
 

  Synthesis and Mesomorphism of an 
Homologous Series of Ionic Polycatenar 
Liquid Crystals based on the N-
Phenylpyridinium Moiety 
      

Jordan Herod 

Chemistry, University of York. 
 
Thesis submitted on 16th March 2020 for the qualification of PhD. 



 

 

2 

Abstract 

An homologous series of ionic polycatenar liquid crystals based on the N-phenylpyridinium motif 

was prepared with triflate, triflimide, octylsulfate and dodecylsulfate anions. Triflate and the 

alkylsulfate salts gave rise to a SmA phase in short-chain homologues due to an increase in the core 

volume by the associated anion; observation of a SmA phase is extremely rare in polycatenar 

mesogens. It was also found that the columnar mesophases of longer-chain homologues was 

stabilised significantly compared to the SmA phase (70 °C with a triflate anion) and that this 

observation is characteristic of all ionic polycatenar materials studied within this thesis. The 

triflimide salts behaved differently and all homologues formed a columnar rectangular mesophase. 

The effect of added solvent on the mesomorphism of the N-phenylpyridinium ions was investigated 

and it was found that a range of mesophases were induced. It was postulated that small, polar, 

aprotic solvents such as DMSO associated at the polar core of the cation, increasing the effective 

core volume and leading to the induction of a lamellar phase when the dry material was columnar. 

In contrast, long-chain alcohols and linear alkanes were regarded as concentrating in the apolar 

terminal chains to increase the effective chain volume, so promoting mesophases with curvature 

(cubic and columnar). Preferential solvent location can readily be rationalised on the basis of the 

amphiphilic nature of the N-phenylpyridinium salts. 

Finally, a series of phenylpyridine complexes of silver(I) were prepared and their mesomorphism 

was compared both with the N-phenylpyridinium salts and with the stilbazole complexes of silver(I). 

Once the difference in size and shape of the ligands was accounted parallels were observed 

between the two families of complexes, but comparison with the N-phenylpyridinium salts revealed 

both the strong influence in the way in which the anion is accommodated and also the formally 

ionic nature of the materials. 
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Abbreviations 

LC Liquid crystal 

ILC Ionic liquid crystal 

Crys Crystal 

Iso Isotropic 

N Nematic 

Sm Smectic (i.e. SmA = smectic A) 

Colh Columnar hexagonal 

Colr Columnar rectangular 

Cub Cubic 

L Lamellar 

T Tetragonal 

H Lyotropic Hexagonal 

V Lyotropic Cubic Bicontinuous 

I Lyotropic Micellar Cubic 

M Chromonic Hexagonal 

n  Director 

cmc Critical micelle concentration 

CPP Critical packing parameters 

POM Polarising Optical Microscopy 

DSC Differential Scanning Calorimetry 

ΔH Transition enthalpy 

ΔS Transition entropy 

T Temperature 

°C Degrees Celcius  
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Δ Heat 

G Gibbs free energy 

Tg Glass transition 

Cp Specific heat capacity 

XRD X-Ray Diffraction 

SAXS Small angle X-ray scattering 

λ Wavelength 

d Separation of lattice planes 

θ Angle of incidence of X-rays 

fwhm Full width half maximum 

NMR Nuclear Magnetic Resonance 

s singlet 

d doublet 

t triplet 

m multiplet 

r.t. room temperature 

mol mole 

ml millilitre 

dm decimetre 

mg milligram 

a Lattice parameter of the Colh mesophase 

ne Extraordinary refractive index 

no Ordinary refractive index 

Δn Birefringence 

α Polarisability 
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DMSO Dimethylsulfoxide 

DMF Dimethylformamide 

THF Tetrahydrofuran 

MeCN Acetonitrile 

MeOH Methanol 

EtOH Ethanol 

PrOH 1-Propanol 

BuOH 1-Butanol 

dppf diphenylphosphinoferrocene 

SPhos 2-Dicyclohexylphosphino-2’,6’-dimethoxybiphenyl 

CHN Carbon, nitrogen and hydrogen elemental analysis 

n Number of carbon atoms in an aliphatic chain 

Reff Effective volume 

Å Angstrom 
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Chapter One: Introduction 

1. General introduction to liquid crystals 

Liquid-crystal phases exist between the highly ordered crystalline phase and disordered isotropic-

liquid phase. The first liquid-crystalline compound was discovered by Reinitzer1 in 1888 who noticed 

that cholesteryl benzoate (Figure 1.1) displayed two melting temperatures. First, was melting of the 

crystal into an opaque fluid and second was the transition of this turbid fluid into a clear liquid. The 

first melting point was actually a crystal to liquid crystal transition and the second was the transition 

from a liquid crystal phase to the isotropic liquid.  

 

Figure 1.1. Structure of cholesteryl benzoate. 

2. Thermotropic liquid crystals 

Cholesteryl benzoate is an example of a thermotropic liquid crystal, in which the liquid-crystalline 

state is brought about by changing the temperature of the material to affect phase transitions. 

Thermotropic liquid crystals have been known since the late 1800’s but it wasn’t until the 1970’s 

that research in this field really gained momentum after the realisation that liquid-crystalline 

phases could be employed in display devices. Early work concentrated on the synthesis of rod-

shaped molecules (much like the structure of cholesteryl benzoate) with at least one flexible 

aliphatic chain attached to one end of the core; these compounds were termed calamitic liquid 

crystals. 

2.1. Mesophases formed by calamitic compounds 

Calamitic materials predominantly form nematic and/or smectic liquid-crystal phases 

(mesophases). The nematic phase is the most disordered liquid-crystal phase and molecules in this 

mesophase possess only orientational order in that their molecular long axes align in roughly the 

same direction and this is indicated by a director, n (Figure 1.2). Smectic phases, on the other hand, 

display additional order in that the constituent molecules also possess partial positional order 
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achieved by self-organisation into diffuse layers. A number of smectic phases have been identified 

and it is their differing degrees of positional order that sets them apart from one another.  

Smectic A (SmA) and smectic C (SmC) phases are the most common of this type. The SmA phase is 

the most disordered smectic phase and molecules self-organise into diffuse layers with their long 

axes, on average, 90° to the layer normal as shown in Figure 1.2. In reality, the layers are not as 

well-defined as those depicted in Figure 1.2 and are best described by a sinusoidal density wave 

with density maxima defining the layers. The SmC phase displays additional order in that the 

molecules are tilted within the layers; the director, n, is thus at an angle <90° to the layer normal.  

 

 

Figure 1.2. Structure of some common liquid-crystal phases formed by calamitic compounds. 

2.2. Mesophases formed by discotic compounds 

Disc-shaped molecules are another anisometric molecular shape that can self-organise into liquid-

crystal phases and these are known as discotic mesogens. The mesophases formed by disc-like 

molecules organise into columnar aggregates that pack typically on a two-dimensional lattice. The 

columns can arrange in a nematic fashion with only one-dimensional order in that the columnar 

long axes point along a common direction; this results in the formation of the columnar nematic 

phase. More commonly, however, is for the columns to pack on a two-dimensional lattice in either 

hexagonal or rectangular symmetries to form columnar hexagonal (Colh) or columnar rectangular 

(Colr) mesophases, respectively. Colr phases possess lower symmetry than do Colh phases as 

molecules within the columns are tilted, which in turn reveals two lattice parameters, a and b, as 

opposed to the single lattice parameter, a, associated with a Colh phase. Colr phases belong typically 

to one of two space groups, namely c2mm or p2gg as depicted in Figure 1.3.2 In extremely rare 

N SmA SmC 
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cases, disc-like molecules can form the discotic nematic phase that does not involve the formation 

of columnar aggregates. In this mesophase, the molecular short axes orient along a common 

direction, n, to form a one-dimensionally ordered mesophase. Figure 1.3 shows a schematic of the 

different mesophases formed by discotic mesogens. 

 

 

 

 

 

 

 

Figure 1.3. Structure of some common columnar mesophases formed by discotic compounds (top), the 
columnar a parameter of the Colh phase, the p2gg Colr phase and the c2mm Colr phase (bottom). 

3. Characterisation of liquid crystal phases 

Mesophase identification is achieved through a combination of polarised optical microscopy and 

small-angle X-ray diffraction in combinateion with differential scanning calorimetry (DSC), which 

provides information on the enthalpy and entropy changes involved in phase transitions. 

3.1. Polarised light microscopy 

Liquid-crystal phases are anisotropic and, therefore, exhibit birefringence in that they possess at 

least two refractive indices. This property can alter the polarisation state of plane-polarised light as 

it passes through the material, hence mesophases display vibrant optical textures when viewed 

down a microscope equipped with crossed polarisers. For calamitic molecules, two different 

directions of polarisability exist, α1 and α2, which gives rise to two refractive indices called the 

Colh Colr Columnar nematic Discotic nematic 

Colr c2mm Colr p2gg Colh p6mm 
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ordinary refractive index, no, and the extraordinary refractive index, ne, as shown in Figure 1.4. If 

restricted rotation occurs about the short axis of the molecule then a third direction of polarisability 

occurs that produces a third refractive index; this can give rise to biaxial mesophases. Birefringence, 

Δn, is given by the difference between ne and no as shown by the following equation: 

Δn = ne – no 

 

Figure 1.4. Relationship between polarisability, refractive indices and birefringence. 

Different liquid-crystal phases display their own characteristic texture that allows identification of 

the mesophase; however, discrimination between the different optical textures requires practice 

and dedication. To perform microscopy experiments, a small amount of sample is placed on a 

microscope slide and covered with a glass coverslip. The sample is then heated using a hotstage 

that can easily be used in conjunction with a microscope equipped with crossed polarisers. As the 

sample is heated, the transition into the liquid-crystal phase (melting) is easily observed and a 

texture characteristic of the mesophase is observed. Mesophase-to-mesophase transitions (where 

present) can often be observed easily using polarising microscopy due to the different optical 

textures associated with each liquid-crystal phase; however, this isn’t always the case as some liquid 

crystal textures appear remarkably similar to the untrained eye. The liquid crystal-to-isotropic liquid 

transition (clearing point) is easily identified from the loss of birefringence as the sample appears 

dark in the isotropic-liquid phase. Liquid-crystalline textures are best assigned on cooling from the 

isotropic liquid so that they do not contain defects from the preceding crystal or liquid-crystal 

phase. This is said to be the natural texture of the mesophase, where a texture on heating from the 

crystalline state is known as a paramorphotic texture. 
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Figure 1.5. Schematic of the experimental setup of a polarising microscope. 

As a rough guide, nematic phases give a schlieren texture that is characterised by the appearance 

of 2- and 4-point brushes (Figure 1.6 (a)). SmA phases produce a clear focal conic texture with fan-

like regions and crosses of optical extinction known as ellipse and hyperbola; the SmA phase can 

also produce dark regions of optical extinction due to homeotropic alignment of the molecules that 

precludes birefringence (Figure 1.6 (c)). The SmC phase, however, forms broken focal-conic defects 

that appear more blurry than do the focal-conic defects seen in the SmA phase as shown in Figure 

1.6 (b) and this occurs due to tilting of the molecules; the SmC phase can also give rise to a schlieren 

texture akin to that of the nematic phase but with only 4-point brushes. Columnar textures, on the 

other hand, can exhibit platelet textures with additional spine-like defects that appear as sharp, 

bright lines. Cubic mesophases, however, are quite different and are not birefringent appearing 

dark when viewed down the polarising microscope due to their three-dimensional structures of 

cubic symmetry. Cubic phases can be readily differentiated from the isotropic-liquid phase as a 

reduction in viscosity is typically observed on the transition into the isotropic liquid. It is often 

possible to differentiate a cubic mesophase even from a viscous isotropic liquid phase on the 

polarising microscope as air bubbles within the mesophase are incredibly difficult to deform when 

touched.  

 



 

 

18 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Optical textures of (a) the schlieren texture of the nematic phase, (b) the broken focal-conic 
texture of the SmC phase, (c) the focal-conic texture of the SmA phase and (d) a Colh phase. Textures are at 

x10 magnification. 

3.2. Differential scanning calorimetry (DSC) 

Differential scanning calorimetry, DSC, is a calorimetric technique used to identify phase transitions, 

which can be extremely useful if mesophase-to-mesophase transitions are not observed down the 

polarising microscope. It must be noted that DSC does not provide information concerning the 

nature of the liquid-crystal phase – it can only provide information on the phase transition itself. 

The point is to match every event in DSC with every event in microscopy and vice versa; however, 

some transitions are more easily detected by one method over the other and so it is important to 

use the two in tandem. Other than the temperature at which the phase transition occurs, DSC can 

provide information on the enthalpy (ΔH) and entropy (ΔS) changes involved. The magnitude of the 

enthalpy change is related to the change in molecular order on changing phase. 

Homeotropic 
alignment 

Focal-conic 
defect 

Spine-like defect (c)  (d)  

(a)  
(b)  

Broken focal-conics 2-point brushes  4-point brushes 
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DSC experiments are performed by weighing out a small amount of sample (usually 1-2 mg) into an 

aluminium crucible, which is then sealed using an aluminium lid and the sample placed in the DSC 

furnace. The sample pan along with a reference pan are then heated at the same rate and kept at 

the same temperature with respect to one another, which is achieved through computer control. 

As the sample melts (an endothermic process), more energy must be supplied to the sample pan 

to keep it at the same temperature as the reference pan. This is recorded by the computer as 

differential power input (measured in mW) vs temperature (T). During an exothermic phase 

transition, the reverse is true, and, for example, a crystallisation process requires less heat energy 

be supplied to the sample pan than the reference pan. The area under the peak is proportional to 

the enthalpy change of the transition and can be calculated from the following expression: 

ΔH = ∫ CpdTT2
T1

 

Where Cp is the specific heat capacity and T is the temperature. 

ΔG is assumed to be 0 at a phase transition and the system is said to be at equilibrium, therefore 

ΔS can be calculated from the following expression: 

ΔS = ΔH/T 

Figure 1.7 shows a schematic of a DSC instrument. 

 

 

 

 

 

 

Figure 1.7. Schematic representation of a DSC. 

Liquid crystal phase transitions can be either first or second-order and relate to the Gibbs free 

energy (G) change at the transition. Therefore, energy is defined as: 

G = H – TS 
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The first derivative of G with respect to T gives the negative entropy, -S: 

dG/dT = -S 

In the case of a first-order transition, a plot of the -S vs T shows a discontinuity at the phase 

transition as shown in Figure 1.8 (a), whereas at a second-order transition there is a simple change 

in gradient as seen in Figure 1.8 (b). As such, first-order transitions appear as peaks in a DSC 

thermogram and second-order transitions appear as a change in the baseline (Figure 1.8 (c)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8. Plots of T vs –S for (a) a first-order transition (b) a second-order transition and (c) a DSC trace 
showing a second-order and first-order phase transitions. 
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3.3. Small-angle X-ray diffraction 

Liquid-crystal phases are periodic over the length scale of Å and, therefore, can be probed by X-rays 

to provide information on the structure of the mesophase. 

2dsinθ = nλ 

Where θ represents the angle of incidence 
n can be any integer 
λ represents the wavelength of X-rays 
d represents the separation of the lattice planes 

Typically, powder-diffraction experiments are performed by which a small amount of sample (in 

the solid state) is added to a glass capillary tube and X-ray diffraction patterns collected as a 

function of temperature. The crystalline phase is characterised by the appearance of several sharp 

diffraction peaks in both the small and wide-angle regions of the diffraction pattern. However, in 

the liquid-crystal phase, the wide-angle region displays usually a single diffuse peak that represents 

the average side-to-side separation of molecules in the mesophase, often thought of as a signal 

arising from the molten nature of the aliphatic chains. However, higher ordered mesophases with 

additional short-range correlations show more than one reflection in the wide-angle region and the 

smectic B phase, for example, displays multiple wide-angle peaks arising from the hexagonal 

packing of the rod-like molecules. The small-angle region, on the other hand, is characterised by 

sharper reflections where the number and d-spacing help to identify the mesophase. Figure 1.9 

shows a schematic of the experimental setup employed to collect X-ray diffraction patterns of liquid 

crystal phases. 

 

 

 

 

 

 

Figure 1.9. Schematic diagram of the experimental setup of a small-angle X-ray diffraction experiment. 

Non-aligned diffraction patterns of a nematic mesophase show a single, broad reflection in the 

small-angle regime that approximates the total length of the rod-shaped molecules and a diffuse 
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scattering in the wide-angle region from their average side-to-side separation. Smectic phases, on 

the other hand, show sharper Bragg scattering in the small-angle region due to ordering of the 

molecules into diffuse layers and this signal corresponds to the layer periodicity (d001) as seen in 

Figure 1.10 (a). The layer spacing of a SmA phase is typically similar to the molecular length, but 

sometimes slightly smaller due to chain interdigitation or chain folding. Columnar mesophases, on 

the other hand, show at least two reflections in the small-angle region due to the two-dimentional 

order of these mesophases (other than the columnar nematic and discotic nematic mesophases). 

The relative ratio between these small-angle signals indicates the symmetry of the columnar phase 

and hexagonal columnar mesophases, for example, show always a ratio of 1 : 1/√3 : 1/√4 in the 

separation spacing of the small-angle reflections and these are the d10, d11 and d20 reflections (Figure 

1.10 (b) and (d)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10. (a) SAXS pattern of a SmA phase and (b) SAXS pattern of a Colh phase zoomed in to show the 
two low intensity reflections in the small-angle region (c) origin of the d001 reflection in smectic mesophases 

and (d) origin of the d10 and d11 reflections of the Colh phase. 
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4. Lyotropic liquid crystals 

A second class of liquid-crystalline behaviour is that displayed by lyotropic liquid crystals, where the 

ordered crystalline state is destroyed by the addition of solvent to generate a liquid-crystal phase. 

Three major types of lyotropic behaviour exist that are: surfactant,3 polymeric4 and chromonic.5,6 

However, this section will consider only the mesophases generated from surfactants; polymeric and 

chromonic lyotropic liquid crystal phases are discussed in Chapter Four where they are more 

relevant. 

Surfactants are a type of amphiphile and they possess two mutually incompatible chemical units, a 

common example being a hydrocarbon chain and a charged (or polar) unit at opposite ends of the 

molecule (sodium dodecylsulfate, for example, as shown in Figure 1.11 (a)). At a certain 

concentration in water, surfactants self-assemble into structures known as micelles as this lowers 

the free energy of the system.3 At a low concentration in water the surfactant molecules are 

distributed randomly in solution and only above a certain concentration, the critical micelle 

concentration (cmc), do micellar aggregates form. Micelle formation is driven by the hydrophobic 

effect where the chains are confined to the centre of the aggregates and the hydrophilic units are 

located on the periphery where interactions with water are favourable. Although the hydrophobic 

effect has both enthalpic and entropic contributions, the overall driving force behind it is said to be 

entropic as the formation of micelles liberates solvent molecules that would otherwise be 

interacting unfavourably with the aliphatic chains. This in turn unfreezes the alkyl chains of the 

surfactant and the entropy of the system as a whole increases. 

The formation of micelles generates an interface between the hydrophilic and hydrophobic parts 

of the surfactant and the curvature present at this interface determines the shape of the micelle 

formed.7 The critical packing parameters, CPP, which depend on the nature of the surfactant, 

dictate the curvature present at the hydrophilic-hydrophobic interface as depicted in Figure 1.11 

(b). The CPP = v/lmaxa, where lmax is the length of the hydrophobic chain, a is the area occupied by 

the hydrophilic head group and v is the volume occupied by the hydrophobic chain; Table 1.1 shows 

how the CPP influences micellar shape. Surfactants with large head groups and small aliphatic 

chains form spherical micelles, whereas those with head groups and chains that occupy similar 

volumes form micelles with a planar interface (discs, for example). Then, as the volume of the 

aliphatic chains increases and exceeds the volume occupied by the polar unit, curvature is re-

established but of the reverse sense, where the head groups are confined in the centre of the 

aggregates and the aliphatic chains project away from the aggregate to form water-in-oil type 
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micelles. The same geometric arguments dictate the shape of inverse micelles such that inverse 

cylinders and inverse spherical micelles can also form. 

 

 

 

 

 

 

 

Figure 1.11. (a) Structure of sodium dodecylsulfate, (b) schematic representation of a surfactant where the 
sphere represents the hydrophilic unit and (c) how the relative volume of the hydrophilic and hydrophobic 

parts influence curvature at the hydrophilic-hydrophobic interface. 
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Table 1.1. How the critical packing parameters control micellar shape. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eventually, the concentration of micelles in solution becomes so high that they must organise, and 

it is the resulting supramolecular assemblies formed that are the lyotropic liquid-crystal phases. 

The hypothetical phase diagram of a surfactant in water is shown in Figure 1.12 and shows how the 

curvature present at the hydrophilic-hydrophobic interface is modified on increasing surfactant 
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concentration. It must be stressed that no single surfactant forms every mesophase shown in Figure 

1.12, nor are the phase transitions ever vertical with temperature in reality. However, it does show 

the richness of architectures that can be formed.  

 

 

 

 

 

 

 

 

 

Figure 1.12. Hypothetical phase diagram of a surfactant in water. 

Spherical micelles with large curvature of the oil-in-water type form at low surfactant 

concentrations and characterise the micellar cubic phase, known as I1. Then, increasing surfactant 

concentration lends a transition to cylindrical micelles with less curvature, thus forming the 

hexagonal columnar phase (H1) as shown in Figure 1.13. A transition then occurs to the bicontinuous 

cubic phase (V1), with small curvature at the hydrophilic-hydrophobic interface that is characterised 

by the formation of continuous aggregates of interconnected rods8 (Figure 1.14 (a) and (b)) or 

infinite periodic minimal surfaces9 (Figure 1.14 (c)).The infinite periodic minimal surfaces model 

divides space into two parts that is commensurate with an interface between two incompatible 

units as is the case with the self-organisation of surfactants into micelles. Different shaped surfaces 

are possible depending on the space group of the bicontinuous cubic phase, the most common 

being Im3"m and Ia3"d. The interconnected rod model of the direct cubic bicontinuous phase 

assumes that the hydrophilic head groups of the surfactant self-assemble to form the connected 

rods, with the aliphatic chains propagating out to fill the space between the rods; the inverse 

description is the case for the V2 phase. 
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Figure 1.13. Structure of the H1 phase. 

 

 

 

 

 

 

Figure 1.14. Interconnected rod models of (a) the bicontinuous cubic phase of the Ia3"d space group and (b) 
the Im3"m space group. The infinite periodic minimal surface model (c) of the Im3"m space group. 

Planar micelles with zero curvature at the hydrophobic-hydrophilic interface are next to form and 

this results in the formation of the lamellar phase (Lα). Further increasing the concentration of 

surfactant generates curvature once more, but of the reversed sense where the volume occupied 

by the hydrophibic chains is greater than that of the hydrophilic head group. A phase transition into 

the inverse cubic bicontinuous phase (V2) occurs, followed by the inverse hexagonal columnar 

phase (H2) and finally the inverse micellar cubic phase (I2).  

(a) (b) (c) 
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4.1. The thermotropic-lyotropic analogy 

A geometric approach to the structure of liquid-crystalline phases in which the principles discussed 

above that direct lyotropic phase formation were applied to thermotropic materials by Tschierske10 

and Goodby.11 Thus, Tschierske and co-workers found a change in mesomorphism from SmA to Colh 

and to inverse micellar cubic (I2) could be achieved by increasing the number of semi-perfluorinated 

chains attached to a series of pentaerythritol tetrabenzoates (Figure 1.15 I). The presence of semi-

perfluorinated chains generates an interface between the largely aromatic core and the fluorinated 

periphery. Increasing the number of perfluoroalkyl chains increases the curvature generated at this 

interface, thus leading to a transition from SmA-to-Colh and to a micellar cubic mesophase, each 

phase occurring in a different compound. Similarly, Goodby and co-workers demonstrated that a 

SmA-to-Colh transition can be brought about by changing the relative volume of the polar and non-

polar parts of the molecule in a series of substituted polyols as shown in Figure 1.15 (a) and (b). 

This was achieved by synthesising different molecular variants with a different number, and 

therefore, volume, of aliphatic chains. Results from both studies show how a different mesophase 

can be achieved by modifying the relative volumes of the incompatible parts of the molecule, 

conforming to the same arguments as those that explain the lyotropic liquid crystal phases formed 

by surfactants. 

 

 

 

 

 

 

 

 

 

Figure 1.15. Carbohydrate liquid crystals studied by Goodby et al. (a) and (b) and the pentaerythritol 
tetrabenzoates studied by Tchierske et al. (c) where R1, R2 and R3 are either H or perfluorocarbon chains to 

modify interfacial curvature. 

(a) (b) (c) 
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5. Polycatenar liquid crystals 

Polycatenar liquid crystals are a class of thermotropic liquid crystals that can form mesophases 

characteristic of both rods and discs, sometimes within a single homologous series. They possess a 

long, rigid, often aromatic core to which three or more terminal chains are attached to the terminal 

phenyl rings. Typical structures are shown in Figure 1.16 and they are named tricatenar, 

tetracatenar and so forth according to the total number of terminal chains attached. Their 

nomenclature further describes the substitution pattern of the terminal chains, so that, for 

example, a 2(mp)+2(mp) compound represents a symmetrically substituted tetracatenar liquid 

crystal with the terminal chains attached to the meta and para positions of the terminal aromatic 

rings. All contain at least one chain in a meta position, which is often destabilising, either reducing 

transition temperatures or supressing mesomorphism altogether. However, in the presence of a 

longer aromatic core as is the case in polycatenar liquid crystals, the added meta chains are 

reasonably well tolerated.  
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Figure 1.16. A few examples of polycatenar liquid crystals to show the different number and substitution 
patterns of the terminal chains. 

Tricatenar liquid crystals of the 2(mp)+1(p) type tend to form mesophases characteristic of rods, 

that is nematic and/or smectic mesophases and this is well understood as their structure resembles 

closely that of a calamitic compound. 3(mpm) tricatenar compounds, on the other hand, have been 

shown to form cubic mesophases.12 
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Tetracatenar liquid crystals, on the other hand, display arguably the richest mesomorphism and 

their phase behaviour changes typically from nematic and/or SmC mesophases at short terminal 

chain lengths to columnar mesomophases at long terminal chain lengths, sometimes via the 

formation of an intermediate cubic phase. This behaviour stimulated a significant amount of 

interest in the field of polycatenar liquid crystals to try and understand exactly why the phase 

behaviour changes in this way on increasing chain length. As such, a large number of tetracatenar 

liquid crystals have been prepared and a few examples along with their mesomorphism are 

presented in Figures 1.17 and 1.18. 

 

 

Figure 1.17. Structure and phase diagram of an homologous series of tetracatenar liquid crystals reported 
by Destrade et al.13 
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Figure 1.18. Structure and phase diagram of the tetracatenar 2,2’-bipyridines studied by Rowe and Bruce.14 

Malthête et al.15 originally proposed an initial model of the Colh phase formed by tetracatenar liquid 

crystals that was akin to a two-dimensional layered structure as shown in Figure 1.19. In essence, 

an inner shell of molecules exist that pack in a more conventional discotic-like fashion and around 

this are arranged a curved layer of molecules to form a disc-like aggregate that can self-assemble 

in a hexagonal array. 
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Figure 1.19. Initial structure of the columnar hexagonal phase formed by tetracatenar liquid crystals 
proposed by Malthête et al.15 

The mesomorphism of pentacatenar and hexacatenar compounds is dominated by the formation 

of columnar hexagonal mesophases, with a few pentacatenar compounds also forming a cubic 

phase (Figures 1.20 and 1.21). 

 

 

 

 

 

Figure 1.20. Structure and mesomorphism of a series of hexacatenar liquid crystals studied by Malthête et 
al.16 
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Figure 1.21. Structure and mesomorphism of a 3(mpm)+2(mp) pentacatenar liquid crystal.12 

5.1. Discussion of general mesomorphic trends in tetracatenar liquid crystals 

The behaviour of 2(mp)+2(mp) tetracatenar liquid crystals is most interesting as their 

mesomorphism changes from nematic and/or smectic C at short terminal chain lengths to columnar 

at long terminal chain lengths, sometimes even passing through an intermediate cubic phase.17 

Thus, at short terminal chain lengths, mesophases characteristic of rods are formed, whereas at 

long terminal chain lengths those characteristic of discs are observed. This behaviour is why 

tetracatenar materials have been studied rigorously, as the change in the nature of the mesophase 

is achieved simply by varying the length of the terminal chains (and in some cases even by changing 

the temperature of a single compound). 

Tetracatenar liquid crystals tend to form a nematic phase at very short chain lengths as the terminal 

chains are not sufficiently long to cause segregation between the aromatic and aliphatic parts of 

the molecule. On increasing the chain length, the next mesophase observed is the SmC phase where 

segregation of the aliphatic and aromatic parts of the molecule now occurs due to the efficient 

space-filling that self-organisation into layers achieves. Interesting is that the only lamellar phase 

formed by tetracatenar materials is the SmC phase and this can be explained by the steric 

requirements that the four terminal chains impart.17 Introducing the extra chains of a tetracatenar 

liquid crystal results in a discrepancy between the cross-sectional area of the terminal chains 

projected onto the core and the cross-sectional area of the core itself (Figure 1.22). As such, the 

mesogens must tilt to self-organise into layers, thus the SmC phase forms instead of the SmA phase. 
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Figure 1.22. Schematic to show the origin of the tilt in the lamellar phases formed by tetracatenar liquid 
crystals. 

Increasing the terminal chain length is accompanied by a transition into a columnar phase, 

sometimes via an intermediate cubic phase. Focussing on the transition into a columnar phase (as 

not all tetracatenar liquid crystals display a cubic phase), the mode of packing and mechanism for 

the transition into this phase must be addressed. In a paper published by Guillon, Skoulios and 

Malthête18 concerning the structure of Colh phases formed by hexacatenar compounds, the authors 

found that the cross-section of a column contained three hexacatenar molecules where the chains 

propagated out from the cores to fill space efficiently as represented by Figure 1.23 (c). They also 

discovered that excluded volume effects were quite important at the anchoring point of the chains 

onto the terminal phenyl rings, such that the terminal rings of the core must bend outwards to 

generate the extended interface between the aromatic and aliphatic parts of the molecule (Figure 

1.23 (c). 

Guillon and co-workers19 then investigated the SmC-to-Colh phase transition exhibited by the 

tetracatenar liquid crystal presented in Figure 1.23 (b). They concluded that the structure of the 

Colh phase was analogous to that proposed previously for hexacatenar materials, except that 

typically four molecules constituted the cross-section of the column rather than three in the case 

of hexacatenar compounds, thus departing from the original model proposed earlier in Figure 1.19. 

This is due to the lower number of alkyl chains present in tetracatenar compounds, so that more 

molecules were required to achieve the necessary density of alkyl chains to fill space efficiently. X-

Ray diffraction data also showed that the cross-section of a column (the a parameter of the Colh 

phase) was equivalent to the all trans molecular length of the tetracatenar molecule, thus the 

molecules were likely positioned perpendicular to the propagation axis of a column. 
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Figure 1.23. Structure of (a) the hexacatenar materials18 and (b) tetracatenar materials19 studied by Guillion 
and co-workers to determine the structure of the columnar mesophases formed by polycatenar liquid 
crystals. Arrangement of (c) the hexacatenar compounds in the cross-section of a column proposed by 

Guillon.18 

In order to explain the transition from the SmC phase to the Colh phase it was proposed that the tilt 

angle initially increases until the extra terminal chain volume can no longer be accommodated by 

additional tilting. The layers then begin to undulate and eventually these undulations become so 

great that discrete packets of molecules can be identified that represent the cross-section of a 

column, marking the transition into the Colh phase (Figure 1.24). It was from these studies that an 

analogy was drawn between the structure of the columnar mesophases formed by polycatenar 

liquid crystals and the two-dimensional ribbon phases formed by the alkali metal soaps and polar 

calamitic mesogens.20 Studies performed by Smirnova and co-workers also support this mechanism 

for the transition from SmC-to-columnar self-organisation in a series of laterally substituted 

tetracatenar mesogens.21 It is therefore important to stress that the columnar mesophases formed 

by polycatenar liquid crystals are quite different in terms of the organisation present within the 

columns to the columnar mesophases formed by conventionally discotic mesogens. Thus, in 

(a) 

(b) 

(c) 
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polycatenar systems, the columns are not constructed from single molecules stacked on top of one 

another, rather the columns are akin to ribbons that arrange on a two-dimensional hexagonal or 

rectangular lattice. 

 

Figure 1.24. Schematic to show the transition from SmC to columnar self-organisation on increasing 
terminal chain length. 

Bruce et al.22 found that in the Colh phases formed by a series of hexacatenar palladium complexes 

(Figure 1.25) the a parameter was significantly smaller than the all-trans molecular length. This 

observation therefore suggested a system in which the molecules cannot lie perpendicular to the 

propagation axis of a column as proposed earlier by Guillon.19 However, the columns must project 

a circular cross-section when viewed down the propagation axis for the p6mm symmetry of the 

hexagonal phase to be satisfied and so the authors proposed a revised model by which the 

molecules tilt within the column to achieve this as depicted in Figure 1.25 (b). Different compounds 

can then tilt to different extents to project a circular cross-section, and, therefore, self-organise 

into the Colh phase. It is the efficient space-filling of the Colh phase that drives its formation and is 

the reason why different polycatenar molecules tilt to different extents to self-assemble into a 

hexagonal mode of packing. As such, the revised model takes into account different extents of 

tilting, with one extreme being the tetracatenar compounds studied by Guillion19 that lie at 90° to 

the columnar long axis and the dithiolium compounds studied by Antzner et al.23 that lie at the 

other extreme where molecules are almost parallel to the propagation axis. 
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Figure 1.25. Two isomeric hexacatenar palladium stilbazole complexes studied by Bruce et al.22 (a) and a 
generalised model for the arrangement of polycatenar liquid crystals within a column showing tilting of the 

mesogens (b). 

5.2. Cubic phases formed by polycatenar liquid crystals 

In the lyotropic liquid crystal phases formed by surfactants, a cubic phase can in principle form 

between any pair of mesophases as evidenced from the form of the hypothetical phase diagram 

presented in Figure 1.12. Staying with the analogy to lyotropic mesophases, the cubic phases 

formed by polycatenar liquid crystals are, therefore, analogues of the inverse cubic bicontinuous 

(V2) phases as they typically appear above a lamellar phase and below a columnar phase that is the 

analogue of an H2 hexagonal phase. However, the formation of cubic phases by polycatenar liquid 

crystals is rather delicate, as sometimes the transition from SmC to columnar self-organisation takes 

place directly. For example, the 2,2’-bipyridinines presented in Figure 1.18 demonstrate well the 

change from SmC to Colh mesomorphism via an intermediate cubic phase, whereas the tetracatenar 

stilbazole complexes of Pd(II) shown in Figure 1.26 (a) move directly from SmC to Colh self-

organisation (no cubic phase is formed).  

In considering the review published by Diele24 on the formation of cubic mesophases by 

thermotropic materials, a large number of compounds forming this phase have the ability to form 

specific intermolecular interactions in addition to possessing interfacial curvature at the aromatic-

aliphatic interface. Indeed, the polycatenar liquid crystals known to form a cubic phase also possess 

some kind of intermolecular interaction in addition to van der Waals forces. These are dipole-dipole 

in the case of the 2,2’-bipyridines14 and electrostatic in the case of the stilbazole complexes of 

(a) 

(b) 
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silver(I)25 presented in Figure 1.26 (b). Bruce and co-workers conducted a systematic study in trying 

to structurally replicate the ionic silver(I) salts by a series of neutral monoacetylide complexes of 

Pt(II) that also possessed stilbazole ligands and a single lateral chain that mimicked the counter-

ion.26 Interestingly, these neutral analogues formed only SmC and nematic mesophases and the 

cubic phase was totally absent. This supported the proposal of the need for specific intermolecular 

attractions in addition to the necessary interfacial curvature for the cubic phases to form. Although 

good evidence exists for the need of specific intermolecular interactions to stabilise the 

bicontinuous cubic phases formed by polycatenar liquid crystals, their stabilisation is still not 

completely understood. 

 

 

 

 

 

 

 

 

 

 

Figure 1.26. 
Structure of (a) the tetracatenar stilbazole complexes of Pd(II),27 (b) the stilbazole complexes of silver(I) 

dodecylsulfate25 and (c) and the monoacetylide complexes of Pt(II).26 
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6. Ionic liquid crystals 

Ionic liquid crystals (ILCs) differ from neutral thermotropic liquid crystals as the constituent 

components of the mesophase are anions and cations, with the species giving rise to 

mesomorphism usually being the cation. Often pyrdinium,31,32 4,4’-bipyridinium (viologen),33,34 

imidazolium35 and guanidinium36 moieties are employed as the ionic units in ILCs due to their ease 

of preparation and functionalisation (Figure 1.27). Anions vary but typically include halides, triflate, 

sulfate, tetrafluoroborate, isocyanate and, more recently, triflimide. The anion is usually smaller 

than the cation so as not to significantly disrupt self-organisation into liquid-crystal phases. 

However, varying the anion can actually be employed as a method of modifying the mesomorphism 

of ILCs. 

ILCs are an interesting area of materials chemistry, as they combine the properties inherent to ionic 

liquids (good solvents with low volatility) and liquid crystals (anisotropic self-organisation). A recent 

review published by Goossens et al.37 provides a good overview of ILCs and their applications up to 

and including 2015. Many of the ILCs studied to that date are typically rod-like, disc-like or wedge-

shaped and a few examples of these compounds are presented in Figure 1.27. The most common 

mesophase formed by calamitic ILCs is the SmA phase, as electrostatic attractions between anions 

and cations stabilise the formation of layers. Discotic and wedge-shaped ILCs tend to form columnar 

mesophases with electrostatic attractions driving the formation of columnar aggregates. An 

important application of the wedge-shaped imidazolium based ILCs shown in Figure 1.27 (b) studied 

by Kato et al.29,38 has been the development of devices with anisotropic conductivity and mass 

transport. This has been achieved due to segregation of the ionic and aliphatic parts of the molecule 

to give rise to Colh mesophases. The columns can be aligned macroscopically parallel to a glass 

substrate that has been treated by mechanical shearing or perpendicular when the substrate is 

functionalised with amine groups. Bruce, Slattery and co-workers28 have also demonstrated that 

ILCs can act as solvents to influence the stereochemistry of the Diels Alder reaction.  
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Figure 1.27. A few examples of ionic liquid crystals: (a) N-alkylpyridinium dodecylsulfates studied by Bruce 
et al.31 (b) wedge-shaped imidazolium ILCs studied by Kato et al.38 with anion-dependent ion conductivities, 
(c) room temperature ILCs based on the guanidinium moiety studied by Laschat et al.36 and (d) the redox-

active hexacatenar viologen salts studied by Kato et al.39 for devices with anisotropic ion conduction. 

Tosoni, Laschat and Baro40 studied imidazolium ILCs with a chiral (R)-citronellyl chain as shown in 

Figure 1.28 (a). Interestingly, only when the length of the alkyl chain was n-C14H29 was 

mesomorphism observed, this being a monotropic SmA phase. Mesomorphism was never observed 

when the alkyl chain was CH3, n-C4H9, n-C6H13, n-C12H25 and n-C18H37, nor even when the chain was 

a second (R)-citronellyl group. However, more stable mesomorphism was obtained when the chiral 

centre was moved along the chain in a series of N-methylated imidazolium salts41 (Figure 1.28 (b)), 

which was achieved through modification of the (R)-citronellol starting material before N-

alkylation. Interestingly, no chirality was translated into the mesophase due to the chiral 

substituent acting as a ‘stopper’ to prevent chain interdigitation and the only mesophase observed 

was SmA. 
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Figure 1.28. Structure of (a) the chiral imidazolium LCs with a (R)-citronellyl chain40 and (b) the chiral N-
methylated imidazolium LCs41 where the chiral centre has moved along the chain. 

Another interesting group of materials are the pyridinium ILCs studied by Circu and co-workers42,43 

presented in Figure 1.29, which exclusively form a nematic phase, a mesophase not commonly 

associated with ionic materials that would otherwise be expected to self-organise into smectic 

phases. While nematic phases have been previously reported in ionic calamitic mesogens in, for 

example, the rod-shaped stilbazole complexes of silver(I) studied by Bruce et al.,44 they are very 

much an exception to the rule rather than the norm. A minimum spacer length of six carbon atoms 

was required to generate a mesomorphic material with bulkier anions (PF6
- and OTf-), but the nature 

of the anion and spacer length did not influence the type of mesophase observed. 

 

 

Figure 1.29. Structure of the pyridinium ILCs studied by Circu et al.42 that form a nematic phase: X = Br-, OTf-
, BF4-, PF6-, NO3

- or SCN-. 

7. Aims 

The mesomorphism of neutral polycatenar liquid crystals is well understood and many variants 

have been synthesised to date. However, the only ionic polycatenar liquid crystals that have been 

studied in systematic detail are the silver(I) salts prepared by Donnio et al.25 (Figure 1.26) and it was 

found during this work that these materials actually exist as tightly bound ion pairs, evidenced 

through a lack of conductivity in the liquid-crystal phases. Though formally ionic, the silver(I) salts 

are not completely charge separated ions pairs and to investigate how the mesomorphism of truly 

ionic polycatenar liquid crystals would compare an homologous series of compounds based on the 

N-phenylpyridinium moiety have been prepared (Figure 1.30). This thesis will document the 

synthesis and mesomorphism of such newly prepared ionic materials and a more detailed overview 

covering the mesomorphism of the silver(I) salts is presented in Chapter Three. 
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Figure 1.30. Structure of the N-phenylpyridinium liquid crystals that will be the major focus of this thesis: X 
is either triflate, a long chain alkylsulfate or triflimide. 
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Chapter Two: Synthesis and Characterisation of a Series of Tetracatenar N-
Phenylpyridium Ions and a Series of 3,4-Dialkoxyphenylpyridine Complexes of Silver(I) 

Triflate and Silver(I) Dodecylsulfate 
1. Introduction 

The major objective of this project was to prepare a series of truly ionic polycatenar liquid crystals 

that exist as charge-separated ion pairs. The only ionic polycatenar liquid crystals that have 

previously been prepared are the 3,4-dialkoxystilbazole complexes of silver(I) prepared by Donnio 

et al.1 and a hexacatenar viologen salt prepared by Kato.2 While the silver(I) salts are formally ionic, 

conductivity measurements show that they exist as tightly bound ion pairs and so do not provide a 

true representation of how charge separated materials would behave.3 In satisfying this objective, 

a series of compounds were designed that were based on the N-phenylpyridinium unit that can 

readily be accessed via Zincke chemistry.4 Our initial target compounds were designed to mimic 

closely the silver(I) salts studied by Donnio et al.1 in order to remove, as far as possible, any 

structural differences that would otherwise influence their liquid crystal properties. These 

compounds would, therefore, contain vinylic groups between the terminal rings, much like the 

stilbazole ligands of the silver(I) salts (see a comparison between these compounds in Figure 2.1). 

2. Initial Target Compounds 

The initial target compounds, 1-n, are presented in Figure 2.1. Multiple attempts at the preparation 

of 1-n were made, as will now be described.  

 

 

 

 

 

 

Figure 2.1. Structures of (a) the silver(I) stilbazole salts studied by Donnio et al. and (b) the initial N-
phenylpyridinium targets (1-n) that would closely mimic the silver(I) salts. 

2.1. Initial attempts at preparing the N-phenylpyridinium materials 

Before the preparation of a tetracatenar material was attempted, it was decided to first prepare a 

series of analogous calamitic compounds with only two terminal chains, 2-n (Figure 2.2). Two 

(a) 

(b) 
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reasons were behind this. First, the preparation of calamitic compounds ought to be more readily 

achieved due to the better solubility of compounds with two terminal chains that was based on 

previous experience of this in the group and so a base procedure could be easily established with 

these compounds. Second is that ionic calamitic compounds containing the N-phenylpyridinium 

core have not been studied before and so preparing such two-chained materials opens up the 

option to study their liquid-crystalline behaviour, too. As such, the following section documents the 

preparation of compounds with only two terminal chains. 

The first synthetic route attempted was centred about a convergent synthesis that involved a 

double Siegrist reaction5 between imine 5-n and Zincke salt 7 as shown in Scheme 2.1. The use of a 

Siegrist reaction seemed the obvious choice at the time, as the geometry of the double bond 

produced would be exclusively trans, thus removing the need for any troublesome cis-trans 

separation techniques in the workup.  

Scheme 2.1. Attempted synthesis of final compounds 2-n using a double Siegrist reaction: (i) CnH2n+1Br, 
DMF, K2CO3 (ii) aniline, EtOH, r.t. (iii) DMF, KOtBu, N2, 80 °C. 

Imine 5-n was readily prepared following the procedures outlined by Huck et al.6 and could be 

isolated in yields of up to 80% depending on the length of the aliphatic chains. The preparation of 

7 required the use of Zincke chemistry as shown in Scheme 2.2.7 Following the procedures outlined 

by Coe and co-workers in their preparation of Ru(II) complexes with N-phenylpyridinium ligands,8,9 

7 could be readily prepared from compound 6, via a Zincke reaction with 4-methylaniline under 

reflux in 1-butanol (Scheme 2.2). Due to the polarity of 7, it was readily extracted into water and 

could be used without further purification. However, the Siegrist reaction between 7 and imine 5-

n (Scheme 2.1) proved troublesome and while analysis of the crude reaction mixture did show 

complete consumption of the starting materials, never could any product be detected. 
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Scheme 2.2. Preparation of 7 using Zincke chemistry: (i) EtOH, 78 °C (ii) 1-butanol, 110 °C. 

In light of this, a second attempt at preparing compounds 2-n was made. This approach was more 

divergent and involved preparation of the same 4-alkoxystilbazole intermediates that were 

employed as ligands in the silver(I) salts. As such, little comment will made on the synthesis of the 

stilbazole compounds as their preparation has been documented extensively by Donnio et al.1,10 

The 4-alkoxystilbazoles were reacted with 1-chloro-2,4-dinitrobenzene in a nucleophilic aromatic 

substitution reaction to furnish Zincke salt 9-n (Scheme 2.3) as outlined by Marazano and co-

workers.11,12 This reaction proved to be extremely facile and proceeded in high yields – the product 

simply precipitated from the reaction mixture on cooling to room temperature and could be used 

without further purification.  

 

 

 

Scheme 2.3. Synthesis of Zincke salt 9-n: (i) 1-chloro-2,4-dinitrobenzene, acetone, 60 °C. 

The first Zincke reaction was attempted between compound 9-n and aniline in ethanol under reflux 

according to Scheme 2.4. It was decided to attempt the first Zincke reaction with a simple aniline 

to trial the reaction conditions. This reaction was successful and compound 10-n could be isolated 

as a pure compound after flash column chromatography on silica gel using 

dichloromethane:methanol (8:2) as the eluent. However, analysis of the 1H NMR spectrum after 

several days revealed cis-trans isomerisation of the vinyl group in 10-n as shown in Figure 2.2. This 

was evidenced by the appearance of two AX signals with 3J = 12 Hz that are characteristic of a cis 

geometry of the C=C bond. Both salts 9-n and 10-n are bright orange in colour that suggests strong 

visible light absorption, and so visible light induced cis-trans isomerism was not so surprising. The 

presence of cis vinylic groups would destroy liquid-crystalline behaviour in the final compounds 

(both calamitic and tetracatenar) due to reduced anisotropy of the core. One option would be to 
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store these materials in the dark; however, this is not a practical option considering the use of 

polarising microscopy in studying the liquid-crystalline properties of these materials, which involves 

significant exposure to visible light. As such, modification to the structure of the final N-

phenylpyridinium ions was required.   

 

Scheme 2.4. Synthesis of compound 10-n: (i) aniline, ethanol, 78 °C. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. 1H NMR spectrum of the aromatic region of compound 10-6 showing resonances that 
correspond to the cis-isomer. 
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2.2. Revised target compounds 

In light of the fact that the trans vinylic groups in compounds 10-n suffered from visible light 

induced cis-trans isomerism, a series of compounds containing direct aryl-aryl linking groups were 

designed; their structure is given in Figure 2.3. 

 

 

 

 

Figure 2.3. General structure of the revised tetracatenar N-phenylpyridinium ions with direct aryl-aryl 
linkages. 

2.2.1. Preparation of calamitic N-phenylpyridinium ions 

Initially, a series of calamitic compounds, 12-n, were prepared for the same reasons as those 

outlined in Section 2.1 and the structure of these compounds is presented in Figure 2.4. The 

tetracatenar compounds, 11-n, would then be prepared using key reactions and conditions 

established in the synthesis of compounds 12-n. 

 

 

 

 

Figure 2.4. Structure of the calamitic N-phenylpyridinium ions prepared before the analogous tetracatenar 
salts. 

The overall synthetic procedure for the preparation of 12-6 is presented in Scheme 2.5. 4-

Hydroxybromobenzene was initially alkylated with 1-bromohexane in acetone under reflux using 

two equivalents of K2CO3 as a base. After washing the crude product with aqueous NaOH solution, 

4-hexyloxybromobenzene (13-6) was isolated in 84% yield and could be used without further 

purification. Suzuki-Miyaura cross-coupling between 13-6 and pyridine-4-boronic acid was then 

achieved in a 1:1 mixture of THF/H2O at 65 °C employing [Pd(PPh3)4] as a catalyst at a loading of 1 

mol%. Purification by flash column chromatography using dichloromethane:methanol (95:5) as the 
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eluent then furnished compound 14-6 as a pure compound in 74% yield. Zincke salt 15-6 was then 

prepared via a nucleophilic-aromatic substitution reaction between 4-alkoxyphenylpyridine 14-6 

and 1-chloro-2,4-dinitrobenzene in acetone under reflux; the product precipitated from solution, 

and, after washing of the solid with acetone, could be used without further purification.  

The difficult step in this synthesis was installation of the para-iodo group of 17-6, which had to be 

achieved through the preparation of the para-amino intermediate 16-6 followed by a Sandmeyer 

reaction to furnish 17-6. A direct Zincke reaction between chloride salt 15-6 and 4-iodoaniline could 

not be achieved and no product could ever be detected regardless of the conditions employed; 

quite why this was the case is unclear. The para-amino group was successfully installed via a Zincke 

reaction between 15-6 and p-phenylenediamine in 1-butanol under reflux; the product was purified 

by flash column chromatography on silica gel using dichloromethane:methanol (8:2) as the eluent. 

Sandmeyer chemistry was then performed on 16-6 using NaNO2 and KI in acetonitrile at 0 °C; water 

was then added to the reaction mixture and the product was extracted into ethyl acetate. 

Crystallisation of the crude product from ethanol yielded 17-6 as a pure compound in 53% yield. A 

final Suzuki-Miyaura cross-coupling reaction between 17-6 and the pinacol ester of boronic acid 18-

6 then furnished the final calamitic N-phenylpyridinium ions 12-6 that were purified by flash column 

chromatography on silica gel using dichloromethane:methanol (9:1) as the eluent; the yield was 

low for this reaction at 24%. The pinacol ester of 4-hexyloxybenzene boronic acid 18-6 was prepared 

in house via alkylation of 4-hydroxybenzeneboronic acid pinacol ester in acetone under reflux.  

Due to time constraints, elemental analysis on the final calamitic compound 12-6 was not obtained 

and efforts were focused on preparing the analogous tetracatenar compounds 11-n. Only one 

calamitic homologue (n = 6) was ever prepared. 
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Scheme 2.5. Synthesis of the calamitic N-phenylpyridinium ions: conditions reported are those for the 
preparation of the hyexyloxy derivative (i) K2CO3, C6H13Br, acetone, 60 °C, (ii) pyridine-4-boronic acid, 

THF/H2O, [Pd(PPh3)4], Na2CO3, 65 °C, N2 (iii) 1-chloro-2,4-dinitrobenzene, acetone, 60 °C (iv) p-
phenylenediamine, 1-butanol, 110 °C (v) NaNO2, KI, p-TsOH, MeCN, 0 °C (vi) pinacol ester of 4-

hexyloxybenzene boronic acid, THF/H2O, [Pd(PPh3)4], Na2CO3, N2, 65 °C (vii) K2CO3, acetone, 60 °C. 
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2.2.2. Preparation of the tetracatenar triflate salts, 11-n 

Preparation of the tetracatenar N-phenylpyridinium ions, 11-n, shown in Figure 2.3 proved 

extremely successful and complete reagents and conditions are presented in Scheme 2.6.13 Some 

modifications were required to the procedure employed in the preparation of the calamitic 

compounds 12-n and these are now described. 

3,4-Dimethoxybromobenzene (4-bromoveratrole) was firstly de-methylated with a solution of 

boron tribromide in dichloromethane to furnish 4-bromocatechol 19 (whilst 4-bromocatechol is a 

readily available starting material, it proved more cost effective to prepare it in house from 4-

bromoveratrole). The terminal alkoxy chains were then installed via Williamson ether reactions 

between 4-bromocatechol and two molar equivalents of the desired 1-bromoalkane employing 

Cs2CO3 as the base. Cs2CO3 was used as the base as it proved effective in reducing reaction times 

compared to K2CO3, presumably due to its better solubility in the acetone solvent. Homologues with 

aliphatic chain lengths n > 8 could be readily crystallised from hot acetone in yields typically 

between 60-70%; derivatives with n < 8 were purified by flash column chromatography on silica gel 

using dichloromethane:petroleum ether (40-60 °C) (1:1) as the eluent. The 3,4-

dialkoxybromobenzene, 20-n, then underwent a Suzuki-Miyaura cross-coupling reaction with the 

pinacol ester of pyridine-4-boronic acid following the procedure outlined by Woodring and co-

workers14 to furnish the 3,4-dialkoxyphenylpyridine, 21-n, in good yield. These conditions differ to 

those outlined in Scheme 2.5 in that toluene/ethanol/water was used as the solvent system as 

compared to THF/water due to the higher temperature that this solvent system provided access to. 

The presence of the meta chain had a dramatic effect of deactivating the aryl-bromide and yields 

of only 10% could be isolated following the procedure in THF/water outlined in Scheme 2.5. 

Furthermore, it was more cost effective to use the pinacol ester of pyridine-4-boronic rather than 

pyridine-4-boronic acid itself and so this modification was made between Schemes 2.5 and 2.6. 

Salt 22-n was then accessed via a nucleophilic-aromatic substitution reaction with 1-chloro-2,4-

dinitrobenzene in acetone under reflux; once again, the product precipitated from the reaction 

mixture on cooling and, after washing with acetone, was used without further purification. Reaction 

of 22-n with 4-iodoaniline in a Zincke reaction15,16 provided access to the para-iodo species 23-n; 

yields of this reaction were typically poor, being between 25-50% depending on the aliphatic chain 

length. Unlike the preparation of 17-n in Scheme 2.5, direct access to the para-iodo species 23-n 

could be achieved from reaction the Zincke salt 22-n with 4-iodoaniline without the need of going 

through a para-amino intermediate. A procedure outlined by Kassel et al.16 was found that 
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documented a Zincke reaction with 4-iodoaniline in 1-butanol under reflux and these procedures 

were effective in the synthesis of 23-n. Metathesis of the chloride anion in 23-n for triflate was next 

performed on account of better solubility of the triflate salt for the final Suzuki-Miyaura cross-

coupling reaction.  

The boronic acid pinacol ester, 25-n, was prepared from 20-n in a Suzuki-Miyaura borylation 

reaction17 in anhydrous DMSO using 3 mol% of [PdCl2(dppf)] (dppf = 

bis(diphenylphosphino)ferrocene). The final tetracatenar triflate salts were then purified by flash 

column chromatography on silica gel using dichloromethane:methanol (95:5) as the eluent. The 

compounds were finally dried in a vacuum oven at 70 °C. Analytical data and yields for the final 

compounds are collected in Table 2.1 and an assigned 1H NMR spectrum for the dodecyloxy 

derivative, 11-12, is presented in Figure 2.5. 
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Scheme 2.6. Synthesis of the tetracatenar N-phenylpyridinium salts containing direct aryl-aryl linking 
groups: (i) BBr3, 0 °C, N2 (ii) CnH2n+1Br, acetone, Cs2CO3, 58 °C (iii) pyridine-4-boronic acid pinacol ester, 

Toluene/EtOH/H2O (3:1:1), Na2CO3, [Pd(OAc)2], SPhos (iv) 1-chloro-2,4-dinitrobenzene, acetone, 60 °C (v) 4-
iodoaniline, 1-butanol, 110 °C (vi) AgOTf, DMF, 70 °C (vii) 3,4-dialkoxybenzene boronic acid pinacol ester, 
THF/H2O (1:1), Na2CO3, N2, [Pd(OAc)2], SPhos, 65 °C (viii) bis-pinacolato diborane, NaOAc, [Pd(dppf)Cl2], 

DMSO, 80 °C, N2. 
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Figure 2.5 shows the 1H NMR spectrum of compound 11-12 along with the assignment of each 

resonance. Aromatic protons a, b, c, and d are AA’XX’ signals due to the 1,4-disubstitution pattern 

of the central aromatic rings; these protons resonate more downfield than those typical of an 

aromatic system due to the positively charged nitrogen atom of the pyridinium moiety. Hydrogens 

a and b resonate downfield at 9.0 and 8.4 ppm, respectively, both with 2H integrations. The 

resonance at 8.4 ppm can be specifically assigned to Hb from correlation spectroscopy shown in 

Figure 2.6, which clearly shows that hydrogen atoms a and b are coupled to one another. The 400 

MHz spectrometer is unable to distinguish hydrogen atoms c and d due to their similarities in 

chemical shift. Hydrogen atom e exists as a doublet of doublets due to 3J coupling to I and 4J coupling 

to f with respective coupling constants of 9.0 and 2.0 Hz. Hydrogen atom f then resonates at 7.4 

ppm as a doublet of 2.0 Hz due to 4J coupling to He. These hydrogen atoms can be distinguished 

from hydrogens g, j and h from the 1H NMR spectrum of the precursor compound 24-12. The 1H 

NMR spectrum of compound 24-12 is presented in Figure 2.7, and specifically, the AMX spin system 

of hydrogens e, f and I can be seen at δ 7.50, 7.37 and 6.95 ppm, respectively. These chemical shifts 

are extremely similar to those assigned as e, f and I in the 1H NMR spectrum of 11-12 in Figure 2.5, 

and provides good evidence for the assignments made in the final compound. 

Hydrogen atoms g and h then overlap at 7.13 ppm, but 4J coupling between Hg and Hh can be 

identified as 2.0 Hz. Hydrogen atoms I and j then resonate extremely close together, both showing 

respective 3J coupling to hydrogens e and g of 9.0 Hz. Methylene protons k are observed at 4.1 ppm, 

and whilst only one signal can be clearly detected as a triplet with 3J = 6.5 Hz, the remaining three 

CH2 signals overlap as a multiplet. Hydrogen atoms l then appear at 1.87 ppm as a multiplet of 8H 

integration. Terminal CH3 hydrogen atoms n can then be identified at 0.9 ppm with integration of 

12H. 

The triflate anion can be detected as a singlet via 19F NMR spectroscopy at δ = -78.08 ppm as shown 

in Figure 2.8.
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Figure 2.5. 1H NMR spectrum of the tetracatenar triflate salt 11-12: inset shows a close up of the aromatic region. 
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Figure 2.6. 1H-1H COSY NMR spectrum of the aromatic region of compound 11-12.
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Figure 2.7. 1H NMR spectrum of the aromatic region of 24-12 to aid assignment of the two AMX spin 
systems of 11-12: the same lettering system has been used for consistency. 

 

 

 

 

 

 

 

 

 

Figure 2.8. 19F NMR spectrum of the tetracatenar triflate salt 11-12. 
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2.2.3. X-Ray single crystal structure of compound 11-8 

 

  

 

 

 

 

 

 

 

 

Figure 2.9. Single crystal X-ray structure of 11-8 (a) with disorder removed for clarity and (b) the 2+2 
hydrogen bonded adduct of the triflate anion with water. 

Single crystals of the octyloxy derivative were successfully grown via vapour-diffusion from 

dichloromethane/pentane solutions and the structure is presented in Figure 2.9. 

One of the octyloxy side chains was disordered and modelled in two positions with refined 

occupancies of 0.714:0.286(4). The C-C bond lengths in the disordered part of the chain were 

restrained to be 1.54 Å except for the terminal C-C bond lengths that were restrained to be 1.52 Å. 

The triflate anion/water showed minor disorder with the triflate being modelled in two positions 

with refined occupancies of 0.9598:0.0402(15). For the minor form, the C-F bond lengths were 

restrained to be 1.33 Å, the S-O bond lengths restrained to be 1.44 Å and the C-S bond length 

restrained to be the same as that of the major form.  

The structure in Figure 2.9 shows location of the triflate anion in close proximity to the pyridine 

moiety, as expected. Two water molecules bridge adjacent triflate moieties forming a 2+2 hydrogen 

bonded adduct as shown in Figure 2.10 (b). The packing of 11-8 in the solid state shows an anti-

parallel alignment of neighbouring cations (Figure 2.10 (a)). The N-phenylpyridinium core unit 

(a) 

(b) 
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displays a torsion angle of 31.3°. There are no interactions between the triflate oxygen atoms and 

the pyridinium hydrogen atoms as shown in Figure 2.10 (b).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10. Packing of 11-8 in the solid state with disordered chains removed for clarity (a) and the torsion 
angle of the N-phenylpyridinium core with terminal rings and chains removed for clarity (b). 
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2.3. Metathesis of the counter-ion 

A major objective to this work was to investigate the influence of different counter-ions on the 

mesomorphism of the ionic polycatenar liquid crystals based on the N-phenylpyridinium core. In so 

doing, a series of N-phenylpyridinium materials were also prepared that contained octylsulfate and 

dodecylsulfate anions, much like the work involving the stilbazole complexes of various silver(I) 

alkylsulfates. Bis(trifluoromethanesulfonyl)imide (NTf2
-) was also employed successfully as a 

counter-ion via direct metathesis from the triflate salts, as will also be described.  

Initial attempts at preparing a series of tetracatenar alkylsulfate salts involved stirring the required 

triflate compound, 11-n, with three molar equivalents of the desired sodium alkylsulfate in hot 

methanol according to Scheme 2.7. Water was then added dropwise to the reaction mixture to 

precipitate the compound as its alkylsulfate salt. Whilst 1H NMR spectroscopy could detect the 

correct stoichiometry of the alkylsulfate anion, small amounts of triflate could also be detected via 
19F NMR spectroscopy and so complete exchange from triflate to alkylsulfate had not been 

achieved. Even repeating the exchange up to three times proved ineffective in removing these trace 

amounts of triflate.  

Scheme 2.7. Attempted metathesis from triflate 11-n to alkylsulfate. 

In order to prepare analytically pure alkylsulfate materials, first, the final tetracatenar N-

phenylpyridinium ions had to be prepared as their chloride salts from which complete metathesis 

could be achieved. The following section, therefore, documents the preparation of the tetracatenar 

chloride salts, 26-n. 

2.3.1. Preparation of the N-phenylpyridinium chloride salts, 26-n 

As discussed in Section 2.2.2 the para-iodo intermediate 23-n displayed poor solubility in a range 

of solvents and had to be metathesised to its triflate salt, 24-n, in order to be successfully cross-

coupled with the corresponding 3,4-dialkoxybenzene boronic acid pinacol ester 25-n. Considering 

the success of Binnermans et al.18 in exchanging halide anions for dodecylsulfate anions, efforts 

were re-focussed on preparing the final compounds as their chloride salts from which metathesis 
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to an alkylsulfate might be more successful. Rather than employing the para-iodo salt, 23-n, in the 

Suzuki-Miyaura cross-coupling reaction, the analogous para-bromo species, 27-n, was prepared in 

a Zincke reaction between 4-bromoaniline and the 2,4-dinitro salt 22-n (see Scheme 2.8). The 

resulting para-bromo salt, 27-n, was purified in an identical fashion to that employed in the 

purification of 23-n (isolation of the precipitate followed by trituration with dichloromethane and 

acetone). Compound 27-n was a little more soluble than the iodo analogue, 23-n, so allowing 

Suzuki-Miyaura cross-coupling with 25-n in THF/H2O with 20% ethanol as a co-solvent; this was 

performed under reflux. The chloride products, 26-n, were purified via flash column 

chromatography on silica gel using dichloromethane:methanol (95:5) as the eluent.  

However, further purification of final compounds, 26-n, was required that involved trituration with 

dichloromethane (see the 1H NMR spectrum of 26-12 in Figure 2.11). Despite this, compounds 26-

n still could not be isolated in analytical purity and these materials were consistently low in carbon 

content from combustion analyses. Tiny traces of organic impurities could still be identified in the 
1H NMR spectra of the chloride salts between 3.5 – 2.0 ppm, but these could not be removed in any 

further purification attempts; however, it seems unlikely that such small impurities fully account 

for the poor elemental analysis data obtained. The small signals in the aromatic region that do not 

correspond to the compound are not impurities but are in fact 13C satellites from the chloroform 

solvent with 1JHC = 210 Hz; these are visible due to the poor solubility of 26-12 in the chloroform 

solvent and 1H NMR spectra had to be recorded on dilute solutions. Table 2.3 presents CHN data 

for compounds 26-6 to 26-12. Yields of the chloride products 26-n were poorer than those for the 

triflate analogues, being typically in the region of 60%. 

 

 

 

 

 

 

 



 

 

65 

 

 

 

 

 

 

 

 

 

Scheme 2.8. Preparation of the tetracatenar chloride salts 26-n: (i) 4-bromoaniline, 1-butanol, 110 °C (ii) 
3,4-dialkoxybenzene boronic acid pinacol ester, THF/H2O/EtOH (3:3:1), Na2CO3, [Pd3(OAc)6], SPhos, N2, 65 

°C.
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Figure 2.11. 1H NMR spectrum of chloride salt 26-12.
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2.3.2. Preparation of the octylsulfate and dodecylsulfate salts 28-n and 29-n 

Metathesis of the chloride counter-ion for the desired long-chain alkylsulfate was achieved by 

dissolving in hot methanol saturated with the desired sodium alkylsulfate according to Scheme 2.9. 

Hot ethanol was employed as the solvent for the longer-chained derivatives (n ≥ 12) due to 

insolubility of the chloride precursor in hot methanol. After stirring for 3 hours, the product was 

then precipitated from solution by the dropwise addition of water and could be isolated readily via 

filtration. Crystallisation from hot ethanol and subsequent filtration of the solid in dichloromethane 

through a 0.2 μm PTFE filter yielded the desired alkylsulfate salts in analytical purity. 

 

Scheme 2.9. Preparation of the tetracatenar alkylsulfate salts. 

The alkylsulfate anion can be clearly seen via 1H NMR spectroscopy as evidenced from Figure 2.13.  

The hydrogen atoms adjacent to the sulfate moiety resonate as a triplet with 2H integration at d = 

3.94 ppm. The analytical purity of the alkylsulfate salts was proved by combustion analysis (Tables 

2.4 and 2.5); however, CHN values for the hexyloxy compounds, 28-6 and 29-6, fall slightly outside 

the acceptable limits and possible explanation for these findings is the presence of residual chloride 

in the samples. To qualitatively test this hypothesis, stirring the salts in a solution of silver nitrate 

could be performed that would indicate the presence of chloride upon the formation of a white 

precipitate of silver chloride. This test was not performed owing to the poor solubility of the 

pyridinium salts in aqueous acid solutions.  

However, calculations were performed on one compound, 28-6, in order to indicate the maximum 

amount of chloride that can be tolerated within these systems while still falling within the 

acceptable limits of CHN analysis (±0.5% on each element). For compound 28-6, theoretical carbon 

content for the pure compound is 71.9%, whereas that for the pure chloride salt, 26-6, is 75.8%. 

Performing linear regression between these values (Figure 2.12, assuming compound 26-6 contains 

1,000,000 ppm chloride and the pure alkylsulfate salt contains 0 ppm chloride) indicates a 
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maximum concentration of 125,000 ppm of chloride ions that can be tolerated within the sample, 

giving a carbon content of 72.4%. The observed carbon content in compound 28-6 was actually 

71.3% (lower than the theoretical value of a sample contaiminated with chloride) and so impurities 

other than or in addition to residual chloride ions are responsible for these findings.  

 

Figure 2.12. Linear regression to calculate maximum chloride concentration tolerated within CHN limits for 
compound 28-6. 
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Figure 2.13. 1H NMR spectrum of 28-8: inset shows zoomed in region to show the CH2 signal at δ = 3.94 ppm arising from the octylsulfate anion.
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2.3.3. Preparation of the tetracatenar bis(trifluoromethanesulfonyl)imide (NTf2
-) salts 

Preparation of the NTf2
- salts, 30-n, were readily achieved following a procedure outlined by 

Riccobono,19 which involved heating the triflate compound, 11-n, in methanol:ethanol (1:1) under 

reflux with three molar equivalents of LiNTf2 for two hours (Scheme 2.10). The dropwise addition 

of water precipitated the product as its NTf2
- salt, which was then isolated via filtration and washed 

multiple times with water to remove any excess LiNTf2 and LiOTf side-product. The analytical purity 

of these salts was evidenced by combustion analyses and these data are presented in Table 2.2. 19F 

NMR spectroscopy detected a new resonance at δ = -78.5 ppm corresponding to the NTf2
- anion 

(Figure 2.14); this new resonance appeared at a different chemical shift to that of the triflate 

compounds and is consistent with metathesis from OTf- to NTf2
-. 

 

Scheme 2.10. Preparation of the NTf2- salts, 30-n. 

 

 

 

 

 

 

 

 

 

Figure 2.14. Overlaid 19F NMR spectra of the tetracatenar OTf- compound 11-10 (red) and NTf2- compound 
30-10 (black) to show the different 19F resonances. 
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NTf2 (30-10) 
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3. Preparation of tetracatenar 3,4-dialkoxyphenylpyridine complexes of silver(I) 

Having to hand the 3,4-dialkoxyphenylpyridines, 21-n, as intermediates in the synthesis of the 

target tetracatenar N-phenylpyridinium materials, it was decided to take advantage of these 

compounds and prepare the analogous silver(I) complexes bearing phenylpyrididine ligands. Their 

preparation thus allowing a better comparison between the silver(I) materials and the N-

phenylpyridinium ions. Procedures outlined by Donnio et al.1 were followed. 

Synthesis of the 3,4-dialkoxyphenylpyridine complexes of silver(I) triflate was achieved via reaction 

of the 3,4-dialkoxyphenylpyridine and silver(I) triflate in acetone in a vessel protected from light as 

outlined in Scheme 2.11. After 4 hours of stirring at room temperature, the reaction mixture was 

cooled to -18 °C and the resulting precipitate isolated via filtration, washed with multiple portions 

of cold acetone and dried. 3,4-Dialkoxyphenylpyridine ligands with aliphatic chains n > 12 were not 

soluble in acetone at room temperature, and so these ligands were stirred in acetone at 50 °C. 

Yields and micro-analytical data for the silver(I) triflate salts are collected in Table 2.6.  

Scheme 2.11. Preparation of the 3,4-dialkoxyphenylpyridine complexes of silver(I) triflate and silver(I) 
dodecylsulfate: (i) AgOTf, acetone, (Δ) (ii) AgO3SOC12H25, dichloromethane, r.t. 

Preparation of the 3,4-dialkoxyphenylpyridine complexes of silver(I) dodecylsulfate were prepared 

by stirring the ligand with an excess of silver dodecylsulfate overnight in dichloromethane at room 

temperature in a vessel protected from light (Scheme 2.11). The reaction mixture was then filtered 

through celite and the filtrate evaporated to dryness; the residue was then crystallised from hot 

acetone and washed with diethyl ether to afford the silver(I) complexes. Yields and microanalytical 

data of these silver(I) salts are presented in Table 2.7. The silver(I) dodecylsulfate was also prepared 

in house following literature procedures,20 which involved stirring of sodium dodecylsulfate and 

silver nitrate in water for three hours at room temperature in the dark followed by isolation of the 

precipitate; the solid was dried in a desiccator and used without further purification. 
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Complexation of the phenylpyridine ligands was confirmed by 1H NMR spectroscopy, mass 

spectrometry and elemental analysis. A downfield shift in the resonances of hydrogen atoms ortho 

to the nitrogen of 0.15 ppm was observed in the 1H NMR spectra of all the complexes – Figure 2.15 

shows overlaid spectra of the silver(I) dodecylsulfate salt 32-8 and free ligand. Furthermore, the 

alkylsulfate anion is clearly visible via 1H NMR spectroscopy in the case of the dodecylsulfate salts: 

specifically, the CH2 signal adjacent to the sulfate moiety can be clearly resolved as a triplet of 2H 

integration at δ 4.10 ppm. In the case of the triflate salts, 31-n, the presence of fluorine is confirmed 

by 19F NMR spectroscopy; there is also a downfield shift of protons ortho to the nitrogen atom in 
1H NMR spectra to distinguish the triflate salts from the free ligand, too. Mass spectrometry also 

confirmed the molecular mass of each cation and anion, while elemental analysis confirms the 

purity of each compound (Tables 2.6 and 2.7).
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Figure 2.15.  Overlaid 1H NMR spectra of the free ligand, 21-8, and the tetracatenar silver(I) dodecylsulfate salt, 32-8, to show a shift in the resonances on complexation: 
inset shows the zoomed in region of the 1H NMR spectrum of compound 32-8 at δ 4 ppm to show the CH2 resonance of the dodecylsulfate anion.

Free ligand 

Complex 
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4. Experimental 

1H, 19F and 13C{1H} NMR spectra were recorded on a Jeol ECS400 spectrometer equipped with a 

sample changer operating at 400 MHz (1H), 376 MHz (19F) and 101 MHz (13C), each at a temperature 

of 298 K. The solvent used to record each NMR spectrum is indicated in the respective experimental 

procedure. All NMR spectra were processed using MestReNova software. Chemical shifts are 

reported to two decimal places in 1H, 13C{1H} and 19F NMR spectra and coupling constants in 1H NMR 

spectra are quoted to the nearest 0.5 Hz for the sake of consistency.  

Mass spectra were recorded using a Bruker Daltronics micrOTOF MS Agilent series 1200LC with 

electrospray ionization (ESI and APCI) or on a Thermo LCQ using electrospray ionization. Mass 

spectral data are quoted as the m/z (mass/charge) ratio; m/z ratios are reported in units of Daltons. 

Elemental analyses were performed by Dr Graeme McAllister at the University of York using an 

Exeter Analytical Inc CE 440 Elemental Analyzer and a Sartorius SE2 analytical balance. 

4.1. Preparation of the calamitic N-phenylpyridinium ion, 12-6 

4.1.1. Preparation of 13-6 

 

4-Hydroxybromobenzene (10 g, 58.2 mmol) was taken into acetone and to this solution was added 

K2CO3 (16 g, 116 mmol) and 1-bromohexane (7.3 ml, 52.9 mmol). The reaction mixture was heated 

under reflux for 24 h after which time the K2CO3 was filtered off through a plug of celite and the 

filtrate evaporated. The crude residue was then taken into diethyl ether (200 ml) and washed with 

aqueous NaOH solution (200 ml, 10 wt%), deionised water (200 ml) and aqueous NaCl solution (200 

ml, saturated). The organic extract was dried over anhydrous MgSO4 and the solvent removed 

under reduced pressure to yield a colourless oil (84%): 1H NMR (400 MHz, CDCl3) δ 7.35 (2H, AA’XX’, 

J = 9.0 Hz), 6.76 (2H, AA’XX’, J = 9.0 Hz), 3.90 (2H, t, J = 6.5 Hz), 1.75 (2H, m), 1.43 (2H, m), 1.32 (4H, 

m), 0.89 (3H, t, J = 7.0 Hz). 
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4.1.2. Preparation of 14-6 

 

A three-necked round-bottomed flask was charged with 4-hexyloxybromobenzene (5.7 g, 22.2 

mmol). THF (200 ml), aqueous Na2CO3 (200 ml, 2 mol dm-3) and pyridine-4-boronic acid (3.0 g, 24.4 

mmol) were then added and the resulting reaction mixture was degassed with argon whilst 

undergoing agitation in an ultrasonic bath. The bi-phasic reaction mixture was heated to 65 °C 

under a steady flow of nitrogen and [Pd(PPh3)4] (0.25 g, 1 mol%) was added. After complete 

consumption of the limiting reagent (after 16 h) the reaction mixture was cooled to r.t. and the 

biphasic mixture separated. The aqueous layer was extracted with dichloromethane (2 x 75 ml) and 

the combined organic extracts were washed with aqueous NaCl solution (100 ml, saturated) and 

dried over anhydrous MgSO4. The solvent was removed under reduced pressure and the product 

was purified by flash column chromatography on silica gel using dichloromethane:methanol (95:5) 

as the eluent and then crystallised from hot n-hexane (74%): 1H NMR (400 MHz, CDCl3) δ 8.59 (2H, 

AA’XX’, J = 6.5 Hz), 7.57 (2H, AA’XX’, J = 8.5 Hz), 7.45 (2H, AA’XX’, J = 6.5 Hz), 6.98 (2H, AA’XX’, J = 

8.5 Hz), 4.00 (2H, t, J = 7.0 Hz), 1.79 (2H, m), 1.47 (2H, m), 1.34 (4H, m), 0.90 (3H, t, J = 7.0 Hz).  

4.1.3. Preparation of 15-6 

 

4-Hexyloxyphenylpyridine 13-6 (3.0 g, 11.8 mmol) was taken into acetone and 1-chloro-2,4-

dinitrobenzene (2.2 g, 10.7 mmol) added. The resulting solution was heated under reflux for 48 h. 

The reaction mixture was then cooled to r.t. and the resulting orange precipitate isolated via 

filtration, washed with acetone and used without further purification (62%): 1H NMR (400 MHz, 

MeOD) δ 9.24 (1H, d, J = 2.5 Hz), 9.05 (2H, AA’XX’, J = 7.0 Hz), 8.89 (1H, dd, J = 8.5, 2.5 Hz), 8.57 (2H, 
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AA’XX’, J = 7.0 Hz), 8.29 (1H, d, J = 9.0 Hz), 8.18 (2H, AA’XX’, J = 9.0 Hz), 7.20 (2H, AA’XX’, J = 9.0 Hz), 

4.13 (2H, t, J = 6.5 Hz), 1.82 (2H, m), 1.50 (2H, m), 1.37 (4H, m), 0.92 (3H, t J = 7.0 Hz). 

4.1.4. Preparation of 16-6 

  

Compound 14-6 (0.51 g, 1.12 mmol) was taken into 1-butanol (50 ml) and to this solution was added 

p-phenylenediamine (0.97 g, 9.0 mmol). The resulting solution was heated under reflux for 16 h, 

after which time the reaction mixture was cooled to r.t. and the solvent removed under reduced 

pressure. The product was then purified by flash column chromatography on silica gel using 

dichloromethane:methanol (8:2) and the resulting orange solid was triturated with acetone (75%): 
1H NMR (400 MHz, MeOD) δ 8.91 (2H, AA’XX’, J = 8.0 Hz), 8.34 (2H, AA’XX’, J = 8.0 Hz), 8.04 (2H, 

AA’XX’, J = 9.0 Hz), 7.45 (2H, AA’XX’, J = 8.0 Hz), 7.15 (2H, AA’XX’, J = 9.0 Hz), 6.85 (2H, AA’XX’, J =8.0 

Hz), 4.09 (2H, t, J = 6.5 Hz), 1.83 (2H, m), 1.49 (2H, m), 1.36 (4H, m), 0.91 (3H, t, J = 7.0 Hz). 

4.1.5. Preparation of 17-6 

 

p-TsOH (0.31 g, 1.62 mmol) was dissolved in acetonitrile (15 ml) and 15-6 (0.2 g, 0.54 mmol) added. 

The resulting suspension was cooled to 0 °C and to this was added NaNO2 (0.075 g, 1.08 mmol) and 

KI (0.22 g, 1.35 mmol) in water (5 ml). The resulting orange suspension was stirred at 0 °C for 10 

min before being allowed to warm to r.t. and stirred for a further hour. Water (10 ml) and aqueous 

NaHCO3 (saturated) was added until a pH of 9 was reached. The product was then extracted into 

ethyl acetate (3 x 100 ml) and the combined organic extracts were washed with aqueous NaCl 

solution (100 ml, saturated) and dried over anhydrous MgSO4. The solvent was then removed under 

reduced pressure. The product was crystallised from hot ethanol to afford a dark orange 
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microcrystalline solid (53%): 1H NMR ((CD3)2SO, 400 MHz) δ 9.21 (2H, AA’XX’, J = 7.5 Hz), 8.59 (2H, 

AA’XX’, J = 7.5 Hz), 8.23 (2H, AA’XX’, J = 9.0 Hz), 8.12 (2H, AA’XX’, J = 9.0 Hz), 4.12 (2H, t, J = 6.5 Hz), 

1.76 (2H, q, J = 6.5 Hz), 1.44 (2H, m), 1.33 (4H, m), 0.89 (3H, t, J = 7.0 Hz).  

4.1.6. Preparation of 12-6 

 

Compound 16-6 (0.3 g, 0.61 mmol) was added to a three-necked round bottomed flask previously 

purged with nitrogen and dissolved in anhydrous THF (60 ml). 4-Hexyloxybenzene boronic acid 

pinacol ester (0.2 g, 0.67 mmol) was then added along with aqueous sodium carbonate (60 ml, 2 

mol dm-3); the resulting biphasic mixture was sparged with an argon balloon whilst being agitated 

in an ultrasonic bath. The reaction mixture was heated under reflux under a flow of nitrogen and 

[Pd(PPh3)4] (1 mol%) added. After 20 h the biphasic reaction mixture was cooled to r.t. and 

separated. The aqueous layer was extracted with dichloromethane (2 x 100 ml) and the combined 

organic layers washed with aqueous NaCl (100 ml, saturated) and dried over MgSO4 before removal 

of the solvent in vacuo. The product was purified by flash column chromatography on silica gel using 

dichloromethane:methanol (90:10) as the eluent to afford a yellow solid (24%): 1H NMR (CDCl3, 400 

MHz) δ 9.24 (2H, AA’XX’, J = 7.0 Hz), 8.44 (2H, AA’XX’, J = 7.0 Hz), 7.91 (2H, AA’XX’, J = 8.5 Hz), 7.86 

(2H, AA’XX’, J = 8.5 Hz), 7.76 (2H, AA’XX’, J = 8.5 Hz), 7.50 (2H, AA’XX’, J = 8.5 Hz), 7.03 (2H, AA’XX’, 

J = 8.5 Hz), 6.98 (2H, m, AA’XX’, J = 8.5 Hz), 4.02 (2H, t, J = 6.5 Hz), 4.01 (2H, t J =6.5 Hz), 1.82 (4H, 

m), 1.48 (4H, m), 1.36 (8H, m), 0.94 (3H, t, J = 7.0 Hz), 0.93 (3H, t, J =7.0 Hz). 
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4.2. Preparation of tetracatenar salts, 11-8 

4.2.1. Preparation of 3,4-dihydroxybromobenzene (4-bromocatechol) 19 

 

To a three-necked round bottom flask purged with nitrogen was added 4-bromoveratrole (6.61 ml, 

46 mmol) and anhydrous dichloromethane (200 ml). The solution was cooled to 0 °C under a flow of 

nitrogen and BBr3 solution (101 ml, 1 mol dm-3 in dichloromethane) added drop wise. The reaction 

mixture was then stirred at 0 °C for a further 10 min before being allowed to warm to r.t. and stirred 

for a further hour, after which time the reaction was quenched with water (200 ml) and the biphasic 

mixture separated. The aqueous layer was extracted with dichloromethane (3 x 150 ml) and the 

combined organic layers dried over MgSO4 and the solvent removed to leave a grey oil that slowly 

crystallised with time (90%): 1H NMR (400 MHz, CDCl3) 7.02 (1H, d, J = 2.5 Hz), 6.92 (1H, dd, J = 8.5, 

2.5 Hz), 6.74 (1H, d, J = 8.5 Hz), 5.63 (1H, s), 5.44 (1H, s). 

4.2.2. Preparation of 3,4-dioctyloxybromobenzene 20-8 

 

3,4-Dihydroxybromobenzene (7.8 g, 41.3 mmol) was dissolved in acetone (200 ml) and to this 

solution was added Cs2CO3 (26.9 g, 82.6 mmol) and 1-bromooctane (14.5 g, 13.0 ml, 75.1 mmol); 

the resulting suspension was heated under reflux for 2 days. The reaction mixture was then cooled 

to room temperature, diluted with dichloromethane (150 ml) to prevent the product from 

crystallising and the residual potassium carbonate removed via filtration. The filtrate was then 

evaporated to dryness and the residue taken into diethyl ether (200 ml), washed with aqueous 

NaOH (200 ml, 10 wt%), water (200 ml) and aqueous NaCl (200 ml, saturated). The organic layer 

was then dried over MgSO4 and the solvent removed. The product was crystallised from hot 

acetone to leave a white microcrystalline solid (51%): 1H NMR (400 MHz, CDCl3) δ 6.98 (2H, m), 6.73 
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(1H, d, J = 9.0 Hz), 3.96 (2H, t, J = 6.5 Hz), 3.95 (2H, t, J = 6.5 Hz), 1.79 (4H, m), 1.45 (4H, m), 1.30 

(16H, m), 0.88 (6H, t, J = 7.0 Hz).  

The preparation of all other homologues was performed in an identical fashion.  

4.2.3. Preparation of 3,4-dioctyloxy-4’-phenylpyridine 21-8 

 

To a three-necked round bottomed flask purged with nitrogen was added 3,4-

dioctyloxybromobenzene (4.27 g, 10.3 mmol), toluene (120 ml), ethanol (40 ml) and water (40 ml). 

Pyridine-4-boronic acid pinacol ester was then added (4.24 g, 20.7 mmol) along with Na2CO3 (3.3 g, 

31 mmol). The biphasic reaction mixture was the degassed with argon for 30 min whilst undergoing 

ultrasonic agitation. The catalyst ([Pd3(OAc)6] and Sphos, 1 mol%, pre-mixed in THF) was then added 

to the reaction mixture, which was then heated to 105 °C under a flow of nitrogen for 16 h. The 

biphasic mixture was then separated and the aqueous layer extracted with dichloromethane (3 x 

75 ml); the combined organic extracts were then dried over MgSO4 and the solvent removed. The 

product was purified by flash column chromatography on silica gel using 

dichloromethane:methanol (98:2) as the eluent. The resulting product was finally crystallised from 

hot n-hexane to yield a white microcrystalline solid (62%): 1H NMR (400 MHz, CDCl3) δ 8.60 (1H, 

AA’XX’, J = 6.5 Hz), 7.45 (2H, AA’XX’, J = 6.5 Hz), 7.19 (1H, dd, J = 8.5, 2.5 Hz), 7.15 (1H, d, J = 2.5 Hz), 

6.95 (1H, d, J = 8.5 Hz), 4.05 (2H, t, J = 6.5 Hz), 4.03 (2H, t, J = 6.5 Hz), 1.84 (4H, m), 1.47 (4H, m), 

1.31 (16H, m), 0.87 (6H, m). 

The preparation of all other homologues was performed in an identical fashion. 
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4.2.4. Preparation of Zincke salt 22-8 

 

3,4-dioctyloxy-4’-phenylpyridine (3.25 g, 7.91 mmol) was taken into acetone (75 ml) and 1-chloro-

2,4-dinitrobenzene (1.76 g, 8.7 mmol) was added; the resulting suspension was heated under reflux 

for 4 days. The reaction mixture was then cooled to r.t. and the orange precipitate isolated via 

filtration and washed repeatedly with acetone: 1H NMR (400 MHz, CD3OD) δ 9.25 (1H, d, J = 2.5 Hz), 

9.02 (2H, AA’XX’, J = 9.0 Hz), 8.88 (1H, dd, J = 8.5, 2.5 Hz), 8.58 (2H, AA’XX’, J = 7.0 Hz), 8.26 (1H, d, 

J = 8.5 Hz), 7.82 (1H, dd, J = 8.5, 2.5 Hz), 7.69 (1H, d, J = 2.5 Hz), 7.20 (1H, d, J = 9.0 Hz), 4.16 (2H, t, 

J = 6.5 Hz) 4.15 (2H, t, J = 6.5 Hz), 1.84 (4H, m), 1.54 (4H, m), 1.33 (16 H), 0.87 (6H, t, J = 7.0 Hz). 

The preparation of all other homologues was performed in an identical fashion.  

4.2.5. Preparation of 4-iodo species 23-8 

 

A three-necked round bottomed flask purged with nitrogen was charged with Zincke salt 22-8 (0.25 

g, 0.41 mmol) and dissolved in n-butanol (6 ml). 4-Iodoaniline (0.36 g, 1.64 mmol) was added and 

the resulting suspension heated under reflux for 16 h after which time the reaction mixture had 

become a deep yellow solution. The solution was cooled to room temperature and the resulting 

precipitate was isolated via filtration, triturated with cold dichloromethane and acetone and dried 

(53%): 1H NMR (400 MHz, DMSO-d) δ 9.19 (2H, AA’XX’, J = 7.0 Hz), 8.64 (2H, AA’XX’, J = 7.0 Hz), 8.13 

(2H, AA’XX’, J = 8.5 Hz), 7.86 (1H, dd, J = 8.5, 2.0 Hz), 7.74 (1H, d, J = 2.0 Hz), 7.68 (2H, AA’XX’, J = 8.5 

Hz), 7.21 (1H, d, J= 8.5 Hz), 4.14, (2H, t, J = 6.5 Hz) 4.12 (2H, t, J = 6.5 Hz), 1.75 (4H, m), 1.45 (4H, m), 

1.30 (16H, m), 0.85 (3H, t, J = 7.0 Hz). 
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The preparation of all other homologues was performed in an identical fashion.  

4.2.6. Preparation of triflate salt 24-8 

 

Chloride salt 23-8 (0.42 g, 0.65 mmol) was taken into DMF (80 ml) and the resulting solution heated 

to 65 °C. Silver triflate (0.42 g, 1.62 mmol) was then added after which time a yellow suspension 

immediately formed; the reaction mixture was stirred at 65 °C for 16 h before being cooled to r.t. 

and the precipitate removed. The filtrate was then evaporated to dryness and the residue taken 

into dichloromethane (50 ml), washed repeatedly with water (4 x 75 ml) and dried over MgSO4. The 

solvent was removed under reduced pressure and the compound subsequently crystallised from 

hot ethanol to yield a yellow solid (58%): 1H NMR (400 MHz, DMSO-d) δ 9.19 (2H, AA’XX’, J = 7.0 

Hz), 8.64 (2H, AA’XX’, J = 7.0 Hz), 8.13 (2H, AA’XX’, J = 8.5 Hz), 7.86 (1H, dd, J = 8.5, 2.0 Hz), 7.74 (1H, 

d, J = 2.0 Hz), 7.68 (2H, AA’XX’, J = 8.5 Hz), 7.21 (1H, d, J= 8.5 Hz), 4.14 (2H, t, J = 6.5 Hz) 4.11 (2H, t, 

J = 6.5 Hz), 1.75 (4H, m), 1.45 (4H, m), 1.30 (16 H, m), 0.85 (3H, t, J = 7.0 Hz). 

The preparation of all other homologues was performed in an identical fashion.  

4.2.7. Preparation of tetracatenar triflate salt 11-8 

 

A three-necked round bottomed flask purged with nitrogen was charged with triflate salt 24-8 (0.25 

g, 0.33 mmol) and anhydrous THF (15 ml). To this yellow solution was added borate ester 25-8 (0.18 

g, 0.39 mmol) and aqueous sodium carbonate (15 ml, 2 mol dm-3). Argon was then bubbled through 

the biphasic mixture whilst undergoing agitation in an ultrasonic bath to rigorously remove oxygen 
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from the reaction mixture. [Pd3(OAc)6] (7.4 x 10-4 g, 3.3 x 10-3 mmol) and Sphos (1.35 x 10-3 g, 3.3 x 

10-3 mmol) were dissolved in anhydrous THF (1 ml) and stirred under nitrogen until the mixture 

became red. This pre-prepared catalyst was then added to the reaction mixture, which was then 

heated to 65 °C under a steady flow of nitrogen. On complete consumption of the limiting reagent 

(after 16 h), the reaction mixture was cooled to r.t., the biphasic mixture separated and the aqueous 

layer extracted with dichloromethane (2 x 25 ml). The combined organic layers were dried over 

MgSO4 and the solvent removed under reduced pressure. The product was purified by flash column 

chromatography on silica gel using dichloromethane:methanol (95:5) as the eluent. The product 

was finally crystallised from hot ethanol to afford a yellow microcrystalline solid (68%): 1H NMR 

(400 MHz, CDCl3) δ 8.80 (2H, AA’XX’, J = 7.0 Hz), 8.25 (2H, AA’XX’, J = 7.0 Hz), 7.41 (1H, dd, J = 8.0, 

2.0 Hz), 7.31 (1H, d, J = 2.0 Hz), 7.03 (1H, d, J = 2.0 Hz), 7.00 (1H, dd, J = 8.0, 2.0 Hz), 6.84 (1H, d, J = 

8.0 Hz), 6.81 (1H, d, J = 8.0 Hz), 4.06 (2H, t, J = 7.0 Hz), 4.01 (2H, t, J = 7.0 Hz), 3.97 (2H, t, J = 7.0 Hz), 

3.90 (2H, t, J = 7.0 Hz), 1.82 (8H, m), 1.47 (8H, m), 1.29 (32H, m), 0.85 (12H, m). 19F NMR (376 MHz, 

CDCl3) δ -78.09, (s). 13C NMR (101 MHz, CDCl3) δ 14.22, 22.80, 22.06, 26.15, 26.18, 26.21, 29.10, 

29.40, 29.43, 29.52, 29.57, 31.96, 69.17, 69.25, 69.58, 69.63, 112.01, 112.55, 113.10, 113.72, 

119.90, 120.93 (JCF = 320 Hz), 122.60, 123.58, 124.06, 124.59, 125.71, 128.58, 130.84, 139.79, 

142.50, 144.00, 149.61, 150.03, 153.99, 155.99. APCI: found 820.6243 [M+], 148.9523 [M-]. 

The preparation of all other homologues was performed in an identical fashion.  

Table 2.1. Micro-analytical data for the tetracatenar triflate salts 11-8: theoretical values in parentheses. 

n Yield / % %C %H %N 

8 68 69.4 (69.3) 8.7 (8.5) 1.5 (1.4) 

10 72 70.9 (71.0) 9.2 (9.1) 1.2 (1.2) 

12 69 72.3 (72.4) 9.6 (9.6) 1.2 (1.2) 

13 81 72.5 (73.0) 10.2 (9.8) 1.0 (1.1) 

14 75 73.6 (73.5) 10.3 (10.0) 1.0 (1.1) 

16 70 74.7 (74.5) 10.4 (10.4) 1.3 (1.0) 

18 61 75.0 (75.3) 10.7 (10.7) 1.3 (0.9) 

 

 

 



83 

 

 

4.2.8. Preparation of 25-n 

 

A three-necked round bottom flask purged with N2 was charged with 3,4-

didodecyloxybromobenzene (2.47 g, 5.3 mmol) and dissolved in anhydrous DMSO (40 ml). Bis-

pinacolato diboron (1.50 g, 5.8 mmol) and NaOAc (1.5 g, 18.5 mmol) were added and the reaction 

mixture heated to 80 °C under a flow of N2. [PdCl2(dppf)] (0.15g, 0.19 mmol, 3 mol%) was then 

added and the resulting solution stirred at 80 °C for 16 h. The reaction mixture was cooled to RT, 

diluted with water (100 ml) and the product extracted into diethyl ether (4 x 100 ml). The combined 

organic layers were then washed repeatedly with water (5 x 150 ml) to remove any residual DMSO, 

dried over MgSO4 and the solvent removed under reduced pressure. The product was purified via 

column chromatography using 40-60 °C petroleum spirit:EtOAc (9:1) to afford a white solid (54%): 
1H NMR (400 MHz, CDCl3) 7.38 (1H, dd, J = 8.0, 1.5 Hz), 7.29 (1H, d, J = 1.5 Hz), 6.87 (1H, d, J = 8.0 

Hz), 4.02 (4H, m), 1.81 (4H, m), 1.46 (4H, m), 1.33 (12H, s), 1.26 (32 H, m), 0.88 (6H, m). 

4.3. Preparation of the tetracatenar chloride salts, 25-n 

4.3.1. Preparation of chloride salt 26-n 

 

2,4-Dinitro salt 21-8 (2.79 g, 4.55 mmol) was taken into n-butanol and heated to 110 °C under a 

flow of nitrogen. 4-Bromoaniline (3.12 g, 18.2 mmol) was then added and the reaction mixture 

stirred for 16 h before being cooled to r.t. and the precipitate isolated via filtration. The resulting 

orange solid was washed multiple times with acetone and then triturated with dichloromethane to 

afford a bright yellow solid (45%): 1H NMR (400 MHz, CDCl3) δ 8.94 (2H, AA’XX’, J = 7.5 Hz), 8.32 (2H, 

OCnH2n+1
OCnH2n+1

B
OO
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AA’XX’, J = 7.5 Hz), 7.76 (2H, AA’XX’, J = 8.5 Hz), 7.67 (2H, AA’XX’, J = 8.5 Hz), 7.57 (1H, dd, J = 8.5, 

2.5 Hz), 7.40 (1H, d, J = 2.5 Hz), 6.98 (1H, d, J = 8.5 Hz), 4.06 (2H, t, J = 6.5 Hz), 4.04 (2H, t, J = 6.5 Hz), 

1.80 (4H, m), 1.43 (4H, m), 1.26 (16H, m), 0.82 (3H, t, J = 7.0 Hz), 0.81 (3H, t, J = 7.0 Hz). 

4.3.2. Preparation of tetracatenar chloride salt, 26-n 

 

4-Bromo chloride salt 27-8 (0.05 g, 0.076 mmol) and 3,4-dialkoxybenzeneboronic acid pinacol ester 

25-8 (0.047 g, 0.09 mmol) were added to a three-necked round-bottomed flask already purged with 

nitrogen and taken into THF (50 ml) and ethanol (25 ml). Aqueous sodium carbonate (50 ml, 2 mol 

dm-3) was then added and the biphasic solution degassed with arogon whilst undergoing agitation 

in an ultrasonic bath. [Pd3(OAc)6] (3.5 x 10-3 g, 1.52 x 10-3 mmol) and Sphos (7.0 x 10-3 g, 3.0 x 10-3 

mmol) were dissolved in anhydrous THF (1 ml) and stirred under nitrogen until the mixture became 

red. This pre-prepared catalyst was then added to the reaction mixture, which was then heated to 

75 °C under a steady flow of nitrogen. After complete consumption of the limiting reagent (after 6 

h), the reaction mixture was cooled to r.t. and the biphasic mixture separated. The aqueous layer 

was extracted with dichloromethane (3 x 50 ml) and the combined organic extracts were washed 

with aqueous NaCl (100 ml, saturated) and dried over anhydrous MgSO4 before evaporation of the 

solvent under reduced pressure. The product was purified by flash column chromatography on silica 

gel using dichloromethane:methanol (95:5) as the eluent. On evaporation of the solvent, the solid 

was finally triturated with dichloromethane (50 ml) to afford a bright orange solid (86%): 1H NMR 

(400 MHz, CDCl3) δ 9.37 (2H, AA’XX’, J = 7.0 Hz), 8.40 (2H, AA’XX’, J = 7.0 Hz), 7.92 (2H, AA’XX’, J = 

9.0 Hz), 7.76 (2H, AA’XX’, J = 9.0 Hz), 7.53 (1H, dd, J = 8.5, 2.5 Hz), 7.36 (1H, d, J = 2.5 Hz), 7.09 (2H, 

m), 6.94 (1H, d, J = 8.5 Hz), 6.92 (1H, d, J = 8.5 Hz), 4.09 (2H, t, J = 6.5 Hz), 4.04 (6H, m), 1.84 (8H, 

m), 1.49 (8H, m), 1.31 (32H, m), 0.87 (12H, m). 
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Table 2.2. Micro-analytical data for the tetracatenar chloride salts, 26-n: theoretical values in parentheses. 

n Yield / % %C %H %N 

6 81 72.8 (75.8) 8.8 (8.9) 2.0 (1.9) 

8 62 75.4 (77.1) 9.3 (9.7) 1.5 (1.6) 

10 67 75.1 (78.1) 9.7 (10.2) 1.5 (1.5) 

12 64 77.7 (78.9) 10.6 (10.6) 1.3 (1.3) 

As mentioned in Section 2.3.1. the chloride salts could not be isolated in analytical purity 

owing to traces of organic impurities that could not be removed. However, this was not a 

major issue as the chloride salts were used only as intermediates in the preparation of the 

final alkylsulfate salts, which were subsequenrtly isolated in acceptable purity to be 

studied. 

4.4. Preparation of the tetracatenar octylsulfate salts, 28-n 

 

The following procedure documents the preparation of the octyloxy octyllsulfate salt: All other 

derivatives were prepared in an analogous fashion, except that ethanol was used as the reaction 

solvent for the n = 12 homologue due to the insolubility of this compound in hot methanol. The 

tetradecyloxy derivative was, however, prepared successfully in an identical fashion from the 

triflate salt using ethanol as the reaction solvent. 

Chloride salt 26-8 (0.03 g, 0.035 mmol) was taken into methanol (75 ml) and the solution heated to 

60 °C. The solution was then saturated with sodium octylsulfate and stirred at this temperature for 

2 h. Water was then added dropwise to precipitate the product as its octylsulfate salt, which was 

subsequently isolated via filtration and washed with multiple portions of water. The compound was 

then crystallised from hot ethanol and the solid taken into dichloromethane and filtered through a 
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0.2 μm PTFE filter to remove any insoluble impurities. The solvent was then removed and the 

compound dried under vacuum (66%): 1H NMR (400 MHz, CDCl3) δ 8.98 (2H, AA’XX’, J = 7.0 Hz), 8.41 

(2H, AA’XX’, J = 7.0 Hz), 7.72 (2H, AA’XX’, J = 8.5 Hz), 7.67 (2H, AA’XX’, J = 8.5 Hz), 7.49 (1H, dd, J = 

8.5, 2.5 Hz), 7.38 (1H, d, J = 2.5 Hz), 7.05 (1H, d, J = 2.5 Hz), 7.03 (1H, dd, J = 8.5, 2.5 Hz), 6.88 (1H, 

d, J = 8.5 Hz), 6.84 (1H, d, J = 8.5 Hz), 4.11 (4H, m), 4.04 (2H, t, J = 6.5 Hz), 4.01 (2H, t, J = 6.5 Hz), 

3.94 (2H, t, J = 7.0 Hz), 1.84 (8H, m), 1.69 (2H, m), 1.29 (42 H, m), 0.87 (12 H, m), 0.83 (3H, t, J = 7.0 

Hz). 

Table 2.3. Micro-analytical data for the tetracatenar octylsulfate salts, 28-n: theoretical values in 
parentheses. 

 

4.5. Preparation of the tetracatenar dodecylsulfate salts, 29-n 

 

The following procedure documents the preparation of the octyloxy dodecylsulfate salt, all other 

derivatives were prepared in an analogous fashion except that ethanol was used as the reaction 

solvent for the n = 12 derivative due to the insolubility of this compound in hot methanol. 

Chloride salt 26-8 (0.03 g, 0.035 mmol) was taken into methanol (75 ml) and heated to 60 °C. This 

solution was then saturated with sodium dodecylsulfate and the reaction mixture stirred at this 

temperature for 2 h. Water was then added dropwise to precipitate the product as its 

dodecylsulfate salt, which was subsequently isolated via filtration and the solid washed multiple 

n Yield / % %C %H %N 

6 82 71.3 (71.9) 9.3 (9.1) 1.5 (1.5) 

8 66 73.5 (73.4) 10.1 (9.7) 1.6(1.4) 

10 71 74.3 (74.6) 10.2 (10.1) 1.1 (1.2) 

12 74 75.6 (75.2) 10.4 (10.5) 1.0 (1.1) 

14 68 76.1 (76.4) 11.3 (10.8) 1.0 (1.0) 
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times with water. The product was then crystallised from hot ethanol and the resulting solid taken 

into dichloromethane and filtered through a 0.2 μm PTFE filter to remove any insoluble impurities. 

The solvent was then removed and the product dried under vacuum (65%): 1H NMR (400 MHz, 

CDCl3) δ 8.99 (2H, AA’XX’, J = 6.5 Hz), 8.39 (2H, AA’XX’, J = 6.5 Hz), 7.73 (2H, AA’XX’, J = 8.5 Hz), 7.68 

(2H, AA’XX’, J = 8.5 Hz), 7.49 (1H, dd, J = 8.5, 2.5 Hz), 7.39 (1H, d, J = 2.5 Hz), 7.05 (2H, m), 6.89 (1H, 

d, J = 8.5 Hz), 6.86 (1H, d, J = 8.5 Hz), 4.11 (4H, t, J = 7.0 Hz), 4.04 (2H, t, J = 7.0 Hz), 4.01 (2H, t, J = 

7.0 Hz), 3.96 (2H, t, J = 7.0 Hz), 1.84 (8H, m), 1.69 (2H, m), 1.49 (8H, m), 1.30 (50H, m), 0.87 (15H, 

m).  

Table 2.4. Micro-analytical data for the tetracatenar dodecylsulfate salts, 29-n: theoretical values in 
parentheses. 

n Yield / % %C %H %N 

6 78 72.1 (72.7) 8.9 (9.4) 0.9 (1.4) 

8 65 73.8 (74.1) 10.0 (9.90) 0.7 (1.3) 

10 69 75.1 (74.7) 10.3 (10.4) 1.2 (1.3) 

12 73 75.4 (76.0) 10.6 (10.7) 1.4 (1.1) 

 

4.6. Preparation of the tetracatenar NTf2 salts, 30-n 

 

Triflate salt 11-8 (0.05 g, 0.052 mmol) was taken into ethanol:methanol (1:1, 50 ml) and heated to 

70 °C. LiNTf2 (0.037 g, 0.13 mmol) was then added in methanol (5 ml) and the reaction mixture 

stirred for 2 h. Water was then added dropwise to precipitate the product as its NTf2 salt, which 

was subsequently isolated via filtration and washed multiple times with water. The product was 

then purified by flash column chromatography on silica gel using dichloromethane:methanol as the 

eluent (95:5) to afford a bright orange solid on evaporation of the solvent (76%): 1H NMR (400 MHz, 
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CDCl3) δ 8.76 (2H, AA’XX’, J = 7.0 Hz),  8.30 (2H, AA’XX’, J = 7.0 Hz), 7.80 (2H, AA’XX’, J = 8.5 Hz), 7.68 

(2H, AA’XX’, J = 8.5 Hz), 7.52 (1H, dd, J = 8.5, 2.5 Hz), 7.42 (1H, d, J = 2.5 Hz), 7.14 (2H, m), 7.01 (1H, 

d, J = 8.5 Hz), 6.97 (1H, d, J = 8.5 Hz), 4.11 (2H, t, J = 6.5 Hz), 4.08 (2H, t, J = 6.5 Hz), 4.07 (2H, t, J = 

6.5 Hz), 4.04 (2H, t, J = 6.5 Hz), 1.85 (8H, m), 1.49 (8H, m), 1.32 (32 H, m), 0.88 (12H, m). 19F NMR 

(376 MHz, CDCl3) δ -78.54 (s). 

The preparation of all other homologues was performed in an identical fashion.  

Table 2.5. Micro-analytical data for the tetracatenar NTf2 salts, 30-n: theoretical values in parentheses. 

n Yield / % %C %H %N 

4 64 56.2 (56.2) 5.7 (5.8) 2.9 (3.2) 

8 76 62.2 (62.2) 7.5 (7.5) 2.4 (2.5) 

10 81 64.6 (64.3) 8.3 (8.1) 2.2 (2.3) 

12 69 66.2 (66.1) 8.7 (8.7) 2.1 (2.1) 

14 83 67.6 (67.7) 9.3 (9.1) 1.8 (2.0) 

 

4.7. Preparation of the tetracatenar 3,4-dialkoxyphenylpyridine silver(I) triflates, 31-n 

 

 

 

 

 

3,4-Didodecyloxyphenylpyridine 20-12 (0.30 g, 0.57 mmol) was taken into acetone (20 ml) and the 

vessel protected from light. Silver triflate (0.08 g, 0.32 mmol) was then added and the reaction 

mixture stirred at 50 °C for 4 hours, after which time it was placed in the freezer and the solid 

isolated via filtration. The product was then re-crystallised from hot acetone and washed three 

times with diethyl ether. The resulting solid was then taken into dichloromethane and filtered 

through a plug of celite to remove any insoluble by-products; the solvent was then evaporated 

under reduced pressure to furnish a white powder (51%): 1H NMR (400 MHz, CDCl3) δ 8.71 (4H, 
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AA’XX’, J = 6.5 Hz), 7.56 (4H, AA’XX’, J = 6.5 Hz), 7.13 (2H, dd, J = 8.5, 2.0 Hz), 7.10 (2H, d, J = 2.0 Hz), 

6.90 (2H, d, J = 8.5 Hz), 4.04 (4H, t, J = 7.0 Hz), 4.03 (4H, t, J = 7.0 Hz), 1.86 (8H, m), 1.50 (8H, m), 

1.31 (64 H, m), 0.89 (6H, t, J = 6.5 Hz), 0.89 (6H, t, J = 6.5 Hz). 19F NMR (376 MHz, CDCl3) δF -77.68, 

(s). ESI: found 1156.7916 [M+1+], 148.9525 [M-]. 

Table 2.6. Micro-analytical data for the phenylpyridine complexes of silver(I) triflate, 31-n. 

 

 

 

 

 

 

4.8. Synthesis of 3,4-dialkoxyphenylpyridine complexes of silver(I) dodecylsulfate, 32-n 

 

 

 

 

 

3,4-Didodecyloxyphenylpyridine 20-12 (0.30 g, 0.57 mmol) was taken into dichloromethane (7 ml) 

and added dropwise to a stirred suspension of silver(I) dodecylsulfate (0.12 g, 0.32 mmol) in 

dichloromethane (7 ml) in a vessel protected from light. The reaction mixture was stirred at room 

temperature overnight before filtration through a plug of celite followed by evaporation of the 

filtrate. The brown residue was then crystallised from hot acetone and the solid washed repeatedly 

with diethyl ether. The resulting solid was then taken into dichloromethane and filtered once more 

through a plug of celite to remove any insoluble by-products; the filtrate was the evaporated under 

reduced pressure to leave a white solid (43%): 1H NMR (400 MHz, CDCl3) δ 8.74 (4H, AA’XX’, J = 6.5 

n Yield / % %C %H %N 

4 48 54.7 (54.7) 6.0 (5.9) 3.1 (3.3) 

6 63 58.0 (58.3) 6.8 (6.9) 2.6 (2.9) 

8 47 61.1 (61.2) 7.5 (7.7) 2.3 (2.6) 

10 57 63.3 (63.5) 8.6 (8.3) 2.2 (2.4) 

12 81 65.2 (65.4) 8.9 (8.8) 2.1 (2.2) 

14 71 66.9 (67.0) 9.4 (9.3) 2.0 (2.0) 

18 62 69.6 (69.5) 10.0 (10.0) 1.7 (1.7) 
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Hz), 7.52 (4H, AA’XX’, J = 6.5 Hz), 7.14 (2H, dd, J = 8.5, 2.0 Hz), 7.10 (2H, d, J = 2.0 Hz), 6.90 (2H, d, J 

= 8.5 Hz), 4.11 (2H, t, J = 7.0 Hz), 4.02 (4H, t, J = 7.0 Hz), 4.02 (4H, t, J = 7.0 Hz), 1.84 (8H, m), 1.59 

(2H, m), 1.47 (8H, m), 1.26 (82H, m), 0.85 (15 H, m). ESI: found 1156.7916 [M+1+], 265.1485 [M-]. 

Table 2.7. Micro-analytical data for the phenylpyridine complexes of silver(I) dodecylsulfate, 32-n. 

n Yield / % %C %H %N 

4 47 61.5 (61.8) 8.1 (7.8) 2.8 (2.9) 

6 59 64.2 (64.3) 8.6 (8.5) 2.2 (2.6) 

8 54 65.9 (66.3) 9.1 (9.0) 2.2 (2.3) 

10 57 67.4 (67.9) 10.1 (9.5) 2.1 (2.1) 

12 43 65.2 (65.4) 8.9 (8.8) 2.1 (2.2) 

14 65 66.9 (67.0) 9.4 (9.3) 2.0 (2.0) 

 

4.9. Single Crystal X-Ray Diffraction 

Diffraction data were collected at 110 K on an Oxford Diffraction SuperNova diffractometer with 

Cu-Ka radiation (l = 1.54184 Å) using an EOS CCD camera. The crystal was cooled with an Oxford 

Instruments Cryojet. Diffractometer control, data collection, initial unit cell determination, frame 

integration and unit-cell refinement was carried out with Crysalis. Face-indexed absorption 

corrections were applied using spherical harmonics, implemented in SCALE3 ABSPACK scaling 

algorithm.  OLEX2 was used for overall structure solution, refinement and preparation of computer 

graphics and publication data.  Within OLEX2, the algorithms used for structure solution were 

ShelXT dual-space using the ShelXL refinement by full-matrix least-squares used the SHELXL-97 

algorithm within OLEX2. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms 

were placed using a “riding model” and included in the refinement at calculated positions. One of 

the octyl side chains was disordered and modelled in two positions with refined occupancies of 

0.714:0.286(4).  The C-C bond lengths in the disordered part of the chain were restrained to be 1.54 

angstroms except for the terminal C-C bond lengths which were restrained to be 1.52 angstroms.  

Two pairs of ADPs in the disordered chains were constrained to be equal, namely: C26 & C26a and 

C28 & C28a. The triflate anion/water showed minor disorder with the triflate being modelled in two 

positions with refined occupancies of 0.9598:0.0402(15). For the minor form, the C-F bond lengths 

were restrained to be 1.4 angstroms, the S-O bond lengths restrained to be 1.5 angstroms and the 
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C-S bond length restrained to be the same as that of the major form.  ADP of O5A was constrained 

to be equal to that of O5 and the ADP of C56a, F1a, F2a, F3a, O6a, O7a were restrained to be 

approximately isotropic.  
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Chapter Three: Mesomorphism of an Homologous Series of Ionic Tetracatenar Liquid 
Crystals Based on the N-Phenylpyridinium Moiety: Influence of Terminal Chain Length 

and Counter-Ion 
1. Introduction 

Ionic liquid crystals are a unique class of materials as they combine the properties inherent to ionic 

liquids with the long-range anisotropic order of liquid crystals.1 Kato et al. have demonstrated that 

ionic liquid crystals forming columnar mesophases can show temperature dependent ion 

conductivity.2,3 Furthermore, liquid-crystalline viologens have been a topic of interest due to their 

diverse redox properties that can be combined with liquid-crystalline self-assembly to produce 

materials with anisotropic electrochromic, thermochromic and photochromic properties.4,5 

However, the mesomorphic properties of ionic polycatenar liquid crystals remains a relatively 

unexplored field. Whilst formally ionic polycatenar liquid crystals have been studied in the form of 

the 3,4-dialkoxystilbazole complexes of various silver(I) salts,6 these materials actually exist as 

tightly bound ion pairs and so they do not provide a true representation of how truly ionic, charge-

separated materials would behave. This chapter will, therefore, present the liquid-crystalline 

properties of a series of truly ionic polycatenar liquid crystals that are built upon the N-

phenylpyridinium moiety whose synthesis has been extensively documented in Chapter Two. An 

introduction to the silver(I) salts is first presented to set the new results into context. 

1.1. Calamitic 4-alkoxystilbazole complexes of silver(I) 

The first liquid-crystalline silver(I) salts were built from 4-alkoxystilbazole ligands and the structure 

of these calamitic complexes is presented in Figure 3.1. These materials displayed a rich 

mesomorphism that was dependent on the length of the alkoxy chains and the identity of the anion.  
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Figure 3.1. Structure of the 4-alkoxystilbazole complexes of various silver(I) salts: X- = BF4, NO3, OTf or 
O3SOCmH2m+1 where m is 8 or 12. 

The first materials studied were the BF4
- salts and these compounds displayed SmA and SmC 

mesophases.7 The transition temperatures of the BF4
- salts were high and often these materials 

suffered from thermal decomposition in the upper reaches of the mesophase; furthermore, these 

compounds displayed poor stability to light. 

A series of related compounds containing nitrate and triflate anions8 were then made and these 

materials displayed similar behaviour to the tetrafluoroborate salts in that SmC and SmA 

mesophases were observed. The phase diagrams of the OTf- and NO3
- salts are presented in Figure 

3.2. However, one significant difference in the thermal behaviour of the triflate salts was apparent 

at short terminal chain lengths and this was the formation of a nematic phase. This was surprising 

as the formation of a nematic phase is often attributed to weak anisotropic dispersion forces rather 

than strong isotropic Coulombic interactions; this feature is discussed in more detail in the 

forthcoming section. The triflate and nitrate salts both also suffered thermal decomposition in the 

upper reaches of the SmA phase due to the high mesophase-isotropic transition temperatures. 
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Figure 3.2. Phase diagram of (a) the 4-alkoxystilbazole complexes of silver(I) nitrate and (b) the 4-alkoxystilbazole complexes of silver(I) triflate. 
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In an attempt to reduce the transition temperatures of these 4-alkoxystilbazole salts, an analogous 

series of compounds were prepared that contained a dodecylsulfate anion.8 Bruce et al. postulated 

that the flexible alkyl chain of the alkylsulfate anion should destabilise the crystal and liquid crystal 

phases. The flexible anion did indeed depress the melting and clearing temperatures, but it also 

changed the mesomorphism quite significantly – a cubic phase was now observed between the 

SmC and SmA phases (Figure 3.3). This was extremely surprising at the time, as the only other 

compounds known to display a thermotropic cubic phase were the biphenylcarboxylic acids studied 

by Gray9 and a series of hydrazines studied by Demus.10 The preparation of a number of 

alkoxystilbazole complexes of silver(I) dodecylsulfate had effectively doubled the number of 

compounds known to form a thermotropic cubic phase at that time.  

Next, a series of compounds with a shorter octylsulfate anion were prepared.11 The phase diagrams 

of the octylsulfate and dodecylsulfate salts were largely superimposable except that the cubic 

phase had been totally supressed by the shorter anion (Figure 3.3). Crystals suitable for single 

crystal X-ray analysis were grown for one octylsulfate compound and the results were interesting 

on a number of levels. First, was the dimeric structure with two silver cations being bridged by 

sulfate groups with silver-oxygen distances of 2.7-2.9 Å (typical of ionic interactions). Second, the 

silver-silver distance was also found to be 3.2 Å, which is consistent with some silver-silver 

interaction. Third, and believed to be crucial, is that the octylsulfate chain does not extend past the 

rigid core of the cation so that it cannot contribute to the terminal chain volume. The single crystal 

structure of this complex is presented in Figure 3.4.  
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Figure 3.3. Phase diagram of (a) the 4-alkoxystilbazole complexes of silver(I) octylsulfate and (b) silver(I) dodecylsulfate.
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Figure 3.4. X-Ray single crystal structure of the 4-methoxystilbazole silver(I) octylsulfate salt.11 

The diverse mesomorphism of the silver(I) salts requires interpretation. Starting with the nematic 

phase formed by the triflate and alkylsulfate salts, how does a phase commonly associated with 

weak anisotropic dispersion interactions form in the presence of strong, isotropic Coulombic 

forces? While the compounds are formally ionic, conductivity in the mesophases formed by the 

silver(I) dodecylsulfate salts was found to be non-existent, which is consistent with tight pairing 

between the anion and cation.12 So the relative dispositions of the anion and cation found in the 

crystal structure must remain broadly true in the liquid-crystal phase. However, within the same 

homologous series of compounds, SmC and SmA phases form, the latter of which is typical of an 

ionic liquid crystal. How can this be explained? Generally speaking, laterally substituting a calamitic 

mesogen suppresses smectic phases and promotes nematic organisation by disrupting side-to-side 

self-organisation of the molecules. The silver(I) salts effectively contain a lateral chain in the form 

of the anion.  

From the general shape of the phase diagrams, a nematic phase forms at very short chain lengths 

due to the steric effects of the anion and also because nematic phases tend to be formed by 

compounds with the shortest terminal chain length in an homologous series. On moving across the 

phase diagram from left to right, smectic phases then appear. This is common in neutral calamitic 

compounds and has largely been associated with nanophase segregation between the aromatic 

and aliphatic parts of the molecule to promote layering. However, this effect is suppressed in 
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compounds bearing a lateral chain. So clearly an additional factor is responsible for smectic phase 

formation in the silver(I) salts. This factor is almost certainly the presence of intermolecular 

electrostatic interactions between neighbouring anions and cations. As a nematic phase forms in 

the same homologous series, however, ionic interactions are not too strong as otherwise smectic 

mesomorphism would be observed across the whole phase diagram. It is the combination of 

intermolecular ionic interactions coupled with lengthening of the terminal chains that stabilises the 

smectic phases formed by the silver(I) salts.13 

To understand the formation of the cubic phase by the silver(I) dodecylsulfate compounds those 

formed by surfactants must be reconsidered and the factors that control the lyotropic liquid crystal 

phases formed by surfactants have been well documented in the Introduction chapter. The 

interconnecting rod model (Figure 3.5 (a) and (b)) for the bicontinuous cubic phases assumes that 

the rods contain the hydrophilic head groups and the chains extend out filling space in between. 

Extending this idea to the cubic phases formed by thermotropic compounds, the rods consist of the 

rigid cores with the chains filling space between. The infinite minimal periodic surface model relates 

to the interconnecting rods as the surface divides space into two parts. The Schwartz P surface 

shown in Figure 3.5 (c) contains the symmetry elements of the Im3"m space group of the 

interconnecting rod model and shows how the two are related, giving rise to two non-

interconnected rod networks. It becomes clear from these models how important interfacial 

curvature is in the formation of bicontinuous cubic phases. 

  

 

 

 

 

 

Figure 3.5. Interconnecting rod model for the Ia3"d space group (a) the Im3"m space group (b) and the infinite 
periodic minimal surface representation for the Im3"m space group (c). Figures taken from ref.13 

(a) (b) (c) 
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The curvature invoked by these models aid our understanding of cubic phase formation in the 

calamitic silver(I) alkylsulfates. Octylsulfate and decylsulfate chains do not extend past the core of 

the cation, and, as a consequence, these materials do not form a cubic phase. In the compounds 

containing longer dodecylsulfate and tetradecylsulfate anions (where the anion chain extends past 

the core) the cubic phase now appears. This provides qualitative evidence for the need of the 

alkylsulfate chain to extend past the rigid core to contribute to the volume occupied by the terminal 

chains. As the volume of the core remains the same in each case, there is now the possibility for a 

mismatch in volume between the charged core and the aliphatic periphery in the case of longer 

anions. The curvature generated at the core-chain interface as a result of longer anion chains would 

allow a cubic phase to form.  

Whereas the imbalance of core and chain volumes with longer anion chains does account for the 

interfacial curvature required to stabilise a cubic phase, it does not explain its appearance between 

two lamellar phases. Levelut et al.14 rationalised this as spatial frustration of the layers in the SmA-

SmC transition that resulted in the formation of an intermediate cubic phase. The whole 

mesomorphic sequence can actually be explained by variation of the core and chain volumes on 

changing temperature. At high temperature, the core and chain volumes are equal and so a SmA 

phase forms. On decreasing temperature, the core volume decreases more rapidly than the chain 

volume due to the strong intermolecular electrostatic interactions between neighbouring cores 

that results in the formation of a curved interface; thus, a cubic phase forms. Further cooling 

induces a rapid decrease in chain area (due to reduced chain mobility) and the ratio of core-chain 

volumes tends to unity once again, therefore giving way to another lamellar phase. 

1.2. Polycatenar alkoxystilbazole complexes of silver(I) 

In order to investigate the relative effects of core and chain volumes, a series of polyalkoxystilbazole 

complexes of silver(I) were prepared. 

1.2.1. 3,4-Dialkoxystilbazole complexes of silver(I) alkylsulfates  

The first polycatenar salts prepared were the 3,4-dialkoxystilbazole complexes of silver(I) 

dodecylsulfate and the phase diagram of an homologous series of the silver(I) dodecylsulfate salts 

is presented in Figure 3.6.6 Clearly these compounds display some characteristics common to 

neutral polycatenar liquid crystals in that a columnar hexagonal (Colh) mesophase is formed by 

homologues with the longest terminal chain lengths. However, rather than forming a SmC phase at 
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short chain lengths, these complexes form a cubic phase that persists down to n = 4. Whereas cubic 

phases are not uncommon in the phase sequence of a polycatenar compound, they are usually 

found at intermediate chain lengths between the SmC and Colh phases. Also interesting was that 

the additional meta chains had destabilised the crystal phase and all tetracatenar compounds 

melted at lower temperatures than their calamitic analogues. The clearing temperatures of 

derivatives upwards of n = 6 (forming Colh phases) were comparable to those of the SmA phase 

formed by the 4-alkoxystilbazole complexes. The butyloxy derivative, on the other hand, formed 

only a cubic mesophase that was not as stable as the Colh phase and cleared to the isotropic liquid 

at 100 °C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Structure and phase diagram of the tetracatenar 3,4-dialkoxystilbazole complexes of silver(I) 
dodecylsulfate. 

4 6 8 10 12

60

80

100

120

140

160

180

T/
°C

n



103 

 

 

Much like the 4-alkoxystilbazole complexes, the length of the alkylsulfate anion also affected the 

mesomorphism of the polycatenar stilbazole complexes as shown in Figure 3.7.15 Using the n = 12 

homologue as an example, the use of octylsulfate and decylsulfate anions (m = 8 and 10) induced a 

cubic phase below the Colh phase. However, analogous compounds with dodecylsulfate and 

tetradecylsulfate anions (m = 12 and 14) formed only Colh mesophases; Figure 3.7 shows these data 

as a bar chart for clarity. It has already been demonstrated from crystal structures of the 4-

alkoxystilbazole complexes that the shorter octylsulfate and decylsulfate anions do not extend past 

the rigid core of the cation, and so cannot contribute to the terminal chain volume. This argument 

again explains the reduced interfacial curvature of the polycatenar octylsulfate and decylsulfate 

salts such that they form a cubic mesophase below the Colh phase. The longer dodecylsulfate and 

tetradecylsulfate anions then suppress the cubic phase by generating additional curvature at the 

aromatic-aliphatic interface.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Influence of the alkylsulfate chain length of the anion, m, on the mesomorphism of the 
teracatenar silver(I) stilbazole salts with dodecyloxy chains. 
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1.2.2. 3,4-Dialkoxystilbazole complexes of silver(I) triflate 

After the study of various alkylsulfate anions, an analogous series of silver(I) triflate salts were 

prepared and their mesomorphism is presented in Figure 3.8.6 On inspection of the phase diagram, 

a number of differences are observed between the triflate and dodecylsulfate salts. First, are the 

lower melting temperatures of the dodecylsulfate materials due to the flexible alkyl chain of the 

sulfate moiety destabilising the crystal phase. The clearing temperatures, on the other hand, remain 

relatively constant in both series, which suggests that the mesophase-to-isotropic transition is not 

driven by a breakdown of the ionic interactions and instead is driven by the terminal chains. The 

second difference is the observation that the Colh phase is found at much longer terminal chain 

lengths in the triflate series.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Structure and phase diagram of the tetracatenar 3,4-dialkoxystilbazole complexes of silver(I) 
triflate. 
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The mesomorphism of the ionic polycatenar stilbazole complexes of silver(I) can be explained using 

the same arguments as those that underpin the behaviour of typically neutral polycatenar 

materials, that is space filling and the extent of interfacial curvature established at the core-chain 

interface. However, additional factors must also be considered that include the spatial 

requirements of the anion and intermolecular ionic interactions, much like those influencing the 

mesomorphism of the 4-alkoxystilbazole complexes of silver(I). 

Recall that neutral polycatenar liquid crystals usually form a SmC phase at short chain lengths, but 

in the case of the polycatenar silver(I) dodecylsulfate and silver(I) triflate series this mesophase is 

absent. First of all, it is rather bold to classify the stilbazole complexes as typical polycatenar 

materials as they contain the extra chemical moiety of an anion that, in the case of the alkylsulfate 

salts, is essentially an extra flexible chain. The anion behaves as a lateral substituent much like it 

does in the 4-alkoxystilbazole complexes. Whereas the calamitic compounds do form a lamellar 

phase, the added meta chains of the polycatenar materials in combination with the steric effects 

of the anion are now sufficient to suppress the SmC phase altogether. Thus, the cubic phase persists 

down to very short chain lengths. 

Considering the shape of the phase diagrams of the triflate and dodecylsulfate materials, it is clear 

that the cubic phase persists in homologues with longer chain lengths in the former series. This is 

again consistent with the chain of the alkylsulfate anion being able to contribute to the terminal 

chain volume in order to modify the curvature established at the core-chain interface. Thus, shorter 

terminal chains are required to establish the curvature necessary to stabilise the Colh phase in the 

dodecylsulfate salts. This is entirely consistent with the behaviour observed in Figure 3.7 where 

short alkylsulfate anions generate less curvature, thereby allowing formation of a cubic phase 

below the Colh phase.  
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1.3. Related Ionic Compounds 

Whist there is no evidence for the study of charge-separated, ionic polycatenar liquid crystals, Kato 

et al.4 have prepared a series of viologen compounds that closely mimic classic hexacatenar 

materials from a structural standpoint; the structure of the viologen salts is presented in Figure 3.9. 

These materials were of interest due to a combination of their liquid-crystalline self-organisation 

and redox activity such that devices with anisotropic electrochemical functions could be 

investigated. Their mesomorphism was dominated by the formation of columnar rectangular and 

columnar hexagonal mesophases due to the plurality of terminal chains, much like the behaviour 

of true hexacatenar liquid crystals. Kato and co-workers postulated that despite the bent structure 

imparted by the terminal benzyl groups, liquid crystal self-assembly is achieved through nanophase 

segregation of the ionic and aliphatic parts of the molecule. 

 

 

 

  

Figure 3.9. Structure of the liquid-crystalline viologen salts studied by Kato et al. that formed Colh and Colr 
phases. 

Wang et al.16  have also studied a series of N,N’-diphenylviologen salts with various counter-ions of 

the general structure shown in Figure 3.10 (these materials were also synthesised using Zincke 

chemistry). Due to the presence of only two terminal alkoxy chains, the mesomorphism of the 

diphenylviologens was dominated by the formation of SmA phases, typical of calamitic ionic 

compounds. However, a systematic study was conducted on the influence of the counter-ion on 

the stability and structure of the SmA phases. Clearing temperatures were highest for OTf- and BF4
- 

anions due to their moderate size and spherical shape that did not disrupt self-organisation into 

layers. Substituting the anion for a long-chain alkylsulfate resulted in a reduced clearing point owing 

to the flexible chain attached to the sulfate moiety that was postulated to disrupt packing in the 

liquid-crystalline state. The authors also postulated that the SmA phase was destabilised in the case 

of the alkylsulfate salts due an imbalance in the relative volumes of the ionic and aliphatic parts of 

the material, akin to the relative volumes of core and chains that controls the mesomorphism of 
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polycatenar liquid crystals. This latter argument is almost certainly a factor that dictates mesophase 

stability as will be evidenced throughout this chapter. The use of NTf2
- resulted in a clearing point 

intermediate between OTf- and ROSO3
- due to its larger size (compared to OTf-). The d-spacing in 

the SmA phase also decreased with increasing ionic radius of the anion, such that SCN- compounds 

had the largest d-spacing and NTf2
- the smallest. This effect was observed due to greater side-to-

side separations of neighbouring cations in the case of NTf2
-, thus a greater extent of chain 

interdigitation occurred in order to fill space efficiently. Data showing the influence of anion size on 

the SmA d-spacing is plotted in Figure 3.10. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. General structure of the diphenylviologen salts studied by Wang et al. (a): X- is either SCN-, BF4
-, 

OTf-, PF6
-, NTf2

- or ROSO3
- and variation of d-spacing in the SmA phase with different anions (b): R(eff) is the 

effective anion volume. 
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2. Results 

2.1. Thermal behaviour of the tetracatenar triflate salts, 11-n 

The structure of the tetracatenar N-phenylpyridinium triflate salts, 11-n, is shown in Figure 3.11; 

their preparation has been documented extensively in Chapter 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11. Structure and phase diagram of the tetracatenar triflate salts, 11-n: transition temperatures are 
from microscopy on heating. 
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triflate salts is presented in Figure 3.11 and thermal data is collected in Table 3.1. The melting point 

remains relatively constant across the series, an observation that is in contrast to the stilbazole 

complexes of silver(I) triflate where initially a sharp drop in the melting point was observed on 

increasing chain length. While there is a slight drop in the melting point on moving from 11-4 to 11-

8, this effect is rather subtle. This provides strong evidence that the melting temperature of the 

pyridinium materials is predominantly driven by a breakdown of the ionic lattice rather than that 

of the chains, which presumably remains relatively constant as n increases. This contrasts the ideas 

invoked by Geoffrey in which he postulated that the melting of a series of carbohydrate liquid 

crystals was driven by increasing mobility of the chains.17 With the exception of compound 11-4, 

the melting point of all compounds forming a SmA phase was clearly detected via DSC. The absence 

of a melting endotherm for compound 11-4 was surprising, and despite several repeat experiments, 

the transition was never observed.  The clearing points of compounds 11-14 to 11-18, each forming 

a Colh phase, were not detected by DSC presumably due to decomposition in the upper reaches of 

the mesophase. All derivatives crystallise on cooling to room temperature in both microscopy and 

DSC experiments, akin to the thermal behaviour of the stilbazole complexes of silver(I) triflate. 

The first significant observation, however, is that the mesophase formed at short terminal chain 

lengths is SmA rather than the more conventional SmC phase as typically observed in neutral 

tetracatenar materials (or cubic in the case of the tetracatenar silver(I) salts). The SmA phase was 

identified from its characteristic focal-conic fan texture and dark regions of homeotropic alignment 

as shown in Figure 3.12 (a). The X-ray scattering pattern of this phase shown in Figure 3.13 (b) also 

shows a single sharp reflection (d001) in the small angle regime and further supports this assignment. 

A steady increase in the layer spacing was observed on increasing n that was consistently about 

70% of the calculated all trans molecular length as evidenced by Figure 3.14; this most likely arises 

from chain interdigitation or chain folding in order to fill space efficiently. Recording multiple 

diffraction patterns as a function of temperature showed no variation in d001, and so the layer 

spacing appeared to be temperature independent. 

The SmA phase is destabilised as the chain length increases from n = 8-13, which almost certainly 

arises from frustration of the lamellae on increasing steric bulk of the terminal chains. Then, at 

compound 11-14, the SmA phase is replaced by the Colh phase as the volume of the terminal chains 

becomes so great that the lamellae are disrupted. It is interesting to note that this change in 

mesomorphism is not accompanied by the formation of a cubic phase. The columnar hexagonal 
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phase was identified from its distinctive spine defects and pseudo focal-conic defects when viewed 

down the polarising microscope as shown in Figure 3.12 (b), supported by X-ray diffraction patterns 

where both d10 and d11 reflections were observed for compounds 11-16 and 11-18. Diffraction data 

are collected in Table 3.2 and a diffraction pattern of compound 11-16 is presented in Figure 3.13 

(a). However, the d11 reflection cannot be seen in the diffraction pattern of 11-14, but this phase 

was identified as columnar hexagonal owing to its miscibility with the columnar hexagonal phase 

of 11-16 as shown in Figure 3.12 (c). Furthermore, contact preparations between the n = 12 (SmA) 

and n = 14 (Colh) homologues showed a lack of miscibility shown in Figure 3.12 (d). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Optical texture of (a) the SmA phase of compound 11-8 at 162 °C, (b) optical texture of the 
hexagonal columnar phase of compound 11-18 at 128 °C, (c) co-miscibility of 11-14 and 11-16 Colh phases 
and (d) miscibility gap in the contact preparation performed between compound 11-12 (SmA) and 11-14 

(Colh). All textures are at x10 magnification. 

The second significant observation apparent from the phase diagram in Figure 3.11 is the huge 

stabilisation of the Colh phase compared to that of the preceding SmA phase; the clearing 

temperature of compound 11-14 is 69 °C higher than that of 11-13. It should also be stressed here 

(a) (b) 

(c) (d) 
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that the derivatives from n = 14 – 18 suffer from decomposition in the upper reaches of their 

columnar phases, and so the clearing temperatures reported are only approximate, representing a 

conservative estimate of the phase stability. A similar, albeit less pronounced, stabilisation of the 

columnar hexagonal phase also occurred in the phase diagram of the tetracatenar stilbazole 

complexes of silver(I) triflate and silver(I) dodecylsulfate; this point will be discussed in more detail 

later.  

Table 3.1. Transition temperatures and thermal data for the triflate series: * marks transitions that cannot 
be detected by DSC. 

 

 

 

 

 

 

 

 

 

 

 

n Transition T / °C ΔH / kJ mol-1 

4 Crys-SmA 132 * 

 
SmA-Iso 157 * 

8 Crys – SmA 114 19 

 
SmA -Iso 169 0.9 

10 Crys – SmA 118 18 

 
SmA -Iso 161 0.7 

12 Crys – SmA 120 54 

 
SmA -Iso 143 0.6 

13 Crys – SmA 120 69 

 
SmA -Iso 141 1.0 

14 Crys – Colh 124 37 

 
Colh – Iso 210 * 

16 Crys – Colh 125 38 

 
Colh – Iso 207 * 

18 Crys – Colh 122 51 

  Colh – Iso 199 * 
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Figure 3.13. X-Ray scattering patterns of (a) the hexagonal columnar phase of compound 11-16 at 127 °C 
and (b) the SmA phase of compound 11-8 at 139 °C. 
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Table 3.2. X-Ray diffraction data for the OTf series, 11-n. 

n d / A hk(l) Molecular length / Å Parameter / Å 

8 29.7 001 38.9 
 

 
4.7 halo 

  
10 30.6 001 44.9 

 

 
4.7 halo 

  
12 32.1 001 50.0 

 

 
4.7 halo 

  
13 32.9 001 52.5 

 

 
4.7 halo 

  
14 32.8 10 55.1 a = 37.9 

 - 11 
  

 
4.7 halo 

  
16 34.5 10 60.1 a = 39.8 

 19.9 11 
  

 
4.7 halo 

  
18 35.2 10 65.1 a = 40.6 

 20.3 11 
  

  4.7 halo     
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Figure 3.14. Calculated molecular length vs d001 and a parameter in series 11-n. 
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2.2. Thermal behaviour of the tetracatenar alkylsulfate salts 

2.2.1. Octylsulfate salts, 27-n 

A phase diagram of the octylsulfate series, 27-n, is presented in Figure 3.15 and the thermal data in 

Table 3.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15. Phase diagram of the tetracatenar octylsulfate salts: transition temperatures are from 
microscopy on heating. 

On moving across the series from left to right a change in mesomorphism from SmA-to-Colh is 

observed via an intermediate cubic phase. The octylsulfate salts demonstrate well the transition 

from lamellar through cubic and to columnar self-organisation on increasing chain length, much like 

the behaviour of the 2,2’-bipyridines studied by Rowe and Bruce.18 The melting point remains 
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relatively constant across the series and is clearly independent of chain length, much like the 

melting behaviour of the triflate series. However, the melting temperatures of the ocylsulfate salts 

are consistently lower than those of the triflate series, and this most probably arises due to the 

flexible chain of the alkylsulfate anion that disrupts packing in the crystalline state.  

Compounds 27-6 and 27-8 form only a SmA phase, which clear into the isotropic liquid at 130 and 

101 °C, respectively. Compounds 27-10 and 27-12, on the other hand, show an additional cubic 

phase above the SmA phase that was exemplified by the loss of birefringence and an increase in 

viscosity on the polarising microscope (Figure 3.16 (b)). Compound 27-12 also forms a Colh phase 

that clears to the isotropic liquid at 183 °C, 62 °C higher than the cubic-to-isotropic transition 

displayed by 27-10. Compound 27-14 forms only a Colh phase that clears to the isotropic liquid at 

189 °C.  

Pseudo focal-conic textures with spine-like defects were observed for the Colh phases formed by 

compounds 27-14 and 27-12 when cooled from their isotropic liquids (Figure 3.16 (c) and (d)). The 

cubic phase formed by compound 27-12 grows in from the Colh phase as sharp edges. The SmA 

phase formed by 27-6 and 27-8 showed focal-conic fan defects and were indistinguishable from the 

SmA textures formed by the triflate series (Figure 3.16 (a)). Also interesting was that no homologue 

of series 27-n crystallised on cooling to room temperature, a feature observed both by microscopy 

and DSC experiments. DSC was able to detect glass transitions for all homologues on the second 

heating cycle, demonstrating glass formation rather than crystallisation. The DSC trace of 

compound 27-10 is presented in Figure 3.17. The stilbazole complexes of the silver(I) alkylsulfates 

also formed glasses on cooling to room temperature and is most probably a feature inherent to the 

flexible anion. 
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Figure 3.16. Optical textures of (a) the SmA phase formed by compound 27-6 at 116 °C, (b) the cubic phase 
formed by 27-10 with polarisers slightly uncrossed at 105 °C, (c) the Colh phase formed by compound 27-12 

at 154 °C and (d) the Colh phase of 27-14 at 162 °C. Textures are at x10 magnification. 
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Figure 3.17. DSC of compound 27-10 with first heat/cool cycle in black and second cycle in blue. A glass 
transition (Tg) is clearly seen on the second heating cycle: note, the cubic phase was not detected via DSC. 

Whilst X-ray diffraction could detect the two-dimensional order of the hexagonal columnar phase 

formed by 27-14 (Figure 3.18), the d11 reflection of the Colh phase formed by compound 27-12 was 

not detected. Whereas the optical texture of this phase was characteristically hexagonal, contact 

preparations between the two columnar phases confirm their co-miscibility and, therefore, proved 

the symmetry of compound 27-12 as hexagonal. Unfortunately, the space group of the cubic phase 

formed by 27-10, and any other compound for that matter, could not be determined via X-ray 

scattering experiments due to a lack of higher order reflections – only two small angle reflections 

were detected as shown in Figure 3.19. It should be stressed that the relative d-spacings of the two 

small-angle reflections in Figure 3.19 do not correspond to a ratio of 1 : 1/√3, and thus the 

diffraction pattern is not simply that of a Colh phase. Furthermore, X-ray scattering experiments 

could not detect the SmA phases formed by compounds 27-10 and 27-12, presumably due to the 

narrow temperature range over which this mesophase exists in these compounds. Compounds 27-

6 and 27-8 showed only a single reflection in their diffraction patterns that was consistent with the 

formation of a lamellar phase; diffraction data for all homologues is collected in Table 3.3. 

40 60 80 100 120 14040 60 80 100 120 14040 60 80 100 120 14040 60 80 100 120 140

T / °C

Tg

Crys SmA Iso

T / °C

Tg

Crys SmA Iso

T / °C

Tg

Crys SmA Iso

T / °C

Tg

Crys SmA Iso



119 

 

 

Table 3.3. Diffraction data for series 27-n. 

n dobs / Å hk(l) Mesophase 

6 26.4 001 SmA 

 13.2 002  

 4.7 halo  

8 28.7 001 SmA 

 4.7 halo  

10 30.5 - Cub 

 
26.6 -  

 
4.7 halo  

12 30.1 10 Colh 

 - 11  

 
4.7 halo  

14 33.1 10 Colh 

 
19.1 11  

  4.7 halo   

 

 

 

 

 

 

 

 

 

Figure 3.18. SAXS pattern of the hexagonal columnar phase formed by compound 27-14 at 116 °C: inset 
shows the d11 reflection. 
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Figure 3.19. X-Ray diffraction pattern of the cubic phase formed by compound 27-10 at 105 °C. 

DSC was unable to detect the Colh-to-isotropic transitions of compounds 27-12 and 27-14, most 

probably due to decomposition at these elevated temperatures. Furthermore, the SmA-to-cubic 

transitions are not detected for 27-10 and 27-12 regardless of the heating rate, probably due to the 

slow kinetics of cubic phase formation. The clearing points, on the other hand, are clearly visible 

for the SmA-to-isotropic transition displayed by compounds 27-6 and 27-8, as is the clearing point 

of compound 27-10 that is presumably a SmA-to-isotropic transition given that the SmA-to-cubic 

transition was not observed via DSC. 
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Table 3.4. Transition temperatures and thermal data for the octylsulfate salts: * marks transitions that 
cannot be detected by DSC. 

n Transition T / °C ΔH / kJ mol-1 

6 Crys-Crys’ 54 0.9 

 Crys’-SmA 93 42.9 

 SmA-Iso 130 0.8 

8 Crys-Crys’ 53 11.6 

 Crys’-SmA 81 40.5 

 SmA-Iso 101 1.8 

10 Crys-SmA 89 65 

 SmA-Cub 96 * 

 Cub-Iso 121 1.5 

12 Crys-SmA 89 35.2 

 SmA-Cub 94 * 

 Cub-Colh 106 * 

 Colh-Iso 183 * 

14 Crys-Colh 83 33.5 

  Colh-Iso 189 * 
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2.2.2. Dodecylsulfate salts, 28-n 

 

 

 

Figure 3.20. Phase diagram of the tetracatenar dodecylsulfate salts 28-n: transition temperatures are from 
microscopy on heating. 

The phase diagram of the tetracatenar dodecylsulfate salts, 28-n, is presented in Figure 3.20. On 

moving across the series from 28-8 to 28-12, a change in mesomorphism from SmA-to-Colh is 

observed via an intermediate cubic phase. Compound 28-8 melts into a SmA phase at 83 °C before 

a transition to a cubic phase was observed at 101 °C, which then gave way to the isotropic liquid at 

110 °C. On cooling compound 28-8, however, only a cubic phase was observed and this phase 

persisted all the way down to room temperature. On the second heating cycle, crystallisation 
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occurred at 60 °C and the sample then melted into a SmA phase, much like the thermal behaviour 

on the first heating cycle. Compound 28-10 melted into a cubic phase at 95 °C that was identified 

by the total loss of birefringence and the formation of a mesophase with high viscosity. The cubic 

phase then gave way to a Colh phase at 121 °C that was exemplified by the reappearance of 

birefringence and a reduction in viscosity. The Colh phase then cleared to the isotropic liquid at 159 

°C, demonstrating an increase in the clearing point on moving from 28-8 to 28-10. Compound 28-

12 melted into a Colh phase at 96 °C and then cleared directly into the isotropic liquid at 189 °C. 

Pseudo focal-conic textures with spine defects were observed on cooling compounds 28-12 and 28-

10 from the isotropic liquid (Figure 3.21), being characteristic of a columnar hexagonal mesophase. 

The cubic phase formed by compound 28-10 grows in from the Colh phase as square edges as shown 

in Figure 3.21 (a). 

 

 

 

 

 

 

Figure 3.21. (a) Cubic phase growing in from Colh phase of compound 28-10 at 108 °C and (b) Colh phase 
formed by compound 28-12 at 172 °C. Textures are at x10 magnification. 

However, compound 28-6 behaved a little different and melted into a SmA phase at 93 °C, which 

then almost instantly gave way to an optically isotropic cubic phase at 95 °C that persisted up to 

115 °C when a SmA phase formed once again. The higher-temperature SmA phase then cleared to 

the isotropic liquid at 133 °C. This mesomorphism was extremely repeatable regardless of the 

heating rate. Furthermore, the cubic mesophase was never observed on cooling compound 28-6 

from the isotropic liquid, and instead only a SmA phase was observed all the way down to room 

temperature (at which point glass formation occurred). While this behaviour seems odd at first 

glance, it is not unheard of considering the slow kinetics often associated with the formation of 

cubic mesophases.  

(a) (b) 
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On comparing the phase diagrams of the octylsulfate and dodecylsulfate materials (series 27-n and 

28-n, respectively), it becomes apparent that the change to Colh mesomorphism takes place at a 

shorter alkoxy chain length for the dodecylsulfate materials. The melting points remain broadly 

similar across both series so that the additional methylene groups of the dodecylsulfate anion are 

not sufficient to destabilise the crystal phase further. In addition, compounds 27-n and 28-n display 

a similar trend in their clearing points in that SmA phases formed at short terminal chain lengths 

are steadily destabilised on increasing n, then, at the transition to Colh mesomorphism, the clearing 

point increases dramatically.  

X-Ray diffraction data for series 28-n is collected in Table 3.5. A single reflection was observed in 

the diffraction patterns of compounds 28-6 and 28-8 that is consistent with the formation of a SmA 

phase. The space group of the cubic phases formed by compounds 28-8 and 28-10 could not be 

identified due to a lack of higher order reflections. However, X-ray diffraction was able to detect a 

mesophase above the SmA phase in compound 28-8 that was consistent with the formation of a 

cubic phase, and a second reflection in the small-angle regime was observed that corresponded to 

something other than a d002 reflection. The d11 reflection of the Colh phase formed by compound 

28-10 was also detected as shown in Figure 3.22; however, whilst a diffraction pattern that was 

consistent with the formation of a cubic phase was detected on the first heating cycle, only the 

hexagonal packing of the columnar phase was detected on cooling all the way down to room 

temperature.  

 

 

 

 

 

 

 

 



125 

 

 

Table 3.5. Diffraction data for series 28-n. 

n dobs / Å hk(l) Mesophase 

6 26.8 001 SmA 

 4.7 halo  

8 28.8 001 SmA 

 4.7 halo  

8 34.0 - Cub 

 25.8 -  

 4.7 halo  

10 30.2 - Cub 

 26.4 -  

 4.7 halo  

10 31.1 10 Colh 

 17.9 11  

 15.5 20  

 4.7 halo  

12 32.1 10 Colh 

 - 11  

 16.0 20  

  4.7 halo   

Some phase transitions could not be detected via DSC as evidenced from Table 3.6, being mainly 

the transitions into and out of a cubic phase. Even running DSC experiments as slow as 2 °C min-1 

were unable to detect such transitions. However, the Colh-to-isotropic transition could be detected 

by DSC for compounds 28-10 and 28-12, previously not possible in the triflate and octylsulfate series 

owing to decomposition at these elevated temperatures. 
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Table 3.6. Transition temperatures and thermal data for the dodecylsulfate salts: * represents a transition 
that could not be detected via DSC. 

n Transition T / °C ΔH / kJ mol-1 

6 Crys-SmA 93 42.6 

 SmA-Cub 95 * 

 Cub-SmA 115 0.8 

 SmA-Iso 133 0.7 

8 Crys-SmA 83 32.5 

 SmA-Cub 101 * 

 Cub-Iso 110 1.1 

10 Crys-Cub 95 58 

 Cub-Colh 121 0.8 

 Colh-Iso 159 0.5 

12 Crys-Colh 96 87.9 

  Colh-Iso 189 1.7 
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Figure 3.22. Diffraction pattern of the Colh phase formed by compound 28-10 at 105 °C on cooling: note, 
the cubic phase cannot be detected on cooling and instead the hexagonal lattice of the columnar phase is 

detected all the way to room temperature. 
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2.3. Bis(trifluoromethanesulfonyl)imide salts 

Bis(trifluoromethanesulfonyl)imide (bistriflimide or NTf2
-) is a commonly used anion in ionic liquids 

due to its high thermal stability and ability to provide accessible melting temperatures.19 However, 

it is much less common to incorporate the NTf2
- anion into ionic liquid crystals, and the few ionic 

liquid-crystalline NTf2
- salts reported are typically viologens that have been investigated due to their 

extensive redox properties.20,21 NTf2
- was also successful in the viologen compounds in reducing the 

transition temperatures compared to the parent halide salts due to its larger size and more diffuse 

charge. Thus, it was postulated how the larger size of the NTf2
- anion (compared to OTf-) might 

influence the liquid crystal properties of ionic polycatenar materials.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23. Phase diagram of the tetracatenar NTf2
- salts, 29-n: transition temperatures are from microscopy. 
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The phase diagram of the NTf2
- salts is presented in Figure 3.23 and even-numbered homologues 

29-8 to 29-14 were prepared and found to be mesomorphic; compound 29-4 was also prepared 

and was not liquid-crystalline. Compounds 29-8 to 29-14 melted into a mesophase with an odd 

spherulitic texture that corresponded neither to a SmA nor a Colh phase. In fact, only on cooling 

extremely slowly from the isotropic liquid (at 0.1 °C min-1) could any clear textures be obtained, 

which showed large pseudo focal-conic defects that would normally be associated with some kind 

of columnar mesophase. However, X-ray scattering experiments did not show the higher-order 

reflections typical of hexagonal symmetry, and instead only a single reflection was observed that 

provided little useful information. Contact preparations between the NTf2
- materials and the SmA 

and Colh phases of the OTf- series showed a miscibility gap, so failing to provide any evidence as to 

the identity of this mesophase (see Figure 3.24 (c) and (d) for photomicrographs of these miscibility 

studies). 

The melting temperatures of compounds 29-8 to 29-14 were comparable to those of the triflate 

salts and remained fairly constant across the series (thermal data are collected in Table 3.7). The 

melting enthalpies detected via DSC were consistently higher than the melting enthalpies displayed 

by the triflate and alkylsulfate compounds. A steady decrease in the clearing point was seen on 

moving across the series, indicating that the mesophase was steadily destabilised on increasing 

chain length, much like that of the SmA phase formed by the triflate materials. Much like the OTf- 

compounds, all derivatives in the NTf2
- series crystallised on cooling (with very little supercooling 

effects) in both DSC and microscopy experiments. Melting of the non-mesomorphic homologue 29-

4 was accompanied by the formation of biphasic crystal plus isotropic regions, presumably due to 

decomposition at these elevated temperatures. This results in the formation of more than one 

species that melt into the isotropic liquid at different temperatures (elemental analysis proved that 

this compound was analytically pure). DSC also detected two melting endotherms of compound 29-

4, which is consistent with the behaviour observed via microscopy 
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Table 3.7. Transition temperatures and thermal data of the NTf2
- salts. 

n Transition T / °C ΔH / kJ mol-1 

4 Crys-Iso 188 6.4 

 
Crys’-Iso 193 5.3 

8 Crys – Colr 134 10.9 

 Colr – Iso 178 5.7 

10 Crys – Crys’ 70 16.1 

 Crys’- Colr 135 15.3 

 Colr – Iso 171 7.8 

12 Crys – Crys’ 79 49.7 

 Crys’- Colr 133 34.2 

 Colr – Iso 169 21.6 

14 Crys-Crys’ 88 78.5 

 Crys’- Colr 130 52.1 

  Colr – Iso 166 29.8 
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Figure 3.24. Photomicrographs of the Colr phase formed by compound 29-8: (a) cooling from the isotropic 
liquid at 10 °C min-1 at 158 °C, (b) slow cooling of the same compound at 0.1 °C min-1 at 159 °C, (c) 

miscibility gap between this phase and the Colh phase of the OTf compound 10-18 and (d) miscibility gap 
between this phase and the SmA phase of the OTf compound 10-12. Textures are at x10 magnification. 

Reinvestigating the diffraction patterns of compounds 29-n then showed an additional reflection 

that can be identified in the medium-angle regime only on prolonged exposure in the beam 

(diffraction data are collected in Table 3.8 and the diffraction pattern of 29-10 is presented in Figure 

3.25). One explanation consistent with these data is the formation of a mesophase with rectangular 

symmetry where one of the lattice parameters is rather small and correlations along this dimension 

are quite weak owing to the low intensity of the medium-angle reflection. These reflections can be 

indexed according to Table 3.8, giving lattice parameters of a = 47.6 Å and b = 10.9 Å for compound 

29-8. 

 

(a) (b) 

(c) (d) NTf2
- 

OTf- 

OTf- NTf2
- 
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Table 3.8. Diffraction data for series 29-n. 

n dobs / Å hk Parameter / Å 

8 23.8 20 a = 47.6 

 
11.8 40 

 

 
10.6 11 b = 10.9 

 
8.8 60 

 

 
5.3 halo 

 
10 27.0 20 a = 54.0 

 
13.5 40 

 

 
10.7 11 b = 10.9 

 
9.0 60 

 

 
5.3 halo 

 
12 29.9 20 a = 59.8 

 
15.0 40 

 

 
10.5 11 b = 10.7 

 
10.0 60 

 

 
5.3 halo 

 
14 32.8 20 a = 65.6 

 
16.4 40 

 

 
10.6 11 b = 10.7 

  5.3 halo   
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Figure 3.25. Diffraction pattern of compound 29-10 at 139 °C: insert represents the zoomed in region for 
clarity of the low intensity reflections. 

A number of rectangular plane groups are of course possible and specific assignment can only be 

achieved by the presence of multiple higher-order reflections. The two most common plane groups 

that columnar rectangular phases belong to are typically c2mm or p2gg; models for these are 

presented in Figure 3.26.22,23 The condition that h0 = 2n and k0 = 2n must be satisfied for p2gg 

symmetry. Whereas for c2mm symmetry, all hk reflections must additionally satisfy h+k = 2n such 

that the presence of h+k = 2n+1 reflections excludes c2mm symmetry. However, in the case of the 

NTf2
- materials, an absence of higher order reflections does not allow equivocal assignment of the 

plane group, and so the tentative assignment is c2mm as it is common to assume the highest 

symmetry when discrimination cannot be achieved. 
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Figure 3.26. Rectangular space groups possible for columnar rectangular phases: a and b represent the two 
lattice parameters. 

Note also the difference in d-spacings of the NTf2
- and OTf- materials in the wide-angle regions of 

their X-ray diffraction data (Table 3.8 and Table 3.2), where the diffuse diffraction signals 

corresponding to the average side-to-side distances of the NTf2
- series are consistently larger at 5.3 

Å as compared to 4.7 Å for the triflate salts. This observation is consistent with that observed by 

Wang et al.16,20 and is attributed to the more voluminous NTf2
- anion leading to greater side-to-side 

separations between neighbouring cations. Krossing et al.38 calculated the molecular volumes of 

various anions to investigate the lattice and solvation effects of ionic liquids. The authors found that 

the volume of triflate was 0.131 nm3, whereas the volume of triflimide was almost double that of 

triflate at 0.232 nm3. 

  

C2mm p2gg 
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3. Discussion 

3.1. Formation of the SmA phase 

The preparation of the ionic polycatenar N-phenylpyridinium liquid crystals has uncovered some 

interesting features that were not apparent in the phase behaviour of the silver(I) salts previously 

prepared by the group. The first significant observation is the formation of the SmA phase by the 

triflate and alkylsulfate materials when the length of the terminal aliphatic chains are short. This 

mesophase actually forms across a significant region of the phase diagram in the triflate series up 

to and including the tridecyloxy derivative, 11-13. How can the formation of a SmA phase be 

explained? 

The most common mesophase formed by ionic liquid crystals is the SmA phase due to 

intermolecular ionic interactions between anions and cations that stabilise self-organisation into 

layers. But, recall that typical tetracatenar materials have a tendency to form a SmC phase at short 

terminal chain lengths due to a mismatch between core and chain volumes;24 the schematic 

presented in Figure 3.27 demonstrates the origin of this tilt. To accommodate the volume of four 

terminal chains, the molecules tilt so that the cross-sectional area of the core and that of the chains 

projected onto the core-chain interface are equal; the molecules can then arrange in layers to fill 

space efficiently. However, the formation of a SmC phase, which is also lamellar, would also be 

consistent with strong ionic intermolecular interactions, yet, it is not observed. However, in ionic 

materials, the spatial requirements of the anion must also be taken into account in addition to the 

strong electrostatic interactions.  
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Figure 3.27. Schematic to show the origin of the tilt in the SmC phase formed by neutral tetracatenar 
materials: the cones show the relative volumes of the core and the terminal chains projected onto the core-

chain interface. 

To better understand how electrostatics and space filling tension against one another in these 

systems, DFT calculations of the electrostatic potential of the cation-anion system (for the OTf- 

series) were performed by Dr Martin Bates. DFT calculations of the electrostatic potential were 

performed using Gaussian 16e using the B3LYP functional and 6-311G(d,p) basis set. They revealed 

that the positive charge is localised predominantly on the pyridinium ring as shown in Figure 3.28 

(b). Calculations were then run on the anion-cation system and the triflate anion was found always 

next to the pyridinium ring, off to the side and never above the plane of the ring, in a disposition 

that placed the three oxygen atoms of the triflate closest to the positive charge (Figure 3.28 (a)). 

This behaviour is consistent with the single crystal structure presented in Figure 2.9 (Chapter Two) 

whereby the triflate moiety is located preferentially next to the pyridinium ring. Assuming similar 

dispositions of the anion and cation in the mesophase, then the effective core volume has been 

increased due to the associated anion. As such, the increased volume of the two terminal alkoxy 

chains is readily accommodated, therefore removing the need for the molecules to tilt in order to 

self-organise into layers and so a SmA phase is formed. 
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Figure 3.28. Location of (a) ion-pairs with respect to one another and (b) electrostatic potential map where 
n = 1. Surface computed for isoval = 0.001, with electrostatuic potential shading between –0.15 (red) and 

+0.15 (blue). 

Further support for these assertions come from two related studies. The first is that conducted by 

Pelzl et al.25 who demonstrated that a SmA phase can be induced when a bis-swallow-tailed 

mesogen is doped with an appropriately sized calamitic compound. Bis-swallow-tailed compounds 

are structurally similar to tetracatenar mesogens and contain a total of four flexible chains grafted 

to an elongated core. The structure of the materials investigated are shown in Figure 3.29. It is 

assumed that the dopant located itself next to the core of the swallow-tailed host as this provided 

the most efficient space-filling, which, in turn, induced a SmA phase by removing the imbalance 

between core and chain volumes. The second piece of supporting evidence comes from a study 

performed by Bruce and Smirnova26,27 who found that lamellar phases can be induced in contact 

preparations between tetracatenar stilbazole complexes of silver(I) and polar aprotic solvents such 

as DMSO. These compounds displayed cubic or Colh mesophases as dry materials, and so the 

addition of external solvent induced a lamellar phase by interacting preferentially with the charged 

core to increase the effective core volume. These ideas are discussed in more detail in Chapter Four, 

but the key point to consider for the present discussion is that the volume of certain parts of the 

molecule can be effectively increased by the addition of external agents. In the case of the N-

(a) 

(b) 
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phenylpyridinium materials, the triflate anion behaves in an identical fashion to the external agents 

and increases the effective core volume, thereby allowing self-organisation into a SmA phase.  

 

Figure 3.29. Structure of the bis-swallow-tailed compound and calamitic dopant used to form an induced 
SmA phase:25 n = 1, 6 or 12. 

In one sense, the alkylsulfate anions are similar to triflate inasmuch as they increase the effective 

cross-sectional area of the cation core, removing the need for them to tilt. However, while in the 

triflate salts the Colh phase (indicative of surface curvature) appeared at n = 14, for octylsulfate a 

cubic phase was observed at n = 10 and for dodecylsulfate a cubic phase appeared at n = 6. 

Comparison of the length of the octylsulfate anion (11.3 Å) with half of the length of the 

phenylpyridinium core (8.4 Å) shows that the alkylsulfate anion extends past the cation core and so 

contributes to the terminal chain volume. Thus, promoting formation of the cubic phase in a 

manner analogous to that in the stilbazole complexes of silver(I) discussed earlier. The longer 

dodecylsulfate anion contributes even more to the terminal chain volume and so the cubic phase 

is seen at a shorter terminal chain length still. Figure 3.30 shows a schematic of this where the 

alkylsulfate anions have been drawn to scale. 
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Figure 3.30. Schematic showing (a) how the octylsulfate anion extends past the cation in the N-
phenylpyridinium materials and (b) how it does not extend past the core of the silver(I) stilbazole cation, 

both drawn to scale. 

1.1. Stabilisation of the columnar hexagonal phase 

The second striking feature of the phase diagrams formed by these N-phenylpyridinium salts is the 

consistent and significant stabilisation of the Colh phase when compared to the preceding SmA or 

cubic mesophases. Also apparent is the gradual suppression in the clearing point of the SmA phase 

(and cubic phase for the alkylsulfates) on moving across the phase diagrams to increasing cation 

chain length. For example, the clearing point in the triflate series decreases from 169 °C at 11-8 to 

141 °C at 11-13, then, as the mesomorphism switches to Colh the clearing point increases 

significantly to 210 °C at compound 11-14. This is a significant mesophase stabilisation on the 

addition of only one methylene group per chain (a total of four methylene groups in chain volume). 

This behaviour may be contrasted with that typical of neutral tetracatenar liquid crystals, where a 

steady decrease in the clearing point is observed for the SmC phase that tends to level off when the 

mode of packing transitions to columnar (examples are presented in Figure 3.31 and Figure 

3.32).28,29 Even when neutral tetracatenar materials contain a lateral substituent30,31 the shape of 

the phase diagram remains much the same as any other neutral compound and a plateau of the 

clearing point is again observed on entering the columnar phase. Compare this to the form of the 

phase diagrams displayed by the silver(I) triflates and silver(I) dodecylsulfates,6 and the behaviour 

is quite different. In the case of the silver(I) dodecylsulfates, the clearing point increases by 35 °C 
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on moving from the n = 6 to n = 8 derivative where the mesomorphism switches from cubic to Colh. 

This is similar to the stabilisation of the Colh phases formed by the N-phenylpyridinium ions. As 

such, this behaviour seems to be common to ionic polycatenar liquid crystals in general, and not 

simply a result of a lateral substituent that the anion could otherwise mimic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.31. Phase diagram of the neutral tetracatenar liquid crystals from ref.28 
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Figure 3.32. Phase diagram of the neutral tetracatenar liquid crystals from ref.29 

Why exactly is stabilisation of the columnar hexagonal phase observed in ionic polycatenar liquid 

crystals? Is it that the preceding lamellar and cubic phases are destabilised or that the hexagonal 

columnar phase is more stabilised?  

In considering the general shape of the phase diagrams formed by the N-phenylpyridinium 

materials, the lamellar phases are gradually destabilised on increasing chain length as already 

discussed. However, at no point (even at very short n) are the clearing points of the SmA or cubic 

phases ever as high as those of the Colh phase. It is postulated, therefore, that the spatial 

requirements of the anion act to destabilise lamellar and cubic modes of organisation in general, 

and only when the aliphatic chains become long enough that the mode of packing switches to Colh 
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can the spatial requirements of the anion be better accommodated. It seems that lamellar phases 

are destabilised to a greater extent than cubic phases; this is discussed in more detail in Chapter 

Five. 

3.2. Formation of a rectangular phase 

While the triflate and alkylsulfate salts all show SmA and Colh phases with cubic also seen for the 

alkylsulfate salts, the triflimide salts, 29-n, are quite different in showing what appears to be a 

rectangular phase. Indeed, contact preparations performed between the mesophase formed by the 

triflimide salts and the SmA and Colh phases formed by the triflate salts showed a lack of miscibility. 

Contact preparations were also performed between compounds 29-n and a series of smectogenic 

triflimide salts prepared by Riccobono,32 and still a miscibility gap was observed. While nothing can 

be learned from a miscibility gap between two phases, this observation coupled with the odd 

optical textures and a diffraction pattern showing short-range two-dimensional order is consistent 

with a mesophase that is neither lamellar nor Colh. 

The two-dimensional order of this mesophase could suggest the formation of a columnar 

rectangular phase (Colr), or, more simply, the formation of a lamellar phase with short-range order 

perpendicular to the layers (in other words a biaxial SmA phase). However, considering that the 

optical texture of this phase is nothing like that of a SmA phase and that the texture does not change 

when viewed in alignment cells, results are more consistent with the formation of a ribbon-like 

phase. Two-dimensional ribbon phases are analogous to the SmÃ phase formed by calamitic 

mesogens and the B1 phase formed by bent-core mesogens33,34 – all possess rectangular symmetry 

and the general structure is presented in Figure 3.33.35 
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Figure 3.33. Generalised organisation of mesoogens in the SmÃ phase: a and b represent the lattice 
parameters of the rectangular arrangement. 

A plot of the calculated molecular length of compounds 29-n and the a parameter vs terminal chain 

length is presented in Figure 3.34, and whilst the a parameter is slightly larger than the molecular 

length for each homologue, both show a monotonic increase with chain length. The b parameter, 

on the other hand, remains constant across the series at roughly 11 Å. These parameters could 

suggest a structure of a rectangular phase given in Figure 3.34, where the a parameter would in 

fact increase monotonically with chain length and the b parameter would remain constant across 

the series. What is not clear, however, is why the a parameter would be consistently larger than 

the all-trans length of the cation. 
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Figure 3.34. Proposed model of the rectangular phase formed by the teracatenar NTf2 salts, 29-n, showing a 
and b parameters (left) and molecular length and a parameter vs chain length (right). 

Tschierske et al.36 also studied a series of amphiphilic and bolaamphiphilic calamitic compounds, 

and, in mixtures of the two, ribbon phases possessing rectangular symmetry could be induced. 

These phases displayed optical textures that contained spherulitic defects akin to those observed 

in the textures of the triflimide salts, 29-n, as shown in Figure 3.35. Tschierske postulated that the 

different molecular lengths of the two calamitic components caused interruption of the layers to 

induce a modulated or ribbon-like structure. The proposed model shown in Figure 3.35 (b) contains 

the bolaamphiphilic molecules at the boundaries between adjacent ribbons and an analogy 

between this ribbon phase and the SmÃ phases37 was drawn.  

8 9 10 11 12 13 14
30

35

40

45

50

55

60

65

Sp
ac

in
g 

/ Å

n

molecular length

a parameter 



145 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.35. (a) Optical texture of the SmÃ phase formed by a 1:9 mixture of compounds 1:2 and (b) 
arrangement of the molecules in the SmÃ phase: white spheres represent amphiphiles and dark spheres 

represent bolaamphiphiles. 

What is not quite clear is why a larger, more charge diffuse, anion would promote this type of self-

organisation. Whereas the OTf- salts form a SmA phase at short chain lengths due to the spatial 

requirements of the anion increasing the effective core volume, one would predict that an even 

larger triflimide anion would give rise to similar behaviour. It could be that the weaker electrostatics 

imparted by the more charge disperse triflimide anion are sufficient to destabilise the SmA phase 

causing a break-up of the layers and promoting the formation of ribbons. This could demonstrate 

the need for strong intermolecular electrostatic interactions in addition to the space-filling 

arguments of the anion to stabilise the SmA phase formed by the N-phenylpyridinium materials. 

Although the exact nature of the mesophase cannot be conclusively identified from the data 

(a) 

(b) 
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presented, the tendency is to assign this phase as Colr due to similar optical textures to those 

formed by the SmÃ phases and diffraction data that suggests local two-dimensional ordering. 

4. Conclusion 

The polycatenar N-phenylpyridinium ions show different mesomorphism to the stilbazole 

complexes of silver(I) in that a SmA phase is formed at short terminal chain lengths when the anion 

is triflate, octylsulfate or dodecylsulfate. Intermolecular electrostatic interactions help drive 

mesomorphism into the SmA phase for the same reason as the SmA phase is the most common 

mesophase formed by calamitic ionic liquid crystals. Arguably more important than electrostatics, 

however, is the size and shape of the anion. In the case of OTf-, the anion increases the effective 

core volume to remove the imbalance between core and chain volumes that typically drives the 

formation of a SmC phase in tetracatenar mesogens. However, as the chain volume increases, the 

mode of packing changes to Colh rather than first being compensated for by the formation of a SmC 

or cubic phase, whereas the transition from SmA to Colh self-organisation in the alkysulfate 

compounds does in fact take place via the formation of an intermediate cubic phase. Thus, the SmC 

phase is not well-stabilised in these materials and the cubic phase is clearly absent in the triflate 

series, its formation being dependent on the identity of the anion.  

The thermotropic cubic phases formed by polycatenar liquid crystals are not well-understood in 

general, and so it is not clear why a cubic phase is formed only when the anion is a long-chain 

alkylsulfate. All that can be concluded is that its position in the phase diagram (of the alkylsulfate 

salts) is consistent with curvature intermediate between lamellar and columnar modes of assembly. 

In the case of all the materials studied here, a very significant stabilisation of the Colh phase is 

observed compared to the preceding SmA or cubic phases. The general shape of the phase diagram 

displayed by these materials therefore show three general features. First, is the gradual depression 

in the clearing point of the SmA phase on increasing terminal chain length. Second, is the steady 

increase in the clearing point on entering the cubic phase (for the alkylsulfates). Third, and most 

significant, is the significant stabilisation of the Colh phase at the longest terminal chain lengths in 

all materials. So, it would appear that the curvature of the mesophase has a strong influence on its 

stability such that SmA phases are destabilised to a greater extent than cubic phases; the Colh phase 

is then by far the most stable mode of self-organisation. This behaviour almost certainly arises due 
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to the steric requirements of the anion, which can be more readily incorporated into the structure 

of the Colh phase. In no neutral compound is stabilisation of the columnar phase ever observed. 

The triflimide salts are quite different again and only a single mesophase was formed by all 

homologues in this series. The nature of this mesophase is still unclear, but diffraction patterns 

show two-dimensional order that is consistent with the formation of a ribbon phase with 

rectangular symmetry. However, correlations along the second dimension are evidently weak as X-

ray diffraction patterns show only one low-intensity reflection that does not correspond to a 

lamellar periodicity. The most likely explanation for this is a collapse of the lamellar structure due 

to the more charge disperse triflimide anion that results in the formation of ribbons. From the 

parameters extracted from diffraction studies, these ribbons likely comprise of a single cation-anion 

pair.  
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5. Experimental 

5.1. Polarised Optical Microscopy (POM) 

Liquid crystal textures were observed using an Olympus BX50 Optical Microscope equipped with a 

Linkam Scientific LTS350 heating stage, Linkam LNP2 cooling pump and a Linkam TMS92 controller. 

Samples were prepared by placing a small amount of material (0.1 mg) onto a microscope slide 

which was then covered with a coverslip. The sample was then heated between crossed polarisers 

allowing phase transitions to be observed. Contact preparations between two different materials 

were conducted in much the same fashion, except that the samples were placed directly next to 

each other on the microscope slide and allowed to mix when melted. 

5.2. Differential Scanning Calorimetry (DSC) 

Calorimetry scans were run on a Mettler Toledo DSC822e, (running on a Stare software) equipped 

with a TSO801R0 sample robot and calibrated using pure indium. Samples were run at 

heating/cooling rates of 5 °C min-1. DSC data mentioned in this chapter are onset temperatures 

from the first heating cycle. 

5.3. Small-Angle X-ray Scattering (SAXS) 

Small angle X-ray scattering was performed using a Bruker D8 Discover equipped with a 

temperature controlled, bored graphite rod furnace, custom built at the University of York. The 

radiation used was copper Kα (λ = 0.154056 nm) from a 1 μS microfocus source. Diffraction patterns 

were recorded on a 2048x2048 pixel Bruker VANTEC 500 area detector set at a distance of 127 mm 

from the sample. Samples were filled into 0.9 mm capillary tubes. Two-dimensional diffraction 

patterns were collected every 10 °C on heating to the isotropic liquid and subsequent cooling to 

room temperature at a rate of 10 °C min-1. The data were then processed using Origin. 
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Chapter Four: Solvent-Induced Liquid Crystal Properties of the Polycatenar N-
Phenylpyridinium Ions 

1. Introduction 

Chapter Three discussed the thermotropic mesomorphism of a series of N-phenylpyridinium ions 

and their behaviour has been compared to the formally ionic polycatenar stilbazole complexes of 

silver(I). Some years ago, Smirnova and Bruce reported the solvent-induced liquid crystal properties 

of these silver(I) salts in a variety of solvents:1,2 these included apolar alkanes, aliphatic alcohols and 

small polar aprotic solvents (MeCN, DMSO, DMF). This study was the first to document the solvent-

induced liquid crystal properties of a polycatenar material and a number of induced mesophases 

were observed that demonstrated well the amphiphilic nature of the silver(I) salts. This chapter will 

document the solvent-induced properties of the newly prepared N-phenylpyridinium ions.  

1.1. Lyotropic liquid-crystal phases 

Lyotropic mesomorphism is brought about by changing the concentration of the mesogenic species 

in a solvent (usually water or another polar solvent) and three general types of lyotropic behaviour 

are normally identified: surfactant,3 polymeric4 and chromonic.5,6 Surfactant lyotropic behaviour 

has been extensively covered in the Introduction chapter. 

1.1.1. Polymeric lyotropic behaviour 

This type of lyotropic behaviour is in fact not confined to polymers, but also describes that of rigid 

anisometric rods in solution. Thus, rod-shaped polymers form nematic phases in solution (aqueous 

or non-aqueous) due to a favoured gain in entropy. The theory that hard rods could self-organise 

in solution to give rise to a nematic phase was first proposed by Onsager in 1949.7 The theory 

assumes that rods can arrange in an isotropic fashion at low concentrations, yet, as their 

concentration increases, maintaining an isotropic distribution of the rods becomes increasingly 

difficult due to mutual repulsions. Thus, a phase transition occurs to a more ordered state that is 

purely dependent on concentration; the rods are oriented in roughly the same direction and the 

lyotropic nematic phase forms. This transition is driven by a change in entropy (assuming there are 

no intermolecular interactions, which is of course almost impossible to achieve in reality). It seems 

counterintuitive that forming a more ordered state actually results in an increase in entropy, but it 

is the minimisation of the excluded volume on forming the nematic phase that increases the 

translational entropy of the system. This theory holds true extremely well in practice. DNA,8 
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cellulose9 and viruses such as the tobacco mosaic virus10,11 are all examples of this type of 

mesomorphism. DNA in fact forms a multiple mesophases in solution with the identity of the phase 

being dependent on concentration. At dilute DNA concentrations in water the chiral nematic phase 

forms, but highly concentrated samples in the region of 250 mg ml-1 form a two-dimensional 

mesophase initially thought to be smectic12 and now known to be hexagonal as demonstrated by 

Livolant et al.13 

1.1.2. Chromonic behaviour 

Chromonic behaviour is a field of lyotropic liquid-crystalline behaviour that has only really been 

explored over the past five decades.4,5 The chemical components of chromonic liquid-crystalline 

phases tend to be flat or board-like, often aromatic molecules that contain ionic or polar 

functionalities on the periphery to aid solubility in water. In fact, ionic dyes5 and drug molecules5 

were among the first compounds discovered to display chromonic behaviour and two examples are 

presented in Figure 4.1. These species self-organise to form columns in aqueous solution due to π-

π interactions and van der Waals forces between neighbouring molecules. As such, the formation 

of chromonic aggregates is an enthalpically driven process unlike the aggregation of surfactants 

into micelles, a process that has an entropic driving force.14 These columns can then form nematic 

(N) or hexagonal columnar (M) arrangements in water, and so the mesogenic moiety is not the 

aromatic molecule but the columnar aggregate of a number of molecules stacked on top of one 

another (see the structure of these phases formed in Figure 4.2). In many ways, chromonic 

behaviour closely resembles the thermotropic mesomorphism of disc-like molecules where the 

flexible aliphatic chains of the discotic mesogen are analogous to the solvent. 

 

 

 

 

 

 

Figure 4.1. Structure of the anti-asthmatic drug disodium cromoglycate (DSCG) and the anti-allergy drug 
RU31156, both of which demonstrate chromonic behaviour. 

DSCG RU31156 
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Figure 4.2. Structure of the chromonic nematic (N) phase and columnar hexagonal (M) phase. 

Unlike the lyotropic behaviour of surfactants, there is no analogous critical micelle concentration 

for chromonics and good evidence now exists for the formation of chromonic aggregates in dilute 

solution (before the manifestation of liquid crystal properties). Interestingly, because the 

mesomorphism of chromonic systems does not depend on flexible aliphatic chains, the mobility of 

the liquid crystal phase is often supressed only on the freezing of water.  

1.2. Lyotropic behaviour in non-polar solvents 

It is much less common for lyotropic liquid crystal phases to form in apolar solvents such as long-

chain alkanes and cyclic hydrocarbons. Usol’tseva et al. have, however, probed the effects of added 

alkanes on some discotic mesogens (organometallic15–17 and organic18) and found that a number of 

mesophases can be induced. The first compounds studied were a series of tetrapalladium organyls15 

with a board-like molecular shape (see structure in Figure 4.3). Thermotropically, these materials 

displayed a columnar oblique phase and one other mesophase that was highly birefringent but 

could not be assigned. However, on the addition of long-chain alkanes from heptane to icosane, 

solvent-induced mesomorphism was observed. A phase diagram was constructed for the 

compound with n = 12 and X = chloro with pentadecane (Figure 4.3), and at very low solvent 

concentration, the columnar oblique phase persisted. On increasing the concentration of 

pentadecane this mesophase then transformed to a columnar nematic mesophase and eventually 

to an isotropic phase (always separated by biphasic regions). Therefore, the addition of non-polar 

solvent molecules to the already mesomorphic tetra-palladium organyls either allowed the 

N M 
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mesophase displayed by the dry material to persist, or induced a new mesophase altogether. 

Similar results were obtained with the platinum congeners and the bridging groups were either 

chloro, bromo, iodo or isocyanato.19,20 This behaviour is, therefore, not limited to a select 

combination of the metal and bridging group, but instead seems to be a characteristic common to 

disc-shaped metallomesogens in general. In fact, metallomesogens are not the only disc-like 

molecules to display lyomesomorphism in apolar solvents as is now described.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Phase diagram and general structure of the tetrapalladium organyls with a board-like shape. 

Usol’tseva and Praefcke18 also studied the behaviour of a series of hexaesters of 

hexahydroxybenzene and cyclohexane in a range of non-polar solvents and the results from this 

study were particularly interesting. The general structures of the two series of hexaesters are 

presented in Figure 4.4 – compound 1-n possesses a phenylene core and 2-n a cyclohexyl core. The 

thermotropic mesomorphism of both series is dominated by the formation of Colh mesophases, as 

would be expected for conventional, disc-shaped mesogens. The columnar phases formed by the 

hexahydroxybenzene esters are disordered, whereas those formed by the cyclohexyl esters are 

ordered. However, their different behaviour in response to added solvent is extremely interesting, 
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and the lyomesomorphism of series 2-n (with cyclohexyl cores) is much richer than that of series 1-

n (with phenylene cores). For example, 2-5 to 2-11 showed the induction of nematic and hexagonal 

columnar mesophases (of the chromonic type) with linear alkanes from heptane to hexadecane; 

whereas there was no induction for series 1-n with any linear alkane. This behaviour was observed 

due to the weaker intra-columnar interactions in the case of the hexahydroxybenzene esters due 

to the thinner, planar aromatic core that results in poorer space filling effects between 

neighbouring molecules within the columns. This was explained as weaker core-core interactions 

and consequently a reduction in intramolecular contact within the columnar aggregates, which is 

also the reason why series 1-n form disordered Colh phases in the thermotropic sense. Thus, the 

addition of solvent molecules to the weakly segregated columns of 1-n completely disrupts liquid-

crystalline self-organisation; the solvent molecules intercalate with the peripheral chains grafted to 

core of series 2-n and allows the hexagonal columnar phase to persist. Due to the stronger core-

core interactions in this series, the addition of more solvent does eventually overcome the inter-

columnar interactions (the interactions between columnar aggregates) but the intra-columnar 

interactions (between stacked molecules) remain intact and a chromonic nematic phase then 

forms. 

 

 

 

 

 

Figure 4.4. Structures of the hexahydroxybenzene hexaesters 1-n and the scyllitol hexaesters 2-n where n 
represents the number of carbon atoms in the aliphatic chains. 

However, series 1-n do show induced mesomorphism on the addition of some cyclic hydrocarbon 

and aromatic solvents and it had already been demonstrated before this study that 1-5 forms a 

lyotropic columnar hexagonal phase on the addition of benzene.21 In fact, all of the hexahydroxy 

esters from 1-5 to 1-11 also displayed an induced hexagonal columnar phase with benzene and with 

other cyclic solvents that included cyclohexane and cyclohexene. This demonstrated that 

1-n 2-n 
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aromaticity of the solvent was not required in order for series 1-n for form induced mesophases in 

hydrocarbon solvents. What was interesting, however, was that a hexagonal columnar phase was 

only induced with larger cyclic solvents (cyclooctane and cyclodecane) for longer chained 

homologues upwards of 1-6. This revealed that a certain amount of space was required between 

the aliphatic chains for the solvent molecules to intercalate; thus, induced phases were only formed 

with larger cyclic solvents where sufficient space was available between the chains (clearly, 

lengthening of the aliphatic chains attached to the mesogen provided this necessary space). Once 

more, the scyllitol hexaesters showed even richer lyomesomorphism with cyclic solvents, and an 

additional nematic phase (as well as hexagonal chromonic phase) was observed for all homologues 

upwards of 2-5 with cyclopentane, cyclohexane and cyclodecane. This is very much the same as 

that observed with linear alkanes. 

It was from this work that the concept of ‘internal’ and ‘external’ solvent was proposed.18 The 

internal solvent is thought of as the flexible aliphatic chains grafted to the mesogenic core and the 

external solvent is clearly the added solvent used to bring about lyotropic mesomorphism. The 

lyomesomorphism of the disc-shaped materials presented here is controlled by a delicate balance 

between the internal and external solvents. 

1.3. Solvent induced mesomorphism of the stilbazole complexes of silver(I) 

The solvent-induced liquid crystal properties of the disc-shaped mesogens encouraged Smirnova 

and Bruce to probe the effects of added solvent (external solvent) on the mesomorphism of the 

polycatenar silver(I) salts. These materials displayed rich mesomorphism in a range of external 

solvents, both polar and non-polar, due to their amphiphilic character. The results from these 

studies were readily interpreted by the same concepts as those that underpin the thermotropic 

behaviour of polycatenar liquid crystals i.e. interfacial curvature and space-filling. 

The tetracatenar salts shown in Figure 4.5 were studied in a range of solvents including DMF, DMSO, 

MeOH and a range of linear alkanes and aliphatic alcohols. Tables 4.1 and 4.2 document the induced 

mesomorphism for a range of compounds differing in terminal chain length and anion; Figure 4.5 

shows the general structure of the silver(I) salts referred to in the text. 
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Table 4.1. Induced mesomorphism of 3a and 3b in a range of solvents: phases in brackets are observed 
monotropically. 

Solvent 3a (n = 4) 3b (n = 12) 
MeCN - L, Cub 
DMF (L) L, Cub 

DMSO L L, Cub 
MeOH N, (T) L, Cub 
EtOH (N), (L), (T) Cub 
PrOH (Cub) Cub 
BuOH (Cub) Cub 

Pentanol (Cub) Cub 
Decanol (Cub) - 

Undecanol (Cub) - 
   

Thermotropic mesomorphism None Colh 

 

Table 4.2. Induced mesomorphism of 4a and 4b in a range of solvents: phases in brackets are observed 
monotropically. 

 

 

 

 

 

 

 

 

 

Solvent 4a (n = 4) 4b (n = 6) 
MeCN L L 
DMF L L 

DMSO L L 
MeOH N, L, (T) N, L, (T) 
EtOH (N), (T) (N), (T) 
PrOH (N), (T) - 
BuOH (Colh) - 

Pentanol Colh - 
Decanol Colh Cub 

Undecanol Colh Cub 
   

Thermotropic mesomorphism Cub Cub, Colh 
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Figure 4.5. General structure of 3a, 3b, 4a and 4b studied with added solvents presented in  
Tables 4.1 and 4.2. 

A significant observation from Table 4.1 is that added solvent was able to induce lyomesomorphism 

in a compound that was non-mesomorphic as a dry material. It is also clear that small polar aprotic 

solvents such as DMSO reduce the interfacial curvature present in 3b to induce lamellar and cubic 

mesophases (recall that this compound exhibits a Colh phase as a dry material). This is consistent 

with the idea of the solvent molecules locating with the charged core of the compound to increase 

the effective core volume, and thus accounting for a transition to a mesophase with reduced 

curvature at the core-chain interface. The opposite effect was observed in contact preparations 

with linear and cyclic hydrocarbons and the induced phases formed suggest that the solvent locates 

preferentially with the terminal chains. Compound 3a is non-mesomorphic as a dry material, but 

the first thermotropic mesophase observed on increasing terminal chain length was cubic. The fact 

that all non-polar solvents presented in Table 4.3 induced a cubic mesophase supports solvent 

location with the aliphatic chains to increase curvature at the core-chain interface, much the same 

as lengthening the terminal chains in the thermotropic sense.  
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Table 4.3. Induced mesomorphism of 3a in a range of non-polar solvents: monotropic mesophases are 
shown in brackets. 

Solvent 3a (n = 4) 
Heptane (Cub) 
Decane (Cub) 

Pentadecane (Cub) 
Cyclohexane (Cub) 
Cyclohexene (Cub) 

Benzene (Cub) 
Tetraline (Cub) 

  

Thermotropic mesomorphism None 

The behaviour in the presence of added alcohols is a little more complex and depends on the chain 

length of the alcohol solvent and the nature of the polycatenar mesogen in general. Higher alcohols 

from butanol to undecanol show behaviour that implies they can equally locate with either the 

chains or the core depending on the specific compound being investigated. For example, 

compounds 3a and 4a show induced cubic and hexagonal columnar phases, respectively, which 

indicates association of the solvent molecules with the terminal chains. Compound 3a is non-

mesomorphic as a dry material, but on lengthening of the stilbazole chains, mesomorphism is first 

observed in the form of a cubic phase, and so the formation of an induced cubic phase on the 

addition of higher alcohols suggests solvent location with the terminal chains. Compound 4a shows 

a cubic phase as a dry compound; thus, the formation of a Colh phase in contact preparations with 

alcohols is again consistent with solvent association with the peripheral chains. 

Compounds 3b and 4b, on the other hand, both show induced cubic mesophases with long-chain 

alcohols, which would suggest solvent location with the core (these compounds both form Colh 

phases as dry materials). Smirnova and co-workers rationalised this observation by the space 

available to the solvent molecules. Both compounds 3b and 4b form Colh phases and so already 

possess significant interfacial curvature as dry materials. There would then be more space available 

by the polar core for solvent location here and so a reduction in core-chain curvature is observed. 

Identical behaviour was observed for the related OTf- salt, 5, in contact preparations with the 

alcohols presented in Table 4.4 and a reduction in the core-chain curvature was observed.1 This is 

because of the small size of the triflate moiety, which leaves sufficient space besides the core for 

the solvent to associate here via the hydroxyl functionality. 
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Table 4.4. Structure and induced mesomorphism of compound 5: monotropic mesophases are shown in 
brackets. 

 

Solvent 5 
Methanol (Cub) 
Ethanol (Cub) 

Propanol (Cub) 
Butanol (Cub) 

Pentanol (Cub) 
Decanol (Cub) 

Undecanol (Cub) 

  
Thermotropic mesomorphism Colh 

Arguably, it is the behaviour of the silver(I) complexes in short-chain alcohols and DMSO that is 

most intriguing and really poises the question as to the nature of the species giving rise to the 

mesomorphism. The results gathered from the addition of DMSO question whether this behaviour 

is conventionally lyotropic or not; hence the loosely used term of solvent-induced throughout this 

chapter that provides less specific information as to the nature of the mesogenic moiety.  

In the case of an amphiphile in water, micelles form and it is the ordering of these micelles at 

different concentrations that results in the formation of lyotropic liquid crystal phases.22,23 The 

situation is very simple for polymeric species and it is the ordering of these rod-shaped objects in 

solution into a more ordered phase; thus, it is the polymer itself that acts as the mesogenic species. 

Chromonics are then quite similar to polymeric systems and aggregates of flat, disc-shaped 

molecules stacked on top of one another behave as the mesogen. It is also quite clear with the 

silver(I) salts that the induced mesophases formed on the addition of alkanes and (some) higher 

alcohols essentially swell the terminal chains and so the structure of these lyomesophases are 

probably similar to those formed by the dry materials.  
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In the majority of cases, MeOH and EtOH result in the formation of nematic and tetragaonal phases 

(in addition to, in some cases, a lamellar phase). To better understand the structure of these 

induced mesophases a binary phase diagram was constructed between methanol and compound 

4b, which is presented in Figure 4.6. The phase diagram displays characteristics typical of chromonic 

systems with transitions from L to (L+N) to N on decreasing concentration of 4b. Also interesting 

was the dramatic destabilisation of the Colh phase on the addition of only 5 wt% methanol; this 

corresponds to two solvent molecules per mesogen. The structure of the mesophase formed is 

clearly very dependent on the concentration of solvent, or, in other words, the nature of the 

mesogenic species is dynamic and changes with concentration. Bruce and co-workers actually 

classified this behaviour as conventionally lyotropic due to the similarities with typical chromonic 

systems and postulated that long aggregates formed with solvent molecules located between the 

cores of stacked molecules to form a hydrogen-bonded chain or column. At very low concentrations 

in methanol the complexes simply dissolve, then, as their concentration increases, aggregates do 

form that expel solvent molecules leading to an increase in entropy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Phase diagram of 4b in methanol. 
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This behaviour does, however, contrast the shape of the phase diagram seen in DMSO as presented 

in Figure 4.7. In this case, the addition of DMSO does initially destabilise the Colh phase observed in 

the dry material in that cubic and lamellar phases are formed on increasing temperature. However, 

increasing the concentration of DMSO further does not change the form of the phase diagram after 

about 10 %wt (all the way to 90 %wt). The addition of 10 %wt DMSO represents two solvent 

molecules per complex, much the same as 5 wt% MeOH also represents two solvent molecules per 

complex and this is the point at which maximum destabilisation of the Colh phase occurs in both 

cases. However, as the shape of the phase diagram in DMSO is invariant with composition 

thereafter, the tendency was to assign this behaviour to the thermotropic mesomorphism of a 

solvated species; this is not conventionally lyotropic. This is consistent with the idea that DMSO 

molecules essentially swell the charged core of the complex to remove the imbalance between core 

and chain volumes. 

Figure 4.7. Phase diagram of 4b in DMSO. 
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2. Results 

To better understand the driving forces behind liquid crystal self-assembly on the addition of 

external solvent, contact preparations between the polycatenar N-phenylpyridinium ions and a 

range of solvents (much the same as those probed with the silver(I) salts) were performed. In two 

cases, binary phase diagrams were also plotted and these results are reported herein. Mesophase 

identification was achieved through polarising optical microscopy, and, in some cases, small-angle 

X-ray scattering (SAXS). 

2.1. Triflate compounds 

The triflate series were the first studied and the results from contact preparations performed 

between compounds 11-12 and 11-16 are presented in Table 4.5. The same numbering system for 

the N-phenylpyridinium ions has been carried over from previous chapters for the sake of 

consistency. 
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Table 4.5. Induced mesomorphism of compounds 11-12 and 11-16 in a range of solvents: () indicates that 
the mesophase is observed monotropically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound 11-12 displays a SmA phase as a dry material, but in higher alcohols upwards of decanol, 

an induced Colh phase is formed. However, the Colh phase formed in contact preparations between 

11-12 and higher alcohols appears only monotropically. 

A binary phase diagram was plotted for mixtures of compound 11-12 and dodecanol and is 

presented in Figure 4.8. Significant destabilisation of the SmA phase was observed on the addition 

of 5 wt% dodecanol after which point the mesophase observed is Colh. The Colh phase existed over 

a narrow concentration range of 80-95 wt% dodecanol and transitions from isotropic to Colh and 

Solvent 11-12 (n = 12) 11-16 (n = 16) 
Decane - - 

Dodecane - - 
Methanol - - 
Ethanol - - 

Propanol - - 
Butanol - - 
Hexanol - - 
Octanol - - 
Nonanol - - 
Decanol (Colh) - 

Dodecanol (Colh) - 

Tetradecanol (Colh) - 

Pentadecanol (Colh) - 
DMSO - SmA 
DMF - - 

   

Thermotropic mesomorphism SmA Colh 
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Colh to crystal were always accompanied by biphasic regimes, which is acceptable from the 

condensed phase rule for a two-component system. Below a concentration of 80 wt% dodecanol 

the Colh phase is supressed and only crystal and isotropic liquid phases were observed. The 

transition temperatures remained fairly constant across all compositions forming the Colh phase. 

DSC was able to detect the formation of the Colh phase on cooling in mixtures containing 87 and 91 

wt% 11-12; an example DSC trace is presented in Figure 4.9. However, X-ray diffraction could not 

detect the hexagonal lattice of the columnar phase and only a single reflection was ever detected. 

The optical texture of this phase was characteristically Colh as shown in Figure 4.11 (a) and so this 

is the assignment given. 

 

Figure 4.8. Phase diagram between compound 11-12 and dodecanol on cooling (mesomorphism is only 
observed monotropically). 

 

 

50 60 70 80 90 100
60

70

80

90

100

110

120

130

140

150

60

70

80

90

100

110

120

130

140

150

Cr+Iso

SmA+Cr
Colh+Cr

Colh

Iso+Colh

Cr

Iso

SmA

Iso

Cr+solvent

Iso

T 
/ °

C

wt% 11-12 in dodecanol 11-12Dodecanol

T 
/ °

C



167 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. DSC trace showing induced Colh phase on cooling in a mixture of 91 wt% 11-12 and dodecanol: 
first heat/cool cycle shown in black and second heat/cool cycle in blue. 

The addition of DMSO had the opposite effect and behaviour consistent with an increase in core 

volume was observed; contact preparations between compound 11-16 and DMSO induced an 

enantiotropic SmA phase (this compound is Colh as a dry material). No induction was observed with 

acetonitrile due to its volatility and the solvent evaporated too rapidly above 70 °C. Much the same 

was true for methanol, ethanol and propanol. 

A binary phase diagram was constructed between compound 11-16 and DMSO and is presented in 

Figure 4.10. The Colh phase exists down to 70 wt% 11-16 after which a SmA phase appeared that 

persisted down to 25 %wt. The SmA phase may in fact be formed by mixtures below 25 %wt 11-16, 

but mixtures at such a low concentration of the mesogen were difficult to prepare accurately due 

to the small amount of compound required. The melting and clearing points were significantly 

reduced below 80 %wt, after which point the form of the phase diagram remained broadly the 

same, with perhaps a small decrease in the clearing point on moving from 50 to 35 %wt 11-16. 

Transitions from crystal to SmA and SmA to isotropic were always accompanied by the formation 
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of biphasic regimes. The shape of the phase diagram presented in Figure 4.10 is broadly similar to 

that of the silver(I) salt, 5b, in DMSO as shown in Figure 4.7. 

 

Figure 4.10. Binary phase diagram between compound 11-16 and DMSO. 

An interesting observation from Table 4.5 is that no linear alkanes induced lyomesomorphism in 

compounds 11-12 or 11-16 – in fact, no compound with a triflate anion showed any induction on 

the addition of linear alkanes. This could well be an effect of the OTf- anion as no induction was 

achieved in contact preparations between the silver(I) triflates and alkanes – only the silver(I) 

alkylsulfates formed induced mesophases in contact preparations with linear alkanes. This point 

will be addressed in the discussion. 
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Figure 4.11. Photomicrographs of (a) the induced Colh phase in contact preparations between 11-12 and 
dodecanol at 90 °C on cooling, (b) induced SmA phase in contact preparations between 11-16 and DMSO at 
105 °C on cooling, (c) thermotropic SmA phase formed by 11-12 and (d) thermotropic Colh phase formed by 

11-16. Textures are at x10 magnification. 

  

(a) (b) 

(c) (d) 
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2.2. Alkylsulfate salts 

Contact preparations performed between the alkylsulfate salts and a range of solvents suggested 

much the same behaviour as the triflate series and these results are presented in Table 4.6. Small 

polar solvents such as DMSO and DMF (and in one case MeCN) induced lamellar mesomorphism in 

materials that were cubic or Colh in the thermotropic sense. The opposite effect was observed in 

higher alcohols and these solvents induced a Colh phase with greater interfacial curvature than that 

displayed by the dry compound, consistent with location of the solvent molecules with the aliphatic 

chains of the mesogen. 

Table 4.6. Induced mesomorphism for compounds 27-8, 28-8, 27-10 and 28-10 in a range of solvents: () 
represents a mesophase observed monotropically. 

 

 

 

 

 

 

Solvent 27-8 (n = 8, m 
= 8) 

28-8 (n = 8, m 
= 12) 

27-10 (n = 10, 
m = 8) 

28-10 (n = 10, 
m = 12) 

Decane - - Colh Colh 

Dodecane - - Colh Colh 
Pentadecane - - Colh Colh 

Propanol (Colh) Colh Colh Colh 

Butanol Colh Colh Colh Colh 

Decanol Colh Colh Colh Colh 
MeCN - - (SmA) - 
DMF - (SmA) (SmA) (SmA) 

DMSO - SmA SmA SmA 
 

    
Thermotropic 

mesomorphism SmA, (Cub) SmA, Cub SmA, Cub Cub, Colh 
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X-Ray scattering experiments were able to detect the hexagonal symmetry of the columnar phases 

induced by some alcohols as evidenced by Figure 4.12 (a), which shows a diffraction pattern typical 

of a Colh phase induced in 28-10 with 30 wt% decanol. Even though compound 28-10 displays a Colh 

phase as a dry material, a thermotropic cubic phase exists below the Colh phase that was totally 

suppressed on the addition of higher alcohols. Figure 4.12 (a) was recorded at 55 °C on the first 

heating cycle, at which point the dry compound would be crystalline and so the Colh phase displayed 

at this temperature has been induced by the solvent. This actually represents a rather interesting 

situation as the structural parameters of the thermotropic Colh phase can be compared against 

those of the solvent-induced Colh phase displayed by the same mesogen. Surprisingly, the columnar 

lattice parameter of the induced mesophase is 4.3 Å smaller than that of the dry compound as 

shown in Table 4.7. There also appears to be no appreciable difference between the full width half 

maxima (fwhm) of the d10 reflections between the dry and solvent induced Colh phases (Figure 4.12 

(b) and (c)). 

Table 4.7. Diffraction data for compound 28-10, showing how the a parameter varies with decanol. 

Decanol concentration / wt% d10 / Å d11 / Å a Parameter / Å  Mesophase 
0 31.1 17.9 35.9 Colh 

30 27.4 15.8 31.6 Colh 

However, in contrast to the behaviour of the triflate salts, linear alkanes do now induce 

lyomesomorphism (in some compounds), which is consistent with increasing the effective chain 

volume; compounds that are SmA or cubic as dry materials form Colh phases on the addition of 

alkanes. Thus, the lack of induction by linear alkanes in the triflate series is clearly a function of the 

anion. Compound 27-10 forms an induced Colh phase in contact preparations with decane up to 

pentadecane. Compound 28-10 also forms an induced Colh phase in contact preparations with 

alkanes from decane to pentadecane. As mentioned above, 28-10 displays cubic and Colh phases as 

a dry compound, but much like the behaviour of this compound in higher alcohols, the cubic phase 

was totally suppressed on the addition of alkanes and so a change in mesomorphism has been 

induced. 

It is interesting, however, that no induction was observed for compound 27-8 with any linear 

alkane, and bi-phasic regions of SmA + isotropic are observed on heating along with cubic + isotropic 

on cooling; these are the same mesophases formed by the dry material. Recall here that compound 
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27-8 forms only a cubic mesophase on cooling from the isotropic liquid, and the SmA phase is only 

ever observed on a heating cycle. As such, no induction was observed in contact preparations with 

linear alkanes. Similarly, no induction with linear alkanes was observed for compound 28-8 (also 

with octyloxy chains). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. Diffraction pattern of (a) the induced Colh phase between compound 28-10 and 30 wt% 
decanol at 55 °C on the first heating cycle, (b) the fwhm of the d10 reflection in the dry compound and (c) 

the fwhm of the d10 reflection in the solvent induced phase at 30 wt% DMSO. 
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Figure 4.13. Photomicrograph of (a) the Colh phase induced in contact preparations between 27-10 and 
decane, (b) the induced Colh phase between 28-10 and decane, (c) the induced SmA phase between 28-10 

and DMF and (d) the induced Colh phase between 27-8 and decanol. Textures are at x10 magnification. 

It seems odd that compounds with octyloxy chains do not form induced mesophases with alkanes 

whereas those with decyloxy chains do. To investigate this effect further, contact preparations were 

performed between compound 27-6 (with hexyloxy chains). Compound 27-6 displays a SmA phase 

as a dry material, whereas the addition of alkanes from octane to pentadecane induced a cubic 

mesophase, albeit monotropically. A photomicrograph of this cubic phase induced in contact 

preparations with decane is presented in Figure 4.14. It is extremely difficulty to capture the 

viscosity of the cubic phase on the polarising microscope, but on close inspection of Figure 4.14 a 

boundary can be seen where the viscous cubic phase meets the isotropic liquid on decreasing 

concentration of 27-6; the photo in Figure 4.14 has been enlarged for clarity. The SmA phase can 

even be seen (top left of Figure 4.14) where the concentration of decane is lowest. 

 

 

(a) (b) 

(c) (d) 
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Table 4.8. Structure and induced mesophases formed in contact preparations with compound 27-6: () 
represents a mesophase that is observed only monotropically. 

 

 

 

 

 

Solvent 27-6  
Octane (Cub) 

Decane (Cub) 
Dodecane (Cub) 

Pentadecane (Cub) 

Decanol Colh 
  

Thermotropic mesomorphism SmA 

 

 

 

 

 

 

 

 

 

Figure 4.14. Photomicrograph (with polarised uncrossed slightly) of the induced cubic phase in contact 
preparations between 27-6 and doecane: T = 35 °C on cooling. 

Boundary 
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Cub 
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Once more, higher alcohols such as decanol induced an enantiotropic Colh phase in compound 27-

6. The hexagonal symmetry of the induced columnar phase between a mixture of 27-6 and decanol 

at 13 %wt solvent could be detected by X-ray scattering as evidenced by Figure 4.15. Unlike the 

induction of a Colh phase by decanol in the case of 28-10, this represents the induction of a new 

mesophase that does not exist in the phase sequence of the dry material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15. Diffraction pattern of (a) the induced Colh phase of compound 27-6 with 13 %wt decanol at 66 
°C and (b) photomicrograph of the same phase.  
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2.3. NTf2
- salts 

A SmA phase can be induced with all NTf2
- salts on the addition of polar aprotic solvents such as 

DMSO, consistent with solvent location at the polar core (Table 4.9). No induction was observed 

with linear alkanes or linear alcohols, and the same spherulitic texture as the dry material was 

observed in each case. Figure 4.16 shows a photomicrograph of the induced SmA phase on the 

addition of DMSO and compares the texture of this phase to that of the thermotropic Colr phase.  

Table 4.9. Structure and induced mesomorphism for compound 29-10. 

 

 

 

 

 

Solvent 29-10 
Undecanol - 

Pentadecane - 
DMSO SmA 

  

Thermotropic mesomorphism Col 

X-Ray scattering experiments could be performed on mixtures of compound 29-10 with 30 %wt 

DMSO and a diffraction pattern consistent with a lamellar mode of organisation was obtained as 

shown in Figure 4.17; only a single reflection was observed in the small-angle regime. 
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Figure 4.16. Photomicrograph of (a) the induced SmA phase on the addition of DMSO to compound 29-10: 
isotropic regions (bottom left) and induced SmA phase (top right) and (b) thermotropic texture of the same 

compound. Textures are at x10 magnification. 

 

 

 

 

 

 

 

 

 

Figure 4.17. Diffraction pattern of compound 29-10 with 30%wt DMSO. 
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3. Discussion 

3.1. General remarks 

The formation of the induced mesophases can be explained by the principles of amphiphilicity, 

space-filling, interfacial curvature and incompatibility of the solvent with a certain part of the 

mesogen. These are very much the same driving forces as those used to explain the formation of 

induced mesophases between the silver(I) salts and added solvent.1 That is, polar aprotic solvents 

such as DMSO and DMF locate preferentially with the charged core of the mesogen to increase the 

effective core volume, influencing interfacial curvature thereby to induce the formation of a 

lamellar phase in compounds that are cubic, Colh or Colr as dry materials. In contrast, higher alcohols 

and, in some cases, linear alkanes, locate preferentially with the aliphatic chains to increase the 

effective chain volume, which in turn lends a transition to a mesophase with greater curvature at 

the core-chain interface. The higher alcohols always induced a Colh phase in compounds that were 

cubic or SmA as dry materials.  

However, the effect of linear alkanes is a little different and not all mesogens that were SmA or 

cubic as dry compounds formed induced mesophases on their addition. Compounds 27-10 and 28-

10, for example, formed induced Colh phases with linear alkanes from decane to pentadecane 

where these compounds were SmA or cubic in the thermotropic sense. Similarly, compound 27-6 

formed an induced cubic phase on the addition of octane up to pentadecane, whereas this 

compound was SmA as a dry material. Compounds 27-8 and 28-8, on the other hand, showed no 

induction with any linear alkane, and the same mesomorphism as the dry material was always 

observed (SmA and cubic phases). Much the same behaviour was true for the triflate salts and no 

induction with linear alkanes was ever observed. The influence of linear alkanes on the induced 

mesomorphism will be discussed in more detail in the forthcoming sections, but for now, where 

induction is observed, their behaviour is consistent with preferential location with the aliphatic 

chains to form a mesophase with greater curvature at the core-chain interface. 

3.2. Phase diagrams 

Some crucial differences exist between the induced mesomorphism displayed by the silver(I) salts 

and the N-phenylpyridinium ions and these will now be discussed. Starting with a comparison 

between the binary phase diagrams of compounds 4b and 11-16 in DMSO shown in Figure 4.18, it 

is clear that the general form of the two phase diagrams is similar. Thus, the thermotropic 
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mesophase (Colh in both cases) is strongly destabilised on the addition of small concentrations of 

solvent, and at a certain point the mesomorphism transitions to a new mesophase with reduced 

curvature at the core-chain interface that persists down to very high solvent concentrations (low 

mesogen concentrations). Whereas compound 4b forms induced cubic and lamellar phases, only a 

lamellar mesophase is induced in 11-16; this behaviour is still consistent with location of the solvent 

with the charged core. However, the important point is that the shape of each phase diagram is 

largely invariant with solvent concentration after the transition to the induced mesophase. 

Destabilisation of the Colh phase formed by 4b occurs at roughly 10 %wt DMSO, corresponding to 

two solvent molecules per mesogen, whereas destabilisation of the Colh phase formed by 11-16 

occurs at 30 %wt DMSO, corresponding to eight solvent molecules per mesogen. Thus, the N-

phenylpyridinium ions require more solvent than the silver(I) salts before the mesomorphism 

changes from Colh to lamellar. Quite why this is the case is unclear, but the longer aliphatic chains 

of 11-16 are consistent with the higher concentration of solvent required to remove the imbalance 

between core and chain volumes that would allow the formation of a lamellar phase. Then, on 

further increasing the solvent concentration, the system becomes saturated and free solvent is 

observed alongside the SmA phase. This is clearly observed by microscopy as shown in Figure 4.19 

– compound 11-16 is bright orange and additional regions of colourless liquid can be seen that must 

correspond to free solvent. This behaviour is much the same as that observed between the silver(I) 

salt 4b and DMSO, and at concentrations also below 70 %wt mesogen free solvent was also seen 

alongside the mesophase.  

Destabilisation of the induced lamellar phase relative to the Colh phase is consistent with the 

behaviour displayed by the dry materials, where the clearing temperature from the SmA phase is 

consistently lower than that from a columnar mesophase formed at the longest terminal chain 

lengths. However, the increase in the clearing point on changing from SmA to Colh mesomorphism 

in the dry materials is 69 °C, which is significantly greater than that displayed on the addition of 

solvent to compound 11-16, being 25 °C on moving from 70 to 80 %wt DMSO (Figure 4.18). Thus, 

for some reason, the lamellar phase formed on the addition of solvent appears to be more stable 

than the lamellar phase formed by the dry materials.
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Figure 4.18. Comparison of phase diagrams formed by compound 11-16 (a) and silver(I) salt 4b (b) in DMSO.
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Concentrating on the fact that free solvent is observed below 70 %wt 11-16 in addition to the 

biphasic regimes requires some discussion as this clearly contradicts the condensed phase rule for 

a two-component system. Bruce and Smirnova1 rationalised one possibility for the observation of 

free solvent in the phase diagram of 4b with DMSO as a result of the slow kinetics of transitions 

into and out of cubic phases, and so the biphasic regions observed were not true biphasic regimes, 

but in fact a manifestation of the slow kinetics of the phase transition. In the case of compound 11-

16 in DMSO, at no point was a cubic phase observed and so there is probably an additional factor 

responsible for the biphasic regimes observed.  

 

 

 

 

 

 

 

Figure 4.19. Photomicrographs of the induced SmA phase of 51 %wt 11-16 in DMSO showing regions of free 

solvent: T = 145 °C. Textures are at x10 magnification. 

Another explanation proposed by Bruce and Smirnova1 was that the solvent behaves like an 

impurity to the mesogen, which was responsible for the appreciable drop in the clearing point on 

the addition of a small amount of solvent. Then, at the concentration where the mesomorphism 

transitioned from Colh to lamellar it was proposed that the mesomorphism observed was the 

thermotropic mesomorphism of a formally solvated mesogen (or solvent-mesogen complex) that 

did not change composition on the further addition of solvent. A very similar trend is observed 

when varying the concentration of 11-16 in DMSO, and after destabilisation of the Colh phase at 70 

wt% 11-16, the shape of the phase diagram becomes invariant. At the point of maximum 

destabilisation of the Colh phase there exists eight molecules of DMSO per mesogen, and so the 

proposed mesogen-solvent complex giving rise to the induced SmA phase is [11-16.8DMSO]. Then 

Free solvent 
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further reducing the concentration of 11-16 results in the solvation of this species where some 

additional solvent is observed as free solvent alongside the induced mesophase.  

Not only is this behaviour consistent with the mesomorphism of the silver(I) salts in DMSO but also 

with the solvent-induced behaviour of a series of calamitic diols studied by Kölbel et al.24 They found 

that the calamitic diols presented in Figure 4.20 could take up a defined maximum amount of 

solvent, and described this as a guest-host relationship where the mesomorphism was the 

thermotropic behaviour of a solvated compound rather than being lyotropic behaviour in the 

traditional sense. The dry compound shown in Figure 4.20 formed an intercalated SmA phase due 

to segregation of the polar 1,2-diol unit and the biphenyl core and the addition of glycerol stabilised 

the SmA phases and also induced a columnar mesophase above the SmA phase. Formation of the 

columnar mesophase can be explained either by a reduction in the coordinated solvent molecules 

to the diol unit, and/or by an increase in the effective volume of the aromatic moieties due to 

increased mobility at higher temperature. This caused a collapse of the layers into ribbons as shown 

in Figure 4.20 (b), thus forming a columnar mesophase.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20. 1,2-Diols studied by Kölbel et al. (a) and structure of the intercalated SmA phase and formation 

of the columnar phase (ribbons) on the addition of glycerol at elevated temperature (b). 

(a) 

(b) 
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Considering that the solvent-induced mesomorphism of compound 11-16 in DMSO is not 

conventionally lyotropic, the tendency is to assign the induced mesophase as SmA rather than 

lamellar. The textures of the induced SmA phase are identical to those of the thermotropic SmA 

phases displayed by the shorter-chain homologues in the series. However, assignments of SmA and 

lamellar are used interchangeably throughout the discussion. 

Another interesting comparison between the phase diagrams displayed by the silver(I) salt 4b and 

N-phenylpyridinium ion 11-16 in DMSO is the significantly higher melting point of the latter across 

the whole phase diagram. Compound 4b melts into crystal+cubic at roughly 45 °C, whereas 11-16 

does not melt into crystal+SmA until around 100 °C. This behaviour is believed to be a feature of 

the mesogens in general owing to the more ionic nature of the N-phenylpyridinium materials, which 

thus require higher temperatures to overcome stronger electrostatic interactions. The triflate salts 

then display the highest melting temperature of any anion due to its small and spherical shape that 

can more easily be accommodated within the crystal structure. Compound 11-16  (with a triflate 

anion) melts at 125 °C as a thermotropic material,25 whereas the melting point of silver(I) salt 4b 

(with a tetradecylsulfate anion) is 50 °C as a dry compound.26 So the addition of solvent to both 

compounds depresses the melting temperature to similar extents relative to the dry compounds. 

The phase diagram constructed between compound 11-12 and dodecanol presented in Figure 4.8 

shows that the SmA phase is significantly destabilised on the addition of 5 %wt dodecanol that 

corresponds to three solvent molecules per mesogen, after which point the mesomorphism shown 

is Colh to 80 %wt 11-12. At concentrations lower than 80 %wt 11-12, only crystal and isotropic liquid 

phases are observed. Considering that the induced Colh phase formed only across a narrow region 

of the phase diagram (and that this mesophase was observed only monotropically) suggests that 

the nature of this mesomorphism is different to that observed for 11-16 in DMSO.  

3.3. Solvent-induced behaviour of the alkylsulfate salts 

Compounds with alkylsulfate anions displayed the richest mesomorphism on the addition of 

external solvent. Much like the triflate salts, 11-12 and 11-16, the alkylsulfate salts that formed 

cubic or Colh phases as dry materials all formed induced SmA phases on the addition of DMSO and 

DMF. In one case, MeCN was also able to induce a SmA phase, albeit monotropically. Quite why 

only one case of induction was observed for MeCN is unclear, but the low boiling point of this 

solvent did limit the temperatures that could be accessed. The volatility and boiling point of the 
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solvent are hugely important factors for inducing mesomorphism in these compounds; in the many 

cases of SmA induction with DMSO, induction was observed at a temperature well above the boiling 

point of MeCN. The addition of alcohols upwards of propanol induced Colh phases in the alkysulfate 

salts that displayed SmA and cubic mesophases as dry materials.  

However, unlike the N-phenylpyridinium triflates, the addition of linear alkanes does induce 

lyomesomorphism in the alkysulfate compounds. Considering that linear alkanes did not induce 

lyomesomorphism in both the N-phenylpyridinium triflates and the silver(I) triflates, it is clearly a 

property inherent to the triflate anion that explains the lack of induction in these materials. A 

probable explanation for these findings is a chemical incompatibility between the hydrocarbon 

solvent and a fluorinated anion. 

As mentioned in Section 2.2, compounds 27-10 and 28-10 (each with decyloxy chains and an 

octylsulfate and dodecylsulfate anion, respectively) formed induced Colh phases on the addition of 

decane, dodecane and pentadecane. The addition of alkanes shorter than decane, however, did 

not induce lyomesomorphism presumably due to the volatility of these solvents. Compounds 27-8 

and 28-8 with octyloxy chains, on the other hand, did not show induction with any linear alkane 

and the same mesophase(s) as the dry materials were observed. Compound 27-6, on the other 

hand, with shorter hexyloxy chains formed a monotropic cubic phase on the addition of linear 

alkanes from octane to pentadecane. It would appear that compounds with hexyloxy and decylocy 

chains form induced mesophases on the addition of alkanes, but compounds with intermediate 

octyloxy chains did not. How can this behaviour be rationalised?  

These results demonstrate well the balance between internal and external solvents in dictating the 

mesomorphism of a given system. Compound 27-6, with the shortest terminal chains and an 

octylsulfate anion, forms a SmA phase as a dry compound. The addition of alkanes then induces the 

formation of a monotropic cubic phase, consistent with solvent location with the peripheral chains 

to influence curvature thereby. Compound 27-10, with an octylsulfate anion and decyloxy chains, 

forms a SmA phase and a cubic phase as a dry compound, whereas dry 28-10 with a dodecylsulfate 

anion and decyloxy chains forms a cubic and a Colh phase. The addition of alkanes to compounds 

27-10 and 28-10 induces Colh mesomorphism in both materials owing to the fact that solvent 

molecules locate preferentially with the aliphatic chains; the thermotropic cubic phase of 28-10 is 

totally supressed on the addition of alkanes consistent with the induction of a Colh phase. However, 
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compounds 27-8 and 28-8, with shorter terminal chains, each form a thermotropic SmA phase but 

an additional cubic phase is observed in 28-8 owing to the longer dodecylsulfate anion. However, 

only a cubic phase is observed when cooling both 27-8 and 28-8 from their isotropic liquids (as dry 

materials), which is the same mesomorphism observed in contact preparations with linear alkanes. 

An explanation consistent with these results is not that linear alkanes destroy mesomorphism in 

compounds 27-8 and 28-8, but rather that they do not generate sufficient curvature to induce the 

formation of a new mesophase (a Colh phase) and so the cubic phase persists. It is important to 

stress that the cubic phase is still observed in contact preparations with decane, dodecane and 

pentadecane and so these solvents are not destroying liquid-crystalline behaviour. Lengthening of 

the terminal chains covalently attached to the mesogen in compounds 27-10 and 28-10, however, 

does then provide the necessary curvature to induce a Colh phase on the addition of alkanes. Quite 

why the induction of a Colh phase in compounds 27-8 and 28-8 is only observed on the addition of 

aliphatic alcohols (and not with linear alkanes) is still unclear. 

3.4. Structural parameters of the thermotropic and induced Colh phases 

In Section 2.2, X-ray diffraction patterns of the thermotropic Colh phase formed by compound 28-

10 and the induced Colh phase in a mixture of 30 %wt decanol and 28-10 were presented (Table 4.7 

and Figure 4.12). Interestingly, the lattice parameter, a, was 4.3 Å smaller in the solvent-induced 

phase compared to that of the dry material. This was surprising as the nature of the induced 

mesophase formed on the addition of higher alcohols would suggest that the solvent swells the 

aliphatic chains of the mesogen to increase curvature established at the core-chain interface. Thus, 

one would expect an increase in the lattice parameter consistent with increasing the diameter of 

the columnar cross-section. 

However, considering the generalised model for the structure of columnar phases formed by 

polycatenar mesogens,27 a number of molecules (often between three and five depending on the 

material) can be considered as forming a repeat motif, being aligned at some angle in the column 

with respect to the columnar long axis (Figure 4.21). The transition from lamellar to columnar 

organisation is regarded as taking place by undulation of the layers on increasing chain length, with 

the undulations eventually becoming so large that discrete packs of molecules can be identified,28 

representing the columnar cross-section. Two models are consistent with a decrease in the lattice 

parameter on the addition of solvent. First, is that the alcohol solvent somehow induces greater 

tilting of the mesogens in the column, which would reduce the diameter of the columns and 
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consequently lead to reduction in the a parameter in the solvent-induced phase. Second, is that 

location of the solvent with the peripheral chains reduces the number of mesogens in the cross-

section of the column so that if the solvent increases interfacial curvature by locating with the 

chains, then fewer mesogens may be found in the cross-section of a column, reducing the lattice 

parameter. With the data in hand, it is, however, not possible to discriminate between these two 

mechanisms and of course, the two mechanisms are not entirely discrete. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21. Model showing arrangement of polycatenar molecules in the columnar repeat units (a) and 

reduction in the a parameter on addition of decanol by reducing the cross-section of the columns (b). 

(a) 

(b) 

Dark lines represent how columns 
form from undulation of lamellae  
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3.5. Solvent-induced behaviour of the NTf2
- salts 

Only polar aprotic solvents such as DMSO induced lyomesomorphism in the triflimide salts and a 

SmA phase was induced in all cases. An assignment of SmA is given rather than lamellar for this 

solvent-induced phase as the optical textures produced on the addition of DMSO were identical to 

the thermotropic SmA textures formed by the triflate salts (focal-conics and batonnets can be 

seen), and are considerably different to those formed by the dry material as shown in Figure 4.16. 

A diffraction pattern of the induced SmA phase formed by a mixture of compound 29-10 with 30 

wt% DMSO was recorded and this is presented in Figure 4.17. A single reflection was observed in 

the small-angle regime consistent with a d001 reflection. Furthermore, the reflection observed at 

10.9 Å in the Colr phase formed by the dry compound was absent, and so the diffraction data in 

general are consistent with the induction of a SmA phase on the addition of DMSO. The lamellar d-

spacing is also similar in magnitude to the d-spacing observed in the thermotropic SmA phase 

formed by the triflate compound, 11-10, also with decyloxy chains (32.9 Å vs 30.6 Å, respectively). 
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4. Conclusion 

The solvent-induced mesomorphism of the newly prepared N-phenylpyridinium ions is broadly 

similar to that displayed by the stilbazole complexes of silver(I), demonstrating nicely their 

amphiphilic behaviour. The lyomesomorphism of these salts is controlled by a delicate balance 

between the internal solvent covalently attached to the mesogen and the external solvent added. 

Much like the silver(I) salts (and also the Group 10 metallomesogens studied by Usol’tseva et al.18,20) 

the chain length of apolar solvent molecules needed to be similar in length to the chains attached 

to the mesogen covalently if lyomesomorphism was to be induced. The nature of the anion was 

also important in controlling the induced mesomorphism and the alkylsulfate salts always showed 

richer mesomorphism than their triflate analogues; much the same behaviour was true for the 

silver(I) salts. One explanation consistent with these findings is the chemical incompatibility 

between a fluorinated anion and a hydrocarbon solvent and to test this hypothesis it would be 

possible to prepare analogous materials with a small, hydrocarbon-based anion that would mimic 

the spatial requirements of the triflate moiety. Some attempts were made during these studies to 

prepare methylsulfate salts as such an example, but the compounds could not be isolated in 

acceptable purity. 

A crucial difference, however, between the lyomesomorphism of the silver(I) salts and the newly 

prepared N-phenylpyridinium ions was that observed on the addition of alcohols as a Colh 

mesophase was always induced in the latter materials, consistent with an increase in curvature at 

the core-chain interface. The silver(I) salts had behaved a little differently and the addition of 

alcohols could either increase or reduce interfacial curvature depending on the space available to 

the solvent molecules. The shortest alcohols (methanol and ethanol) also induced chromonic 

behaviour in the silver(I) salts where the nature of the mesogenic moiety was truly dependent on 

solvent concentration, a feature never observed in the N-phenylypridinium ions. The behaviour of 

the N-phenylpyridinium materials is then a little more predictable on the addition of alcohols. 

The behaviour of the triflimide salts in response to solvent is certainly interesting and demonstrates 

the delicate competition between electrostatics and the relative core and chain volumes. Recall 

that the formation of the Colr phase by the dry materials was explained by the more charge disperse 

triflimide anion causing a break-up of the lamellae into ribbons, outweighing the competing 

increase in core volume imparted by the larger triflimide anion. The addition of DMSO to further 
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increase the core volume then causes volumetric arguments to dominate and a SmA phase is 

induced. The behaviour of the triflimide salts on the whole is a little different compared to their 

triflate and alkylsulfate analogues, and the preparation of a series of silver(I) triflimide salts would 

certainly make for an interesting comparison. 

5. Experimental 

5.1. Polarising optical microscopy 

Mesophase identification on the addition of solvent was achieved through polarising optical 

microscopy, and in some cases by X-ray diffraction. Microscopy experiments were of the Lawrence 

penetration type, where the dry compound was placed on a microscope slide and covered with a 

coverslip. The sample was heated into the isotropic liquid to create an even thickness of the sample 

between the microscope slide and coverslip and cooled back to r.t. The solvent was then added to 

the edge of the sample and allowed to penetrate via capillary action, thus establishing a 

concentration gradient from the edge of the sample (highest solvent concentration) to the centre 

(no solvent). The sample was then heated at 10 °C min-1 and any induced mesophases observed. 

During this process, solvent was constantly added to the edge of the coverslip via a capillary tube 

to maintain a concentration gradient. Once in the isotropic liquid, the sample was cooled at 10 °C 

min-1 and mesophases identified by their characteristic optical textures. Establishing a 

concentration gradient provided a snapshot of the binary phase diagram at the temperature in 

question. 

5.2. Binary phase diagrams 

In two cases, a binary phase diagram was plotted. Requisite amounts of the mesogen and solvent 

were weighed onto a microscope slide and covered with a coverslip. The edges of the coverslip 

were then sealed with epoxy resin that was stable to 200 °C to prevent evaporation of the solvent. 

The sample was then heated on the polarising microscope to allow the two components to mix. 

Mesophases were identified from their characteristic optical textures when viewed between 

crossed polarisers. 

5.3. X-Ray diffraction for solvent-induced mesophases 

The required amounts of mesogen and solvent were weighed onto a microscope slide and mixed 

as best as possible using a spatula and needle. The resulting material was then added to a capillary 
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tube (0.9 mm in diameter) and pushed to the bottom using fine electrical wiring (care was taken 

not to smash the capillary tube). The top of the capillary tube was then sealed with epoxy resin to 

prevent evaporation of the solvent. Diffraction patterns were then recorded using a Bruker D8 

Discover equipped with a temperature controlled, bored graphite rod furnace, custom built at the 

University of York. The radiation used was copper Kα (λ = 0.154056 nm) from a 1 μS microfocus 

source. Diffraction patterns were recorded on a 2048 x 2048 pixel Bruker VANTEC 500 area detector 

set at a distance of 127 mm from the sample. Two-dimensional diffraction patterns were collected 

every 10 °C on heating to the isotropic liquid and subsequent cooling to room temperature at a rate 

of 10 °C min-1. The data were then processed using Origin. 

5.4. DSC 

Samples were prepared by weighing the requisite amounts of compound and solvent in a small vial 

and mixing as thoroughly as possible with a needle and spatula. The sample was then transferred 

to a 20 μL aluminium crucible and calorimetry scans were run on a Mettler Toledo DSC822e 

instrument (running on a Stare software) equipped with a TSO801R0 sample robot and calibrated 

using pure indium. Samples were run at heating/cooling rates of 5 °C min-1.  
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Chapter Five: Mesomorphism of an Homologous Series of Tetracatenar Complexes of 
Silver(I) Triflate and Silver(I) Dodecylsulfate Bearing 3,4-Dialkoxyphenylpyridine 

Ligands: A Comparison to the 3,4-Dialkoxystilbazole Complexes of Silver(I) and the N-
Phenylpyridinium Ions. 

1. Introduction 

One point of interest in this work has been to compare the tetracatenar N-phenylpyridinium salts 

with the silver(I) stilbazole complexes made earlier in the group. The preparation of the N-

phenylpyridinium materials goes through a 3,4-dialkoxyphenylpyridine intermediate, which itself 

can coordinate to silver(I). Therefore, the preparation of these new silver salts would allow a more 

precise comparison with the N-phenylpyridinium salts and so the synthesis of 3,4-

dialkoxyphenylpyridine silver(I) complexes with triflate and dodecylsulfate anions, 31-n and 32-n, 

respectively, was undertaken.  The structure of these newly prepared silver complexes is shown in 

Figure 5.1.  

 

 

 

Figure 5.1. Structure of the 3,4-dialkoxyphenylpyridine complexes of silver(I) triflate and silver(I) 

dodecylsulfate. 
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2. Results 

2.1. Thermal behaviour of the dodecylsulfate salts 

The silver(I) complexes of the dialkoxyphenylpyridines were prepared following procedures 

outlined by Donnio et al.1 and two molar equivalents of the phenylpyridine were stirred in 

dichloromethane along with silver(I) dodecylsulfate in a vessel protected from light. The silver(I) 

dodecylsulfate was prepared in house following literature procedures.2,3 After 24 hours of stirring 

the ligand and silver(I) dodecylsulfate, the reaction mixture was filtered through a plug of celite and 

the filtrate evaporated to dryness. The residue was then crystallised from hot acetone and the 

resulting solid triturated with diethyl ether to afford the phenylpyridine complexes of silver(I) 

dodecylsulfate in analytical purity. Yields typically varied from 50-65% depending on the terminal 

chain length. 1H NMR spectroscopy was able to differentiate the complexes from the free ligand, 

showing a downfield shift of 0.15 ppm in the resonances corresponding to the hydrogens ortho to 

the nitrogen atom of the pyridine ring. Thermal data from DSC are presented in Table 5.1 and the 

phase diagram in Figure 5.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. Phase diagram of 3,4-dialkoxyphenylpyridine complexes of silver(I) dodecylsulfate from 

polarising optical microscopy on heating. 
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Table 5.1. Thermal data from DSC; temperatures reported are onset temperatures on heating. 

 

 

 

 

 

 

 

 

 

 

 

 

The homologues with the shortest terminal chains displayed a cubic mesophase, whereas those 

with longer terminal chains displayed a columnar hexagonal mesophase. All homologues studied 

were mesomorphic and the butoxy derivative melted into a cubic phase at 86 °C (assigned on the 

basis of its high viscosity and optical isotropy) and cleared into the isotropic liquid at 99 °C. The 

hexyloxy derivative melted into a cubic mesophase at 77 °C, but then formed a Colh phase at 86 °C 

before clearing into the isotropic liquid at 141 °C; note also the significant increase in the clearing 

point on moving from the cubic mesophase formed by compound 32-4 to the Colh phase formed by 

32-6. Complex 32-8 then showed only a Colh phase between 68 and 166 °C and both the melting 

and clearing points were relatively invariant for the higher homologues studied.  

On cooling from the isotropic liquid on the polarising microscope, the Colh phase formed by 

compound 32-6 grows in from the isotropic liquid as large pseudo focal-conic defects after which 

n Transition T / °C ΔH / kJ mol-1 

4 Crys - Cub 86 6.9 

 
Cub-Iso 99 0.7 

6 Crys-Crys' 40 2.6 

 
Crys'-Crys'' 61 7.5 

 
Crys'' - Cub 77 11.8 

 
Cub-Colh 86 1.7 

 
Col-Iso 141 1.5 

8 Crys-Colh 68 38.1 

 
Colh-Iso 166 2.5 

10 Crys-Colh 80 22.6 

 
Colh-Iso 167 1.9 

12 Crys-Crys' 49 14.7 

 
Crys'-Crys'' 63 11.3 

 
Crys''-Colh 74 7.9 

 
Colh-Iso 134 1.0 

14 Crys-Colh 83 54.6 

  Colh-Iso 154 2.7 
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the cubic phase grows in slowly and supercooled as sharp edges at 67 °C as shown in Figure 5.3. 

Homologues upwards of 32-8 displayed only an enantiotropic Colh mesophase with pseudo focal-

conic optical textures seen on cooling from the isotropic liquid. All homologues that formed Colh 

mesophases initially formed glasses on cooling to room temperature, crystallising only with time, 

sometimes over the course of several days. 

Assignment as columnar hexagonal mesophases was confirmed by SAXS, where all derivatives with 

the exception of compound 32-6 displayed clear d10, d11 and d20 reflections with relative spacings of 

1 : 1/√3 : 1/Ö4; complete diffraction data for series 32-n are presented in Table 5.2. The lack of a 

d11 reflection for 32-6 implies less well-developed two-dimensional order in this material and may 

reflect the presence of the underlying cubic phase. In order to confirm that the columnar 

mesophase displayed by the hexyloxy homologue was in fact hexagonal, contact preparations were 

performed between this material and 32-8 (which is hexagonal from a clear d11 reflection). The two 

were found to be co-miscible in their liquid-crystalline states, proving the assignment of 32-6 as 

Colh (Figure 5.4 (c)). 

 

 

 

 

 

 

Figure 5.3. Photomicrograph of the cubic phase growing in from the Colh phase on cooling compound 32-6 

from the isotropic liquid. Texture is at x10 magnification. 

All compounds also displayed a diffuse scattering in the wide-angle region of their diffraction 

patterns at a spacing of 4.5 Å corresponding to the liquid-like behaviour of the terminal alkoxy 

chains; a typical diffraction pattern is shown in Figure 5.6. Another diffuse reflection is seen at 10.5 

Å, which currently cannot be assigned. It may be that this reflection arises from the silver-silver 

distances; this reflection was also observed in the diffraction patterns of the silver(I) stilbazole 

materials and were also not assigned. 
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A steady increase in the columnar a parameter was observed on increasing terminal chain length 

due to an increase in the width of the columns (Table 5.2 and Figure 5.5). However, the a parameter 

is significantly smaller than the molecular length estimated from single-crystal structure fragments 

(being 82% smaller at 32-8 and falling to 73% by 32-12). This is consistent with the model proposed 

by Bruce and co-workers for the revised mode of packing in the Colh phase formed by polycatenar 

liquid crystals in which the molecules are tilted within the columns.4  

Table 5.2.  Observed and calculated d spacings from SAXS of the dodecylsulfate salts forming Colh phases: 

the calculated molecular length of each cation assumes chains are in their all trans conformation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n dobs / Å hk Parameter / Å   Calculated molecular length / Å 

8 28.9 10 a = 33.4 40.5 

 16.9 11  
 

 
14.4 20 

  
 4.5 halo  

 
10 30.9 10 a = 35.7 45.9 

 17.9 11  
 

 
15.4 20 

  
 4.5 halo  

 
12 32.4 10 a = 37.4 51.0 

 18.8 11  
 

 
16.2 20 

  
 4.5 halo  

 
14 34.2 10 a = 39.5 55.1 

 19.8 11  
 

 
17.0 20 

  
  4.5 halo      
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Figure 5.4. Polarising optical textures of (a) the Colh mesophase formed by 32-6, (b) the Colh mesophase 

formed by 32-8 and (c) their co-miscibility to prove the symmetry of the former as hexagonal. Textures are 

at x10 magnification. 

(a) (b) 
31-8 

31-6 (c) 
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Figure 5.5. Plot of the a parameter vs chain length and calculated molecular length vs chain lengt for the 

series 32-n. 

 

 

 

 

  

 

 

 

 

Figure 5.6. Diffraction pattern of 32-8; inset shows clearly the d11, d20 and unassigned medium-angle 

reflections. 
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2.2. Thermal behaviour of the triflate salts 

The phenylpyridine complexes of silver(I) triflate were also prepared according to the procedure 

outlined by Donnio et al.1 that involved stirring the phenylpyridine and silver(I) triflate in acetone 

in a vessel protected from light. After a minimum of 4 hours, the reaction mixture was cooled to      

-18 °C and the resulting precipitate isolated via filtration, washing with multiple portions of cold 

acetone and drying. Yields typically varied from 50-80% depending on the terminal chain length. 

Elemental analysis proved the analytical purity of each homologue prepared. The thermal data from 

DSC are reported in Table 5.3 and the phase diagram is shown in Figure 5.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Phase diagram of the 3,4-dialkoxyphenylpyridines of silver(I) triflate, 31-n; temperatures are 

from microscopy on heating. 
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Evident from Figure 5.7 is the steep decrease in the melting point from 31-4 to 31-10, which then 

recovers to increase slowly for 31-12 to 31-18. This behaviour is in contrast to that displayed by the 

dodecylsulfate series, 32-n, where no appreciable difference in the melting point was observed on 

increasing chain length. Melting of the triflate salts is, therefore, dependent on the terminal chain 

length. Furthermore, the melting points of the triflate salts are consistantly higher than the 

dodecylsulfate salts, presumably due to the flexible alkylsulfate anion in series 32-n that 

destabilises the crystal phase.  

Table 5.3. Thermal data of the triflate salts, 31-n, from DSC; transition temperatures reported here are 

onset temperatures on heating. 

 

 

 

 

 

 

 

 

 

 

 

In the triflate salts, the butoxy and hexyloxy homologues are non-mesomorphic and melt directly 

into the isotropic liquid at 140 and 122 °C, respectively. Complexes 31-8 to 31-12 all form only a 

cubic phase as evidenced by the loss of birefringence on melting and formation of a viscous, 

optically extinct fluid when viewed on the polarising microscope. The clearing point was relatively 

constant, but variation in the melting point gave a narrow phase range of 10 °C for 31-8 and a wider 

n Transition T / °C ΔH/ kJ mol-1 

4 Crys-Iso 140 65.3 

6 Crys-Iso 122 25.6 

8 Crys-Crys' 65 14.8 

 
Crys'-Cub 102 9.9 

 
Cub-Iso 112 1.9 

10 Crys-Cub 83 27.2 

 
Cub-Iso 117 1.4 

12 Crys-Crys' 85 34.4 

 
Crys'-Cub 96 73.3 

 
Cub-Iso 116 3.2 

14 Crys-Cub 102 27.8 

 
Cub-Col 111 0.8 

  Colh-Iso 129 0.3 

18 Crys-Colh 114 152 

 Colh-Iso 153 1.9 
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range of 34 °C for 31-10. Complex 31-14 also showed a cubic phase with slightly reduced stability 

above which was a Colh phase, which increased in stability with chain length. 

 

 

 

 

 

 

Figure 5.8. Optical texture of the Colh phase formed by compound 31-14 at 120 °C (a) and the cubic phase 

growing in from the Colh phase of 31-14 at 102 °C (b). Textures are at x10 magnification. 

The d11 reflection of the columnar hexagonal phase formed by compound 31-14 cannot be seen via 

SAXS, and so to assign this phase as hexagonal columnar required contact preparations to be 

performed between this material and compound 32-12, a compound which did show both d11 and 

d20 reflections. The co-miscibility of the two columnar mesophases proved the assignment of the 

former as hexagonal. Again, the lack of a clear d11 structure factor may well be down to the less 

well-developed two-dimensional order in this material with the underlying cubic phase (much like 

the n = 6 dodecylsulfate salt). 

On cooling compounds 31-8, 31-10 and 31-12 from the cubic phase, crystallisation occurred slowly 

when held at room temperature (or close to room temperature) with the exact temperature at 

which crystallisation occurred being dependent on the cooling rate. DSC was able to detect this 

crystallisation process, which often occurred on subsequent heating cycles due to the slow kinetics 

of crystallisation from cubic phases; these are observed clearly as exothermic peaks on subsequent 

heating cycles. These crystallisation peaks do appear at temperatures where the crystal phase is 

thermodynamically stable, despite being seen on a heating cycle. The columnar hexagonal phase 

of 31-14 crystallised repeatedly at 67 °C on cooling cycles via DSC, although, crystallisation was not 

observed until 56 °C via microscopy. 

(a) (b) 
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In addition, cooling compound 31-6 from the isotropic liquid sometimes results in the formation of 

a monotropic mesophase that exists only for a short period of time (sometimes several seconds), 

with the temperature at which it forms being very dependent on the cooling rate. This metastable 

phase is mostly homeotropic in nature, but some regions of a fan-like texture can be seen around 

the edges of the sample. These observations are consistent both with a metastable SmA or Colh 

phase; however, as no lamellar phase was formed by any other homologue in this series the 

tendency is to assign this monotropic phase as Colh. 

 

 

 

 

 

 

Figure 5.9. Optical texture of the metastable Colh phase formed by the hexyloxy homologue, 31-6. Texture 

is at x10 magnification. 

3. Discussion 

3.1. Comparison with the stilbazole complexes of silver(I) 

The 3,4-dialkoxyphenylpyridine complexes of silver(I) triflate, 31-n, and silver(I) dodecylsulfate, 32-

n, both behave largely in a similar fashion to the stilbazole complexes of silver(I). Clearly, the length 

of the terminal alkoxy chains has a strong influence over their mesomorphism, and in both cases, 

increasing the terminal chain length leads to a change from cubic to Colh mesomorphases.5,6  

A comparison between the mesomorphism displayed by the phenylpyridine complexes of silver(I) 

triflate and silver(I) dodecylsulfate reveals that the change from cubic to Colh mesomorphism occurs 

at a shorter terminal chain length in the dodecylsulfate series, 32-n, compared to the triflate series, 

31-n. The same general observation was made by Donnio et al.1,5 who explained that it was due  to 

the long alkylsulfate chain extending past the aromatic core to contribute to the terminal chain 

volume, thus increasing the curvature established at the core-chain interface. The smaller, 
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spherical, triflate anion locates next to the silver centre and cannot contribute to the chain volume; 

this behaviour is well understood and has been discussed extensively in Chapter Three.  

Much like the stilbazole complexes of silver(I), the SmC phase is still absent at short terminal chain 

lengths. The steric hindrance of the anion coupled with weaker electrostatic attractions from the 

tightly bound nature of these salts is clearly sufficient to destabilise self-organisation into layers. 

The effect of the core size is observed when a comparison is made between the form of the phase 

diagrams formed by the phenylpyridine and stilbazole complexes (Figure 5.10 and 5.11). Thus, the 

cubic phase is significantly destabilised in the phenylpyridine complexes both in terms of its thermal 

stability and the chain length at which it is seen and this is particularly clear from Figure 5.10. This 

observation is entirely consistent with the proposal that the dodecylsulfate chain extends beyond 

the rigid cation core to contribute to the terminal chain volume, which it is able to do to a greater 

extent given the shorter length of phenylpyridine compared to stilbazole (9.4 Å vs 7.1 Å). 
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Figure 5.10. Comparison of phase diagrams of (a) the stilbazole complexes of silver(I) dodecylsulfate and (b) the analogous phenylpyridine complexes of silver(I) 
dodecylsulfate, 32-n. 
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Figure 5.11. Comparison of the phase diagrams of (a) the stilbazole complexes of silver(I) triflate and (b) the analogous phenylpyridine complexes of silver(I) triflate, 31-n.
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A more significant difference, however, is the quite different form of the two phase diagrams with 

the triflate anion both in terms of cubic phase stability and the evolution of Colh phase stability 

(Figure 5.11). Thus, the clearing temperatures of the cubic phases formed by the phenylpyridine 

complexes are, on average, 40 °C lower than those formed by the stilbazole complexes.  

This effect may arise due to the overall shape of the salt imparted by the different ligands. A 

schematic of the two different salts is shown in Figure 5.12 and those with stilbazole ligands have 

a core that runs diagonally through the silver centre due to the overall wedge-shape of the 

stilbazole moiety. The phenylpyridine ligand, on the other hand, generates a core that runs linearly 

through the silver centre due to the lack of trans vinyl bonds. The spatial requirements of the triflate 

anion can, therefore, be better accommodated by the stilbazole ligands so that the overall shape 

of the salt is more anisometric. The anion represents a greater perturbation from the core in the 

phenylpyridine complexes to behave as a lateral substituent and reduce the anisotropy of the 

phenylpyridine salts, which is consistent with reduced mesophase stability. A single crystal 

structure of the related 3,4-alkoxy-3’-stilbazole complex of silver(I) triflate7 shown in Figure 5.13 

reveals association of the triflate anion with the silver(I) cation and it can be assumed that a similar 

disposition of anion and cation exists in the phenylpyridine complexes (no single crystal structure 

could be obtained for the phenylpyridine materials). Although the single crystal structure may well 

not reflect precisely what is found in the mesophase, one can assume a similar arrangement of the 

anion and cation exits.  

The Colh phase formed by the phenylpyridine complexes is then stabilised significantly when the 

mode of self-organisation changes and this could be a result of the added curvature of this 

mesophase being better able to accommodate the spatial requirements of the anion, akin to the 

stabilisation of the Colh phase formed by the N-phenylpyridinium salts.8  After all, the shape of the 

cores of the phenylpyridine complexes of silver(I) and the N-phenylpyridinium ions are similar and 

so both may be able to accommodate the anion more readily on entering the Colh phase. 
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Figure 5.12. Schematic to show how the different ligands lead to better accommodation of the triflate 
anion into the mesophases generated by the stilbazole complexes. 

 

 

 

 

 

 

 

 

Figure 5.13. Single-crystal X-ray structure of a stilbazole complex of silver(I) triflate.7 
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3.2. Comparison with the N-phenylpyridinium salts 

A significant difference exists in the form of the two phase diagrams formed by the phenylpyridine 

complexes of silver(I) and the N-phenylpyridinium ions as evidenced by Figures 5.14 and 5.15. As 

noted earlier, the melting point of the silver(I) triflates (Figure 5.14 (a)) decreases rapidly to 31-10 

and increases gradually thereafter, which implies that the melting temperature is controlled by the 

terminal chain length. Extrapolation of the clearing point from compound 31-8 reveals that the 

mesophase is not stable thermodynamically at short terminal chain lengths and compounds 31-4 

and 31-6 melt directly into the isotropic liquid. The melting points of the N-phenylpyridinium salts 

(Figure 5.14 (b) and Figure 5.15 (b)) remain relatively constant across the series and, with the 

melting point controlled by the terminal chain length, would appear to be driven predominatly by 

a breakdown of the intermolecular ionic interactions.8  

However, a more significant difference between the phase diagrams is evidenced by the type of 

mesophase formed at short terminal chain lengths, being SmA in the case of the N-

phenylpyridinium salts and cubic in the phenylpyridine complexes. The formation of the SmA phase 

in the former materials is well understood and occurs due to space-filling effects of the anion 

coupled with strong electrostatic attractions between neighbouring anions and cations that 

stabilises self-organisation into layers. The SmA phase formed by the N-phenylpyridinium ions is 

destabilised on increasing chain length from compound 11-8 to 11-13, whereas the stability of the 

cubic phase formed by the phenylpyridine complexes remains constant from 31-8 to 31-12. All 

compounds (with both triflate and dodecylsulfate anions) then show significant stabilisation of the 

Colh phase when the mesomorphism changes at long terminal chain lengths. The N-

phenylpyridinium dodecylsulfate salts (Figure 5.15 (b)) do, however, form an intermediate cubic 

phase between the SmA and Colh phases and this phase has a similar stability to the preceding SmA 

phase, albeit with a slight increase in the cubic-to-Colh transition temperature at 28-10. It is also 

evident that a gradual increase in the clearing point of the Colh phase formed by the phenylpyridine 

complexes is observed from 31-14 to 31-18 (Figure 5.14 (a)), whereas the clearing temperature of 

the Colh phase formed by the N-phenylpyridinium salts decreases steadily from 11-14 to 11-18 

(Figure 5.14 (b)). However, this is not a true reflection of the stability of the Colh phases formed by 

the pyridinium ions as decomposition occurs in the upper reaches of the mesophase.  
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It seems overall that the lamellar phase is destabilised strongly on increasing chain length, probably 

because the spatial requirements of the anion disrupts self-organisation of the cations into layers 

much like a lateral substituent attached to the core of a calamitic mesogen promotes nematic 

mesomorphism in place of smectic.9,10 Then, on entering the cubic phase, a plateau of the clearing 

point is observed and the added curvature of this mesophase can better accommodate the spatial 

requirements of the anion. The most significant stabilisation in every case occurs when the mode 

of packing changes to Colh at long terminal chain lengths, and, as discussed in Chapter Three, this 

mesophase is evidently the most stable mode of self-organisation of ionic polycatenar liquid 

crystals due to the added curvature of this phase being best able to accommodate the anion. 

A significant observation from the single-crystal structure of a stilbazole complexes of silver(I) was 

the formation of dimers11 in the solid state as evidenced by Figure 5.13. Using EXAFs, Guillon et al.12 

had shown that the dimeric structure found in the solid state in a series of alkoxydithiobenzoate 

complexes of Zn(II) was retained in the mesophase, but similar studies of the silver(I) complexes 

was not possible given their instability to X-rays. The formation of dimers is ruled out from the 

monomeric solid state structure of the N-phenylpyridinium ions,8 yet the same cannot be said for 

the phenylpyridine complexes of silver(I) owing to a lack of single crystals suitable for X-ray 

diffraction. However, it is not impossible for a dimeric mesogenic moiety of the silver(I) salts to 

contribute to their different mesomorphism when compared to the N-phenylpyridinium ions.  
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Figure 5.14. A comparison of the phase diagrams displayed by (a) the phenylpyridine complexes of silver(I) triflate and (b) the N-phenylpyridinium triflate salts.
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Figure 5.15. A comparison between the phase diagrams of (a) the phenylpyridine complexes of silver(I) dodecylsulfate and (b) the N-phenylpyridinium dodecylsulfate salts.
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4. Conclusion 

Given the extensive work carried out previously with the alkoxystilbazole complexes of silver(I), 

which, as formally ionic liquid crystals, formed the intellectual starting point for this work. The 

preparation of the related phenylpyridine complexes of silver(I) were then sought out to refine the 

comparison with the N-phenylpyridinium salts described in the main part of this thesis. Their 

preparation also allowed a comparison with the stilbazole complexes of silver(I), and, surprisingly, 

quite different forms of the phase diagram were observed given the relatively small structural 

modification. It seems that the spatial requirements of the anion dictate many of the behavioural 

differences (with respect to both the N-phenylpyridinium ions and the stilbazole complexes) with 

mesophase stability being enhanced if the anion is better accommodated structurally as this leads 

to more efficient space filling. As a general trend in ionic polycatenar liquid crystals, lamellar phases 

are the most severely destabilised by the anion, and, in combination with increasing terminal chain 

length, they are further destabilised as self-organisation into layers cannot accommodate the 

added volume of the terminal chains coupled with the steric perturbation of the anion. When the 

mesomorphism changes to cubic on lengthening of the terminal chains, the extra curvature present 

at the aromatic-aliphatic interface leads to a plateau in the clearing point and the anion appears to 

be better tolerated. Then, on entering the Colh phase at the longest terminal chain lengths, a 

significant increase in mesophase stability is observed and this remarkable feature is observed in 

the phase diagram formed by every ionic polycatenar liquid crystal. It seems that the formation of 

columns can best accommodate the steric requirements of the anion as such stabilisation of the 

columnar mesophase was never observed for any neutral polycatenar material. 
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