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Abstract

In this thesis, we apply homological methods to the study of groups in
two ways: firstly, we generalise the results of [12] to a more general class
of categories than posets, including finite groups which satisfy a particular
cohomological condition. We then show that the only finite group satisfying
this condition is the trivial group, but our results still hold in more gen-
erality than the originals, and we suggest a path to further generalisation.
Secondly, we study the representation theory of certain groups by passing
their actions on certain simplicial complexes to actions on the homologies of
those complexes.
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Chapter 1

Introduction

The aims of this thesis are twofold. Firstly, we construct an analogue of the
cellular homology of CW-complexes in the setting of the cohomology of (a
certain class of) categories with coefficients in a presheaf on that category,
extending a result of [12]. Our methods in this section closely mirror theirs,
with some modifications to deal with new issues that arise in this setting.
We had initially hoped to apply this to the cohomology of groups, but we
found that there are no non-trivial groups to which our methods apply.

Secondly, we turn our attention to the representations of groups induced
by passing their actions on simplicial complexes to actions on the homology
groups of those simplicial complexes. We consider two particular examples:
firstly, a certain naturally emerging action of the symmetric group, and sec-
ondly a naturally emerging action of a finite nilpotent group (or, more gen-
erally, a product of groups with nontrivial centres). Both were brought to
our attention by Stephen Donkin.

Similar approaches to ours of Chapters 6 and 7 have been used to study
the representations of other groups. Notably, there has been considerable
study of the representations of braid groups arising by these means, as in [3],
[23], and [30], for example, along with the recent unification of [39]. There
has also been much interest in homological representations of posets, which
has also made use of the concept of shellability that we use in Chapter 7, as in
[4] for the shellability and [45] for the representation theory, with the whole
being summarised in the survey article of [47]. These methods have also
been applied to other areas, such as in the representation theory of reflection
groups in [28], Coxeter groups in [20] and [21]. There has also been some
recent study of the representations of the symmetric groups by these means,
for example in [24].

The cohomology of categories has also been considered in various forms
including the cohomology that we define here (beginning with [41]), and its
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generalisations to the Baues-Wirsching cohomology introduced in [2] and
studied further in [37] and the Thomason cohomology studied in [17].

Our work in Chapter 3, and that of [12], builds upon the work of [13].
In this paper, the authors establish a representation of Khovanov homology
as the cohomology of a sheaf on a poset. In [12], this process is reversed,
in more generality: starting with the cohomologies of sheaves on posets, a
cellular way to compute their homologies is constructed. When applied to
the sheaf produced in [13], this recovers the original definition of Khovanov
homology. Here, we extend this to a more general class of categories.

In Chapter 2 of this thesis, we develop the theory of categories and ho-
mological algebra that we shall need throughout, together with some more
specialised category-theoretic concepts that we shall need for Chapter 3. In
Chapter 3, we shall then use these to prove our first main result, generalising
the finite case of [12, Thm. 2].

In Chapters 4 and 5, we then develop the respective topological and
group-theoretic material that we shall subsequently require. In Chapter 6 we
use these to apply Lemma 5.2.8 above to the action of the symmetric group
on a particular naturally-arising complex and analyse the resulting represen-
tations. Finally, in Chapter 7, we use the material developed in Chapters 4
and 5 to apply Lemma 5.2.8 above to the action of any finite nilpotent group
G (or, more generally, any finite direct product of finite groups which are
not centreless) on the complete multipartite simplicial complex ∆(G) aris-
ing from an analogue of decomposition into prime factors in our group, and
analyse the resulting representations.
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Chapter 2

Homological Background

2.1 Categories

2.1.1 Basic Definitions

We begin by defining some categorical concepts that we shall require. Firstly,
a category itself.

Definition 2.1.1. [42, p. 8] A category C consists of:

1. A class ob C of objects,

2. For each pair of objects A,B ∈ ob C, a set Hom(A,B) of morphisms
from A to B, disjoint from all other such sets, and

3. For each triple of objects A,B,C ∈ ob C, a binary operation compo-
sition

◦ : Hom(A,B)× Hom(B,C)→ Hom(A,C),

such that for each A ∈ ob C, there is an identity morphism 1A, such
that for any B ∈ ob C, any f ∈ Hom(A,B), and any g ∈ Hom(B,A),
we have f ◦ 1A = f and 1A ◦ g = g which is associative, where it is
defined.

There are two size restrictions on categories that will be important.
Firstly, a mild condition.

Definition 2.1.2. [35, p. 2] A category C is small if ob C is a set, rather
than a proper class.

And secondly, a more restrictive requirement.

Definition 2.1.3. A category C is locally finite if:
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2.1. Categories

1. For all A ∈ ob C, there are at most finitely many other objects B ∈ ob C
such that Hom(A,B) is non-empty, and

2. For all A,B ∈ ob C, Hom(A,B) is a finite set.

The category is finite if also C has finitely many objects.

Secondly, we define some classes of morphisms and objects of a category.
Firstly, we shall define the following generalisations of injective, surjective,
and bijective functions.

Definition 2.1.4. [42, pp. 22, 303–304] A morphism f : A→ B in a category
C is an epimorphism (or is epic) if for all g, h : B → C in C, we have that
g ◦ f = h ◦ f implies g = h.

Dually f is a monomorphism (or is monic) if for all g, h : C → A in
C, we have that f ◦ g = f ◦ h implies g = h.

Finally, f is an isomorphism if there is a map g : B → A such that
f ◦ g = idB and g ◦ f = idA.

Next, we define the following naturally arising constructions.

Definition 2.1.5. [42, pp. 216-218],[35, p. 14] An object A is initial if for
every object B, there is a unique morphism A → B, and terminal if for
every object B there is a unique morphism B → A. If A is both initial and
terminal, then it is a zero object.

If C has a zero object 0, then a morphism f : A→ B is a zero morphism
if the following diagram commutes:

0

A B
f

with the maps to and from 0 the unique such maps.
A category C has zero morphisms if for each pair (A,B) of objects of

C, there is a morphism 0AB : A→ B such that:

1. For all morphisms f : C → A, we have 0AB ◦ f = 0CB, and

2. For all morphisms g : B → C, we have f ◦ 0AB = 0AC .

We will generally drop the subscripts.

We note in particular that if C is locally finite and has an initial object,
then C is in fact finite.

A key property of initial and terminal objects is that they are unique up
to isomorphism. The following result is [42, Lemma. 5.3, 5.6].
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2. Homological Background

Lemma 2.1.6. If both A and B are initial (respectively terminal) in a cate-
gory C, then there is a unique isomorphism ϕ : A→ B.

Proof. By initiality of A (or terminality of B), there is a unique morphism
ϕ : A → B. Similarly, by initiality of B (or terminality of A), there is a
unique morphism ψ : B → A. But also, there can be only one morphism
A→ A and one morphism B → B, which must be the respective identities,
so we have ϕ ◦ ψ = idB and ψ ◦ ϕ = idA, so ϕ is indeed an isomorphism.

A fundamental concept is that of a (co)limit.

Definition 2.1.7. [48, §A.5] Let A ∈ ob C, D be a commuting diagram of
objects and morphisms of C, and for each object Di of D, let fi : A → Bi

be a morphism such that the diagram formed by adding A and the fi to D
commutes. Then (A, (fi)) is a limit of D if, for any other object B ∈ ob C
with maps gi : B → Di such that the diagram formed by adding B and
the gi to D commutes, there is a unique morphism ϕ : B → A such that
the combined diagram formed by adding A, B, the fi, the gi, and ϕ to D
commutes.

Di

B A

Dj

gi

gj

ϕ

fi

fj

Dually, if hi : Di → A are morphisms such that the diagram formed by
adding A and the hi to D commutes, then (A, (hi)) is a colimit of D if, for
any other object B ∈ ob C with maps ki : Di → B such that the diagram
formed by adding B and the ki to D commutes, there is a unique morphism
ψ : A→ B such that the combined diagram formed by adding A, B, the hi,
the ki, and ϕ to D commutes.

Di

A B

Dj

hi

ki

ψ

hj

kj
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2.1. Categories

This is a useful concept as these (co)limits are unique, up to unique
isomorphism, as seen in [42, p. 217].

Lemma 2.1.8. If both (A, f) and (B, g) are limits (respectively colimits) of
a diagram D, then there is a unique isomorphism ϕ : A → B such that
fi = gi ◦ ϕ (respectively gi = ϕ ◦ fi) for all i.

Proof. We shall prove the limit case: the proof for the colimit case is dual.
Since (B, g) is a limit for D, it in particular has maps to each Di such

that the resulting diagram commutes, so by the definition of A being a limit,
there is a unique morphism ϕ : B → A such that the resulting diagram
commutes. But we can also perform this construction with the roles of A
and B reversed, so there is a unique morphism ψ from A to B such that the
resulting diagrams commute. Composing these two morphisms together, we
obtain the following commuting diagram:

Di

A A

Dj

fi

fj

ϕ◦ψ

fi

fj

Clearly, inserting the identity map on A in the place of ϕ ◦ ψ still leaves a
commuting diagram, so by the definition of A being a limit, ϕ◦ψ must be the
identity. Similarly, ψ ◦ϕ must be the identity, so ϕ and ψ are isomorphisms.

On account of this uniqueness, we will henceforth speak of “the (co)limit
of D”, rather than “a (co)limit of D”.

There are various kinds of (co)limits with names of their own, some of
which we now list.

Definition 2.1.9. [42, pp. 214, 217] For any collection of objects Ai ∈ ob C,
the product of the Ai is the limit of the diagram whose objects are the Ai
with no morphisms.

Dually, the coproduct of the Ai is the colimit of the diagram whose
objects are the Ai with no morphisms.

An object which is both the product and the coproduct of the Ai is called
their biproduct.
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2. Homological Background

We now generalise the concept of a kernel and cokernel to categories.

Definition 2.1.10. [42, pp. 223, 239] For a category C with zero morphisms
and a morphism f : A → B in C, a kernel of f is a limit (K(f), ker(f)) of
the diagram

0

A B
f

Dually, a cokernel of f is a colimit (C(f), cokerf) of the diagram

A B

0

The definition of a category is not quite symmetric: reversing the direction
of all morphisms gives the following, different, category.

Definition 2.1.11. [42, p. 23] For a category C, the opposite category
Cop is the category whose objects are precisely the objects of C, and whose
morphism set for each pair of objects A and B in C is

HomCop(A,B) = HomC(B,A).

The following definition will be key to everything that we do.

Definition 2.1.12. A sequence of objects and morphisms

· · · → A
f−→ B

g−→ C → · · ·

in a category with zero morphisms is exact at B if ker(g) = coker(f).

2.1.2 Functors

We now move to defining maps between categories, in a way which has a
similar asymmetry to the definition of a category, and hence two forms.

Definition 2.1.13. [35, p. 49] Let C and D be categories. A covariant
functor F from C to D consists of:

1. A mapping sending each object A of C to an object F (A) of D,

2. For each pair of objects A and B of C, a map from HomC(A,B) to
HomD(F (A), F (B)) such that:
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2.1. Categories

(a) For each A ∈ ob C, F (1A) = 1F (A), and

(b) If f and g are composable morphisms in C, then F (f) and F (g)
are composable in D, and F (f ◦ g) = F (f) ◦ F (g).

A contravariant functor from C to D is a covariant functor from the op-
posite category of C to D. Equivalently, a contravariant functor F : C → D
consists of:

1. A mapping sending each object A of C to an object F (A) of D.

2. For each pair of objects A and B of C, a map from HomC(A,B) to
HomD(F (B), F (A)) such that:

(a) For each A ∈ ob C, F (1A) = 1F (A) still, and

(b) If f and g are composable morphisms in C, then F (g) and F (f)
are composable in D, and F (f ◦ g) = F (g) ◦ F (f).

The following example will be critical.

Example 2.1.14. Let C be a category, and let A be an object of C. Then
there is a covariant functor HomC(A,−) : C → Set which maps each object
B of C to HomC(A,B) and each morphism f : B → C of C to the function
HomC(A, f) : HomC(A,B)→ HomC(A,C) given by g 7→ f ◦ g.

There is also a contravariant functor HomC(−, A) which maps each object
B of C to HomC(B,A) and each morphism f : B → C of C to the function
HomC(f, A) : HomC(C,A)→ HomC(B,A) given by g 7→ g ◦ f .

We can also define maps between these functors.

Definition 2.1.15. [35, p. 59] Let F and G be functors between categories
C and D. Then a natural transformation π from F to G is a collection of
morphisms consisting of one morphism from F (A) to G(A) for each A ∈ ob C,
such that the following diagram commutes for each morphism f : A→ B in
C:

F (A) F (B)

G(A) G(B)

πA

F (f)

πB

G(f)

Now, as we have a collection of objects (our functors), and something like
morphisms between them, it is natural to assemble these into a category.

13



2. Homological Background

Definition 2.1.16. [42, p. 27] If C and D are categories, with D small,
the functor category DC is the category whose objects are the functors
C → D, and whose morphisms are the natural transformations between those
functors.

Above, we require D to be small only so that the hom-sets of DC are sets,
rather than proper classes.

We define also the following naturally arising properties of functors.

Definition 2.1.17. [35, pp. 51-52] A (covariant) functor F : C → D is
faithful if, for all objects X, Y ∈ ob C, the function

F Y
X : HomC(X, Y )→ HomD(F (X), F (Y ))

is injective, and full if F Y
X is surjective.

A (covariant) functor F : C → D between categories with zero morphisms

is exact if for all exact sequences X
f−→ Y

g−→ Z in C, the sequence

F (X)
F (f)−−→ F (Y )

F (g)−−→ F (Z)

is exact in D.
A (covariant) functor F : C → D between categories with zero morphisms

is left-exact if for all exact sequences

0→ X
f−→ Y

g−→ Z → 0

in C, the sequence

0→ F (X)
F (f)−−→ F (y)

F (g)−−→ F (z)

is exact. Dually, F is right-exact if for all exact sequences

0→ X
f−→ Y

g−→ Z → 0

in C, the sequence

F (X)
F (f)−−→ F (y)

F (g)−−→ F (z)→ 0

is exact.
A functor F : C → D is an embedding if it is faithful and also the

induced function F : ob C → obD is injective.

Another key definition is the following, which allows us to take limits of
functors, rather than of diagrams.
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2.1. Categories

Definition 2.1.18. If F : C → D is a contravariant functor, then the limit
of F is an object lim←−F of D together with morphisms ϕA : lim←−F → F (A)
for every object A of C such that for each morphism ξ : A→ B of C, we have
ϕA = FξϕB, that is universal with this property. That is, for each object X
of D, there is a unique morphism χ making the following diagram commute
for all ξ : A→ B of C:

F (A)

X lim←−F

F (B)

χ

ψA

ψB

ϕA

ϕB

F (ξ)

We can now define the following classes of categories.

Definition 2.1.19. A subcategory D of a category C is a category whose
objects are some subclass of ob C and such that, for each pair (A,B) of objects
of D, we have

HomD(A,B) ⊆ HomC(A,B).

In this case, we call the functor F : D → C with F (A) = A for each A ∈ ob C
and

F (A
ϕ−→ B) = A

ϕ−→ B

for each ϕ ∈ HomD(A,B) the inclusion functor.

Definition 2.1.20. A category C is concrete if it is a subcategory of Set:
that is, if its objects are sets, and its morphisms are (not necessarily all of
the) functions between those sets.

We shall require also the following concept.

Definition 2.1.21. [42, pp. 257, 258] An adjoint pair of functors is a pair of
functors F : C → D and G : D → C such that there are natural isomorphisms

HomC(X,GY ) ∼= HomD(FX, Y )

for all X ∈ ob C and all Y ∈ obD. If (F,G) is an adjoint pair, then F is
left-adjoint to G, and G is right-adjoint to F .

15



2. Homological Background

2.1.3 Abelian Categories

There is one category that has particularly nice properties.

Definition 2.1.22. [42, Example. 1.4(i)] We denote the category of all
abelian groups by Ab.

Now, we consider a class of categories that are “close enough” to Ab to
share its nice properties.

Definition 2.1.23. [42, p. 307] A category C is abelian if:

• There is some zero object 0 ∈ ob C, such that for every A ∈ ob C, there
is exactly one morphism 0→ A, and exactly one morphism A→ 0.

• For every A,B ∈ ob C, there is some A ⊕ B ∈ ob C, that is both the
product and coproduct of {A,B}.

• For every A,B ∈ ob C, and every f ∈ Hom(A,B), there are some
k : K → A, and c : B → C in C such that k is a kernel for f , and c is
a cokernel for f .

• Every monomorphism in C is the kernel of some morphism in C, and
every epimorphism in C is the cokernel of some morphism in C.

As a first example (other than Ab itself), we have the following result,
which is [42, Prop. 5.93]:

Lemma 2.1.24. Let C be an abelian category, and let D be a small cat-
egory. Then the category CD of functors (with natural transformations as
morphisms) from D to C is abelian.

Proof. We work essentially component-wise: the zero object of CD is the
functor 0 assigning the zero object of C to every object of D (with the unique
maps between them). For any F ∈ ob (CD), the maps from the zero object
of C out to each other object assemble to give a natural transformation from
0 to F , and this is unique as any other natural transformation would have
to differ at some coordinate, thus contradicting the uniqueness of the maps
in C. Similarly, there is a unique natural transformation from F to 0.

Our biproduct is then similarly given component-wise: for any two func-
tors F and G, for each D ∈ obD, there is a biproduct of F (D) and G(D)
in C, and the functor sending each D to F (D)⊕G(D) satisfies the universal
property for the product in each coordinate, and hence the diagrams assemble
to form a diagram in the functor category.
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2.1. Categories

Similarly, given any natural transformation π : F → G, we can assemble
the (co)kernels of the πD : F (D) → G(D) into natural transformations,
which form a (co)kernel for π.

Finally, for each monomorphism (respectively epimorphism) π in the func-
tor category, each component of π is a monomorphism (respectively epimor-
phism), so is the kernel (respectively cokernel) for some other morphism, and
we can assemble these other morphisms to give a natural transformation of
which π is the kernel (respectively cokernel).

The following results, which are found in [35, Thm. 7.2] and [35, pp. 94,
97] respectively, formalise our concept of abelian categories being “close
enough” to Ab (or more generally, to the category RMod of modules over a
ring R), and thereby simplify many proofs, by allowing us to work in RMod,
rather than in some other abelian category that may be less amenable to
study.

Theorem 2.1.25. If C is a small abelian category, then there is a ring R
and a full faithful exact covariant imbedding F : C → RMod.

See [35, p. 151] for a proof.

Theorem 2.1.26 (Metatheorem). Let T be a theorem of the form “p implies
q”, where p is a statement about a finite diagram D that states that some parts
of that diagram:

• are/are not commutative,

• are/are not exact sequences, and/or

• are/are not limits/colimits

and q states that (zero or finitely many) additional morphisms exist between
certain objects of D, and that some parts of the diagram resulting from adding
those morphisms to D:

• are/are not commutative,

• are/are not exact sequences, and/or

• are/are not limits/colimits.

Then if the theorem is true in the category of R-modules over all rings R, it
is true in all abelian categories.

Proof. All statements of this form are preserved by the imbedding of Theorem
2.1.25, so this follows immediately from that result.
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2. Homological Background

Abelian categories are useful for many reasons, including the following
result, which is standard, and is found, for example, as [42, Prop. 2.27].

Lemma 2.1.27 (Five Lemma). If the following is a commutative diagram
in an abelian category with exact rows where β and δ are isomorphisms, α
is epic and ε is monic, then there is a map γ making the diagram commute,
and γ is an isomorphism.

A B C D E

F G H I J

ζ

α

η

β

θ

γ

ι

δ ε

κ λ µ ν

Proof. By Theorem 2.1.26, it suffices to show this for modules over a ring
R, so we may assume that our categories are concrete, so that “monic” and
“epic” are equivalent to “injective” and “surjective” respectively, and we may
select elements from our objects.

First, we construct γ
To show that γ is epic, consider any h ∈ H. Then δ−1µ(h) ∈ D, and

ει(δ−1µ(h)) = νµ(h) = 0 since the right-hand square commutes and the
bottom row is exact, so ι(δ−1µ(h)) = 0 since ε is monic, so there is some
c ∈ C such that θ(c) = δ−1µ(h), so µ(h) = δθ(c) = µγ(c), so µ(γ(c)−h) = 0,
so there is some g ∈ G such that λ(g) = γ(c) − h, since the bottom row is
exact.

Since the second square commutes, we have γ(c)− h = λ(g) = γηβ−1(g),
so h = γ(c− ηβ−1(g)), which lies in the image of γ.

To show that γ is monic, consider some c ∈ C such that γ(c) = 0. Then
δθ(c) = µγ(c) = 0 since the third square commutes, so θ(c) = 0 since δ is
monic, so there is some b ∈ B such that η(b) = c by exactness of the top
row. Then λβ(b) = 0 since the second square commutes, so by exactness
of the bottom row, there is some f ∈ F such that κ(f) = β(b). Since α is
epic, there is some a ∈ A such that α(a) = f , and since the left-most square
commutes, ζ(a) = β−1κα(a) = b, so c = η(b) = ηζ(a) = 0, since the top row
commutes.

2.1.4 Coslice Categories

The following shall be of minor use in our work, but may be of more use in
further generalising it.

Definition 2.1.28. [1, p. 17] For C a category and x0 an object of C, the
coslice category x0/C is the category whose objects are the x0 → y of C

18



2.1. Categories

whose source is x0, and whose morphisms are the commuting triangles (in C)
of the form

x0

y z

The following lemma, which is [32, Lemma. 2.3.5], encodes the property
that may make this concept useful for such generalisations of the results of
Chapter 3.

Lemma 2.1.29. For C a category and x an object of C, the coslice category
x/C has initial object the identity morphism i : x0 → x0.

Proof. For any morphism f : x0 → y of C, there is a morphism in c/C from
i to f given by

x0

x0 y
i

f

f

which is clearly unique, so i is initial in C.

2.1.5 Projectives and Injectives

Projective objects, and projective resolutions, will be key in Chapter 3. We
now establish the basic properties of these that we shall require. We shall
also briefly require the dual concept of injective objects and resolutions, in
order to define our homology.

Definition 2.1.30. [35, p. 69] An object P in a category C is projective
if, for every epimorphism ϕ : A → B, the map HomC(P,A) → HomC(P,B)
induced by ϕ is surjective. Dually, P is injective if, for every monomorphism
ϕ : A→ B, the map HomC(A,P )→ HomC(B,P ) induced by ϕ is surjective.

First, a simple lemma, found as [42, Cor. 3.6].

Lemma 2.1.31. If P is a collection of projective objects in an abelian cate-
gory C, then ⊕

P∈P

P

is projective.
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2. Homological Background

Proof. Let ϕ : A→ B be an epimorphism. Then

ϕP := HomC(P,A
ϕ−→ B)

is an epimorphism (in Ab) for all P ∈ P , so is surjective, since the epimor-
phisms in Ab are the surjectives. Now, the map

Φ : HomC

(⊕
P∈P

P,A

)
→ HomC

(⊕
P∈P

P,B

)
defined by

Φ(f) =
∑
P∈P

ϕ ◦ fP

is precisely

HomC

(⊕
P∈P

P,A
ϕ−→ B

)
so it suffices to show that this is surjective.

But for each

f ∈ HomC

(⊕
P∈P

P,B

)
,

each component fP ∈ HomC(P,B) must be given by fP = ϕP (gP ) for some
gP : P → A (since ϕP is surjective), so with g :=

∑
gP , we have

Φ(g) =
∑
P∈P

ϕ ◦ gP =
∑
P∈P

fP = f,

so indeed Φ is surjective, and ⊕
P∈P

P

is projective.

The following is what we shall need projective and injective objects for.

Definition 2.1.32. [42, p. 325] A projective resolution P of an object X
in an abelian category C is an exact sequence

· · · → Pn → Pn−1 → · · · → P1 → P0 → X → 0

such that each Pi is a projective object.
Dually, an injective resolution Q of an object X in an abelian category

C is an exact sequence

0→ X → Q0 → Q1 → · · · → Qn−1 → Qn → · · ·

such that each Qi is an injective object.
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2.1. Categories

Definition 2.1.33. An abelian category C has enough projectives if for
every X ∈ ob C, there is a projective P ∈ ob C and an epimorphism P → X.

Dually, C has enough injectives if for every X ∈ ob C, there is an
injective Q ∈ ob C and a monomorphism X → Q.

To define the cohomology of categories, we will require the following re-
sult, which is (the dual form of) [42, Thm. 6.16]

Theorem 2.1.34. Let C be an abelian category, and suppose that we have the
following diagram in C with each Qn

X and Qn
Y injective and exact columns:

0 0

X Y

Q0
X Q0

Y

...
...

Qn
X Qn

Y

...
...

f

g h

d0 e0

dn en

Then there is a chain map f̂ : QX → QY making the completed diagram
commute, and all such chain maps are homotopic.

Proof. By Theorem 2.1.26, we work in the case C = RMod for some ring R.

To show the existence of f̂ , we proceed by induction on n. If n = 0, note
that h is a monomorphism, so there is a map f̂ 0 : Q0

X → Q0
Y with fg = hf̂ 0.

Now, for n > 0, consider the following diagram:

Qn−1
X Qn−1

Y

Qn
X Qn

Y

Qn+1
X Qn+1

Y

dn−1

f̂n−1

en−1

dn

f̂n

en

21



2. Homological Background

Define C = coker(dn−1) = Qn
X/ker(dn), so that the map δ : C → Qn+1

X is
injective.

And enf̂ndn−1 = enen−1f̂n−1 = 0, so im(dn−1) ⊆ ker(enf̂n). Thus, enf̂n

passes to a map ε : C → Qn+1
Y . But since Qn+1

Y is injective, there is then a

map f̂n+1 : Qn+1
X → Qn+1

Y such that f̂n+1δ = ε, and so f̂n+1dn = enf̂n, as
required.

Now, if f̃ : QX → QY is another chain map mapping this diagram com-
mute, we construct our homotopy by induction.

First, treat X and 0 as terms −1 and −2 of the left-hand sequence, with
d−1 = g and d−2 = 0, and similarly treat Y and 0 as terms −1 and −2 of the
right-hand sequence, with e−1 = h and e−2 = 0. Define also

f̂−1 = f̃−1 = f

s−1 = 0s−2 = 0.

Then we have f̃−1 − f̂−1 = f − f = 0 = e0s−1 + s−2e−1, so s−1 and s−2 can
form the first two terms of our homotopy.

Now, if we can show that (f̃n− f̂n− en−1sn)(im dn−1) = 0, the injectivity
of Qn

Y will give a map sn+1 : Qn+1
X → Qn

Y such that sn+1δ is the map C → Qn
Y

induced by f̃n − f̂n − en−1sn, and so sn+1dn + en−1sn = f̃n − f̂n, and hence
extend our homotopy to all terms.

Now,

(f̃n − f̂n − en−1sn)dn−1 = (f̃n − f̂n)dn−1 − en−1sndn−1

= (f̃n − f̂n)dn−1 − en−1(f̃n−1 − f̂n−1 − en−2sn−1)

= (f̃n − f̂n)dn−1 − en−1(f̃n−1 − f̂n−1)

= (f̃ndn−1 − en−1f̃n−1)− (f̂ndn−1 − en−1f̂n−1)

= 0

with the last equality due to f̂ and f̃ being chain maps.

Definition 2.1.35. Let C be an abelian category with enough injectives, let
D be an abelian category, and let F : C → D be a left-exact covariant functor
such that for each pair of objects X and Y of C, the map

F : HomC(X, Y )→ HomD(F (X), F (Y ))

is a homomorphism of abelian groups. Then for every X ∈ C, there is an
injective resolution QX of X.

22



2.1. Categories

Now, for every morphism f : X → Y of C, for each n ∈ N, we have the
following diagram in C:

X Y

...
...

Qn
X Qn

Y

f

with the vertical maps given by composing the maps of the injective reso-
lution. By Theorem 2.1.34, there is a (unique up to homotopy) chain map

f̂ : QX → QY making the resulting diagram commute. Applying F to this,
we obtain the following:

F (X) F (Y )

...
...

F (Qn
X) F (Qn

Y )

F (f)

F (f̂)

Now, the vertical sequences of this diagram, with the top row removed, are
not in general exact, but are still cochain complexes, and so we can take their
cohomology. Further, as F (f̂) is a chain map and is unique up to homotopy,
it passes to unique maps on cohomology. That is, we have unique morphisms

Hn(QX) 7→ F (f̂)∗Hn(XY )

for each n. We now define our nth right derived functor F n of F on
objects by F n(X) = Hn(QX) and on morphisms by F n(f) = F (f̂)∗.

It remains to show that these are well-defined: that is, that the derived
functors as defined above do not depend on the choice of injective resolutions
QX , which we do in the following result, which is dual to [42, Prop. 6.20].

Lemma 2.1.36. If C is an abelian category with enough injectives, D and
abelian category, F : C → D an additive covariant functor, and Q̃X is an
injective resolution of each object X of C (not necessarily agreeing with the

QX above), then the right derived functors F̃ n arising from these new choices

are naturally isomorphic to the D̃n.
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2. Homological Background

Proof. First, apply Theorem 2.1.34 to the following diagram to obtain a chain
map i : QX → Q̃X .

X X

...
...

Qn
X Q̃n

X

1X

Let τX be the morphism F nX → F̃ nX induced by F (i) in homology.
But by applying Theorem 2.1.34 to the diagram

X X

...
...

Q̃n
X Qn

X

1X

we obtain another chain map j : Q̃X → QX . Let ρX be the morphism that
it induces in homology. But then composing these together, in each order,
gives chain maps ij : QX → QX and ji : Q̃X → Q̃X making the following
diagrams commute:

X X X X

...
...

...
...

Qn
X Qn

X Q̃n
X Q̃n

X

1X 1X

ij ji

But the identity chain maps on QX and Q̃X also make these diagrams com-
mute, so by Theorem 2.1.34, ij and ji are homotopic to those respective
identity chain maps, hence also F (ij) and F (ji) are homotopic to their re-
spective identities, so 1FnX = F (ij)∗ = τXρX and 1F̃nX = F (ji)∗ = ρXτX , so
τX is an isomorphism.

It remains to show that these form a natural isomorphism. That is, we
require the following diagram to commute for each morphism f : X → Y of
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2.2. Sheaves on Categories

C:
F nX F̃ nX

F nY F̃ nY

τX

Fnf F̃nf

τY

But applying Theorem 2.1.34 to the outer two columns of each of the fol-
lowing two diagrams (and applying F and taking cohomology) gives the
clockwise and anticlockwise compositions around the above diagram:

X X Y X Y Y

...
...

...
...

...
...

Qn
X Q̃n

X Q̃n
Y Qn

X Qn
Y Q̃n

Y

1X f f 1Y

And by the uniqueness part of Theorem 2.1.34, these maps are homotopic,
so the resulting maps in cohomology agree.

2.2 Sheaves on Categories

We now proceed to define what will be our primary objects of study in
Chapter 3, and prove their basic properties.

Definition 2.2.1. [35, p. 245] For C a category, a presheaf F on C is a
contravariant functor F : C → RMod for some ring R (usually, we will have
R = Z, so RMod = Ab). We call the category that they form PreSh C.

The following well-known result, which generalises [42, p. 5.94], allows us
to tie in the above results.

Lemma 2.2.2. If C is a category, then PreSh C is an abelian category.

Proof. This is immediate from 2.1.24, since PreSh C = AbC
op

, and the con-
cept of an abelian category is self-dual (that is: the opposite category of an
abelian category is abelian).

We shall make use of two particular presheaves:
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2. Homological Background

Definition 2.2.3. [12, Example. 1, 2] For R a ring and M an R-module, and
C a category, the constant presheaf on C with value M is the presheaf
∆M : C → RMod given by ∆M(X) = M for all objects X of C, and
∆M(ϕ) = idM for all morphisms ϕ of C. We define also, for f : M → N
a morphism of RMod, the natural transformation ∆(f) : ∆M → ∆N of
presheaves with component at each object X given by ∆(f)x = f , thus
making ∆ into a functor.

For each object X of C, we define also the Yoneda presheaf ΥXM :
C → RMod to be the presheaf with

ΥXM(Y ) =

{
M if there is a morphism X → Y in C
0 otherwise

and with

ΥX(ϕ : Y → Z) =

{
idM if ΥX(Y ) = ΥX(Z) = M

0 otherwise.

We similarly define, for f : M → N a morphism of RMod, the natural
transformation ΥX(f) : ΥXM → ΥXN of presheaves with component at
each object y given by ΥX(f)Y = f if there is a morphism X → Y in C, and
ΥX(f)Y = 0 otherwise. Again, this makes ΥX into a functor.

A key property of the latter is the following, which generalises a result
found on [12, p. 3]:

Lemma 2.2.4. Let evX : PreSh C → Ab be the evaluation functor sending
presheaves F to F (X) and natural transformations κ to κX . Then ΥX is left
adjoint to evX .

Proof. Let A ∈ ob Ab and

f : HomPreSh (C)(ΥXA,F )→ HomZ(A,F (X))

be given by f(κ) = κX .
This is injective, since if f(κ) = f(λ), then κX = λX , and so κY = λY

for all Y such that there exists a morphism X → Y in C, and elsewhere
κY = λY = 0. It is surjective, since for any g ∈ HomZ(A,F (X)), the
morphism κ : ΥXA to F given by

κY =

{
g, if there exists X → Y in C
0, otherwise.

so f(κ) = g, as required.
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2.2. Sheaves on Categories

Now, for any g ∈ HomPreSh C(ΥXA,F ), any ϕ : B → A, and any b ∈ B,

f((ΥXϕ)∗(g))(b) = ((ΥXϕ)∗(g))X(b)

= (g ◦ΥX(ϕ))X(b)

= gX ◦ ϕ(X)(b)

= ϕ∗(gX)(b)

= ϕ∗(f(g))(b),

and for any ψ : ΥXA→ ΥXB,

f(ψ∗(g))(b) = f(g ◦ ψ)(b)

= gX ◦ ψX(b)

= (ψX)∗(gX)(b)

= evX(ψ)∗(f(g))(b).

So f is natural and these functors are an adjoint pair, as required.

The former has the following analogous key property, which generalises
[48, App. 2.6.7].

Lemma 2.2.5. The functors

∆ : RMod→ PreSh C

and

lim←− : PreSh C → RMod

form an adjoint pair.

Proof. Define

ϕ : Hom
RMod(M, lim←−F )→ HomPreSh C(∆M,F )

given by defining ϕ(f)X : M → F (X) to be the composition ψXf , where
ψX : lim←−F → F (X) is the map of the definition of the limit.

Now, ϕ is bijective, since if κ : ∆M → F , then by definition of the limit,
there is a unique map M → lim←−F that is compatible with the κX : M → F .

This is natural in M since if f : M → N then with

f̂ :Hom
RMod(M, lim←−F )→ Hom

RMod(N, lim←−F )

g 7→ g ◦ f
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and

f̄ :HomPreSh C(∆M,F )→ HomPreSh C(∆N,F )

G 7→ G ◦ f,

(where (G ◦ f)X := GX ◦ f for each object X) we have

ϕ ◦ f̂(g) = ϕ(gf) = ψXgf

and
f̄ ◦ ϕ(g) = f̄(ψXg) = ψXgf.

Finally, this is natural in F , since if κ : G→ F then with

κ̂ :Hom
RMod(M, lim←−G)→ Hom

RMod(M, lim←−F )

f 7→ (lim←−κ) ◦ f)

and

κ̄ :HomPreSh C(∆M,G)→ HomPreSh C(∆M,F )

τ 7→ κτ,

we have
ϕ ◦ κ̂(f)X = ϕ((lim←−κ)f) = ψX(lim←−κ)f,

and
(κ̄ ◦ ϕ(f))X = κ̄X(ψXf) = κXψXf,

and by definition, lim←−κ is the map lim←−G→ lim←−F such that

ψX(lim←−κ) = κXψX

for all X.
Thus, ∆ and lim←− form an adjoint pair.

Further, Υx preserves projectivity.

Lemma 2.2.6. For each X ∈ ob C and each A ∈ ob Ab, the Yoneda presheaf
ΥXA is projective in PreSh C if and only if A is projective.

Proof. By Lemma 2.2.4,

HomPreSh C(ΥXA,−) ∼= HomAb(A, evX(−)),

with the isomorphism being natural.
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Now, if A is projective, then for each epimorphism F
κ−→ G of PreSh C,

we have that
HomAb(A, evX(F

κ−→ G))

is surjective. Passing this through the above adjoint isomorphism, we have
that

HomPreSh C(ΥXA,F
κ−→ G)

is surjective, so ΥXA is projective.

Conversely, if ΥXA is projective, then for each epimorphism B
f−→ C of

Ab, we have that

HomPreSh C(ΥXA,∆B
∆f−→ ∆C)

is surjective. Passing through the above adjoint isomorphism, we have that

HomAb(A, evX(∆B
∆f−→ ∆C)) = HomAb(A,B

f−→ C)

is surjective, so A is projective.

We shall require also the following two key properties of the (contravari-
ant) Hom-functors. The former is [42, Thm. 2.38].

Lemma 2.2.7. Let C be an abelian category, and let X be an object of C.
Then the functor HomC(X,−) : C → Ab is left-exact.

Proof. By Theorem 2.1.26, it suffices to show this for C = RMod for all rings
R.

Let
0→ A

f−→ B
g−→ C → 0

be a short exact sequence in C. Then we need to show that

0→ HomC(X,A)
f◦−−−→ HomC(X,B)

g◦−−−→ HomC(X,C)

is exact.
Firstly, if a ∈ HomC(X,A), and (f ◦ −)(a) = 0, then af = 0, and f is

injective, so a = 0. Thus, f ◦ − is injective.
Secondly, since gf = 0, also (g ◦ −)(f ◦ −) = 0. On the other hand, if

(g ◦−)(b) = 0, then b(X) ⊆ ker g = f(A), so, since f is an isomorphism onto
its image, there is a morphism f−1b ∈ HomC(X,A), and (f ◦ −)(f−1b) = b.
Thus, we have exactness at b, and our sequence is exact.

The following is a partial converse to the above.
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Lemma 2.2.8. If C is an abelian category, and

HomC(X,A
f−→ B

g−→ C)

is an exact sequence in Ab for all X ∈ ob C, then

A→ B → C

is an exact sequence in C.

Proof. Firstly, we have an exact sequence

HomC(A,A)
−◦f−−→ HomC(A,B)

−◦g−−→ HomC(A,C),

Now, the identity on A lies in the leftmost set, so in particular we have
0 = (− ◦ g)(− ◦ f)(idA) = g ◦ f .

Conversely, if K
ker g−−→ B is the kernel, then we have an exact sequence

HomC(K,A)
−◦f−−→ HomC(K,B)

−◦g−−→ HomC(K,C),

and (− ◦ g)(ker g) = 0, so there is some h : K → A such that ker g = f ◦ h.
Thus, (ker g)(K) = (f ◦ h)(K) ⊆ f(A), so indeed, A → B → C is

exact.

We can now prove the following key lemma (found as [35, II, Cor. 12.2]).

Lemma 2.2.9. If C is a small category, then lim←− : PreSh C → RMod is a
left-exact functor.

Proof. Clearly, lim←− is a functor, when extended to morphisms by defining

lim←−(F
κ−→ G) to be the unique morphism from lim←−F to lim←−G such that

κXϕX = ψX ◦ lim←−κ,

where ϕX and ψX are the morphisms from lim←−F and lim←−G respectively to
F (X) and G(X) respectively given by the definition of lim←−F .

Now, if
0→ F → G→ H → 0

is a short exact sequence of presheaves and C ∈ ob RMod then by Lemma
2.2.7, there is an exact sequence

0→ HomPreSh C(∆C,F )→ HomPreSh C(∆C,G)→ HomPreSh C(∆C,H).
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Now, by Lemma 2.2.5, we also have an exact sequence

0→ Hom
RMod(C, lim←−F )→ Hom

RMod(C, lim←−G)→ Hom
RMod(C, lim←−H).

Finally, since this holds for all C ∈ ob RMod, we have an exact sequence

0→ lim←−F → lim←−G→ lim←−H

by Lemma 2.2.8, so lim←− is left-exact.

This then allows us to define the cohomology of categories, which will be
our primary object of study in Chapter 3.

Definition 2.2.10. [2, p. 188] The ith cohomology of a category C with
coefficients in a presheaf F , also called the ith higher limit of F is the
result of applying the ith derived functor lim←−

i of lim←− to F .

2.3 General Homology

2.3.1 Basic definitions

We shall require also the following basic definitions of homology theory. For
this section, we fix a ring R.

Definition 2.3.1. [42, p. 239] A cochain complex M is a sequence of
R-modules M i with maps ϕiM : M i → M i+1 such that ϕi ◦ ϕi−1 = 0 for
all i. Dually, a chain complex is a sequence of R-modules Mi with maps
ϕMi : Mi →Mi−1 such that ϕi ◦ ϕi+1 = 0 for all i.

We will later see no fewer than two cochain complexes whose cohomol-
ogy coincides, with some limits on our categories, with the cohomology of
categories defined above.

Definition 2.3.2. [42, p. 343] For M a cochain complex with maps ϕi,
the ith cohomology module H iM of M is kerϕi/imϕi−1. Dually, the ith
homology HiM of a chain complex M with maps ϕi is kerϕi/imϕi+1.

We can make the collection of chain complexes into a category with the
following morphisms.

Definition 2.3.3. [42, p. 318] A chain map ρ between cochain complexes
M and N is a sequence of maps ρi : M i → N i such that, for all i, the
following diagram commutes:

M i N i

M i+1 N i+1

ρi

ϕiM ϕiN

ρi+1
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The key property of chain maps that we shall require is the following,
found on [42, p. 330].

Lemma 2.3.4. Let M and N be cochain complexes, and let ρ : M → N be
a chain map between them. Then there is, for all i, a map ρ̂i : H iM → H iN
induced by ρ.

Proof. Define ρ̂i([x]) = [ρi(x)] for each x ∈ kerϕiM . It suffices to show that
this is well-defined. For that purpose, suppose that [x] = [y] in H iM . Then
x− y ∈ imϕi−1

M , so there is some z ∈M i−1 such that ϕi−1z = x− y.
But ρi(x) − ρi(y) = ρiϕi−1

M z = ϕi−1
N ρi−1z, so ρi(x) − ρi(y) ∈ imϕiN , so

[ρi(x)] = [ρi(y)], and ρ̂i is well-defined.

Short exact sequences give us information about homology primarily
through the following lemma, which is [42, Thm. 6.10].

Lemma 2.3.5. If 0→ A
ρ−→ B

σ−→ C → 0 is a short exact sequence of cochain
complexes in an abelian category, then there is a long exact sequence of
homology

· · · → H iA
ρi−→ H iB

σ̂i−→ H iC
δi−→ H i+1A→ · · ·

Proof. By Theorem 2.1.26, we work in the category of modules over some
ring R.

The maps ρ̂i and σ̂i are precisely those given by Lemma 2.3.4 above.
To see that this is exact at H iB, we note that for each [a] ∈ H iA, we
have σ̂iρ̂i[a] = [σiρi(a)] = [0] = 0, and for [b] ∈ H iB, if σ̂i[b] = 0, then
σi(b) ∈ imϕi−1

C , so there is some c ∈ Ci−1 such that ϕi−1
C (c) = σi(b). Further,

σi−1 is surjective, so there is some b′ ∈ Bi−1 such that σi−1b′ = c.
Now, σi(b−ϕi−1

B b′) = σi(b)−ϕi−1
C σi−1b′ = 0, so there is some a ∈ Ai such

that ρi(a) = b − ϕi−1
B b′. Also, ρi+1ϕiA(a) = ϕiB(b − ϕi−1

B b′) = 0, and ρi+1 is
injective, so ϕiA(a) = 0, and ρ̂i[a] = [b− ϕi−1

B b′] = [b].
We now construct δi. For this purpose, let [c] ∈ H iC. Then ϕiC(c) = 0,

and since σi is surjective, there is some b ∈ Bi such that σi(b) = c.
Now, σi+1ϕiB(b) = ϕiC(c) = 0, so there is some a ∈ Ai+1 such that

ρi+1(a) = ϕiB(b). We define δi(c) := a. We now show that this is well-
defined.

Firstly, note that a is uniquely determined by b, since ρi+1 is injective.
Secondly, if σi(b′) = c, then as above, there is some a′ ∈ Ai+1 such that

ρi+1(a) = ϕiB(b′).
But further, σi(b′−b) = 0, so there is some a′′ ∈ Ai such that ρi(a′′) = b′−b

by exactness, and ρi+1ϕiA(a′′) = ϕiB(b′−b) = ρi+1(a′−a). But ρi+1 is injective,
so a′ − a = ϕiA(a′′), so [a] = [a′].
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Finally, if [c′] = [c], then ϕiC(c′ − c) = 0, so there is some c′′ ∈ Ci−1 such
that ϕi−1

C (c′′) = c′− c. But σi−1 is surjective, so there is some b′′ ∈ Bi−1 such
that σi−1(b′′) = c′′. Then with b′ := ϕi−1

B b′′ + b, we have

σi(b′) = σi(ϕi−1
B b′′ + b)

= ϕi−1
C σi−1(b′′) + c

= c′.

As before, there is some a′ ∈ Ai+1 such that ρi+1(a′) = ϕiB(b′). But

ρi+1(a− a′) = ϕiB(b− b′)
= ϕiB(b− ϕi−1

B b′′ − b)
= 0,

and ρi+1 is injective, so in fact a′ = a.

2.4 Spectral Sequences

We shall prove our first main result using a spectral sequence, though we
shall require only a few simple facts from the theory of such.

Definition 2.4.1. [40, § 4] A (cohomological) spectral sequence in an
abelian category C consists of:

• For each non-negative integer r, a page Er of objects Ep,q
r (with p and

q integers).

• Morphisms dp,qr : Ep,q
r → Ep+r,q−r+1

r such that each Ep+∗,q−∗+1
r is a

complex with d as its differential.

• Isomorphisms

Ep,q
r → Hp,q(Er) :=

ker dp,qr
im(dp−r,q+r−1

r )

for each p,q, and r.

A key source of spectral sequences is the following.

Definition 2.4.2. [42, pp. 616, 626] For C a cochain complex, a filtration
of C is an integer-indexed collection of subcomplexes F ∗C of C such that
F nC ⊆ F n−1C for all C.

A filtration F ∗C is bounded if there exist integers a < b such that
F aC = 0 and F bC = C.
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We generate spectral sequences from these filtrations of cochain complexes
as follows.

Definition 2.4.3. [42, p. 622] If F ∗C is a filtration, let

GpCp+q := F pCp+q/F p+1Cp+q,

let Zp,q be the set of all [c] ∈ GpCp+q such that dc ∈ F pCp+q+1, and let Bp,q

be the image under d of F p+1Cp+q−1.
Now, each Bp,q is contained in F pCp+q, since each F pC is a subcomplex

of F p−1C.
We can thus define the spectral sequence associated to F ∗C to be

the spectral sequence with E0 page

Ep,q
0 =

Zp,q

Bp,q
= GpCp+q.

In fact, the Er page of this spectral sequence is exactly

Ep,q
r =

Zp,q
r

Bp,q
r
,

where Zp,q
r is the set of all [c] ∈ GpCp+q such that dc ∈ F p+rCp+q+1, and

Bp,q
r = dF p+r+1Cp+q−1, since for [c] ∈ Zp,q

r , we have [dc] = 0 if and only if
dc ∈ F p+r+1Cp+q+1, which holds if and only if [c] ∈ Zp,q

r−1. Thus,

Zp,q
r−1 = ker(d|Zp,qr ),

so
Zp,q
r−1/B

p,q
r−1 = ker(dp,qr )/im(dp−r,q+r−1

r ) = Ep,q
r−1

for all r.

For convenience, we now restrict our scope: from here onwards, all spec-
tral sequences will be the spectral sequences associated to bounded filtrations.

Definition 2.4.4. [6, p. 163] A spectral sequence E converges to a filtered
complex G∗D if there is some n such that for all r ≥ n, we have

Ep,q
r
∼= GpDp+q/Gp+1Dp+q.

We denote this by Ep,q
r ⇒ G∗D, or Ep,q

r ⇒ D if the filtration is clear.

We shall make use of spectral sequences through the following result,
which is [42, Thm. 10.14].
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Theorem 2.4.5. If E is the spectral sequence associated to a bounded filtra-
tion F ∗C, then E converges to the homology of C (with the latter inheriting
its filtration from F ∗C).

Proof. Since F ∗C is bounded, for each p, q ∈ Z, there is some n such that
for all r ≥ n, F r

p,qC = C, so

Ep,q
r =

Zp,q
r

Bp,q
r

=
ker(d : Cp+q → Cp+q+1)

im(d : Cp+q−1 → Cp+q)
= Hp+qC.
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Chapter 3

Cellular Homology of
Categories

In this chapter, we generalise some results of [12] from posets to a larger class
of categories.

3.1 Setting

Before we begin, we shall need some definitions, beginning with the classes
of categories that we shall consider, which generalise the graded posets of
[12, § 2.1].

Definition 3.1.1. For C a small category, we call C graded if there is a
sequence (Cn)n∈Z of subcategories such that:

1. ob C =
⋃
n∈Z

ob Cn,

2. HomC(X, Y ) =
⋃
n∈Z

HomCn(X, Y ) for any X, Y ∈ ob C,

3. If X ∈ ob Cn, y ∈ ob C, and there exists a morphism X → Y in C, then
Y ∈ ob Cn; and

4. If X, Y ∈ ob Cn+1 \ob Cn, and there exists a morphism X → Y in Cn+1,
then X = Y .

The first two points here simply ensure that we do not miss any of C (anal-
ogous to requiring that all elements of a graded poset have a rank), and we
extend this analogy by defining, for an object X of a graded category, the
rank rk(X) of X is the unique integer n such that X ∈ ob Cn \ ob Cn−1.
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We say that a graded category C has corank function if there are
integers N and M such that for all n < N , Cn = CN , and for all m > M ,
Cm = CM (with N maximal and M minimal with this property). In this case,
for each X ∈ ob C, we say that the corank of X is cr(X) = M − rk(X).

The third and fourth conditions above generalise the requirement of [12]
that x < y implies rk(x) < rk(y).

For convenience of notation, we define Ĉn = Cn \ Cn−1.

We insist also that the non-trivial Ĉn are together, i.e., such that if we
have Cn = Cn+1 for some n, then either Ck = Cn for all k < n or Ck = Cn
for all k > n. This generalises the the requirement of [12] that x ≺ y implies
rk(y) = rk(x) + 1.

Definition 3.1.2. Let C be a category. Generalising the definition of [12,
§ 1.1], we define the nerve N∗C to be the simplicial set with

1. Simplices NnC = {σ = (σn
σn−→ . . .

σ1

−→ σ0)} with each σi an object of
C, and each σi a morphism σi → σi−1 in C.

2. Face maps di : NnC → Nn−1C given by

diσ = (σn
σn−→ . . .

σi+2

−−→ σi+1
σiσi+1

−−−−→ σi−1
σi−1

−−→ . . .
σ1

−→ σ0).

3. Degeneracy maps si : NnC → Nn+1C given by

siσ = (σn
σn−→ . . .

σi+1

−−→ σi
id−→ σi

σi−→ . . .
σ1

−→ σ0).

We define also the subcomplex N̂nC consisting of all simplices σ such that
no σi is the identity, and also the subset Nn

0 C := NnC \ N̂nC.

In order to compute the homology of categories, we require the following
cochain complex.

Definition 3.1.3. For F a presheaf on a graded category C, let S∗(C;F ) be
the cochain complex such that:

1. We have Sn(C;F ) =
∏

σ∈NnC
F (σn).

2. For s ∈ Sn(C;F ) and σ ∈ NnC, we denote the component of s at σ by
s · σ.
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3. The differential d : Sn−1(C;F )→ Sn(C;F ) is given by

ds · σ =
n−1∑
i=0

(−1)is · diσ + (−1)nF (σn)(s · dnσ),

for σ ∈ NnC and s ∈ Sn−1(C;F ).

We define also another complex T ∗(C;F ) as the subcomplex of S∗(C;F ) con-
sisting of all elements s ∈ Sn(C;F ) such that s · σ = 0 for all degenerate
simplices σ ∈ Nn

0 C.
This is the natural generalisation of the definitions from [12, pp. 3-4].

The poset case of the following result is mentioned but not proved on
[12, p. 3]

Lemma 3.1.4. S∗(C;F ) and T ∗(C;F ) are, indeed, cochain complexes.

Proof. Firstly, we note that djdiσ = di−1djσ for all i > j, and thus, for
σ ∈ Nn+1C and s ∈ Sn−1(C;F ), we have

d2s · σ =
n∑
i=0

(−1)ids · diσ + (−1)n+1F (σn)ds · dn+1σ

=
n∑
i=0

(−1)i

(
n−1∑
j=0

(−1)js · djdiσ + (−1)nF ((diσ)n)s · dndiσ

)

+ (−1)n+1F (σn+1)

(
n−1∑
i=0

(−1)is · didn+1σ + (−1)nF (σn)s · dndn+1σ

)
=

∑
0≤j<i<n

(−1)i+js · djdiσ +
∑

0≤i<j<n

(−1)i+j+1didjσ

+
∑

0≤i<n

(−1)i+nF (σn+1)s · didn+1σ +
∑

0≤i<n

(−1)i+n+1F ((diσ)n)s · didn+1σ

+ (−1)2nF ((dnσ)n)s · dndn+1σ + (−1)2n+1F (σn+1)F (σn)s · dndn+1σ.

Now, in this final expression, the first two lines are clearly zero, with the latter
sum on each line being simply the former multiplied by -1. The final line is
also zero, as (dnσ)n is the nth map of dnσ, which by definition of dn, is σn+1σn,
and since F is a functor, we have F ((dnσ)n) = F (σn+1σn) = F (σn+1)F (σn),
so this line cancels in the same way as the previous two. Thus, S∗(C;F ) is a
complex.

To show the same for T , it suffices to show that if t ∈ T n(C;F ), then
dt ∈ T n+1(C;F ). But this is simple:
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3.1. Setting

Let σ ∈ Nn+1
0 C. Then

dt · σ =
n−1∑
i=0

t · diσ + (−1)nF (σn)t · dnσ.

We shall now show that this is zero. First, we note that if diσ ∈ Nn
0 C, then

t · diσ = 0 by definition of T n(C;F ).

Thus, we need only consider the situation where diσ ∈ N̂nC. But this
can occur in exactly two ways: σ must have exactly one identity morphism,
and it must be either σi or σi+1. Firstly, consider the case i < n − 1. By
adjusting i if necessary, suppose that σi+i is the identity and i < n−1. Then
diσ = di+1σ, and our sum becomes

dt · σ = (−1)it · diσ + (−1)i+1t · diσ = 0.

Finally, if i = n−1, our sum becomes (−1)n−1t·dn−1σ+(−1)nF (σn)t·dnσ.
But now, σn is the identity morphism, hence F (σn) is the identity morphism,
so this is again zero, completing the proof.

The following result is the natural generalisation of the result at the top
of [12, p. 4].

Lemma 3.1.5. The complexes S∗(C;F ) and T ∗(C;F ) are homotopy equiv-
alent.

Proof. We proceed essentially as in the proof of [48, Theorem. 8.3.8]. As
noted in that proof, it suffices to show that the complex

U∗(C;F ) := S∗(C;F )/T ∗(C;F )

is homotopy equivalent to the zero complex.
So we require a homotopy equivalence between the identity and zero on

U∗(C;F ). That is, we require a chain map h : Un(C;F ) → Un−1(C;F ) such
that dh − hd = 0, where d is the differential on U∗(C;F ) inherited from
S∗(C;F ).

For σ ∈ Nn
0 C, p an integer at most n − 1, and l a positive integer, we

define P (σ, p, l) to be 1 if:

• σ1, . . . , σp are not the identity,

• σp+1, . . . , σp+l are the identity, and

• σp+l+1 is not the identity;
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3. Cellular Homology of Categories

and 0 otherwise.
Now, for u ∈ Un(C;F ) and σ ∈ Nn−1

0 C, we define

hu · σ =

{
(−1)pu · spσ if there is some odd l such that P (σ, p, l) = 1

0 otherwise

Now, we note that, for σ ∈ NnC, there are unique p and l such that
P (σ, p, l) = 1, and

• For any i < p, we have P (diσ, p− 1, l) = 1,

• For any i > p+ l, we have P (diσ, p, l) = 1, and

• If l ≥ 2, then for any i such that p ≤ i ≤ p+ l, we have that hu ·diσ = 0
(as the lowest-indexed string of identity maps is now of even length).

In the case where l is odd, l 6= 1, and p+ l < n for any u ∈ Un(C;F ), we
therefore have

dhu · σ=
n−1∑
i=1

(−1)ihu · diσ + (−1)nF (σn)hu · dnσ

=

p−1∑
i=1

(−1)i+pu · sp−1diσ +
n−1∑

i=p+l+1

(−1)i+pu · spdiσ

+(−1)n+pF (σn)u · spdiσ,
and

hdu · σ=
n∑
i=1

(−1)i+pu · dispσ + (−1)n+p+1F ((spσ)n+1)u · dn+1spσ

=
n∑
i=1

(−1)i+pu · dispσ + (−1)n+p+1F (σn)u · dn+1spσ.

Combining these, we obtain

(dh− hd)u · σ=

p−1∑
i=1

(−1)i+p (u · sp−1diσ − u · dispσ)

+

p+l∑
i=p

(−1)i+pu · σ

+
n−1∑

i=p+l+1

(−1)i+p(u · spdiσ − u · dispσ)

+(−1)n+pF (σn)u · spdiσ − (−1)n+pu · dispσ
−(−1)n+p+1F (σn)u · dnspσ.
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Now, the first sum is zero by the simplicial identities of [48, p. 256], as u ·
dispσ = u · sp−1diσ for i < p, the second is zero since l is odd (so we have
evenly many terms here), and the remainder cancels telescopically, except
for the latter half of the first remaining term. That is:

(dh− hd)u · σ= (−1)2p+l+1u · spdp+l+1σ

= u · dp+lspσ
= u · σ.

In the case where l > 1 is odd and p+ l = n, we instead have

dhu · σ=
n−1∑
i=1

(−1)ihu · diσ + (−1)nF (σn)hu · dnσ

=

p−1∑
i=1

(−1)i+pu · sp−1diσ

and we still have

hdu · σ =
n∑
i=1

(−1)i+pu · dispσ + (−1)n+p+1F (σn)u · dn+1spσ,

and F (σn) is the identity, so

(hd− dh)u · σ=

p−1∑
i=1

(−1)i+p(u · sp−1diσ − u · dispσ)

+
n+1∑
i=p

(−1)i+pu · dispσ.

As before, the first sum is zero. Since n = p+ l, there are oddly many terms
in the latter sum, and all except one cancel, so we have

(hd− dh)u · σ = (−1)2pu · dpspσ = u · σ.

In the case where l is even, we have hu · σ = 0 for all u, and hu · diσ can
be non-zero only if p ≤ i ≤ p+ l, in which case

hu · diσ = (−1)pu · spdiσ = (−1)pu · σ,
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so

dhu · σ=
n−1∑
i=1

(−1)ihu · diσ + (−1)nF (σn)hu · diσ

=

p+l∑
i=p

(−1)p+iu · σ

= (−1)2pu · σ
= u · σ.

(Note that the final term only continues into the second line if p+ l = n,
in which case σn is the identity, so F (σn) is also the identity).

Similarly,

hdu · σ = 0,

so, again, (dh− hd)u · σ = u · σ.
Finally, in the case where l = 1, we still have all of the above properties

except that for i such that p ≤ i ≤ p + 1, we may now have P (diσ, q, r) = 1
for some q > p. If p + 1 = n, then this cannot happen, so in that case, or
if this otherwise does not occur, or if r is even, then the proof for the l ≥ 3
odd case can be applied without change. If this does occur, then p + 1 < n
and we have

dhu · σ=
n−1∑
i=1

(−1)ihu · diσ + (−1)nF (σn)hu · dnσ

=

p−1∑
i=1

(−1)i+pu · sp−1diσ

+(−1)p+qu · sqdpσ + (−1)p+q+1u · sqdp+1σ

+
n−1∑
i=p+2

(−1)i+pu · spdiσ + (−1)n+pF (σn)u · spdiσ

=

p−1∑
i=1

(−1)i+pu · sp−1diσ +
n−1∑
i=p+2

(−1)i+pu · spdiσ

+(−1)n+pF (σn)u · spdiσ.

and the rest of the proof goes through as in the first case.
Thus, in all cases, we have (dh − hd)u · σ = u · σ, so h is a homotopy

equivalence from the identity map to the zero map on U∗(C;F ), so U∗(C;F )
is contractible, hence S∗(C;F ) and T ∗(C;F ) are homotopy equivalent.
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Lemma 3.1.6. For every (finite) graded category C, and every presheaf F
on C, the homology HS∗(C;F ) coincides with the homology H∗(C;F ) of C,
as defined in Definition 2.2.10. That is: the homology of S∗(C;F ) computes
the higher limits of F .

Proof. We first construct a projective resolution P ∗ → ∆Z (with ∆Z as
defined in Definition 2.2.3) such that

Hom(P ∗, F ) ∼= S∗(C;F ).

For this purpose, define first P n :=
∑

σ∈NnC
ΥσnZ, and define the maps to

be those induced by the simplicial structure of N∗C. To see that this is a
projective resolution, note that for each fixed object X of C, the abelian
group P n(X) is free on the set of all n+ 1 simplices whose first object is X,
so HP ∗(X) ∼= H∗(N(X/C);F ), where X/C is the coslice category as defined
in Definition 2.1.28. But by Lemma 2.1.29, the coslice category X/C has
an initial object, so is contractible, hence HP n(X) = 0 for all n and all X,
so P ∗ is exact. Each ΥσnZ is projective since Z is projective. Thus, P n is
projective by Lemma 2.1.31, so P ∗ is, indeed, a projective resolution of its
colimit, which is ∆Z.

To see that Hom(P ∗, F ) ∼= S∗(C;F ), note that by Lemma 2.2.4, for each
object X of C, we have

HomPreSh C(ΥXZ, F ) ∼= HomPreSh C(X,F (X)) ∼= F (X).

Thus,

HomPreSh C(P
n, F ) = HomPreSh C(

∑
σ

ΥσnZ, F )

∼=
∏
σ

HomPreSh C(ΥσnZ, F )

=
∏
σ

F (σn)

= Sn(C;F ).

Further, the differential on S∗ is exactly the image under Hom(−, F ) of the
differential of P ∗, so indeed, Hom(P ∗;F ) ∼= Sn(C;F ) as complexes.

Finally, we note that, by definition, H∗(C, F ) is precisely the homology
of Hom(P ∗, F ), so we have the result.

The following generalises [12, Lemma 3].
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Lemma 3.1.7. If κ : F → G is a natural transformation of presheaves over
a category C, then the maps κ∗ : Sn(C;F )→ Sn(C;G) given by

κ∗s · σ := κσn(s · σ)

assemble to give a chain map S∗(C;F )→ S∗(C;G).

Proof. We require that the following square commutes for all n:

Sn−1(C;F ) Sn−1(C;G)

Sn(C;F ) Sn(C;G)

d

κ∗

d

κ∗

We show this by direct calculation: for s ∈ Sn−1(C;F ) and σ ∈ NnC, we
have

κ∗ds · σ = κσn(ds · σ)

= κσn

(
n−1∑
i=0

(−1)is · diσ + (−1)nF (σn)s · dnσ

)

=
n−1∑
i=0

(−1)iκσn(s · diσ) + (−1)nκσnF (σn)s · dnσ

=
n−1∑
i=0

(−1)iκσn(s · diσ) + (−1)nG(σn)κσn−1s · dnσ

= dκ∗s · σ,

as required.

Definition 3.1.8. Let G : D → C be a functor. Generalising [12, § 1.2], we
define

G∗ : PreSh (C)→ PreSh (D)

to be the functor defined on presheaves F byG∗F := F◦G, and on morphisms
by taking G∗κ (for κ a natural transformation of presheaves) to be the natural
transformation with G∗(κ)x = κ(Gx) for all x ∈ F ∗G.

Finally, we define the pullback of G to be the map

G∗ : S∗(C;F )→ S∗(D, G∗F )

with
G∗s · σ = s ·Gσ
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for all σ ∈ NnD and all s ∈ Sn(C, F ). We similarly define G∗ : T ∗(C;F ) →
S∗(D;G∗F ) by G∗t · σ = s · gσ for all σ ∈ NnD.

In the special case whereD is a subcategory of C andG is the functor given
by G(D) = D ∈ obC for all D ∈ obD and for ϕ ∈ HomD(D,E), by G(ϕ) =
ϕ ∈ HommathcalC(D,E), we define the relative complex S∗(C,D;F ) to be
the kernel of G∗ : S∗(C;F ) → S∗(D;G∗F ), and similarly T ∗(C,D;F ) to be
the kernel of G∗ : T ∗(C;F )→ T ∗(D;G∗F ).

These generalise the definitions at the start of [12, § 1.2].

3.2 The Main Result

We now proceed to define our cellular homology, beginning with a generali-
sation of [12, Lemma 1].

Lemma 3.2.1. For F : D → C a functor and G a presheaf on C, the pullback
F ∗ : S∗(C;G)→ S∗(D, F ∗G) is a chain map.

Proof. Note that, for any σ ∈ NnC, we have

F ∗ds · σ = ds · Fσ

=
n−1∑
i=0

(−1)is · diFσ + (−1)nG(σn)(s · dnFσ),

and that

dF ∗s · σ =
n−1∑
i=0

(−1)iF ∗s · diσ + (−1)nG(σn)(F ∗s · dnσ)

=
n−1∑
i=0

(−1)is · Fdiσ + (−1)nG(σn)(s · Fdnσ),

and hence that it suffices to show that F commutes with our face maps.

But this is clear - if σ = σn
σn−→ . . .

σ1

−→ σ0, then

Fdiσ= F (σn
σn−→ . . .

σi+2

−−→ σi+1
σiσi+1

−−−−→ σi−1 . . .
σ1

−→ σ0)

= F (σn)
F (σn)−−−→ . . .

F (σi+2)−−−−→ F (σi+1)
F (σiσi+1)−−−−−−→ σi−1 → . . .

F (σ1)−−−→ F (σ0)

= F (σn)
F (σn)−−−→ . . .

F (σi+2)−−−−→ F (σi+1)
F (σi)F (σi+1)−−−−−−−−→ σi−1 → . . .

F (σ1)−−−→ F (σ0)

= di(Fσn
F (σn)−−−→ . . .

F (σ1)−−−→ F (σ0))

= diFσ.
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We now generalise [12, Lemma. 3] to our new setting.

Lemma 3.2.2. If κ : F → G is a natural transformation of presheaves, and
H : C → D a functor , then κ∗H∗ = H∗κ∗.

Proof. We proceed by direct calculation: if s ∈ Sn(C;F ) and σ ∈ Nn(C),
then

κ∗H∗s · σ = κσn(H∗s · σ)

= κσn(s ·Hσ)

= κ∗s ·Hσ
= H∗κ∗s · σ.

The next lemma generalises the result stated at the top of [12, p. 5] .

Lemma 3.2.3. If C is a category, D a subcategory of C, and F a presheaf
on C (and hence on D), then there is a short exact sequence

0→ S∗(C,D;F )→ S∗(C;F )→ S∗(D;F )→ 0.

Proof. Let ι : S∗(C;F ) → S∗(D;F ) be the map induced by the inclusion of
D into C.

Now, for any s ∈ S∗(D;F ), we define t ∈ S∗(C;F ) by t · σ = s · σ if
σ ∈ N∗D and t · σ = 0. Then ιt · σ = t · σ = s · σ for any σ ∈ N∗D. Thus, ι
is surjective.

This gives exactness of our sequence at S∗(D;F ). Exactness elsewhere
follows immediately from the definition of S∗(C,D;F ) as the kernel of ι.

As in [12], this gives a long exact sequence.

Lemma 3.2.4. With C, and D as above, there is a long exact sequence

· · · → HSn(C,D;F )→ HSn(C;F )→ HSn(D;F )→ · · ·

in homology.

Proof. This will be exactly the long exact sequence in cohomology of the
short exact sequence of Lemma 3.2.3 above, arising in exactly the standard
way, as in Lemma 2.3.5.

We can extend this a little, to a result (a generalisation of [12, Lemma. 4])
that we note is essentially the third isomorphism theorem in the category of
complexes.
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Lemma 3.2.5. If C is a category, D is a subcategory of C, E is a subcategory
of D, and F is a presheaf on C, then there is a short exact sequence

0→ S∗(C,D;F )→ S∗(C, E ;F )→ S∗(D, E ;F )→ 0.

Proof. Let i : D → C and j : E → D be the inclusion functors. These induce
pullbacks i∗ : Sn(C;F ) → Sn(D;F ) and j∗ : Sn(D;F ) → Sn(E ;F ) as in
definition 3.1.8. These assemble to form chain maps, by Lemma 3.2.1.

Now, the identity map on Sn(C) restricts to a map

f : Sn(C,D;F )→ Sn(C, E ;F ),

since

Sn(C,D;F ) = ker(i∗) ⊆ ker(j∗i∗) = ker((ij)∗) = Sn(C, E ;F )

and i∗ restricts to a map Sn(C, E ;F )→ Sn(D, E ;F ) since

i∗(Sn(C, E ;F )) = i∗ ker(j∗i∗) ⊆ ker(j∗) = Sn(D, E ;F ).

Now, for any s ∈ Sn(C,D;F ), we have i∗f(s) = i∗(s) = 0 since s ∈ ker i∗.
Further, if s ∈ Sn(C, E ;F ) \ Sn(C,D;F ), then s 6∈ ker i∗. Thus, our

sequence is exact at Sn(C, E ;F ). Clearly, f is injective, as it is a restriction
of the identity map. Finally, for each s ∈ Sn(D, E ;F ), define t to be the
element of Sn(C, E ;F ) with

t · σ =

{
s · σ σ ∈ NnD
0 otherwise.

Note that t ∈ S∗(D, E ;F ) since for σ ∈ NnE , we have

t · σ = s · σ = 0.

Then for σ ∈ NnD, we have

i∗(t) · σ = t · i(σ) = s · σ,

so s = i∗(t), and i∗ restricts to a surjective map Sn(C, E ;F ) → Sn(D, E ;F ),
and our sequence is indeed exact.

Corollary 3.2.6. With C,D, and E as above, there is a long exact sequence

· · · → HSn(C,D;F )→ HSn(C, E ;F )→ HSn(D, E ;F )→ · · ·
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3. Cellular Homology of Categories

Proof. This will be exactly the long exact sequence in cohomology of the
short exact sequence of Lemma 3.2.5 above, arising in exactly the standard
way, as in Lemma 2.3.5.

With this long exact sequence in hand, we can now define our cellular
homology.

Definition 3.2.7. We define our cellular cochain complex C∗(C;F ) for
C a locally finite graded category by Cn(C;F ) := HSn(Cn, Cn−1;F ), with
differential given by the boundary map δ in the long exact sequence of Corol-
lary 3.2.6 applied to the triple of categories (Cn, Cn−1, Cn−2), generalising [12,
Def. 2.1].

Lemma 3.2.8. Indeed, C∗(C;F ) is a cochain complex , generalising the result
stated after [12, Def. 2.1] .

Proof. We proceed by working around the following diagram, which we shall
show commutes, and has exact diagonals:

...

Cn−1(C;F )

Sn−1(Cn−1;F )

Cn(C;F )

Sn(Cn;F )

Cn+1(C;F )

...

δn−1

ιn−1

βn−1

δn

ιn

βn

First, let
ιn−1 : Cn−1(C;F )→ HSn−1(Cn−1;F )

be the map induced by the inclusion

in−1 : Sn−1(Cn−1, Cn−2;F ) ↪→ Sn−1(Cn−1;F ).
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Now, let βn−1 : HSn−1(Cn−1;F ) → Cn(C;F ) be the connecting homo-
morphism of the long exact sequence given by applying Lemma 3.2.4 to the
pair (Cn, Cn−1).

Let s ∈ Sn−1(Cn−1, Cn−2;F ). We shall show that δn−1[s] = βn−1ιn−1[s].
For this purpose, we simply apply the explicit constructions of the boundary
maps given in Lemma 2.3.5: let d be the differential on S∗(Cn−1, Cn−2;F ),
let j be the inclusion of categories Cn−1 ↪→ C, and let ŝ be any element of
Sn−1(Cn, Cn−2;F ) such that j∗ŝ = s (which exists since j∗ is surjective).

Then, by that construction, we have δn−1[s] = [dŝ], where the latter
homology class is taken in S∗(Cn, Cn−1;F ). Similarly, let d̄ be the differential
on S∗(Cn−1;F ), let t := in−1(s), and let t̃ be any element of Sn−1(Cn, Cn−1;F )
such that j∗t̃ = t. Then, by the same construction, we have

βn−1ιn−1[s] = βn−1[in−1s] = [d̄t̃].

But by definition, d is the restriction of d̄, and t̃ = ŝ, hence

δn−1 = βn−1ιn−1.

Now, we have δnδn−1 = βnιnβn−1ιn−1, so we simply need to show that
ιnβn−1 = 0. But ιnβn−1[s] = ιn[d̄s̃] = [ind̄s̃] = [din−1s̃] = 0 since i∗ is a chain
map, hence the result.

We now specify the condition that we require for our two homologies to
coincide, generalising [12, Def. 3.1]:

Definition 3.2.9. A graded category C with corank function is cellular if

HSi(Cn, Cn−1;F ) = 0

for all presheaves F on C, and i 6= n ∈ Z.

We can now prove our main theorem, which generalises the finite case of
[12, Thm. 2].

Theorem 3.2.10. For a finite cellular category C and a presheaf F on C,
we have

HS∗(C;F ) ∼= HC∗(C;F ).

Proof. We first filter via F pS∗ := S∗(C, Cp;F ). Lemma 3.2.5 gives a short
exact sequence

0 S∗(C, Cp+1;F ) S∗(C, Cp;F ) S∗(Cp+1, Cp;F ) 0,

0 F p+1S∗ F pS∗
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3. Cellular Homology of Categories

and thus, F p+1S∗ is a subcomplex of F pS∗ for all p, giving a bounded filtra-
tion of S(C, Cp;F ) of the form 0 ⊂ F cS∗ ⊂ · · · ⊂ F 0 ⊂ F−1S∗ = S∗, where c
is the maximum corank of any element of C.

The spectral sequence associated to F ∗ has E0 page of the form

Ep,q
0 = Sp+q(Cp+1, Cp;F ),

by the short exact sequence above, with differential that of S∗, and hence
E1 page of the form Ep,q

1 = HSp+q(Cp+1, Cp). Note that for q 6= 1, the
assumption that C is cellular gives precisely that Ep,q

1 = 0. Now, on the
remaining line, the differential of our spectral sequence is precisely the map

δ : Ep,1
1 = Cp(C;F )→ Ep+1,1

1 = Cp+1(C;F )

given by the connecting homomorphism of the long exact sequence of homol-
ogy above, which is precisely the differential of C∗(C;F ).

Thus, our spectral sequence collapses at E2 with our cellular cohomology
on the q = 1 line. But also, by Lemma 2.4.5, it must converge to HS∗(C;F ).
Thus, we have HC∗(C;F ) ∼= HS∗(C;F ).

3.3 Comments on Generalisations & Appli-

cations

In [12], the authors prove these same results for locally finite cellular posets.
However, their proof does not generalise, as it relies on the following result
about posets that does not cleanly generalise to categories:

Lemma 3.3.1. If P is a poset with an element x ∈ P such that x ≤ y for
every y ∈ P , then |N∗P | is contractible.

The obvious generalisation of this result to categories, replacing “x ≤ y”
with “there is a map x → y” is not true: a simple counterexample is the
category C with two objects x and y, and two non-identity morphisms x→ y.
In this case, |N∗C| is a circle, so is not contractible.

One could restrict to the case where the above result holds, but patch-
ing up the proof requires restricting to the case where there is exactly one
morphism between each pair of objects: that is, to posets.

This problem could possibly be patched up by adjusting our definitions
and using coslice categories as our intervals, rather than subcategories, as
coslice categories do have initial objects, so their nerves are contractible.

One might consider applying this result to group cohomology, treating
groups as categories with one object. However, this has a fatal flaw:
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Lemma 3.3.2. Let G be a non-trivial finite group, equipped with a grading
and corank function (as a one-object category). Let n be minimal such that
Gn is non-trivial. Then

HSk(Gn, Gn−1;Z)

is non-zero for infinitely many values of k.

Proof. Let i : 1 ↪→ Gn be the inclusion. By 3.1.5, we can use T ∗ for our
calculations, rather than S∗.

Then i∗ : T k(Gn; ∆Z) → T k(1; ∆Z) is the zero map, since T k(1) = 0, so
T k(Gn, 1; ∆Z) = T k(Gn,∆Z), and

HSk(Gn, Gn−1;F ) = HSk(Gn, 1; ∆Z)

= HT k(Gn, 1; ∆Z)

= HT k(Gn,Z)

= HSk(Gn,∆Z).

z But this last is simply the group cohomology of Gn with coefficients in Z,
and by [11, Thm. 3], this is non-zero for infinitely many values of k, since G
is a non-trivial finite group.

Thus, G cannot be cellular, as our definition of cellular requires that
HSk(Gn, Gn−1;F ) = 0 for all k 6= n and all presheaves F on G.

However, the methods here could still be applied in some cases: our proof
actually relies only on G having the above property for the particular sheaf
that we are working with, and there are indeed sheaves in which non-trivial
finite groups can have cohomologies that are zero in all but one dimension.
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Chapter 4

Topological Background

4.1 General Topology

We begin this chapter with a few standard definitions.

Definition 4.1.1. [18, Def. 4.1] An isometry between metric spaces (M,d)
and (N, e) is a function f : M → N such that

d(x, y) = e(f(x), f(y))

for all x, y ∈M .

Definition 4.1.2. [18, Def. 4.17] A homeomorphism between topological
spaces X and Y is a bijection f : X → Y such that both f and f−1 are
continuous.

An embedding of a topological space X into a topological space Y is a
map f : X → Y that is a homeomorphism onto its image.

Definition 4.1.3. [25, p. 108] If X is a topological space, we define a chain
complex (see 2.3.1) C(X) by defining Cn(X) to be the free abelian group
on the set of all continuous maps σ from the standard n-simplex to X, with
boundary map

δn : σ 7→
∑
i≤n

(−1)idiσ

(where diσ is the restriction of σ to the convex hull of all vertices of the
standard n-simplex except for the ith). That this forms a chain complex is
standard (and, indeed, the proof is identical to the special case of the proof
of Lemma 3.1.4 with F the constant presheaf ∆Z). See [25, Lem. 2.1] for a
proof in this particular case.

We then define the (singular) homology of X to be the homology of
this chain complex.
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4.2. Simplicial Complexes

4.2 Simplicial Complexes

We first define the basic combinatorial objects with which we shall work.

Definition 4.2.1. [44, § 3.1], [5, § 1] A finite simplicial complex C is a
finite set V (C) of vertices and a set C ⊆ 2V such that if S ∈ C and T ⊆ S,
then T ∈ C. In this case, we say that T is a face of S.

The dimension of S ∈ C is |S| − 1.
A subcomplex of C is D ⊆ C that is also a simplicial complex.
For m ≤ n, the m-skeleton of C is the subcomplex of C consisting of all

simplices of dimension at most m.
A maximal simplex of C is a simplex S ∈ C that is not properly

contained in any other simplex of C.
For a simplex S ∈ C, a maximal face of S is a face T of S such that if

U is a face of S and T ( U , then U = S.
A simplicial complex is pure (of dimension n) if every maximal simplex

has the same dimension n.

An elementary observation is that a simplicial complex C is determined
by V (C) and its maximal simplices: the simplices of C are then precisely the
subsets of those maximal simplices.

Definition 4.2.2. [14, § 2.2] For C and D simplicial complexes, a simpli-
cial map f : C → D is a function V (C) → V (D) such that f(S) ∈ D for
each simplex S ∈ C.

We shall also require the topological counterpart to these combinatorial
simplices.

Definition 4.2.3. [25, p. 9] For each integer n, the standard n-simplex
∆n is the convex hull of the points ei of the standard orthonormal basis of
Rn+1.

Definition 4.2.4. [14, p. 4] A topological n-simplex is a metric space M
equipped with an isometry f to the standard n-simplex.

One particular feature of these simplices that we shall make use of is that
they can be subdivided into smaller simplices in a natural way.

Definition 4.2.5. [25, p. 103] For a point x in the standard n-simplex,
the barycentric coordinates of x are the coordinates of x as a point in
the ambient Rn+1. Note that the barycentric coordinates (x0, . . . , xn) of
all such points satisfy

∑
xi = 1, as this condition determines the affine

hyperplane through the ei, which their convex hull lies in. For a point x
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in a topological n-simplex ∆, the barycentric coordinates of x are the
barycentric coordinates of x under the isometry from M to the standard n-
simplex. The barycentre of a topological n-simplex ∆ is the point whose
barycentric coordinates are(

1

n+ 1
, . . . ,

1

n+ 1

)
.

Finally, we note the following connection between the combinatorial and
topological objects that we consider.

Definition 4.2.6. [34, § 1] The geometric realisation of a simplicial com-
plex C is the topological space |C| constructed as follows:

1. For each n-simplex S ∈ C, let |S| be a topological n-simplex with its
vertices labelled by the vertices of S.

2. Define R(C) = t|S|, where the disjoint union is over all simplices S of
C.

3. For each maximal face T of S, let ∼TS be the equivalence relation on
|S| t |T | identifying each point of |T | with barycentric coordinates
(x1, . . . , xn) with the unique point in |S| with barycentric coordinates
(x1, . . . , xn, 0), with the vertices of S ordered such that those of T come
first, in the same order as in the barycentric coordinates of T , and the
other vertex of S comes last.

4. Define an equivalence relation ∼ by

∼=
⋃

(S,T )

∼TS

where the union is over all pairs (S, T ) of simplices of C such that T is
a maximal face of S.

5. Finally, define |C| to be R(C)/ ∼.

We will also call topological spaces arising from simplicial complexes in this
way simplicial complexes, where this is not confusing.

4.3 Computational Tools

In establishing our results, we shall require the following tools to compute
the homologies of the various simplicial complexes that we shall work with.
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4.3.1 Relating homologies of different spaces

We begin by establishing some relations between the homologies of various
spaces.

Definition 4.3.1. [25, p. 3] Two continuous maps f, g : X → Y of topolog-
ical spaces are homotopic, denoted f ' g, if there is a continuous map

H : X × [0, 1]→ Y

such that H(x, 0) = f(x) and H(x, 1) = g(x).

Definition 4.3.2. [25, pp. 3-4] Topological spaces X and Y are homotopy
equivalent if there are continuous maps f : X → Y and g : Y → X such
that fg ' idY and gf ' idX .

A topological space that is homotopy equivalent to a point is called con-
tractible.

We will make use of homotopy equivalence through the following prop-
erty, found as [25, Cor. 2.11], though homotopy equivalence is significantly
stronger.

Lemma 4.3.3. If X and Y are homotopy equivalent spaces, then

HnX ∼= HnY

for all n.

Proof. See, for example, [25, pp. 110-113].

Definition 4.3.4. [25, p. 2] A strong deformation retraction of a space
X to a subspace Y is a continuous map X × [0, 1]→ X such that:

1. F (x, 0) = x for all x ∈ X

2. F (x, 1) ∈ Y for all x ∈ X

3. F (y, t) = y for all y ∈ Y and all t ∈ [0, 1].

In particular, if X strongly deformation retracts to Y , then X and Y are
homotopy equivalent, since with i : Y ↪→ X the inclusion, we have

F (i(y), 1) = i(y) = y

for all y ∈ Y and F is precisely a homotopy between the identity on X and
iF (−, 1).
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The following theorem is [25, Thm. 2.20].

Theorem 4.3.5. If X is a topological space, Y a subspace of X, and Z a
subspace of Y such that the closure in X of Z is contained in the interior of
Y , then

Hk(X, Y ) ∼= Hk(X \ Z, Y \ Z)

for all k.

For a proof, see, for example, [25, p. 124].
Another useful long exact sequence is given by [25, pp. 149-150]:

Theorem 4.3.6 (Mayer-Vietoris). Suppose that X is a topological space, U
and V open subsets of X such that U ∪ V = X and U ∩ V 6= ∅. Then we
have a long exact sequence of (reduced) homology

· · · → H̃k(U ∩ V )→ H̃k(U)⊕ H̃k(V )→ H̃k(X)→ H̃k−1(U ∩ V )→ · · ·

Proof. Let Cn(∗) be the (singular) chain groups computing Hn(∗), and let
Cn(U +V ) be the subcomplex of Cn(X) consisting of sums of elements c+ c′

with c ∈ Cn(U) and c′ ∈ Cn(V ), made into a chain complex by inheriting
the boundary map from Cn(X).

Then there is a map

ϕ : Cn(U ∩ V )→ Cn(U)⊕ Cn(V )

given by ϕ(c) = (c,−c) (where on the right we think of c as an element of
Cn(U) and Cn(V ) respectively), and a map

ψ : Cn(U)⊕ Cn(V )→ Cn(U + V )

given by ψ(c, c′) = c+ c′.
Now, ϕ is clearly injective, and ψ is surjective by definition of Cn(U+V ),

and
kerψ = {(c,−c)|c ∈ Cn(U) ∩ Cn(V ) = Cn(U ∩ V )} = imϕ

so we have a short exact sequence

0→ Cn(U ∩ V )
ϕ
↪−→ Cn(U)⊕ Cn(V )

ψ
−−� Cn(U + V )→ 0

Lemma 2.3.5 then gives a long exact sequence in homology

· · · → Hn(U ∩ V )→ Hn(C∗(U)⊕ C∗(V ))→ Hn(C∗(U + V ))→ · · ·

Now, Hn(C∗(U)⊕C∗(V )) ∼= Hn(U)⊕Hn(V ), and by Theorem 4.3.5, we have
Hn(C∗(U + V )) ∼= Hn(X), hence the result.
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4.3.2 Combinatorial Tools

We can also compute the homology of a (combinatorial) simplicial complex
directly, without the need for passing through the topological realm:

Definition 4.3.7. Let C be a simplicial complex with vertex set [m]. Let
Mn(C;R) be the set of formal sums of n-simplices of C with coefficients in
F , with the usual module structure over some ring R.

Define d : Mn(C;R)→Mn−1(C;R) by

dσ =
n∑
i=0

(−1)i(σ \ {σi}),

where σ = {σ0, . . . , σn}.

The following result, which is [25, Lem. 2.1], relates the homologies of our
simplicial complexes to the homologies of their geometric realisations.

Lemma 4.3.8. (Mn(C;R), d) is a complex, and HMn(C;R) ∼= Hn(|C|;R).

Proof. Firstly, note that

d2σ =
n∑
i=0

(−1)id(σ \ {σi})

=
n∑
i=0

(−1)i

(
i−1∑
j=0

(−1)j(σ \ {σi, σj}) +
n∑

j=i+1

(−1)j−1(σ \ {σi, σj}

)

=
n∑
i=1

i−1∑
j=0

(−1)i+j(σ \ {σi, σj}) +
n∑
j=1

j−1∑
i=0

(−1)i+j−1(σ \ {σi, σj})

= 0,

so (Mn(C;R), d) is indeed a complex.
Now, define | · | : Mn(C;R)→ Cn(|C|;R) by sending each simplex σ of C

to its image |σ| in |C|. This is clearly injective and forms a chain map, and
d|σ| = |dσ| by definition of the differential on Mn(C;R).

On the combinatorial side, the inclusion ι : Cn−1 ↪→ Cn induces a chain
map ι : M∗(C

n−1;R) ↪→ M∗(C
n;R). We define M∗(C

n, Cn−1;R) to be the
cokernel of this map, so that we have an exact sequence

0→M∗(C
n−1;R)→M∗(C

n;R)→M∗(C
n−1, Cn;R).

But the image of ι : Mk(C
n−1;R) is all of Mk(C

n;R) for k < n, and trivial
for k ≥ n. Thus, HMk(C

n, Cn−1;R) is trivial in all degrees except the nth,
where it is free on the n-simplices of C.
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On the topological side, excision gives an isomorphism

HCk(|C|n, |C|n−1;R)→ HCk(|C|n/|C|n−1;R),

where |C|m is the image under | · | of the m-skeleton Cm. But |C|n/|C|n−1 is
a wedge of n-spheres, so HCk(|C|n, |C|n−1;R) also is free on the n-simplices
of C.

Thus, there is an isomorphism

HMk(C
n, Cn−1;R)→ HCk(|C|n, |Cn−1|;R).

Further, C0 is just the vertex set of C, so has homology that is free on
V (C), and similarly |C|0 consists of |V (C)| distinct points, so its homology
is also free on V (C).

Inductively, we assume that the result holds for all complexes of dimension
at most n− 1, so that there are isomorphisms

HMk(C
n−1;R)→ HCk(|C|n−1;R)

for all k.

Finally, there is a map f : HMk(C
n;R)→ HCk(|C|n;R) given by sending

each simplex σ of Cn to the map from the standard simplex to |C|n sending,
for each i, the ith vertex of the standard simplex to the ith vertex of σ.

These maps assemble, with the long exact sequence associated to the
above short exact sequence of complexes and the long exact sequence of
the pair (Cn, Cn−1), to give the following commutative diagram with exact
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columns:

...
...

HMk+1(Cn, Cn−1;R) HCk+1(|C|n, |C|n−1;R)

HMk(C
n−1;R) HCk(|C|n−1;R)

HMk(C
n;R), HCk(|C|n;R)

HMk(C
n, Cn−1;R) HCk(|C|n, |C|n−1;R)

HMk−1(Cn−1;R) HCk(|C|n−1;R)

...
...

∼=

∼=

f

∼=

∼=

Lemma 2.1.27 then gives that

HMk(C
n;R)→ HCk(|C|n;R)

is an isomorphism, as required.

4.3.3 Homological Building Blocks

Definition 4.3.9. [25, p. 9] For a simplicial complex X, the cone on X is
the simplicial complex CX with vertex set V (X)t {∗}, and whose maximal
simplices are the S ∪ {∗} for S a maximal simplex of X.

Similarly, the cone on a topological space X is the topological space
CX = (X × [0, 1])/ ∼, where ∼ is the equivalence relation generated by
(x, 1) ∼ (y, 1) for all x, y ∈ X.

These two notions are related as follows:

Lemma 4.3.10. If X is a simplicial complex, then |CX| ∼= C|X|.

Proof. First, we define ϕ : C|X| → |CX| as follows: for each point x ∈ |X|,
let (x0, . . . , xn) be the barycentric coordinates of x in the minimal simplex
|S| of |X| containing it (after fixing some ordering on the vertices of S).
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Then for t ∈ [0, 1], we define ϕ(x, t) to be the point of |CX| lying in
the simplex T whose vertices are [| ∗ |] and the vertices of |S| × {1} whose
barycentric coordinates in |T | (with the vertices ordered with those of S in
the same order as above, and [| ∗ |] last) are (y0, . . . , yn, t), where

yi =
xi

1 + t

for all i.
Now, we define ψ : |CX| → C|X| as follows: for each point x of |CX|,

let (x0, . . . , xn) be the barycentric coordinates of x in the minimal simplex
S = |T t {∗}| containing both it and ∗, with ∗ being the final vertex in our
ordering.

Then we define ψ(x) to be the point (y, xn) ∈ C|X| where y is the point
of |T | whose barycentric coordinates (with the vertices ordered as above) are
((1 + xn)x0, . . . , (1 + xn)xn−1).

Both ϕ and ψ are clearly continuous, and it is equally clear that they are
inverse to one another, hence they are homeomorphisms.

The following standard result is found, for example, on [25, p. 183].

Lemma 4.3.11. For any topological space X, the cone CX is contractible.

Proof. We define

H : CX × [0, 1]→ CX

(x, t) 7→ f(t, x, ∗),

where f : [0, 1]× (CX)2 → CX is the map given, in barycentric coordinates
on each simplex, by f(t, x, y) = (1− t)x+ ty.

Now, f is well-defined, since we have∑
f(t, x, y)i =

∑
(1− t)xi + tyi

= (1− t)
∑

xi + t
∑

yi

= 1,

so H is also well-defined, and is clearly continuous.
Further, H(0, x) = x for all x, and H(1, x) = ∗ for all x, so H is a

homotopy between the identity map and the constant map at ∗, so CX is
indeed contractible.

We now repeat the above with a similar, but more interesting, construc-
tion.
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Definition 4.3.12. [25, p. 8] For a simplicial complex X, the suspension
on X is the simplicial complex SX with vertex set V (X)t{A,B} (with A,B
arbitrary additional points), whose maximal simplices are the S ∪ {A} and
S ∪ {B} for S a maximal simplex of X.

Similarly, the suspension on a topological space X is the topological
space SX = (X × [0, 1])/ ∼, where ∼ is the equivalence relation generated
by (x, 1) ∼ (y, 1) and (x, 0) ∼ (y, 0) for all x, y ∈ X.

These two notions are related as follows:

Lemma 4.3.13. If X is a simplicial complex, then |SX| ∼= S|X|.

Proof. We define ϕ : |SX| → S|X| as follows: for each point x ∈ |X|, let
(x0, . . . , xn) be the barycentric coordinates of x in the minimal simplex |S|
of |X| containing it (after fixing some ordering on the vertices of S).

Then for t ∈ [0, 1
2
], we define ϕ(x, t) to be the point of |SX| lying in a

simplex T whose vertices are [|A|] and the elements of {(|v|, 1
2
)|v ∈ Y } with

Y ⊆ X whose barycentric coordinates in |T | (with the vertices ordered with
those of |X| in the same order as above, and [|A|] last) are (y0, . . . , yn, 2t),
where

yi =
xi

1 + 2t

for all i.
Similarly, for t ∈ [1

2
, 1], we define ϕ(x, t) to be the point of |SX| lying

in the simplex T whose vertices are [|B|] and the elements of {(|v|, 1
2
)|v ∈

Y } with Y ⊆ X whose barycentric coordinates in |T | (with the vertices
ordered with those of |X| in the same order as above, and [|B|] last) are
(y0, . . . , yn, 2t− 1), where

yi =
xi
2t

for all i.
Now, we define ψ : S|X| → |SX| as follows: for each point x of |SX|,

let (x0, . . . , xn) be the barycentric coordinates of x in the minimal simplex
S = SA = |T t {A}| containing both it and |A|, if such exists, with A being
the final vertex in our ordering. If such does not exist, then we instead take
(x0, . . . , xn) to be the barycentric coordinates of x in the minimal simplex
S = SB = |T t {B}| containing both it and |B|.

Then, if S = SA we define ψ(x) to be the point (y, xn
2

) ∈ S|X| where y is
the point of |T | whose barycentric coordinates (with the vertices ordered as
above) are ((1 + 2xn)x0, . . . , (1 + 2xn)xn−1). Similarly, if S = SB, we define
ψ(x) to be the point (y, xn+1

2
) ∈ S|X| where y is as above.

Both ϕ and ψ are clearly continuous, and it is equally clear that they are
inverse to one another, hence they are homeomorphisms.
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The following result is found as [25, Ex. 2.2.32].

Lemma 4.3.14. For any topological space X and any k ≥ 0, we have
H̃kSX ∼= H̃k−1X (where we take the convention that H̃−1X = 0).

Proof. Let a := [(x, 0)] for some x ∈ X, and similarly let b := [(x, 1)]. Then
we apply Theorem 4.3.6 with (in the notation of that theorem) U = SX \{a}
and V = SX \ {b}. Then both U and V are homeomorphic to CX, so are
contractible, and U ∩ V ∼= X × (0, 1) strongly deformation retracts to X.

Thus, H̃kU = H̃kV = 0 and H̃k(U ∩ V ) ∼= HkX for all k ≥ 0. Our Mayer-
Vietoris sequence thus becomes

· · · → 0→ H̃k+1SX → H̃kX → 0→ · · ·

and since this is exact, the central map above is the desired isomorphism.

4.3.4 Shellability

In Chapter 7, we shall make use of the concept of shellability of a simplicial
complex - we shall make use only of the case where the simplicial complex
under consideration is pure, and so, for simplicity, we present this background
material in that setting. For a more general treatment, see [5].

Definition 4.3.15. [5, § 2] A shelling of a (finite, pure) simplicial complex
X is an ordering S1, . . . , Sn of the maximal simplices of X such that for each
k ≥ 1, the subcomplex

Sk+1 ∩

(
k⋃
i=1

Si

)
is pure of dimension dimSk+1 − 1.

The spanning simplices of a shelling are those Sk such that

Sk+1 ∩

(
k⋃
i=1

Si

)
= ∂Sk+1.

If X has a shelling, then it is shellable.

Example 4.3.16. Many common simplicial complexes are shellable:

1. All connected graphs are shellable, with a shelling given by any ordering
of the edges Ei such that each

⋃k
i=1Ei is connected.

2. Every hollow simplex is shellable, with any ordering of its maximal
simplices giving a shelling.
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3. All cubes are shellable, with any ordering of its maximal simplices
S1, . . . , Sn such that S1 and Sn are opposite giving a shelling.

4. This complex is shellable, with the ordering given in the labels.

1 2

3

4 5

6 7

8

However, not all pure connected simplicial complexes are shellable, even in
dimension 2. For example, the following complex is not shellable (adding the
second simplex gives a 0-dimensional intersection, whereas a shelling would
require this to be 1-dimensional):

The following result, which is a special case of [5, Thm. 4.1], is key: it is
important to note that not only does it allow us to compute the homology
of a shellable complex, but also that it provides explicit generators for said
homology, which is the key property that will make it useful to us in Chapter
7.

Theorem 4.3.17. The geometric realisation of a pure shellable simplicial
complex X of dimension d is homotopy equivalent to a wedge of d-spheres
with one d-sphere for each spanning simplex in a shelling of X.

Proof. Firstly, note that we can rearrange our shelling by placing the span-
ning simplices last, while still having a shelling, as at the stage where we add
each spanning simplex Sm to

Xm−1 :=
m−1⋃
i=1

Si,
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the only simplex that is added is Sm itself (since all of its proper faces have
already been added), which cannot be a face of any other simplex (as it is
maximal). Thus, we suppose, without loss of generality, that S1, . . . , Sk are
not spanning simplices, and Sk+1, . . . , Sn are spanning simplices.

We now show that Xm−1 is homotopy equivalent to Xm for all m ≤ k.
Note that Sm has some proper face F that is not shared with any Si for

i < m (else it would be a spanning simplex). Let F be maximal with this
property (such is uniquely defined, as F := {x ∈ Sm|Sm \ {x} ∈ Xm−1}).
This must be a maximal face, as X is pure.

We can then strongly deformation retract |Sm| to
⋃
T |T |, where the union

is over the faces of Sm other than F , by embedding |Sm| as a standard simplex
in Rk+1 (where k is the dimension of Sm), and for each point x in the |Sm|,
sending it to the (unique) point of

⋃
T |T | lying on the line through x (in the

affine plane spanned by the image of |Sm|) orthogonal to F .
Thus, Xm−1 is homotopy equivalent to Xm. But also, X1 = S1 is a solid

simplex, so is contractible, and so Xk is contractible, and so X is homotopy
equivalent to X/Xk.

But each Sm for m > k has its entire boundary glued to Xm−1. Thus,
in the quotient, Sk+1 (and, inductively, Sm) has its entire boundary glued to
the single vertex that Xk contracts to.

Thus, X/Xk is homotopic to a wedge of n− k spheres of dimension d, as
required.

This result is useful primarily through the following immediate corollary
(found as [5, Thm. 4.3] in more generality).

Corollary 4.3.18. The homology of a pure shellable simplicial complex X
of dimension d is given by

Hd(X) = Zn

with n the number of spanning simplices in any shelling of X, and

H̃k(X) = 0

for k 6= d. Further, the generators of Hd(X) correspond to those spanning
simplices.

Proof. As the homology of a wedge of spheres is precisely this, with n the
number of d-spheres, this follows immediately from Theorem 4.3.17 and
Lemma 4.3.3.
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Chapter 5

Representation Theory
Background

In this chapter, we will provide an overview of the concepts and definitions
from the theory of groups and their representations that we shall need later.
We will first present the purely group-theoretic results.

5.1 Group Theory

5.1.1 Elementary Results

To begin with, we shall require some standard results of group theory, be-
ginning with the following definitions.

Definition 5.1.1. For G a group and p a prime, a p-element of G is g ∈ G
such that the order of g is a power of p.

A p′-element of G is g ∈ G such that the order of g is coprime to p.

The following result will be key to the construction of the simplicial com-
plex studied in Chapter 7.

Lemma 5.1.2. Let G be a finite group, and let p be a prime dividing the
order of G. Then for every g ∈ G, there are unique elements u(g) and s(g)
of G such that:

• g = u(g)s(g) = s(g)u(g),

• u(g) is a p-element of G,

• s(g) is a p′-element of G, and
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• u(g) and s(g) are both powers of g.

This result, and the proof below, was communicated to us by S. Donkin.

Proof. By the uniqueness of prime factorisation in the integers, there are
unique integers n and q, with q coprime to p, such that |g| = pnq. Now, pn

and q are coprime, so, by Bézout’s identity, there are integers a and b, with
a unique modulo q and b unique modulo pn, such that apn + bq = 1. Let
s(g) := gap

n
, and let u(g) := gbq.

Then u(g) and s(g) commute, since both are powers of g, and

u(g)s(g) = gap
n+bq = g.

Further, u(g)p
n

= gbp
nq = 1b = 1, and s(g)q = gap

nq = 1a = 1, so indeed u(g)
is a p-element, and s(g) is a p′-element of G.

Further, for any elements u′(g) and s′(g) with these properties, there are
integers c and d such that s′(g) = gc, and u′(g) = gd. But since

g = u′(g)s′(g) = gc+d

we must have c+ d ∼= 1 (mod |g|) for some integer h.
Also, since u′(g) is a p-element, we have q|d, and since s′(g) is a p′-element,

we have pn|c, say c = epn and d = fq.
Combining these, we have epn+fq ∼= 1(mod |g|), so there is some integer

h such that (f−hpn)q+epn = 1. Thus, by the uniqueness of a and b, we have
f ∼= a(modpn), and e ∼= b(modq), and hence u′(g) = gd = gfq = gap

n
= u(g),

and s′(g) = gc = gep
n

= gbq = s(g), so u(g) and s(g) are, indeed, unique.

Definition 5.1.3. For G a group and g ∈ G, the centraliser of g in G is
Cg := {h ∈ G|h−1gh = g}.

Let G be a group and H a subgroup. Then the normaliser of H in G is
NH := {g ∈ G : g−1Hg = H}.

The following lemma is standard, and may be found, for example, as [22,
Prop. 3.8].

Lemma 5.1.4. If G is a finite group, then

|G| = |ZG|+
∑
|G : Cgi|

where the sum is over the non-trivial conjugacy classes of G and the gi are
representatives of those conjugacy classes.
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5.1.2 Nilpotent Groups

Definition 5.1.5. [10, p. 190] Let G be a group, and define G0 = G. Then,
for all n > 0, define Gn to be the commutator subgroup [Gn−1, G]. If there is
some finite n such that Gn is the trivial group, then G is called nilpotent.

The following result is found on [7, p. 1].

Lemma 5.1.6. Let G be a nilpotent group. Then every Sylow-p-subgroup P
of G is normal in G.

Proof. Let g ∈ NNP . Then g−1Pg is a Sylow-p-subgroup of G, and g−1Pg ⊆
g−1NPg = NP . Thus, g−1Pg is a Sylow-p-subgroup of NP , so g−1Pg = P ,
so NP = NNP .

Now, since P is normal in NP , it suffices to show that NP = G. Suppose
not. Then there is some minimal k > 0 such that Gk ≤ NP , so there is some
g ∈ Gk−1 \ NP . But [g,NP ] ≤ [g,Gk−1] ≤ Gk ≤ NP , so for all h ∈ NP ,
we have g−1hgh−1 ∈ NP , so g−1hg ∈ NPh = NP , so g ∈ NNP = NP , a
contradiction. Thus, NP = G, so P is normal in G.

The following Corollary is what will allow us to construct our complex in
Chapter 7 with an easy-to-study action.

Corollary 5.1.7. A finite nilpotent group G is the direct product of its Sylow
subgroups.

Proof. Let H be the product of the Sylow subgroups of G. As all Sylow
subgroups of G are normal and intersect trivially, this product is direct. But
the order of H is then the product of the orders of the Sylow subgroups,
which is precisely the order of G.

5.2 Representation Theory

We now move to the concepts and results of the representation theory of
groups that we shall require. We begin with some standard definitions.
Proofs of standard results will be omitted: see the citations for detailed
proofs.

Definition 5.2.1. [10, p. 41] An action of a group G on a set X is a
homomorphism ϕ : G→ Sym(X). If G acts on X, we denote g ·x = ϕ(g)(x).

Definition 5.2.2. [10, p. 840] A representation of a group G with coeffi-
cients in a ring R is an R-module M , together with an action · of G on M
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such that for all g ∈ G and all x, y ∈ M , we have g · (x + y) = g · x + g · y
and g · (ab) = (g · a)(g · b) .

A subrepresentation of a representation (M, ·) is an R-submodule N
of M such that G ·N = N , with action given by the restriction of · to N .

Definition 5.2.3. [10, p. 847] A representation (M, ·) of a group G is ir-
reducible if it has no subrepresentations other than itself and the trivial
representation.

A representation (M, ·) of a group G is indecomposable if there do not
exist subrepresentations S and T of M such that N = S ⊕ T as R-modules.

The following standard result was first proven in [33].

Lemma 5.2.4. Let G be a finite group and K a field whose characteristic
does not divide |G|. Let M be a finite-dimensional (as a K-vector space)
representation of G. Then M decomposes as a direct sum of irreducible
modules.

In particular, over such fields as described in the lemma, the indecom-
posable representations of G are precisely the irreducible representations of
G.

The following standard result of representation theory may be found, for
example, as [16, Prop. 2.30].

Lemma 5.2.5. Let G be a finite group. Then the number of irreducible
representations of G over C is equal to the number of conjugacy classes of
G.

See [16, § 2.2, 2.4] for a proof.
A large part of our work in the subsequent chapters will be to find free

generators of our homology modules such that our representations belong to
the following class.

Example 5.2.6. [10, p. 43] If G is a subgroup of the symmetric group Sn,
a permutation representation of G is the representation on the free R-
module on n generators with action given by permuting those generators.

We pass this terminology to groups isomorphic to G.

The following mild condition enables all of our following work.

Definition 5.2.7. [25, p. 96] A simplicial action of a group G on a sim-
plicial complex X is an action of G on X such that for each g ∈ G and each
σ = {σ0, . . . , σn} ∈ X, we have g · σ = {g · σ0, . . . , g · σn}.

Equivalently, this is an action of G on the vertex set V of X such that
for all σ = {σ0, . . . , σn} ∈ X, we have {gσ0, . . . , gσn} ∈ X.
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The following is key to our approach in Chapters 6 and 7, and may be
found on [25, p. 96][9, p. 179].

Lemma 5.2.8. If a group G acts simplicially on a simplicial complex X,
then it also acts on each homology module Hn(X;R), with action induced by
the action on X.

Proof. For the purposes of this proof, for σ a k-simplex of X, we denote by
[σ] the generator of the kth simplicial chain group corresponding to σ.

Let the vertices of X be v1, . . . , vn. Then the action of G on X is fully
determined by its action on {v1, . . . , vn}, as the action is simplicial. Given a
list of distinct vertices (vi1 , . . . , vik), define the orientation of (vi1 , . . . , vik) to
be (−1)t(vi1 ,...,vik ), where t(vi1 , . . . , vik) is the number of transpositions needed
to put (i1, . . . , ik) into ascending order.

Now, for σ = {vj0 , . . . , vjk} with j0 < . . . < jk, the action of G on X
passes to an action of G on the (simplicial) k-chains of X, as a k-chain is
simply an R-weighted sum of simplices of X. , so we can define g

∑
σ rσ =∑

σ(−1)t(gvj0 ,...gvjk )rgσ for all g ∈ G and all k-chains
∑

σ rσ.
It now suffices to show that this action sends cycles to cycles and bound-

aries to boundaries. But note that, for any σ = {vj0 , . . . , vjk} ∈ X with
j0 < . . . < jk and any g ∈ G and ui = vji for all i, we have (with m(i) the
difference between i and the position of gui in the ordered list of vertices gσ
in the order as defined above):

gd[σ]= g

(
k∑
i=0

(−1)i[σ \ {ui}]

)

=
k∑
i=0

(−1)i(−1)t(gu0,...,gui−1,gui+1,...,guk)[g(σ \ {ui})]

=
k∑
i=0

(−1)i(−1)t(gu0,...,gui−1,gui+1,...,guk)[(gσ) \ {gui}]

= (−1)t(gu0,...,guk)

k∑
i=0

(−1)i(−1)m(i)[(gσ) \ {gui}]

= d((−1)t(gu0,...,guk)[gσ])

= dg[σ].

Thus, in particular, if dσ = τ , then dgσ = gτ , so τ is a boundary if and
only if σ is a boundary, and dσ = 0 if and only if dgσ = g0 = 0, so indeed,
our action preserves cycles and boundaries, so passes to our homology by
g[
∑

σ rσ] = [
∑

σ rgσ].

69



5. Representation Theory Background

5.2.1 Young Tableaux

We shall now require some concepts and results from the theory of Young
Tableaux, which we shall use in Chapter 6 to analyse our representations.

Definition 5.2.9. [19, p. 244] A partition of a set X is a collection U of
non-empty subsets, called blocks, of X such that for every A 6= B ∈ U , the
intersection A ∩B is empty, and such that⋃

A∈U

A = X.

We define also the Stirling Number (of the second kind) S(n, k) to
be the number of partitions U of a set X with |X| = n such that |U | = k.

Definition 5.2.10. [15, pp. 1-2, 25, 85] A Young diagram is a collection
of boxes arranged in left-aligned rows, with a weakly decreasing number of
boxes in each row. For λ such a diagram, denote by λi the number of boxes
in the ith row of λ.

Figure 5.1: A Young diagram λ with 20 boxes.

A filling F of a Young diagram is the result of writing one natural number
in each box of that diagram. The Young diagram so filled is called the shape
of the filling. We denote it by λ(F ). A numbering of a Young diagram is a
filling whose entries do not repeat.
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Figure 5.2: A filling (left) and numbering (right) of shape λ

6 3 6 2 7 4

1 7 5 3

2 7 7 4

1 4 6

3 4

3

6 3 8 2 7 4

1 9 5 10

15 20 17 21

23 26 30

25 24

16

A Young tableau is a filling of a Young diagram such that the entries
in each row weakly increase and the entries in each column strictly increase.

Figure 5.3: A tableau of shape λ

6 6 7 8 9 40

7 7 8 9

8 8 9 10

9 9 10

10 10

11

A numbering of a Young diagram with n boxes is standard if its entries
are precisely the integers 1, . . . , n, each appearing exactly once. A tabloid is

Figure 5.4: A standard numbering (left) and tableau (right) of shape λ

2 4 10 3 9 12

14 8 1 13

16 6 15 11

7 17 18

19 5

20

1 4 5 6 7 20

2 8 9 10

3 11 12 13

14 15 16

17 19

18

an equivalence class of numberings of a Young diagram where two diagrams
are equivalent if they put the same numbers in each row, which we indicate
by missing the vertical lines between boxes. The tabloid of a tableau T is
denoted {T}. The type of a tabloid {T} is a sequence µ = (µ1, . . . , µn)
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Figure 5.5: A tabloid {T} of shape λ (left), and a numbering equivalent to
T (right)

1 4 5 6 7 20

2 8 9 10

3 11 12 13

14 15 16

17 19

18

1 20 5 4 7 6

10 8 2 9

3 13 12 11

15 14 16

17 19

18

such that µi of the boxes of T contain the number i for each i.

We note that Young diagrams with n boxes correspond to partitions of
n, with a diagram λ of k rows corresponding to the partition (λ1, . . . , λk).
We shall move without further note between the two.

We define orderings on the sets of all Young diagrams and numberings as
follows:

Definition 5.2.11. [15, pp. 26, 84–85] We define two orderings on the set
of all Young diagrams:

• The lexicographic order: λ ≤ µ if there is some i such that λj = µj
for all j < i, and λi < µi, or if λ = µ.

• The dominance order: λ E µ if for all i,∑
j≤i

λi ≤
∑
j≤i

µi.

We define also an ordering on the set of all numberings by saying that N ≤M
if either

1. λ(N) < λ(M) or

2. λ(N) = λ(M) and the largest entry that is different between N and M
appears earlier in M than in N .

The following numbers are key to the results of the subsequent section.

Definition 5.2.12. [29] For λ and µ Young diagrams, we define the Kostka
number K(µ, λ) to be the number of Young tableaux of shape µ and type
λ.
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5.2.2 Representations of the Symmetric group

To analyse the representations of the symmetric group, we first require the
following definitions, which will enable us to make use of the machinery of
Young Tableaux for this purpose.

Definition 5.2.13. [15, § 7.1] For λ any Young diagram with n boxes, the
symmetric group Sn acts on the set of all standard fillings of λ with σ · T
being the filling which puts σ(i) in the box where T puts i for each i.

This action passes to an action on the set of all tabloids via

σ · {T} = {σ · T}.

Definition 5.2.14. [15, p. 84] For each standard numbering T of a diagram
with n boxes, define the column group of T to be the subgroup C(T ) of
Sn consisting of all those elements which send all entries of each column of T
to entries of that same column, and dually define the row group of T to be
the subgroup R(T ) of Sn consisting of the elements which sends all entries
of each row of T to entries of that same row.

Definition 5.2.15. Let T be a standard numbering of a Young diagram with
n boxes. Then define bT to be the element of the group ring C[Sn] given by
the formula

bT =
∑

σ∈C(T )

sgn(σ)σ,

where sgn(σ) is the sign of σ.

Definition 5.2.16. [15, § 7.2] For λ a Young diagram, let Mλ be the complex
vector space with basis the set of all tabloids of shape λ, with the action of
Sn induced by the action on the tabloids.

The Specht Module Sλ corresponding to a Young diagram λ is the
subspace of Mλ spanned by the

vT := bT · {T} =
∑

σ∈C(T )

sgn(σ){σ · T}

for all numberings T of shape λ.

The following is the standard classification of irreducible representations
of the symmetric group, and may be found as [43, Thm. 2.4.6].

Theorem 5.2.17. The non-isomorphic irreducible representations of Sn are
precisely the Specht modules Sλ corresponding to diagrams λ of n boxes.
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5. Representation Theory Background

The following theorem is [43, Thm. 2.10.1].

Theorem 5.2.18. There is a basis of HomC(Sλ,Mµ) in bijection with the
set of all semisimple λ-tableaux of type µ.

For a proof, see [43, Ch. 2.10].
The following result will be key to our analysis of the representations

arising in Chapter 6, and is found on [15, p. 92].

Theorem 5.2.19. The module Mλ decomposes into irreducible representa-
tions as

Mλ = Sλ ⊕
⊕
µDλ

(Sµ)Kµ,λ ,

with Kµ,λ the Kostka number.
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Chapter 6

Homological Representations of
the Symmetric Group

In this chapter, and the chapter that follows, we shall compute group rep-
resentations by passing group actions on simplicial complexes to actions on
the homologies of those complexes. Similar methods have been used else-
where many times. Notably, in [38], these techniques are applied to compute
the characters of (co)homological representations of various groups given by
their actions on hyperplane arrangements. In [31], this is similarly used to
compute representations of the symmetric group given by its action on a
particular hyperplane arrangement.

In [45, § 4], a similar analysis to ours of this chapter is performed with
the action of the symmetric group on a different complex, and similar results
are obtained, with the usual irreducible representations arising. [27, § 7.5]
summarises the application of these methods to groups with BN -pairs acting
on their Tits complexes, and in particular notes that (in characteristic zero)
the homology representation arising in the top dimension is the Steinberg
representation, as proven in [8, § 66C].

The subject has also received recent attention, as in the preprint [36],
which applies these methods to the study of groups acting on a matroid via
the action on the simplicial complex formed by its family of independent
sets.

6.1 Preliminaries

We consider the following simplicial complex:

Definition 6.1.1. Let [n] denote the set {1, . . . , n}.
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6. Homological Representations of the Symmetric Group

Then we define T (n) to be the simplicial complex whose k-simplices are
the σ = a0, . . . , ak, with ∅ 6= ai ( [n] and ai ∩ aj = ∅ for all i 6= j.

We define the total size of such a simplex σ = a0, . . . , ak to be

|σ| =
k∑
i=0

|ai|,

and the type of a simplex

a = {a1
0, . . . , a

k0
0 }, . . . {a1

j , . . . , a
kj
j }

with ki ≥ km for all m > i, to be (k0, . . . , kj).
To facilitate later discussions, we also fix a global ordering on the vertices

of T (n), and somewhat arbitrarily choose this to be in increasing order of
size first, then increasing order of smallest element, then increasing order of
second-smallest element, and so on to increasing order of largest element.
For ease of later notation, we adopt the following convention: for a point x
contained in some simplex |σ| of |T (n)|, when we say “the barycentric coordi-
nates of x in |σ|” (or in images thereof), we mean the vector (x{1}, . . . , x[n−1]),
where xv = 0 if v is not a vertex of σ, and the xv for v ∈ σ are such that

x =
∑
v∈σ

xv|v|,
∑
v∈σ

xv = 1,

and xv ≥ 0 for all v.

Note that the requirement that ai is a proper subset of [n] removes only a
single disconnected point from T (n), and is done for reasons of convenience,
as it slightly simplifies the formula for our homology in the 0th degree, and
removes a trivial factor from the resulting representation.

We define also an action of Sn on this complex, by

σ·{{a1
0, . . . , a

k0
0 }, . . . , {a1

j , . . . , a
kj
j }} = {{σa1

0, . . . , σa
k0
1 }, . . . , {σa1

j , . . . , σa
kj
j }}.

By Lemma 5.2.8, this action passes to an action of Sn on the homology of
T (n), and hence representations of Sn, which we wish to investigate.

6.2 Homology Calculation

6.2.1 A Homotopy Equivalence

In order to compute the homology of T (n), we will first construct another

complex T̃ (n), then show that this is homotopy equivalent to T (n).
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6.2. Homology Calculation

We define T̃ (n) to be the simplicial complex whose 0-simplices are the
a0 ( [n] with |a0| > 1, together with an extra 0-simplex ∗, and whose
k-simplices, for k > 0, are:

1. The σ = a0, . . . , ak in T (n) such that |ai| > 1 for all i, and

2. the a0, . . . , ak−1, ∗, where σ = a0, . . . , ak−1 is a k − 1-simplex of T (n)
such that |σ| < n (that is: the simplices required to make ∗ the vertex

of a cone on the simplices of T̃ (n) corresponding to simplices of T (n)
of total size at most n− 1 with no singleton vertices ).

We define a global ordering on the vertices of T̃ (n), similar to the ordering
on T (n): we order ∗ first, and then the other vertices according to the or-
der on the vertices of T (n). We apply the same convention for barycentric
coordinates here as in T (n).

Once the homotopy equivalence of T (n) and T̃ (n) is established, it is sim-
ple to compute our homology, and the resulting representations: our equiva-
lence will map the simplices with no singleton vertices to the corresponding
simplices in T̃ (n), and send all other simplices into the cone formed by the

simplices of T̃ (n) with a vertex at {∗}. Thus, any set of generators for the

homology of T̃ (n) correspond directly to generators for the homology of T (n).
In order to establish this homotopy equivalence, we take the following

steps:

1. We split T (n) into three subcomplexes Cn, Bn and σ0.

2. We define a continuous map ϕ from each of |Cn|, |Bn| and |σ0| to |T̃ (n)|.

3. We verify that these three definitions of ϕ agree on the intersections of
|Cn|, |Bn|, and |σ0|, and hence that ϕ is a continuous map

|T (n)| → |T̃ (n)|.

4. We similarly split T̃ (n) into two subcomplexes C̃n and B̃n, and define

a continuous map ψ from |B̃n| to |T (n)|.

5. We embed |σ0 ∪ Cn| into R2n .

6. We similarly embed |C̃n| into R2n in such a way that the image is
contained in our embedded image of |σ0 ∪ Cn|.

7. We use these embeddings to extend ψ continuously to all of |T̃ (n)|.

8. We give explicit homotopies from ψ ◦ϕ and ϕ ◦ψ to the identity maps
on |T (n)| and |T̃ (n)| respectively.
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6. Homological Representations of the Symmetric Group

To split T (n), we define

• σ0 to be the simplex {{1}, . . . {n}},

• Bn to be the sub-simplicial complex of T (n) consisting of all simplices
σ = a0, . . . , ak such that |ai| > 1 for all i, and

• Cn to be the sub-simplicial complex of T (n) consisting of all simplices
σ = a0, . . . , ak with some |ai| = 1 for some i, together with all sub-
simplices thereof, apart from σ0.

We now define ϕ such that it collapses |σ0| to the vertex | ∗ |, leaves |Bn|
essentially unchanged, and adjusts |Cn| appropriately to connect the two.

First, as the simplices of Bn are all included in T̃ (n), we can simply define

ι : |Bn| → |T̃ (n)| to be the map induced by that inclusion.

We now define a map p from |Cn| to |T̃ (n)| as follows: for each point
x ∈ |Cn|, choose any simplex σ = a0, . . . , ak (with |a0|, . . . , |aj| > 1, and
|ai| = 1 for all i > j) such that x is in |σ|. Writing

x = (x{1}, . . . , x[n−1])

in barycentric coordinates in |σ|, we define pσ(x) to be the point in

|σ̃| = |a0, . . . , aj, ∗|

whose barycentric coordinates (y∗, . . . , y[n−1]) with respect to |σ̃| are given by

y∗ =
n∑
i=1

xv

and yv = xv for all other vertices v. After verifying that it is well-defined,
we shall take p(x) to be pσ(x) for any choice of σ.

This then allows us to define our map by

ϕ(x) =


∗ x ∈ |σ0|
p(x) x ∈ |Cn|
ι(x) x ∈ |Bn|.

This map is clearly continuous on σ0, on |Bn|, and on each simplex of
|Cn|.
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6.2. Homology Calculation

To verify that ϕ is well-defined on the intersections of these, we
consider each case in turn:

If x lies in two simplices σ and τ of |Cn|, let µ be their intersection. We
will show that the images given by taking x as a point of σ and µ agree:
symmetrically, those of τ and µ agree, hence those of σ and τ .

Now, as the intersection of the k-simplex σ with another simplex, µ is
necessarily a j-face of σ, for some j ≤ k. If the barycentric coordinates (xv)
of x in σ have xv > 0 for some v 6∈ µ, since the barycentric coordinates on σ
are an extension of those on µ, we must have∑

w∈σ

xw ≥ xv +
∑
w∈µ

xw >
∑
w∈µ

xw = 1,

contradicting the definition of our barycentric coordinates on |σ|.
Thus, the barycentric coordinates of x in σ are identical to its barycentric

coordinates in µ, and so pσ(x) = pµ(x), so our map is well-defined on all of
|Cn|.

Any x in the intersection of |σ0| and |Cn| is necessarily contained in some
simplex σ of |Cn| whose vertices all correspond to singletons, and by the
above, we can use pσ to compute p(x), but pσ : σ → | ∗ | is necessarily the
constant map, as it maps into the one-point set, so indeed, p(x) = ∗, agreeing
with our definition of ϕ on σ0,

Finally, any x in the intersection of |Cn| and |Bn| must lie in some simplex
|σ| of |Cn| containing no singleton vertices, and by the above, we can use pσ
to compute p(x). But pσ is exactly the map induced by the inclusion of σ

into T̃ (n), agreeing with our definition of ϕ on |Bn|.
Thus, ϕ is, indeed, well-defined.

To split T̃ (n) into two subcomplexes, we define:

• A subcomplex C̃n consisting of all simplices with a vertex at ∗, and all
subsimplices thereof (that is: |C̃n| = ϕ(|Cn|)), and

• A subcomplex B̃n consisting of all simplices without a vertex at ∗ (that

is: |B̃n| = ϕ(|Bn|)).

To define ψ separately on each of these, we first note that ι restricts
to a homeomorphism from |Bn| to |B̃n|, and we therefore can simply define

ψ(x) = ι−1(x) for all x ∈ |B̃n|, and this too will be continuous on |B̃n|.
Defining ψ on C̃n will take rather more work.
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6. Homological Representations of the Symmetric Group

To embed |Cn ∪ σ0| into R2n (with coordinates indexed by the subsets of
[n]) by a map ξn, we proceed as follows:

We send |σ0| to form a standard n−1-simplex, with vertices the standard
basis elements e{1}, . . . , e{n}, with the vertex {k} sent to ek, and interpolate
linearly between these points.

Let b0 be the image under this map of the barycentre of |σ0|, and let
π be the composition of the natural projection π1 of R2n onto Rn (given
by π1(e{i}) = ei, and π1(ev) = 0 for non-singleton v) with the orthogonal
projection π2 from Rn onto the affine plane through the ev for singletons v.
Note, in particular, that π2 fixes π1ξn(|σ0|), as this is already contained in
that affine plane.

For each vertex v in the remainder of Cn, there is a unique maximal
simplex whose vertices are v and some subset A(v) of the vertices of σ0

(A(v) is the set of singletons of elements of [n] \ v). Take b(v) to be the
barycentre of the images under our embedding of A(v), and map v to the
point 2b(v) + e{v} − b0.

We then map the simplices of Cn to the convex hull of the images of their
vertices.

If τ has only one non-singleton vertex v, and ρ likewise has a single non-
singleton vertex w 6= v, then all points x of ξn|τ | have x · ew = 0, and all
points y of ρ have y · ev = 0, so these can intersect only at points z of τ
with z · ev = 0, which occurs, by construction of ξn, only in the face that τ
shares with σ0. Thus, ξn embeds |B1

n ∪ σ0|, where B1
n is the collection of all

simplices of Bn with at most one non-singleton vertex.

We now proceed by induction. In the n = 1 and n = 2 cases, Cn is
empty, so the result is vacuously true. In the n = 3 case, C3 consists of
three maximal 1-simplices: ({1}, {2, 3}), ({2}, {1, 3}), and ({3}, {1, 2}). By
the case above, since each of these has only a single non-singleton vertex, ξn
embeds C3.

In general, suppose that ξn embeds Cm for all m < n.

If τ and ρ are simplices of Cn which share a common vertex v, then we can
remove v from both to give two simplices τ ′ and ρ′, which lie in an isometric
copy D of Cn−|v| inside Cn, given by fixing some set Nv of n−|v| elements of
[n] that includes the union of all of the vertices of τ and ρ, with the isometry
given by relabelling the elements of [n]− v to match those of [n− |v|]. Since
this map is an isometry, and ξn−|v| is an embedding, so is their composition,
ξn|D.

Now, ξn, by definition, sends τ and ρ to the convex hull of

ξn|τ ′| ∪ ξn|v|
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6.2. Homology Calculation

and

ξn|ρ′| ∪ ξn|v|

respectively. Since ξn|D is an embedding, we have

ξn(|τ ′|) ∩ ξn(|ρ′|) = ξn(|τ ′ ∩ ρ′|).

Thus,

ξn(|τ |) ∩ ξn(|ρ|)

is the convex hull of

(ξn(|τ ′|) ∩ ξn(|ρ′|)) ∪ {ξn(|v|)} = ξn(|τ ′ ∩ ρ′|) ∪ |v|,

which is precisely

ξn(|τ ∩ ρ|).

Finally, if τ and ρ are simplices of Cn sharing no common vertices, then
since ξn(|τ |) lies in the linear span of the ev for v ∈ τ , and ξn(|ρ|) lies in the
linear span of the ew for w ∈ τ , and these two spans intersect only at the
origin, ξn(|τ |) and ξn(|ρ|) can only intersect if both meet the origin.

But ξn sends all vertices of |Cn| to positively-signed basis vectors, and
all other simplices to the convex hull of their vertices. Thus, for any point
x = (x1, . . . , x2n) in ξn(Cn), for any simplex τ containing x, we may write x
in barycentric coordinates for τ as (av) such that

∑
v∈τ av = 1. In particular

there is some aj > 0, so x cannot be the origin.
Thus, ξn(|τ |) and ξn(|ρ|) do not intersect, and hence ξn is, indeed, an

embedding.

To embed |C̃n| into C ′n = ξn(|Cn ∪ σ0|), we proceed as follows.

Firstly, consider any vertex v 6= ∗ of C̃n. This is also a vertex of Cn. We
map the line segment Lv from |v| to | ∗ | into Cn by first subdividing it into
two segments, L1

v, consisting of the half closest to | ∗ | and L2
v, consisting of

the half closest to v. With m(v) the barycentre of the singleton face A(v)
of the highest-dimensional simplex ρ(v) of C ′n containing ξn(v), as before,
we map L1

v to the line segment from ∗ to m(v), and L2
v to the line segment

from m(v) to ξn(|v|). All points of this lie in C ′n since ∗ and m(v) both lie in
ξn|σ0|, which is convex, and since m(v) and ξn(|v|) both lie in ρ(v), which is
also convex.

We shall now construct our map on the rest of C̃ ′n by interpolating be-

tween these lines. Specifically, for any x ∈ |C̃n ∩ B̃n|), let |τ | be any simplex

of |C̃n| containing x. We define a map ωτ : Lx → C ′n by sending L1
x to the
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6. Homological Representations of the Symmetric Group

line segment from b0 to m(x) :=
∑

w∈τ αw(x)m(w), and L2
x to the line seg-

ment from m(x) to v(x) :=
∑

w∈τ αw(x)ξn(|w|), with αw(x) the barycentric
coordinate of x at the vertex w. Note that, in particular, both m and v are
continuous on all of |Cn|, once we have established that they are well-defined.

As the map ω formed by assembling the ωτ is clearly continuous on each
simplex of C̃ ′n, being piece-wise linear, it suffices to show that it is well-defined
to establish its continuity everywhere.

For that purpose, consider any x ∈ |C̃n ∩ B̃n| that is contained in two
simplices |τ | and |θ|. Then it is also contained in their intersection, which is
itself some simplex |ζ|. Thus, to show that ωτ (x) = ωθ(x), it suffices to show
that both are equal to ωζ(x). We shall show this for ωτ (x): the argument for
ωθ(x) is the same.

As before, we note that, since the barycentric coordinates on τ extend
those on θ, the barycentric coordinates of x on τ and θ must be identical, so
m(x) and v(x) are well-defined, and hence ωτ (x) = ωθ(x).

We therefore define ω : |C̃n| ↪→ C ′n by ω(x) = ωτ (x) for any simplex τ

of C̃n such that x ∈ |τ |. This is continuous as it is piece-wise linear on each

simplex of |C̃ ′n|.

We now define our map ψ by

ψ :|T̃ (n)| → |T (n)|

x 7→

{
ξ−1
n (ω(x)) x ∈ |C̃n|
ι′(x) x ∈ |B̃n|.

with ι′ the map induced by the inclusion of B̃n into T (n).

As we defined ω to send each point x of B̃n ∩ C̃n to ξnι
′(x), ψ is well-

defined, and it is continuous since both ξ−1
n ◦ ω and ι′ are continuous. To

show that T (n) and T̃ (n) are homotopy equivalent, then, we need only show
that ϕψ and ψϕ are each homotopic to the identity.

We define our first homotopy

H : T (n)× [0, 1]→ T (n)

as follows:
First, note that we can inherit a scalar multiplication and an addition on

|T (n)| from R2n via our embedding, and that since each simplex of |T (n)| is
convex, all operations of the form f(t, x, y) := tx + (1 − t)y, with x and y
lying in the same simplex, and t ∈ [0, 1] give another point of |T (n)|.
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6.2. Homology Calculation

For x ∈ |Bn|, we define HB(x, t) = x for all t. Note that since ψϕ(x) = x,
we have HB(x, 1) = ψϕ(x).

For x ∈ |σ0|, we define

Hσ(x, t) =

{
x t < 1

2

f(2− 2t, x, b|σ0|) t ≥ 1
2
,

with bρ denoting the barycentre of ρ. Note that Hσ is continuous, since
Hσ(x, 1

2
) = x.

For x ∈ |Cn|, there is some unique v(x) ∈ |B̃n∩C̃n| such that ϕ(x) ∈ Lv(x).
Let mx be the point where Lv(x) meets the boundary of |σ0|. If ϕ(x) ∈ L1

v(x),
then we define

H1
C(x, t) =

{
f(1− 2t, x, ψ(mv(x))) t < 1

2

f(2− 2t, ψ(mv(x)), ψϕ(x)) t ≥ 1
2
.

If, on the other hand, ψ(x) ∈ L2
v(x), then we define

H2
C(x, t) =

{
f(1− 2t, x, ψϕ(x)) t < 1

2

ψϕ(x) t ≥ 1
2

Again, note that both of these are continuous.
Finally, if x ∈ |Bn|, then we define HB(x, t) = x for all t.
We shall then assemble H from HB, H1

C , H2
C , and Hσ, after checking that

it is well-defined.
For that purpose, first note that for x ∈ |σ0 ∩ Cn|, we have ψ(my) = x,

so for t < 1
2
, we have

H1
C(x, t) = f(1− 2t, x, x) = x = Hσ(x, t),

and for t ≥ 1
2
, we have

H1
C(x, t) = f(2− 2t, x, ψϕ(x)) = Hσ(x, t).

Now, the intersection of the domains of H1
C and H2

C is precisely the set of all

x such that ϕ(x) = my for some y ∈ |B̃n ∩ C̃n|. For such x, and t < 1
2
, we

have

H1
C(x, t) = f(1− 2t, x, ψ(my)) = f(1− 2t, x, ψϕ(x)) = H2

C(x, t).

For t ≥ 1
2
, we have

H1
C(x, t) = f(2− 2t, ψ(my), ψϕ(x)) = ψϕ(x) = H2

C(x, t).
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6. Homological Representations of the Symmetric Group

Finally, for x ∈ |Bn ∩ Cn|, we have ψϕ(x) = x, so for t < 1
2
, we have

H2
C(x, t) = f(1− 2t, x, ψϕ(x)) = f(1− 2t, x, x) = x = HB(x, t),

and for t ≥ 1
2
, we have

H2
C(x, t) = ψϕ(x) = x = HB(x, t).

Thus, H is well-defined.
Further, H is clearly continuous on |σ0| and |Bn|, so we need only confirm

that it is continuous on |Cn|. It is clear that H is continuous on

{(x, t)|t ∈ [0, 1]}

for each x ∈ |Cn|. As shown previously, the maps v and m are continuous
on |Cn|. Thus, H must also be continuous on all of |Cn|, and hence we have
ψϕ ' idT (n).

Finally, we define our other homotopy

G : |T̃ (n)| × [0, 1]→ |T̃ (n)|

to be the straight-line homotopy G(x, t) = f(1− t, x, ϕψ(x)), with all arith-

metic done in the barycentric coordinates on |T̃ (n)|.
This is well-defined on |B̃n| × [0, 1], since ϕψ(x) = x here, so G(x, t) = x.

To show that it is well-defined on |C̃n \ B̃n|, we shall show that ϕψ(x) lies in

the minimal simplex τ of |C̃n| containing x, which is convex.
For this purpose, note that for x ∈ L1

y, we have ψ(x) ∈ |σ0|, and hence
ϕψ(x) = | ∗ |. If, on the other hand, x ∈ L2

y, then ψ(x) = ξ−1
n ω(x), which

lies in |Cn|, so ϕψ(x) = pξ−1
n ω(x). Now, p maps each simplex |ρ| of |Cn| to

the simplex of |C̃n| given by the geometric realisation of the simplex given
by removing all singletons from ρ, and replacing them by ∗.

Thus, we need only show that the non-singleton vertices of ξ−1
n ω(τ) are

those corresponding (under ι) to the non-∗ vertices v of τ . But for such v,
we have ω(v) = ξι(v), so this is, indeed, the case.

Thus, we have ϕψ ' idT̃n , so indeed, T (n) and T̃n are homotopic.

6.2.2 The Homology of T̃ (n)

To compute generators for the homology of T̃ (n), we note that, by construc-
tion, the vertex ∗ is the vertex of a cone whose base is all of those simplices
of total size at most n− 1 (as each such simplex can be made into a simplex
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of T (n) with a singleton vertex, and hence a simplex of T̃ (n) with a vertex
at ∗, by adding into it the singleton containing one of the elements of [n]
not already contained in any of its vertices). There is, therefore, a homotopy

equivalence x 7→ [x] from |T̃ (n)| to its quotient (as a cellular complex) T̂ (n)
by the equivalence relation identifying the entire cone to ∗.

In T̂ (n), we have only one remaining vertex ∗ (as there is no singleton
of total size n in T (n)), and for k > 0, the k-simplices of T (n) of total size

n containing no singletons (the only simplices of T̃ (n) not identified to ∗ in

T̂ (n)) have now been mapped to k-cells in T̂ (n) with their entire boundary

glued to ∗ (as the boundary in T̂ (n) is covered by the images of the faces in

T̃ (n), and each such face is a k − 1 simplex of total size at most n− 1, so is
mapped to ∗ by our quotient).

Thus, T̂ (n) is a wedge of spheres of varying dimensions, and to compute
its homology, we need only count the number of spheres that appear in each
dimension. That is, for each k < n, we need to count the number β(n, k) of
partitions of {1, . . . , n} into k non-singleton subsets.

For this purpose, let S(n, k) be the Stirling number of the second kind,
which counts the number of partitions of {1, . . . , n} into k subsets (possibly
including singletons). Then we can use an inclusion-exclusion counting argu-
ment to compute our β(n, k). First, note that for each choice of i elements
from {1, . . . , n}, there are S(n−i, k−i) partitions of {1, . . . , n} into k subsets
including each of our i elements as a singleton.

We therefore have

β(n, k) =
k∑
i=0

(−1)i
(
n
i

)
S(n− i, k − i).

Thus, we have the following theorem (with the zeroth homology following
from the connectedness of T (n):

Theorem 6.2.1. The homology of T (n) with coefficients in a module M over
a commutative ring R is given by

H̃k(T (n)) = Mβ(n,k),

with, for k > 0, generators for the kth homology labelled by the partitions of
{1, . . . , n} into subsets of size at least 2.

6.3 The Associated Representations

To compute the representations of Sn arising from its action on T (n), we

first pass a set of generators for the homologies of T̂ (n) back through our
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sequence of homotopy equivalences to a set of generators for the homologies
of T (n). For this purpose, note that the generators given above are precisely
the images under our sequence of homotopies of the k-simplices of T (n) of
total size n with no singleton vertices, and thus, we have a set of generators
Ak(n) of the kth homology of T (n) indexed by the collection of all such
k-simplices. We therefore write elements of the homology as formal sums∑

σ∈A(n)

ασ[σ],

with ασ ∈M .
Thus, the corresponding representation ρkn of Sn is given, with respect to

these generators, by

ρkn(τ)

 ∑
σ∈Ak(n)

ασσ

 =
∑

σ∈Ak(n)

ασ(−1)t(τσ)τ(σ).

Since our action on T (n), and hence ρkn, permutes simplices of each type
separately, ρ decomposes as the direct sum of the representations ρλ, for each
type λ of k-simplices corresponding to generators of Hk(T (n),M). Let Nλ

be the C[Sn] module corresponding to ρλ.
The representations of Sn arising from the standard action of Sn on such

families of Young tableaux are well-understood. See, for example, the treat-
ment in [15, § 7].

Let Y λ be the set of standard tabloids of shape λ, and let Mλ be the C[Sn]
module with basis the Y λ and the action induced by the standard action of
Sn on Y λ.

We then define an equivalence relation on Mλ generated by

{T} ∼ sgn(σ)(σ{T})

for {T} ∈Mλ and σ a permutation of the rows of {T} preserving its shape,
extended linearly. We note in particular that if λ has no repeated values,
there are no non-trivial such σ, so our equivalence relation is the trivial one
in this case.

We note that this is equivariant: if τ ∈ Sn and T and σ are as above,
then

τ · (sgn(σ)(σT ))= sgn(σ)(τ · σT )

= sgn(σ)(σ(τ · T ))

∼ τ · T.
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Thus, the quotient Lλ := Y λ/ ∼ is also a C[Sn] module, with basis the
equivalence classes of the tabloids. Again, we note that if λ has no repeated
values, then Lλ = Y λ.

Proposition 6.3.1. There is an isomorphism of C[Sn] modules

f : Nλ → Lλ.

Proof. For σ one of our homological generators of shape λ, define f(σ) to be
the equivalence class in Lλ represented by the tabloid given by ordering the
vertices of σ in decreasing order of length then in increasing order of minimal
element, then entering the elements of the k-th such vertex as the values in
the k-th row. This defines a map between the bases of Nλ and Lλ, which
extends to a C-isomorphism Nλ → Lλ.

It remains to show that this map is compatible with the Sn actions. But
f sends a generator which has each entry i in a vertex of size mi to a tabloid
with the entry i in a row of length mi, so in particular, f(g ·σ) has each entry
g(i) in a row of length |σi|, as does g · f(σ). Additionally, if i and j share a
vertex in σ, then g(i) and g(j) share a row in both g ·f(σ) and f(g ·σ). Thus,
g · f(σ) and f(g · σ) differ only in permuting rows of the same length. But
generators differing in this way are exactly the generators that are identified
by ∼, so f(g · σ) = g · f(σ), as required.

Let Hλ be the group of permutations of the rows of λ that preserve its
shape. Then the equivalence relation ∼ can equivalently be defined by A ∼ B
if and only if A−B lies in the linear span Kλ of

Jλ := {{T} − sgn(σ)(σ{T})|{T} ∈ Y λ, σ ∈ Hλ},

where Hλ acts in the natural way. Since ∼ is equivariant, Kλ is a C[Sn]-
submodule of Mλ.

Now, Hλ is a subquotient of Sn as follows: let Aλ be the Young subgroup
associated to the partition λ (if λ = (λr11 , . . . , λ

rk
k ), then we have Aλ =

(Sλ1)
r1 × · · · × (Sλk)

rk [15, p. 84]. Let Zλ be the normalizer of Aλ. Then
Hλ = Zλ/Aλ, since Zλ is precisely the group of all elements that preserve our
partition of [n], and Aλ is the subgroup of those that preserve the ordering
of the subsets.

Further, Hλ decomposes as the product of the permutation groups of
rows of each length, so Hλ = Sr1 × . . . × Srk . Each factor Sri then acts via
its regular permutation representation on each subset of our generators that
fixes all entries outside of rows of length λi, and Hλ acts faithfully as the
tensor product of those representations. The orbits under this action are the
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subsets of our generators in which, for each i ∈ [n], we fix the length of the
row in which i lies and the entries that it shares that row with. On each
orbit, Hλ acts by its regular representation, and so Mλ decomposes (as a Hλ

module) as the sum of some number of copies of the regular representation
Rλ of Hλ, which we label by R1, . . . , Rk.

However, inNλ, this group of row permutations acts also with sgn (in each
Sri factor). Thus, we shall instead consider the module Qλ = Mλ ⊗ sgn =
Q1 ⊗ · · · ⊗ Qk, with Qi := Ri ⊗ sgn, which Mλ similarly decomposes into
a product of (as a Hλ module). We note also that each Qi is generated by
some orbit Oi of the standard permutation action of Hλ.

Lemma 6.3.2. Kλ is a Hλ-submodule of Qλ, and hence its intersections
Ki := Qi ∩Kλ with the Qi are Hλ-submodules of the Qi.

Proof. For each tabloid {T} and each g, h ∈ Hλ, with the Qλ action, we
have

g · ({T} − sgn(h){T})= sgn(g)g{T} − sgn(g) sgn(h)gh{T}
= sgn(g)({gT} − sgn(ghh−1)ghg−1{gT})

which lies in Kλ. Thus, this action of Hλ sends each generator of Kλ into
Kλ, this is a Hλ-submodule of Mλ, and so each Ki is a submodule of Qi.

We now fix some generator {Ti} from each orbit Oi.
Define Gi := {{Ti} − sgn(σ)σ{Ti}|σ ∈ Hλ \ {1}}.

Lemma 6.3.3. Gi is a vector space basis for Ki.

Proof. Firstly, any element {S} − sgn(σ)(σ{S}) of Jλ can be written (with
σ(S, T ) the element of Hλ such that σ(S, T ){S} = {T}) as

{S}− sgn(σ)(σ{S})
= {S} − sgn(σ(S, Ti)){Ti}+ sgn(σ(S, Ti)){Ti} − sgn(σ)(σ{S})
= − sgn(σ(S, Ti))({Ti} − sgn(σ(Ti, S)){S})

+ sgn(σ(S, Ti))({Ti} − sgn(σ(Ti, S)σ)(σ{S}))
= − sgn(σ(S, Ti))({Ti} − sgnσ(Ti, S){S})

+ sgn(σ(S, Ti))({Ti} − sgnσ(Ti, σS))(σ{S})

and each we note that if σ(Ti, S) or σ(Ti, σS) is the identity, then the re-
spective term in the final line is zero, so the union of the Gi generate Kλ, as
a vector space. As each Gi is contained in Qi, and the Qi intersect trivially,
each Gi then generates Ki, as a vector space.
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Secondly, we note that Gi is linearly independent: if∑
{S}∈Oi\{{T}}

a{S}({Ti} − sgn(s(Ti, S)){S}) = 0,

then looking at the coefficients of {S}, we see that sgn(s(Ti, S))a{S} = 0, so
a{S} = 0.

Let Ci denote the linear span of the element

ci :=
∑
{S}∈Oi

sgn(s(Ti, S)){S}.

Lemma 6.3.4. Ci is the C[Hλ]-complement of Ki in Qi.

Proof. Firstly, we note that, with the standard inner product, we have

〈ci, {Ti} − sgn(s(Ti, S)){S}〉= 〈ci, {Ti}〉 − sgn(s(Ti, S))〈ci, {S}〉
= 1− sgn(s(Ti, S))2

= 0.

So ci is orthogonal to each of the {Ti}− sgn(s(Ti, S)){S}, so in particular
is linearly independent of them, so Ci and Ki intersect trivially.

Further, the dimension of Qi is |Oi|, and the dimension of Ki is |Gi| =
|Oi|−1, so Gi∪{ci}must generate Qi, hence Ci is the orthogonal complement
of Ki in Qi.

But also, for any σ ∈ Hλ, we have

σci=
∑
{S}∈Oi

sgn(s(Ti, S))σ{S}

= sgn(σ)
∑
{S}∈Oi

sgn(s(Ti, S)) sgn(σ)σ{S}

= sgn(σ)
∑
{S}∈Oi

sgn(s(Ti, S)σ)σ{S}

= sgn(σ)
∑
{S}∈Oi

sgn(s(Ti, σS)){σS}

= sgn(σ)ci.

So Ci is also a C[Hλ]-subspace of Qi, hence the C[Hλ]-complement of Ki.
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Thus, the representation on Ci is exactly the sign representation of Hλ.
Meanwhile, the representation on Qi is the tensor product of the regular
representation with the sign representation, so Ki is the complement of the
sign representation in that representation (which is exactly the tensor prod-
uct with sign of the complement of the trivial representation in the regular
representation).

Finally, we note that Kλ is the sum of the Ki, so is a sum of z(λ) copies
of the complement of that sign representation, where z(λ) is the number of
orbits of the standard action of Hλ on our generators. Thus, the quotient
Qλ/Kλ (as a Hλ-module) is the sum of z(λ) = [Sn : Hλ] copies of that sign
representation.

Further, as an Sn-module, Qλ/Kλ is precisely the tensor product (over
C[Hλ]) of Qi/K

λ by C[Sn]. That is: it is precisely IndSnZλ(Qi/K
λ), where we

obtain our Zλ action by having g ∈ Zλ act as [g] ∈ Hλ does.
Therefore, our homological representation is precisely the result of induc-

ing the one-dimensional representation ρλ of Zλ (given by the sign represen-
tation of Hλ = Zλ/Aλ) up to Sn (so is z(λ)-dimensional).

We can also compute z(λ) explicitly: it is the quotient of the dimensions

of Mλ and Rλ. The dimension of Mλ is
n!

k∏
i=1

(λi!)ri
(it is precisely the number

of tabloids of shape λ, which is the number of standard numberings of shape
λ, divided by the order of Aλ ∼= Sr1λ1 × . . . × S

rk
λk

[15, p. 84]), and Rλ is the
tensor product of the Ri, so has dimension

k∏
i=1

ri!

Thus, we have

z(λ) =
n!

k∏
i=1

(λi!)riri!

.

We have thus proven the following.

Theorem 6.3.5. Let Zλ be the normaliser of the Young subgroup of Sn as-
sociated to the partition λ, and let ρλ be the one-dimensional representation
of Zλ given by the sign representation of Zλ/Aλ. Then the homological rep-
resentation given by the action of Sn on T (n) in degree k is given by⊕

λ

(
IndSnZλρλ

)
,
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where the direct sum is over all partitions λ of n into k non-singleton com-
ponents, and

dim IndSnZλρλ =
n!

k∏
i=1

(λi!)riri!

.
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Chapter 7

Homological Representations of
Nilpotent Groups

7.1 Definitions

We begin the construction of the simplicial complex that we shall study in
this chapter by defining the following set.

Definition 7.1.1. For G a finite group, we define D(G) to be the collection
of all (g1, . . . , gn), where each gi is a pi element of G.

We now recall the following simple lemma (previously seen as Lemma
5.1.2):

Lemma 7.1.2. Let G be a finite group, and let p be a prime dividing the
order of G. Then for every g ∈ G, there are unique elements u(g) and s(g)
of G such that:

• g = u(g)s(g) = s(g)u(g),

• u(g) is a p-element of G,

• s(g) is a p′-element of G, and

• u(g) and s(g) are both powers of g.

In the case where G is a finite group whose order has distinct prime
divisors p1, . . . , pn (whose order we fix once and for all, though we shall see
at the end that this is unnecessary), we can apply the above to each g ∈ G
for each pi in turn, defining u1(g) and s1(g) via the prime p1, then defining
each ui(g) and si(g) to be the elements of G given by applying the above
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lemma to si−1(g), using the prime pi. Note that in the last case, sn−1(g) is
necessarily a pn-element, as it cannot be divided by any of p1, . . . , pn−1, so
this produces a unique sequence of elements u1(g), . . . , un(g) such that each
ui(g) is a power of g, each ui(g) is a pi element, and g = u1(g) . . . un(g).

Conversely, if g1, . . . , gn are pairwise commuting elements of G such that
each gi is a pi element, with |gi| = peii , let g := g1 . . . gn. Then for each i, we
have gαi = gαii , where

αi =
∏
j 6=i

p
ej
j .

As αi is coprime to peii , there is some integer a such that aαi ∼= 1 (mod peii ),
so gaαi = gi. Thus, by the lemma above, we have the following result:

Lemma 7.1.3. There is a bijection between G and D(G).

Denote this bijection by u : G→ D(G).
We can now define our simplicial complex.

Definition 7.1.4. For any finite group G, we define ∆(G) to be the simplicial
complex whose k-simplices are the (g1, . . . , gn) ∈ D(G) where exactly k + 1
of the gi are not the identity. In particular, all elements of D(G) except for
the identity are simplices of ∆(G) of some dimension.

The ith face map of ∆(G) is given by replacing the (i− 1)st non-identity
element of a k-simplex (with k ≥ i) (g1, . . . , gn) by the identity.

We define also an action of G on ∆(G) by conjugation:

g · (g1, . . . , gn) = (gg1g
−1, . . . , ggng

−1).

7.2 Topological Constructions

In order to explore the structure of this complex, we begin with the simplest
example: if G has prime-power order, then u(g) = (g) for each g ∈ G, so
∆(G) consists of |G| − 1 discrete points. More generally, if G is a finite
nilpotent group, then it is the direct sum of its Sylow-p-subgroups. Let Gi

be the Sylow-pi-subgroup of G for each pi
∣∣ |G|.

Define also
Gk =

⊕
i≤k

Gi

for each k. We shall proceed to construct ∆(Gk) out of ∆(Gk−1), and there-
fore inductively construct ∆(G).

First, note that the subcomplex ∆1(Gk) of ∆(Gk) consisting of all sim-
plices of the form (g1, . . . , gk−1, 1) is isomorphic to ∆(Gk−1) via the map
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(g1, . . . , gk−1) 7→ (g1, . . . , gk−1, 1). For each non-identity element g of Gk,
we have a subcomplex ∆g(G

k) of ∆(Gk) consisting of all simplices whose
kth entry is either g or the identity. The vertices of ∆g(G

k) are precisely
those of ∆1(Gk), together with the single additional vertex (1, 1, . . . , g). Ev-
ery simplex (g1, . . . , gk−1, 1) of ∆1(Gk) is a maximal face of the simplex
(g1, . . . , gk−1, g) of ∆g(G

k), and all simplices of ∆g(G
k) are either simplices of

∆1(Gk) or are produced from such a simplex in this manner. Thus, ∆g(G
k)

is precisely a cone on ∆1(Gk).
Further, as

∆(Gk) =
⋃

g∈Gk\{1}

∆g(G
k),

and for any g 6= h ∈ Gk, we have

∆g(G
k) ∩∆h(G

k) = ∆1(Gk),

our complex ∆(Gk) consists of |Gk| − 1 cones sharing a common base iso-
morphic to ∆(Gk−1).

7.3 Homology

We shall compute the homology of ∆(G) by considering a more general class
of complexes. We shall, throughout this section, identify each simplicial
complex with its geometric realisation in our notation. We shall compute our
homology with coefficients in Q, for convenience, but an identical argument
holds with coefficients in Z, with a little care taken to ensure the splitting of
an exact sequence.

Definition 7.3.1. For positive integers a1, . . . , an, we define the n-partite
simplicial complex Γ(a1, . . . , an) to be the simplicial complex with vertices
v1

1, . . . , v
a1
1 , . . . , v

1
n . . . , v

an
n , and maximal simplices the {vi11 , . . . , vinn }, where

ij ∈ [aj] for all j.

Lemma 7.3.2. The homology of Γ(a1, . . . , an) is given by

H̃kΓ(a1, . . . , an) = 0

for all k 6= n− 1, and

H̃n−1Γ(a1, . . . , an) = Qα,

where α =
∏

(ai − 1).
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Proof. First, we note that

HkΓ(a1) =

{
Qa1 k = 0
0 otherwise

as Γ(a1) consists of a1 discrete points. In particular, this has non-zero ho-
mology only in degree 0.

Secondly, we note that if an = 1, then v1
n is the vertex of a cone on

Γ(a1, . . . , an−1), and so Γ(a1, . . . , an−1, 1) is contractible, and if an = 2,
then v1

n and v2
n are the endpoints of a suspension of Γ(a1, . . . , an−1), so

HkΓ(a1, . . . , an−1, 2) = Hk−1Γ(a1, . . . , an−1). In particular, if Γ(a1, . . . , an−1)
has non-zero homology only in degree n− 2, then Γ(a1, . . . , an−1, 2) has non-
zero homology only in degree n− 1.

We now proceed by a double induction, supposing that our result holds
for both Γ(a1, . . . , an−1) and for Γ(a1, . . . , an−1, an − 1).

For n > 2, we define two subsets of Γ(a1, . . . , an):
We define

U = Γ(a1, . . . , an) \ {vann },
and

V = Γ(a1, . . . , an) \ Γ(a1, . . . , an−1, an − 1),

where the latter is interpreted to be the subset of the Γ(a1, . . . , an) corre-
sponding to the subcomplex of Γ(a1, . . . , an) given by removing vann . Now,
we see that both U and V are open in Γ(a1, . . . , an).

Secondly, note that V is contractible, as it is homeomorphic to the cone
space

(Γ(a1, . . . , an−1)× [0, 1))/((x, 0) ∼ (y, 0)).

Also, it is clear that the union of U and V is Γ(a1, . . . , an), since vann does
not lie in Γ(a1, . . . , an−1, an − 1). Further, the intersection of U and V is
homeomorphic to

Γ(a1, . . . , an−1)× (0, 1),

so strongly deformation retracts to Γ(a1, . . . , an−1). Finally, note that U
strongly deformation retracts to

Γ(a1, . . . , an−1, an − 1),

via the map F : U × [0, 1]→ U given by F (x, t) = (1− t)x+ tb(x), where:

• If x lies in Γ(a1, . . . , an−1, an − 1), then b(x) = x.

• Otherwise, b(x) is the unique point in Γ(a1, . . . , an−1) such that x
lies on the line from b(x) to vann , which exists since Γ(a1, . . . , an) \
Γ(a1, . . . , an−1, an − 1) is the cone on Γ(a1, . . . , an−1]).

95



7. Homological Representations of Nilpotent Groups

So the homology of U is equal to the homology of Γ(a1, . . . , an−1, an − 1),
the homology of U ∩ V is equal to the homology of Γ(a1, . . . , an−1), and the
reduced homology of V is trivial. Thus, the Mayer-Vietoris reduced homology
exact sequence for U and V reads

· · · → H̃k+1U
α−→ H̃k+1Γ(a1, . . . , an)

β−→ H̃kU ∩ V
γ−→ H̃kU → · · ·

Now, since Γ(a1, . . . , an−1) and Γ(a1, . . . , an−1, an − 1) (hence U ∩ V and U)
have non-zero homologies only in degrees n− 2 and n− 1 respectively, for all
k 6= n− 1, our sequence is of the form

· · · → 0→ H̃kΓ(a1, . . . , an)→ 0→ · · ·

so Γ(a1, . . . , an) has non-zero homology only in degree n− 1. Thus, the only
non-zero portion of our exact sequence is

0→ H̃n−1U
α−→ H̃n−1Γ(a1, . . . , an)

β−→ H̃n−2(U ∩ V )→ 0.

As a short exact sequence of abelian groups, this splits, so

H̃n−1Γ(a1, . . . , an) ∼= H̃n−1U ⊕ H̃n−2(U ∩ V )

∼= H̃n−1Γ(a1, . . . , an−1, an − 1)⊕ H̃n−2Γ(a1, . . . , an−1).

Finally, we can inductively compute our homology:

H̃n−1Γ(a1, . . . , an) = H̃n−2Γ(a1, . . . , an−1)⊕ H̃n−1Γ(a1, . . . , an−1, an − 1)

=
⊕
an−2

H̃n−2Γ(a1, . . . , an−1)⊕ H̃n−1Γ(a1, . . .n−1 , 2)

=
⊕
an−2

H̃n−2Γ(a1, . . . , an−1)⊕ H̃n−2SΓ(a1, . . . , an−1)

=
⊕
an−1

H̃n−2Γ(a1, . . . , an−1)

=
n⊕
i=2

⊕
ai−1

H̃0Γ(a1)

=
n⊕
i=2

⊕
ai−1

Za1−1

= Qα

as required.

96



7.4. Shellability

Finally, we note that ∆(G) = Γ(pe11 − 1, . . . , pekk − 1), where |G| =
∏
peii ,

and the pi are distinct primes, and so we have

Theorem 7.3.3.

H̃k∆(G) =

{
Qα k = n− 1
0 otherwise

where

α =
n∏
i=1

(peii − 2).

7.4 Shellability

To identify the action of G on ∆(G), we require a set of free generators for
our homology. For this purpose, we shall provide a shelling of Γ(a1, . . . , an).

First, we define a valuation function ν on the set of maximal simplices of
Γ(a1, . . . , an).

• We define ν(σ0) = 0, where σ0 = {v1
1, . . . , v

1
n}.

• Where σji is the simplex given by replacing v1
i by vji in σ0, we define

ν(σji ) = i+ n(j − 1).

• Inductively, if ρ is a simplex which shares k < n − 1 vertices with σ0,
then for each vertex vji of ρ with j > 1, define ρi to be the simplex
given by replacing vji by v1

i in ρ. Define

ν(ρ) = max
i

(ν(ρi)) +
1

2n−k
.

We now order our maximal simplices according to this valuation, breaking
ties arbitrarily. Label the ith simplex of this ordering σi (beginning at 0, so
that σ0 keeps its name). We shall now show that this order gives a shelling
of Γ(a1, . . . , an).

Now, for i > 0, let ki be the number of vertices that σi shares with σ0.
Let τ be any face of σi. Then we have two possibilities:

1. Every vertex of σi is contained in τ ∪ σ0. Then every maximal simplex
σj containing τ with i 6= j can differ from σi only in replacing σi∩σ0 =
{v1

i1
, . . . , v1

im} by some {vj1i1 , . . . , v
jm
im
} with jt > 1 for some t.

Define ρ0 = σi and inductively define each ρk to be the result of re-
placing v1

ik
by vjkik in ρk−1, so that ρm = σj. By the third part of the

definition of ν, we have ρk < ρk+1 for all k, and hence ν(σi) < ν(σj).

Thus, the face τ is not contained in the intersection of σi with
⋃
j<i σj.
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2. There is some vertex vts contained in σi but not contained in either τ
or σ0. Let ρ = σi \ {vts}. Then τ ⊂ ρ, and ρ′ = ρ ∪ {v1

s} is a maximal
simplex which contains τ , has |ρ′∩σ0| = k+1, and has |ρ′∩σi| = n−1.
Thus, by the third part of our definition of ν, we have ν(ρ′) < ν(σi).

Thus,

σi ∩
⋃
j<i

σj

is, for each i > 0, exactly the union of the ρ in case 2 above, each of which
is n− 2-dimensional.

Thus, our ordering of our maximal simplices is, indeed, a shelling, and our
spanning simplices are precisely those simplices σi for which no proper face of
σi contains all vertices of σi\σ0, which are precisely those with σi∩σ0 = ∅. By
4.3.18, this set of spanning simplices corresponds to a set of free generators
of HkΓ(a1, . . . , an).

7.5 Representations

In the ∆(G) case, we choose σ0 to be any maximal simplex whose vertices
are all central in G (this is possible because each Gi is a pi-group, so is
not centreless). Thus, our maximal simplices are the {h1, . . . , hn} of G with
hi ∈ Gi \ {1, gi} for each i.

For any g ∈ G, then, we have

g · (h1, . . . , hn) = (u1(g)h1u1(g)−1, . . . , un(g)hnun(g)−1),

and since each gi is central, we cannot have ui(g)hiui(g)−1 = gi for any i, so
this is again one of our generators, so G acts on Hn(∆(G)) by permuting our
generators.

To further analyse this representation, it is helpful to consider the action
of G on each ∆(Gi) ⊂ ∆(G) separately. On ∆(Gi), each Gj with j 6= i acts
trivially (since G is the direct product of the Gi), so we need only consider
the action of Gi on H0∆(Gi). This is simply the conjugation action of Gi

on Gi \ {1, gi}, so the associated representation ρ̂i : Gi → GL|Gi|−2(Z) is
the quotient of the conjugation permutation representation of Gi by a two-
dimensional trivial representation. This extends to a representation

ρi : G→ GL|Gi−2|(Z)

by defining ρi(g) = I|Gi|−2 for g 6∈ Gi.
Summarising the above, we have the following result.
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7.5. Representations

Theorem 7.5.1. Let p1, . . . , pn be distinct primes, and for each i, let Pi be
a group of order peii , and define

α =
n∏
i=1

(peii − 2).

Let G be the direct product of the Pi. Further, let ρi be the conjugation
permutation representation of Pi, and let τi be the quotient of ρi by a two-
dimensional trivial factor.

Then ∆(G) = Γ(pei1 − 1, . . . , penn − 1), so

H̃k∆(G) =

{
Zα k = n− 1

0 otherwise,

and the representation of G induced by its action on ∆(G) in degree n− 1 is
the tensor product of of the τi.

Proof. Let M be the module associated to our representation, and let N =⊗
iNi be the module associated to the tensor product of the τi. Given the

above, we need only construct a C[G]-isomorphism between the two.
This is simple: M has basis Bρ given by the simplices (h1, . . . , hn) with no

hi equal to gi or 1. Define a map ϕ : M → N by ϕ(h1, . . . , hn) = h1⊗. . .⊗hn,
extended linearly. Then the image of our basis under ϕ is precisely the
standard basis B⊗ := {(h1, . . . , hn)|hi ∈ Gi \ {1, gi}} of N =

⊗
iNi, since

Bi := Gi \ {1, gi} is a basis for N − i. As ϕ is clearly injective, it is therefore
a vector space isomorphism.

Finally, we note that

(⊗iτi)(g) ◦ ϕ

 ∑
h=(h1,...,hn)∈Bρ

ahh

=
∑
h∈B⊗

ah(⊗iτi)(g) ◦ ϕ(h)

=
∑
h∈B⊗

ah(⊗iτi)(g)(h1 ⊗ . . .⊗ hn)

=
∑
h∈B⊗

ah(τ1(g)(h1)⊗ . . .⊗ τn(hn))

=
∑
h∈B⊗

ahϕ(τ1(g)(h1), . . . , τn(g)(hn))

=
∑
h∈B⊗

ahϕ ◦ (ρ(g))(h)

= ϕ ◦ (ρ(g))(h)

∑
h∈B⊗

ahh
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7. Homological Representations of Nilpotent Groups

so in fact ϕ is a C[G]-isomorphism, as required.

We note, in particular, that this is independent of the ordering on the
prime factors, so our initial fixing of the orders is unnecessary.

There is also a simple generalisation of this: if we have a finite group G
which decomposes into a direct sum of groups

G =
n⊕
i=1

Gi

such that no Gi is centreless, then we can similarly construct a complex

∆(G1, . . . , Gn) = Γ(|G1| − 1, . . . , |Gn| − 1),

(which is no longer uniquely determined by G, but also by the choice of our
Gi) on which G acts as in the above case, and hence obtain the same result
in the representation theory of G, by a proof identical to the above:

Theorem 7.5.2. Let

G =
n∏
i=1

Gi

be any finite direct product of finite groups with Z(Gi) non-trivial for all i,
and

α :=
n∏
i=1

(|Gi| − 1).

Then

H̃k∆(G1, . . . , Gn) =

{
Zα k = n− 1

0 otherwise

and if ρi is the conjugation permutation representation of Gi and τi is the
quotient of ρi by a two-dimensional trivial factor. Then the representation
of G induced by its action on ∆(G1, . . . , Gn) is the tensor product of the τi.

The only remaining obvious potential generalisation is to the case where
some or all of the Gi are centreless. To extend our result to this case, it
suffices to compute the representation induced in reduced homology by the
conjugation action of a centreless group G on its non-identity elements.
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