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Abstract

It is critical that we move towards a more sustainable society. Three of our largest
challenges are the need for sustainable energy generation, currently dominated by fossil fuel
combustion, sustainable food supply, reliant on energy intensive fertiliser production, and a
sustainable supply of fresh water, the treatment of which is often unreliable or economically

prohibitive.

The use of microalgae for low-cost and effective nutrient removal in wastewater
treatment works (WWTW) was established in the mid-20™" century, but microalgae have gained
renewed attention for their ability to accumulate lipids for biodiesel production. Furthermore,
the ability of microalgae to accumulate high nutrient concentrations offers an opportunity to
shift the focus of nutrient control in WWTW from removal to reuse (i.e. in agricultural fertilisers).
This project addresses the hypothesis that microalgae may be cultivated within WWTW to
simultaneously recover essential nutrients, produce biomass suitable for biodiesel production

and contribute to the wastewater treatment process.

A new method to measure algal biomass density using digital image analysis was
developed. The method facilitates the use of small volume cultures for screening studies without
compromising robust growth data. The effect of environmental conditions, present within
WWTW, on the growth, nutrient uptake and lipid accumulation in the model microalga
Chlamydomonas reinhardtii are presented. Results demonstrate that pH control to near-neutral
is preferable for nutrient removal, nutrient recovery and biofuel potential, owing to the increase
in biomass density. In ammonium-rich wastewaters, pH control is critical to prevent ammonia
toxicity. The choice of nitrogen source (ammonium vs. nitrate) had no significant effect on
microalgal growth or biomass composition, microalgal nutrient removal therefore facilitates
removal of wastewater nitrification processes. Finally, the small molecule, diphenyl
methylphosphonate is shown to cause oil retention in C.reinhardtii and offers a means to

improve lipid quality for biodiesel production.
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Chapter One — Literature Review and Project Rationale

1.1 Introduction

Global population is set to rise from 7.3 billion (2015) to 8.5 billion by 2030 and 9.7
billion by 2050 (UN, 2015). With this comes an increased demand for fundamental resources.
Together, known as the Water-Energy-Food Nexus, the interconnected supply and demand of
water, food and energy is the most fundamental challenge to a sustainable society, essential for

human well-being and sustainable development (FAO, 2014).

Clean water is a necessity for food security and economic development, particularly in
industrial and agricultural sectors. With agriculture accounting for 70 % of global freshwater
withdrawals, water is set to become one of the key constraints to food production if better
means of water and land management are not adopted (FAO, 2011a). Food production,
including transport and distribution as well as collection and treatment of the required water,

additionally consumes approximately 30 % of global energy supply (FAO, 2011b).

As a result of our increasing population it is predicted that 60 % more food will need to
be produced by 2050 with total water use for irrigation subsequently expected to rise by 10 %
within the same time frame (FAO, 2011a). Similarly, global energy needs are predicted to
increase by up to 50 % by 2040 (IEO, 2016). In 2009, John Beddington, then the UK chief scientific
advisor, stated that the increasing demands for food, water and energy, along with our need to
mitigate and adapt to climate change, are in danger of creating a ‘perfect storm’ of events with

global implications (Beddington, 2009).

In response to climate change, 2008 saw the world’s first legally binding climate change
target established in the UK, the 2008 Climate Change Act, which commits the UK to reducing
net carbon emissions by 80 % of 1990 baseline levels by 2050 (Climate Change Act 2008).
Additionally, the recent Paris Agreement, which came into force in November 2016, ratified by
all but three United Nations Framework Convention on Climate Change (UNFCCC) eligible
member countries, sees the largest unified agreement on climate change since the Kyoto
Protocol with targets to reduce global warming to “well below 2°C” and commitments to reduce
carbon emissions to net zero by the latter half of the 21 century (Paris Agreement 2015; CCC,

2016).

Current and future scenarios therefore demand prompt actions encouraging a

sustainable and integrated balance to achieve energy, food and water security.
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1.1.1. Energy production and climate change

Current energy supply is dependent on the burning of fossil fuels and this is set to
continue with fossil fuels estimated to account for 78 % of global energy consumption as late as
2040 (IEO, 2016). The burning of fossil fuels releases vast quantities of carbon dioxide into the
atmosphere leading to global warming and climate change. As of 2010, fossil fuel related CO;
emissions from the energy sector accounted for 69 % of all greenhouse gas emissions (IPCC,
2014), but as the effects of climate change intensify, a change to so-called ‘green’ energy sources

is imperative.

Atmospheric CO; concentrations are at a record high, consistently exceeding 400 ppm
(CO2 Earth, 2020) in comparison with pre-industrial times when CO, concentrations never
reportedly exceeded 300 ppm (Etheridge et al., 1998). Furthermore, atmospheric CO; is set to
continue increasing, with current growth rate at approximately 2.4 ppm/year (CO2 Earth, 2020).
The increasing atmospheric CO; is expected to have dramatic effects on our climate in the
coming decades with the recent increase in weather extremes such as heat waves, tropical
cyclones and severe flooding believed to be directly connected to increasing atmospheric CO;

(IPCC, 2007a).

Global temperature has risen 0.85°C since 1880 (IPCC, 2013) leading to dramatic
reductions in polar ice. Subsequent sea-level rise is predicted between 0.52 and 0.98 m by 2100
(IPCC, 2013) jeopardising low lying communities and increasing flood risks. Additionally, ocean
acidification caused by excessive CO, absorption is leading to coral reef destruction (Hoegh-
Guldburg et al., 2007; Andersson and Gledhill, 2013). Coral reefs are some of the world’s most
biodiverse ecosystems and are relied on heavily by industries such as fishing and tourism. Their
destruction will have serious consequences on low-income and isolated communities within reef

regions (Hoegh-Guldburg et al., 2007 and sources therein).

An increase in global temperature is, both directly and indirectly, expected to have
significant implications for human health. Global temperature rise is expected to cause
reductions in crop yield (Lobell and Asner, 2003; Battisti and Naylor, 2009), increasing disease
transmission, particularly for vector-borne diseases such as malaria and dengue-fever where
warming will most likely increase the habitable area for disease-carriers such as mosquitos
(Pascual et al., 2006; Lancet 2009), and worsening air quality particularly in cities (Lancet 2009;

IPCC, 2007b).

With food and water supply dependent on energy security, and energy demand
predicted to rise by nearly 50 % by 2040 (IEO, 2016) as a result of population rise and increasing

development, our need for sustainable energy production is critical.
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1.1.2 Water and wastewater

Rising temperatures and increasing eutrophication are leading to increasingly poor
water quality and intensifying the occurrence and duration of droughts. Economically less
developed countries located in West Asia and North Africa are currently the worst affected by
water shortages, while developed regions such as the US mid-west and Australia are also
significantly affected but with the economic freedom to circumvent the worst effects (Seckler et
al., 1998). Assessments predict that North Africa as well as much of Asia will be the worst
affected by increasing water scarcity approaching 2050 (Brauman et al., 2016; Kummu et al.,

2016; Liu et al., 2017).

Additionally, increasing industrialisation and urbanisation are leading to increasing
quantities of municipal wastewater. An average city of half a million inhabitants produces
approximately 85,000 tonnes of municipal wastewater per day, all of which needs to be
thoroughly cleaned and treated before it can be recycled in order to prevent harmful pollutants

entering water supplies or the environment (Pescod, 1992).

In addition to the presence of harmful pathogens and chemicals condemning untreated
wastewaters unsuitable as a drinking source, high concentrations of nutrients, particularly
nitrogen and phosphorus, as a result of sewage and agricultural run-off, act as harmful
environmental contaminants (Pittman et al., 2011). Eutrophication, the rapid and unwanted
growth of phytoplankton as a result of excessive nutrient concentrations, has become a more
serious and widespread problem since the middle of the 20'" century (Cai et al., 2013). Increasing
demand for food requiring nutrient-rich fertilisers (Lam and Ho, 1989 — cited in Blackburn et al,
2004), industrial growth worldwide (phosphates being one of the primary constituents of
detergents) and increasing temperatures, as a result of global warming, are all expected to
contribute to the increasing occurrence and severity of algal blooms and dead zones (Joyce,

2000).

Photosynthetic algal blooms impose diurnal variations in water pH due to consumption
and release of CO, (Mara, 2003). During dark-hours, algal blooms compete with other aquatic
life for oxygen, whilst consumption of CO, during photosynthesis causes water pH to rise
creating high concentrations of harmful non-ionised ammonia (NHs) (Abdel-Rouf et al., 2012).
Under severe circumstances, algal blooms may completely restrict light penetration below the
surface, halting photosynthesis, resulting in oxygen starvation and eventual death of marine life

(Caietal., 2013).

Blooms of cyanobacteria (formerly blue-green algae) also produce toxins which directly

contribute to marine death. Toxins include paralytic shellfish toxins (PSTs), microcystins, okadaic
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acid and polyether toxins such as those found in diarrhetic shellfish poisoning (DSP)-causing
dinoflagellates (Blackburn, 2004 and sources therein). Some of the effects of algal toxins can be
extended to human life through transfer up the food chain. Algal blooms exacerbate water
shortages through contamination of drinking water supplies. Effects such as the death of fish
have also been linked to a decrease in tourism and subsequent economic decline in regions

where industries such as fishing are vital (Cai et al., 2013).

Furthermore, if untreated, wastewaters serve as a sink, removing valuable nutrients

from circulation and leaving us reliant on finite sources elsewhere.

1.1.3 Food and the need for sustainable fertilisers

With plants unable to obtain phosphorus from the atmosphere and often struggling to
extract phosphorus from soils due to varying soil fixing ability or it being locked up in organic
forms unavailable for uptake (Kochian, 2012), phosphorus is limiting for plant growth on over
half of the worlds arable soils (Lynch, 2011). As such, agriculture in many areas, including in the
UK, is dependent upon the application of phosphate fertilisers, produced from imported rock

phosphate, for food security (Elser and Bennett, 2011).

In usable forms for fertiliser, phosphorus supply is finite. Furthermore, demand is set to
increase with population rise, particularly with the increased popularity of meat and dairy-based
diets requiring a higher phosphorus input than other food sources (Cordell et al., 2009). World
consumption of P,0s is expected to rise from 47 million tons in 2019 to 50 million tons per year
by 2023 (U.S. Geological Survey, 2020) with 82 % of all phosphate used for fertiliser production
(Prud’Homme, 2010). Despite the heavy use of phosphate fertilisers, only 20 % of that used
makes it to the dinner plate, with 60 % of all losses due to erosion, leaching and run-off from
farms (Elser and Bennett, 2011) and eventual removal during wastewater treatment or

biological uptake in eutrophic water systems.

The panic ensued by pre-2010 studies, which estimated the exhaustion of rock
phosphate supplies by 2130 (Abelson, 1999; Schréder et al.,, 2011), has subsided with new
evidence of significant rock phosphate reserves (Elser and Bennett, 2011). The U.S. Geological
Survey estimates that rock phosphate reserves stand at over 300 billion tons, stating that we are

not facing imminent shortages (U.S. Geological Survey, 2020).

Regardless of the quantity of global reserves, the distribution of rock phosphate is such
that four countries/territories (the USA, China, Morocco and Western Sahara) hold over 80 % of
raw rock phosphate supply, with Morocco and Western Sahara alone in control of over 70 % of

all global reserves (Van Kauwenbergh, 2010; U.S. Geological Survey, 2020). As such, almost all

21



of the EUs supply of phosphorus comes from imported rock phosphate, leaving it vulnerable to
volatile prices and supply security. This was starkly highlighted in 2007-2008 when the price of
rock phosphate temporarily rose by 700 % of its 2006 prices over fears of dwindling supplies
(Elser and Bennett, 2011).

Despite our reliance on phosphate for food security, of all phosphorus consumed in food
globally (almost 100 % of which is later excreted), it is estimated that only 10 % is reused either
before or after treatment with the remainder ending in water systems, non-agricultural land or
landfill (Cordell et al., 2009; Schroder et al., 2011). Our wastewaters contain huge quantities of
valuable phosphorus which, if harnessed, could form part of a sustainable phosphorus supply

independent of the need for imports.

In addition, while not a finite resource, atmospheric nitrogen harnessed for fertiliser
through the Haber-Bosch process to produce ammonia is done so at the expense of 1-2 % of
global energy and approximately 2 L of fossil fuels per kilogram of nitrogen (Smith, 2002).
Nitrification/denitrification processes in wastewater treatment see the majority of this nitrogen

converted back into N; gas for safe release back into the atmosphere (see Section 1.3.3.1).

1.2 Microalgae

With approximately 4,500 times global energy demand reaching the earth’s surface
every year in the form of solar energy (Larkum, 2010), energy from biomass (bioenergy) is now
widely adopted. Biomass currently constitutes approximately 10 % of global energy use,
however the majority of this is still used for basic heat production for cooking in developing

countries (IRENA, 2014).

Unlike other renewables, biomass offers an easily transportable, storable and highly
versatile means to harness solar energy with the potential to be converted into several energy
forms, including electricity, biogas and transport fuels, depending on demand (Saxena et al.,
2009). Indeed, the vast majority of current energy supply is reliant on the release of solar energy
stored long-term in the chemical bonds of fossil fuels. Furthermore, the fast growth rate and
intrinsically carbon neutral nature of biomass combustion means that bioenergy offers a

sustainable means to produce energy whilst minimising harmful atmospheric emissions.

Despite the promising potential of bioenergy, biomass production is severely limited by
the availability of land and fresh water. Furthermore, if climate change mitigation policies are
adopted, irrigation of bioenergy crops is predicted to have by far the greatest impact on water
demand approaching 2100 (Mouratiadou et al., 2016). Similarly, as demand for food increases,

so does demand for arable crop land; there are already reports of increasing food prices in the
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USA, Brazil and parts of East Asia due to the production of bioenergy crops on land previously
used for food production (Larkum, 2010 and sources therein). Given the constraints on land at
risk of degradation, vulnerable drylands and the risk of tropical forest encroachment, it is
estimated that it will be impossible for traditional bioenergy crops to provide more than 20-30 %
of primary global energy demand by 2050 and even this will cause considerable pressure on land

supply (Haberl et al., 2013).

The ‘food vs. fuel’ debate and the need for copious amounts of fresh water, alongside
other constraints such as the need for agricultural fertiliser, currently limit the potential of
biomass as a long-term global energy solution. However, the emergence of microalgae as a
research topic for bioenergy production offers a means to circumvent the majority of problems

associated with traditional bioenergy sources.

Microalgae are a large and diverse group of unicellular organisms capable of both
phototrophic and heterotrophic growth through carbon fixation (Chisti, 2007; Greenwell et al.,
2010). The term ‘microalgae’ refers to eukaryotic species such as green algae, however older
reports may also include cyanobacteria, formerly blue-green algae, as prokaryotic microalga.

Compared with traditional land-based biomass crops, microalgae offer several advantages:

e Microalgae can be grown year-round and do not compete with food for land, being
capable of efficient growth on non-arable land, in marine ponds or in brackish waters
(Cai et al., 2013; Gongalves et al., 2016).

e Similarly, they do not require a supply of fresh water and are able to grow in a range of
water systems including wastewater. This is coupled with their ability to extract
nutrients from wastewater systems, essential for microalgal growth but which would
otherwise act as harmful contaminants in water systems such as lakes, ponds and
reservoirs.

e Due to their unicellular structure and the absence of stems, roots, bark and other
structures unable to photosynthesise, the efficiency at which microalgae are able to
convert solar energy into biomass comes much closer to the theoretical maximum
(approx. 9-11 %) than it does for land plants (van Bielen et al., 2010). Additionally,
microalgae do not produce lignocellulosic biomass which is hard to process and
subsequently often goes to waste in energy production systems (Beer et al., 2009).

e Their unicellular structure also facilitates rapid growth and reproduction with doubling

times of approximately 6-8 hours under favourable growth conditions.

Furthermore, microalgae are reportedly capable of much greater oil yields than

terrestrial bioenergy crops (Chisti, 2007; Scott et al., 2010; Demirbas and Demirbas, 2011)
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meaning a much smaller land area would be required to satisfy energy demand. Estimates of oil
yield from microalgae range from 8,200 to 60,000 Lhayear?, depending on the study and
microalgal strain, compared with 544 and 2,700 Lhalyear? for soya and canola respectively
(Chisti, 2007; Scott et al., 2010). These figures should however be used with caution as research
has so far primarily been conducted under heavily controlled conditions at lab or pilot scale and

recent evidence suggests that yields will be lower for scaled-up processes (Amaro et al., 2011).

1.2.1 Economic constraint on microalgal biodiesel

While, in theory, microalgae offer great potential as a biofuel source, in order to be
competitive as an alternative to petrodiesel, microalgal biodiesel must also be economically
comparable. Current diesel prices at pump range from US $0.02-1.88/L across the world with
the average price standing at US $1.02/L (Global Petrol Prices, 2019a). In biodiesels favour, fossil
derived fuel prices are increasing with average world gasoline prices almost doubling since 2002
from US $0.58/L (The World Bank, 2020) to current estimates of US $1.11/L (Global Petrol Prices,
2019b).

Optimistic estimates for the cost of microalgal biodiesel range from US $1.40-3.53/L
(Chisti, 2007; Campbell et al.,, 2011; Delrue et al., 2012; Slade and Bauen, 2013) meaning
microalgal oil production costs need to fall at least 2.5-fold, however other reports predict

reductions of up to seven times current costs may be necessary (Chisti, 2007).

Regardless of the ranging total costs reported, cultivation costs, including nutrients,
carbon dioxide and water, are consistently reported as one of, if not the most significant,
contributor to microalgal biodiesel costs from cultivation in open raceway ponds (Campbell et
al., 2011; Delrue et al., 2012; Nagarajan et al., 2013; Slade and Bauen, 2013) with nitrogen and
phosphorus alone costing up to 10 % of total costs (Delrue et al., 2012; Slade and Bauen, 2013).
These costs could be saved if nutrients can be obtained free of charge (i.e. from wastewater)
with up to 50 % of costs avoidable if carbon dioxide can additionally be obtained for free (i.e.
from flue gas emissions) (Slade and Bauen, 2013). Additionally, the supply of nutrients
reportedly contributes up to 50 % of all energy requirements associated with algal cultivation
(Delrue et al., 2012), as such a source of easily obtainable nutrients could significantly improve
the energy return on investment (EROI) of microalgal biodiesel. These reports stand only for
cultivation in raceway ponds; the cost of microalgal biodiesel from cultivation in
photobioreactors (PBRs) is dominated by capital costs and economic feasibility is unlikely even

if free water and nutrients can be obtained.

It is clear that lipid yield along with the supply of nutrients and water are two of the
largest bottlenecks affecting the economic feasibility of microalgal biodiesel.
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1.2.2 The closed-loop cycle of microalgal wastewater treatment, nutrient recovery and
biofuel production

In recent years there has been considerable interest in combining microalgae cultivation
with wastewater treatment, making use of the free water and nutrients provided by
wastewater, for combined nutrient recovery and biofuel production. The high nitrogen and
phosphorus content of microalgae (approximately 10 % and 1 % respectively) make them
advantageous organisms for the bioremediation of these nutrients from waste systems (van
Harmelen and Oonk, 2006) thus allowing for recycling of essential nutrients back into fertilisers.
The use of microalgae for nutrient removal from wastewaters additionally provides a low-cost,

high efficiency contribution to the wastewater treatment process.

By combining with wastewater treatment, the cultivation of biomass can be done at a
considerably reduced cost due to the free source of water and nutrients provided by
wastewater. Additionally, the contributions of microalgae to the wastewater treatment process
and the ability to recycle high-value nutrients further reduce the total cost of microalgal
biodiesel. Throughout the process, wastewaters and CO; produced may be recycled to feed the
growing algal culture and residual biomass after nutrient and oil extraction can potentially be
anaerobically digested to produce biogas as an additional source of energy. Together these form
the closed loop cycle of water, energy and nutrients for combined wastewater treatment,

nutrient recovery and biofuel production (Figure 1.1).
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Figure 1.1 The proposed closed loop cycle of energy, water and nutrients for combined
wastewater treatment, nutrient recovery and biofuel production. Inspired by Sivakumar et al,
(2012). Algae grown within WWTW can be used to clean the wastewater of contaminating
nutrients (N and P etc.). The produced biomass can then be used to produce biodiesel and
biogas with all waste products recycled back to the cultivation stage. N and P may be extracted
for recycling from biomass either before or after lipid extraction, from AD effluent, or by use of
microalgae directly as a fertiliser.

This project focusses on improving our understanding of the impact of environmental
conditions on biomass cultivation, nutrient uptake and net lipid production and therefore the
opportunities for simultaneous bioenergy generation and nutrient recovery from wastewater.

As such, the remainder of this review will discuss recent advances in the areas of:

e Microalgal growth and nutrient uptake in wastewaters for combined wastewater
treatment and nutrient remediation,

e Strategies for over-accumulation of phosphate in microalgae in the form of
polyphosphate for the production of high-value fertilisers and

e Microalgal biofuel production and lipid optimisation strategies

1.2.3 Chlamydomonas as a model organism

Bioremediation of essential nutrients from wastewaters using Chlorella and Duniliella
has been investigated for the last 50 years and Chlorella is still the most popular choice for
bioremediation research largely due to its common presence within wastewater treatment

facilities, robustness to a wide range of growth conditions and its potential to be used for
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biofuels, animal feeds and fertilisers (Abdel-Raouf et al., 2012; Sun et al., 2013; Asmare et al.,
2014; Gongalves et al., 2014; Zhang et al., 2014a; Caporgno et al., 2015; Mujtaba et al., 2015; Lu
et al., 2015; Cho et al., 2016; Wang et al., 2016). In recent years, as microalgae have gained
increasing attention as a potential biofuel feedstock, research into microalgal wastewater
treatment has expanded to investigate a wide range of microalgal species including
Desmodesmus (Samori et al., 2013), Scenedesmus (Asmare et al., 2014; Xu et al., 2015; Zhang et
al., 2015; Yu et al., 2015; Wang et al., 2016; Lutzu et al., 2016), Pseudokirchneriella (Gongalves
et al, 2014; Morales-Amaral et al., 2015), Muriellopsis (Morales-Amaral et al.,, 2015),
Chlorococcum (Karemore and Sen, 2015) and Chlamydomonas (Zhang et al., 2014a; Yu et al.,

2015; Hernandez et al., 2016).

The chlorophyte Chlamydomonas has emerged as a model organism for the study of
algal metabolism and the production of valuable bioproducts (Salomé and Merchant, 2019).
Over 500 species of Chlamydomonas have been identified and cells have been isolated across
the globe from a range of habitats including freshwaters, oceans and sewage ponds and from a
range of climates including some arctic regions (Harris, 1988). A recent study on the use of
microalgae for phosphorus remediation from WWTW in New Zealand identified
Chlamydomonas as one of only a few luxury phosphorus accumulating microalgae present
commonly within WWTW across three climate zones (Crimp et al., 2018). Specifically, the now
fully sequenced Chlamydomonas reinhardtii genome is a first for microalgae, and facilitates in
depth understanding of photosynthesis, cell division and the effect of environmental conditions
at a genetic level (Merchant et al., 2007). As such Chlamydomonas reinhardtii has become one
of the most widely researched algal organisms with many isolated mutants, allowing for the
study of many specific functions within the cell, and a large knowledgebase regarding its
structure and biochemical functions (Harris et al., 1988; The Chlamydomonas Resource

Center,a).

The ability of Chlamydomonas to grow in a wide range of environments including
wastewaters and ammonia rich media, under both phototrophic and heterotrophic conditions
(when supplied with an organic carbon source) make it especially promising as a potential
organism for nutrient removal within WWTW (Mara, 2003). While other species of microalgae
such as Chlorella, Scenedesmus and Botryococcus have demonstrated greater potential as
biofuel feedstocks (Rodolfi et al., 2013; Islam et al., 2013), the emergence of Chlamydomonas
reinhardtii as a