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Abstract 
Functionalized gold nanostructures with well-defined geometry and controlled optical 

properties can potentially play an important role in healthcare applications such as biosensing, 

photocatalysis, drug delivery, photothermal therapy and imaging due to their unique 

properties. This thesis aims to develop a novel Au nanostructure for healthcare applications, 

using an effective synthesis protocol in order to produce a suitable Au nanostructure with NIR 

absorption, high thermal stability and low toxicity. Well-controlled, reproducible Au 

nanostructures with NIR absorption spectra, including gold nanoparticles (NPs), nanorods 

(NRs), nanobipyramids (NBPs) and nanotriangles (NTs) have been synthesised using a wet-

chemical synthesis approach and characterized using dynamic light scattering and 

transmission electron microscopy.  

The optical and plasmonic properties of the Au nanostructures were investigated using uv-vis 

spectroscopy, finite element modelling (FEM) and STEM/low-loss EELS analysis was 

employed. EELS results exhibited good agreement with uv-vis spectra and FEM modeling 

and revealed the size- and shape-dependent plasmonic properties and showed that NIR 

absorption can be altered by increasing the curvature of particles.  

The thermal stability of Au nanostructures, which is important for photothermal therapy 

applications, was investigated using in-situ TEM heating. It was found that the thermal 

stability of Au nanostructures decreased in the order : AuNPs > AuNTs > AuNBPs > AuNRs. 

The proposed useful temperature ranges whereby heating does not significantly affect the 

optical properties were up to 100ºC, 200ºC, 800ºC, for CTAB-capped AuNRs, CTAB-capped 

AuNBPs and CTAC-stabilized AuNTs, respectively.  The thermal stability of particles was 

increased by surface functionalization of the NPs from a CTAB coating, through a PSS 

coating and finally to a silica coating. Thermal deformation arose from curvature-driven 

surface diffusion. 

Finally, the biocompatibility of Au nanostructures, in terms of the effect of size, morphology, 

and surface coating, was investigated by their electrochemical interaction with a model 

membrane based on DOPC on an Hg/Pt electrode. Only smaller Au nanostructures with a 

diameter of ca. 20 nm exhibited a significant interaction. However, the effect of the surface 

coating was found to be a more significant effect with the order of interaction with the model 

membrane ranging from CTAB > PSS > CTAC > citrate coated Au nanostructures.  

Thus overall, potential biocompatible candidates for healthcare applications are proposed to 

be citrate-, PSS- or silica-coated gold nanostructures with NIR absorption and dimensions 

larger than approximately 20-25 nm.   
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1. Chapter 1 Introduction 

1.1 Background and rationale 

The research area of Nanotechnology was originally proposed by Richard Feynman in 1959 

[1] and is usually defined as the science and engineering of systems which have dimension < 

100 nm to give size dependent property and function for specific applications. Progress in 

engineered nanomaterials has exponentially increased and one of the most widely used 

nanomaterials in biomedical applications are gold nanostructures [2, 3], as shown by the 

increase in the number of publications represented in figure 1-1. In part, this is due to the 

inertness of gold and potentially its low toxicity. Amongst the various morphologies, gold 

nanoparticles (AuNPs) and gold nanorods (AuNRs) have gained the most attention owing to 

their unique optical and electronic properties as well as their size-, shape and environment-

dependent surface plasmon resonance (SPR) behaviour [4-6]. This is seen in figure 1-2. For 

biomedical application, ideally the SPR can be tuned into the NIR region, where tissue 

exhibits a low absorption of the light [4-6]. These issues highlight the importance of the study 

of synthesis methods and surface functionalization of Au nanostructures.  

Number of publications 

 
Year of publication 

Figure 1–1: Schematic diagram of the number of publications which are related to the study 

of Au nanostructures for biomedical applications -searched from the Scopus database by 

using the keywords: gold AND nano* AND biomedical AND application in the title, abstract 

and keywords. 
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Number of publications 

 
Year of publication 

Figure 1–2: Schematic diagram of the number of publications which are related to the study 

of Au nanostructures in the field of surface plasmon and plasmonic searched from the Scopus 

database by using the keywords: gold AND nano* AND plasmonic AND surface plasmon in 

the title, abstract and keywords. 

Au nanostructures such as AuNPs [7, 8] and AuNRs [8-10] have been exploited in 

photothermal therapy. This takes advantage of the light-heat conversion properties [11] of Au 

nanostructures. When Au nanostructures are excited using a laser energy tuned to the specific 

SPR of the particles, this can cause a temperature rise in the local environment [11, 12] which 

can be used to destroy surrounding cells. If Au nanostructures can be targeted to specific 

regions, such as cancerous tumours, this can be used as therapeutic tool.  

However, these complex gold nanostructures have also been reported to change their 

morphology during heat treatment and issues may then arise about the effectiveness of heat-

conversion as the SPR is very sensitive to particle size and shape. Thus, study of the thermal 

stability of Au nanostructures is a key topic that needs to be investigated in order to gain a 

better understanding of the properties, as illustrated in figure 1-3 (blue histogram).  

Although gold nanostructures have been intensively studied in potential healthcare 

applications, there remains concern about their safety. Many researchers have studied the 

toxicology of Au nanostructures, as shown in figure 1-3, shown in the red histogram.  
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Number of publications 

 
Year of publication 

Figure 1–3: Schematic diagram of the number of publications which are related to the study 

of Au nanostructures in the field of thermal properties (in blue colour), searched from the 

Scopus database by using the keywords: gold AND nano* AND thermal properties AND 

deformation OR reshaping OR surface diffusion in the title, abstract, keywords, and in the 

field of toxicology (shown in red colour), by using of the keywords: gold AND nano* AND 

toxicity in the title, abstract. 

1.2 Aims and objectives 

In this research, I have chosen specific wet-chemical synthesis methods to produce 

homogenous Au nanostructures with well-defined morphologies, including gold 

nanoparticles (AuNPs), gold nanorods (AuNRs), gold nanobipyramids (AuNBPs) and gold 

nanotriangles (AuNTs).  

The overall aim of this research was to develop a novel Au nanostructure for healthcare 

applications, using an effective synthesis protocol in order to produce a suitable Au 

nanostructure with NIR absorption, high thermal stability and low toxicity. This required 

some development of existing synthesis methods and an understanding of the growth 

mechanisms of Au nanostructures. It also required study of the optical, plasmonic, and 

thermal properties as well as the deformation mechanism of Au nanostructures.  

Specific objectives of the research were as follows; 

1) To conduct a literature review of previous work as background to this thesis; 
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2) To synthesise, via wet chemical synthesis methods, homogeneous Au 

nanostructures with well-defined shapes, including AuNPs, AuNRs, AuNBPs, 

and AuNTs with absorption spectra that can be tuned over NIR region; 

3) To investigate the growth mechanism of Au nanostructures; 

4) To investigate the effect of size, shape, and surface coating on the optical 

properties using uv-vis spectroscopy; 

5) To investigate the plasmonic properties of individual Au nanoparticles and 

coupling effect of Au nanostructures using electron energy loss spectroscopy; 

6) To investigate the effect of size, shape, and surface coating on the thermal 

stability of Au nanostructures during in-situ TEM heating; 

7) To reveal the deformation mechanisms of Au nanostructures using low 

temperature in-situ TEM heating; 

8) To investigate the effect of size and surface coating of Au nanostructures on their 

interaction with model phospholipid membranes; 

1.3 Layout of the thesis 

The thesis consists of eight chapters which may be summarised as follows: 

Chapter 1 includes the background rationale of the research, the overall aims and 

objectives of the study and an outline of the thesis structure. 

Chapter 2 introduces the background of Au nanostructures including AuNPs, AuNRs, 

AuNBPs, and AuNTs especially their synthesis methods, growth mechanisms and surface 

modification. Previous work on their plasmonic behaviour, thermal stability and toxicological 

behaviour is also reviewed in this chapter. 

Chapter 3 reviews the synthesis methods used in the thesis as well and describes the 

principles and practical details of the characterization methods employed. 

Chapter 4 presents the characterization of synthesized Au nanostructures using 

dynamic light scattering (DLS) and transmission electron microscopy (TEM). UV-vis 

spectroscopy is used to examine the optical properties of Au nanostructures. 

Chapter 5 describes and discusses the characteristic plasmonic properties of the Au 

nanostructures by comparing results obtained from uv-vis spectroscopy, simulated spectra 

and EELS measurements.  

Chapter 6 describes the thermal properties of Au nanostructures using in-situ TEM 

heating experiments. Thermal deformation mechanisms are discussed. 
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Chapter 7 presents a toxicological study of Au nanostructures via study of the 

electrochemical interaction with a model phospholipid monolayer membrane. 

Chapter 8 summarizes the research and discussed the potential for future study. 

1.4 List of publications and presentations 

Part of this work has been published in the paper as following; 

S. Ye, S. D. Connell, J. R. McLaughlan, L. Roach, Z. Aslam, N. Chankhunthod, A. 

P. Brown, R. Brydson, R. J. Bushby, K. Critchley, P. L. Coletta, A. F. Markham and 

S. D. Evans. Advanced Functional Materials, 2020 (Just accepted) 

For this paper, I contributed in EELS experiment section including characterizations and 

discussions for the first draft of the paper. 

N. Chankhunthod, Z. Aslam, K. Critchley, S. D. Evans and R. Brydson, J. Phys.: Conf. 

Ser., 2017, 902, 012007 

It was presented at the Electron Microscopy and Analysis Group Conference 2017 (EMAG2017) 

at MMC2017 in Manchester, UK in a poster presentation session. 
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2. Chapter 2 Literature Review 

This chapter provides background information on plasmonic metallic nanostructures, 

and specifically gold nanostructures, including gold nanoparticles (AuNPs), gold nanorods 

(AuNRs), gold nanobipyramids (AuNBPs), and gold nanotriangles (AuNTs) and their 

plasmonic properties. I review the simple wet chemical synthesis approaches used to fabricate 

Au nanostructures which absorb in the NIR region. A literature review of previous work on 

electron energy loss spectroscopy (EELS) and the thermal stability studies of Au 

nanostructures is also provided. Lastly, the toxicology of Au nanostructures is discussed. 

2.1 General Information on plasmonic metallic nanostructures 

2.1.1 Silver nanoparticles 

Nobel metal nanoparticles (MNPs) have received much attention in wide range of research 

which has arisen from their size- and shape- dependent properties.  Amongst these, silver 

nanoparticles (AgNPs) are a candidate for a wide range applications due to their high 

electrical and thermal conductivity, chemical stability and catalytic ability, surface-enhanced 

Raman scattering capability for medical imaging and sensing, and useful spectral range (400 

- 530 nm) for bacterial and fungal protective activity [1, 2]. AgNPs can be synthesised by 

various techniques with diameters ranging from 1 – 100 nm. Wet chemical synthesis is one 

of the most popular routes for synthesis of AgNPs via chemical reduction. The use of weak 

reduction agents such as citrate results in large particles with a wide size distribution. On the 

other hand, use of a strong reductant such as borohydride generates smaller particles [3]. By 

increasing particle size, a tuneable optical absorption peak of AgNPs can be obtained between 

400 nm and 530 nm [4, 5]. A major issue for silver nanostructures is their dissolution and the 

associated toxicity of silver ions that limits their use outside anti-microbial applications [1, 

6]. 

2.1.2 Gold nanoparticles (AuNPs) 

Since the introduction of the citrate stabilized synthesis method for AuNPs by Turkevich et 

al. [7] in 1951, AuNPs have become one of the most interesting materials due to their 

relatively easy synthesis process and their unique properties dependent on their size and 

shape. Due to these size-dependent properties, the development of fabrication methods for 

controlling size and shape has been intensively studied. In brief, the synthesis method for 

AuNPs involves the reduction of an Au precursor (usually HAuCl4) by citrate as a reducing 
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and stabilizing agent under boiling conditions. The size of AuNPs can be controlled by 

varying the synthesis parameters and the ratio of Au and citrate [7, 8].  

For AuNPs in aqueous solution, the optical absorption peak lies between 500 nm to 550 nm 

depending on particle size in the range from 1 to 100 nm [9, 10]. The absorption peak shifts 

to longer wavelength (red-shift) as the particle size increases. AuNPs have been widely used 

in biomedical applications such as biosensing [11] , optical imaging [12] and 

photothermolysis of cancerous tissue [13]. 

2.1.3 Gold nanorods (AuNRs) 

Gold nanorods (AuNRs) exhibit two distinct surface plasmon modes consisting of a 

longitudinal and a transverse resonance. The longitudinal surface plasmon resonance is the 

most interesting as the absorption resonance can be tunable into the near infrared (NIR) region 

that is the biologically preferred range for tissue penetration. NIR light can more deeply 

penetrate biological tissues with less absorption and scattering than for visible light [14-17].  

2.1.4 Gold nanobipyramids (AuNBPs) 

AuNBPs are another elongated Au nanostructure whose longitudinal surface plasmon mode 

can be tuned over the NIR region. AuNBPs consist of two pentagonal pyramids connected 

with the same base and lying along the same longitudinal axis. AuNBPs possess four distinct 

plasmonic resonances which are longitudinal and transverse modes similar to those of 

AuNRs, as well as the quadrupole and octupole resonance modes. Due to the unique reported 

properties of AuNBPs, such as their increased chemical stability and higher local electric field 

enhancement at the tip relative to AuNRs [18, 19], this makes them very promising plasmonic 

nanomaterials. 

2.1.5 Gold nanotriangles (AuNTs) 

Au nanotriangles have received much attention due to their excellent localized surface 

plasmon resonances (LSPR) and their unique shape which exhibits distinct dipolar and 

quadrupolar modes. Literature documents the production of uniform AuNTs with edge 

lengths ranging from 50 to 150 nm which results in a LSPR of between 600 to 800 nm [20-

22].  The challenge of refining AuNTs via a facile synthesis method to achieve NIR region 

absorption is of interest in terms of healthcare applications. 

2.2 Wet-chemical synthesis methods 

Au nanostructures have been fabricated by various methods with several shapes and 

dimensions described in the literature. All synthesis methods are designed to optimize a well-
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defined shape with a high yield. I briefly review some of the more useful methods below and 

a summary is provided in Table 2.1.   

Table 2-1: Summary of key literature articles concerned with the synthesis of Au 

nanostructures with well-defined structures 

Ref/Year Sample Synthesis method Precursors 

Turkevich et al./ 

1951 [7] 

AuNP, Diameter 

(D)~10-20 nm 

Citrate reduction at 

100°C 

HAuCl4, Sodium 

citrate 

Natan et al./ 

2000 [23] 

AuNP, D~ up to 100 

nm 

Seeding mediated via 

citrate reduction 

HAuCl4, Sodium 

citrate 

Murphy et al./ 

2001 [24] 

AuNP, D~ up to 180 

nm 

Reduction by AA 

and CTAB 

HAuCl4, AA, CTAB 

Puntes et al./ 

2011 [26] 

AuNP, D~ up to 200 

nm 

Kinetically 

controlled seeded 

growth strategy via 

citrate reduction 

HAuCl4, Sodium 

citrate 

Jenna et al./ 

2001 [28] 

AuNR, penta-

twinned crystals (5% 

yield) 

Seed mediated 

method with citrate 

capped seed 

Seed: HAuCl4, 

Sodium citrate, 
NaBH4 

Growth: CTAB, 

HAuCl4, AgNO3, AA, 

Seeds  

Nikoobakht and 

El-Sayed/ 2003 

[29] 

AuNR, single crystal 

(99% yield) with AR 

1.5-4.7 

Seed mediated 

method with CTAB 

capped seed 

Seed: HAuCl4, 

CTAB, NaBH4 

Growth: CTAB, 

HAuCl4, AgNO3, AA, 

Seeds  

Jenna et al./ 

2005 [30] 

AuNR, single crystal 

with smaller size 

(AR 2-5) 

Silver-assisted 

seedless method 

HAuCl4, NaBH4, 

CTAB, HAuCl4, 

AgNO3, AA, HCl 

Lui et al./ 2005 

[34] and Lee et 

al./ 2015 [35] 

AuNBP, single 

twined crystals 

(<60% yield) 

Seed-growth method 

with citrate capped 

seed 

Seed: HAuCl4, 

CTAB, NaBH4 

Growth: CTAB, 

HAuCl4, AgNO3, 

HCl, AA, Seeds 
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Table 2-1: Summary of key literature articles concerned with the synthesis of Au 

nanostructures with well-defined structures (continued) 

Ref/Year Sample Synthesis method Precursors 

Mirkin et al./ 

2005 [36] 

AuNT, 100-200 nm 

Edge length 

Seed-growth method Seed: Citrate, NaBH4, 

HAuCl4, 

Growth: CTAC, 

HAuCl4, NaI, AA 

Chen et al./ 

2014 [22] 

AuNT, 40-120 nm 

edge length 

Seedless growth 

method 

CTAC, HAuCl4, KI, 

NaOH, AA 

2.2.1 Gold nanoparticles (AuNPs) 

The seeded growth of AuNPs using sodium citrate as a reducing agent with seed-mediated 

synthesis strategies to obtain nanoparticles up to and over 100 nm in diameter were introduced 

by Natan et al. [23]. Cetyltrimethylammonium bromide (CTAB) and ascorbic acid (C6H8O6, 

AA) have also been used as reducing agents to produce monodispersed AuNPs up to 180 nm 

[24]. However, citrate-stabilized AuNPs appear better candidates for applications such as 

therapy and sensing because the sodium citrate can be easily exchanged with thiolated 

molecules on gold surface [25]. Thus, a method employing citrate reduction was used in this 

thesis following a modified seed growth method proposed by Puntes and co-workers [26] 

which can achieve AuNPs up to ~200 nm in diameter. 

2.2.2 Gold nanorods (AuNRs) 

The seed-mediated growth approach is commonly used for the synthesis of colloidal AuNRs 

because this method can provide high yields and a well-controlled aspect ratio of the rods [14, 

27] using uncomplicated experimental steps. Furthermore, this route is easy to modify and 

flexible for producing more complicated shapes of Au nanostructure.  

2.2.2.1 Seed mediated growth method 

Jena and colleagues [28] demonstrated an easy way to grow AuNRs in 2001. There are two 

growth steps including the preparation of a seed solution and a growth solution.  The seed 

solution is introduced by mixing ice-cold sodium borohydride (NaBH4) to reduce gold 

chloride (HAuCl4) in the present of sodium citrate. This produces citrate-capped Au seeds. 

Then a certain amount of seed solution is injected into the growth solution to allow the growth 

of NRs. The growth solution consists of a gold salt (HAuCl4), a surfactant acting as a template 

for rod growth (CTAB), silver nitrate (AgNO3) for controlling and improving the yield, and 
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AA as a reducing agent. The disadvantage of this route is low rod yield, ~5% compared to 

spherical particles, which requires further purification to obtain solely nanorods.   

Nikoobakht and El-Sayed [29] made significant improvements in 2003 by using the strong 

stabilizer CTAB instead of citrate when forming the seed solution. In their work, the amount 

of Ag ions was modified to control the aspect ratio of the synthesized AuNRs. The seed 

solution was prepared via the reduction of HAuCl4 by the rapid injection of ice-cold NaBH4 

in the presence of CTAB. The growth solution was prepared by mixing HAuCl4 with CTAB 

followed by the injection of AgNO3 into the solution. Then, the ascorbic acid was added. This 

method resulted in very high yields of AuNRs (~ 99%) with a uniform aspect ratio ranging 

from 1.5 to 4.7. In order to achieve higher aspect ratios up to 10, a slight modification was 

made by employing a new co-surfactant called BDAC in the growth solution. Because of the 

high quality of the rods with a controlled aspect ratio, this method has been widely employed 

for the growth of AuNRs over the last two decades. 

2.2.2.2 Silver-assisted seedless method 

In 2005, a further method was introduced by Jena [30] called the silver-assisted seedless 

method. This involved directly injecting NaBH4 into the growth solution rather than the use 

of an AuNR seed solution. It provided smaller single crystalline AuNRs with an aspect ratio 

of 2 to 5 via a one-step synthesis route. AuNRs have also been used as seeds for the fabrication 

more complex structures of Au nanostructures such as nanocube, dog-bones, and dumbbell 

NRs [27, 31-33].  

Due to the different output structures including penta-twinned and single crystal AuNRs via 

the various methods summarised in figure 2-1, it is of interest to study the synthesis of 

homogeneous and finely controlled AuNRs from both seed mediated methods with citrate-

capped and CTAB-capped AuNRs, as well as the seedless methods. Also, complex 

anisotropic Au nanostructures including sharp-tip AuNRs (bipyramids), as well as Au 

nanoplates can be synthesized using these methods.  
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Figure 2–1: schematic diagram illustrating the three primary synthesis methods for AuNRs 

with different rod structures. [figure taken from [14]] 

Among these wet-chemical synthesis methods, the seed mediated method proposed by 

Nikoobakth and El-Sayed [29] can provide high yields of rods as well as a better control of 

AR and is used in this thesis with kinetic control achieved using HCl in order to slow down 

the growth rate and achieve a higher rod AR. 

2.2.3 Gold nanobipyramids (AuNBPs) 

AuNBPs can be synthesized using a seed mediated growth method using citrate-stabilized 

seeds, as described by Lui et al [34]. This approach involves both a seed and growth step. 

This method offers an easy way to modify the AR of the bipyramids by varying the amount 

of seed. However, the yield of AuNBP was lower than 60% with a by-product of spherical 

particles. Thus purification of AuNBPs is required and surfactant depletion flocculation with 

BDAC has been examined by Lee et al [35].  BDAC with a higher micelle concentration than 

CTAB can induce flocculation of the high surface area bipyramids, while lower contact area 

spherical particles will remain in the supernatant. 

2.2.4 Gold nanotriangles (AuNTs) 

A seedless synthesis has been proposed for well-defined size and shape controlled Au 

nanotriangles through the reduction of a gold precursor (HAuCl4) using 

cetyltrimethylammonium chloride (CTAC) as the shape directing agent. The original seed-

mediated growth was proposed by Mirkin et al. [36] and can be used to prepare 100-200 nm 

edge length AuNTs. However, Chen et al. [22] proposed a very high yield (>90%) method 

for AuNTs with an edge length of 40-120 nm using a seedless synthesis approach. This 

method used CTAC mixed with KI, followed by the addition of the gold salt mixed with 
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NaOH solution. AA was then introduced to reduce Au ions. Finally, pH control was employed 

by injecting a certain amount of NaOH. This provided monodispersed AuNTs via a one-step 

synthesis method which would be of benefit in providing tailored AuNTs with specific NIR 

absorption. 

2.3 Growth mechanism of Au nanostructures 

In typical wet chemical synthesis, precursors act as building blocks to create nuclei and 

crystalline structures. In this section, nucleation, growth and crystallization will be 

considered. The details of the growth mechanisms of Au nanostructures with different shapes 

including spheres, rods, bi-pyramids and triangular plates are described below.  

2.3.1 Gold nanospheres 

AuNPs can be synthesized by a citrate reduction method with a modified seed growth 

procedure. According to Turkevich el al. [7], sodium citrate acts as both a starting nucleation 

agent and a growth agent. This nucleating agent causes gold ions to chemically bind to form 

complexes which grow and rearrange to produce AuNPs. The sodium citrate oxidation 

reaction at 100℃ reduces 𝐴𝑢!!! chloride to 𝐴𝑢! chloride and form ultimately forms AuNPs. 

The chemical reaction equations are described in equations 2-1 to 2-3 [37]:  

( 𝑂𝐶𝑂𝐶𝐻")"𝐶(𝑂𝐻)𝐶𝑂𝑂## → ( 𝑂𝐶𝑂𝐶𝐻")"𝐶 = 𝑂 + 𝐶𝑂#
" +𝐻$ + 2𝑒#  

         Equation 2-1 

																									𝐴𝑢𝐶𝑙% + 2𝑒# → 𝐴𝑢𝐶𝑙 + 2𝐶𝑙#    Equation 2-2 

  3𝐴𝑢𝐶𝑙	 → 2𝐴𝑢 + 𝐴𝑢𝐶𝑙%    Equation 2-3 

AuNPs of increasing size can be achieved by injecting more gold precursor at each growth 

step. The hypothesis of this mechanism is that initially formed AuNPs act as a seed and then 

Ostwald ripening occurs as large NPs grow as a result of atom transfer through solution from 

smaller and less stable NPs [26, 38, 39]. 

2.3.2 Gold nanorods 

AuNTs can be synthesised with a modified seed-mediated method consisting of a seed step 

and subsequent growth steps. In the seed process, a single crystal gold nanoparticle seed is 

produced which is then used as a starting template for crystalline growth of rod shaped 

particles which growth along {110} planar facet, as schematically illustrate in figure 2-2. 
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Figure 2–2: schematic diagram representing the structural development of Au 

nanostructures including AuNRs, AuNBPs, and AuNTs. The arrows with green colour 

illustrate the growth direction of nanostructures. [figure adapted from [40]] 

CTAB is a cationic surfactant that plays an important role in controlling directional growth 

of the rod structure. It consists of a hydrophobic head and hydrophilic tail [41] that can form 

CTAB micelles binding gold chloride ions at the head and creating seed particles. Au ions are 

encapsulated in the presence of CTAB and guided to the tips as a result of electrical double 

layer integration between the micelles and the AuNRs. A difference in collision rate of the 

micelle at the tip and the side is the key to induce rod formation; a faster rate occurs at the 

tips rather than in the middle part of the rod [42]. Equation 2-4 presents the chemical reaction 

equation [42, 43] of AuNRs in the presence of CTAB. 𝐴𝑢!!! is reduced to 𝐴𝑢! 	by the addition 

of AA. AA acts as a weak reducing agent for the gold ions. The growth rate of AuNRs 

becomes faster when the AA concentration is increased. 

  𝐴𝑢𝐶𝑙&# + 2𝑒# ⇄ 𝐴𝑢𝐶𝑙"# + 2𝐶𝑙#    Equation 2-4 

Gold particles then result from electron transfer at the surface of the gold seed in the presence 

of CTAB, represented by equations 2-5 and 2-6 

  𝐴𝑢𝐶𝑙"# + 𝑒# ⇄ 2𝐴𝑢' + 2𝐶𝑙#    Equation 2-5 

𝐴𝑢𝐶𝑙"#—𝐶𝑇𝐴𝐵()* + 𝐴𝑢+ ⇄ 𝐴𝑢+$, − 𝐶𝑇𝐴𝐵()* + 𝐶𝑇𝐴𝐵()* + 2𝐶𝑙# Equation 2-6 

Adding varying amounts of silver nitrate allows better control in rod shape formation, 

although the effect of silver ions is not clearly understood. Nikoobakht and El-Sayed proposed 

that Ag+ absorbs at the gold surface and then forms AgBr, reducing the bromide ion charge 

density. Silver ions can cause repulsion between the headgroup of CTAB and the gold surface, 

resulting in templated elongation of AuNRs [29]. A second mechanism has been proposed by 

Murphy and co-workers, who suggested that AgBr absorbs at surface facets slowing down 

rod formation and causing the formation of single crystalline AuNRs [44]. A higher of silver 

concentration result in an increase of ARs. By adding silver nitrate an ionic strength is 

decrease lead to an increase in the yield of the rods. HCl is introduced to lower the pH of the 
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growth solution which reduces the amount of ascorbate anions which are a stronger reducing 

agent than AA. This leads to a decrease in the reducing power causing slower growth and 

providing higher aspect ratio NRs. 

2.3.3 Gold nanobipyramids 

In the mechanism proposed for AuNRs, Ag ions are absorbed only at the surface of Au facets 

leading to growth of rods in one direction along the <110> growth axis [26]. Due to the use 

of citrate-capped seeds as a growth template, individually singly twinned seeds [45, 46] are 

formed which act as nuclei for bi-pyramid shape formation, see figure 2-2. Nanostructures 

then grow along the twinning axis leading to a step growth along this direction. Ag ions can 

stabilize an open step site and lead to the formation of a bipyramidal structure [46]. 

2.3.4 Gold nanotriangles 

AuNTs can be fabricated via a one step seedless growth protocol with CTAC as surfactant 

and iodide ions as a structure-directing agent. From this synthesis method, a planar twinned 

structure is created as a gold seed to nucleate the growth of gold in {111} planar facet, 

illustrating in figure 2-2. pH control is achieved by adding sodium hydroxide during the 

synthesis. 𝐴𝑢!!! 	is rapidly reduced to 𝐴𝑢! by AA injection as illustrated in equation 2-7: 

  𝐴𝑢!!! + 𝐼# + 𝐶𝑇𝐴𝐶# + 𝐴𝐴 → 𝐴𝑢!   Equation 2-7  

Finally, sodium hydroxide is again injected to induce reduction and the formation of AuNTs 

[22]: 

  2𝐼" + 4𝑂𝐻# → 4𝐼# + 𝑂" + 2𝐻"𝑂   Equation 2-8 

  𝐼" + 𝐼# → 𝐼%#       Equation 2-9 

  2𝐴𝑢𝐼"# → 2𝐴𝑢 + 𝐼# → 𝐼%#     Equation 2-10 

2.4 Surface modification of Au nanorods (AuNRs) 

AuNRs from the seed mediated method are covered by a positively charged CTAB bilayer. 

CTAB promotes the formation of the rod structure and also acts as a surfactant. CTAB can 

prevent agglomeration of AuNRs keeping them stable over several weeks.  

Free CTAB molecules are very cytotoxic to human cells, however there are some arguements 

between toxicity of gold NPs.  CTAB coating surrounding Au NRs is reported to be non-toxic 

[47, 48]. Attempts to remove excess CTAB from the synthesized AuNRs suspension have 

been intensively investigated [51]. Although excess CTAB molecules could be removed by 

centrifugation to purify AuNRs following synthesis, residual CTAB molecule may still be 

left on the surface of the nanoparticles. However if CTAB were completely removed, this 

may cause irreversible agglomeration of AuNRs. A low concentration of CTAB may result 
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in the low stability of AuNR suspensions and limit their use, e.g. CTAB-capped AuNRs in a 

high concentration of salt or buffer for sensing applications. Various surface modification 

techniques have been introduced to overcome this CTAB problem. There are two basic 

approaches consisting of either surface coating or ligand exchange.  

2.3.1 Surface coating 

Surface coating consists of layer by layer electrostatic deposition with negatively charged 

molecules to cover the positively charged surface of CTAB-capped AuNRs. Negatively 

charged molecules including poly(sodium-4-stryrensulfonate) (PSS) and polyphthalamide 

(PPA) are commonly used [47]. Moreover, silver [52] and silica [53] coating can also be 

employed in surface functionalization. The easy and fast procedure of surface modification is 

an advantage but the weak electrostatic absorption may cause stability problems in long-term 

application.  

2.3.2 Ligand exchange 

To improve stability and biocompatibility, ligand exchange to replace CTAB bilayers by a 

thiol-terminated ligand and form Au-S covalent bonds [47], such as thiol-terminated 

polyethylenglycol (PEG) [54] or 11-mercaptoundecaonic acid (MUA) [55, 56]. However, 

PEG-coated AuNRs may result in incomplete removal of CTAB due to the large size of the 

PEG molecule. Thus, MUA which has a smaller size has been proposed for completely 

replacing CTAB.  

2.4 Surface plasmon resonance (SPR) of metallic nanostructures 

2.4.1 Bulk and surface plasmon resonances 

As is well known in nanoscale science, the physical and chemical properties of a material 

significantly change and often exhibit unique size-dependent properties as compared to the 

bulk material. This results in a change in colour of Au colloids, AuNPs present a red colour, 

while AuNRs with various aspect ratios exhibit a range of different colours, as shown in figure 

2-3.  
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Figure 2–3: Colour of Au colloids with different aspect ratio AuNRs. [figure taken from[56]]. 

Bulk or volume plasmons are collective oscillations of the whole volume of free electron gas 

in a metal occurring when a metal interacts strongly with radiation such as light. It is a 

function of the free electron density, N, and in the simple free electron approximation, the 

volume plasmon energy varies as the square root of N.  A surface plasmon resonance (SPR) 

arise from plasmons confined at the surface of metal particles. SPR is the phenomenon of 

collective electron oscillation of the metal particles with a specific resonance frequency, 

occurring when the specific frequency of incident light matches with the natural resonant 

frequency of the confined surface electrons [48, 58]. For an infinite, planar surface, the surface 

plasmon resonance energy is the volume plasmon energy divided by the square root of 2. For 

more complex shapes, the SPR energy will change and be shape and size dependent. 

2.4.2 Localized surface plasmon resonance (LSPR) 

A localized surface plasmon resonance (LSPR) is the spatially localized collective electron 

oscillation resulting from direct light irradiation. LSPRs are highly localized to individual 

particles and depend sensitively on the composition, size and shape of the material. Via the 

design and synthesis of nanostructures, manipulating the components, their shape and size, 

the LSPR absorption region of a particular nanostructure can be tuned through the visible, to 

the near infrared and infrared region of the electromagnetic spectrum providing applications 

in (photo)catalysis, biomedicine and sensing using a specifically designed wavelength.  

Figure 2-4 illustrates the excitation of LSPRs in spherical nanoparticles. A LSPR occurs when 

the electric field of incident light interacts with free electrons in metal nanoparticles creating 

Coulombic repulsive forces to separate the free electron gas and the metallic ion cores. Then, 

(opposite) restoring forces are set up to return the free electrons to their original positions 

[59]. This LSPR oscillation of the free electrons leads to strong absorption of light in metal 

a) b) c) d) e) 



-       - 18 

nanoparticles, such as gold, silver and copper. There is only one strong absorption band for 

spherical nanoparticles. For AuNRs, they are two distinct absorption bands: longitudinal and 

transverse plasmon modes of electron oscillation corresponding to the long and short axes of 

the rods, respectively. The transverse plasmon band is sensitive to the width of the AuNRs, 

while the longitudinal plasmon band depends on the aspect ratio of the AuNRs. There is a 

red-shift in the absorption spectrum with increasing AR of the AuNRs, while the transverse 

mode stays roughly constant. However, both modes are very sensitive to the refractive index 

of the surrounding materials. The diagram illustrating the excitation of LSPR and absorption 

bands of nanorods is presented in figure 2-5. 

(a)  

(b)  

Figure 2–4: (a) Schematic diagram of LSPR excitation in spherical metal nanoparticles,  (b) 

corresponding absorption spectrum in the visible region [figure taken from [58]] 

  

a) 

b) 
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(a)  

(b)  

(c)  

Figure 2–5: LSPR excitation of metal nanorods along two different axes (a) longitudinal 

and (b) transverse plasmon modes and (c) their corresponding absorption spectrum. [figure 

taken from [58]] 

2.4.2.1 Fundamentals of electromagnetic interaction 

Absorption, scattering and transmission all occur when light passes through a medium. When 

light interacts with a medium, it can cause absorption which may result in heat or can scatter 

a) 

b) 

c) 
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or reflect light through different angles. Alternatively light can pass directly through a 

medium without changing its original direction, called transmission. 

All phenomena can be expressed by the Beer Lambert law where the interaction is 

proportional to the intensity of incoming light divided by the transmitted light. The 

absorbance (A) of the sample and the intensity of incidence (𝐼-) and transmission (𝐼) are given 

by: 

															𝐴 = log,'
!!
!
     Equation 2-11 

The absorbance is sometimes referred to as the extinction of light. The probability of 

extinction of the light is given by the extinction cross section (𝜎./0) which is the result of both 

scattering and absorption as shown in equation   

   𝜎./0 = 𝜎1*20 + 𝜎231    Equation 2-12 

2.5.1 Mie Theory and Gans approximation 

The excitation of LSPRs is strongly dependent on size, shape, and composition of the 

materials which leads to a strong absorption of light. According to Mie theory [48, 57-59], 

the solution of Maxwell’s equation can express this light absorption in spherical particles 

through the extinction cross section (𝜎./0), as shown in equation 2-13. This approximation 

assumes Rayleigh scattering involving plane wave monochromatic light incident on a 

spherical particle, which is smaller in size than the wavelength of the light, in a non-absorbing 

medium.  

   𝜎./0»	𝜎231 = 4𝜋𝑘𝑅%𝐼𝑚( 4"#4#
4"$"4#

)  Equation 2-13 

   𝜎1*20 = 8𝜋𝑘&𝑅5 A 4"#4#
4"$"4#

A
"
   Equation 2-14 

where R is radius of spherical particles, k is the wave number, 𝜀+		and 𝜀7	 are the dielectric 

constants of the surrounding medium and the particles respectively. For Au and Ag 

nanospheres, the plasmonic absorption lies in the visible region which makes them useful for 

many applications. 

In case of nanorods shape, the rods are categorized as ellipsoidal nanoparticles according the 

Gans approximation [60, 61].  Thus, to explain the optical properties of the rods, the LSPR is 

divided into two distinct plasmon modes. Gans theory can be expressed as in equation 2-15 

[51], as a form of	𝜎./0. The aspect ratio (AR) is defined as length (L) divided by the width 

(2R) of the rods.  A small change in these components may lead to a significant change in the 

optical properties. 

   	𝜎./0 =
"89:4#
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=   Equation 2-15 
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Where N refers to the electron density or number of electron per unit volume, 𝜀)		and 𝜀>	 the 

imaginary and real parts of the dielectric constant of the particle while V is the rod volume 

and 𝑃= is the polarization factor which refers to each axis. 

   𝑃=?.@A0B =
,#.%

.%
( ,
".
𝐼𝑛 F,$.

,#.
G − 1)  Equation 2-16 

   𝑃=C)D0B =
,#E(,-./01

"
    Equation 2-17 

   𝑒 = I1 − ("F
G
)#"    Equation 2-18 

The LSPR of AuNBPs have been simulated using  finite difference time domain (FDTD) 

simulation by Li et al. [19]. The computational model of AuNBPs consisted of two circular 

cones connected at the base and having spherical tips. The extinction spectra were calculated 

using equation 2-19 and the result is represented in figure 2-5 for AuNBPs with a length of 

116.4 nm and width 38.0 nm. The coordinates in this equation are in the spherical system 

where 𝜑 is the azimuthal angle which integrates over all the spherical surface and 𝜃 is the 

polar angle between the plane wave excitation and the direction perpendicular to the length 

axis.  

   𝐶./0 = 〈,
"
M𝐶./0

∥ (𝜃) + 𝐶./0I (𝜃)N〉J,L  Equation 2-19 

 

 

Figure 2–6: The simulated LSPR excitations of an AuNBP presenting 4 distinct plasmonic 

resonance modes labelled as B-E. [Image taken from [19]] 

Figure 2-7 illustrates the calculated dipolar resonance of an AuNT with an edge length of 160 

nm and a thickness of 30 nm showing the LSPR at 776 nm [62]. However, the experimental 

UV-vis spectra of synthesised AuNTs are slightly different from the simulations in that they 

exhibit a broad peak in the spectrum (figure 2-8). This result consists of three identified 

plasmonic modes, reviewed in the following EELS section. 

a) b) c) d) e) 
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Figure 2–7: The simulated LSPR excitation of an AuNT showing a dipolar plasmonic 

resonance at 776 nm. [figure taken from[62]] 

  

Figure 2–8: TEM bright field micrograph of AuNTs with an average edge length of about 60 

nm and their plasmonic resonance spectrum. [figure taken from [22]]  

2.6 Previous EELS studies on Au nanostructures. 

Surface plasmons of metal nanoparticles including Ag and Au have received much attention 

over the past decade due to their potential use in surface-enhanced Raman spectroscopy and 

biomedicine applications [63, 64]. Metal nanoparticles are usually investigated by optical 

spectroscopy such as UV-vis spectroscopy. Such optical measurements generate a result that 

is an averaged measurement over all nanoparticles in the sample. Direct measurement of the 

optical properties of individual particles or single complexed nanostructures is required in 

order to be able to correlate a distinct particle with a particular surface plasmon energy and a 

plasmon mode. This can provide a more fundamental understanding of plasmonic metal 

nanoparticles. 

Recent advances in TEM, particularly monochromated electron sources, can overcome this 

situation. Although the surface plasmon resonances in gold nanostructures are at very low 

energies and substantially overlap with the tail of the zero loss peak, high energy resolution 

a) b) 

a) b) 
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electron energy loss (EELS) techniques in STEM mode can be employed to investigate and 

provide localized spectra and surface plasmon modes of nanoparticles. This technique 

involves passing a focused electron beam close to the surface of metal nanoparticles (the 

moving electron beam creates a varying electric field) and acquiring the energy loss spectrum 

of the transmitted electrons [64, 65]. 

A number of researchers have studied EELS of Au nanostructures. Individual AuNRs and 

AuNPs were studied by Bosman and co-workers [65]. Similar results were published by 

N’Gom et al [64]. It was shown that for spherical Au particles, the surface plasmon energy 

was 2.45±0.25 eV and it was shown that there was an unchanged position for two different 

particle sizes of 25 and 35 nm. EELS spectra of AuNPs are presented in figure 2-9. AuNRs 

exhibited two distinct plasmon resonances as seen in UV-vis absorption spectra. One plasmon 

resonance corresponds to the transverse electron oscillation with an energy about 2.5 eV. 

Significantly this resonance energy matches with the plasmon mode of AuNPs. The other 

plasmon mode is related to longitudinal oscillation of electrons along the long axis. It has 

been found that the longitudinal plasmon mode depends sensitively on the AR of the rod 

causing a red-shift in energy with increasing AR. An example of EELS spectra and plasmon 

resonance energy maps (as a function of spatial position) of AuNRs is presented in figure 2-

10. Two plasmon resonance modes are seen corresponding to about 1.70 eV and 2.40 eV for 

the longitudinal and transverse modes, respectively. 

 

 

Figure 2–9: TEM image, EELS spectra and intensity map of the spatial distribution of the 

surface plasmon at 2.45 eV for AuNPs with different particle sizes of 25 and 35 nm [65].          

a) b) c) 
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Figure 2–10: Examples of EELS spectra of AuNRs and maps of the spatial distribution of 

the plasmon resonance mode, with associated TEM images. [a-d) figures taken from [65] 

and e-f) figures taken from [64]] 

Complex systems of Au-based NRs have also been theoretically studied in order to compare 

with EELS measurements. Calculated EELS spectra were reported by Chu et al. [66]. Figure 

2-11 displays the calculated EELS spectra (top) compared with experimental result (bottom) 

that exhibit two plasmon resonance energies 1.76 eV and 2.34 eV for AuNRs, 85 nm in length 

and 27 nm in width. 

a) b) 

c) d) 

e) f) 
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Figure 2–11: A comparison between simulations and experimental EELS spectra and 

intensity maps of the plasmon resonance modes of AuNRs. Image taken from [66]. 

Strong coupling between the plasmonic resonances of AuNRs have been studied by EELS. 

For two nanorods separated by a 10 nm gap, it was found that there was a red-shift in the 

LSPR, as compared to individual nanorods [64]. Moreover, the spatial distribution of plasmon 

modes of more complex Au nanostructures have been studied, for example dumbbell-shaped 

AuNRs [67], Au nanoprisms [68] as well as complex Ag-Au NRs [69].  

Figure 2-12 shows that there are four distinct LSPR modes for AuNBPs [70]. The plasmon 

resonance modes are mainly located at the tip of the long axis, the tip of the short axis, and 

the sides of AuNBPs. It was found that the mode at the tips of the long and short axes relates 

to longitudinal and transverse LSPRs, respectively. Thus the position of the longitudinal mode 

depends on the AR of the bipyramid. Another mode is referred to as the quadrupolar LSPR 

located at the side that depends on the size and shape of the bipyramids.  

For Ag nanotriangles, the work conducted by Nelayah et al. [71] presents EELS spectra of 

the nanoparticles and their plasmonic mode, as shown in figure 2-13. There are three 

plasmonic resonance modes occurring at the tip, the edge, and in the middle of the edge of an 

AgNT. According to the literature, the major peaks are located at 1.9, 2.9, and 3.4 eV for an 

AgNT with an edge length of 78 nm. The LSPR modes are size dependent in that there is an 

energy decrease (a red-shift in wavelength) as the edge length increases. Similar results were 

presented for AuNTs in the EELS work of Losquin et al. [72]. However, a slight change in 
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length, width, and composition of the nanostructure strongly affected the spatial distribution 

of the plasmon mode.  

 

Figure 2–12: Example of EELS spectra of AuNBPs and maps of the spatial distribution of 

the different plasmon resonance modes, together with a STEM HAADF image. [figure taken 

from [70]] 

 

 

Figure 2–13: Example of EELS spectra and spatial distribution maps of surface plasmon 

resonance modes in AgNTs showing three resonance modes which are localised at positions 

indicated as A, B, and C position in b). [Image taken from [71]] 

  

a) b) c) 

b) a) 

c) 
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2.7 Surface plasmon oscillation decay 

There are two types of relaxation of SPRs including radiative and non-radiative decay [73]. 

Firstly, radiative decay refers to strong light scattering from Au nanostructures and is very 

useful for biological imaging. For example, in case of AuNRs, NIR light is used for NIR 

imaging. The light scattering strongly depends on the AR of the rods [74]. Additionally, 

different types of scattering, both elastic and inelastic, are used in the techniques of 

fluorescence imaging or two-photon excitation.  

Electron-phonon interactions resulting from electron-hole recombination are an example of 

non-radiative decay. Excited electrons transfer energy to the nanoparticle lattice during a 

timescale of ~1 ps, causing hot particle lattices. Then, the nanoparticle lattice exchanges 

energy with the surrounding medium within ~100 ps [75, 76]. This interaction is a phonon-

phonon interaction. By inducing laser power of about 100 nJ, the excited electron can be 

heated up to several thousand Kelvin, however only a few tens of degrees increase in the 

temperature of the nanoparticle lattice and surrounding medium occurs [76]. This type of 

decay makes Au nanostructures with NIR resonance useful for photothermal therapy. 

2.8 Application of Au nanostructures in healthcare application 

Size, shape, structure and composition, as well as the refractive index of the surrounding 

medium are the keys for the unique optical properties of Au nanostructures. This promises a 

broad range of application such as catalysis, surface-enhanced Raman spectroscopy, sensing, 

especially in healthcare applications.  

2.8.1 Plasmon-enhanced spectroscopy and sensing applications 

One example of the application of LSPR is in sensors. The detection of the refractive index 

change surrounding a sensing surface is the basic principle of sensing [48]. Changes in 

refractive index alters the energy transferred to the free electron resulting in a shift in the 

LSPR, there may even be a small change arising from interaction with a biomolecule. Also, 

a strong local field enhancement induced at the gold surface during SPR can be used to 

improve the detection sensitivity for detecting a change in refractive index and to enhance the 

scattering from chemical species absorbed at the Au surface known as surface-enhanced 

Raman spectroscopy. 

2.8.2 Photothermal therapy and imaging 

Au nanostructures such as NPs [77], nanoshells [78], nanocages [79] and nanorods [76, 80] 

can be tuned so that the optical peak absorption lies in the NIR region. This is of interest since 

the NIR region contains a “water window” where light is highly transmitted through 
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biological tissue with little absorption. The nanostructures can absorb irradiated light and then 

generate heat. This heat generated during the relaxation of plasmon excitations can cause a 

localized photothermal effect resulting in heating and potential damage to nearby cells and 

tissues. The temperature that are required to kill tumour cells is defined above 40°C and the 

gold nanostructure can increase the temperature in the order of 40°C to 70°C [81, 82]. 

According to Haung et al. [81], breast cancer cells were damaged using AuNRs 820nm NIR 

laser at 35 W/cm2. There was the local temperature increased to 47°C within 4-6 minutes. 

They also illustrated that the risen local temperature depended on nanoparticles’ 

concentration. In 2018 Zhang et al. [82] illustrated the tumor cells’ killing percentages were 

increased as the local temperature of the tumors increased from 43°C to 49°C. Zhou and co-

workers [83] irradiated a 980 nm laser power at 1.0 W/cm2 and it was found that the local 

temperature has risen over  50°C and caused damage to the tumor cells. Engineered Au 

nanostructures can be functionalised with biomolecules that enable specific targeting to the 

surface of tumour cells, which can then be photothermally destroyed producing no damage to 

surrounding healthy tissues. Moreover, imaging applications can be enabled by integrating 

the scattering and absorption properties of Au nanostructures for contrast enhancement in 

cancer detection. 

2.9 Thermal stability of Au nanostructures  

AuNRs appear a good candidate for photothermal therapy for cancer treatment. AuNRs can 

be tuned over the NIR region via a refined synthesis approach for AuNRs. In case of AuNRs, 

it has been shown that the longitudinal surface plasmon resonance is very sensitive to the AR 

of the rods.  However, this means that even a small change of the AR can cause large 

differences in absorption spectra.  

2.9.1 Melting point of Au nanoparticles 

In 1975, Ph. Buffat and J-P Borel [84] demonstrated using in-situ TEM heating experiments 

that gold nanoparticles exhibited a size effect in relation to their melting temperature. Figure 

2-14 shows the melting temperature decrease as a function of the decrease in nanoparticle 

diameter – this was undertaken with spherical nanoparticles. This, in principle, this enables 

the prediction of the melting temperature for relevant Au nanostructures.  
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Figure 2–14: Experimental and theoretical melting point temperature versus diameter for 

gold nanoparticles. Figure taken from [84]. 

2.9.2 Observations from photothermal therapy 

Much research has been reported about the decrease of the AR of AuNRs during conventional 

heating and pulsed laser induced heating which is used in photothermal therapy. The thermal 

stability of AuNRs has been studied by using pulsed laser irradiation and thermal annealing 

of AuNRs. In 2005, the thermal stability was investigated by Petrova et al [85]. AuNRs were 

deposited on a glass slide and thermally annealed at different temperatures.  UV-vis and SEM 

results revealed that at temperatures higher than 25°C AuNRs changed rapidly to AuNPs 

within 15 min. Also, higher temperatures than 70°C arising from femtosecond pulsed laser 

irradiation can cause structural changes of AuNRs [86]. A similar result was reported by 

Murphy et al [87]. After heating AuNRs solution to a boiling state (ca. 100°C), the rods were 

observed to shorten and become spheres. The temperature changes during pulsed laser 

irradiation have been reported in Ref [88]. A near infrared laser was used to measure the 

temperature increase in an Au dispersion. After 2 min of irradiation with an 808 nm laser, the 

AuNR dispersion exhibited an average temperature change of approximately 30-5°C (the 

highest temperatures were 70-100°C. 
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2.9.3 Deformation mechanism 

The deformation of Au nanostructures occurs well below the melting point of bulk gold 

(1064°C). However, it has been shown that the thermal deformation of Au nanostructures is 

initiated at very low temperatures and increases as the temperature increases. Significantly it 

depends on the size and shape of the nanostructure. In case of AuNRs, the thermal stability 

has been shown to reduce with increasing rod AR [75]. Surface diffusion to minimize surface 

energy at the tip of the rods was first used to explain this reshaping. However, due to the 

observation of deformation at such low temperatures, curvature driven surface diffusion 

proposed by Taylor et al.[89] was used to explain the observed phenomena. In brief, the 

literature proposes that a longer AR rod with a high radius of curvature at the tip is easier to 

reshape than a shorter one. Equation 2-20 presents the rate of change of a surface point to the 

curvature driven surface diffusion.       

   D@
D0
= 𝜈 = 𝐵∇"𝐾    Equation 2-20 

where 𝐾 = 1
𝑅/S + 1 𝑅MS    is the surface mean curvature, the parameter 𝐵 = N

2
$O3P3
QR

, 𝛾1 is the 

free energy, Ω is the atomic volume,	𝑘 is Boltzmann’s constant, 𝑇 is temperature and 𝐷1 is 

the diffusivity tensor related to the diffusion coefficient. The equation was solved using finite 

difference methods and the change in shape plotted as shown in Figure 2-14. According to 

the literature [89, 90], the activation energy (𝐸2) is predicted to be a function of the mean 

surface curvature expressed in the following equation.       

𝐸2 ∝
,
S

      Equation 2-21 

By applying a constant of proportional 𝐶 and deriving the curvature (𝐾) at the tip of the rods 

from a model of ellipsoidal nanorods, the curvature is given by 

																													𝐾 = *("2%$(*%#2%) TUV% W)

"2(2%$(*%#2%) TUV% W))
$
%
                                     Equation 2-22 

where 𝛽 = 0, 𝑎 = 𝑙𝑒𝑛𝑔𝑡ℎ
2S , 𝑐 = 𝑎/𝐴𝑅. Then the predicted activation energy is given by 

equation 2-23.    

𝐸2 =
X
S
= "2X

(YF%$,)
    Equation 2-23 

From the activation energy, it was shown that short AR rods possess a high activation energy 

for surface diffusion leading to a barrier to reshaping, but the longer AR rods allow easy 

deformation below the melting point. 
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Figure 2–15: Heating profile and simulated deformation of AuNR with AR of 3.3 at 150°C. 

Figure taken from [88]. 

2.10 Toxicology of Au nanostructures 

AuNPs have attracted attention in the field of biomedical applications including bio-imaging, 

drug delivery, biosensing and photothermal therapy [91-95]. One of the important issues 

arising from these potential applications is the concern about their safety and toxicity in both 

in-vitro and in-vivo environments. In general, the toxicity of AuNPs depends on size, shape, 

aggregation, concentration, and surface chemistry [95, 96]. According to Goodman et al. [98] 

and Conner et al. [50], citrate-stabilized AuNPs proved to be non-toxic up to a gold 

concentration of 250 mM on exposure to human leukaemia cells (K562) while surface coated 

AuNPs present cytotoxicity only at 25mM. Also, 18 nm diameter AuNPs have been reported 

to penetrate cells without toxicity and cell injury [50]. It was reported that 5-15 nm AuNPs 

are more active in an organ distribution study (involving the liver and spleen) than 50-100 nm 

particles [96]. Similar results were reported for ultrasmall AuNPs (1.4 nm in diameter) which 

can cause toxicity as they can easily bind to DNA and affect genes [99]. 20-100 nm diameter 
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AuNPs exhibit no effect on retina microvascular endothelial cells [100]. There is also a report 

that AuNPs with a 25nm diameter exhibit low toxicity but cause disruption in human 

hepatocellular carcinoma HepG2 cells [101]. The size distribution effect could arise from the 

large surface to volume ratio of smaller nanoparticles which provides more interfacial contact 

surface area leading to an increase surface particle activity [102, 103]. 

The effect of Au nanoparticle shape on toxicity have also been investigated. Elongated Au 

nanostructures such as rods cubes, and triangles have been found to be more toxic to human 

prostate cancer cells (PC3) [104] and human skin keratinocyte cells (HaCaT) [105] than for 

the case of AuNPs.  Similar reports have shown that AuNR demonstrated high toxicity to 

HaCaT cells [106] as a result of the CTAB coating layers. Schaeuelin and co-worker [107] 

proposed the influence of surface charge on Au nanostructure toxicity. It was found that whilst 

both positively and negatively charged AuNPs were toxic, positively charged particles 

exhibited increased toxicity [97, 107]. For example, CTAB-capped Au structures which have 

a positively surface charge presented high toxicity [104, 105]. CTAC-coated AuNPs also 

present a positively charged particle surface similar to CTAB which may result in higher 

toxicity. However, PSS-coated AuNRs (positively charged) demonstrated less toxicity in 

human leukaemia (HL60) cells while PEG-coated AuNRs from ligand exchange can 

eliminate toxicity [83] due to their neutral surface charge (the zeta potential is zero) [108]. 

Lui et al. [109] reported that silica-coated AuNPs with diameters between 50-300 nm showed 

lower toxicity than CTAB-capped AuNPs in human breast cancer cells (MCF-7). Although 

much research has reported that AuNPs do show a toxicity effect on cell cultures, some studies 

have argued that AuNPs do not exhibit toxicity. This depends on size, shape, surface coating, 

and the particular cell culture studies. Surface modification of Au nanostructures could have 

a significant influence on toxicity and intensive research to provide sufficient data on specific 

cell cultures could extend the use of Au nanostructures in healthcare applications. 

2.11 Electrochemical behavior of phospholipid membrane for nanoparticle interaction 

Dioleoyl-phosphatidylcholine (DOPC) consists of negatively charged phosphate group and 

positively charged amine group. DOPC is the most abundant phospholipid in eukaryotic cells 

which make them become popular for nanoparticle sensor applications. According to the 

previous work conducted by Nelson et al. [110-114], DOPC in PBS buffer on Hg/Pt 

electrodes has been used in electrochemical studies for screening of nanoparticle interactions. 

In the DOPC voltammogram, there consist of three main RCV profiles named as area A, B, 

and C as illustrated in figure 2-16.  
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Figure 2-16: RCV profile of DOPC and related phase of the phospholipids on the Hg/Pt at a 

certain potential 

In area A, phospholipids are formed a monolayer over the electrode correspond to the 

potential between -0.40 and -0.90 V. Once the potential increase to -0.93 V in area B, polar 

head of phospholipid join together allowing the sample to absorb and passing through on the 

membrane. If the nanoparticles interact with the membrane, there will be a depression of the 

RCV profile in this region. The peak occurs at over -1.0 V correspond to area C. This 

illustrates structural reorientation of membrane that end up in bilayer formation. In the 

reversal if the potential scan, the reversal of the structural reorientation was occurred and 

eventually turned in a monolayer membrane. The interaction of nanoparticles corresponds to 

an increase in the base line of RCV profile illustrated the penetration of nanoparticles into the 

DOPC layers. 

2.12 Conclusion 

Widespread use of Au nanostructures in many research applications is a result of their unique 

shape-dependant properties. In this chapter, background on the optical properties and LSPR 

of AuNPs, AuNRs, AuNBPs, and AuNTs have all been detailed. Previous work on the 

plasmonic properties measured both optically and by EELS, the thermal stability and the 

toxicology of gold nanostructures have been reviewed.  

From this review it is clear that a better understanding of the fundamental properties of gold 

NPs such as the plasmonic and thermal properties and their interaction with cells are required. 

Based on the literature review in this chapter, a common concept underpinning the synthesis 
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of Au nanostructures involves the use of a surfactant to generate different types of 

morphology and also homogeneity during wet-chemical synthesis. By varying synthesis 

parameters, the fabricated Au nanostructures can be tuned to absorb over the NIR region. It 

is important to have better understanding of synthesis methods and growth mechanisms so as 

to provide homogeneity in samples and it is also clear that a better understanding of the 

influence of the surfactant coating on the properties is desirbale. This would help in the design 

and synthesis of Au nanostructures for specific healthcare applications.  

This thesis presents a body of research on different Au nanostructures including AuNPs, 

AuNRs, AuNBPs, and AuNTs. It includes the development of synthesis methods, optical 

characterisation and the measurement of plasmonic properties, assessment of the thermal 

stabilities and toxicology in terms of their interaction with a model phospholipid membrane. 
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3. Chapter 3 Synthesis and 

characterisation methods 

 This chapter is divided into two sections: 1) nanoparticle fabrication methods and 2) 

sample characterization. The first section presents the synthesis techniques for Au 

nanostructures including gold nanoparticles (AuNPs), gold nanorods (AuNRs), gold 

nanobipyramids (AuNBPs), and gold nanotriangles (AuNTs). The second part describes the 

material characterisation techniques employed: ultraviolet and visible (UV/vis) spectroscopy, 

dynamic light scattering (DLS) and zeta potential measurement, transmission electron 

microscopy (TEM), and scanning transmission electron microscopy (STEM). The basic 

fundamental theory of each technique, the sample preparation and data analysis are also 

detailed in this chapter. 

3.1 Synthesis methods 

There are 4 main types of Au nanostructures synthesized in this project: nanoparticles, 

nanorods, nanobipyramids, and nanotriangles. In each case, the starting chemicals and 

fabrication procedures were different in order to achieve controllable size and homogeneity 

in the samples.  

3.1.1 Synthesis of Au nanoparticles (AuNPs) 

3.1.1.1 Reagents: 

 - Gold (III) chloride trihydrate (HAuCl4): ≥ 99.9% purity 

from Sigma-Aldrich 

- Trisodium citrate (Na3C6H5O7): ≥ 99.0% purity from Sigma-Aldrich.  

- Deionized (DI) water 

3.1.1.2 Synthesis procedure 

AuNPs of a variety of controllable sizes were fabricated via citrate reduction of HAuCl4 with 

a modified seed growth method. The method was slightly adapted from the literature [1, 2] in 

order to obtain a range of uniform increasing sizes of AuNPs. There were 2 steps in the 

synthesis method:  

1) Seed solution: a solution of 2.2 mM of trisodium citrate in 150 mL Milli-Q water 

was placed into a round bottom flask with a closable lid to prevent evaporation. 
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This was then heated up with vigorous magnetic stirring until it started boiling. 

The gold precursor (1 mL of 2.5 mM HAuCl4) was injected into the flask. Au 

seeds were formed resulting in a soft-pink solution within 15 min.  

2) Growth solution: the reaction temperature of the seed solution was reduced down 

to 90to provide temperature control. 1 mL of 6 mM trisodium citrate was then 

injected into the vessel and then left for 2 min to allow reaction. After that, 1 mL 

of 2.5 mM of HAuCl4 was added into the flask. After 30 min reaction time, 5 mL 

of the solution were taken out for characterization via UV-vis spectroscopy and 

TEM. This step of synthesis was repeated up to 10 times to obtain progressively 

larger AuNPs with sizes up to about 80 nm. The synthesis procedure is illustrated 

schematically in figure 3-1. 

 

Figure 3–1: Flowchart representing the Au nanoparticles synthesis procedure. 
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3.1.2 Synthesis of CTAB capped Au nanorods (AuNRs) 

3.1.2.1 Reagents: 

 - Gold (III) chloride trihydrate (HAuCl4): ≥ 99.9% purity from Sigma-Aldrich 

- Hexadecyltrimethylammonium bromide (CTAB):	≥ 99.0%  purity from Sigma-

Aldrich. 

- Silver nitrate (AgNO3):	≥ 99.9%  purity from Alfa Aesar. 

- L-(+)-ascorbic acid (AA):	≥ 99.0%  purity from Alfa Aesar. 

- Sodium borohydride (NaBH4):	≥ 98.0% purity from Fisher Scientific 

- Deionized (DI) water 

3.1.2.2 Synthesis procedure 

The CTAB-capped AuNRs were synthesized following a seed-mediated method adapted from 

Nikoobakht and El-Sayed [3] to obtain single AuNRs with various aspect ratios (ARs). In this 

work, kinetic control with pH adjustment was introduced to slow down the growth rate and 

achieve a homogenous distribution of AuNRs. There were two steps to the synthesis including 

preparation of seed and growth solutions as detailed below: 

1) Seed solution: 5 mL of 0.2 M CTAB was gently mixed with 5 mL of 0.5 mM of 

HAuCl4. Then, 0.6 mL of 2 hr aged ice-cold 0.01 M NaBH4 was rapidly injected 

and mixed by hand-shaking. The solution was left for 2 hr before use. 

2) Growth solution: 10 mL of growth solution containing 5 mL of 0.2 M CTAB and 

5 mL of 1 mM HAuCl4 was initially prepared in 5 different vessels. Then, 4 mM 

of AgNO3 was added in differing amounts (150, 200, 250, 300, and 350 µL) in 

each of the vessels for obtaining different AR rods, denoted as samples 1-5, 

respectively. Kinetic control via pH adjustment was achieved via addition of 12 

µL of 12 M HCl and gentle mixing. Next, 70 µL of 0.0788 M of ascorbic acid 

(AA) was mixed into the growth solution resulting in a colourless appearance. 

The final step was to rapidly inject 12 µL seed solution into the growth solution 

without any mixing. This was incubated at 30 for 5 hr. Note that the colour of the 

solution gradually changed within 20-30 min depending on the aspect ratio of the 

rods; the colour change of longer NRs was slower than for shorter rods. 

The as-prepared AuNRs were centrifuged at 10000 rpm for 10 min. The supernatant was 

removed and the precipitate was redispersed with the same amount of DI water, this being 

performed twice. This repeated centrifugation and redispersion (C/R) step needs to be 

completed to remove excess CTAB which causes toxicity associated with membrane 

reduction [4-7]. Figure 3-2 presents the synthesis flowchart of Au nanorods. The centrifuged 
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AuNR samples prepared with 350 µL of AgNO3 were used as the main sample for further 

experiment and characterization. 

 

Figure 3–2: Au nanorod synthesis procedure. 
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3.1.3 Synthesis of Au nanobipyramids (AuNBPs) 

3.1.3.1 Reagents: 

 - Gold (III) chloride trihydrate (HAuCl4):	≥ 99.9% purity from Sigma-Aldrich 

- Trisodium citrate (Na3C6H5O7): ≥ 99.0% purity from Sigma-Aldrich.  

- Hexadecyltrimethylammonium bromide (CTAB):	≥ 99.0% purity from Sigma-

Aldrich.  

- Silver nitrate (AgNO3):	≥ 99.9%  purity from Alfa Aesar. 

- L-(+)-ascorbic acid (AA):	≥ 99.0% purity from Alfa Aesar. 

- Sodium borohydride (NaBH4):	≥ 98.0% purity from Fisher Scientific 

- Deionized (DI) water 

3.1.3.2 Synthesis procedure 

In order to prepare controlled size homogeneous AuNBPs, a seed mediated method involving 

a citrate-stabilized seed and a growth solution was employed as described in literature with 

some slight modifications [8-10]. Brief details of the fabrication method are presented below:  

1) Seed solution: 0.25 mL of 10 mM HAuCl4 was mixed with 18.95 mL of DI water. 

Then, 0.5 mL of freshly prepared 10 mM sodium citrate was added into the 

vessel. Finally, 0.3 mL of ice-cold 10 mM NaBH4 was rapidly injected and mixed 

by hand-shaking. The solution was magnetically stirred at 500 rpm for 2 hr and 

left to cool down to room temperature before use. 

2) Growth solution: a growth solution containing 5 mL of 1.2 M CTAB and 0.25 

mL of 10 mM HAuCl4 was initially mixed with 60 µL of 10 mM of AgNO3. Then, 

12 µL of 12 M HCl was added and gently mixed for kinetic growth control. Next, 

40 µL of 0.1 M of AA was mixed into the growth solution resulting in a colourless 

appearance. The final step was to rapidly inject 80 µL seed solution into the 

growth solution without any mixing. In this work, different AR of AuNBPs could 

obtained by varying the seed amount (80, 100, 150 µL). The final solution was 

stirred at 400 rpm for 2hr and aged overnight before use.  

The as-grown AuNBPs were cleaned using the C/R step twice (10000 rpm) in order to stop 

the reaction and remove the remaining precursors. The final product was redispersed in DI 

water for further use. The synthesis procedure is shown schematically in figure 3-3.  
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Figure 3–3: Au nanobipyramid synthesis procedure.  
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3.1.4 Synthesis of Au nanotriangles (AuNTs) 

3.1.4.1 Reagents: 

 - Gold (III) chloride trihydrate (HAuCl4):	≥ 99.9% purity from Sigma-Aldrich 

- Hexadecyltrimethylammonium chloride (CTAC):	≥ 98.0% purity from Sigma-

Aldrich.  

- Potassium iodide (KI):	≥ 99.0% purity from Sigma-Aldrich. 

- L-(+)-ascorbic acid (AA):	≥ 99.0% purity from Alfa Aesar. 

- Sodium borohydride (NaBH4):	≥ 98.0% purity from Fisher Scientific 

- Deionized (DI) water 

3.1.4.2 Synthesis procedure 

Monodispersed AuNTs were synthesized by a pH adjustment seedless synthesis described by 

Chen and co-workers [11]. In this growth process, CTAC were used as a surfactant and iodide 

ions were used as a structure-directing agent. NaOH was employed to adjust the pH of the 

growth solution. The details of the fabrication are described as follows (see figure 3-4). A 

growth solution containing 8 ml DI water, 1.6 ml of 0.1 M CTAC, and 75 µL of 0.01M KI 

were mixed together. Then, a mixture of 1016 µL of 10 mM HAuCl4 and 101.5 µL of 0.1 M 

NaOH was created. Next, the sodium tetrachloroaurate solution was added into the growth 

solution, followed by the addition of 80 µL of 64 mM AA. The solution changed colour from 

yellowish to clear. Finally, 10 µL of 0.1 M NaOH were rapidly injected into the solution and 

quickly shaken for 1-2 seconds. The colour of the final solution gradually changed to red, 

then purple, and became blue within 10-15 minutes. 

3.1.5 Surface modification of Au nanorods (AuNRs) 

CTAB-capped AuNRs synthesized following the modified seed mediated synthesis method, 

as described in the previous section, were surface modified. Free CTAB is known to disrupt 

membranes as described before in section 3.1.2. The general idea of surface modification is 

to cover CTAB by coating the positively surface of CTAB rods with negatively charged PSS 

(as illustrated in figure 3-5). Then, a layer by layer coating of AuNRs can be achieved with 

citrate stabilized layers on top of the PSS layer which will be used in future applications. 

Surface modification procedures were followed from the literature, as described below [13-

16]. 
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Figure 3–4: Au nanotriangle synthesis procedure. 

    

Figure 3–5: a) schematic of a gold nanorod covered by positively charged CTAB and b) 

Surface modification of CTAB AuNRs with negatively charged PSS layer using a layer by 

layer technique, adapted from [12] 

  

a) b) 
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3.1.5.1 PSS coating  

Briefly, as-synthesised AuNRs were centrifuged at 14000 rpm for 30 min. The supernatant 

was removed and the precipitate was decanted with same amount of DI water in order to 

remove free excess CTAB. The diluted CTAB AuNRs were added drop-wise into a 5 mL of 

mixture consisting of 10mg/mL of PSS and 5 mM NaCl in the same volume ratio. This 

mixture was kept at 30 for 4 hr and 500 rpm magnetic stirring to ensure coating completion. 

Then, the C/R cleaning step was performed twice with 1 mg/mL of PSS. A 30-min time delay 

was applied in each step of the C/R process to allow completion of the PSS coating. 

3.1.5.2 Citrate stabilized AuNRs 

For citrate stabilized AuNRs, the PSS-AuNRs were twice cleaned using the C/R process with 

5 mM of sodium citrate. There was a 30 min time interval between each C/R process for the 

surface modification reaction. 

3.1.5.3 Silica coating 

Silica coating of AuNRs was carried out using a sol gel protocol described in literature [17]. 

Briefly, after the 2nd C/R process, the synthesised CTAB-capped AuNRs were diluted with 

20mL water, then 200 µL of 0.1 M NaOH was mixed with the solution. The coating step 

involved injection of 60 µL of 20% TEOS in methanol with magnetic stirring. The same 

amount of TEOS was again added after both 30 min and 60 min, and then the solution was 

left overnight to allow silica coating. 

3.2 Characterization methods 

3.2.1 Ultraviolet and visible (UV/vis) spectroscopy 

3.2.1.1 Basic principles 

UV-vis spectroscopy is a useful technique to examine the optical properties of metal NPs such 

as Au and Ag. It measures the intensity of light passing through a specimen and hence 

investigates the absorption and scattering of radiation by a material via an extinction 

spectrum. The sample (dispersion) is loaded between a light source and a detector, then light 

is irradiated either passing through or reflected from the sample. The wavelength of radiation 

can be varied over a region of interest. The intensity of the incident and transmitted radiation 

is calculated and processed together with the background radiation. The result is plotted as a 

function of extinction and wavelength [18, 19]. The absorbance (A) of the sample and the 
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intensity of incident (𝐼-) and transmitted (𝐼) radiation follow the Beer-Lambert Law [20], 

given by equation 3-1. 

   	𝐴 = log,'
!!
!
     Equation 3-1 

The absorbance of a solution relies on the assumption that it is proportional to both the 

concentration (𝑐) of the solution and  the light path length (𝑙) which is equal to the width of 

the cuvette.  

   𝐴 ∝ 𝑐	      Equation 3-2 

															𝐴 ∝ 𝑙       Equation 3-3 

The Beer-Lambert formula can be rewritten by applying a proportionality constant (ε), known 

as the extinction coefficient and the absorbance can be expressed as equation 3-4.  

															𝐴 = log,'
!!
!
= εc𝑙    Equation 3-4 

 

Figure 3–6: A schematic diagram of UV-vis spectroscopy. 

The extinction spectrum of metal NPs is sensitive to their local structure including size, shape, 

composition, and aggregation state of the sample. For example, the absorption spectrum of 

spherical AuNPs with a diameter about 20 nm has a maximum which lies at about 520 nm 

[21]. Meanwhile AuNRs exhibit two LSPR excitations which are the longitudinal and 

transverse modes [21, 22]. The transverse mode lies at about 520-525 nm matching that of 

spherical AuNPs. For the longitudinal mode, it is an order of magnitude more intense than 

the transverse mode and lies above 600 nm depending on the AR of the AuNRs, as presented 

in figure 3-7.  

3.2.1.2 Practical details 

After using the C/R process twice so as to remove free excess CTAB, all as-synthesised Au 

nanostructures were then examined in terms of their optical absorption spectrum by UV-vis 

spectroscopy using a Perkin-Elmer lambda35 model spectrophotometer. In brief, a UV-vis 

cuvette containing 1 mL of the Au nanostructure dispersion was put in the spectrophotometer 

and an extinction spectrum from 400 to 900 nm was collected.  
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Figure 3–7: Example of UV-vis spectra of Au NRs with different aspect ratios: a) showing 

the Au colloid colour [23] and; b) showing results for different aspect ratios from 1.5 to 3.5 

[24].  

3.2.2 COMSOL modelling on uv/vis spectra 

COMSOL modelling of absorption spectra was performed following the description in the 

PhD thesis of Cottom [25]. Briefly, finite element modelling (FEM) was used and simulated 

using COMSOL Multiphysics 5.2a software together with RF module which allowed 

modelling of the electromagnetic waves in the frequency domain. The basic idea is that the 

nanoparticles were placed in the middle of a homogenous medium and an incident plane wave 

was defined, as in equation 3-5, in the z-direction. The COMSOL function, Electromagnetic 

Wave, Frequency Domain was used calculate the scattered field under the boundary 

conditions.  

𝐸' ∗ exp	(−𝑖∗(𝑒𝑚𝑤. 𝑘0 ∗ 𝑛2) ∗ −𝑧)   Equation 3-5 

where, 𝑛2is the refractive index of the surrounding medium (note vacuum = 1), 𝑒𝑚𝑤. 𝑘0 is 

the wave number in free space which is a built-in function, and 𝐸' refers to electric field 

strength and is set to 1 for all simulations. 

The NP was created using a built-in geometry tool via CAD software and was situated in the 

centre of the medium. Then, the material properties for gold and vacuum were defined with 

COMSOL predefined properties for all model parts. After pre-assignment, the model was set 

to solve the extinction cross section using volume and surface integrals shown in equations 

3-7 and 3-8.  

															𝐸𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛	𝑐𝑟𝑜𝑠𝑠	𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = 𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 + 𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔													Equation 3-6 

 𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 = 𝑣𝑜𝑙_𝑖𝑛𝑡(𝑒𝑚𝑤.𝑄ℎ)/𝐼    Equation 3-7 

 𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 = 𝑠𝑢𝑟𝑓_𝑖𝑛𝑡(𝑛𝑟𝑒𝑎𝑙𝑃𝑜𝑎𝑣)/𝐼    Equation 3-8 

Where, 𝑒𝑚𝑤.𝑄ℎ is the power loss density function, 𝑛𝑟𝑒𝑎𝑙𝑃𝑜𝑎𝑣 is the scattered Poynting 

vector associated with energy flux of the electromagnetic field in all x, y, and z directions  

(𝑛𝑟𝑒𝑎𝑙𝑃𝑜𝑎𝑣 = 𝑛𝑥 ∗ 𝑒𝑚𝑤. 𝑟𝑒𝑙𝑃𝑜𝑎𝑣𝑥 + 𝑛𝑦 ∗ 𝑒𝑚𝑤. 𝑟𝑒𝑙𝑃𝑜𝑎𝑣 + 𝑛𝑧 ∗ 𝑒𝑚𝑤. 𝑟𝑒𝑙𝑃𝑜𝑎𝑣𝑧), 

a) b) 



-       - 55 

𝑍𝑐𝑜𝑛𝑠𝑡 is a Comsol constant for the impedance of free space, and 𝐼 refers to the incident 

intensity (𝐸'"𝑥𝑛2/2𝑥𝑍𝑐𝑜𝑛𝑠𝑡).  

The results were shown as input frequency and relative spectra with an electric field 

distribution map surrounding the NPs. 

3.2.3 Dynamic light scattering (DLS) and Zeta potential measurement 

3.2.3.1 Basic principles of dynamic light scattering (DLS) 

Dynamic light scattering (DLS) is a universal method to characterize the size of NPs and their 

size distribution in a liquid dispersion. During the DLS measurement, the intensity of incident 

and scattered light in different directions are measured.  Both the intensity and the direction 

of the scattered light change over time due to the random Brownian motion of NPs in the 

liquid. For spherical NPs, the diffusion coefficient (𝐷[) determines the NP motion as 

described by the Stokes-Einstein equation [26, 27]. 

   𝐷[ =	
Q4R

58\F5
       Equation 3-9 

where, 𝑘], 𝑅^,  T and 𝜂 denote the Boltzmann constant, hydrodynamic radius, sample 

temperature and viscosity of surrounding medium, respectively. This allows extraction of the 

hydrodynamic radius of the NPs. 

For non-spherical NPs such as rods, both rotational diffusion (𝐷F) and translation diffusion 

(𝐷R) determine the motion, and the decay rate of the rod NPs is given by equation 3-10. 

   Γ = 𝑞"𝐷R + 6𝐷F     Equation 3-10 

where, q is the scattering wave vector.  

An example of this evaluation is the angle-dependent DLS measurements of 𝛽 − 𝐹𝑒𝑂𝑂𝐻 

NRs [28]. A Γ	𝑣𝑠	𝑞" plot provided the value of 𝐷F by extrapolation of q to zero whilst 𝐷R 

was given by the slope of curve represented in figure 3-8. The plot exhibited no effect of 𝐷F 

due to the linear line passing through the origin of the graph. Therefore, the value of 𝐷R 

extracted from the slope of graph was	7 × 10#,"	𝑚"/𝑠	 [28]. This value of 𝐷R was used to 

calculate the average 𝑅^ by substitution of equation 3-10 into 3-11. 

   𝑅^ =	
Q4R
58\_

𝑞"       Equation 3-11 

Moreover, the stick hydrodynamic theory [29] and Broearsma’s relationship [30] can also be 

used to calculate diffusion coefficients using the true diameter (length and width) derived 

from TEM imaging. Here the value of 𝐷R from the observed length and width are 

7.09 × 10#,"	and	6.84 × 10#,"	𝑚"/𝑠, respectively. These values were then compared with 

the DLS results. Thus, the hydrodynamic radius of non-spherical NPs can be determined from 

these approximations. 
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Figure 3–8: a) TEM image of  NRs and b) angle-dependent decay rate vs  plot. Data taken 

from [27, 28]. 

3.2.3.2 Basic principles of Zeta potential measurement 

The Zeta potential is a surface charge measurement of NPs contained in a liquid suspension 

derived from measuring the particle diffusion coefficients under applied potentials. The zeta 

potential value reveals the electrostatic repulsion among the particles, contributing to system 

stability. Higher zeta potentials result in a more stable system. Smoluchiwski theory can be 

applied to measure Zeta potentials assuming the Debye length is smaller than particle radius, 

and where surface conductivity is negligible [31]. Another approach is called the Debye-

Huckel approximation used when the Debye length is larger than the particle radius. 

3.2.3.3 Practical details 

1 mL of all individual as-synthesised Au nanostructures was put in a UV-vis cuvette (for DLS 

analysis) and surface zeta potential cell and examined in a Malvern Zetasizer ZS1 for particle 

size and zeta potential measurement. The parameters of water were used for the DLS 

measurement and the result is an average of 10 measurements. An example of the DLS and 

Zeta potential output is illustrated in figure 3-9. The characteristic size distribution of DLS 

measurement can be converted from intensity, into either volume or number plots. The latter 

often highlights smaller particle size fractions in the dispersion, as the scattered intensity 

varies as the sixth power of particle size. 

a) b) 
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Figure 3–9: Example of a) DLS output figure taken from [32] and b) Zeta potential curve 

obtained using Malvern Zetasizer ZS1 software.  

3.2.4 Transmission electron microscopy (TEM) 

Transmission electron microscopy (TEM) is a very useful characterization technique for 

directly imaging Au nanostructures and to measure the electron energy-loss (EEL) spectrum 

of the sample. The basics of TEM is described in this section. 

3.2.4.1 Basic principle of conventional TEM (CTEM)  

 1) Electron gun 

TEM is a universal technique used to examine nanoscale materials and operates under a high 

vacuum environment. In CTEM, electrons are generated from an electron source and then 

accelerated down through the microscope column passing through the specimen. The 

electrons are scattered and potentially diffracted by the material and electromagnetic lenses 

can be used to form TEM images which can be displayed on a screen or camera and used to 

investigate atomic structure [33-37]. The basic layout and components of a CTEM are 

presented in figure 3-10. 

An electron gun is located at the top of the microscope column and is used to generate 

electrons. A thermionic gun contains a heated filament or cathode, an anode, and a Wehnelt 

cylinder, see figure 3-10. For thermionic electron emission, a high current is passed through 

the tungsten filament causing a high temperature and electrons are emitted from the surface 

of the filament. These electrons are then accelerated to high energy towards a positive anode. 

The Wehnelt cylinder is used to confine and focus the electron beam before injecting them 

into the TEM column [33-36]. This research employed a TEM which uses thermally assisted 

field emission (Schottky emission) gun which allows generation of a very fine electron beam 

size down to 1 nm [37]. Here, although the filament is heated, an applied electric field is also 

employed to reduce the work function for electron emission. Then, electrons from the heated 

filament can tunnel out though the potential barrier before being accelerated. 

a) b) 
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Figure 3–10: schematic diagram showing the main components of a conventional TEM, 

taken from [33]. 

2) Electromagnetic lenses and apertures 

Electromagnetic lenses are used to control the electron beam focus, the microscope 

magnification, and the illumination of the specimen. A magnetic lens exhibits the same optical 

behaviour as a thin glass lens which can be described by the optical thin lens equations 3-12 

and 3-13. The image magnification is defined as the ratio of image size (𝑉)	to real object size 

(𝑈)	and the relation between focal length (𝑓) of the lens, object distance (𝑢),	and image 

distance(𝑣) is described below. 
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Electromagnetic lenses are used to confine and focus the electron beam along the optic axis 

in the TEM column resulting in the final TEM image. They create an induction force which 

acts on electrons as described in equation 3-14. The focal length of electromagnetic lenses is 

modified by a change of current in the lens resulting in a change in magnetic field.  

   �⃗� = −𝑒(𝐸�⃗ + �⃗� × 𝐵�⃗ )    Equation 3-14 

where, 𝐸�⃗ , 𝐵�⃗ , �⃗�, and	𝑒 defer to an electric field, magnetic field, electron velocity and electron 

charge, respectively.  

In CTEM, transmitted and scattered electrons are collected by an objective lens, which forms 

the initial magnified image. Then, this objective image is focused and magnified by an 

intermediate lens and subsequently a projector lens system before passing to a fluorescent 

screen or optical camera (based on a scintillator and charge coupled diode array). 

3) Electron imaging mechanisms 

Mass-thickness contrast, diffraction contrast and high resolution TEM (HRTEM) phase 

contrast are typical imaging mechanisms in CTEM. Firstly, mass-thickness contrast is 

generated from the different scattering effects when electron interacts with the specimen. In 

a high mass or a thicker area, electrons will scatter more than in a thin area, sometimes this 

results in high angle scattering or even back-scattering [33-36]. This process results in fewer 

electrons and hence darker contrast in the electron image which reaches the detector. On the 

other hand, brighter contrast results from a low mass or thinner area.  

Diffraction contrast is evident in bright field (BF) and dark field (DF) images. For BF 

imaging, only undiffracted electrons transmitted passing through the specimen are collected 

and used to construct the image achieve by inserting an objective aperture in the back of focal 

plane of the objective lens. DF images are constructed as a reversal of BF images, when the 

objective aperture is used to allow only diffracted electrons to contribute to the image. 

Diffraction contrast is sensitive to crystallinity and alterations in crystallinity, such as defects. 

HRTEM images are employed to characterize lattice spacings, and hence the crystalline phase 

and growth direction. HRTEM is achieved at very high image magnifications and is formed 

by collecting both transmitted and scattered electrons which have different phases following 

diffraction of the electron wave. These electron waves interact forming an interference pattern 

associated with the lattice. 

Imaging of the back focal plane of the objective lens allows observation of the electron 

diffraction pattern. Using an aperture in the image plane at one of the projectors lens further 
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down the column allows formation of selected area electron diffraction (SAED) from a 

particular region in the specimen image. Examples of electron imaging are shown in figure 

3-11. 

 

Figure 3–11: TEM bright field image (a), and HRTEM image (b) of gold nanoparticles with 

a selected area electron diffraction pattern shown in (c), figures taken from [38].  

 4) Energy dispersive X-ray (EDX) spectroscopy 

Elemental analysis using Energy dispersive X-ray (EDX) spectroscopy identifies the specific 

energies of the characteristic X-rays emitted from the specific elements contained in the 

specimen [33, 35, 36]. When the electron beam passes through the specimen, energy can be 

transferred causing electron excitation and ionisation. This causes excitation and ejection of 

an inner shell electron causing a hole in the inner shell. Relaxation of an outer shell electron 

from a higher energy level allows the atom to get back into the ground state. However this 

de-excitation process causes emission of a characteristic X-ray, the energy of which relates 

to elements in the specimen. This X-ray intensity is plotted as a function of energy, resulting 

in specific X-ray peaks associated with each element. Figure 3-12 represents an EDX 

spectrum of AuNPs, exhibiting an Au peak at 2.14 keV. 

3.2.4.2 Practical details 

After C/R cleaning process, all TEM samples were prepared by dropping 2 µL of the Au 

nanoparticle suspension onto a 400 mesh holey carbon film supported on a Cu grid (Agar 

Scientific) and leaving to dry naturally at room temperature. Using the LEMAS facility in the 

School of Chemical and Process Engineering at the University of Leeds, all CTEM images 

were characterized in BF, SAED and HRTEM imaging modes using a FEI Tecnai G2 

TEM/STEM operated at an accelerating voltage of 200 kV and fitted with a Gatan Orius 600C 

camera. EDX spectroscopy was performed using an EDX detector (Oxford Instruments 

AZTEC). All images and data processing was undertaken using digital micrograph software 

(Gatan). 
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Figure 3–12: Example of EDX spectra of Au nanoparticle sample.  

3.2.5 Scanning transmission electron microscopy (STEM) 

3.2.5.1 Basic principles of STEM [33-35, 39] 

Scanning transmission electron microscopy (STEM) is a TEM technique where the electron 

beam passing through the sample is focused by probe-forming lenses to a fine spot and 

scanned across the sample. The interaction at each point is collected and recorded in 

transmission as a function of probe position [33-35]. In STEM mode, the electron beam is not 

focused after passing through the sample but its intensity is detected. Scan coils direct the 

beam as a raster scan over the area of interest and the intensity at each point is recorded to 

form the final image [39]. The advantage of STEM mode is the improvement in analytical 

spatial resolution. The basic components of STEM are presented in figure 3-13. 

However, imaging modes in STEM are different from CTEM. Bright field (BF) and high 

angle annular dark field (HAADF) images are the most common in STEM as represented in 

figure 3-14. In BF, the detector is placed on the optic axis (beam axis). The images from this 

BF mode essentially are equivalent but smaller (in term of scattering angle) to those of the 

conventional TEM. In HAADF imaging, an annular detector is used and only high angle 

elastic scattered electrons are detected. HAADF intensity arises from Rutherford scattering 

from the atomic nuclei and hence intensity increases with atomic number and sample 

thickness.  
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Figure 3–13: schematic diagram showing the main components of dedicated STEM. Image 

taken from [33]. Note: in this case the electron gun is at the bottom of the column. 

 

Figure 3–14: schematic diagram representing STEM imaging modes using different 

detectors. Inset shows: 1) BF (bottom) and 2) HAADF imaging (top), taken from [33] 
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3.2.5.2 Basic principles of electron energy-loss spectroscopy (EELS) [33, 34, 40, 41] 

Electron energy-loss spectroscopy is an analytical technique which measures the kinetic 

energy variation of the transmitted electrons with high spatial and energy resolution resulting 

from the inelastic scattering of fast electrons within the specimen. This technique measures 

the transmitted electron intensity passing through the specimen and categorizes it according 

to the difference in energy and hence energy loss [33, 34]. EELS can be used to identify 

chemical properties such as the type of atom and its bonding in the sample as well as 

electronic properties such as plasmon resonances at a specific location. By combining EELS 

with the STEM technique (STEM-EELS), it is potentially possible to investigate this 

information at atomic resolution. 

An EELS spectrum normally presents the energy loss (eV) from the incident beam energy on 

the x-axis and relative intensity on the y-axis. The EELS spectrum can be divided into 3 

regions: the zero loss, low-loss and core-loss regions according to their different form of 

excitations and is represented in figure 3-15. The zero loss region exhibits elastic scattering 

and quasi-elastic phonon scattering of electrons which pass through the sample. For a thin 

sample, this zero loss peak (ZLP) is the most dominant peak in the EELS spectrum. This peak 

is located at 0 eV with the highest intensity for the case of a thin specimen [40, 41]. The full 

width at half maximum (FWHM) of this peak reflects the energy spread of the electron source 

and resolution of the EEL magnetic prism spectrometer.  

The low-loss region contains information about excitation of outer shell and valence 

electrons. Only a small amount of energy is required to excite these electrons [41]. The 

plasmon oscillation of metal NPs corresponds to the UV-vis spectrum and can be determined 

using low-loss EELS.  

 
Figure 3–15: Example of an EELS spectrum of metallic nanoparticles corresponding to: a) 

zero-loss and low-loss region of gold NPs [42]; and b) core-loss EELS region of silver NPs 

[34]. 
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Energy losses above 50 eV are categorized as the core-loss region, where inner shell electrons 

can be excited to any of the unoccupied electronic states. This excitation provides localized 

elemental composition via the observation of unique steps in the EELS spectrum called 

ionisation edges. These edges can be used to identify bonding and local structure via the 

electron energy loss near edge structure (ELNES). Also, in principle bond lengths and 

coordination numbers can be investigated via the extended electron energy loss fine structure 

(EXELFS).   

3.2.5.1 Practical details 

1 µL of the as-synthesised Au nanoparticle suspensions was dropped onto a 400 mesh lacey 

carbon film supported on a Cu grid and left to dry naturally at room temperature (as an initial 

attempt). Subsequently, non-porous, pure silicon 5 nm thick TEM window support films 

(purchased from EM Resolutions) were also used to improve the data quality. All STEM-

EELS spectra were collected over the low-loss region from 0 -3 eV using a monochromated 

electron source in a FEI Titan Themis Cubed 300 TEM operating at 300 kV. The energy 

dispersion was 0.01 eV and the energy resolution was ca. 0.25-0.3 V. All image and data 

processing was conducted using Gatan digital micrograph software. 

3.3 Conclusion 

These synthesis methods of Au nanostructures allow better control of their size and shape by 

modifying synthesis parameters, leading to the potential novel synthesis methods that can be 

altered their SPR into the NIR regions. Furthermore, the characterised methodologies would 

allow the investigation of Au nanostructures and their optical properties for both suspension 

and individual particles as in focus of this thesis. To study optical and plasmonic properties, 

STEM/TEM measurement can reveal the spatial resolution of individual Au nanostructures 

that may help to provide better understanding of localised SPR field enhancement and design 

gold nanostructures with SPR near NIR region. TEM imaging of TEM heating experiment 

may be used to demonstrate the thermal stability study and deformation mechanism. By using 

these methodologies, the potential candidates for healthcare applications can be proposed. 
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4. Chapter 4 Structural characterization 

and the optical properties of 

synthesized gold nanostructures 

 In order to obtain controllable and homogeneous Au nanostructures, it is necessary 

to develop an understanding of the synthesis of Au nanostructures. This chapter focuses on 

the characterization of synthesized Au nanostructures including gold nanoparticles (AuNPs), 

gold nanorods (AuNRs), gold nanobipyramids (AuNBPs), and gold nanotriangles (AuNTs).  

The optical properties of the nanostructures were investigated by UV-vis spectroscopy and 

the size, morphology and structure explored using TEM imaging and dynamic light scattering. 

Their crystallographic structures and growth mechanisms are also discussed in this chapter. 

 

4.1 Characterization of Au nanoparticles (AuNPs) 

AuNPs were fabricated by a citrate reduction method with a seeded growth step by step 

procedure modified from the literature [1, 2], as detailed in chapter 3. Briefly, 1 mL of 2.5 

mM gold precursors (HAuCl4) were injected into 2.2 mM boiling sodium citrate to originate 

seed growth of AuNPs resulting in a soft-pink colour within 15 min. Reaction control was 

achieved by a reduction of the reaction temperature to 90. Then 5 mL of solution was then 

pipetted out for characterization. A specific amount of sodium citrate (1 mL, 6 mM) and gold 

precursor (1 mL, 2.5 mM) was injected before taking a 5 mL of the suspension out for 

investigation by TEM imaging and UV-vis spectroscopy. The step of synthesis was repeated 

up to ten times to obtain progressively larger AuNPs with sizes up to about 80 nm. 

It was found that a set of controllable, near spherical AuNPs with sizes ranging from 

approximately 20 to 60 nm were synthesized. UV-vis spectra showed that the extinction peak 

maximum shifted from 522 nm to 538 nm corresponding to the original seed through to step 

10 of the growth, see Figure 4-1a. This red-shift of the extinction spectrum for each growth 

step resulted from the increasing size of the AuNPs, in agreement with literature [1-3] and 

similar to the simulated extinction spectra of AuNPs presented in chapter 5, section 5.1.2.  

TEM micrographs shown in Figure 4-1b were used to confirm the growth of the AuNPs. The 

average size of AuNPs increased from the original seed of 20.9±2.7 nm to 36.6±5.0 nm, 

45.1±5.5 nm, and 58.3±6.5 nm after growth steps 3, 6, and 10, respectively. Size distribution 

profiles of the as-synthesized AuNPs are presented in figure 4-1c. AuNP seeds showed good 

homogeneity in terms of size, similar to the AuNPs from the growth step 10 sample. However 
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AuNP growth step 3 and 6 samples contained bimodal size distributions with the presence of 

both small and large spherical particles. Plotting the uv-vis extinction peak maxima from 

figure 4-1a versus the average particle size derived from TEM, shown in figure 4-1d, reveals 

a near-linear relationship between the two quantities. 

A 

Figure 4–1: AuNPs with successive seed growth steps: a) UV-vis spectra of AuNPs obtained 

at each growth step from the seed to step 10. 

 

Figure 4-1: b) TEM bright field images taken from samples extracted at the different growth 

steps. 
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Figure 4-1: c) their respective size distributions derived from TEM imaging. 

 

Figure 4-1: d) the uv-vis extinction peak maxima at different particle diameters derived from 

the TEM images. 

c) 

d) 
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Figure 4–2: Intensity-weighted DLS particle size distribution curves of AuNPs for the 

different growth steps with average hydrodynamic diameters indicated. 

Additionally, DLS analysis of the different AuNP growth steps was conducted to confirm the 

increase in particle size, illustrated in figure 4-2. DLS revealed that the average hydrodynamic 

diameter increased from 15.7 to 59.8 nm as synthesis growth steps increased up to step 10. 

The average hydrodynamic size from DLS shows good a good correlation with the average 

size obtained from TEM micrographs, shown in figure 4-3 which exhibits a slope of 

approximately unity. DLS results suggest that there are two peaks in the size distribution of 

AuNPs after growth steps 3, 6 and 10, with a peak appearing below 10 nm. The presence of 

this small peak matched with TEM imaging which indicated the presence of small AuNPs in 

each of these samples. These small NPs are likely to be residual seeds resulting from the 

injection of Au precursor to initiate the growth step, whereas the broad main peaks in AuNPs 

step 3, 6, and 10 samples are a result of the growth. It is clear that DLS would be an initial 

characterization method that works well for spherical particles and is able to detect the 

presence of any aggregation in samples [4, 5], see for example the AuNPs step 3 sample DLS 

plot in Figure 4-2. 

15.7 

37.8 
nm 

43.8 nm 
nm 

58.8 nm 
nm 
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Figure 4–3: TEM average size versus DLS size distribution of the AuNP samples, using a 

straight line as a guideline of linear relationship between DLS and TEM size measurement 

with a slope of 0.87 and an intercept of 6.2. 

4.2 Characterization of Au nanorods (AuNRs) 

CTAB-capped AuNRs with various ARs were synthesized by the kinetically controlled 

modified synthesis method described in chapter 3. By adding HCl to lower the pH, the growth 

kinetics were slowed down resulting in higher AR nanorods [6]. Different amounts of AgNO3 

were added to provide different ARs, denoted as samples 1-5, respectively. Well-controlled 

and reproducible AuNRs with various ARs were produced. The results showed that colour of 

the dispersion gradually changed from colourless to brown. Eventually over 20-30 min, it 

turned to a purple/soft-pink depending on the final AR (inset figure 4-4). As-synthesized 

CTAB-capped AuNRs (samples 1-5) were characterized by UV-vis, TEM and DLS to 

investigate their particle size distributions shown in figures 4-4 to 4-8 respectively.  

The longitudinal SPR peak maxima (max) of AuNR samples 1, 2, 3, 4, and 5 were at 574, 648, 

712, 740, and 796 nm, respectively (figures 4-4 and 4-5a). Statistical measurements of particle 

size were conducted by measuring 100 particles per sample from TEM images using ImageJ 

software. The AR of AuNRs were measured to be 1.6±0.3, 2.3±0.4, 3.1±0.6, 3.5±0.7, 4.1±0.3 

for samples 1-5, respectively as seen in figures 4-6a-e and figures 4-6f-j which show the 

individual size distributions. Figure 4-5a shows an approximately linear relationship between 

�max and nanorod AR as measured by TEM. It was found that the AR of AuNRs increased as 

the amount of AgNO3 increased as illustrated in figure 4-5b. In comparison, the calculated 
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LSPR peak of AuNRs using the discrete dipole approximation (DDA) is given by [7]. For an 

AuNR with AR of 3.1 (sample 3), the calculated LSPR is at 715.6 nm which is in excellent 

agreement with the experimental uv-vis spectrum (712 nm). Also, this showed good 

agreement with simulated extinction spectra of CTAB-capped AuNR by COMSOL modelling 

in chapter 5, section 5.1.2. 

 

Figure 4–4: UV-vis absorption spectra of CTAB-capped AuNRs with various ARs. Inset 

shows the change in colour of as-synthesized AuNRs from purple to soft-pink colour 

indicating the increase in rod AR.  

 

 

 

Figure 4–5: a) Longitudinal SPR absorption peak maxima of CTAB-capped AuNRs for 

different ARs. b) AR of as-synthesized CTAB-capped AuNRs as a function of the amount of 

silver nitrate added, using a straight line to draw a guideline of each point representing AR 

increased with an increase of amount of AgNO3.  

a) b) 
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Figure 4–6: a) TEM images of sample 1 which is CTAB capped AuNRs with ARs of 1.6±0.3 

(Length ~ 36.1±4.2 nm and Width ~ 22.5±3.3 nm) 

Figure 4-6: b) TEM images of sample 2 which is CTAB capped AuNRs with ARs of 2.3±0.4 

(Length ~ 47.4±5.3 nm and Width ~ 20.6±3.2 nm) 

 

Figure 4-6: c) TEM images of sample 3 which is CTAB capped AuNRs with ARs of 3.1±0.6 

(Length ~ 52.6±5.0 nm and Width ~ 17.6±2.6 nm) 
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Figure 4-6: d) TEM images of sample 4 which is CTAB capped AuNRs with ARs of 3.5±0.7 

(Length ~ 56.2±7.1 nm and Width ~ 16.2±2.5 nm) 

 

Figure 4-6: e) TEM images of sample 5 which is CTAB capped AuNRs with ARs of 4.1±0.3 

(Length ~ 60.6±6.8 nm and Width ~ 14.9±2.1 nm) 
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Figure 4-6: f) Size distributions of CTAB capped AuNRs sample 1 derived from TEM imaging, 

showing an AR of 1.6±0.3 

 

Figure 4-6: g) Size distributions of CTAB capped AuNRs sample 2 derived from TEM 

imaging, showing an AR of 2.3±0.4. 
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Figure 4-6: h) Size distributions of CTAB capped AuNRs sample 3 derived from TEM 

imaging, showing an AR of 3.1±0.6. 

 

Figure 4-6: i) Size distributions of CTAB capped AuNRs sample 4 derived from TEM imaging, 

showing an AR of 3.5±0.7. 



-       - 79 

 

Figure 4-6: j) Size distributions of CTAB capped AuNRs sample 5 derived from TEM imaging, 

showing an AR of 4.1±0.3. 

The samples demonstrated a red-shift of the absorption spectra as a function of increasing 

AR. This is in agreement with the literature [8-10] and the modelling results in chapter 5. The 

longitudinal surface plasmon resonance (SPR) results from electron oscillation along the long 

axis of the rods. The longitudinal SPR of as-synthesized AuNRs increases from 575 nm to 

800 nm with increasing AR, ranging from the visible region to NIR. Only a small change in 

AR results in a significant change in the absorption spectra showing that the longitudinal SPR 

is very sensitive to the AR. The UV-vis absorption spectra also exhibit a transverse SPR 

representing the oscillation of electron over the short axis of the rods. The SPR position is at 

approximately 520 nm and did not vary significantly between the different samples, in 

agreement with literature [11, 12]. The transverse SPR of AuNRs matched with that of 20 nm 

diameter spherical AuNPs which had a resonance peak located around 520 nm (see figure 4-

1a). However, there was a very broad transverse SPR in sample 5 (orange line) arising as a 

result of the additional presence of various sizes of spherical nanoparticles.  

HRTEM and selected area electron diffraction (SAED) were performed to confirm the 

presence of as-synthesized AuNRs and to confirm that they were single crystal in nature. An 

SAED pattern of a group of AuNRs (inset in figure 4-7a) illustrates fcc Au lattice reflections 

of (111), (200), (220), and (311) [13]. An HRTEM image of a single crystal nanorod in figure 

4-7b exhibits a crystallographic lattice spacing of 0.148 nm along the rod axis which can be 



-       - 80 

assigned to the (220) spacing of fcc Au. This demonstrated that the growth direction of 

AuNRs is along the <220> direction along the rod axis with the long facets of the rod being 

(002) planes. 

 

Figure 4–7: a) Electron diffraction pattern of a group of AuNRs shown in the image inset; b) 

HRTEM image of an AuNR, showing (220) lattice fringes along the axis and hence the growth 

direction of the rod. 

 

 



-       - 81 

The simple steps of the kinetically controlled synthesis method demonstrated reproducibility, 

indicating a promising method that can be modified to provide a tunable AR of CTAB-capped 

AuNRs for promising applications in the NIR region. The AuNRs synthesized by this method 

were used for further study of surface modification.  

We noticed differences in the DLS results for the AuNRs, shown in figure 4-8, from those of 

the AuNPs. The size distribution curves of the AuNRs derived from DLS exhibited two peaks: 

a small particle diameter and a large particle diameter peak due to their rod shaped geometry. 

The relative intensity of the small diameter peak increased with an increase in rod AR. 

Moreover, the peak maximum of the large diameter peak increases with AR, derived from 

TEM. However, sample 5 showed some anomalies compared to samples 3 and 4, seen in 

figure 4-8. These two DLS peaks refer to the rotational diffusion (the small diameter peak) 

and translational diffusion (the larger diameter peak) coefficients. This means that it is not 

straightforward to extract the average hydrodynamic diameter of AuNRs using DLS.  The 

relative intensity of the small peak reflects rotational diffusion parallel to the rod-axis which 

strongly depends on the AR of the AuNRs [6], as seen in figure 4-8  

 

Figure 4–8: DLS results showing particle size distribution by intensity of CTAB-capped 

AuNRs with various ARs indicated by sample 1, 2, 3, 4, and 5. 

4.3 Characterization of gold nanobipyramids (AuNBPs) 

AuNBPs were fabricated by a modified citrate-seed mediated method as detailed in chapter 

3. The citrate-seed solution was employed in order to produce the bi-pyramidal structure 
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while the growth solution was slightly modified from the literature [7, 14, 15]. The amount 

of seed solution, i.e. 80, 100, and 150 µL was varied to manipulate the AR of the AuNBPs 

corresponding to samples 1-3, respectively. The samples were characterized by both UV-vis 

spectroscopy and TEM imaging. DLS results for AuNBPs exhibited characteristics of 

elongated particles, i.e. both rotational and translational diffusion features similar to the case 

of AuNRs. Again this implies that DLS is not straightforward technique to analyse AuNBPs 

and hence was not undertaken in any detail. 

UV-vis spectra shown in figure 4-9a illustrated that AuNBPs exhibited SPR peaks similar to 

AuNRs showing both longitudinal and transverse SPRs. For AuNBPs, the FWHM of the 

longitudinal SPRs were significantly narrower when compared with those of the AuNRs. By 

applying a seed injection of 80 µL (sample 1), AuNBPs with an SPR in the NIR region were 

achieved. The longitudinal SPRs of samples 1, 2 and 3 were 800, 780, and 760 nm, 

respectively. By using the DDA approximation equation for LSPR peak [7], the SPR of 

AuNBP sample 1 with an AR of 3.5 should be located at 754 nm however, the experimental 

UV-vis is slightly higher than expected at about 800 nm. 

 

 

Figure 4–9: a) UV-vis absorption spectra of the three AuNBP samples exhibiting longitudinal 

SPRs at 800, 780, 760 nm for samples 1, 2 and 3, respectively.  
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Figure 4-9: b) TEM micrographs of sample 1 before purification; and c) HRTEM showing a 

0.234 nm lattice spacing corresponding to <110> growth direction in both the tip and middle 

of an AuNBP. 

 
Figure 4-9: d) Size distributions of CTAB-capped AuNBPs sample 1, showing an AR of 

3.5±0.3. 
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However, all as-synthesized AuNBP samples contained a lot of spherical NPs as by-products 

which was evidenced by the high intensity of transverse SPR compared to the longitudinal 

SPR. In general, the percentage of AuNBPs to AuNPs was approximately 60:40 as seen in 

figure 4.9b. As discussed in the previous section, only AuNBPs with uv-vis extinction spectra 

in the NIR region are of interest in terms of healthcare applications. Therefore, only sample 

1 of the AuNBPs were fully characterized and chosen for further processing. The AuNBPs 

from sample 1 were analysed to be 70.8±3.3 nm in length and 20.6±1.4 nm in width with an 

AR of 3.5±0.3 derived from measurement of 100 particles (size distribution presented in 

figure 4-9d). In addition, the crystalline structure at both the tip and the middle of the AuNBPs 

was examined by HRTEM (figure 4-9c). Clear lattice fringes are near parallel to the growth 

axis and the lattice spacing was measured as 0.234 nm corresponding to facets of the AuNBPs, 

which are perpendicular to the <110> growth direction along the long axis of the rods [14, 

15]. AuNBPs grow from twinned seeds in the citrate-capped seed solution in the presence of 

Ag ions. The proposed mechanism of the unique bipyramidal step is described as follows. 

The growth of {110} facets along the twining axis is perpendicular to the growth of {111} 

facets. The growth rate of {110} is faster than the perpendicular direction resulting in the 

particle elongation (similar to the rod). Unique steps appear in this surface and lead to one 

dimensional growth along the <110> direction. Due to the high radius of curvature at the tip, 

the surfactant (CTAB) is likely to be less concentrated than on the bipyramid facet. This 

allows Ag ions to deposit in these gaps. This results in a stepped faceted growth along the 

long axis. The steps of the AuNBP have a more open channel than the AuNR due to the 

twinned citrate-capped seed. Additionally, these steps are not thermodynamically stable so 

allowing Ag ions to deposit (underpotential deposition (UDP)) and resulting in increasing 

thermodynamic stability [14-16]. [16] 

Surfactant depletion to induce agglomeration of the spherical nanoparticles as described in [14] 

was employed to purify AuNBPs by adding a specific amount of 0.2M CTAB surfactant to 

induce spherical and bipyramidal separation. After leaving overnight, a pink supernatant was 

carefully removed and the precipitate was redispersed with DI water. TEM images and UV-

vis spectra of the post purification product showed fewer AuNPs and a lower AR of AuNBPs 

as shown in figure 4-10. Additionally, the intensity of longitudinal SPR from UV-vis spectra 

decreased indicating unsuccessful purification of AuNBPs and leaving the AuNBPs with a 

shorter AR. The TEM size distribution of the post purification AuNBPs was found to be 

smaller in AR down to 2.5±0.2 (length of 65.3 ±3.8 nm and width of 26.3 ±1.7 nm). 
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Figure 4–10: Uv-vis Absorption spectra of sample 1 of AuNBPs before and after purification 

(a) and their TEM images (b). 

4.4 Characterization of Au nanotriangles (AuNTs) 

AuNTs were synthesized according to a pH adjustment seedless synthesis method [17] as 

described in chapter 3. The as-synthesized samples exhibited a blue colour of the suspension 

indicating the formation of AuNTs. UV-vis absorption spectra are shown in figure 4-11. In 

sample 1 (black line), a sharp peak was clearly observed at 625 nm and this SPR peak can be 

assigned to an in-plane SPR mode of the AuNTs. Furthermore, a shoulder SPR peak located 

at about 550 nm indicated an out of plane SPR mode and/or the presence of irregular NPs. 

The average edge length of AuNTs can be tuned by varying both the concentration of iodide 

which acts as structural formation agent and also sodium hydroxide. As shown in the UV-vis 

spectra, there was a slight shift of SPR peaks from samples 2 to 5 which is related to the size 

of the triangles. An increased red-shift in SPR represents a larger edge length of the AuNTs 
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in a good agreement with literature [17-19] and confirmed by TEM imaging (Figure 4-12a-

e). Samples 1, 2, 4 and 5 were subsequently considered due to their differing uv-vis profiles. 

 

Figure 4–11: UV-vis spectra of AuNTs produced using different synthesis conditions denoted 

as samples 1 - 5. 

Generally, TEM showed a relatively broad size distribution with the presence of some 

irregular shaped NTs. The results showed that the AuNTs had two different sizes (large and 

small NTs). The average edge lengths of AuNTs in samples 1, 2 and 5 were 38.4 ±8.5, 46.4 

±6.0, and 99.8 ±24.4 nm, respectively, as presented in figure 4-12.  Sharp-tip AuNTs were 

apparent in samples 2 and 5 indicating optimized synthesis conditions for a particular iodide 

concentration (60-80 µL of 0.01M KI). HRTEM imaging showed a lattice spacing of 0.231 

nm, which is in a good agreement with the literature [17]. The triangular structure arises from 

gold nuclei growing along the most favorable facet with stacking faults to form plate-like 

structures which produces {111} planar facets. Selective adsorption of the surfactant (CTAC) 

occurs on the {111} planar facet of AuNTs [17-19]. 

Experimentally, a broad SPR peak (pink line) appeared in the UV-vis spectrum of sample 4 

resulting from an increase in the iodide concentration from sample 2 to sample 4, indicating 

the production of irregularly shaped AuNPs which was confirmed by TEM imaging (figure 

4-12d).  

In sample 5, the idea of pH adjustment (inducing a lower pH) was employed. The amount of 

sodium hydroxide was reduced in order to achieve larger triangles. However, in the uv-vis 
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spectrum there was also a characteristic peak evident at 530 nm, illustrating the presence of 

both AuNPs and AuNTs in the sample. TEM imaging of this sample also revealed the 

presence of both small and large AuNTs (figure 4.12f) which relates to a weak shoulder at 

625 nm and a strong SPR peak at 660 nm in the uv-vis spectrum in figure 4.11. 

An example of the DLS size distribution is shown in figure 4-13 These results show that the 

average hydrodynamic diameter of AuNTs from DLS are in agreement with the TEM imaging 

results. This is attributed to the fact that DLS cannot distinguish between the spherical 

particles and planar particles showing smaller average sizes of AuNTs. 

 
Figure 4–12: a) HRTEM image of AuNTs in sample 1; TEM BF images of as-synthesized 

AuNTs from samples 1, 2, 4 and 5 are shown in b), c), d), and e), respectively. 
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Figure 4-12: f) Size distributions of AuNT samples 1, 2, and 5 with average size of 38.4 ±8.5, 

46.4 ±6.0, and 99.8 ±24.4 nm, respectively. 

 
Figure 4–13: An example of dynamic light scattering results for AuNT sample 5, showing 

size distribution by intensity. 
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4.5 Surface modification of Au nanorods (AuNRs) 

CTAB-capped AuNRs would be of limited use in biological and sensing applications due to 

their cytotoxicity. CTAB will interact with some biomolecules and cause toxicity to living 

cells [12, 20]. To deal with this issue, surface modification of AuNRs was undertaken via 

layer by layer PSS coating and the samples were characterized by UV-vis spectroscopy, TEM 

imaging and Zeta potential measurements.  

CTAB-capped AuNRs with ARs of about 1.6, 2.9 and 3.4 (as determined from TEM imaging) 

denoted as CTAB AuNR samples 1, 2 and 3, respectively, were initially investigated. Figure 

4-14 illustrates UV-vis absorption spectra of as-synthesized CTAB-capped AuNRs as well as 

the modified PSS-stabilized AuNRs. The results showed that there was a small (5-10 nm) red-

shift to higher wavelength in the PSS surface modified rods (samples 1 and 2).  A more 

significant (about 20 nm) red-shift was found in CTAB AuNR sample 3 which exhibited a 

broad longitudinal SPR peak. These values for the red-shift were in a good agreement with 

literature [21, 22]. A surface coating was confirmed by TEM micrographs (see figure 4-15). 

However there is no clear distinction in the images between CTAB and PSS, as can be seen 

in figure 4-15. The thickness of the combined CTAB and PSS layers was found to be 

approximately 3-5 nm. Additionally, a surface modification experiment in collaboration with 

Tahani Albogami, a PhD student in the School of Physics at the University of Leeds, was 

undertaken using the silica coating protocol described in chapter 3, section 3.1.4. The results 

show a distinct silica layer covering the particles, as illustrated in figure 4-15c. 

 

 
Figure 4–14: UV-vis spectra of as-synthesized CTAB-capped AuNRs compared with PSS-

AuNRs.  
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Figure 4–15: TEM images of a) CTAB coated-AuNRs (yellow), b) PSS modified-AuNRs 

(blue), and c) silica coated-AuNRs (black), illustrating the presence of a distinct surface layer 

surrounding AuNRs using colour lines drawing as a guideline to define surfactant layers. The  

unmodified TEM images were presented below. 

The surface modification was also confirmed by STEM-EDX in terms of the elemental 

composition of the sample surface, as shown in figure 4-16. The presence of the CTAB 

coating was revealed in the EDX spectra (presence of Br) and Br  maps. While the presence 

of PSS surface modification was confirmed by EDX spectra (presence of S) and S  maps. The 

relative amount of Br (in atom% relative to Au) was observed to decrease significantly 

following surface modification with PSS. The zeta potential of the particles was measured 

following surface modification. The zeta potential changed from positive (+40.40 mV) in 

CTAB-capped AuNRs to negative values (-39.8 mV) for surface modified PSS-AuNRs.  
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Figure 4–16: TEM-EDX spectra and maps from a) CTAB-rods and b) surface modified 

PSS-rods. 
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4.6 Conclusion 

In summary, well-controlled and reproducible Au nanostructures including AuNPs, AuNRs, 

AuNBPs and AuNTs have been synthesized. Firstly, AuNPs were synthesized with a 

progressive increase in size following each modified growth step. Secondly, well-defined and 

homogeneous CTAB-capped AuNRs with various ARs were produced. The AR of the rods 

can be tailored to absorb from the visible to the NIR by varying the amount of AgNO3 in the 

growth solution. In addition, surface modification of CTAB-capped AuNRs was achieved via 

PSS and silica coating. AuNBPs were also synthesized producing different AR structures. 

This absorption spectra of this nanostructure can be tuned over the NIR region by using 

different amounts of seed solution. Finally, high yield AuNTs were produced via a one pot 

seedless synthesis method. To obtain an increase in the average edge length of the triangles, 

the amount of KI and NaOH were found to be the dominant parameters.  

With different seed structures and synthesis conditions, shape-controlled Au nanostructures 

were achieved. UV-vis spectroscopy revealed that the SPR mode can be tailored to the NIR 

region, implying that these Au nanostructures would be good candidates for healthcare 

applications such as thermotherapy and imaging. Further analysis of these interesting optical 

and other properties will be presented in subsequent chapters to provide a more in-depth 

understanding. 
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5. Chapter 5 Plasmonic properties of gold 

nanostructures 

 The previous chapters have investigated both the structural characterisation and the 

optical properties of synthesized Au nanostructures. However in order to provide a full 

characterization, electron energy loss spectroscopy (EELS) in the TEM can be used to achieve 

a spatial characterization of the plasmonic modes of nanostructures. This information allows 

for the prediction of potential plasmonic properties and optimization of their use in healthcare 

applications. Surface plasmon oscillations can be induced by a fast electron passing nearby a 

particle [1, 2] and the low loss EEL signal results from the interaction of this electron beam 

with the particle. This can directly probe plasmonic properties of individual Au 

nanostructures. 

In order to gain a better understanding of the surface plasmons generated within a particular 

nanostructure, computational simulation of Au nanospheres and Au nanorods were also 

investigated using COMSOL Multiphysics finite element modeling (FEM) software using 

plane wave excitation, following the description in [3]. EELS in scanning transmission 

electron microscopy (STEM) mode was used to achieve spatial characterization of the surface 

plasmon modes of the Au nanostructures and results were compared with both UV-vis spectra 

and COMSOL simulations. 

5.1 Finite Element modelling of the optical response of isolated AuNPs and AuNRs in a 

medium 

5.1.1 Modelling methodology 

The modelling of plasmonic resonances was undertaken to support the experimental data for 

the case of isolated AuNPs and AuNRs employing the FEM methods described in reference 

[3] and presented in chapter 3, section 3.2.2. In brief, FEM splits a particular shape into a 

finite number of elements to provide an accurate representation of the geometry. A set of 

partial differential equations is solved within each element under boundary conditions and 

then the results are combined. The FEM software in COMSOL allows simulation of the 

electromagnetic waves within a specific frequency domain. A plane wave is used to generate 

the electric field and excite different modes of the nanoparticles. By varying the frequency of 

the incident plane wave, a range of solutions in terms of wavelength are obtained. The particle 

is located in the middle of the domain, i.e. a medium with a particular refractive index.  
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5.1.2 Results 

Au nanospheres 

A 100 nm diameter Au sphere in water (refractive index of water, n=1.33) is used as a 

modelling example. The extinction spectrum of the AuNP is presented in figure 5-1. The inset 

shows the electric field distribution for the transverse mode at the resonance wavelength of 

575 nm. Then, the model was modified and the effect of varying the diameter of the AuNP 

was simulated in vacuum (n=1.00), in order to compare the results, and this is illustrated in 

figure 5-2. The results were compared to the experimental optical UV-vis spectra, shown in 

figure 4-1a. From the simulation, changing refractive index from water to vacuum causes a 

relative blue-shift in the simulated spectra. It was also found that the simulated extinction 

spectra are in a agreement with the measured extinction spectra. Also, there was a relative 

red-shift in the observed experimental data. The simulation results showed a blue-shift with 

decreasing sphere diameter which is in agreement with the results in chapter 4, section 4.1 

and also those in the literature [3-6], see figure 5-3. 

 

Figure 5–1: Modelling the extinction spectra of a 100 nm diameter AuNPs in water. Inset 

shows the electric field distribution excited from 575 nm plane wave. The plane wave incident 

radiation with a red arrow. 
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Figure 5–2: Simulated extinction spectra of AuNPs in vacuum with increasing AuNP’s radius 

from r=5 nm to r=50 nm. 

 

Figure 5–3: Comparison of measured (dash line) and simulated extinction spectra (solid line) 

of AuNPs. 
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Au nanorods 

An isolated AuNR with an AR of 4.2 (length=84 nm and width=20 nm) was modelled in 

vacuum without a surface coating. The AuNRs were placed at 45 degrees to the incident plane 

wave direction so as to excite both the longitudinal and transverse SPR modes. Figure 5-4 

shows the simulated extinction spectrum over the wavelength range 400 nm to 900 nm. 

Characteristic peaks were excited at 860 nm and 520 nm corresponding to the longitudinal 

and transverse SPR modes, respectively.  At 860 nm, the simulated electric field distribution 

was concentrated at the tips of the AuNR. The simulated spectrum showed a significant red-

shift compared to the optical UV-vis spectra of the AuNR sample 5 shown in chapter 4, 

section 4.2 (which exhibited a longitudinal SPR at about 800 nm), The resulted from 

simulated and measured extinction spectra of AuNRs with AR about 4.2 were compared and 

illustrated in figure 5-5. The experimentally observed relative red-shifts in both AuNPs and 

AuNRs may arise from variations in the end-cap geometry, the presence of a surface coating 

(with a different refractive index) and inhomogeneities in the size distributions of the samples, 

as well as the refractive index of the surrounding medium.  

 

Figure 5–4: Simulated extinction spectra of an isolated AuNR (non-coating) in vacuum with 

an AR of 4.2. Inset shows the electric field distribution excited by an 860 nm plane wave 

(the longitudinal SPR mode) which is concentrated at the tips of the rod.  
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Figure 5–5: Comparison of measured (red line) and simulated extinction spectra (blue line) 

of AuNPs with AR of 4.2. 

These parameters were also investigated for the case of different surface coating layers and 

the results are presented in figure 5-6. For an AuNR of AR=4.2, better agreement between 

the modelling and experimental data was achieved when choosing a CTAB layer of thickness 

3.2 nm (as reported in Ref. [3] and observed approximately in TEM images in chapter 4) and 

the refractive index of water which is 1.33575 (green graph). This resulted in a blue shift of 

the longitudinal mode of 15 nm from the simulated model with a CTAB thickness of 3.2 nm 

and CTAB refractive index of 1.4785 (blue graph). The effect of surface coating with a 3.2 

nm thick CTAB-coated AuNR and a similar PSS coating layer with a refractive index of 

1.3875 was also modeled and is presented in figure 5-7. Figure 5-8 shows the effect of 

increasing AR, there is a red-shift of the longitudinal SPR mode with increasing AR which is 

in good agreement with the experimental optical UV-vis spectra in chapter 4, section 4.2 and 

also the literature [3, 7-10]. 
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Figure 5–6: The shifts in simulated extinction spectra of a surface coated AuNR of AR= 4.2 

resulting from different coating parameters. 

 

Figure 5–7: The red-shift in simulated extinction spectra of PSS- and CTAB-coated AuNRs. 

Inset shows the layer of surface coating and the electric field distribution. 
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Figure 5–8: simulated extinction spectra of a 3.2 nm thick CTAB-coated AuNR in a water 

medium n=1.33, with increasing AR from 1 to 5. 

5.2 Experimental procedure 

5.2.1 Gold nanostructures  

All samples including AuNPs, AuNRs, AuNBPs, and AuNTs used in this section were freshly 

synthesized using the procedures described in chapter 3 and characterised using the methods 

described in chapter 4. 

5.2.2 Plasmonic characterization using electron energy loss spectroscopy – experimental 

details  

The electron beam acts as a current carrying wire that generates a radial electric field [11]. 

This electric field can excite surface electron oscillations also known as localized surface 

plasmon resonances (LSPR) of the gold particle. When the electron beam passes close to a 

nanoparticle and causes excitation, the oscillating electrons corresponding to the LSPR can 

induce an electric field in the particle. This induced electric field interacts with the incident 

electric field from the electron beam and results in a loss in energy of the electron beam which 

can be detected in the EEL spectrum. The inelastically scattered electrons pass through an 

entrance aperture and into the EEL spectrometer which disperses the electrons in terms of 

their energy loss and then focuses them onto a scintillator coupled to a CCD camera. In STEM 
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mode, EEL spectra are collected at each probe position creating a spectrum image (SI) and 

allowing the spatial characterization of the plasmonic properties at a single particle level. 

Electron energy loss measurements were performed using a FEI Titan Themis cubed TEM 

operated at 300kV and fitted with a monochromated electron source. The monochromator 

was used to achieve an energy resolution of 0.3 eV measured at a dispersion of 0.01 

eV/channel. All dispersions of nanostructures were directly drop caste onto non-porous, pure 

silicon, 5 nm thick TEM support films consisting of 9 small windows (purchased from 

EMresolutions) and left to dry naturally. Single particles of the Au nanostructures were 

selected for the acquisition of EEL spectra with sufficient space between particles so as to 

avoid plasmonic coupling effects.  

Only the low-loss energy region from 0-3 eV was considered in this thesis, where the surface 

plasmon interaction of Au nanostructures is dominant. All data processing was undertaken 

using Gatan Digital Micrograph software. The EELS data are presented in three dimensional 

SI maps where the x-y pixel represents the probe position and the z-pixel value the intensity 

of EELS spectrum integrated over a particular energy range. In this thesis, spectra were 

acquired with an exposure time of 0.002 seconds/pixel over a selected area to provide a 

sufficient signal to noise ratio whilst minimizing the effects of sample drift, hydrocarbon 

contamination and sample damage. The tails of zero-loss peak (ZLP) which forms the 

background in this energy region was carefully removed using a power law subtraction 

method [3, 12, 13]. A region of interest (ROI) was carefully selected in x-y pixels and EELS 

spectra integrated over all selected pixels. EELS spectra were normalized in terms of number 

of pixels in the ROI. In order to compare the different SI maps and visualize the plasmonic 

mode of Au nanostructures, the SI maps were normalized to the total electron counts over all 

selected pixels using the simple math option in Digital Micrograph. 

5.3 Results 

5.3.1 The experimental EELS spectra of Au nanostructures 

Au nanospheres 

EELS spectra and SPR resonance modes of (an approximately spherical) single gold 

nanosphere with a diameter of approximately 25 nm is shown in figure 5-9. The blue box 

indicates the position of the electron beam when acquiring the EELS spectra. The EELS signal 

after ZLP subtraction and reconstruction with Gaussian fit function to extract the peak 

position shows a distinct peak at 2.36 eV (corresponding to optical UV-vis absorption 

wavelength of 525 nm) as displayed in figure 5-9d. Example of Gaussian fitting on EELS 
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spectra were illustrated in figure 5-10. In this AuNPs’ case, the energy range were selected to 

be 2.2-2.5 eV for the Gaussian fitting. The spatial distribution of the plasmon resonance of 

the AuNP over the energy range 2.2 - 2.4 eV is shown in figure 5-9c. It shows a uniform 

distribution of intensity surrounding the particle which corresponds to the dipolar LSPR mode 

of Au nanoparticles and the result is in good agreement with results for gold nanoparticles of 

comparable sizes [14]. Comparing with the COMSOL simulations for a 25 nm diameter 

AuNP in vacuum, see figure 5-2, this showed a maximum extinction of light at a value of 527 

nm; the corresponding value for a 20 nm diameter AuNP being 525 nm. This together with 

comparison with the UV-vis spectra of the 20-nm AuNP suspension (shown in figure 4-1), 

indicates good agreement between spatially resolved EELS measurements with both the 

calculations and the experimental UV-vis results.  

 

Figure 5–9: TEM micrographs of AuNP with diameter of 20x25 nm: a) bright field image 

and b) HAADF image. c) SI map showing the plasmonic mode over the energy range 2.2 - 

2.4 eV. d) EELS spectrum (following ZLP subtraction) at the position indicated by a blue box 

in a) illustrating a resonant peak at 2.36 eV (525 nm). 
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Figure 5–10: Example of Gaussian fitting with the selected energy range (2.2-2.5eV) of the 

EELS spectrum for AuNPs with diameter of 20x25 nm. The Gaussian fitting illustrated the 

maxima peak at 2.360.01 eV. 

Au nanorods 

The experimental EELS spectra of a single AuNR with an AR of 2.6 (60.1nm length and 

23.8nm width) together with bright field and HAADF STEM images are presented in figure 

5-11. The EELS spectra were collected at the tip (blue box) and the middle (orange box) 

positions of the AuNR to simulate the two different SPR modes shown in the two distinct 

EELS spectra in figure 5-11d. The resonance energy at the tip was 1.74 eV (712 nm), whilst 

in the middle of the rod it was located at 2.38 eV (521 nm), corresponding to the longitudinal 

and transverse SPR modes, respectively. Energy filtered SI maps were constructed for the 

energy ranges 1.6 - 1.7 eV for the tip position, and 2.2 - 2.4 eV for the middle of the rod and 

are shown in figure 5-11c. This revealed the two distinct longitudinal and transverse 

plasmonic modes of AuNRs. The longitudinal SPR mode is associated with a high intensity 

at the tip of AuNR and reflects the longitudinal oscillation of electrons that induces a dipole 

along the rod axis when electron beam is positioned near the tip of the rod. Moreover, the 

bright field and HAADF images in figure 5-11a and b revealed an asymmetric structure with 

more curvature at the upper tip compared to bottom part of the rod. This resulted in a higher 

intensity in the energy filtered SI map in figure 5-11c. On the other hand, the transverse SPR 
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mode shows a modulated intensity distribution surrounding the particles where the electron 

motion is perpendicular to the rod axis.  

 
Figure 5–11: STEM micrographs of a single AuNR with AR of 2.6 (60.1 nm long and 23.8 

nm width): a) bright field image and b) HAADF image. c) SI map showing the longitudinal 

and transverse plasmonic modes of the AuNR with the stated energy ranges. d) EELS spectra 

of the single AuNR at two different positions shown in a) by the blue and orange coloured 

boxes, showing resonant peaks at 1.74 eV (712 nm) and 2.38 eV (526 nm), respectively. 

AuNRs with different ARs were also investigated and an example for a larger AR rod is 

presented in figure 5-12.  For rods with a larger AR, it was found that there was an energy 

loss shift to lower energies, close to 1.0 eV, which represents the red-shift in the longitudinal 

SPR mode of AuNRs as the rod AR increases. For example, the optical UV-vis extinction of 

an AuNR sample with an AR of 2.6 (figure 4-2) showed longitudinal and transverse 

absorption at 712 nm and 525 nm, respectively.  

Generally the optical spectra showed good agreement with the EELS results. Similar to the 

case of AuNPs, computational simulation was employed to confirm the precision of 

experimental EELS data collection. It was shown that an AuNR with AR of 2.6 theoretically 

exhibits the longitudinal extinction at 1.83 eV (675 nm) in vacuum. The slightly red-shifted 

value observed from the EELS spectra in figure 5-11 can be attributed to the remaining 

surface coating and/or the effect of the substrate as reported in the literature [2, 3, 14].  
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Figure 5–12: STEM micrographs of a longer AuNR with AR of 4.75 (75.4 nm long and 15.9 

nm width): a) bright field image and b) HAADF image. c) SI map showing the SPR modes of 

the AuNR with the stated energy ranges. d) EELS spectra of the single AuNR at different 

positions shown in a) by the blue and orange coloured boxes, showing resonant peaks at 1.22 

eV (1000 nm) and 1.80 eV (680 nm) along with a potential peak at 2.33 eV (535 nm), 

respectively. 

Au nanobipyramids 

Au nanobipyramids were also investigated using STEM-EELS measurements in the low-loss 

region. These nanoparticles have bipyramidal structures with a pentagonal base growing up 

to form an arrowhead- shaped tip as described in section 4.3.  Amongst these AuNBPs, we 

focused on a particle with AR of 3.1 [Length = 68.8 nm and width = 22.4 nm] which showed 

an optical absorption maxima in the NIR region, comparable with EELS spectra from an 

AuNR of a similar AR. Figures 5-13a and b presents STEM bright field and HAADF images 

of the AuNBP. EELS spectra were extracted from different acquisition positions denoted as 

the tip (A), side (B), and middle (C), respectively, as presented in HAADF image.  After post-

analysis of EELS spectra, the dominant SPR modes of the synthesized AuNBP were observed 

and are presented in figures 5-13c and d. This illustrates the A and C modes which are the 

typical SPR modes of bipyramidal structures reported in the literature [15]. The A mode is 

localized at the sharp tip of the particle, whilst the C mode occurred at the short axis (middle 

part) of the particle. However, there is a report that there are three SPR modes of a bipyramid 

[15, 16]. A further B mode may possibly be observed at the side facet of the bipyramid in 

figure 5-13c. The plasmonic peaks were observed to be located at 1.62 eV (765 nm), 2.1 eV 

(590 nm), and 2.33 eV (530 nm) corresponding to the A, B, and C SPR modes, respectively.  
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Comparing these results to the optical UV-vis extinction spectra of the AuNBPs, the A-SPR 

mode matched well with the longitudinal mode of the AuNBPs of AR=3.0 with an absorption 

maximum of 1.63eV (760 nm) (figure 4-9). The C-SPR mode corresponds to the transverse 

mode associated with the 2.36 eV (525 nm) absorption maximum of the bipyramidal particles. 

In the figure 4-9, the UV-vis profile showed a small peak occurring at around 1.9 - 2.1 eV 

(600 - 650 nm). This could be the B-SPR mode, which is the quadrupole mode. In terms of 

the EELS SI maps of the plasmonic distribution of the A, B, and C-SPR modes, it is clear that 

the A mode is a dipolar active mode concentrated at the tip of the bipyramids. The position 

of this mode is strongly dependent on the sharpness and AR of the bipyramid and exhibited a 

red-shift to lower energy as the AR increased (compare figures 5-13 and 5-14), which is 

similar to the situation for AuNRs. The quadrupolar B-mode is not clearly identified, however 

it could vary as a function of the size and AR. The position of the C-SPR mode is not 

significantly shifted, similar to the transverse SPR mode of AuNPs and would correspond to 

resonance along the short axis of the bipyramid. These findings are in a good agreement with 

previous work [15]. 

 

Figure 5–13: a) STEM bright field image of AuNBP with AR of 3.1 (length/width of 68.8/22.4) 

with three different EELS data acquisition positions denoted as tip (A), side (B), and middle 

(C), respectively: b) STEM HAADF image: c) SI map showing the spatial distribution of SPR 

modes at the different positions with the stated selected energy ranges: d) EELS spectra of 

the AuNBP extracted from the positions indicated in the HAADF image in (a). 
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Figure 5–14: a) STEM bright field image of an AuNBP with AR of 2.4 (length/width of 

47.5/19.8) with different EELS data acquisition positions denoted as tip (A) and middle (C): 

b) STEM HAADF image c) SI map showing the spatial distribution of SPR modes at the 

different positions with the stated selected energy ranges: d) EELS spectra of the AuNBP 

extracted from the positions indicated in the HAADF image in (a). 

Au nanotriangles 

EELS measurements were also carried out on the AuNT samples in order to provide more 

understanding of the plasmonic properties. In figure 5-15a and b both bright field and HAADF 

STEM images show a regular gold triangle with an edge length of 74.48 nm. Spectra were 

integrated at the tip (A), the edge (B), and the centre (C) of the triangle and revealed distinct 

features, illustrated in figure 5-15d. EELS peaks were observed at 1.72 eV (720 nm), 2.12 eV 

(585 nm), and 3.16 eV (392 nm) with respect to the A, B, and C positions, respectively. The 

SPR distributions are illustrated in the normalized SI maps shown in figure 5-15c constructed 

following post data analysis using the energy ranges indicated.  

By comparing the spatial characteristics of the SPR modes, three common SPR modes were 

evident. At 1.72 eV, a well-localized strong resonance was found to be located at the tips of 

the triangle which is a dipolar plasmonic resonance. The plasmonic distribution at 2.12 eV 

was localized at the edges of triangles and is related to the in-plane SPR mode. While the 

plasmonic distribution in the centre, at the energy of 3.16 eV, is relatively weak compared to 

the others and difficult to see above the noise, this is the bulk volume plasmon resonance of 

gold. These observed plasmonic SPR modes of the AuNT are in a good agreement with the 

published experimental and theoretical studies of individual gold nanotriangle particles [17, 

18]. Furthermore, the optical UV-vis absorption AuNTs (presented in figure 4-11) showed 

that a large AuNT sample with average edge length of 99.8 ±24.4 nm exhibited two distinct 

peak positions at 1.83 eV (675 nm) and 2.34 eV (530 nm) corresponding to the dipole and in-
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plane SPR modes. However a significant red-shift was seen in the EELS spectra relative to 

UV-vis data, similar to the results for the AuNBPs. The SPR mode of the AuNT depends on 

both the edge length and sharpness of the tips of the AuNT. Increasing the size of the AuNTs 

resulted in a red-shift of the EELS spectra, as clearly observed in the EELS measurement of 

a larger AuNT with edge length of 190nm (illustrated in figure 5-16). Similar results were 

observed in the optical UV-vis absorption, as well as being predicted by theoretical studies in 

the literature [19, 20]. 

 

Figure 5–15: a) and b) Bright field STEM and HAADF images of an AuNT with an edge 

length of 74.48 nm. c) SI map illustrating three plasmonic modes with the selected energy 

ranges indicated. d) EELS spectra of the AuNT at the different locations indicated in (b): tip 

(A), centre (B), and edge (C).  

 

Figure 5–16: a) and b) Bright field STEM and HAADF images of an AuNT with an edge 

length of 190 nm. c) SI map illustrating three plasmonic modes with the selected energy 

ranges indicated. d) EELS spectra of the AuNT at the different locations indicated in (b): tip 

(A), centre (B), and edge (C). (Sample courtesy of Dr Sunjie Ye) 
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5.3.2 Coupling between Au nanostructures 

EELS measurements can also demonstrate the coupling between SPR modes of closely 

spaced Au nanostructures. Figure 5-17a shows the plasmon mode of a dumbbell-like particle 

consisting of two touching nanospheres. The plasmonic mode of the combined particle at an 

energy of 2.4 eV illustrates the strongly enhanced field at the neck between the particles area, 

indicated in red. A similar effect is seen in the cluster of AuNTs in figure 5-17b, which shows 

a strong increase in intensity at the regions where the tips are close to a neighbouring NT 

particle. In figure 5-17c, the spatial distribution of the SPR modes of two triangles located at 

a distance of a few nm apart is shown. Two SPR modes at 1.7 eV and 2.1 eV are evident. The 

field distribution at the tips of the NTs are enhanced at an energy of 1.7 eV, whilst over the 

energy range 2.0 - 2.2 eV, a localized SPR mode was enhanced in the gap between the 

triangles.  

A more complex cluster of Au nanostructures is shown in figure 5-17d, where two SPR modes 

were evident. At the top-left area of the cluster there was an SPR mode with an energy of 1.7 

eV whilst another plasmonic mode was found at 2.4 eV with significant intensity located at 

the sharp corners of the overall cluster. The cluster is irregular and non-symmetrical and the 

intensity is considerably higher on the right hand side of the cluster, which exhibits more 

sharp areas of close contact than the left hand side. 

 

 

Figure 5–17: STEM micrographs and their relative energy filtered SI maps over the stated 

energy ranges: a) two closely spaced spheres; b) a cluster of triangles; c) two triangles 

separated by a gap of a few nm; and d) a cluster of Au nanostructures. 
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Figure 5–18: STEM BF images of Au nanostructures, including: a) an unsymmetrical AuNP: 

b) an AuNR with hemispherical caps of different radii of curvature: and c) a large AuNT with 

very sharp tips, together with associated SI maps over the given energy ranges indicated. 

In order to confirm this hypothesis, further investigations of individual unsymmetrical Au 

particles were undertaken. Figure 5-18a shows the strong intensity of the SPR mode in the 

elongated area of a distorted AuNP. The SPR distribution at the top and bottom of an AuNR 

presented in figure 5-18b is asymmetric and is more intense where the hemispherical endcap 

exhibits a higher degree of curvature. Similarly, in figure 5-18c, the sharpest tips of AuNTs 

exhibit the most intense SPR mode. These results are in excellent agreement with previous 

reports [2, 14].  

In chapter 4, optical characterization was performed on whole suspensions of Au 

nanostructures. EELS measurements allow the spatial plasmonic modes of an individual Au 

nanostructure to be revealed and this can contribute to the design of such particles for 

photothermal therapy applications in healthcare. The potential of different Au nanostructures 

is revealed by such plasmonic studies using EELS SI mapping and their thermal stability can 

be ascertained using in-situ heating which is described and detailed in the next chapter.  

5.4 Conclusion 

In conclusion, the spatial characterization of the plasmonic properties of Au nanostructures 

using STEM/low-loss EELS analysis was examined in this chapter. Firstly, FEM simulations 

of the excitation spectra on isolated particles using plane wave illumination allowed 

comparisons with the experimental optical spectra and also EELS data. The surface plasmon 

modes, electric field enhancement, and the coupling effect between nanostructures were then 

spatially investigated. It was found that EELS results showed good agreement results with 
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FEM computational simulations and the experimental uv-vis spectra. This confirmed that the 

optical and plasmonic properties of individual Au nanostructures depend on size and shape. 

Furthermore, EELS analysis leads to the suggestion that Au nanostructures including AuNRs 

and AuNBPs with the energy loss energy of 1.0 - 1.7 eV corresponding to an optical extinction 

of about 700 - 1000 nm would be a good candidate for photothermal therapy due to their 

narrow range of optical excitation. While AuNTs and AuNPs exhibited presented a broad 

range of optical excitation, the strongest SPR mode was clearly observed at a low energy of 

1.1 eV (1140 nm) from a very large AuNT with an edge length of approximately 190 nm. 

Hence, the 1140-nm absorbing AuNT is one of the best candidates for healthcare applications 

due to well-defined NIR plasmonic properties. The localized SPR maps show a field 

enhancement localized at the sharp tips of the particles. This field enhancement can be 

employed to convert light-to-heat and generate sufficient heat for use in thermal therapy. With 

increased curvature, Au nanostructures could provide high field enhancement at the tips 

further shifting the SPR mode into the NIR region. Additionally, the effect of coupling needs 

to be considered as the cluster can exhibit two distinct SPR modes which might directly affect 

the shift in SPR response and its frequency. These studies highlight parameters in term of 

selecting and using certain wavelengths for irradiation to activate photothermal therapy. 
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6. Chapter 6 Thermal stability of gold 

nanostructures 

Gold nanostructures have recently received considerable research interest since they 

exhibit chemical stability and biocompatibility which make them suitable for use in biological 

applications and they also present shape-dependent optical properties [1-4]. Gold 

nanostructure synthesis has been intensively researched allowing easy size control of gold 

nanoparticles and well-defined shape synthesis. In chapter 4, I have presented a set of facile 

synthesis methods for obtaining gold nanostructures with well-defined morphologies and 

different sizes including AuNPs, AuNRs, AuNBPs, and AuNTs. By tailoring the size and 

refining the morphology of these particles, their SPR absorption peaks can be tuned and 

shifted into the near infrared (NIR) wavelength region [2, 5] for the purpose of in-vivo 

biomedical applications such as photothermal therapy [6-9] and ultrasound imaging [8, 9]. 

This NIR region offers low energy absorption and scattering with low damage to allow high 

penetration of irradiated light into tissues [10].  

Gold nanostructures have been employed in a number of photothermal therapy experiments 

due to their light-to-heat conversion property [11]. Among these gold nanostructures, AuNRs 

are receiving much interest in terms of thermal therapy due to the fact that the longitudinal 

SPR can be easily tuned over the NIR region. As discussed in previous chapters, AuNRs 

exhibit two SPR absorption peaks: a transverse SPR mode and a longitudinal SPR mode. The 

longitudinal SPR mode is very sensitive to AR. In AuNRs, there is a decrease in the AR 

during exposure to ultrafast pulsed laser radiation and thermal heating [12-15]. Similar results 

have been reported in the literature for the other particle shapes when used in applications 

involving increases in  temperature [16-18]. Furthermore, SPR spectra in all synthesized Au 

nanostructures are very sensitive to shape and size, thus any slight change in shape of gold 

nanoparticles is dramatically reflected in their optical properties as presented in chapter 4 and 

5. Therefore, the thermal stability of Au nanostructures is of interest both fundamentally and 

for their use in specific medical applications. 

In this chapter we present time-resolved in-situ TEM heating experiments of Au 

nanostructures including AuNPs, AuNRs, AuNBPs, and AuNTs as well as a comparison of 

different surface coatings (CTAB, PSS, and silica) in AuNRs. These studies provide direct 

observation of the structural changes in the gold nanostructures as well as their shape 

deformation mechanism. The effect of size and geometry of the Au nanostructures on the 

thermal stability were investigated as well as the effect of surface modification. The results 
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from these experiments can aid determination of the usable range of Au nanostructures in 

applications which require no change in optical properties as a result of thermal excitation. 

6.1 Experimental procedure 

6.1.1 Preparation of gold nanostructures  

Gold nanostructures were freshly synthesised via the wet chemical synthesis procedures 

discussed in chapter 3. Citrate-stabilized AuNPs were synthesized as detailed in chapter 3, 

section 3.1.1. The modified seed mediated method was used to synthesize AuNRs (chapter 3, 

section 3.1.2). The as-prepared AuNRs were stabilized and surface modified with CTAB, 

PSS, and silica coatings (detailed in chapter 3, section 3.1.5). CTAB-coated AuNBPs were 

fabricated using a two-step seed mediated method described in chapter 3, section 3.1.3. The 

synthesis of CTAC-stabilized AuNTs was achieved with a one-step synthesis method detailed 

in chapter 3, section 3.1.4. 

6.1.2 Materials Characterization and TEM heating experiments 

Before being characterized, all Au nanostructures were centrifuged twice and redispersed 

with the same amount of Milli-Q water to remove the excess surfactant. They were then 

characterized by UV-vis spectroscopy, TEM and DLS using the procedures described in 

chapters 3 and 4.  

In-situ TEM heating experiments 

The thermal stability of Au nanostructures was studied via in-situ TEM heating experiments. 

The samples were prepared by dropping 2 µl of a centrifuged Au suspension onto a Si3N4 

heating chip (DENS solutions) which was then allowed to dry naturally. The chip was loaded 

into the in-situ DENS heating holder and inserted into the TEM. The detailed of experimental 

workflow is presented in figure 6-1. The chip was heated from room temperature up to 

1100ºC, applying a 50ºC increase every 5 minutes (10 ºC/min). The morphology of the sample 

in the centre of the heating chip was monitored (figure 6-2).  
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Figure 6–1: In-situ TEM heating experimental set up: a) schematic of Si3N4 heating chip; b) 

The TEM heating set up steps: 1) drop 2 µl of Au nanostructures on the back of heating chips; 

2) mount TEM heating chip in TEM heating holder; 3) load TEM heating holder into the 

TEM; and 4) connect all wires with controller unit and set up heating experiment. 

 

Figure 6–2: TEM micrographs of TEM heating chip with selected AuNRs at the centre. 
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6.2 Results and discussion 

6.2.1 The effect of size and geometry on the thermal stability of Au nanostructures 

Citrate-stabilized Au nanoparticles (AuNPs) 

Figure 6-3 showed that the diameter of AuNPs did not significantly change during the heating 

experiment. The TEM images reveal minor structural changes and an increasing spherical 

morphology as the temperature increased (figure 6-3a). This deformation mechanism arises 

from the minimization of surface energy to become more thermodynamically stable via a 

transition from a higher radius of curvature to a lower radius of curvature resulting in the 

particle becoming more spherical as the temperature increased. The heating profile is plotted 

in figure 6-3b and suggests that this spherical geometry shows a high thermal stability up to 

1000ºC. 

 

Figure 6–3: a) TEM micrographs of a 45 nm diameter citrate-stabilized AuNP at different 

temperatures: RT, 200ºC, 600ºC, 800ºC and 1100ºC; b) The maximum particle diameter with 

temperature and the associated linear fit. 
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CTAB-capped Au nanorods (AuNRs) 

The heating results illustrated a structural change of AuNRs with increasing temperature 

(figure 6-4a), notably a decrease in aspect ratio. The changes in AR for different rods over 

the heating temperature profile are shown in figure 6-4b. It was found that the aspect ratio of 

the rods initially began to change at low temperatures ca. 100ºC, with a relatively slow rate. 

More significant changes were then observed at higher temperatures, with the rod length 

decreasing and the rod width increasing. The slopes of the graphs in figure 6-4b revealed the 

rate of change of the AR as a function of temperature. At temperatures up to ca. 300ºC, the 

rate was highest and then reduced and became relatively constant at higher temperatures. For 

temperatures ˃600ºC, particles became increasingly spherical for all rods monitored. There 

was some variation in results with some rods exhibiting a significant change in AR at high 

temperatures, e.g. > 700ºC for rods 1, 2 and 3.  

 

Figure 6–4: a) TEM micrographs of a CTAB-coated AuNR with an AR of 3.82 (rod 4) at 

different temperatures: RT, 50ºC, 150ºC, 300ºC, 600ºC and 800ºC. 
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Figure 6-4: b) The change in rod AR with temperature and associated linear fits for different 

AR rods. 

 
Figure 6-4: c) The rate of change of rod AR with respect to temperature plotted as a function 

of the original aspect ratio for different CTAB-capped AuNRs.  
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The observed rate of change of rod aspect ratio with respect to temperature (in units of K-1) is 

plotted as a function of the original rod aspect ratio in figure 6-4c. The values are also 

summarized in Table 6-1. It can be seen that longer rods exhibited a higher rate of change 

than shorter rods with a nearly linear relationship of the slope with original aspect ratio. Hence 

longer rods were found to be more thermally unstable with respect to their morphology, which 

is in agreement with previous studies [12, 19, 20]. Such behaviour is in agreement with the 

modelling studies of Taylor et al. [19] who proposed that the surface diffusion coefficient was 

a function of the rod aspect ratio; increased tip curvature in longer AR rods resulting in a 

lower activation energy for surface diffusion. 

Table 6-1: Summary of the rate of change of Au nanostructure morphology with respect to 

particle dimensions. 

Sample Aspect ratio Rate of change (𝒅𝑨𝑹
𝒅𝑻

, 𝑲#𝟏) 

Citrate stabilized  AuNP 1.05 -0.00021 

CTAB-capped AuNR 1 5.05 -0.00343 

 AuNR 2 4.53 -0.00292 

 AuNR 3 4.23 -0.00196 

 AuNR 4 3.82*smallest size -0.00343 

 AuNR 5 2.87 -0.00107 

 AuNR 6 2.34 -0.00107 

 AuNR 7 1.30 -0.00023 

CTAB-capped AuNBP 1 2.58 -0.00149 

 AuNBP 2 2.49 -0.00128 

CTAC-capped AuNT 1 Edge ~ 104.6 nm -0.00349 

 AuNT 2 Edge ~ 83.0 nm -0.00385 

 AuNT 3 Edge ~ 69.2 nm -0.00712 

PSS-coated AuNR 1 4.17 -0.00130 

 AuNR 2 3.82 -0.00120 

 AuNR 3 3.23 -0.00110 

 AuNR 4 2.81 -0.00113 

 AuNR 5 2.53 -0.00039 

Silica-coated AuNR 1 3.52 -0.00045 

 AuNR 2 3.12 -0.00036 

 AuNR 3 2.53 -0.00014 

 AuNR 4 2.21 -0.00004 
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The change in AR also depended on the surface area to volume ratio [21]; thinner rods (rods 

1-4) exhibited a more rapid decrease in AR with respect to temperature as compared to thicker 

rods (rods 5-7). For rods with different lengths but the same width, the longer rods showed 

more a significant change with temperature than the shorter rods. Interestingly, rod 4, which 

is thinnest rod (an AR of approximately 3.8 with length 28.3 nm and width 7.4 nm), illustrated 

that the surface of AuNR started melting and diffused from the tip to the middle of the rod at 

ca. 150. At 300, a significant decrease in length was observed. At higher temperatures the rate 

of change increased, and the rod transformed into a sphere at about 800 (figure 6-4a).  

In terms of volume change, initial room temperature TEM images (figure 6-3a) were 

compared with those at the end of heating profile. Assuming a cylindrical rod with two hemi-

spherical endcaps, the estimated initial volume was  nm3 whilst the spherical particle volume 

after heating was nm3. This perhaps indicates a slight change in volume which may occur 

during to surface melting via evaporation or diffusion onto the support film. It is also noted 

that CTAB could transform to become an amorphous carbon layer possibly preventing surface 

diffusion and the deformation of AuNRs [22]. The effect of different types of surface 

modification is studied in section 6.2.2. 

CTAB-capped Au nanobipyramids (AuNBPs) 

The influence of shape on thermal stability was studied by heating AuNBPs with an AR of 

about 2.5 (length 67.5 nm and width 26.6 nm). Figure 6-5 suggests that, in general, the rate 

of change of AR with respect to temperature of AuNBPs increases with increasing 

temperature similar to the behaviour of CTAB-capped AuNRs. However, the rate of change 

of AR at low temperatures ca. < 200 is slightly smaller when compared to AuNRs of similar 

dimensions (e.g. rod 5 in figure 6-4b). This suggests that bipyramids can retain their shape to 

slightly higher temperatures relative to AuNRs. The bipyramids reduced AR by shrinking 

from the tips and depositing in the middle part of the AuNBP between ca. 300  to 600 with a 

relatively constant decrease in. Above 600, the morphology changes much more rapidly 

becoming spherical, illustrating the higher rate of change of AR with increasing temperature, 

as shown in figure 6-5a and b.   
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Figure 6–5: a) TEM micrographs of CTAB-capped AuNBPs at different heating 

temperatures: RT, 200ºC, 400ºC, 600ºC and 800ºC; b) The change in AR with heating 

temperature for two different AuNBPs with an AR of about 2.5 (length 67.5 nm and width 

26.6 nm) 
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CTAC-stabilized Au nanotriangles (AuNTs) 

The thermal stability of AuNTs was also explored. TEM images of three AuNTs with 

different initial edge lengths of 104.6nm, 83 nm and 69.2 nm at different temperatures 

revealed a structural change from triangular plates to more spherical structures. The rate of 

change in edge length dimension of the AuNTs with respect to temperature increases with 

increasing heating temperature, as illustrated in figure 6-6. However, the evolution from a 

triangle to a sphere is relatively constant up to ca. 800; different sized AuNTs behaved in a 

similar way. However, at higher temperatures, a significant change was first observed for the 

smallest triangle (edge length ~ 69.2 nm), similar to the result reported by Kan and co-workers 

[23]. Reconstruction of the sharp tip to become more rounded occurred first, followed by 

redeposition in the middle of the edge and finally transformation to a sphere at a temperature 

above 1000. Larger AuNTs showed a slightly lower rate of change (at lower temperatures) 

due to the lower surface area to volume ratio. This implies that AuNTs are stable under 

working temperatures up to ca. < 700-800 , depending on the size of AuNT. 

Fast-ramp heating  

Fast-ramp thermal heating experiments were performed by increasing the temperature from 

room temperature to 900 within a time period of 2 seconds. TEM micrographs before and 

after fast-ramp heating are shown in Figure 6-7 and showed structural changes in AuNRs and 

AuNPs similar to those observed at lower heating rates. For example, the AuNR in figure 6-

7, which has initial AR of about 4.6, decreases to a final AR of about 2 at 900. This result is 

similar to those obtained when using much slower heating presented in figure 6-4b. AuNPs 

deformed to become more rounded morphologies while AuNRs decreased in AR and became 

spherical. This raid heating experiment was designed to have a heating rate and duration time 

more similar to that experienced during photothermal irradiation and it confirms that the 

heating temperature is the dominant influence rather than the ramp rate and the duration of 

heating time, in agreement with literature [19, 24]. 
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Figure 6–6: a) TEM micrographs of CTAC-stabilized AuNTs at different heating 

temperatures: RT, 600ºC, 900ºC, 1050ºC and 1100ºC; b) The change in edge length with 

heating temperature for AuNTs with initial edge lengths of 104.6 nm (black), 83.0 nm (red), 

and 69.2 nm (blue). 

 

b) 

a) 
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Figure 6–7: Example of TEM images of fast ramp, in-situ TEM heating experiments on 

AuNRs and AuNPs. The TEM micrograph before heating is shown on the left and after heating 

is presented on the right hand side.   

6.2.2 The effect of surface modification on the thermal stability of Au nanostructures  

In the previous section, it was seen that the thermal properties of Au nanostructures clearly 

depend on temperature in terms of their shape deformation. Different types of surface 

modification have been employed to provide promising properties for many applications of 

Au nanostructures. This experiment aims to reveal more understanding of effects of the 

coating on the thermal stability. The different surface modifications of AuNRs with PSS and 

silica were used to compare their thermal stability with those of solely CTAB-capped AuNRs. 

PSS-coated AuNRs with different ARs were examined using the same heat treatment as for 

CTAB-capped AuNRs. The rate of change of AR is extremely low for temperatures up to ca. 

150, shown in figure 6-8. Above this temperature there was a slower deformation than for 



-       - 127 

CTAB-capped AuNRs, with only a gradual decrease in AR. At ca. 800, with increasing 

temperature there was a significant change in shape of PSS-capped AuNRs, with them 

ultimately reaching a final spherical shape. The additional PSS layer may hinder surface 

diffusion and hence deformation.  

 

 

Figure 6–8: a) TEM micrographs of PSS-coated AuNRs with an AR of 3.83 (rod 2) at different 

temperatures: RT, 300ºC, 600ºC, 800ºC and 1100ºC; b) The change in AR with temperature 

and associated linear fits for different AR rods. Note: The change in dark blue graph is taken 

from AuNPs heat treatment. 
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In order to compare the effect of surface modification further, in-situ TEM heating of the 

silica-coated AuNRs was performed. Figure 6-9a shows that there is relatively constant rate 

of change of the rod AR with temperature. As expected, the silica-coated surface with a higher 

melting point (silica melting point is 1710) can retain the rod shape over a larger range of heat 

treatment. Indeed, silica AuNRs retained their original AR up to ca. 300before any reshaping 

was observed. The AR of the silica-coated rods then slightly decreased with increasing 

temperature up to 800. More significant changes were noticed at a temperature of 1100. For 

example, the silica-coated AuNR sample with an AR of 3.1 changed to an AR of 2.9 and 2.5 

at 800 and 1100, respectively. Even when the temperature was higher than the melting point 

of bulk gold (1064), the silica-coated AuNRs showed little deformation in AR and retained a 

rod-shaped morphology. At lower temperatures where the rod-like morphology remains with 

little or no change in AR, there was a decrease in the thickness of the silica coating from 4.6 

nm to 3.6 nm (as measured directly from figure 6-9a). During the heat treatment, a structural 

rearrangement within the silica coating was observed. The rearrangement of silica could occur 

at the glass transition temperature (the state between a glass and a supercooled liquid) of 

amorphous silica [25, 26], resulting in a slight decrease in AR. The heat treatment profiles of 

silica-coated AuNRs are presented in figure 6-9b. Furthermore, Table 6-1 summarises the rate 

of change of AR with respect to temperature of all Au nanostructures. It was found that higher 

rates of change were observed in AuNR with high ARs and the smallest size such as NR 

diameter (e.g. AuNR 4) and smallest triangles. For a direct comparison, AuNRs with an AR 

of about 4.2 were selected for CTAB and PSS coating. The results showed that the rate of 

change of AR with temperature for CTAB-capped AuNRs (slope = 0.00196 K-1) was slightly 

higher than that for PSS-capped AuNRs (slope = 0.0013 K-1). The rate of change was 

significantly decreased for silica-coated rods.  

Overall these results indicate that the deformation of Au nanostructures is strongly dependent 

on heating temperature. The rate of change of the morphology is enhanced at higher 

temperatures, and results in rapid deformation at temperatures >800. The duration of heating 

is not that significant for the rate of change, but needs to be considered. However, the surface 

coating of Au nanostructures also has a dominant influence on surface diffusion depending 

on the type of coating and its inherent thermal stability.  
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Figure 6–9: a) Examples of TEM micrographs from in-situ TEM heating experiment on 

silica-coated AuNRs at different temperatures:  RT, 300ºC, 600ºC, 800ºC and 1100ºC. (Note: 

The black drawings in the RT images on the LHS were used as the guidelines for silica coating 

for all heated AuNRs) 

 

Figure 6-9: b) The change in AR with temperature and associated linear fits for different 

silica-coated AR rods 

(ºC) 
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6.2.3 Thermal deformation mechanism 

Low temperature in-situ TEM heating experiments 

The thermal transformation mechanism of rods was revealed by heating at lower temperatures 

for prolonged time periods. Based on the results in figures 6-4 and 6-5, the heating 

temperature was chosen to be 100ºC and 150ºC for AuNRs and 250ºC for AuNBPs with a 

heating time of 15 min in order to investigate the thermal deformation behaviour. The data 

showed good agreement with the literature [20, 24]. Atoms from the tip rearranged and 

redeposited towards the middle part of AuNR, which showed a surface roughening in figure 

6-10a. As the temperature was increased, the rate of change of AR with respect to temperature 

increased to form a shorter AR AuNR (figure 6-10b). A similar behaviour was found in heat 

treatment of AuNBPs, as illustrated in figure 6-10c). Although NBPs appeared more 

thermally stable compared to the NRs, the data suggest that only surface atoms can move and 

rearrange by surface diffusion at these temperatures to produce shorter and wider AuNBPs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6–10: TEM images of AuNRs from in-situ TEM heating experiments at low 

temperature: a) 100 ºC and b) 150 ºC for 15 mins, illustrating surface melting starting from 

tip and redeposition in the middle of the rods. (c) TEM micrograph of an AuNBP during heat 

treatment at 250 ºC for 15 mins, showing similar behaviour to the results from the AuNRs.  
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For the general case of a planar surface, surface diffusion is usually accepted to begin 

becoming significant at a few hundred degrees below the bulk melting point [27-30] and/or 

at some fraction of the bulk melting temperature; estimates vary but range between 0.3-0.5 of 

the bulk melting point [31]. The melting point of bulk gold is 1064ºC and according to the 

seminal work of Buffat et al. [32], depression of the melting point of gold nanoparticles only 

occurs for particle sizes < 10nm. We can estimate the radius of curvature at the end of the 

nanorods, from the end diameter giving 14.88 and 10.04 nm in figures 6-10a) and 6-10b) 

respectively. Hence, we might expect that melting point depression is relatively insignificant 

and surface diffusion would only become important at temperatures of the order of 300-400 

ºC. However, for the AuNRs surface diffusion is evident at much lower temperatures and we 

believe that this is promoted by the curved surface at the tips of the rods [19].  

This results reveal evidence for surface melting and more importantly surface diffusion at 

temperatures much lower than the melting point of bulk gold, arising from the increased 

surface energy for a curved surface [17, 20, 24]. Surface diffusion of Au atoms is more 

significant at the tip with a higher radius of curvature, relative to the middle of the rod, where 

there is a lower curvature of the surface. Taylor et al. [19] have proposed that curvature at the 

tip of the nanorod is dependent on both rod AR and rod length. The activation energy for 

surface diffusion is an inverse function of the tip curvature and therefore the surface diffusion 

coefficient depends strongly on both the rod aspect ratio and rod length. This is therefore 

curvature driven surface diffusion. 

6.3 Conclusions 

Structural deformation of Au nanostructures is controlled predominantly by the heating 

temperature, with the heating duration and heating ramp rate being much less significant. The 

deformation mechanism during thermal heating results from atom diffusion from sharpest 

part (tips) towards the middle parts which possess a lower radius of curvature. The higher the 

radius of curvature, such as in high AR rods and at sharp tips of nanotriangles, the more 

reactive and easier it is to deform. Thus, the thermal stability of both AuNRs and AuNBPs 

decrease as their AR increases. The thermal stability of Au nanostructures can be categorized 

from the most stable to least stable as follows: AuNPs > AuNTs > AuNBPs > AuNRs. 

However, the thermal stability can also be increased by tailoring the surface modification. In 

this case the stability is increased from CTAB-capped AuNRs to PSS-capped AuNRs and 

finally to silica-coated AuNRs. Additionally, the size and thickness of Au nanostructures also 

affect their deformation; the smaller and thinner particles appear to be more easier to reshape 

(e.g. CTAB-AuNR4) the morphology at lower temperatures as compared to the larger NPs 

(e.g. 104.6 nm CTAC-AuNT).  
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In-situ TEM heating experiments can directly investigate the mechanism of the morphology 

change during the heating of individual Au particles. These changes will have a significant 

impact on optical properties. Overall the studies have revealed the useful ranges of 

temperature, whereby heating does not significantly change optical properties, were up to 

100ºC, 200ºC, 800ºC, for CTAB-capped AuNRs, CTAB-capped AuNBP and CTAC-

stabilized AuNTs, respectively. Surface modification could significantly enhance these 

usable ranges of temperature. This work provides guidance to select Au nanostructures with 

high thermal stabilities and stable optical properties in the NIR region that would be good 

candidates for nanomedical applications. 
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7. Chapter 7 Interaction of gold 

nanostructures with a model 

phospholipid monolayer membrane 

Engineered gold nanostructures are candidates for use in biological applications such 

as thermotherapy and imaging, however there remain concerns about their use in relation to 

their bio-activity and environmental impacts which may result in toxicity [1-3]. Research on 

nanoparticle-cell membrane interactions have been intensively carried out in order to 

investigate nanoparticle toxicity. In previous studies, a model membrane system based on 

dioleoyl-phosphatidylcholine (DOPC) on a mercury (Hg) film electrode has been developed 

and designed for investigating phospholipid membrane interactions with both molecular 

species and also nanoparticles [4]. This model system takes advantage of simplicity and a 

close structural similarity to biological membranes. The smooth surface of the Hg electrode 

can minimize the effect of phospholipid layer properties compared to other solid electrodes. 

Also, the monolayer membrane on the Hg surface can initiate interaction at the 

phospholipid/water interface in a similar fashion to the assembled bilayer in biological 

membranes. The model system has been shown to provide similar results to peptide-

phospholipid [5] and cholesterol-phospholipid interactions [6] using the classical free-

standing bilayer and vesicle biomembrane models.  

At present, due to the synthesis of Au nanostructures involving surfactants acting as structural 

guides, for example, the use of CTAB in AuNRs (where free excess CTAB is known to cause 

membrane disruption and hence toxicity), a study of the interaction of gold nanostructures 

with phospholipid membranes would help to provide understanding of the use of these 

particles in biological applications so as to avoid any toxic event. The interaction of gold 

nanoparticles with the simple DOPC membrane can be investigated using the current response 

during rapid cyclic voltammetry (RCV) by monitoring both the shift in potential and 

suppression of the voltammetric peaks associated with phase changes in the phospholipid 

monolayer. RCV measurements show consecutive capacitance current peaks representing 

phase transitions of the lipid layer corresponding to a fast negative followed by a fast-positive 

voltage ramp. The interaction of nanoparticles with the membrane presents as a depression in 

these capacitance current peaks arising from negative potential-induced phospholipid phase 

transitions [7, 8]. On the other hand, an increase in the capacitance current base line shows 

the penetration of nanoparticles into the DOPC layers [7]. In this chapter the interaction of 

the synthesized Au nanostructures with a model biomembrane is studied using RCV. This 
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study was intended to investigate the relationship between both the surface coating and the 

morphology of Au nanostructures on biomembrane activity.  

7.1 Experimental procedure 

7.1.1 Preparation of gold nanostructures 

All gold nanostructures including citrate-stabilized AuNPs, CTAB capped AuNRs, PSS-

capped AuNRs and CTAC stabilized AuNTs were freshly synthesised via the wet chemical 

synthesis protocols described in chapter 3.  

7.1.2 Materials characterization 

All gold nanostructures were centrifuged and redispersed twice to remove the excess 

surfactant before further characterization using UV-vis spectroscopy, TEM and DLS (detailed 

in chapter 3). Before investigating the nanoparticle interaction with the phospholipid 

membrane, all gold nanoparticles were kept as dispersions and were redispersed using 

ultrasonication before use. The mass of Au in 1 ml of the dispersion was determined by 

centrifugation, removal of the supernatant, drying and then weighing the resultant residue 

(assuming solely gold) to provide an approximate concentration of the original dispersion. 

The synthesized Au nanostructures are summarized in table 7-1. Citrate stabilized AuNPs 

with diameters of approximately 20.9, 36.6, and 58.3 nm denoted as samples Citrate-AuNP1, 

Citrate-AuNP2, and Citrate-AuNP3, respectively were tested. CTAB-capped AuNRs and 

PSS-capped AuNRs with similar ARs of 1.6, 3.1, and 3.5 were also tested and denoted as 

CTAB-AuNR1, CTAB-AuNR2, CTAB-AuNR3, PSS-AuNR1, PSS-AuNR2, and PSS-

AuNR3, respectively. Finally, CTAC stabilized AuNTs (CTAC-AuNT) with an edge length 

of about 99.8 nm were tested. 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) with >99% 

purity was purchased from Avanti polar lipids. Analytical grade KCl, NaOH and KNO3 were 

purchased from Sigma-Aldrich to make the electrolyte buffer. Phosphate buffered saline 

(PBS) consisted of 0.1 mol.dm-3 KCl and 0.01 mol.dm-3 phosphate in Milli-Q water (ionic 

strength of 0.125 mol.dm-3). All solutions were magnetically stirred and purged with argon 

before investigating in the flow system.  
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Table 7-1: Characteristics of the Au nanostructures tested using RCV 

Sample Sample 

name 

Surfactant DLS size 

distribution 

(nm) 

Approximate 

concentration

(mmol.dm-3) 

TEM Size (nm) 

AuNP Citrate-

AuNP1 

Citrate 15.7 2.5  20.92.7 

 Citrate-

AuNP2 

Citrate 37.8 2.8 36.65.0 

 Citrate-

AuNP3 

Citrate 58.8 3.2 58.36.5 

AuNR CTAB-

AuNR1 

CTAB 11.7 17.2 AR~1.60.3 

Length/width 

36.4.2/22.53.3 

 CTAB-

AuNR2 

CTAB 28.2 18.4 AR~3.10.6 

52.65.0/17.62.6 

 CTAB-

AuNR3 

CTAB 28.2 10.6 AR~3.50.7 

56.27.1/16.22.5 

 PSS-

AuNR1 

PSS 43.8 14.7 AR~1.60.3 

36.4.2/22.53.3 

 PSS-

AuNR2 

PSS 78.8 14.2 AR~3.10.6 

52.65.0/17.62.6 

 PSS-

AuNR3 

PSS 91.3 15.8 AR~3.50.7 

56.27.1/16.22.5 

AuNT CTAC-

AuNT 

CTAC 78.8 33.5 Edge length ~ 

99.824.4 
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7.1.3 Electrochemical flow system 

The electrochemical testing flow system used in this thesis has been previously developed 

and described in the literature [1, 7, 9], and is shown in figure 7-1. The experiment was 

conducted in collaboration with Prof. Andrew Nelson’s group in the School of Chemistry, 

University of Leeds. In brief, the RCV testing system consists of: 1) a flow cell containing 

the Hg electrode; 2) an electrolyte (PBS) buffer; 3) a sample cell for loading 1 mL of gold 

nanostructure dispersion; 4) a DOPC injection system; and 5) a peristaltic pump and switching 

valves. All parts were connected by Teflon and silicone rubber tubing. The flow system 

apparatus has four different settings as follows: 

1. Electrolyte buffer is injected from the electrolyte reservoir cell and discharged to 

waste after passing through the flow cell; 

2. Electrolyte buffer is injected from the reservoir and fills the sample cell; 

3. Electrolyte buffer is injected from the sample cell and discharged to waste after 

passing through flow cell; 

4. Electrolyte buffer is injected from sample cell to the flow cell and re-enters into 

the sample cell via a recycling loop after passing through the flow cell. 

 

Figure 7–1: Schematic diagram of the electrochemical flow system (figure taken from Ref. 

[1]) 
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Figure 7–2: Images of the experimental set up: a) flow cell and b) sample and electrolyte 

loading platform. 

The RCV test was started by drawing PBS into the system. Then 300  of 0.125 mol.dm-3 

DOPC was injected at a rate of 1.0  /min applying RCV from -0.4 to -3.0 V at 80 V/s. After 

the DOPC membrane formed and the voltammetric peaks appeared, RCV was restarted at an 

excursion voltage of -0.4 to -1.625 V. Then, the Au nanostructure dispersion (the sample) was 

released into the system with a flow rate of 1.0  /min and the DOPC-coated electrode was 

exposed to the nanoparticles for approximately 30 sec. To measure the interaction, PBS buffer 

was then introduced instead of the sample and the electrode was measured by RCV from -0.4 

to -1.8 at 40 V/s. Then the RCV was terminated and the flow system was cleaned using the 

electrolyte. Then RCV was started again from -0.4 to -3.0 V at 80 V/s in order to clean the 

Hg electrode. At this point all voltammetric peaks disappeared illustrating that the monolayer 

DOPC was completely removed. The DOPC can then be re-deposited and the whole RCV 

experiment repeated by following these steps. 

7.2 Results and discussion 

The DLS size distribution of all samples is summarized in figure 7-3. As discussed in chapter 

4, it was found that only the spherical AuNP sample results could be considered reliable due 

to the fact that it is only in this case that the hydrodynamic radius from DLS measurement 

directly reflects the particle size distribution. In chapter 4, DLS measurements were presented 

in figures 4-2 and 4-13 for citrate-stabilized AuNPs and CTAC-stabilized AuNTs, 

respectively. It was shows that the citrate-AuNP1 and citrate-AuNP3 samples were 

homogenous with hydrodynamic radius values of 15.7 and 58.8 nm. This is in a good 

agreement with TEM micrographs presented in chapter 4, section 4.1. The average particle 

sizes from TEM were ca. 20.9, 36.6, and 58.3 nm for citrate-AuNP1, 2, 3, respectively. While 

the DLS measurement of CTAC-AuNT was 78.8 nm, TEM imaging showed an average edge 

length of about 99.8 nm (see section 4.4). Figure 4-13 showed that there was evidence for 



-       - 140 

AuNT agglomeration. Lastly, the DLS results from the AuNR samples (illustrated in figure 

7-3) indicated that they had high uniformity and were relatively monodispersed. However 

CTAB-AuNRs presented significant differences from the DLS results of similar samples 

presented in figure 4-8. DLS showed a relative decrease of the hydrodynamic radius, but this 

could be the effect of both rotational and translational diffusion which means that it is not 

straightforward to extract the me average hydrodynamic size due to the rod-shaped geometry. 

However, the results showed a relative increase of the hydrodynamic radius for PSS coated 

samples relative to CTAB coated AuNRs. This would imply that the layer of PSS deposits on 

top of the CTAB layer resulting in an increase in the value derived from the DLS 

measurement. This coating was also confirmed by Zeta potential measurements which 

showed a change from positively charged to negatively charged particles following PSS 

coating.  

 

Figure 7–3: DLS particle size distributions of dispersions of CTAB-AuNRs and PSS AuNRs. 

Following particle characterization, the electrochemical response induced by the Au 

nanostructures interacting with the phospholipid membrane were investigated. Figures 7-4 to 

7-7 display the effect of the Au nanostructure dispersions on the RCV of the DOPC coated 

Hg electrode. The interaction of particles, such as particle absorption onto the DOPC surface 

can cause a depression of the capacitance current peaks. In the absence of nanoparticles, the 

RCV of the DOPC layer shows well defined voltammetric current peaks including peak 1 and 

2, indicated by the blue lines in all the figures. Peak 1 is located at approximately -0.96 V and 

corresponds to defects in the DOPC monolayer, while growth and bilayer formation, 

involving structural reorientation of the DOPC monolayer on the Hg surface, is associated 

with the voltammetric peak at about -1.05 V denoted as peak 2 [7]. All Citrate-AuNP samples 

11.7 nm 

28.2 nm 
91.3 nm 

   
 

 
  78.8 nm 

43.8 nm 36.6 nm 
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showed a relatively insignificant interaction with the DOPC monolayer. The 2.5 mmol.dm-3 

citrate-AuNP1 (figure 7-4a) particles with the smallest diameter of 20 nm presented the most 

interaction in terms of the depression of the capacitance current peak 1 on the RCV plot 

compared the larger AuNP samples (figure 7-4b and 7-4c). The peak degradation ratio in peak 

1 (positive side) of citrate-AuNP1, 2, and 3 samples were 0.82, 0.83 and 0.87, respectively.  

 
Figure 7–4: RCV of DOPC coated on an Hg electrode in 0.1 mol.dm-3 PBS before (black 

line) and after (red line) exposure to: a) 2.5 mmol.dm-3 citrate-AuNP1 with particle size 

d~20.9 nm; b) 2.8 mmol.dm-3  citrate-AuNP2 with d~36.6 nm; c) 3.2 mmol.dm-3 citrate-

AuNP3 with d~58.3 nm. 

Similar results for commercial citrate stabilized AuNPs (albeit at lower concentrations) have 

been reported in by William et al. [11], presented in figure 7-5. The results in figures 7-5a 

and 7-5b suggested that 0.03 mmol.dm-3 monodispersed 20 nm and 50 nm citrate-stabilized 

AuNPs (a commercial AuNP suspension) did not show significant interaction with the model 

phospholipid. However, for smaller 5 nm NPs, a much stronger interaction effect was 

apparent. Furthermore, they also reported that NP agglomeration considerably reduced the 

interaction with the model membrane. The in-house synthesised 50 nm diameter AuNPs (0.27 

mmol.dm-3) showed less interaction compared to the highly monodisperse commercial 50-nm 



-       - 142 

AuNPs (see 7-5c). This was presumably dues to the increased agglomeration in the former 

sample as measured by DLS. According to the literature [1, 7, 8, 9], only small particles with 

effective sizes of between 6-25 nm interact strongly with the DOPC coated electrode. These 

present results are in agreement with this hypothesis and they also illustrate that the citrate 

coating does not cause any appreciable interaction with the lipid membrane (see figure 7-5d) 

and so is useful for biological applications.  

 
Figure 7–5: RCV of DOPC coated on an Hg electrode in 0.1 mol.dm-3 PBS before (black 

line) and after (red line) exposure to: a) 0.03 mmol.dm-3 5nm-comercial citrate-AuNP; b) 

0.03 mmol.dm-3 50-nm-comercial-citrate-AuNP; c) 0.27 mmol.dm-3 50-nm-inhouse-citrate-

AuNP; and d) pure citrate. [Figure taken from Ref. [11]] 
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In figure 7-6a, the influence of pure 0.2M CTAB was tested. This indicated complete 

interaction with the DOPC layer with the disappearance of all the capacitance current peaks. 

The increase in the baseline of the RCV plot indicates penetration into the DOPC monolayer 

and a direct interaction with the electrode  [7]. After the centrifugation and redispersion 

cleaning process to remove free excess CTAB from the synthesized AuNR dispersion, the 

activity of the CTAB-capped AuNRs was decreased, as shown in figures 7-6b to 7-6d. 

However, figure 7-6b still indicates a relatively strong interaction of the 17.2 mmol.dm-3 

CTAB-capped AuNR1 sample with the DOPC monolayer. There is a suppression of potential 

peaks with a positive peak shift and the formation of a very wide depressed peak at about -

0.96 V. The degradation of voltammetric peak 1 represents the nanoparticles interacting and 

binding with the DOPC layer. A similar result has been observed in the literature for the case 

of SiO2 nanoparticles [7]. There was also a suppression of voltammetric peak 2 which resulted 

from the rapid absorption of the nanoparticles onto the DOPC head groups. The origin of this 

interaction is still unclear and whether it is affected by either the absorbed CTAB or the rod 

morphology and/or particle size. By considering the size of CTAB-AuNR1 (L/W = 36.1/22.5 

nm), it is considered to be in the range of active sizes for nanoparticles. However, the effect 

of CTAB appears to be the dominant factor when comparing the results with 18.4           

mmol.dm-3 CTAB-AuNR2 (L/W = 52.6/17.6 nm) and 10.6 mmol.dm-3 CTAB-AuNR3 (L/W 

= 56.2/16.2 nm), shown in figures 7-6c and 7-6d. Thus, even after removing excess CTAB 

from the synthesized CTAB-capped AuNR dispersion, the effect of the surface absorbed 

CTAB remains significant and results in a strong interaction with the DOPC layer. 
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Figure 7–6: RCV of DOPC coated on an Hg electrode in 0.1 mol.dm-3 PBS before (black 

line) and after (red line) exposure to: a) pure 0.2 M CTAB;  b) 17.2 mmol.dm-3 CTAB-AuNR1 

with an AR of 1.6; c) 18.4 mmol.dm-3 CTAB-AuNR2 with AR of 3.1; and d) 10.6 mmol.dm-3 

CTAB-AuNR3 with AR of 3.5. 

PSS-coating of CTAB-capped AuNRs was employed in order to address this issue around the 

toxicity of CTAB, as illustrated in figure 7-7. The purpose of the PSS coating was to 

encapsulate any surface adsorbed CTAB, so as to prevent exposure and provide non-toxicity 

for further use in biological applications. Figure 7-7a showed that a pure PSS solution 

interacts significantly with the DOPC monolayer, however, in relative terms the effect is 

smaller than that observed with CTAB-capped particles. The results indicated that the 

voltammetry peaks decreased in height with only one broad negative potential peak, with the 

other peak disappearing completely. This indicates that PSS was binding with the DOPC 

monolayer causing the degradation of the voltammetric peaks. The PSS-capped AuNRs 

showed a smaller interaction with the DOPC layer. The smaller size AuNRs with the 

concentration of 14.7 mmol.dm-3 showed a broad peak between -0.85 to -0.95 V on the 

negative current side and also the capacitance current peaks were more degraded relative to 

the higher AR PSS-capped AuNRs. Overall, the PSS-capped AuNRs show more promise in 

terms of toxicity as less membrane interactions were detected in the RCV results.  
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The effect of CTAC-AuNTs (33.5 mmol.dm-3) was also studied, and is presented in figure 7-

8. There was no significant interaction with the membrane arising from the CTAC surfactant 

and the triangular morphology of the particles. This may be because the triangles have a 

slightly larger edge length than the normal active size range of the nanoparticle-DOPC 

interaction.  

 

 
Figure 7–7: RCV of DOPC coated on an Hg electrode in 0.1 mol.dm-3 PBS before (black 

line) and after (red line) exposure to: a) pure 0.2mg/10mL DI water PSS; b) 14.7 mmol.dm-3 

PSS-AuNR1 with an AR of 1.6; c) 14.2 mmol.dm-3 PSS-AuNR2 with AR of 3.1; and d) 15.8 

mmol.dm-3 PSS-AuNR3 with AR of 3.5. 
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Figure 7–8: RCV of DOPC coated on an Hg electrode in 0.1 mol.dm-3 PBS before (black 

line) and after (red line) exposure to 33.5 mmol.dm-3 CTAC-AuNTs with an edge length of 

99.8 nm 

For the case of AuNBPs, these were not tested owing to the purification problem, whereby 

the dispersions consisted of both spherical and bi-pyramidal particles. This complication 

could affect the evaluation of the results from the model membrane interaction studies. 

Ignoring any effect due to the surface coating on the nanoparticle, the proposed model to 

describe interaction of nanoparticles with the phospholipid domains is based on previous 

work involving SiO2 nanoparticles [7]. It considers the surface to volume ratio of the particles 

relative to an interfacial contact area with the membrane. This interfacial contact area parallel 

to the monolayer plane is the area of interaction and smaller diameter nanoparticles can adsorb 

onto the DOPC monolayer with high interfacial contact area compared to larger sized 

nanoparticles, as shown in figure 7-9. Thus smaller nanoparticles should have a stronger 

interaction with membrane, freezing the lipid phase transitions, and should result in increased 

suppression of the voltammetric current peaks in RCV associated with the DOPC monolayer. 

Also, the binding of these particles to the membrane can be affected by electrostatics, 

hydration and van der Waals forces. DOPC monolayers exhibit a positive surface potential 

[7, 12, 13]. In case of AuNRs, CTAB-capped AuNRs are positively charged particles which 

interact strongly with the DOPC surface, presumably because the electrochemical interactions 

are dominant, rather than electrostatic forces. This suggests that the CTAB chemical 

interaction dominates over electrostatic repulsion. In contrast, PSS-coated AuNRs are 

negatively charged and could bind by electrostatic attraction with the polar phospholipids in 

the DOPC monolayer, resulting in degradation of the voltammetric current peaks. These 

findings are in good agreement with previous toxicological studies, in which the effect of 
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surface charge is a dominant factor on toxicity. Because bilayer cell membranes are 

negatively charged [14-16], positively charged particles show increased toxicity [17,18] as a 

result of greater electrostatic interaction.  

 

Figure 7–9: Schematic view of NPs interaction with the phospholipid membrane, including 

a) deposited DOPC monolayer on the Hg surface; b) small NPs adsorbed on the monolayer 

with large interfacial contact area illustrated in blue area; and c) large NPs adsorbed on the 

monolayer showing smaller interfacial contact area. (Figure taken from Ref. [7]). 

7.3 Conclusion 

Even though ultrasmall AuNPs can cause an interaction with the model membrane which may 

indicate toxicity, gold nanostructures still have a relatively high biocompatibility. It can be 

concluded that Au nanostructures do not significantly interact with the DOPC monolayer in 

term of their particle morphologies. Only the smallest size of AuNPs show a significant 

interaction. The presence of agglomeration in the dispersions is also an effect to take into 

consideration.  

The effect of the surface coating on the Au nanostructure, however, appears to be the 

dominating factor controlling membrane interaction, depending on the type of surface 

coating. The relative order of interaction with the DOPC-coated Hg electrode was CTAB > 

PSS > CTAC > Citrate-coated Au nanostructures after the C/R purification step. Hence, 

citrate- and PSS-coated gold nanostructures with a dimension larger than 20-25 nm should 

exhibit little cell membrane interaction and would be suitable candidates in terms of their use 

in healthcare applications. From these results we can also predict the response of SiO2-coated 

AuNRs. With their relatively large size in the longitudinal dimension, only the effect of the 
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SiO2 should be observed. The effect of SiO2 nanoparticles is described in [7] and suggests 

that SiO2 structures of this size should present little interaction. 
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8. Chapter 8 Conclusions  

9. and future work 
 This thesis has successfully synthesized well-controlled and reproducible Au 

nanostructures via a wet-chemical synthesis approach. These consisted of AuNPs, AuNRs, 

AuNBP, and AuNTs, with absorption spectra that could be tuned over the NIR region. 

Characterization of the synthesized nanostructures was undertaken using DLS and TEM 

imaging. Optical and plasmonic properties were investigated using uv-vis spectroscopy. 

Electron energy loss spectroscopy (EELS) revealed plasmonic properties particularly the 

electric field distribution and coupling effects in Au nanostructures. Additionally, the thermal 

stability was investigated through in-situ TEM heating and a thermal deformation mechanism 

resulting from heat treatment has been proposed. Finally, the electrochemical interaction of 

the Au nanostructures with a model phospholipid monolayer has been used to investigate their 

potential toxicity.  

Firstly, wet chemical synthesis approaches were studied and employed to develop novel Au 

nanostructure with NIR absorption spectra. Tunable Au nanostructures with differing optical 

properties including AuNPs of differing sizes, AuNRs with various aspect ratios, AuNBPs 

with different ARs, and AuNTs with different edge lengths were achieved. Useful synthesis 

parameters have been proposed to engineer the SPR of the NPs over the NIR region. 

Secondly, plasmonic properties of Au nanostructures have measured using experimental uv-

vis spectroscopy and compared with absorption spectra obtained using finite element 

COMSOL simulations. The electric field enhancement of individual Au nanostructures of 

different morphologies and the coupling effect between Au nanoparticle clusters were both 

investigated using EELS.  

Thirdly, the effect of heat treatment on the differing Au nanostructures was investigated using 

in-situ TEM heating experiment. The thermal stabilities have been discussed and a thermally 

activated deformation mechanism proposed. 

Finally, the toxicology of the different Au nanostructures has been investigated using an 

electrochemical sensor based on a model   phospholipid (DOPC) monolayer membrane and 

the results discussed in terms of the size, shape, and surface coating of the Au nanostructure.  
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8.1 Research summary 

Chapter 4: Citrate-stabilized AuNPs with progressively increasing size were successfully 

synthesised by a modified seed-step by step growth synthesis method using citrate reduction. 

This used previously synthesized AuNPs as starting seed particles for further growth. For 

elongated Au nanostructures, CTAB acts as a structural guiding surfactant to form a rod-like 

particle shape, and well-controlled and reproducible CTAB-capped AuNRs with various ARs 

were produced using a kinetically controlled modified seeded mediated method. By 

increasing the amount of AgNO3 up to 350 L, the AR of the AuNRs can be tuned up to a 

value of 4.2 which exhibited a longitudinal SPR in the NIR region. CTAB-capped AuNBPs 

were fabricated from twinned seeds formed from a citrate seed solution in a seed-mediated 

synthesis method. The longitudinal SPR of AuNBPs were engineered to lie in the NIR region 

by varying the seed amount (80µL) injected into the growth solution. An increase in gold ion 

concentration resulted in a decrease of rod AR. Lastly, CTAC-stabilized AuNTs were 

successfully synthesized with an increasing edge length, via pH adjustment, so as to provide 

an SPR in NIR region. Finally surface modification of CTAB-capped AuNRs with a PSS-

coating resulted in a red-shift of the SPR which can provide more suitable optical and 

toxicological properties for Au nanostructures used in biomedical applications. 

Chapter 5: The plasmonic properties of Au nanostructures were investigated using 

STEM/low-loss EELS analysis. The surface plasmon modes, electric field enhancement, and 

the coupling effect between nanostructures were spatially characterized. EELS results showed 

good agreement results with FEM computational simulations and experimental uv-vis 

spectra. The optical and plasmonic properties of Au nanostructures are unique properties 

which are size- and shape-dependent. The localized SPR maps exhibited localized field 

enhancement at the sharp tips of the particles. By increasing the curvature of the particles (i.e. 

a sharper tip or a higher AR), the SPR mode can be shifted into the NIR region with strong 

field enhancement. However, coupling effects resulting from clusters of particles, where two 

distinct hybridized SPR modes co-exist could directly affect the SPR response and its 

frequency.  

Chapter 6: The thermal properties of Au nanostructures were investigated by in-situ TEM 

heating experiments. By monitoring the morphology of the particles as a function of 

temperature, the useful range of temperatures for the different nanostructures whereby heating 

does not significantly affect the optical properties was determined. A thermally driven 

deformation mechanism was proposed according to curvature driven surface diffusion where 

atoms diffuse from areas of high radii of curvature towards areas with lower radii of curvature. 

It was found that the thermal stability of Au nanostructures followed the pattern from most 

stable to least stable as follows: AuNPs > AuNTs > AuNBPs > AuNRs. The proposed useful 
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ranges of temperature were up to 100ºC, 200ºC, 800ºC, for CTAB-capped AuNRs, CTAB-

capped AuNBPs and CTAC-stabilized AuNTs, respectively.  The thermal stability of particles 

was increased by surface modification of the NPs from a CTAB coating, through PSS and 

finally to a silica coating.  

Chapter 7: The interaction of Au nanostructures, consisting of citrate-stabilized AuNPs, 

CTAB-capped AuNRs, PSS-capped AuNRs and CTAC-stabilized AuNTs, with a model 

membrane based on DOPC on an Hg/Pt electrode was measured the RCV. Changes in the 

capacitance current peaks were monitored after injection of Au nanoparticles. The effects of 

morphology and surface coating of Au nanostructures on biomembrane activity were 

investigated. It was found that generally the Au nanostructures exhibited high 

biocompatibility and did not cause significant interaction with the DOPC monolayer in terms 

of their morphology. However, the size of the NPs can affect the interaction and cause a 

degradation of the current peak with smaller AuNPs with diameter of ca. 20 nm showing a 

significant interaction. Additionally, the surface coating of Au nanorods was found to be a 

more significant effect on the interaction with the model membrane with the order of 

interaction ranging from CTAB > PSS > CTAC > Citrate coated Au nanostructures. Hence 

this suggests that citrate- and PSS-coated gold NPs with dimensions larger than 

approximately 20-25 nm would be good candidates to avoid a toxicological response. 

8.2 Main findings from the research 

- This research demonstrates a full characterization of Au nanostructures, including 

AuNPs, AuNR, AuNBPs, and AuNTs, in terms of their structural properties, optical and 

plasmonic properties, thermal properties, and their interaction with a model biomembrane. 

This helps select potential candidate nanostructures for use in photothermal healthcare 

applications. Based on these findings, the most suitable candidates for potential application 

are: 1) PSS-coated AuNRs with AR over 4 due to their facile synthesis method; and/or 2) 

CTAC-capped AuNTs with an edge length over 100 nm because of their excellent SPR and 

high thermal stability. 

- These findings may also be of use for possible gold nanostructures requiring similar 

criteria for other applications such as plasmonic sensing and catalytic applications.  

- This research demonstrates the potential novel synthesis methods for Au 

nanostructures that allow engineering of their SPR absorption into the NIR region via control 

of their size and shape.  

- This research has clearly demonstrated the spatially resolved plasmonic properties 

of individual Au nanostructure through STEM/EELS measurements. The maps of localized 
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SPR field enhancements map including coupling effects between nanostructures can provide 

better understanding for the design of gold nanostructures with an SPR in the NIR region and 

to provide hot spot area of high field intensity.  

-  This research demonstrates the useful range of temperatures over which there is no 

change in SPR response, which would benefit all applications of gold nanostructures. 

- This research demonstrates the key factors which govern the interaction between 

gold nanostructures and model bio-membranes interaction helping the design of suitable 

candidate nanostructures for healthcare applications.   

8.3 Future work 

There are number of research areas that would be benefit from future work. These may be 

categorized as follows:  

Synthesis method development 

- The synthesis conditions for Au nanostructures could be changed to provide more 

homogeneous samples designed for specific SPR absorption. For example, AuNRs 

could be synthesised with even longer ARs (AR~4-6) by employing bi-surfactants 

such as CTAB and BDAC. This idea could equally apply in the synthesis of AuNBPs 

to provide higher ARs.  

- Particle separation in a post-synthesis protocol could be further investigated, 

benefitting samples such as AuNBPs that contain by-products leading to increased 

homogeneity of the samples. 

- Other surface modification procedures, such as different surfactant coatings and 

ligand exchange could be studied instead of PSS and silica-coated Au nanostructures. 

Potential surface functionalization candidates include PEG and MUA. 

Characterization methods 

- The use of in-situ TEM heating can investigate real-time deformation mechanisms. 

More supporting data on the thermal properties of Au nanostructures would be of 

interest for morphologies such as cubes, dumbbell-liked NPs, nanostars, and even 

more complex structures.  

- In principle EELS could highlight and expand the knowledge on how Au 

nanostructures interact and respond in real plasmonic systems.  

- To identify more clearly the effect of silica coated AuNRs on bio-model membrane 

interaction, the synthesised silica coated AuNRs should be investigated using RCV 
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testing. Moreover, the effect of the concentration of NPs needs to be considered to 

provide more data in terms of their actual use in biomedical applications.  

Applications 

- Synthesised particles such as high AR PSS-AuNRs and large edge length AuNTs 

could be applied in photothermal treatment for cancer therapy. The effect of heat 

generation should be studied by both modelling and by experiment in living cells. 

Additionally, different surface functionalization using, for example PEG and MUA 

could help accelerate their advance in biomedical applications. 

- In-vitro cellular uptake studies of the proposed Au nanostructures should be 

undertaken and provide useful data on their potential application and toxicology. 

- The findings of this research could attract interest, not only in healthcare applications, 

but also in applications involving photocatalysis and plasmonic sensing.  

 

 


