient
pitch. Virulence genes were identified by assembling the ancient S. pneumoniae
MALT extracts into contigs using megahit75. The contigs were aligned against
known S. pneumoniae TIGR4 virulence genes in the Virulence Factor Database17

(downloaded 22/11–2018) using BLASTn76. Only unique hits with a bitscore >200,
>20% coverage, and an identity >80% were considered as shared genes (Supple-
mentary Data 6).

To identify all streptococcus virulence factors in the ancient pitch, we aligned
the contigs against the full Virulence Factor Database17 (downloaded 22/11–2018)
using BLASTn76 and the same filtering criteria as described above (Supplementary
Data 6). To validate the approach we repeated the analysis with five modern oral
microbiome samples (SRS014468; SRS019120; SRS013942; SRS015055; SRS014692)
from the Human Microbiome Project (HMP)14 using only the forward read (R1)
(Supplementary Data 6). We find that the number of virulence genes we recovered
directly correlates with sequencing depth (Supplementary Fig. 16).

Holi. For a robust taxonomic assignment of reads aligning to Metazoa (animals)
and Viridiplantae (plants), all non-human reads were parsed through the ‘Holi’
pipeline18, which was specifically developed for the taxonomic profiling of ancient
metagenomic shotgun reads. Each read was aligned against the NCBI’s full
Nucleotide and Refseq databases (downloaded November 25th 2018), including a
newly sequenced full genome of European hazelnut (Corylus avellana, downloaded
April 10th 2019)77. The alignments were then parsed through a naive lowest
common ancestor algorithm (ngsLCA) based on the NCBI taxonomic tree. Only
taxonomically classified reads for taxa comprising ≥1% of all the reads within the
two kingdoms and a declining edit distance distribution after edit distance 0 were
parsed for taxonomic profiling and further validation. To validate the assignments,
we aligned the assigned reads to their respective reference genomes and examined
the edit distances, coverage distributions, and post-mortem DNA damage patterns
(see Supplementary Note 5; Supplementary Data 7).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The sequencing reads are available for download from the European Nucleotide Archive
under accession number PRJEB30280. All other data are included in the paper or
available upon request.
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Supplementary Note 1. Site description 
Theis Z. T. Jensen and Søren A. Sørensen 

Syltholm is located in the southern part of Lolland near Rødbyhavn in Denmark 
(Supplementary Fig. 1). The site covers ca. 187 hectares of land, which up until 1872 was 
open water. After a series of floods, a reclamation project was undertaken to dam up the area, 
thus preserving the inundated landscape below1. In 2012, Museum Lolland-Falster initiated 
large scale geological surveys and subsequent archaeological excavations in the area due to 
the upcoming establishment of the Fehmarn Belt fixed-link tunnel connecting Denmark to 
Germany. Several sites were selected for full-scale excavations, based on coring, landscape 
topography as well as investigative excavations. Excavation of the former fjord was 
significantly constrained by high groundwater levels, which preclude the initial use of 
mechanical excavators. This was solved by localised drainage for several months2,3. To date a 
total of 21 excavations have been completed. They vary in terms of age, finds intensity as 
well as preservation of organic material. The vast majority of the site spans from the Late 
Mesolithic Ertebølle to the Middle Neolithic Funnel Beaker periods. During the time of 
occupation the area would have been a shallow brackish lagoon protected from the open sea 
to the south by shifting sandy barrier islands. Human activity in this coastal environment in 
prehistory is reflected primarily by the finding of large numbers of organic and inorganic 
artefacts and thousands of faunal remains, many of which include cut-marks3,4.  

In the area of the site where the chewed birch pitch (Supplementary Fig. 2) was found 
(MLF906-I-II), the stratigraphy consists of 1) a top layer is a heterogeneous matrix of sand 
separated by thin sections of gyttja, ca. 1-1,5 m in thickness, which indicates several storm 
events, 2) a thin (5-10 cm) transgression horizon of coarse drift gyttja containing large 
amounts of molluscs as well as ex situ water rolled artefacts of flint and organic material, 
indicating an erosive milieu, 3) a layer (10-80 cm) of coarse brown gyttja where large 
amounts of in situ organic and inorganic archaeological artefacts and other material was 
uncovered, indicating a sheltered environment, and 4) a bottom layer of glacial till, which 
consists of blue clay. The glacial topography consists of several small depressions, which in 
the Ertebølle and Neolithic periods would, at certain places, gradually have been filled with 
organic matter forming gyttja. 

Several hundred unpublished AMS dates from MLF906-II, including the ones 
presented in this manuscript (Supplementary Fig. 3) indicate that the area was frequented by 
people more or less continuously from the Late Mesolithic until Middle Neolithic. Continued 
artefact depositions seem to have been carried out at the site, as dates obtained from organic 
material, such as bone, antler or wood, found in small confined areas span nearly 1,000 years. 
During the earlier (Mesolithic) phase, the deposits are dominated by wild taxa, including red 
deer (Cervus elaphus ), roe deer (Capreolus capreolus ), and pig (Sus sp.), as well as ox 
(Vulpes vulpes ), otter ( Lutra lutra), and wildcat ( Felis silvestris), although large numbers of 
domestic dog ( Canis familiaris) remains have also been found5. From around 5,800 BP other 
domesticated species (e.g. Bos taurus) also start to appear, but keep being dominated by wild 
taxa (see Supplementary Fig. 3). 
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Supplementary Note 2. Radiocarbon dating 
Michael W. Dee 

Radiocarbon dating was performed on ca. 10 mg of the birch pitch, following an 
acid-base-acid pretreatment 6. First, the sample was treated with 4% HCl (80°C) and then 
rinsed to neutrality with ultra-pure water. Second, a basic solution 1% NaOH (RT) was 
applied, and the reaction vessel rinsed again to neutrality. Finally, a further acid step was 
applied using 4% HCl (80°C) to ensure no atmospheric CO2 absorbed during the alkaline 
phase remained in the reaction vessel. After a last rinse to neutrality, the product was 
thoroughly air dried. An aliquot of ca. 4 mg was then weighed into a tin capsule for 
combustion in an Elementar IsotopeCube NCS Elemental Analyser (EA). The EA was 
coupled to an Isoprime 100 Isotope Ratio Mass Spectrometer, which allowed the δ13C value 
of the sample to be measured, as well as a fully automated cryogenic system that trapped the 
liberated CO2 into an airtight vessel. The vessel was manually transferred to a vacuum 
manifold, where a stoichiometric excess of H2(g) (1: 2.5) was added, and the sample CO2(g) 
reduced to graphite over an Fe(s) catalyst. The graphite was pressed into a cathode for 
radioisotope analysis in an MICADAS IonPlus accelerator mass spectrometer. The 
MICADAS generated an estimate of the 14C:12C ratio that was close to ±1‰, and from this 
data, and in accordance with all standard operations and conventions, the 14C date (in yrs BP) 
was calculated. Thc calendar date range (years cal BP) was computed using the calibration 
program OxCal (v 4.3) 7.  

Inaccuracy in 14C dating largely arises from processes that occur before the sample 
reaches the laboratory. Misassociation of sample and context, or factors which can make 
substances ‘appear older’ such as marine/dietary reservoir effects or material reuse, are the 
most common. Enriching effects, which would cause the age to be too young, are negligible 
in the natural world. However, human error in the 14C laboratory can introduce both younger 
or older contamination. To guard against such sources of inaccuracy, the radiocarbon 
laboratory in Groningen regularly analyzes reference samples, including full pretreatments 
and measurements on materials of independently known age.  
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Supplementary Note 3. FTIR and GC-MS analysis 
Martin N. Mortensen and Mads C. Christensen 

For the FTIR analysis ca. 1 mg of sample was ground with KBr (Fischer Scientific, IR 
Grade), pressed into a pellet and measured on a Perkin Elmer Spectrum 1000 FT-IR 
spectrometer. The FTIR spectra for the Syltholm pitch and a modern birch sample are shown 
in Supplementary Fig. 4. For the GC-MS analysis, ca. 0.5 mg sample was hydrolysed in 
methanolic KOH (Merck) and extracted with GC-grade tert-Butyl methyl ether (MTBE) after 
acidification. The extract was methylated using diazomethane (Sigma-Aldrich) 8. 1 µl of this 
solution was injected on a Bruker SCION 456 GC-TQMS system equipped with a 
Programmable Temperature Vaporizer that was held at 64°C for 0.5 min, raised to 315°C at 
200°C min -1 and held at that temperature for 40 min. The split ratio was high during the first 
0.5 min and then switched to 5. The GC column was a Restek Rtx-5 capillary column (30 m, 
0.25 mm ID, 0.25 µm) and the He flow rate was 1 cm 3 min-1. The GC oven temperature was 
held at 64°C for 0.5 min, then raised to 190°C at 10°C min-1 and then onto 315°C at 4°C 
min -1 and held at that temperature for 15 min. The EI (electron ionisation) ion source was 
held at 250°C and the ionisation potential was -70 eV. The mass spectrometer was operated 
in the full scan mode from m /z  45 to m /z 800. The GC-MS chromatograms for the Syltholm 
pitch and the betulin and lupeol references are shown in Supplementary Fig. 5. 
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Supplementary Note 4. Decay rate estimate 
Morten E. Allentoft and Hannes Schroeder 

To investigate the rate of human DNA degradation in the ancient pitch sample we examined 
the DNA read length distributions of the mapped reads, using a previously published 
method9. The distribution follows a typical pattern of degraded DNA with an initial increase 
in the number of reads towards longer DNA fragments, followed by a decline. We observe 
that the declining part of the distribution follows an exponential decay curve (R2=0.99), as 
expected if the DNA had been randomly fragmented over time. Deagle et al.10 showed that 
the decay constant (λ) in the exponential equation represents the fraction of broken bonds in 
the DNA strand (the damage fraction) and that 1/λ is the average theoretical fragment length 
in the DNA library. By solving the equation, we obtain a DNA damage fraction (λ) of 3.4%, 
which corresponds to a theoretical average fragment length (1/λ) of 29 bp (Table S2). We 
note that this is not directly comparable to the observed average length, which is affected by 
lab methods and sequencing technology. If the DNA is found in a stable matrix long term 
DNA fragmentation can be expressed as a rate and the damage fraction (λ, per site) can be 
converted to a decay rate (k , per site per year), when the age of the sample is known. By 
applying an estimated age of 5,700 years for the Syltholm pitch, the corresponding DNA 
decay rate (k ) is 5,96-06 breaks per bond per year, which corresponds to a molecular half-life 
of 1,162 years for a 100 bp DNA fragment. This means that after 1,162 years (post cell 
death), each 100 bp DNA stretch will have experienced one break on average. This estimated 
rate of DNA decay for the pitch sample seems within the expected age for DNA preserved in 
a stable matrix in a temperate climate zone. For example, the rate is close to that observed in 
the La Braña sample11, preserved at similar temperatures as the pitch sample (Supplementary 
Table 2). By contrast, the DNA decay in human remains from warmer climates is much 
faster12. Although these calculations are only based on a single sample, the results suggest 
that ancient mastics provide remarkable conditions for molecular preservation. 
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Supplementary Note 5. Analysis of metagenomic reads 

Jonas Niemann and Hannes Schroeder 

Accurate taxonomic classification of complex metagenomic datasets can be challenging, 
especially if closely related species are present in the sample or as environmental 
contaminants 13. Additionally, robust classification can be complicated if reference databases 
are incomplete or sequencing effort is insufficient. A further complication is that, in some 
cases, reference databases contain poor quality genomes with contaminant sequences, which 
can lead to incorrect assignments14,15. While specific pipelines for the taxonomic 
classification of ancient metagenomic datasets have been developed 16,17, further validation is 
often necessary to exclude the possibility of false positive (misidentified) assignments. 
Methods used for validation include confirming the presence of ancient DNA damage 
patterns, evaluating edit distances, and assessing coverage distributions18,19. 

To test the robusticity of our pipelines16,17, we performed two in silico experiments 
using archaeological and environmental samples as controls. First, we ran MetaPhlan2 20 and 
MALT17 on two soil samples from the site and show that they have a completely different 
microbial composition from the ancient pitch (Fig. 4; Supplementary Data 4; Supplementary 
Data 5). We then ran Holi16 on the same controls and, using the same criteria as for the 
ancient sample, did not retrieve any reads that could be assigned to the eukaryotic taxa we 
identified in the ancient pitch (Supplementary Data 7). Second, we ran the Holi pipeline16 on 
a previously published dataset12 generated from an ancient tooth (~33 million reads with an 
average length of 69 bp) to test whether some of our results might be false positives resulting 
from reference genomes being contaminated with DNA from other species, especially human 
DNA. Using the same criteria as the ones we applied in the present study, we did not identify 
any of the taxa we identified in the ancient pitch. 
 
Independent validation of taxonomic assignments 

To validate the taxonomic assignments of the metagenomic reads recovered from the ancient 
pitch, we aligned the assigned reads to their respective reference genomes and examined the 
edit distances, coverage distributions, and post-mortem DNA damage patterns18,19. For the 
bacterial taxa identified by MALT, we chose to further investigate bacterial species with 
≥10,000 assigned reads (including strain specific reads). We then aligned the taxon-specific 
MALT extracts to their respective reference genomes that we obtained from the NCBI 
assembly database (Supplementary Data 5). The sequences were aligned using bwa aln 21 and 
PCR duplicates were removed using Picard Tools v.2.13.222. MapDamage v.2.0.9 23 was used 
to estimate deamination rates (Supplementary Fig. 8). The breadth and depth of coverage 
were calculated with bedtools  v.2.27.124 and visualised with Circos v.0.69-6 25 using a 
window size of 100 bp (Supplementary Fig. 9). Edit distances for all reads and filtered for 
PMD score ≥1 were extracted from the bam files with samtools view21 and PMDtools 26 and 
plotted in R v.3.4.1 27 (Supplementary Fig. 10). The negative difference proportion (-Δ%) was 
calculated using only reads with PMD score ≥1. This metric was first introduced by Hübler et 
al. 19 and is a measure of the decline in the edit distance distribution, with a -Δ% value of 1 
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indicating a strictly declining distribution. Correct taxonomic assignments generally result in 
a continuously declining edit distance distribution, which reflects the fact that most of the 
aligned reads show no or only few mismatches, mostly resulting from aDNA damage or 
divergence of the ancient genome from the modern reference. By contrast, mapping to an 
incorrect reference tends to result in an increased number of mismatches, which is reflected in 
the edit distance distribution19. For the microbial taxa, we report species-specific assignments 
with a -Δ% value >0.8 to account for the possibility of cross-alignments due to horizontal 
gene transfer and the presence of closely related microbial species in the sample. 

The Human Oral Microbiome Database (HOMD) was referred to in order to classify 
bacterial species as belonging to the human oral/respiratory microbiome or as environmental. 
Of the 64 most abundant bacterial species identified in the ancient pitch (Supplementary Data 
5), four are known contaminants originating from lab reagents (Delftia spp.), which are also 
evident in the extraction blanks (Supplementary Data 5), while seven (Pseudomonas stutzeri, 
Hydrogenophaga sp.  RAC07, Leptospira alstonii , Ramlibacter tataouinensis , Thalassolituus 
oleivorans , Achromobacter spanius , Pseudomonas aeruginosa) are likely derived from the 
environment. None of these 11 species showed the characteristic damage patterns of ancient 
DNA and were, therefore, not included in further analyses. The remaining 53 bacterial 
species are predominantly found in the oral cavity and the upper respiratory tract (see Table 
1; Supplementary Data 5).  

Among the viral species identified we chose to further authenticate reads assigned to 
the Epstein-Barr virus (Human gammaherpesvirus 4) (Supplementary Fig. 11), since it is the 
only non-bacteriophage viral taxon to which ≥200 reads were assigned. Viruses have 
considerably smaller genomes than bacteria and were therefore subject to a lower threshold of 
assigned reads. 

The plant and animal taxa identified by Holi16 were validated by evaluating sequence 
identity through edit distance distributions, evenness of coverage, and the presence of 
post-mortem DNA damage patterns as described above after extracting family level reads for 
each taxon and aligning them to their respective reference genome. For taxa with low 
coverage, we used bedtools24 to calculate the proportion of mapped bases with a coverage 
>1× as an alternative way of assessing evenness of coverage (Supplementary Data 7). Using 
these criteria, we identified four taxa (Anas platyrhynchos, Anser cygnoides, Betula pendula, 
Corylus avellana ) which showed characteristic ancient DNA damage patterns and a strictly 
declining edit distance distribution (Supplementary Fig. 12-14 and Supplementary Data 6). 
However, further analysis using mitochondrial (mtDNA) genomes as reference yielded only 
291 reads aligning to the A. cygnoides  mtDNA in contrast to 2,541 for the A. platyrhynchos 
(mallard) mtDNA, with >99% of bases covered and nearly 10× average depth of coverage 
(Supplementary Data 6). Furthermore, the edit distance distribution for the A. cygnoides 
mtDNA (Supplementary Fig. 13) is not declining, suggesting a poor match. We therefore 
excluded A. cygnoides as a likely false positive assignment. 

As a further validation step and to assess whether reads from multiple taxa might have 
been misassigned to a single species, we examined the number of multiallelic sites in the 10× 
haploid mallard mtDNA. In haploid genomes (i.e. bacterial genomes or mtDNA), the vast 
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majority of variable sites should be monoallelic, so that a large number of multiallelic sites 
might be indicative of multiple species or strains being present13. To assess the allele 
frequency distribution for the 10× mallard mtDNA, we rescaled the base qualities of the 
mallard mtDNA reads according to their likelihood of being damaged using mapDamage 
v.2.0.923 and called variants using samtools 21 mpileup function using a minimum depth of 10. 
The allele frequency distribution follows a normal distribution with a mean of ~0.5 indicating 
the presence of two haplotypes (Supplementary Fig. 15). This was confirmed by visual 
inspection of the alignment in IGV v.2.3.9 28. However, rather than indicating the presence of 
two different taxa, we believe that this might indicate the presence of two individuals and it is 
not inconceivable that two or more individuals were consumed. This is supported by the fact 
that the only other Anatidae species with a significant number of reads identified by Holi16 
was the swan goose ( A. cygnoides). However, as discussed above, we excluded this taxon 
based on the poor level of sequence identity with the A. cygnoides mtDNA as evident in the 
edit distances (Supplementary Fig. 13). We were unable to evaluate haploidy for the two 
plant taxa ( Betula pendula and Corylus avellana) since the depth of coverage of the 
chloroplast DNA was too low.  

We also identified 3,213 reads that could be assigned to the human endoparasite 
Spirometra erinaceieuropaei  (tapeworm). However, although the reads appear to be ancient, 
coverage was not even (>60% of mapped bases >1× despite an average depth of coverage of 
only 0.000025×) suggesting that they are likely false positive alignments perhaps due to the 
presence of contaminant (human) sequences in the reference (Supplementary Data 7). Recent 
studies15 have shown that public genome assemblies of parasitic worms can be contaminated 
with DNA from the host species, other species that are commensal in the host, or laboratory 
contaminants, highlighting the need for curating public reference genome databases 29. 

Lastly, we acknowledge that it is possible that some of the eukaryotic taxa we report 
(e.g. mallard) may have come from the environment as opposed to the diet. However, since 
the vast majority of the DNA we retrieved from the ancient pitch appears to be endogenous 
(i.e. either human or from the oral cavity), we find this to be unlikely and we believe that it is 
more likely that the taxa we report derived from the diet. 
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Supplementary Figure 1. a, Map of Denmark showing the location of Syltholm on the 
island of Lolland (map created using data from Astrup 30). b, GIS site plan of the excavation 

and findspot of the birch pitch. c, photograph of the birch pitch. 
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Supplementary Figure 2.  Close-up photograph of the Syltholm pitch. 
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Supplementary Figure 3.  Radiocarbon chronology for Syltholm site MLF906-II based on a 
series of 17 calibrated radiocarbon dates, including the birch pitch (marked in red). Samples 

from domesticated species are marked in yellow.  
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Supplementary Figure 4. FT-IR spectra of the Syltholm pitch and a modern birch sample. 
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Supplementary Figure 5. GC-MS chromatograms of the Syltholm sample (back), betulin 

reference (middle) and lupeol reference (front). 
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Supplementary Figure 6.  MapDamage 23 plots for reads mapping to the human reference 
genome (hg19), by library. 
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Supplementary Figure 7.  D-statistics of the form D (Yoruba, EHG/Barcın; X, WHG) testing 
whether “ X” forms a clade with WHG to the exclusion of EHG and Neolithic farmers 

(represented by Barcın), respectively. Error bars show three block-jackknife standard errors. 
Data are shown in Supplementary Tables 7 and 8. 
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Supplementary Figure 8.  MapDamage 23 plots for bacterial taxa with >10,000 assigned reads 
recovered from the Syltholm pitch.  

17/38 

https://paperpile.com/c/p2IXq9/Hh9lR


 

 

Supplementary Figure 8 ctd.  MapDamage 23 plots for bacterial taxa with >10,000 assigned 
reads recovered from the Syltholm pitch. 
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Supplementary Figure 9. Coverage plots for bacterial taxa recovered from the Syltholm 
pitch.  
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Supplementary Figure 9 ctd. Coverage plots for bacterial taxa recovered from the Syltholm 
pitch.  
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Supplementary Figure 10.  Edit distance distributions of all reads (blue) and reads filtered 
for post-mortem damage (PMD≥1) (red) for bacterial taxa with >10,000 assigned reads 

recovered from the Syltholm pitch.  
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Supplementary Figure 10 ctd.  Edit distance distributions of all reads (blue) and reads 
filtered for post-mortem damage (PMD≥1) (red) for bacterial taxa with >10,000 assigned 

reads recovered from the Syltholm pitch.  
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Supplementary Figure 11. MapDamage 23 plot (a), edit distance distribution (b), and 
coverage plot (c) for reads mapping to Epstein-Barr virus. 
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Supplementary Figure 12. MapDamage 23 plots for reads mapping to Metazoa (animals) and 
Viridiplantae (plants) in the ancient pitch sample. Note the absence of characteristic ancient 
DNA damage patterns for poplar ( Populus euphratica) , starlet sea anemone (Nematostella 
vectensis) and barley (Hordeum vulgare ). 
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Supplementary Figure 13. Edit distance distributions of all reads from the ancient pitch 
assigned to Metazoa (animals) and Viridiplantae (plants). Reads filtered for post-mortem 
damage (PMD≥1) are shown in red. 
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Supplementary Figure 14. Coverage plots for eukaryotic taxa in the ancient pitch sample 
with more than 100 reads aligning to the chloroplast/mitochondrial genome. For poplar 
(Populus euphratica) , starlet sea anemone (Nematostella vectensis)  and the tapeworm 
(Spirometra erinaceieuropaei ) no fragment aligned to its cpDNA or mtDNA, while for barley 
(Hordeum vulgare ) only 15 fragments aligned to its cpDNA. The gaps in the chloroplast 
DNA (cpDNA) represent inverted repeats, which are very similar to each other, although not 
completely identical. 
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Supplementary Figure 15.  Allele frequency distribution of single nucleotide variants in the 
10× mallard ( A. platyrhynchos ) mtDNA genome recovered from the ancient pitch. The 

symmetric distribution suggests the presence of two haplotypes present in equal abundance. 
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Supplementary Figure 16.  The number of virulence genes identified in the ancient pitch 
sample and five human oral microbiome samples from the HMP31. 
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Supplementary Table 1. Screening results for six different DNA extracts from the Syltholm 
pitch, extraction blank, and two soil control samples from the site. 

sample weight method yield (ng)1 
hg19 

reads2 
% 

dupl.3 % end.4 
fragment 
length5 

C-T 5’ 
(%)6 

1 54 mg 1 4.7 449,096 9.1 3.7 56.1 17.4 

2 52 mg 1 17.3 2,189,982 44.1 24.1 55.4 10.4 

3 44 mg 2 6.8 2,754,931 6.3 56.5 59.9 15.0 

4 48 mg 2 6.1 3,895,487 9.0 55.1 59.8 17.0 

5 32 mg 3 0.3 63,390 57.8 1.6 62.3 19.3 

6 24 mg 3 0.3 144,681 46.5 4.3 64.5 18.5 

Control 1 ~2 g 2 61.4 450 46.4 <0.1 50.8 18.8 

Control 2 ~2 g 2 58.2 401 50.2 <0.1 46.0 8.3 

NTC N/A 2 N/A 140 72.0 0.5 57.1 13.9 
1Total DNA yields (ng) measured using the Agilent 4200 TapeStation; 2Number of reads that could be uniquely mapped to 
the human reference genome (hg19) after removing duplicates; 3Fraction of duplicate reads in the sample (in percent); 
4Endogenous human DNA content (in percent); 5Average fragment length (in bp); 6Deamination rate at 5’ ends of DNA 
fragments (in percent) 
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Supplementary Table 2. Deep-sequencing results for the Syltholm pitch. 

hg19 reads1 
end.  

content2 
fragment 
length3 C-T 5’4 

mtDNA 
contamination5 >1X6 DoC7 mtDNA hg8 

120,585,267 31.2% 59.9 bp 16.2% 1-3% 78.9% 2.3x K1e 
1Number of reads that could be uniquely mapped to the human reference genome (hg19) after removing duplicates and 
filtering for mapping quality (MAPQ ≥30); 2Endogenous human DNA content (in percent); 3Average fragment length (in 
bp); 4Deamination rates at 5’ ends of DNA fragments (in percent); 5MtDNA based contamination estimates determined using 
Schmutzi34; 6Genome coverage (in percent); 7Average depth of genome coverage; 8Mitochondrial DNA haplogroup.  
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Supplementary Table 3. Molecular decay rates ( k, per site per year) for the Syltholm 
genome and other previously published ancient genomes from different contexts 11,12,32,33. 

 Sample Age (yrs BP) Temp. (°C) λ k k, 100 bp half-life (yrs), 100 bp 
Taino (The Bahamas) 1,000 20 0.016 1.60-05 1.60-03 434 
Syltholm (Denmark) 5,700 8.5 0.034 5.96-06 5.96-04 1,162 
La Braña (Spain) 7,500 8.1 0.033 4.40-06 4.40-04 1,576 
Kennewick (WA, USA) 9,000 12.5 0.017 1.89-06 1.89-04 3,670 
Anzick (MT, USA) 12,785 4.8 0.018 1.41-06 1.41-04 4,916 
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Supplementary Table 4. F-statistics of the form f4(Yoruba, X; EHG, WHG) measuring the 
amount of shared genetic drift between different ancient genomes ( X), EHG and WHG. 

Pop2 (X) f4-stat SE Z BABA ABBA SNPs 

Syltholm 0.011917 0.000698 17.063 6,281 4,903 115,687 

La Braña 0.012022 0.000525 22.894 29,695 23,219 538,716 

Hum1 -0.001431 0.000644 -2.224 9,966 10,262 207,167 

Hum2 -0.001152 0.000592 -1.947 26,029 26,646 536,119 

Steigen -0.001494 0.000565 -2.645 20,418 21,047 421,170 

Motala1 0.00216 0.000575 3.755 17,719 16,950 355,954 

Motala2 0.003681 0.000546 6.747 22,397 20,771 441,690 

Motala3 0.002856 0.000529 5.396 13,191 12,427 267,396 

Motala4 0.003171 0.000578 5.484 22,361 20,955 443,456 

Motala6 0.002229 0.000554 4.023 18,922 18,073 380,891 

Motala12 0.002848 0.000545 5.223 25,448 24,005 506,761 
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Supplementary Table 5. F-statistics of the form f4(Yoruba, X; NEO, WHG) measuring the 
amount of shared genetic drift between different ancient genomes ( X), WHG, and Neolithic 
farmers (represented by Barcın). 

Pop2 (X ) f4-stat SE Z BABA ABBA SNPs 

Syltholm 0.019419 0.000586 33.11 7,292 4,941 121,065 

La Braña 0.017952 0.000436 41.145 34,006 23,859 565,167 

Motala1 0.012127 0.000476 25.488 20,388 16,010 361,017 

Motala2 0.013533 0.000425 31.864 25,789 19,700 449,904 

Motala3 0.011315 0.00042 26.961 14,803 11,765 268,527 

Motala4 0.012719 0.000444 28.662 25,548 19,828 449,704 

Motala6 0.012387 0.000425 29.156 21,691 16,930 384,398 

Motala12 0.012751 0.000426 29.936 29,548 22,926 519,374 

Ajvide52 0.010292 0.0007 14.711 3,011 2,450 54,498 

Ajvide53 0.009491 0.001117 8.5 920 764 16,417 

Ajvide58 0.009906 0.000441 22.476 29,847 24,550 534,726 

Ajvide70 0.01018 0.00057 17.861 5,297 4,330 95,022 

Ire8 0.009695 0.000916 10.588 1,315 1,082 23,981 

Gökhem2 0.000697 0.000428 1.629 21,220 20,929 418,556 

Gökhem4 0.001914 0.000943 2.029 1,078 1,038 20,804 

Gökhem5 0.001455 0.001157 1.258 704 685 13,614 

Gökhem7 0.00348 0.001569 2.218 378 351 7,621 

Stuttgart -0.004073 0.000368 -11.065 26,734 29,024 562,246 
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Supplementary Table 6. Admixture proportions based on qpAdm35 analysis, specifying 
western hunter-gatherers (WHG), eastern hunter-gatherers (EHG), and Neolithic farmers 
(Barcın) as ancestral source populations. 

test population 
reference 

population 
admixture 
proportion n SNPs chi square tail prob 

Bichon (LP) 
WHG 1.000 

374,266 3.52 0.74 EHG 0.000 
Barcın 0.000 

Rochedane (LP) 
WHG 1.000 

113, 744 6.72 0.35 EHG 0.000 
Barcın 0.000 

La Braña (M) 
WHG 1.000 

538,715 7.15 0.31 EHG 0.000 
Barcın 0.000 

Loschbour (M) 
WHG 1.000 

544,933 9.79 0.13 EHG 0.000 
Barcın 0.000 

Ranchot (M) 
WHG 1.000 

200,185 4.02 0.67 EHG 0.000 
Barcın 0.000 

Syltholm 
WHG 1.000 

115,800 6.34 0.39 EHG 0.000 
Barcın 0.000 

Karelia (M) 
WHG 0.000 

294,370 11.15 0.08 EHG 1.000 
Barcın 0.000 

Samara (M) 
WHG 0.000 

294,370 11.15 0.08 EHG 0.100 
NF 0.000 

NorwayHG (M) 
Barcın 0.441 

558,124 3.10 0.68 EHG 0.559 
Barcın 0.000 

Latvia (M) 
WHG 0.697 

560,151 4.49 0.48 EHG 0.303 
Barcın 0.000 

BalticHG (M) 
WHG 0.649 

562,935 3.46 0.63 EHG 0.351 
Barcın 0.000 

Motala (M) 
WHG 0.593 

545,689 4.83 0.44 EHG 0.407 
Barcın 0.000 

PWC (EN) 
WHG 0.780 

523,969 3.14 0.68 EHG 0.220 
Barcın 0.000 

Gökhem (EN) 
WHG 0.175 

407,865 2.68 0.75 EHG 0.000 
Barcın 0.825 

Iberia (EN) 
WHG 0.180 

557,569 2.98 0.70 EHG 0.000 
Barcın 0.820 

LBK (EN) 
WHG 0.162 

563,150 2.61 0.76 EHG 0.000 
Barcın 0.838 

GAC (EN) 
WHG 0.293 

563,197 9.72 0.08 EHG 0.000 
Barcın 0.707 
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Supplementary Table 7. D-statistics of the form D (Yoruba, EHG; X, WHG) testing whether 
“ X” forms a clade with WHG to the exclusion of EHG.  

Pop3 (X ) D -stat SE Z BABA ABBA SNPs 

Sylthom -0.0173 0.007118 -2.432 4,736 4,903 115,687 

La Braña 0.006 0.005081 1.176 23,498 23,219 538,716 

Motala1 -0.0461 0.005356 -8.611 15,456 16,950 355,954 

Motala2 -0.0475 0.005144 -9.232 18,888 20,771 441,690 

Motala3 -0.0396 0.005355 -7.387 11,481 12,427 267,396 

Motala4 -0.043 0.005249 -8.19 19,228 20,955 443,456 

Motala6 -0.0522 0.005122 -10.192 16,280 18,073 380,891 

Motala12 -0.0466 0.004941 -9.427 21,868 24,005 506,761 

SBj -0.0387 0.006137 -6.308 7,622 8,236 174,952 

SF9 -0.0315 0.005791 -5.44 12,895 13,734 293,510 

SF11 0.0071 0.007857 0.91 3,261 3,214 69,375 

SF12 -0.0513 0.005394 -9.516 24,421 27,064 561,611 

Hum1 -0.0443 0.006341 -6.99 9,391 10,262 207,167 

Hum2 -0.0538 0.005228 -10.299 23,924 26,646 536,119 

Steigen -0.0605 0.00524 -11.544 18,646 21,047 421,170 
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Supplementary Table 8. D-statistics of the form D (Yoruba, Barcın; X , WHG) testing 
whether “ X” forms a clade with WHG to the exclusion of Neolithic farmers (represented by 
Barcın).  

Pop3 (X ) D -stat SE Z BABA ABBA SNPs 

Syltholm 0.0013 0.004313 0.307 4,954 4,941 121,065 

La Braña 0.0054 0.003145 1.716 24,118 23,859 565,167 

Ajvide52 -0.0008 0.005938 -0.128 2,447 2,450 54,498 

Ajvide53 -0.016 0.009548 -1.673 740 764 16,417 

Ajvide58 -0.0066 0.003166 -2.08 24,229 24,550 534,726 

Ajvide70 -0.0066 0.004872 -1.361 4,273 4,330 95,022 

Ire8 -0.0032 0.00813 -0.395 1,075 1082 23,981 

Gökhem2 -0.043 0.003261 -13.183 19,203 20,929 418,556 

Gökhem4 -0.0474 0.008241 -5.749 944 1,038 20,804 

Gökhem5 -0.04 0.010509 -3.809 632 685 13,614 

Gökhem7 -0.0341 0.012892 -2.648 328 351 7,621 

Motala1 0.0005 0.003661 0.145 16,027 16,010 361,017 

Motala2 -0.0006 0.00322 -0.19 19,676 19,700 449,904 

Motala3 -0.005 0.003485 -1.445 11,647 11,765 268,527 

Motala4 -0.0009 0.003462 -0.255 19,793 19,828 449,704 

Motala6 -0.0026 0.003151 -0.833 16,841 16,930 384,398 

Motala12 -0.0003 0.003127 -0.093 22,912 22,926 519,374 

Stuttgart -0.0506 0.003118 -16.231 26,228 29,024 562,246 
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Scientific conclusions 

 

 
During the course of my PhD I used a variety of bioinformatic approaches to analyse 

the DNA from substrates that differ significantly in age and provenance, covering some of the 

most common themes in current palaeogenomics. The following sections summarise some of 

the innovative aspects of each of the chapters. 

 

Chapter 2 explores the enigmatic population history of the extinct Honshū wolves. We 

made the surprising discovery that the Honshū wolf genome closely resembles that of Late- 

Pleistocene Siberian wolves, a lineage that was believed to have gone extinct around the 

Pleistocene-Holocene transition. Instead, our results suggest that some Late-Pleistocene 

Siberian wolves survived as a relict population on the Japanese archipelago and that their 

descendants only went extinct approximately 100 years ago. We furthermore detected 

significant dog introgression in the Honshū wolf genome, it is unclear however how 

representative this is for Honshū wolves before the drastic population decline in the 19th 

century. 

 

In Chapter 3 we investigated the microbial DNA preservation in fluid-preserved 

specimens. We were able to reconstruct the microbiome of one historical razorbill specimen, 

showcasing for the first time the yet untapped potential of analysing historical microbiomes 

from “wet” collections. Furthermore we identified fish DNA in one of the samples, indicating 

that it is possible to extract dietary DNA from fluid-preserved specimens. The DNA 

preservation of the microbiome of most of the specimens proved to be very poor however and 

the the majority of the samples were heavily contaminated with unknown contamination origin, 

therefore further research is needed to maximise the potential of this substrate. 

 

Chapter 4 combines the population genomic and metagenomic aspects of Chapter 2 and 

Chapter 3, where we analysed the DNA present in a 5,700 year old chewed birch bark pitch. 

The DNA proved very well preserved, allowing the identification of numerous oral microbes 

and eukaryotic taxa, which are in all likelihood derived from the mastic material itself or a 

recent meal, as well as the reconstruction of an ancient human herpesvirus 4. The human DNA 

also provided valuable insight into the population of Late Mesolithic/Early Neolithic Denmark, 
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as our results indicate that the female who chewed the birch bark pitch, who we dubbed Lola, 

only has Western hunter-gatherer ancestry. This suggests that during this time point of the 

Mesolithic-Neolithic transition neither Neolithic farmers nor Eastern hunter-gatherers had a 

significant genetic contribution to her lineage.  

 

In summary, this dissertation has not only advanced the field of palaeogenomics with 

the new discoveries on Siberian Pleistocene and Honshū wolves, but also demonstrated that 

two novel materials are viable substrates for metagenomic analyses on the microbiome and diet 

of past organisms. I furthermore identified some key challenges of ancient and historical 

metagenomic analyses, such as contaminated reference genomes, laboratory contaminants, and 

false positive assignments. I therefore developed an authentication framework to validate the 

metagenomic assignments that can be employed in future studies on ancient microbiomes. 
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Challenges and future perspectives 

 
Honshū wolf 

 
One unexpected finding of the second chapter was the large contribution of 

Japanese dogs to the Honshū wolf genome. While this shed some light on the occurrence of 

hybridisations between the two populations, it also turned out to be highly problematic for the 

characterization of introgression from the Honshū wolf to the Japanese dog, as any shared 

genomic regions could either originate from the “pure” Honshū wolf or the dog heritage of the 

individual. This is not an unusual problem for genomic studies on dogs and wolves, where the 

distinctions between breeds and populations are especially complicated and poorly defined. 

Many of the samples in our reference panel were admixed with wolves, dogs, and coyotes from 

other populations, which complicated the interpretation of the results as it required a more in-

depth knowledge of the genetic makeup of the individuals. For the haplotype-aware methods 

we therefore used the clustering based on the phased genotypes to define populations instead 

of relying on the location or breed information.  

The discovery that the Honshū wolf is very closely related to Late Pleistocene 

Siberian wolves raises several questions that should be addressed in future studies. One yet 

unanswered question of Chapter 2 is the exact contribution of the Honshū wolves to modern 

Japanese dogs. Given the ancient legacy of the Honshū wolf, it would be of great interest to 

identify traits that Japanese dog breeds, such as the Akita, Shiba Inu, and Kishu, inherited from 

the unique Honshū wolves and therefore discern them from non-Japanese dog breeds. In order 

to identify such traits and describe past admixture events between Honshū wolves and Japanese 

dogs, a much larger reference panel of Honshū wolves, modern, and, if possible, ancient 

Japanese dogs is required. 

Chapter 2 also makes the enigmatic wolf population that was domesticated, and 

that modern dogs descend from, a subject of discussion. While our results indicate that the 

Honshū wolves were probably not the ancestors of all modern dogs, another wolf subspecies 

that was endemic to Japan, the Ezo wolf, could be the answer to the long-standing mystery of 

the missing wolf population. We generated sequences of the Ezo wolf to test whether it could 

be ancestral to modern dogs and Eurasian wolves, but the genomic data generated, equivalent 

to a nuclear coverage of 0.4✕, turned out to be too low to obtain conclusive results on its heritage 

and was therefore not included in the manuscript. However, we recently resequenced the sample, 
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thereby increasing the coverage significantly, and were furthermore fortunate enough to gain 

access to several additional Ezo wolf skulls for genomic studies, paving the way to gather 

exciting new insights into the wolf and dog evolution. 

 It is an exciting time to analyse ancient DNA datasets. The ground-breaking advances in 

sequencing technology result in an ever-growing number of publicly available ancient and 

historical genomes. Until recently, the study of ancient genomes were mostly limited to the 

sequenced individual itself, but the steadily increasing size of reference panels and therefore 

refined representation of ancient and historical communities enables a much more robust and in-

depth analysis on population level with sometimes surprising outcomes, such as the strong 

Pleistocene heritage of the Honshū wolf and the pure Western hunter-gatherer ancestry of “Lola” 

during the period of Neolithization across Europe in this dissertation. The significant 

improvements of bioinformatic pipelines have been especially pivotal, and it can be expected that 

new breakthroughs in the coming years will see progress in areas that are still in their infancy, 

such as the accuracy and breadth of phenotype prediction. 

 

Ancient and historical metagenomics 

 

The field of ancient metagenomics is especially rapidly evolving, and the last years 

demonstrated the true value of analysing the metagenome of ancient and historical materials, 

such as the inference on past pandemics and foodstuffs. While dental calculus and coprolites 

are the most common substrates in ancient metagenomic studies, research on microbial and 

non-host eukaryotic aDNA extracted from alternative materials is still underdeveloped. This 

dissertation showcases the potential of using fluid-preserved specimens and birch bark pitch as 

substrates for ancient and historic metagenomic studies, yielding particular insights that are 

unobtainable with dental calculus, sediment, and coprolites. Dental calculus for example 

contains DNA from the oral microbiome and diet that accumulated in the plaque matrix over 

decades, while the metagenome of birch bark pitch resembles a snapshot of the DNA present 

in the mouth of the time when the pitch was chewed. Fluid-preserved specimens on the other 

hand present the unique opportunity to study the historical microbiome and diet from 

specimens that either do not preserve under any other conditions, such as soft-bodied 

organisms, or are only present in “wet” collections now as they have gone extinct in the wild. 

It will be interesting to see what other materials are an unexpected source of 

metagenomic data and can thus be used to inform the lifestyle and health of organisms in the 

past. 
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Chewed birch bark pitch 

 

Aside from the remarkable preservation of the human DNA, the chewed birch bark 

pitch also turned out to be a rich source of DNA with microbial and dietary origin. Highly 

uncommon for ancient metagenomic substrates, we could not authenticate taxa that are clearly 

derived from the environment and the microbial profile closely resembles those of human oral 

microbiomes, making it a very promising substrate for future metagenomic studies. Some 

laboratory reagent contaminants, however, proved to be in high abundance in the sequences, 

but could be quickly identified as non-endogenous due to the lack of DNA damage patterns. 

An unexpected consequence of the contamination with the laboratory reagent contaminant 

Delftia spp. was the large number of misassigned sequences to the Tibetan antelope 

(Pantholops hodgsonii) reference genome, which in turn turned out to be heavily contaminated 

with Delftia spp. DNA. In the same vein did we identify several scaffolds of the American 

bison (Bison bison) and the tapeworm Spirometra erinaceieuropaei reference genomes that 

were contaminated with human DNA, leading to thousands of sequences being incorrectly 

assigned to both species. 

Disentangling the assignments of closely related species was a further obstacle we faced 

while interpreting our results. For instance, our findings paint a picture of a complex mixture 

of different Streptococci being present in the chewed birch pitch. The high homology among 

Streptococci however led to a large number of misassigned reads within the Streptococcus 

clade. The most probable cause is the relatively short read length combined with various other 

factors, for example that fast-evolving taxa are ancestral to multiple species in the database, 

have gone extinct, or are misassigned due to horizontal gene transfer or considerable changes 

of the genome with the passage of time. These issues are common for all ancient reference- 

based studies and will be difficult to overcome. Assembly-based approaches can aid in 

reconstructing the genomes of past organisms, but are often limited to relatively well preserved 

DNA data.  

The exceptional DNA preservation and low abundance of contaminant taxa suggest that 

birch bark pitch is an excellent substrate for both human DNA and the ancient oral microbiome. 

However it remains to be seen whether this is characteristic for the material or is rather a 

fortunate consequence from external factors, such as the unique attributes of the archaeological 

site. I am part of further genomic studies on several more birch bark mastics, where we hope 

to recover well-preserved human as well as microbial and non-human eukaryotic DNA. Aside 

from conducting the analyses described in this dissertation, we will also introduce a 
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metaproteomic approach. Not only can this provide additional confirmation for some of the 

metagenomic assignments, but the identification of peptides can furthermore inform on the 

tissue origin of the eukaryotic DNA. In the context of our findings from Chapter 4, for instance, 

a metaproteomic approach could have been used to distinguish between mallard eggs and 

mallard meat as a source for the mallard DNA. Finally, the analysis of several samples from 

the same archaeological site furthermore allows kinship analyses as well as providing a more 

reliable inference on the lifestyle and ancestry of the community. 

 

 

Fluid-preserved collections - a treasure trove for historical microbiomes? 

 

Despite the fact that the seabirds analysed in Chapter 3 have lived and died thousands 

of years after “Lola” chewed the birch bark pitch, the DNA preservation transpired to be 

extremely poor for five out of the six fluid-preserved specimens. This greatly impeded the 

authentication of the microbial assignments, and the survival of gut microbial DNA could only 

be confirmed for one of the specimens - a razorbill that was collected in 1916. We were unable 

to identify the exact reasons for the disparities in DNA preservation, but it seems probable that 

the preservation practice and especially the use of preservatives has the largest effect on the 

DNA degradation. 

Another marked difference between the results of Chapter 3 and Chapter 4 is the 

overwhelming dominance of one microbial species, Catellicoccus marimammalium, in the gut 

and stomach of one of the historical razorbills. The reference genome of Catellicoccus 

marimammalium is incomplete, i.e. consists of contigs as opposed to a single continuous 

sequence. In reference-based metagenomics it is common practice to restrict the database to 

complete genomes, which, if implemented in this study, would have resulted in millions of 

Catellicoccus marimammalium sequences being misassigned or not being assigned at all, 

culminating in spurious interpretations of the only specimen with good DNA preservation. 

While in metagenomic studies it is certainly improbable for all sequences to be aligned correctly 

and the inclusion of incomplete genomes come with their own challenges, researchers should be 

aware that they can miss out on critical taxa if they impose too many restrictions on their 

databases. While we could demonstrate that it is possible to recover the original microbiome 

of fluid-preserved specimens, more research is necessary to a priori predict the success rate of 

extracting endogenous microbial DNA from a specimen. This includes but is not limited to 

characterising the microbiome of preservation liquids, identifying markers that could indicate 
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the past use of formaldehyde, and preserving specimens with different preservation strategies 

and observing the microbial DNA yield before and after preservation.  

One limitation of the study is that all fluid-preserved specimens that were investigated 

are seabirds and the results might therefore not translate well to other fluid-preserved samples. 

These relatively large-bodied animals are especially difficult to preserve due to the long time 

it takes for the preserving liquid to permeate through all tissues, and it was therefore 

recommended in the past to inject larger specimens with formaldehyde. Further studies on 

smaller organisms that were commonly killed by submerging them in the preservative liquid 

and where the use of formaldehyde was not as prevalent might reveal a much higher success 

rate for microbial DNA preservation.  

As we only succeeded in recovering the microbiome of one specimen, we were unable 

to obtain conclusive results on whether the original microbiome can be retrieved from different 

body sites of fluid-preserved samples. A follow-up study that investigates the survival of highly 

distinct microbial communities, such as the skin, oral, and gut microbiomes, would therefore 

inform on how the process of fluid-preservation impacts the boundaries between the organism’s 

microbial communities. 
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SUMMARY

The evolutionary history of the wolf-like canids of the
genus Canis has been heavily debated, especially
regarding the number of distinct species and their re-
lationships at the population and species level [1–6].
We assembled a dataset of 48 resequenced genomes
spanning all members of the genus Canis except the
black-backed and side-striped jackals, encompass-
ing the global diversity of seven extant canid lineages.
This includes eight new genomes, including the first
resequenced Ethiopian wolf (Canis simensis), one
dhole (Cuon alpinus), two East African hunting dogs
(Lycaon pictus), two Eurasian golden jackals (Canis
aureus), and two Middle Eastern gray wolves (Canis
lupus). The relationships between the Ethiopian
wolf, African golden wolf, and golden jackal were
Current Biology 28, 3441–3449, Nove
This is an open access article under the CC BY-N
resolved. We highlight the role of interspecific hybrid-
ization in the evolution of this charismatic group. Spe-
cifically, we find gene flow between the ancestors of
the dhole and African hunting dog and admixture be-
tween the gray wolf, coyote (Canis latrans), golden
jackal, and African golden wolf. Additionally, we
report gene flow from gray and Ethiopian wolves to
the African golden wolf, suggesting that the African
golden wolf originated through hybridization between
these species. Finally, we hypothesize that coyotes
and gray wolves carry genetic material derived from
a ‘‘ghost’’ basal canid lineage.

RESULTS AND DISCUSSION

The genome dataset analyzed in this study contains 12 gray

wolves and 14 dogs, chosen from regions overlapping the
mber 5, 2018 ª 2018 The Authors. Published by Elsevier Ltd. 3441
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Map Showing the IUCN Ranges, Range Overlaps, and Sampling Locations of the Canids Included in This Study

The overlaps in ranges are shown in blended colors (orange, dark purple, dark olive green, light teal, etc.). Since IUCN does not have range information for African

golden wolf, the IUCN range of golden jackal has been split in two; the Eurasian part is shown as the range of golden jackal, and the African part is shown as the

range of African golden wolf. Further details on the samples, including their sampling location and source, can be found in Data S1, and their estimated

heterozygosities—which are inversely proportional to their population sizes—are shown in Figure S1.
current ranges of the other basal canids included in this study,

five coyotes, one Ethiopian wolf, three golden jackals, six African

golden wolves (originally Canis anthus, but recently reclassified

as Canis lupaster [1]), two dholes, four African hunting dogs,

and one Andean fox (Lycalopex culpaeus) (Figure 1). Short-

read sequencing of the samples and subsequent alignment to

the recently published wolf genome assembly [7] resulted in

genome-wide coverages ranging from 0.6–26.63 (for details,

see Data S1). The genome-wide heterozygosity estimates

(Figure S1) clearly show reduced levels in the Ethiopian wolf,

African hunting dog, and dhole, an observation that is consistent

with their small population sizes. The reconstructed phyloge-

netic relationships within this group of canids (Figure 2B) are of

considerable relevance in light of extensive prior debate on the

relationships between the Ethiopian wolf, golden jackal, and

African golden wolf [2–5]. Our results corroborate the recent

proposition based on both mitochondrial [2, 3] and nuclear

[4, 6] data that the African golden wolf is evolutionarily distinct

from the golden jackal (Figure 2C, panel labeled 16), but also

that the Ethiopian wolf falls basal to both (Figure 2C, panel

labeled 12) [5]. For convenience, we henceforth refer to five canid

species, viz. the Ethiopian wolf, African golden wolf, golden

jackal, gray wolf, and coyote, as ‘‘the crown group’’ in order to

distinguish them from the more basal dholes and African hunting

dogs. The placement of the Ethiopian wolf as the basal group in

this clade is consistent with tree topologies obtained in previous

phylogenetic analyses based on concatenated gene sequences

[5] andmore recent multispecies coalescent analyses [4] of data-

sets consisting of a subset of exonic and intronic sequences, but

differs from the topology based on concatenated analyses in the

latter study. We note that this nuclear-DNA-based phylogeny

also places dogs as a sister clade to European gray wolves.

However, we caution that this placement has only moderate
3442 Current Biology 28, 3441–3449, November 5, 2018
support (0.86 mean local posterior probability); moreover, the

gene tree quartet frequencies of alternate resolutions within the

dog-gray wolf branches are comparable to that recovered in

the main tree (Figure 2B, panel labeled 20–22), and thus no

conclusion can be drawn about which wolf population gave

rise to dogs. Indeed, our findings are not incompatible with pre-

viously suggested hypotheses [9] that either (1) the dog was

domesticated from a now-extinct wolf population and/or (2)

Eurasian gray wolf population genomic diversity has been

reduced since the domestication event.

Mitochondrial genomes were de novo assembled from all

species studied, using MtArchitect [10], which accounts for

presence of numts in the reference genome. A maximum-likeli-

hood phylogeny based on these mitochondrial genomes (Fig-

ure 2A) is largely consistent with that obtained from the nuclear

genome analysis, with one obvious exception—the coyote mito-

chondrial genomes fall basal to all the other crown canids. This is

consistent with Koepfli and colleagues’ [4] results on near-com-

plete mitochondrial genomes and thus contradicts the findings

of numerous previous studies that used partial mitochondrial

DNA sequences and placed coyotes (1) as sister to gray wolves

[11], (2) in an unresolved clade with African golden wolves and

Ethiopian wolves [2, 3], (3) as sister to Ethiopian wolves [1, 2,

12, 13], or, finally, (4) as sister to a clade containing Ethiopian

wolves and golden jackals [14].

We subsequently explored the degree of interspecific gene

flow between the various species. Many publications have re-

ported interspecies gene flow between members of the canid

crown group (dog-gray wolf complex, coyotes, Ethiopian wolves,

golden jackals, and African golden wolves) [4, 5, 9, 13, 15–19]—

something perhaps unsurprising, given the large geographic

overlap of many of the populations. Initial analyses of genetic

structure among these canids using NGSadmix [20] (Figure S3A)
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Figure 2. Nuclear and Mitochondrial Phylogeny of Basal Canids

(A) The maximum-likelihood estimate of the mitochondrial phylogeny for a subset of the samples, using de novo mitochondrial assemblies obtained with

MtArchitect. The node labels show the bootstrap support for the node.

(B) The phylogeny estimated from nuclear DNA by ASTRAL-II, where monophyletic clusters have been collapsed into a single leaf node. The tip labeled ‘‘African

golden wolf-hybrid’’ represents a single known hybrid from the Sinai Peninsula—labeled ‘‘African golden wolf Egypt’’ in the mtDNA phylogeny—as described in

the main text. The mean local posterior probabilities are shown for branches where this value is less than 1. The full nuclear phylogeny containing the sample

relationships, branch supports, branch lengths proportional to divergence times, and estimated split times can be found in Figures S2A and S2B and Table S2.

(C) For a subset of the internal branches in the nuclear phylogeny, the quartet frequencies of the three possible configurations around each branch in the un-

derlying unrooted tree are shown. The red bar represents the configuration shown in the phylogeny, and the two blue bars represent the two alternative

(legend continued on next page)
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revealed that the individuals partition according to expected spe-

cies structure. However, more details became apparent as the

number of estimated clusters (K) was increased. For example,

at higher values of K, gray wolves form five principal groups

(Mexico, Ellesmere-Greenland, East Asia, the Middle East, and

the remaining Eurasia), whereas African golden wolves are split

into an Eastern and a Northwestern clade, as previously shown

[4, 6, 16].We note that similar east-west population differentiation

is observed for several other African mammalian species [21],

thus pointing to a general trend that the African golden wolves

follow. The NGSadmix analyses also suggest the presence of

admixture between the different species. For example, we de-

tected not only dog introgression in the gray wolves from Spain

and Israel, but also, perhaps of greater interest, gene flow be-

tween African golden wolves, golden jackals, and gray wolves.

One example is a highly admixed African golden wolf from the

Egyptian Sinai Peninsula, whose genome contains contributions

from both Middle Eastern gray wolves and dogs (Figure S3A).

Previous studies that have reported admixture between canid

species [9] and mitochondrial evidence for overlap of the gray

wolf, African golden wolf, and golden jackal in eastern Egypt

[4]. This points to the importance of the Sinai Peninsula and

the Southwest Levant in canid evolution [4, 9], presumably

due to its role as the land bridge between the African and

Eurasian continents. We used TreeMix [22], D statistics [23],

and admixture graphs [23] to examine signals of admixture be-

tween these species. The results confirmed that, in general

terms, the level of gene flow between the three species is

high, although varying across space in a manner consistent

with their natural ranges (Figures 3B and S3A–S3E). For

example, gene flow between golden jackals and gray wolves

and between African golden wolves and gray wolves is lowest

when North American gray wolves are considered, somewhat

higher for Asian and European gray wolves, and highest with

the gray wolves from the Middle East (e.g., Israel, Syria, and

Saudi Arabia) (Figure S3E). Although the latter is not surprising

in light of the natural ranges of the species, the evidence of

golden jackal ancestry in North American wolves is intriguing.

One possible explanation could be that gene flow happened

before the divergence of the North American and Eurasian

gray wolves. The fact that interspecific gene flow is consider-

ably higher in Middle Eastern than in other gray wolves may

also explain the distinctness of this population. The structure

between Northwestern and Eastern African golden wolves

can be explained using a similar argument—the former have

highest levels of golden jackal and gray wolf admixture (Figures

3B, S3A, and S3B), whereas the latter show higher levels of

gene flow from Ethiopian wolves. Overall, it is clear that individ-

uals sampled in this land bridge region will be particularly infor-

mative for future studies that wish to study canid admixture in

greater detail.

Furthermore, D statistics were used to test for gene flow be-

tween the dhole and African hunting dog, using members of

the crown group as ingroup and the Andean fox as outgroup.
configurations. For every quartet, the frequency of the true bipartition has previous

alternative configuration is labeled by the bipartition it creates, with labels corres

swaps the positions of golden jackal (6) and Ethiopian wolf (5), whereas the thi

incongruence around examined branches.
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Although no gene flow was detected between species of the

crown group and the African hunting dogs, the analyses pro-

vided strong evidence of gene flow between the African hunting

dog and dhole (Figure S3C). This is a surprising finding, since the

ranges of the two species do not overlap. However, it is well

documented that the dhole existed as far west as Europe during

the Pleistocene [24]. Thus, one possible explanation could be the

presence of dholes in the Middle East in the past, from where

they could have encountered and mixed with African hunting

dogs in North Africa. It must, however, be stressed that given

that there has never been any reported evidence of dholes in

either the Middle East or North Africa, our hypothesis is purely

speculative. The timing and location of this admixture event

remain unresolved.

Although there have been several reports of hybridization be-

tween dogs and Ethiopian wolves [13, 15], the genetic history of

the Ethiopian wolf has not previously been investigated using

nuclear genomic data. The D-statistics-based analyses pro-

vided evidence for gene flow between Ethiopian wolves and

not only African golden wolves, but also golden jackals, gray

wolves, and coyotes (Figure S3). The finding of considerable

gene flow between the Ethiopian and Eastern African golden

wolf lineages is not surprising, given their geographical co-

occurrence in Africa. We consistently also observed a North-

western-Eastern split in the African golden wolves and note

that this correlates with our finding that the Ethiopian wolf con-

tributes a higher amount to the Eastern African golden wolves.

This suggests that admixture from the Ethiopian wolf may be a

key factor contributing to African golden wolf population

structure.

The presence of gene flow between the Ethiopian wolf and the

other crown canid species is more surprising, given their lack of

range overlap. However, this might be explained through the

previously reported extensive evidence of admixture between

African golden wolves and gray wolves, coyotes, and golden

jackals [4, 9]. In short, we hypothesize that the signal of Ethiopian

wolf admixture into the other crown canid species is mediated by

African golden wolves. A summary of all the admixture events

inferred in this study is shown in Figure 3A.

The uncertain placement of the African golden wolf (Figure 2C,

panel labeled 17), combined with evidence of gene flow from the

Ethiopian wolf, led us to investigate whether the African golden

wolf is a species of hybrid origin, derived from amixture between

gray and Ethiopian wolves or close relatives. The current distri-

bution ranges of Ethiopian and gray wolves do not overlap,

and indeed, the known historical distribution of Ethiopian wolves

is restricted to the Ethiopian highlands [15]. However, extensive

gene flow with other canids, combined with the two distinct

levels of Ethiopian wolf gene flow into the two distinct popula-

tions of African golden wolves, suggests that either Ethiopian

wolves or a close (now extinct) relative had, in the past, a

much larger range within Africa and thus greater opportunity to

admix with other canid species. Additionally, mitochondrial

analyses of African golden wolves, in this and previous studies,
ly been shown to be at least one-third [8], indicated here by a dotted line. Each

ponding to those in (A). For example, the second bar of the panel labeled 12

rd bar puts them as sister to each other. This plot summarizes the gene tree
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Figure 3. Gene Flow among the Crown Canid Species

(A) This figure summarizes the relationships among the species (phylogeny) and the various gene flow events inferred from the samples included in this study.

Gene flow events are indicated with red arrows, and dotted red arrows show possible gene flow events that have been inferred in this study but have not been

previously reported.

(B–D) These figures show the gene flow among the different crown canid species using D statistics. These D statistics show significant gene flow between the

gray wolf, African golden wolf, golden jackal, and Ethiopian wolf. One principal new finding is structure within the African golden wolves, splitting into North-

western and Eastern clades, which show genetic affinity to gray wolves and Ethiopian wolves, respectively. A second principal finding is inferred gene flow from

an unknown canid lineage, related to the dhole, into the ancestor of the coyote and the gray wolves. We hypothesize this may explain the unexpected basal

placement of the coyote in the mitochondrial tree. Further evidence of gene flow in the crown canids is shown in Figure S3.
find them to be most closely related to gray wolves [2–4, 25].

Further, African golden wolves are a sister clade to gray wolves

and coyotes in the nuclear phylogeny, whereas they are a sister

group to the Middle Eastern gray wolves in the mitochondrial
phylogeny. We explored the relationships between the golden

jackal, Ethiopian wolf, and African golden wolf using G-PhoCS

[26] (Table S1), which supported the finding of gene flow into

the Ethiopian wolf from the African golden wolf. To further
Current Biology 28, 3441–3449, November 5, 2018 3445
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Figure 4. Modeling the Ancestry of African Golden Wolves

(A) TreeMix tree with all samples, estimated using the pairwise correlation of allele frequencies between all groups of samples. This tree is fit with three migration

edges. The first three migration edges all indicate extensive gene flow from the gray and Ethiopian wolves into the African golden wolves, suggesting a hybrid

origin for this species.

(B and C) The QP graph is an admixture graph estimated using all pairwise D statistics between samples. Estimated genetic drift is shown along the solid lines in

units of f2 distance (parts per thousand), and estimated mixture proportions are given along the dotted lines. Names of specific modern populations are shown in

full, whereas hypothetical ancestral individuals are represented by letters.

(B) This tree shows all the possible placements—highlighted in red—for the Northwestern African golden wolf, chosen due to their low levels of gene flowwith the

Ethiopian wolf. These were modeled as possible internal and external nodes and as an admixed group from all possible node pairs.

(C) The best fitting graph with a Z value closest to 0, modeling the Ethiopian wolf-like and gray wolf-like ancestry of Northwestern and Eastern African golden

wolves, as well as gene flow into modern Ethiopian wolves from the Eastern African golden wolves. This admixture graph suggests that the African golden wolves

are probably a species of hybrid origin, derived from the gray wolf and Ethiopian wolf as the parental species. Further, Figure S4 shows admixture graphs showing

potential gene flow from a ‘‘ghost’’ basal canid lineage into the ancestor of wolves and dogs.
explore the relationship between these species and the gray

wolf, we used TreeMix [22] and admixture graphs [23] to obtain

trees, which were used to assess whether the African golden

wolf is a hybrid species (Figures 4B and 4C). We initially con-

structed a graph including the coyote, Ethiopian wolf, gray
3446 Current Biology 28, 3441–3449, November 5, 2018
wolf, and Andean fox and assessed the most likely position for

the African golden wolf in this graph. The placement of the two

African golden wolf populations in this tree was further investi-

gated by modeling them as sister to all possible nodes and as

admixed populations deriving ancestry from two possible nodes.



Finally, the model was extended to account for African golden

wolf admixture into the Ethiopian wolf. We found that the com-

mon ancestor of the African golden wolf populations is best

modeled as admixed between a component related to the

Ethiopian wolf (�28%) and another related to the gray wolf

(�72%) (worst-fitting f statistic Z value = �1.086; Figure 4C).

Finally, the northwestern African golden wolf population is

more closely related to the gray wolf, which is best explained

in our model through admixture from gray wolves.

Lastly, our attention was drawn to the curious result of poten-

tial gene flow between the lineage representing the ancestor of

the coyote and gray wolves and that representing all other canid

species, excluding the African hunting dog (Figure S4), in all

D statistics analyses computed with the coyote or gray wolf in

the ingroup, namely position H2. Notably, these signals disap-

peared when the sister clade—H3—was replaced with the Afri-

can hunting dog, leading us to hypothesize that the coyote and

gray wolf genomes may contain a basal ancestral component

derived from an as-yet-unidentified species that evolved after

the divergence of the African hunting dog branch from the other

canid species and that the signal of gene flow can be attributed

to outgroup attraction of the coyote and gray wolf lineage. Note

that such a hypothetical ancient admixture event would also

explain the unexpectedly basal position of the coyote mitochon-

drial genome—the coyote may simply have retained the mitoge-

nome from this unidentified ancestor. We acknowledge that the

existence of an unknown ancestral component would be contro-

versial—previous analyses of coyotes and the fossil records

from their direct ancestors argue that they have been strictly

restricted to North America for over a million years [27, 28]. How-

ever, within North America, the coyote has coexisted alongside

several now extinct canids, including the American dhole

(Cuon sp.) and dire wolf (Canis dirus) [29]. Although the unknown

ancestral component to cannot be attributed to any of the known

fossil species at this time, future paleogenomic analyses on such

materials (if any can be found with surviving DNA) may provide

exciting possibilities to test our hypothesis.

In conclusion, our results highlight how interspecific gene flow

has played an important role in shaping the species and popula-

tion structure of gray wolves, coyotes, African golden wolves,

golden jackals, and Ethiopian wolves and that African golden

wolves, coyotes, and gray wolves may have been greatly

affected by hybridization events. In particular, we conclude not

only that African golden wolves arose through hybridization be-

tween a Ethiopian-wolf-like and gray-wolf-like ancestral popula-

tion, but that subsequently the resulting northwestern and

eastern African golden wolf populations underwent continuous

admixture with modern gray and Ethiopian wolves, respectively.

We furthermore argue that the common ancestor of gray wolves

and coyotes differentiated from the lineage leading to golden

jackals, in part by admixing with a dhole-like canid. Finally, the

robust signal of gene flow observed between African hunting

dogs and dholes testifies to an as-yet-undiscovered prehistoric

overlap between the two lineages. This underscores how much

remains to be discovered about the history of thewolf-like canids

and how paleogenomic approachesmay be required to advance

our understanding of this group. Lastly, our study adds to the

growing evidence for the importance of gene flow and hybridiza-

tion in the evolution of mammalian species in general [23, 30–32]
and that rather than being isolated entities that evolve along tree-

like phylogenies, they are interlinked and evolve through interac-

tions in network-like topologies.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

8 Canid blood or tissue samples This paper Data S1

Chemicals, Peptides, and Recombinant Proteins

Proteinase K Sigma-Aldrich Cat# 3115844001

Phenol Bionordika Cat# A0447,0500

Chloroform Sigma-Aldrich Cat# 288306-1L

Critical Commercial Assays

DNeasy Blood & Tissue Kit QIAGEN Cat# 69506

MinElute PCR Purification Kit QIAGEN Cat# 28006

NEBNext DNA Sample Prep Master Mix Set 2 New England Biolabs Cat# E6070

Deposited Data

10 Canid genomes [33] Data S1

2 Canid genomes [34] Data S1

3 Canid genomes [6] Data S1

5 Canid genomes [9] Data S1

1 Canid genomes [4] Data S1

4 Canid genomes [35] Data S1

2 Canid genomes [18] Data S1

1 Canid genomes [36] Data S1

5 Canid genomes [37] Data S1

1 African golden wolf This article NCBI SRA sample accession number: SAMN10199001

2 African hunting dogs This article NCBI SRA sample accession numbers: SAMN10180432,

SAMN10180433

3 Coyotes This article NCBI SRA sample accession numbers: SAMN10180421,

SAMN10180422, SAMN10180423

1 Dhole This article NCBI SRA sample accession number: SAMN10180424

1 Ethiopian wolf This article NCBI SRA sample accession number: SAMN10180425

2 Golden jackals This article NCBI SRA sample accession numbers: SAMN10180426,

SAMN10180427

5 Gray wolves This article NCBI SRA sample accession numbers: SAMN10180428,

SAMN10180429, SAMN10180430, SAMN10180431,

SAMN10180511

Gray wolf reference genome [7] N/A

Oligonucleotides

Illumina-compatible adapters [38] N/A

Software and Algorithms

PALEOMIX [39] https://github.com/MikkelSchubert/paleomix;

RRID:SCR_015057

AdapterRemoval2 [40] https://github.com/MikkelSchubert/adapterremoval;

RRID:SCR_011834

bwa v0.7.10 [41] http://bio-bwa.sourceforge.net/; RRID:SCR_010910

Picard v1.128 N/A https://broadinstitute.github.io/picard;

RRID:SCR_006525

GATK v3.3.0 [42, 43] https://broadinstitute.github.io/picard;

RRID:SCR_001876

ANGSD [44] https://github.com/ANGSD/angsd

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

samtools v1.2 [41] http://samtools.sourceforge.net/; RRID:SCR_002105

realSFS [44] https://github.com/ANGSD/angsd

NGSadmix [20] http://www.popgen.dk/software/index.php/NgsAdmix;

RRID:SCR_003208

ASTRAL-II [45] https://github.com/smirarab/ASTRAL

RAxML [46] https://sco.h-its.org/exelixis/software.html;

RRID:SCR_006086

trimal [47] http://trimal.cgenomics.org/

FastTree2 [48] http://www.microbesonline.org/fasttree/;

RRID:SCR_015501

DiscoVista [49] https://github.com/esayyari/DiscoVista

MtArchitect [10] http://biologiaevolutiva.org/tmarques/mtarchitect/

MAFFT [50] https://mafft.cbrc.jp/alignment/software/;

RRID:SCR_011811

Jalview [51] http://www.jalview.org/; RRID:SCR_006459

jmodeltest2 [52] https://github.com/ddarriba/jmodeltest2;

RRID:SCR_015244

phyML [53] http://www.atgc-montpellier.fr/phyml/;

RRID:SCR_014628

ADMIXTOOLS [23] https://github.com/DReichLab/AdmixTools

TreeMix [22] https://bitbucket.org/nygcresearch/treemix/wiki/Home
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Shyam

Gopalakrishnan (shyam@snm.ku.dk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The current study uses short read sequencing data from the full genomes of 47 canids spanning 8 different species (when the

domestic dog is considered a different species from the gray wolf) from Africa, Eurasia and North America, to address questions

about the genetic affinities of these species to each other, and the role of interspecific gene flow in shaping the evolution of the genus

Canis. All known information on the context and sequencing coverage of the samples is provided in Data S1.

METHOD DETAILS

Whole-genome sequencing
DNAwas extracted from 10modern samples of fresh blood or tissue using theDNeasyBlood & Tissue Kit (QIAGEN, Hilden, Germany)

following the manufacturer’s protocol. Three samples (‘African hunting dog Kenya 1’, ‘African hunting dog Somalia’ and ‘Golden

jackal Calcutta’) are from historical museum hides and were digested in a proteinase K-containing buffer following [54]; these digests

were subsequently treated in a phenol chloroform step following [55]. The supernatant was then mixed 1:10 with a binding buffer

following [56] in a binding apparatus following [57], including a Minelute column (QIAGEN, Hilden, Germany) that was then washed

and DNA was eluted according to the manufacturer’s guidelines. All extracts were incorporated into double-stranded DNA libraries

build using the NEBNext DNA Sample Prep Master Mix Set 2 (E6070 - New England Biolabs, Beverly, MA, USA) following the

manufacturer’s protocol and Illumina-compatible adapters [38]. Libraries were sequenced using 50 base pair single (Golden jackal

Calcutta, Hunting dog Kenya 1 and Hunting dog Somalia) or 100 base pair paired end (remaining samples) read chemistry on Illumina

HiSeq 2000 and 2500 (Illumina, San Diego, CA, USA) platforms.

Read mapping
The short-read data from each sample, including samples from previous publications, was processed using the PALEOMIX pipeline

[39]. As the first stepof thepipeline, lowquality andmissing baseswere trimmed from the reads, followedby removal of adapters using
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AdapterRemoval2 [40]. Additionally, all paired end readswhere the two readsoverlappedbymore than10basepairsweremerged into

a single read. Subsequently, the reads from each sample were mapped to the wolf reference genome [7] using bwa (v0.7.10; aln al-

gorithm) [41]. The mapped reads were filtered for PCR and optical duplicates using Picard (v1.128, https://broadinstitute.github.io/

picard), and reads that mapped to multiple locations in the genome were excluded. GATK (v3.3.0) [42, 43] was used to perform an

indel realignment step to adjust for increased error rates at the end of short reads in the presence of indels. In the absence of a curated

dataset of indels in wolves, this step relied on a set of indels identified in the specific sample being processed. After the initial mapping

and quality control, the coverages of the samples ranged from 0.6 to 26.6x (for details see Data S1).

Genotype calling
The samples in this study span a wide range of genomic coverages. To avoid introducing biases in various analyses resulting from

genotype calling in low coverage samples [58], the uncertainty in genotypes was instead propagated through to downstream

analyses using genotype likelihoods. The genotype likelihoods at variant sites were computed in ANGSD [44] using the mapped

reads, with the model for reads used by samtools (v1.2) [41]. Bases with base qualities lower than 20 and reads with mapping quality

lower than 20were discarded. Only sites with data present in at least 46 out of the 48 samples were retained. All sites withminor allele

frequencies below 0.1 were excluded.

QUANTIFICATION AND STATISTICAL ANALYSIS

Heterozygosity
The heterozygosity for each sample was calculated using ANGSD, by estimating the per-sample folded site frequency spectrum

(SFS) and using the fraction of singletons in the sample as a measure of heterozygosity. The variance of the estimate was obtained

by bootstrapping the sites 100 times to obtain 100 bootstrapped estimates of the SFS. Briefly, for each sample, the site allele

frequency for every site was estimated (‘‘-doSaf 1 -fold 1’’) using the reference genome as ancestral, while keeping all other

parameters as above. Afterward, the SFS and their corresponding bootstraps was estimated for each sample using realSFS and,

for each case, the fraction of singletons was calculated. The sample heterozygosities are shown in Figure S1.

Admixture
Using the genotype likelihoods obtained from the ANGSD pipeline, the ancestry clusters and admixture proportions for 48 samples

representing all species (for details see Data S1) were estimated using NGSadmix [20] based on 5.7million SNPs. Admixture analyses

were performed using only markers with minor allele frequency greater than 0.1. We used a range of values for the number of clusters

(2-15), to explore the structure in the dataset. To avoid convergence to local optima, the admixture analysis was repeated at least

200 times with different random initial parameter values, and the replicate with the highest likelihood was chosen.

Nuclear genome phylogeny
Using 28 individuals representing all species in this study (for details see Data S1), nuclear genome phylogenetic reconstruction

based on coalescence of gene trees was performed using 100 ASTRAL-II trees [45], and an extended majority rule consensus

tree was made with RAxML [46] using default parameters. Each tree was based on gene trees inferred from 5000 regions, each

roughly 10 kb long sampled from a consensus genome sequence per individuals generated in ANGSD [44] using the ‘‘-doFasta 1’’

option. Regions with missing data were excluded using trimal [47] under the parameters ‘‘-gappyout -resoverlap 0.60 -seqoverlap

60.’’ Each gene tree was generated in FastTree2 [48] using a generalized time-reversible model for sequence evolution. A cut-off

at a minimum of four samples per tree was selected, before generation of individual ASTRAL-II trees. Local posterior probabilities

and quartet frequencies for the three possible unrooted resolutions around each internal branch were computed using ASTRAL

[59] and visualized using DiscoVista [49]. Two support values are computed on the consensus ASTRAL tree: i) frequency of each

branch in the 100 replicates and ii) means of local posterior probability across the 100 replicates. The local posterior probability is

computed as the probability that the proportion of gene trees consistent with the bipartition shown in the full phylogeny is greater

than 0.33, under a multinomial model with three possible outcomes, each representing a bipartition at the interior branch.

Since the branch lengths in the ASTRAL-II analysis are in terms of coalescent time units, another phylogeny was generated to get

branch lengths proportional to evolutionary distances, from 1000 randomly sampled 1 kb regions across the genome using a

concatenated analysis in RaxML [46], using a GTR-GAMMA model of sequence evolution.

Species split times
The divergence times between the different species were computed using the two plus two (TT) method [60], which uses a pair of

samples, and the distribution of derived alleles at all sites, to compute the split time for a focal population from a contrast population.

Specifically, the method uses the counts of sites in the genome where the samples fit into one of 9 configurations, i.e., both samples

carry 0 derived alleles, one sample carries 1 derived allele and the other carries 0, and so on, to get an estimate of the time of either

sample from themost recent common ancestor of the pair of samples. Themethod provides two estimates of split times for each pair
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of samples, with one sample treated as the focal population and the other as the contrast population. One of the main advantages of

this method is that it is not affected by the population size dynamics of the two populations after the split, but it does assume no

migration and constant population size in the ancestor of the two populations (before the split).

In order to reduce the number of comparisons in this model, we chose one representative of each population for this analysis,

viz., dhole – Beijing Zoo, African hunting dog – Kenya 1, golden jackal – Syria, African golden wolf Northwestern – Morocco, African

golden wolf Eastern – Kenya, Ethiopian wolf – Ethiopia, coyote – California, gray wolf European – Spain, gray wolf Asian – Altai, gray

wolf American – Greenland and Mexico 1, dog – India 1 and Qatar 2. The TT statistic was computed for each pair of samples, using

only scaffolds longer than 1 Mb (705 in all), excluding sites with less than 5x coverage in either sample. The bootstrap estimate of the

statistic and its variance was obtained treating each scaffold as a single block [61].

Mitochondrial reconstruction using de novo assembly
We used MtArchitect [10] to reconstruct de novo the mitochondrial genomes for 17 canids representing all species (for details see

Data S1). The genomes were aligned using MAFFT [50] and curated with Jalview [51]. MtArchitect is designed to deal with the

presence of numts, by aligning the reads to themitochondrial and nuclear genome seperately, and including only read pairs (or single

end reads), where both reads of the pair map unambiguously and with high mapping quality to the mitochondria. We tested a total

of 56 phylogenetic models with jmodeltest2 [52] and chose HKY85 with gamma-distributed variation in the substitution rate and a

fixed proportion of invariable sites as the most suitable model, which finally was used to construct maximum-likelihood tree using

phyML [53]. We generally observed a small amount of undetermined sites, but the two African hunting dogs analyzed displayed

poorer alignments and smaller genomes. This ismost likely due to the reconstruction biases associated with using a distant reference

and a lack of paired-end data to exploit the maximum potential of MtArchitect. Alignment visualization and tree inspection of the

reconstructions confirmed that the phylogenetic clustering complied with previously reported data [4]. We observed, however,

that the D-loop was particularly enriched in undetermined sites, and aligned notably worse than the remaining sequence. Given

its potentially confounding nature and its small contribution to the phylogeny reconstruction when the rest of the sequence is well

resolved [10], the D-loop, as well as minor positions containing the majority of the gaps, were manually discarded, resulting in a final

15.435 bp alignment.

D statistics
We used allele frequency-based D statistics as implemented in ADMIXTOOLS [23] to evaluate possible gene flow between the

different lineages. D statistics are based on the observation that, if the given topology (((H1,H2), H3), Outgroup) is correct, then under

the null hypothesis of no gene flow between any of the two lineages in the ingroup (H1, H2) and the lineage H3, the number of sites

across the genomewhere the segregation patterns ABBA and BABA occur should be equal in number, as they can arise solely due to

incomplete lineage sorting. But the presence of gene flow between H1 and H3 would lead to an increase in the number of BABA sites

(H1 and H3 share the same allele B), while gene flow between H2 and H3 would lead to an increase in the number of ABBA sites

(H2 and H3 share the same allele B). The D statistic measures the disparity between the number of ABBA and BABA sites across

the genome to infer gene flow.

To account for the varying depth of coverage of the samples, we used a randomly sampled allele per site instead of called

genotypes. Reads with mapping quality lower than 30, bases with quality lower than 20 and sites with coverage lower

than 3 were discarded from the analysis. The significance of each test was estimated using a weighted block jackknife procedure

over 1 Mb blocks. Deviations from D = 0 were presumed significant when the observed Z-score was above or below 3.3 (jZj>3.3).
To avoid inflating significance of the tests, only scaffolds 1 Mb or longer (�70% of the genome) were used in the analysis. Tests

were performed with combinations of samples as individuals and samples were grouped into categories representing the main

genetic clusters (for details see Data S1).

TreeMix
TreeMix [22] was used to infer potential admixture edges in the phylogeny. TreeMix models the correlation of allele frequencies at

variable positions across the genome. The correlations that do not fit well under the modeled tree are then corrected for using

migration events. We used a randomly sampled allele for each sample and a similar filtering approach as the one described for

the D statistics tests. Tests were with combinations of samples as individuals and samples grouped into categories representing

the main genetic clusters (for details see Data S1). Sites with at least one individual with coverage per group were kept. The final

dataset consisted of a total of 834,537 segregating sites. We ran TreeMix on the final dataset assuming 0 to 4 migration edges

(m = 0-4). For each value of m, we ran 100 replicates starting in different seed values and evaluated the replicate with the highest

likelihood. Figure S3B shows the best replicate obtained for the graph modeled with four migration edges.

qpGraph
We used qpGraph from the ADMIXTOOLS package [23] to evaluate the relationships between the different species in our samples. In

particular, we addressed the question of whether the African golden wolf can be modeled as a hybrid species. qpGraph uses the

correlation on all possible f statistic tests in a given admixture graph to evaluate its overall fit. The same dataset and filtering

parameters used for the D statistics tests were used in this analysis. Samples were grouped into clusters representing the main

lineages in the admixture graph as indicated in Data S1. First, we started with a tree including the coyote, Ethiopian wolf, gray
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wolf and Andean fox and evaluated the most likely branching point for the African golden wolf. Then, we modeled the African golden

wolf as a sister clade to all possible internal and external nodes and as an admixed group from all possible node pairs. Finally, we

extended our model with an admixture event to account for African golden wolf admixture in the Ethiopian wolf (Figure 4).

DATA AND SOFTWARE AVAILABILITY

The BioProject accession number for the short read sequences used in this paper is available at the NCBI short read archive under

the accession PRJNA494815.
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Genomics of Extinction

Johanna von Seth, Jonas Niemann, and Love Dalén

Abstract Many species went extinct during the Late Pleistocene, including a large
proportion of the Earth’s megafauna. Recent research on Pleistocene extinctions has
started to reveal that species responded individualistically to environmental fluctu-
ations and human interference. Through paleogenomics, it is now possible to study
the extinction process in more detail, which could help disentangle why some
species went extinct while others did not. Several species seem to have gone through
a sudden decline right before extinction, whereas others reached the point of
extinction via a gradual decline. In addition, some species experienced an initial
severe bottleneck but survived for thousands of years more at reduced numbers
before their final extinction. The use of temporally spaced complete genomes allows
for a more direct examination of changes in genomic parameters through time, such
as declines in standing genetic variation and accumulation of deleterious mutations,
as a consequence of these pre-extinction processes. Additionally, the increasing
access to complete ancient genomes will in the future allow researchers to investi-
gate whether species were capable of adapting to environmental changes as well as
the small population size that they were subject to prior to the extinction.
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1 Introduction

For any single species, extinction represents the end of evolutionary change. In a
short time perspective, extinction represents the disappearance of unique genetic
variation and also that an ecological niche is vacated. Put in a wider perspective,
however, extinctions are merely fundamental biological processes. Through the
history of life on Earth, extinctions have continuously battered millions of species
while in parallel having been balanced by a continuous formation of new species.

During the Late Pleistocene (~110–11.7 thousand calendar years before present
(cal kyr BP)), extraordinarily many species went extinct, not least a large portion of
the megafauna (Cooper et al. 2015). Moreover, several species that survived until
present day also went through dramatic population declines in the Late Pleistocene
(e.g. Gordon et al. 2016; Johnson et al. 2018). The numerous Late Pleistocene
extinctions have often been attributed to climate change or human interference
(both directly through hunting and indirectly as the human population expanded
and outrivalled other species in the competition for resources) (Barnosky et al. 2004;
Lorenzen et al. 2011; Cooper et al. 2015; Saltre et al. 2016). However, recent
research on Pleistocene extinctions has started to reveal a more complex story,
suggesting that one factor alone cannot explain the high number of extinctions.
Rather, the emerging pattern is that species responded individualistically to envi-
ronmental fluctuations (Lorenzen et al. 2011; Cooper et al. 2015). Finding the causes
of extinctions becomes even more challenging with the addition of components such
as human interference, interspecific competition and unstable population dynamics.

Using the fossil record to track extinctions, as well as formation of new species,
has often been successful. On the other hand, little can be said about the causes
behind the extinctions through fossil records alone. Even with the arrival of ancient
DNA (aDNA) analyses, it has proved challenging to capture a comprehensive
depiction of those last moments before extinction. However, the aDNA research
field keeps developing and is no longer dependent on short mitochondrial and
nuclear DNA sequences. Instead it is now possible to make use of complete genomes
for tracking past biological events in extinct species, and thus the prospects of
finding out why some species became extinct while others did not have improved.

In a time of climate change and numerous species facing extinction, understand-
ing the underlying mechanisms that are pushing some species towards extinction is
crucial. Through paleogenomics, it is now possible to study past extinction processes
in more detail and to fill in gaps that cannot be filled by morphological data and
modern genomics alone (Orlando and Cooper 2014). Furthermore, paleogenomics
can be used to add a more complete story of currently threatened species by studying
their long-term population histories, as a complement to the snapshot of their
present-day genetic status provided by modern DNA.
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2 Modes of Decline

All species headed towards extinction first go through a substantial demographic
population decline. However, the mode of the decline may vary and is related to the
life history of the species as well as the external factors causing the decline (Fig. 1)
(Purvis et al. 2000). Some species seem to go extinct without any immediately
apparent reasons for the extinction. Others reach the point of extinction in a much
slower rate, making it easier to track the decline in the fossil records.

Using the coalescent theory as a starting point, it is possible to investigate the
demographic history of a population, since past changes in effective population size
can be traced within a population’s DNA (Fisher 1930; Wright 1931; Kingman
1982a, b; Kimura 1983). Several demographic history modelling methods have been
developed over the past decades, such as the Bayesian skyline plot and the Pairwise
Sequentially Markovian Coalescent (PSMC) model, which make use of the coales-
cent theory within a Bayesian statistical framework (Pybus et al. 2000; Strimmer and
Pybus 2001; Drummond et al. 2005; Opgen-Rhein et al. 2005; Heled and Drum-
mond 2008; Minin et al. 2008; Li and Durbin 2011). Shared between the methods is
the testing of the hypothesis that a population has been of constant size through time
by using the relationship between coalescent time and effective population size (Ne)
(Kingman 1982a; Emerson et al. 2001). The relationship states that two randomly
chosen DNA sequences in a small population have a higher likelihood of sharing a
more recent ancestor (corresponding to fewer substitutional differences between the
sequences) than two sequences randomly drawn from a large population (Kingman
1982a). Thus, changes in population size over time will leave signatures in terms of
differential substitutions between sequences, where simply put a population decline
corresponds to fewer substitutions and vice versa. It is also possible to infer from
these methods whether a demographic event happened recently or at a more ancient
time point (Emerson et al. 2001).

TI
M

E

Ne Ne NeFig. 1 Conceptual figure
depicting three modes of
decline before a species goes
extinct; sudden decline
(green), terminal refugium
decline (brown) and gradual
decline (yellow)
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It has been argued that these models are sensitive to datasets that are too small or
sparsely sampled, population structure, as well as choice of genetic loci and that only
certain modes of extinction can be detected using these models (Chang and Shapiro
2016). Still, implementing these methods on high-quality ancient genomes of extinct
species can enable an approximation of the mode of population decline before their
extinction.

2.1 Sudden Decline

Sudden declines occur when a previously stable population collapses within a few
generations, typically due to dramatic changes in its environment. Endemic island
populations are particularly susceptible to this type of pre-extinction declines due to
their relatively small population sizes, low genetic diversity and adaptation to an
environment that is often highly distinct from the mainland (Frankham 1997).
Changes to the island environment – notably the effects of human colonization –

can have catastrophic consequences. Extensive overhunting and the introduction of
predators and diseases led to the demise of the moa (Perry et al. 2014), thylacine
(Prowse et al. 2013; Feigin et al. 2017) and dodo (Millberg and Tyrberg 1993)
among many others. Even though island species only represent a fraction of all
species, 75% of the species that have gone extinct in the past 400 years were endemic
to islands (Frankham 1998; Sax and Gaines 2008). Extinctions that are preceded by a
sudden decline are however not limited to small island populations. Before the
passenger pigeon (Ectopistes migratorius) rapidly went extinct at the beginning of
the twentieth century, it was a highly abundant species endemic to North America,
potentially comprising up to 40% of the continent’s avian population (Schorger
1955; Bucher 1992). In the early and mid-1800s, the population was reported to
consist of billions of individuals, constantly migrating between suitable habitats in
the search for food and breeding locations while hugely impacting the ecosystems
along their path (Schorger 1955; Bucher 1992). The species was however suffering
from habitat loss due to human deforestation. Additionally, the large numbers of
birds made people associate the species to a pest, and the seemingly never-ending
source of cheap meat triggered overhunting once European settlements started taking
place in the region (Fulton et al. 2012). Thus, conservation legislation was largely
ignored and in just a few decades the species went extinct, with the last individual
dying in captivity in 1914 (Schorger 1955; Fulton et al. 2012).

The numerous reports of human overexploitation indicated that this was the main
driver of the passenger pigeon extinction, but a study by Hung et al. (2014) revealed
that the species regularly went through large population fluctuations in the past.
Based on PSMC analyses using three ancient passenger pigeon genomes with a 13-
to 20-fold average coverage, the study reported a significant decrease in Ne that
started in the last interglacial period (LIG) and reached its lowest number at the last
glacial maximum (LGM), before the population once again recovered. They also
noted a surprisingly low Ne of the population in comparison with their large census
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population size (Nc). The authors thus reasoned that there must have been large
fluctuations in Nc that lowered the Ne, following a previously proposed hypothesis,
which stated that fluctuations in population size is one of the most important factors
explaining variations in the Ne/Nc ratio (Wright 1938; Frankham 1995; Vucetich
et al. 1997). To further test the hypothesis of a highly fluctuating Nc, Hung et al.
(2014) analysed past fluctuations in various food and habitat resources and argued
that these fluctuations would have been large enough to affect the ecosystem’s
carrying capacity for the passenger pigeon population. Taken together, the
researchers suggested that the extinction of the passenger pigeon was a matter of
bad timing. The intense hunting coincided with a low Nc during its natural cycle of
fluctuations and thereby prevented the population from recovering (Hung et al.
2014).

On the other hand, in a recent study by Murray et al. (2017), analyses of
41 mitochondrial and 4 high-coverage (13- to 51-fold median coverage) nuclear
passenger pigeon genomes revealed a stable population size during the approxi-
mately 20 kyr prior to the extinction and that the size of the population remained
stable even when food and habitat availability was limited. In this study the
researchers found indications of strong selection on diversity at linked loci, which
could have led to misleading results when estimating population history using
PSMC analyses (Murray et al. 2017). Both studies did however agree that human
interference may have caused disruptions in the population dynamics that were
strong enough to drive the species towards extinction.

2.2 Gradual Decline

Other species go through slower, more gradual declines that are often easier to detect
than a sudden decline. Stiller et al. (2010) used mitochondrial DNA (mtDNA) to
compare the demographic histories of the extinct cave bear (Ursus spelaeus) and the
extant brown bear (Ursus arctos). These two species are especially good to compare
since they were closely related, are thought to have had similar life history strategies,
and shared habitats when the cave bear was still extant. In the study, by analysing
mitochondrial D-loop sequences from 59 temporally spaced cave bears and 40 tem-
porally spaced brown bears, they used the Bayesian coalescent approach to infer the
demographic histories of the two species (Drummond et al. 2005; Stiller et al. 2010).
From that, they could report that while the extant brown bears appeared to have had a
constant and stable demographic history through time, the cave bear population
started to decrease some 50 cal kyr BP and then continued to decrease up until
their extinction approximately 24 cal kyr BP. Thus, something in the environment
appears to have been affecting the cave bears negatively while leaving the brown
bears undisturbed. It has been suggested that since cave bears were predominantly
herbivorous (Bocherens et al. 1994; Nelson et al. 1998), they were more sensitive to
climate changes causing vegetation shifts than were brown bears (Pacher and Stuart
2009). However, the onset of the decline in the cave bear population did not coincide

Genomics of Extinction



with extreme changes in vegetation, since the population started to decline long
before the onset of the cooling of the climate (Stiller et al. 2010). Another potential
difference between the two species was their hibernation strategies. Reports on the
relative higher amount of cave bear remains in caves in comparison with brown bear
remains imply that cave bears were more reliant on caves for hibernation than were
brown bears (Kurtén 1976; Stiller et al. 2010). This might have triggered a compe-
tition for access to caves between cave bears, anatomically modern humans and
Neanderthals upon the latter two species’ arrival to the area that forced cave bears
out of the caves where they had to search for other, potentially less favourable,
hibernation locations (Grayson and Delpech 2003). Furthermore, a study by Fortes
et al. (2016) demonstrated that cave bears might have had a higher tendency to return
to their hibernation sites year after year while brown bears did not, which would have
intensified the competition between cave bears and human species even more (Fortes
et al. 2016).

Taken together, these results suggest that competition of resources between the
two bear species, or some other unknown environmental factor, affected the cave
bears negatively while leaving the brown bears more or less unaffected long before
human arrival and the initiation of extreme climate change. If the subsequent human
arrival then forced cave bears out of their caves and the cooling of the climate had
started, it is not unlikely that the cave bear population was struggling to remain
viable (Stiller et al. 2010). In either case, the cave bear population gradually declined
until it went locally extirpated and was later on replaced by another cave bear
population. However, this population too could not manage to survive, and the
species went globally extinct only a few thousands of years later, at approximately
24 cal kyr BP (Pacher and Stuart 2009; Stiller et al. 2010).

2.3 Terminal Refugium Decline

In a third mode of decline, species go through severe population bottlenecks, leaving
just a portion of the original population behind, but still survive for thousands of
years more. The well-studied woolly mammoth (Mammuthus primigenius) seems to
have had a quite stable population size during the Late Pleistocene (Palkopoulou
et al. 2013, 2015). However, the last surviving mainland mammoth population
disappeared approximately 11 cal kyr BP (Nikolskiy et al. 2011). Thereafter, the
last remaining populations were situated on the remote St Paul Island and Wrangel
Island for another approximately 5 and 6 kyr, respectively (Vartanyan et al. 1993;
Veltre et al. 2017). Analyses of the demographic history of the last surviving
population, the one located on Wrangel Island, have revealed a dramatic population
bottleneck some 8 kyr before their actual extinction (around the same time as the
elimination of the mainland population) (Palkopoulou et al. 2015). Although the
population subsequently survived for several thousand years more in this terminal
refugium, several studies have shown that the population suffered from the bottle-
neck as well as ensuing small population size, in terms of loss of genetic diversity in
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both coding and non-coding regions of the genome (Lister and Stuart 2008;
Palkopoulou et al. 2015; Pečnerová et al. 2016; Rogers and Slatkin 2017).

Lister and Stuart (2008) pointed out that this time lag between an extreme range
contraction into a terminal refugium and the final extinction is similar to what has
been termed an ‘extinction lag’. This phenomenon has already been described for
areas that have gone through fragmentation in modern times. Populations that appear
to have remained viable post fragmentation are when further investigated discovered
to be at risk of future extirpation, mainly due to gene flow barriers, increased
demographic allee effects (positive density dependence), as well as decreased
genetic diversity within each fragment of the population and a decreased carrying
capacity of the area (Brooks et al. 1999; Dixo et al. 2009). Thus, the ‘extinction lag’
or ‘extinction debt’ refers to the future ecological and genetic cost of the fragmen-
tation (Tilman et al. 1994; Lister and Stuart 2008). So while the last woolly
mammoth population survived for some thousands years more, the fact that the
Wrangel Island population was the last extant population with no possibilities for
genetic rescue through gene flow into the population, as well as apparent negative
genetic effects of the bottleneck, implies that the population may not have been large
enough to be viable.

3 Local Population Turnovers

One of the most significant insights in paleoecology obtained through aDNA
analyses is the identification of temporal population discontinuity within specific
geographic regions. Such lack of continuity has either been through partial replace-
ment of resident populations (Skoglund et al. 2012) or through extinctions followed
by recolonization from genetically different source populations (Barnes et al. 2002).
The latter type of population turnovers, extinctions/recolonizations, seem to have
been common during the Late Pleistocene and have been described for a wide
variety of wild animals as well as humans (e.g. Hofreiter et al. 2007; Leonard
et al. 2007; Campos et al. 2010; Posth et al. 2016). The most pronounced example
of extinctions/recolonizations comes from the collared lemming (Dicrostonyx
torquatus), which was a keystone small herbivore that inhabited the Late Pleistocene
Eurasian steppe tundra. Analyses of mtDNA sampled across a broad geographical
scale and covering the last 50 kyr have indicated that the collared lemming went
through a series of population extinctions throughout western Eurasia, with subse-
quent and repeated recolonizations from further east (Brace et al. 2012; Palkopoulou
et al. 2016). These extinctions imply an unexpected instability of the Late Pleisto-
cene ecosystem during the last Ice Age, likely caused by brief warm periods
(Dansgaard-Oeschger events).

Most previous paleogenetic studies that have identified local extinctions have
been based on analyses of mtDNA. However, mtDNA has limited power since it
only provides information on a single gene tree, which may deviate from the
species phylogeny due to its maternal inheritance, lineage sorting and introgression.
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Moreover, the absence of recombination in mtDNA makes it sensitive to hitchhiking
selection (Galtier et al. 2009). Because of this, future paleogenetic studies will likely
use genome-wide data to revisit earlier mtDNA-based studies to re-examine the
existence and timing of local extinctions. This has recently been done for Neander-
thals, where analyses of multiple genomes (Hajdinjak et al. 2018) led to support for
an earlier hypothesis that Neanderthals in western Europe went through a population
turnover (Dalén et al. 2012). Moreover, a recent study on Paleolithic humans using
genome-wide data (Fu et al. 2016) indicated that a previously identified mtDNA
replacement (Posth et al. 2016) during the Allerød interstadial likely was caused by
migration rather than extinction/recolonization.

4 Genomic Consequences of Demographic Declines

Regardless of the mode of decline, the mere decrease in size of a population
increases its risk for extinction simply because small populations are more vulner-
able to stochastic events, be they demographic, environmental or genetic (Frankham
2005). This increased risk of extinction related to decreased population size is known
as the small population paradigm and was first defined by Caughley (1994). In terms
of genetics, loss of genetic diversity and the exposure of recessive deleterious alleles
are thought to be the most serious threats for such small populations.

In theory, loss of genetic diversity is inversely proportional to the effective
population size (Frankham 2005). This is due to genetic drift, i.e. the random fixation
of alleles that occurs within all populations but becomes much stronger in small
ones. As a population declines, the fixation of alleles and consequently the loss of all
other alleles at the corresponding loci increase (Wright 1950). This loss of standing
genetic variation may in turn limit the evolutionary potential of the population (Kohn
et al. 2006; Willi et al. 2006), thus reducing its capacity to evolve in response to
environmental change, competition or disease. At the same time, inbreeding is likely
to increase in a declining population even if mating occurs randomly, simply
because the number of non-related potential mating partners decreases. While this
does not necessarily result in a loss of genetic variation in the population, other than
the loss that can be explained by genetic drift, inbreeding does decrease the within-
individual genetic variation as more loci are becoming homozygous when individ-
uals are more often inheriting alleles that are identical by descent (Crow 2010).

Both loss of genetic diversity and inbreeding can cause a lowered individual
fitness in the population. This can take place either through an increased homozy-
gosity at loci where heterozygote genotypes have an advantage over homozygote
genotypes as, for example, in the major histocompatibility complex (MHC)
(Carrington et al. 1999; Bernatchez and Landry 2003; Spurgin and Richardson
2010) or through an increased exposure of recessive deleterious alleles in homozy-
gotes (Charlesworth and Charlesworth 1999). Recessive deleterious alleles are
seldom exposed to selection in large populations and can therefore remain fairly
unnoticed within a population for a relatively long time. However, since individuals
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in declining and inbred populations more often become homozygous at loci, includ-
ing those that that are carrying harmful alleles, the individual fitness in small
populations is expected to become reduced (Fig. 2). When a population has reached
this stage, i.e. several individuals showing clear signs of lowered fitness due to
inbreeding, the population is experiencing an inbreeding depression (Charlesworth
and Charlesworth 1999). However, as long as variation remains in the population at
loci where recessive deleterious alleles are located, these alleles can potentially be
purged from the population through purifying selection.

4.1 Purifying Selection

In theory, if a population is maintained at low numbers so that already existing
deleterious recessive alleles (and novel ones that originate through mutation)
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Fig. 2 Genetic processes in small populations
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become exposed, these alleles can be purged from the population through purifying
selection (Lynch et al. 1995b; Wang et al. 1999). Since the alleles, when expressed,
are expected to cause a lowered fitness of the individuals carrying them, they will be
less likely to contribute with genetic material to the next generation in comparison
with individuals not carrying the harmful alleles. Thus after a few generations, the
population can in theory have a higher individual fitness than it had right before the
harmful alleles started to become expressed.

In a study that investigated the effectiveness of purging, it was found that the
genetic basis of inbreeding depression greatly affected the outcome of purging
(Hedrick 1994). Generally, if the cause of the inbreeding depression was genetic
load of lethal alleles rather than slightly deleterious alleles, these lethal alleles could
quickly become purged from the population without a highly increased risk of
extinction (Hedrick 1994). The opposite was true if the inbreeding depression was
caused by slightly deleterious alleles because of the high risk of these alleles
becoming fixed via genetic drift (Hedrick 1994). Additionally, concern has been
raised regarding whether purging could decrease the standing genetic variation of a
population by simultaneously allowing for a decrease in genetic variation at other,
non-lethal, loci as a consequence of the maintained small effective population size,
thereby decreasing the population’s evolutionary potential (Hedrick and Miller
1992; Hedrick 1994).

Several studies dedicated to investigating the efficiency of purging in small and
inbred populations have presented contradictive results (e.g. Bryant et al. 1990;
Kalinowski et al. 2000). To summarize, it seems that the effectiveness of purging is
highly relative, dependent on how purging is measured, and the measurements are
sensitive to confounding factors such as temporal environmental changes (Bryant
et al. 1990; Barrett and Charlesworth 1991; Hedrick and Kalinowski 2000;
Kalinowski et al. 2000).

4.2 The Theory of Mutational Meltdown

Genetic drift can become so strong in small populations that instead of purifying
selection removing new detrimental mutations that appear in the population, these
mutations become fixed (Fig. 2) (Lynch and Gabriel 1990; Hedrick 1994; Lynch et al.
1995a). Once fixed within a reproductively isolated population, they are bound to be
carried onto the following generations unless newmutations appear. Asmore harmful
mutations are accumulating for each generation, the population size is likely to
decrease even further (Lynch and Gabriel 1990; Wang et al. 1999; Hedrick and
Kalinowski 2000). This decline in population size will in turn lead to further increased
strength of genetic drift and additional fixation of detrimental mutations, thus
resulting in a negative feedback loop for the population (Lynch and Gabriel 1990;
Lynch et al. 1995a; Gaggiotti 2003; Charlesworth and Willis 2009). This phenome-
non, where the increasing strength of genetic drift causes a negative feedback loop in
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population size, has been termed the population mutational meltdown by Lynch and
Gabriel (1990).

4.3 Fragmentation of Populations

In many extinct and endangered species, demographic declines also lead to popula-
tion fragmentation, which in turn can lead to increased genetic drift and inbreeding
within each subpopulation (Brooks et al. 1999; Dixo et al. 2009; Frankham et al.
2017). While fragmentation can have natural causes, e.g. as rising sea levels create
isolated islands with small isolated populations, human-caused fragmentation is one
of the main anthropogenic threats for species and population survival in modern
times (Haddad et al. 2015). The split of one population into several small
populations, e.g. due to loss of suitable habitats or newly introduced barriers, at
best only limits gene flow and at worst eliminates any possibilities for gene flow
between the populations (Goossens et al. 2005). Regardless, the smaller population
sizes caused by fragmentation increases the vulnerability to and effects of stochastic
events, including genetic drift and inbreeding (Dixo et al. 2009; Pečnerová et al.
2016).

5 Paleogenomics to Study Effects of Decline

5.1 Genetic Parameters

One of the most important aspects of assessing the genomic consequences of a
demographic decline is to determine the pre-decline status of important genomic
erosion parameters, such as genome-wide diversity, inbreeding levels, as well as the
amount genetic load within a population (Fig. 3). Several recent studies have
indicated that there are some discordances in the theoretically acknowledged corre-
lation between population size and the level of heterozygosity (Leffler et al. 2012;
Díez-del-Molino et al. 2018). For example, the Sumatran orangutan (Pongo abelii)
and the bonobo (Pan paniscus) are two currently endangered species, the former
critically so (Prado-Martinez et al. 2013; IUCN 2016). Still, even though the current
population sizes of the two species are similar, the Sumatran orangutan population
has approximately three times higher genome-wide heterozygosity than the bonobo
(Leffler et al. 2012; Prado-Martinez et al. 2013). Similarly, the giant panda, classified
as vulnerable according to the IUCN red list, has significantly higher heterozygosity
than humans (Cho et al. 2013; IUCN 2016). It has therefore been suggested that
ancient bottlenecks and different life history strategies among species are likely to
give rise to varying pre-decline levels of diversity, inbreeding and genetic load. In
order to be able to distinguish the genomic effects of pre-extinction declines from the
effects of more ancient events and life history traits, analysing pre-decline genomes
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using, for example, century-old museum specimens can be a valuable approach in
conservation genomics (Díez-del-Molino et al. 2018).

5.2 Genomes

When inferring past demographic events and conducting population genetic ana-
lyses based on ancient data, the most common DNA marker previously used has
been mtDNA, such as the D-loop (Hofreiter et al. 2004; Valdiosera et al. 2007;
Lorenzen et al. 2011). There are several benefits of using mtDNA, with one
important benefit being the much higher copy number of the mtDNA genome in
each cell in comparison with the nuclear genome (Clayton 1982). However, while all
mtDNA is inherited from a single parent, the nuclear genome comprises several
million independently, biparentally inherited loci and will therefore facilitate greater
statistical power for the conduction of population genetic analyses than does mtDNA
(Shapiro and Hofreiter 2014). For example, by using genome-wide single nucleotide
polymorphism (SNP) sites, it is possible to estimate individual levels of heterozy-
gosity in the population, making estimates of changes in genetic diversity more
robust (Park et al. 2015).
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Fig. 3 Conceptual figure showing how pre-decline sampling enables direct estimates of the
changes in genomic erosion parameters, such as genome-wide diversity (brown), inbreeding levels
measured as amount of runs of homozygosity (ROH) (yellow) and genetic load (green), as a direct
consequence of the pre-extinction decline
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Using whole genomes is of high importance when evaluating genetic conse-
quences of declines, since such data in parallel enables analyses of effects on
standing genetic variation, effects on fitness by analysing functional regions as
well as genome-wide scans for runs of homozygosity (ROHs), i.e. long genomic
fragments completely depleted from diversity (Broman and Weber 1999; McQuillan
et al. 2008; Kardos et al. 2016). While generating high-coverage genome data is
always preferential, there are some unneglectable obstacles for this goal when
working with ancient material. First of all, as an organism dies, the natural post-
mortem degradation of DNA is initiated, through, for example, enzymatic processes
occurring shortly post-mortem, hydrolytic strand cleavage, lesions induced by
oxygen-free radicals and cytosine deamination (Pääbo 1989; Pääbo et al. 2004;
Wandeler et al. 2007; Skoglund et al. 2014). The rate of DNA degradation is to a
large extent dependent on the environment in which the remains are preserved
(in general, cold and dry environments can facilitate a slower rate of degradation)
(Lindahl 1993). Secondly, as a consequence of this, the quality and the amount of
endogenous DNA can vary greatly between different samples, and ancient samples
are known to be highly sensitive to modern DNA contamination (Pääbo 1989; Pääbo
et al. 2004).

With good aDNA preservation, however, high-coverage genome data can be
generated. In this scenario, given the large number of independently inherited loci,
only a handful of genomes or so are sufficient for inferring the extent of inbreeding
and loss of genomic diversity in a population prior to its extinction (Shapiro and
Hofreiter 2014). Quantification of genome-wide diversity as well as the inbreeding
levels based on ROHs were recently done in two different studies of the extinct
Denisovans and woolly mammoths, respectively (Meyer et al. 2012; Palkopoulou
et al. 2015). Here, in-depth analyses such as long-term demographic changes, as well
as individual genome-wide heterozygosity and inbreeding estimates, were generated
(Meyer et al. 2012; Palkopoulou et al. 2015). Using the software mlRho (Haubold
et al. 2010), the two studies reported extremely low to low heterozygosity in one
30-fold coverage Denisovan genome and one 17-fold coverage woolly mammoth
genome, respectively. In both cases, the low heterozygosity could not be explained
by inbreeding of immediate ancestors since no unusually long ROHs could be
detected in the Denisovan genome and in the woolly mammoth genome the lengths
of the ROHs were relatively short, a pattern typical for when mating between distant
relatives has been taking place for several generations rather than close relatives
having mated more recently (Broman and Weber 1999; Gibson et al. 2006; Meyer
et al. 2012; Palkopoulou et al. 2015).

With poor aDNA quality on the other hand, only low-coverage genome data can
be generated. As a consequence, the analyses will be constrained to population-level
analyses. Still, a lot of new insights can come from these types of analyses, like in the
case of camel evolutionary history. Through high-coverage mitochondrial genomes
from two ancient Yukon Camelops specimens and low-coverage nuclear genomes
from one of these individuals, results contradicting previous morphology-based
phylogenetic analyses of the relationships between different camels species could
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be reported (Heintzman et al. 2015). As another example, by using the high-
coverage mitochondrial and low-coverage nuclear genome of a wolf sample dated
to 35 cal kyr BP, Skoglund et al. (2015) found support for the divergence between
wolves and dogs haven taken place ~27–40 kyr earlier than previously suggested.

Up until recently, few high-quality genomes (>10-fold average genome cover-
age) of extinct species had successfully been generated. In 2008, the first report of an
attempt to sequence an extinct mammalian genome was published along with a
partial genome sequence covering roughly 70% of the genome, this by sequencing
DNA from woolly mammoth hair (Miller et al. 2008). Subsequently in 2015, two
complete woolly mammoth genomes were generated with a 17-fold and 11-fold
average coverage, respectively (Palkopoulou et al. 2015). The first ancient human
genome was sequenced in 2010, with a 20-fold average coverage across 79% of the
genome of a Paleo-Eskimo human (Rasmussen et al. 2010). In 2014, the complete
genome sequence of one Neanderthal (52-fold average coverage) (Prufer et al. 2014)
and four passenger pigeons (5–20-fold coverage) (Hung et al. 2014) were generated.
One year later, Park et al. (2015) managed to sequence the complete genome of the
extinct aurochs (Bos primigenius) (six-fold average coverage). In 2017, two addi-
tional high-coverage passenger pigeon genomes (51- and 41-fold median coverage)
(Murray et al. 2017) as well as the complete genome (43-fold average coverage) of
the Tasmanian tiger (Thylacinus cynocephalus) (Feigin et al. 2017) were published.
Thus, the recent advances in sequencing technologies now means that the possibil-
ities to analyse genomes of extinct species have increased immensely and along with
it comes the increasing potential for understanding pre-extinction genetic processes.

6 Future Challenges

6.1 Reference Genomes

When working with genomic data generated from extant species, there are either de
novo assembled reference genomes already available for mapping the sequencing
reads or such de novo genome assemblies can relatively easily be generated for the
study species in question (Li et al. 2010). However, since de novo assembly requires
high-quality DNA to generate high coverage across the entire genome, this is
considered impossible for extinct species. Instead, one has to rely on the most
closely related extant species as a reference for mapping sequencing reads. Since
the most closely related species can often correspond to a divergence time of
millions of years, aligning sequencing reads from an extinct species is not trivial
and can often result in gaps in parts of the genome that are non-existing in the
genome of the related extant species (Prüfer et al. 2010; Shapiro and Hofreiter 2014;
Richmond et al. 2016). It is however still possible to conduct some analyses without
a proper reference genome, such as changes in genome-wide diversity, while
other important biological questions such as functional genomics may be more
difficult to answer.
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6.2 Sequence Analysis

With whole-genome sequencing comes the generation of massive amounts of data,
which has led to the development of bioinformatics softwares that can be applied to
such large data sets. Numerous different pipelines and bioinformatics tools are now
available for filtering away low-quality sequencing reads (e.g. John 2011; Bolger
et al. 2014), mapping high-quality reads to a reference genome (e.g. Li et al. 2009;
Li 2013), consensus sequence generation and the conduction of data analyses to
statistically test a large range of biological questions (e.g. McKenna et al. 2010;
DePristo et al. 2011; Lunter and Goodson 2011). However, analysing whole genomes
from ancient samples requires pipelines and bioinformatics tools that can handle data
generated from poor-quality DNA and that can distinguish endogenous DNA from
contaminant DNA, as well as identify nucleotide changes caused by post-mortem
DNA damage.While there are some best practices available (Mourier et al. 2012) and
tools applicable to low-quality data are on the rise (e.g. Schubert et al. 2014; Peltzer
et al. 2016), a general issue with bioinformatics software development and usage
concerns software version updates. As an increasing amount of researchers apply
various bioinformatics tools to their specific data sets, new unforeseen issues arise
leading to version updates of the tools to correct for these issues. Thus, during the
course of a research project, the initial version of a programmight have been updated
several times making the first analyses irrelevant by the end of the project. Mainte-
nance of previous versions is moreover often abandoned in favour of newer versions,
and most research groups include custom-made scripts or programs specifically
designed for their data, making it difficult to replicate analyses from previously
published studies.

The field of paleogenomics is expanding rapidly, especially due to the increasing
possibilities to generate large data sets from degraded DNA, and good practice
guidelines for processing and analysing this type of data are desirable.

6.3 De-extinction

With the rise of whole-genome sequencing, advanced laboratory techniques that
enable in vitro fertilization and cloning, as well as genetic engineering techniques to
edit genomes such as CRISPR, the debate about bringing back extinct species has
intensified (Jinek et al. 2012). Some argue that it is our moral responsibility to bring
back the species we have once driven to extinction. Others suggest that de-extinction
could be used to counteract environmental change by bringing back key species to
important ecosystems, such as grasslands, where, e.g. woolly mammoths could
contribute by haltering releases of carbon from soils (Zimov et al. 2012). The
advancement of cloning has yielded several successful cloned animals over the
past decade, e.g. the successful generation of an afghan dog puppy clone and
the creation of a viable mouse clone from a dead mouse donor that had been frozen
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at !20"C for 16 years, both of these through somatic cell nuclear transfer (SCNT)
(Lee et al. 2005; Wakayama et al. 2008). However, bringing back extinct species is
even more complicated. For example, the first trial of bringing back an extinct
species through cloning resulted in a Pyrenean ibex clone (Capra pyrenaica
pyrenaica) that survived for only a few minutes (Folch et al. 2009).

Since it is today possible to sequence more or less complete genomes of extinct
species, these genomes could theoretically be synthetically generated and introduced
into empty nuclei of egg cells carried by surrogate mothers of closely related species.
Since DNA goes through post-mortem degradation, however, the probability of
generating high-quality, high-coverage genomes of extinct species decreases with
the age of the specimen (Wandeler et al. 2007; Skoglund et al. 2014). In other words,
the highest-quality samples are also going to be comparatively close in time to the
extinction event and are consequently likely to carry genomes that are depleted of
genetic diversity, contain high numbers of ROHs, and most importantly may have an
excess of fixed deleterious mutations. With genetic engineering methods, such as
CRISPR-Cas9, it is however to some extent possible to circumvent this issue by
replacing harmful mutations (Jinek et al. 2012).

The typical read length of degraded DNA poses another challenge, as it is not
possible to align fragmented ancient DNA sequences to the regions of the genome
that are highly repetitive or duplicated, as this requires much longer sequencing
reads than what can be retrieved from ancient samples (Treangen and Salzberg
2012). It is therefore hopeless to retrieve the complete genetic information of
historical and ancient individuals, even if the DNA is relatively well preserved.
Apart from the previously mentioned technical challenges, it is thus impossible to
recreate a perfect clone of long-extinct individuals, as we have no knowledge of a
significant part of the genome. Most de-extinction efforts therefore focus on creating
hybrids that retain some key phenotypes from the extinct species. In the case of the
proposed woolly mammoth hybrid, only 45 genes have been modified so far to carry
woolly mammoth alleles in the Asian elephant genome (Campbell and Whittle
2017). It is unclear how mammoth-like such a hybrid would be in appearance and
behaviour and whether the outcome justifies the immense efforts.

Besides molecular and genetics issues that need to be addressed before
de-extinction can be realized, there are other ecological and behavioural aspects
that might affect the outcome. Would the closest living relative be able to teach a
newborn the way of life of another species? Are there any remaining suitable habitats
for an extinct species in modern times? Are the external factors that originally
contributed to the extinction gone?

Instead, perhaps the idea of de-extinction would be best applied to currently
threatened species, by using genetic engineering to bring back genetic diversity and
ancient, healthier allele variants (Shapiro 2017). The endangered Tasmanian devil
(Sarcophilus harrisii), for example, is suffering from low genetic diversity not least
in the MHC complex and is severely affected by a transmittable cancer (Siddle et al.
2010). Here, the use of genomic data from healthy, long-dead individuals and the
CRISPR-Cas9 technique could potentially provide an alternative way to obtain a
genetic rescue effect (Tallmon et al. 2004), for example, by adding diversity to the
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immune system within the population, thereby increasing its resilience towards the
cancer and in the long-term extinction (Jinek et al. 2012).

6.4 Adaptation During the Extinction Process

While the majority of studies on extinct species focus on the cause of extinction and
population demography, not much is known about whether populations are capable
of adapting to the additional challenges of inbreeding depression or accumulation of
deleterious alleles prior to extinction. Species such as the cheetah, channel island fox
and the wandering albatross went through severe bottlenecks that led to a very low
genetic heterozygosity in the present-day population, yet these species have
persisted in relatively stable populations for thousands of years (Milot et al. 2007;
Dobrynin et al. 2015; Robinson et al. 2016). It is not clear whether these species
currently are in terminal refugia or whether they have escaped from the extinction
vortex at the time of the bottleneck due to stochastic factors or species-specific
behavioural strategies. Alternatively, the survival of these species could be explained
by them having been able to genetically adapt to a small population size during the
decline.

This question could in the future be addressed with paleogenomics by comparing
the adaptive potential of in-decline populations that went extinct with those
populations that persisted after the bottleneck. Genes under positive selection that
enabled the population to be less vulnerable to the effects of the extinction vortex, as
well as possible decreases in genetic load due to purifying selection, might also be
detectable by comparing pre-decline with post-decline individuals. As neither pop-
ulation size nor low heterozygosity is a good proxy for the immediate extinction risk
of a species (Díez-del-Molino et al. 2018), the additional information of an estimated
adaptive potential could be valuable in conservation to prioritize especially vulner-
able populations.

The ability of small populations to adapt to changes in the environment is
especially relevant today, given the ongoing changes in climate that is likely to put
additional stress on endangered species throughout the world. Paleogenomic ana-
lyses on species that became extinct in conjunction with the severe changes in
climate that took place at the end of the Pleistocene could provide highly valuable
information in this context. In particular, knowledge on the extent to which species
were able to adapt to prehistoric temperature increases may help conservation
biologists to predict how resilient present-day species will be to future climate
change.
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7 Conclusions and Future Perspectives

Extinction is one of the most fundamental processes in evolution. However, despite
its importance to better understand today’s biodiversity crisis, little is known about
the demographic trajectories that precede extinction as well as how population
declines affect genomic parameters. Paleogenomic analyses of taxa that went extinct
in the past offer a unique opportunity to investigate how species demographies
changed prior to their disappearance. Moreover, serially sampled genomic data
can be used to test whether genome erosion in itself can contribute to the extinction
process. Although only a few ancient genomes from wild species have been
sequenced to date, this is probably going to change in the near future given the
continuous decrease in high-throughput DNA sequencing costs and ongoing devel-
opments in ancient DNA recovery methods. It therefore seems highly likely that
genomes from several additional extinct species will soon be made available. While
this will inevitably result in an increased debate about the possibility of resurrecting
these species, comparisons of genomes from multiple extinct species with those from
their closest living relatives will also help emphasize the importance of having
suitable genome assemblies from related extant species to use for reference-based
mapping. In the near future, we are also likely to see comprehensive genomic
catalogues for several extinct species, comprising multiple genomes sampled
through time leading up to the extinction. Such genomic catalogues will enable
detailed studies of how changes in the environment and population size have
affected microevolutionary processes through time.
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Abstract: One hundred and seventy-three years ago, the last two Great Auks, Pinguinus impennis,
ever reliably seen were killed. Their internal organs can be found in the collections of the Natural
History Museum of Denmark, but the location of their skins has remained a mystery. In 1999, Great
Auk expert Errol Fuller proposed a list of five potential candidate skins in museums around the
world. Here we take a palaeogenomic approach to test which—if any—of Fuller’s candidate skins
likely belong to either of the two birds. Using mitochondrial genomes from the five candidate birds
(housed in museums in Bremen, Brussels, Kiel, Los Angeles, and Oldenburg) and the organs of the
last two known individuals, we partially solve the mystery that has been on Great Auk scholars’
minds for generations and make new suggestions as to the whereabouts of the still-missing skin from
these two birds.
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1. Introduction

Over the past three decades, the field of ancient DNA (aDNA) has grown considerably, from
sequencing a small section of mitochondrial DNA from the Quagga, an extinct form of the plains
zebra [1], to whole genome sequencing from samples up to 735,000 years old [2]. Ancient DNA has
been used to answer and address a diverse range of ecological and evolutionary questions, providing
insight into countless species’ pasts, including our own. However, aDNA can also be a useful tool for
museums, specifically for species identification and, under suitable circumstances for reconstructing
the history of specimens where museum records are insufficient. This study traces the whereabouts of
the skins from the last two documented Great Auks using a palaeogenomic approach.

The Great Auk (Figure 1), Pinguinus impennis, Bonnaterre (1790) (traditionally Alca impennis,
Linnaeus, 1758), has been described as “perhaps the most curious of all vanished birds” [3]. It was a bird
whose life and ultimate extinction has generated ongoing interest, with several scholars dedicating
their lives to Great Auk research [3–7]. Even now, 173 years after the death of the last two recorded
captured individuals, there are still many unanswered questions concerning aspect of its life-history,
evolution, and extinction. One such mystery that surrounds the Great Auk is the whereabouts of the
skins from the last documented pair. In order to be able to correlate the phenotype of the last birds
with genomic information obtained from the well-preserved organs, and in view of the active role
that researchers and research institutions played in pushing the Great Auk towards extinction, it is of
relevance to be able to trace these skins.
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Figure 1. A mounted Great Auk skin, The Brussels Auk (RBINS 5355) (MK135), from the collections at
Royal Belgian Institute of Natural Sciences (Credit Thierry Hubin (RBINS)).

Once found in great numbers across the North Atlantic (Figure 2), this flightless bird was heavily
hunted for its meat, oil, and feathers. By the start of the 19th century, populations in the North-West
Atlantic had been decimated. The last few remaining birds were breeding on the skerries off the
south-west coast of Iceland, but with their scarcity increasing, Great Auks were then also sought after
as a desirable item for both private and institutional collections [3,5,8–10].

From 1830 to 1841, several trips were taken to Eldey Island (Figure 2) where Great Auks were
caught, killed, and sold for exhibitions. Following a three-year period of no recorded captures of Great
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Auks, Carl Siemsen commissioned an expedition to Eldey to search for any remaining birds. Between
2 and 5 June 1844, the expedition reached Eldey Island where two Great Auks were observed amongst
smaller birds inhabiting the island. Both Auks were killed and their broken egg discarded. The birds,
though, were never to reach Siemsen. The expedition leader sold them to Christian Hansen, who then
sold them to the apothecary Möller, in Reykjavik, Iceland. Möller skinned the birds and sent them, as
well as their preserved body parts, to Denmark [3,6,7].
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The internal organs of these two birds now reside in the Natural History Museum of Denmark.
However, the location of the skins of those individuals remains a mystery, despite considerable effort
of notable Great Auk scholars to solve it.

Fuller [3] describes in detail the known history of the 80 or so specimens that are still in existence
in collections today and concludes: “Somehow, amid all the frantic Garefowl [another name for Great
Auk] research of the nineteenth century, they [the skins] were lost track of. Several of the surviving stuffed
specimens, notably those in Kiel, Bremen and Oldenburg were tentatively identified with them. The most likely
candidates, however, are the birds now in Los Angeles and in Brussels” [3] (p. 85).

Our study compares complete mitochondrial genome (mitogenome) sequences from the five
candidate skins (those housed in Bremen, Brussels, Kiel, Los Angeles, and Oldenburg) to the internal
organs of the last documented captured Great Auks (stored in Copenhagen) to test which—if any—of
Fuller’s candidate skins likely belong to one of the last two individuals.

2. Materials and Methods

2.1. Sample Information

Specimens from the candidate list proposed by Fuller [3] and the organs from the two 1844 Eldey
Island individuals, were sampled using sterile equipment and the appropriate method for sample
type, which caused minimal physical damage to the specimen (Table 1).
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2.2. DNA Extraction

All lab work prior to polymerase chain reaction (PCR) amplification was carried out in designated
aDNA laboratories that adhere to strict aDNA protocols [13]. For each DNA extraction and library
build, negative controls were used to check for contamination by exogenous DNA. All post-PCR work
on amplified DNA was carried out in separate laboratory facilities.

Genomic DNA was extracted from the oesophagus (Figure 3a), skin (Figure 3b), toepad tissue
(Figure 3c), and feathers using a modified version of Dabney et al. [14] in which the initial digestion
was carried out following the protocol by Gilbert et al. [15]. This digestion buffer is better suited to
extraction from these tissues types than the Dabney et al. [14] digestion buffer, which was optimised
for DNA extraction from bone. Subsequent DNA purification and elution was conducted following
the approach described by Dabney et al. [14]. Genomic DNA was extracted from the heart tissue
(Figure 3d) using the protocol by Campos et al. [16].
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Figure 3. (a) Jars containing the oesophagus from the last two individuals killed on Eldey Island.
The oesophagus from the larger jar represents that of the individual labelled male (NHMD153069)
(MK131). The smaller jar contains the oesophagus from the female bird (NHMD153070) (MK132)
(credit. J. Thomas). (b) Sampling of The Oldenburg Auk (AVE 8086) (MK133) to remove a section of
body tissue for DNA extraction (credit. C. Barilaro, Landesmuseum Natur und Mensch Oldenburg).
(c) Sampling the toe pad of The Bremen Auk (RKNr. 2392) (MK134) to remove tissue sample (credit M.
Stiller, Übersee-Museum Bremen). (d) The hearts from the last two documented individuals. The heart
from the female individual has been sampled for this study (top) (NHMD153070) (LastGA2_Heart)
(credit Natural History Museum of Denmark).
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2.3. Data Generation

Single stranded libraries were constructed for all samples, except LastGA2_Heart, following
Gansauge & Meyer [17], with modifications as described by Bennett et al. [18], as this allowed for
targeting of the smallest fragments of DNA, typical of highly degraded specimens. For LastGA2_Heart,
the protocol described by Meyer & Kircher [19] was used. Enrichment for complete mitogenomes was
performed using MYcroarray MYbaits, following the manufacturer’s manual v2.3.1 [20] on all samples
except MK138 and LastGA2_Heart. Samples were sequenced on Illumina platforms (HiSeq and MiSeq)
by New Zealand Genomics Limited, Otago Branch, or the Danish National High-Throughput DNA
Sequencing Centre.

2.4. Read Processing

Processing of raw sequence data was facilitated by the PALEOMIX v1.2.5 pipeline [21], which
performs adapter trimming, read mapping to a reference genome, and quality-based filtering.
Low-quality bases and adapter sequences were trimmed from the 3’ ends of DNA reads with the
software AdapterRemoval v2.1.7 [22,23] using a mismatch rate of 0.333 (command-line option—mm
3). Paired end reads overlapping by at least 11 base pairs (bp) were collapsed into a single read with
re-calibrated base quality scores. Trimmed reads shorter than 25 bp were discarded.

Mapping to the Great Auk reference mitogenome (GenBank: KU158188.1) [24] was performed
with Burrows–Wheeler Aligner (BWA) v0.5.10 [25] with seeding deactivated and otherwise default
settings. PCR duplicates were removed with the MarkDuplicates function within Picard v1.82 [26] and
the rmdup function within the software SAMtools [27]. Collapsed reads were filtered using a script
included with PALEOMIX. Reads with mapping quality (MAPQ) scores <20 were removed from further
analysis. Local realignment of reads misaligned to the reference mitogenome was performed with the
RealignerTargetCreator and IndelRealigner tools included in the software Genome Analysis Toolkit
(GATK) v3.6.0 [28]. The pipeline also utilised MapDamage2 [29] to recalibrate base qualities of aligned
sequence reads in each sequencing library in order to remove the residual aDNA damage patterns. The
UnifiedGenotyper algorithm within GATK v3.6.0 was used to determine haploid genotypes within
individual samples.

A relaxed and strict filtering system was used to create consensus sequences and alignments
from the processed data. In the first stage of filtering, both systems used VCFtools [30] to filter
genotypes from the final alignment when their genotype quality scores were less than 30. For the
relaxed alignment, the per-individual read depth was set to only include bases with a minimum of
3-fold coverage. Bases called for the consensus sequence had to be present at a frequency higher than
33%. To be included in the final alignment, no more than 33% of bases could be missing from the
consensus sequence of an individual.

For the strict settings, the per-individual read depth was set to only include bases with at least
10-fold coverage. Geneious v-10.1.3 [31] was used to filter bases so that the majority base was present
in more than 90% of reads. For an individual to be included in the final alignment, no more than 20%
of sites could be missing from the individual’s consensus sequence.

A custom script was used to convert the filtered Variant Call Format (VCF) file into a multiple
sequence alignment in FASTA format.

Following read processing, the data was aligned using Seaview v4.0 [32] with the algorithm
Muscle -maxiters2 -diags. The alignment was manually checked for errors using BioEdit v7.2.5 [33],
and Tablet v-1.16.09.06 [34] was used to view the rescaled Binary Alignment Map (BAM) file for
each sample.

MEGA v-7.0.21 [35] was used to generate a pairwise distance table for all sequenced
individuals. Phylogenetic relationships between the individuals were reconstructed and visualized
using a maximum-likelihood approach as implemented in MEGA v-7.0.21 [35]. jModelTest
v-2.1.10 [36,37] was used to determine the most suitable nucleotide substitution model, which was
a Hasegawa–Kishino–Yano (HKY) [38] model. Initial trees for the heuristic search were obtained by
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applying Neighbour-Joining methods to a matrix of pairwise distances estimated using the maximum
composite likelihood approach. Branch lengths are measured in number of substitutions per site. All
positions containing gaps and missing data were removed. Phylogenies were reconstructed from
500 bootstrap pseudoreplicates to evaluate branch support.

3. Results

Mitogenome sequence data was obtained from all candidate specimens as well as from the two
oesophagi of the last Great Auks. Unique coverage of the mitogenomes for these samples ranged from
6.2× to 288.6× (Table 2). As DNA extracted from the oesophagus of the female last Great Auk (MK132)
yielded only a low coverage, poor quality mitogenome assembly, DNA from the heart of the same
individual was also sequenced. This yielded a high coverage (430×) mitogenome, which was used in
all further analyses.

Table 2. Read processing results for all samples.

Sample
GenBank
Accession
Number

Number of
Reads

Number of Unique
Reads Mapping to

Reference
Mitogenome

Estimated
Coverage

from
Unique Hits

Relaxed
Settings

Sequence
Length (bp 1)

Strict
Settings

Sequence
Length (bp)

MK131 MF188883 300754
(read pairs) 30,297 74.40 16,001 15,067

MK132 NA 550631
(read pairs) 2366 6.23 13,267 3312

MK133 MF188884 429392
(read pairs) 8750 23.04 16,251 14,240

MK134 MF188885 343766
(read pairs) 86,325 288.62 16,607 16,526

MK135 MF188886 579992
(read pairs) 27,767 88.90 16,554 16,356

MK136 MF188887 563635
(read pairs) 24,401 67.83 16,330 15,833

MK138 MF188888 10796460
(SE 2 reads) 2799 9.76 16509 7866

LastGA2_Heart MF188889 957970612
(SE reads) 121,886 430.09 16,698 16,649

1 Base pairs (bp); 2 Single End (SE).

With the sequence data from the heart of the female last Great Auk (LastGA2_Heart), the
alignment of all sequences assembled under the relaxed rules had a length of 15,790 bp after sites
not covered by all consensus sequences were removed. For the strict alignment, MK138 did not meet
criteria set by the strict filtering settings as more than 20% sites were missing. With this individual
removed, we obtained a strict alignment length of 13,475 bp.

The pairwise distance matrix (Table 3) shows that the consensus sequence obtained from sample
MK131, the oesophagus of the male, is identical to the consensus sequence obtained from MK135,
The Brussels Auk. No other consensus sequences match. LastGA2_Heart, the female last Great Auk,
groups with MK136 and MK134 in the maximum likelihood phylogeny (Figure 4), but there are 18 and
20 well-supported differences between the consensus sequences, respectively. Analysis presented here
was generated using data from the relaxed filtering settings, but results were consistent with data from
the strict filtering system. Thus, only the male last Great Auk has a corresponding DNA match among
the candidate skin samples identified by Fuller [3].
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Table 3. Pairwise distance matrix. Estimates of evolutionary divergence between sequences generated
using the relaxed settings. The number of base differences per sequence from between sequences
are shown. All positions containing gaps and missing data were removed, leaving a total of 15,790
positions in the final dataset. Evolutionary analyses were conducted in MEGA7 [35].

MK131 MK133 MK134 MK135 MK136 MK138 LastGA2_Heart

MK131_LastGA1
MK133_Oldenburg 17
MK134_Bremen 18 23
MK135_Brussels 0 17 18
MK136_LA 16 23 20 16
MK138_Kiel 14 11 20 14 20
LastGA2_Heart 16 23 20 16 18 20
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4. Discussion

The genetic analyses presented here help to partially resolve the mystery of the missing skins
of the last two Great Auks. They provide evidence of matching mitochondrial genomes for the
internal organs of the last male Great Auk held at the Natural History Museum of Denmark
in Copenhagen and the Great Auk skin held at the Royal Belgian Institute of Natural Sciences,
Brussels (Figure 1). Mitochondrial DNA cannot always be unambiguously used in identification of
individuals. However, in a broader study of forty one Great Auk mitogenomes from across their
range, Thomas et al. (in prep) [39], found that mitochondrial diversity in Great Auks remained high
right up to their demise, with no other individuals found to have the same mitochondrial haplotype.
Together with the information from the historical record, the match between the internal organs and
The Brussels Auk therefore appears to be more than just a coincidence.
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There are around 80 known mounted Great Auk skins in museums worldwide. However, the
majority can be ruled out of any speculation that they belonged to the last pair due to their history
(for example, if they were collected before 1844). Those tested in the current study were placed on the
candidate specimen list due to several factors that led Fuller, as well as other experts like the University
of Copenhagen Professor Japetus Steenstrup (dubbed ‘Father of Garefowl History’ by Grieve, 1885),
and Grieve [4], to suspect that they originated from the 1844 Eldey pair. Details such as when and
where they were acquired, from whom (i.e., the dealer), and suggestions by renowned Great Auk
scholars made the birds in Bremen, Brussels, Kiel, Los Angeles, and Oldenburg the top candidates [3].

In the museum industry, accurate records and archiving are obviously of high priority, with labels
and registers providing vital information about the specimens [40–42]; it therefore seems unexpected
that the two bird skins could have been “lost”. However, at the time, their significance as the final
remnants of the species was not recognised. The story of the ending of these individuals lives is well
documented due to the efforts of English naturalist John Wolley and Cambridge University Professor
Alfred Newton, who travelled to Iceland in the late 1850s and spoke directly with those who were
part of the 1844 Eldey Island voyage (details from Wolley’s notebook ‘Garefowl books’ published in
Newton, 1861 [7]). What happened once the skins and their organs reached Denmark, on the other
hand, is poorly recorded and remains speculative [3].

In the archives of Cambridge University are the fragments of information that Newton learned
of the birds. On notes dated 1861, it was recorded that Professor Reinhardt of the Royal Museum
(Copenhagen) believed the skins and their organs had been purchased for the museum by Professor
Eschricht of the University of Copenhagen. He is said to have taken the skins to the Congress of
German Naturalists in Bremen in the autumn of 1844 [3].

The connection with the skins and the Congress in Bremen could be what led Steenstrup to inform
Grieve of his suspicions that the specimen at the museum in Bremen (MK134) was indeed one of the
last birds [4]. Yet, this bird was bought by the museum at the time of the Congress from the Hamburg
dealer Salmin, not Eschricht. Therefore, while the possibility may be there for Salmin to have first had
the bird from Eschricht and then sold it on, it is also likely that it was a bird he had in his stocks prior
to 1844 [3]. This study shows The Bremen Auk is not a match with either of the organs from the last
pair, suggesting that it did indeed come from an earlier raid of Eldey.

The specimen in Kiel, the Schleswig–Holstein Auk (MK138), was purchased in 1844. With such
a suggestive purchase date it is a contender in the mystery [3]. Professor Steenstrup was quoted by
Grieve as saying, “If really purchased in 1844, it might perhaps be the second of these two Garefowls got in
1844, but traditionally I never heard that mentioned” [4] (Grieve Appendix p. 13 [4]). Our study shows
this specimen was not a match, so Steenstrup was correct in his belief.

With regard to The Oldenburg Auk (MK133), this specimen was once regarded by nineteenth
century scholars as belonging to one of the last birds. However, the records for this bird shows it was
obtained prior to 1844 and is therefore ruled out [3]. It was tested in this study due to the suggestions
of these early researchers but was not a match.

The history of The Brussels Auk (MK135) and Dawson Rowley’s Los Angeles Auk (MK136) can
be traced back to 1845 when they were said to be in the hands of a well-known, and well connected,
Great Auk dealer, Israel of Copenhagen. Israel is known to have had excellent links with Iceland and
spent his winters in Copenhagen and his summers in Amsterdam [3]. Fuller suggests that perhaps
Israel, if he did not receive them direct from Iceland, purchased the birds in Bremen from Eschricht.
The birds have a detailed history, passing through the hands of several dealers. From Israel, they were
bought by Lintz, a Hamburg merchant, and in 1845 were sold on to the Amsterdam branch of the
dealer, Frank. In Newton’s notes at Cambridge it was recorded that Frank believed the two skins he
bought were from the last pair. The Brussels Auk was purchased in 1847 by Viscount Bernard Du Bus
Ghisignies, director of the Brussels Museum [3]. The history of The Brussels Auk therefore strongly
supports our positive match with MK131.
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If the bird in Brussels, which came from Israel of Copenhagen, is from one of the last birds, then
this would suggest that the second bird he had would also be from Eldey in 1844 and therefore be a
positive match with the second set of organs. Israel’s second bird has an even longer story than that of
MK135, but it now resides in the Natural History Museum of Los Angeles County [3]. This specimen,
Dawson Rowley’s Los Angeles Auk (MK136), was tested, and the results showed it did not match
LastGA2_Heart. With this negative result, we can only speculate which of the remaining untested
birds could be identified as the second individual.

A possible scenario to explain the mismatch between Dawson Rowley’s Los Angeles Auk (MK136)
and the internal organs from the Natural History Museum of Denmark involves a mix up of skins.
Dawson Rowley’s Los Angeles Auk, was once one of two Great Auks owned by George Dawson
Rowley. During the 1930s, they were passed to Captain Vivian Hewitt who owned two additional
specimens. The four specimens are currently held in Cardiff, Birmingham, Los Angeles, and Cincinnati.
At Hewitt’s death, his collection had been put under the control of Spink and Son Ltd., a London
dealer, who offered them for sale. While organising Hewitt’s affairs, the four birds were mixed up.
The identity of the birds now in Birmingham and Cardiff could be easily resolved, but those now
in Los Angeles and Cincinnati are harder to determine. It is thought that their identities could be
determined from annotated photographs taken in 1871 by George Dawson Rowley when they were in
his possession [3]. However, we speculate that their identities were not correctly resolved and that
perhaps the bird in Cincinnati was the original bird from Israel of Copenhagen. If this were the case,
then it would explain why the Los Angeles bird fails to match with either of the last Great Auk organs
held in Copenhagen.

In summary, we suggest that The Brussels Auk is the skin from the last male Great Auk killed
on Eldey Island in June 1844. The skin of the female killed at the same time remains unaccounted for,
but a common history with The Brussels Auk makes the skin currently held at Cincinnati Museum of
Natural History and Science, a likely candidate. A re-evaluation of the historical records may reveal
further candidate skins amongst those currently held in museums around the world.

5. Conclusions

Ancient DNA has been used to evaluate museum collections in the past, albeit usually for
taxonomic identification of unidentified or misidentified accessions. Our study shows an alternative
use of the technology. It demonstrates the utility of molecular tools and advanced sequencing to
contribute to questions, which are not primarily biological or molecular but rather historical in nature.
The unraveling of the mystery surrounding the whereabouts of the skins of the last two Great Auks
represents a fascinating element in the story of extinction and human involvement in that process.
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Abstract The great auk was once abundant and distributed across the North Atlantic. It is now

extinct, having been heavily exploited for its eggs, meat, and feathers. We investigated the impact

of human hunting on its demise by integrating genetic data, GPS-based ocean current data, and

analyses of population viability. We sequenced complete mitochondrial genomes of 41 individuals

from across the species’ geographic range and reconstructed population structure and population

dynamics throughout the Holocene. Taken together, our data do not provide any evidence that

great auks were at risk of extinction prior to the onset of intensive human hunting in the early 16th

century. In addition, our population viability analyses reveal that even if the great auk had not been

under threat by environmental change, human hunting alone could have been sufficient to cause its

extinction. Our results emphasise the vulnerability of even abundant and widespread species to

intense and localised exploitation.

Introduction
The great auk (Pinguinus impennis) was a large, flightless diving bird thought to have once num-

bered in the millions (Birkhead, 1993). A member of the family Alcidae in the order Charadriiformes,

its closest extant relative is the razorbill (Alca torda) (Moum et al., 2002). The great auk was distrib-

uted around the North Atlantic and breeding colonies could be found along the east coast of North

America, especially on the islands off Newfoundland (Figure 1). The species also bred on islands off

Iceland and Scotland, and was found throughout Scandinavia (Norway, Denmark, and Sweden), with

evidence of bone finds existing as far south as Florida and in to the Mediterranean (Fuller, 1999;

Grieve, 1885).

The archaeological and historical records show a long history of humans hunting great auks. In

prehistoric times, they were hunted for their meat and eggs by the Beothuk in North America

(Fuller, 1999; Gaskell, 2000), the Inuit of Greenland (Meldgaard, 1988), Scandinavians (Huftham-

mer, 1982), Icelanders (Bengtson, 1984), in Britain (Best, 2013; Best and Mulville, 2016), Magda-

lenian hunter-gatherers in the Bay of Biscay (Laroulandie et al., 2016), and possibly even

Neanderthals (Halliday, 1978). Around 1500 AD intensive hunting began by European seamen visit-

ing the fishing grounds of Newfoundland (Bengtson, 1984; Fuller, 1999; Gaskell, 2000;

Steenstrup, 1855). Towards the end of the 1700s, the development of commercial hunting for the

feather trade intensified exploitation levels (Fuller, 1999; Gaskell, 2000; Kirkham and Montevec-

chi, 1982). As their rarity increased, great auk specimens and eggs became desirable for private and

institutional collections. The last reliably recorded breeding pair were killed in June 1844 on Eldey

Island, Iceland, to be added to a museum collection (Bengtson, 1984; Fuller, 1999; Gaskell, 2000;

Grieve, 1885; Newton, 1861; Steenstrup, 1855; Thomas et al., 2017).

There are scattered records of great auks dating to later than 1844, including in 1848 near Vardø,

Norway (Fuller, 1999; Newton, 1861), and 1852 in Newfoundland (Fuller, 1999; Grieve, 1885;

Newton, 1861). BirdLife International/IUCN recognises the last sighting as 1852

(BirdLife International, 2016a). However, uncertainty remains about the reliability of all of these

later sightings (Fuller, 1999; Grieve, 1885). There is little doubt that the extensive hunting pressure

on the species contributed significantly to its demise. Nevertheless, despite the well documented

history of exploitation since the 16th century, it is unclear whether hunting alone could have been

responsible for the demise of the great auk, or whether the species was already in decline due to

non-anthropogenic environmental changes (Bengtson, 1984; Birkhead, 1993; Fuller, 1999). For

example, there is evidence of a decrease in great auk numbers on the eastern side of the North

Atlantic, as reflected in a decline in bone finds in England, Scotland, and Scandinavia, which remains

unexplained and could have been caused by hunting as well as environmental change (Bengt-

son, 1984; Best and Mulville, 2014; Grieve, 1885; Hufthammer, 1982; Serjeantson, 2001). To

quote Bengtson (1984), ‘In the absence of more detailed information about rate of decline of the
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bird populations, hunting pressure and environmental changes, we cannot separate the effects of

hunting and that of climate change’ (p10).

Reconstructing specific environmental influences on an extinct species can be difficult when there

is limited knowledge of the species’ biology. However, if the species had been at risk of extinction

prior to the onset of intensive hunting in the 16th century, we would expect to see genetic signatures

of population decline, including limited genetic diversity and pronounced population structure. In

contrast, the lack of an observable loss in genetic diversity during the last few centuries prior to the

extinction would be consistent with a rapid demographic decline at the end. At the same time,

human hunting alone can only be considered a reasonable explanation for the extinction of the great

auk, if population viability analyses show that extinction could have been caused by harvest rates

that would have been realistic for the time and circumstances of the harvest.

Here, we examine the drivers of the extinction of the great auk by analysing whole mitochondrial

genome (mitogenome) sequences from across its geographic range, population viability, and harvest

rates. We combined these with data from GPS-equipped drifting capsules deployed in the North

Atlantic, which allow us to suggest potential migration routes among breeding sites.

Results

Mitogenome sequence data
Using hybridisation capture combined with high-throughput sequencing, we generated short-read

sequence data from 66 bone samples of great auk (See Supplementary file 1a for sample informa-

tion). Following read processing and filtering, 35 samples passed the quality requirements (see

Materials and methods) and were suitable for further analysis. In addition to the sequences gener-

ated from bones, we included six previously published mitogenome sequences from tissue or feather

samples (Thomas et al., 2017) (Supplementary file 1a).

Figure 1. The great auk and its former distribution in the North Atlantic. Red shading indicates the geographic

distribution of the great auk, as defined by BirdLife International/IUCN (BirdLife International, 2016a). Sites

marked with blue dots represent samples used in our analyses. Black dots denote other sites from which material

was obtained, but for which samples were not sequenced or for which sequences did not pass filtering settings.

Numbers associated with blue dots correspond to the following sites: 1: Funk Island (n = 14), 2: Qeqertarsuatsiaat

(n = 1), 3: Eldey Island (n = 2), 4: Iceland (n = 5), 5: Tofts Ness (n = 2), 6: Bornais (n = 1), 7: Cladh Hallan (n = 1), 8:

Portland (n = 1), 9: Santa Catalina (n = 2), 10: Schipluiden (n = 1), 11: Velsen (n = 1), 12: Sotenkanalen (n = 2), 13:

Skalbank Otterön (n = 2), 14: Kirkehlleren (n = 1), 15: Storbåthelleren (n = 1), 16: Iversfjord (n = 1), 17: Vardø (n = 2),

and 18: Nyelv (n = 1).
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The combined data set comprised 41 complete mitogenomes, representing individuals from

across the former range of the great auk and spanning the period 170–15,000 years before present

(ybp). For samples in the final data set, the mean average read length of aligned bases to the refer-

ence great auk mitogenome (GenBank accession KU158188.1 [Anmarkrud and Lifjeld, 2017]) was

55.12 base pairs (bp), with a range of 41.21–86.95 bp. Unique mitogenome coverage of these sam-

ples ranged from 6.39 � to 430.09�, with average coverage of 72.5� (Supplementary file 1c). The

final alignment length was 16,641 bp, including 9994 bp (after removal of gaps) that were shared

across all 41 mitogenomes.

Genetic diversity and population structure
Haplotype diversity among the great auk mitogenomes was high, with only two individuals yielding

identical haplotypes across the 9994 bp covered by all 41 mitogenomes. The two identical sequen-

ces differed in age, so that when divided into different age groups, each age group contained a

unique set of haplotypes. No reduction of haplotype diversity could be identified in more recent

samples (Figure 2).

We observed no structure in the distribution of haplotypes using any of our four approaches to

reconstruct phylogeographic and temporal relationships among the samples: Bayesian analyses

using BEAST (Appendix 1—figure 1 and Appendix 1—figure 2); maximum-likelihood phylogenetic

Figure 2. Statistical parsimony network showing haplotype diversity of great auk mitogenomes through time. In

each age category observed haplotypes are shown in colour, absent haplotypes are shown as empty circles, and

mutations between haplotypes are marked as black dots. All samples have been included in this figure.
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analysis using RAxML; statistical parsimony network analysis using TempNet (Figure 2); and median-

joining network analysis using PopART (Figure 3).

Ocean current data
To evaluate potential reasons for the observed lack of population structure, we sourced data from

GPS-equipped drifting capsules that had been deployed in the North Atlantic as part of the ‘Mes-

sage in a Bottle’ project by Verkı́s Consulting Engineers. As the great auk was flightless, ocean cur-

rents might have influenced its migration patterns. The route taken by the capsules connects some

of the main breeding colonies in St Kilda (Scotland), Geirfuglasker/Eldey Island (Iceland), and Funk

Island (Canada) (Figure 4).

The extrapolation of present-day ocean current data into the past and the interpretation of the

data in the context of great auk movements is merely speculative. However, if ocean currents today

are comparable to those of past millennia, then the data do at least provide a possible explanation

for how great auks travelled across their former range and between breeding colonies (Figure 4). A

full description of the routes taken by the capsules is provided in Appendix 2.

Demographic history and effective population size
We reconstructed the demographic history of the great auk using the 25 dated mitogenomes (see

Materials and Methods for definition of ‘dated’ samples) and found support for a constant popula-

tion size through time, with no evidence of a population decline. Despite having a high haplotype

diversity, our samples had a shallow divergence and their most recent common ancestor was dated

to 42,188 ybp (95% credibility interval 24,743–84,894 ybp; see Appendix 3). The effective female

population size (Nef) was estimated at 9558 (95% credibility interval 4548–19,665), assuming a gen-

eration interval of 12 years (BirdLife International, 2016a). To examine the effect of including the

undated samples, we repeated the analysis on the complete data set while accounting for the uncer-

tainty in the ages of the undated samples. This second analysis also yielded support for a constant

population size, with an effective female population size of 7331 (95% credibility interval 2477–

19,492). Census size (Nc) estimates based on the effective population size and the range of known

Ne/Nc ratios (Frankham, 1995) yielded an expectedly wide range of 12,292–756,346 individuals.

Figure 3. Median-joining network of great auk mitogenomes. The network was inferred in PopART18 and shows a lack of phylogeographic structure

among the dated and undated samples of great auks. Haplotypes are coloured according to sampling location.
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Population viability analyses and sustainable harvest rates
To assess the feasibility of a ‘hunting-only’ scenario of extinction, we used population viability analy-

sis to estimate the proportion of the population that would need to have been harvested in order to

cause extinction within 350 years. Population sizes for our simulations were conservatively based on

the upper margin of the census size estimates outlined above, consistent with the large census sizes

described in historic documents (Birkhead, 1993) (see also Appendix 8). The estimate of 756,346

mature birds is slightly below the census size estimates for the great auk’s closest relative, the razor-

bill (Alca torda;~1 million mature birds) and significantly below those of common and thick billed

murre, also from the Alcidae family (Uria aalge and Uria lomvia; 3 million mature birds each)

(BirdLife International, 2016a; BirdLife International, 2016b; BirdLife International,

2016c; BirdLife International, 2017). Given historic reports of millions of great auks (Birk-

head, 1993) and in order to reduce the risk of underestimating the census size of great auks, we ran

simulations for population sizes of 1 million and 3 million mature birds (2 million and 6 million birds

total size including juveniles). All simulation settings were ‘optimistic’ and biased strongly towards

survival. This included conservatively high estimates of reproductive success and conservatively low

estimates of natural mortality. For a subset of simulations, we also introduced a further, population

density dependent, linear reduction of natural mortality to half our already low rates of natural mor-

tality. Furthermore, in order to provide maximum sustainable harvest rate estimates for more ‘realis-

tic’ settings, we ran simulations using estimates for reproductive success and natural mortality

obtained from the razorbill.

We found that under our conservative settings, annual harvest rates up to 9% of the pre-hunting

population were sustainable. For example, for a pre-hunting population size of 2 million individuals,

this corresponds to an annual harvest rate of 180,000 birds. In contrast, an annual harvest rate of

10% of the pre-hunting population combined with an annual egg harvest rate of 5% led to extinction

in a large proportion of our simulations. A harvest rate of 10.5% (egg harvest rate 5%) of the pre-

hunting population led to extinction within 350 years in all of our simulations. Assuming a density-

dependent reduction of mortality had only a small effect on sustainable harvest rates (Table 1). Fur-

thermore, even if no eggs at all were harvested, the population was still at risk of extinction at

Figure 4. Routes taken by GPS capsules in the North Atlantic. The map shows GPS data from two capsules (green

and yellow lines). These tracks show possible routes that the great auk might have used to move between

colonies, aided by ocean currents, waves, and wind. Legend: Red Star: Known breeding sites of the great auk

(Funk Island, New Newfoundland; Eldey Island, Iceland; St Kilda, Scotland). Green line: GPS capsule 1. Yellow line:

GPS capsule 2. Pink arrows: Warm sea currents (Gulf Stream and North Atlantic Drift). Dark blue arrows: Cold sea

currents (East Greenland Current and Labrador Current).
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10.5% bird harvest rate, with extinction probabilities between 15% (population size 6 million, den-

sity-dependent mortality) and 81% (population size 6 million, no density-dependent mortality,

[Table 1]). These results were robust to the definition used for extinction. For comparison, when

using the much higher mortality rate of the razorbill, with a starting population of 2 million birds and

slightly more realistic settings for reproductive age and success, harvest rates are only sustainable

up to about 40,000 birds per year even if no eggs are harvested and mortality is gradually reduced

to 50% of the starting value as the population density declines (see Supplementary file 2b).

Discussion
Our analyses of the demographic history of great auks support a constant population size within the

temporal resolution of our data (back to the most recent common ancestor of all samples 24,000–

85,000 ybp). Therefore, we find no evidence of a decline in the population prior to the onset of

intensive hunting. We also observed high haplotype diversity across the sampling period, right up to

the demise of the species. If the great auk had been at risk of extinction prior to the onset of inten-

sive human hunting, for example as a result of long-term suboptimal habitat or environmental

change, we would expect to see genetic evidence of such stress, as for example observed in studies

of cave bears (Stiller et al., 2010) and bison (Shapiro et al., 2004). If, on the other hand, the popu-

lation declined rapidly, for example as a result of extensive hunting, genetic data would have only

very limited power to detect such a decline in a long-lived species. Mitochondrial DNA studies of

New Zealand moa found no evidence of a population decline prior to extinction (Allentoft et al.,

Table 1. Population viability analysis.

Extinction is defined as ‘only one sex remains’. The number of mature individuals was estimated in Vortex 10.2.8.0, assuming a stable

age distribution and given our fixed mortality rates. ‘Maximum- number of eggs’ refers to the number of eggs that would be produced

if all mature individuals were breeding. ‘Harvest rate’ describes the percentage of the population that is harvested annually, with egg

harvest rate calculated from the maximum number of eggs in parentheses. ‘DD’ refers to density-dependent reduction of mortality.

‘Number of birds’ is the total number of birds killed annually, which was split between the age cohorts (see Appendix 8). ‘Number of

eggs’ is total number of eggs harvested annually.

Conservative settings

Population
size
(total)

Mature
birds
(>4 years)

Maximum number of
eggs

Harvest rate
(% of starting
population size) DD

Number of
birds

Number of
eggs

Probability of extinction within
350 years

2,000,000 1,027,532 513,766 9 (5) No 180,000 25,688 0.00

2,000,000 1,027,532 513,766 10 (5) No 200,000 25,688 0.79

2,000,000 1,027,532 513,766 10 (5) Yes 200,000 25,688 0.22

2,000,000 1,027,532 513,766 10.5 (5) Yes 210,000 25,688 1.00

2,000,000 1,027,532 513,766 10.5 (0) No 210,000 0 0.71

2,000,000 1,027,532 513,766 10.5 (0) Yes 210,000 0 0.19

6,000,000 3,082,594 1,541,297 9 (5) No 540,000 77,065 0.00

6,000,000 3,082,594 1,541,297 10 (5) No 600,000 77,065 0.86

6,000,000 3,082,594 1,541,297 10 (5) Yes 600,000 77,065 0.33

6,000,000 3,082,594 1,541,297 10.5 (5) Yes 630,000 77,065 1.00

6,000,000 3,082,594 1,541,297 10.5 (0) No 600,000 0 0.81

6,000,000 3,082,594 1,541,297 10.5 (0) Yes 630,000 0 0.15

‘Realistic’ settings

Population
size
(total)

Mature
birds
(>5 years)

Maximum number of
eggs

Harvest rate
(% of starting population
size)

DD Number of
birds

Number of
eggs

Probability of extinction within 350
years

2,000,000 1,027,532 513,766 2 (0) Yes 40,000 0 0.19–0.33
(range across multiple repeat
simulations)
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2014; Rawlence et al., 2012) and a study of the endemic Hawaiian Petrel came to a similar conclu-

sion (Welch et al., 2012). In fact, even a recent whole-genome study of two extinct New Zealand

songbirds (huia and South Island kõkako), which disappeared after human settlement within 700

years, found no genetic evidence of population decline prior to the disappearance of the species

(Dussex et al., 2019). Therefore, our results are consistent with a rapid decline of great auks. It is

important to keep in mind, though, that our results simply indicate that the demise of the great auk

was beyond the detection limit of genetic data. They do not necessarily confirm whether the rapid

demise that must have taken place prior to extinction started before or after the onset of extensive

human hunting, nor do the results provide an indication of whether there was more than one popula-

tion decline. A localised, unexplained decline in great auk numbers on the eastern side of the North

Atlantic over the past 2,000 years, for example, which has been inferred from a decline in bone finds

in England, Scotland, and Scandinavia (Bengtson, 1984; Best and Mulville, 2014; Grieve, 1885;

Hufthammer, 1982; Serjeantson, 2001), does not appear to have been severe enough to leave a

genetic signature.

The estimated female effective population size is considerably smaller than the census size, which

has been estimated to be in the millions (Birkhead, 1993). This is noteworthy because it suggests

that the species went through a severe bottleneck in the recent past. The shallow divergence of less

than 90,000 years between the sequenced individuals suggests a population decline in the late Pleis-

tocene, potentially associated with climate fluctuations. However, the wide 95% credibility intervals

of our divergence-time estimates prevent us from narrowing down the cause of the bottleneck to

any specific event. In any case, the high percentage of singleton haplotypes in our data, which is

characteristic of a population expansion following a bottleneck (Slatkin and Hudson, 1991),

together with the large census size at the onset of intensive hunting, suggest that the great auk had

successfully recovered from the bottleneck.

Our genetic analyses failed to detect any female population structure in space or time, indicating

a lack of marked barriers to dispersal among populations across the species’ range. This is inconsis-

tent with predictions of limited or no interbreeding between populations from either side of the

North Atlantic (Burness and Montevecchi, 1992), and suspected regional philopatry in this species

(Bengtson, 1984; Montevecchi and Kirk, 1996). Such a lack of structure is, however, common in

seabirds, and has been observed in several relatives of the great auk, such as the thick-billed murre

(Uria lomvia; no structure within ocean basins) (Tigano et al., 2015), common murre (Uria aalge;

structure in the Atlantic but not in the Pacific) (Morris-Pocock et al., 2008), ancient murrelets (Syn-

thliboramphus antiquus; no genetic differentiation in the North Pacific) (Pearce et al., 2009), and lit-

tle auk (Alle alle; no structure in the Arctic) (Wojczulanis-Jakubas et al., 2014). While all of the great

auk’s closest relatives are capable of flight, which would aid population connectivity, a lack of popu-

lation structure has similarly been report from some penguin species. For example, little or no popu-

lation structure has been reported for the emperor penguin (Aptenodytes forsteri) (Cristofari et al.,

2016), chinstrap penguin (Pygoscelis antarcticus) (Mura-Jornet et al., 2018), and Adélie penguin (P.

adeliae) (Gorman et al., 2017; Roeder et al., 2001).

We can only speculate what factors may have driven this lack of population structure, but the

data collected from the GPS-enabled drifting capsules are consistent with hypotheses put forward

by a number of authors. It has been suggested that migrations occurred in both northward and

southward directions between breeding and wintering sites, aided by ocean currents such as the

East Greenland Current (Brown, 1985; Meldgaard, 1988; Montevecchi and Kirk, 1996). However,

as these preliminary data were only available from two GPS-enabled drifting capsules and as ocean

currents may have changed significantly over the past few centuries, the conclusions that we can

draw from such data are somewhat limited. Furthermore, it is possible that these currents can

change throughout the year. Thus, these data must be considered with caution and pending far

more detailed studies of ocean currents in the North Atlantic throughout the year. Nevertheless,

high vagility of the great auk is further supported by its ability to track its habitat in response to cli-

mate change, as evidenced by archaeological records (Bengtson, 1984; Campmas et al., 2010;

Meldgaard, 1988; Serjeantson, 2001).

We find no evidence in our genetic data that would suggest that great auk populations were at

risk of extinction at the time when human hunting intensified. However, the strength of our conclu-

sions is limited in a number of respects. The mitochondrial genome is only a single genetic marker

and our samples were insufficiently preserved to yield nuclear SNP data (Appendix 9), which would

Thomas et al. eLife 2019;8:e47509. DOI: https://doi.org/10.7554/eLife.47509 8 of 35

Research article Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.47509


have offered a greater degree of resolution with the potential to detect population structure. Simi-

larly, as a result of limitations in sample preservation and availability, the sample size of 41 is rela-

tively small for population genetic analysis and could have limited our ability to resolve changes in

population structure and size.

The key question, therefore, is whether it is at all feasible to assume that the intensive hunting of

the 16th–19th centuries alone led to the extinction of the great auk. Our population viability analysis

shows that, independent of the population size, harvest rates that would cause extinction under all

of the conditions explored in our simulations are well below reasonable estimates of harvest rates as

inferred from historical sources. For example, a total population size of 2 million birds corresponds

to 1 million mature individuals. This is higher than the upper margin of our census size estimates and

is consistent with the census size currently estimated for the great auk’s closest relative, the razorbill.

At this census size, an annual harvest of 210,000 birds and fewer than 26,000 eggs would have

caused the extinction of the great auk within 350 years.

Actual hunting pressure on great auks is likely to have far exceeded 210,000 birds annually. From

1497 AD, when Europeans discovered the rich fishing grounds of Newfoundland, fleets of 300 to

400 ships from various European countries were drawn annually to this region, which is likely to have

had the highest population density of great auks (Bengtson, 1984; Steenstrup, 1855). Fishing sta-

tions were set up near colonies of the great auk and other seabirds, and these colonies were heavily

exploited (Pope, 2009). Great auks were also likely to have been caught by fishing lines and in fish-

ing nets (Montevecchi and Kirk, 1996; Piatt and Nettleship, 1985; Piatt and Nettleship, 1987;

Pope, 2009). Contemporary reports document a case in which approximately 1000 great auks were

caught and killed within half an hour by two fishing vessels off the coast of Funk Island (Bengt-

son, 1984; Grieve, 1885). Thus, if each of the 400 vessels in the region spent only half an hour a

year harvesting great auks at this rate, that would already correspond to 200,000 birds a year.

At a total population size of 6 million birds, corresponding to the estimated 3 million mature indi-

viduals of common murre and thick-billed murre in the North Atlantic, an annual harvest of 630,000

birds and 77,000 eggs would cause certain extinction. Even this number does not appear unrealisti-

cally high when considering that great auks were also targeted for the feather trade, with hunters liv-

ing on Funk Island throughout the summer with the purpose of killing the birds (Gaskell, 2000;

Kirkham and Montevecchi, 1982). Adding to the effects of excessive hunting, the great auk laid

only one egg a year, which was not replaced if removed (Bengtson, 1984). Thus, replenishing the

large number of birds lost annually would have been highly improbable (Gaskell, 2000).

Critically, our estimates of harvest rates leading to extinction are likely to be conservatively high,

because they are based on some unrealistically optimistic assumptions. For example, our settings

assume that 100% of mature birds breed, that they had 100% breeding success, and that their off-

spring was independent from the time the egg was laid (hence no negative effect of parents being

killed). Furthermore, we assumed the lowest natural mortality observed among all alcids for each

age class and in some simulations reduced these mortality rates by half when population density

declined, thereby considering the positive effects of increased availability of resources and reduced

competition. Detrimental effects of small population sizes, such as inbreeding depression, were not

included in our simulations. Because very little is known about the biology of the great auk, we chose

to use such conservative settings to reduce the risk of underestimating the sustainable harvest rate.

However, this brings an increased risk of overestimating the number of birds that could have been

sustainably harvested. Using the mortality rate of the razorbill and allowing for more variation in

reproductive success (see Supplementary file 2a) reduces the sustainable harvest rate for a popula-

tion of 2 million birds to as few as 40,000 birds per year. However, the razorbill can produce a sec-

ond egg per season if the first one is lost, so applying razorbill mortality rates to the great auk likely

leads to an underestimation of the sustainable harvest rate.

Our conservative simulations require high harvest rates to cause the extinction of the great auk,

but these values are largely consistent with harvest rates for present-day species. For example, until

recently, between 200,000 and 300,000 murres (Uria spp.) were killed legally every year off the east-

ern Canadian coast (Wilhelm et al., 2008). Harvest rates were even higher before the mid-1990s,

when between 300,000 and 700,000 thick-billed murres alone were being harvested annually

(Wilhelm et al., 2008). In Iceland, 150,000 to 233,000 Atlantic puffins were once killed annually, rep-

resenting about 2–3% of the population. In contrast, 25–30% of the populations of species of black-

backed gulls are killed annually (Merkel and Barry, 2008). Although current figures for annual

Thomas et al. eLife 2019;8:e47509. DOI: https://doi.org/10.7554/eLife.47509 9 of 35

Research article Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.47509


harvest rates of auk species are considerably lower than those given above and continue to decline

(e.g.,~25,000 puffins were killed in Iceland in 2016 compared with ~233,000 in 1995

[Statistics Iceland, 2016]; also see Frederiksen et al., 2016), the harvesting rates required to cause

the extinction of the great auk would not be considered excessive even by modern standards.

The roles of humans and environmental changes in causing extinctions have long been debated,

not only for the great auk but also for other lost species (Cooper et al., 2015; Lorenzen et al.,

2011; Shapiro et al., 2004). In contrast with most studies of Pleistocene extinctions, which have

argued for at least some level of climate-driven environmental contributions to species extinction,

we have found little evidence that the great auk was at risk of extinction prior to the onset of inten-

sive human hunting. Critically, this does not mean that our study provides unequivocal evidence that

humans alone were the cause of great auk extinction. To test this hypothesis, simulations of great

auk population dynamics in response to environmental change throughout the Holocene would be

required. However, with little information about great auk biology, such simulations would be highly

speculative. What our study has demonstrated though, is that human hunting pressure alone was

very likely to have been high enough to cause extinction even if the great auk population was not

already under threat of extinction through environmental change.

Our findings highlight how industrial-scale commercial exploitation of natural resources have the

potential to drive even an abundant, wide-ranging, highly vagile, and genetically diverse species to

extinction within a short period of time. This echoes the conclusions drawn for the passenger pigeon

(Murray et al., 2017), which occurred in enormous numbers prior to its extinction in the early 20th

century. Our findings emphasise the need for thorough monitoring of commercially harvested spe-

cies, particularly in poorly researched environments such as our oceans. This will lay the platform for

sustainable ecosystems and ensure the evidence-based conservation management of biodiversity.

Materials and methods

Sampling and DNA extraction
We obtained great auk material for ancient DNA (aDNA) analyses from various institutions

(Supplementary file 1a). Samples were chosen to represent individuals from the major centres of

the former geographic distribution of the species (Figure 1), spanning as wide a time period as pos-

sible (Supplementary file 1a). The samples range from about 170 years old to about 13,000–15,000

years old. Sample dates are stratigraphically assigned (archaeological material), based on docu-

mented information (e.g., dates on which mounted specimens were killed), or estimated from known

site information to give dated constraints (e.g., Funk Island material was collected from the top

layers of the islands, so the bones are most likely from individuals killed during the intense hunting

period that began ~500 years ago). Bones were sampled via drilling using a Dremel 107 2.4 mm

engraving cutter to obtain powdered bone (Figure 5) or using a Dremel cutting wheel, which

allowed removal of sections of bones that were later powdered using a sonic dismembrator.

All laboratory work prior to polymerase chain reaction (PCR) amplification was carried out in the

designated aDNA laboratories of the Natural History Museum of Denmark and the University of

Otago. Strict aDNA protocols were followed to avoid contamination. For each DNA extraction and

library build, no-template controls were used to test for contamination by exogenous DNA. All post-

PCR work was carried out in separate laboratory facilities (Knapp et al., 2012).

Genomic DNA was extracted from 20 to 60 mg of bone powder (Supplementary file 1b) using

the method described by Dabney et al. (2013). In short, the bone powder was digested using an

EDTA-based extraction buffer and DNA purified using a Qiagen MinElute column. After washing

with ethanol-based wash buffers (Qiagen), the DNA was eluted in TE buffer for storage.

DNA sequence data
Single-stranded sequencing libraries were prepared from aDNA extracts following the protocol by

Gansauge and Meyer (2013), with modifications as described by Bennett et al. (2014). For some

samples, double-stranded libraries were also built using the protocol described by Meyer and

Kircher (2010) (Supplementary file 1b). Hybridisation capture was used to enrich libraries for great

auk mitochondrial DNA following the MYcroarray MYbaits Sequence Enrichment protocol v2.3.1
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(MYcroarray MYbaits, 2014). Bait design details can be found in Appendix 4 and Appendix 4—fig-

ure 1.

Samples were sequenced on Illumina platforms (HiSeq 2500 and MiSeq; further details in

Supplementary file 1b) at the Danish National High-Throughput DNA Sequencing Centre or by

New Zealand Genomics Limited. Demultiplexing of raw sequence data was performed by the

respective sequencing centres. Read processing of demultiplexed sequence data was performed as

described by Thomas et al. (2017) using the PALEOMIX v1.2.5 pipeline (Schubert et al., 2014),

details of which can be found in Appendix 5.

Demographic history analyses
To reconstruct the demographic history of the great auk through time, we performed a Bayesian

phylogenetic analysis of the mitogenome sequences from the 25 dated samples (‘dated’ being

defined here as those with associated date information, such as stratigraphically assigned dates;

undated refers to those for which there is no associated dating information, such as the Funk Island

samples) (Supplementary file 1e). The sequence alignment was analysed using BEAST 1.8.4

(Drummond et al., 2012). Full details of the BEAST analysis, including details of the data-partition-

ing scheme, can be found in Appendix 6.

To test hypotheses of constant population size through time vs. population size increase or

decline, we compared the marginal likelihoods of constant-size and exponential-growth coalescent

tree priors for our data set. The exponential-growth coalescent tree prior with a positive growth rate

yielded a higher marginal likelihood than the constant-size tree prior, suggesting that it was the best

model of population dynamics in the great auk. However, the posterior distribution of the popula-

tion growth rate was highly right-skewed with a mode very close to zero, so we conservatively used

the constant-size coalescent tree prior for our analysis.

A second analysis was performed in BEAST, in which the 16 undated mitogenomes were included

in the data set. A uniform prior of either (0,1000) or (0,5000) was specified for the ages of these

mitogenomes, depending on independent information about the context of the samples

(Shapiro et al., 2011). All other settings and priors matched those used in the analysis of the 25

dated samples. The extended data set was still best described by a constant-size coalescent prior.

Network analyses
Population structure was investigated by inferring a haplotype network using median joining

(Bandelt et al., 1999) in PopART (Leigh and Bryant, 2015). Genetic diversity through space and

time was visualised using statistical parsimony and a temporal haplotype network, as implemented

Figure 5. Great auk humeri following sampling. Great auk humeri, collected from Funk Island, following sampling

to collect bone powder for use in DNA extraction. Bones part of the collection at the American Museum of

Natural History (Credit: J. Thomas).
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in TempNet (Prost and Anderson, 2011) (see Appendix 7 for details on TempNet age categories

and Supplementary file 1e).

Population viability analysis
We performed a population viability analysis using the software Vortex 10.2.8.0 (Lacy and Pollak,

2014) in order to estimate the number of great auks that were hunted annually, as well as the rate

at which a given intensity of hunting would result in population collapse and extinction. Full details

of the simulations performed and parameter justifications can be found in Appendix 8 and

Supplementary file 2a, 2b and 2c.

Tracking migration routes using GPS capsules
To achieve a better understanding of the feasibility of great auk movement between colonies of the

North Atlantic, we accessed data that were initially generated as part of the ‘Message in a Bottle’

project by Verkı́s Consulting Engineers in Iceland. Two GPS-equipped drifting capsules were

released on 10th January 2016 from a helicopter around 40 km southeast of the Reykjanes peninsula

(southwestern Iceland). Each of the capsules contained a North Star TrackPack GPS tracking device

(https://www.northstarst.com/asset-trackers/trackpack/), which uploaded precise location data six

times a day for up to two years, through the GlobalStar satellite network.
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Appendix 1

Phylogenetic trees

Appendix 1—figure 1. Phylogenetic tree showing the relationships among dated mitogenomes

from the great auk. This maximum-clade-credibility tree was inferred by Bayesian analysis in

BEAST. Nodes are labelled with posterior probabilities. The tree is drawn to a timescale, as

indicated by the horizontal scale bar. Samples included in the analysis are those with

associated date information (see Supplementary file 1e). For samples with a stratigraphically

assigned date the median age has been used. Tip labels give the sample names, sampling

locations, and sample ages (years before present, with the exception of mounted specimens

labelled YA- years ago).
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Appendix 1—figure 2. Phylogenetic tree showing the relationships among dated and undated

mitogenomes from the great auk. This maximum-clade-credibility tree was inferred by Bayesian

analysis in BEAST. Nodes are labelled with posterior probabilities. The tree is drawn to a

timescale, as indicated by the horizontal scale bar. Samples included in the analysis are those

with and without associated date information (Supplementary file 1e). For samples with a

stratigraphically assigned date the median age has been used. Tip labels give the sample

names, sampling locations, and sample ages (years before present, with the exception of

mounted specimens labelled YA- years ago).
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Appendix 2

GPS-equipped drifting capsules: Full result
Following release, easterly winds prevailed and the two GPS-equipped drifting capsules

drifted westwards past the tip of the Reykjanes peninsula and past Eldey Island (Figure 4).

Over the next two weeks, the capsules drifted towards Greenland and when located near the

continental shelf started drifting southwards along the coast. The capsules then followed the

track of the Icelandic Low, a low-pressure area found between Iceland and Southern

Greenland in winter.

The Icelandic Low took the capsules in an anti-clockwise circle back towards Iceland, and

onward again towards the west coast of Greenland. The Icelandic Low weakens in summer, so

in late April the capsules turned westwards past the southern tip of Greenland and into the

Labrador Sea. In summer, they drifted slowly towards the Labrador coast until the beginning

of August when they started drifting south-eastwards along the coast of Labrador and

Newfoundland and past Funk Island and around 500 km east. By the end of October, the

capsules start to follow the trail of the winter low pressures across the Atlantic.

At the beginning of January, capsule one drifted eastwards, around 50 km south of St Kilda

and came ashore on the island of Tiree (15.01.2017). Capsule two drifted northwards, passing

around 70 km west of St Kilda and west of the Faeroes towards Iceland. In early March, the

capsule was around 20 km from the east coast of Iceland when it turned eastwards and then

towards south by the beginning of April. It drifted towards the Faeroes where it came ashore

on the island of Sandoy (13.05.2017).

The forces driving the capsules are currents, wind, and waves. The capsules got trapped in

the Iceland Low where the wind direction is in a counter clockwise circle in winter in the

Denmark Strait. In spring, when the Iceland Low starts dissolving, they pass Cape Farewell

and, in summer, they drift slowly in calmer summer winds and followed the cold current

towards the Labrador coast and then along the coast of Labrador and Newfoundland. In

autumn, they hit the path of lows crossing the Atlantic as well as following the warmer

Gulfstream. In spring, when at the east coast of Iceland, the weather was calmer and thus

capsule two drifted slowly towards and then away from the coast and ended up in the

Faeroes.
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Appendix 3

Molecular dating
Estimating the age of the most recent common ancestor (MRCA) of all our samples is not

essential to understanding the causes of the extinction of the great auk, but can help with the

interpretation of our reconstructions of population dynamics. Our data set is unable to yield

reliable information about population dynamics beyond the MRCA of all samples. To infer the

evolutionary rate and timescale, we performed a Bayesian phylogenetic analysis of the

mitogenome sequences from the 25 dated samples. The analyses were conducted using the

same settings and data-partitioning scheme as described in the Methods for our Bayesian

phylogenetic analyses.

The sequence alignment was analysed using BEAST 1.8.4 (Drummond et al., 2012). The

evolutionary timescale was estimated using a strict clock model, with the sampling times of

the mitogenomes serving as calibrations for the clock (Rambaut, 2000). Furthermore, to test

for the presence of temporal structure in the data set, we performed a date-randomisation

test (Ramsden et al., 2008). We estimated mutation rates from 20 replicate data sets in which

the sampling times were permuted and compared these with the rate estimate from the

original data set. Two different criteria can be used to determine whether the data set has

sufficient temporal structure for generating a reliable estimate of the mutation rate

(Duchêne et al., 2015): if the mean or median estimate from the original data set is not

contained within the 95% credibility intervals of the rate estimates from the date-randomised

replicates (CR1), or if the 95% credibility intervals of the rate estimates from the date-

randomised replicates do not overlap with the 95% credibility interval of the rate estimate

from the original data set (CR2).

For comparison, we used two additional methods to estimate the mutation rate. First, we

used TempEst (Rambaut et al., 2016) to estimate the mutation rate using regression of root-

to-tip distances against sampling times. Second, we analysed the data using least-squares

dating in LSD (To et al., 2016). For both of these methods, a phylogram was estimated from

the dated mitogenome sequences using maximum likelihood in RAxML 8 (Stamatakis, 2014).

Rooting of the tree was inferred by maximising the R-squared value in TempEst and by

minimising the objective function in LSD.

Our Bayesian phylogenetic analysis of the dated mitogenomes produced a posterior

median estimate of 42,188 years (95% credibility interval 24,743–84,894 years) for the age of

the most recent common ancestor. The median posterior estimate of the mutation rate was

2.74 � 10�8 mutations/site/year (95% credibility interval 9.83 � 10�9–4.53 � 10�8). The data

set showed some evidence of temporal structure, passing the more lenient criterion CR1 but

not the more stringent CR2 of the date-randomisation test (Appendix 3—figure 1;

Duchêne et al., 2015). Thus, with all caution required given the limited temporal structure in

our data, our inference of a constant population size for the great auks should be reliable

reaching back to the late Pleistocene. However, our data set is not likely to be suitable for

drawing strong conclusions about population dynamics of the great auk beyond the last

glacial period.
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Appendix 3—figure 1. Date-randomisation test for temporal structure in dated mitogenome

sequences. The filled circle indicates the median posterior estimate of the mutation rate from

the original data set, whereas the empty circles show the median posterior estimates from 20

date-randomised replicate data sets. The 95% credibility intervals (vertical black lines) of the

estimates from the date-randomised replicates do not overlap with the median estimate from

the original data set, providing some evidence of temporal structure in the data set (criterion

CR1). However, the 95% credibility intervals of the estimates from the date-randomised

replicates overlap with the 95% credibility interval of the estimate from the original data set,

indicating that the data set does not meet the more stringent criterion CR2.
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Appendix 4

Bait design
100mer mitochondrial DNA baits (MYcroarray MYbaits) with 50 bp tiling were designed using

a hybrid reference mitogenome. This was constructed using the mitogenome from killdeer

(Charadrius vociferus; assembled from whole genome data, BioProject:

PRJNA212867 [Zhang et al., 2014]), with orthologous gene regions replaced by those of

great auk where available (GenBank: AJ242685), and those from the razorbill (Alca torda;

GenBank accessions AJ301680, EF380281, EF380318, and X73916) when great auk data were

unavailable (Appendix 4—figure 1).

Appendix 4—figure 1. Hybrid reference mitogenome used for bait design. Illustration of the

hybrid reference mitogenome constructed using the killdeer (Charadrius vociferous)

mitogenome, with orthologous gene regions replaced by those of the great auk (Pinguinus

impennis), or razorbill (Alca torda), when great auk data were unavailable. Annotations

correspond to the various regions of the mitogenome: those in blue show where great auk or

razorbill genes have been used; yellow corresponds to coding regions; green shows all gene

regions; the D-loop is shown in gold; rRNA regions are in red; tRNA regions are in pink; and

any miscellaneous features are in grey. The numbers on the outer black circle correspond to

the base position of the mitogenome.
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Appendix 5

Read processing
Read processing was performed using the PALEOMIX v1.2.5 pipeline (Schubert et al., 2014).

The procedure included software tools to remove adapters, filter bases based on quality

(AdapterRemoval v2.1.7 [Lindgreen, 2012; Schubert et al., 2016]), and map reads to the

reference mitogenome (Burrows-Wheeler Aligner v0.5.10 [Li and Durbin, 2009]). At the time

of these analyses, a great auk mitogenome had been published (GenBank: KU158188.1

[Anmarkrud and Lifjeld, 2017]), and was thus available for the mapping assembly of our

mitogenomes rather than mapping against the composite mitogenome used for bait design

(see above).

PCR duplicates were removed using MarkDuplicates within Picard v1.8.2 (Broad Institute,

2019) and the rmdup function within SAMtools (Li et al., 2009). The Genome Analysis Toolkit

(GATK) v3.6.0 was used to correct for misaligned reads to the reference mitogenome using

the RealignerTargetCreator and IndelRealigner functions (McKenna et al., 2010). Finally,

MapDamage2 (Jónsson et al., 2013) was employed to rescale base-quality scores according

to their probability of being damaged, thereby removing residual aDNA damage patterns.

The UnifiedGenotyper algorithm within GATK v3.6.0 was used to determine haploid

genotypes for individual samples.

Consensus sequences were produced using the following filtering settings. The per-

individual read depth was set to include only bases with a minimum of 3-fold coverage. Bases

called for the consensus sequence had to be present at a frequency higher than 33%. To be

included in the final alignment, no more than 33% of bases could be missing from the

consensus sequence of an individual compared with the reference sequence. All bases failing

to meet these criteria were called as ‘N’ (Chang et al., 2017).

Following read processing, the sequences were aligned using Seaview v4.0 (Gouy et al.,

2010) with the algorithm Muscle -maxiters2 -diags. The alignment was manually checked for

errors using BioEdit v7.2.5 (Hall, 1999). Tablet v1.16.09.06 (Milne et al., 2013) was used to

view the rescaled Binary Alignment Map (BAM) file for each sample.

Sequence data from all samples included in the analysis have been deposited in GenBank.

The GenBank accession numbers for samples included in the final analysis can be found in

Supplementary file 1d.
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Appendix 6

Population dynamics analysis: Settings, partitioning
schemes and further details
Six partitioning schemes were compared for the data, varying in the degree of partitioning

and the resulting number of data subsets (Appendix 6—table 1.). For each data subset, the

best-fitting model of nucleotide substitution was selected using the Bayesian information

criterion in Modelgenerator (Keane et al., 2006). A partitioning scheme with six data subsets

provided the best fit to the data.

Appendix 6—table 1. Marginal likelihoods of six partitioning schemes and two tree priors for

the 25 dated mitogenomes.

Partitioning schemea
Marginal likelihoodb

Constant size Exponential growth

Unpartitioned �24,151.6 �24,143.6

two subsets: (CR rRNA tRNA) (PC1 PC2 PC3) �24,222.3 �24,212.4

three subsets: (CR) (rRNA tRNA) (PC1 PC2 PC3) �24,162.4 �24,150.1

four subsets: (CR) (rRNA tRNA) (PC1 PC2) (PC3) �23,659.7 �23,647.5

five subsets: (CR) (rRNA tRNA) (PC1) (PC2) (PC3) �23,248.7 �23,235.9

six subsets: (CR) (rRNA) (tRNA) (PC1) (PC2) (PC3) �23,229.1 �23,217.5

aComponents of the mitogenome are the ribosomal RNA genes (rRNA), transfer RNA genes

(tRNA), three codon positions of the protein-coding genes (PC1, PC2, and PC3), and the

control region (CR). bMarginal likelihoods were estimated by stepping-stone sampling with

25 path steps, each with a chain length of 2,000,000 steps.

Constant-size and exponential-growth coalescent tree priors were compared for the data.

Analyses using a skyride coalescent prior (Minin et al., 2008) were attempted but invariably

failed to converge, which strongly suggested overparameterisation. The marginal likelihood

was computed for each combination of partitioning scheme and tree prior, using stepping-

stone sampling with 25 path samples (Xie et al., 2011).

The evolutionary timescale was estimated using a strict clock model, with the sampling

times of the mitogenomes serving as calibrations for the clock (Rambaut et al., 2016). A

uniform prior of (10�10,10�4) was used for the mutation rate, with a separate rate assigned to

each subset of the data defined by the partitioning scheme. This approach is consistent with

previous analyses of time-structured mitogenomic data sets (e.g. Anijalg et al., 2018).

Posterior distributions of parameters were estimated by Markov chain Monte Carlo

(MCMC) sampling. Samples were drawn every 5000 steps from a chain with a total length of

50,000,000 steps. The MCMC analysis was run in duplicate to check for convergence and the

first 10% of samples were discarded as burn-in. Effective sample sizes of the model

parameters were estimated to ensure that they were all over 200, which indicates sufficient

sampling.
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Appendix 7

TempNet age categories
Age categories were chosen based on changes in climate and hunting pressure. Samples were

divided into four groups (Supplementary file 1e): >12,000 years old (i.e., Late Pleistocene

samples); 1,000–12,000 years old (i.e., Holocene samples when hunting pressure was low and

opportunistic); ~500 years old (i.e., the period in which intense hunting began but when

diversity should be representative of the previous 12,000 years); and <250 years old (i.e.,

samples from during the period of intense hunting, including samples from the last reliably

seen pair, killed in 1844). For samples with available date information, the median age was

used to determine age group. The 16 samples without date information were placed in the

most appropriate group based on other information that allowed us to estimate their ages.

For example, the samples from Funk Island are unlikely to be over 1000 years old and are

most likely to be around 500 years old.
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Appendix 8

Population viability analysis: Details and justification (See
also Supplementary file 2a, 2b and 2c)
Simulation scenarios were set to run for a 350 year period, as intense hunting began in ~1500

AD (Bengtson, 1984; Fuller, 1999; Gaskell, 2000; Steenstrup, 1855) and no confirmed

sightings of great auks occurred later than 1852 (BirdLife International, 2016a; Fuller, 1999;

Grieve, 1885). Data produced in this study show a lack of population structuring in the great

auk (see Figure 3), and we therefore consider great auks of the North Atlantic to form a single

panmictic population. Scenarios were run as a population-based model. Models were also run

under scenarios with various definitions of extinction to evaluate any impacts on our results.

Extinction was defined as: only one sex remains; population size below the critical limit of 50;

or population size below the critical limit of 500. These values are based on the ‘50:500 rule’,

which refers to a species’ risk of extinction as defined by Franklin (1980).

The outcomes of our simulations were unaffected by the choice of definition used for

extinction, which is unsurprising because hunting pressure did not cease towards the

extinction of the species. Given this hunting pressure, even 500 birds were well below the

sustainable population size, so independent of whether the population size declined to 500 or

50 birds or there was just one sex remaining, the species was bound for extinction. These

results might have looked different if our simulations had assumed a complete cessation of

hunting when only 500 or only 50 birds were remaining. However, the historical record clearly

shows that this was not the case. In fact, as the rarity of the great auk increased, it became

more desirable for inclusion in private and institutional collections, as was the case for the last

breeding pair killed on Eldey Island in June 1844 (Bengtson, 1984; Fuller, 1999;

Gaskell, 2000; Grieve, 1885; Newton, 1861; Steenstrup, 1855; Thomas et al., 2017). All

results reported are from simulations run under extinction defined as ‘only one sex remains’.

Age of first breeding for the great auk is estimated to be 4–7 years old (Bengtson, 1984),

and a conservative value of 4 years was therefore adopted for the model. The younger the age

of first breeding, the less susceptible to extinction the species is. The species is assumed to

have been monogamous, laying only one egg per breeding season,, and it is thought they did

not replace the egg if it was lost (Bengtson, 1984; Birkhead, 1993; Fuller, 1999). An

assumed sex ratio of 1:1 has been applied. Life expectancy is estimated to have been 20–25

years (Bengtson, 1984) and we assume that breeding remained possible until death. As

several alcid species breed annually once they reach sexual maturity (De Santo and Nelson,

1995), we set reproductive rate to 100% adult females breeding and all females producing

exactly one egg per year.

Mortality rates were estimated based on records from extant alcids. De Santo and Nelson

(1995) report survival rates for alcid species at various life stages. Mortality at age 0–1

includes hatchlings and fledglings. For the great auk, we estimate mortality to be 9% (SD: 1),

consistent with the lowest mortality reported for any alcid species for this age category by

De Santo and Nelson (1995) (Japanese murrelet, Synthliboramphus wumizusume). With

regard to the simulation model, juvenile mortality includes mortality in the age groups 1–2, 2–

3, and 3–4; therefore, our juvenile mortality rate was divided between these groups. The

lowest mortality for this age group reported by De Santo and Nelson (1995) is that of the

crested auklet (Aethia cristella; 34%). This corresponds to approximately 13% (SD: 1) mortality

per year over three years, if the population size of the respective previous year is used as

reference in each year. Annual adult survival rate is estimated to be quite high for great auks,

because of their large size (Bengtson, 1984; Montevecchi and Kirk, 1996). Annual adult

survival in other alcids is also high, with the razorbill being the highest reported at 93%

(De Santo and Nelson, 1995). We therefore used an annual mortality rate of 7% (SD:1) for

adult great auks. Strictly applying the rule that we use the lowest mortality rate of any alcid

species found in the literature leads to some settings that are questionable from a biological

perspective. For example, our 0–1 year hatchling mortality is lower than our 1–4 years juvenile

mortality. However, as we have no information about actual mortality rates in great auks, any
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adjustment of these settings would be arbitrary. We therefore chose to strictly use the lowest

mortality rates found in the literature for each age class. For comparison, we added a

simulation based on known mortality rates of the razorbill, which have a more biological

realistic distribution of mortality rates, albeit perhaps somewhat too high for the great auk

(see Discussion and Supplementary file 2a).

A reduction of population size, even by harvesting, might have a positive effect on

reproductive rate and mortality by freeing up resources and reducing competition. As our

reproductive rate was already 100%, a way to simulate such effects was to introduce a linear,

density-dependent reduction of mortality rates to half the initial value, following the formula:

(0.5+(0.5*PS1))*[initial mortality rate], with PS1 being defined as initial population size (N)

divided by carrying capacity (K). Simulations were run with and without this density-dependent

reduction in mortality rates (DD) (Supplementary file 2b).

We initially estimated the census size (Nc) for our population viability analyses from our

estimated effective female population size (Ne) by doubling the effective female population

size and dividing the result by Ne/Nc rations typical for birds as summarized by

Frankham (1995). However, the range of known, typical Ne/Nc ratios for birds extends over

two orders of magnitude, from 0.052 to 0.74 (Frankham, 1995). Given these ratios, our

estimates for the census size of great auks ranged from 12,292 to 756,346. As we did identify

a Pleistocene population bottleneck, and given the large population size reported in historic

sources, the actual census size was likely close to or even higher than the upper margin of

these estimates, and this is consistent with census sizes currently estimated for the great auk’s

closest relative, the razorbill (Alca torda). Within a range similar to that of the great auk, the

IUCN Red List estimates that the razorbill (Alca torda) currently has a population size of

979,000–1,020,000 mature individuals. Within the same range, the common murre (Uria aalge)

and the thick-billed murre Uria lomvia) are estimated to have population sizes of 2,350,000–

3,060,000 and 1,920,000–2,840,000 mature individuals, respectively (BirdLife International,

2016b; BirdLife International, 2016c; BirdLife International, 2017). Therefore, we

conservatively aimed for mature population sizes of 1,000,000 and 3,000,000 great auks.

Razorbills and murres can fly and therefore have access to a larger number of breeding

sites than the great auk. They are also much smaller birds, which could facilitate larger

population sizes in the same range. On the other hand, razorbill and murre populations may

be more affected by hunting today than great auk populations were at the time intensive

hunting started. Overall, we feel that our population-size estimates are a reasonably realistic

reflection of great auk population sizes. We used Vortex 10.2.8.0 to estimate the census size

from the number of mature individuals, assuming that birds reach maturity at 4 years of age,

that they show a stable age distribution, and that the different age classes follow the fixed

mortality rates described below. This resulted in census sizes for our simulations of 2,000,000

and 6,000,000 birds respectively.

To estimate hunting pressure, we compared models in which various proportions of the

population were harvested (see Supplementary file 2c for example of how harvest rates were

calculated). The age categories for harvest rate are 0–1, 1–2, 2–3, 3–4, and over four for both

males and females. We allocated 75% of the harvest rate to the over four category as it was

assumed that predominantly adult birds were harvested due to being easily accessible when

breeding. The remaining 25% was then split evenly between the other four age categories (0–

1, 1–2, 2–3, 3–4), as although it has been reported that young were used as bait

(Grieve, 1885), it is unlikely they were harvested at the same intensity as the adults and

represented a smaller proportion of the overall population.

As we know eggs were collected as well, we allowed for this in the model. The harvest rate

for eggs was set at 5%, corresponding to 25,688 and 77,065 respectively for the two initial

population sizes tested in our simulations. As great auks nested in dense groups

(Bengtson, 1984) eggs would have been easy to collect. Based on estimates of breeding pairs

at Funk Island (>100,000) (Birkhead, 1993), these two values allowed us to test the impact of

a quarter or three quarters of all the eggs laid annually on Funk Island alone being harvested,

with no harvest occurring anywhere else in the great auk range. We also ran simulations with

no egg harvesting to evaluate whether this significantly changed our conclusions. With these
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egg harvest settings, an annual bird harvest rate of 10% of the number of birds in the pre-

hunting population was identified as critical limit, with significant numbers of simulations

leading to extinction. At 10.5% bird harvest rate, all simulations that included egg harvesting

and a significant proportion of simulations excluding egg harvesting resulted in extinction.

Our comparative simulations with more ‘realistic’ rather than conservative settings,

including razorbill mortality rates were conducted under the settings outlined in

Supplementary file 2a.
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Appendix 9

Nuclear SNP data
As the results of our mitochondrial genome revealed a lack of population genetic structure

and high genetic diversity in the great auk, we attempted to target nuclear DNA (nuDNA) to

further investigate these results, and to obtain a more detailed picture of great auk evolution

and extinction. Initially, twelve samples were chosen for capture of 495 nuclear markers.

Samples were chosen based on the percentage of reads retained in preliminary

mitogenome capture dataset, as a rough indication for sample preservation and quality, as

well as their geographical location to represent individuals from as much of the former

distribution as possible. DNA extraction and library preparation methods were as described

for the mitogenome work (see Materials and methods main text). Great auk shotgun genome

data (Gilbert et al., bait design available see Source data 1) mapped against the razorbill

genome (Feng et al. In Review) were used as data basis for bait design. Target gene regions

for hybridisation capture enrichment were selected using the following filters:

Paralog genes were excluded from the capture by using UniProtIDs and EnsemblIDs in the

razorbill (Alca torda) annotation (Feng et al. In Review).

Genes that were missing coverage for more than 20% of their length when mapping great

auk reads against the razorbill genome were excluded.

Great auk consensus genes were generated by replacing the razorbill genes with the

homozygous SNPs found in great auk.

Genes with the highest percentage divergence between the razorbill and great auk, that

didn’t contain any N’s in their sequence, and which were less than 5kbps in length, were used

to build the 20K probes resulting in 495 genes.

MYcroarray probes of 120 bps long with 3x tiling (40 bps shifts) were made from CDS

regions and intron regions that were adjacent to the exons of the 495 genes. Enrichment for

nuclear genes was performed using MYcroarray MYbaits, following the MYcroarray Mybaits

manual v3 (MYcroarray/MYcroarray MYbaits, 2016), using 24 hr hybridisation time, at 65˚C

and final elution into 30 ml nuclease free water. Samples were sequenced on an Illumina

MiSeqPE75 platform by New Zealand Genomics Limited, Otago.

Sequencing reads were processed using the PALEOMIX v1.2.5 pipeline (Schubert et al.,

2014) following a procedure similar to that described by the authors. Briefly, we used

AdapterRemoval v2.1.17 (Schubert et al., 2016) to trim the reads for adapters and low quality

bases (BaseQ <5 or Ns), and to exclude those reads shorter than 30 bp or with more than 50

bp of missing data. Filtered reads from each sample were mapped against the razorbill

reference genome (Gilbert, unpublished) using BWA-MEM v0.7.12 (Li, 2013), and those with

low mapping quality (MapQ <15) removed. After the initial alignment step, Picard (v1.128,

https://broadinstitute.github.io/picard) was used to exclude reads that were PCR or optical

duplicates. Subsequently, GATK v3.5.0 (McKenna et al., 2010) was used to perform a

realignment step around indels. As we are dealing with historical samples, we also quantified

the extent of DNA damage in our samples using mapDamage v2.0.6 (Jónsson et al., 2013).

We characterised rates of deamination in double strands (DeltaD) and single strands (DeltaS),

as well as the probability of reads not terminating in overhangs (Lambda, transformed into 1/

Lambda – 1, a proxy for the overhang length of overhanging regions). From these analyses,

we also rescaled base quality scores according to the probability of each base being affected

by post-mortem damage.

Read processing of the twelve samples initially sequenced revealed low coverage of both

the 495 targeted markers (0.0018x MK78 - 1.2592x MK134), and the razorbill genome overall

(0.00006x MK83 - 0.0190x MK50) (Appendix 9—table 1 and Appendix 9—table 2). Only one

sample, MK134, had any genes with at least 3-fold coverage (Appendix 9—figure 1).

Therefore, further analysis that would provide any meaningful results could not be performed.
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Appendix 9—table 1. Estimated coverage information from the twelve sequenced samples.

The estimated coverage of the 495 targeted genes and estimated coverage of the reads that

mapped to the razorbill genome is reported.

Sample Country
Estimated coverage of razorbill
genome

Estimated coverage of targeted
genes

MK49 Norway 0.0101 0.0152

MK50 Iceland 0.0190 0.0155

MK78 Funk Island 0.0022 0.0018

MK83 Funk Island 0.00006 0.0071

MK103 Funk Island 0.0011 0.0150

MK106 Sweden 0.0172 0.0105

MK115 Norway 0.0012 0.0021

MK131 Iceland 0.0090 0.0423

MK133 Skin Mys-
tery

0.0190 0.0154

MK134 Skin Mys-
tery

0.0179 1.2592

MK135 Skin Mys-
tery

0.0073 0.0106

MK136 Skin Mys-
tery

0.0021 0.0128

Appendix 9—table 2. Coverage range of captured markers. Numbers in square brackets

represent the number of markers which have 0 coverage. Genes with the highest coverage are

shown in brackets.

Sample Country
Coverage range
of captured markers

MK49 Norway 0 [125] – 0.4898 (Fam174b)

MK50 Iceland 0 [157] – 0.2204 (Isca2)

MK78 Funk Island 0 [379] – 0.1087 (Mrp130)

MK83 Funk Island 0 [223] – 0.2960 (Nipbl)

MK103 Funk Island 0 [164] – 0.7049 (Glrx5)

MK106 Sweden 0 [190] – 0.2403 (Pcp4)

MK115 Norway 0 [366] – 0.2263 (Tmem60)

MK131 Iceland 0[78] – 1.5238 (Ssna1)

MK133 Skin mystery 0 [129] – 0.3061 (Fam174b)

MK134 Skin mystery 0.0628 (TPK1) – 17.7232 (Ssna1)

MK135 Skin mystery 0 [172] – 0.2580 (myct1)

MK136 Skin mystery 0 [142] – 0.4067 (myct1)
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Appendix 9—figure 1. Section of the presence/absence matrix showing coverage of 30/495

captured genes (listed on the right-hand side) for each sample sent for sequencing. Presence

is defined as coverage >= 3, indicated by a red square, absence is indicated by a blue

square.
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Appendix 10

Additional analyses Spanish samples
In the phylogenetic tree of Great Auks that yielded sufficient sequence data as per our

filtering criteria (Appendix 5) the sample MK40_Spain appeared to be differentiated from the

rest of the samples which came from the northern regions of their distribution. This raises the

question whether the sample could represent a refugial population in Spain. In order to test

this, we re-examined the phylogenetic relationships between samples with the addition of the

other Spanish samples we sequenced but which did not fulfil the filtering criteria for inclusion

in our final dataset. These samples included MK37, MK42, MK44 and MK45. These samples

were characterised by poor coverage (average coverage ranged from 0.18 to 2.07) and over

33% of bases missing from consensus sequence (consensus sequence length ranged from 36

bp to 5468 bp). Sequences generated as described using the Paleomix pipeline (Appendix 5)

for samples MK37, MK42, MK44 and MK45 were manually aligned to the reference genome

using Bioedit v7.2.5 (Hall, 1999) and Tablet v1.16.09.06 (Milne et al., 2013) to view the

rescaled Binary Alignment Map (BAM). As MK37 and MK45 were of very poor quality, we were

unable to use them in this additional analysis. However, we were able to produce an alignment

of 859 bp that included the additional Spanish samples MK42 and MK44. A Neighbour-joining

analysis of the alignment based on p-distances (Saitou and Nei, 1987) using MEGAX

(Kumar et al., 2018) yielded a very poorly resolved phylogeny (Appendix 10—figure 1).

Critically, the new Spanish samples do not group with the outlier MK40, thereby not

supporting a hypothesis of a Spanish refugial population.

Appendix 10—figure 1. Phylogenetic tree showing the relationship between all samples that

passed filtering criteria, plus additional Spanish samples previously excluded from analysis. The

evolutionary history was inferred using the Neighbor-Joining method (Saitou and Nei, 1987)

in MEGAX (Kumar et al., 2018). The optimal tree with the sum of branch length = 0.01164144

is shown. The percentage of replicate trees in which the associated taxa clustered together in

the bootstrap test (1000 replicates) are shown next to the branches (Felsenstein, 1985). The

tree is drawn to scale, with branch lengths in the same units as those of the evolutionary

distances used to infer the phylogenetic tree. The evolutionary distances were computed

using the p-distance method (Nei and Kumar, 2000) and are in the units of the number of

base differences per site. This analysis involved 43 nucleotide sequences. All positions

containing gaps and missing data were eliminated (complete deletion option). There were a
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total of 859 positions in the final dataset. Tip labels give the sample names and sampling

locations.
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