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Abstract 

The present work focuses on the investigation of the flow with an air-core in 

hydrocyclones. These are used in many industrial sectors owing to their wide range 

of applications, including filtration, dewatering, concentrating or separation. Despite 

their popularity, there is still limited theoretical knowledge that could provide an 

explanation of the flow physics inside the hydrocyclone. Therefore, research on 

hydrocyclones is challenging, especially in areas directly related to the creation of 

the air-core.  

The air-core phenomenon appears when the primary fluid is liquid and the outlet is 

open to the atmosphere. The formation of the air core is hard to capture but may 

influence the hydrocyclone performance. Therefore, it is important to be able to 

observe its formation as this should help in designing hydrocyclones. The numerical 

simulations of hydrocyclone fluid flow offer a major advantage in the device’s design 

process. Computational fluid dynamics simulations enable a wider range of design 

studies to be performed at a relatively smaller cost when compared to physical 

experimentation. The current study investigates and consequently implements a 

new approach for resolution of the flow with air-core in hydrocyclones.  

In the present study, the Reynolds Stress Model (RSM) is employed to deal with an 

anisotropic turbulent flow in hydrocyclones. To tackle the interface, resulting from 

the air core formation, the computational fluid dynamics approach is required to 

harness the Eulerian multi-phase model. To this end, a new numerical technique, 

based on the Volume of Fluid (VOF) interface capturing method, has been employed.  

The advantage of this approach is its practicality and simplicity. Unlike previous 

attempts to apply VOF in hydrocyclones, the present one uses the modified 

advection term in the volume fraction equation. A customised solver called 

Multidimensional Universal Limiter for Explicit Solution (MULES) is an integral part 

of this novel VOF method. It is derived from the Flux Corrected Transport (FCT) 

technique that guarantees accuracy and boundedness. Additionally, the High-

Resolution Scheme (HRS) is applied to optimise the developed VOF method further. 

This technique helps to eliminate unexpected oscillations and dissipation near 

strong gradients. The method is used for the first time in the present study to 

simulate the flow in hydrocyclones. 
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Two straightforward benchmark simulation studies have been undertaken to verify 

the feasibility of the numerical tools. First, the RSM turbulence model was 

successfully used to simulate the single-phase flow in cyclones. The second case 

study was the simulation of the dam breaking flow. The second study proved that 

the developed VOF method could successfully simulate the transient stages of the 

multi-phase flow evolution, showing a clear free-surface between the liquid phase 

and gas phase. Both benchmark simulations have been validated by comparing the 

results with available experimental data. 

Finally, to simulate the flow with air-core in a hydrocyclone, a combination of the 

RSM model and the developed VOF method has been implemented. The RSM model 

is applied to deal with the turbulent flow with large swirls. The new VOF-based 

interface capturing method is used for the modelling of the air-core. The results of 

the simulations demonstrated good agreement when compared with experimental 

data and previous studies.  

After the verification and validation procedures for the new methodology, additional 

simulations were carried out. These were performed for the problems where 

experimental data were not available, or when it was difficult to acquire such data 

using experimental techniques. The other objectives of the present study included: 

Investigating the feasibility of using other common turbulence models for 

hydrocyclone simulation; Investigating the sensitivity of changing the dimensions of 

different sections of the hydrocyclone on flow patterns; The application of different 

interface smearing factors on the simulation result. Finally, the correctness of 

simplifying assumptions, that ignore the air-core presence, on the simulation of the 

flow in hydrocyclones was investigated. 

The proposed numerical simulation methodology is suggested as a convenient 

academic tool that could be utilised as the platform for fundamental studies of the 

flow with air-core in hydrocyclones. It also proved to be a powerful tool that could 

be exploited in practical industrial studies. 
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Chapter 1. Introduction 

1.1 Background and motivation 

The hydrocyclone was invented in the late 18th century (Bhaskar et al., 2007) and is 

still widely used due to its irreplaceable versatility, economy, reliability and simplicity. 

The versatility of the cyclone separator is reflected in its application within many 

fields, such as dewatering, concentrating and separation. The economic cost of a 

cyclone separator is relatively cheaper than other standard units of operations. Due 

to the absence of moving parts, a cyclone separator has an extended operating life 

and low maintenance costs compared to other separation methods. The process 

performance does not deteriorate as a result of the operation time. Nevertheless, in 

terms of drawbacks, a large amount of waste will be generated during the separation 

process since the separation efficiency of the cyclone depends on the mass flow rate, 

which is a difficult parameter to control (Nowakowski, 2008).  

The cyclone separator is designed based on simple principles. The centrifugal force, 

which is generated by the large swirling flow inside the cyclone, can be utilised to 

separate different materials or convey specific particles through the separator. As 

Fig. 1.1 presents, the large particles of heavier weight will be discharged from the 

bottom outlet along the wall. The small particles or fluid with lighter weight will flow 

out from the top outlet along the vortex finder. In general, the cyclone separator can 

handle a variety of separation conditions. The multi-phase flow inside the cyclone 

can be in a gas-solid, gas-liquid, liquid-liquid, liquid-solid or even gas-liquid-solid 

state. Furthermore, the cyclone separator can be called a hydrocyclone only when 

the primary fluid is a liquid suspension. 

The air-core is a fascinating yet not well-comprehended phenomenon that occurs 

in hydrocyclones. Since the efficiency of the separation will be influenced by the air-

core, it has attracted many studies, which have been undertaken based on different 

techniques. It is generally acknowledged that the air-core is generated due to the 

low-pressure area, which is created by the large swirling flow in the centre of the 

hydrocyclone. When the outlets of the vortex finder and spigot open to the 

atmosphere, the low-pressure area will cause a backflow in the atmosphere and 
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eventually form an air-core; this phenomenon is shown in Fig. 1.2. Conversely, if the 

hydrocyclone forms part of a piping network or is in liquid-liquid separation, the air-

core will be suppressed (Davidson, 1988).  

Investigating the flow with air-core in hydrocyclones is a challenging task and has 

been considered by industry and academia. A successful numerical simulation of the 

cyclone flow requires a substantial amount of knowledge from various disciplines. 

Not only is it related to physical theories, but it also needs developments in 

mathematics and computer science. These disciplines are key contributors to the 

development of computational fluid dynamics used to improve hydrocyclone design. 

 

 

 

Fig 1.1. The cyclone separator with particles  

Small particles 

Large particles 

Vortex finder 

Inlet 

Top outlet 

Bottom outlet 
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Fig. 1.2. An air-core generated in the hydrocyclone (Rudolf, 2013) 

1.2 Aims and objectives 

The main aims of this thesis are: 

1. To develop a numerical methodology for the simulation of flow with air-core in 

hydrocyclones. 

2. To verify the developed numerical methodology via a series of simulations. These 

include the single-phase cyclone flow using the RSM turbulence model; the multi-

phase dam breaking flow with distinct interfaces using the developed VOF method; 

the multi-phase hydrocyclone flow using a combination of the RSM turbulence 

model and the developed VOF method. 

3. To investigate the formation of the air-core inside hydrocyclones using the 

developed methodology with a transient state solver. 

4. To analyse the steady flow fields of the flow with air-core in hydrocyclones. 
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5. To apply the numerical methodology to investigate the challenging problems, in 

order to benefit the design of hydrocyclones. 

The specific objectives required to achieve these aims are: 

1. The application of a new approach to Volume of Fluid (VOF)-based interface 

capturing methods capable of capturing the distinct interface between different 

fluids. 

2. The exploration of an appropriate turbulence model, which is applicable for 

modelling turbulence effects in a large swirling flow.  

3. The employment of the transient state solver to capture the interface between 

fluids at different times. 

4. The application of the developed numerical methodology to obtain the data of the 

physical properties of the flow in hydrocyclones 

5. Verification of the developed approach against previous numerical simulations to 

demonstrate the performance of the proposed methodology. 

6. Validation of the simulation results with reliable experimental data.  

7. Comparison of the simulation results using different turbulence models. 

8. Investigation of the effect of changing dimensions of different sections of the 

hydrocyclones on flowing state using the developed methodology 

9. The study of the influence of applying different interface smearing factors (used 

in the new approach to VOF-based interface capturing methods) on the simulation 

result. 

10. Verification of the assumption of simplifying the simulation of the flow in 

hydrocyclones by ignoring the effects of the air-core. 

1.3 Thesis outline 

More than half the content of the first chapter is stated above. It presents the 

background, motivation, aims and objectives of the investigation of the flow with air-

core in hydrocyclones. The thesis outline is given in the current section, and the 

contributions of the present work are listed at the end of Chapter One. 
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Chapter Two presents the previous studies of the flow in cyclones and 

hydrocyclones. The review focuses on the physical phenomena and numerical 

methodologies. 

Chapter Three demonstrates methodologies for numerical simulations. This 

includes the introduction of the Navier-Stokes equations, the discretisation method 

of the differential and integral equations, the interpretation of the pressure-velocity 

coupling problem and the introduction of the turbulence models that were 

employed in all simulations.  

Chapter Four focuses on introducing the equations and techniques related to the 

Volume of Fluid (VOF) solver in OpenFOAM. This solver is optimised through an 

interface compression scheme (Weller, 2008; OpenCFD, 2008) and is implemented 

relying on a customised Flux Corrected Transport (FCT) technique, which is called 

MULES (Multidimensional Universal Limiter with Explicit Solution). The High-

Resolution Schemes (HRS) technique is applied for the calculation of the volume 

fraction equation. An introduction to the FCT and HRS technique is given in this 

chapter in order to understand the principles of the developed VOF method. 

Chapter Five illustrates the essentials of boundary condition setting and mesh 

generation. The application of each boundary condition is explained in detail. The 

section on the mesh generation illustrates the geometric dimensions of each study 

case, and demonstrates the potential defects in the process of generating meshes. 

The solutions for these defects are also given in this chapter.  

Details of the simulation cases are presented from Chapter six to Chapter eight.  

Chapter Six introduces the simulation of single-phase flow in a cyclone separator. 

This simulation is devoted to selecting a suitable turbulence model in the simulation 

of cyclone flow. The validation process is implemented by comparing the simulation 

result with Hoekstra’s (2000) experiment data.  

Chapter Seven presents the simulation of the dam breaking flow. The developed 

Volume of Fluid (VOF) method was used for this simulation. The investigation by 

Cruchaga et al (2007) was used for the validation procedure.  

Chapter Eight introduces the simulation of flow with air-core in hydrocyclones. It 

is implemented based on the algorithm, models and solvers introduced and used in 

the previous studies. The validation procedure is presented by comparing the result 
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with Hsieh’s experimental data (1988). In addition, further studies carried out, based 

on the new methodology, are introduced. These studies were undertaken to explore 

whether the developed numerical simulation methodology can be used to change 

the design of cyclone separators, and to further determine the optimal settings for 

the new numerical simulation methodology. 

Chapter Nine summarises the conclusions of the main study case and provides 

plans for future studies. The complete work plans and completed objectives are also 

listed.  

1.4 Contributions of the work 

The primary contribution of the current work is the application of a new developed 

numerical simulation methodology (the combination of the RSM turbulence model 

and the developed VOF method) to analyse the flow with air-core in hydrocyclones. 

The open source CFD package, OpenFOAM contains some customised methods 

and techniques that will produce a different simulation result compared with other 

commonly used commercial CFD packages. Therefore, the application of the current 

new methodology provides a new investigation strategy for the study of 

hydrocyclones in both the academic and industrial aspects. 

The following specific original contributions are made throughout this work. 

 A simulation of the flow with air-core in hydrocyclones based on the LES method 

and the developed VOF method.  

 The transient flow patterns and formation process of the flow with air-core in 

hydrocyclones  

 A specific analysis of the velocity field, pressure field and other parameters of 

the flow in hydrocyclones.  

 An original study of the influence of applying different turbulence models on the 

simulation result of the dam breaking flow. 

 An original study of the influence of applying different turbulence models on the 

simulation result of the flow with air-core in hydrocyclones. 

 An exploration of the effect of changing dimensions of different sections of the 

hydrocyclones on flowing state. 
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 An original study into the influence of applying different interface smearing 

factors on the simulation results of the hydrocyclone flow. 

 A suggestion for simplifying the simulation of the flow in hydrocyclones by 

ignoring the effects of the air-core. 

 Some defects with OpenFOAM were found during the simulations. 
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Chapter 2. Characteristics of the hydro-
cyclone based on previous studies 

2.1 General study 

In earlier days, the studies of the cyclone and hydrocyclone are processed focused 

on the basic working principles. More and more specific phenomenon and theories 

about the cyclone flow has been revealed since formal researches on the cyclone 

separator were carried out (Shepherd and Lapple, 1939 and 1940. Ter Linden, 1949. 

Kelsall, 1952). Shepherd and Lapple (1939 and 1940) investigated the flow pattern, 

fraction loss and pressure drop of the cyclone dust collector in their experiments. 

They demonstrated the effects of dust, inlet deflector vane and exit vane on 

pressure drop. As far as the flow pattern in their research is concerned, the flow 

inside the cyclone consists of two different kinds of spiral patterns. The outer 

downward spiral is shaped close to the cyclone’s wall, while the other is an inner 

upward spiral, which occurs near the centre of the cyclone as Fig. 2.1 shows. 

Furthermore, the research mentioned that for the outer region, the spiral velocity 

increases approximately with the inverse square root of the radius; and the spiral 

velocity decreases with decreasing radius when the radius is less than one-third of 

the cyclone cylinder. Ter Linden (1949) explained a similar flowing pattern in his 

research. He carried out his experiment in a three-dimensional environment, but the 

inner part of the cyclone flow was hard to be measured due to the intense 

turbulence and unsteady. After excluding some inaccurate data from the central 

area, he founded that the tangential velocity increased as the distance from the 

centre of the cyclone diminished. The deviation between the total velocity and 

tangential velocity 𝑉௧  is inconspicuous. The vertical component 𝑉௛  is directed 

downward in the region approaches to the cyclone walls, and the particles will be 

conveyed out in this region. The radial velocity 𝑉௥ is directed to the centre of the 

cyclone in the outer part of the spiral; In contrast, the directions are reversed for 

the vertical component 𝑉௛ and radial component 𝑉௥ in the highly turbulent centre 

part (Ter Linden, 1949).   
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Fig. 2.1. The cyclone separator and the spiral inside the cyclone  

(Alahmadi and Nowakowski, 2016) 

2.2 Swirl flow in cyclones 

Accompany with the advancement of measurement technology and the emergence 

of Computational Fluid Dynamics, the entire flow pattern of the single-phase cyclone 

flow becomes apparent. The analysation of the behaviour of the swirl flow in 

cyclones can be separated into tangential velocity and axial velocity. When a swirling 

flow emerges in a confined domain, the pattern of the tangential velocity can be 

defined as a combination of two distinct regions. The inner part close to the centre 

of the domain is called the solid-body rotation. For the outer part near the boundary, 

the fluid swirled freely and is named as a free vortex (Hoffmann and Stein, 2008. 

Alahmadi and Nowakowski, 2016.). The reason for this phenomenon can be 

attributed to the effect of viscosity. By assuming that the viscosity of the fluid is 

infinite, the inner part will rotate like a solid body, and the fluid forced to swirl with 

a constant angular velocity. This phenomenon can be presented in the following 

equation: 

𝑣ఏ = 𝜔𝑟 

(2.1) 
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where 𝜔  is the angular velocity which can be seen as a constant for the solid 

rotation part. 𝑟 is the radius of the domain from the centre to the boundary. 

In terms of the outer part of the swirling flow, it is assumed that the fluid has no 

viscosity in this region, the motions of the fluid elements will not be influenced by 

each other. Moreover, the flowing behaviour obeys the rule of moment-of-

momentum conservation, which means the moment-of-momentum is a constant 

( 𝑚𝑣ఏ𝑟 ). For a mass conserved fluid element, the relationship between radial 

position and tangential velocity can be written as: 

 

𝑣ఏ =
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑟
 

(2.2) 

From this equation, it can be found that the tangential velocity is inversely 

proportional to the radius of the domain. This is consistent with the theory 

demonstrated in previous literature (Shepherd and Lapple, 1939 and 1940. Ter 

Linden, 1949.). 

Fig. 2.2 presents the tangential velocity curve correspond to the theory and 

equations mentioned above. The dash lines shown in the figure represent two typical 

function curves; the straight-line passing through the coordinate origin conforms to 

the Eqn. 2.1, which illustrates a solid body rotation. The other dash line accord with 

the Eqn. 2.2 indicate a Loss-free vortex. It can be found that the solid line which 

represents the velocity curve of the real vortex matches with the dash lines in 

different parts. The inner part is in line with the forced vortex, and the periphery 

part agree with the rule of Loss-free vortex. Thus, it can be reputed that the swirl 

flow is a combination of the forced vortex and the Loss-free vortex; and this 

phenomenon is also known as the “Rankine vortex”. Liu and his colleagues (2006) 

believe that the primary sources which cause the transportation of the moment-of-

momentum between the fluid elements at different radii attribute to the viscose 

effects and the presence of turbulence (Alahmadi and Nowakowski, 2016). 
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Fig. 2.2. The velocity curve of the tangential velocity in a real vortex and two 

extreme vortex flow (Alahmadi and Nowakowski, 2016) 

In terms of the other component, the axial velocity also plays an essential role when 

analysing the flowing behaviour of the swirl flow inside the cyclone. The primary fluid, 

such as gas or liquid, acts as a carrier to deliver particles of different masses or 

volumes to different tributaries. To be more specific, when the fluid is flowing 

towards the top outlet of the separator, it has overcome the influence of the 

gravitation force and presents a velocity vector in the upward axial direction. In 

terms of the outer part fluid, it flows near the wall of the separator and presents a 

velocity vector in the downward axial direction (Peng et al., 2002). One of the velocity 

profiles of the axial component is provided in Fig. 2.3. The near-wall region, which 

presents a solid line under the zero tick, indicates the axial velocity is directed 

downward. The solid line with positive value means the axial velocity is directed 

upward in the core part of the cyclone. Furthermore, the axial velocity curve has a 

distinct depression at the centre of the cyclone. This depression leads to research 

about the relationship between the diameter of vortex finder and profile of axial 

velocity. If the depression exists, the velocity curve illustrates an inverted “W” 

pattern; otherwise, it gives an inverted “V” pattern curves like the sketches shown in 

Fig. 2.4. These figures are obtained through the observation point located at the 

same vertical position below the vortex finder. The cyclone with more extensive 

vortex finder tends to produce an inverted “W” pattern curves and the curve which 

takes the form of the “V” pattern generally produced by the cyclone with a smaller 
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vortex finder. Horvath et al. (2008) investigated this relationship at a deeper level. 

They introduced a dimensionless diameter 𝐷௘ 𝐷⁄  to predict the pattern of the axial 

velocity curve as the vortex diameter changes. When this diameter is larger than 0.53, 

the curve tends to present an inverted “W” pattern. When the ratio is smaller than 

0.45, an inverted “V” pattern curves shall be produced. For the ratio between these 

limiting values, the axial velocity profile is unpredictable due to the unstable state. 

The low-pressure area which located at the centre of the cyclone is considered as 

the primary source cause this pattern change. It results in a back-flow phenomenon 

at the centre of the cyclone. Therefore, the cyclone with larger vortex finder tends 

to increase the back-flow and illustrates an inverted “W” pattern curve. The above 

patterns have been captured successfully in the Computational Fluid Dynamics (CFD) 

area since 1982 (Boysan et al. 1982). 

 

Fig. 2.3. The velocity curve of the axial velocity in a half cyclone. 

(Alahmadi and Nowakowski, 2016) 

 

Fig. 2.4a. The velocity curve of the axial velocity in the inverted “V” pattern 

(Horvath et al., 2008)  
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Fig. 2.4b. The velocity curve of the axial velocity in the inverted “W” pattern 

(Horvath et al., 2008)  

When using the CFD technology to investigate the cyclone flow, the characteristics 

of the tangential velocity and axial velocity are the basic rules that need to be 

satisfied. Although the function curves seem uncomplicated as shown in the 

previous figures, they are hard to be restored due to turbulence and severe rotation 

problems. Furthermore, the simulations become even more complicated when the 

multi-phase flow problem being considered. Therefore, these significant challenges 

are settled for the CFD researchers to overcome, especially in the aspects of 

turbulence model and multi-phase flow solver.  

2.3 Simulation methodology 

There are numerous CFD softwares can be used for the numerical simulation, and 

each one has its advantages. The OpenFOAM is chosen for the current study since 

the operation is straightforward if the principles of the CFD have been 

comprehended correctly. Another advantage of the OpenFOAM is that the software 

is free for any researchers to use. Furthermore, their customised code can be added 

to the original system or equations if they have any new theories or methodologies 

want to be tried. The operational difference between the OpenFOAM and Fluent 

was investigated by Bogdanov and Poniaev (2014) within the problem of the cyclonic 

separator. The standard 𝑘 − 𝜔  SST turbulence model was applied for his 

simulation. The results indicate that the OpenFOAM performs better on the inner 

wall of the channel, while the Fluent performs well on the outer wall part. Another 
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research (Balogh, Parente and Benocci, 2012) was carried out focusing on the ability 

of OpenFOAM and Fluent to deal with the turbulence issues. An enhanced 𝑘 − 𝜀 

model was applied for the simulations within the Reynolds averaged Naiver-Stokes 

(RANS) method. As an essential parameter, the accuracy of the results of the 

simulations was compared in his study. The time and computational sources 

required for the operation of the two software were also taken into account. 

Governing equation and Turbulence model 

The governing equations are the basis of a CFD work. For a particular investigation, 

the governing equations can be simplified or adjusted to get a more accurate and 

efficient methodology. Some of the contributions to the investigation of 

hydrocyclone fluid dynamics were compiled by Nowakowski et al. (2004). The 

theories and experiences in these investigations are significant and representative 

for recent researches. For instance, the governing equations of the hydrocyclone 

problem need to be modelled in a three-dimensional environment. Due to computer 

capability and the cyclone separator is considered to be axisymmetric geometry, 

most of the researches were carried out in a two-dimensional environment before 

the study of Concha et al. (1998). Concha et al. analysed the hydrocyclone flow 

through a full three-dimensional modelling approach. Later, in order to analyse the 

separation efficiency more accurately, He et al. (1999) illustrated that the 

hydrocyclone flow field should be treated as an axial asymmetry problem. Thus, the 

full three-dimensional modelling is necessary for an accurate simulation of the flow 

in cyclones.  

Another Important subject that scholars are interested in is how to cope with the 

turbulence in hydrocyclones. As a known condition, the cyclone flow is highly 

turbulent, accompanied by an intensive swirl. Various turbulence models have been 

analysed in the past studies, and most of them are applicable to the RANS approach. 

The other approaches, such as the Large-Eddy Simulation (LES) and the Direct 

Numerical Simulation (DNS) are also feasible to model the flow fields in 

hydrocyclones. However, in the early days, due to the limited capabilities of 

computers, the LES method and DNS method were rarely applied in researches, 

especially the DNS approach. Nowadays, along with advances in computer 

technology, the LES method has been widely used in the numerical simulation of 
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cyclone flow. Even so, the RANS approach still cannot be replaced due to its 

simplicity and efficiency. More details will be demonstrated in the following content. 

RANS 

The RANS approach requires a suitable turbulence model, which can accurately 

present the unknown term of the Reynolds stresses to content the governing 

equation closure. The models are generated based on the time-averaged equations; 

they are generally simplified through a rigorous assumption in regard to the physics 

of the turbulent flow. In concern of the physics phenomenon of the cyclone flow 

mentioned in the above content, some of the well-known RANS turbulence models 

are unable to provide practical results during the simulations. For instance, the 

standard 𝑘 − 𝜀 model (Harlow and Nakayama, 1968) cannot precisely predict the 

behaviour of the swirling flow since the viscosity is assumed as isotropic in the model. 

As one of the most-widely used turbulence model for industrial applications, the 

𝑘 − 𝜀 model is available to produce exact solutions for the fully turbulent flows. The 

constitution of the 𝑘 − 𝜀  model is relatively concise comparing with other 

turbulence models. The turbulence viscosity is assumed can be derived from the 

turbulent kinetic energy, 𝑘, and the dissipation rate, 𝜀. The assumption is conceived 

directly to the isotropic turbulence flow. Thus, this is the reason why it is improper 

for the cyclone flow; the Reynolds stresses is highly anisotropic (Petty and Parks, 

2001). In order to make the 𝑘 − 𝜀 model applicable to cope with the anisotropic 

character of the turbulence flow within a hydrocyclone. Dai et al. (1999) modified 

the constants 𝐶ఌଵ , 𝐶ఌଶ  and 𝐶௨  in the standard 𝑘 − 𝜀  model through their wind 

tunnel experiments. Unfortunately, this modification still cannot change the 

situation that the standard 𝑘 − 𝜀  model is unsuitable for the hydrocyclone flow 

field. In addition to the 𝑘 − 𝜀  model, the 𝑘 − 𝜔  Shear Stress Transport with 

Curvature Correction (SSTCC) turbulence model was employed by Alahmadi and 

Nowakowski (2016) to simulate the flow in cyclones. It has been proved that the 

SSTCC model is available to provide an accurate simulation result and require less 

computational resources compared with the RSM model and the LES model. 

DSM  

The commercial CFD package Fluent is commonly used by plenty of research groups 

since the turbulence models in Fluent are relatively abundant compared with other 

CFD package in earlier days. When the intensive anisotropic character and 
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turbulence generation mechanisms of the hydrocyclone flow fields can be noticed 

during the simulation. The proper choice shall be found between different 

turbulence models (Cullivan et al., 2003). The full differential stress model (DSM) 

used in Fluent is considered a reasonable choice considering the accuracy and 

computational consumption. In order to improve the accuracy of the model, the 

pressure-strain term in the DSM can be estimated by the high-order model. Instead 

of accurately describe the effect of the entire turbulence, the Reynolds stress in 

turbulence is modelled by solving the Reynolds-transport equation.  

RSM 

In earlier turbulence simulations, most models were designed to be purely 

dissipative, and the effects of Reynolds stress relaxation were not considered. 

(Nowakowski and Doby, 2008) This defect was improved in the later designed 

turbulence model which directly calculate the Reynolds stress through a set of 

partial differential equations. Those equations are used to estimate the value of each 

Reynolds stress component. Generally, these Reynolds stress components 

represent the basic properties of the turbulence. To be more specific, they are 

stress production, turbulent diffusion, molecular diffusion, pressure-strain, rotation 

production and dissipation rate, respectively. The pressure-strain term is that the 

composition expresses the redistribution mechanism. The isotropic characteristic 

of the turbulence flow emerges when the pressure-strain term equals to zero. This 

“Reynolds stress model (RSM)” can be adjusted and optimised in different CFD 

package. In general, there are six partial differential equations for each component 

and one partial differential equation for the dissipation rate. After this model can be 

used on most CFD packages, a great number of numerical simulations used this 

model to explore its range of applications. In the research carried out by Kraipech-

Evans et al. (2008), the RSM model was applied for the equation closure within the 

simulation of turbulence flow. Due to the RSM model has the ability to predict the 

anisotropic turbulence flow, it was proved to be applicable for the simulation of 

hydrocyclones (Bhaskar et al. 2007; Wang and Yu 2006). The RSM model estimates 

the entire stress components with appropriate models and equations; this indicates 

that the effects caused by the swirling flow in three-dimensional is also taken into 

account. Although the RSM model has many advantages, it is relatively inefficient 

compared with other RANS turbulence models. There are at least six equations need 
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to be solved for the Reynolds stress term, which lead to unstable and substantial 

time cost during the simulation. Alahmadi and Nowakowski (2016) compared the 

RSM model with the 𝑘 − 𝜔  SSTCC turbulence model within the simulation of 

cyclone flow. They demonstrated that the RSM model takes more time to obtain a 

simulation result with the same accuracy. 

ASM 

As the above section mentioned that the RSM model is complicated for calculating, 

the Algebraic Stress Model (ASM) model was conceived to simplify the solution 

process of the RSM model; meanwhile, the anisotropy of the RSM model can be 

preserved as well. The simplified process is achieved by reducing the equations of 

Reynolds stress transport to algebraic equations. In other words, the convective and 

diffusive transport terms in the equations are removed or modelled. This ASM 

model was tested by Chu and Chen (1999) within the simulation of hydrocyclone 

flow. The simulation result indicated that, compared with the RSM model, the ASM 

model not only requires less computational resources, but also remains some of the 

RSM characteristics. 

LES 

The Large-eddy simulation (LES) approach plays an essential role as the 

computational technology becomes advanced. Technically, The LES approach is 

much more accurate than the RANS approach but requires powerful hardware to 

support its calculation. Different from the RANS approach, the LES approach only 

models the effects of the eddies with small length scale by using a sub-grid model. 

Those eddies with large length scale will be simulated directly, thereby the full three-

dimensionality and time dependence of the turbulence field can be retained 

(Zikanov, 2010). Several filter functions can be used to define the size of the small 

eddies scale length. Thus, the simulation results will be practical only when the mesh 

is small enough to a certain extent. This requirement became the biggest obstacle 

for the numerical simulation in earlier days. In concern about the computational 

costs, the LES approach performs worse than the DSM model (Slack et al., 2000). 

However, irrespective of time cost and computing resources, the LES approach 

predicts a remarkably well simulation result in comparison to the Differential 

Reynolds Stress turbulence model (Brennan, 2006; Brennan et al. 2006). The 

advantages of the LES method are fully utilised in the simulations of cyclones and 
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hydrocyclones (Slack et al., 2000; Delgadillo and Rajamani, 2005). The 

characteristics of the time-dependent vortex oscillations and non-equilibrium 

turbulence are captured well aimed. Further studies of the LES approach is able to 

carry out focus on the sub-grid scale models. It can be refined for particular 

applications such as the simulation of the cyclone and hydrocyclone flow, which 

concern about the effects of particles and the correlation of different time scales 

related to collisions and aggregation of particles (Nowakowski and Doby, 2008). 

DNS 

In the numerical simulation, the direct numerical simulation approach has the 

highest theoretical precision than the LES approach and RANS approach. 

Correspondingly, the computational resource required by the DNS approach is 

significantly greater than the other approaches. The grid size and time scale are the 

main reasons that cause this discrepancy. They are demanded to be smaller than 

the smallest length scales and time scale of the energy-carrying dissipative eddies. 

The Kolmogorov scaling is used to estimate the length scale and time scale in 

ordinary situations; it is correlated to the Reynolds number in its expressions 
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మ ). The Reynolds number of the cyclone in operation is usually 

higher than 200,000. Therefore, at the current stage, the DNS approach is almost 

impossible to be used for the simulation of cyclone flow. The applications of the DNS 

approach are limited to flows at restrained Reynolds number and uncomplicated 

geometries. 

2.4 Air-core 

Several approaches are conceived to predict the diameter of the air-core. 

Dyakowski and Williams (1995) demonstrated that an effective air-core interface 

viscosity could be used for the prediction. Another approach was introduced by 

Concha et al. (1998), who estimated the diameter through the application of Young-

Laplace’s relation. These two approaches provide a feasible solution for estimating 

asymmetric air-core geometry. Also, the experimental method can be applied to the 

estimation of the size of the air-core. Hsieh (1988) investigated the flow with air-

core in hydrocyclone by the Laser-Doppler Velocimeter (LDV) technique. He 

provided valuable experimental data for the later investigations of the flow in 

hydrocyclone. Another technique called Electrical Resistance Tomography (ERT) 
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was employed by Arugonda et al. (2013) to measure the air-core size. After post-

processed by the forward FEM solution and inverse reconstruction algorithms, the 

three-dimensional air-core size could be estimated.  

The characteristics of the air-core were revealed through various researches. Such 

as the air-core has an oscillatory nature which means the shape of the air-core is 

not regularised during flowing (Dyakowski and Williams, 1993). Ovalle and Concha 

(2005) Demonstrated that the inertial waves or the fluctuations in the feed are the 

main reasons induced the oscillation. The dynamics of the air-core and the velocity 

field of the fluid was investigated through the LES approach, which was utilised in 

Delgadillo and Rajamani’s (2005) numerical simulation. Another numerical 

simulation, which was progressed through the finite element method illustrated the 

relationship between air-core, pressure-field and viscosity (Doby et al., 2008). A set 

of fluid with different viscosity was examined to prove that low viscosity feeds tend 

to develop a larger low-pressure area in the centre region of the hydrocyclone than 

feeds at high viscosity. Fig. 2.5, presents the effect of viscosity on the formation of 

the air-core. From the above theory and Fig. 2.5, they demonstrated that the air is 

drawn back into the hydrocyclone from the atmosphere due to the low-pressure 

formation in the centre area and upper section in the vicinity of the vortex finder. 

The overall area of the low-pressure field is narrowed with increasing viscosity. As 

shown on the sketches of the hydrocyclone, the air-core formation presents to 

begin through both the top outlet and bottom outlet. The air which was drawn from 

each of the outlets meets in the central part of the hydrocyclone and forms the air-

core in final. Kraipech et al. (2008) tried to reduce the energy loss, which is caused 

by the low-pressure area by inserting the metal rod in the middle of the 

hydrocyclone. The validation process is implemented by comparing the simulation 

result with the experiment data. They demonstrated that the air-core area could be 

represented by the low-pressure area and the characteristics obtained from this 

numerical simulation are similar to the experimental observation. As Fig. 2.6. shows, 

the air-core is found to be unstable, and its shape, size and position are unfixed 

because of the instability of the gas-liquid interface. 
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Fig. 2.5. The effect of viscosity on the formation of the air-core. (Doby et al., 2008) 

If the position and pattern of the air-core want to be figured out through the 

numerical simulation, the characteristic of such multi-phase flow requires to be 

captured. Several kinds of multi-phase-flow solvers are designed to cope with the 

multi-phase flow within different situations. In general, three approaches are 

suggested to be used for simulation. First one is the Eulerian-Lagrangian model for 

fluid-solid simulation. The fluid phase is assumed to be undisturbed by the solid 

phase and complies with the continuum equations that are solved on a fixed field in 

the common Eulerian way. The second approach is the Eulerian-Eulerian approach 

that results in field equations for the flow properties for all phases in the system 

(Nowakowski and Doby, 2008). Therefore, it requires many extra modelled 

equations to estimates the unknown terms which represent the interactions 

between the phases. The third approach called the Volume of Fluid (VOF) method 

(Hirt and Nichols, 1981), is relatively more straightforward than the previous 

approaches. This approach introduced a coefficient, 𝛼 to represents the volume 

fraction of fluid in each cell. The value of the volume fraction is limited between 0 

and 1; these two limited values represent two different fluids, respectively. All of 

these approaches can be applied for the simulation of the flow in hydrocyclones, but 

each has its most appropriate situation. Ma et al. (2000) suggested the Eulerian-

Lagrangian model mainly employed for dilute systems with a maximum solids 

volume fraction of 5%. For such cases, the influence due to the particles in a 
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computational grid can be ignored. The Eulerian-Eulerian approach is applicable for 

the multi-phase flow with larger solids volume fraction (e.g., Davailles et al., 2012). 

However, the complicated interactions between each phase remain various 

challenges for modelling process (e.g. Nowakowski et al., 2000). It not only brings a 

burden to the computer resources but also hard to convergence during the 

simulation. In theory, Since the VOF approach only concerns about some necessary 

interaction, the equations between each phase are simplified; it should be suitable 

for the simulation of hydrocyclones which presents a clear free-surface between 

different phases. Delgadillo and Rajamani (2005) used the VOF method for 

calculating the pattern and position of the air-core. In their work, they demonstrated 

that the RSM model with VOF approach provides an air-core, which is irregular and 

does not agree with experiment.  

In addition to the above three approaches, there are other methods and techniques 

that can solve the multi-phase flow or capture free-surface. Some researchers had 

used the mixture model, which is a simplification of the full Eulerian model for the 

simulation of hydrocyclones (Brennan, 2006; Brennan et al., 2007; Rudolf, 2013). The 

mixture model requires less computational resources but guarantees accuracy. One 

of the drawbacks of this method is the numerical diffusion in the area of the free 

surface. The level set method of Osher and Sethian (1988) is another approach to 

capture the liquid-gas interface sharply. It is proposed to tackle the air-core 

problem because of its simplicity and versatility for computing and analysing the 

motion of an interface in three dimensions (Nowakowski and Doby, 2008) However, 

the physical meaning of the level set is not as clear as the VOF method, which is not 

conducive to the analysation of multi-phase flow. Nowakowski and Dyakowski (2003) 

suggested an interfacial boundary condition to estimate the effect of the air-core 

without simulating the air-core directly. Natural boundary conditions, relating forces 

could be advantageous for such simulations. 

The modelling of the air-core remains various deficiencies to be refined, even 

though multi-phase problems in hydrocyclones can be solved through different 

multi-phase-flow solver. Accompany with diverse schemes and algorithms has been 

applied to optimise the multi-phase solver, more efficient and accurate modelling 

approaches for the air-core are expected to be explored. The improvement of the 
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modelling approaches will benefit the hydrocyclones design because of the flow split 

between the outlets is influenced by the air-core to a certain degree.  

 

Fig. 2.6. The low pressure area and air-core phenomena (Kraipech et al., 2008) 

2.5 Application of numerical simulation in the design of 

the hydrocyclone 

Apart from the CFD package, governing equation, turbulence model and multi-phase 

solver, the geometry generation is another essential process for the numerical 

simulations. Especially when a particular cyclone or hydrocyclone wants to be tested 

by the numerical simulation method, a simple modification to the geometry may 

cause an unpractical simulation result. The relationship between total cyclone size, 

cyclone cut-off size and pressure drop in the cyclone flow was investigated by Azadi 

et al. (2010). They demonstrated that the cyclone cut-off size and pressure drop are 

reduced as the cyclone size is decreased. Similar research investigated the effect of 

cyclone length on the efficiency of cyclone separator was carried out by Hoffmann 
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et al. (2001). They illustrated the performance of the cyclone separator is promoted 

when the cyclone length is increased. In addition, an optimal length-diameter scale 

for the cyclone separator was provided in their paper. Lee et al. (2006) indicated 

that the pressure drop could be reduced by adjusting the diameter of the cylinder 

body. Moreover, the shape of the core-annulus interface is an essential element, 

which influences the collection rate and flow pattern. In addition to the main body 

of the cyclone, the inlet section also affects the performance of the separator. Qiana 

and Wu (2009) raised an investigation about the inlet section angle of the cyclone 

separator. They demonstrated that the angle would affect the tangential velocity, 

pressure drop and separation efficiency. The efficiency would increase rapidly if the 

angle equals to 45°. 

Although the cyclone separator has been used for more than a century, the 

performance and functions still can be optimised through adding components or 

changing dimensions. The application of the CFD technology brings time and 

economy saving comparing with the experimental approach. A practical simulation 

result can be obtained based on the combination of appropriate turbulence models, 

suitable solvers, efficient algorithms, advanced computers, and other elements. The 

present work is one of the researches, seeking a relatively reliable numerical 

simulation methodology to investigate the flow with air-core in hydrocyclones. 
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Chapter 3. Numerical methodology 

This chapter introduces the numerical methodology which has been used for the 

simulations. The Navier-Stokes equations in the differential form are recalled since 

it set the basis for numerical simulations. As the numerical simulation platform 

(OpenFOAM) uses the Finite Volume Method (FVM) for discretisation, it is 

necessary to introduce the integral form of the equations as well. Subsequently, to 

explain how the computer calculates the equations, discretisation schemes and 

pressure-velocity coupling algorithms are introduced. Next, the section on the 

turbulence model provides the derivation of the Eddy Viscosity model (EVM), the 

Reynolds stress model (RSM) and the Large Eddy Simulation (LES) model. The 

distinctions between these models are the key features leading to different 

simulation results. Finally, the Discrete Phase model is introduced in the last section. 

It was used for the analysis of the particle tracking. The trajectory of a discrete phase 

particle is predicted by integrating the force implemented on the particle, which is 

derived in a Lagrangian reference frame. 

3.1 Navier-Stokes Equation 

The “Navier-Stokes equation” is another name for the continuity equation and 

momentum equation. Therefore, the following expressions of the Navier-Stokes 

Equation are the continuity equation and the momentum equation. 

Continuity equation: 

−
𝜕𝜌

𝜕𝑡
𝑑𝑥𝑑𝑦𝑑𝑧

ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
஺

= ൤൬
𝜕𝜌𝑢

𝜕𝑥
𝑑𝑥 + 𝜌𝑢൰ − 𝜌𝑢൨ 𝑑𝑦𝑑𝑧

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
஻

+ ൤൬
𝜕𝜌𝑣

𝜕𝑦
𝑑𝑦 + 𝜌𝑣൰ − 𝜌𝑣൨ 𝑑𝑥𝑑𝑧

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
஻

+ ൤൬
𝜕𝜌𝑤

𝜕𝑧
𝑑𝑧 + 𝜌𝑤൰ − 𝜌𝑤൨ 𝑑𝑥𝑑𝑦

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
஻

 

→
𝜕𝜌

𝜕𝑡
+

𝜕𝜌𝑢

𝜕𝑥
+

𝜕𝜌𝑣

𝜕𝑦
+

𝜕𝜌𝑤

𝜕𝑧
= 0 

(3.1) 

The continuity equation is conceived based on the conservation of mass. Imagine an 

infinitesimal control volume fixed in three dimensions, then it has, 
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Term A: The value of the density variety during flowing 

Term B: The value of the mass flow across control volume 

When the continuity equation is used in an incompressible flow, the equation can be 

simplified as  

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 → 𝛻 ∙ 𝑉 = 0 

(3.2) 

 

Fig. 3.1. Infinitesimal control volume fixed in three dimensions  

Momentum equation: 

The momentum equation is generated according to Newton’s second law, which 

states that the rate of change of momentum of a body is equal to the net force acting 

on it: 

𝑚𝑎⃗ = 𝐹⃗ → 𝑚
𝐷𝑉ሬ⃗

𝐷𝑡ᇣᇤᇥ
஺

= 𝐹⃗ 

(3.3) 

Imagine an infinitesimal element moving within a flow in three dimensions, term A is 

replaced by the material derivative. 

𝜕𝜌𝑢

𝜕𝑥
𝑑𝑥 + 𝜌𝑢 𝜌𝑢 Element 

𝜕𝜌𝑤

𝜕𝑧
𝑑𝑧 + 𝜌𝑤 

𝜌𝑤 

𝜕𝜌𝑣

𝜕𝑦
𝑑𝑦 + 𝜌𝑣 

𝜌𝑣 
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𝑚
𝐷𝑉ሬ⃗

𝐷𝑡
= 𝑚 ቈ

𝜕𝑉ሬ⃗

𝜕𝑡
+ ൫𝑉ሬ⃗ ∙ ∇൯𝑉ሬ⃗ ቉ 

(3.4) 

In terms of the force term on the right-hand side, generally, two kinds of forces are 

indicated.  

𝐹௜ = 𝜌𝑓௜𝑑Ωᇣᇤᇥ
஺

+ ൤൬
𝜕𝜏௜௜

𝜕𝑥௜
𝑑𝑥௜ + 𝜏௜௜൰ − 𝜏௜௜൨ 𝑑𝑆௝௞

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
஻

+ ቈቆ
𝜕𝜏௝௜

𝜕𝑥௝
𝑑𝑥௝ + 𝜏௝௜ቇ − 𝜏௝௜቉ 𝑑𝑆௜௞

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
஻

+ ൤൬
𝜕𝜏௜௞

𝜕𝑥௞
𝑑𝑥௞ + 𝜏௞௜൰ − 𝜏௞௜൨ 𝑑𝑆௜௝

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
஻

 

(3.5) 

Where, Ω is the unit volume, 𝑆 is the unit area. 

Term A: represents the body forces acting on the fluid element. 

Term B: indicates the pressure and friction forces acting on the interface of the 

element. The vector field of surface forces is represented by the stress tensor 𝜏௜௝.  

Substituting Eqn. (3.4) and Eqn. (3.5) into Eqn. (3.3), the equation is given as 

𝜌
𝐷𝑢௜

𝐷𝑡
= 𝜌𝑓௜ +

𝜕𝜏௜௜

𝜕𝑥௜
+

𝜕𝜏௝௜

𝜕𝑥௝
+

𝜕𝜏௞௜

𝜕𝑥௞
 

(3.6) 

The stress tensor can be separated into the isotropic pressure part and the viscous 

part. The expression is given as, 

𝜏௜௝ = −𝑃𝛿௜௝ + 𝜎௜௝ 

Where  

𝛿௜௝ = ൜
1   𝑖𝑓   𝑖 = 𝑗
0   𝑖𝑓   𝑖 ≠ 𝑗

 

Is the Kronecker delta-tensor 

If the fluid is defined as the Newton fluid, then the linear model for the stress tensor 

is given as 
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𝜎௜௝ = 𝜆𝛿௜௝(∇ ∙ 𝑉) + 𝜇(
𝜕𝑢௜

𝜕𝑥௝
+

𝜕𝑢௝

𝜕𝑥௜
) 

(3.7) 

Where 𝜆 = −
ଶ

ଷ
𝜇 for compressible fluids. 

Substituting Eqn. (3.7) into Eqn. (3.6), it gives 

𝜌
𝐷𝑢௜

𝐷𝑡
=

𝜕

𝜕𝑥௝
൬−

2

3
𝜇𝛿௜௝(∇ ∙ 𝑉) + 2𝜇𝑆௜௝൰ −

𝜕𝑃

𝜕𝑥௜
+ 𝜌𝑓௜  

(3.8) 

Where 𝑆௜௝ ≡
ଵ

ଶ
(

డ௨೔

డ௫ೕ
+

డ௨ೕ

డ௫೔
) 

In addition, for the incompressible fluid ( ∇ ∙ 𝑉 = 0 ) with constant viscosity 

coefficient 𝜇, the Navier-Stokes equations have the simplified expression, 

𝜌
𝐷 𝑉

𝐷𝑡
= −∇𝑃 + 𝜇∇ଶ𝑉 + 𝜌𝑓 

(3.9) 

The energy conservation equation is unnecessary for the current study since the 

fluid is assumed as isothermal.  

3.2 Equations in integral form 

The integral form of the Navier-Stokes equations is introduced since the Finite 

Volume Method (FVM) requires such configuration for discretisation. Different from 

the equation in the differential form, the control volume for the equation derivation 

is assumed as valuable and fixed in space. For the following equations, the volume is 

defined as Ω, and the boundary of the volume is defined as 𝑆. 

Mass conservation equation 

𝑑

𝑑𝑡
න 𝜌dΩ

ஐ

+ න 𝜌𝑉 ∙ n d𝑆
ௌ

= 0 

(3.10) 

Momentum equation 
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𝑑

𝑑𝑡
න 𝜌𝑢௜dΩ

ஐ

+ න 𝜌𝑢௜𝑉 ∙ n d𝑆
ௌ

= න ቎(−𝑝 + 𝜆∇ ∙ 𝑉)𝑛௜ + ෍ 𝜇 ቆ
𝜕𝑢௜

𝜕𝑥௝
+

𝜕𝑢௝

𝜕𝑥௜
ቇ 𝑛௝

௝

቏ d𝑆
ௌ

+ න 𝜌𝑓௜dΩ
ஐ

 

(3.11) 

Where 𝑛 is the normal vector of unit length. 

In addition, the general form of the conservation equation for an arbitrary scalar 

field Φ is given as 

𝑑

𝑑𝑡
න ΦdΩ

ஐᇣᇧᇧᇤᇧᇧᇥ
஺

+ න Φ𝑉 ∙ n d𝑆
ௌᇣᇧᇧᇧᇤᇧᇧᇧᇥ

஻

= න χ∇Φ ∙ n d𝑆
ௌᇣᇧᇧᇧᇤᇧᇧᇧᇥ

஼

+ න 𝑄dΩ
ஐᇣᇧᇤᇧᇥ

஽

 

(3.12) 

Term A: indicates the time rate change of the scalar field. 

Term B: indicates the convective flux integrals; it represents the transport through 

the boundary of the control volume by the velocity. 

Term C: indicates the diffusive flux integrals; it represents the transport by diffusion 

through the boundary. 

Term D: indicates the volume source integrals; it represents the distributed sources 

of the conserved quantity within the control volume. 

3.3 Discretisation  

The discretisation procedure is essential to the process in order to make the above 

equations capable of computing. The discretisation schemes for differential 

equations and integral equations are different; both series of schemes are 

introduced since they have connections during calculating.  

3.3.1 Discretisation of differential equations 

The discretisation of differential equations is generally used in the finite difference 

method; it is processed based on the Taylor series expansion. Assume the functions 



29 

 

of the quantity Φ (𝑥, 𝑦, 𝑧, 𝑡) are sufficiently smooth, so the quantity on neighbouring 

point Φ௜ାଵ,௝,௞  or Φ௜ିଵ,௝,௞  can be estimated by the quantity on the current point 

Φ௜,௝,௞ within the Taylor series expansion. 

Φ௜ାଵ,௝,௞ = Φ௜,௝,௞ + ൬
𝜕Φ

𝜕𝑥
൰

௜,௝,௞
∆𝑥 + ቆ

𝜕ଶΦ

𝜕𝑥ଶ
ቇ

௜,௝,௞

(∆𝑥)ଶ

2!
+ ቆ

𝜕ଷΦ

𝜕𝑥ଷ
ቇ

௜,௝,௞

(∆𝑥)ଷ

3!
+ ⋯

+ ൬
𝜕௡Φ

𝜕𝑥௡
൰

௜,௝,௞

(∆𝑥)௡

𝑛!
+ ⋯ 

(3.13) 

Where ∆𝑥 = (𝑥௜ାଵ − 𝑥௜) 

Φ௜ିଵ,௝,௞ = Φ௜,௝,௞ − ൬
𝜕Φ

𝜕𝑥
൰

௜,௝,௞
∆𝑥 + ቆ

𝜕ଶΦ

𝜕𝑥ଶ
ቇ

௜,௝,௞

(∆𝑥)ଶ

2!
− ቆ

𝜕ଷΦ

𝜕𝑥ଷ
ቇ

௜,௝,௞

(∆𝑥)ଷ

3!
+ ⋯

+ ൬
𝜕௡Φ

𝜕𝑥௡
൰

௜,௝,௞

(∆𝑥)௡

𝑛!
+ ⋯ 

(3.14) 

The above equations can be used to calculate the partial derivative 
డ஍

డ௫
.  

For instance, moving the partial derivative term to the left-hand side and dividing by 

∆𝑥, it gives 

൬
𝜕Φ

𝜕𝑥
൰

௜,௝,௞
=

Φ௜ାଵ,௝,௞ − Φ௜,௝,௞

∆𝑥
− ቆ

𝜕ଶΦ

𝜕𝑥ଶ
ቇ

௜,௝,௞

∆𝑥

2!
− ⋯ − ൬

𝜕௡Φ

𝜕𝑥௡
൰

௜,௝,௞

(∆𝑥)௡ିଵ

𝑛!
− ⋯ 

(3.15) 

൬
𝜕Φ

𝜕𝑥
൰

௜,௝,௞
=

Φ௜,௝,௞ − Φ௜ିଵ,௝,௞

∆𝑥
+ ቆ

𝜕ଶΦ

𝜕𝑥ଶ
ቇ

௜,௝,௞

∆𝑥

2!
− ⋯ + ൬

𝜕௡Φ

𝜕𝑥௡
൰

௜,௝,௞

(∆𝑥)௡ିଵ

𝑛!
− ⋯ 

 (3.16) 

Where 𝑛 is an even number in Eqn. (3.16) 

Alternatively, using Eqn. (3.13) minus Eqn. (3.14), and moving the partial derivative 

term to the left-hand side and dividing by 2∆𝑥, it gives 

൬
𝜕Φ

𝜕𝑥
൰

௜,௝,௞
=

Φ௜ାଵ,௝,௞ − Φ௜ିଵ,௝,௞

2∆𝑥
+ ቆ

𝜕ଷΦ

𝜕𝑥ଷ
ቇ

௜,௝,௞

(∆𝑥)ଶ

3!
− ⋯ + ൬

𝜕௡Φ

𝜕𝑥௡
൰

௜,௝,௞

(∆𝑥)௡ିଵ

𝑛!
− ⋯ 

(3.17) 
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Where 𝑛 is an odd number in Eqn. (3.17) 

The derivation of the equations is applicable to spatial discretisation in other 

directions and time discretisation.  

The above examples, Eqn. (3.15), Eqn. (3.16) and Eqn. (3.17), can be expressed in the 

following form 

Forward difference 

൬
𝜕Φ

𝜕𝑥
൰

௜,௝,௞
=

Φ௜ାଵ,௝,௞ − Φ௜,௝,௞

∆𝑥
+ 𝑇. 𝐸. 

(3.18) 

Backward difference 

൬
𝜕Φ

𝜕𝑥
൰

௜,௝,௞
=

Φ௜,௝,௞ − Φ௜ିଵ,௝,௞

∆𝑥
+ 𝑇. 𝐸. 

(3.19) 

Central difference 

൬
𝜕Φ

𝜕𝑥
൰

௜,௝,௞
=

Φ௜ାଵ,௝,௞ − Φ௜ିଵ,௝,௞

2∆𝑥
+ 𝑇. 𝐸. 

(3.20) 

Where 𝑇. 𝐸. represent the truncation error of discretisation of a partial derivative. 

It contains the rest of the series dropped in Eqn. (3.15) to Eqn. (3.17). The truncation 

error is a key feature, which decides the accuracy of the discretisation. The 

magnitude of the truncation error depends on the lowest-order dropped term. 

Therefore, the forward and backward difference schemes are first-order 

approximations, while the central difference scheme is a second-order 

approximation. The size of the mesh will influence the truncation error directly; it 

can be seen that the error decreases with decreasing ∆𝑥.  

In addition to the above three discretisation schemes, various schemes have been 

developed to promote the accuracy of the discretisation. For the simulations 

mentioned in the present thesis, second-order accuracy should be guaranteed for 

the discretisation schemes, except for the time derivative term. 



31 

 

3.3.2 Discretisation of integral equations 

In the finite volume method, the discretisation is applied directly to the integral 

equations in a small control volume. Such treatment is relatively advanced when 

compared with the finite difference method. The most significant advantage is that 

the equations can be implemented on the corresponding spatial grids without using 

transform functions. In other words, the finite volume method can be used for 

complex geometry because the figure of the grids is barely limited (e.g. Fig. 3.2).  

Another important advantage is that the discretisation of integral equations has a 

characteristic of global conservation. It is necessary to recall the conservation 

equations (Eqn. (3.12)) for an explanation.  

𝑑

𝑑𝑡
න ΦdΩ

ஐᇣᇧᇧᇤᇧᇧᇥ
஺

+ න Φ𝑉 ∙ n d𝑆
ௌᇣᇧᇧᇧᇤᇧᇧᇧᇥ

஻

= න 𝑥∇Φ ∙ n d𝑆
ௌᇣᇧᇧᇧᇤᇧᇧᇧᇥ

஼

+ න 𝑄dΩ
ஐᇣᇧᇤᇧᇥ

஽

 

(3.12) 

The volume integral of the quantity Φ is approximated by the product of the cell’s 

volume and the mean value of the integrand Φഥ . The mean value of the integrand Φഥ  

can be replaced by the value at the centre of the grid point (shown in Fig. 3.2) when 

the cell-centred arrangement of the grid points is used. Thus, it has, 

න ΦdΩ
ஐ

= Φഥ |Ω| ≈ Φ௉|Ω| 

(3.21) 

This approximation generates a second-order truncation error; the approximation 

is sufficient when the accuracy of the finite volume scheme is designed as second-

order. 

In terms of the surface integral approximation, this is approximated by the product 

of the area of the interface and the mean value of the integrand Φഥ . This mean value 

can be evaluated by the value of the integrand at the midpoint of the interface. 

(shown in Fig. 3.2) 

 



32 

 

න Φ𝑉 ∙ n d𝑆
ௌ

= Φ𝑉 ∙ nതതതതതതതത𝑆஺஻ ≈ (Φ𝑉 ∙ n)௘𝑆஺஻ 

(3.22) 

න 𝑥∇Φ ∙ n d𝑆
ௌ

= 𝑥∇Φ ∙ nതതതതതതതതതത𝑆஺஻ ≈ (χ∇Φ ∙ n)௘𝑆஺஻ 

(3.23) 

Where 𝑒 is the midpoint and 𝑛 is the normal vector of the interface 𝑆஺஻. 

 

 

Fig. 3.2. Unstructured finite volume grids 

To be more specific, if the mesh is structured and the boundary is drawn parallel to 

the axis of the Cartesian coordinate (see Fig. 3.2), it gives  

(Φ𝑉 ∙ 𝑛)௘ = (Φ𝑉௜)௘ ,    (χ∇Φ ∙ 𝑛)௘ = (χ ∂Φ 𝜕𝑥௜⁄ )௘ 

Otherwise, the mesh is unstructured and the boundary is unparalleled to the axis 

(see Fig.3.2). The surface integral needs to be evaluated by separating the vectors 

into two (for two-dimensional problems) or three (for three-dimensional problems) 

components.  

The normal vector is perpendicular to the vector of the interface and has a unit 

length. If the interface vector is defined as  

 

n 
n 

n 

P 𝑆௜ 

x 

y 
Ω௜ 

e 
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𝑆 = 𝐴𝐵 = 𝑆௫𝑖 + 𝑆௬𝑗 

(3.24) 

It provides the normal vector 𝑛 

𝑛 =
1

𝑆஺஻
(𝑆௬𝑖 − 𝑆௫𝑗) 

Therefore, the surface integral is approximated by Eqn. (3.25) and Eqn. (3.26) 

න Φ𝑉 ∙ 𝑛𝑑𝑆
ௌ

≈ Φ௘൫𝑉௫೐
𝑆௬ − 𝑉௬೐

𝑆௫൯ 

(3.25) 

න 𝑥∇Φ ∙ 𝑛𝑑𝑆
ௌ

≈ χ௘൫(𝜕Φ 𝜕𝑥⁄ )௘𝑆௬ − (𝜕Φ 𝜕𝑦⁄ )௘𝑆௫൯ 

(3.26) 

 

Fig. 3.3. Two-dimensional structured grids used to illustrate interpolation methods 

Methods of Interpolation 

As can be found from Eqn. (3.25) and Eqn. (3.26), the quantity Φ௘ at the midpoints 

of the cell face cannot be obtained directly. It is necessary to introduce the methods 
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of interpolation to approximate the value on the cell face. The expression of the 

linear interpolation method is given as 

Φ௘ = 𝛾Φ௉ + (1 − 𝛾)Φா 

Where 𝛾 = |𝑒𝐸| |𝑃𝐸|⁄  is the interpolation factor (see Fig. 3.3). When the factor 

equals 0.5, this interpolation is known as centre linear interpolation; it guarantees 

the second order of accuracy. This can also be proved by the Taylor series expansion. 

Recall Eqn. (3.13) and Eqn. (3.14)  

Φ௜ାଵ,௝,௞ = Φ௜,௝,௞ + ൬
𝜕Φ

𝜕𝑥
൰

௜,௝,௞
∆𝑥 + ቆ

𝜕ଶΦ

𝜕𝑥ଶ
ቇ

௜,௝,௞

(∆𝑥)ଶ

2!
+ ቆ

𝜕ଷΦ

𝜕𝑥ଷ
ቇ

௜,௝,௞

(∆𝑥)ଷ

3!
+ ⋯

+ ൬
𝜕௡Φ

𝜕𝑥௡
൰

௜,௝,௞

(∆𝑥)௡

𝑛!
+ ⋯ 

(3.13) 

Φ௜ିଵ,௝,௞ = Φ௜,௝,௞ − ൬
𝜕Φ

𝜕𝑥
൰

௜,௝,௞
∆𝑥 + ቆ

𝜕ଶΦ

𝜕𝑥ଶ
ቇ

௜,௝,௞

(∆𝑥)ଶ

2!
− ቆ

𝜕ଷΦ

𝜕𝑥ଷ
ቇ

௜,௝,௞

(∆𝑥)ଷ

3!
+ ⋯

+ ൬
𝜕௡Φ

𝜕𝑥௡
൰

௜,௝,௞

(∆𝑥)௡

𝑛!
+ ⋯ 

(3.14) 

Add the equations together and divide by 2, to obtain 

Φ௜,௝,௞ =
Φ௜ାଵ,௝,௞ + Φ௜ିଵ,௝,௞

2
− ቆ

𝜕ଶΦ

𝜕𝑥ଶ
ቇ

௜,௝,௞

(∆𝑥)ଶ

2!
+ 𝑂((∆𝑥)ଷ) 

→ Φ௜,௝,௞ =
Φ௜ାଵ,௝,௞ + Φ௜ିଵ,௝,௞

2
+ 𝑂((∆𝑥)ଶ) 

(3.27) 

It can be found that the truncation error term 𝑂((∆𝑥)ଶ)  is presented with the 

second-order of accuracy. 

Another method of interpolation with a lower order of accuracy is known as the 

Upwind interpolation. The value of the quantity Φ௘ is approximated by the value at 

a neighbouring grid point, and which side should be chosen is dictated by the 

direction of the flow. 

Φ௘ = ൜
Φ௉   𝑖𝑓   (𝑉 ∙ 𝑛)௘ > 0

Φா    𝑖𝑓   (𝑉 ∙ 𝑛)௘ < 0
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Although the accuracy of this method is relatively low compared with the linear 

interpolations, it is being widely used due to the boundedness that can be 

guaranteed with such a method (Hirsch, 2007). A method of blending a high-order 

linear interpolation and an Upwind interpolation will be introduced in Chapter 4; it 

achieves both accuracy and boundedness in simulations. 

Discretisation of the temporal term 

The discretisation of the temporal term is the key feature that decides the 

unknowns in equations. Assuming the time derivative at point (𝑥௉, 𝑡௡) in Eqn. (3.12) 

is approximated by the forward difference scheme (Eqn. (3.18)), it provides 

Φ௉
௡ାଵ − Φ௉

௡

∆𝑡
+ ෍ Φ௙

௡(𝑉௙ ∙ 𝑛)௡𝑆௙
௙

− ෍ (𝜒)௙
௡(∇Φ ∙ 𝑛)௙

௡
𝑆௙

௙
= 𝑄𝑉௉ 

(3.28) 

As Eqn. (3.28) presents, Φ௉
௡ାଵ  is the unknown. The quantities with subscript 𝑓 

represent the value of the quantities at the midpoint of the interface. The quantities 

with superscript 𝑛  represent the known values, which are obtained from the 

solutions in the previous time step. The schemes used to solve such kind of 

equations are called explicit schemes. 

Another situation is to approximate the time derivative at point (𝑥௉, 𝑡௡ାଵ)  by a 

backward difference scheme (Eqn. (3.19)), the equation is given as 

Φ௉
௡ାଵ − Φ௉

௡

∆𝑡
+ ෍ Φ௙

௡ାଵ(𝑉௙ ∙ 𝑛)௡ାଵ𝑆௙
௙

− ෍ (𝜒)௙
௡ାଵ(∇Φ ∙ 𝑛)௙

௡ାଵ
𝑆௙

௙
= 𝑄𝑉௉ 

(3.29) 

Different from Eqn. (3.28), Eqn. (3.29) contains a large number of unknown values 

and it requires implicit schemes for solutions. 

In addition to the above discretisation schemes, other schemes with a higher order 

of accuracy exist in OpenFOAM, such as crankNicholson and backward scheme 

(the back-difference method uses two backward time-steps). However, when 

concerned with the boundness, efficiency and stability, the Backward-Euler scheme, 

shown as an example in Eqn. (3.29), is used for the simulations in the present thesis. 
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3.3.3 Iterative linear equations solver 

After discretising the governing equation, the equation composed of known and 

unknown quantities can be simplified and expressed as the following linearised form. 

𝐴̿ ∙ 𝜙ሬ⃗ = 𝑏ሬ⃗  

In OpenFOAM, solvers that solve discrete equations can be divided into two 

categories: non-symmetric iterative linear solvers and symmetric iterative linear 

solvers. The former is generally used for the equations containing advection, 

diffusion or reaction terms. Regarding the iterative linear solvers, these are usually 

used to solve discrete pressure equations or thermal problems. A brief introduction 

to these solvers is given below (OpenCFD, 2012). 

 Non-symmetric iterative linear solvers 

1. Preconditioned Bi-Conjugate Gradient (PBiCG) solver 

2. Gauss-Seidel smoother and the Geometric-Algebraic Multi-Grid (GAMG) 

solver 

3. Gauss-Seidel smoother solver 

 Symmetric iterative linear solvers 

1. Preconditioned Conjugate Gradient (PCG) solver 

2. Diagonal Incomplete-Cholesky (DIC) solver 

3. Diagonal Incomplete-Cholesky with Gauss-Seidel smoothers (DICGaussSeidel) 

solver 

4. Symmetric Gauss-Seidel smoother solver 

The preconditioners can be applied to improve the performance of the solvers, they 

are given as 

 1. DIC (symmetric) 

 2. Faster Diagonal Incomplete-Cholesky (DIC with caching, FDIC) 

 3. Diagonal Incomplete-LU (asymmetric, DILU) 

4. Diagonal 



37 

 

5. GAMG 

Depending on the problem, using different solvers will save the computing time of 

the simulation. Thus, the application of the solvers will be discussed separately in 

each study case. 

3.4 Algorithm of pressure-velocity coupling 

Generally, the equations can be solved after the discretisation process, which uses 

the introduced scheme and is matched with an appropriate solver. However, there 

is still an important component to be considered when solving the Navier-Stokes 

equation. Comparing Eqn. (3.12) with the momentum Equation (Eqn. (3.11)), it can 

be found that an essential term was dropped in Eqn. (3.12). The pressure source 

term introduces a new unknown term, which is essential for calculation. The 

unknown value of the pressure and velocities suggests being solved at the same time 

level in order to guarantee the conservation laws. However, this is hard to achieve 

due to the limitation of the linear solver. It is necessary to employ an algorithm to 

solve the pressure-velocity coupling problem. 

𝑑

𝑑𝑡
න 𝜌𝑢௜𝑑Ω

ஐ

+ න 𝜌𝑢௜𝑉 ∙ 𝑛𝑑𝑆
ௌ

= න ቎(−𝑝 + 𝜆∇ ∙ 𝑉)𝑛௜ + ෍ 𝜇 ቆ
𝜕𝑢௜

𝜕𝑥௝
+

𝜕𝑢௝

𝜕𝑥௜
ቇ 𝑛௝

௝

቏ 𝑑𝑆
ௌ

+ න 𝜌𝑓௜𝑑Ω
ஐ

 

(3.11) 

𝑑

𝑑𝑡
න Φ𝑑Ω

ஐᇣᇧᇧᇤᇧᇧᇥ
஺

+ න Φ𝑉 ∙ 𝑛𝑑𝑆
ௌᇣᇧᇧᇧᇤᇧᇧᇧᇥ

஻

= න 𝑥∇Φ ∙ 𝑛𝑑𝑆
ௌᇣᇧᇧᇧᇤᇧᇧᇧᇥ

஼

+ න 𝑄𝑑Ω
ஐᇣᇧᇤᇧᇥ

஽

 

(3.12) 

3.4.1 Pressure-Implicit with Splitting of Operators (PISO) 

In current studies, the simulation of the single-phase flow in a cyclone was solved by 

the PimpleFoam solver, and the simulations of multi-phase flow problems were 

processed by the interFoam solver. Both solvers utilise an algorithm that combines 

the Pressure-Implicit with Splitting of Operators (PISO)method and Semi-Implicit 
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Method for Pressure-Linked Equations algorithm (SIMPLE) for calculation. The PISO 

algorithm is a non-iterative method for handling the pressure-velocity coupling of 

the implicitly discretised fluid flow equations and was introduced by Issa (1984). The 

principle of the algorithm is given below. 

The equations in the predictor step and corrector step are derived from the 

momentum equation (Eqn. 3.11), and mass conservation equation (Eqn. 3.10), the 

semi-discretised forms of these equations are presented as 

𝜕𝜌

𝜕𝑡
(𝑢௜

௡ାଵ − 𝑢௜
௡) = 𝐻(𝑢௜

௡ାଵ) − ∇௜𝑃
௡ାଵ + 𝑆௜ 

(3.30) 

∇௜ ∙ 𝑢௜
௡ାଵ = 0 

(3.31) 

Where 𝐻(𝑢௜
௡ାଵ)  represents the spatial convective and diffusive fluxes in the 

momentum equation.  

𝐻(𝑢௜
௡ାଵ) = ෍ 𝑢௜௙

௡ାଵ(𝑢௜௙
∙ 𝑛)௡ାଵ𝑆௙

௙
− ෍ (𝜈)௙

௡(∇𝑢௜ ∙ 𝑛)௙
௡ାଵ

𝑆௙
௙

 

(3.32) 

The non-linear term in Eqn. (3.32) can be solved by the iteration method or 

sequential iteration method, which are introduced in the textbook by Zikanov (2010). 

The pressure gradient term and the continuity equation are discretised by 

∇௜𝑃
௡ାଵ = ෍ (𝑃௙ ∙ 𝑛)௡ାଵ𝑆௙

௙
, ∇௜ ∙ 𝑢௜

௡ାଵ = ෍ (𝑢௜௙
∙ 𝑛)௡ାଵ ∙ 𝑆௙

௙
 

The subscript 𝑓 presents the value at the mid-point of the cells’ face. The operator 

∇௜ is the finite-difference equivalent of 
డ

డ௫೔
. Term 𝑆௜ presents the body forces. 

It can be found that when taking the divergence of Equation. (3.30) to subtract 

Equation. (3.31), the pressure equation can be obtained. The corresponding 

pressure equation is given below. 

∇௜
ଶ𝑃௡ାଵ = ∇௜𝐻(𝑢௜

௡ାଵ) + ∇௜𝑆௜ +
𝜕𝜌

𝜕𝑡
∇௜𝑢௜

௡ 

 (3.33) 
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Regarding the PISO algorithm, the calculation starts from a predictor step. Eqn. (3.30) 

can be written in the following form. 

𝜕𝜌

𝜕𝑡
(𝑢௜

∗ − 𝑢௜
௡) = 𝐻(𝑢௜

∗) − ∇௜𝑃
௡ + 𝑆௜ 

  (3.30a) 

The pressure field prevailing at 𝑡௡ is used to calculate 𝑢௜
∗ via Eqn. (3.30a). Through 

several standard techniques, such as iteration methods, the predicted velocity 𝑢௜
∗ 

can be obtained. However, this predicted velocity will not satisfy the mass 

conservation equation. Therefore, the second predicted velocity 𝑢௜
∗∗ is used for the 

first corrector step. Assuming 𝑢௜
∗∗ satisfies the mass conservation equation, which 

has 

∇௜𝑢௜
∗∗ = 0 

(3.31a) 

Then 

𝜕𝜌

𝜕𝑡
(𝑢௜

∗∗ − 𝑢௜
௡) = 𝐻(𝑢௜

∗) − ∇௜𝑃
∗ + 𝑆௜ 

  (3.30b) 

The pressure equation derived from Eqn. (3.31a) and Eqn. (3.30b) is given as 

∇௜
ଶ𝑃∗ = ∇௜𝐻(𝑢௜

∗) + ∇௜𝑆௜ +
𝜕𝜌

𝜕𝑡
∇௜𝑢௜

௡ 

 (3.33a) 

This a solvable equation for pressure field 𝑃∗. Substituting the values of 𝑃∗ and 𝑢௜
∗ 

into equation Eqn. (3.30b), the second predicted velocity 𝑢௜
∗∗  can be yielded. 

However, this result is not accurate enough. In Issa’s paper, a second corrector step 

was required for a more accurate result, and in OpenFOAM, the number of the 

correcting procedures is a user-decided parameter, which can be defined by the 

keyword nCorrectors. The third velocity field with its corresponding new pressure 

field, 𝑃∗∗, is formulated. Again, the new value of the velocity and pressure need to 

satisfy the momentum equation and mass conservation equation. 

∇௜𝑢௜
∗∗∗ = 0 

 (3.31b) 
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𝜕𝜌

𝜕𝑡
(𝑢௜

∗∗∗ − 𝑢௜
௡) = 𝐻(𝑢௜

∗∗) − ∇௜𝑃
∗∗ + 𝑆௜ 

 (3.30c) 

𝑃∗∗ is calculated by 

 

∇௜
ଶ𝑃∗∗ = ∇௜𝐻(𝑢௜

∗∗) + ∇௜𝑆௜ +
𝜕𝜌

𝜕𝑡
∇௜𝑢௜

௡ 

 (3.33b) 

Similarly, 𝑃∗∗ is used to calculate 𝑢௜
∗∗∗ in equation Eqn. (3.30c). 

Compared with the exact solution 𝑢௜
௡ାଵ  and 𝑃௡ାଵ , Issa (1984) proved that the 

corrected value of the pressure field 𝑃∗∗ and velocity field 𝑢௜
∗∗∗ is precise enough.  

3.4.2 PISO-SIMPLE (PIMPLE) algorithm  

Due to the discretisation in the PISO algorithm not being unconditionally stable, the 

time step setting is still limited by the Courant number. In order to relieve this 

limitation, another more advanced algorithm is generated based on the PISO 

algorithm. The PIMPLE algorithm combines the advantages of the SIMPLE algorithm 

and the PISO algorithm. It is performed with high efficiency, high accuracy and low 

computer source cost. The PISO algorithm has been mentioned above. In the case 

of Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) (Caretto et al. 

1972), this is a well-known approach that has been introduced in different textbooks 

(e.g. Zikanov, 2010). A short summary is given below. 

1. Set an initial value for the velocity fields and pressure fields in the whole domain. 

This initial value can also be obtained from the previous iteration. The value of 

these quantities is presented as 𝑣௠, 𝑃௠. 

2. Solve Eqn. (3.34) to find the predicted velocity, 𝑢∗. This equation is derived from 

the discretisation form of the momentum equation, it has several different forms, 

but the principle is the same. The left-hand side represents the discretised 

nonlinear and viscous terms, and the subscript 𝑙 denotes all neighbouring cells 

used by the discretisation formulas. The coefficients 𝛼௣ and 𝛼௟,௣  on the left-

hand side represent the functions of velocity 𝑢, these could be the convection 
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term and diffusion term in the momentum equation. The coefficients 𝛼௣ and 

𝛼௟,௣ need to be evaluated by the approximations of 𝑣௠ and 𝑃௠. 

𝛼௣൫𝑢(௠)൯𝑢௜,௣
∗ + ෍ 𝛼௟,௣൫𝑢(௠)൯𝑢௜,௟

∗

௟

= 𝑄௉൫𝑢(௠)൯ − ቆ
𝛿𝑃(௠)

𝛿𝑥௜
ቇ 

(3.34) 

3. Solve the approximate pressure equation (Eqn. (3.35)) to find the pressure 

corrector, 𝑃′ . This equation is derived from the continuity equation with an 

incompressible form. The derivation is given as 

𝛼௣൫𝑢(௠)൯𝑢௜,௣
௠ାଵ + ෍ 𝛼௟,௣൫𝑢(௠)൯𝑢௜,௟

௠ାଵ

௟

= 𝑄௉൫𝑢(௠)൯ − ቆ
𝛿𝑃(௠ାଵ)

𝛿𝑥௜
ቇ 

(3.34a) 

Subtracting Eqn. (3.34) by Eqn. (3.34a), it provides 

𝛼௣൫𝑢(௠)൯𝑢௜,௣
ᇱ + ෍ 𝛼௟,௣൫𝑢(௠)൯𝑢௜,௟

ᇱ

௟

= − ቆ
𝛿𝑃(ᇱ)

𝛿𝑥௜
ቇ 

Where, 𝑢௜,௣
ᇱ = 𝑢௜,௣

௠ାଵ − 𝑢௜,௣
∗ , 𝑃௜,௣

ᇱ = 𝑃௜,௣
௠ାଵ − 𝑃௜,௣

௠  

In the classical SIMPLE algorithm, the second term on the left-hand side is simply 

removed, so that it has  

𝛼௣൫𝑢(௠)൯𝑢௜,௣
ᇱ = − ቆ

𝛿𝑃(ᇱ)

𝛿𝑥௜
ቇ → 𝑢௜,௣

ᇱ = −
1

𝛼௣(𝑢(௠))
ቆ

𝛿𝑃(ᇱ)

𝛿𝑥௜
ቇ 

Taking the above equation into an incompressible continuity equation, the 

pressure corrector equation can be obtained 

൬
𝛿𝑢∗

𝛿𝑥௜
൰

௉

+ ቆ
𝛿𝑢ᇱ

𝛿𝑥௜
ቇ

௉

= 0 

→ ൬
𝛿𝑢∗

𝛿𝑥௜
൰

௉

−
𝛿

𝛿𝑥௜
ቆ

1

𝛼௣(𝑢(௠))

𝛿𝑃ᇱ

𝛿𝑥௜
ቇ = 0 

→
𝛿

𝛿𝑥௜
ቆ

1

𝛼௣(𝑢(௠))

𝛿𝑃ᇱ

𝛿𝑥௜
ቇ = ൬

𝛿𝑢∗

𝛿𝑥௜
൰

௉

 

(3.35) 
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4. Update velocity and Pressure fields as 

𝑢௜,௉
ᇱ = −

1

𝛼௣(𝑢(௠))
ቆ

𝛿𝑃ᇱ

𝛿𝑥௜
ቇ

௉

 

(3.36) 

𝑢௜,௉
(௠ାଵ)

= 𝑢௜,௉
ᇱ + 𝑢௜,௉

∗ , 𝑃௉
(௠ାଵ)

= 𝑃௜,௉
ᇱ + 𝑃௜,௉

(௠) 

5. The last step is to take the new value back into Step 1 and recycle this loop until 

the value achieves the convergence criterion. More details can be found in 

Zikanov (2010). 

In the PIMPLE algorithm, the flowing state can be considered as a stable state at the 

end of each time step. The number of the SIMPLE loops is a user-designed number, 

which can be changed by the nOuterCorrectors keyword. Each SIMPLE loop 

employs the PISO algorithm to replace the pressure correcting procedure, details 

of which were previously given in Section 3.4.1. As a result, the PIMPLE algorithm will 

provide a more accurate simulation result and save computer resources in 

comparison with the SIMPLE algorithm or PISO algorithm. 

3.5 Turbulence model 

The turbulence model is the key feature of the governing equations when the 

Reynolds Averaged Navier-Stokes (RANS) method is implemented. Specifically, the 

turbulence model is generated to evaluate the Reynolds stress tensor in the 

Reynolds averaged Navier-Stokes equation. The derivation of the averaged equation 

is given below. 

The flow fields are separated into mean and fluctuating parts 

𝑢௜ = 𝑢పഥ + 𝑢௜
ᇱ,   𝑝 = 𝑃ത + 𝑝ᇱ 

Recalling the continuity equation in the incompressible form 

𝜕𝑢௜

𝜕𝑥௜
= 0 →

𝜕

𝜕𝑥௜

(𝑢పഥ + 𝑢௜
ᇱ) = 0 

(3.37) 

The result of averaging Eqn. (3.37) is given by 
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𝜕𝑢పഥ

𝜕𝑥௜
= 0 

(3.38) 

Subtracting Eqn. (3.38) from Eqn. (3.37), the continuity equation for the fluctuating 

velocity is, 

𝜕𝑢௜
ᇱ

𝜕𝑥௜
= 0 

According to the momentum equation, the complete expression is 

𝜕[𝜌(𝑢పഥ + 𝑢௜
ᇱ)]

𝜕𝑡
+

𝜕ൣ𝜌(𝑢పഥ + 𝑢௜
ᇱ)൫𝑢ఫഥ + 𝑢௝

ᇱ൯൧

𝜕𝑥௝
=

𝜕𝜏௜௝

𝜕𝑥௝
−

𝜕(𝑃ത + 𝑝ᇱ)

𝜕𝑥௜
 

(3.39) 

The result of averaging is 

𝜕(𝜌𝑢పഥ )

𝜕𝑡
+

𝜕൫𝜌𝑢పഥ 𝑢ఫഥ ൯

𝜕𝑥௝
=

𝜕

𝜕𝑥௝
൫𝜏௜௝ − 𝜌𝑢ప

ᇱതതതത𝑢ఫ
ᇱതതതത൯ −

𝜕𝑃ത

𝜕𝑥௜
 

(3.40) 

As Eqn. (3.40) presents, the new term 𝜌𝑢ప
ᇱതതതത𝑢ఫ

ᇱതതതത, which is known as the Reynolds stress 

tensor, is derived from the non-linear convection term. In order to close the system, 

different turbulence models are designed to approximate this Reynolds stress 

tensor term.  

3.5.1 Eddy viscosity hypothesis 

One of the most well-known methods is the Eddy viscosity hypothesis. It is assumed 

that the turbulent transport depends on the mean velocity gradients in the same 

way as molecular transport depends on the gradients of the full velocity field 

(Zikanov, 2010). The expression is given as 

−𝜌𝑢ప
ᇱ𝑢ఫ

ᇱതതതതതത = 𝜇௧ ቆ
𝜕𝑢పഥ

𝜕𝑥௝
+

𝜕𝑢ఫഥ

𝜕𝑥௜
ቇ −

2

3
𝜌𝑘𝛿௜௝ 

 (3.41) 

Where, 𝛿௜௝ is the Kronecker delta 
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𝛿௜௝ = ൜
1   𝑖𝑓   𝑖 = 𝑗
0   𝑖𝑓   𝑖 ≠ 𝑗

 

𝑘 is the turbulent kinetic energy, which equals the sum of 
ଵ

ଶ
𝑢ప

ᇱ𝑢ప
ᇱതതതതതത. 

𝑘 =
1

2
𝑢ప

ᇱ𝑢ప
ᇱതതതതതത =

1

2
൫𝑢௫

ᇱ 𝑢௫
ᇱതതതതതതത + 𝑢௬

ᇱ 𝑢௬
ᇱതതതതതതത + 𝑢௭

ᇱ 𝑢௭
ᇱതതതതതത൯ 

Substituting Eqn. (3.41) into Eqn. (3.40), the RANS equations can be transformed 

into the following form: 

𝜕(𝜌𝑢పഥ )

𝜕𝑡
+

𝜕൫𝜌𝑢పഥ 𝑢ఫഥ ൯

𝜕𝑥௝
=

𝜕

𝜕𝑥௝
൬2(𝜇 + 𝜇௧)𝑆పఫ

തതതത −
2

3
𝜌𝑘𝛿௜௝൰ −

𝜕𝑃ത

𝜕𝑥
 

(3.42) 

From this stage, the turbulence model is employed to evaluate the two unknowns 

left in Eqn. (3.42), 𝜇௧ and 𝑘. 

 The 𝑘 − 𝜀 Two-Equation model 

As one of the most widely used turbulence models, the 𝑘 − 𝜀 Two-Equation model 

was used in the simulations of the current thesis. It is generated based on the eddy 

viscosity hypothesis. The expression of the eddy viscosity is  

𝜇௧ = 𝜌ℓ௦𝑉௦. 

Where ℓ௦ is the length scale and 𝑉௦ is the velocity scale. In the 𝑘 − 𝜀 model, both 

of them are evaluated by the turbulent kinetic energy 𝑘, and dissipation rate 𝜀.  

ℓ௦ =
𝑘

𝜀

ଷ
ଶ

, 𝑉௦ = 𝐶ఓ𝑘
ଵ
ଶ, =≫ 𝜇௧ = 𝐶ఓ𝜌

𝑘

𝜀

ଶ

 

Where, 𝐶ఓ is a constant, 𝑘 and 𝜀 can be solved from their transport equations. 

The transport equations of the kinetic energy 𝑘 are derived from the momentum 

conservation equation;  

Subtracting Eqn. (3.40) from Eqn. (3.39), gives the expression of the velocity 

component 𝑢௜
ᇱ. 

𝜕(𝜌𝑢௜
ᇱ)

𝜕𝑡
+

𝜕

𝜕𝑥௞

[𝜌(𝑢௜
ᇱ𝑢௞തതത + 𝑢௞

ᇱ 𝑢పഥ + 𝑢௜
ᇱ𝑢௞

ᇱ )] =
𝜕

𝜕𝑥௞

(𝜏௜௞
ᇱ + 𝜌𝑢ప

ᇱ𝑢௞
ᇱതതതതതതതത) −

𝜕𝑝ᇱ

𝜕𝑥௜
 

(3.43) 
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The expression of the velocity component 𝑢௝
ᇱ is presented as 

𝜕൫𝜌𝑢௝
ᇱ൯

𝜕𝑡
+

𝜕

𝜕𝑥௞
ൣ𝜌൫𝑢௝

ᇱ𝑢௞തതത + 𝑢௞
ᇱ 𝑢ఫഥ + 𝑢௝

ᇱ𝑢௞
ᇱ ൯൧ =

𝜕

𝜕𝑥௞
൫𝜏௝௞

ᇱ + 𝜌𝑢ఫ
ᇱതതതത𝑢௞

ᇱതതതത൯ −
𝜕𝑝ᇱ

𝜕𝑥௝
 

(3.44) 

In the above equations, indicator ∑௜  represents Eqn. (3.43), and ∑௝  represents 

Eqn. (3.44), the transport equation (Eqn. (3.45)) can be obtained by averaging the 

sum of 𝑢௝
ᇱ∑௜ + 𝑢௜

ᇱ∑௝ 

𝜕൫𝜌𝑢ప
ᇱ𝑢ఫ

ᇱതതതതതത൯

𝜕𝑡
+

𝜕

𝜕𝑥௞
൫𝜌𝑢ప

ᇱ𝑢ఫ
ᇱ𝑢௞

തതതതതതതതത൯ = 𝛲௜௝ + 𝛵௜௝ + 𝛱௜௝ + 𝐷௜௝ − 𝜌𝜀௜௝ 

(3.45) 

Where  

𝛲௜௝ = − ቆ𝜌𝑢ఫ
ᇱ𝑢௞

ᇱതതതതതത
𝜕𝑢పഥ

𝜕𝑥௞
+ 𝜌𝑢ప

ᇱ𝑢௞
ᇱതതതതതത

𝜕𝑢ఫഥ

𝜕𝑥௞
ቇ 

𝛵௜௝ = −
𝜕

𝜕𝑥௞
൫𝜌𝑢ప

ᇱ𝑢ఫ
ᇱ𝑢௞

ᇱതതതതതതതതത൯ 

𝛱௜௝ = − ቆ𝑢ఫ
ᇱ

𝜕𝑝ᇱ

𝜕𝑥ప

തതതതതതതത
+ 𝑢ప

ᇱ
𝜕𝑝ᇱ

𝜕𝑥ఫ

തതതതതതതത
ቇ 

𝐷௜௝ =
𝜕

𝜕𝑥௞
൫𝑢ఫ

ᇱ𝜏ప௞
ᇱതതതതതതത + 𝑢ప

ᇱ𝜏ఫ௞
ᇱതതതതതതത൯ 

𝜌𝜀௜௝ = 𝜏ప௞
ᇱ

𝜕𝑢ఫ
ᇱ

𝜕𝑥௞

തതതതതതതതതത
+ 𝜏ఫ௞

ᇱ
𝜕𝑢ప

ᇱ

𝜕𝑥௞

തതതതതതതതതത
 

Rewriting the Eqn. (3.45) with 𝑖 = 𝑗, and multiplying by 
ଵ

ଶ
, the transport equation for 

the kinetic energy 𝑘 can be obtained 

𝜌
𝐷𝑘

𝐷𝑡ด
஺

= 𝜌𝑢ప′𝑢௞′തതതതതതതത 𝜕𝑢పഥ

𝜕𝑥௞ᇣᇧᇧᇤᇧᇧᇥ
஻

− 𝜌𝜀ด
஼

+
𝜕

𝜕𝑥௞
൤𝜇 ൬

𝜕𝑘

𝜕𝑥௞
൰൨

ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
஽

+
𝜕

𝜕𝑥௞
ቆ𝜌

𝑢ప
ଶ𝑢௞

2

തതതതതതത
+ 𝑢௞𝑝ᇱതതതതതതቇ

ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ
ா

 

(3.46) 

the meaning of each term is given below 

Term A can be decomposed into 𝜌
డ௞

డ௧
+ 𝜌𝑢௝

డ௞

డ௫ೕ
, which is the transient term and 

convection term of the kinetic energy 𝑘. 
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Term B is the Production term ( 𝑃௞ ) approximated from the eddy viscosity 

hypothesis. 

𝜏௧ =  −𝜌𝑢ప
ᇱ𝑢ఫ

ᇱതതതതതത = 𝜇௧ ൬
డ௨ഢതതത

డ௫ೕ
+

డ௨ണതതത

డ௫೔
൰ −

ଶ

ଷ
𝜌𝑘𝛿௜௝  

(3.47) 

Term C is the Dissipation term 𝜌𝜀, which should be solved by the transport equation 

of the dissipation rate 𝜀. 

Term D is the Molecular diffusion term. Term C and Term D are derived from the 

last two terms of Eqn. (3.45). (Bailly and Comte-Bellot, 2018). 

𝐷௜௝ − 𝜌𝜀௜௝ =
𝜕

𝜕𝑥௞

(𝑢ప
ᇱ𝜏ప௞

ᇱതതതതതതത) − 𝜏ప௞
ᇱ

𝜕𝑢ప
ᇱ

𝜕𝑥௞

തതതതതതതതതത
 

Where  

𝜏௜௞
ᇱ = 2𝜇𝑆௜௞

ᇱ , 𝑆௜௞
ᇱ =

1

2
 ቆ

𝜕𝑢௜
ᇱ

𝜕𝑥௞
+

𝜕𝑢௞
ᇱ

𝜕𝑥௜
ቇ ,

𝜕𝑢௜
ᇱ

𝜕𝑥௜
= 0 

Thus 

𝜕

𝜕𝑥௞

(𝑢ప
ᇱ𝜏ప௞

ᇱതതതതതതത) − 𝜏ప௞
ᇱ

𝜕𝑢ప
ᇱ

𝜕𝑥௞

തതതതതതതതതത
=

𝜕

𝜕𝑥௞
൤𝜇 ൬

𝜕𝑘

𝜕𝑥௞
൰൨ − 𝜇

𝜕𝑢ప
ᇱ

𝜕𝑥௞

𝜕𝑢ప
ᇱ

𝜕𝑥௞

തതതതതതതതതത
 

=
𝜕

𝜕𝑥௞
൤𝜇 ൬

𝜕𝑘

𝜕𝑥௞
൰൨ − 𝜌𝜀 

The last term is the turbulence diffusion term, which is generated by the turbulent 

motions. A gradient diffusion model is used for the approximation: 

𝜕

𝜕𝑥௝
ቆ𝜌

𝑢ప
ଶ𝑢௞

2

തതതതതതത
+ 𝑢௞𝑝ᇱതതതതതതቇ ≈

𝜕

𝜕𝑥௝
൭൬

𝜇௧

𝜎௞
൰

𝜕𝑘

𝜕𝑥௝
൱ 

(3.48) 

Finally, the modelled transport equation of the kinetic energy 𝑘 is given below. 

𝐷𝑘

𝐷𝑡
=

𝜕

𝜕𝑥௝
൭൬𝑣 +

𝑣௧

𝜎௞
൰

𝜕𝑘

𝜕𝑥௝
൱ − 𝑢ప′𝑢ఫ′തതതതതതത 𝜕𝑢పഥ

𝜕𝑥௝ᇣᇧᇧᇤᇧᇧᇥ
௉ೖ

− 𝜀 

(3.49) 

The production term 𝑃௞ is modified by the eddy viscosity hypothesis and given as 
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𝑃௞ = 𝑢ప′𝑢ఫ′തതതതതതത 𝜕𝑢పഥ

𝜕𝑥௝
= 2𝜈௧𝑆పఫ

തതതത
𝜕𝑢పഥ

𝜕𝑥௝
 

Regarding the dissipation rate 𝜀, the equation is written as: 

𝐷𝜀

𝐷𝑡
=

𝜕

𝜕𝑥௝
൭൬𝑣 +

𝑣௧

𝜎ఌ
൰

𝜕𝜀

𝜕𝑥௝
൱ + 𝐶ଵ

𝜀

𝑘
𝑃௞ − 𝐶ଶ

𝜀ଶ

𝑘
 

(3.50) 

This equation is also derived from the continuity equation and then simplified by 

some assumptions; the derivation is given in the Appendix.  

Finally, the turbulence viscosity is given by 

𝜇௧ = 𝐶ఓ𝜌
𝑘ଶ

𝜀
, 𝜇௧ = 𝜌𝑣௧ 

(3.51) 

As can be seen from the above equation, there are some constant coefficients that 

are used to predict the dissipation rate. The value of these coefficients was provided 

by the experiments. For instance, the value of 𝐶ఓ  and 𝐶ଵ was obtained from 

considering the near-wall flow in a local equilibrium; 𝐶ଶ  was derived from grid 

generated turbulence (He, 2016). The suggested value of these terms is given below 

(Launder and Spalding, 1974).  

𝐶ఓ = 0.09, 𝐶ଵ = 1.44, 𝐶ଶ = 1.92, 𝜎௞ = 1.0, 𝜎ఌ = 1.3 

3.5.2 K-epsilon RNG curvature correction model. 

Generally, turbulence models based on the viscosity hypothesis cannot be used to 

predict the flow field of a large swirling flow accurately. But some modified models 

are exceptional. One of the available turbulence models called the K-Epsilon RNG 

Curvature Correction (CC) model, is modified based on the Re-Normalisation 

Group (RNG) method (Yakhot et al., 1992) and the curvature correction function 

(Spalart and Shur, 1997; Zhao et al., 2017). The K-Epsilon RNG model is designed to 

account for the effects of smaller scales of motion. In real situations, the eddy 

viscosity is not only influenced by the length scale at the specified scale but also 

needs to evaluate the effects caused by the small scales. Thus, the K-Epsilon RNG 
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method, using a mathematical technique, improves the standard K-Epsilon model by 

modifying the production terms. The specific expression is given as 

The equation for kinetic energy, 𝑘, 

𝐷𝑘

𝐷𝑡
=

𝜕

𝜕𝑥௝
൭൬𝑣 +

𝑣௧

𝜎௞
൰

𝜕𝑘

𝜕𝑥௝
൱ − 𝑢ప′𝑢ఫ′തതതതതതത 𝜕𝑢పഥ

𝜕𝑥௝ᇣᇧᇧᇤᇧᇧᇥ
௉ೖ

− 𝜀 

(3.49) 

The equation for dissipation rate, 𝜀, 

𝐷𝜀

𝐷𝑡
=

𝜕

𝜕𝑥௝
൭൬𝑣 +

𝑣௧

𝜎ఌ
൰

𝜕𝜀

𝜕𝑥௝
൱ + 𝐶ଵ

𝜀

𝑘
𝑃௞ − 𝐶ଶ

∗ 𝜀ଶ

𝑘
 

(3.52) 

The difference is shown in the dissipation rate equation such that,  

𝐶ଶ
∗ = 𝐶ଶ +

𝐶ఓ𝜂ଷ(1 − 𝜂 𝜂଴⁄ )

1 + 𝛽𝜂ଷ
 

(3.53) 

Where, 𝜂 = 𝑆
௞

ఌ
, 𝑆 = ൫2𝑆௜௝𝑆௜௝൯

ଵ ଶ⁄
 and 𝑆௜௝ =

ଵ

ଶ
(

డ௨ഢതതത

డ௫ೕ
+

డ௨ണതതത

డ௫೔
) 

The turbulence viscosity is calculated by Eqn. 3.51 given in the standard K-Epsilon 

model. 

Regarding the curvature correction function, this is applied to the production term 

𝑃௞, and modified as, 

𝑃௞ → 𝑃௞ ∙ 𝑓௥௢  

Where 𝑓௥௢௧ is the rotation function (Spalart and Shur, 1997) and expressed by 

𝑓௥௢௧ = (1 + 𝐶௥ଵ)
2𝑟∗

1 + 𝑟∗
[1 − 𝐶௥ଷ arctan(𝐶௥ଶ𝑟̃)] − 𝐶௥ଵ 

(3.54) 

𝑟∗ and 𝑟̃ are defined as follows: 

𝑟̃ = 2𝜔௜௞𝑆௝௞ ቆ
𝑑𝑆௜௝

𝑑𝑡
ቇ

1

𝜔𝐷ଷ
 

𝑟∗ =
𝑆

𝜔
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Where, 

𝑆௜௝ =
ଵ

ଶ
(

డ௨ഢതതത

డ௫ೕ
+

డ௨ണതതത

డ௫೔
), 

𝜔௜௝ =
ଵ

ଶ
(

డ௨ഢതതത

డ௫ೕ
−

డ௨ണതതത

డ௫೔
), 

𝑆 = ൫2𝑆௜௝𝑆௜௝൯
ଵ ଶ⁄

, 

𝜔 = ൫2𝜔௜௝𝜔௜௝൯
ଵ ଶ⁄

 and 

𝐷 =  ቀmax(𝑆ଶ, 0.09𝜔ଶ)ቁ
ଵ ଶ⁄

. 

The constants 𝐶௥ଵ , 𝐶௥ଶ  and 𝐶௥ଷ  are obtained by the empirical method and are 

equal to 1.0, 2.0 and 1.0 (Spalart and Shur, 1997), respectively.  

3.5.3 Reynolds Stress Model (RSM) 

The Reynolds Stress Model (RSM) is another method, that can be applied to 

calculate the Reynolds stress term. Different from the eddy viscosity model, the 

calculation of the Reynolds stress is not processed based on the eddy viscosity 

hypothesis. The eddy viscosity is not introduced into the governing equations, but 

the Reynolds stress tensor is calculated by using six Reynolds stress components. 

The averaged momentum and continuity equations have already been given in the 

previous section (Eqn. (3.38) and Eqn. (3.40)), Eqn. (3.55) is the expression of the 

RSM, which is used to close the governing equations. 

𝐷𝜌𝑢ప
ᇱ𝑢ఫ

ᇱതതതതതത

𝐷𝑡
=

𝜕𝜌𝑢ప
ᇱ𝑢ఫ

ᇱതതതതതത

𝜕𝑡
+

𝜕𝜌𝑢௞𝑢ప
ᇱ𝑢ఫ

ᇱതതതതതത

𝜕𝑥௞
= 𝑃௜௝ + 𝐷்,௜௝ + 𝐷௅,௜௝ + 𝛷௜௝ + 𝐹௜௝ − 𝜀௜௝ 

(3.55) 

The derivation of Eqn. (3.51) was also given in the previous section (from Eqn. (3.43) 

to Eqn. (3.45)). The right-hand sides terms are given as 

𝑃௜௝ = −𝜌 ቆ𝑢ప
ᇱ𝑢௞

ᇱതതതതതത
𝜕𝑢ఫഥ

𝜕𝑢௞
+ 𝑢ఫ

ᇱ𝑢௞
ᇱതതതതതത

𝜕𝑢పഥ

𝜕𝑢௞
ቇ 

𝐷்,௜௝ = −
𝜕

𝜕𝑥௞
ቀ𝑝൫𝛿ప௞𝑢ఫ

ᇱ + 𝛿௞ఫ𝑢ప
ᇱ൯തതതതതതതതതതതതതതതതതതതതത + 𝜌𝑢ప

ᇱ𝑢ఫ
ᇱ 𝑢௞

ᇱതതതതതതതതതቁ 
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𝐷௅,௜௝ = −
𝜕

𝜕𝑥௞
ቆ𝜇

𝜕𝑢ప
ᇱ𝑢ఫ

ᇱതതതതതത

𝜕𝑥௞
ቇ 

𝛷௜௝ = 𝑝 ቆ
𝜕𝑢ప

ᇱ

𝜕𝑥ఫ
+

𝜕𝑢ఫ
ᇱ

𝜕𝑥ప
ቇ

തതതതതതതതതതതതതതതതതത
 

𝐹௜௝ = 𝜌𝛺௞൫𝑢ఫ
ᇱ𝑢௠

ᇱതതതതതതത𝑒௜௞௠ + 𝑢ప
ᇱ𝑢௠

ᇱതതതതതതത𝑒௝௞௠൯ 

𝜀௜௝ = 2𝜇
𝜕𝑢ప

ᇱ

𝜕𝑥௞

𝜕𝑢ఫ
,

𝜕𝑥௞

തതതതതതതതതത
 

Where, 𝛿௜௝ is the Kronecker delta 

𝛿௜௝ = ൜
1   𝑖𝑓   𝑖 = 𝑗
0   𝑖𝑓   𝑖 ≠ 𝑗

 

𝛺௞ is the rotation vector, and 𝑒௝௞௠ = 1 if 𝑖, 𝑗, 𝑘 are different and in cyclic order; 

𝑒௝௞௠ = −1 if 𝑖, 𝑗, 𝑘 are different and in anti-cyclic order; and 𝑒௝௞௠ = 0 if any two 

indices are the same. 

It can be found from the above equations that Eqn. (3.55) is similar to Eqn. (3.45). 

The difference is caused by the rearrangement and adding a new user customised 

term 𝐹௜௝ into Eqn. (3.55). The meaning of each term is given below; 

𝑃௜௝ : represents the stress production 

𝐷்,௜௝ : is the turbulent diffusion term 

𝐷௅,௜௝ : is the molecular diffusion term 

𝛷௜௝ : is the pressure-strain term 

𝐹௜௝ : is the rotation production term  

𝜀௜௝ : represents the dissipation term 

The value of the dissipation, 𝜀௜௝, pressure-strain, 𝛷௜௝, and turbulent diffusion, 𝐷்,௜௝, 

cannot be obtained directly. Therefore, they are approximated by modelled 

equations. The linear-strain model is used to calculate the pressure-strain term 

𝛷௜௝ = 𝛷௜௝,ଵ+ 𝛷௜௝,ଶ 

(3.56) 
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Where 𝛷௜௝,ଵ represents the slow pressure-strain and it is modelled as 

𝛷௜௝,ଵ = −𝜌𝐶ଵ

𝜀

𝑘
൬𝑢ప

ᇱ𝑢ఫ
ᇱതതതതതത −

1

3
𝑢௞

ᇱ 𝑢௞
ᇱതതതതതതത𝛿௜௝൰ 

(3.57) 

𝑘 represents the kinetic energy; the expression is given as 

𝑘 =
1

2
𝜌𝑢ప

ᇱ𝑢ప
ᇱതതതതതത 

𝛷௜௝,ଶ represents the rapid pressure-strain term, and it is modelled as 

𝛷௜௝,ଶ = −𝜌𝐶ଶ ൬𝑃௜௝ −
1

3
𝑃௞௞𝛿௜௝൰ 

(3.58) 

The closure equation for the viscous dissipation term is: 

𝐷𝜀

𝐷𝑡
=

𝜕

𝜕𝑥௝
൭ቆ𝑣 + 𝐶ఓ

𝑘ଶ

𝜀𝜎ఌ
ቇ

𝜕𝜀

𝜕𝑥௝
൱ + 𝐶ଵఌ

𝜀

𝑘
𝑢ప′𝑢ఫ′തതതതതതത 𝜕𝑢పഥ

𝜕𝑥௝
− 𝐶ଶఌ

𝜀ଶ

𝑘
 

(3.59) 

The constant coefficients in the above equations are equal to  

𝐶ଵ = 1.8, 𝐶ଶ = 0.6, 𝐶ఓ = 0.09, 𝐶ଵఌ = 1.44, 𝐶ଶఌ = 1.92, 𝜎ఌ = 1.3 

The modelled equation of the turbulent diffusion is given as  

𝐷்,௜௝ =
𝜕

𝜕𝑥௞
ቈ
𝐶ఓ

𝜎௞

𝑘ଶ

𝜀

𝜕𝑢ప
ᇱ𝑢ఫ

ᇱതതതതതത

𝜕𝑥௞
቉ 

(3.60) 

3.5.4 Large-Eddy Simulation (LES) model 

The large eddy simulation (LES) method has made much progress accompanied by 

the advent of the high-performance computer being widely used. Compared with 

most turbulence models in RANS methods, models in LES method has higher 

accuracy, and for the fluid in cyclones, the characteristic of anisotropy can also be 

correctly captured. Thus, it is worth exploring the performance of the LES model in 

the current simulation.  
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The LES method directly calculates the mean flow and the unsteady large-scale and 

intermediate-scale motions. The effect of small-scale fluctuations on the small 

eddies is modelled (Zikanov, 2010). In OpenFOAM, the filter used to distinguish the 

scale of eddies is called the Top-hat filter. It is equivalent to a box filter and the 

equation is given as 

𝐺(𝑟) ൜
1 ∆    𝑖𝑓   𝑟 < 1 2⁄⁄

0         𝑖𝑓   𝑟 > 1 2⁄
 

(3.61) 

Where, ∆ is the filter width of eddies. 

The filtered velocity can be obtained by 

𝑢ത(𝑥, 𝑡) = න 𝐺(𝑟, 𝑥)𝑢(𝑥 − 𝑟, 𝑡)𝑑𝑟 

(3.62) 

And the filtered incompressible Navier-Stokes equation is 

𝜕(𝜌𝑢పഥ )

𝜕𝑡
+

𝜕൫𝜌𝑢పഥ 𝑢ఫഥ ൯

𝜕𝑥௝
= 𝜇∇ଶ𝑢పഥ −

𝜕𝜏௜௝

𝜕𝑥௝
−

𝜕𝑃ത

𝜕𝑥௜
 

(3.63) 

Where, 𝜏௜௝ = 𝜌𝑢ప𝑢ఫതതതതത − 𝜌𝑢పഥ 𝑢ఫഥ  is the subgrid scale stress tensor. 

A subgrid-scale (SGS) kinetic energy-based model was used to simulate the fields in 

small eddies, introduced by Yoshizawa and Horiuti (1985; 1986). The model's 

expressions are given below. (Fumiya, 2016) 

The subgrid scale stress tensor 𝜏௜௝ can be approximated by 

𝜏௜௝ ≈
2

3
𝑘௦௚௦𝛿௜௝ − 2𝑣௦௚௦𝑑𝑒𝑣(𝐷ഥ)௜௝ 

(3.64) 

Where, 𝑣௦௚௦ is the subgrid scale eddy viscosity, (𝐷ഥ)௜௝ is the resolved-scale strain 

rate tensor, which is defined as 

(𝐷ഥ)௜௝ =
1

2
ቆ

𝜕𝑢ത௜

𝜕𝑥௝
+

𝜕𝑢ത௝

𝜕𝑥௜
ቇ 

And 𝛿௜௝ is the Kronecker delta. 
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The subgrid scale kinetic energy 𝑘௦௚௦ is  

𝑘௦௚௦ =
1

2
𝜏௞௞ =

1

2
(𝑢௞𝑢௞തതതതതതത − 𝑢ത௞𝑢ത௞) 

(3.65) 

The subgrid scale eddy viscosity is calculated using 𝑘௦௚௦. 

𝑣௦௚௦ = 𝐶௞ට𝑘௦௚௦∆ 

(3.66) 

Where 𝐶௞  is a constant with the default value of 0.094 in OpenFOAM. ∆ is the 

length scale of the subgrid width.  

The procedure so far is the same as the Smagorinsky SGS model but there is a 

difference in the subsequent calculation steps. The method of computing the value 

of the kinetic energy  𝑘௦௚௦ becomes a challenge for these models. The Smagorinsky 

model assumes the local equilibrium to compute 𝑘௦௚௦ but the one equation eddy 

viscosity model provides a value by solving the transport equation of 𝑘௦௚௦ (Huang 

and Li, 2010). 

The remaining transport equation of the subgrid scale kinetic energy 𝑘௦௚௦ is used 

to close the model. It is derived to account for the historic effect of 𝑘௦௚௦ due to 

production, diffusion and dissipation. The expression is given as 

𝜕൫𝜌𝑘௦௚௦൯

𝜕𝑡
+

𝜕൫𝜌𝑘௦௚௦൯

𝜕𝑥௝
−

𝜕

𝜕𝑥௝
ቈ𝜌൫𝑣 + 𝑣௦௚௦൯

𝜕𝑘௦௚௦

𝜕𝑥௝
቉ = −𝜌𝜏௜௝(𝐷ഥ)௜௝ − 𝐶ఌ

𝜌𝑘௦௚௦
ଷ/ଶ

∆
 

(3.67) 

Where 𝐶ఌ is a constant equal to 1.048. The meaning of each term in Eqn. 3.67, 

from left to right, is the time derivative term, convection term, diffusion term, 

production term, and dissipation term. 

The expression of the production term −𝜌𝜏௜௝(𝐷ഥ)௜௝ can be rearranged into 

−𝜌𝜏௜௝(𝐷ഥ)௜௝ = ൬−
2

3
𝜌𝑘௦௚௦𝛿௜௝ + 2𝜌𝑣௦௚௦𝑑𝑒𝑣(𝐷ഥ)௜௝൰ (𝐷ഥ)௜௝

= −
2

3
𝜌𝑘௦௚

𝜕𝑢ത௞

𝜕𝑥௞
+ 𝜌𝑣௦௚௦

𝜕𝑢ത௜

𝜕𝑥௝
൬2𝐷ഥ௜௝ −

1

3
𝑡𝑟(2𝐷ഥ௜௝)𝛿௜௝൰ 

(3.68) 
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In addition to the above equations, another important setup for the LES method is 

the filtered function (OpenFOAM, 2018). The Van Driest filtered function was used 

to filter the length scale for the subgrid and is given as 

𝐷 = 1 − exp ቆ
−𝑦ା

𝐴ା
ቇ 

The final length scale is given by: 

∆= min ൬
𝜅𝑦

𝐶௦
𝐷, ∆௚൰ 

(3.69) 

Where ∆௚ is a geometric-based delta function, which is approximated by the cube-

root volume delta. 

∆௚= 𝑐(𝑉௖)
ଵ
ଷ 

The default value of the coefficients is given as 

𝑐 = 1, 𝐴ା = 26, 𝜅 = 0.41, 𝐶௦ = 0.158 

Such a filtered function has been used in the current simulation due to the size of 

the near wall cell and cell aspect ratio not being strictly limited (OpenFOAM, 2018). 

3.6 Discrete phase model 

The Lagrangian Discrete Phase Model (DPM) is a method, that can be used to solve 

problems including particle separation and classification, spray drying, aerosol 

dispersion, bubble stirring of liquids, liquid fuel combustion, and coal combustion 

(Fluent, 2001). For the current study, it was used to evaluate the collection efficiency 

of the cyclone and hydrocyclone. The procedure for setting up and solving a steady-

state discrete phase problem is given as 

1. Solve the continuous-phase flow. 

2. Create the discrete-phase injections. 

3. Solve the coupled flow, if desired. 

4. Track the discrete-phase injections, using plots or reports. 

The trajectory of a discrete phase particle is predicted by integrating the force 

implemented on the particle, which is derived in a Lagrangian reference frame. The 

equilibrium equation represents the balance between the particle inertia and the 

force acting on the particle, which can be written as 
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𝜕𝑢௣

𝜕𝑡
= 𝐹஽൫𝑢 − 𝑢௣൯ +

𝑔௫(𝜌௣ − 𝜌)

𝜌௣
+ 𝐹௫ 

(3.70) 

Where 𝐹஽൫𝑢 − 𝑢௣൯ is the drag force per unit particle mass and can be evaluated by 

𝐹஽ =
18𝜇

𝜌௣𝑑௣
ଶ

𝐶஽𝑅𝑒

24
 

(3.71) 

In the above equations, the subscript 𝑝 represent the properties of the particle. 𝑢 

is the fluid phase velocity, 𝑢௣ is the particle velocity, 𝜇 is the viscosity of the fluid. 

𝜌 is the density of fluid, 𝜌௣ is the density of the particle. 𝑑௣ is the particle diameter, 

and 𝑔௫ is the gravitational acceleration.  

The relative Reynolds number, 𝑅𝑒 is calculated by 

𝑅𝑒 ≡
𝜌𝑑௣ห𝑢௣ − 𝑢ห

𝜇
 

There are several kinds of method to evaluate the drag coefficient, 𝐶஽, and in the 

present work, the formula that accounts for smooth spherical particles (Morsi and 

Alexander, 1972) was applied to calculate the drag coefficient, 𝐶஽. 

𝐶஽ = 𝑎ଵ +
𝑎ଶ

𝑅𝑒
+

𝑎ଷ

𝑅𝑒ଶ
 

(3.72) 

The value of the constant 𝑎ଵ, 𝑎ଶ and 𝑎ଷ is given by Morsi and Alexander (1972) and 

listed in Table 3.1. 

The second term on the right-hand side of Eqn. 3.67 represents the force generated 

by the gravitational acceleration. It is assumed to be 𝑔௫ = 9.81  in the axial 

downward direction. 

The last term on the right-hand side of Eqn. 3.68 represents other forces that may 

influence the flowing behaviour of the particles. In the current simulations, since the 

mass fraction of the particles in the continuous phase is sufficiently low, the other 

forces have not been considered. 
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Table 3.1 Constants for the equation of drag coefficient 

𝑹𝒆 𝒂𝟏 𝒂𝟐 𝒂𝟑 

< 0.1 0 24 0 

0.1 − 1 3.69 22.73 0.0903 

1 − 10 1.222 29.1667 -3.8889 

10 − 100 0.6167 46.5 116.67 

100 − 1000 0.3644 98.33 -2778 

1000 − 5000 0.357 148.62 -4.75E4 

5000 − 10000 0.46 -490.546 57.87E4 

10000 − 50000 0.5191 -1662.5 5.4167E6 
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Chapter 4. The Volume of Fluid method 
In simulations of multi-phase flow, the volume of fluid (VOF) method is generally 

used for capturing the free-surface between fluids. Although this method can be 

classified as a Surface Capturing technique, it is different from the Surface Tracking 

methods, in which free-surface is tracked by the mesh. A phase fraction function is 

applied to approximate the position of the free-surface in the VOF method (Carrica 

et al., 2006). Therefore, this chapter focuses on presenting the derivation of the VOF 

method, and introduces the High-Resolution Schemes (HRS) and the Flux Corrected 

Transport (FCT) technique used by the OpenFOAM platform for the new approach 

to VOF based interface capturing methods. 

4.1 Phase fraction function 

The phase fraction function is derived from the mass conservation equation. The 

first step is conceiving a physical domain constituted of a liquid-phase region, 𝑅௟ 

and a gas phase region, 𝑅௚. The assumption indicates an indicator 𝛼, which is given 

as 

𝛼(𝑥, 𝑡) = ቐ

1                     𝑖𝑓   𝑥 ∈ 𝑅௟ at time 𝑡
0 < 𝛼 < 1   𝑖𝑓   𝑥 ∈ 𝑅௟,௚ at time 𝑡

0                     𝑖𝑓   𝑥 ∈ 𝑅௚ at time 𝑡
 

(4.1) 

This function has the characteristic of singular nature. It is appropriate to introduce 

the integration form of this quantity for the discretisation over the volume 

corresponding to a computational cell (Ω௜ ) (Deshpande, 2012). The integration 

provides a liquid fraction field given by 

𝛾(𝑥௜, 𝑡) =
1

|Ω௜|
න 𝛼(𝑥, 𝑡)

ஐ೔

𝑑𝑉 

(4.2) 

As a result, this fraction (Eqn. 4.2) equals one when the cells are completely liquid, 

and equals zero when the cells are completely gas.  

The continuity equation based on the conservation of mass is presented as 
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𝜕𝜌

𝜕𝑡
+

𝜕𝜌𝑢

𝜕𝑥
+

𝜕𝜌𝑣

𝜕𝑦
+

𝜕𝜌𝑤

𝜕𝑧
= 0 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝑈𝜌) = 0 

(3.1) 

The density fields in Eqn. (3.1) can be modified by adding the indicator function 

𝛼(𝑥, 𝑡)  

𝜌(𝑥, 𝑡) = 𝜌௟𝛼(𝑥, 𝑡) + 𝜌௚[1 − 𝛼(𝑥, 𝑡)] 

(4.3) 

Where, 𝜌௟ is the density of the liquid phase, 𝜌௚ is the density of the gas phase. For 

the incompressible flow, both of them are constant. 

Taking Eqn. (4.3) back to Eqn. (3.1) and replacing the density field, the expression is 

shown as 

൫𝜌௟ − 𝜌௚൯
𝜕𝛼(𝑥, 𝑡)

𝜕𝑡
+ ∇ ∙ ൣ൫𝜌௟ − 𝜌௚൯𝛼(𝑥, 𝑡)𝑈(𝑥, 𝑡)൧ + 𝜌௚∇ ∙ 𝑈(𝑥, 𝑡) = 0 

(4.4) 

For the incompressible flow, the last term on the left-hand side can be ignored 

because of ∇ ∙ 𝑈(𝑥, 𝑡) = 0 

Integrating Eqn. (4.4) over the computational cell (Ω௜), the equation of a divergence-

free flow field is given as 

න ൫𝜌௟ − 𝜌௚൯
𝜕𝛼(𝑥, 𝑡)

𝜕𝑡ஐ೔

𝑑𝑉 + න ∇ ∙ ൣ൫𝜌௟ − 𝜌௚൯𝛼(𝑥, 𝑡)𝑈(𝑥, 𝑡)൧
ஐ೔

𝑑𝑉 = 0 

(4.5) 

Applying the definition of the liquid fraction field from Eqn. (4.2), Eqn. (4.5) can be 

rewritten as  

𝜕𝛾

𝜕𝑡
+ ∇ ∙ (𝑈𝛾) = 0 

(4.6) 

Eqn. (4.6) is the equation of the phase fraction; it is the key feature of the VOF 

method. However, this equation is not used directly for calculations in OpenFOAM, 
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as it needs to be optimised by the HRS and the FCT technique in order to provide 

better results for simulations.  

4.2 Flux corrected transport 

In the solution of the phase fraction equation (see Eqn. (4.6)), the characteristic of 

boundedness needs to be guaranteed. The Flux Corrected Transport (FCT) 

technique introduced by Boris and Book (1973) is one of the methods that can be 

applied to achieve such a requirement. Later, the FCT technique was optimised by 

Zalesak (1979). The application of Zalesak’s limiter provides a genuinely multi-

dimensional high-resolution scheme (Márquez Damián, 2013). 

4.2.1 Theoretical foundation 

Rewriting Eqn. (4.6) to the general form by replacing the phase fraction 𝛾 with a 

transported quantity 𝜙. 

𝜕𝜙

𝜕𝑡
+ ∇ ∙ 𝐹⃗ = 0 

(4.7) 

Where 𝐹⃗ is the flux of the transported quantity 𝜙, it can be a linear or nonlinear 

function of 𝜙.  

Applying the explicit discretisation scheme for the temporal term (e.g. Eqn. (3.28)), 

the solution of Eqn. (4.7) is given as 

𝜙௜
௡ାଵ − 𝜙௜

௡

∆𝑡
𝑉 + ෍ ൫𝐹⃗௡ ∙ 𝑆൯

௙௙
= 0 

(4.8) 

Where the subscript 𝑖: represents the index of the analysed cell 

The superscript 𝑛: represents the index of the temporal steps  

𝑉: is the volume of the cell.  

𝑓: is the index of the 𝑖’s cell face. 

𝑆: represents the face area vector for the 𝑓-th face of the cell 𝑖. 
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Rearranging Eqn. (4.8) by moving the variables with superscript 𝑛 to the right of 

the equation, the expression in a one-dimensional equidistant grid is given as, 

𝜙௜
௡ାଵ = 𝜙௜

௡ −
∆𝑡

𝑉
൫𝐹௜ାଵ ଶ⁄

௡ − 𝐹௜ିଵ ଶ⁄
௡ ൯ 

(4.9) 

Where 𝐹௡ = ൫𝐹⃗௡ ∙ 𝑆൯
௙

 is the total flux which depends on the transportive effect of 

the velocity.  

The value of the quantity 𝜙 at a cell’s faces is the key feature that influences the 

value of the flux 𝐹௡. In order to guarantee the boundedness of the temporal solution, 

modifications can be imposed on the value at a cell’s faces or on the face fluxes. For 

the latter situation, the values of the face fluxes are obtained by combining the 

solution of the low-order method with the solution of the higher-order method. The 

low-order method guarantees boundedness and the high-order method guarantees 

accuracy. The details described by Zalesak (1979) are given below. 

1. Compute the transportive flux 𝐹௅ by a low-order monotonic scheme. 

2. Compute the transportive flux 𝐹ு by a high-order scheme. 

3. Define the anti-diffusive fluxes as 𝐴 = 𝐹ு − 𝐹௅. 

4. Compute the corrected flux 𝐹஼ = 𝐹௅ + 𝜆𝐴, where the weighting factor 0 ≤ 𝜆 ≤ 1. 

5. Solve the equation (e.g. Eqn. (4.9)) by substituting the corrected flux for the 

original flux. 

𝜙௜
௡ାଵ = 𝜙௜

௡ −
∆𝑡

𝑉
൫𝐹௜ାଵ ଶ⁄

஼ − 𝐹௜ିଵ ଶ⁄
஼ ൯ 

(4.10) 

As can be found from the above procedures, the weighting factor 𝜆  is the key 

feature that determines the proportion of the anti-diffusive fluxes. Two extreme 

situations exist. When 𝜆 = 0, the solution of the equations is obtained by low-order 

schemes. Conversely, with 𝜆 = 1, the solution is obtained by high-order schemes. 

The value of the weighting factor is not indicated arbitrarily during calculations. The 

corrected flux, calculated by the factor needs to satisfy both the boundedness of 

low-order methods and accuracy of high-order methods.  
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4.2.2 Zalesak’s weighting factor 

Further expanding Eqn. (4.10) can be achieved by substituting the expression of the 

corrected flux 𝐹஼ into the equation. 

𝜙௜
௡ାଵ = 𝜙௜

௡ −
∆𝑡

𝑉
൫𝐹௜ାଵ ଶ⁄

௅ − 𝐹௜ିଵ ଶ⁄
௅ ൯ −

∆𝑡

𝑉
൫𝜆௜ାଵ ଶ⁄ 𝐴௜ାଵ ଶ⁄ − 𝜆௜ିଵ ଶ⁄ 𝐴௜ିଵ ଶ⁄ ൯

= (𝜙௜
௅)௡ −

∆𝑡

𝑉
൫𝜆௜ାଵ ଶ⁄ 𝐴௜ାଵ ଶ⁄ − 𝜆௜ିଵ ଶ⁄ 𝐴௜ିଵ ଶ⁄ ൯ 

(4.10) 

From Eqn. (4.10) it can be found that the value at time 𝑛 + 1 is calculated by two 

steps. The first step is to estimate the solutions by low-order schemes, and the 

second step is to add the anti-diffusive flux corrected by the appropriate weighting 

factor into the equation. However, such a method will produce the risk of 

unboundedness due to the anti-diffusive flux in the second step. Given this, a new 

maximum may be created by the inflow and the minimum by the outflow. In order 

to guarantee the boundedness, the correcting procedure is given as: 

1. Defining 𝑃௜
± represents the flux of inflows and outflows for A 

𝑃௜
ା = − ෍൫𝐴௙

ି൯

௙

, 𝑃௜
ି = ෍൫𝐴௙

ା൯

௙

  

(4.11) 

Where 𝐴௙
ି are the inflows and 𝐴௙

ା are the outflows. 

2. Defining 𝑄௜
±  represents the net fluxes limited by the local maximum and 

minimum. 

𝑄௜
ା =

𝑉

∆𝑡
(𝜙௜

௠௔௫ − 𝜙௜
௅), 𝑄௜

ି =
𝑉

∆𝑡
൫𝜙௜

௅ − 𝜙௜
௠௜௡൯ 

(4.12) 

The relationship between 𝑃௜
± and 𝑄௜

± is shown in Fig. 4.1. 
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Fig. 4.1. One dimensional geometry and magnitudes for Zalesak's limiter. 

 (Kuzmin et al., 2003) 

Considering fluid flowing through a cell, it has the following situations 

 Case 1 

If 𝑃௜
± = 0, then it has 𝜙௜

௡ାଵ = (𝜙௜
௅)௡, the fluxes do not need to be corrected, 

and 𝜆௜
± = 0. 

 Case 2 

If 𝑃௜
± > 0, then it means 𝜙௜

௡ାଵ ≠ (𝜙௜
௅)௡, the anti-diffusive flux is created at the 

boundaries; the solutions of low-order schemes need to be corrected.  

Because the basic rule of flux correction is to ensure boundedness, then 𝑄௜
± 

represents the maximum and minimum anti-diffusive fluxes that can be 

employed for corrections, as such, it has 

1. 𝑄௜
± > 𝑃௜

±, which means if the corrected value of anti-diffusive flux is within the 

range, then the solutions will be corrected by 𝑃௜
± 

2. 𝑄௜
± < 𝑃௜

±, which means if the corrected value of anti-diffusive flux exceeds the 

range, then the solutions will be corrected by 𝑄௜
± 

i − 1 i i + 1 

i − 1 2⁄  i + 1 2⁄  

𝜙௜
௠௔௫ 

𝜙௜
௠௜௡ 

𝜙௜ିଵ
௅  

𝜙௜ାଵ
௅  

𝜙௜
௅ 

𝑄௜
ା 

𝑄௜
ି 

𝑃௜
ା 

𝑃௜
ି 

𝐴௜ିଵ ଶ⁄  𝐴௜ାଵ ଶ⁄  
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These cases can be summarised in an expression 

𝜆௜
± = ቊ

min൛1, 𝑄௜
± 𝑃௜

±ൗ ൟ ,          𝑖𝑓 𝑃௜
± > 0

0,                                     𝑖𝑓 𝑃௜
± = 0

 

(4.13) 

The weighting factor 𝜆 on a cell’s faces (e.g. 𝜆௜ାଵ ଶ⁄ ) is estimated by taking the value 

of the weighting factor at the centre of neighbouring cells (e.g. 𝜆௜
± or 𝜆௜ାଵ

± ). For the 

purpose of guaranteeing boundedness, the smaller value will be applied for 

calculations. 

𝜆௜ାଵ ଶ⁄ = ቊ
min{𝜆௜ାଵ

ା , 𝜆௜
ି} , 𝑖𝑓 𝐴௜ାଵ ଶ⁄ ≥ 0

min{𝜆௜ାଵ
ି , 𝜆௜

ା} , 𝑖𝑓 𝐴௜ାଵ ଶ⁄ < 0
 

(4.14) 

Finally, as Eqn. (4.12) presented, the local maximum and minimum must be defined 

for the solution of the equation. Zalesak (1979) provided a straightforward method: 

𝜙௜
௔      = max (𝜙௜

௡, 𝜙௜
௅)

𝜙௜
௠௔௫ = max (𝜙௜ିଵ

௔, 𝜙௜
௔, 𝜙௜ାଵ

௔)

𝜙௜
௕      = min (𝜙௜

௡, 𝜙௜
௅)

𝜙௜
௠௜௡  = min (𝜙௜ିଵ

௕ , 𝜙௜
௕ , 𝜙௜ାଵ

௕)

 

(4.15) 

The solution obtained by the above calculations will ensure both boundedness and 

higher accuracy. Based on the FCT technique provided by Zalesak (1979), some 

modifications are implemented for OpenFOAM’s operation.  

4.2.3 OpenFOAM’s weighting factors 

The modified FCT technique applied by OpenFOAM is called MULES (Multi-

dimensional Universal Limiter for Explicit Solution). Based on Zelasak’s theory, the 

modification is implemented focused on the calculation of weighting factors 𝜆; an 

iterative method is used to find the appropriate weighting factors. Another 

improvement is the introduction of the global extrema, which is a parameter set by 

the user and is critical for the simulation of multi-phase flows. The procedures of 
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the MULES solver are summarized by Márquez Damián (2013) and presented in List 

4.1. 

When calculating the weighting factors of the MULES solver, the net flux of each cell 

is taken into account. More specifically, different from Zelasak’s limiter, the maxima 

and minima are not only determined by inflows and outflows, respectively. Based on 

this conservative assumption, both outflows and inflows are used to calculate the 

limiters for the maxima and minima. It can be proved that when inflows or outflows 

are insignificant, the values of the weighting factors calculated by the MULES solver 

will converge to values approximate to Zalesak’s ones. 

List 4.1 Steps for the MULES solver 

1. Calculating the local extrema by 

𝝓𝒊
𝒂      = 𝐦𝐚𝐱 (𝝓𝒊

𝒏, 𝝓𝒊,𝑵
𝒏) 

𝝓𝒊
𝒃      = 𝐦𝐢𝐧 (𝝓𝒊

𝒏, 𝝓𝒊,𝑵
𝒏) 

Where, subscript 𝒊, 𝑵 represent the neighbouring cells adjacent to each face of 

the 𝒊 − 𝐭𝐡 cell. 

2. Calculating the inflows and outflows for each cell by Eqn. (4.11) 

𝑷𝒊
ା = − ෍൫𝑨𝒇

ି൯

𝒇

, 𝑷𝒊
ି = ෍൫𝑨𝒇

ା൯

𝒇

  

(4.11) 

Where 𝑨𝒇
ି are the inflows and 𝑨𝒇

ା are the outflows. 

3. Further narrowing the range of extreme values by introducing user-defined 

global extrema 𝝓𝒎𝒂𝒙𝑮 and 𝝓𝒎𝒊𝒏𝑮 

𝝓𝒊
𝒂ା𝟏 = 𝐦𝐢𝐧(𝝓𝒎𝒂𝒙𝑮, 𝝓𝒊

𝒂) , 𝝓𝒊
𝒃ା𝟏 = 𝐦𝐚𝐱 (𝝓𝒎𝒊𝒏𝑮, 𝝓𝒊

𝒃) 

4. Calculating 𝑸𝒊
± by 

𝑸𝒊
ା =

𝑽

∆𝒕
൫𝝓𝒊

𝒂ା𝟏 − 𝝓𝒊
𝒏൯ + ෍൫𝑭𝒇

𝑳൯

𝒇

, 𝑸𝒊
ି =

𝑽

∆𝒕
൫𝝓𝒊

𝒏 − 𝝓𝒊
𝒃ା𝟏൯ − ෍൫𝑭𝒇

𝑳൯

𝒇

 

(4.12) 
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5. Calculating the weighting factor 𝝀 on a cell’s faces by iterative methods. The 

number of loops is controlled by nLimiterIter, which is a user-defined parameter. 

At the first iteration step, setting the weighting factor 𝝀𝒇
𝒗ୀ𝟏 = 𝟏 for all faces, the 

calculation starts with 

𝝀∓
𝒊
𝒗ା𝟏

= 𝐦𝐚𝐱 ൥𝐦𝐢𝐧 ൭
± ∑ 𝝀𝒇

𝒗𝑨𝒇
±

𝒇 + 𝑸𝒊
±

𝑷𝒊
± , 𝟏൱ , 𝟎൩ 

𝝀𝒇
𝒗ା𝟏 = ቊ

𝐦𝐢𝐧{𝝀𝑷
ା, 𝝀𝑵

ି} , 𝒊𝒇 𝑨𝒊ା𝟏 𝟐⁄ ≥ 𝟎

𝐦𝐢𝐧{𝝀𝑷
ି, 𝝀𝑵

ା} , 𝒊𝒇 𝑨𝒊ା𝟏 𝟐⁄ < 𝟎
 

(4.16) 

Similar to Zalesak’s limiter, subscript 𝑷 and 𝑵 represent the current cell and 

the neighbouring cell; 𝒇 represents the shared face of the two cells. 
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4.3 High-Resolution Schemes Implementation 

As Eqn. (4.9) presented, the value of the unknown quantity 𝜙௜
௡ାଵ is calculated by 

the already known value of the fluxes on cell faces (e.g. 𝐹௜ାଵ ଶ⁄
஼ , 𝐹௜ିଵ ଶ⁄

஼ ). Section 3.3.2 

introduced the schemes for calculating these face values. The upwind interpolation 

method has the characteristic of guaranteed boundedness, but it has only first-

order of accuracy. The centre liner interpolation scheme presents second-order 

accuracy but cannot assure the boundedness when it is used with Courant numbers 

beyond unity and with high Peclet numbers (Márquez Damián, 2013). As a solution 

to such a predicament, the High-Resolution Schemes (HRS) is implemented to 

guarantee boundedness and to work with a higher order of accuracy than first-

order schemes. The derivation of the HRS begins with the expression of the basic 

schemes. Recalling the expression of the linear interpolation method in Section 3.3.2.  

Φ௙ = 𝑓௫஼ூΦ௉ + (1 − 𝑓௫஼ூ)Φே 

(4.17) 

Where 𝑓௫஼ூ = 𝑑𝑓𝑁തതതത 𝑑𝑃𝑁തതതത⁄  is the weighting factor for linear interpolation. 𝑑𝑓𝑁തതതത and 

𝑑𝑃𝑁തതതത are the distance between each point as shown in Fig. 4.2. 

 

Fig. 4.2. One-dimensional sketches of linear interpolation method. 

Assuming 𝑃 and 𝑁 are located at the centre of the cells and the distance to the 

shared face is equal. Eqn. (4.17) can be rearranged to  

Φ௙஼ூ = 𝑓௫஼ூ(Φ௉ − Φே) + Φே 

(4.18) 

𝑃 𝑓 𝑁 

𝜙𝑓 

𝜙𝑃 

 

𝜙𝑁 

𝑑𝑓𝑁തതതത 𝑑𝑃𝑓തതതത 

𝑑𝑃𝑁തതതത 
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As presented by Eqn. (4.18), the same expression can be used for upwind 

interpolation method. This is achieved by defining the weighting factor 𝑓௫௎ூ equals 

1 or 0 (depends on the flowing directions.). As a result, 

Φ௙௎ூ = ቊ
Φ௉   𝑖𝑓   (𝑉 ∙ 𝑛)௙ ≥ 0

Φே   𝑖𝑓   (𝑉 ∙ 𝑛)௙ < 0
   

(4.19) 

Combining Eqn. (4.18) and Eqn. (4.19) to obtain the new Blending Interpolation 

scheme, is written as 

Φ௙ = (1 − 𝛾)Φ௙௎ூ + 𝛾Φ௙஼ூ 

(4.20) 

Where 𝛾 is the blending factor adjusting the proportion of the solutions based on 

the upwind interpolation and the centre linear interpolation. Substituting Eqn. (4.18) 

and Eqn. (4.19) into Eqn. (4.20), it provides, 

Φ௙ = [(1 − 𝛾)𝑓௫௎ூ + 𝛾𝑓௫஼ூ](Φ௉ − Φே) + Φே 

(4.21) 

Simplifying the equation by defining 𝜆 = (1 − 𝛾)𝑓௫௎ூ + 𝛾𝑓௫஼ூ ,  

Φ௙ = 𝜆(Φ௉ − Φே) + Φே 

(4.22) 

The blending factor 𝛾 in the expression of the limited weighting factor 𝜆 can be 

approximated by a constant (Ferziger and Peric, 2002) or calculated on a local basis 

using a limiter function. The High-Resolution Schemes created based on Total 

Variation Diminishing (TVD) schemes (Harten. 1983) or Normalized Variable 

Diagram (NVD) (Leonard, 1991) schemes are used for the solution of the limiter 

function.  

4.3.1 Examples of TVD and NVD 

In the operation of OpenFOAM, the solution of the HRS is implemented based on 

the TVD schemes. Thus, the schemes created based on the NVD diagram have to be 

transferred into TVD form. It is necessary to illustrate this transformation by 

presenting examples of TVD and NVD schemes.  
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Similar to Eqn. (4.22), Darwish and Moukalled (2003) provided an equation to 

evaluate the face value. 

Φ௙ =
1

2
𝜓൫𝑟௙൯(Φ௉ − Φே) + Φே 

(4.23) 

It can be found that the difference between Eqn. (4.22) and Eqn. (4.23) is that the 

limited weighting factor 𝜆 is replaced by the Sweby’s function 𝜆 =
ଵ

ଶ
𝜓൫𝑟௙൯ (Sweby, 

1984). In the case of TVD limiter, the value of the function depends on the ratio of 

consecutive gradients of the solution 𝑟௙, which is given as 

𝑟௙ =
Φ௉ − Φ௎

Φே − Φ௉
 

(4.24) 

 

Fig. 4.3. One dimensional schematic of the mesh with neighbour cells and face 𝑓. 

Distributions of the points are presented in Fig. 4.3. 

A better expression of the ratio of consecutive gradients is given by Darwish and 

Moukalled (2003). This expression, shown in Eqn. (4.25), can be applied to 

simulations that employ unstructured meshes 

𝑟௙ =
2∇ሬሬ⃗ Φ௉ ∙ 𝑑௉ே

Φே − Φ௉
− 1 

(4.25) 

Where ∇ሬሬ⃗ Φ௉ is the gradient of Φ in a given cell. 

In terms of NVD schemes, multiple expressions of the consecutive gradient are used 

to calculate the NVD functions. They are expressed in the following equations. 

(Leonard, 1991; Jasak et al., 1999) 

𝑈 𝑃 𝑁 
𝑓 𝑣⃗ 
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Φ෩ ஼ =
Φ௉ − Φ௎

Φே − Φ௎
, Φ෩௙ =

Φ௙ − Φ௎

Φே − Φ௎
 

(4.26) 

These variables are related by the NVD functions as Φ෩௙ = 𝑓൫Φ෩ ஼൯, where 𝑓൫Φ෩ ஼൯ is a 

function applied in the NVD diagram. As mentioned at the start of this section, the 

limited weighting factor cannot be calculated directly by the NVD diagram; a 

transformation is required to translate the limiter expression in terms of 𝑟௙ and 

𝜓൫𝑟௙൯. An equivalence formula given by Hirsch (2007) is expressed as 

Φ෩௙ = ൤1 +
1

2
𝜓ᇱ(𝑟ᇱ)൨ Φ෩ ஼ →

1

2
𝜓ᇱ(𝑟ᇱ) =

Φ෩௙

Φ෩ ஼

− 1 

(4.27) 

Where 𝑟ᇱ is defined as  

𝑟ᇱ =
Φே − Φ௉

Φ௉ − Φ௎
 

(4.28) 

𝜓ᇱ(𝑟ᇱ) represents the expression of the Sweby’s function of a limited weighting 

factor in terms of 𝑟ᇱ. A conversion equation introduced by Darwish and Moukalled 

(2003) is applied to replace 𝜓ᇱ(𝑟ᇱ) by 𝜓൫𝑟௙൯ 

1

𝑟ᇱ
𝜓ᇱ(𝑟ᇱ) = 𝜓൫𝑟௙൯ 

 

(4.29) 

Substituting Eqn. (4.27) into Eqn. (4.29), gives 

𝜓൫𝑟௙൯ = 2

Φ෩௙

Φ෩ ஼
− 1

𝑟ᇱ
 

(4.30) 

In Hirsch (2007), the expression of the ratio of consecutive gradients 𝑟ᇱ is given as  
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𝑟ᇱ =
1

Φ෩ ஼

− 1 

(4.31) 

Taking the expression of the ratio 𝑟ᇱ  into Eqn. (4.30), the translated Sweby’s 

function is presented as 

𝜓൫𝑟௙൯ = 2

Φ෩௙

Φ෩ ஼
− 1

1

Φ෩ ஼
− 1

 

(4.32) 

Finally, returning to Eqn. (4.23), the OpenFOAM’s TVD framework based on NVD 

formulation is expressed as 

𝜆 =
1

2
𝜓൫𝑟௙൯ =

Φ෩௙

Φ෩ ஼
− 1

1

Φ෩ ஼
− 1

 

(4.33) 

Φ௙ =

Φ෩௙

Φ෩ ஼
− 1

1

Φ෩ ஼
− 1

(Φ௉ − Φே) + Φே 

(4.34) 
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4.4 Solver implementation 

Volume fraction equation 

Sections 4.2 and 4.3 introduced the principle of FCT and HRS. These techniques are 

used to optimise the VOF method in OpenFOAM. In order to explain the details, it 

is necessary to recall the equation of the volume fraction (Eqn. (4.6)) 

𝜕𝛾

𝜕𝑡
+ ∇ ∙ (𝑈𝛾) = 0 

(4.6) 

Discretising the above equation by the finite volume method, then the integral form 

of the equation has to be presented. 

 

න
𝜕𝛾

𝜕𝑡
d𝑉

ஐ೔

+ න 𝛾𝑈 ∙ 𝑛d𝑆
பஐ೔

= 0 

(4.35) 

The discrete equation is expressed by 

𝛾௜
௡ାଵ = 𝛾௜

௡ −
∆𝑡

|Ω௜|
෍ ൫𝐹௙

஼൯
௡

௙∈ஐ೔

 

(4.36) 

Where, ൫𝐹௙
஼൯

௡
 is the total flux on cell faces.  

It can be found that Eqn. (4.36) is similar to Eqn. (4.9). The variable 𝜙௜  in Eqn. (4.9) 

is replaced by the volume fraction field 𝛾௜. 

Implementing the FCT technique (Section (4.2)) to Eqn. (4.36), gives 

൫𝐹௙
஼൯

௡
= ൫𝐹௙

௅ + 𝜆ெ𝐴௙൯
௡

 

(4.37) 

The meaning of the flux terms 𝐹௙
௅ and 𝐴௙ was explained in Section (4.2) and here 

it is expressed by 
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𝐹௙
௅ = 𝜙௙𝛾௙,୳୮୵୧୬ୢ 

(4.38) 

Where 𝜙௙ represents the volume flux; it is assigned by 

𝜙௙ = 𝑈௙ ∙ 𝑆௙ 

(4.39) 

𝜙௙𝛾௙,୳୮୵୧୬ୢ is calculated by lower-order schemes, such as the first-order upwind 

scheme, and  

𝐴௙ = 𝜙௙𝛾௙ + 𝜙௥௙𝛾௥௙(1 − 𝛾)௥௙ − 𝐹௙
௅ 

(4.40) 

Where 𝜙௙𝛾௙ is calculated by higher-order schemes. The second term on the right-

hand side of Eqn. (4.39) is the interfacial compression flux term, which is used to 

reduce the numerical diffusion at the interface and preserve sharpness for the 

volume fraction field. The value of the weighting factor 𝜆ெ  is evaluated by the 

MULES solver, which was introduced in List 1.  

When 𝜆ெ = 0 

𝐹௙
஼ = 𝜙௙𝛾௙,୳୮୵୧୬ୢ 

(4.41) 

When 𝜆ெ = 1 

𝐹௙
஼ = 𝜙௙𝛾௙ + 𝜙௥௙𝛾௥௙(1 − 𝛾)௥௙ 

(4.42) 

Deshpande et al. (2012) demonstrate the weighting factor 𝜆ெ is equal to zero away 

from the interface and to one near it; this theory is shown in Fig. 4.4.  
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Fig. 4.4. The MULES limiter equals to one near the interface and zero away from it 

(Deshpande et al., 2012) 

By utilising the functions of FCT and interfacial compression flux, the solution of the 

volume fraction equation guarantees boundedness, reduces numerical diffusion at 

the interface and demands fewer computational resources by confining the higher-

order treatment to the interfacial region.  

When calculating the value of the quantities on cell faces, the face velocity 𝑈௙ can 

be evaluated by the linear interpolation scheme directly. The expression is given by  

𝑈௙ = 𝑓௫஼ூ(𝑈௉ − 𝑈ே) + 𝑈ே 

(4.43) 

This expression is similar to Eqn. (4.18), which replaces velocity 𝑈 by variable Φ. 

Regarding the solution of the face values for the volume fraction field, applying High-

Resolution Schemes (HRS) is required to ensure the boundedness and accuracy of 

the results. Recalling the expression of blending the interpolation scheme and 

replacing Φ by volume fraction 𝛾௙. 

𝛾௙ = ൫1 − 𝜆ఊ൯𝛾௙௎ூ + 𝜆ఊ𝛾௙஼ூ 

(4.44) 
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Where 𝜆ఊ  is the blending factor corresponding to the blending factor 𝛾 in Eqn. 

(4.20). Other variables are evaluated by 

𝛾௙஼ூ = 𝑓௫஼ூ(𝛾௉ − 𝛾ே) + 𝛾ே and 𝛾௙௎ூ = ൜
𝛾௉   𝑖𝑓   𝜙௙ ≥ 0

𝛾ே   𝑖𝑓   𝜙௙ < 0
 

(4.45) 

For central linear interpolation, 𝑓௫஼ூ = 0.5. 

Substituting Eqn. (4.45) into Eqn. (4.44), the solution of the face-centred volume 

fraction field 𝛾௙ can be calculated by  

𝛾௙ = 𝛾௉ +
(𝛾ே − 𝛾௉)

2
ൣ1 − 𝜍൫𝜙௙൯൫1 − 𝜆ఊ൯൧ 

(4.46) 

Where 𝜍൫𝜙௙൯ is a step function assigned by 

𝜍൫𝜙௙൯ = ൜
1      𝑖𝑓   𝜙௙ ≥ 0

−1   𝑖𝑓   𝜙௙ < 0
   

(4.47) 

The blending factor 𝜆ఊ is calculated by the TVD limiter as previously mentioned. 

In regard to the interface compressive flux, 𝜙௥௙𝛾௥௙(1 − 𝛾)௥௙, the term 𝜙௥௙ in Eqn. 

(4.40) is calculated by 

𝜙௥௙ = min ቈ𝐶ఈ

ห𝜙௙ห

ห𝑆௙ห
, max ቆ

ห𝜙௙ห

ห𝑆௙ห
ቇ቉ ൫n௙ ∙ 𝑆௙൯ 

(4.48) 

Where 𝐶ఈ represents the interface smearing factor, which can be defined by the 

user. The maximum operation is executed over the entire simulation domain, and 

the minimum operation is performed locally at each face 𝑓 ∈ 𝜕Ω௜ (Deshpande et al., 

2012). From Eqn. (4.48), it can be found that the sharpness of the interface depends 

to a large extent on the value of the interface smearing factor. When it is equal to 

zero, the compressive flux is removed. However, it is unrealistic to expect that by 

increasing the factor the result will improve. Rather, it will exacerbate errors in the 

interfacial curvature and result in an unstable solution when the factor exceeds the 

optimal value. Thus, the default value of the smearing factor is defined as equal to 
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one, and it is necessary to explore the optimal value in particular cases. In addition, 

the artificial compressive flux should only be applied to the normal direction to the 

free-surface. Thus, the direction of the compressive flux depends on the gradient of 

𝛾௥௙. The quantity 𝑛௙ in Eqn. (4.48) represents the face-centred interface normal 

vector and is evaluated by 

n௙ =
(∇𝛾)௙

ห(∇𝛾)௙ห
=

൤
(∇𝛾)௉ + (∇𝛾)ே

2
൨

൤ฬ
(∇𝛾)௉ + (∇𝛾)ே

2
ฬ൨

 

(4.49) 

The value of the last unknown quantity 𝛾௥௙  in Eqn. (4.40) is obtained using the 

interfaceCompression Scheme (OpenFOAM, 2008). The term (1 − 𝛾)௥௙  is 

approximated by 

(1 − 𝛾)௥௙ = ൫1 − 𝛾௥௙൯ 

And 

𝛾௥௙ = 𝛾௉ +
(𝛾ே − 𝛾௉)

2
ൣ1 − 𝜍൫𝜙௙൯൫1 − 𝜆௥ఊ൯൧ 

(4.50) 

Where the limiter 𝜆௥ఊ is calculated by the gammarScheme, which is given as 

𝜆௥ఊ = min ൜max ൤1 − max ൬ቀ1 − ൫4𝛾௉(1 − 𝛾௉)൯ቁ
ଶ

, ቀ1 − ൫4𝛾ே(1 − 𝛾ே)൯ቁ
ଶ

൰ , 0൨ , 1ൠ 

(4.51) 

Momentum equation 

The momentum equation in the VOF method also needs to be modified. The original 

expression of the momentum equation is given by 

𝜕(𝜌𝑈)

𝜕𝑡
+ ∇ ∙ (𝜌𝑈𝑈) = ∇ ∙ 𝜏 − ∇𝑝 + 𝜌𝑓௜  

(4.52) 

Where, term ∇ ∙ 𝜏  is the diffusion term and in OpenFOAM’s VOF method, the 

viscous stress tensor 𝜏 is defined as 

𝜏 = 𝜇(∇𝑈 + ∇𝑈்) 
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Where 𝜇 is the effective viscosity, defined as 𝜇 = 𝜌(𝜈௠௘௔௡ + 𝜈௧) 

And the viscous term is rewritten as 

∇ ∙ 𝜏 = ∇ ∙ (𝜇∇𝑈) + ∇ ∙ 𝜇(∇𝑈)் 

Regarding the source term 𝜌𝑓௜ , the gravity force and surface tension need to be 

taken into account. Thus, the gravity force term is given by 𝜌𝑔.  

In the case of the surface tension term, the Young-Laplace equation introduces the 

relationship between surface tension and the pressure difference across the fluid 

interface. The expression is given as 

𝑃ଵ − 𝑃ଶ = −𝜎∇ ∙ 𝑛ො 

 (4.53) 

𝑃ଵ − 𝑃ଶ  is the pressure difference across the fluid interface, 𝜎  is the surface 

tension coefficient, 𝑛ො , is the united normal vector, which can be calculated by a 

mollified colour function, 𝑐̃(𝑥), (Brackbill et al., 1990).  

𝑛ො =  
∇𝑐̃(𝑥)

|∇𝑐̃(𝑥)|
 

(4.54) 

Subsequently, the function −∇ ∙ 𝑛 is defined as the local interfacial curvature, κ. 

κ = −∇ ∙ 𝑛ො 

 (4.55) 

The final form of the Young-Laplace equation is  

𝑃ଵ − 𝑃ଶ = −𝜎κ 

 (4.56) 

In the context of the continuum surface force (CSF) model (Brackbill, et al., 1990), 

the surface force per unit interfacial area is introduced as 

𝐹௦௔ = 𝜎κ ∙ 𝑛ො 

(4.57) 

Imagine there is an interface between two fluids, as Fig. 4.5 shows. 

Consider a volume force, 𝐹௦௩ , provides the correct surface tension force per unit 

interfacial area, 𝐹௦௔, as ℎ → 0 
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lim
௛→଴

න 𝐹௦௩ 𝑑ଷ𝑥
∆௏

= න 𝐹௦௔ 𝑑𝐴
∆஺

 

 (4.58) 

Where, ℎ, is the thickness of this volume and the volume force should be localised, 

this means it is zero outside the interface region. The aforementioned indicator, 

𝑐̃(𝑥), is used to calculate this surface tension force  

න 𝐹௦௔ 𝑑𝐴
஺

= lim
௛→଴

න 𝜎κ
∇𝑐̃(𝑥)

[𝑐]
 𝑑ଷ𝑥

௏

 

(4.59) 

Combining Eqn. (4.58) with Eqn. (4.59), the volume force, 𝐹௦௩ , for finite ℎ  is 

identified as  

𝐹௦௩ = 𝜎κ
∇𝑐̃(𝑥)

[𝑐]
 

(4.60) 

Where [𝑐] is the jump in colour, [𝑐] = 𝑐ଶ − 𝑐ଵ, 𝑐ଵ and 𝑐ଶ is the character function 

in fluid 1 and fluid 2 respectively, in general, this is equal to 1 and 0. 

Regarding the present work, this CSF model is used to express the surface tension 

force, and the mollified colour, 𝑐̃(𝑥), is replaced by the volume fraction, 𝛾. Thus, the 

final form of the surface tension force in the calculation cell is given as 

න 𝐹௦௩
௏

𝑑𝑉 = න 𝜎κ∇𝛾
௏

𝑑𝑉 

(4.61) 
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Fig. 4.5. The interface between two different fluids (Brackbill et al, 1990) 

Keeping the left-hand side of the equation invariant, then the modified momentum 

equation is given as 

𝜕(𝜌𝑈)

𝜕𝑡
+ ∇ ∙ (𝜌𝑈𝑈) = [∇ ∙ (𝜇∇𝑈) + ∇ ∙ 𝜇(∇𝑈)்] − ∇𝑝 + 𝜌𝑔 + 𝜎κ∇𝛾 

(4.62) 

To avoid the numerical integration of the gravity term 𝜌𝑔  in the entire 

computational domain, the pressure term and gravity term are rearranged by  

𝑝௥௚௛ = 𝑝 − 𝜌𝑔 ∙ ℎ 

Then, the pressure gradient is expressed as 

∇𝑝௥௚ = ∇𝑝 − 𝜌𝑔 − 𝑔 ∙ ℎ∇𝜌 

→ −∇𝑝 + 𝜌𝑔 = −∇𝑝௥௚௛ − 𝑔 ∙ ℎ∇𝜌 

Such a modification provides more accurate results when the mesh quality is poor 

(Amini Afshar, 2010). The new source term 𝑔 ∙ ℎ∇𝜌 takes into account the restoring 

force when the free-surface is deformed from the hydrostatic equilibrium (Li, 2019) 

As a result, the integral form of the modified momentum equation is presented by  
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න
𝜕(𝜌𝑈)

𝜕𝑡
d𝑉

ஐ೔

+ න (𝜌𝑈𝑈) ∙ n d𝑆
பஐ೔

= − න ∇𝑝௥௚  d𝑉
ஐ೔

− න 𝑔 ∙ ℎ∇𝜌 d𝑉
ஐ೔

+ න 𝜎𝜅∇𝛾 d𝑉
ஐ೔

+ න (𝜇∇𝑈) ∙ n d𝑆
பஐ೔

+ න ∇ ∙ 𝜇(∇𝑈)் d𝑉
ஐ೔

 

(4.63) 

Eqn. (4.63) can be discretised by the finite volume method, and the PISO algorithm 

or the PIMPLE algorithm discussed above can be used for the calculation. One issue 

that needs to be addressed is that even with the PIMPLE algorithm, the time step 

setting for the VOF method is rigorous, which is based on empirical conclusions 

(Gopala and Van Wachem, 2008; Berberovic et al., 2009). The recommendation is to 

use an adaptive time-step control for the solver. The time step is calculated by 

∆𝑡௡ = min ൜
𝐶𝑜௠௔௫

𝐶𝑜
∆𝑡଴, ൬1 + 𝜆ଵ

𝐶𝑜௠௔௫

𝐶𝑜
൰ ∆𝑡଴, 𝜆ଶ∆𝑡଴, ∆𝑡௠௔௫ൠ 

(4.64) 

Where 𝐶𝑜 =
ห௨ሬሬ⃗ ೑∙ௌ⃗೑ห

∆௫∙ௌ⃗೑
∆𝑡, is the face-computed Courant number, ∆𝑥 is the side length 

of the mesh; 𝐶𝑜௠௔௫ and ∆𝑡௠௔௫ are user-defined parameters; 𝜆ଵ and 𝜆ଶ are the 

factors that limit the gradient of time steps to prevent unstable oscillations, which 

are equal to 0.1 and 0.2, respectively. 

At the end of this chapter, the governing equations for the Weller-VOF method (or 

developed-VOF method) (Weller, 2008) is summarised as 

Continuity equation 

𝜕𝜌

𝜕𝑡
+ ∇𝜌 ∙ 𝑈 = 0 

(4.65) 

Momentum equation 

𝜕(𝜌𝑈)

𝜕𝑡
+ ∇ ∙ (𝜌𝑈𝑈) = [∇ ∙ (𝜇∇𝑈) + ∇ ∙ 𝜇(∇𝑈)்] − ∇𝑝௥௚௛ − 𝑔 ∙ ℎ∇𝜌 + 𝜎𝜅∇𝛾 

(4.66) 
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Volume fraction equation 

𝜕𝛾

𝜕𝑡
+ ∇ ∙ (𝑈𝛾) + ∇ ∙ ൣ𝑈𝛾௥௙(1 − 𝛾)௥௙൧ = 0 

(4.67) 

Where  

𝜌 = 𝛾𝜌௟௜௤௨௜ௗ + (1 − 𝛾)𝜌௔௜௥ 

𝜇 = 𝛾𝜇௟௜௤௨௜ௗ + (1 − 𝛾)𝜇௔௜௥ 

(4.68) 
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Chapter 5. Mesh generation and boundary 
conditions 

Regarding the mesh generation process, it must be ensured that the generated 

geometry for the numerical simulation is consistent with the equipment used in the 

experiment. Only in this way can further ensure that the numerical simulation 

restores the actual situation. However, this is often an idealized situation. Due to the 

constraints of the mesh, most of the time, the geometries used in simulations are 

simplified or modified. And in the current article, the geometries and meshes used 

for the simulations are introduced in the following chapters, the difficulties and 

solutions encountered are also demonstrated. 

Another important feature of the simulation is the setups of boundary conditions. 

They need to restore the real situation as much as possible. The value of the physical 

flow fields at each boundary is given in the lists. Besides, the flowing behaviour of the 

boundary flow cannot be simulated directly by the RANS method. Therefore, it 

requires using wall functions to model the boundary flow. The principles of the wall 

functions are given in the section of boundary conditions. 

5.1 Geometry and mesh  

5.1.1 Data of the geometry and mesh 

Case 1. Simulation of the flow in cyclones 

The geometry and mesh of the first simulation were generated based on the work 

of Hoekstra (2000). The geometry sketch is shown in Fig. 5.1; the original geometry 

sketch is presented in Fig. 5.2; the mesh sketch is expressed in Fig. 5.3 and the 

dimensions of the cyclone are given in Table 5.1, 

The geometry is generated by the third-party software Gmsh in three-dimensional 

circumstance. 247768 hexahedra are used for the generation of the structured 

mesh. 
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Fig. 5.1. Geometry sketch of the cyclone separator 

 

 

Fig. 5.2. Original geometry sketch of the cyclone separator (Hoekstra, 2000) 
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(a) Front view 

 

(b) Top view 

Fig. 5.3. Mesh sketch of the cyclone separator 
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Table 5.1 The Dimensions of the cyclone in Fig. 5.1 

Dimension Parameter 

Cyclone diameter, D 0.29𝑚 

Top outlet diameter, 𝐷𝑥/𝑫 0.5 

Bottom outlet diameter, 𝐵𝑐/𝑫 0.375 

Inlet height, 𝒂/𝑫 0.5 

Inlet width, 𝒃/𝑫 0.2 

Inlet length, 𝑳𝒊/𝑫 1 

Outlet duct length, 𝑺/𝑫 0.5 

Cylinder height, 𝒉/𝑫 1.5 

Cyclone height, 𝑯/𝑫 4.0 

Extended top outlet, 𝑬𝒙𝟏 /𝑫 0.5 

Extended bottom outlet, 𝑬𝒙𝟐 /𝑫 0.5 

 

Case 2. Simulation of the dam breaking flow 

The geometry and meshes of the second simulation were generated according to 

the experiment conducted by Cruchage (2007). The simulated geometry sketch is 

shown in Fig. 5.4; the experimental geometry sketch is presented in Fig. 5.5; the mesh 

sketch and the initial state of the free-surface are given in Fig. 5.6 and the dimensions 

of the cube are listed in Table 5.2. 

This geometry is created by Openfoam's own command execution file in two-

dimensional space. The maximum number of structured meshes is 25600 

hexahedrons. 
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Fig. 5.4 Simulated geometry sketch of the dam breaking flow 

 

Fig. 5.5 (a) Experimental geometry sketch of the dam breaking flow 

 

Fig. 5.5 (b) Front view of the experimental geometry sketch of the dam breaking 

flow (Cruchaga et al., 2007) 

Liquid 

Air 

H 

L Lw 

Hw 



86 

 

 

 

Fig. 5.6. The initial state of the dam breaking simulation with meshes 

Table 5.2 The Dimensions of the cube in Fig. 5.4 

Dimension Parameter 

Water tank length, 𝐿 0.42m 

Water tank height, 𝐻 0.44m 

Initial liquid phase length, 𝐿𝑤 0.114m 

Initial liquid phase height, 𝐻𝑤 0.228m 

Water 

Air 

Water 

 

Air 
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Case 3. Simulation of the flow with air-core in hydrocyclones 

The geometry and mesh of the simulation were created based on the experimental 

data provided by Hsieh (1991). The simulated geometry sketch is shown in Fig. 5.7; 

the experimental geometry sketch is presented in Fig. 5.8; the mesh sketch is given 

in Fig. 5.9 and the dimensions of the hydrocyclone are listed in Table 5.3. 

The geometry is generated by the third-party software Gmsh in three-dimensional 

space as well. For the given mesh sketch (Fig 5.8), 325124 hexahedrons are used for 

the generation of the structured mesh. 

 

Table 5.3 The Dimensions of the hydrocyclone in Fig. 5.7 

Dimension Parameter 

Cyclone diameter, 𝑫 0.075𝑚 

Vortex finder diameter, 𝑫𝒙/𝑫 1/3 

Bottom outlet diameter, 𝑩𝒄/𝑫 1/6 

Inlet height, 𝒂 0.022 

Inlet width, 𝒃 0.022𝑚 

Inlet length, 𝑳𝒊/𝑫 3/4 

Vortex finder length, 𝑽𝒕/𝑫 2/3 

Cylinder height, 𝒉/𝑫 1 

Cone angle, 𝑪𝒂 10° 

Extended top outlet, 𝑬𝒙𝟏 /𝑫 3/4 

Extended bottom outlet, 𝑬𝒙𝟐 /𝑫 1/3 

Inlet offset, 𝑬𝒙𝟑  0.001𝑚 
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Fig. 5.7. Geometry sketch of the hydrocyclone 

 

 

Fig. 5.8. Experimental geometry sketch of the hydrocyclone (Hsieh, 1991) 
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(a) Front view 

 

(b)Top view 

Fig. 5.9. Mesh sketch of the hydrocyclone 



90 

 

5.1.2 Summarisation of the geometry and mesh 

1. Dimension 

As can be found from Fig 5.1 and Fig 5.7, the geometry of the cyclone and 

hydrocyclone has a tangential inlet with asymmetrical distribution. Thus, the 

hydrocyclone flow field should be treated as an axial asymmetry problem (He. et 

al.,1999). The full three-dimensional modelling is necessary for an accurate 

simulation of the cyclone and hydrocyclone flow. 

Regarding the dam breaking flows, the problem can be simplified to two-

dimensional when the problem focuses on the flow field away from the front wall 

and back wall. This simplification is considered acceptable because the effects 

caused by the front and back wall is negligible and requires less computational 

resources for simulations. A denser mesh can be applied for the geometry in order 

to sharp the thickness of the free-surface in the VOF method. 

2. Structure 

The structured mesh is applied to all simulations, and this choice is based on the 

following advantages 

 Applying the structured mesh requires fewer meshes to cover the geometry; 

this will save computational costs compared with using unstructured mesh. 

 When the lower-order schemes are used for discretisation, the simulation 

result obtained by the structured mesh is less numerically diffusive for flows 

with a dominant flow direction (see Fig. 5.10).  

 Using the structured mesh is more stable during simulating than the 

unstructured mesh, especially when using high-order discretisation method 

for simulation. 

 For the boundary layer flow, the unstructured mesh is unsuitable because 

the aspect ratio is hard to control for the meshes near the boundary.  

The foremost disadvantage bringing by the structured mesh is the non-

orthogonal mesh; it will reduce the accuracy and become one of the factors that 

cause the calculation results to un-convergence simulating. The treatments for 

the non-orthogonal mesh are given behind. 



91 

 

3. Quality 

In OpenFOAM, the quality of the mesh can be checked by the checkMesh function. 

The quality of the mesh is assessed from the following aspects 

 Skewness: The vertex angle of most of the meshes used in the simulations 

is approach to 90°. Only a few of meshes have a skew angle of more than 70° 

at the junction of the inlet and the separator, and these meshes are referred 

to as non-orthogonal meshes. 

 Aspect ratio: The aspect ratio of most of the meshes is smaller than 5. It is 

inevitable that the meshes at the boundary layer have an aspect ratio larger 

than 5, this is acceptable because the rate of change of the variables is not 

obvious in the direction of the longer side. 

 Smoothness: In order to guarantee the accuracy of the discretisation 

schemes, the smoothness of most of the meshes is limited smaller than 1.2. 

 Boundary layer mesh: The quality of the meshes in boundary layer depends 

on the yPlus number, which is a dimensionless quantity applied to limits the 

size of the mesh attached at the boundary, more details are given in the 

boundary conditions section. The yPlus number of the boundary layer mesh 

used in the simulations is limited to between 30  and 300  in the RANS 

method, and less than one in the LES method. 

4. Treatments for the Non-orthogonal mesh  

As previously mentioned, the non-orthogonal mesh is one of the factors that cause 

the calculation results to un-converge and will reduce the order of accuracy. Thus, 

in current studies, two methods have been used to mitigate the defects brought by 

the non-orthogonal mesh.  

The first strategy is to reduce the skew angle of the mesh at the junction of the inlet 

and the separator by modifying the geometry. Like Fig. 5.11 (part of Fig. 5.3) and Fig. 

5.12 (part of Fig. 5.9) presents, the skew angle of the mesh was reduced from 83° 

to 70°. This one-millimetre offset brings the skew angle from a dangerous level to 

an acceptable level (OpenFOAM, 2017).  
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Fig. 5.10 inviscid jet flow (Marzo. et al, 2015) 

 

Fig. 5.11 Non-orthogonal mesh from the mesh sketch of cyclone 

 

Fig. 5.12 Non-orthogonal mesh from the mesh sketch of hydrocyclone 

The second method is reducing the defects by using numerical schemes. The central 

difference scheme (Eqn. 3.20) cannot provide a second-order approximation of 

ቀ
డ஍

డ௡
ቁ

௜,௝,௞
 when the line between two points (𝑃 and 𝐸) is not parallel to the normal 

vector (see. Fig. 5.13). Therefore, the central difference scheme requires to be 

modified. 
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The second-order approximation of the gradient operator is given as 

൬
𝜕Φ

𝜕𝑥
൰

௉
≈

∫ (𝜕Φ 𝜕𝑥⁄ )𝑑Ω
ஐ

|Ω|
 

(5.1) 

Transforming the integral at the right-hand side using the Gauss’ theorem 

න (𝜕Φ 𝜕𝑥⁄ )𝑑Ω
ஐ

= න div(Φ𝑖)𝑑Ω
ஐ

= න (Φ𝑖 ∙ 𝑛)𝑑S
ୗ

= න Φ𝑛௫𝑑S
ୗ

= ෍ න Φ𝑛௫𝑑S
ୗೕ௝

 

(5.2) 

Where 𝑗 is the index represents the cell’s faces, and the surface integral over every 

face can be calculated by the second-order approximation 

෍ න Φ𝑛௫𝑑S
ୗೕ௝

= ෍ Φ௘௝𝑛௫𝑆௝

௝

 

(5.3) 

Where Φ௘௝ is the value of the variety Φ at the corresponding midpoint, which can 

be calculated through the interpolation scheme. Thus, the second-order 

approximation of the gradient operator is presented by 

൬
𝜕Φ

𝜕𝑥
൰

௉
≈

∑ Φ௘௝𝑛௫𝑆௝௝

|Ω|
 

(5.4) 

 

Fig 5.13. Schematic diagram of the Vectors 

𝑃 𝐸 
𝑒 

𝑃𝐸ሬሬሬሬሬ⃗  

𝑛 
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In OpenFOAM, a non-orthogonal correction term is utilised to further correct the 

discretisation on the non-orthogonal mesh. This is achieved by decomposing the 

factor ൫∇ሬሬ⃗ Φ൯
௙

∙ 𝑆௙ as 

൫∇ሬሬ⃗ Φ൯
௙

∙ 𝑆௙ = ∆ሬሬ⃗ ∙ ൫∇ሬሬ⃗ Φ൯
௙ᇣᇧᇧᇤᇧᇧᇥ

௢௥௧௛௢௚௢௡௔௟ ௖௢௡௧௥௜௕௨௧௜௢

+ 𝑘ሬ⃗ ∙ ൫∇ሬሬ⃗ Φ൯
௙ᇣᇧᇧᇤᇧᇧᇥ

௡௢௡ି௢௥௧௛௢௚௢  ௖௢௥௥௘௖௧௜௢௡

 

(5.5) 

As shown in Fig. 5.14 The decomposition of the vector is  

𝑆௙ = ∆ሬሬ⃗ + 𝑘ሬ⃗  

Where the vector ∆ሬሬ⃗  is parallel to the line 𝑑௉ே, then the orthogonal contribution can 

be calculated by the central difference scheme (Eqn. 3.20). Thus, the expression is 

given as  

∆ሬሬ⃗ ∙ ൫∇ሬሬ⃗ Φ൯
௙

= ห∆ሬሬ⃗ ห
Φே − Φ௉

ห𝑑௉ேห
 

Where, ∆ሬሬ⃗  is assigned as 

∆ሬሬ⃗ =
𝑑௉ே

𝑑௉ே ∙ 𝑆௙

ห𝑆௙ห
ଶ
 

Regarding the non-orthogonal correction, OpenFOAM using the over-relaxed 

approach to approximate the value (Jasak, 1996; Márquez Márquez Damián et al., 

2012). Therefore, Eqn. (5.5) can be expressed as 

൫∇ሬሬ⃗ Φ൯
௙

∙ 𝑆௙ = ห∆ሬሬ⃗ ห
Φே − Φ௉

ห𝑑௉ேห
+ 𝑘ሬ⃗ ∙ ൫∇ሬሬ⃗ Φ௩ିଵ൯

௙
 

Where ∇ሬሬ⃗ Φ௩ିଵ  is calculated by Eqn. (5.4) with the iterative method, 𝑣 − 1 

represents the iterator index. Such kind of deferred correction is introduced in 

Sections 5.6 and 8.6 of Computational Methods for Fluid Dynamics (Ferziger and 

Peric, 2002). The number of iterations can be set by giving value to 

nNonOrthogonalCorrectors during the same time-step. Although this scheme 
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takes more time for simulation, it dramatically reduces the impact of non-

orthogonal mesh on accuracy and stability. 

 

Fig. 5.14. Schematic diagram of the Vector 𝑆௙ and its decomposition vectors 𝑘ሬ⃗  

and ∆ሬሬ⃗  

5.2 Boundary conditions  

The boundary conditions implemented for each physical quantity in the current 

simulations are shown in Table 5.4. to Table 5.6 

In the followed tables, the turbulence intensity 𝐼 can be estimated by an empirical 

value equal to 0.05. 

The expression of the Reynolds number is given as 

𝑅𝑒 =
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠
=

𝜌𝑢𝑑

𝜇
=

𝑢௫𝑑

𝑣
 

𝑙  represents the turbulence length scale, the value in its initial state can be 

estimated by 

𝑙 = 0.05𝑑 

𝑅௜௜ represents the Reynolds stress divided density and the formula is expressed as 

𝑅௜௜ = 𝑢ప
ᇱ𝑢ప

ᇱതതതതതതത 

Where 𝑢௜
ᇱ is the fluctuating component of velocity, it can be estimated by 

𝑢௜
ᇱ = 𝐼𝑢௜  

𝐶ఓ is the constant generally takes 𝐶ఓ = 0.09..

P N 

𝑓 𝑑௉ே ∆ሬሬ⃗  

𝑆௙ 
𝑘ሬ⃗  
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Table 5.4 The boundary conditions of the cyclone flow 

Boundary 

conditions 
Walls Body wall Bottom outlet Top outlet Inlet 

Velocity 

𝒖 (𝒎/𝒔) 

൫𝒖𝒙, 𝒖𝒚, 𝒖𝒛൯ 

(0,0,0) (0,0,0) zeroGradient zeroGradient (𝑈௫ , 0,0) 

Pressure 

𝑷(𝒎𝟐/𝒔𝟐) 
zeroGradient zeroGradient 0 0 zeroGradient 

Kinetic energy 

𝒌 
0 0 zeroGradient zeroGradient 

3

2
𝐼𝑈ଶ 

Reynolds stress 

𝑹 
൭

0 0 0
0 0 0
0 0 0

൱ ൭
0 0 0
0 0 0
0 0 0

൱ zeroGradient zeroGradient ቌ

𝑅௫௫ 0 0
0 𝑅௬௬ 0

0 0 𝑅௭௭

ቍ 

Dissipation rate 

𝜺 
𝜀 =

𝐶ఓ
଴.଻ହ𝑘ଵ.ହ

𝜅𝑧𝑃
 𝜀 =

𝐶ఓ
଴.଻ହ𝑘ଵ.ହ

𝜅𝑧𝑃
 zeroGradient zeroGradient 𝜀 =

𝐶ఓ
଴.଻ହ𝑘ଵ.ହ

𝑙
 

 

 



97 

 

 

Table 5.5 The boundary conditions of the dam breaking flow 

Boundary 

conditions 
Left wall Right wall Lower wall atmosphere Front and back 

Velocity 

𝑢௧ (𝑚/𝑠) 

൫𝑢௫ , 𝑢௬, 𝑢௭൯ 

slip slip 
noSlip 

(0, 0, 0) 
pressureInletOutletVelocity 

uniform (0 0 0) 
empty 

Pressure 

𝑃௥௚௛  

𝑘𝑔/𝑚 ∙ 𝑠ଶ 

fixedFluxPressure 

uniform 0 

fixedFluxPressure 

uniform 0 

fixedFluxPressure 

uniform 0 

TotalPressure 

𝑃଴ = 0 
empty 

Volume fraction 

𝛾 
zeroGradient zeroGradient zeroGradient 

inletOutlet 

inlet value 0 

value 0 

empty 
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Table 5.6 The boundary conditions of the hydrocyclone flow  

Boundary 

conditions 
Walls Body wall Bottom outlet Top outlet Inlet 

Velocity 

𝒖 (𝒎/𝒔) 

൫𝒖𝒙, 𝒖𝒚, 𝒖𝒛൯ 

(0,0,0) (0,0,0) 
pressureInletOutletVelocity 

uniform (0 0 0) 

pressureInletOutletVelocity 

uniform (0 0 0) 
(𝑈௫ , 0,0) 

Pressure 

𝑃௥௚௛  

𝑘𝑔/𝑚 ∙ 𝑠ଶ 

fixedFluxPressure 

uniform 0 

fixedFluxPressure 

uniform 0 

TotalPressure 

𝑃଴ = 0 

TotalPressure 

𝑃଴ = 0 

fixedFluxPressure 

uniform 0 

Kinetic energy 

𝒌 
0 0 inletOutlet inletOutlet 

3

2
𝐼𝑈ଶ 

Reynolds stress 

𝑹 
൭

0 0 0
0 0 0
0 0 0

൱ ൭
0 0 0
0 0 0
0 0 0

൱ inletOutlet inletOutlet ቌ

𝑅௫௫ 0 0
0 𝑅௬௬ 0

0 0 𝑅௭௭

ቍ 

Dissipation rate 

𝜺 
𝜀 =

𝐶ఓ
଴.଻ହ𝑘ଵ.ହ

𝜅𝑧𝑃
 𝜀 =

𝐶ఓ
଴.଻ହ𝑘ଵ.ହ

𝜅𝑧𝑃
 inletOutlet inletOutlet 𝜀 =

𝐶ఓ
଴.଻ହ𝑘ଵ.ହ

𝑙
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The boundary conditions in the above tables have different types; they belong to the 

Dirichlet and Neumann boundary conditions which corresponding to a fixed value 

and the gradient normal to boundaries. Fig. 5.15 shows a non-orthogonal mesh that 

is used to explain the solution process of these two boundary conditions as an 

example. The vector 𝑑௡  normal to the boundary can be estimated by using the 

vector 𝑑 joining the cell centre 𝑃 and face 𝑏 centre. The expression is given as 

𝑑௡ =
൫𝑆௙ ∙ 𝑑൯𝑆௙

ห𝑆௙ห
ଶ  

(5.6) 

 

Fig. 5.15. Non-orthogonality treatment in a boundary cell 

Dirichlet boundary condition 

The Dirichlet boundary condition using the fixed value of Φ௙ = Φ௕  directly 

determine the boundary condition at face 𝑏. Thus, the convective term in governing 

equations is discretized by 

න Φ𝑉 ∙ n d𝑆
ௌ

= ෍ Φ௙൫𝑉ሬ⃗௙ ∙ 𝑆௙൯

௙

= ෍ Φ௙𝐹௙

௙

 

The value of Φ௙ at the face, 𝑏 is the given boundary condition and the value of Φ௙ 

at other faces can be calculated by the interpolation schemes. 

The diffusive terms in governing equations are discretised by 

𝑃 

𝑑௡ 

𝑑 

𝜃 

𝜃 

∇ሬሬ⃗ Φ 
𝑆௙ 

∆ሬሬ⃗  

𝑘ሬ⃗  

𝜉 

𝑛 

𝜂 
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න 𝑥∇Φ ∙ n d𝑆
ௌ

= ෍(𝑥)௙൫∇ሬሬ⃗ Φ൯
௙

∙

௙

𝑆௙ 

When the equation is discretised in the non-orthogonal mesh, as previously 

mentioned, the value of the gradient ∇ሬሬ⃗ Φ at boundaries cannot be estimated by the 

first-order difference schemes directly. A modification to the scheme is proposed 

by Mathur and Murthy (1997) and introduced below. The information in Fig. 5.15 

contributes to the derivation of the expression. 

𝜕Φ

𝜕𝜉
=

𝜕Φ

𝜕𝑛
cos 𝜃 −

𝜕Φ

𝜕𝜂
sin 𝜃 

(5.7) 

Where 𝜃 is the angle between 𝑑 and 𝑛ሬ⃗ . 

The face normal gradient can be obtained by rearranging Eqn. (5.7) 

∇ሬሬ⃗ Φ ∙ 𝑛ሬ⃗ =
𝜕Φ

𝜕𝑛
=

𝜕Φ

𝜕𝜉

1

cos 𝜃
+

𝜕Φ

𝜕𝜂
tan 𝜃 

(5.8) 

Since 

𝜕Φ

𝜕𝜉
=

Φ௕ − Φ௉

ห𝑑 ห
   𝑎𝑛𝑑   cos 𝜃 =

𝑑  ∙ 𝑆௙

ห𝑑หห 𝑆௙ห
 

Substituting the expressions into Eqn. (5.8), it gives 

൫∇ሬሬ⃗ Φ൯
௕

∙ 𝑆௙ =
ห𝑑หห 𝑆௙ห

𝑑  ∙ 𝑆௙

ห 𝑆௙ห
Φ௕ − Φ௉

ห𝑑ห
+

𝜕Φ

𝜕𝜂
tan 𝜃 ห 𝑆௙ห 

(5.9) 

The last term on the right-hand side is null because the value of Φ is constant, then 

it has 
డ஍

డఎ
= 0.  

Taking Eqn. (5.6) into Eqn. (5.9), the equation can be simplified to  
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൫∇ሬሬ⃗ Φ൯
௕

∙ 𝑆௙ = ห 𝑆௙ห
Φ௕ − Φ௉

ห𝑑௡ห
 

(5.10) 

Neumann boundary condition 

Regarding the Neumann boundary condition, a fixed value is assigned to the gradient 

normal to the boundary face. The expression is given by 

൭
𝑆௙

ห 𝑆௙ห
∙ ∇ሬሬ⃗ Φ൱ = 𝑔௕ 

(5.11) 

Due to the value at boundary face is not given, it has to be calculated by rearranging 

the formula of first-order difference scheme based on the given gradient 𝑔௕, cell-

centre value Φ௉. 

൫∇ሬሬ⃗ Φ൯
௕

=
Φ௕ − Φ௉

ห𝑑௡ห
→ Φ௕ = Φ௉ + ห𝑑௡ห𝑔௕ 

(5.12) 

Then the value of Φ௕ can be used to calculate the convective term 

In the case of the diffusive term, the value can be obtained directly 

Discretising the diffusive term 

න 𝑥∇Φ ∙ n d𝑆
ௌ

= ෍(𝑥)௙൫∇ሬሬ⃗ Φ൯
௙

∙

௙

𝑆௙ 

At the boundary face 𝑏 it has 

൫∇ሬሬ⃗ Φ൯
௕

= 𝑔௕ 

The above tables contain some OpenFOAM-specific command symbols to set the 

boundary conditions. The specific meanings and usage of these commands are given 

below. 

 fixedValue: Specifies the value of Φ  as a fixed value, also known as The 

Dirichlet boundary condition 
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 zeroGradient: Specifies the value of the normal gradient ∇ሬሬ⃗ Φ equal to zero, this 

is a kind of Neumann boundary condition. 

 slip: slip has the same effect as zeroGradient for a scalar magnitude; in case of 

a vector magnitude, the normal component is specified as a fixed value equal to 

zero, and tangential components are assigned as zeroGradient.  

 noSlip: Opposite to slip boundary condition, for a vector magnitude all the 

components are specified as a fixed value equal to zero at this boundary;  

 pressureInletOutletVelocity: This boundary condition only can be used for the 

pressure boundaries where the pressure is specified. The value is set as zero-

gradient for outflow. In the case of inflow, the velocity is obtained from the 

tangential component of the internal-cell value, which is defined by the user. 

 fixedFluxPressure: The fixedFluxPressure is generally used to replace the zero-

gradient boundary condition when the body forces should be considered. This 

boundary condition is a benefit for convergence. 

 TotalPressure: This condition specifies 

𝑃 = ൝

𝑃଴                       , for outflow

𝑃଴ −
1

2
|𝑈ଶ|, for inflow (incompressible subsonic)

 

Where, 𝑃଴, is designed by the user. 

 inletOutlet: The inletOutlet boundary condition is used to treat the situations 

that there are outflow and inflow (generally backward flow) flowing through this 

surface simultaneously. The quantities in outflow are assumed as zero-gradient, 

and a fixed value shall be specified when the flow is inwards. 

 Wall functions: In the viscous sublayer, the Mean flow velocity has a strong 

gradient in the immediate vicinity of the wall. The typical length scale of the flow 

characteristics computed by a RANS model decreases near the walls. Another 

feature that requires special treatment is that the actual turbulent eddy 

viscosity becomes smaller as the wall is approached (Zikanov, 2010). These 

problems are hard to resolve even with a fine grid in the viscous sublayer. Thus, 

it is necessary to use wall functions to indicate the universal boundary layer 

behaviour and imitate the effect of a solution corresponding to that behaviour. 
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Based on the assumption that the flow is in a local equilibrium and the wall-

parallel mean velocity satisfies the logarithmic law, one of the wall functions is 

given as (Zikanov, 2010) 

〈𝑢〉௉ = 𝑢ఛ ൤
1

𝜅
ln

𝑢ఛ𝑧௉

𝜐
+ 𝐵൨ 

Where 𝑢ఛ is the wall shear velocity, which can be used to calculate the viscous 

shear stress at the wall. The formula is presented by 

𝑢ఛ = (|𝜏௪|𝜌ିଵ)
ଵ
ଶ 

𝑧௉ represents the distance from the wall to the centre of the grid nearest to the 

wall. 𝜅  is the von Karman constant given as 𝜅 = 0.41 . 𝐵  is the empirical 

constant which takes 5.5 at a smooth flat plate.  

As mentioned in the section of mesh quality, wall functions need to fit the 

appropriate mesh to give correct modelling results. The yPlus number is the 

standard used to check if the mesh and wall functions match. The expression of 

the yPlus number is given as 

𝑦ା =
𝑢ఛ𝑧௉

𝜐
 

The yPlus number have different limits for different wall functions, and for the 

standard wall funtion, it has to satisfy 30 < 𝑦ା < 100. 

Finally, the other quantities used in the turbulence model can be calculated by 

the wall functions. Such as, in the 𝑘 − 𝜀  model, the kinetic energy and 

dissipation rate at the grid nearest to the wall is calculated by 

𝑘௉ =
𝑢ఛ

ଶ

𝐶ఓ
଴.ହ

   𝑎𝑛𝑑   𝜀௉ =
𝐶𝜇

0.75𝑘1.5

𝜅𝑧௉
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Chapter 6. Simulation of the single-phase 
cyclone flow 

6.1 Case introduction 

The simulation of the single-phase cyclone flow was carried out in the RANS method. 

It is well known that the turbulence model is one of the key features influencing the 

practicality of the simulation result. Therefore, the main project in the current case 

is to find an appropriate RANS turbulence model to simulate the flow in a cyclone 

separator. Given the asymmetry in the distribution of the cyclone inlet, the 

simulation was performed in a three-dimensional environment. The geometry and 

mesh are generated by the third-party software Gmsh (see Fig. 5.1 and Fig. 5.3.).  

The schemes used for discretisation are the linear-upwind scheme and the centre-

linear scheme; both have second-order of accuracy. The iterative linear equations 

solver used to solve the pressure equation was the Gauss-Seidel smoother and the 

Geometric-Algebraic Multi-Grid (GAMG) solver. The Gauss-Seidel smooth solver 

was applied to solve the equations of the velocity, 𝑈, kinetic energy, 𝑘, dissipation 

rate, 𝜀, and Reynolds stress, 𝑅. Since this study was also interested in the transient 

state of the cyclone, the transient solver based on the PIMPLE algorithm was used 

to solve the problem of velocity and pressure coupling.  

The two turbulence models used in the present simulation can be considered far 

different. The 𝑘 − 𝜀 turbulence model is a typical eddy viscosity model based on 

the Boussinesq hypothesis. Regarding the RSM turbulence model, although it also 

applies a modelling method to calculate parts of the stress terms, the value of the 

Reynolds stress can be evaluated directly.  

Since the current case is considered an incompressible problem, the kinetic 

viscosity of the fluid flowing inside the cyclone is set as a constant, which is equal to 

1.57 × 10ିହ 𝑚ଶ/𝑠. The inlet velocity is given in the boundary condition section, which 

equals 15𝑚/𝑠. Thus, the Reynolds number of the cyclone flow is 𝑅𝑒 = 𝑢௜௡𝐷/𝜐௔௜௥ =

2.75 × 10ହ, indicating that the flow is completely turbulent. 

The maximum number of meshes used in the simulations is 289702 ununiformed 

structured hexahedrons, and the minimum number of meshes is 187202 
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ununiformed structured hexahedrons. The simulation result is illustrated by 

exhibiting the streamline graph and vector diagrams of the flow field and contour 

plots of different properties. The validation process of the cyclone flow simulation 

is achieved by comparing the simulation result with Alahmadi and Nowakowski’s 

(2015) investigation; they validated their works with experimental results from 

Hoekstra (2000). 

6.2 Simulation results 

The simulation results of the single-phase cyclone flow are given below. 

1. Streamline graph 

First, the streamline graph is applied to represent the changes in flowing behaviour 

over time. As the simulation is processed by PimpleFoam solver, the PIMPLE 

algorithm was used for calculation. The transient state of the cyclone flow can be 

captured during the simulations; as a result, the streamline graph shows the flowing 

behaviour of the cyclone flow at six different time points.  

The first figure (see Fig. 6.1) shows the fluid just flowed into the cyclone separator. 

A small vortex was generated near the vortex finder pipe, and most of the fluid inside 

the cyclone flowed out through the bottom outlet. The second figure (see Fig. 6.2) 

shows the flowing state at 0.4s; the pattern of the cyclone flow was gradually 

stabilised. A large swirl appeared at the centre of the cyclone separator, and the 

velocity magnitude is distributed unevenly along the radius direction. The fluid 

flowed out through the bottom outlet and top outlet simultaneously. The next three 

figures show the gradual development of the flow pattern in the cyclone from 0.6 to 

1.0 seconds (see Fig. 6.3 to Fig. 6.5). The cyclone flow gradually presents two 

different swirl patterns. The internal swirl tended to flow out through the top outlet. 

In contrast, the swirl that approached the wall of the cyclone tended to flow out 

through the bottom outlet. Furthermore, as the time-step progressed, the maximum 

value of the velocity magnitude became higher. The last figure (see Fig. 6.6) presents 

the flow pattern at a stable state. The maximum value of the total velocity has 

increased to a stable level, and the distribution of the maximum value is 

concentrated at the boundary of the swirl which has a radius approaching the top 

outlet radius. 
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2. Vector diagrams 

In addition to the streamline graphs, vector diagrams can be used to analyse the flow 

patterns of cyclones. The following figures (From Fig. 6.7 to Fig. 6.12) show the 

distribution of the 3D velocity vector in the 2D plane. Similar to the streamline 

graphs, the analysis of the vector diagrams is performed in transient state. Fig. 6.7 

presents the vector diagram at 0.2s. Combined with the streamline graph in Fig 6.1, 

the overall flow pattern presents the trend of a large swirling flow. A small non-

axisymmetric vortex emerged near the vortex finder, and most of the fluid tended 

to flow out through the bottom outlet. The vector diagram at 0.4s (see. Fig 6.8) 

exhibits the small non-axisymmetric vortex dissipated, and a vortex appeared near 

the apex of the conical part. The fluid inside the cyclone tended to flow out through 

both outlets. From 0.6s to 1.0s (see. Fig. 6.9 to Fig. 6.11), the vector diagram shows a 

process in which the flow pattern gradually stabilised. The turbulence near the apex 

of the conical part was fixed, and another turbulence was generated at the bottom 

of the vortex finder. The reason for these two turbulences can be attributed to the 

backflow. Lastly, Fig. 6.12 shows the outer swirling flow tended to flow downwards 

and met the turbulence that appeared near the bottom outlet. The inner swirling 

flow tended to flow upwards and formed turbulence near the bottom of the vortex 

finder.  

3. Contour plots 

In terms of the contour plots, the results are divided into three groups for 

comparison. These are the pressure contour, tangential velocity contour map and 

axial velocity contour. 

 Pressure contour: The figures (see Fig. 6.13 to Fig. 6.15) in the first group present 

the pressure contours obtained using two different turbulence models and 

without using turbulence models. In these contour plots, the pressure increases 

from the core to the wall. The difference shown in these contour plots is that 

the pressure gradient has a different magnitude. Although the value of the 

pressure has no practical physical meaning in the results, the pressure gradient 

is an important feature in the calculation of the Navier-Stokes equations. The 

change in colour reflects the change in the pressure gradient. Compared with 

Fig. 6.15, the areas of dark blue to light blue in Fig. 6.13 and Fig. 6.14 are larger, 

and the areas of orange to bright red are smaller in Fig. 6.14. 
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 Tangential velocity contour: The tangential velocity contour plots demonstrate 

an obvious difference in the outer part of the swirling flow. In Fig. 6.16 and Fig. 

6.18, the maximum value of the tangential velocity is located at the halfway point 

between the core and the wall, but Fig. 6.17 shows the maximum value is 

distributed at the whole outer part of the swirling flow 

 Axial velocity contour: In terms of the axial velocity contour, the difference is 

more conspicuous. The axial velocity contour plot (see Fig. 6.19), obtained 

without using the turbulence model, shows that the maximum axial velocity is a 

Y-shaped distribution in the separator. In the upper half of the cyclone, the axial 

velocity shows an upward trend along the vortex finder tube wall. In the lower 

half of the cyclone, the maximum axial velocity is concentrated in the central 

part. Fig. 6.20 presents the axial contour plots obtained using the 𝑘 − 𝜀 

turbulence model. The maximum value of the axial velocity is distributed near 

the wall of the vortex finder tube. At the main body of the cyclone separator, the 

value of the axial velocity is distributed evenly, except that the minimum value of 

the axial velocity is distributed near the wall of the bottom outlet pipe. The RSM 

turbulence model provides an axial velocity contour plot (see Fig. 6.21), which 

shows that the maximum value of the axial velocity extends from the top outlet 

along the vortex finder wall to the bottom outlet. The red stripes formed by the 

maximum value are distributed in parallel.  
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        (0.2s)                                (0.4s)                                 (0.6s) 

Fig. 6.1 to 6.3. Streamline graph of the cyclone flow at different time step 
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        (0.8s)                                (1.0s)                                 (Steady) 

Fig. 6.4 to 6.6. Streamline graph of the cyclone flow at different time step 
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             (0.2s)                             (0.4s)                             (0.6s) 

Fig. 6.7 to 6.9. Vector plot of the cyclone flow at different time step (Front view) 
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             (0.8s)                             (1.0s)                             (Steady) 

Fig. 6.10 to 6.12. Vector plot of the cyclone flow at different time step (Front view)
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(0.2s) 

 

(0.4s) 

 

(0.6s) 

Fig. 6.7 to 6.9. Vector plot of the cyclone flow at different time step (Top view) 
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(0.8s) 

 

(1.0s) 

 

(0.6s) 

Fig. 6.10 to 6.12. Vector plot of the cyclone flow at different time step (Top view)
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(Non Turbulence model)                 (𝑘 − 𝜀 Turbulence model)            (RSM Turbulence model) 

Fig 6.13 to Fig. 6.15. Contour plots of the pressure field 
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(Non Turbulence model)               (𝑘 − 𝜀 Turbulence model)            (RSM Turbulence model) 

Fig 6.16 to Fig. 6.18. Contour plots of the Tangential velocity field 
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(Non Turbulence model)               (𝑘 − 𝜀 Turbulence model)            (RSM Turbulence model) 

Fig 6.19 to Fig. 6.21. Contour plots of the Axial velocity field 
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6.3 Discussion 

Using the curve graphs is necessary to compare the simulation results more 

intuitively. Thus, three physical quantities of the simulation result are used for 

comparison: pressure, velocity, and kinetic energy. The experimental data used for 

validation were obtained by Hoekstra (2000). The horizontal position of the 

observation levels is shown in Fig. 6.22. 

1. Pressure 

The first group for comparison is the pressure curve graphs. These plots provide a 

more explicit comparison of the issue of pressure gradients. As per Fig. 6.22, four 

horizontal observation levels are used for data collection. At the first level ℎ = 1.5𝐷 

(see Fig. 6.23), the pressure curve obtained by the RSM turbulence model has a 

larger maximum and a smaller minimum, so the pressure gradient is also larger. It 

can be seen from the remaining three pressure curve graphs (see Fig. 6.23a to Fig. 

6.23d) that as the horizontal level rises, the difference between the maximum and 

minimum pressures obtained through different turbulence models gradually 

narrows. However, if the cyclone is divided into an inner ring and an outer ring; it 

can be seen from the figures (see Fig. 6.23a to Fig 6.23d) that the curve obtained by 

the RSM turbulence model has a larger value of pressure gradient in the inner ring, 

whereas the pressure gradient value in the outer ring gradually decreases. The curve 

obtained by the 𝑘 − 𝜀 turbulence model shows a nearly fixed pressure gradient 

value. 

 
Fig. 6.22 The positions of the observation levels. (Alahmadi and Nowakowski, 2016) 
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a (z = 1.5D)                          b (z = 2.0D) 

  

c (z = 3.25D)                        d (z = 3.375D) 

Fig.6.23. Profile of the Pressure field at different observation levels. 
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2. Velocity 

The variation patterns of the tangential velocity and axial velocity are presented on 

the following plots. Comparing the velocity curves obtained by the numerical 

simulations and experiment (Hoekstra, 2000) in Fig. 6.24 and Fig. 6.25, the following 

information can be obtained;  

 Tangential velocity: The variation pattern of the tangential velocity (Rankine 

vortex) can be restored by the simulation without using turbulence models, but 

the value of the tangential velocity has been overestimated.  

The tangential velocity curves, which were obtained using the 𝑘 − 𝜀 turbulence 

model are inaccurate in the aspect of variation pattern. The aforementioned 

“Rankine vortex” cannot be captured by the 𝑘 − 𝜀  turbulence model. More 

specifically, at the first and second observation levels (ℎ = 1.5𝐷 and ℎ = 2.0𝐷), 

the tangential velocity enlarges gradually from the cyclone’s core to the 

borderline of boundary layer flow. In the third and fourth observation levels, the 

growth trend of the velocity curves becomes more moderate in the middle 

position between the core and the wall. Comparing the curve with the 

experimental results, the middle position between the core and the wall is also 

the position where the Rankine vortex changes from the solid-body rotation to 

a free vortex.  

As an extension of the 𝑘 − 𝜀 turbulence model, the 𝑘 − 𝜀 RNG model and 𝑘 −

𝜀 RNGCC model exhibit more accurate tangential velocity curves, especially the 

𝑘 − 𝜀  RNGCC model. Even at the first and second observation level, the 

obtained tangential velocity curves obey the rule of the “Rankine vortex”.  

Finally, the RSM turbulence model provides an accurate prediction in terms of 

the tangential velocity curves. The curves are well matched with the 

experimental results at all the observation levels. 

 Axial velocity: In terms of the axial velocity, the curves obtained without using the 

turbulence model are incorrect in the first and second observation levels. The 

axial velocity curves present an inverted “V” pattern, which does not match with 

the experimental results. Regarding the third and fourth observation levels, the 

simulation without using turbulence models produced a reasonable variation 
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curve. A pit located near the centre of the cyclone and the curve presents an 

inverted “w” pattern.  

The 𝑘 − 𝜀 turbulence model provides incorrect axial velocity curves at all the 

observation levels. Although the curves look smoother than the non-TM curves, 

they cannot match the experimental curves, either in pattern or in value. This 

inaccurate prediction does not improve much when using the 𝑘 − 𝜀 RNG model 

and 𝑘 − 𝜀 RNGCC model 

  

a (z = 1.5D)                          b (z = 2.0D) 

  

c (z = 3.25D)                         d (z = 3.375D) 

Fig.6.24. Profile of the tangential velocity field at different observation levels 
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a (z = 1.5D)                          b (z = 2.0D) 

  

c (z = 3.25D)                         d (z = 3.375D) 

Fig.6.25. Profile of the axial velocity field at different observation levels 

The curves obtained by the RSM turbulence model are much more accurate 

than the other two methods. The curves match the experimental curves in the 

aspect of the curve pattern. The only defect shown in Fig 6.25a is that the 

maximum values are slightly overestimated.  
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3. Kinetic energy 

The kinetic energy 𝑘  is a physical quantity used to assess the accuracy of 

turbulence models in the RANS method. It has been discussed that in the RANS 

method (Section 3.5), the velocity fields can be separated into the mean velocity 

component and fluctuating velocity component 

𝑢௜ = 𝑢పഥ + 𝑢௜
ᇱ 

Furthermore, the kinetic energy is calculated by the fluctuating velocity component 

in three directions (two directions in a 2D environment). 

𝑘 =
1

2
𝑢ప

ᇱ𝑢ప
ᇱതതതതതത =

1

2
൫𝑢௫

ᇱ 𝑢௫
ᇱതതതതതതത + 𝑢௬

ᇱ 𝑢௬
ᇱതതതതതതത + 𝑢௭

ᇱ 𝑢௭
ᇱതതതതതത൯ 

In the 𝑘 − 𝜀 turbulence model, the kinetic energy is directly used for calculating the 

turbulence viscosity and Reynolds stress term,  

𝜏௧ =  −𝜌𝑢ప
ᇱ𝑢ఫ

ᇱതതതതതത = 𝜇௧ ቆ
𝜕𝑢పഥ

𝜕𝑥௝
+

𝜕𝑢ఫഥ

𝜕𝑥௜
ቇ −

2

3
𝜌𝑘𝛿௜௝ 

𝜇௧ = 𝐶ఓ

𝑘

𝜀

ଶ

 

However, in the RSM model, the value of the kinetic energy needs to be calculated 

using the Reynolds stress term 

𝑅௜௜ = 𝑢ప
ᇱ𝑢ప

ᇱതതതതതതത 

𝑘 =
1

2
൫𝑅௫௫ + 𝑅௬௬ + 𝑅௭௭൯ 

As a result, the profile of the kinetic energy is given in Fig. 6.29.  

From Fig. 6.29(c) and Fig. 6.29(d), it can be found that the kinetic energy curve 

obtained using the 𝑘 − 𝜀 turbulence model presents an inverted “W” pattern. The 

two vertices are located near the midpoint between the centre of the cyclone and 

the wall.  

Compared with the curve obtained by the 𝑘 − 𝜀  model, the other three curves 

present irregular curves that are approximately horizontal straight lines. Among 

them, the value of the kinetic energy obtained by using the 𝑘 − 𝜀 RNGCC model is 

the smallest, followed by the RSM model. The values on the three curves are much 
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smaller than the values obtained by the 𝑘 − 𝜀 model, and the difference between 

them is not obvious 

The profile of the kinetic energy curve is more diverse at the first and second 

observation levels (see Fig. 6.29(a) and Fig. 6.29(b)). The curve presented by the 𝑘 −

𝜀  RNGCC model is close to zero at the centre of the cyclone separator. This 

indicates that there is almost no turbulence in the solid rotation part. 

  

a (z = 1.5D)                          b (z = 2.0D) 

  

c (z = 3.25D)                        d (z = 3.375D) 

Fig.6.26 Profile of the kinetic energy at the fourth observation level 
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4. Cyclone performance and efficiency 

The parameters of the collection efficiency and the pressure drop are used to 

demonstrate the performance of the cyclone separator. From Eqn. 3.67, it can be 

found that the drag force term is the main factor in separating particles in different 

sizes flowing out from different outlets. The centrifugal force applied to the larger 

diameter particles causes them to flow downward along the cyclone wall and exit 

through the bottom outlet. In addition, the centrifugal force and the pressure drop 

are related to the magnitude of the tangential inlet velocity. Both increase 

proportionally as the inlet velocity increases. Thus, the design of a cyclone often 

requires an optimal combination between the parameters of collection efficiency 

and the pressure drop. The material of the injected particles is defined as limestone, 

and the simulation result of the current study is verified by Hoekstra’s (2000) 

experiment. 

The injected particles are divided into seven levels according to the diameter. The 

maximum diameter is 3.5𝐸 − 6𝑚 and the minimum is 8𝐸 − 7𝑚. The DPM solver 

was operated with a total mass flow rate of 0.001kg/s, and the maximum number of 

steps was 200,000. The efficiency is calculated by the following equation. 

𝜂 =
𝑡𝑟𝑎𝑝𝑝𝑒𝑑

𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 − 𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑
 

The particles are injected from the tangential inlet, and the particles ejected through 

the bottom outlet are set as trapped.  

From Fig. 6.27, it can be found that the curves of the collection efficiency obtained 

by the RSM model and the 𝑘 − 𝜀  RNGCC model are highly consistent with the 

experimental curves. The curve obtained by the 𝑘 − 𝜀 RNG model shows that the 

simulation result underestimates the collection efficiency for larger diameter 

particles. 

The Euler number of the pressure drop obtained by the RSM model and 𝑘 − 𝜀 

RNGCC model are 𝐸𝑢 = 5.4  and 𝐸𝑢 = 5.8 , respectively, which are acceptable 

compared with the value 𝐸𝑢 = 5.1 obtained by the experiment. The formula of the 

pressure drop Euler number is given by 

𝐸𝑢 =
Δ𝑃

1
2

𝜌𝑢ଶ
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Fig. 6.27 Collection efficiency curves obtained by different turbulence models 

compared to the experiment measurement. 

6.4 Summary  

Based on the simulation of single-phase flow in cyclones, some theories and ideas 

have been verified. These are summarized in following text. 

1. The characteristic of the “Rankine vortex” has been captured by the simulation 

without using turbulence models. Although the value is not accurate enough, it still 

successfully estimates the position of the maximum and gives an acceptable 

variation pattern. In terms of the simulation that used the standard 𝑘 − 𝜀 

turbulence model, the curves of the tangential velocity seem smoother. However, it 

cannot predict a correct variation curve due to an inaccurate simulation result of 

the turbulence viscosity based on the Boussinesq’s hypothesis. Thus, a more 

accurate calculation of the turbulence viscosity was provided by the 𝑘 − 𝜀 RNGCC 

model. The simulated tangential velocity values are acceptable compared with the 

experimental data. In terms of the results predicted by the RSM model, the 

tangential velocity curves are accurately matched with the experimental curve. 

2. Regarding the axial velocity curve, this should be shown as an inverted “W” pattern. 

The simulation method without using turbulence models can achieve a similar result 

at the third (Z = 3.25D) and fourth (Z = 3.375D) observation points, but the maximum 

value has been overestimated. In the aspect of the first (Z = 1.5D) and second (Z = 

2.0D) observation levels, the simulation results produced inverted “V” pattern 
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curves, which are incorrect. The simulation method with the 𝑘 − 𝜀  turbulence 

model cannot predict the proper curves as either. Although the axial velocity curve 

shows an inverted “W” pattern with two vertices at the first and second observation 

levels, the location of the maximum value is inaccurate. At the third and fourth 

observation levels, the results present a regular variation curve, but the concave 

near the centre was not predicted. The result of the axial velocity obtained by the 

simulation using the RSM model presents a curve matched with the experimental 

result. The inverted “W” pattern of the axial velocity curve has been captured, and 

the value of the axial velocity predicted by the simulation is acceptable.   

3. The simulation results of the turbulent kinetic energy can be used to detect 

whether the turbulence model correctly estimates the value of the perturbation 

velocity. In the current study, the curve of the kinetic energy obtained by the 𝑘 − 𝜀 

turbulence model presents a different pattern compared with the curve obtained 

using the RSM turbulence model. In the upper half of the cyclone, the value of the 

turbulent kinetic energy predicted by the 𝑘 − 𝜀  turbulence model was 

overestimated in the solid-rotation region and free-rotation region. 

4. The collection efficiency and pressure drop, predicted by numerical simulations, 

are consistent with the experimentally obtained predicted value at different levels. 

The result shows that the particle tracking method based on the Lagrangian-Eulerian 

model is largely affected by the turbulence model. A suitable turbulence model can 

predict the value of the flow fields accurately in the continuous phase, and the value 

of flow fields in the continuous phase directly affects the calculation of the particle 

equilibrium equation. 

As the fundamental simulation for the study of the flow in cyclone and hydrocyclones, 

the simulation of single-phase cyclone flow includes various important physical 

theories and CFD principles that need to be understood. From the complicated 

modelling process to the selection of turbulence models, each process needs to be 

carefully considered. In summary, the current simulation shows that the RSM model 

is suitable for the simulation of cyclone flows, which involve large swirls and 

anisotropic flow. Furthermore, the current simulation provides valuable experience 

in other aspects such as optimization of modelling and selection of algorithms and 

schemes.  
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Chapter 7. Simulation of the dam breaking 
flow 

7.1 Case introduction 

The simulation of the dam breaking flow is considered to be a suitable fundamental 

study due to the simulation of the flow with air-core in hydrocyclones also being a 

multi-phase flow problem. The geometry used in the simulation is easy to build, and 

it is efficient to test the performance of the multi-phase flow solver. The Reynolds 

Averaged Naiver-Stokes equation (RANS) method and the developed VOF technique 

are utilized to cope with the two-phase flow and the free-surface.  

The multi-phase solver used for simulations is called interFOAM and used a PIMPLE 

algorithm for calculations. As it is known that the SIMPLE algorithm in the PIMPLE 

algorithm is used to simulate the steady state of the flow at each time step, the 

number of the SIMPLE iteration loop may influence the simulation result. As such, in 

the current simulation, the number of the SIMPLE iteration loop is set as 20 to 

ensure the simulation result meets the convergence criterion in each time step. The 

schemes in the second-order of accuracy are used for the discretisation of the 

volume fraction equation, continuity equation and momentum equation.  

The technologies introduced in Chapter 4 are applied to optimise the solution of the 

volume fraction equation. They are the Multidimensional Universal Limiter with 

Explicit Solution (MULES) algorithm and the High-Resolution schemes (HRS) 

technique.  

The final results present the dimensionless vertical position of the free-surface 

against simulation time. A comparison between the results of the simulations using 

different mesh sizes and different turbulence models is presented. The number of 

meshes used in the simulations increased from 1600 cuboids to 25600 cuboids.  

The other extended study focuses on the performance of the solver when using 

different turbulence models. The turbulence models used for simulations are the 

𝑘 − 𝜀 turbulence model and the RSM turbulence model. Due to the fluid flowing 

inside the tank being a multi-phase flow, the viscosity and density need to be 

calculated through substituting volume fractions into the equation. The volume 
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fraction is equal to one for the liquid phase, and it is equal to zero for the air phase. 

Since the free-surface has the volume fraction with 0 < α < 1 , the density and 

viscosity of the free-surface are calculated by 

𝜌 = 𝛾𝜌௟௜௤௨௜ௗ + (1 − 𝛾)𝜌௔௜௥ 

𝜇 = 𝛾𝜇௟௜௤௨௜ௗ + (1 − 𝛾)𝜇௔௜௥ 

The density and viscosity of the liquid is set as 1 × 10ଷ 𝑘𝑔/𝑚ଷ and 1 × 10ି଺  𝑚ଶ 𝑠⁄ ∙

𝑠. The density and viscosity of the air is set as 1.2 𝑘𝑔/𝑚ଷ and 1.48 × 10ିହ  𝑚ଶ 𝑠⁄  

7.2. Simulation results 

The velocity field and the pressure field are not the key points for the current 

simulation. The simulation results of the dam breaking flow are presented focusing 

on the volume fraction field. Due to the simulation being executed based on the 

PIMPLE algorithm, the transient states of the dam breaking flow are posted in the 

following figures (see Fig. 7.1 to Fig. 7.4) for investigations. These simulation results 

are given with aim to determine the position of the free-surface between liquid and 

gas. The recorded time step is set as one frame per 0.05s, and the end time of the 

simulation is assigned at 2.5s. 

The first group of figures (see Fig. 7.1) demonstrates the simulation result compared 

with the experiment pictures taken by Cruchaga (2007). The simulation result is 

obtained through the simulation using 25600 cuboids without using turbulence 

models. The experiment picture at the initial state presents that the water was 

segregated by a plant in the tank; this initial state was also restored in the numerical 

simulation method. After the plant was removed, the liquid fluid flowed to the right 

wall, reaching the highest point at 𝑡 =  0.5𝑠 and it bounced back to the left wall 

after 0.5 seconds. Although the free-surface was still raised when it had contact 

with the left wall, it did not reach the same height, as 𝑡 =  0.5𝑠 shows. After this, the 

liquid fluid flowed to the right-hand side again. The free surface will be calm after 

this swinging motion has been repeated many times. Fig. 7.2 presents the simulation 

results in different mesh sizes. In general, the flowing behaviour is the same, but they 

still have some differences. Through observing these figures, the detections are 

summarized below: 
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 It is obvious that the thickness of the interface between liquid and gas becomes 

sharper when accompanied with the mesh size growing denser. In addition, the 

shape of the free-surface becomes more complicated. 

 As the grid size decreases, the resolution of the volume fraction distribution 

picture increases with more bubbles appearing in the liquid phase. 

The simulation results, obtained by using the 𝑘 − 𝜀 turbulence model and the RSM 

turbulence model, are shown in Fig. 7.3. Compared with the results yielded without 

using the turbulence model, the results obtained by using the 𝑘 − 𝜀  turbulence 

model present different flow patterns and the results obtained by using the RSM 

turbulence model produce similar flow patterns at each recorded time point.  

Fig. 7.4 presents the velocity vector plots of the dam breaking flow at each recorded 

time step. Using vector plots can help analyse the flow trends of the water phase. In 

addition, the air phase is also affected by the water phase and causes irregular 

movements. The topside of the tank is open to the atmosphere, so air and water can 

flow back from the topside during the dam breaking.  

7.3 Discussion 

In regard to the mesh convergence study of the dam breaking flow, three different 

mesh numbers were used; the number of meshes is defined as 40 × 40, 80 × 80 

and 160 × 160. Due to the current simulations being unsteady problems, the results 

used for the mesh convergence study were selected based on the fixed space and 

fixed time. Four time-points (0.5s, 1s, 1.5s and 2.0s) were used for comparison. They 

were chosen because of the water line approach to the highest level at these time 

points. The space points were assigned according to Cruchaga’s (2007) experiment 

and are located at 𝑥 = 0𝑚, 𝑥 = 0.27𝑚, and 𝑥 = 0.42𝑚.  

From these figures and tables, it can be found that the simulation has met the mesh 

convergence criterion in most situations. The convergence ratio is calculated by 

𝑅 =
𝜙ଶ − 𝜙ଵ

𝜙ଷ − 𝜙ଶ
 

Where, 𝜙 represents the numerical solution of a local or functional variable. The 

subscripts 1, 2 and 3 indicate the grid size from fine to coarse. 
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Some of the convergence parameter, R equals zero, is due to the simulation result 

being same when mesh numbers are equal to 80 × 80 and 160 × 160. Although in 

Table 7.1b, one of the parameters exceeded the convergence limitation, this excess 

value can be ignored since the simulation result is close between different mesh 

sizes. A space-time graph is shown in Fig. 7.6a to Fig. 7.6c. These figures give a more 

intuitive comparison between the simulation results obtained by using different 

mesh sizes. Furthermore, the experiment data from Cruchaga’s (2007) paper are 

posted on the graph.  

In Fig. 7.6a, the experiment plots indicate the free-surface declined to a lower 

position and bounced back to the highest level in the first second. This behaviour is 

also precisely predicted by the numerical simulation. After the free-surface reached 

the highest point, it dropped back to the lowest level again. A small fluctuation 

occurred before the second rise of the free-surface around 1.5 seconds. The 

fluctuation is captured by the numerical simulation when using higher mesh 

numbers. Between 1.5 seconds and 2 seconds, the free-surface again completed 

another set of rising and falling processes. Regarding the second upswing process, 

the simulation results show nearly a 0.3 second delay compared with the 

experimental data.  

The second space-time graph (see Fig. 7.6b) shows the fluctuation of the free-

surface at the middle observation point. Three obvious fluctuations appeared 

between 0s and 2s. All the fluctuations were accurately predicted by the numerical 

simulation. Compared with the experimental data, the occurrence time of the three 

fluctuations has a delayed prediction by the numerical simulation, but the 

dimensionless vertical position of the fluctuations is predicted precisely, especially 

when using the finest grids. 

In regard to the third figure (Fig 7.6c), the same problem is displayed in the graph. 

Even though the simulation result is reliable in the aspect of the dimensionless 

vertical position and movement, the prediction of occurrence time is still inaccurate. 

Two large peaks appear around 0.5 seconds and 1.5 seconds, and there is a small 

fluctuating movement between them. The simulation results present the lowest 

dimensionless vertical position of the fluctuation equal to zero, which is different 

from the experimental result.  
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The next group of figures (From Fig. 7.7a to Fig. 7.7c) present the simulation result 

obtained by using different turbulence models. It shows that the plots predicted by 

using the 𝑘 − 𝜀 turbulence model differ considerably from the plots predicted by 

the other models. The plots predicted using the RSM turbulence model are similar 

to those predicted without using turbulence models. 

7.4 Summary 

In summary, the simulation of the dam breaking flow based on the developed-VOF 

method can be concluded as a successful simulation in the following aspects. 

1. The dimensionless vertical position of the free-surface has been estimated 

acceptable in a certain range. The flowing behaviour has been predicted 

accurately in the whole domain. 

2. The mesh size is important for the developed-VOF method. On the one hand, 

it will influence the accuracy of the simulation result. On the other hand, the 

thickness of the free-surface is also affected by the mesh size. Although a 

customised technique has been used to compress the free-surface, the 

improvement is still conspicuous when the finest grid has been used. 

3. The application of turbulence model will affect the simulation results of 

current research. The RSM turbulence model can predict the flow behaviour 

of the dam breaking flow and capture the position of the free-surface. When 

the 𝑘 − 𝜀 turbulence model is implemented into the developed VOF method, 

it cannot provide accurate simulation results. 

4. The vector plots are useful for analysing the flow behaviour of the dam 

breaking flow. It can be seen from Fig. 7.4 that the sudden flow of the liquid 

phase will cause the movement of the gas phase and form vortices and 

turbulence. The water and air that flow near the free surface have higher 

velocity amplitudes. 

When studying the fluid flow in a hydrocyclone, the problem of using a multi-phase 

flow solver is inevitably involved. When there is a clear interface between the two 

phases, such as the phenomenon of air-core in free-surface, the developed-VOF 

method can be used to solve this type of problem. Therefore, comprehending and 

correctly using the developed VOF method is essential for simulating multi-phase 

flow with a clear free surface in hydrocyclones. 
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(0.1s) 

(0.5s) 

(1.0s) 

(1.5) 

Fig. 7.1. Comparison of volume fraction distribution with experimental photos 

(Cruchaga et al., 2007) 
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(0.0s) 

(0.5s) 

(1.0s) 

(1.5s) 

(2.0s) 

(a) (40 × 40)      (b) (80 × 80)     (c) (160 × 160) 

Fig. 7.2. Distributions of the free-surface obtained by different mesh size 
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(0.1s) 

(0.5s) 

(1.0s) 

(1.5s) 

(2.0s) 

        (Non-TM)            (K-epsilon)          (RSM)  

Fig. 7.3. Distributions of the free-surface obtained by different turbulence model
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(0.1s) 

(0.5s) 

(1.0s) 
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(1.5s) 

 

(2.0s) 

 

(2.5s) 

Fig. 7.4. Velocity vector plots of the Dam breaking flow
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Fig. 7.5a. Mesh convergence study via the position of free-surface at the left wall 

 

Fig. 7.5b. Mesh convergence study via the position of free-surface at the middle point 

 

Fig. 7.5c. Mesh convergence study via the position of free-surface at the right wall 
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Fig. 7.6a. Dimensionless vertical position of the free-surface at the left wall 

(x = 0m) 

 

Fig. 7.6b. Dimensionless vertical position of the free-surface at the middle point 

(x = 0.27m) 

 

Fig. 7.6c. Dimensionless vertical position of the free-surface at the right wall 

(x = 0.42m) 
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Table 7.1a. The difference of the average velocity between each mesh (left wall) 

 0.5s 1.0s 1.5s 2.0s 

𝟏

𝟒𝟎
 and 𝟏

𝟖𝟎
 0.2222 0.2397 -2 0.2 

𝟏

𝟖𝟎
 and 𝟏

𝟏𝟔𝟎
 0.10526 0.0870 2 0.0531 

R 0.4 -0.3894 -0.6 0.3 

 

Table 7.1b. The difference of the average velocity between each mesh (middle 

point) 

 0.5s 1.0s 1.5s 2.0s 

𝟏

𝟒𝟎
 and 𝟏

𝟖𝟎
 -0.1053 0.2222 0.0541 0.0690 

𝟏

𝟖𝟎
 and 𝟏

𝟏𝟔𝟎
 -0.1053 0.0870 0.1111 0.0741 

R 0.9 0.3333 -2 1 

 

Table 7.1c. The difference of the average velocity between each mesh (right 

wall) 

 0.5s 1.0s 1.5s 2.0s 

𝟏

𝟒𝟎
 and 𝟏

𝟖𝟎
 0 0 0.2727 0.32558 

𝟏

𝟖𝟎
 and 𝟏

𝟏𝟔𝟎
 0 0 0.0260 0 

R 0 0 -0.08333 0 
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Fig. 7.7a. Dimensionless vertical position of the free-surface at the left wall (x = 0m) 

 

Fig. 7.7b. Dimensionless vertical position of the free-surface at the middle point (x = 

0.27m) 

 

Fig. 7.7c. Dimensionless vertical position of the free-surface at the right wall (x = 

0.42m) 
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Chapter 8. Simulation of the flow with air-
core in hydrocyclones 

8.1 Case introduction 

The simulation of the flow with air-core in hydrocyclones is a challenging problem 

due to the characteristic of combining the multi-phase flow problem with an 

intensive swirling flow problem. The simulation not only has to correctly predict the 

fields of the large swirling flow, such as the “Rankine vortex”, but is also required to 

precisely predict the pattern of the air-core.  

The interFoam solver is used to solve the problem of gas-liquid multi-phase flow; it 

works based on the developed VOF method. The customised solver called 

Multidimensional Universal Limiter for Explicit Solution (MULES) is used for the 

calculation of this developed VOF method. It is derived from the Flux Corrected 

Transport (FCT) technique and utilised to guarantee the coexistence of accuracy 

and boundedness. In addition, the High-Resolution Schemes (HRS) is applied to 

further optimise the developed VOF method. Such a technique helps to eliminate 

the unexpected oscillations near a strong gradient, like the value of the volume 

fraction near the free-surface.  

The PIMPLE algorithm is used to solve the problem of pressure-velocity coupling 

during calculations. Thus, the transient state of the flow in hydrocyclones can be 

captured. It is possible to analyse the formation process of the air-core by the 

numerical simulations, which is hard to observe in the experiment.  

The schemes in the second-order of accuracy are used for the equation 

discretization, and these include the center linear scheme and upwind linear 

scheme. The number of structured meshes used for simulation increased from 

223875 hexahedrons to 594728 hexahedrons.  

Three different turbulence models have been used for investigations. Two of them 

are used for the RANS method, namely, the 𝑘 − 𝜀 turbulence model and the RSM 

turbulence model. The other turbulence model called the subgrid-scale kinetic 

energy model is used for the LES method. Finally, the validation process is 

completed by comparing the simulation result with Hsieh’s experimental data (Hsieh, 
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1988). The density and viscosity of the liquid is set as 1 × 10ଷ 𝑘𝑔/𝑚ଷ  and 

1 × 10ି଺  𝑚ଶ 𝑠⁄ . The density and viscosity of the air is set as 1.2 𝑘𝑔/𝑚ଷ  and 

1.48 × 10ିହ  𝑚ଶ 𝑠⁄ . The inlet velocity was mentioned in the section of boundary 

conditions, 𝑈௜௡ = 2.3 𝑚/𝑠 . Thus, the Reynolds number is approximated by 𝑅𝑒 =

𝑢௜௡𝐷/𝜐௪௔௧௘௥ = 1.73 × 10ହ, which indicates that the flow is completely turbulent.  

8.2 Simulation results 

The simulation result is demonstrated by showing the streamline, vector, and 

contour plots of the velocity, pressure and volume fraction.  

 Volume fraction 

Screenshots of the contour plots of the volume fraction field can be used to analyse 

the formation process of the air-core in hydrocyclone flows. The screenshot interval 

is set to 0.1s, and the main formation process of the air-core occurs between 0s and 

1s. Fig. 8.2 presents the air-core formed in the hydrocyclone, which is filled with air 

at the initial state. The results are compared with the snapshot taken by Wang et al. 

(2015) (see Fig. 8.1) in their experiment. Fig. 8.3 shows the air-core formed in the 

hydrocyclone, which is filled with water at the initial state. These two groups of 

screenshots were obtained through the simulation using the RSM turbulence model. 

They demonstrate two different formation processes of the air-core in 

hydrocyclone flows.  

Fig. 8.2 shows that when the liquid flows into the hydrocyclone, it flows at a high 

speed against the wall of the separator. The second and third figures show that the 

liquid rapidly fills the entire cylinder and conical part, then a small amount of liquid 

flows out from the bottom outlet. Over time, the thickness of the liquid phase 

gradually increases, and the liquid can be discharged through the upper and bottom 

outlets simultaneously. In the eighth figure, the hydrocyclone is almost completely 

filled with water, and a small air-core is formed in the centre of the hydrocyclone. 

After that, the size of the air-core increases until the flow stabilises.  

The first four screenshots of the second group of figures (see Fig.8.3) seem to be 

roughly the same, but in fact, the liquid flows around the wall of the separator after 

flowing into the hydrocyclone. The screenshot at 0.4s shows that the airflow flows 

into the hydrocyclone through the upper and bottom outlets. After that, two airflows 
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merge at the bottom of the vortex finder and form a small air-core; the size of the 

air-core increases until the flow stabilizes.  

The two groups of screenshots present two different formation processes of the 

air-core in hydrocyclone flows, nevertheless the profile of the air-core at the steady 

states is similar. 

 

 

Fig. 8.1. Snapshots showing the formation process of the air-core shot by a high-

speed camera. 

(Wang et al., 2015)
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(0.1s)           (0.2s)          (0.3s)           (0.4s)           (0.5s)           (0.6s)          (0.7s) 

(0.8s) (0.9s) (1.0s) (1.6s) (2.0s)  (steady) 

Fig. 8.2. Simulation results showing the formation process of the air-core in the gas-liquid hydrocyclone flow (Air filled) 
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(0.1s)  (0.2s)  (0.3s)  (0.4s)  (0.5s)  (0.6s) 

(0.7s)  (0.8s)  (0.9s) (1.0s)  (2.0s)  (steady) 

Fig. 8.3. Simulation results showing the formation process of the air-core in the gas-liquid hydrocyclone flow (water filled) 
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 Velocity 

The contour plots of the velocity field present the profile of the tangential velocity, 

and axial velocity of the hydrocyclone flows at steady state. It can be seen that the 

profile of the tangential velocity provided in the current case (see Fig. 8.4a) is similar 

to the profile obtained by the simulation of cyclone flows (see Fig. 6.3a). The 

tangential velocity has an area with maximum value distributed along the extension 

line of the wall of the vortex finder. From this area to the wall of the separator or the 

centre of the separator, the value of the tangential velocity gradually decreases. In 

terms of the axial velocity, the profile shown in the current simulation (see Fig. 8.4b) 

is different from the profile given in the simulation of cyclone flows (see Fig. 6.3b).  

The axial velocity shown in Fig. 8.4b tends to flow upwards at the centre of the 

conical section, meaning that the airflow is drawn from the atmosphere and flows 

into the cyclone through the bottom outlet. In the centre of the vortex finder, the 

blue area shows that the axial velocity tends to flow downward, indicating that the 

airflow is drawn from the atmosphere and flows into the hydrocyclone through the 

upper outlet. The water flowing out along the wall of the upper outlet exhibits an 

upward axial velocity, while the water flowing out along the bottom outlet duct 

exhibits a downward axial velocity. 

Fig. 8.5 presents the velocity streamline graph and vector plots of the simulation of 

hydrocyclone flows. This helps to illustrate the flowing behaviour of the airflow and 

water flow at steady state. In general, the fluid flow in the hydrocyclone is relatively 

regular. The water flow swirls around the wall of the separator and forms an outer 

swirling flow on the periphery. The airflow rotates in the air-core to form an inner 

swirling flow. Furthermore, the inner swirl flow can be divided into two branches, 

where the branch flowing through the upper outlet directs downward, and the one 

flowing through the bottom outlet directs upward. The axial contour, streamline and 

vector plots demonstrate that the two branches meet each other at the bottom of 

the vortex finder. 
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            (a) Tangential velocity    (b) Axial velocity  

Fig 8.4. Velocity contour plots of the gas-liquid hydrocyclone flow 

 

 
Fig 8.5. Streamline and vector plots of the gas-liquid hydrocyclone flow 

 

Vortex finder 

and top 

Bottom 

outlet and 

pipe 
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 Pressure 

The contour plots of the pressure field (see Fig. 8.6) present the profile of the 

pressure in hydrocyclones at steady state. It can be found that because the current 

simulation is a multi-phase problem, the low-pressure area in the centre of the 

hydrocyclone presents a different colour distribution compared with the contour 

plots shown in the simulation of single-phase cyclone flow. The actual pressure value 

in the entire dark blue low-pressure region is almost equal, which is lower than the 

given pressure in the atmosphere. Thus, it provides a source that prompts the 

airflow back into the hydrocyclone. The scale of the low-pressure area is similar to 

the size of the air-core; research by Kraipech-Evans (2008) states that the low-

pressure area could represent the air-core in terms of the sizes. For the other area, 

the pressure gradually increases from the low-pressure area in the centre to the 

wall of the hydrocyclone. 

  

(Current simulation)（Kraipech-Evans, 2008） 

Fig. 8.6. Pressure contour plot of the gas-liquid hydrocyclone flow. 

8.3 Discussion 

The curves’ plots of the velocity field are obtained by the simulation using the 

Develop VOF method and the RSM turbulence model. These plots are used for the 
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validation process, which compares the simulation results with experimental data 

obtained by Hsieh (1988 and 1991) and simulation results obtained by Rudolf (2012).  

The first group of figures (see Fig. 8.8) presents the curve of the tangential velocity 

against the length of lines located at three observation levels (see Fig. 8.7), they are 

d = 60mm, d = 120mm and d = 170mm, respectively. The second group of figures 

(see Fig. 8.9) presents the curve of the axial velocity against the length of those lines. 

From Fig. 8.8, it can be seen that the curve obtained by the current simulation shows 

a reasonable curve matched with the experimental data. The characteristic of 

“Rankine vortex” has been captured and the inflexion points of all tangential velocity 

curves are located at almost the same radius position. However, the curves obtained 

by the current simulation show that the value of the tangential velocity has been 

overestimated, especially at the outer swirling flow. In addition, the curves obtained 

by previous simulations show that the maximum value of the tangential velocity has 

been underestimated. Regarding the curves of the axial velocity, the current 

simulation provides a curve that almost matches the experimental data. Compared 

with previous simulations, the results of the current simulation ensure a higher 

accuracy, especially near the free-surface. 

 

Fig. 8.7. The data collection line located at three different levels.

d = 60mm 

d = 120mm 

d = 170mm 
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Fig. 8.8. Profile of the tangential velocity curve against three observation lines (d = 60, 120, 170mm) 

   

Fig. 8.9. Profile of the axial velocity curve against three observation lines (d = 60, 120, 170mm) 
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8.4 Further studies 

After the verification and validation procedure for the new methodology, additional 

simulations were carried out. The focus of these simulations is to further optimize 

the contribution of numerical methods to the simulation of air flow in hydrocyclones 

and to optimize the dimensions of the hydrocyclone. The first study was simulated 

using the 𝑘 − 𝜀  turbulence model and the subgrid-scale kinetic energy model, 

which were applied in the RANS method and LES method, respectively. The second 

case is the influence of changing the dimensions of different sections of the 

hydrocyclone on flow patterns. The third simulation investigated the influence of 

applying different interface smearing factors on the simulation result. Finally, the 

assumption of simplifying the simulation of the flow in hydrocyclones, by ignoring 

the effects of the air-core, was verified. Aside from those specific parameters (e.g. 

turbulence model, dimension and smearing factor) in each extended study that 

needed to be adjusted, other settings (e.g. algorithms and solvers) were consistent 

with the settings used in the previously verified simulation. 

8.4.1 Simulations based on different turbulence models 

Fig. 8.10 presents the contour plots of the volume fraction obtained by using the 

simulations with the 𝑘 − 𝜀 turbulence model and the subgrid-scale kinetic energy 

model. It can be found that the contour plot obtained by using the simulation with 

the 𝑘 − 𝜀 turbulence model presents an entirely different profile with the volume 

fraction contour plots shown before (see Fig. 8.10). Even if the airflow appears at the 

top and bottom outlets, the characteristics of the air-core cannot be predicted. 

The contour plot (see Fig. 8.10) obtained by using the simulation with the subgrid-

scale kinetic energy model presents a similar air-core profile compared to the 

contour obtained by the RSM model. An inconspicuous different is shown in the 

plots, in that the size of the air-core obtained by the subgrid-scale kinetic energy 

model is smaller than the air-core obtained by the RSM model.  

Fig. 8.11 shows the tangential velocity contour plots yielded by the three models. The 

tangential velocity distribution predicted by the 𝑘 − 𝜀 turbulence model shows a 

gradually increasing trend from the centre to the wall of the separator, while the 
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tangential velocity distribution obtained by the subgrid-scale kinetic energy model 

shows a pattern similar to the one obtained using the RSM model. Fig. 8.12 presents 

the axial velocity contour. The plots obtained by the 𝑘 − 𝜀 turbulence model do not 

show a clear upward axial velocity in the lower half of the separator. The pressure 

contour plots are shown in Fig. 8.13, demonstrating the source that forms the air-

core. The plots obtained by the 𝑘 − 𝜀 turbulence model again present a different 

profile.  

The curve graph of the tangential velocity and axial velocity can be used to provide a 

more intuitive comparison. The velocity curves obtained through the experiment are 

compared with the simulation result at each observation level. Fig 8.14 shows that 

the tangential velocity curve obtained by the 𝑘 − 𝜀  turbulence model cannot 

predict the pattern of the “Rankine vortex”. The subgrid-scale kinetic energy model 

is able to capture the characteristic of the “Rankine vortex” but the maximum value 

of the velocity has been underestimated. The axial velocity curve obtained by the 

𝑘 − 𝜀 turbulence model and the subgrid-scale kinetic energy model has different 

degrees of deviation.  
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(the RSM model)     (the 𝑘 − 𝜀 model )        (the LES model) 

Fig. 8.10. Profile of the air-core obtained by different turbulence model (TM) 

 

(the RSM model)      (the 𝑘 − 𝜀 model )        (the LES model) 

Fig. 8.11. Contour plots of the tangential velocity obtained by different TM 
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(the RSM model)      (the 𝑘 − 𝜀 model )        (the LES model) 

Fig. 8.12. Contour plots of the axial velocity obtained by different TM. 

 

(the RSM model)      (the 𝑘 − 𝜀 model )        (the LES model) 

Fig. 8.13. Contour plots of the pressure field obtained by different TM. 
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Fig. 8.14. Profile of the tangential velocity curve obtained by different TM against three observation lines (d = 60, 120, 170mm) 

   

Fig. 8.15. Profile of the tangential velocity curve obtained by different TM against three observation lines (d = 60, 120, 170mm) 
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8.4.2 Simulations based on different hydrocyclone 

dimensions 

The second study focuses on the problem of the influences of hydrocyclone 

dimensions on the flow behaviour inside the hydrocyclone. As introduced in Chapter 

2, the diameter of the top outlet will influence the profile of the velocity curve in 

cyclones. Therefore, the current simulation not only studies the effect of changing 

the size of the top outlet on the flows in hydrocyclones, but also the effect of 

changing the size of the bottom outlet and the cone angle on the flows in 

hydrocyclones. 

Fig. 8.16 presents the contour plots of the volume fraction. This helps to analyse the 

influence of the hydrocyclone dimensions on air-core sizes. The most apparent 

difference is that the size of the air-core increases as the diameter of the top outlet 

and bottom outlet increases. Fig. 8.17 presents the tangential velocity contour plots 

obtained by the simulations using hydrocyclones in different sizes.  

The first set of figures compares the tangential velocity contour plots obtained using 

the hydrocyclones with different bottom outlet diameters (d 11mm, 12.5mm, 13mm 

and d =  15mm). The difference is not obvious and shows the characteristic of 

“Rankine vortex”.  

The second group of figures presents the simulation results predicted using the 

hydrocyclones with top outlet diameters equal to d = 20mm, d = 25mm and d =

30mm, respectively. It can be seen from the plots that the distribution of the area 

with the maximum tangential velocity is related to the diameter of the top outlet, the 

maximum value area distributed along the extension line of the wall of the vortex 

finder.  

The third group of figures illustrates the simulation result yielded using the 

hydrocyclones with different cone angles (CA = 18°, 20°, 22°). They exhibit similar 

tangential velocity distributions. Fig. 8.18 shows the axial velocity contour plots 

obtained by the simulations using hydrocyclones in different sizes. They all present 

a similar profile, which shows a “Y” pattern for the axial velocity direct upward. The 

downward axial velocity appears at the centre of the vortex finder and the wall of 

the bottom outlet pipe. The pressure contour plots (see Fig. 8.19) exhibit similar 
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profiles, presenting that the low-pressure area is located in the air-core region, and 

the value of pressure gradually increases from the centre to the wall of the 

hydrocyclones. 

The curve graphs are illustrated in Fig. 8.20 to Fig. 8.25. The observation levels are 

chosen based on the experiment. These graphs show that changing the size of the 

hydrocyclone will affect the flow velocity profile to varying degrees. The most 

obvious difference in the velocity curves is caused by changing the top outlet 

diameter of the hydrocyclone. When the diameter of the top outlet is reduced, the 

maximum value of the tangential velocity becomes larger and moves closer to the 

centre of the hydrocyclone. The maximum upward axial velocity decreases near the 

free-surface. In the other sets of comparisons, the difference is not obvious. 

However, it can also be seen that as the diameter of the bottom outlet decreases, 

the maximum value of the tangential velocity decreases and the axial velocity 

increases near the free-surface. Regarding the cone angle, as it increases, the 

maximum value of the tangential velocity increases, and the axial velocity hardly 

changes. 

Another important criterion to distinguish the performance of the cyclone 

separator is the water split ratio. In the current study, the water split ratio is 

calculated by the value of phiAlpha, which is given as 

phiAlpha =  𝜙 × 𝛼 

where phi, 𝜙, is the velocity value through the surface and 𝛼 is the value of volume 

fraction. Thus, the value of phiAlpha can be used to calculate the volume flow rate 

and mass flow rate of the water-phase flow. The post-process function called 

patchIntegrate is used to integrate the value of phiAlpha on the specific patch. 

Furthermore, the water split ratio is obtained by 

water split ratio =
phiAlpha஻௢௧௧௢௠ ௢௨௧௟௘௧

phiAlpha௜௡௟௘௧
 

and the value of the water split ratio of each hydrocyclone in different dimensions is 

given in Table 8.1. 

It is generally agreed that a better cyclone separator has a lower water split ratio. 

This is because in the case of separating a liquid-solid two-phase flow, the less water 
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being discharged from the bottom outlet, the higher the concentration of solid 

particles is in the fluid separated from the bottom outlet. Unmodified Geometry: 

 

(Bottom outlet =12.5mm, Top outlet =25mm and Core angle = 20°) 

Bottom outlet = (11mm) (13mm) (15mm) 

Top outlet = (20mm)  (30mm) 

Core Angle =  (18°)  (22°) 

Fig. 8.16. Contour plots of the volume fractions 



159 

 

Unmodified Geometry: 

 

(Bottom outlet =12.5mm, Top outlet =25mm and Core angle = 20°) 

Bottom outlet =  (11mm) (13mm) (15mm) 

Top outlet =  (20mm)  (30mm) 

Core Angle =  (18°)  (22°) 

Fig. 8.17. Contour plots of the Tangential velocity 
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Unmodified Geometry: 

 

(Bottom outlet =12.5mm, Top outlet =25mm and Core angle = 20°) 

Bottom outlet =  (11mm) (13mm) (15mm) 

Top outlet =  (20mm)  (30mm) 

Core Angle =  (18°)  (22°) 

Fig. 8.18. Contour plots of the axial velocity 
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Unmodified Geometry: 

 

(Bottom outlet =12.5mm, Top outlet =25mm and Core angle = 20°) 

Bottom outlet = (11mm) (13mm) (15mm) 

Top outlet =  (20mm)  (30mm) 

Core Angle =  (18°)  (22°) 

Fig. 8.19. Contour plots of the pressure field 
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Fig. 8.20. Profile of the tangential velocity curve obtained by hydrocyclone with different Bottom outlet diameter 

   

Fig. 8.21. Profile of the axial velocity curve obtained by hydrocyclone with different Bottom outlet diameter 
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Fig. 8.22. Profile of the tangential velocity curve obtained by hydrocyclone with different Core angle 

   

Fig. 8.23. Profile of the tangential velocity curve obtained by hydrocyclone with different Core angle 
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Fig. 8.24. Profile of the tangential velocity curve obtained by hydrocyclone with different Top outlet diameter 

 
Fig. 8.25. Profile of the tangential velocity curve obtained by hydrocyclone with different Top outlet diameter 
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Table 8.1. Water split ratio of hydrocyclones in different dimensions (a. Top outlet =  25 mm, 𝐶𝑜𝑛𝑒 𝑎𝑛𝑔𝑙𝑒 =  20°) 

 𝑩𝒐𝒕𝒕𝒐𝒎 𝒐𝒖𝒕𝒍𝒆𝒕 

=  𝟏𝟏 𝒎𝒎 

𝑩𝒐𝒕𝒕𝒐𝒎 𝒐𝒖𝒕𝒍𝒆𝒕 

=  𝟏𝟐. 𝟓 𝒎𝒎 

𝑩𝒐𝒕𝒕𝒐𝒎 𝒐𝒖𝒕𝒍𝒆𝒕 =  𝟏𝟑 𝒎𝒎 𝑩𝒐𝒕𝒕𝒐𝒎 𝒐𝒖𝒕𝒍𝒆𝒕 =  𝟏𝟓 𝒎𝒎 

𝑽𝑶𝑭 − 𝑹𝑺𝑴 15.09% 21.11% 24.3% 33.4% 

𝑽𝑶𝑭 − 𝑳𝑬𝑺  21.02%   

𝑽𝑶𝑭 − 𝑲𝑬  21.16%   

(b. 𝐵𝑜𝑡𝑡𝑜𝑚 𝑜𝑢𝑡𝑙𝑒𝑡 =  12.5 𝑚𝑚, 𝐶𝑜𝑛𝑒 𝑎𝑛𝑔𝑙𝑒 =  20°) 

 𝑇𝑜𝑝 𝑜𝑢𝑡𝑙𝑒𝑡 =  20 𝑚𝑚 𝑇𝑜𝑝 𝑜𝑢𝑡𝑙𝑒𝑡 =  25 𝑚𝑚 𝑇𝑜𝑝 𝑜𝑢𝑡𝑙𝑒𝑡 =  30 𝑚𝑚 

𝑉𝑂𝐹 − 𝑅𝑆𝑀 39.97% 21.11% 14.46% 

𝑉𝑂𝐹 − 𝐿𝐸𝑆  21.02%  

𝑉𝑂𝐹 − 𝐾𝐸  21.16%  

(c. 𝐵𝑜𝑡𝑡𝑜𝑚 𝑜𝑢𝑡𝑙𝑒𝑡 =  12.5 𝑚𝑚, Top outlet =  25 mm) 

 𝐶𝑜𝑛𝑒 𝑎𝑛𝑔𝑙𝑒 =  18° 𝐶𝑜𝑛𝑒 𝑎𝑛𝑔𝑙𝑒 =  20° 𝐶𝑜𝑛𝑒 𝑎𝑛𝑔𝑙𝑒 =  22° 

𝑉𝑂𝐹 − 𝑅𝑆𝑀 22.10% 21.11% 22.19% 

𝑉𝑂𝐹 − 𝐿𝐸𝑆  21.02%  

𝑉𝑂𝐹 − 𝐾𝐸  21.16%  
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8.4.3 Simulations based on different interface smearing 

factors 

The interface smearing factor is an important element used in the equation of the 

developed VOF method. This factor, 𝐶ఈ  influences the value of the artificial 

convection term, which is given as 

𝜙௥௙𝛾௥௙(1 − 𝛾)௥௙ 

(8.1) 

And 

𝜙௥௙ = min ቈ𝐶ఈ

ห𝜙௙ห

ห𝑆௙ห
, max ቆ

ห𝜙௙ห

ห𝑆௙ห
ቇ቉ ൫n௙ ∙ 𝑆௙൯ 

(4.48) 

The artificial convection term is used to compress the thickness of the free-surface 

between different fluids. Thus, the value of the interface smearing factor will 

influence the magnitude of the artificial convection term and the stability of the 

simulation. Another potential influence is that the simulation result may be distorted 

by adding the artificial convection term. It is necessary to find the optimal value of 

the smearing factor for the current study. 

The value of the interface smearing factor used in previous simulations was set using 

the default value, 𝐶ఈ = 1, and the current study using 𝐶ఈ = 0, 0.5, 1 and 𝐶ఈ = 2 for 

simulations and comparisons. The contour plots of the volume fraction are given in 

Fig. 8.26. They illustrate that the thickness of the free-surface increases as the value 

of the interface smear factor decreases. When the factor, 𝐶ఈ = 0.5 or 𝐶ఈ = 1, the 

free-surface is regular and smooth. The pressure, tangential velocity and axial 

velocity contour plots are given in Fig. 8.27, Fig. 8.28 and Fig. 8.29, respectively. The 

difference is not conspicuously presented in these plots.  

The curve graphs help to amplify the discrepancies between the simulation results. 

It can be found that the difference appears mainly near the free-surface. The smaller 

the value of the interface smearing factor, the smoother the gradient of the 

tangential velocity (see Fig. 8.30). In terms of the axial velocity curve (see Fig. 8.31), 
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because there are not enough variables of the surface smearing factor used in the 

current study, the differences between each curve have no obvious rules to follow. 

All the simulation results are acceptable compared to the experimental results at 

each observation level.  

Finally, due to the simulation being solved using the PIMPLE algorithm, the stability 

of the simulations is essential and it is influenced by the value of the interface 

smearing factor. When the value is 𝐶ఈ = 2, in order to keep the courant number 

smaller than 1, the time step needs to be set shorter than 5 × 10ି଺𝑠 . When the 

factor is 𝐶ఈ ≤ 1, the time step can be set to 1 × 10ିହ𝑠 and the simulation can still 

remain stable. Thus, the time spent in the simulation is almost halved. 

 

(𝐶ఈ = 0)        (𝐶ఈ = 0.5)         (𝐶ఈ = 1)       (𝐶ఈ = 2) 

Fig. 8.26. Volume fraction contour plots obtained by simulations using different 𝐶ఈ. 

    

(𝐶ఈ = 0)       (𝐶ఈ = 0.5)         (𝐶ఈ = 1)        (𝐶ఈ = 2) 

Fig. 8.27. Pressure contour plots obtained by simulations using different 𝐶ఈ. 
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(𝐶ఈ = 0)    (𝐶ఈ = 0.5)      (𝐶ఈ = 1)     (𝐶ఈ = 2) 

Fig. 8.28. Tangential velocity contour plots obtained by simulations using different 

𝐶ఈ. 

     

(𝐶ఈ = 0)    (𝐶ఈ = 0.5)      (𝐶ఈ = 1)     (𝐶ఈ = 2) 

Fig. 8.29. Axial velocity contour plots obtained by simulations using different 𝐶ఈ. 
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Fig. 8.30. Profile of the tangential velocity curve obtained by simulation using different 𝐶ఈ. 

   

Fig. 8.31. Profile of the axial velocity curve obtained by simulation using different 𝐶ఈ. 
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8.4.4 Simplification of the simulation of the flow in 

hydrocyclones 

The above simulations use the developed VOF method to investigate the phenomena 

of the air-core in a purely air-water hydrocyclone flow. However, in most situations, 

the working conditions in the hydrocyclone are complicated. The liquid phase is 

often mixed with solid particles, or the liquid flow flows through the hydrocyclone 

as a mixed suspension of high density and high viscosity. In such cases, it should be 

considered whether it is worth including the air phase in the simulations because 

the simulation will save much time when only the primary phase is simulated. The 

process of weighing needs to investigate how the air-core affects the flow fields of 

the liquid phase. Thus, in the current study, the simulation only considered the liquid 

phase. In other words, the current simulation is a single-phase flow problem. The 

properties of the liquid are set consistent with the above simulations, and the RSM 

turbulence model is used for simulation.  

The volume fraction contour plot is unnecessary for the current simulation and 

contour plots of the pressure, tangential velocity and axial velocity are presented for 

comparison. The tangential velocity contour plot in Fig. 8.33. presents that the high-

velocity area is closer to the centre of the hydrocyclone compared with the plots 

obtained by the VOF-RSM method. The axial velocity contour plot shown in Fig. 8.34 

is similar to the contour plots obtained by the VOF-RSM method. In terms of the 

pressure contour plot, the low-pressure area in Fig. 8.32 is narrower than the area 

shown in the plots obtained by the VOF-RSM method. In addition, the pressure 

values in the low-pressure area in the VOF-RSM plots are almost equal, while the 

pressure values in the low-pressure area on the left of Fig. 8.32 gradually increase 

from the centre outwards. 

Fig. 8.35 shows the curves of the tangential velocity obtained through the experiment 

and simulations using the VOF-RSM method, the VOF-LES method and the single-

phase RSM method at three observation levels. The curves predicted by the VOF-

LES method and the single-phase RSM method are highly consistent with the curves 

obtained by experiments in the peripheral region of the liquid phase. Moreover, the 

tangential velocity curve predicted by the single-phase RSM method has a maximum 

velocity value closer to the experimental value. Nevertheless, in the area near the 
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free-surface, the curve obtained by the VOF-based solver is more accurate. 

Regarding the axial velocity curves (see Fig. 8.36), the curves yielded by the single-

phase RSM method are acceptable, especially compared with the curve predicted 

by the VOF-LES method. However, it is not as accurate as the curves predicted by 

the VOF-RSM method. 

 The collection efficiency predicted by the simplified simulation. 

The simulation result of the collection efficiency is produced by the DPM method. 

Due to the prediction of the flow fields obtained by the simplified single-phase 

hydrocyclone flow simulation being acceptable, the Eulerian domain of the 

continuous phase is assumed to be single-phase. The trajectory of a discrete phase 

particle is predicted by integrating the force implemented on the particle, as Section 

3.6 described. The simulation result is shown in Fig. 8.37 and Fig. 8.38 

Compared with the experimental data, the curves obtained by the simulations prove 

that the simplification of the continuous phase is acceptable. The collection 

efficiency predicted by the DPM method without considering the effect caused by 

the air-core is also accurate. The primary influence on the accuracy of the prediction 

still depends on the turbulence model. The RSM model and the 𝑘 − 𝜀  RNG 

Curvature Correction model provide the best result for predicting the curve of the 

collection efficiency. 

From the several simulations above, it can be seen that when the CFD method is 

used for relatively simple simulation and analysis, the effect of the air-core on the 

hydrocyclone is negligible. Moreover, in most cases, the air-core phenomenon does 

not exist, such as with the use of multiple separators for multi-stage separation. As 

such, a simplified simulation of a hydrocyclone will greatly increase the speed of 

assisted design using the CFD method.   
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(Without using VOF) (VOF-RSM) 

Fig. 8.32. Pressure contour plots of single-phase flow.  

(Without using VOF) (VOF-RSM) 

Fig. 8.33. Tangential velocity contour plots of single-phase flow. 

 (Without using VOF) (VOF-RSM) 

Fig. 8.34. Axial velocity contour plots of single-phase flow.
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Fig. 8.35. Profile of the tangential velocity curve obtained by simulation using single-phase flow assumption. 

   

Fig. 8.36. Profile of the axial velocity curve obtained by simulation using single-phase flow assumption. 
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Fig. 8.37. Simulated collection efficiency curves for 4.78% mass loading. 

 

  

Fig. 8.38. Simulated collection efficiency curve for 10.2% mass loading. 
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Chapter 9. Conclusion 

Having completed the current work, the conclusions of all the studies will be 

summarised. The primary aim for the current work has been to find a new numerical 

methodology to analyse the flow fields of the flow with air-core in hydrocyclones. 

The Reynolds Stress Model (RSM) has been employed to deal with an anisotropic 

turbulent flow in hydrocyclones. Furthermore, the new method, which is 

constructed based on the developed-Volume of Fluid method (Weller, 2008) has 

been used to tackle the problem of the multi-phase flow with a clear free-surface. 

The modified advection term in the volume fraction equation helps to compress the 

thickness of the free-surface. The customised MULES solver is an integral part of 

this novel VOF method, which is derived from the Flux Corrected Transport (FCT) 

technique that guarantees the accuracy and boundedness. In addition, the High-

Resolution Scheme (HRS) has been applied to further optimise the developed VOF 

method. This technique helps to eliminate unexpected oscillations and dissipation 

near strong gradients. With such a method, the simulation of multi-phase flow in the 

cyclone has been further improved. The regions of the multi-phase flow can be 

predicted, and the free-surface between different phases can be captured 

accurately and clearly, even during the transient state. The specific achievements 

and conclusions are given below. 

9.1 Conclusions of the work 

 This thesis gives a brief introduction to the CFD techniques used in the current 

work. These include: the discretization technique based on the Finite Volume 

Method; the governing equations used for numerical simulation; the turbulence 

model used for predicting the fields of turbulence flow; the algorithm used for 

solving the problem of pressure-velocity coupling; the principles of the Volume 

of Fluid method with the Flux Corrected Transport (Multi-dimensional Universal 

Limiter for Explicit Solution) method; the High Resolution Schemes framework 

based on the Total Variation Diminishing schemes and the strategies used for 

geometry modelling and mesh generation. 
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 The fundamental simulations (simulation of the flow in cyclones and simulation 

of the dam breaking flow) presented good results and provided sufficient 

experience for the simulation of the flow with air-core in hydrocyclones. This 

simulation of the flow proves that the RANS method with the RSM turbulence 

model is able to predict the flow fields of the flow in cyclones. Owing to the 

anisotropic character of the turbulent flow with large swirls, the standard 𝑘 − 𝜀 

turbulence model fails to accurately capture the flow fields. As a result, the 

turbulent kinetic energy is overestimated. The simulation of the dam breaking 

flow demonstrates that the volume of fluid method is able to capture the 

movement of the free-surface between different phases. Furthermore, with the 

FCT and HRS techniques, the thickness of the free-surface can be limited. The 

PIMPLE algorithm is able to predict the fields of the flow in transient state within 

an acceptable range, and it helps to investigate the formation process of the air-

core. In addition, turbulence models can be applied in multi-phase flow solvers 

to obtain more accurate simulation results. 

 The primary simulation of the flow with air-core in hydrocyclones were carried 

out using the RSM turbulence model and the develop-VOF method. Acceptable 

results have been generated compared with the experimental data obtained by 

Hsieh (1988) and the snapshot taken by Wang et al. (2015). In terms of the 

tangential velocity, the characteristic of the “Rankine vortex” has been captured 

by the numerical simulation method and the obtained curves matched the 

experimental curves within an acceptable range. The numerical simulation 

results of the axial velocity also provided curves that match the experimentally 

obtained curves at each observation level. The numerical simulation result of the 

pressure fields demonstrated that the low-pressure area coincides with the air-

core area, which indicates that the air-core is formed due to the low pressure 

in the hydrocyclone. The process of forming the air-core captured by the 

numerical simulation method can also be considered reasonable. When the 

initial state of the hydrocyclone flow is filled with air, the air-core is formed by 

the rotating water stream, which flows around the air-core located at the centre 

of the hydrocyclone. When the initial state of the hydrocyclone flow is filled with 

liquid, the air-core is formed in the low-pressure area, and the pressure in the 

centre of the separator is lower than the external pressure, which causes air to 

flow back into the hydrocyclone. The air streams reach the bottom of the vortex 
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finder, extending until they form an air-core and become steady. This 

phenomenon is consistent with Davidson’s theory (Davidson, 1988). 

Further studies have been undertaken to explore the performance of the numerical 

simulation method with different turbulence models and adjustable coefficients. 

These have managed to optimise the numerical method to design the hydrocyclones 

in particular cases.  

 The simulation results of the first study demonstrate that the LES method with 

the subgrid-scale kinetic energy model is able to present an accurate simulation 

result in terms of the tangential velocity. The phenomena of the air-core can also 

be predicted by the LES method. However, the 𝑘 − 𝜀 turbulence model not only 

cannot capture the air-core phenomenon in the hydrocyclone, but also the flow 

fields in the hydrocyclone cannot be accurately predicted. 

 The second simulations of the further studies have proven that the angle of the 

conical part and the size of the top outlet and the bottom outlet will affect the 

prediction of flow fields in hydrocyclones. As the diameter of the top outlet 

increases, the maximum value of the tangential velocity decreases, and the 

position where the maximum value appears is shifted to the outward of the 

hydrocyclone. Furthermore, the value of the axial velocity increases near the 

free-surface, the size of the upper half of the air-core in the hydrocyclone also 

becomes larger and the water split ratio decreases.  

As the variation of the bottom outlet diameter is small, the difference in the 

predicted flow fields is not obvious. This can give the conclusion that the 

difference in the value of the tangential velocity and axial velocity is insignificant; 

as the diameter of the bottom outlet becomes smaller, the size of the lower half 

of the air-core becomes narrower, and the water split ratio decreases. 

 Regarding the cone angle, with its increase, the length of the conical part 

decreases; the maximum value of the tangential velocity increases; the value of 

the axial velocity near the free-surface barely changes; the water split ratio has 

a minimum value when the cone angle is 10°, and the size of the air-core is 

almost unchanged. 

 The interface smearing factor 𝐶ఈ  is an important parameter that affects the 

volume fraction equation in the developed-VOF method. The third simulation in 
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the further studies demonstrates that the thickness of the free-surface will 

decrease as the factor increases. However, after the value of the coefficient is 

greater than 1.0, the change in thickness becomes insignificant, and the 

simulation becomes unstable, which requires a smaller time step for the 

simulation. Although the artificial convection term determined by the interface 

smearing factor are introduced into the volume fraction equation, the 

simulation results of the flow fields are not greatly affected. Overall, in the 

current simulations, the interface smearing factor equalling 0.5 is considered 

the optimal choice. 

 The last further study in the current work has attempted to simplify the 

simulation of the flow in hydrocyclones by ignoring the effect caused by the air-

core. The simulation results have proven that the flow fields of the water phase 

were accurately predicted. Even if an air-core appears in the centre of the 

hydrocyclone, the liquid phase is still considered the main phase that influences 

the flow fields inside the cyclone or hydrocyclone. When solid particles flow into 

the separator, the liquid phase will become the main current-carrying phase, so 

this simplification is considered reasonable. In addition, the simulation result of 

the collection efficiency is acceptable, which further proves that in the 

numerical simulation method, the air-core phenomenon does not play a 

significant role in the prediction of the separation efficiency of low 

concentration solid-liquid fluids. 

Based on the above conclusions, it has been found that using the new numerical 

method can successfully simulate the flow with air-core in hydrocyclones. 

Compared with the previous numerical simulations, the new numerical method 

more realistically simulates the transient flow state in the hydrocyclone, and 

provides reasonable prediction values for the flow fields data under steady state. 

Therefore, after validating that the numerical simulation method is feasible, the 

design of the cyclone separator can be modified by the numerical simulation method, 

thereby saving time and money in preparing the experimental equipment. The 

further studies have also provided useful experience for the design of cyclones and 

hydrocyclones, which can be used by the petroleum, chemical, materials and other 

industries. 
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9.2 Future work 

Although the simulation of the flow with air-core in hydrocyclones has presented an 

acceptable result, there remains work to be investigated and refined in the aspects 

of the numerical simulations and experiments, for which detailed statements are 

given below 

 The primary task is to build a solver in OpenFOAM that can simulate a solid-

liquid-gas three-phase flow. Although for higher concentration suspensions, 

solid particles can be assumed to be dissolved in the liquid and impart particular 

physical properties to the suspension, such as density and viscosity, the flow 

fields of such a three-phase flow can be directly simulated by the VOF method, 

mixture-model method and the Eulerian-Eulerian approach. However, when the 

concentration of solid particles is low, or the particles are large, the mixture of 

solid particles and liquid cannot be assumed to be multi-continuum. In this case, 

it is more reasonable to simulate the interaction between solid particles and the 

continuous phase using the Lagrangian-Eulerian method. Based on the integral 

of the particle path in the entire computational domain, interaction with the 

continuous phase and particles can be simulated through one-, two-, or four-

way coupling. The VOF or mixture model can be used to predict the flow fields 

of the continuous phase. Tracking is achieved by writing force equilibrium 

equations for the solid particles which would afford different types of force 

based on the complexity of the model (Rudolf, 2013). If this new solver runs 

smoothly on OpenFOAM and is verified by benchmarks, then based on 

experiments performed by Hsieh (1988), new simulations and validations should 

be implemented.  

 Hsieh's experiment used the laser Doppler velocimetry (LDV) technique to 

measure the fluid velocity inside the hydrocyclone, over 30 years ago. It is 

believed that the convenience and accuracy of the experimental method will 

have been further improved in these 30 years. Therefore, a new experiment 

should be undertaken for the measurement of the fluid flow velocity inside the 

hydrocyclone. The new experiment can be implemented using the LDV method 

or using other methods, such as the micro-Particle Image Velocimetry (micro-

PIV) or electrical impedance technology (EIT). 
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 The simulation results in this work’s further studies have not been validated by 

the corresponding experiments. Therefore, the experimental results lack 

validity. If conditions permit, corresponding experiments still need to be carried 

out, especially for the simulation of changing the size of the hydrocyclone. 

Practical simulation results will facilitate the design of the separator. 

 The simulation efficiency using the RSM-VOF method is not efficient. This may 

be caused by the use of a large number of structural grids. The uniformity of the 

structural grids makes the grids in the bottom outlet pipeline very small. A small 

time step is required to ensure the stability of the simulation. Therefore, in 

future work, simulations using unstructured grids or mixed grids should be 

attempted. If the results are reasonable, this will not only reduce the 

establishment time of the grids but also greatly reduce the simulation time. 

 Since the simulation has been carried out based on Hsieh's experiments, the 

geometry and boundary conditions used in the simulation are simplified, and 

they are assumed to be consistent with the experimental equipment and 

experimental environment. Some details have not been completely modelled by 

the simulations so that may cause errors in the simulation results. For example, 

in the experiment, the shape of the tangential inlet pipe is a cylinder, while in the 

simulation, the shape of the inlet pipe is a rectangular parallelepiped. Therefore, 

in future simulations, the equipment used in the experimental equipment and 

the experimental environment should be restored as much as possible so that 

unnecessary interference can be eliminated. 

 In the current study, using the LES-VOF method has been more efficient and 

stable than the RSM-VOF method. In some specific regions, the simulation 

results obtained by the LES-VOF method are more in line with the experimental 

results. More simulations need to be implemented to verify that the LES method 

is more suitable for the developed-VOF method than the RANS method. 
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Appendices A 

A.1 Publications 

 Y. Hu, A. F. Nowakowski. Investigation of the flow with air-core in hydrocyclones 

(To be submitted) 

 

A.2 Conference presentations 

 Hu, Y., Awadh S.A. and Nowakowski, A. F., Air-core formation in hydrocyclones. 

14th Workshop on Synthetic Turbulence Models and Fractional Dynamics. 

Université de Caen, France, 27th-28th June 2019. 

 Awadh S.A., Hu Y., Nowakowski, A. F. and Nicolleau. F.C.G.A., High resolution 

simulation of cyclone flow. 14th Workshop on Synthetic Turbulence Models and 

Fractional Dynamics. Université de Caen, France, 27th-28th June 2019. 
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Appendices B 

List of reproduced copyrighted materials 

(acknowledgements) 

 Figure 7.1 reproduced from Computational Mechanics, 39, 2007, 453-476, 

“Collapse of a Liquid Column: Numerical Simulation and Experimental 

Validation”, Cruchaga, M.A., Celentano, D.J. and Tezduyar, T.E., figure 12, With 

kind permission of Springer Nature. 

 Figure 8.1 reproduced with kind permission from The Canadian Journal of 

Chemical Engineering, 93-10, 2015, 1802-1811, “Simulation and experiment on 

transitional behaviours of multiphase flow in a hydrocyclone”, Wang, C. Ji, C. and 

Zou, J., figure 5. Copyright (2015), Canadian Society for Chemical Engineering.  
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