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ABSTRACT 
 

The use of nitrogen as an alloying element in steel is either limited to small quantities 

(<2 wt% / 7. 5 at%) in bulk materials, where it is used primarily as an austenite stabiliser 

and mechanical/tribological property enhancer, or introduced in much larger quantities 

(e.g. 38 at%) in thermochemical surface engineering treatments – where it is used to 

create a hard, corrosion-resistant diffusion layer of typically 20-30 μm depth, 

commonly referred to as “Expanded austenite” or “S-phase”. This study examines the 

effects of nitrogen incorporation in a high-manganese austenitic stainless steel (Staballoy 

AG 17), at levels that lie between these two extremities with the intention of improving 

the mechanical and wear properties without compromising the inherent high resistance 

to corrosion which such alloys possess. 

Thick, dense and featureless coatings of austenitic-manganese steel containing different 

levels of interstitial nitrogen were deposited by reactive magnetron sputtering in an 

argon-nitrogen plasma. The resulting microstructures, characterized by XRD, 

SEM/EDX, nano-indentation, and fracture analysis were found to exhibit a texture and a 

small nitrogen gradient across their thickness. With increasing nitrogen content, the 

hardness was observed to increase and the morphology changed. Moreover, changes in 

nitrogen content were found to have a more profound effect on the coating properties 

than any of the process parameters evaluated, the results of which are presented. 

Excessive nitrogen resulted in the precipitation of Mn4N, apparently avoiding chromium 

sensitisation. Finally, since the deposited coatings were characterized by high 

compressive stresses, the stresses involved and the failure modes observed are discussed.  
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CHAPTER 1: INTRODUCTION 

1.1 Introduction  

Physical vapour deposition (PVD) coating techniques provide unrivalled flexibility to 

deposit materials with metastable structures and to, for example, supersaturate phases 

with interstitial atoms, such as nitrogen and carbon, or substitutional transition metal or 

metalloid atoms, to develop previously unobtainable mechanical, tribological or 

functional properties. The aim of this research was to exploit these advantages and by 

using PVD techniques, study the properties of novel alloys which cannot presently be 

manufactured by conventional methods. A scenario that fits within this broad scope was 

that presented by austenitic steel and its doping with nitrogen.  

Nitrogen is used in the production of steels for a variety of reasons: as an austenite 

stabiliser and therefore, as a replacement for expensive nickel, to increase yield and 

ultimate tensile strengths and to improve corrosion resistance. Quantities in bulk 

materials are generally below 1 or 2 wt% (4-7.5 at%) [1–5] as larger quantities are 

unattainable by current conventional manufacturing methods. Moreover, higher nitrogen 

quantities have been reported under conventional casting or powder metallurgy 

processing to form nitride precipitates that deteriorate corrosion properties [6].  

On the other hand, over the last 25-30 years, nitrogen has also seen increasingly extensive 

use in thermochemical surface engineering treatments to create hard, corrosion resistant 

stainless steel surfaces, referred to as expanded austenite. In these instances, low 

treatment temperatures, typically in the 300-500 °C range, suppressed nitride 
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precipitation, preserving corrosion properties, despite the nitrogen quantity could be as 

high as 38 at% [7]. Stainihard®, Expanite® and Bodycote’s S3P processes [8–10] are 

examples of commercial nitrogen (and/or carbon) diffusion processes that produce hard 

expanded austenite layers to improve wear resistance, galling and scratch resistance, 

while maintaining good corrosion resistance. Such treatments are generally applied to 

improve the lifetime of moving parts that incur wear. Examples include shafts, drive 

parts, valve and pump parts, plunges, guides and fasteners, in industries such as the food 

and beverage, automotive, medical devices and general engineering.  

Clearly, there is a gap in the use of nitrogen as an alloying element: although it is used 

in quantities ranging from very small amounts (4-7.5 at%) in bulk materials to relatively 

much higher contents in surface engineering (38 at%), with benefits for using nitrogen 

lying at both ends, literature is very scarce on the materials whose nitrogen contents lie 

in between these two extremes. The original scope of this research was therefore to 

provide knowledge on how nitrogen content, particularly in those intermediate 

quantities, affects the mechanical, wear and corrosion resistance properties of austenitic 

steels. Employing PVD methods to produce thick coatings provides a means of achieving 

this goal by enabling the synthesis and characterisation of such novel alloys that currently 

cannot be manufactured commercially. Ultimately, the benefit of such a study would be 

to provide insight on whether methods for further increasing nitrogen content in bulk 

materials should be pursued as a means to improve the mechanical and wear resistance 

properties without compromising the generally inherent good corrosion resistance that 

austenitic steels exhibit. 
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1.2 Aims and objectives 
 

In the light of the discussion in the previous section, the aim of this project was: to 

investigate the properties of austenitic stainless steels, particularly high manganese 

steels, that are stabilised as well as hardened by the interstitial incorporation of nitrogen 

at levels not currently achievable by conventional bulk metal processing, and hence i) 

improve mechanical properties, whilst retaining the good corrosion resistance of 

austenitic stainless steels, ii) reduce the cost of the alloy by the replacement of expensive 

nickel with manganese, and iii) development of novel alloys with a potential application 

in the medical industry due to the absence of nickel.  

These aims have been translated to the following objectives: 

1) To deposit thick manganese-rich stainless steel coatings. This would require an 

evaluation of parameters and the determination of optimum parameters.  

2) To modify the stainless steel coatings by adding nitrogen to the coatings in 

different quantities. 

3) To characterize the produced coatings and analyse their mechanical, wear and 

corrosion properties through various analytical techniques including XRD, 

SEM/EDX, hardness testing, scratch testing, electrochemical corrosion tests and 

other tribological wear tests.  
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1.3 Thesis layout 

This work sets off with two literature review chapters: one giving a brief discussion on 

steels and assessing the available literature on the use of nitrogen in such steels and the 

other provides information on physical vapour deposition techniques. While the former 

chapter (Chapter 2), provides the reader with the background required to understand the 

role of nitrogen and the aims of this project, the other (Chapter 3) gives a brief description 

of PVD methods and how deposition parameters can affect the coating properties. The 

latter chapter is particularly important to understand the adhesion problems that were 

experienced in the initial trials and the sequence of experiments that had to be undertaken 

in order to address this problem.  

Following the literature review chapters, Chapter 4 gives a detailed description of the 

equipment used, the procedure used to produce the coatings and the analytical techniques 

used to characterize them.  

Chapter 5 provides the results for the experiments that were undertaken to understand 

the effect of different parameters on the austenitic stainless steel coatings, with the 

ultimate aims being to reduce the stress in the coatings that was causing deadhesion. 

Towards the end of the chapter the effect of nitrogen in the coatings is also evaluated.   

Chapter 6 summarises the results from this study and gives some recommendations for 

future work.  
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CHAPTER 2. NITROGEN IN STAINLESS STEEL 

2.1 Stainless steel 

2.1.1 Introduction 

The use of steel as a material finds its origins in India and Anatolia, around 2000 BC 

[11].  However, it was not until the industrial revolution, which saw the advent of the 

steam engine and critical developments in steel processing by Huntsman, Darby and 

Cort, that the production of steel gained momentum to the point where it is today the 

most abundant and essential of alloys, being applied to the industries of infrastructure, 

transportation, packaging, and machinery, amongst others.   

Of course, nowadays, the metallurgy of steel is better understood, although research in 

steel is far from saturated, with many questions still remaining to be answered.  Present 

endeavours entail reductions in energy consumption for steel production, improvements 

in strength to weight ratio and recyclability [11] – all of which support the ‘sustainability’ 

mind-set of modern industrial society. 

   

2.1.2 Classification of steels 

In the ASM Handbook, Krauss [12] defines steel as: “alloys of iron, carbon and other 

elements that contain less than 2 (wt)% carbon”.  Exceeding this limit, the alloy would 
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be classified as a cast iron.  In addition to carbon, steels generally may contain other 

alloying elements, leading to a myriad of compositions that yield a most versatile range 

of properties [13].  

Although steels can be classified in a variety of ways, the most generally applied system 

uses the chemical composition [14]. Figure 2.1, which has been adapted from Callister, 

Jr. [15], shows one example of such a classification.  In this system, steels are categorised 

according to their alloying levels; the level of carbon content: low, medium or high; and 

whether there are additional alloying elements other than carbon and some manganese 

(plain carbon steels vs. alloy steels).          

 

Figure 2. 1 Classification of Steels, adapted from Callister, Jr. [15] 

 

 

2.1.3 Stainless steel 

Amid the various conflicting claims of priority, Harry Brearley, of Sheffield UK, is 

generally accredited in 1913 with the discovery of the first commercially available 
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stainless steel, with 12.8 (wt)% chromium and 0.24 (wt)% carbon.  As the story goes, the 

self-taught researcher set out experimenting with chromium and carbon in an attempt to 

employ the higher melting temperatures of chromium-iron alloys and create a more 

erosion resistant alloy able to withstand the temperatures and discharge gases endured 

by the barrel of a gun. However, when trying to etch the material to analyse its 

microstructure, Brearley found the steel to be highly resistant to acids and immediately 

realised its potential for the prevailing cutlery industry of Sheffield [16,17]. 

It would eventually be explained how chromium forms a tightly adherent surface oxide 

in air, that prevents any further oxidation, thereby protecting the underlying material 

[13]. Over time, numerous alloys have been developed and a stainless steel is nowadays 

considered to be any corrosion resistant alloy with minimum of 10.5 (wt)% chromium 

and less than 1.2 (wt)% carbon [18,19].  

In the absence of any other alloying elements, an alloy with 13 (wt)% chromium would 

exhibit an entirely ferritic microstructure [12], i.e. one in which the primary phase is the 

body centred cubic ferrite. However, whilst chromium, like molybdenum, silicon and 

niobium is a ferrite stabiliser, other alloying elements, such as nickel, manganese, carbon 

and nitrogen, if retained in substitutional or interstitial solid solution, stabilize the face 

centred cubic austenite phase. In other words, different microstructures, as well as 

different property enhancements can be targeted through the correct balance of different 

alloying elements [12]. Stainless steels are in fact generally classified according to the 

nature of their microstructure [20].  Figure 2.2 displays how the listed 111 stainless steel 

grades in EN 10088-2:2014 are distributed by microstructural class and Table 2.1 

provides the basic properties of each class, together with some staple examples.    
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Of particular interest in this research are the austenitic stainless steels and hence, these 

shall be discussed in further detail.  

 

 

Figure 2. 2 Classification of Stainless Steel Grades by microstructural class, adapted from EN10088-

2:2014 [20] 
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Cr: 10.5-30 %, C: <0.08 %, Mo: 

0-4 % 

 

Magnetic, non-heat-treatable. 

Limited toughness, strength, 

formability and weldability (thin 

sections).  

 

Best suited for general and high 

temperature corrosion resistance; 

excellent chloride stress corrosion 

cracking resistance. 

 

 

AISI 430 

(S43000) 

 

Most common ferritic grade in sheet 

form. Cost effective and applied to many 

general purpose applications, such as 

washing machine drums, cutlery, 

catering equipment, lifts and window 

hinges.  

 

 

AISI 409 

(S40900) 

Low-cost (low Cr content) – with its 

dominant application being that for 

components of the aggressive, high 

temperature environment of the vehicle 

exhaust systems.  

 

48

31

16

14
2

EN 10088-2:2014: 111 listed Stainless Steels by microstructural class

Austenitic

Ferritic

Duplex

Martensitic

Precipitation hardenable
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A
U

S
T

E
N

IT
IC

 

 

Cr: 16-28 %, C: <0.08 %, Ni: 3.5-

32 % 

 

Non-magnetic, non-heat treatable. 

Excellent corrosion resistance, 

ductility, formability and 

toughness. Generally weldable. 

 

AISI 304 

(S30400) 

 

The backbone of the steel industry with 

>50 % of stainless steel produced. 

Numerous applications across various 

industries, including the food, 

infrastructural, surgical, chemical and 

automotive industries.  

 

 

AISI 316 

(S31600) 

 

The addition of 2-3 % Mo (with respect 

to AISI 304) improves the corrosion 

resistance and this steel is therefore used 

in harsher environments such as marine 

conditions, heavy urban, acidic or high 

chloride environments.  

 

M
A

R
T

E
N

S
IT

IC
 

 

Cr: 11.5-18 %, C: 0.15-1.2 % 

(+Mo) 

 

Magnetic and heat treated for 

strength and hardness (that 

increases with carbon content). 

Increases in strength and hardness 

potential come at a cost of 

ductility and toughness.  

 

Limited corrosion resistance and 

caution is required for welding.  

 

 

AISI 420 

(S42000) 

 

Cost effective, high strength and wear 

resistance at basic corrosion resistance. 

Typical applications include cutlery 

blades, surgical instruments, drive shafts, 

bearings, gears and tools.  

 

 

AISI 416 

(S41600) 

 

With the addition of Sulphur (0.25/0.35 

%) this steel exhibits excellent 

machinability, at a basic corrosion 

resistance and moderate strength and 

toughness. Applications typically include 

intricate components, shafts, axles, gears, 

golf club heads, sensors and gun barrels.  
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D
U

P
L

E
X

 

 

Cr: 21-26 %, C: <0.03 %, Ni: 3.5-

8 %, Mo: 0-4.5 % 

 

Magnetic, not heat treatable. 

Microstructure consists of a 

ferrite and austenite mixture, with 

the physical properties exhibited 

reflecting such a mixture. 

Properties include reasonable 

formability and weldability 

together with a higher strength 

than ferritic or austenitic (in 

annealed condition) and improved 

corrosion resistance, particularly, 

stress corrosion cracking (SCC) 

resistance.  

 

 

2205 

(S31803/ 

S32205) 

 

Used as an improvement over 316, 

offering better strength and corrosion 

resistance at the cost of some loss of 

toughness. It is therefore employed in 

more aggressive environments and 

industries such as the chemical, marine, 

nuclear, food processing and oil and gas.  

P
R

E
C

IP
IT

A
T

IO
N

 H
A

R
D

E
N

IN
G

 

Low temperature (500-800 °C) 

heat treatment gives very high 

strength through hard 

intermetallic compound 

precipitation and minimal 

distortion. Ductility and 

toughness depend on the heat 

treatment, weldability is good, 

while the corrosion resistance is 

medium (comparable to AISI 

304). 

 

17-4PH 

(S17400) 

 

Combines good corrosion resistance, 

toughness and high strength. Its strength 

is obtained from copper particle 

precipitation in a martensitic matrix. 

Examples of applications include 

aerospace and medical components, 

drive shafts, bearings, gears and 

conveying equipment.  

Table 2. 1 Classification of steels; generic properties and examples, compiled from [21–24].  

(All elemental quantities are in wt%) 

 

 

Austenitic stainless steels 

Austenitic stainless steels are alloys of iron, chromium, nickel and/or manganese with 

small amounts of carbon (and of other alloying elements), the end result of which, 

however, is a microstructure exhibiting the austenite phase, which is a face centred cubic 

polymorph of iron.  A good combination of ductility and strength, over a wide 

temperature range, together with formability, weldability and good corrosion resistance 
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are what make this class of stainless steels the largest group and the most widely used 

[25–27].  

Austenitic stainless steels are generally used in an annealed form, which is obtained by 

heating to a temperature range of 1000-1200 °C followed by rapid cooling [25]. The 

resulting microstructure consists of a single austenitic phase made up of equiaxed grains 

and twins [12]. If the cooling rate is not fast enough, or if the material is subsequently 

exposed to temperatures in the 425-870 °C temperature range, ferric carbides may 

precipitate to the grain boundaries, depleting the surrounding areas of chromium making 

such areas susceptible to corrosion of intergranular type [6]. It is for this reason that 

austenitic alloys are not hardened by heat treatment, but by cold work or through alloying 

with, for example, nitrogen [25]. Reducing the carbon content (as in grades 304L and 

316L), or alloying with stronger carbide formers such as titanium and niobium (as in 

grades 321 and 347) helps in suppressing ferric carbide formation.  

It is while all the carbides and alloying elements are in solid solution that the best 

corrosion resistance is exhibited.  This is the underlying principle of austenitic stainless 

steels: when alloying elements such as chromium and molybdenum, known ferrite 

stabilisers, are added to improve certain properties, generally corrosion resistance, nickel 

or other austenite stabilizers such as manganese, nitrogen and carbon, are also added to 

maintain the austenitic structure [26]. 

Another important aspect of this family’s alloy design is the austenite stability relative 

to its transformation to the harder and more brittle martensite [12].  As austenite may be 

mechanically induced to undergo a martensitic transformation through cold work, the 

austenite stability will affect the work hardening rate and ductility [26]. Essentially, the 
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leaner the alloy, the less stable is the austenite as even ferrite phase promoters like 

chromium, stabilise the austenite by retarding martensitic transformation.  

Table 2.2 displays some properties of some typical austenitic stainless steels.  

Common name 

(AISI) 

Steel No. UNS  

Yield 

Strength 

Tensile 

Strength 

Elongation 

Notes on 

composition 

304 1.4301 S30400 230 520 45 18Cr-8Ni 

304L 1.4307 S30403 200 500 45 lower C version 

310 1.4845 S31008 210 500 33 25Cr-20Ni 

316 1.4401 S31600 220 520 40 17Cr-10Ni-2Mo 

316L 1.4404 S31603 220 520 40 lower C version 

321 1.4541 S32100 200 500 40 18Cr-9Ni, +Ti 

347 1.4550 S34700 200 500 40 18Cr-9Ni, +Nb 

Table 2. 2 Properties of some common stainless steels, adapted from (BS) EN10095:1999 [28] & (BS) 

EN10088-2:2014 [20] 

 

 

 

 2.2 Nitrogen alloying of steels  

2.2.1 Nitrogen in bulk 

nitrogen is generally used as an alloying element in solid solution in stainless steels to 

fulfil one or more of the following roles: 1) as an austenite stabilizer replacing expensive 

nickel [29,30], 2) as a solid solution strengthener [3] and / or 3) an enhancer of properties 

such as creep strength [31] and corrosion resistance – for example pitting corrosion 

resistance [32], and intergranular corrosion cracking [33]. For instance, in the AISI 200 

steel series – while the mechanical properties (yield strength) can be improved by 30 % 
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(when compared to the staple chromium-nickel steel AISI 304), the cost is decreased due 

to reduced nickel content (which is replaced by a combination of manganese and 

nitrogen) [34].  

The solubility of nitrogen in pure iron is limited to 0.028 wt% but, as the solubility 

depends on pressure, temperature and alloy content, it can be increased by increasing the 

nitrogen gas pressure above the melt and through alloying additions. The work of Rawers 

et al., [35] gives evidence for both Sievert’s law (that states that nitrogen solubility 

increases linearly with the square root of the nitrogen pressure over the melt) and the 

effects of alloying elements on the solubility, whereby whilst chromium and manganese 

increase the solubility of nitrogen in iron, nickel decreases it. In addition, the solubility 

also increases with a phase change from b.c.c. to f.c.c., which ultimately is also 

determined by the alloy composition.  In the work of Rawers et al. [35], nitrogen 

solubility in the austenitic Fe-15Cr-15Mn alloy was increased from 0.56 wt% at an 

overpressure of 0.1 MPa, to 5.26 wt% at an overpressure of 200 MPa. However, the high 

amount of retained nitrogen formed nitrides in the alloy: Mn4N for the initial case (0.56 

wt%, 0.1 MPa), and CrN as the nitrogen content (and overpressure) increased further.  

A high nitrogen steel has thus been defined as one where the nitrogen content exceeds 

0.08 wt% in a ferritic microstructure and 0.4 wt% in an austenitic structure: whereby 

these values are the equilibrium nitrogen quantities that can be retained when the steel is 

processed at atmospheric pressure [36]. Examples of steel alloys that have been 

developed in the past decade in which nitrogen content exceeds 0.4 wt% (1.6 at%), are 

P550 (F2581-07) and P900 (18Cr-18Mn) which are characterised by high strength and 

corrosion resistance [1]. 
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The yield strength of nitrogen alloyed austenitic stainless steels has been widely reported 

to increase with interstitial nitrogen content as a result of grain boundary hardening and 

solid solution strengthening [2–5]. However, in all of the alloys in these studies, nitrogen 

is generally limited to around 1 wt%. When this limit is exceeded, alloys become 

susceptible to precipitation of nitrides, typically di-chromium nitride (Cr2N) [29,37,38]. 

Even when 1 wt% nitrogen is retained within the alloy, exposure to a temperature above 

600 °C will also cause nitrides to precipitate. Cr2N has a hexagonal [37,39] structure and 

tends to precipitate on grain boundaries first through discontinuous precipitation and 

eventually transgranularly through the matix [38]. The precipitation of Cr2N is generally 

to be avoided, as this depletes chromium from the matrix, leaving the austenite in a 

‘sensitised’ condition (i.e. susceptible to corrosion) [38,40]. Moreover, nitride 

precipitation has been shown to have an adverse effect on the ductility and toughness of 

the material [38]. To avoid such sensitisation, some steel grades intended to be used at 

higher application temperatures, are designed to include strong nitride formers such as 

titanium and niobium, to react with any nitrogen (or carbon) that can be found in the 

alloy, preventing the formation of chromium nitrides (or carbides) [41]. For instance, 

AISI 321 is designed in such a way that the titanium quantity is 5 times that of carbon 

and/or nitrogen [5 x (C % + N %)]. Similarly, AISI 347 contains niobium quantities at a 

minimum of 8 times the amount of carbon within the alloy.  

 

2.2.2 Surface treatments 

In the past 30 years, nitrogen has also played a major role in surface alloying treatments 

of stainless steel where the main aim of these treatments is improve mechanical and 
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tribological surface properties, namely, improving wear resistance without losing the 

good corrosion resistance normally attributed to such steels. High quantities of nitrogen 

(up to 30 at%) are dissolved in the austenitic stainless steels, mostly via plasma 

processes; typically by plasma nitriding [42–46], but also through processes like 

sputtering [47,48] and plasma immersion ion implantation [49]. The single phased, 

featureless, precipitate-free layer produced has been referred to by several names, most 

commonly, the ‘S-phase’ which was originally coined by Ichii et al. [50] in 1985 to 

designate the unrecognized XRD peaks of the supersaturated and ‘expanded’ austenite, 

latter description being attributed to Leyland et al. [51,52] reflecting the structurally 

anisotropic lattice expansion/strain of the austenite grains (which in part explains the 

‘unrecognized’ XRD peaks). These processes are carried out at low temperatures (below 

c. 450 °C)– to avoid grain boundary nitride precipitation, the occurrence of which would, 

as explained in the previous section for bulk nitrogen alloying, compromise the corrosion 

resistance by locally depriving the matrix of chromium [42,43,49,53,54].  

The ‘S-phase’ is characterized by a high hardness that can reach values as high as 15 GPa 

[55–57]. This high hardness is related to the nitrogen content in the material and has been 

shown to vary with the nitrogen content depth profile [44]. The shift of XRD peaks to 

lower angles reveals an increase in lattice parameter. This was also shown to increase 

with nitrogen content [53,54,56,58–61] and to follow the nitrogen profile for plasma 

nitrided samples [42,43].  
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Figure 2. 3 Optical micrograph of microsection of AISI 316 steel nitrided at 450 °C, from [46] 

 

A cross section of a material with an expanded austenite surface layer would typically 

show a featureless white layer on top of the apparently unaffected substrate (Figure 2.3) 

[43,46,56]. This occurs essentially as a result of a superior resistance of the nitrogen-rich 

layer to the etching agent used. Studies investigating the corrosion properties of 

expanded austenite often find that while the bulk corrosion resistance is maintained 

[44,49,62], the surface resistance to pitting corrosion resistance in chloride solutions is 

improved, particularly for pHs higher than 4 [44,45,62,63]. The most accepted 

explanations for this increased pitting corrosion resistance are [64]: 1) nitrogen 

segregation, in a negative state, on the metal side of the metal-oxide film interface 

causing repulsion of Cl- ions [65–67] and 2) the dissolution of nitrogen forms NH4
+ 

thereby increasing the local alkalinity of the electrolyte in areas of pitting initiation, 

inhibiting further pit growth [32,65]. Such corrosion properties together with substantial 

wear resistance improvements [42,44,49,57] have been the driving force behind the study 

of expanded austenite for biomedical applications where the aims were twofold: 1) to 

improve the tribological properties of the cheaper (compared to titanium and cobalt 
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alloys) biomedical material option AISI 316 [68]  and 2) to study the properties of 

expanded austenite in Ni-free stainless steels [56].  

The ‘S-phase’ is often reported to be in a state of stress – however, the origin and extent 

of the stress is dependent on the method of production of the expanded austenite. For 

instance, while in S-phase coatings produced by nitriding the unsaturated substrate 

constrains the saturated, expanded upper layers, resulting in compressive stress [46,69], 

in ‘S-phase’ layers produced by sputtering an austenitic target, the cause of the stress 

results from thermal mismatch between the coating and substrate and from the process 

itself (refer to Section 3.3.3). It has been reported [44,46] (in studies that produced S-

phase layers by nitriding) that this stress results in a microstructure which contains a 

significant number of microtwins, dislocations and slip bands, which indicate plastic 

deformation.  

Upon exposure to high temperatures, typically above 400 °C, the super saturated 

austenite decomposes into nitrides, which in surface treatment applications is reported to 

be CrN (as opposed to Cr2N in bulk material) [53,59] and f.c.c. depleted austenite and/or 

b.c.c. ferrite [43,59,70,71]. Decomposition is diffusion controlled and hence, the 

incubation time is dependent on the annealing temperature and can range from a few 

minutes at a temperature above 500 °C to thousands of hours at a temperature of 350 °C. 

This metastability of expanded austenite limits its safe application to lower operating 

temperatures.  

For further reading on expanded austenite, the reader is recommended the review 

conducted by Hanshan Dong [72] which features mostly S-phase produced from plasma 

nitriding (and plasma carburising). In this thesis, further discussion on expanded 
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austenite will focus on that produced by the PVD sputter coating method and how the 

parameters affect the resultant properties of the expanded austenite coating (Section 3.4). 

However, before getting to this discussion, a review of the sputtering process and 

parameters will follow in the next chapter.  
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CHAPTER 3: PVD AND PROPERTIES OF DEPOSITED COATINGS 

This chapter introduces the technology used to deposit nitrogen doped austenitic stainless 

steel coatings – i.e. the process of magnetron sputtering. The process, machine 

parameters and how these can affect the resulting coating properties are discussed in 

some depth as such concepts shall be revisited in the later chapters of this thesis.  

3.1 PVD processing  

3.1.1 Introduction  

Physical vapour deposition processes involve the transfer of a material in the form of 

vapourised atoms or molecules from a source onto a surface upon which they condense. 

The source material, called the target, may be solid or liquid and the vaporised material 

may be transported through vacuum or a low pressure plasma environment. The 

substrate, i.e. surface to be coated, may vary in both size and complexity; examples of 

industrial applications of PVD coatings include cutting, forming and moulding tools that 

may require hard and wear-resistant coatings or thermal barrier coatings and decorative 

coatings for watch wristbands, jewellery and fixtures [73,74]. 

Deposit thicknesses can vary from a few tens of nanometers to many tens of micrometers 

and may consist of multilayers, graded compositions, or even free standing structures. 

Typical deposition rates are 1-10nm/s [73] and may be conducted at temperatures that 

are low enough not to incur substrate distortion or microstructural changes [75]. 
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There are many different methods for producing the vaporized species from the target, 

however most of these tend to fall within one of the two categories: evaporation or 

sputtering. While evaporative techniques involve heating of the source material, in 

sputter deposition methods energetic particles, typically accelerated ions, physically 

knock out atoms from the target [76]. Figure 3.1 (adapted from [77] and [73]) gives some 

examples of different configurations in each of these classes. In this study, further 

discussion will proceed in the direction of sputtering and magnetron sputtering – i.e. the 

methods utilized in this work. 

 

Figure 3. 1 Classification of PVD techniques by target varpourisation methods, compiled from [77] and 

[73] 
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3.1.2 Sputter deposition 

Sputtering is a non-thermal, momentum transfer process whereby target atoms are 

physically ejected by means of bombardment from an energetic species. Such species 

can be ions generated from an ion gun in a vacuum environment (such as in ion beam 

sputtering), or ions from a low pressure plasma of, for example, argon, that are 

accelerated towards the target by means of an electric field in which the target acts as a 

cathode. When accelerated ions impinge on the target surface, their momentum is 

transferred to the target surface atoms, which in turn, collide with other atoms in the 

target matrix. This collision cascade results in the ejection of recoils, which subsequently 

deposit on the substrate, forming the coating [73,75,76,78]. Figure 3.2 shows a schematic 

of sputtering deposition, while Figure 3.3 shows some of the processes that occur 

following ion impact onto a target surface. As indicated, in addition to sputtering: (i) 

secondary electrons are ejected from the target. These are accelerated away from the 

cathode (target), ionising other gas atoms; and (ii) some ions which become neutralised 

while in transit towards the target, are reflected off the surface.  

The chemical bonding of the target atoms and the momentum transferred to them from 

the bombarding particles during collision, will determine the sputtering yield, which is 

defined as the ratio of the sputtered atoms to the number of impinging particles [73]. The 

mass, energy and angle of incidence of the bombarding particles, unlike the target’s 

temperature, are all parameters that can therefore affect the sputtering yield, and 

consequently the film growth rate. The energy distribution of the sputtered atoms follows 

a Sigmund-Thompson distribution that generally has its peak around Ub/2; where Ub is 

the surface binding energy of the target atom [79–81].  
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Figure 3. 2 Sputtering principle, adapted from [75] 

 

Figure 3. 3 Schematic diagram of some processes occurring after ion impact, adapted from [78] 
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The substrate tends to gain heat from the condensing atoms that release energy upon their 

return to solid state as well as from their kinetic energy, especially since sputter ejected 

atoms have higher kinetic energies than thermally evaporated ones [73]. Plasma effects 

such as radiation, as well as surface recombination may also contribute to substrate 

heating.  The energy of the bombarding particles, the energy of the ejected particles, the 

substrate temperature and the pressure in the chamber are all parameters that will 

determine the morphology and ultimately the properties of the deposited and growing 

film.  

Reactive gases such as oxygen or nitrogen may be used to form compounds with the 

sputtered atoms (e.g. oxides or nitrides) in what is referred to as reactive sputter 

deposition. Alternatively, the sputtered target may be a compound itself, or an alloy, and 

the sputtered material generally consists of the target composition. In some cases 

however, there might be some loss of the more volatile element from the target alloy or 

compound, like for example oxygen from a SiO2 or TiO2 target. In this particular case, 

the loss of oxygen can be made up for by introducing some oxygen gas in to the 

chamber[73].  

Almost any material can be sputtered (element, alloy or compound), even when the 

constituents of the target have different melting points and vapour pressures [73,82]. 

Doping with gaseous species, chemically grading a coating and the formation of 

superlattices contribute to the advantages of sputter deposition techniques. In addition, 

good coating uniformity and the possibility of depositing on large area substrates make 

large scale productions possible [83]. Among the drawbacks of sputter deposition are 

possible line-of-sight depositions and the need for a vacuum. Moreover, the process lacks 
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energy efficiency since a lot of energy (≈90 %) is wasted as heat in the targets, which 

necessitates target cooling [73].  

There are many different configurations for sputter deposition, some of which are listed 

in Figure 3.1. However, the most widely employed system is that of magnetron 

sputtering.  

 

3.1.3 Magnetron sputtering  

The sputtering rate of magnetron sputtering is made larger applying a magnetic field, 

parallel to the cathode that confines electrons in the vicinity of the target. For planar 

targets, magnets (electromagnetic or permanent) are placed behind the target as indicated 

in Figure 3.4(a) – with one pole placed along the central axis of the target and the other 

positioned along the outer edges (of the target). The electric and magnetic fields (ExB) 

act as an electron trap, confining their movement along a loop path (‘racetrack’) on the 

surface of the target [78,84].  

As the trajectory of the electrons is elongated, the probability of ionising a gas atom is 

increased, leading to a higher ionisation rate for the same number of electrons [75,85,86]. 

This denser plasma density in the vicinity of the target not only increases the sputtering 

rate, but also enables the discharge to be maintained at lower operating pressures (10-3 to 

10-2 mbar) and lower potentials – generally around -500 V instead of -2 to -3 kV 

[73,78,83,84].  
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However, as the target area beneath the electron loop is subjected to an enhanced 

sputtering rate, target erosion is non-uniform – in the shape of a ‘racetrack’, reflecting 

the shape of the denser plasma above it. Target utilization is therefore poor (may be as 

low as 10-30%) and may also result in non-uniform film deposition. However, 

appropriate target and/or substrate fixtures can be used to overcome these problems 

[73,86].  

 

 

Figure 3. 4 (a) Conventional ‘balanced’ magnetron; (b) and (c) Unbalanced magnetrons of Types I and 

II respectively 

 

3.1.4 Unbalanced magnetron sputtering  

In an unbalanced magnetron sputtering configuration one of the magnetic poles found 

behind the target (the central or the outer), is stronger than the other. This creates 

additional magnetic field lines that remain ‘unclosed’ or ‘unbalanced’ and since 

secondary electrons follow magnetic field lines, undergoing ionising collisions with gas 



26 
 

atoms, the region of high density plasma is extended from close target proximity to a 

larger region [84,87]. Window and Savvides [88] identified two types of configurations: 

type I which has the central magnetic pole stronger than the outer set and type II, where 

the outer magnets are stronger than the inner pole. As shown in Figure 3.4, whilst in type 

I the additional field lines are directed towards the chamber walls, type II has additional 

field lines extending towards the substrate. Hence, whilst type I still leaves the substrate 

in a low density plasma region and has therefore no commercial use, type II enables the 

substrate to be immersed in a higher density plasma. If a substrate is immersed in the 

latter, ions from the plasma can be drawn by the substrate bias, providing a means of 

bombarding the forming film, enhancing its density. [87,89], Unbalanced magnetron 

sputtering therefore allows greater target-substrate distances and when a multiple cathode 

system is employed, larger components may be coated [75,87].  

A schematic diagram showing several multiple unbalanced magnetron systems is shown 

in Figure 3.5. In such systems, the number of cathodes is generally even and the adjacent 

magnetic arrays are set up with opposite magnetic polarities such that electrons are 

confined to the region in between the cathodes, increasing the plasma density 

significantly [73,84,87]. Such systems are hence referred to as ‘closed-field’ (Figure 3.5 

(a) and (c)). Conversely, if the magnetic fields of multiple magnetrons are not linked, the 

parallel magnetic fields that would result from two magnets having same poles facing 

each other (as shown in Figure 3.5 (b)), would direct electrons towards the chamber 

walls, resulting in a low plasma density in the substrate region. Such systems are referred 

to as ‘mirrored’ field configurations.  
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Figure 3. 5 Multiple unbalanced magnetron sputtering configurations 
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3.2 Process parameters 

In this section, the importance and effects of the parameters of an unbalanced magnetron 

sputtering process, the technique used in this research, will be discussed.  

3.2.1 Base pressure 

The sputtering process is carried out in a controlled low pressure atmosphere of inert or 

reactive gas. However, since any residual gas in the chamber is a source of impurity that 

may get included in the deposited coating, the very first step of any sputtering process is 

to pump down the chamber to a background pressure that is as low as possible within a 

reasonable amount of time, before the process gas/es is/are let into the chamber. 

Typically, the base pressure is below a few milli-Pascals and is obtained by using 

diffusion, turbo or cryogenic pumps [83,90–94]. 

 

3.2.2 Working pressure 

 

In the sputtering process, gas ions in the plasma are accelerated towards the target and 

from the physics of a collision between two hard spheres, it is known that for maximum 

momentum transfer between the sputtering ions and the target atoms, the mass of the gas 

ions must be similar to those of the target [73]. However, in almost all cases, argon gas 

is used as the working gas because of its low cost, inertness and relative ‘safety’ (when 

compared to the health concerns for alternative gases). The working pressure, also called 

the operating pressure, is the pressure of the argon or gas mixture (Ar/O2, Ar/N2, 
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Ar/acetylene…etc refer to Section 3.2.3, Reactive Sputtering) in the chamber during the 

sputtering process.  

The working pressure will affect the mean free path, (i.e., the distance travelled before 

experiencing a collision), of the species in the plasma: 

(i) Ions being accelerated in the cathode sheath, may become neutralised if another 

argon atom is travelling close enough. This process, called a symmetric charge exchange 

collision [85], results in the accelerated ion becoming an atom, and the colliding non-

energetic atom becoming an ion. The latter may still gain some acceleration, depending 

on where in the sheath the collision takes place; however, such collisions result in the 

bombarding ions having a variety of reduced impact energies.  

(ii) On the other hand, the newly formed energetic neutral atom will be reflected off 

the target and become a source of substrate bombardment [95]. The encounter with 

further argon ions in their transition from the target towards the substrate will scatter the 

direction and decrease their energy [96].  

(iii) Similar to the energetic neutrals, sputtered atoms will be scattered with collisions, 

which in addition to decreasing their energy, may result in an oblique component in the 

depositing flux, affecting the morphology of the deposition [96].    

In general, it can therefore be concluded that increasing the pressure will decrease the 

mean free path of the species in the plasma, which in turn leads to a decreased sputtering 

rate, and a scattering of sputtered atoms and energetic neutrals.   
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Many researchers [90,96–99] have studied how the working pressure affects the stress 

state of the coating and have reported a transition from tensile to compressive stress in 

various materials as the working pressure is decreased.  Film properties like optical 

reflectance [96], electrical resistance [99] and texture [90] have also been found to be 

affected by the working pressure, with properties improving with a decreasing pressure. 

As a consequence of the increased collisional scattering events, as the pressure inside the 

chamber increases, the deposition rate has been found to decrease [90,100]. 

 

3.2.3 Reactive sputtering 

Reactive sputtering is the deposition of a compound film from a metal, alloy or 

compound target in the presence of a reactive gas, such as nitrogen or oxygen, in the 

chamber [101]. This method enables the deposition of ceramic coatings such as alumina 

and TiO2 – that are used for their dielectric properties, and titanium nitride, a hard wear 

resistant coating.  

Typical reactive gases (e.g. nitrogen and oxygen) have low atomic masses (14 and 16, 

respectively), and are therefore not effective in sputtering heavier atomed targets such as 

aluminium, chromium etc. (atomic masses 27 and 52, respectively). Hence, heavier inert 

gases (e.g. argon) are still required to conduct the sputtering [73]. However, Lilejeholm 

[83] pointed out that different gases in the chamber may sputter different target 

constituents with different efficiency. For instance, in the deposition of aluminium-

boron-nitrogen based films, ions from the reactive gas nitrogen sputter the lighter boron 
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in the target more efficiently than argon ions, while the aluminium in the target is 

sputtered more efficiently by the argon ions.   

In some situations where the sputtered target is a compound itself, some loss of the more 

volatile element from the target, such as oxygen from an indium tin oxide (ITO) or from 

a silicon dioxide (SiO2) target may occur [73]. This loss of oxygen can be made up for 

by having some partial pressure of oxygen in the chamber. This practice is referred to as 

quasi-reactive sputtering.  

Sometimes the reactive gas does not react to form a compound, but is merely 

incorporated into the depositing coating, much like any other contaminants that can be 

found in the chamber environment. Examples of this kind of doping are nitrogen [59] or 

carbon [98] doped stainless steel coatings. In these cases, the nitrogen or carbon content 

in the coatings increases with its percentage in the chamber atmosphere.  

A reactive gas in the chamber may react with the target forming a compound top layer. 

This is called target poisoning and it is largely to be avoided especially when the forming 

compound is non-conductive (such as an oxide) as it can lead to a charge build-up and 

subsequent breakdown, resulting in an unstable process [83]. Target poisoning is further 

discussed in Section 3.2.5 (Pulsed Magnetron Sputtering), since applying a pulse to the 

target is one solution to this problem.   
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3.2.4 Target power  

After the chamber is pumped down to the base pressure and backfilled with the working 

gas to the desired working pressure, the plasma is struck when power is given to the 

target. The current-voltage characteristic of a plasma discharge is complex, comprising 

of several different current stages as the voltage is increased: the collection of free 

electrons present in the chamber (ohmic conduction and saturation stages); the generation 

of electrons (and ions) resulting from impact ionisation of neutral gas atoms during the 

acceleration of electrons towards the anode (Townsend regime); emission of secondary 

electrons from the cathode after impact by sufficiently energetic ions (breakdown, 

followed by normal and abnormal glow regimes); thermionic electron emission from the 

cathode (arc regime). Most DC sputtering takes place in the abnormal glow regime, 

because this stage is where the highest sputtering rate occurs. (For further detail about 

these different stages, the reader is encouraged to refer to [76,85]. 

During the abnormal glow stage, a DC magnetron has been described as following the 

empirical current-voltage relation: I α Vn, where n is typically between 5 – 15, depending 

on the performance of the magnetic electron trap (magnetron design and magnetic field) 

[85,95,102]. Experimental parameters such as the gas-target combination, pressure and 

gas density would also affect n and the proportionality constant. This equation predicts 

small changes in voltage for large current changes. However, not all magnetron 

sputtering systems have been observed to follow this relationship; for instance, the work 

by Depla [103] exhibited a better fit to an alternative equation proposed by Westwood 

[104]: I = β(V-V0)
2, (where V0 is the minimum voltage required to maintain the discharge 

and β a measure of the steepness of the curve) than to the former equation (I=kVn).   
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In any case, a power increase in a magnetron sputtering system translates to an increase 

in both current and voltage. An increase in the current of a system, means that more 

electrons are present in the plasma. The higher number of electrons, in turn, means a 

higher ionisation rate (higher plasma density), implying that a greater number of ions is 

accelerated towards the target causing sputtering, which results in a higher deposition 

rate. On the other hand, an increase in voltage means that the ions are being accelerated 

to higher velocities and will have higher kinetic energies upon impact at the target 

surface. This increase in kinetic energy upon impact translates primarily in a higher 

sputtering yield (number of atoms being sputtered per incoming ion), i.e. it results in a 

higher deposition rate. Also, an increase in the velocities of the sputtered atoms is 

observed with an increase in voltage, however, this effect is not as strong as the increase 

in the sputtering yield [105]. As a result, many studies, for a variety of materials have 

observed a linear increase of deposition rate with power (aluminium [90], tungsten boride 

[106], titanium nitride [107], cadmium oxide [93], molybdenum [108], nickel [109]). 

Since a large fraction of the energy incident on the target is lost in heating, the limitation 

for maximum power is often the point at which the target incurs melting or damage [101]. 

Explaining how the target power affects the film properties is more complex. First and 

foremost, it affects the morphology of the forming film due to the amount of energy given 

for diffusion to the condensed adatoms to form the structure. This is discussed further in 

Section 3.4.1 that discusses the structure-zone models.  Secondly, it affects properties 

like surface roughness and stress – however, the manifestation of this affect is not explicit 

as it depends on other parameters during the deposition. For instance, in the work of Liu 

[106], as the target power increased and the depositing atoms had more kinetic energy, 

the film surface roughness at the substrate increased as a result of resputtering of 

previously deposited target atoms. The planes of higher densities were most susceptible 
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to this resputtering leading to a change in orientation. Moreover, in this tungsten boride 

deposition, the lighter element boron was preferentially etched, leading to a change in 

composition with increasing target power. The stress transitioned from tensile to 

compressive with an increase in target power. On the other hand, in the study of Iriarte 

[90], as the target power increased, the corresponding increase in deposition rate meant 

that less oxygen inclusions could be found in the deposited coating. As oxygen inclusions 

in aluminium nitride films are detrimental to stress and structure (different size and 

chemistry leading to lattice distortion and compressive stress), with the decrease in 

oxygen contamination that was brought about by increase in target power, the surface 

roughness improved and the highly compressive stress decreased.  

 

3.2.5 Pulsed magnetron sputtering  

When conducting a reactive magnetron sputtering process, there is a risk of having 

regions on the target that get coated. Particularly in the deposition of electrically 

insulating materials, such as aluminium oxide [91,110] or aluminium nitride [83], the 

target’s surface (aluminium) can react with the reactive gas in the chamber (e.g. oxygen, 

nitrogen) and form an insulating layer on the target surface. Such ‘poisoned’ parts / layer, 

prohibit efficient charge transport causing a charge build up until breakdown occurs 

through arcing. In addition to a drastically reduced deposition rate of a poisoned target, 

the onset of arcs makes the process unstable and unpredictable which leads to 

fluctuations in power regulation and adverse effects on the coating’s structure and 

properties. As a solution to this problem, the target is pulsed in such a way that during 

the time the pulse is ‘off’, the accumulated voltage is dissipated before arcing can occur 
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[83,91,110].  There are two pulsing modes [92]: unipolar, where the cathode is earthed 

during the pulse ‘off’ period, or bipolar, where a positive voltage – called reverse voltage, 

which is usually between 10-20% of the sputtering voltage is applied to the target. Such 

a system of operation is often referred to as pulsed magnetron sputtering (PMS).  

The main characteristics of the pulsed waveform are: the frequency, the duty factor and 

the reverse voltage value (assuming a bipolar mode) – all of which are represented in the 

theoretical waveform in Figure 3.6 (a). The duty factor, also called the duty cycle, is the 

ratio of the time when the pulse is ‘on’ to the time of the whole cycle. In practice, the 

waveform would experience some overshooting at both positive and negative ends of the 

voltage pulse, as shown in Figure 3.6 (b) which shows an oscilloscope trace of a target 

(aluminium) voltage operating at a frequency of 100 kHz, 80 % duty factor and 20 % 

reverse voltage, as measured by Kelly [110]. 

Some studies [91,110] of Al2O3 coating depositions have shown that rather than the 

frequency used, the duty cycle is the more important factor for an arc-free process. This 

is because the ‘off’ time must be long enough to dissipate the accumulated charge. 

However, since during the ‘off’ time no deposition takes place, the duty factor must be 

set at the highest value possible for an arc-free deposition. On the other hand, the coatings 

were rather insensitive to the frequency employed.  
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Figure 3. 6 (a) Schematic diagram of a target voltage waveform in PMS and (b) an actual oscilloscope 

trace of a target voltage waveform in PMS operation, from [110]. In both cases the frequency was set to 

100 Hz with a duty cycle of 80 %. 
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It has been shown [92,111] that pulsing the target in an unbalanced DC magnetron system 

results in changes to the plasma conditions and amongst other things, the energy of the 

ion flux (Ar+ and post-ionized sputtered target atoms) arriving at a floating substrate 

correlates to the target voltage waveform. Hence, while in continuous mode the ions in 

the plasma bombarding the substrate have a certain constant value; in the pulsed mode, 

ions originating during the reverse voltage or overshooting stages have higher energies, 

resulting in a higher energy delivered per deposited atom. Some studies (on Ti and TiO2 

[111,112]; ZnO:Al [113]; TiN [114]) have investigated the effect of such higher energy 

fluxes by increasing the frequency of the pulsed target. While the earlier studies reported 

minimal effects on the crystallographic structure and hardness (hence probably the 

reason why frequency insensitivity was sometimes reported), in a more recent study by 

the same authors [114], it was found that the hardness increased with target pulsing 

frequency for TiN coatings. However, even when the crystallographic structure and 

hardness remained unchanged, other properties such as adhesion (in TiO2 and TiN films 

[113]), wear resistance (of TiO2 coatings [111–113]), lower friction coefficient (TiN 

coatings [113,114]) and optical properties (of TiO2 coatings [111–113]) were found to 

be affected by the high energy fluxes imparted by the plasma in a pulsed system. Benegra 

et al. [115], also reported an increase in compressive stress when the target was pulsed 

for TiN coatings.  

In conclusion, in addition to solving target poisoning issues, pulsing can be used to 

improve the properties of the coatings by increasing the pulsing frequency, which in turn 

provides a higher ion energy flux bombarding the substrate. On the other hand, the duty 

cycle, must be kept as high as possible, so long as it is sufficient to dissipate any 

accumulated charge on the target.  



38 
 

3.2.6 Target-to-substrate distance 

Like the working pressure, the target-to-substrate distance affects the number of 

collisions sputtered atoms encounter before being deposited. With distance, the 

probability for collision/s increases and since collisions scatter the atoms, both the energy 

and the directionality of the condensing atoms are affected [83].   

 

3.2.7 Substrate bias 

When a negative bias is added to a substrate, ions in the plasma (generally, Ar+) are 

accelerated towards the substrate, resulting in an ion bombardment effect. Based on many 

experimental observations and on a variety of materials, authors unanimously agree that 

biasing the substrate causes the stress in the deposit to trend towards the compressive 

state, with an increase in the bias (Al  [116]; Cr [117]; ZrO2 –Y2O3 [118]; Ta [119]; Nb 

[99]; TiN [115]; various materials [120]). Researchers have considered several 

mechanisms to justify the observed phenomena. These included impurity (argon and / or 

oxygen) entrapment, phase change, and momentum-transfer-induced displacements from 

bombardment effects (such as target atoms implanted into interstitial and grain-boundary 

sites). However, it seems there is no clear explanation of which mechanisms are 

responsible for this increase in compressive stress. 

Some authors [117,119–121] have observed that while the compressive stress in the 

deposit increased with substrate bias, the stress saturated to a maximum, and in some 

cases, this was followed by a decrease. Some authors [99,119] have attributed this to the 
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onset of plastic deformation that would result in stress relief in the deposits.  Other 

authors have noted that following this maximum stress level, bad adhesion that caused 

peeling of the coating was observed [118]. Other than the stress in the deposit, a bias 

applied to the substrate may result in a changes in other properties such as preferential 

orientation, thickness and hardness. However, the conclusions on these aspects vary. For 

instance, while some studies have observed changes in preferential orientation with 

variation in the substrate bias [97,107,116,119]; others [117], did not. Similarly, while 

Darbeida et al. [122] and Freeman et al. [123] observed no changes in the hardness of 

AISI 316L and CrN films, respectively, Sproul et al. [107] found that it increased with 

substrate bias in TiN films. Changes in thickness were only reported by Freeman et al. 

[123] and it decreased significantly with the addition of a bias. The authors suggest that 

the reduction in thickness is the result of re-sputtering.   

 

3.2.8 Substrate pulsed bias 

Not only can a negative bias be applied to a substrate, but this bias can also be pulsed, in 

a similar way that the target it pulsed in PMS. There are very few works that have studied 

how this affects the process and the resulting deposits, but the main findings can be 

summarised as follows: 

Firstly, an increase in the ion current drawn at the substrate is reported as the substrate 

bias increased [121,124–126]. The work by Kelly et al. [124] showed that while the ion 

current drawn by a DC bias tended to increase until a saturation point, when the bias was 

pulsed, there was no saturation. The authors suggested that this could be the result of a 
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second plasma forming on top of the substrate surface. Moreover, instantaneous 

measurements have revealed that while during the pulse-on period, low ion currents were 

drawn at the substrate, during pulse-off, large electron currents were drawn. These 

currents led to an increased substrate heating rate when compared to DC biasing. 

Increasing the frequency of the pulse led to further increases in the ion current, as shown 

in Figure 3.7.  

  

 

Figure 3. 7 Variation in substrate ion current with pulse frequency & bias, adapted from [124] 

 

Secondly, as pulsing increased the flux of bombarding ions (as evidenced by the ion 

currents drawn at the substrate, e.g. Figure 3.7) and hence the energy imparted on the 

growing films, the resulting properties of the coatings changed accordingly. For instance, 

pulsing the substrate was reported to alter the structure and texture of the deposits in 

various material systems (TiO2 [124]; CrN [123]; TiN [114,125,127]) – often with the 

structure becoming more densified and more highly textured with further increases in the 



41 
 

pulsed substrate bias. Compressive stress [123,125], critical loads in scratch testing 

[114,123,125] and hardness [114,123,125,127] have all been reported to increase with 

pulsed substrate biasing. However, in some studies an improvement in mechanical 

properties (e.g. hardness and adhesion) was observed only until a certain bias value, after 

which the properties deteriorate due to the ‘cracks’ or ‘defects’ in the films [125,127].  

The work of Audronis et al. [126] on the deposition of chromium oxide (Cr2O3) using 

unbalanced magnetron sputtering, involved pulsing at both the target (PMS) and 

substrate. Their work reported the voltage waveforms at target and substrate for two 

different configurations: when the frequencies were synchronised and when they were 

relatively different. It was found that having an asynchronous frequency configuration 

resulted in a significant enhancement of the process and the consequent coating structure. 

The authors suggest that this was because the plasma was enhanced and because all the 

species in the plasma: electrons, positive ions and negative ions, (contrary to the situation 

in synchronized frequencies), contributed in modifying the growth conditions of the film.   

 

3.2.9 Substrate temperature 

Control of the substrate temperature by external heating provides another means of 

supplying energy to the condensing film. Keeping the substrate at an elevated 

temperature therefore influences the mobility of the atoms, dislocations…etc, that can 

result in stress relief, texturing [47] and phase change [70]. The substrate temperature 

can also affect the amount of reactive gas (e.g. nitrogen) retained by a coating, which 

tends to decrease with an increase in substrate temperature [53,128].   
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The substantial effect of the substrate temperature on the coating structure will be 

revisited in Section 3.3.1 – where the resulting coating structure is related to the ratio of 

substrate temperature over the melting temperature (i.e. the ‘homologous temperature’) 

of the film material (in Thornton’s structure- zone models).  

 

Final comments on process parameters: 

There are other parameters that can affect the film and its properties – for instance the 

angle of incidence of the flux (normal incidence or otherwise, rotating substrates), the 

geometry of the equipment (cylindrical cathode and anodes vs planar) and the working 

gas species. However, since these parameters are generally kept constant within any 

setup, a discussion of variation in these parameters was deemed beyond the scope of this 

study.  

One final note is that, while this section has attempted to explain the effect of most of 

the parameters in the equipment, very often these parameters are interlinked and a 

balance between conflicting effects would need to be established. For instance, consider 

the work of Liu et al. [106] on tungsten boride depositions, that discusses how the 

working pressure affects adatom mobility at the substrate surface, which in turn 

determines the diffusion rates occurring at the surface and hence, the preferential 

orientation. While decreasing the working pressure means that the condensing atoms will 

have a higher mobility, excessive energy resulted in re-sputtering of the deposited atoms 

on the densest planes – affecting the resultant orientation and deposition rate. Moreover, 

re-sputtering was higher for the lighter element, boron, resulting in compositional 
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changes. On the other hand, increasing the working pressure increased the scattering rate 

which also decreased the deposition rate. Scattering was also higher for the lighter 

element (boron), again affecting the composition. Alternatively, the energy of the ions 

arriving at the substrate surface could be reduced by decreasing the target power, which 

however, also decreases the deposition rate. This point shall be revisited again when 

discussing the stress in the films in the Section 3.3.3. 

 

3.3 Coating Characteristics  

3.3.1 Structure-zone models  

Structure-zone models are used to categorize the morphologies of deposited films 

qualitatively. During deposition of a coating, the incident atoms can undergo different 

processes: i) shadowing – as a result of surface roughness and direction of flux, ii) & iii) 

surface or bulk diffusion – depending on the respective activation energies and iv) 

desorption – depending on sublimation energy [129]. Since in many metals, these 

energies are related to each other and proportional to the melting temperature, in the 

structural zone models developed by Movchan and Demchishin in the 1960s and later 

modified by Thornton [130], the ratio of the substrate temperature during deposition to 

the melting point of the coating (T/Tm), is used to obtain an indication of the dominant 

acting processes and hence a prediction of the resulting structure [129]. 

While Movchan and Demchishin classified the possible resulting structures of coatings 

deposited by electron beam evaportaion into three zones based only on this ratio, 
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Thornton [130] considered also the pressure in chamber during deposition, thereby 

adding an axis to the model. Thornton’s work featured thick ( ̴ 25 µm) DC sputtered 

coatings from various targets; primarily copper and aluminium alloys, but also including 

coatings from molybdenum, chromium, iron and titanium. The resultant modified model 

(Figure 3.8), in addition to being more accessible to researchers, included a transition 

zone (Zone T) between the first and second zones previously defined by Movchan and 

Demchishin.  The primary axis remained the same, i.e. the ratio of substrate temperature 

over the melting temperature of the coating (T/Tm) (homologous temperature).  

 

Figure 3. 8 Thornton’s structure-zone model [96,130] 

 

Thornton [130] discusses the effect of temperature and working pressure on the resulting 

morphology of the coatings. In other words, Thornton’s structure-zone model is based 

on the energy given to the film during condensation as a result of these properties. 

However, as discussed in Section 3.2, there are other means of increasing adatom energy 
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which could result in a change in structure. For instance, by increasing the target power 

Song et al. [94] changed the structure of (Al,B)N coatings from amorphous to crystalline. 

Other parameters that could affect the resulting morphology are biasing the substrate and 

pulsing, that alter the bombardment flux properties, and hence the energy delivered to 

the growing film.  

Zone 1 

T/Tm < 0.1 

This zone is characterised by a dark grey surface and a porous 

columnar structure of tapered crystallites and voids. At low T/Tm, 

there is little energy for mobility leading to growth in the direction of 

the incoming flux and shadowing results in tapered crystallites and 

voids. This zone extends over higher T/Tm as the argon pressure 

increases in the chamber.  

Zone T  

0.1 < T/Tm < 0.3 

With increasing T/Tm, diffusion increases and the structure changes 

to a dense fibrous structure where the grains increase in width and 

length with further increases in T/Tm. Zone T tends to form on smooth 

substrate surfaces with a perpendicular flux incidence that minimizes 

shadowing and results in a surface that is relatively smooth and fine-

domed, thereby exhibiting a high reflectivity [96].  

Zone 2 

0.3 < T/Tm < 0.5 

Zone 2 consists of columnar grains that extend through the coating 

thickness. Surface mobility is substantial leading to proper grain 

boundaries and faceted surfaces.    

Zone 3 

T/Tm > 0.5 

The structure remains columnar, but the surface becomes smooth with 

flat topped grains and grooved grain boundaries.   

Table 3. 1 The zones in Thornton's structural zone model 

 

Based on similar arguments, Anders [131] proposed some modifications and an 

extension to the classic Thornton structural zone model. In this model, the homologous 
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temperature (T/Tm) axis is replaced by a generalised temperature T* that adds any 

temperature shift caused by the potential energy (e.g. heat of sublimation and ionization 

energy) of the arriving particles to the homologous temperature (T* = (T/Tm) + Tpot). The 

second axis replaces the working pressure with a normalised energy, E*, in logarithmic 

form. It represents the displacement and heating caused by the kinetic energy of 

bombarding particles (arriving atoms, ions accelerated by biasing, energetic neutrals etc). 

The third axis represents thickness, t*, which is used to indicate effects such as 

densification and resputtering effects. Figure 3.9 shows this modified and extended 

model.  

 

Figure 3. 9 Anders’ extended and modified structure zone diagram, applicable to energetic deposition 

[131] 
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3.3.2 Coatings from alloy or compound targets 

As discussed earlier in section 3.1.2, the sputtering yield depends, amongst other things, 

on the chemical bonding of the target atoms. Hence, a pure metal will be sputtered at a 

higher rate than a compound, as a consequence of the stronger chemical bonds in the 

latter. Sometimes compounds lose some of the more volatile constituents, such as oxygen 

when sputtering from a TiO2 target, and unless this oxygen is replenished by additional 

gas in the atmosphere (reactive sputtering), the resulting film composition may differ 

from that of the target [73].  

Similarly, when sputtering alloys and mixtures of materials, differences in the sputtering 

yields of the constituents can lead to films of a different composition than that of the 

target. Conversely, when the sputtering yields of the mixtures are similar, such as in the 

sputtering of stainless steels, despite the multi-element compositions of the target, the 

resulting coatings have been reported to have compositions that were very close to that 

of the target [132,133] or with small deviations, such as less than 6% [59,70]. 

 

3.3.3 Stress 

Irrespective of the process employed, stress is to a certain extent inherent in every 

deposition process [96,134]. The stress can be tensile or compressive and in excessive 

quantities can result in cracking, buckling or other failure of the coating. However, even 

in moderate quantities, stress affects certain properties like the optical, electrical and 

magnetic characteristics of a film [96,135–137]. 
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The resultant stress in a film is composed of the thermal stress and the intrinsic stress. 

The thermal stress is caused from a difference between the thermal expansion 

coefficients of coating and substrate. On the other hand, the intrinsic stress is process 

sensitive and is the accumulation of chemical and structural flaws formed during 

condensation of the film [96,135]. 

 

Thermal stress 

For thin films (film thickness < 10-4 of the substrate thickness), the thermal stress induced 

by the different thermal expansion coefficients of different film and substrate materials 

can be found from Hoffman’s [138] equation (3.1) that was later simplified by Thornton 

and Hoffman [96] to equation (3.2) that neglects the Poisson’s ratio effect.  

 

𝜎𝑡ℎ =
𝐸𝑓

(1 − 𝜈𝑓)
(𝛼𝑓 − 𝛼𝑠)(𝑇𝑠 − 𝑇𝑎) 

Equation 3.1 

 

𝜎𝑡ℎ = 𝐸𝑓(𝛼𝑓 − 𝛼𝑠)(𝑇𝑠 − 𝑇𝑎) 

Equation 3.2 
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In these equations 𝐸𝑓 and 𝜈𝑓are the Young’s modulus and Poisson’s ratio of the film, 𝛼𝑓 

and 𝛼𝑠 are the average coefficients of thermal expansion for the film and substrate, Ts is 

the substrate temperature during deposition and Ta is the temperature at which the stress 

value is being calculated, for e.g. room temperature, or the temperature of the application. 

A positive value for 𝜎𝑡ℎ represents a tensile stress while a negative value corresponds to 

a compressive one.  

Applying this expression to two practical examples: (i) chromium film deposited on ABS 

for an automotive application where the application temperature is 82 °C and (ii) an 

aluminium coating on a silicon wafer substrate that is deposited at 150 °C and 

subsequently annealed at 400 °C, Thornton and Hoffman [96] show how the thermal 

stresses predicted (tensile 0.16 GN/m2 and compressive 0.26 GN/m2, respectively) 

exceed the yield strength of the coatings and can therefore fracture the coating-to-

substrate bonds.  

 

Intrinsic stress 

In the absence of energetic particle bombardment, a porous, sub-bulk density 

microstructure under a tensile stress can be observed in sputtered films [96]. Among the 

explanations given in literature for a resulting tensile stress are:  

i) A phase change:  The internal stress developed could be the result of 

differences in density between a metastable phase and the subsequent stable 

state phase formed in a growing film. In the work of Buckel [139], gallium, 
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bismuth, tin and lead when condensed at very low temperatures retain a 

frozen-in amorphous phase without stress. At higher deposition temperatures, 

a microstructures crystallise. If the crystallised stable phase has a higher 

density than the metastable phase, then a tensile stress would result – 

observed for tin and lead. If, on the other hand, the stable phase exhibited a 

lower density, as for gallium and bismuth, a compressive stress would be 

observed. The author observed compressive stresses only for gallium and 

expressed that while this model may explain some of the tensile stress 

observations, its applicability is not certain.  

 

ii) Structural re-arrangement: In a study that involved 15 different evaporated 

metals, Klokholm and Berry [140] proposed that the intrinsic stress resulted 

from the annealing and consequent shrinkage of the condensing material. The 

authors describe the condensing atoms as ‘disordered material’ with a 

structure and density that was in between that of a perfect crystal and that of 

a highly defective supercooled liquid. As this disordered material was buried 

under subsequent condensing layers, thermally activated restructuring, i.e. 

annealing, took place to form a more ordered structure (with a higher density). 

This annealing resulted in a shrinkage that is constrained by the substrate, 

thereby giving rise to a tensile stress in the film.  In other words, the intrinsic 

tensile stress is caused by a structural rearrangement of the growing film and 

its magnitude reflects the initial disorder on the surface. The authors also 

showed how this stress was highly temperature dependent and decreases with 

increasing deposition temperature, when the annealing rate was much higher 

than the deposition rate and thermally activated processes such as vacancy 

movement and grain growth became more probable. Conversely, when the 
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deposition rate was much higher than the annealing rate, which occurs when 

the deposition temperature was low, the observed stress was high.  Sun et al 

[141] and Windischmann [142] applied this model to rf sputtered films and 

ion-beam sputtered films, respectively.  

 

iii) Grain boundary relaxation [135,143]: In this model, the stress is considered 

to develop as a consequence of two adjacent growing crystals that come into 

contact. While randomly oriented, isolated crystals grow on a surface, 

interatomic forces act across the voids in between the crystals. These 

attractive forces cause a grain boundary relaxation but since the crystals are 

constrained by their adhesion to the substrate, a tensile stress results in the 

forming film.  

 

On the other hand, many researchers have observed compressive stresses in their films 

and these have generally been explained by one of the two main theories discussed 

below: 

i) Impurities: Inclusions can cause lattice distortion through the incorporation 

of differently sized atoms in the film, through reactions at the grain boundary 

that may result in a phase of different molar volume, or through grain surface 

energy reduction [135].  The inclusion of oxygen, water vapour and other 

impurity particles [137,144] was found to provide a compressive stress 

component that in, for example, evaporation processes can be used 

deliberately to decrease the otherwise tensile stress. Other studies [145] have 
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reported that inert gas inclusion was the source of compressive stress. 

However, some authors have expressed disagreement [96,136,146] for this 

explanation as a source of compressive stress and instead favour the atomic 

peening model described next.  

 

ii) Atomic peening: D’Heurle [147] proposed that the origin of compressive 

stresses could be the result of a shot-peening-like action conducted by the 

depositing atoms onto the surface. Since in sputtering, the depositing atoms 

arrive at the substrate surface with considerable kinetic energy, it was 

suggested that the atoms might be entering small interstices that would 

otherwise remain vacant and thereby causing a compressive stress. 

Neutralised gas ions reflected off the cathode also arrive at the substrate 

surface with sufficient energy to contribute to this bombardment of the 

growing film. In their experiments Hoffman and Gaerttner [146] have ion 

peened evaporated chromium films during deposition using an independent 

beam of argon or xenon ions. This study attempted to analyse the effects of 

ion bombardment on the growing films – a process which generally occurs in 

sputtering systems – by independently controlling the ion bombardment 

stream. The results showed that otherwise tensile films turned into 

compressively stressed ones with an increase in ion bombardment dosage and 

that the process was momentum transfer controlled. This model remains one 

of the mostly widely employed to explain compressive stress in thin films. 
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Effect of parameters on stress 

The overall stress state of a film would be the combined effect of several of the 

mechanisms discussed above. This means that the stress state could be tailored to the 

particular application – for example, it could be minimized or it could be made 

compressive to improve wear resistance and hardness [96,97,148]. Ultimately, the 

parameters chosen during the process will determine the energy supplied to the growing 

film and consequently the stress state.  Table 3.2 below gives some examples of how 

stress changes with substrate bias, working pressure and target power. Furthermore, it 

should be noted that while applying a temperature to the substrate can relieve intrinsic 

stresses, it could increase the possibility of thermal stress issues.   

 

Parameter Direction of stress with 

parameter increase 

References 

Substrate bias Compressive [97,98,116–120,145]  

Working pressure Tensile [90,96–98,136]  

Target power Compressive [108,145]  

Table 3. 2 Parameter effect on stress 

 

 



54 
 

3.3.4 Adhesion 

In a film-substrate system where the film is stressed, the compatibility of the system 

means that an equal, but opposite stress acts in the substrate [96,134,138]. Moreover, if 

the system is not constrained, the substrate will bend to compensate for the bending 

moment imposed by the film. However, excessive mechanical stress can lead to a de-

adhesion of the film from the substrate [73,134,149,150]. Depending on the nature of the 

stress, whether it is compressive or tensile, isotropic or anisotropic, different failure 

modes can be observed, as shown in Figure 3.10 that is adapted from [73]. In cases when 

the film’s adhesion to the substrate is high or when the strength of the substrate is low, 

the fracture may occur in the substrate and not at the interface.   

 

 

Figure 3. 10 Manifestations of (a) Compressive and (b) Tensile stress, adapted from [73] 
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Delamination sometimes results in the ‘curling’ of the film away from the substrate. 

Laugier [151] suggests that this is the result of a residual thermal stress profile within the 

film, since the intrinsic stress tends to be constant.  

Despite the critical importance of adhesion, there is no broadly applied method for 

quantitatively measuring adhesion and any available tests provide only comparative 

measurements [73,134]. Amongst the tests available for adhesion characterization are 

those that apply tensile or shear stresses to the interface, or the scratch test, where the 

critical load required to scratch off a film from a substrate is measured.  

In order to avoid the deleterious effects of excessive stress on film adhesion, the 

following suggestions have been proposed:  

 Limiting the film thickness [152] 

 Changing the deposition technique or parameters [152]  

 Stress relief after deposition [150] 

 

3.4 Sputtering of austenitic stainless steel coatings  

Unlike nitrogen thermochemical diffusion treatments, research on sputtered austenitic 

stainless steel coatings doped with nitrogen is very limited. As a consequence, the data 

is very sporadic and with few replications of the findings, leading to a lack of clear 

understanding on how the parameters affect the coating properties. Incidentally, the 

recent studies [47,53] seem to have identified this need and tried to investigate some of 
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the parameters involved in sputtering. The following section attempts to collect the 

available data related to sputtering parameter effects and the generic properties of 

nitrogen-doped austenitic stainless steel coatings.   

In nitrogen doped austenitic depositions produced by sputtering, the nitrogen 

concentration (as well as those of other elements) typically has no gradient: it is constant 

[48] and perhaps the parameter effect that is common and reported in all studies is that 

nitrogen content in the depositions increases linearly with nitrogen percentage in the 

argon-nitrogen gas mixture [47,48,52,53,59,60,133], as shown in Figure 3.11. Similar to 

the expanded austenite obtained from nitriding, XRD peaks shift to lower angles with 

increasing nitrogen content (which corresponds to an increase in lattice parameter, Figure 

3.12) [60,70,128,133]. 

Hardness has also been known to increase with nitrogen content and in some studies it 

was shown to peak and then stabilize at some slightly lower value [58,59,70]. The work 

of Dahm and Dearnley [48] reported a maximum hardness of 20 GPa when the nitrogen 

concentration is between 23 and 29 at%. Once this limit was exceeded, there was a 

departure from the linear relationship between nitrogen concentration in the coating and 

the nitrogen partial pressure in the gas mixture and subsequently, XRD peaks for 

nitrogen-rich phases were observed. The authors propose the explanation that the 

interstitial-substitutional clusters that are formed by nitrogen atoms clustering around 

chromium atoms, impede dislocation movement within the lattice and were therefore 

responsible for the increase in hardness.  
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Figure 3. 11 An example of nitrogen content in sputter-deposited AISI 316 coatings with nitrogen 

percentage in the gas mixture (N + Ar) during deposition, from reference [133]. 

 

 

 

Figure 3. 12 Lattice parameter, a (nm) with nitrogen content (nitrogen atoms per 100 metal atoms), from 

reference [48]  
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Although as discussed above, some studies report nitride precipitation after exceeding a 

certain nitrogen content limit [48,53], only the work of Kappaganthu [128] had sputter-

deposited coatings with nitrogen levels reaching 50 at% nitrogen in the film. In this work, 

the nitrogen percentage in the nitrogen-argon gas mixture during deposition was varied 

from zero to 75 % and although the nitrogen content in the film increased with nitrogen 

gas percentage in the gas mixture, it saturated at nitrogen gas percentages of 50 % or 

higher, forming a single phase of stoichiometric MN nitride (where M was a metal (e.g. 

Fe, Cr, Ni, Mo) that corresponds to the composition of the stainless steel target – AISI 

316L, in this case). These results can be compared to those of Shedden [133], shown in 

Figure 3.11, that used an AISI 316 target and the same substrate material (silicon (100)) 

as Kappaganthu [128]. In this case the nitrogen content in the depositions increased 

linearly to reach and remain at around 40 at% for gas mixtures having nitrogen 

percentage (in an argon-nitrogen mixture) of 68 % or higher.  Furthermore, the same 

work did not observe any iron nitride formation, even when the gas mixture was 100 % 

nitrogen. This disagrees with the earlier referred to studies that have observed nitride 

precipitation upon exceeding a certain amount of nitrogen quantity in the film.   

Nitrogen percentage in the deposited coatings also increases with distance from the target 

[70,128] and according to the work of Alresheedi [53] seemed to be little affected by the 

substrate bias. Increasing the target power increaseed the flux arriving on the substrate, 

giving less time for nitrogen incorporation, resulting in lower quantities of nitrogen 

within the coating for the same gas mixture [128]. There is some disagreement when it 

comes to the effect of substrate temperature on the amount of nitrogen uptake: while 

Alresheedi [53] and Kappaganthu and Sun [128] show that nitrogen uptake is decreased 

with increasing substrate temperature, the work of Fryska et al. [47] does not show this 

trend, except when the N:Ar gas mixture was 1:1 and the authors explain that the 
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reduction in nitrogen occurs as a result of target poisoning. A similar target poisoning 

observation with consequent nitrogen uptake reduction was reported by Dahm and 

Dearnley [48] when the nitrogen partial pressure was equivalent to 50 % or higher of the 

total gas mixture.   

Coatings of varying thicknesses (0.25 – 10 µm) have been deposited on various 

substrates: steels [47,48,58,60,70,122], silicon wafer [53,60,128] and soda glass [58] and 

a shiny metallic appearance that can become matte with high nitrogen content has been 

reported by some researchers [52]. It is generally accepted that there is a good correlation 

between the target composition and that of the deposit [59,92,133]. Despite this, some 

authors [48,52,60,133] report obtaining a b.c.c. ferrite deposit when no nitrogen is added 

to the gas mixture. However, upon adding small quantities of nitrogen to the gas mixture, 

the microstructure of the deposit changed back to austenitic [60,128]. Dahm and 

Dearnley [48] suggest the theory that f.c.c. austenitic targets have a metastable f.c.c. 

structure because atoms at temperatures below 340 °C do not have enough mobility to 

form the more stable b.c.c. and thus retain the f.c.c. structure. When these targets are 

sputtered, the resulting coating is b.c.c. ferrite unless it is conducted at a temperature of 

500 °C or has large amounts of austenite stabilizing elements (such as nickel and 

nitrogen). However, the former option is not really viable, as it has been shown, similar 

to nitriding, that with temperatures exceeding 400 °C, chromium nitrides form in the 

expanded austenite coating [53,128].  

In the majority of the studies, a preferential orientation has been observed: whereas in 

austenite, the (111) peak has the strongest intensity, many studies reveal XRD patterns 

where the (200) peak is stronger [47,48,52,53,58–60,70]. Some authors have observed 

that this texture came about with increased nitrogen concentration or substrate 
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temperature. Other studies, such as that of Kappaganthu and Sun [128] who sputtered an 

AISI 316L target onto silicon wafer, have not observed this tendency.  

Since different studies use different parameters, different coating structures have been 

reported. Table 3.3 provides some examples. In some of these studies, the substrate was 

heated – therefore increasing the T/Tm – to avoid an amorphous deposition which has 

been observed in some studies when sputtering was conducted at a low temperature (e.g. 

<100 °C) [60,128]. Indeed, the work of Kappaganthu [128] showed that when adatom 

mobility was low, an amorphous deposit resulted, but when the adatom mobility was 

increased – either by heating the substrate or by increasing the target power (and 

therefore increasing the kinetic energy of the arriving flux), the structure became 

crystalline. The study only considered these two parameters, however, from the 

discussion in this chapter, it is clear that other parameters can also affect the kinetic 

energies of the depositing atoms – and the combination of all the parameters will 

ultimately affect the adatom mobility and therefore the structure formed.  

 Adhesion problems are not generally discussed and it is therefore generally assumed to 

be adequate. Actually, when nitrogen doped AISI 316L coatings deposited on substrates 

of the same material were tested for wear resistance, no delamination was observed [48]. 

In general, wear resistance improved with increasing nitrogen content, while toughness 

decreased once a certain level of nitrogen is exceeded [48,153]. 
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Ref. Target Substrate Substrate 

temp. 

(°C) 

N at% Structure observed  

(with respect to Thornton’s Zone 

Model) 

[53]  AISI 304 

 

silicon 150 - 600 0-46 Columnar, angular and highly 

faceted structure (=> Zone 2).  

 

At higher temperatures: nodular, 

powder-like. 

 

[60]  AISI 

304L 

 

silicon & 

low 

carbon 

steel 

 

RT* 0-26 Columnar, fibrous (=>Type T) 

[58]  AISI 316 

 

copper & 

soda glass 

RT* -- Single magnetron mode: T-type 

 

2 magnetrons operating in closed 

field mode: Zone 2 type 

 

[47]  AISI 304 

(X2CrNi 

18-9) 

 

AISI 304 200 - 400 10-33 ̴ 13 at%N – densely packed, fine 

grains: T-type 

̴ 24 at%N – very fine columnar grains 

(=> Zone 2) 

̴ 34 at%N – coarse and porous: Zone 

1 

Table 3. 3 Structures observed for stainless steel coatings deposited in literature 

*RT = room temperature. Substrates are not heated – temperature increased by an 

unspecified amount as a result of the process.  

 

The study by Bourjot et al, [70] briefly discussed an observation of a compressive 

internal stress in the coatings which the authors suggested is due to the intrinsic process 

stress and isothermal expansion mismatch between the AISI 310 austenitic coatings and 

the plain carbon steel substrates used in this work. This conclusion was drawn following 
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analysis of the curvature of a steel strip that acts like a cantilever beam. The authors 

provided a value for the thermal expansion for the AISI 310 austenitic steel coatings with 

nitrogen content in between 10 and 36 at%: 15-17 x10-6 °C-1. In this study [70], the 

compressive stress, although not quantified, was not deemed excessive and was regarded 

as favourable. In other work [133], the intrinsic compressive stress, measured from using 

the crystallite group method, was found to increase with nitrogen flow rate until it 

reached a maximum of 3 GPa at around 30 at% nitrogen content.  

As has been seen throughout this chapter, the sputtering system is a complex set of 

interlinked parameters. Obviously, these process parameters affect the coating properties 

and make replication of a set of coatings difficult once the sputtering equipment is 

changed, since no two different sputtering systems have identical characteristics. The 

studies carried out by Dahm and Dearnley [58] and Saker et al [59] – are examples of 

studies where the authors performed an investigation using different deposition 

equipment and obtained relatively different coatings. At the end of this discussion it 

should be clear that more work is required to understand how the sputtering parameters 

affect nitrogen-doped austenitic stainless steel coatings.  
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CHAPTER 4 – EXPERIMENTAL EQUIPMENT AND PROCEDURES 

4.1 Materials used 

The chosen austenitic alloy target material for this work was ATI’s Staballoy AG17 

grade, the composition of which can be seen in Table 4.1. The appeal of this material lies 

in its lack of nickel – which is good for economic reasons as well as for potential 

biomedical applications. As explained in Section 2.2.2, there are several studies that 

focus on the use of expanded austenite for load-bearing medical implant applications 

such as hip joint replacements [56,153,154]. However, typical medical grade austenitic 

stainless steels such as AISI 316LVM / ASTM F138 / UNS S31673 and ASTM F1586 / 

UNS S31675 / (Rex 734 / Ortron 90) contain some nickel, which is always an issue since 

this substance can be a cause for contact dermatitis in some people.  The use of a nickel-

free material is therefore an additional benefit.  

Readily available AISI 304 of dimensions 50 x 25 x 2 mm were chosen as a substrate 

material because of the similar austenitic structure (and Cr-content) to the target material 

and to conform to previous literature, where AISI 304 and AISI 316 are by far the most 

commonly used substrate grades. Moreover, the nickel in AISI 304 (and its absence in 

Staballoy AG17), together with the high manganese content in the coating (compared to 

the low quantities found in the substrate), would provide clear indications of the 

coating/substrate interface location in subsequent coating analysis. Some trials on silica 

glass substrates have also been conducted.  
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Table 4. 1 Chemical compositions of typical biomedical materials, as well as target and substrate materials. 

 

 

4.2 Substrate preparation 

AISI 304 samples were manually ground and polished to a surface roughness of 0.03 µm 

or better, using silicon carbide grinding paper of grit size 120, up to 2500, and diamond 

suspensions of sizes 6 and 1 µm. Additionally, samples were ultrasonically cleaned in 

acetone for 15 minutes and subsequently, in isopropanol for 10 minutes, prior to coating 

deposition.  

 

 Fe C Si Mn Cr Ni N Mo Cu 

ATI 
STABALLOY 

AG17™ 

[155] 

wt

% 
bal. 0.03 0.3 20 17 - 0.5 0.05 - 

AISI 304 / 

S30400 / 

1.4301 [20] 

wt

% 
bal. 0.07 1 2 17.5-19.5 8-10.5 0.1 - - 

AISI 

316LVM 

/S31673 

/ASTM F138 

[156] 

wt

% 
bal. 0.03 1.00 2 17-19 13-15 0.1 2.25-3 0.5 

ASTM F1586 

/ S31675 

[157,158] 

wt

% 
bal. 0.08 0.75 2.4-4.25 19.5-22 9-11 0.25-0.5 2-3 0.25 

 

In atomic %, the target and substrate chemical compositions, respectively: 

ATI 
STABALLOY 

AG17™ 

at

% 
bal. 0.13 0.58 20 17.6 0 1.9 0.03 - 

AISI 304 / 

S30400 / 

1.4301 

at

% 
bal. 0.3 1.45 2 18.4-20.5 7.5-10 0.4 0 - 
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For those tests that included glass slides as substrates, substrate preparation comprised 

of the ultrasonic cleaning part only.   

 

4.3 Coating deposition 

4.3.1 Deposition apparatus 

The equipment used to deposit coatings is a Nordiko unbalanced magnetron sputtering 

machine. The original configuration of this rig consists of closed field system with two 

targets placed at an angle of 90° to each other. In this work, only one of the targets was 

employed; the other target was fitted with a magnetic shield to prevent any interference 

from the permanent magnets that could be found behind it. The magnetic shield consisted 

of two nonmagnetic stainless steel sheets separated by a gap of 1 cm. The rig was 

therefore used as an open field unbalanced magnetron sputtering system with the 

substrate holder at a distance of 210 mm, directly facing the target – as indicated in Figure 

4.1.  

In such a Type II magnetron configuration (Window and Savvides, [88]), the plasma is 

confined between the unbalanced outer pole magnetic fields, which however, extend 

towards the substrate holder as indicated in the schematic diagram, Figure 4.1. 

Practically, the setup and plasma are shown in Figure 4.2. As explained in Section 3.1.4, 

such a plasma flux provides a means of ion bombardment to the growing film, affecting 

its structure and properties.  
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Figure 4. 1 Schematic diagram of the target and substrate holder configuration of the Nordiko 

unbalanced magnetron sputtering equipment 

 

 

 

 

Figure 4. 2 (a) the substrate holder mounted with substrates, and (b) the target and substrate holder 

during a deposition run in the Nordiko unbalanced magnetron sputtering rig. 

 

Glass substrate 

AISI 304 

substrate 
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The rectangular target measures 380 x 100 x 6 mm and is fitted to a copper backing plate 

and cooling system to prevent target overheating. On the other hand, the substrate holder 

is stationary and has no temperature control option. The temperature of the substrates at 

the end of a run could be read off a K-type thermocouple that was inserted into a hole 

within a dummy substrate.  

Both target and substrate holder were powered by ENI 10kW RPG-100E power supplies. 

The unit supplying the target was regulated in power mode whilst that supplying the 

substrate was set in voltage mode. The units provide a pulsing option that is regulated by 

two parameters – the frequency, 50-250 kHz, and pulse width of the reverse bias which 

the unit limits to a maximum of 40 % of the total cycle time. The reverse bias is fixed at 

a value between +30 and +40 V. The voltage and current, and current and wattage for 

the target and substrate, respectively, read off the LED monitors of the power supplies 

during the deposition runs were average values and not instantaneous ones.  

High vacuum in the chamber was obtained via a rotary and diffusion pump system.  

 

4.3.2 Equipment preparation  

The chamber of the coating machine must be thoroughly cleaned to prevent 

contamination from chamber walls and other furniture as much as possible. All the 

removable parts, such as the shields, substrate holder and target cover were therefore 

sandblasted and air jet cleaned, while the rest of the chamber was covered in foil. 

Moreover, before the coating runs were conducted, a dummy run, whereby the chamber 
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was coated with the target material for 20 min was performed. This deposited a coating 

all over the chamber and its various components, reducing the risk of cross-

contamination from the chamber materials.  

 

4.3.3 Deposition procedure 

A base pressure of 3x10-3 Pa was obtained by using the rotary pump to achieve 5 Pa, and 

then switching to the diffusion pump.  Argon at a flow rate that gives an overall chamber 

pressure of 1 Pa was then let into the chamber and the sputter cleaning of the substrates 

at a pulsed (250 kHz, 88 % duty cycle) substrate bias of -500 V was conducted for 15 

minutes.  Subsequently, the target was sputter cleaned for 5 minutes at a chamber 

pressure of 0.27 Pa and a pulsed (123 kHz, 90 % duty cycle) target power of 1500 W. A 

mechanical shield in between the substrates and target prevented any particles that are 

sputtered off the target during cleaning to be deposited on the substrates.  

The initial parameters used are listed in Table 4.2. These parameters, established partly 

based on literature but mostly on previous users’ experience, were varied with the 

intention of providing an understanding of their effect on the coating and to subsequently 

establish a set of optimum parameters. Details of the specific coating deposition runs are 

given in each respective section in Chapter 5. 
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Chamber pressure 0.27 Pa 

Target wattage 1200 W 

Target pulsing: frequency and pulse width1 250 kHz, 496 ns 

Substrate bias -70 V 

Substrate pulsing: frequency and pulse width1 123 kHz, 816 ns 

nitrogen flow rate Varied 

Deposition time 2.5-5 hrs 

Table 4. 2 Parameters used for sputter deposition process 

 

No attempt was made to coordinate the pulse cycles of the target and substrate whenever 

these were both pulsed. When the cycle included nitrogen addition into the chamber, it 

was added at a rate of 1 sccm per minute subsequent to 5 minutes of deposition without 

any nitrogen. This was done to grade the film-substrate interface and minimize an abrupt 

change in properties from the film to the substrate. The substrates remained stationary 

throughout the deposition process.  

 

4.4 Analytical techniques 

All the deposited coatings were subjected to various analytical techniques for 

investigations of microstructure, composition and hardness. Some samples were also 

tested for corrosion resistance.   

                                                           
1 Pulse width of the reverse time (i.e. of the ‘pulse off’ phase of a pulsed cycle – refer to 

Section 3.2.5).   
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4.4.1 X-Ray diffraction  

X-ray diffraction analyses was carried out in a Siemens D5000 diffractometer. This 

equipment uses CuKα radiation (λ=0.15418 nm) and at normal working conditions the 

X-ray tube operates at 40 kV and 40 mA. Scans across the 2θ range of 30-120° were 

conducted at a step size of 0.02 and step time of 10 s.  

In the specimen holder, test samples of a size generally larger than 10 x 20 mm sat on an 

Apiezon putty mound. By means of a glass slide, the sample was then gently pressed 

until its surface was level with the top of the sample holder. For this sample size, it is 

possible that some beam overspill could occur at lower angles, since the beam size 

increases as the angle is decreased. However, since the samples were sitting on a mound, 

any beam overspill would likely result in reduced intensities at low scattering angles, 

rather than any additional peaks.   

For thinner coatings (<7 µm), where X-rays penetration of the substrate resulted in a 

pattern that had some interference from the substrate material, the glancing angle mode 

(GAXRD) was employed. The angles used were 6° and 8°, depending on the thickness 

of the coating. These angles were determined after a quick scoping exercise with one of 

the thinner coatings in which angles of 2, 4, 6 and 8 degrees were evaluated.  

Finally, the obtained peak patterns were compared to those of known 

materials/compounds that can be found in the International Centre of Diffraction Data 

(ICDD).  
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4.4.2 Scanning electron microscopy (SEM) and energy-dispersive X-ray 

spectroscopy (EDX) 

The thickness and chemical composition of the coatings was investigated by a Philips 

XL30 field emission gun scanning electron microscope (FEG-SEM) operated at an 

accelerating voltage of 20 kV. Both secondary electron (SE) and backscattered electron 

(BSE) imaging modes were used to identify certain features of the coatings. For these 

investigations, the samples were cut, mounted cross-sectionally in conductive Bakelite, 

ground and polished. Moreover, to protect the coating during grinding and polishing 

procedures, samples were mounted in pairs, with coatings facing each other, as indicated 

in the schematic diagram of Figure 4.3.  

 

Figure 4. 3 Mounting of samples, with coating-to-coating interface 

 

The same piece of equipment, the Philips XL30, is fitted with energy dispersive X-ray 

(EDX) detectors and Oxford Instruments INCA software, for quantitative elemental 

measurements. For these tests, calibration using a cobalt standard was conducted prior to 

every specimen measurement. By mounting the calibrating cobalt sample together with 

the sample under scrutiny, identical beam conditions for calibration and measurement 
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were ensured. The beam parameters used for EDX measurements were again an 

accelerating voltage of 20 kV, a spot size of 4 and a working distance of 5 mm.  

 

4.4.3 Nano-indentation hardness measurements 

The surface hardness of the coatings was measured by nano-indentation testing using a 

Hysitron Triboscope® nano-indenter, fitted with a Berkovich triangular diamond 

indenter. The load applied to measure the hardness was 10 mN, the maximum allowed 

by the instrument. The penetration depth at this load was less than 400 nm in all samples; 

and, since the thinnest coating had a thickness of 5.3 µm (most were ≈10 µm), the 

penetration depth was always well within 10 % of the coating thickness – conforming to 

the rule of thumb established by Bückle [159] for avoiding any substrate contributions 

to the hardness readings.  

A minimum of 16 indents arranged in a 4x4 matrix, were performed on each sample. 

However this value was doubled or tripled when the hardness variation was high.  

 

4.4.4 Fracture analysis 

Fracture sections of the coatings were prepared by first cutting a thin slice (2 mm wide) 

from the test sample. This thin section was then incised from the back, until only about 

1 mm of thickness remained for fracture, as indicated in Figure 4.4. The notched sample 

was then immersed into liquid nitrogen until the sample was entirely cooled, and 
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subsequently fractured by bending the sample in tension. This fracture operation was 

conducted manually, using pliers and the necessary protective equipment.  

 

 

Figure 4. 4 Schematic diagram of sample preparation for fracture analysis, showing notch and direction 

of bending following immersion in liquid nitrogen 

 

Fractured pieces were then adhered to an aluminium stub with double sided carbon tape, 

with the fracture facing upwards. Analysis of the fractured surface could then be 

conducted using the scanning electron microscope, Philips XL30, referred to in Section 

4.4.2. For these analyses an accelerating voltage of 4 kV and a spot size of 3 were used.   

 

4.4.5 Potentiodynamic corrosion tests 

Finally, a few corrosion resistance tests were conducted. These tests served two aims: 

first, one aim of the project was to improve the mechanical properties of austenite with 

nitrogen doping without losing the good corrosion resistance exhibited by this phase; 

hence, assessing the corrosion resistance was very important. Secondly, testing for 

corrosion resistance was a good method to assess for chromium-nitride precipitation, 
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since if the latter was present, the corrosion resistance deteriorates due to the severe 

associated depletion of chromium incurred by the austenite [40].  

The tests conducted involved a 1 hour open circuit potential (OCP) monitoring and a 

potentiodynamic scan, starting from 0.1 V before the OCP up to breakdown potential. A 

saturated calomel electrode (SCE) and a platinum electrode were used as reference and 

counter electrodes, respectively. The samples were tested in Ringer’s Solution (9 gL-1 

NaCl, 0.42 gL-1 KCl, 0.48 gL-1 CaCl2, 0.2 gL-1 NaHCO3) – a fluid of a salinity and pH 

equivalent to that found in the human body – at a temperature of 37 °C. The exposed area 

was 1.727 cm2 and the scan rate was 0.17 mVs-1 – as suggested by ISO 17475:2008.  

 

4.4.6 Statistical considerations 

All the measurements presented in this work were given as the mean of repeated 

measurements together with one standard deviation to indicate the spread in the data. The 

sample size depended on the test being undertaken and on the variation within the 

measurements. 
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CHAPTER 5: RESULTS AND DISCUSSION 

5.1 Introduction 

In this chapter, the results shall be presented by first discussing the generic characteristics 

of nitrogen doped austenitic stainless steel coatings, then the effects of target power, 

target pulsing, substrate bias, substrate pulsing, substrate material and nitrogen quantity 

in these coatings. Finally, a discussion on stress, adhesion and precipitation will be 

presented.   

 

5.2 Generic observations  

5.2.1 Morphology and deposition temperature 

Coatings produced in an argon only atmosphere exhibited a dense and featureless 

structure as shown in the polished cross sectional sample in Figure 5.1 (a). However, 

fracture analysis (Figure 5.1 (b)), revealed a dense, fibrous structure. Such a morphology 

falls under the classification of zone T in both the Thornton’s and Anders’ structure zone 

models. [96,131]. In addition most of the coatings, with the exception of a few cloudy 

samples, possessed a mirror-like surface finish – which is also a trait that pertains to a 

Zone T structure.  

 



76 
 

Figure 5. 1 (a) SEM polished cross section and (b) Fractured surface of coating deposited in an argon-

only environment, at 1500W target power and -70V substrate bias 

 

A closer examination of the fractured surface reveals another interesting observation; the 

fibres are initially extremely dense and become more defined, continuous and coarser 

after the first 2 µm of the coating. A similar denser layer close to the substrate has also 

been observed by other authors for deposited stainless steel coatings as well as other 

materials (AISI 316 deposits: [58], Be deposits [97], Cr films [117]), although an 

explanation has never been given. In this work, it is believed that this initial layer is a 

result of the temperature at the substrate during condensation that is initially relatively 

lower. Figure 5.2 gives the typical temperature profile of the substrate throughout the 

process. It can be seen that the substrate temperature, from an ambient 24 °C, initially 

decreases by a few degrees during pumping down, but then increases during the substrate 

etching (cleaning) process to 150 °C. During the subsequent target cleaning, since the 

substrate is protected by the shield in between the target and substrate preventing any 

sputtered atoms off the target to reach it, the temperature decreases by around 50 °C to 

about 100 °C. Upon the onset of the deposition process, the substrate temperature starts 

increasing once again, but saturates at around 200 °C. This means that the first layers of 

the film are deposited at a temperature of 100 °C, that gradually increases to 200 °C, at 

which temperature the rest of the coating is deposited. This difference in substrate 
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temperature results in the different coating morphology shown in Figure 5.1(b). It should 

be noted that the above referenced studies [58,97,117] all conducted sputter deposition 

on substrates that were initially at room temperature and therefore should have had 

similar conditions to this study. Furthermore, to the knowledge of the author – there are 

no studies that conducted sputter deposition on heated substrates and that have reported 

a similar sublayer.  

 

 

Figure 5. 2 Temperature profile in a typical sputter deposition run 

 

 

5.2.2 Chemical composition 

The elemental concentration of the coatings deposited in a pure argon atmosphere, 

presented in Table 5.1, deviated only slightly from that of the target material, with some 

loss of manganese and possibly nitrogen. These observed compositional deviations are 

similar to those observed by other authors [47,59,70,160]. It should be also be noted that 
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although at the vacuum levels employed in this work some impurity contamination was 

expected in the coatings, no oxygen was detected in the produced films. This suggests 

that the contamination quantities present were small and beyond the detection 

capabilities of the EDX equipment used.  

The resulting phase of the coating in pure argon was ferritic, and although such a phase 

change to a b.c.c. structure from an austenitic target is widely reported in literature 

[48,52,60,133,161], the loss of manganese (and probably nitrogen) would tend to favour 

such a change, since both manganese and nitrogen are strong austenite stabilizers. With 

nitrogen addition into the chamber during deposition, the phase structure changed back 

to austenitic; this will be discussed in Section 5.8 (nitrogen doping).   

 

 
Fe Si Mn Cr N Ni 

Other 

elements: 

Staballoy AG 17 

theoretical 
bal 0.58 20 17.6 1.9 - 

C: 0.13, 

Mo: 0.03 

Staballoy  AG 17 

as measured 
bal 

0.56 

±0.08 

18.5 

±0.5 

18.4 

±0.1 
- 

0.67 

±0.03 
- 

Deposited 

Staballoy AG 17 
bal 

0.46 

±0.05 

17.5 

±0.1 

19.1 

±0.1 
- 

0.76 

±0.01 
- 

Table 5. 1 Composition of target (at%): theoretical, measured and sputter-deposited coating.  
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A cross sectional EDX analysis of the coating deposited in an argon only atmosphere 

revealed that the coating is homogenous and therefore that the process is stable.  

 

Figure 5. 3 EDX line scan across the cross-section of a coating deposited in an argon atmosphere at 

1500 W (123 kHz, 90%), -70 V (250 kHz, 88%) substrate bias. Substrate, AISI 304 steel, and coating 

sections are indicated. 

 

5.2.3 Adhesion 

Typically, the coatings exhibited poor adhesion, which generally was not apparent upon 

unloading from the sputtering rig chamber, but which manifested itself upon further 

processing, such as cutting of the coated sample prior to analysis. The delamination 

incurred was to different degrees, varying from catastrophic delamination to coatings 

which had delamination only in some parts and which could only be seen through 

microscopic inspection. Further discussion on this subject will follow towards the end of 

the chapter (Section 5.9). At this point it should be pointed out that such delamination 

issues affected and limited the analytical tests that could be conducted on the coated 

samples produced. Whilst X-ray diffraction, EDX and nano-indentation could be 

conducted on most of the samples, except those few that failed catastrophically, 
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delamination has at times affected the quality of some of these results, particularly 

surface hardness measurements.    

 

5.3 Target power  

The target power was evaluated under two different conditions: in an argon-only chamber 

environment (0.27 Pa), were coatings were deposited at a target power of 1200 W and 

1500 W, and in a nitrogen containing chamber environment, where the partial pressure 

contributed by the nitrogen was controlled by means of a flowmeter that was set to 4 

sccm. The target powers evaluated in the latter case were 1000 W and 1200 W and the 

rest of the details for the runs are listed in Table 5.2.  

 

Table 5. 2 Parameters for runs deposited at different target powers 

 

The measured nitrogen content in the nitrogen containing samples was unaffected by a 

target power change of 20 %. This is despite the increase in deposition rate that a rise in 

Parameter \ Sample Name 
argon- only (No 

nitrogen) 

4 sccm nitrogen 

flowrate + argon (bal.) 

Base pressure Pa 2 x 10
-3

 2 x 10
-3

 2 x 10
-3

 2 x 10
-3

 

Target Power (123 kHz, 90%) W 1200 1500 1200 1000 

Substrate Bias (250 kHz, 88%) V -70 -70 -70 -70 

Pressure  Pa 0.27 0.27 0.27 0.27 

Duration  hrs 5 2 3 4 

Nitrogen content at% 0 0 16.7 ±0.8 16.9 ±0.4 
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target power was observed to bring about – as shown in Figure 5.4, and as was previously 

reported by other authors [90,100,106–108].  

The deposition rate is generally reported to increase linearly with power [90,100,106–

108], however in this case, the curve is nonlinear. At this point it is not clear why the 

deposition rate has increased significantly at the power of 1500 W and further 

investigations would have to be conducted to provide a satisfactory explanation. 

However, some possible reasons could be suggested. When targets are operated at 

temperatures close to their melting temperatures, evaporative processes, in addition to 

sputtering, start taking place. This mode of operation, referred to as hot cathode 

sputtering, can lead to an increase in the deposition rate [162,163]. In this study, the target 

cooling system may have been insufficient during the higher target power used, 

unintentionally leading to the reported high deposition rate. It should also be noted that 

whilst many runs have been conducted at the other two powers (1000 W and 1200 W), 

only one run was conducted at 1500 W, meaning a one-off malfunction of the cooling 

system could have also led to this result.  

Another reason that has been given in some studies for higher deposition rates is gas 

rarefaction [164,165]. It has been shown [166,167] that the gas in proximity of the target 

incurs a decrease in density due to collisional heating from the sputtered atoms. 

Presumably, the decrease in density leads to less scattering of the sputtered atoms, 

resulting in a higher deposition rate.  
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Figure 5. 4 Deposition rate vs. wattage, for runs conducted at a pulsed power (123 kHz, 90%), and -70 V 

(250 kHz, 88%) substrate bias 

 

Figure 5.5 (a), shows the theta-2theta XRD pattern for coatings deposited in a pure argon 

atmosphere that were deposited at 1200 and 1500 W respectively, whereas Figure 5.5 (b) 

compares the GAXRD patterns for coatings deposited in a nitrogen atmosphere (at a 

flowrate of 4 sccm) deposited at 1000 and 1200 W. The former case (argon-only 

atmosphere) exhibits a predominantly ferrite structure for both patterns, whilst the latter 

(nitrogen-containing atmosphere) shows several austenite peaks. The discussion of what 

phases were obtained and how nitrogen gas, or lack of, in the chamber environment 

affects the phases obtained will take place in Section 5.8 (nitrogen doping). For the 

present discussion on target power, it should be noted that in each of the cases presented, 

the patterns obtained for different target power are similar. This means that a change in 

target power had minimal effect on the phases formed in the coatings.  
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Figure 5. 5 (a) theta-2theta XRD patterns for coatings deposited at 1500W and 1200W in an argon only 

atmosphere; (b) GAXRD patterns for coatings deposited in a nitrogen containing atmosphere (4sccm) at 

1200W and 1000W; (c) Peaks for ferrite and austenite, as per PDF cards   00-006-0696 and 04-018-

3211, respectively.   
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The images in the Figures 5.6 (a) – (d), which show the structure of the coatings obtained 

when the deposition took place in an argon-only atmosphere at target powers of 1500 W, 

(a) and (b), and 1200 W (c) and (d), reveal how increasing the target power has affected 

the structure of the coating. While a dense fibrous structure was obtained at 1200 W, a 

coarser fibre structure, with some of the fibres extending through the thickness of the 

coating was obtained at a target power of 1500 W. This change in structure is a 

consequence of the higher energetic environment to which the growing coating is 

subjected to. As discussed in Section 3.2.4, increasing the power of the target increases 

the current, which in turn increases the plasma density, resulting in a greater quantity of 

argon ions available for target sputtering (increasing the deposition rate) as well as 

substrate bombardment (through the substrate bias). In addition, as the voltage is also 

increased, both the sputtered atoms, as well as the reflected neutrals which provide 

additional substrate bombardment, will have higher energies. In summary, increasing the 

target power provides a higher and more energetic flux impinging on the growing film.  

This increase in momentum energy provided to the growing film at a higher target power 

could also be causing higher compressive stress in the coatings – resulting in higher 

hardness values, as suggested by the nano-indentation results tabulated in Table 5.3. 

Further research needs to be conducted to confirm this, as although for both of the cases 

presented (argon-only and nitrogen-containing deposition atmosphere), the average 

hardness increased with target power, a wide range of hardness values measured for one 

of the samples (the argon-only atmosphere sample deposited at 1200 W), prevents this 

statement to be statistically correct for the argon-only samples.   
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Figure 5. 6 Examples of fracture from coatings deposited in an argon atmosphere at 1500 W (a), (b) and 

1200 W (c),(d) 

 

Deposition 

atmosphere 

nitrogen  

(at%) 

Wattage 

(W) 

Hardness 

(GPa) 

Hardness 

Standard 

Deviation 

Ar 0 1200 8.0 ±1.2 

Ar 0 1500 9.2 ±0.5 

Ar + N 17 1000 11.2 ±0.5 

Ar + N 17 1200 12.2 ±0.6 

Table 5. 3 Hardness measurements for samples deposited at different target power 

 

5.4 Pulsed target parameters: frequency and duty cycle 

The aim of this section was to try to understand the extent of the target pulsing parameters 

on the deposits. Hence, coatings were deposited under different duty cycle or frequency 

conditions, at two different nitrogen and target power levels. The working pressure of 
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0.27 Pa and a pulsed substrate bias of -70 V (250 kHz, 88 % duty cycle) were used for 

all the deposits.  

The duty cycle at the target was varied by changing the pulse width of the reverse bias, 

and the different conditions tested are listed in Table 5.4. As shown by the thickness, 

nitrogen content in the deposits, hardness and texture presented in Table 5.4 and Figure 

5.7, respectively, changing the duty cycle over the ranges tested did not yield any evident 

differences in the deposited coatings. The samples that were deposited at 1200 W, 

contained high nitrogen contents which consequently resulted in some nitride 

precipitation. As will be discussed in further detail in Section 5.8 (nitride precipitation), 

a large variation in hardness was measured with the onset of nitride formation. On the 

other hand, the hardness of the samples deposited at 1000 W could not be measured due 

to extensive coating delamination. While in previous studies [91,110], the focus was on 

establishing the maximum duty cycle possible for an arc free process, in these tests, no 

arcing was experienced for any of the conditions.  

 

Power 

N 

flow 

rate 

Time Freq. 
Pulse 

width 

Duty 

cycle 
Thickness N content Hardness 

W sccm hrs kHz ns % µm ±σ at% ±σ GPa ±σ 

            

1200 10 5 123 576 93 10.0 0.60 26.9 2.07 6.1 1.6 

1200 10 5 123 816 90 10.0 0.48 28.0 1.02 5.5 1.3 

1200 10 5 123 1213 85 10.0 0.12 31.8 1.33 6.7 1.9    
         

1000 4 4 123 816 90 7.00 0.04 16.9 0.4 11.2 ±0.5 

1000 4 4 123 1616 80 6.61 0.04 19.8 0.6 n/a n/a 

1000 4 4 123 2416 70 6.59 0.05 18 0.6 n/a n/a 
Table 5. 4 Parameters, thickness, nitrogen at% and hardness for samples deposited at different target 

pulse width and duty cycle 

 



87 
 

 

Figure 5. 7 (a) Theta-2theta XRD patterns for coatings deposited at different duty cycles at 1200 W, 123 

kHz and nitrogen flow rate of 10 sccm and (b) GAXRD patterns for coatings deposited at different duty 

cycles at a target power of 1000 W, 123 kHz and 4 sccm nitrogen flow rate. 
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As explained in section 4.3.1, the pulse of the power supplies can be controlled from the 

frequency and the pulse width of the reverse time. However, the power supply’s 

configuration is such that while the frequency can be set to any value from the range 50 

to 250 kHz, the pulse width can only be set to a value from a pre-programmed set of 

values (e.g. 816, 896, 976… etc (ns)). This made it difficult to maintain the duty cycle at 

the same exact value (e.g. 80 %), whilst increasing the frequency. However, since the 

runs were set with parameters where the difference in frequency in much larger than that 

in the duty cycle, (as can be seen in Table 5.5), any affects generated from the frequency 

should still be detectable.  

 

Power 

N 

flow 

rate 

Time Freq. 
Pulse 

width 

Duty 

cycle 
Thickness N content Hardness 

W sccm hrs kHz ns % µm ±σ at% ±σ GPa ±σ 

            

1200 10 5 123 1216 85 10.0 0.12 31.8 1.33 6.7 1.9 

1200 10 5 164 1216 80 10.6 0.15 34.0 1.02 4.7 1.4 
            

1000 4 4 123 816 90 7.00 0.04 16.9 0.4 11.2 ±0.5 

1000 4 4 245 816 80 7.00 0.03 22.4 0.4 13.5 ±1.5 

Table 5. 5 Parameters, thickness, nitrogen content and hardness for samples deposited 

at different target frequencies 

 

Previous work on the pulse frequency variation of the applied target  power [92,111] has 

shown how pulsing the target results in more energetic ion fluxes impinging on the 

substrate surface. This would often result in an improvement of certain coating qualities 

such as adhesion and wear resistance [111–113]. However, there have been reports 

[91,110] where increasing the frequency did not result in any significant changes in the 

coatings.   In this work, as the frequency increased, the only deduction that can be inferred 
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from the results tabulated in Table 5.5 is that the nitrogen uptake seemed to increase with 

increasing frequency. The XRD results also show this increase in nitrogen for the 1000 

W samples (Figure 5.8 (b)), with a slight shift of the peaks to lower angles and, as shall 

be seen in the section discussing nitrogen doping (Section 5.8) – as the nitrogen increases, 

the peaks become increasingly (200) oriented. For those samples deposited at 1200 W 

and a higher nitrogen flow rate, EDX measurement and XRD testing were not enough to 

determine whether the increase (≈33 %) in target power frequency resulted in an increase 

in the nitrogen content of the coatings – this is because on the one hand, the relatively 

larger measurement error for the nitrogen content measured by EDX puts the difference 

between the runs within statistical error, and secondly, the onset of nitride precipitation2 

resulted in XRD peaks with positions similar to those of austenite,  making interpretation 

of the XRD patterns more difficult. Furthermore, it should be noted that the difference in 

frequency in the tests conducted at 1200 W was not as large as that in between the 

samples deposited at 1000 W, where the frequency was doubled.  

The measured coating thicknesses clearly show that increasing the frequency did not 

result in any increased re-sputtering effects on the coating, suggesting that the high 

energy ions impinging on the substrate (resulting from pulsing the target) do not have 

sufficient energy to etch the depositing coating. On the contrary, more nitrogen atoms 

have become trapped into the coating. It is not clear what mechanism could cause such 

an increased nitrogen entrapment, but it could be speculated that the higher energy in the 

flux caused better ‘packing’, and perhaps ‘forcing of’ the nitrogen atoms into interstitial 

sites, without being excessive enough to cause re-sputtering.  

                                                           
2 Nitride precipitation, its type and interpretation of the XRD pattern will be discussed in some detail in 
Section 5.8 
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Figure 5. 8 (a) Theta-2theta XRD patterns for coatings deposited at different 

frequencies at 1200 W, 10 sccm nitrogen; (b) GAXRD patterns of coatings deposited at 

different frequencies at 1000 W and 4 sccm nitrogen; (c) Peak positions for austenite 

and Mn4N as per PDF cards 04-018-3211 and 01-089-3704, respectively 
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5.5 Substrate bias 

In order to assess the effect of the substrate bias on the deposits, 3 hour runs using a 

pulsed target power of 1200 W (123 kHz, 90 % duty cycle) and a nitrogen gas flow rate 

of 4 sccm were deposited with pulsed substrate biases of -40, -70 and -110 V (250 kHz, 

88 % duty cycle).  As can be seen from Figure 5.9, the substrate bias had little effect on 

the hardness, but the thickness and nitrogen uptake decrease as the negative bias 

increases. The ion current drawn at the substrate increased with substrate bias, as 

observed by other authors [124,125]. 

 
 

Figure 5. 9 Nitrogen content, thickness and hardness against substrate bias (pulsed at 250 kHz, 88 % 

duty cycle) for coatings deposited at 1200 W (123 kHz, 90 % duty cycle) and flow rate of 4 sccm nitrogen 
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A nitrogen reduction in films upon the application of some substrate bias (-100 V) was 

already been observed by Winters and Kay [168] for nickel films, although in that case 

the quantities of nitrogen involved were of an order of magnitude smaller and the change 

observed in the nitrogen values was much higher. In this case, the nitrogen content 

decreases from 19 at% for the -40 V sample to 14 at% in the -110 V case. Given that the 

changes in nitrogen content are small, it is not surprising that the XRD patterns, shown 

in Figure 5.10,  did not entirely reflect the variation in the nitrogen uptake; where the 

patterns for the -70 and -110 V were very similar, whereas that for the -40 V substrate 

bias showed a different preferred orientation.  

In literature, while some authors have found that a substrate bias changed the preferential 

orientation in their films (Ta: [119]; Al: [116]; Be: [97]; CrN: [123]; TiN: [169]  TiN-

MoSx [125], others did not observe any major differences (Cr: [117]). This is because 

any changes occur as a result of the changes in the energy supplied to the growing surface 

– and whether or not a substrate bias provides enough energy to incur changes in the 

texture of phases obtained, depends on the particular system being employed.  

In this case, at a substrate bias of -40 V, the deposit has a relatively high amount of 

nitrogen (19 at%), and with respect to the other coatings, should be the least stressed, 

since substrate bias is widely reported to increase compressive stress CrN: [123]; TiN-

MoSx [125]; Al: [116]; Cr: [117]; ZrO2 –Y2O3 [118]; Ta:[119]; Nb [99]; various 

materials [120]).  The XRD pattern shows a main peak at 24° - which is not an austenitic 

peak, but which does not seem to be any of the main nitride peaks either.  
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Figure 5. 10 GAXRD patterns for coatings deposited at a pulsed target power of 1200 W (123 kHz, 90 % 

duty cycle), nitrogen flow rate of 4sccm, and different pulsed (250 kHz, 88 % duty cycle) substrate bias 

values -40, -70 and -100 V. Superimposed are the austenite peaks from PDF card 04-018-3211 

 

The decrease in thickness with substrate bias could be explained by an increased re-

sputtering effect of the deposit that is caused by the argon ions in the environment, that 

bombard the substrate at higher energies as the substrate bias increased. A decrease in 

thickness was also observed by Freeman et al. [123] and Gangopadhyay et al. [125] in 

the deposition of chromium nitride films and composite TiN-MoSx films, respectively. 

Re-sputtering could in fact also explain the reduction in nitrogen observed with bias 

increase discussed earlier – with the suggestion that a preferential re-sputtering of 

nitrogen is taking place.   
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Qualitative SEM assessment of the coatings deposited at different substrate bias values 

did not reveal any improvement or deterioration in the adhesive properties of the 

coatings. In all cases, doming – as shown in Figure 5.11 was observed. Moreover, whilst 

the hardness variation in the sample biased to -110 V indicated extensive delamination, 

one sample deposited at a substrate bias of -40V failed catastrophically during cutting. 

Other samples have shown some wrinkling upon cutting.  

 

 

Figure 5. 11 SEM cross-sectional images of coatings deposited at pulsed target power of 1200 W (123 

kHz, 90 % duty cycle), nitrogen flow rate of 4sccm, and pulsed (250 kHz, 88 % duty cycle) substrate bias 

values of -110 V (a) and -40 V (b).  

 

 

As previously stated, the literature stipulates that increasing the substrate bias tends to 

increase the compressive stress in a coating. Moreover, it is often suggested that hardness 

exhibits a similar trend to the compressive stress [125,170]. Hence, a higher hardness 
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was expected as the substrate bias was increased. However, despite the significant 

variation, the hardness measurements in these experiments have shown no major shift as 

the substrate bias increases. This could be explained by the simultaneous decrease in 

nitrogen with substrate bias (as shown in Figure 5.9), which is known to have a major 

effect on hardness [48,59,70]. This suggestion that two opposing mechanisms: the 

increase in stress and the nitrogen reduction with increasing substrate bias, maintain the 

hardness at a relatively constant level would partially disagree with the findings of 

Darbeida et al. [122], who stated that, for similar nitrogen doping levels in AISI 316L 

coatings, no changes in hardness were observed when the substrate bias was varied. The 

authors therefore suggest that the nitrogen effect on the hardness is higher than the atomic 

peening caused by the substrate bias. While this study suggests the action of two 

opposing mechanisms, it does not contradict the statement made by Darbeida [122], as 

while the change in nitrogen quantities is only 5 at% (representing a 25 % decrease in 

nitrogen content), that of the substrate bias is a relatively larger 70 V (which is equivalent 

to an increase of 175 % in substrate bias).  

 

5.6 Substrate pulsing 

To understand how pulsing the substrate bias was affecting the deposits, coatings 

produced with a -70 V bias voltage, in pulsed and DC mode, were compared for two 

different nitrogen flow rates: 5 and 10 sccm. The rest of the parameters were kept 

constant. The target was given a power of 1200 W and pulsed to a frequency of 123 kHz 

(90 % duty cycle) while the substrate pulse frequency was set to 250 kHz (88 % duty 

cycle). The duration of the runs was 2.5 hrs, at a working pressure of 0.27 Pa.   
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During the process, the ion current drawn at the substrate for the pulsed samples (in both 

5 and 10 sccm runs) was measured to be 0.9-1.0 A, translating to an approximate ion flux 

density of 0.24 mA/cm2, almost twice that measured for the DC counterparts which stood 

at 0.05-0.06 A and 0.13 mA/cm2, respectively.  This agrees with what was observed by 

other authors in other material systems [125,169].  

nitrogen 

flowrate 

(sccm) 

Substrate 

pulse 

mode 

N  

at% 

(± 1.2) 

Thickness 

µm 

(±0.1) 

Hardness 

GPa 

5 Pulsed 18.2 5.6 11.8 ±0.5 

5 DC 20.9 5.5 12.6 ±0.3 

10 Pulsed 28.2 5.6 6.9 ±1.8 

10 DC 30.6 5.5 11.8 ±2.6 

 
Table 5. 6 Nitrogen content, thickness and hardness for coatings deposited in the pulsed and DC 

substrate bias modes, at different nitrogen flow rates 

 

EDX results show that when the substrate was pulsed the nitrogen content was slightly 

less than when the bias is in DC. This shows that a higher re-sputtering rate of nitrogen 

took place when the bias was pulsed. Given that the measured ion current drawn at the 

substrate is higher for pulsed samples, it follows that the higher re-sputtering of nitrogen 

is a consequence of the higher ion flux impinging on the substrate. As evidenced by the 

thickness that remains constant, re-sputtering is limited only to nitrogen, unlike what was 

reported by Gangopadhyay et al. [125] in a TiN-MoSx composite coating system, 

whereby the coating thickness decreased with pulsing due to re-sputtering of the coating.  

The small difference in nitrogen content, seems to be reflected in the hardness 

measurements for the 5 sccm samples, where the DC sample has a higher hardness when 

compared to its pulsed counterpart. Although previous studies [114,123,125,127] have 

reported that the hardness and compressive stress both increase with pulsing, in this case 
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it would seem that the nitrogen content has a greater effect on the hardness than that of a 

pulsed bombarding flux. Unfortunately, it is not possible to also consider the hardness of 

the 10 sccm samples, since the spread in the readings was too wide. This large variation 

is due to bad adhesion resulting from stress, as will be discussed in Section 5.9.  

XRD results in Figure 5.12 show that pulsing the substrate did not affect the resulting 

phases in the coating, as the patterns between pulsed and DC samples are very similar. 

The 5 sccm samples exhibit an austenitic structure; and the peaks for the DC sample are 

at slightly lower angles than those of the pulsed sample, due to the higher nitrogen 

content. On the other hand, the 10 sccm samples appear to have precipitated Mn4N 

nitrides. 

 

Figure 5. 12 Theta-2theta XRD patterns for coatings deposited in pulsed (250 kHz, 88 % duty cycle) and 

DC mode, at different nitrogen flow rates (5 or 10 sccm) and power 1200 W (123 kHz, 90 % duty cycle).  
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5.7 Substrate material 

In a coating deposition run without nitrogen and 1500 W target power, glass slides and 

AISI 304 metal pieces were used as substrates. Both the target and substrate bias were 

pulsed. The glass slides, same as the metal pieces, were successfully coated, with a highly 

reflective coating. No delamination was observed for glass, not even during post-

deposition processing.  

Figure 5.13 (a) shows the XRD patterns obtained for both glass and steel substrates. Since 

no nitrogen was introduced into the chamber, the resulting microstructures are ferritic 

with a dominant (200) orientation. The pattern for steel appears to have a stronger texture 

compared to the coating deposited on the glass slides. On the other hand, the latter, shows 

a small peak at ≈45°, which could represent the (110) ferritic peak and another small 

broad peak around ≈51°, which could suggest the presence of some austenite. To better 

show these smaller peaks, the same patterns in Figure 5.13 (a) have been plotted on a 

logarithmic scale in Figure 5.13 (b). This latter representation has revealed other small 

ferritic peaks at ≈82°, ≈99° and ≈116°. The stronger texture for the steel substrate can be 

attributed to the higher bias effect on the steel with respect to the glass, as it has been 

reported in a number of studies that increasing the bias, resulted in a different texture 

[97,107,114,116,119,123,125,127,169]. 
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Figure 5. 13 (a) Theta-2theta XRD patterns for coatings deposited onto different substrates: steel and 

glass. Also displayed are the peak positions and relative intensities for ferrite and austenite as per PDF 

cards 00-006-0696 and 04-018-3211 respectively. (b) shows same patterns in (a) but in logarithmic 

scale.  

  

SEM/EDX analysis of the samples revealed small differences in thickness and 

composition, as shown in Table 5.7. These differences could be partly due to a different 

position within the chamber, but could also be the result of different condensation 
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conditions provided by the glass. The noticeably higher manganese content would justify 

the XRD pattern for glass exhibiting some austenite. However, it is difficult to justify the 

difference in thickness, except by variation in the flux of the plasma within the chamber.   

 Si 

at% 

Cr 

at% 

Mn 

at% 

Fe 

at% 

Ni 

at% 

Thickness 

µm 

Hardness 

GPa 

Steel 0.5 

±0.1  

19.0 

±0.1 

16.8 

±0.2 

62.9 

±0.2 

0.8 

±0.1 

9.0 ±0.1  9.2 ±0.5 

Glass 1.2 

±0.4 

18.1 

±0.1 

19.5 

±0.1 

60.5 

±0.2 

0.7 

±0.1 

8.7 ±0.1 8.8 ±1.9 

Table 5. 7 Elemental composition, thickness and hardness of coatings deposited onto different 

substrates: steel and glass 

 

The major difference between the coatings lies in their structure, as shown in Figure 5.14. 

Clearly, the coating deposited on glass does not have the same fibrous Zone T structure 

as that deposited on steel. It rather has coarser grains, with possibly some voids in 

between. This change would be the result of the heat dissipation properties of the 

substrate used and the substrate bias effect on the condensing surface. Heat dissipation 

is not as good in glass as it is in steel, which increases the T/Tm for the coating deposited 

onto the glass substrate, which in turn increases the energy given to the condensing atoms 

and should lead to a columnar structure. On the other hand, the substrate bias acting on 

the glass substrate may not be as effective as that on the steel and as shown by previous 

studies (TiO2: [169]; CrN: [123]; TiN: [114,125,127]), the bombarding action of the 

substrate bias also supplies energy to the condensing surface that leads to an increased 

substrate temperature and densified structure. For the deposit on the glass substrate, 

therefore, while a poor heat dissipation could be increasing the T/Tm, a lower effective 

bias could be decreasing it.  
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In a study by Alresheedi and Krzanowski [53] were AISI 304 was deposited on Si 

substrates, deposits conducted at a bias of -100 V produced a microstructure that is very 

similar to that deposited on glass in this study. When the substrate bias was increased to 

-140 V, a more columnar structure was observed and although the microstructure 

becomes coarser with temperature as well, the columnar structure was observed only 

with the increase of nitrogen content or substrate bias, but not with temperature alone. 

Comparing these observations to those in this study, it can be concluded that the effects 

in the different morphology are the result of a more dominant reduced bias effect 

(compared to the decreased heat dissipation effect) when the substrate is glass, which 

resulted in a Zone 1 structure. The increased variation in nano-hardness measurements 

for the deposit on the glass substrate could also be explained by this structure, which as 

shown in Figure 5.14 (b), contained some voids.   

 

 

Figure 5. 14 Fracture of coating deposited on steel (a) and glass (b) in an argon atmosphere, 1500 W 

target power and -70 V substrate bias 

 

It can therefore be concluded that although coating on glass was possible, the resulting 

coating structure (and consequently some of the coating properties) were different. The 

differences in the coatings are a result of substrate heat dissipation and substrate bias 

effects, which were affected by the substrate properties.  These findings differ from those 
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of Alresheedi and Krzanowski [53], that reported a similar structure for steel and silicon 

substrates in the deposition of nitrogen-doped AISI 304 films. Most of the other studies 

that perform depositions on different substrate materials (to facilitate subsequent 

different analytical tests on the resulting coatings) do not comment about any differences 

in coating structure between the samples (e.g. [58,60,112]).  

5.8 Nitrogen doping 

Nitrogen content in the coatings increased with increasing nitrogen flow rate in an almost 

linear fashion, as was also observed by previous studies [48,52,59,60,70,133]. However, 

unlike most of the other previous works that reported a stable nitrogen content across the 

coating thickness [47,59] for all the nitrogen containing coatings deposited in this work, 

a small gradient, where the amount of nitrogen was higher towards the substrate was 

observed.  An example of such a gradient across the coating is given in Figure 5.15 which 

shows the nitrogen elemental concentration across the cross-section of the coating. A 

similar nitrogen gradient was only reported by Dahm and Dearnley [48] for coatings 

containing nitrogen levels higher than 40 at%.  
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Figure 5. 15 Elemental composition by EDX, across the cross-section of a coating having an average of 

24 at% nitrogen 

 

Also of interest is that while some authors [47] have reported a diffusion of interstitial 

nitrogen across the interface to the substrate, in this study this was not detected. On the 

contrary, viewing any of the nitrogen-containing samples in a scanning electron 

microscope revealed a sublayer of the order of a few hundred nanometers (≈300 nm) 

(Figure 5.16). (For those coatings having a low nitrogen content, the use of the back-

scattered electron imaging was required to identify this layer.) This sublayer seems to be 

absent of nitrogen and would represent the 5 minute deposition without nitrogen and 

subsequent nitrogen flow rate ramp up at the beginning of every run. Although this could 

not be confirmed by EDX due to equipment limitations, the fact that it is absent from 

coatings having no nitrogen and that its dimensions would roughly correspond to the 5 

minute nitrogen free deposition and ramp up, support this argument.   
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Furthermore, with increased nitrogen content, polished samples no longer appeared as 

white, featureless, dense coatings; vertical patterns as shown in Figure 5.16 became more 

evident. Perhaps this is further evidence of a change in morphology, which from the 

Zone-T of a nitrogen-free coating (Figure 5.6 (c)-(d)) changed to a columnar structure, 

as shown in the Figure 5.17. The transition from a Zone T to a columnar structure typical 

of Zone 2 with the addition of nitrogen for austenitic coatings was also observed by 

Fryksa and Baranowska [47] and Dahm and Dearnley [48].  

Figure 5. 16 Cross-sectional images of a 29 at% Nitrogen containing deposit in SE (a) and BSE (b) modes. 

Arrows show the interface 
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Figure 5. 17 Fracture of 24 at% nitrogen coating (deposited using a pulsed target power of 1200 W and 

a pulsed substrate bias of -70 V) showing a columnar structure 

 

Figure 5.18 shows the XRD patterns of 4 coatings having different levels of nitrogen: 

zero, 7, 13 and 24 at%. Superimposed on the diagram are the peak positions of ferrite in 

grey (PDF card 00-006-0696) and austenite in orange (PDF card 04-018-3211).   

The coating without nitrogen shows a mostly ferritic structure, with a (200) preferential 

orientation. As has been previously discussed in Section 5.2, this phenomenon has been 

reported by many studies [48,52,60,133,161]. Nevertheless, contributing to this change 

may also be the slight loss of manganese and maybe nitrogen, both of which are austenite 

stabilisers, from the original target composition. As the nitrogen was introduced into the 

chamber, the microstructure changed first to a mixture of ferrite and austenite (7 at% 

nitrogen coating in Figure 5.18), and subsequently to a fully austenitic structure with 

further increase in nitrogen content (13 and 24 at% nitrogen coatings). The (200) 

preferential orientation is maintained in the austenitic coatings and becomes stronger 

with further nitrogen increase. This (200) preferential orientation has also been reported 
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by other works [48,60,70,133,171].  Similar to previous studies [48,52,59,70,128], the 

peak(s) shift to lower angles and the lattice parameter increases with nitrogen addition.  

 

 

Figure 5. 18 Theta-2theta XRD patterns of coatings with different nitrogen levels: 0, 7, 13 and 24at%, 

all remaining parameters constant 

 

As can be seen in Table 5.8, with the nitrogen increase, the hardness increased, until at 

23.8 at% nitrogen, the hardness of 18.5 GPa was the highest measured in this study. 

Higher nitrogen increases, as could be perceived from previous sections in this chapter, 
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have resulted in a severe hardness drop (Sections 5.4, 5.6). In general, hardness 

measurements were sometimes difficult to make because of coating disbondment, as 

shown for instance in Figure 5.11 (Section 5.5), or substrate damage, (discussed in the 

following section, Section 5.9) – both of which could have resulted in the instrument 

partly measuring the coating deflection (as the tip pushed the coating towards the 

substrate) rather than the hardness of the coating itself. In fact, load-displacement curves 

obtained often showed such a drift before the actual indent began. In the light of these 

difficulties, the only conclusion that could be drawn with some confidence is that 

hardness increases with nitrogen content, until it reaches 23 at%N, in accordance with 

many previous literature studies [48,52,53,59,70,122,153,161]. However, further 

investigations have to be undertaken to understand what happens at higher nitrogen 

levels. In the literature, several authors have reported the hardness to stop increasing after 

some level of nitrogen concentration has been reached [52,128], and sometimes the 

hardness levels off at a lower value than the maximum hardness observed [58,59]. 

However, when presented, the results in these studies [48,52,153] often showed 

increased percentage errors for hardness values at higher nitrogen content, compared to 

those at lower nitrogen concentrations. The reasons for such behaviour are never 

explicitly stated, but would probably be the result of having phase changes due to nitride 

precipitation.  

The increase in hardness between the coating deposited with no nitrogen in the chamber 

(8.0 ±1.2 GPa) and that of the target (5.9 ±0.5 GPa) could be attributed to process induced 

stress and grain refinement. While the stress in the coatings will be discussed in the next 

section, the grain size of the coatings in this study was estimated to be in between 10-20 

nm, as measured by a selected area electron diffraction analysis. In the nanocrystalline 

regime, the Hall-Petch relationship, which predicts an increase in hardness with grain 
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size reduction [15] is not valid: while some researchers found the hardness to be less than 

that predicted by the equation [172–174] others observed softening at very small grain 

sizes [174–176]. In any case, hardness increases by grain refinement play only a minor 

role in these coatings and the larger hardness increases have been observed as the 

interstitial nitrogen quantities in solid solution increased. For this reason, further 

investigation of the grain size was not pursued and instead all hardness analyses were 

limited to comparisons of coatings within this study. 

  nitrogen 

(at%) 

 

±σ 

Hardness 

(GPa) 

 

±σ 

0.0 n/a 8.0 1.2 

7.3 1.6 4.1 1.3 

13.0 1.0 14.5 1.5 

23.8 0.8 18.5 1.5 

    

Staballoy AG17 (target) 5.9 0.5 

Table 5. 8 Hardness for coatings having different nitrogen contents 

  

5.8.1 Corrosion testing 

 

A tentative potentiodynamic test in Ringer’s solution was conducted comparing the zero 

nitrogen coating and the coating with 24 at% nitrogen. Another test was also conducted 

on the untreated substrate material AISI 304, a staple austenitic stainless steel, for 

comparative purposes.  

From the polarization curves shown in Figure 5.19, it can be seen that all three samples 

exhibit passivity at low voltages. However, as the voltage is increased, the untreated AISI 

304 substrate and the coating without nitrogen experience pitting, i.e. sudden large 



109 
 

increase in current density due to this localised corrosion phenomena. Breakdown 

potentials are at about 285 and 650 mV, respectively. At the end of these tests, the 

surfaces of both of these test specimens incurred localised corrosion in the form of 

pitting. Prior to the breakdown potential, metastable pitting events can be observed for 

both of these materials. On the other hand, the curve for the coating containing 24 at% 

nitrogen shows no metastable pitting events and no breakdown potential, meaning that 

this specimen remained passive up to 1000 mV, which indicates that the pitting corrosion 

resistance has been improved over the coating without nitrogen and the untreated AISI 

304 substrate.  

 

 

Figure 5. 19 Potentiodynamic tests in Ringer’s solution for AISI 304 steel (grey), Staballoy AG17 

coating with no added nitrogen (blue) and with 24 at% nitrogen (red). Coatings were deposited at a 

pulsed target power of 1200 W and pulsed substrate bias of -70 V 
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OCP values obtained in these tests could suggest some deterioration in general corrosion 

resistance of the zero-nitrogen sample (OCP at -90 mV) with respect to the untreated 

sample (OCP at +102 mV) and the 24 at% coating (OCP +42 mV), however, no strong 

conclusions can be made on this result in absence of repeated tests. Since these latter two 

samples are both austenitic, while the former is ferritic, such an increased susceptibility 

to general corrosion resistance is expected.  

Although multiple tests should be conducted to validate a potentiodynamic test, these 

test results agree with multiple nitrogen-expanded austenite studies that show that with 

respect to untreated counterparts, pitting corrosion resistance in chloride solutions is 

improved, while the general corrosion resistance is maintained [45,49,62,63,177].   

5.8.2 Nitride precipitation 

 

Judging from the XRD patterns and the corrosion resistance of the coated sample 

containing 24 at% nitrogen (previous section), it would seem no detrimental chromium 

nitride precipitation occurred. However, at higher nitrogen contents, it appears that there 

is some precipitation of Mn4N. It is difficult to ascertain with absolute certainty that 

Mn4N has precipitated based on XRD patterns alone, because the peak shift of expanded 

austenite to smaller angles could overlap with the peaks of Mn4N. However, as can be 

seen in Figure 5.20, the strong, relatively narrower peak at ≈40°, together with the 

appearance of smaller peaks at ≈69, 83 and 88° - which were not seen for any of the other 

lower nitrogen containing coatings, would suggest the presence of Mn4N.  (Peak 

positions for chromium nitrides and other manganese nitrides can be found in Appendix 

II, Figures II.2 and II.3 respectively).  
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Figure 5. 20 (a) Theta-2theta XRD patterns for coatings containing high levels of nitrogen; (b) Peak 

positions for Mn4N – PDF card 01-089-3704 and austenite, PDF card 04-018-3211 

 

Since most of the more common austenitic stainless steels are a mixture of predominantly 

iron, chromium and nickel, in most expanded austenite studies, the onset of nitride 

formation usually means the precipitation of CrN [47,59,128]. Some studies [59,128] 

have shown that with increase in nitrogen, a stoichiometric MN is formed (where M is a 
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metal (e.g. Fe, Cr, Ni, Mo) that corresponds to the composition of the stainless steel 

target). On the other hand, studies of low temperature nitriding of the nickel free, high 

manganese content stainless steels ASTM F2581-07 (Fe-17Cr-11Mn-3Mo-0.5N-0.5Si-

0.2C) and Staballoy AG 17 (same material as that used in this study), resulted in the 

precipitation of Mn3N2 [56], and CrN [71] respectively. A change in free energy – 

temperature diagram provided by Gemma et al. [178] (Figure 5.21) for various 

chromium, manganese and iron nitrides, would suggest that at temperatures lower than 

500 °C, the formation of Mn4N precipitates is most likely, given that its formation carries 

the highest change in free energy. The reasons why this nitride has not been reported to 

precipitate in austenitic stainless steel so far might be that: i) higher chromium levels, 

compared to manganese levels (if any) are present in the alloys generally studied (nickel-

chromium alloys); and ii) difficulty in detecting this phase from XRD analysis.  

 

 

Figure 5. 21 Change in free energy against temperature for various chromium, manganese and iron 

nitrides, from [178] 
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Literature is not only unavailable for the precipitation of manganese nitrides in austenitic 

stainless steels but also for generic properties of compounds themselves (i.e. of the 

manganese nitrides). There are only a few [179,180] computational studies from first 

principles and these predict that Mn4N is a stable, hard (24 and 18 GPa, respectively) and 

brittle phase. In this study, because of the adhesion problems experienced, an increase in 

hardness upon precipitation was not observed.  

However, while a potential increase in hardness caused by manganese nitride, in addition 

to the increase in hardness that is brought about by expanded austenite would be 

attractive, understanding the implications of this kind of nitride precipitation on the 

corrosion resistance would be of utmost importance; because while the manganese 

nitride has precipitated, sensitisation of chromium has been avoided.  

In the work of Buhagiar [181] mentioned earlier, the precipitation of Mn3N2 in austentitic 

stainless steel ASTM F2581-07, was accompanied by a deterioration of intergranular 

corrosion resistance. This deterioration was attributed to the dissolution of Mn3N2 

precipitates that was manifested in current transients similar to those observed by Suter 

et al. [182] for MnS inclusions. Amongst the various theories of why the dissolution of 

MnS inclusions leads to increased pitting corrosion susceptibility is that proposed by 

Baker and Castle [183] which suggests that the dissolution of MnS inclusions releases 

Mn2+ ions in the presence of Cl- ions and that in sufficient concentrations could result in 

the precipitation of a MnCl2 salt film which prevents repassivation of the metal surface 

(exposed upon inclusion dissolution), leading to stable pitting conditions. Hence, while 

the theoretical work of Yu [179] predicts that Mn4N is more stable than Mn3N2, 

understanding whether Mn4N precipitates dissolve or not is of utmost importance as this 
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will in turn reveal whether the corrosion resistance of Staballoy AG17 with manganese 

nitrides is impaired.  

 

5.9 De-adhesion and stress  

In most cases, the coatings did not exhibit wrinkling upon unloading from the chamber. 

Nor did they fail catastrophically during subsequent cutting. Instead, in most cases the 

de-adhesion could only be observed under microscopic examination. However, there 

have been some cases when wrinkling was observed upon unloading or subsequent to a 

cutting process. In other even less frequent cases, the sample failed catastrophically 

during cutting as shown in Figure 5.22. The curling of the debonded parts of the film 

suggests that there is a stress profile within the film. In general, these observations would 

suggest that the coatings were in a state of very high residual stress and that any 

application of external load – such as cutting or mishandling during unloading – could 

result in spontaneous failure.  
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Figure 5. 22 Examples of compressive stress manifestations following cutting: (a) Catastrophic failure 

showing curling of a coating and (b) Worm-tracks following cutting.  

 

In all of the coatings a delamination of the film from the substrate was observed under 

microscopic inspection; however, in some regions the coating-substrate interface was so 

smooth, it could barely be resolved. This would suggest that while the chemical bonding 

and adhesion between the film and the substrate is good, the cause of the de-adhesion 

was the result of high internal stresses. In fact, the fracture very often started in the nearby 

material region of the interface, within the substrate, as evidenced by Figure 5.23.  

When the coating was thin enough (<6µm), buckling, in addition to substrate damage 

could be observed and when the curvature of the buckling was too large, fracture 

occurred (Figure 5.24, (a) and (b), respectively).  For thicker coatings, only substrate 

damage could be observed. 
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Figure 5. 23 An example of substrate damage in a coating that was deposited at a pulsed target power of 

1200 W, pulsed substrate bias of -70 V and contains 7 at% nitrogen 

 

Buckling and wrinkling are typical compressive stress failure modes; hence the buckling 

exhibited by the thinner coatings, the wrinkling, as well as lack of typical tensile failure 

modes (coating cracks, for example) in the thicker coatings show that the nature of the 

residual stress in the coating is compressive. Since in a film-substrate system, system 

compatibility requires that a stress within the coating is balanced out by an equal but 

opposite stress in the substrate, the substrate therefore incurs a tensile stress. The 

maximum stress that can be applied to the system is equivalent to the yield strength of 

the coating material, since once this is exceeded, the film would deform. However, in 

this case, the yield strength of the film exceeds the maximum stress the substrate can 

withstand in tension and hence, failure of the substrate can be observed.  
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This very high compressive stress is the accumulation of intrinsic and thermal stress.  

While the intrinsic stress results from the sputtering method employed and the 

incorporation of nitrogen into the coating – both of which are widely reported to increase 

the compressive stress in a system (Table 3.2 and Section 2.2.2), the thermal stress is 

imposed on the system while it cools down from the deposition run temperature (≈200 

°C) to room temperature.  Although the thermal expansion coefficient values for AG17 

target material are not available in the literature, if the thermal expansion co-efficient of 

a similar alloy (for example, S28200, see Appendix I) is used, the thermal stress 

according to equation 3.2 for the film-coating system used in this study could be 

estimated and it will be found to be tensile and around 200 MPa.  

Figure 5. 24 Deadhesion (a) and fracture of delaminated coating (b) produced using a target power 

of 1200 W (123 kHz, 90 % duty cycle), substrate bias -110 V (250 kHz, 88 % duty cycle) and 4 sccm 

Nitrogen flow rate 
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However, it has been shown that the thermal expansion coefficient of expanded austenite 

decreases significantly with increasing nitrogen content [184]. It is therefore expected 

that the thermal stress for the nitrogen containing coatings would be compressive, the 

magnitude of which increases with increasing nitrogen content. Moreover, it can be 

deduced that the resultant compressive thermal stress was of a substantial magnitude, 

since all the attempts to try to reduce the intrinsic compressive stress in the system turned 

out to be futile. Indeed, the effect of changing process parameters (such as decreasing 

target power and substrate bias), that in theory should have decreased the compressive 

stress and hence decreased the buckling and deadhesion issues could not be observed.  

A solution to decrease the effect of thermal stress would therefore be to use a substrate 

material that would shrink less than the coating as the sample is returned to room 

temperature. Glass substrates, for instance, would have worked had the resulting coatings 

not had a different structure (Section 5.7). Another solution that could have been tested 

if equipment availability had permitted, was to use nitrided AISI 304 substrates – since 

nitriding would result in a substrate which is under compressive stress, harder and of a 

low thermal expansion co-efficient (since the thermal expansion of expanded austenite 

diffusion layers is reported to decrease with nitrogen increase [184]).  

The tests conducted in an attempt to reduce the intrinsic stress included: a reduction in 

target power (Section 5.3), duty cycle and frequency of target power (Section 5.4), 

reduction in substrate bias (Section 5.5) and pulsing of the substrate (Section 5.6). 

Planned future tests had included a non-pulsed target and a higher chamber pressure. 
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5.10 Summary 

In this chapter the results were presented and discussed, starting from generic 

observations of the coatings, to deposition parameter effects on coating properties, 

nitrogen concentration effects, and finally stress (and de-adhesion of) in the coatings.  

The process was stable, producing dense and featureless coatings, having a mirror-like 

finish and a Zone T morphology. Only minor compositional deviations between target 

and deposited layer were observed - as reported by other authors in the literature 

[47,59,70,160]. It has been proposed that a sublayer of denser morphology that was 

observed close to the substrate in this study as well as in others [58,97,117], is the result 

of an increasing substrate temperature. 

Deposition parameter effects on the coatings can be summarized as follows:  

 Target power: Increasing the target power increased the deposition rate, as has 

been reported by other studies [90,100,106,108]. Nitrogen content in the coatings 

and resulting phases remained unaffected, whilst the morphology coarsened and 

the hardness increased.  

 Pulsed target parameters: While no arcing was observed for all the trials 

conducted, changes in the duty cycle of the pulsed target did not result in any 

evident differences in coating thickness, nitrogen content, hardness and texture. 

Similarly, increasing the frequency of the pulse at the target did not result in any 

changes except for an increased nitrogen concentration in the coatings as the 

frequency increased.  

 Substrate bias: As the negative substrate bias was increased, the coating thickness 

and nitrogen concentration in the coatings decreased. These observations have 
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been explained by an increased re-sputtering effect on the coating together with 

a preferential re-sputtering of the lighter element nitrogen. It has been proposed 

that the decreased nitrogen content in the coatings and the opposing effect of 

increased stress in the coatings with increasing substrate bias maintained 

relatively stable coating hardness values.  

 Substrate pulsing: When the substrate bias was pulsed as opposed to in DC mode, 

the ion flux density observed at the substrates was doubled. This increased ion 

flux density for pulsed substrate bias substrates resulted in an increased 

(preferential) re-sputtering of nitrogen, resulting in smaller nitrogen 

concentrations for pulsed substrate bias samples. Correspondingly, the hardness 

for pulsed substrate bias samples was slightly less than those deposited in DC 

mode, showing that in this study, the nitrogen concentration had a greater effect 

on hardness than pulsing the substrate bias. This is different to several studies 

[114,123,125,127] found in literature, whereby hardness increased when the 

substrate bias was pulsed.  

 Substrate material: Coatings of Staballoy AG17 were deposited on glass and steel 

substrates, and although in both cases deposition was possible, the resulting 

coating structure, and consequently some of the coating properties (e.g. hardness) 

differed. These variations appear to be the result of different heat dissipation 

properties and substrate bias effects on the substrates. While this study sheds light 

on the importance of the substrate in setting the deposition conditions, these 

findings are in contrast with literature where some of the studies, although 

performing depositions on different substrate materials do not comment on 

[58,60,112], or find no differences in between [53], coatings deposited on 

different substrate materials.  
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High manganese stainless steel coatings with different quantities of nitrogen content 

were produced by varying the nitrogen flow rate into the chamber. Analysis of these 

coatings confirmed several observations previously reported in some studies of nickel-

containing austenitic stainless steels, such as a hardness increase with increasing nitrogen 

content, the resultant texture having a predominant (200) orientation, and a coating 

morphology that changes from Zone T to Zone 2 with increasing nitrogen content. 

However, unlike other studies, the coatings exhibited a slight nitrogen gradient across 

the coating thickness, with the nitrogen content increasing towards the substrate. At the 

same time, no nitrogen diffusion from the coating into the substrate was observed.  

Excessive nitrogen content resulted in the precipitation of Mn4N within the coating – and 

an accompanying drop in hardness. To the knowledge of the author, Mn4N has not been 

observed before – since it is usually chromium nitrides that are reported to precipitate for 

nickel containing stainless steels above some critical time/temperature threshold. Since 

theoretical computational studies [179,180] predict that Mn4N is a hard and stable 

precipitate, the drop in measured hardness is thought to occur primarily as a result of 

coating delamination. Nevertheless, corrosion sensitisation due to chromium nitride 

precipitation has been avoided.  

Finally the stress and de-adhesion issues in the coatings were considered. It was 

discussed how the coatings deposited were generally found to be in a state of high 

compressive residual stress that manifested in various forms (i.e. wrinkling, buckling, 

substrate damage, etc.). Also, that all attempts to reduce intrinsic stress were insufficient 

suggested that significant differential thermal contraction stresses were also present. 

Thus it was suggested that a substrate material with a thermal coefficient of expansion 
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that is smaller than that of the coating – or indeed a coating/substrate ‘buffer’ layer, of 

appropriate composition should be used.  

The material Staballoy AG17, a high-manganese, high chromium, nickel-free austenitic 

steel, has never been used as a sputtering target material for coatings. In general, there 

are extremely few studies on PVD treated nickel-free materials, despite their benefit to 

the biomedical industry and their better economic value (due to replacement of expensive 

nickel by manganese). This work analyses the effects of several processing parameters, 

and very often compares the results obtained with works from other material systems, in 

the absence of literature review on the processing of austenitic stainless steel coatings.  

Most of the results presented above therefore impart novel information about Staballoy 

AG 17 and austenitic stainless steel coatings behaviour in response to the parameter 

changes studied. The most significant of these results is the suppression of chromium 

nitride precipitation at high nitrogen levels, which is widely known to deteriorate 

corrosion resistance. Other significant contributions include the often underestimated 

effects of the substrate material and the discussion of stress and stress manifestations in 

the coatings, which is very rarely discussed.  
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

6.1 Main findings  

In this study, relatively thick austenitic stainless steel coatings with various nitrogen 

additions have been deposited. Following an extensive literature review of magnetron 

sputtering parameter effects (mostly featuring other materials, since literature on 

austenitic stainless steel coatings is very limited), it has been seen how process 

parameters can affect the structure and properties of the austenitic stainless steel coatings. 

The major findings for each of the parameters evaluated can be summarised as follows: 

i) Target power: The increased momentum energy given to the growing film by 

the higher and more energetic flux condensing on or bombarding the substrate 

when the target power was increased resulted in a coarser Zone T structure and 

a higher hardness. Minimal effect of target power on the crystallographic phases 

formed was observed.  

 

ii) Target pulsing parameters – duty cycle and frequency: While varying the duty 

cycle did not seem to have any effect on the coatings, increasing the pulse 

frequency increased the amount of incorporated nitrogen content in the coatings 

(all other parameters being maintained constant).  

 

iii) Substrate bias: Increasing substrate negative bias led to an increased re-

sputtering rate, that decreased both coating thickness and nitrogen content. 
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Since, despite the decrease in nitrogen content, no hardness shifts were 

observed, it was proposed that two simultaneous mechanisms that have 

opposing effects on the hardness were at play: increased stress due to atomic 

peening and loss of nitrogen due to re-sputtering.  

 

iv) Substrate material: The thermal and electrical conductivity properties of the 

substrate ultimately determine the deposition conditions and thereby resulted in 

different coating structure, phases and texture between metallic, crystalline and 

non-metallic, amorphous substrate materials.  

 

v) Pulsing of the substrate bias: When the substrate bias is pulsed, as opposed to 

in D.C. mode, nitrogen content in the coatings decreased due to re-sputtering 

(particularly of light elements, such as nitrogen).  

 

On the other hand, the study of Staballoy AG17 coatings with different nitrogen content 

has revealed that: 

i) Hardness increased with an increase in nitrogen content – and that the effect 

of nitrogen on the hardness is more profound than that of the deposition 

parameters 

ii) The morphology changed from Zone T to Zone 2 with nitrogen addition 

iii) While a nitrogen gradient that increased towards the substrate was observed, 

there was no evidence of nitrogen diffusion across the interface, into the 

substrate 
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iv) XRD diffraction patterns showed that Mn4N, rather than CrN, was 

precipitated in coatings with high nitrogen contents. This would imply that 

sensitisation has been avoided.  

Finally, a discussion of the stresses and failure modes involved concluded that the 

resultant residual stress was of a compressive nature and was caused by both intrinsic 

and thermal stress.  

 

6.2 Future Work 

In Section 5.9 it has been suggested that the thermal stress in the depositions should be 

addressed first in any future work as without a sound adhesion between coating and 

substrate, a thorough investigation of the properties of nitrogen doped austentic stainless 

steel costings would not be possible. A substrate with a linear thermal expansion 

coefficient that is less than that of the coating should be used. Nitrided substrate samples 

having an expanded austenite surface are strongly recommended (e.g. nitrided AISI 304) 

as such substrates would have a higher strength, be in a state of compressive stress and 

possess a low thermal expansion coefficient at the coating/substrate interface.  

Once the thermal stress has been significantly reduced, parameters that could reduce the 

intrinsic stresses should once again be considered. Perhaps the most imminent of these 

parameter tests would be to conduct depositions without any target pulsing as pulsing 

has been reported to significantly increase energy of the ion fluxes at the substrate 

[92,111] while at the same time, stainless steel targets have generally not been reported 

to incur target poisoning, except in very high nitrogen atmospheres [47,48]. (Since the 
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scope of this work was aimed at studying intermediate nitrogen contents in the coatings, 

rather than these extreme limits, the potential risk for target poisoning at high nitrogen 

contents is limited). Other tests that could be carried out to reduce the intrinsic coating 

stress would be to increase the chamber pressure or to deposit a sublayer (e.g. of 5 µm) 

without nitrogen, thereby preparing a harder ‘base layer’ for the subsequent nitrogen- 

containing coating.  Tests with simultaneous multiple parameter changes, such as 

reduced target wattage together with reduced substrate bias, should be considered.  

The effect of coating thickness on the stress should also be taken into consideration since 

some works [96,97] show how stress could be accumulating with thickness. This 

generally sets a thickness limit for a given stress beyond which de-adhesion would occur. 

Yet, producing 10 µm thick austenitic stainless steel coatings by sputter deposition is not 

an impossible feat as evidenced by a number of studies [59,122,153,161].  

 

6.3 Concluding remarks 

This thesis has underlined the importance of a sputtering system’s parameters, which 

cannot be over emphasised, as each parameter will, directly or indirectly affect the energy 

imparted to the growing film. This in turn affects the properties of the coatings – from 

its structure, to its attributes like hardness, density, conductivity etc.  

Whilst energy intensification is necessary for the formation of a dense and functional 

coating, excessive flux energy may be deleterious to the coating adhesion – as is 

evidenced by the deposits in this study. Perhaps in this research, the extent of the 

adhesion problem and that of the thermal stress were underestimated, with the 
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consequence that it was thought that varying some deposition parameters (which would 

affect the intrinsic stress) would solve the problem. It turns out that varying one 

parameter at a time did not solve the problem – despite the initial parameter set being 

based on literature and experience of previous equipment users. In the end, although a 

substantial number of parameters have been evaluated in a very limited time (equipment 

breakdown), the optimum parameter set that would yield a perfectly adherent coating 

could not be established. However, this study remains a good starting point for other 

researchers to study the effect of nitrogen in nickel-free austenitic stainless steels. Many 

suggestions and recommendations have been produced to lead a researcher in the correct 

direction, in an area in which literature data is very scarce.   

This area of study remains of interest because the potential applications for an austenitic 

stainless steel that has mechanical and wear resistance properties improved without 

compromising its generally good corrosion resistance would be numerous. Moreover, 

Staballoy AG17, the austenitic material used in this study has the further advantage of 

being free of nickel – which, other than making the price of the stainless steel more 

commercially viable, makes the material especially attractive to the medical industry by 

providing a relatively inexpensive alternative material to the widely-used nickel-

containing stainless steels which can cause cytotoxicity issues.    

Subsequent to success in depositing austenitic coatings with high amounts of nitrogen 

without delamination issues, investigations of manganese nitride precipitation should be 

considered to assess the potential of hardening the material by dispersion strengthening 

(through the precipitation of stable, hard Mn4N precipitates) in addition to the higher 

hardness brought about by the expanded austenite structure. Since sensitisation appears 

to be avoidable in high-Mn stainless steels, it is of utmost importance to understand the 
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effects of manganese nitride precipitation on the corrosion resistance. In general, the use 

of strong nitride/carbide formers in low temperature PVD processes such as nitriding, for 

dispersion strengthening and corrosion resistance retention, has not yet been investigated 

[185]. If Mn4N is found to be non-detrimental to corrosion resistance, the use of 

manganese instead of the more traditional titanium and niobium carbide/nitride formers 

should be studied as this would have the advantage that manganese is an austenite 

stabilizer, (rather than a ferrite stabilizer like Ti and Nb) – which means that there will 

be no issues with maintaining the austenitic structure of the alloy when higher quantities 

of the nitride/carbide former is required. Moreover, manganese is a significantly cheaper 

alloying element than either titanium and niobium.   
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APPENDIX I 

The target used in this study was ATI’s Staballoy AG17, while the substrates used were 

AISI 304. Since some of the properties of Staballoy AG17 are not provided by the 

supplier, the properties of a similar alloy – UNS S28200 – have been used for some 

estimations / calculations. The composition and thermal properties of staballoy AG 17, 

AISI 304 and UNS S28200 are given in Sections I.I and I.II. 

 

I.I Composition of materials used 
 

 C Mn Si Cr Ni Mo N Others Ref 

Staballoy 

AG17 
0.03 20 0.3 17 . . . 0.05 0.5 . . . [155] 

UNS 

S28200 
0.15 

17.0—

19.0 
1.0 

17.0—

19.0 
. . . 

0.75—

1.25 

0.40—

0.60 

Cu 

0.75—

1.25 

[186] 

AISI 304 

(S30400) 
0.08 2 1.0 

18.0—

20.0 

8.0—

11.0 
. . . . . . . . . [186] 

Table I. 1 Chemical composition of materials used 

 

I.II Relevant thermal properties 
 
 

Melting 

temperature 

 

(°C) 

Thermal 

expansion 

coefficient 

(10-6/°C) 

Calculated thermal 

expansion 

coefficient 

(10-6/°C) 

Staballoy AG17 -- -- 17.50 

UNS S28200 1330-1380       [187] 18.4             [188] 17.41 

AISI 304 1400-1450       [18] 17                [188] 18.35 

Silica Glass 960 – 1,600     [189] 1.4 – 1.7      [189] -- 

Table I. 2 Melting temperatures and thermal expansion coefficient from literature, and calculated using 

reference [190] 
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Although UNS S28200 and Staballoy AG 17 have relatively similar compositions, UNS 

S28200 contains additional carbon, molybdenum, silicon and copper, and potentially less 

manganese. Each of these small differences could increase or decrease the thermal 

expansion coefficient. However, the empirical formula to calculate the thermal expansion 

coefficient derived by Hull [190] suggests that the effects of these differences in alloying 

element contents would cancel out each other, resulting in a very similar thermal 

expansion coefficient for UNS S28200 and Staballoy AG17. Unfortunately, Hull’s 

equation does not take into consideration the effect of copper. For the estimated thermal 

stress in Section 5.9, the actual value of UNS S28200 of 18.4 x 10-6/°C was used.  
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APPENDIX II – XRD PEAK POSITIONS 

 

In this section, the main XRD peak positions for known iron phases and nitrides that 

could be present in this study are presented.  

 

II.1 Austenite and ferrite 
 

 

Figure II. 1 XRD peaks for ferrite, PDF card 00-006-0096 and austenite, PDF card 04-018-3211 

 

 

II.2 Chromium nitrides 
 

The chromium nitrides that are widely reported to precipitate in austenitic stainless steels 

are Cr2N and CrN.  
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Figure II. 2 XRD peaks for CrN, PDF card 01-076-2494 and Cr2N, PDF card 01-079-2159 

 

 

II.3 Manganese nitrides 
 

There are four stable intermediate phases that can be found in the manganese-nitrogen 

binary system. In order of decreasing stability [179], these are: MnN, Mn4N, Mn2N0.86, 

and Mn3N2. The XRD peak reflections for these phases are given in Figure II.3. 
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Figure II. 3 XRD peaks for MnN - PDF card 04-019-1077, MnN0.43 - PDF card 04-007-2198, Mn3N2 - 

PDF card 01-089-3704 and Mn4N - PDF card 01-089-3704 
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