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Abstract

The oscillation frequencies of stars are used to constrain our theoretical models, from
which we can derive stellar internal properties including rotation rates. The g-mode
pulsations of γ Doradus stars are highly sensitive to the near-core regions. Two of the
most common rotation formalisms, the second-order Perturbative Approach and the
Traditional Approximation of Rotation, are compared to investigate their validity
domains. We compute grids of 1-D γ Doradus models for (1,0) modes with the two
rotation descriptions, using benchmark models instead of real stars to be the targets.
Results show that the grids are generally capable of reproducing the benchmark
to within observational uncertainties. However, the two formalisms disagree with
each other at rotation rates beyond Ω/Ωk = 0.04. A method of distinguishing
the formalisms without presupposing the stars’ rotation rates is successfully found:
Their models diverge at periods longer than 2.5 days, given that the gradient of the
period spacing is greater than −0.0122. The comparison results also reveal that our
method of fitting period spacing series is not sufficient for taking rotational mixing
effects fully into account. These findings offer potential for refining our current
rotation theories with observational data, and contribute to the development of new
techniques for improving modelling accuracies.
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Chapter 1

Introduction

“All models are wrong, but some are useful.”

— George E. P. Box (1976)

The study of astrophysics relies on an accurate theoretical description of stellar in-
ternal structures and evolution models. From interstellar dust to the formation of
galaxies, stars have a significant influence on their environment as they evolve. Our
understanding of the mixing processes and angular momentum transport mecha-
nisms in the stellar interior has a direct impact on other astrophysical research; this
includes characterizing planetary systems, modelling galactic evolution and age de-
termination of the Universe. All these modern research domains are dependent on
the accuracy and precision of the predictions from models, which are constructed
on the basis of numerous formalisms describing the physics inside stars.

Whilst the overall picture of stellar structure is well-understood, the uncertainties in
detailed descriptions, such as rotation effects and internal mixings around the stellar
core, are yet to be resolved. For example, the observed core-to-surface rotation rates
in Red Giant stars were found to be much smaller than predictions, indicating that
our current treatment of rotation effects and angular momentum transport requires
further calibrations to existing theories (e.g. Eggenberger et al. 2017, Fuller et
al. 2019). Thanks to new space missions such as CoRoT (Convection, Rotation
and planetary Transits; Auvergne et al. 2009), Kepler (Koch et al. 2010), and
TESS (Transiting Exoplanet Survey Satellite; Ricker et al. 2015), a rapid growth in
high-precision space-based photometry data has led to significant improvements in
constraining theoretical models. It is therefore crucial to ensure that our modelling
theories and methods are sufficiently accurate for interpreting the observational data,
yet computationally inexpensive to allow ensemble modelling.
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CHAPTER 1. INTRODUCTION

This thesis explores the various rotation modelling formalisms adopted in current
asteroseismic research and investigates their domains of validity. We examine the
reliability of our state-of-the-art pulsation modelling methods by studying the γ
Doradus variable stars with two different rotation theories - the Second-order Per-
turbative approach and the Traditional Approximation of Rotation. The probing
power of these methods are gauged to determine whether or not our current theo-
retical frameworks are sufficient for mimicking the observable effects of the internal
stellar processes. We aim to develop a method of identifying the more suitable ro-
tation formalisms for γ Doradus stars with their pulsation data, which serves as a
means for refining our stellar theories.

The following chapter begins by providing an overview of the asteroseismic modelling
theories and techniques for deriving the interior properties of γ Doradus stars. We
discuss the shortcomings in the rotation formalisms with the purpose of justifying
our motivation to determine the more accurate theoretical description. Chapter 2
outlines our research methodology for quantifying the probing ability of γ Doradus
stars models, and identifying differences between the pulsations simulated with each
rotation formalism. The results obtained through comparisons amongst the models
are presented in Chapter 3. Finally, Chapter 4 draws interpretations regarding the
modelling precisions, and concludes the thesis by discussing their implications of the
appropriateness of our modern seismic modelling methods.

10



CHAPTER 1. INTRODUCTION

1.1 Theory of Stellar structure

Stellar modelling codes often make approximations to the physics such that a star’s
structure can be solely described by the following quantities: mass M(m), luminosity
L(m), temperature T(m), density ρ(m), chemical composition Xi(m), and the rate of
change in energy ε(m), where m is a coordinate system corresponding to the mass
distribution inside the star. Equations are formulated based on the assumptions
that the star is not rotating, has no magnetic fields, and is spherically symmetric
at hydrostatic equilibrium. By applying the conservation laws of mass, energy and
momentum, we can then characterize the stellar structure with the following set of
differential equations:

∂r

∂m
=

1

4πr2ρ
, (1.1)

∂P

∂m
= − Gm

4πr4
, (1.2)

∂L

∂m
= εn − εν + εg, (1.3)

∂T

∂m
= − GmT

4πr4 P
∇, (1.4)

∂Xi

∂t
=
mi

ρ

(∑
j

rji −
∑
k

rik

)
, i = 1, ..., I (1.5)

(see e.g. Schmid 2016, Van Reeth 2017), where r is the stellar radius and G is the
gravitational constant. Equation 1.1 describes the radial mass distribution within
the star. Equation 1.2 describes hydrostatic equilibrium, where the gravitational
force acting on the star balances the pressure force generated from within. Param-
eters εn and εg are the rate of energy generation per unit mass by nuclear reactions
and gravitational force, whereas εν denotes the rate of energy loss due to neutrinos,
hence Equation 1.3 describes the rate of change in energy. Equation 1.4 describes
the energy transport within the star by radiation and/or convection, and indicates
the change in temperature in a macroscopic element as it rises or sinks radially.
Mixing Length Theory (MLT; Henyey et al. 1965) is often applied to Equation 1.4
to simulate convection, which assumes that the elements will rise through a certain
distance before releasing their heat to the surroundings. We define the mean free
path of the macroscopic element as lm = αMLTHP , where HP is the local pressure
scale height. Convective effects are hence parameterized by the constant of propor-
tionality αMLT . The term ∇ is defined as the temperature gradient with respect to
depth. Equation 1.5 illustrates the nuclear reaction network in stars, and describes
the change in mass fraction Xi of nucleus of type i. Suppose the nuclear burn-
ing process converts nucleus of type j into type i then into type k, rji represents
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CHAPTER 1. INTRODUCTION

the thermonuclear reaction rate in converting nucleus j to i, and rik is the rate in
converting nucleus i to k.

To combine Equations 1.1 to 1.5, we require an Equation of State (EOS) which
relates the stellar parameters pressure P, temperature T, density ρ, and chemical
composition Xi. Under the assumption that the star is an ideal gas with radiation
pressure, the EOS is given by

P =
R

µ̄
ρT +

a

3
T 4 (1.6)

(see e.g. Pápics 2013, Schmid 2016, Van Reeth 2017), where µ̄ is the mean molecular
weight, R is the ideal gas constant and a is the constant derived from the energy
density of an ideal photon gas. The quantities involved are described as functions
of P and T.

A stellar model is a mathematical construct which utilizes the EOS for different
chemical compositions, and solves the system of differential equations with given
initial conditions and parameter boundaries.1 Since the star is assumed to be spher-
ically symmetrical, we may simply consider the stellar processes and structure along
a 1-D line in radial direction, spanning from the centre of star to the surface. Prop-
erties associated with each section on the line (mesh) represents the processes within
a stellar layer or at the layer boundary. Starting conditions such as chemical com-
position and stellar mass are required for creating stellar models and subsequently
evolving them.

1.2 Introduction to Asteroseismology

As a star evolves, changes in internal conditions and physical processes can cause
the star to oscillate around its equilibrium state, leading to variations in luminosity.
Almost all types of stars will exhibit pulsation phenomena for at least one phase
in their lifetime, with varying degrees of impact on their structure and evolution.
However, the most periodic and stable pulsation behaviour occurs when the star
crosses the instability strip on the Hertzsprung-Russell (HR) diagram, as shown
in Figure 1.1. Stars within the instability strip are classified as classical pulsating
stars, and their pulsations are further categorized as radial or non-radial. Examples
of radial pulsators include Cepheids and RR Lyrae, which typically oscillate with
a single-frequency. Pulsations in these stars are excited due to change in opaci-
ties in the helium ionization zone (Eddington 1917), causing them to expand and
contract while maintaining a spherically symmetric shape. Stars which exhibit the
above-stated oscillation behaviour are said to be pulsating in the fundamental radial
mode.

1Modern stellar models often use tabulated EOS in order to lower the computational cost.
Instead of evaluating the EOS in each call, the root finds are pre-processed, creating tables of
density values for a range of gas pressure and temperature values (Paxton et al. 2011).
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CHAPTER 1. INTRODUCTION

Figure 1.1: Hertzsprung-Russell (HR) diagram illustrating the location of different
classes of pulsating stars, including those in the instability strip. The dash-line
spanning from top-left to middle-right of the diagram shows the positions of zero-age
main sequence stars. The classical instability strip is the region which has one end
on the main sequence line and the other end at the top edge of the Cepheid region;
its boundaries are indicated by the two parallel dash-lines. The instability strip also
includes the δ Scuti stars and the γ Doradus stars. Reprinted from Christensen-
Dalsgaard (2003).
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CHAPTER 1. INTRODUCTION

Non-radial variable stars are important targets for investigating internal structures
and properties. These stars are generally multi-periodic. The pulsations effectively
divide the stellar surface into discrete segments comprising of radial and transverse
motions. Pulsation modes are characterized by quantum numbers n, l and m to
denote the pulsation geometry. Radial order n determines the number of nodal
shells in the radial direction, degree l indicates the total number of nodal lines on
stellar surface, and the absolute value of azimuthal order m indicates the number
of longitudinal nodal lines. Figure 1.2 illustrates the contour plots of stellar surface
geometry for different pulsation modes.

Figure 1.2: Contour plots of oscillations on the stellar surface for (a) l = 1, m = 0,
(b) l = 1, m = 1, (c) l = 2, m = 0, (d) l = 2, m = 1, (e) l = 2, m = 2, and (f)
l = 3, m = 0 pulsation modes. Solid lines indicate positive contours, and dashed
lines indicate negative contours. The ‘+++’ line marks the equator of the star.
Different pulsation modes have different geometries. Reprinted from Christensen-
Dalsgaard (2003).

Asteroseismology is the study of the radial and non-radial multi-periodic oscillations
on stellar surfaces. From pulsations, we can often derive information regarding a
star’s internal properties and dynamics at the near-core regions. The more oscilla-
tion modes observed, the more information we can obtain (Shibahashi 2005). For in-
stance, the single-period of Cepheid pulsations provides its mean density; meanwhile,
the thousands of non-radial modes detected in our Sun have led to profound develop-
ments in helioseismology. Techniques and approaches adopted in asteroseismology
largely originated from helioseismology, which were proven successful in deducing
the physical conditions beneath the surface of our Sun (Christensen-Dalsgaard &
Gough 1976). The study of solar oscillations has provided a substantial amount of
information which probes the Sun’s interior, such as the helium abundance and the
differential rotation profile of the convective envelope (e.g. Gough 1983). Precise
measurements of the solar core rotation rate have recently been achieved by de-
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CHAPTER 1. INTRODUCTION

tecting the modulation of oscillation frequencies over two decades with SOHO data
(Fossat et al. 2017). The modelling of solar rotation profiles is one of the major
success in modern helioseismic research.

However, problems appeared when the techniques from helioseismology were applied
to study other pulsating variable stars. These distant stars, compared to the Sun,
have a significantly smaller apparent size such that it poses a challenge to map the
surface velocities (Christensen-Dalsgaard 2003). The oscillation amplitudes are very
small. In addition to the stars low apparent brightness, the observations suffer from
high noise-levels (Pápics 2013). Furthermore, the pulsation periods of some non-
radial stars are considerably longer than those of radial mode and ground-based
observations can be limited due to daytime gaps. It was therefore necessary to
develop high-resolution observing instruments, with continuous observations con-
ducted over long timebases, such that the small-amplitude pulsation frequencies on
stellar surfaces can be resolved and detected.

For this reason, the major advances in the field of asteroseismology have only been
achieved in the recent years thanks to the development of high-resolution spectro-
graphs and, in particular, space-based telescopes for carrying out continuous photo-
metric surveys. Over the past few decades, the theoretical predictions and mathe-
matical formulations of asteroseismology have been well-developed for constructing
stellar models and simulating the pulsations. We are now entering the stage of veri-
fying and constraining our theories with the high-precision observational data.

1.3 Theory of Stellar Oscillations

In Section 1.2, we described the surface pulsation geometry of non-radial variable
stars. These oscillations can, in fact, be mathematically modelled as small pertur-
bations superimposed on a star in an unperturbed state. By applying linear pertur-
bation theory to the equations of hydrodynamics and assuming spherical symmetry,
oscillations in pulsating stars can be modelled with spherical harmonic functions.
We describe the displacement due to perturbations with a spherical coordinate sys-
tem; radius r, co-latitude θ (measured from the rotation axis), and longitude φ. The
displacement eigenfunctions are given by

ξr (r, θ, φ, t) = an (r) Y m
l (θ, φ) e−i2πνt, (1.7)

ξθ (r, θ, φ, t) = bn (r)
∂Y m

l (θ, φ)

∂θ
e−i2πνt, (1.8)

ξφ (r, θ, φ, t) =
bn (r)

sin θ

∂Y m
l (θ, φ)

∂φ
e−i2πνt, (1.9)

where ν is the pulsation eigenfrequency, an (r) and bn (r) are the radial horizonal
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CHAPTER 1. INTRODUCTION

displacement amplitudes, and Y m
l (θ, φ) are the spherical harmonics representing

the angular dependence of the modes.We refer the interested reader to Christensen-
Dalsgaard (2003) Lecture Notes on Stellar Oscillations for a complete derivation of
the perturbation equations. These equations provide the mathematical basis for the
three quantum numbers n, l and m which are illustrated in Figure 1.2. The spherical
harmonic functions thereby set a constrain to the allowed values of m, ranging from
−l to l, hence the degeneracy is (2l + 1) modes per degree l. Non-radial oscillations
have modes with n > 0 and l > 0; those with l = 1 are named dipole modes.

Under the assumption that radial order and degree are sufficiently large, we can
apply the Cowling approximation (Cowling 1941) to neglect the perturbation in
gravitational potential, and reduce the equations to second-order for simpler com-
putation. The differential equation of the displacement wavefunction in the radial
direction ξr can then be expressed in terms of acoustic frequency Sl and Brunt-
Väisälä frequency N, giving

d2ξr
dr2

=
ω2

c2

(
1− N2

ω2

)(
S2
l

ω2
− 1

)
ξr = −K(r)ξr, (1.10)

(see e.g. Aerts et al. 2010, Christensen-Dalsgaard 2003). The characteristic fre-
quencies Sl and N play important roles in determining the behaviour of oscillations.
The wavefunction is oscillating with r when K(r) is positive, and exponentially in-
creasing/ decreasing when K(r) is negative. In regions where the solution oscillates
within a region and decays exponentially away from it, the solution is said to be
trapped within an oscillation cavity. The boundaries of the trapping region are at
points where K(r) = 0, i.e. the turning points of wave propagation in oscillations.
The oscillating solutions thereby define the two major categories of pulsation modes:
Pressure modes (p-modes), when |ω| > |N | and |ω| > Sl; and Gravity modes (g-
modes), when |ω| < |N | and |ω| < Sl. Figure 1.3 illustrates the wave propagation
in the stellar interior of p-modes and g-modes respectively.

The dominant restoring force of g-mode pulsations is gravitational force, which acts
on the density perturbations from within the star. Gravity mode pulsations are
driven by buoyancy force and can only propagate in radiative regions. Since g-
modes are trapped within regions closer to stellar core, their oscillations carry more
information on the physical conditions in the deep interior compared to p-modes.
For high-order g-modes, assuming that the frequencies are low (i.e. |ω| � S2

l ), it
can be shown that the wavefunction becomes dominated by the spatial variation of
N (see e.g. Christensen-Dalsgaard 2003). The propagation behaviour of g-modes
is largely dependent on the Brunt-Väisälä frequency and mode trapping. Hence,
g-mode pulsations play an important role in probing the near-core regions of γ
Doradus variable stars.
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CHAPTER 1. INTRODUCTION

Figure 1.3: Ray paths of (a) two p-modes and (b) one g-mode in a solar model.
The p-modes are trapped between an inner turning point and the surface, whereas
g-modes are trapped within the deep interior close to the stellar core. Reprinted
from Gough et al. (1996).

1.4 γ Doradus stars

γ Doradus stars (hereafter γ Dors) are late A- to early F-type stars which exhibit
high-order low-degree non-radial g-mode pulsations (Kaye et al. 1999), with peri-
ods ranging from 0.3 to 3 days. They have typical masses of around 1.6 M� and
radii ranging from 1.4 R� to 2.4 R� (Kaye et al. 1999), with temperatures of
approximately 7200-7700 K at zero-age main sequence, and 6900-7500 K near the
terminal-age main sequence (Handler 1999). γ Dor stars are located in the classical
instability strip between solar-like stars and δ Scuti, close to the main sequence on
the HR diagram, as illustrated in Figure 1.1. These stars are at the transition region
between low-mass stars with convective envelopes and intermediate-mass stars with
convective cores. This region is also where the CNO cycle becomes increasingly
dominating relative to the pp-chain, causing the convective core to expand. The
expansion then produces a chemical discontinuity at the edge of the fully-mixed
core (Mitalas 1972, Silva Aguirre et al. 2011). The influence of chemical gradients
on pulsations is further explained in Section 1.5.2.

The pulsation mechanism of γ Dor stars was first developed by Guzik et al. (2000)
using the Frozen Convective (FC) assumption; that the oscillations are driven by
the modulation of radiative flux by convection. The authors proposed that the FC
mechanism is valid if the intermediate-mass stars have a sufficiently deep convective
zone, such that the local convective timescale (i.e. time taken for a mass element
to release excess heat to surroundings) at the base of convective zone is longer than
the pulsation period. In this case, convection cannot instantaneously adapt to the
changing conditions at base of the convective envelope during pulsation, leading to
a modulation of radiative flux. Dupret et al. (2005a, 2007) further improved the
driving mechanism theory by introducing the Time-Dependent Convection (TDC)
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CHAPTER 1. INTRODUCTION

treatment (see e.g. Gabriel 1996, Grigahcène et al. 2005). TDC models have been
proven successful in simulating the observed photometric amplitude ratios for γ Dor
stars (Dupret et al. 2005a), thus becoming the current most widely-accepted theory
for γ Dor pulsations.

The g-mode pulsations of γ Dor stars are driven by the physical processes at the
base of convective zone from the deep interior. As a result, γ Dor oscillations pre-
dominantly trace the regions near the convective core boundary. These pulsating
stars are therefore ideal and important for constraining the various stellar parame-
ters, such as internal rotation profiles, chemical compositions, diffusive mixing and
convective overshooting. By studying the pulsation period spacing pattern of γ Dor
stars, we can characterize their interior properties and use the information to refine
our theories of stellar structures and evolution.

Apart from gravity modes, oscillations in rotating γ Dor stars were recently found
to exhibit gravito-inertial modes and Rossby modes, where the Coriolis force also
acts as a restoring force for driving the pulsations (Antoci et al. 2019). It was
first identified by Van Reeth et al. (2016) that Rossby mode pulsations could be
present in many moderately- to rapidly-rotating γ Dor stars when fitting observed
retrograde modes to theoretical models. Rossby waves (r-modes) originate from
the coupling between toroidal motion and spheroidal motion caused by the Coriolis
force (Papaloizou & Pringle 1978). This interaction drives perturbation in density
and pressure of stars, hence the eigenfunctions and eigenfrequencies of r-modes may
be treated in a similar manner as g-modes (Saio et al. 2018a). The same rota-
tion formalism used in modelling g-mode pulsations can be applied to compute the
mode visibility and estimate the expected frequency range of r-modes (Saio et al.
2018a).

Constraining the interior differential rotation profile of γ Dor stars is a challenge
that asteroseismologists face. Rotation is known to have significant influence on
stellar structure and evolution, however, its full impact is far from understood. The
redistribution of angular momentum at different stellar ages remains one of the
largest uncertainties in our evolution theories (e.g. Aerts et al. 2017, Ouazzani
et al. 2019, Dupret 2018). In order to describe differential rotation, we apply the
same rotation formalism used for rigidly-rotating stars, and generalize the pulsation
equations such that the eigenvalue is a function of the radial component r (Van Reeth
et al. 2018). The mathematical relation between pulsation periods and the rotation
profiles is thus established. Characterization of near-core internal rotation profiles is
crucial to explain the large drop in rotation rate when the star evolves from the core
hydrogen burning to core helium burning stage (Aerts et al. 2017). Theories for
describing rotation effects are applied to observed phenomena in stellar pulsations,
such as period spacings, in order to determine the rotation rate of the near-core
regions. It is therefore important to ensure that the fundamental formalisms and
modelling methods adopted in our current research are sufficiently accurate.
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1.5 Period Spacings of pulsations

The spacings between pulsation periods are highly sensitive to the inner properties
of the star. The variation of period spacings with respect to period can act as an
asteroseismic diagnostic by providing information such as the rotation rate and the
convective core overshooting. Tassoul (1980) showed that for non-rotating stars with
an inner convective core and outer radiative envelope, the first-order asymptotic
approximation of pulsation period spacings for high-order low-degree g-modes is
given by

∆Pnl,asymp = Pn+1,l − Pnl =
2π2√
l(l + 1

(∫ R∗

Rcc

N(r)

r
dr

)−1

=
Π0√
l(l + 1)

, (1.11)

where Pn,l and Pn+1,l are the periods of two consecutive radial order modes with the
same degree l. R∗ and Rcc indicate the radius of the star and the convective core,
which are the turning points of the mode oscillation cavity. The period spacing is
expected to be constant for a single non-rotating stellar model. The spatial integral
of Brunt-Väisälä frequency N(r) in Equation 1.11 also shows that the value of the
asymptotic period spacing is dependent on the size of the core, whereas the structure
of period spacings are related to mixing processes in the radiative envelope above the
convective core (Miglio et al. 2008). Π0 is a parameter which includes the integral
term and it represents the asymptotic period spacing without the l -dependency,
hence ∆Pnl,asymp is often written as ∆Πl.

The following sections illustrate how the period spacing pattern of g-mode pulsations
is affected by stellar age, convective core overshooting, and stellar rotation.

1.5.1 Effect of Stellar age

As the star evolves during main-sequence phase, the shrinking core increases the
stellar density and pressure. This causes N(r) and the integrand in Equation 1.11
to increase (Moravveji et al. 2015), leading to a decreasing period spacing. Figure
1.4 shows the change in asymptotic period spacing of an example stellar model
as it evolves from zero-age main sequence (ZAMS) to terminal-age main sequence
(TAMS). The decreasing Xc denotes the evolution timestep. This agrees with the
literature (e.g. Schmid & Aerts 2016, Moravveji et al. 2015).

1.5.2 Effect of Convective core overshooting

Pulsations of g-modes are highly sensitive to the mixing process near the convective
core. As the core shrinks during main-sequence evolution, the central hydrogen con-
tent decreases and leaves behind a chemical composition gradient of burnt material
at the convective core boundary (Moravveji et al. 2015). Equation 1.11 shows that
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Figure 1.4: Evolution of asymptotic period spacing as a function of central hydrogen
abundance Xc, computed with a MESA stellar model of mass 1.0 M� simulating
a non-rotating γ Dor star. The asymptotic period spacing decreases as the star
evolves from ZAMS to TAMS, and the rate of decrease rises significantly towards
the end of its main-sequence phase.

the propagation of g-modes is dependent on the Brunt-Väisälä frequency. Assuming
ideal gas law applies, the expression of frequency N can be approximated as

N2 ' g2ρ

p
( ∇ad −∇+∇µ ) , (1.12)

where ∇µ is the gradient of chemical composition, and has a positive contribution
to frequency N. Therefore, steep gradients in hydrogen abundance created during
evolution will cause sharp features (or spikes) to appear in the spatial variation of
Brunt-Väisälä frequency (Miglio et al. 2008).

From Equation 1.10 we know that the frequency N is related to the turning points of
wave propagation. Sharp features in N could lead to a resonance conditions which
contributes to mode trapping in the stellar interior (Brassard et al. 1991). Both
horizontal and radial components of the eigenfunction are partly trapped in the
region where the sharp feature of N is located, and this hence impacts the pulsation
periods of the star (see e.g. Fig. 3 in Miglio et al. 2008).

Derivations presented by Miglio et al. (2008) show that sharp features in N will
introduce a sinusoidal component into the oscillations periods expression (Equation
1.11), and therefore lead to deviations from the uniform period spacings predicted
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Figure 1.5: Period spacing patterns of a non-rotating 1.6 M� model with the con-
vective core overshoot parameter fov varying from 0.0 to 0.1 in steps of 0.02. The
period spacing pattern exhibits sinusoidal behaviour when no overshoot is added.
The curve becomes increasingly flat as overshoot increases and smooths out the
chemical discontinuities. The average period spacing of the pattern also increases
with core overshooting. Reprinted from Lovekin et al. (2017).

by Tassoul (1980). This component is seen as dips in the period spacings of g-modes.
The amplitude of this sinusoidal component is dependent on the sharpness of the N
distribution (Miglio et al. 2008). Therefore, by looking at the depth and regularity
of the dips in a period spacing pattern, we can indicate the steepness and location of
the chemical discontinuity, and deduce information about the convective core.

By adding core overshooting, chemical discontinuities are ‘washed out’ due to mixing
effects and the prominence of dips in the period spacing pattern is reduced (Van
Reeth et al. 2015). This effect is shown in Figure 1.5. Furthermore, from the
integration limits in Equation 1.11 we know that the asymptotic period spacing is
dependent on the size of the fully mixed core (Moravveji et al. 2015). Convective
overshoot effectively increases the core radius, and hence the integral term decreases,
causing the period spacing to rise. Such trend is identical to that produced by
increasing stellar mass (Lovekin et al. 2017), which shows that convective core
overshooting is also effectively increasing the mass of the stellar core.
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Figure 1.6: Period spacing pattern of a (1,0) g-mode pulsation in inertial frame with
an increasing rotation rate (black to light grey). This model has turbulent diffusion
Dt = 100 cm2 s−1 which introduces chemical mixings in the star and smooths out the
period spacing curve. At zero rotation, the curve appears horizontal with several dips
at short periods. Stellar rotation causes the zonal mode period spacings to decrease
with period, with a gradient that is proportional to its rotation rate. Curves with
more rapid rotation appear smoother compared to those with no rotation. Reprinted
from Bouabid et al. (2013).

1.5.3 Effect of Rotation

Stellar rotation causes the oscillation frequencies to deviate from equal spacing and
has two major effects on the period spacing pattern: i) The gradient of the period
spacing pattern is uniquely correlated to the rotation rate (Ouazzani et al. 2017).
For periods measured in the inertial frame, the slope increases for prograde modes,
and decreases for both zonal and retrograde modes (Bouabid et al. 2013). ii)
Chemical discontinuities around the convective core cause the period spacings to
oscillate, seen as dips in the spacing pattern (Miglio et al. 2008). The periodicity
of the dips is related to the location of the chemical gradient. Since rotation also
induces mixing processes at the core boundary, it reduces the amplitude of the dips
and alters the dip locations. Figure 1.6 illustrates a typical period spacing pattern
of a stellar model rotating in zonal mode (1,0) with increasing rotation rates.

Table 1.1 summarizes the major influence of stellar age, convective core overshoot-
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Table 1.1: Summary of Section 1.5 on the different ways the pulsation period spacing
pattern can reflect the internal properties of the γ Dor star.

Stellar properties Effect on Period Spacing pattern

Stellar Age
• Decreases the average period spacings as star
evolves from ZAMS to TAMS at an increasing rate

Convective core
overshooting

• Smooths out the dips in the period spacing;
Increases the average period spacing of the curve

Interior Rotation

• Introduces a slope to the curve, which increases for
prograde modes, and decreases for zonal and retrograde
modes in the inertial frame • The gradient is directly
proportional to the rotation rate • Smooths out the
dips in the period spacings as rotation rate increases

ing and rotation on the period spacing curve of γ Dor pulsations. Period spacing
patterns are also highly sensitive to other stellar parameters such as mass, diffusive
mixing and chemical compositions. We make use of these observable characteris-
tics in the oscillation frequencies to derive and constrain the physics of the stellar
interior.

1.6 Rotation Formalisms

Rotation of a star induces Coriolis and centrifugal forces which distort the equi-
librium structure and the oscillation cavity of gravity modes (Ballot et al. 2010).
These inertial forces modify the set of oscillation differential equations, and thereby
the spectrum of eigenfrequencies (Lee 2013). Since rotation breaks the spherical
symmetry, pulsations are no longer described by single spherical harmonics and the
eigenvalue problem has to be solved in 2-D in order to treat higher rotation rates.
The Two-dimensional Oscillation Program (TOP) developed by Reese et al. (2006)
is an example of a ‘complete calculation’ which produces highly accurate results for
the pulsation frequencies for arbitrarily rapid rotations. These 2-D codes are often
used for verifying other rotation formalisms.

We are currently capable of computing the 2-D ‘complete’ impact of rotation. How-
ever, such methods are computationally expensive (Ballot et al. 2010), and difficult
to be employed in detailed ensemble modelling for the large amount of observational
data (Mathis & Prat 2019). We often make use of various approximations within
certain rotation limits to simplify the mathematics into 1-D pulsation equations. In
the following section, we present the common rotation formalisms adopted in previ-
ous studies for modelling γ Dor stars and discuss their domains of validity.
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1.6.1 Perturbative Approach

For perturbative methods, the effect of rotation is treated as a small perturbation to
the oscillation equations such that the 2-D problem is transformed into a sequence of
1-D problems. In a kth-order approach, the pulsation frequencies in the co-rotating
frame ωpertnlm are developed as a function of rotation rate Ω, given by

ωpertnlm = ω0
nl +

k∑
j=1

Cj
nlmΩj +O

(
Ωk+1

)
, (1.13)

where ω0
nl is the frequency for non-rotating case, Ω is the rotation frequency, and

Cj
nlm are the perturbation coefficients. O

(
Ωk+1

)
is a residual term which contains

all expansion terms beyond the k -th order; this parameter is assumed to be very
small relative to the j = 1. . . k-th terms and it is neglected in the calculations. The
perturbation coefficients are constants that can be numerically calculated by fitting
the oscillation results. Equation 1.13 can be rewritten to explicitly express the m-
dependence of each perturbative coefficient obtained from theoretical derivations,
giving

ωpertnlm = ω0
nl +mClnΩ +

(
S1
ln +m2S2

lm

)
Ω2 +m

(
T 1
ln +m2T 2

lm

)
+O

(
Ω4
)
, (1.14)

(see e.g. Ballot et al. 2010, Lee 2013). The first-order correction term is proposed
by Ledoux (1949) and describes the effect of Coriolis force, which is different for
prograde and retrograde modes as indicated by the factor of m. The second-order
is proposed by Saio (1981) and it takes both Coriolis and centrifugal force into
account. The third-order term further considers the coupling between non-spherical
symmetry distortion and the Coriolis force, as well as the near-degeneracy of modes
(Soufi et al. 1998). As the rotation rate Ω increase, the influences of centrifugal and
Coriolis forces become increasingly significant, and hence higher-order correction
terms are required to describe the rapidly-rotating stars.

Studies presented by Ballot et al. (2010) outlined the domains of validity of the
first, second and third-order perturbative approach by comparing the frequencies
computed with perturbative methods to those obtained from 2-D ‘complete calcu-
lations’. The result for l = 1 modes of γ Dor stars is shown in Figure 1.7. The
second-order calculation gives satisfactory results for stars with rotation rates up to
Ω/Ωk = 0.3, where Ωk =

√
GM/R3 is the critical (break-up) rotation rate of the

star. The third-order calculation further extends the domain of validity to approx-
imately Ω/Ωk = 0.4. These results indicate that the second-order correction gives
a reasonable description of the centrifugal distortion, but perturbative methods are
unable to give accurate results in the low-frequency regime where ω < 2Ω as marked
by the purple line in Figure 1.7. This shows that perturbative methods are unable
to take into account changes in the shape of the mode cavity. The perturbative
approach is only valid when the star’s rotation is sufficiently slow such that Ω� ω
and Ω � Ωk (Ballot et al. 2013). Note that the stellar models used in the above
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Figure 1.7: Pulsation frequencies of an l = 1 mode of γ Dor star from complete
calculations plotted against rotation rate. Green/red/blue parts of the curve indi-
cate regions where the frequencies from first/second/third-order approach match the
complete calculations. The domain of validity extends towards higher rotation rates
as the order increases. The purple curve indicates the boundary equation ω = 2Ω
below which none of the perturbative methods are valid. Reprinted from Ballot et
al. (2010).

analysis are polytrope models, where the Equation of State is described by a pro-
portionality between pressure and density in the stellar interior. The results may
differ to those computed with realistic stellar models adopted in this work.

In this thesis, we focus on using the Second-order Perturbative method to model γ
Dor stars. Following the method adopted by Gough & Thompson (1990), the effect
of rotation on the pulsation frequency ωnlm of a star with uniform rotation rate Ω
in inertial frame can be written in the form

ωpertnlm = ω0
nl + ω1 +

(
Ω2

ωnl

)(
∆

(1)
nl +m2∆

(2)
nl

)
+

(
Ω2R3

GM

)
ωnl∆

(3)
nl Q2lm, (1.15)

(see Burke et al. 2006, Kjeldsen et al. 1998). ∆
(1)
nl is the m-independent second-order

perturbation term which originates from the toroidal perturbation due to Coriolis
forces, ∆

(2)
nl is similar to ∆

(1)
nl but for the m2-dependent terms, and ∆

(3)
nl takes the
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effect of centrifugal distortion into account. The Q2lm in last term of Equation 1.15
is defined as

Q2lm =

∫ 1

−1
P2(x)[Pm

l (x)]2dx∫ 1

−1
[Pm
l (x)]2dx

(1.16)

(see e.g. Burke et al. 2006, Kjeldsen et al. 1998, Gough & Thompson 1990), where
P2(x) is the Legendre polynomial of n = 2, and Pm

l (x) are the associated Legendre
polynomials. Equation 1.16 can be further approximated as Q2lm ' −1

2
P2

(
m
L

)
for

l & 2 (Kjeldsen et al. 1998). The second term of Equation 1.15 is the first-order
perturbation of oscillation frequency, namely, the rotational splitting observed in
slowly rotating stars. It is given by

ω1 = mβnl

∫ R

0

Knl(x)Ω(x)dx (1.17)

(see e.g. Kurtz et al. 2014, Christensen-Dalsgaard 2003), where x is the radial
coordinate of the star. Under the influence of the Coriolis force, the unperturbed
pulsation frequency splits into (2l+ 1) multiplets which correspond to each value of
azimuthal order m. The integral in Equation 1.17 gives the rotation rate averaged
with respect to the oscillation displacement eigenfunctions of an eigenmode with
order n and degree l (Unno et al. 1989, Aerts et al. 2010). Beta βnl and the
rotational kernel Knl are mathematical expressions which involve the integration of
the eigenfunctions and the density of the ideal gas star over the stellar radius (e.g.
Kurtz et al. 2014). The rotational kernel thus represents the sensitivity of frequency
splitting to the rotation rate of the star (Garćıa et al. 2019).

Figure 1.8 shows the effects of frequency shifts and rotational splitting caused by
each perturbation term in Equation 1.15. Term (0) is the frequency for a non-
rotating case of the same stellar model. Term (1) is not included in Equation 1.15
but it is often employed to describe the change in mean radius and sound speed due
to fast rotation (Kjeldsen et al. 1998). (2) is the βnl term from Equation 1.17; (3)

is the ∆
(1)
nl -term; (4) the ∆

(2)
nl -term; and (5) the ∆

(3)
nl and Q2lm-terms from Equation

1.16. A final set of oscillation frequencies is obtained after taking all of the above
terms into account. To compute the frequencies for a particular oscillation mode,
we extract the final frequencies of those corresponding to the same azimuthal order
m. These frequencies are described in the inertial frame of reference (i.e. in an
observer’s point of view).
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Figure 1.8: Illustration of rotational splitting effects on the oscillation frequencies
for an example model with radial order n = 1. The horizontal axis corresponds to
the contributions of each perturbation term in Equation 1.15. Term (0) indicates
the non-rotating case; (1) shows the effects of change in model structure; and (2) to
(5) are the terms in Equation 1.15. Term (2) splits the frequencies into multiplets
while the rest of the terms shift the frequencies. (5) gives the final set of pulsation
frequencies after taking all terms into account; the spacings between the frequencies
are non-linear. The left-hand panel shows results for l = 0 and l = 1 modes for
clarity, and the right-hand panel also includes those for l = 2 and l = 3 modes.
Reprinted from Kjeldsen et al. (1998).
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1.6.2 Traditional Approximation of Rotation

For low-frequency oscillations with a moderate rotation rate of |Ω/ω| & 1, non-
perturbative methods are required. Traditional Approximation of Rotation (TAR;
Eckart 1960) is a treatment of rotation effects which leads to a simplification of
the pulsation equations. First, the rotation is assumed to be uniform. Next, TAR
neglects the centrifugal distortion by assuming Ω� Ωk to maintain spherical sym-
metry in the star’s shape. The Cowling approximation is then applied to neglect
the perturbation of gravitational potential (Cowling 1941). Considering the prop-
erties of high-order low-frequency g-modes, we also assume that the buoyancy force
is stronger than the Coriolis acceleration (i.e. 2Ω � N ) in the direction of chem-
ical stratification, such that the horizontal component of the Coriolis force can be
neglected (Mathis & Prat 2019). The above assumptions allow the pulsation equa-
tions to become separable (Townsend 2003a). The solution to this equation proceeds
just like the non-rotating case with only two major changes: i) The dependence of
the eigenfunction (spherical harmonics) is replaced by Hough functions which are
eigensolutions of Laplace’s tidal equation,

Lν [Θm
lν(µ)] = −λΘm

lν(µ) (1.18)

(see e.g. Lee & Saio 1997, Townsend 2003a, Bouabid et al. 2013); and ii) The

l(l + 1) eigenvalue term is replaced with λlmν(n) = l̃
(
l̃ + 1

)
where l̃ is the effective

harmonic degree introduced by Townsend (2000). The Hough function consists of
a spin parameter ν associated with each solution to the eigenfunction, defined by

ν =
2Ω

ωco
(1.19)

(see e.g. Lee & Saio 1997), where ωco is the pulsation frequency in the co-rotating
frame. The spin parameter can be thought as a measure of the extent a mode is
‘aware’ that its frame is rotating (Townsend 2013). The eigenvalues λlmν(n) vary as
a function of spin parameter for both prograde and retrograde modes (see e.g. Fig.
1.8 in Van Reeth 2017), and therefore it is dependent on the stellar rotation rate Ω
as described in Equation 1.19.

We can thereby replace the term l(l+ 1) in Equation 1.11 and rewrite the pulsation
period series expression Pco (n) within TAR in the co-rotating frame as

Pco(n) ' π2√
λlmν(n)

(∫ R∗

Rcc

N(r)

r
dr

)−1

(2n+ 1) (1.20)

(see e.g. Bouabid et al. 2013). Since the eigenvalue λ varies with spin parameter
ν, which is dependent on rotation Ω, the relationship between period Pco (n) and
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Figure 1.9: Change in pulsation periods in the inertial frame as a function of the ro-
tation frequency ratio for an example stellar model with pulsation mode (1,0). Each
curve represents the frequency of a radial order n. Thin lines indicate that the mode
is stable, and thick lines indicate unstable modes. The curves have equal spacings at
zero rotation, but those with longer periods become increasingly dense as rotation
is increased. The dashed line represents the limit of the inertial regime. Note that
Ω/Ωc on the horizontal axis is equivalent to Ω/Ωk. Reprinted from Bouabid et al.
(2013).

rotation frequency can be deduced. We can then transform the TAR pulsation
periods in the co-rotating frame to the inertial frame using the relation

Pin =
1

1/Pco +mfrot
(1.21)

(see e.g. Li et al. 2019c), where Pin is the period in inertial frame and frot is
the rotation frequency of the star. Figure 1.9 plots the relation between the TAR
asymptotic pulsation periods defined in Equation 1.20 in the inertial frame, and the
rotation frequency ratio Ω/Ωk. It can be seen that at zero rotation rate, the period
curves are equally spaced as predicted in the asymptotic expression in Equation
1.11. As the rotation rate increase, the spacings between each curve at longer
periods become increasing smaller. This justifies the negative slope in the period
spacing pattern shown in Figure 1.6, and indicates that the gradient of the slope
increases with rotation.
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TAR is one of the most common formalisms adopted for modelling the rotation of
γ Dor stars. Previous work has shown that this formalism is sufficiently accurate
for deriving the interior rotation rates of γ Dor stars from observed pulsation data
(see e.g. Van Reeth et al. 2016). However, because TAR is formulated based on the
assumptions that Ω � Ωk and 2Ω � N , the deformation effects from centrifugal
force in rapidly rotating stars are not considered; this thereby defines the upper limit
of its domain of validity. Yet, Mathis & Prat (2019) have recently shown that TAR
can be mathematically generalized to include the effects of rotational deformation for
a spheroidal star, given that the rotation rate satisfies the condition 2Ω� N . This
result shows that the domain of validity of TAR can potentially be extended.

1.6.3 Other non-perturbative approaches

Other non-perturbative formalisms are also employed to model stars with rotation
rates beyond the limit of TAR. For example, the ray-tracing method describes the
propagation of waves with ray dynamics analogous to geometrical optics. It modi-
fies TAR by taking the full Coriolis acceleration into account without neglecting any
components, and computes the oscillation modes by considering the wave interfer-
ence (Prat et al. 2016). The series expansion method is another formalism which
describes the rotational deformation of structure in stars with very rapid rotation,
where new coordinate systems are introduced to reformulate the pulsation equations
(Lee 2013). Both of these approaches are beyond the scope of the work treated in
this thesis.

1.6.4 Limitations of 1-D rotation modelling

Stellar rotation modelling in 1-D requires simplifications to mimic the 2-D, or even
3-D, mixing effects in the deep interior due to rotation. The perturbative method
and TAR formalisms themselves do not compute the mixings, but instead they pro-
vide approximations to describe their observable effects on the pulsations. The codes
use the model’s Brunt-Väisälä frequency distribution to estimate the chemical dis-
continuities around the core, and simulate the dips (i.e. the sinusoidal components)
in the period spacing curve which are directly associated with the interior mixing.
Because these computations are independent of a dynamic stellar model, their ro-
tational mixing treatments are unable to take further stellar processes into account
and they are thus intrinsically limited. For instance, the origin of dips observed in
real stellar pulsations also involves mode coupling, yet such effects are not consid-
ered in TAR (Dupret 2018, Saio et al. 2018a). This shows that the simulation of
observable rotational mixing effects can vary across different formalisms.
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1.7 Research Goals of this Thesis

Rotation formalisms have been widely used for modelling the observed pulsation
period spacing patterns and constraining the interior rotation rates through opti-
mization. The perturbative approach describes the effects on pulsations caused by
slow rotation, and TAR describes those for moderate rotation. The rotation rate
which we derive from fitting observational data is dependent on our chosen for-
malism. Yet, without knowing the rotation rate prior to choosing an appropriate
theoretical framework, we cannot decide on which formalism to adopt. For exam-
ple, γ Dor stars have pulsation frequencies similar to the rotation frequency; both
perturbative methods and TAR are hence valid modelling methods within different
ranges relevant to these stars.

This research aims to develop a method which allows us to determine the most suit-
able formalism for any given set of observed frequency data. This method must
be solely based on the analysis of period spacings, which is currently our only
means of deriving the interior rotation rate We investigate how the different ro-
tation formalisms are distinguishable in g-mode period spacings such that they can
be compared to observed data. This thesis also analyses the correlations between
parameters in modelled pulsation period series. It was recently found that SPB stars
reveals correlations amongst the parameters for models within a localized parameter
space (Pedersen et al. 2018). For this reason, we investigate if such correlations are
seen in the g-mode pulsations of γ Dor stars.

The research method outlined in this thesis is applicable to all different kinds of
theoretical inputs available in seismic modelling. Despite the success of current
models allowing precise determination of rotation profiles, these theories are pos-
sibly no longer valid for other stellar processes such as the evolution of interior
angular momentum distribution (e.g. Aerts et al. 2017). Ouazzani et al. (2019)
used the near-core rotation rates of γ Dor samples, derived from observed period
spacings with TAR, to confront the models of angular momentum transport evo-
lution in intermediate-mass stars. It was found that the measured rotation rates
do not fall within their expected intervals, which are hypothesized based on angu-
lar momentum transport theory of Maeder & Zahn (1998). The conflict between
the two theories is an indication of, either, our description of the angular momen-
tum transport mechanism is incomplete, or, TAR is not sufficiently accurate for
modelling rotation rates.

Hence, refining the existing stellar rotation formalisms remains a major challenge
in modern asteroseismic research. As new space missions such as TESS deliver
more high-precision data, we are gaining large numbers of detected modes from
each pulsating star. These data act as constraints for verifying the reliability of our
stellar theories. It is thus important to develop accurate modelling methods in order
to correctly interpret the data with the lowest computational cost.
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Methods

The large number of pulsation frequencies detected from space-based observations
have provided us the opportunity to model γ Dor stars with non-uniform period
spacings. Guided by theoretical predictions on the structure and oscillations of
these stars, seismic modelling methods were developed and applied to observations
to determine their stellar properties (e.g. Li et al. 2019c, Van Reeth et al. 2016,
Schmid et al. 2016 and references therein). Asteroseismologists scan over grids of
models with varying parameters and compute a set of pulsation frequencies for each
model. The grids are then compared against the data for a target γ Dor star through
χ2 minimization to obtain the best-fit model.

In this chapter, we present our methodology to examine the reliability of our state-
of-the-art modelling techniques. Instead of using real pulsation data, we use the
oscillation frequencies computed from benchmark models as modelling targets, with
the advantage of having known stellar parameters, as opposed to those from real
stars. This method was used by Pedersen et al. (2018) and Mombarg et al. (2019)
for comparing theoretical models with different overshooting prescriptions. We used
the stellar evolution code MESA and the oscillation codes ADIPLS and GYRE to
simulate the pulsation period series of γ Dor stars. The gradient and the intercept
of the benchmark models were then used as test conditions to extract the best-
matching models from the grids.

2.1 MESA stellar evolution code

Modules for Experiments in Stellar Astrophysics (MESA, v10398; Paxton et al.
2011, 2013, 2015, 2018) is an open-source 1-D stellar evolution code used for creat-
ing stellar models and computing the various stellar properties as the star evolves.
The code consists of a wide range of modules which solve the fully-coupled stellar
structure equations and chemical composition equations simultaneously (Paxton et
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al. 2011). The modules in MESA provide the Equation of State, opacity tables for
the chemical elements, nuclear reaction rates and diffusion data, allowing the user
to simulate the evolution of stars with customized settings. MESA allows users to
set the initial conditions and choose stellar theories to be employed in the model
through the inlists, which are input files containing all user-defined parameter val-
ues and choices of theorical descriptions. MESA also provides ‘hooks’ where the
user can incorporate their own codes to the computation without editing the core
algorithms, such as coupling MESA to other stellar pulsation codes. Hence, MESA
is a useful tool for testing newly developed theories and computational codes.

To begin a simulation, MESA requires the input of the model’s initial conditions.
This includes the stellar mass, convective core overshoot parameter, diffusive mixing
parameter and chemical composition. A variety of pre-computed opacity tables and
nuclear reaction networks are available in MESA, where the user can specify their
options in the inlist. We start by loading a default pre-main-sequence model, then
run the code to simulate the evolution of the star by solving the structure equations
and equations of state at every evolutionary timestep. At each timestep, MESA
outputs a model containing the stellar parameters at every mesh point along the
radius. The code uses an adaptative mesh and timestep refinement to control the
size of steps, allowing details in the change in properties of the stellar interior to
be revealed. The model evolves until the stellar parameter(s) reaches the stopping
condition defined by the user, such as setting limits to the abundances of chemical
elements in the stellar core.

MESA is used in this work for creating stellar models which simulate γ Dor stars,
with varying parameters including initial mass, stellar age, and convective core over-
shooting. We took the MESA Summer School teaching material1 (2016) produced
by Prof. Conny Aerts as reference to setup the other MESA inputs, such as the
chemical abundances and the diffusive mixings. The initial chemical compositions
of these models are fixed at a metallicity of Z = 0.02 and a helium abundance
of Y = 0.28. We adopted the OPAL type 1 opacity tables (Rogers & Nayfonov
2002) based on the solar metallicity table from Asplund et al. (2009). We used
the central hydrogen abundance Xc as an indicator of stellar age, which decreases
from 0.69 at ZAMS to 0.001 at TAMS during the star’s main-sequence phase. In
order to end the simulation precisely at the specified abundance, we ensure that the
step in Xc between evolutionary modes is sufficiently small by setting the maximum
allowed timestep to 107 years. Additional mesh controls were also employed to re-
solve the g-modes near the convective core boundaries. We increased the resolution
in regions where the chemical gradients of helium are large around the hydrogen
core. These are the core settings required for creating γ Dor models and remained
unchanged.

Convection in the 1-D MESA code is treated with the Mixing Length Theory (Sec-

1MESA marketplace http://cococubed.asu.edu/mesa_market/
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tion 1.1). We used the Henyey description of mixing effects and fixed the parameter
αMLT at 1.8. We applied the Ledoux criterion for a stable radiative layer, and the
semi-convection efficiency parameter αSC was fixed at 0.01. Convective core over-
shooting is modelled by taking the diffusion mixing coefficient at the convective
boundary rcc, and extending it for a distance defined by fovHP , where fov is the
overshooting parameter. However, because the mixing coefficient at the exact edge
is zero, we take the mixing coefficient at stellar radius r0 = rcc−f0HP inside the core
as the ‘starting point’ of overshoot, where f0 parameterizes the distance to the core
boundary (Paxton et al. 2011, Pedersen et al. 2018). We employed the exponential
overshooting description, which assumes the mixing effects to decay exponentially
with the radius of the star. An extra constant diffusive mixing of 1.0 was also added
beyond the overshooting range in the radiative envelope, which influences the shape
of the chemical gradient at the core boundaries. The parameter f0 was fixed at
0.005 and we varied the parameter fov to control the amount of overshooting from
the convective core boundary. An example of the MESA inlist set-up is provided in
Appendix A.

Whilst MESA provides modules to add rotational effects to the stellar model, it was
shown that the treatment of rotational mixing effects is badly constrained in 1-D
computational codes (e.g. Van Reeth 2017). For this reason, we only considered
non-rotating models in MESA, and we add in the rotational effects when the stellar
model is being exported to the pulsation codes, GYRE and ADIPLS, for computing
the oscillation frequencies.

2.2 GYRE oscillation code

GYRE (v5.1; Townsend & Teitler 2013, Townsend et al. 2018) is an open-source 1-D
stellar pulsation code which is incorporated in the MESA astero module. With an
input equilibrium stellar model, the code solves the set of linear pulsation eigenequa-
tions for the user-specified pulsation mode (l,m) within the given range of radial
order n, then outputs the eigenfunctions along with their corresponding set of eigen-
frequencies. The GYRE algorithm searches the frequencies by creating a frequency
grid within the user-defined interval, then evaluates the discriminant at each grid
point (see Townsend & Teitler 2013 for a derivation of the discriminant function
using the Magnus Multiple-Shooting scheme). A change in sign of the discriminant
between two consecutive points indicates that a root is bracketed, and passed to
the root finding routine based on the algorithm described by Brent (1973). Once
the frequency is determined, the code computes the turning point of the oscillation
cavity, and use it to refine the spatial grid for evaluating the eigenfunction.

GYRE is callable from within MESA to compute a set of pulsation frequencies for
the output stellar model at every evolutionary step or at the end of the simulation.
Stellar rotational effects can be added to the frequency computation with the options
of First-order Perturbative approach and the Traditional Approximation of Rotation
(Townsend et al. 2018). In this work, we impose a uniform rotation rate to the
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stellar models with the TAR formalism in GYRE developed by Townsend (2005), as
described in Section 1.6.2. We compute the adiabatic oscillation frequencies within
the range of 3.8 µHz to 100.0 µHz in the inertial frame of reference. Radial order n
is varied from −100 to −5 with the negative sign denoting g-modes. Computation is
performed in the co-rotating frame, and we set the minimum number of grid points
per oscillatory wavelength to be 5 to resolve the eigenfunction. An example of the
GYRE inlist is given in Appendix B.

2.3 ADIPLS oscillation code

The Aarhus adiabatic oscillation package (ADIPLS; Christensen-Dalsgaard 2008),
is another open-source 1-D oscillation code callable within MESA. It uses the two
most prevalent numerical methods in solving pulsation equations in the 1990s: the
shooting scheme and the relaxation technique, which were later developed into Mag-
nus Multiple-Shooting scheme (used in the more recent code GYRE). Consequently,
the oscillation results computed with ADIPLS differ slightly to those computed
with GYRE. ADIPLS treats rotational effects with the First-order Perturbations
according to the formalism of Soufi et al. (1998). Burke et al. (2011) further
extended the code to compute the Second-order Perturbation effects according to
the formalism of Gough & Thompson (1990), as described in Section 1.6.1. The
perturbation terms are computed according to Equation 1.15 from Kjeldsen et al.
(1998). The code then outputs the numerical results for each individual term. We
corrected a small mathematical error in the second-order code written by Burke et
al. (2011): From equation 1.16, we used the approximate expression and obtained

Q2lm = l(l+1)−3m2

4l2+4l
.

In this work, we applied uniform rotation to the models using the Second-order
Perturbative approach, which is shown to be more suitable for modelling rotating
γ Dor stars (Ballot et al. 2010). New functions were introduced by the author to
control the computation of ADIPLS second-order rotation effects through MESA.
The author edited the two codes and introduced a new input file to the MESA work
directory, named inlist_pulse_controls (see Appendix C for an example inlist).
The code for creating the input file is partially taken from the MESA Summer School
teaching material2 (2012) written by Dr. Richard Townsend, which calls ADIPLS
to compute pulsation frequencies of a given degree l without adding rotational ef-
fects. This new inlist file allows users to input stellar rotation rate, specify the mode
scanning control parameters, and choose either the First- or the Second-order Per-
turbative method to use in mode calculation when adding rotational effects. The
mode_controls namelist section can be repeated to include modes of other values of
l. ADIPLS and MESA were subsequently modified to return the final set of pulsa-
tion frequencies, as illustrated in Figure 1.8, by combining all splitting term outputs
according to Equation 1.15. Major changes to the codes include i) allowing users to

2MESA marketplace http://cococubed.asu.edu/mesa_market/
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specify the values of azimuthal order m to be computed, ii) only considering uniform
rotation rather than inputting a rotation profile, since the formulation adopted for
second-order is only applicable to rigid rotations; and iii) editing MESA results out-
puts to take the splitting results from the First- and the Second-order Perturbative
method computation into account.3

2.4 Benchmark models and Grids

In order to investigate the ability of g-modes to differentiate between the rotation
formalisms, we used pre-computed models as fitting targets instead of real obser-
vational data. We created benchmark models with the two rotation descriptions,
and we supposed the pulsation frequencies computed from these models are the
‘detected’ frequencies from observations. Benchmark bench adipls was modelled
with the Second-order Perturbative approach (hereafter 2nd Pert.), and benchmark
bench gyre was modelled with the Traditional Approximation of Rotation (hereafter
TAR). We computed a grid of models around each benchmark with their correspond-
ing rotation formalism, and compared the two grids to both benchmarks for further
analysis. This is similar in methodology to the work by Pedersen et al. (2018),
who used the g-mode pulsations of SPB stars to distinguish between the different
convective overshooting descriptions.

The benchmark models were created with reference to a γ Dor star KIC 4846809 from
Kepler data. The use of Kepler star as a reference was done to ensure that our γ Dor
benchmark and grid parameters are based on observations. According to data from
NASA exoplanet archive4, this star has a mass of (1.556±0.242) M� and a radius of
(1.902± 0.550) R�. Analysis performed by Li et al. (2019c) showed that its period
spacing pattern has a gradient of (−0.007813± 0.000940). By fitting the results
with TAR, the star was found to be pulsating in (1,0) zonal mode with radial orders
from n = −73 to n = −39. It has an asymptotic spacing Π0 = (3907.538022± 15) s
and a rotation rate Ω/Ωk = (0.0491 ± 0.0239). This rotation rate falls within the
domains of validity of both TAR and 2nd Pert. described in Section 1.6. We
used the mass, rotation rate and pulsation mode of this star to form the stellar
parameters of our benchmark models, presented in Table 2.1. Since the hydrogen
abundance and the overshooting parameters of KIC 4846809 were unknown, we
assumedXc to be 0.50 and the exponential overshoot fov to be 0.02. This assumption
is acceptable because the benchmark required in this work can be arbitrary and it
will not affect the conclusions drawn from the model comparisons. We computed
the pulsation frequencies of each benchmark for (1,0) mode within the range of 3.8

3The original ADIPLS ‘hooks’ in MESA do not have functions for inputting azimuthal order m
and rotation rates, nor codes for adding rotational effects. The code on second-order computation in
ADIPLS only outputs the individual terms in Equation 1.15 with the azimuthal orders neglected,
and the calculation results were not returned to the core frequency computation codes nor to
MESA.

4NASA Exoplanet Archive https://exoplanetarchive.ipac.caltech.edu/
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Table 2.1: Parameters of the two benchmark models, bench adipls and bench gyre,
simulating a γ Dor star similar to KIC 4846809.

Parameter
KIC

4846809
bench adipls bench gyre

Initial Mass M (M�) 1.556±0.242 1.56 1.56
Exponential overshoot fov (unknown) 0.02 0.02
Central hydrogen abundance Xc (unknown) 0.50 0.50

2nd Pert. Rotation rate frot(Ω/Ωk)
0.0491±
0.0239

0.05 -

TAR Rotation rate frot(Ω/Ωk)
0.0491±
0.0239

- 0.05

Table 2.2: Parameters for the 2nd Pert. and TAR coarse grids, computed around
the benchmark models bench adipls and bench gyre.

Parameter Minimum Maximum Step size

grid adipls coarse & grid gyre coarse
Initial Mass M (M�) 1.40 1.60 0.50
Exponential overshoot fov 0.01 0.03 0.01
Central hydrogen abundance Xc 0.48 0.52 0.01
Rotation rate frot(Ω/Ωk) 0.00 0.14 0.02

µHz to 38.6 µHz, which is the typical observed frequency range for γ Dors. The
maximum and minimum radial order n was adjusted in GYRE such that it outputs
all eigenfrequencies within this range.

Two rotation grids, the 2nd Pert. grid (grid adipls coarse) and the TAR grid
(grid gyre coarse), were then computed, with parameters centring around those of
the benchmark model presented in Table 2.1. We followed the usual forward seis-
mic modelling technique and varied four parameters: initial mass, central hydrogen
abundance, exponential core overshooting, and rotation rate. Table 2.2 lists the
parameters set-up for each grid, with rotation effects applied using 2nd Pert. and
TAR respectively. Note that the initial mass of the models cannot exceed 1.60 M�
due to our settings in MESA mesh used for resolving g-modes. Two Korn shell
scripts, run_gyre.sh and run_adipls.sh, were written by the author to scan over
the rotation grids (see Appendix D). The code runs over all parameter combinations
within the multi-dimensional grid space defined by the user, and inputs the num-
bers to the MESA and GYRE or ADIPLS inlists at each run. The code then calls
MESA to evolve the star and subsequently calls the pulsation code to process the
final stellar model. Hereafter, we refer the stellar mass, overshooting, core hydrogen
abundance, and rotation rate parameter combination of each model in our work as
a set.
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Table 2.3: List of all Grid-Benchmark pairs, including both coarse grids and fine
grids, for all comparison tests completed in this work; the shorthand label used to
denote each test is displayed on the right-hand side.

Pair No. Grid Benchmark model Pair Label
1 grid adipls coarse bench adipls gAbA

- gAbA fine - bench adipls - gAbAf
2 grid gyre coarse bench gyre gGbG

- gGbG fine - bench gyre - gGbGf
3 grid adipls coarse bench gyre gAbG

- gAbG fine - bench gyre - gAbGf
4 grid gyre coarse bench adipls gGbA

- gGbA fine - bench adipls - gGbAf

First, we compared the grids to the benchmarks amongst the same rotation for-
malism to determine the number of sets in the grid which best-match the same
benchmark - If the number is large, it indicates that the g-modes are incapable of
precisely determining the interior properties, and vice versa. To differentiate be-
tween the two rotation descriptions, we tested the grids against the benchmarks
with the alternative formalism. This creates a total of four pairs of grid-benchmark
comparisons. For each pair, we computed fine grids to increase the resolution of the
parameter space. This was done by applying test filtering conditions for the gradient
and the intercept, then performing trial and error to minimize the two filters. We
manually inspected the fit rather than automatically obtaining those with minimal
χ2 values because the χ2 is heavily influenced by the oscillating part of the period
spacing pattern. The parameters of the models found to be closest to the benchmark
were used to formulate a new fine grid, and we repeated this step until we obtained
best-matching models. The full parameter set-up for each fine grid are presented in
Table 2.4. Table 2.3 summarizes all comparison tests carried out in this work and
the labelling names assigned to denote the pair combination.

2.5 Model Selection and Analysis

The pulsation frequencies output from the stellar oscillation codes were processed
by a Python code, Plot_mode_data_grid_bench.py, written by the author (see
Appendix E). The code reads all output files from the grid and the benchmark
working directory specified by the user, and obtains the period spacings for each
model. Figure 2.1 shows an example plot of a small grid with four models in blue
and a benchmark in orange. We consider two of the major observable aspects in
the period spacings, the gradient and the average period spacing (i.e. the vertical
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Table 2.4: Parameters for the four fine grids computed around the models from their
corresponding coarse grids which are closest to the benchmark.

2nd Pert. fine grid with ADIPLS
Parameter Minimum Maximum Step size

gAbA fine
Initial Mass M (M�) 1.55 1.57 0.005
Exponential overshoot fov 0.015 0.025 0.005
Central hydrogen abundance Xc 0.49 0.51 0.005
Rotation rate frot(Ω/Ωk) 0.04 0.06 0.005

gAbG fine
Initial Mass M (M�) 1.580 1.586 0.002
Exponential overshoot fov 0.010 0.014 0.002
Central hydrogen abundance Xc 0.51 0.52 0.005
Rotation rate frot(Ω/Ωk) 0.02 0.03 0.002

TAR fine grid with GYRE
Parameter Minimum Maximum Step size

gGbG fine
Initial Mass M (M�) 1.55 1.57 0.005
Exponential overshoot fov 0.015 0.025 0.005
Central hydrogen abundance Xc 0.49 0.51 0.005
Rotation rate frot(Ω/Ωk) 0.04 0.06 0.005

gGbA fine
Initial Mass M (M�) 1.59 1.60 0.005
Exponential overshoot fov 0.02 0.03 0.005
Central hydrogen abundance Xc 0.49 0.50 0.005
Rotation rate frot(Ω/Ωk) 0.10 0.12 0.002

displacement of the curve), which are directly correlated with the stellar interior
rotation rate frot and the asymptotic period spacing ∆Πl described in Equation
1.11. These two characteristics are often used in research for fitting the observed
frequencies with χ2-optimization and constraining the variables l, m, frot and ∆Πl

(see e.g. Van Reeth et al. 2016, Li et al. 2019c), as illustrated in Figure 2.2.
The fitting of dips in the curve are largely neglected in this method because i) we
focused on the modelling of rotation effects on period spacings rather than convective
mixings; and ii) it is difficult to observe all detailed dips in the period spacing curve
from real data, we tend to only see a general trend in the spacings. For this reason,
we used two filtering conditions to extract models which are sufficiently close to the
benchmark – the gradient and the intercept.
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Figure 2.1: An example period spacing plot of a benchmark model (in orange) and
a grid with four models varying in rotation rate (in blue). The large dips at lower
periods are neglected when fitting the gradients. In this example, none of the grid
models match the benchmark, hence the grid needs refining.

Figure 2.2: Illustration of the state-of-the-art fitting method for deriving the pulsa-
tion mode (l,m), rotation rate frot and asymptotic period spacing ∆Πl from observed
frequencies. An equally spaced period series is first created (grey squares), then ro-
tation effects are applied to add a slope to the linear series (white squares). These
two transformations are combined and fitted to the observed period spacing curve,
optimizing for l, m, frot and ∆Πl. Reprinted from Van Reeth et al. (2016).
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The python code performs linear fitting to the period spacing patterns of all models.
It then evaluates the error in gradient and the error in intercept of the benchmark,
and we define the two uncertainties to be the boundaries within which the period
spacings are not differentiable. Grid models with gradients and intercepts falling
within this range will be considered as indistinguishable from the benchmark, and
we hereafter regard them as the best-matching models. For situations where perfect
best-matching models could not be obtained, we focused on the gradients of the
models since it is the diagnostic used in current seismic research for determining
internal rotation (Ouazzani et al. 2017). We also neglected the low-period regions
with large oscillations when fitting the period spacing curves, because the analysis
of gradients used in research were often performed with the dips removed (Li et al.
2019c). With these best-matching models extracted from the fine grids in Table 2.4,
we performed a comparison with the same formalism (internal comparison), and
with the other formalism (external comparison). We examined the plots from the
latter in detail to identify the period range where the curves diverge and become
distinguishable. We investigated the range of parameters that produces period spac-
ings within the gradient and intercept boundaries, then compared them against the
set of the benchmark.

The χ2 values between each benchmark and the grid models were evaluated to inves-
tigate the correlations amongst the stellar parameters. This χ2 function compares
the frequency of each mode of a grid model f gridi against the nearest frequency from
their counterpart benchmark f benchmarki , given by

χ2 =
1

N − k

N∑
i=1

(
f benchmarki − f gridi

σR

)2

, (2.1)

where N is the number of modes, k is the number of independent parameters varied
in the grid, and σR is the error in frequency. We take σR as the Rayleigh limit of
Kepler mission, 0.00068 d−1, which is the upper limit for frequency error (Bowman
et al. 2015). Data interpolation is performed in the code for cases where the number
of modes in the grid and the benchmark are different, and we limit the frequencies to
a range which is fully covered by both period spacing curves. The 2-D variations of
χ2 as a function of each parameter combination were then generated for identifying
trends.

In summary, the methodology adopted in this thesis follows the common seismic
modelling procedures for measuring interior rotation rates, but replacing the ob-
served data with frequencies computed from a benchmark model that has known
interior properties. Such methods provide an opportunity for us to validate the
probing power of g-modes in γ Dor stars, as well as identifying the conditions of
which different rotation formalisms can be distinguished.

41



Chapter 3

Results

This thesis aims to develop a method of determining the more suitable rotation
description without knowing the rotation rate prior to fitting the period spacings
with models. While previous studies have shown that both 2nd Pert. and TAR
are valid formalisms at the low rotation rates used in the models of this work (e.g.
Ballot et al. 2010, Townsend 2003a), our comparison results revealed that the two
modelling formalisms do not agree on the rotation rate derived from their pulsation
frequencies. It is therefore necessary to quantify the possible errors in the fitted
stellar parameters that could arise from using an inappropriate formalism to char-
acterise observational data. In this chapter, we present our results which compare
the period spacings computed with the two formalisms at a range of rotation rates to
illustrate their differences (Section 3.1). We then centred our investigation around
three explicit questions: (I) How well do the period series of the grid models repro-
duce the benchmark (Section 3.2); (II) How can we differentiate between the period
series modelled with different rotation descriptions (Section 3.3); and (III) Are the
stellar parameters correlated (Section 3.4). We used the four sets of benchmark-grid
comparisons to draw interpretations upon the best-matching models extracted from
each test, and discuss on the accuracy of our modelling methodology.

3.1 Variation of Period spacings with Rotation

To illustrate the differences between the Second-perturbative method and the Tra-
ditional Approximation, we compared the pulsation frequencies computed with the
two formalisms at a range of fixed rotation rates. A 1.55 M� example γ Dor
model with central hydrogen abundance Xc of 0.50 and core overshooting fov of
0.03 was used in our initial comparison tests. We varied its rotation rate in the
two pulsation codes, ADIPLS and GYRE, from Ω/Ωk = 0.00 to Ω/Ωk = 0.14,
which falls within the domain of validity of both rotation formalisms. Figure
3.1 shows the period spacing pattern of this stellar model rotating at rates of
Ω/Ωk = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12 and 0.14 respectively. The blue
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curve represents the results computed with 2nd Pert., and the orange curve rep-
resents those computed with TAR. At zero rotation, no observable differences can
be seen in their period spacing patterns – their compute pulsation frequencies only
differ in the order of 10−3 µHz. Both curves have negative gradients which decreases
with rotation rate, and the oscillations in the curve decreases with period, in agree-
ment with previous studies (see Section 1.5.3). Comparing the two period spacing
patterns, we can see a deviation between the curves which increases with rotation
rate. The major observed differences are: i) The gradient of the 2nd Pert. curve
decreases at a rate faster than that of the TAR curve; ii) In contrast to the TAR
curves which are generally linear, the 2nd Pert. curves bend towards lower spacings
as rotation increases; and iii) The 2nd Pert. curves appear to break-down at rota-
tion rates of Ω/Ωk = 0.12 and beyond, with unrealistic pulsation periods computed
when the period spacing approaches zero. There appears to be a maximum period
limit in the pulsation modes computed with 2nd Pert., and this limit decreases with
rotation rate.

These comparison results show that the modelling parameters obtained from ap-
plying the 2nd Pert. formalism will differ to those obtained from applying TAR.
Since the slope is our current method of deriving interior rotation, modelling an
observed period spacing with this gradient using the two formalisms would result in
two different stellar rotation rates. This is an important finding which justifies the
urge to determine a more accurate formalism for modelling the rotation of γ Dor
stars. Note also that both formalisms can produce an equivalently large range of
gradients provided that there is no limit to the rotation rate apart from the critical
velocity. We hence eliminate the possibility of distinguishing the formalisms using
their gradient ranges.

The dips in the period series are related to the star’s internal mixing parameters.
From Figure 3.1, it can be seen that these dips appear to shift towards lower peri-
ods as rotation increases, and in particular, the dips in the 2nd Pert. curve become
increasingly compressed at low periods relative to the TAR curve. To investigate
different treatments of mixing effects, we compared the location of the first largest
dip in the two period spacing curves, and examined their relation to the stellar rota-
tion rates. A python code Plot_1st_min_rotation_adipls_gyre.py was written
by the author to extract the location of the first dip in the period spacing curve,
then plot the results against their rotation rate ratio (see Appendix F). Figure 3.2
displays the rotation-dip plot of each period spacing curve presented in Figure 3.1.
The plots of both TAR and 2nd Pert. curve exhibit decreasing trends, which indi-
cates that the dips are shifting towards lower periods as rotation increases. The rate
of decrease of the 2nd Pert. curve is greater than the TAR curve, implying that the
dips in the 2nd Pert. curve are more tightly spaced at higher rotations relative to
TAR, which agrees with the characteristics observed in Figure 3.1.
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(a) Ω/Ωk = 0.00 (b) Ω/Ωk = 0.02

(c) Ω/Ωk = 0.04 (d) Ω/Ωk = 0.06

(e) Ω/Ωk = 0.08 (f) Ω/Ωk = 0.10

Figure 3.1: Pulsation period spacings of an example γ Dor model with rotation
rates of Ω/Ωk = (a) 0.00, (b) 0.02, (c) 0.04, (d) 0.06, (e) 0.08,(f) 0.10, (g) 0.12 and
(h) 0.14. The blue curve represents the period spacings computed with ADIPLS
using the 2nd Pert. formalism, whereas the orange curve represents those computed
with GYRE using TAR. The slope of both curves decreases with rotation, but the
2nd Pert. curve is decreasing at a faster rate than TAR. The ADIPLS rotation
computation breaks down at Ω/Ωk = 0.12 and beyond.
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(g) Ω/Ωk = 0.12 (h) Ω/Ωk = 0.14

Figure 3.1: - continued

Figure 3.2: Period of the first large dip in the period spacing curve plotted against
rotation rate ratio Ω/Ωk. The blue points represent the results obtained from the
2nd Pert. curve using ADIPLS, and the orange points represent those obtained from
the TAR curve using GYRE. Both plots show a decreasing trend, meaning that the
dips are shifting to lower periods as rotation increases. The rate of decrease of the
2nd Pert. plot is greater than that of TAR.
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The two rotation formalisms are mathematically formulated in a way such that
they consequently give different descriptions to the observable effects of rotational
mixings. TAR takes rotation into account when formulating the oscillation eigen-
functions, such that the amplitude of the displacement perturbation wavefunction
varies as a function of rotation rate. The perturbative method does not alter the
eigenfunction when rotation is added, rather, it adds additional terms to the end of
each computed frequency - these terms are independent of model parameters other
than the rotation rate. Hence, TAR takes into account the change in Brunt-Väisälä
frequency due to mixing better than the perturbative approaches. We conclude that
the TAR and the 2nd Pert. formalisms are not equally valid even at low rotation
rates of below Ω/Ωk = 0.10 due to mixing treatments.1 The two formalisms have to
be distinguished and compared to real observational data in order to determine the
most accurate 1-D description of rotating γ Dor stars.

3.2 Probing power of g-mode Pulsations

To investigate Question (I) on the sensitivity of γ Dor pulsation frequencies, we
compared the benchmarks and grids computed with the same rotation theory to
ensure that both theories allow rotation rates to be precisely derived. From the
fine grids gAbA fine and gGbG fine in Table 2.4, we extracted the best-fit models
which have both gradients and intercepts falling within the uncertainty errors of
the benchmark model. A substantial number of best-fit models is guaranteed since
models within a localized parameter space computed with the same code and same
formalism produce similar pulsation period series. We examined the parameters
ranges of models that reproduce the benchmark to gauge the probing power of g-
modes.

Figure 3.3 shows the period spacing plot of the 2nd Pert. benchmark (bench adipls)
plotted in red, and the best-matching models extracted from the 2nd Pert. fine grid
(gAbA fine) plotted in blue. The opacities of the curves indicate the χ2 difference
with the benchmark – the darker the line, the lower the χ2 value and the better
the fit. It can be seen that all the models at periods greater than 1.5 days are very
close to the benchmark. However, at lower periods where the period series exhibit
prominent sinusoidal behaviour, one of the best-matching models has dips which
are significantly different to the benchmark. As dips are correlated with internal
mixings, this is an indication that fitting a particular period series with gradients
and intercepts may result in a best-fit model that has incorrect mixing.

To further investigate the probability of obtaining incorrect stellar properties from
gradient and intercept fitting, the parameter sets of the extracted best-matching

1This is unlikely to be due to differences in numerical methods (e.g. the shooting schemes)
employed in the two codes because such factor would result in a shift in the pulsation frequencies
at zero rotation, rather than generating influences on the frequency computations which varies
with the magnitude of rotation effects.
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Figure 3.3: Period spacing plot of the 2nd Pert. benchmark model (in red) and the 9
best-matching models extracted from the 2nd Pert. fine grid (in blue). The opacity
of the blue curves indicate the χ2 value relative to the benchmark curve. The grids
fit the benchmark very well at periods greater than 1.5 days, but one particular
model does not agree with the benchmark for the dip locations at lower periods.

models are displayed in Table 3.1, ranked according to their χ2 difference to bench-
mark. Here, we excluded the model which is identical to the benchmark and has a
χ2 value of zero. The rotation rates derived from the best-fit models are precise and
all match the benchmark. This result is in agreement with Ouazzani et al. (2017)
in which the authors found that the gradient of the period series is uniquely corre-
lated with rotation. Model no. 6 is the only matching model which has a different
overshoot parameter, leading to differences in dip locations along the period series
in Figure 3.3. Its overshoot parameter only differs from the rest by one step on
the fine grid, thus it is very sensitive. On the other hand, the period series of the
grid models are found to be not sensitive to stellar mass and hydrogen abundance.
The initial mass of the best-matching models ranges from 1.550 M� to 1.570 M�
and it spans across the mass boundaries of this fine grid. This range falls within
the general observational limits, which is around ±0.2 M� for KIC 4846809. Since
changes in both stellar mass and hydrogen abundance shift the period spacing curve
vertically, it is possible that the range of these two parameters in the best-fit mod-
els are correlated with each other, and are dependent on the intercept error of the
benchmark.

47



CHAPTER 3. RESULTS

Table 3.1: Parameters of the 8 best-matching models extracted from comparing
period spacing patterns of the 2nd Pert. fine grid models to the 2nd Pert. benchmark
model.

Model
Mass M

(M�)
Exponential
overshoot fov

Hydrogen
abundance Xc

Rotation rate
frot (Ω/Ωk)

χ2 diff.

1 1.565 0.020 0.495 0.05 500.98
2 1.570 0.020 0.505 0.05 949.48
3 1.570 0.020 0.500 0.05 953.00
4 1.565 0.020 0.505 0.05 992.10
5 1.565 0.020 0.500 0.05 1000.57
6 1.570 0.025 0.510 0.05 1219.96
7 1.550 0.020 0.500 0.05 1767.71
8 1.555 0.020 0.500 0.05 1785.94

Benchmark comparison results for the TAR formalism are presented in Figure 3.4.
It shows the period spacing plot of the TAR benchmark (bench gyre) plotted in
red, and the best-matching models from the TAR fine grid (gGbG fine) plotted in
orange. We obtained 21 grid models falling within the uncertainty boundaries of the
benchmark (excluding the identical model), which is significantly more than those
extracted from the 2nd Pert. grid, despite the two grids sharing the same parameter
setup. From Figure 3.4, we can also see that the best-matching models are separated
into two distinct groups – one with lower χ2 values in general, where the dips have
similar locations to the benchmark, and the other one with greater χ2 values, where
dips appear to have larger amplitudes and appear ‘out-of-phase’ with the former.
This difference in dips between the two groups of best-fit models remains prominent
even at periods beyond 2.5 days. Our interpretations to this, as with the 2nd Pert.
models, is that the gradient-intercept fitting method is unable to precisely probe the
internal mixing parameters.

The parameters of the 21 best-matching models are presented in Table 3.2. Stellar
mass ranges from 1.550 M� to 1.570 M�, and the hydrogen abundance Xc ranges
from 0.490 to 0.510. Similar to the results from Table 3.1, both parameters were
found to have values spanning across their grid boundaries with no particular trend.
The error of stellar mass was found to be at least 0.02 M�. Whilst the actual error
remains unknown, since it is well below its observational uncertainty, we consider
the modelling results of stellar mass to be precise.

The rotation rates of the best-matching models are found to be slightly less precise
compared to the results form the 2nd Pert. grid. The two different rotation rates
obtained from fitting the benchmark model, Ω/Ωk = 0.050 and Ω/Ωk = 0.055, do
not have strong correlations with the χ2 values, implying that there is an error
of around Ω/Ωk = 0.005 in the derived rotation rates from the TAR formalism.

48



CHAPTER 3. RESULTS

Figure 3.4: Period spacing plot of the TAR benchmark model (in red) and the 22
best-matching models extracted from the TAR fine grid (in orange). The opacity
of the orange curves indicates the χ2 value relative to the benchmark curve. The
grids generally match the benchmark well especially at the longer period regions,
but higher χ2 models tend to have dip locations which appear to be ‘out-of-phase’
with the benchmark.

(NB: We hereafter refer the parameter values of the best-matching models that do
not reproduce the benchmark as errors.) Compared to the observed rotation rate
uncertainty of KIC 4846809 of Ω/Ωk = 0.0239, this error is relatively small and falls
within the acceptable level of accuracy. The overshooting and mixing effects in the
extracted models were found to be the key aspects which influenced the ability of
g-modes in reproducing the benchmark model. The ‘out-of-phase’ period series in
Figure 3.4 correspond to models with overshooting parameters of 0.025. From Table
3.2, it can also be seen that the models with a higher and less-accurate rotation
rate, Ω/Ωk = 0.055, are the same as those with a larger convective overshooting
parameter, 0.025. Both parameters do not appear to be correlated with the χ2

values.

In summary, the grid models computed with both formalisms are generally capable
of mimicking the shape of their benchmark period spacing curves. The gradient-
intercept modelling method allows the stellar mass and age to be derived to within
observational uncertainty. However, because this modelling method neglects the
lower periods, it is unable to precisely reproduce the dips caused by overshooting.
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Table 3.2: Parameters of the 21 best-matching models extracted from comparing
period spacing patterns of the TAR fine grid models to the TAR benchmark model.

Model
Mass M

(M�)
Exponential
overshoot fov

Hydrogen
abundance Xc

Rotation rate
frot (Ω/Ωk)

χ2 diff.

1 1.560 0.020 0.495 0.050 11.03
2 1.565 0.020 0.495 0.050 104.58
3 1.555 0.020 0.500 0.050 122.49
4 1.555 0.020 0.505 0.050 125.63
5 1.560 0.020 0.505 0.050 154.21
6 1.565 0.020 0.505 0.050 186.38
7 1.565 0.020 0.500 0.050 249.67
8 1.560 0.025 0.505 0.055 822.76
9 1.560 0.025 0.500 0.055 884.75
10 1.560 0.025 0.495 0.055 909.74
11 1.565 0.025 0.510 0.055 1101.78
12 1.565 0.025 0.500 0.055 1129.57
13 1.565 0.025 0.495 0.055 1169.22
14 1.570 0.020 0.490 0.050 4609.82
15 1.570 0.020 0.495 0.050 4637.16
16 1.550 0.020 0.505 0.050 4637.60
17 1.550 0.020 0.500 0.050 4686.44
18 1.570 0.020 0.500 0.050 4812.89
19 1.570 0.025 0.495 0.055 7751.91
20 1.570 0.025 0.490 0.055 8228.65
21 1.565 0.025 0.490 0.055 8423.75

Such error in overshoot also correlates with the error in stellar rotation for the
TAR formalism. This correlation suggests that the error in the best-fit models are
possibly related to the mixing treatments of the formalism, as discussed in Section
1.6.4 and Section 3.1. Both parameters induce mixing effects at the core boundaries
and influence the distribution of the Brunt-Väisälä frequency. If this is true, the
reason for why this correlation is not seen in the 2nd Pert. comparison test can
be explained by the fact that, unlike 2nd Pert., TAR takes the eigenfunctions into
account when computing rotational effects. Despite being a more accurate way of
treating mixing effects, we showed that such formalism can increase the chance of
obtaining an incorrect model. If overshoot influences the modelling precision of
rotation, it could imply that we cannot simply consider the gradient to determine
rotation rates and neglect the dips in the curve. Further investigations are required
to find out how this correlation can be explained by the theoretical formulation of
each rotation theory.
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3.3 Using g-modes to unravel the Rotation

formalisms

To answer Question (II) on distinguishing the different descriptions of stellar rota-
tion, the grids are compared against a benchmark computed with the alternative
formalism. Since the objective of this thesis is to model stellar rotation, we priori-
tized the optimization of the gradient filters over the intercept filters while extracting
models from the coarse grids. However, exceptions were allowed when the gradient
of the grid models were very close to the benchmark, yet the intercepts differed. An
example is illustrated in Figure 3.5, where the red curve shows the benchmark, and
the purple curves show the grid models which have gradients close to the bench-
mark at longer periods, but clearly do not fit the former. This situation happens
due to the bending of the period spacing patterns in 2nd Pert. models, and they
do not necessarily share the same graphical ‘rotation’ axis as the TAR curves (i.e.
they are crossing each other). In such circumstances, it is difficult to obtain best-fit
models where both their gradients and intercepts are falling within the required un-
certainty errors. Instead, we presented the closest models we obtained from the fine
grids, and discussed the ways of locating differences between the two period spacing
curves.

Figure 3.6 shows the period spacing plot of the TAR benchmark (bench gyre), plot-
ted in red, and the 8 best-matching models extracted from the 2nd Pert. fine grid
(gAbG fine), plotted in blue. For low-period regions (below approximately 2.0 days),
none of the best-fit grid models are capable of reproducing the period series of the
benchmark. Unlike Figure 3.3 and 3.4, the spacing between each dip in the curve
is much greater in the benchmark compared to the grids, indicating that there is
a larger error in the modelled mixing parameters. However, the general shape of
the grids’ period spacing curves was found to be very similar to the benchmark,
both with gradients of around −0.0034. The gradients and intercepts of the grid
models at higher periods both fall within the uncertainties of the benchmark, which
makes them indistinguishable by definition. If we neglect the sinusoidal component
(which is difficult to accurately measure in observed data), it is hard to identify any
differences between the two period series.

The parameter sets of the best-matching models are presented in Table 3.3. The
most important findings from this table are the modelled rotation rates – we obtained
a precise measurement of Ω/Ωk = 0.024 from fitting the curves, which is significantly
smaller than the rotation rate of the TAR benchmark, Ω/Ωk = 0.05, by 52%. The
fact that 2nd Pert. period spacings have high probing power on rotation rates
(Section 3.2) shows that this difference in rotation rate is not influenced by the
errors in the derived parameters due to modelling methods.

Figure 3.7 shows the period spacing plot of the 2nd Pert. benchmark (bench adipls)
plotted in red, and 8 TAR grid models (gGbA fine) plotted in orange. The situation
revealed from this comparison test is similar to that described in Figure 3.5, where
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Figure 3.5: An example period spacing plot of a benchmark (in red) computed
with 2nd Pert. and a grid of models (in purple) computed with TAR, extracted by
prioritizing the gradient fitting. The opacity of the purple curves indicates the χ2

value relative to the benchmark curve. The grid models do not fit the benchmark
at periods greater than approximately 1.3 days despite having similar gradients; the
two curves appear parallel with a large difference in the intercept points. In this
example, best-fit models cannot be obtained.

we are unable to extract any best-batching models due to the shape of the curves.
The grid models presented in Figure 3.7 are the closest models to the benchmark in
terms of their intercept values, with a maximum period spacing difference of 0.00578
days. The gradient of the benchmark is −0.0122, which is greater than that of the
benchmark curve in Figure 3.6 by 0.0088. The rotation rates of the extracted grid
models range from Ω/Ωk = 0.102 to Ω/Ωk = 0.112. Despite the range being within
observational uncertainty, it is different to the benchmark by a maximum error of
124%. At lower periods, the grid curves are found to be close to the benchmark and
are generally capable of reproducing the locations of the dips. The curves begin to
diverge at periods beyond 2.0 days, and such divergence becomes apparent beyond
2.5 days. As no models are falling within the benchmark gradient and average period
spacing uncertainties, we consider the models in this test to be distinguishable at
periods greater than around 2.5 days.

52



CHAPTER 3. RESULTS

Figure 3.6: Period spacing plot of the TAR benchmark model (in red) and the 8 best-
matching models extracted from the 2nd Pert. fine grid (in blue). The benchmark
has a gradient of −0.0034. The dips in the period series in low-period regions are
unable to mimic the benchmark. The gradients and the average period spacings of
the curves computed with the two different formalisms are indistinguishable from
each other.

Table 3.3: Parameters of the 8 best-matching models extracted from comparing
period spacing patterns of the 2nd Pert. fine grid models to the TAR benchmark
model.

Model
Mass M

(M�)
Exponential
overshoot fov

Hydrogen
abundance Xc

Rotation rate
frot (Ω/Ωk)

χ2 diff.

1 1.582 0.01 0.515 0.024 2009.63
2 1.584 0.01 0.510 0.024 2039.16
3 1.584 0.01 0.515 0.024 2042.31
4 1.584 0.01 0.520 0.024 2045.35
5 1.582 0.01 0.510 0.024 2073.92
6 1.586 0.01 0.515 0.024 2077.91
7 1.586 0.01 0.520 0.024 2079.40
8 1.586 0.01 0.510 0.024 2125.46
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Figure 3.7: Period spacing plot of the 2nd Pert. benchmark model (in red) and the
8 models extracted from the TAR fine grid (in orange) which are found to be closest
to the benchmark. The benchmark has a gradient of −0.0122. The gradient and
intercept filters used in producing this plot are 0.004 and −0.00578 respectively. The
grid curves fit the benchmark at periods lower than 2.0 days. Beyond this point,
the curves begin to diverge.

In summary, the gradient-intercept fitting method allows the benchmark to be dis-
tinguished from the grids when its gradient is around −0.0122, but not when it is
around −0.0034. The gradients of the curves have to be sufficiently large in order to
see their differences as they diverge at periods greater than 2.5 days. This condition
is independent of the rotation rate of the benchmark model, since they are both at
Ω/Ωk = 0.5 in the two comparison tests, yet such differences can be identified as
long as the slope is substantially steep. The rotation rates between the benchmark
and the derived parameter from the grids can differ up to 124%. This result is con-
sistent with our initial comparisons presented in Section 3.1, where we have shown
that period series computed with TAR and 2nd Pert. at the same rotation rate have
significantly different gradients. Furthermore, the overshooting parameters in Table
3.3 are also found to be consistently lower than the benchmark by 0.01 and very
sensitive to change. It is probable that this phenomenon is related to our interpre-
tations made in Section 3.2, that the error in the derived rotation rates from the
benchmark-fitting method is correlated with the error in the derived overshooting
parameters.
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3.4 Parameter Correlations in g-mode Pulsations

modelling

We turn towards evaluating Question (III) on searching for correlations amongst the
seismic modelling parameters. We hypothesized in Section 1.7 that the difference
between the grids and the benchmark varies with the model parameters for g-mode
pulsations of γ Dor stars. For instance, as rotation is increased, the gradient of the
grid’s period series becomes increasingly deviated from the benchmark, hence we
expect to see an increase in the goodness-of-fit, χ2. However, such correlations are
not observed in the fine grids used in the comparison tests in Section 3.2 and 3.3.
This is because the χ2 values are affected by the individual dips, and this impact
becomes relatively large for fine grids with small variations in parameters such as
mass and rotation rate. Hence, it is difficult to identify strong correlations between
them. For this reason, we used the coarse grids to compute the χ2 differences with
a benchmark and examined changes with the varied parameters in the grid. The
chosen grid and benchmark are both computed with the same formalism so that we
can neglect the influence from other factors such as the bending of 2nd Pert. period
spacing curves relative to TAR. We considered all combinations of parameter pairs
in a set, such as Mass vs. Overshoot, Mass vs. Rotation, and so on. For each
combination, we extracted a portion of the data from the coarse grid for which the
other two parameters in the set remained constant at values close to the benchmark.
The χ2 data were then used to generate 2-D contour plots for analysing relationships
between parameters.

Figure 3.8 shows three of the six χ2 surface plots obtained from comparing the
2nd Pert. coarse grid (grid adipls coarse; Table 2.2) to the 2nd Pert. benchmark
(bench adipls ; Table 2.1). These were found to exhibit some correlation between
the model parameters (see Appendix G for the contour plots of 2nd Pert. models
that do not exhibit correlation). Contours with darker colours indicate grid models
with smaller χ2 values and better fits to the benchmark. In all three plots, the
χ2 values strongly correlate with the rotation rate of the model. The χ2 remains
small at rotation rates below approximately Ω/Ωk = 0.07, and rise at an increasing
rate from Ω/Ωk = 0.08 to Ω/Ωk = 0.14. This can be understood intuitively that
the change in χ2 value is dominated by the difference in gradients between the
two curves, which increases at an accelerating rate with respect to rotation (Figure
3.1).

The correlations between the parameters are weak but the general trends are visible.
Rotation shows a negative correlation with hydrogen abundance (i.e. positive with
stellar age), and positive correlation with overshoot and stellar mass. To describe
the physical significance of these surface plots, we take Figure 3.8 (b) as an example.
The following deduction is explained with the help of a diagram shown in Figure
3.9. Suppose there are a few grid models which are equivalently close to the bench-
mark model and has the same χ2 value. These models lie on one of the contour
lines shown in the surface plot which has a positive gradient. Consider a point on
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this 2-D parameter space which represents the benchmark – at Ω/Ωk = 0.05 and
fov = 0.02, which lies at some close distance away from the above-specified contour
line. Then, suppose one of the grid models on the contour line, labelled a, has a
parameter coordinate of ( Ω/Ωka, fova) and the other model along the line, labelled
b, is ( Ω/Ωkb, fovb). Since the contour line increases with both parameters, it follows
that Ω/Ωkb = Ω/Ωka + δΩ/Ωk and fovb = fova + δfov, where δΩ/Ωk and δfov rep-
resent the parameter difference between grid model a and b and they must be both
positive or both negative. Hence, in most cases, Ω/Ωkb and fovb are both further
away from the benchmark parameters compared to Ω/Ωka and fova. This implies
that if a model has an overshoot that has a greater error, fovb, it is likely that the
rotation rate will also have a greater error, Ω/Ωkb. From the results in Section 3.2
and 3.3, we found that the best-matching models with incorrect rotation rates also
have incorrect overshooting parameters. These best-matching models do not share
the same χ2, but comparing their values to the χ2 scale in Figure 3.8 (b), they
are close to lying on the same contour line. Therefore, this graphical interpretation
shows (as suggested in Section 3.2 and 3.3) that the error in the derived rotation
rates is correlated with the error in the overshooting parameters.

However, the correlations shown in Figure 3.8 were not observed when comparing the
models computed with the TAR formalism (see Appendix G for the TAR contour
plots). To the contrary of results obtained from Section 3.2, where rotation is
found to be related to overshoot in TAR but not in the 2nd Pert., the surface plots
showed that only the 2nd Pert. formalism exhibits relation between the parameters.
Furthermore, if the above interpretation is correct, it follows that similar trends
should be observed between the rotation rate and stellar mass, yet we do not see such
correlation in Table 3.1 or 3.2. This implies a possibility that these χ2 correlations
are produced by coincidence, rather than by the treatments of observable mixing
effects in the formalisms. Further modelling with larger parameter grids to analyse
the trends on a larger scale is needed to conclude whether or not such correlation is
theoretically justified.
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(a) rotation rate vs. hydrogen abundance (b) rotation rate vs. overshoot

(c) rotation rate vs. stellar mass

Figure 3.8: Contour plots showing the variation of χ2 difference between 2nd Pert.
benchmark and coarse grid as a function of parameters (a) rotation rate and hydro-
gen abundance, (b) rotation rate and overshoot, and (c) rotation rate and stellar
mass. Darker colours indicate lower χ2 values. Rotation shows a weak negative
correlation with hydrogen abundance, and weak positive correlation with overshoot
and stellar mass.
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Figure 3.9: A zoomed-in contour plot of Figure 3.8 (b). This diagram illustrates how
the trends observed on the contour plots justify the correlation between errors in the
grid model parameters compared to the benchmark. The benchmark point is located
at a certain position in this parameter space. The two points lying on the same χ2

contour line represent two arbitrary grid models, a and b, which are equivalently
close to the benchmark (roughly representing the best-fits). To evaluate the trends
amongst the grid models, we think of b as a moving point along its contour line.
Because the contour line has a positive gradient, it follows that, in most cases, both
the rotation rate and the overshoot of the grid model would draw further away from
the benchmark.
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Discussion and Conclusion

The gradients of the period spacing patterns of γ Dor stars reveal significant dif-
ferences between the two rotation modelling descriptions examined in this thesis.
Comparisons across formalisms provide information on the ways we can improve
our current method of setting validity domains of rotation theories. The analy-
sis of the best-matching models shows that our state-of-the-art seismic modelling
method for deriving rotation is not sufficient for treating rotational mixing effects,
and more testing is required to investigate its impact on the probing power of γ Dor
g-mode pulsations. In this chapter, we use the results presented in Chapter 3 to
draw interpretations to our three research questions in the context of observational
asteroseismology. We discuss the limitations of the modelling methods adopted in
this work and their relation to the errors in the derived stellar parameters.

4.1 Unravelling the Rotation formalisms

The difference in gradients between models computed with TAR and 2nd Pert. at
the same rotation rate is one of the major findings from our study. The rotation
rate that we would obtain from fitting a particular set of observed period series with
2nd Pert. is different to the rate derived if we used TAR, with percentage errors
up to 124%. The gradient difference remains prominent at rotation rates down to
Ω/Ωk = 0.04. Beyond this limit, the two formalisms cannot be equally valid. The
result does not comply with the domain of validity of 2nd Pert. (Ballot et al. 2010),
where it is expected to be accurate for rotating stars up to Ω/Ωk = 0.3.1 The
2nd Pert. computation breaks down at the limit of Ω/Ωk = 0.12. According to
the modelling results of 611 Kepler γ Dor stars analysed by Li et al. (2019c), γ
Dors have an average rotation rate of 1.106 d−1. Using the average stellar mass
and radius of typical γ Dors, the mean rotation ratio is around Ω/Ωk = 0.04. This

1The limit established in this work is based on comparisons against TAR rather than 2-D
complete calculations, but the results are not expected to differ significantly.
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is at the boundary of the limit derived from our results where TAR and 2nd Pert.
agree with each other. Whilst the validity domains of the two formalisms are to be
more accurately defined, the uncertainty justifies our motivation to differentiate the
formalisms without the use of γ Dor rotation rates.

From Section 3.3, we found that the period spacing curves computed with the two
formalisms become distinguishable when their gradients are greater than −0.0122,
which corresponds to a rotation rate of approximately Ω/Ωk = 0.024 in 2nd Pert.
and Ω/Ωk = 0.04 in TAR. This result is consistent with our original understand-
ing on the modelling of rotation, since the gradient is known to be correlated with
rotation rates, and TAR is also known to be generally suitable for more rapid ro-
tations compared to the perturbative methods. However, unlike the establishment
of domains of validities in previous research (Ballot et al. 2010), this method of
unravelling the formalisms is independent of our knowledge on the star’s interior
rotation rate. As the TAR and 2nd Pert. period series begin to diverge at periods
beyond 2.5 days, their differences in shape become increasingly obvious, and we can
subsequently match these models against the observed data for further comparisons
and analysis. This finding satisfies the objectives outlined in our research goals, that
the rotation rate is not required in the process of identifying suitable descriptions.
When modelling the pulsation frequencies data from real γ Dor stars, it is no longer
necessary to presuppose its interior rotation rate. We analyse the stars with long
pulsation periods and large period spacing gradients to match against the models.
We can then proceed to derive the star’s rotation rate using the formalism which
fits the observed periods better.

4.2 Validity of the Rotation modelling methods

The modern seismic modelling method for deriving rotation was found to be not
sufficient for accurately probing the sinusoidal components in the period spacing
curves. The method of fitting gradient and average (asymptotic) period spacing is
widely employed in seismic modelling for deriving the star’s interior rotation rate
along with the pulsation modes (e.g. Van Reeth et al. 2016). This method is
suitable for non-continuous frequency data as it neglects the dips. On the downside,
it is expected to have a lower probing power on the convective overshoot properties.
Our results show that the TAR models with errors in the overshoot parameter are
also unable to reproduce the rotation rate of the benchmark. The analysis of the
best-matching models highlights some correlations between the error in the core
overshooting and the error in the derived rotation rate. An intuitive explanation to
this correlation is that these errors are due to the amplitudes of the dips along the
benchmark curve, which increase its gradient uncertainty, resulting in more models
with a greater variation of rotation rates being extracted.

Nevertheless, the relation between the error in derived stellar rotation rates and the
dips in the period spacings warrants further investigation. From Section 1.5.2, we
know that the sinusoidal components in the period series mainly originate from the
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effects of convective overshooting, and our model comparison results agree with this
theory. Our findings on the rotating models also show that the dip locations are
directly correlated with rotation rates. The shift in the dips varies with the chosen
rotation formalism. This is a clear indication that, apart from overshooting, the
sinusoidal components of the period series are also dependent on the treatment of
rotational effects in the oscillation code or the modelling theory. It is then reasonable
to make a hypothesis that this phenomenon is related to the mixing effects around
the core, as we know that both convective overshoot and rotational forces introduce
mixings in real stars. The level of mixing is dependent on the magnitude of the
Coriolis and centrifugal forces, of which TAR and 2nd Pert. have different physical
assumptions regarding the forces acting on the stellar interior as outlined in Section
1.6. Our hypothesis thereby explains why the two formalisms differ in the modelling
of dips. Yet, the oscillation codes do not directly simulate mixings in the stellar
model, the observable effects of mixings are mimicked as a result of the formalism’s
computation method. Therefore, we argue that the correlation between the error in
rotation and the error in overshooting is theoretically justified, and such correlation
is related to the mathematical constructions of the mixing effects as reflected in the
dips.

If our hypothesis is correct, it implies that we cannot completely neglect the regions
in the period series with prominent sinusoidal oscillations. Because our method
removes the periods with large dips during linear fitting, we are also neglecting all
observable mixing effects modelled in the frequency computation, including those
induced by stellar rotation. Our work shows that this modelling technique is not
sufficient for taking rotational effects fully into account. We require a method of
describing the effect of rotational mixings on the pulsation period series.

4.3 Probing power of g-modes

The best-matching models extracted from the fine grids are generally capable of
reproducing the benchmark parameters to within observational error, in particular,
the interior rotation rates. The precision of the modelled rotations obtained from
internal comparisons allow us to neglect most uncertainty in the derived rotation
rates when comparing results against the alternative formalism. On the other hand,
the stellar mass and core hydrogen abundance are found to be distributed randomly
and less precisely probed. This is because their effects on the period series are
only seen at larger scales. For example, we require the hydrogen abundance to
drop from 0.5 to around 0.3 in order to produce observable changes in the average
period series. To investigate the variation of stellar mass or age with the χ2 values,
we need grids with greater boundaries to eliminate the randomness in χ2 values
due to individual dips, and only consider the large-scale changes relative to the
benchmark. Higher resolution grids would also improve the modelling precision,
but at the expense of computational cost. Grids with step sizes that fall within
the observational uncertainty give limited physical implications on the precision
of the best-matching models. We are hence unable to draw solid interpretations
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regarding the probing power of observed g-mode pulsation periods on the mass
and the hydrogen abundance using the fine grid results. It is more appropriate to
set up grids with step sizes in the order of observational uncertainties, such that
we can evaluate the error contributions from the modelling method relative to the
parameters’ intrinsic uncertainties.

Furthermore, the dimension of the grids used in this thesis may not be not suffi-
cient for fully modelling observed period series. Mombarg et al. (2019) showed that
forward asteroseismic modelling of intermediate-mass stars is a high-dimensional
problem and it requires at least 6 parameters to be varied in the grids: Stellar mass,
metallicity, diffusive envelope mixing, step/exponential core overshooting, initial
central hydrogen abundance, and normalized central hydrogen abundance. In our
case, we need the rotation rate to be the 7th additional parameter. Hence, the
probing power of the γ Dor modelling results computed in this work are limited by
the number of parameters and the sizes of the grids. To investigate the full effects
induced by rotation, it is necessary to incorporate the diffusive mixing parameters
to reveal and isolate the rotational mixing effects involved in the frequency compu-
tations, and look at how it varies across the different rotation prescriptions.

4.4 Future Work

To validate our method of distinguishing the two rotation formalisms, an immediate
step would be to select real confirmed γ Dor stars which exhibit large gradients in
their pulsation period series, and look for characteristics, such as their shapes, that
match the period spacing curve of models in Figure 3.7. If most of the observed
data are found to be closer to one of the formalisms than the other, we may be able
to conclude on the more suitable rotation theory for modelling γ Dor stars. This
investigation can also be extended by considering the dipole prograde (1,1) mode,
since it is the most commonly found pulsation mode identified in γ Dors (e.g. Van
Reeth 2017, Li et al. 2019c). We can apply this comparison test to other formalisms
used for modelling γ Dors, such as differential rotation and the 2-D complete calcu-
lations, which provide more accurate treatments for rotation. Comparisons against
2-D modelling methods can gauge the validity of the approximations adopted in 1-D
oscillation codes, and determine the physical limits of where 1-D codes are no longer
suitable. Our method allows such limits to be found without knowing the precise
rotation rate of the star.

Investigations on the mixing effects induced by rotation are also recommended to test
the hypothesis made in this thesis. The rotation formalisms, TAR and 2nd Pert., are
formulated to take the effects of Coriolis and centrifugal forces into account, yet their
treatments on the ways they influence the dips in the oscillation period series were
never specified in their theoretical descriptions. For this reason, we hypothesized
that such rotation-dependent mixing effects are modelled as a consequence of their
mathematical formulations, rather than a purposeful function implemented in the
code for simulating the mixings. We require a method of isolating the mixing effects
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induced by rotation from the frequency computations, and find out how these effects
vary with the different rotation formalisms. Explanations to such effects on the basis
of stellar rotation theories would greatly improve our understanding of the physics
involved in rotating γ Dor stars.

4.5 Conclusion

Stellar models do not simulate all processes occurring in stars, rather, they are
formed to provide a physical view towards their observable behaviour. Comparing
models with different rotation formalisms are necessary to examine their function-
alities and limits, and to evaluate their ability in probing the internal properties of
γ Dor stars. Using benchmark models to replace observational data acts as a pow-
erful method for checking the validity of our modelling techniques. In this thesis,
we tested the technique for deriving interior rotation, with gradient and asymptotic
period spacing, which is commonly used in modern seismic research. This research
aimed to develop a method which allows us to determine the most suitable formalism
for any given set of observed data. We aimed to find out: (I) Do the grids reproduce
the benchmark; (II) How can we differentiate the rotation formalisms; and (III) Are
the stellar parameters correlated. The grids were generally successful in probing the
benchmark parameters to within observational uncertainties. By comparing the pul-
sation frequencies computed with different rotation descriptions, the results reveal
that Ω/Ωk = 0.04 is the maximum limit of which the two formalisms agree with
each other. Beyond this limit, the rotation rate derived from using 2nd Pert. can
differ to that of TAR by up to 124%. We have shown that this modelling method
is capable of distinguishing the formalisms at periods longer than 2.5 days, given
that the gradients of their period spacing curves are greater than around −0.0122.
Correlations between overshoot and rotation also reveal that the internal mixing
effects, which are reflected as sinusoidal components in the period series, should not
be neglected when modelling stellar rotation. The same research method can be
applied to all other modelling techniques - we can perform a grid-benchmark test to
compare the suitability of different formalisms for observed data of a similar type.
These results allow us to re-establish the validity domains of the formalisms, and
improve our understandings of the interior physics.

As the amount of observational data from new space missions, such as TESS (Ricker
et al. 2015) and PLATO (Rauer et al. 2014), will be growing immensely over the
next decade, our findings are invaluable to help formulating modelling techniques
with higher accuracies and lower computational costs. With the conditions required
for differentiating the formalisms known, we can focus on the frequency analysis
for stars where the gradients of their period spacings are found to be sufficiently
large, and identify a more suitable framework for describing the γ Dors. The well-
studied stars which suits this criterion can also act as references for evaluating
new pulsation and rotation theories. Therefore, the work presented in this thesis
bridges the theoretical and observational aspects of asteroseismology, and provides
new insights into the development of methods for refining our rotation theories.
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Appendix A

MESA inlist

This is an example of the major input file, inlist_astero.txt, for entering the
stellar parameters and other computation settings for the evolution model simulating
γ Dor stars. Here, we present the inputs used for computing the benchmark models.

&star_job

show_log_description_at_start = .false.

astero_just_call_my_extras_check_model = .true.

! Starting model

create_pre_main_sequence_model = .true.

load_saved_model = .false.

saved_model_name = ’model_21.mod’ ! ZAMS model

save_model_when_terminate = .true.

save_model_filename = ’FINAL.mod’

! Using the metallicity of Asplund et al. (2009)

! and OPAL type I opacity tables

kappa_file_prefix = ’a09’

kappa_lowT_prefix = ’lowT_fa05_a09p’

initial_zfracs = 6

warn_run_star_extras =.false.

pgstar_flag = .false.
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/ ! end of star_job namelist

&controls

log_directory = ’LOGS_M_1.56_O_0.02_H_0.50_R_0.05’

! Initial parameters

initial_mass = 1.56

initial_z = 0.02

initial_y = 0.28

calculate_Brunt_N2 = .true.

! Mixing effects controls

mixing_length_alpha = 1.8

conv_dP_term_factor = 0

MLT_option = ’Henyey’

use_Ledoux_criterion = .true.

alpha_semiconvection = 0.01

semiconvection_option = ’Langer_85 mixing; gradT = gradr’

! Exponential Overshooting controls

overshoot_f_above_burn_h_core = 0.02

overshoot_f0_above_burn_h_core = 0.005

set_min_D_mix = .true.

min_D_mix = 1.0

remove_small_D_limit = 0

! This value has to be lower than min_D_mix.

D_mix_ov_limit = 5d-2

num_cells_for_smooth_brunt_B = 0

! Stopping conditions - age controls and timestep controls

max_years_for_timestep = 1d7

min_timestep_limit = 1d-20
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xa_central_lower_limit_species(1) = ’h1’

xa_central_lower_limit(1) = 0.50

! controls for output

photo_interval = 100

profile_interval = 50

history_interval = 100

terminal_interval = 5

write_header_frequency = 10

write_profiles_flag = .true.

max_num_profile_models = 500

! Mesh Controls, to resolve the g-modes near core boundary

max_allowed_nz = 20000

! global mesh resolution factor

mesh_delta_coeff = 0.2

! Additional resolution based on the P and T profiles

P_function_weight = 30

T_function1_weight = 75

! Additional resolution depending on the chemical abundances

! and gradients

xa_function_species(1) = ’he4’

xa_function_weight(1) = 80

xa_function_param(1) = 1d-2

xa_function_species(2) = ’he3’

xa_function_weight(2) = 20

xa_function_param(2) = 1d-5

mesh_dlogX_dlogP_extra(:) = 0.15

mesh_dlogX_dlogP_full_on(:) = 1d-6

mesh_dlogX_dlogP_full_off(:) = 1d-12

mesh_logX_species(1) = ’he4’

! Additional resolution near boundaries of convective regions

xtra_coef_czb_full_on = 0.0

xtra_coef_czb_full_off = 1.0

xtra_coef_a_l_nb_czb = 0.015
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xtra_dist_a_l_nb_czb = 10

xtra_coef_b_l_nb_czb = 0.075

xtra_dist_b_l_nb_czb = 3

! Properly constrain the location of convective boundaries

convective_bdy_weight = 1

convective_bdy_dq_limit = 1d-6

convective_bdy_min_dt_yrs = 1d-3

/ ! end of controls namelist

&pgstar

/ ! end of pgstar namelist

The input file can be found on github: https://github.com/Cheryl-Lau/astero/
blob/master/work_bench_adipls/inlist_astero
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Appendix B

GYRE inlist

The input file, gyre.in, is used for entering the pulsation modes, rotation rate and
other settings for the numerical methods to compute the eigenfrequencies of γ Dor
stars. This is the inlist that we used for computing the TAR benchmark model.

&constants

/

&model

model_type = ’EVOL’

file = ’./LOGS_M_1.56_O_0.02_H_0.50_R_0.05/profile22.data.GYRE’

file_format = ’MESA’

uniform_rot = .true. ! Apply a uniform rotation rate

Omega_rot = 0.05

Omega_units = ’CRITICAL’

/

&osc

outer_bound = ’VACUUM’

rotation_method = ’TAR’

/

&mode

l = 1 ! Spherical degree

m = 0 ! Azimuthal order possible to include

n_pg_min = -100 ! Minimum radial order n

n_pg_max = -5 ! Maximum radial order n

/
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&num

diff_scheme = ’MAGNUS_GL4’

r_root_solver = ’BRENT’

/

&scan

grid_type = ’INVERSE’

grid_frame = ’COROT_I’ ! computations in corotating frame.

freq_min_units = ’UHZ’

freq_max_units = ’UHZ’

freq_frame = ’INERTIAL’ ! output freqs in inertial frame

freq_min = 3.8 ! Minimum frequency

freq_max = 100.0 ! Maximum frequency

n_freq = 500 ! Number of frequency points

/

&grid

n_inner = 12 ! points in the evanescent region

alpha_osc = 5 ! points per oscillatory wavelength

alpha_exp = 2 ! points per exponential ’wavelength’

/

&ad_output

summary_file = ’profile_puls_summary.txt’

summary_file_format = ’TXT’

summary_item_list = ’M_star,n_pg,freq,freq_units’

mode_template = ’profile_mode.%J.txt’

mode_file_format = ’TXT’

mode_item_list = ’l,n_pg,omega,freq,freq_units,x,x_ref,xi_r,xi_h’

freq_units = ’UHZ’

freq_frame = ’INERTIAL’

/

&nad_output

/

The input file can be found on github: https://github.com/Cheryl-Lau/astero/
blob/master/work_bench_gyre/gyre.in
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Appendix C

ADIPLS inlist (coupled to
MESA)

The input file, inlist_pulse_controls.txt, is developed by the author after edit-
ing MESA and ADIPLS to allow for pulsation frequency computation with rotational
effects, using the perturbative calculation codes in ADIPLS written by Burke et al.
(2011). The file is contained in all ADIPLS work directories under the edited version
of MESA astero module. Users can enter the value of azimuthal order m and the
rate of uniform rotation through this input file. When the input in_terms_of_omega
is set to true, the code reads angular_velocity in units of critical rotation rate of
the star (Ωk); otherwise the code reads the rotation input in units of rad/s. Users
are required to set the order of the perturbative approach preferred before adding
rotational effects.

This is the inlist we used for computing the 2nd Pert. benchmark model.

&pulse_controls

freqs_after_every_step = .false.

freqs_after_final_step = .true.

/ ! end of pulse_controls namelist

&mode_controls

l = 1

em = -1

nu1 = 3.0 ! microHz, inertial frame
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nu2 = 40.0

iscan = 300

angular_velocity = 0.05

in_terms_of_omega_k = .true. ! otherwise in rad/s

compute_first_order_rotation = .false.

compute_second_order_rotation = .true.

special_output = 6

save_mode_filename = ’save_M_1.56_O_0.02_H_0.5_R_0.05_mode.data’

/ ! end of mode_controls namelist

The modules in MESA-r10398 that are edited by the author for computing rota-
tion effects in ADIPLS can be found on github: [astero module] https://github.
com/Cheryl-Lau/astero and [adipls module] https://github.com/Cheryl-Lau/
adipls. The corresponding files in the original MESA package can be replaced
with these edited module files to run the computation. For details, please re-
fer to the documentation file in https://github.com/Cheryl-Lau/astero/blob/

master/README.md.
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Appendix D

Shell scripts for grid scanning

The shell script for scanning ADIPLS grids, run_adipls.f, varies the param-
eters according to the user-specified boundaries and step sizes. At each itera-
tion, it changes the parameter values in the input files inlist_astero.txt and
inlist_pulse_controls.txt, then calls MESA to run the simulation. The pulsa-
tion frequency computation results are automatically saved into output files with
a naming convention of save_M_mm_O_oo_H_hh_R_rr_mode.data, where the lower-
case letters represent the values of the model’s stellar mass, overshooting, core hy-
drogen abundance, and rotation rate respectively.

Similarly, the shell script for scanning GYRE grids, run_gyre.f, varies the param-
eter values in the input files inlist_astero.txt and gyre.in. It calls MESA to
evolve the stellar model, then inputs the last model in the log directory into GYRE
for frequency computation. All frequency output files are named profile_puls_

summary.txt. The output file of each model is stored into individual directories
along with the mode profiles (not required in this work). These directories have a
naming convention of gyre_output_M_mm_O_oo_H_hh_R_rr.

The two codes can be found on github: [run_gyre] https://github.com/Cheryl-Lau/
astero/blob/master/work_bench_gyre/run_gyre [run_adipls] https://github.
com/Cheryl-Lau/astero/blob/master/work_bench_adipls/run_adipls.
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Appendix E

Python script for processing
pulsation code outputs

This python script, Plot_mode_data_bench_grid.py, analyses the period spacings
of all models in the grid and benchmark directories specified by the user. It neglects
the skipped modes in the frequency computation and only extracts the data for the
specified azimuthal order m from the ADIPLS outputs. Each model is fitted with
a linear curve for periods longer than 1.5 days (or 1.0 days for period series with
maximum value below 1.5 days) to eliminate the oscillating regions. Their gradients
and intercepts are compared against the benchmark’s fitting uncertainties to extract
the best-matching models. Users can opt to enter self-defined gradient and intercept
filters during the testing stage. It then plots the period spacings of all best-matching
models and outputs their parameter sets.

The code evaluates the χ2 difference between all grid models and the benchmark.
First, it performs data interpolation, which duplicates the data at appropriate po-
sitions which are close to the original points, such that the two curves can have the
same number of frequencies for computing χ2 with Equation 2.1. To generate the
contour plots, it loops through each parameter combination, and extracts the data
for each parameter and the corresponding χ2 values from the full set of results. The
extracted data from the varied parameters are those of which the other two constant
parameters are at values closest to the benchmark.

The code can be found on the github website: https://github.com/Cheryl-Lau/
mode-data-processing/blob/master/Plot_mode_data_bench_grid.py
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Appendix F

Python script for detecting the
first local minimum in period
spacing patterns

This code, Plot_1st_min_rotation_adipls_gyre.py, processes two work directo-
ries, which only contain the models with varying rotation rates computed with each
formalism. It detects the first local minimum in the period spacing curve and plots
the period of this point against the rotation rate of the model.

The code can be found on the github website: https://github.com/Cheryl-Lau/
mode-data-processing/blob/master/Plot_1st_min_rotation_adipls_gyre.py
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Appendix G

Contour plots of χ2 variation with
stellar parameters

We present the 2-D surface plots showing the variation of χ2 values amongst all
stellar parameters, computed with the 2nd Pert. and the TAR course grids. Unlike
Figure 3.8, these contours do not show smooth correlations between the two varied
parameters. Note the change in scale between figures.

(a) hydrogen abundance vs. stellar mass (b) overshoot vs. stellar mass

Figure G.1: Contour plots showing the variation of χ2 difference between 2nd Pert.
benchmark and coarse grid as a function of parameters (a) hydrogen abundance
and stellar mass, (b) overshoot and stellar mass, and (c) hydrogen abundance and
overshoot. Darker colours indicate smaller χ2 values.
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(c) hydrogen abundance vs. overshoot

Figure G.1: - continued

(a) hydrogen abundance vs. stellar mass (b) hydrogen abundance vs. overshoot

Figure G.2: Contour plots showing the variation of χ2 difference between TAR
benchmark and coarse grid as a function of parameters (a) hydrogen abundance and
stellar mass, (b) hydrogen abundance and overshoot, (c) overshoot and stellar mass,
(d) rotation rate and hydrogen abundance, (e) rotation and stellar mass, and (f)
rotation rate and overshoot. Darker colours indicate smaller χ2 values.

77



APPENDIX G. CONTOUR PLOTS OF χ2 VARIATION WITH STELLAR
PARAMETERS

(c) overshoot vs. stellar mass (d) rotation rate vs. hydrogen abundance

(e) rotation vs. stellar mass (f) rotation rate vs. overshoot

Figure G.2: - continued
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Italiana, 77, 366.

Dupret, M.-A., Miglio, A., Grigahcène, A., et al. (2007). Theoretical aspects of
g-mode pulsations in γ Doradus stars. Communications in Asteroseismology,
150, 98.

Eckart, C. (1960). Hydrodynamics of Oceans and Atmospheres. Pergamon Press,
Oxford. Eddington, A. S. (1917). The pulsation theory of Cepheid variables.
The Observatory, 40, 290-293.

Eggenberger, P., Lagarde, N., Miglio, A., et al. (2017). Constraining the efficiency
of angular momentum transport with asteroseismology of red giants: the effect
of stellar mass. A&A, 599, A18.

Fossat, E., Boumier, P., Corbard, T., et al. (2017). Asymptotic g modes: Evidence
for a rapid rotation of the solar core. A&A, 604, A40.

Fuller, J., Piro, A. L., & Jermyn, A. S. (2019). Slowing the spins of stellar cores.
MNRAS, 485, 3661-3680.

Gabriel, M. (1996). Solar oscillations: theory. Bulletin of Astron. Soc. India, 24,
233.

Garćıa, R. A., Ballot, J. (2019). Asteroseismology of solar-type stars. Living Rev.
Sol. Phys 16:4.

Gough, D. O. (1983). Helioseismology: Oscillations as a probe of the Sun’s interior.
Nature, 304, 689-690.

Gough, D. O., Leibacher, J. W., Scherrer, P. H., et al. (1996). Perspectives in
Helioseismology. Science, 272, 5266, 1281-1283.

Gough, D. O., Thompson, M. J. (1990). The effect of rotation and a buried magnetic
field on stellar oscillations. MNRAS, 242, 25-55.

Grigahcène, A., Dupret M.-A, Gabriel M., et al. (2005). Convection-pulsation
coupling. I. A mixing-length perturbative theory. A&A, 434, 1055-1062.

Guzik, J. A., Kaye, A. B., Bradley, P. A., et al. (2000). Driving the gravity-mode
pulsations in γ Doradus variables. ApJ, 542, L57-L60.

Handler, G. (1999). The domain of γ Doradus variables in the Hertzsprung-Russell
diagram. MNRAS, 309, L19-L23.

Henyey, L., Vardya, M. S., & Bodenheimer, P. (1965). Studies in Stellar Evolution.
III. The Calculation of Model Envelopes. ApJ, 142, 841.

81



Kaye, A. B., Handler, G., Kriscuinas, K., et al. (1999). γ Doradus Stars: Defining
a New Class of Pulsating Variables. ASP, 111, 840-844.

Kjeldsen, H., Arentoft, T., Bedding, T. R., et al. (1998). Asteroseismology and stel-
lar rotation. Proceedings of SOHO 6/GONG 98 workshop. Structure and dy-
namics of the interior of the sun and sun-like stars. ESA SP-418, 385-390.

Koch, D. G., Borucki, W. J., Basri, G., et al. (2010). Kepler Mission Design, Real-
ized Photometric Performance, and Early Science. ApJL, 713, 2, L79-L86.

Kurtz, D. W., Saio, H., Takata, M., et al. (2014). Asteroseismic measurement of
surface-to-core rotation in a main-sequence A star, KIC 11145123. MNRAS,
444, 102–116.

Ledoux, P. (1949). Contributions à l’Etude de la Structure Interne des Etoiles et de
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