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CHAPTER I 
INTRODUCTION

The -winding of yarn is an essential part of preparing the 

yarn for the weaving.process. The object of winding a package such 

as cheese, cone etc. is to produce a package which is suited to the 

requirements of the next process such as warping, dyeing, pirn winding, 

weaving etc. A flangeless self-supporting cross wound package is 

better in many respects than a flanged package. For unwinding the 

yarn at a high speed for the next process the overend withdrawal of 

yarn is essential. Also the flangeless core is cheaper and lighter. 
These factors make a crosswound package an economical proposition as 

compared to a flanged package and it is therefore preferred.

For the package to be self supporting, it is essential that 

the yarn be wound at an angle to a plane perpendicular to the axis of 

the package; this angle is called the wind angle. Because of the 

wind angle the tension in the thread has an axial component which 
holds the package together. The greater is the wind angle the greater 

is this effect; but if the wind angle is too large the yarn will slip 

off away from the ends of the cheese during winding so that the wind 
angle which can be used is limited by the friction of the yarn.
Because of the tendency of the y a m  to slip off from the ends of the 

package it is difficult to make a cross wound package from a smooth
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yarn with low friction., MThe friction of the yarn also helps to 

prevent the sloughing off of the yarn from the package during 
unwinding.)

A package meant for package dyeing should have low and 

uniform pressure inside it to facilitate the circulation of dye 

liquor and to obtain uniformity of dyeing. (A package should be stable 

enough to go through normal handling and storing. A uniform residual 

tension in the yarn inside the package is desirable, particularly 

with visco-elastic yarns where different levels of residual tension 
in y a m  can give rise to bars in the fabrics woven from i t D u r i n g  

unwinding of the package at high speeds the shape of the package and 

friction of the y a m  are important as they affect the ease of 
unwinding and sloughing off of the yam.

A cross wound cheese may be produced by random winding or

precision winding. In a random wound package the traverse rate is

related to the surface speed so that the number of winds, which is

equal to the number of wraps of y a m  wound on the package for one

traverse of the y a m  from one end of the package to'the other,

decreases and the traverse per wind increases as the radius of the#
package increases but the wind angle remains the same. There is no 
control on the relative positions of the successive wraps of yarn 
over the cheese.
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In precision winding the traverse rate is related to the 

angular speed so that each wrap of yarn is positioned precisely 
relative to the previous one and the traverse per wind remains 

constant but the wind angle reduces as the radius of the cheese 
increases. This is the basic difference between the precision 

winding and the random winding. In the precision wound packages 

the number of threads in a given axial length remains constant 

regardless of the winding radius and the threads are therefore laid 

with a slightly increasing gap as the wind angle reduces due to 

increasing winding radius. The present work is intended as a first 

approach to assess the way the pressure and the tension in the yarn 
are likely to change in a package and its scope is limited to a 

precision wound cheese. This type of cheese was selected as it was 

thought to be easiest to solve. An attempt is made to determine 

theoretically the residual tension in the yarn, the pressure and the 

compression within a precision wound cheese.
In actual winding for one stroke of the traverse guide 

from left' to right only a few wraps of yarn equal to the number of 

winds are laid on the cheese. On the return stroke from right to 
left the same number of wraps are laid again but the wraps are in the 
opposite direction.* The two series of wraps cross each other at 
several points, the number of such crossing points is equal to twice
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the number of winds. The second stroke from left to right places the

next wrap of yarn adjacent to^jbhe first wrap of the first stroke*
displaced by an axial distance (here termed ’spacing') equal to 
slightly more than one diameter of the yarn or more. The spacing of 

the adjacent wraps is precisely controlled. One series of wraps would 

be complete when the point at which the yarn crosses a given generator 

of the package surface has progressed the width of one wind.

Similarly another series would be complete when the crossing point 

of the return wrap has moved the width of the other wind from the 

other end. Thus the two series of wraps are laid simultaneously and 

each thread of the first series crosses the thread of the other series 
and the two series get interlaced. The points of interlacing lie on. 

planes perpendicular to the axis of the package. The two series of 

wraps of yarn are defined here as two layers of yarn though strictly 

speaking the yarn is not in distinct layers because of the interlacing.

The cheese is made by adding layersr of yarn which is wound 

on under tension. The addition of a layer at the outer radius of the 

cheese imposes pressure on the cheese beneath it as a result of which 
the cheese deforms radially. The imposition of the pressure on the 
cheese causes an increase in the pressure inside the cheese as a 
result of which, in general, any element of the cheese moves inwards 

a little towards the centre of the cheese«^ This results in a smaller
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circumference of that wrap permitting the yarn to contract and its 

tension to reduce. As more layers are added to increase the outer 

radius of the cheese the pressure, the compression and the change in 
tension in the yarn inside the cheese continue to increase. It is 

possible that the yarn, due to sufficient compression, loses its 

tension completely at some radii inside the cheese.

In a cross wound package the changes in circumference may 

be accommodated either by yarn contraction or by distortion of the 

layers because reduction of circumference is accompanied by increase 
Gin axial length^ i.e. the wind angle may change slightly within the 

package., Thus the reduction in the length of, the yarn may not change 

proportionally to' -the change in the circumference of the cross wound
■ i .layer due to the .inward movement of the layer as the axial length of 

the layer may change also. Therefore the change in the tension of 

the y a m  may not be as much as expected in a parallel wound package 

under similar forces. As all the layers are not subjected to the same 

inward movement the axial movements which are necessary to equalise 

the tensions would be different at different radii, i.e. there is a 

tendency for the layers of yarn to move axially,relative to each 
other. This can only take place if slipping or rolling occurs and 
this will depend on the shear force and the pressure between the 
layers.
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The process has similarities with but is more complex than 
that for parallel winding which has been studied in some detail.

Catlow and Walls^ have derived equations for determining the stress 

distribution in the pirns formed by parallel winding. In the solution 

the pirn is assumed to be made up of layers of yarn of infinitesimal 

thickness and it is also assumed to be isotropic and homogenous.

Free axial expansion is allowed - which is reasonable because of the 

way in which a pirn is built. At first the effect of adding a layer 

at the outer radius of the pirn is considered. This results in second 

order differential equations involving the incremental radial and 

circumferential stresses. The boundary conditions for the solution 

of these equations are that the compression of the pirn at the core 
radius is zero and the pressure imposed by the added layer at the outer 

radius of the pirn is known from the tension in the yarn and the. 

thickness of that layer. (The yarn at the core cannot reduce its 

length as the core is assumed not to deform, but it is possible for 

this yarn to lose its tension due to Poisson's effect by which 
increasing pressure can reduce lengthwise tension^ . The equations 

are integrated analytically to give the expressions of incremental 
radial and circumferential stresses at any radius of the pirn for 
each layer added at the outside. The total changes at any radius for 
the final outer radius of the pirn are obtained by integrating the



V<x.r'lotion» of tKe ta fio  of re »¿dual stress to winding 
sites 8 w»itk Toisson's Tta-tio, w inding stress being 
conelanl*. Ccoterad.s0-74 cm , outer fad.« t*27cm)

F I G . U
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contributions of all the layers added.

They have calculated the values of the ratio of the residual 

circumferential stress to the winding stress at different radii of 

the pirn for different types of pirns. Pig. 1.1 shows the ratio of 

the residual circumferential stress to the winding stress in a pirn 

of core radius 0.74 cm and outer radius 1.27 cm along the radius of 

the pirn for the different values of Poisson's ratio. This shows how 

the tension reduction due to compression which is greatest at middle 

values combines with that due to Poisson's effect, which being a 

function of pressure, is greatest near the core. The minimum is 

most pronounced when Poisson's ratio is zero, the residual tension 
at the core then being equal to the winding tension. With the increase 
in the value of Poisson's ratio the minimum tension in the yarn 

occurs at points closer to the core and for the value of 0.5 the 

minimum of the curve has disappeared and.the lowest value is at the 
core.

By making the pirn sufficiently large it would be possible 

for the yarn to lose all its tension at some radius of the pirn. The 

other similarly wound packages like straight wound cheese, warp beam 

etc. are likely to show this effect.,yThe calculation based on the 
formula of Catlow and Walls shows that in the above pirn when the 

value of Poisson's ratio is zero the yarn at the radius of 1.55 cm 

has lost its tension completely when the outer radius is about 6.5 cm,
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giving the ratio of outer radius to the core radius of about 8.5.

In the case when the value of Poisson’s ratio is 0.5 the yarn at the 
core loses all its tension when the outer radius is about 5.8 cm 

giving the ratio of outer radius to the core radius of about 5. Any 
further increase in the outer radius would cause the yarn tension at 

these radii to become negative, and might give rise to the buckling 

sometimes seen on rolls of tape etc.

This approach is the one used previously for analysing the 

winding of wire to strengthen the barrels of guns - a very similar 

process but in which Poisson's effect is not always included.

One restriction of this analysis is its assumption that the 

material is homogenous. Beddoe has used the same approach in 

establishing a theory of winding anisotropic elastic yarn on a thick 

flanged tube in order to predict pressures on the tube and its 

flanges. He found that the modulus ratio, which he has defined as 

the ratio of Young's Modulus in the circumferential direction to that 

for radial direction and axial direction in.the wound beam, could be 

as high as 20. Due to this anisotropy the package .compresses easily 

in the radial direction as the value of Young's Modulus in that 

direction is low and therefore results in a higher compression of the 
beam for a given pressure imposed by the added layer. This results 
in a large change of circumferential strain due to which the change 

in the tension of the yarn is also large. The loss in yarn tension
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is further enhanced due to the higher value of Young’s Modulus in the 
circumferential direction. He has calculated the effect of the 

variation of the modulus ratio on the pressure imposed by the wound 

yarn on the tube. The pressure imposed by the wound yarn in the 

isotropic case is twice as much as when the modulus ratio is 20. 

v/Also the ratio of the maximum pressure at the tube to the minimum pressure 

(zero) at the outside of the completed beam is also twice as much in 

'/the isotropic case.; Another important finding is the radial 

distribution of the residual circumferential stress or the tension 

in the yarn of the beam. In the isotropic case the ratio of the 

residual circumferential stress to the winding stress varies linearly 

from a minimum value of about 0.48 at the tube radius of 1 to the 

maximum value of 1 at the outer radius 2 of the beam. The calculation 

of the value of the same ratio by Catlow and Walls inside a pirn does 

not show this linearity with thè radius of the pirn for the value of 

Poisson’s ratio of 0.36 as shown in Fig. 1.1. This difference is 

probably due to the material of the pirn being able to expand freely . 
in the axial direction whereas on the beam the flanges constrain it 

and axial pressures enter into the equations. In the case when the 
modulus ratio is 20 the value of the ratio of the residual 
circumferential stress to the winding stress varies from about 0.12 

to 1. The curve of the ratio with respect to radius has a minimum of
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0.12 and occurs at the radius of 1.3* The value of the ratio at the 

tube radius is about 0.75. The value of Poisson's ratio chosen for 

these calculations is 0.3. The yarn at the tube radius loses its 
tension only due to Poisson's effect as the tube cannot be radially 

deformed and due to the higher pressure at the tube radius in the 

isotropic case the loss in the tension of the yarn is higher.

Wegner and Schubert give expressions for determining the 

pressure on the cores of precision wound and random wound cheeses. 

Their approach is as follows. They consider the pressure of an . 

element of a layer at some intermediate radius of the cheese and 

obtain an expression for this pressure. The tension in the y a m  at 
that radius is assumed to be the same with which the yarn of the 
element was wound, that is the winding tension in the yarn. This 

implies that the tension in the y a m  of the particular element of 

the layer considered did not change due to the subsequent addition 

of the layers above it. However this would only be possible if there 

was no compression (deformation) of the cheese at that radius as the 

cheese was completed. Now in order to obtain the pressure at the 

core the expression so obtained is integrated between the limits of 
the core radius and the final outer radius of the cheese.

This method precludes the changes in the pressure due to 

the deformation of the cheese and the values of the pressure obtained 

would be correct only if the yarn was incompressible. But this is
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not the case in practice. The deformation of the cheese has 

considerable effect on the build up of the pressure at any radius 

even though that deformation may not be large as the present work 
will show. This is particularly true of the cheese made of anisotropic 

yarn which has a higher value of Young's Modulus in the circumferential 

direction than in the radial direction. These expressions could give 

a rough idea of the pressures in the case of isotropic cheeses which 

are made out of hard material such as metal wire.

The object of the present work is to combine the approach 
of Catlow and Walls with the geometry of the cross wound package.

The model of the cheese solved theoretically differs from the actual 

cheese. In the model the cheese is assumed to be made up of layers 
of small thickness, which is composed of wraps of yarn in tension 

laid side by side with a shift equal to the spacing between the . 

adjacent wraps. Each layer is supported by a similarly'made layer 

beneath it with the wraps of yarn in the opposite direction.

Interlacing of the two layers is ignored and the contact between 
the two layers is established at several crossing points made by the 

threads of the two layers thus forming a cylindrical trellis. In the 

actual cheese the direction of the thread reverses at the two ends 
due to a change in the direction of the traverse and therefore the 
two ends of the cheese are different from the central part of the 

cheese. The present theoretical solution is aimed at the central
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part of the cheese to start with and therefore the theoretical model 
is treated as if it were of infinite axial length to exclude the 

effect of the reversal of the yarn at the two ends of the cheese and 
slipping which might occur there.

Also it is initially assumed that the friction between 

adjacent layers and between yarn and core is sufficient under all 

conditions to prevent any slip taking place. This assumption eliminates 

the axial deformation of the cheese model and makes it different from 

a real cheese which is known to have axial deformation generally. 

Nevertheless this assumption simplifies the analysis enough to.enable 

a restricted solution to be obtained and also enables useful 

information to be obtained about the build up of the cheese prior to 
the axial deformation of the cheese. In fact this case must be 

solved before the more realistic one can be attempted. Then a 

criterion might be applied on the basis of the coefficient of friction 

between the adjacent layers and the core and the cheese for which the 

cheese would not undergo any axial deformation.
The value of Poisson’s ratio of the model cheese would 

probably be small because the space between the adjacent wraps of 

yarn allows the yarn to expand, the more so as the radius of the cheese 
increases. Therefore the value of Poisson’s ratio is assumed to be 

negligible and this also simplifies the analysis. The core of the 

cheese is assumed to be incapable of being deformed enough either
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axially or radially by the shear force or the pressure developed on it 

due to the building of the cheese on it to have any effect on the 

results. The Modulus of Compression of the cheese and the Elasticity 
of yarn in Extension are assumed to be constant for the first solution 

developed in Chapter 3 but in the later solution these are treated as 

variable and their values depend on the pressure between the layers 

and the tension in the yarn respectively. This solution is developed 
in Chapter 4.

The problems of measuring the changes which take place 

during winding of a real package are considerable. Deformations are 

in general fairly small and the material is fairly elastic. The 
package solved theoretically is acted on by no external forces except 
those imposed by the core and any attempt to hold a real package in 

such a way as to measure it accurately might deform it more than the 

actual winding process would. The insertion of any measuring device 

during winding is liable to disturb the normal winding process. Thus 

it is not surprising that indirect methods have sometimes had,to be 
used.

4de Ruig in describing a new type of a traverse pattern 
called 'Megaphone Traverse Pattern' for winding drawtwist packages 
gives details of measuring the deformation of the package. "The 

degree of deformation is measured experimentally by measuring the diameter 

of a cylindrical part of a package of polyamide fibre yarn - at
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different package weights - during drawing and winding and by 

measuring these diameters again two days after the completion of 

the winding and after reeling the yarn off to the corresponding 

package weights". His findings show that the change in the diameter 

of the package amount to a maximum of about 2.3$> and this change 

occurs nearer the inside of the package. This method is useful for 

measuring the permanent deformation of the package made of visco­

elastic yarn. It would not show accurately the deformation of the 

package at a given radius as the package is further built up from 

that radius. Also it would fail to show the elastic deformation of 

the cheese completely.
5Wegner and Schubert have devised methods for measuring 

radial and axial deformations of a cross wound cheese. This work 

was published when the present study was almost complete and uses 

successfully a method which had been considered here and rejected as 

unlikely to be accurate. For measuring the radial deformation of a 

cheese they insert,.one by one, pieces of metal foil with a lead 

attached to one end of each foil piece at various radii as the cheese 
is built up to a given final outer radius. The leads protrude out of 
the cheese at one end. The position of each foil piece when inserted 
is indicated on a fixed scale by a probing needle carried on a 

vernier on the fixed scale. This gives the first series of measure­

ments of the position of the foils at the original radii. During
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these measurements the cheese is placed on a fixed spindle under 

the probing needle. The contact between the needle and the foil is 
indicated by a signal lamp. When the cheese is completed the 

position of each foil is again measured by the probing needle; this 

time the needle forces its way down to the foil through the yarn of 

the package. This gives the second series of measurements. The 

third series of measurements is taken during unwinding when each 

foil is uncovered. The difference between the first and the second 

series of measurements show the total deformation of the cheese, the 

difference between the first and the third series of measurements 

show the permanent deformation of the cheese and the difference 
between the second and the third series of measurements show the 

elastic deformation of the cheese at various radii. The dangers of 

this method would seem to be that the inserted foil might disturb 

the transmission of shear between layers and that the insertion of 

the probe might produce local deformation at the very point where 

the measurement is being made.
measuring the axial deformation of the cheese they have

devised a semi-cylindrical cap which can be placed on the core of the 

completed cheese. The cap has pins parallel to the core arranged

and contact it. The position of the needles when in contact with 

the cheese 'at various radii indicate the axial length of the cheese

radially at the sides of the cap which -can slide towards the cheese
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at those radii. The original axial length of the cheese at different 

radii is estimated by a formula developed by them. The difference 

between the estimate of the original* axial length and the actual 

measured axial length after the completion of the cheese gives the 

total deformation of the cheese. Also the axial length at each radius 

is measured at each radius during unwinding as the cheese is reduced 

to that radius. The difference between this measurement and the 

estimate of the original social length gives the permanent axial 

deformation of,the cheese and the difference between the two types 

of deformations gives the elastic deformation of the cheese.

Pigs. 1.2, 1.3 and 1.4 give the results for a cheese of 
Wegner and Schhbert made out of a polyamide yarn of outer radius of 

15 cm and a core radius of 6 cm. Pig. 1.2 shows the radial 

deformation of the cheese plotted against the radius of the cheese.

The maximum total radial deformation of about 1.4$ occurs at a radius 

of about 9 cm. The permanent deformation of about 0.7$ at the radius 

of 9 cm is more than half of the total deformation. The axial 

deformation of the cheese is shown in Pig. 1.3. ' The' maximum axial 

deformation of about 4.5 mm is at the radius of about 11 cm and is 

of the order of 3.1$ of the original length of about 14.7 cm. The 
permanent deformation is about 60$ of the total deformation. The 
curve has a minimum near the core.

Pig. 1.4 shows the density of the cheese along the radius of
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the completed cheese. This shows a sharp reduction in the density 

of the spool at the core and after the initial fall there is a very 

gradual increase in the density of the cheese with the increasing 
radius and finally the density falls again sharply near the final 

outer radius of the cheese. The weight of yarn between two radii of 

the cheese must correspond to the pressure inside the cheese and 

hence the curve is' representative of the pressure inside the cheese. ̂  

They give no information about the behaviour of the deformation, 

either radial or axial, at a given radius of the cheese, as the cheese 

was built up from that radius to the outer radius.

In the present work the radial deformation of the cheese is 
indicated by an electrical resistance strain gauge. The gauge is 

prepared by fixing a wrap of strain gauge wire at some intermediate 

radius of the cheese on a suitable paper base and then measuring the 

change in the resistance of the wire as the cheese is built up by 

continuing the winding. This method needed some development. However 

as the gauge could not be calibrated the assessment of the radial 

deformation of the cheese is qualitative, nevertheless, the behaviour 

of the radial deformation can be reasonably assessed.
An attempt was made to measure the axial deformation of the 

cheese at any intermediate radius by a similarly made electrical 

resistance strain gauge. The axial deformation of the cheese is 

fairly large and because of it the gauge wire snapped. Therefore
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this method had to be abandoned. However a very simple alternative 

mechanical method, made possible by the large axial deformation, was 
devised to measure the axial deformation.

The experimental methods of measuring the deformation of 

the cheese are described in Chapter II along with the details of 

construction of the gauges and their development. The gauges for 

measuring the radial deformation and the axial deformation are treated 

in separate sections. The results of the winding tests are 

discussed. The observations, calculations and tabulated results are 

given in Appendix B.

The theoretical equations for determining the radial 

deformation and the forces within a completed cheese which does not 

expand axially assuming Modulus of Compression of cheese and 

Elasticity of yarn in Extension as constant are derived in Chapter III. 

The numerical method of integrating the equation is outlined. It 

also gives an estimation of the error in calculating the value of 

the compression of the cheese as the cheese is built up. The 
computer program in KDF9 Algol with explanations'and flow diagram 

is given in Appendix A. The theoretical results obtained by solving 
the cheese model for different values of the variables are also 
discussed in this chapter and these results are compared with the 
rèsults obtained experimentally. The criterion for which the cheese 

would not deform axially is examined and the need for the use of
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varying values of Modulus of Compression of cheese and Elasticity 

of y a m  in Extension with pressure in the cheese and the tension in 

the yarn respectively is indicated. The tabulated results are given 

in Appendix C.

The behaviour of the model depends very much on the elastic 

modulii. These are known not. to be constant as assumed in the theory 

- in particular the values vary a lot at low loads. As it appears 

that low values of tension in the yarn occur in the package and low 

values of pressure occur near the surface some attempt should be made 

to allow for the variation in modulii.

The measurement of these, their expression as functions of 

pressure and tension and the use of these functions in the analysis 
are dealt with in Chapter IV. The computer program in KDF9 Algol with 
flow diagram is given in Appendix A. The tabulated results appear in 

Appendix D.

One aspect not yet referred to is the way the forces 

imposed by winding at speed might affect the behaviour. The effect 

of centrifugal forces has in fact been considered and shown not to 

be important in the present context. This study appears in Appendix 

S.
All the theoretical work is based on the assumption that 

axial deformation does not take place and this should be remembered 

when considering the results. This restricted and artificial case
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was a necessary first step in obtaining more realistic solution; 

the difficulties in obtaining a numerical solution of even this 

case prevented more complex problems being solved. The discussion 
is largely concerned with the interpretation of these results in 

conjunction with the practical work, in considering to what extent 

they are relevant and how this work might be continued to allow 

more useful calculations to be made.
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CHAPTER II 

EXPERIMENTAL

2.1 Introduction

An attempt is made to devise a method to measure radial 

and axial deformation of the cheese at some radius as the cheese is 

further built up. A preliminary test showed that the radial 

deformation of the cheese can be indicated'by a resistance strain 

gauge wire. The wire placed on the circumference of the cheese 

shortens along with the circumference of the cheese at that radius 

as the cheese is further built up. The change in the.length of the 
wire, i.e. in the circumference of the cheese at that radius, is 

estimated by the change in the resistance of the wire. A gauge was 

prepared to measure the radial deformation of the cheese. This 

method needed some development which has been described later in 

some detail.

An attempt was made to measure the axial deformation of 

the cheese also by the resistance wire. But the axial change was 

found to be large causing the breakage of the wire. Therefore a 
much simpler method, made possible by the large axial deformation, 
was developed and is also described.

The strain measurements were made both during winding and 

unwinding by stopping the winding or unwinding. The unwinding was
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done overend and the strain during unwinding was initially continuously 

recorded by a level recorder and from, the chart of the recorder the 

strain and the radius of the cheese were estimated. But stoppage of 

the unwinding for the measurement of the strain had no effect on the 

strain and therefore the method of continuous recording was 

discontinued.

A Leesona Style 50 Precision Winder was used for preparing 

the cheeses. For measuring the change in the resistance of the wire 

a Strain Gauge Apparatus Type 1516 by Brilel and Kjoer was used. A 

Bruel and Kjoer Level Recorder was initially used to obtain a record 
of the change in the resistance of the gauge during unwinding. A 

Zivy hand tensiometer was used to measure the winding tension. The 

observations and calculations for all the winding tests are given in 

Appendix B.

2.2 Preliminary Test

For this test the cheese was built on a wooden core of 0.5 

in. radius on a Leesona Style 50 Precision winder. The machine has a 

spindle speed of 895 r.p.m. and a traverse of 5 in. with three winds 

per stroke. The yarn used was 2/22s cotton and the cheese was just 

built up to a radius of 0.75 in.
At this diameter the cheese was wrapped with a rectangle 

of thin paper covering about the middle 4 in. of the length of the
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cheese. The two ends of the paper overlapped and were gummed together • 

to form a complete wrap. Care was taken that the paper was not unduly 

slack over the cheese and that it did not compress the cheese. A 

small spot was gummed to the cheese to prevent any rotation of the 
paper with respect to the cheese. •

Two thin copper foil strips about 0.25 in. wide and 3 in. 

long cleaned thoroughly with emery paper and alcohol were cemented 

with Durofix as shown in Fig. 2.1. Then a nickel chrome wire of

0.001 in. diameter was wound over.the cheese in a close helix of three 

turns in between the strips. The two ends of the wire were soldered 

to the copper strips. The wire was cemented to the paper with Durofix. 
The gauge was left overnight for the cement to harden. Another 

similar gauge was prepared under the same conditions on a second 

cheese. The winding tension was kept the same for preparation of the 

two gauges by keeping the machine adjustments the same. The lengths 

of wire in the two gauges were kept nearly the same to obtain 
similar resistances.

The resistances of the two gauges were measured very 

accurately in the standards section of Electrical Engineering 
Department after conditioning the cheeses in the conditioning room 
for three days. Then the winding of the cheeses was continued to 

different diameters under similar conditions. The resistance of the 
gauges were measured again as above. The results are given below.



Table 2.1

Gauge No.1 Gauge No.2

Gauge radius
Resistance at 20°C before winding' 
Radius of the finished cheese 
Resistance at 20°C after winding 
Fall in resistance

0.75 in. 
696.25 ohm 
'■1.25 in. 
694.51 ohm 

1.94 ohm

0.75 in. 
695.18 ohm 

1.7 in. 
689.77 ohm 
5.41 ohm

The preliminary test showed that the fall in resistances 

were of the order of 0.28$ and 0.78$ for the first and second gauges 

respectively; also the change in resistance in either case was large 
enough to be conveniently measured and increased as winding proceeded. 

This test suggested that this method was capable of being developed 
for measuring the compression of the inner layers of the cheese.

2.3 Experimental Set-up 

2.3.1 The ¥inder
A Leesona style 50 Precision winder was used to wind the 

cheeses during tests. The machine was different from the one used for 
the preliminary test. It has a spindle of diameter and rotates
at 900 r.p.m. and gives approximately 2^ winds per stroke. The 

machine is fitted with a belt gainer mechanism. The amount of gain 

or space between two adjacent wraps of yarn is adjusted by a hand
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wheel at the rear end of the gainer mechanism. At the start of the 

winding the gainer mechanism was set to give a shift of slightly more 

than one diameter of yarn between adjacent wraps of yarn, i.e. the 

adjacents wraps of yarn touch each other. The tension in the yarn 

and the pressure on the cheese during winding were applied by weights 

through a system of levers. As the diameter of the cheese increases 

these levers turn on their pivots resulting in reduced moments, 

thereby trying to maintain the tension in the y a m  and the pressure 

on the cheese at a roughly constant level. Small weights were used 

on the pressure lever and the pressure roller was kept in contact 

with the cheese by the tension in the yarn.

2.3*2 Measurement of Winding Tension

A Zivy hand tensiometer was used for measuring the winding 

tension. This consists of a guide roller and a tension roller carried 

on ball bearings. The guide roller is connected to a handle at the 

top end and when the handle is pressed down the guide roller moves 

past the tension roller. The tension roller is spring loaded. For 

measuring the tension in the thread, the thread is placed in between 

the rollers and the handle is pressed down. This causes the tension 
roller to be supported by the thread. The tension roller moves against 
its spring and its movement is proportional to the tension in the 

thread. The movement of the roller causes a pointer to move on a
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graduated dial to give the tension on the thread in g. Thè movement 

of the pointer on the dial is checked by reading the tension in a 

thread caused by suspending a known weight from the thread. During 

winding, the winding tension in the thread fluctuated and the mean 
position of the pointer was taken as indicating the winding tension.

2.3.3 Measurement of Change in Resistance

For measuring the change in the resistance of the gauge

due to further winding a Bruel and Kjoer Strain Gauge Apparatus Type

1516 was used. This instrument uses an A.C. Bridge Circuit energised

by a 3 KHz supply to measure the change in gauge resistance and can
—6indicate directly strains of the order of 1 x 10 .

The bridge supply can be set at three voltages, namely, 3 

volt, 1 volt and 0.3 volt. The instrument can be worked at five 

different sensitivity settings. There is also a ’gauge factor' 

setting which is a continuous sensitivity control permitting the 

sensitivity to be set so that when the gauge factor (sensitivity) is 
known the dial can be made to indicate strain directly. For balancing 

the active and the dummy gauges the adjustment switch is turned to 

balance position. This switches out the phase-sensitive rectifier 
of.the instrument to allow small capacity as well as resistance out 
of balance to be sensed. The meter reading is brought to zero by 

balancing capacity and by balancing resistance alternately. If the



resistances of active and dummy gauges are not much different then it 

should he possible to bring the needle to zero position. Finer 

balance is obtained at a higher sensitivity setting. The adjustment 
switch is then put in the operation position which brings the ’phase- 

sensitive rectifier’ into play making it less sensitive to stray 

capacity changes.

Calibration of the pointer movement on dial of the strain 

gauge apparatus is done by a resistor of known resistance. This 

resistance Rc, which is large as compared to gauge resistance R0, 

when connected in parallel with the gauge changes its effective 

resistance by R0 x 100 / Rc per cent. This change in gauge 
resistance causes the pointer to move by 'n' divisions on the dial. 

Therefore one division of the dial represents R0 x 100 / (Rc x n) 

per cent change in gauge resistance. The linearity of the pointer 

movement is checked by connecting the calibrating resistance in 

parallel with the dummy gauge. An equal movement of the pointer in 

the opposite direction indicates that the pointer movement is 

probably linear.' This simple test was performed at the start of 

each working session.

2.4 Strain Gauge for Radial Compression 
2.4.1 The Base for the Gauge

For preparing a gauge, first a base was prepared by winding 

a cheese up to the gauge radius on a core. Before the Start of the

- 27 -
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winding a few parallel wraps of yarn under tension were wound at each 

end to prevent the cross wound coils of yarn of regular cheese from 

slipping towards the centre of the package« The machine was adjusted 

to lay the adjacent wraps of y a m  touching each other at the core«

The winding tension, which was recorded, during the formation of the 

base was normally the same as would be used for the subsequent 

winding.

The diameter of the cheese was measured correct to the 

nearest mm with a pair of callipers and a scale with mm divisions.

The Zivy hand tensiometer was used for measuring the winding tension 

at intervals.

2.4.2 The Gauge
A rectangular piece of paper about 4 cm wide and slightly 

longer than the circumference of the cheese was used for making the 

strain gauge. Two strips of copper foil 5 mm wide and about 10 cm 

long were cemented to the paper with Durofix as shown in Pig. 2.2.

The first strip was cemented over the paper for a length of 1 cm. The 
second strip was fixed to the paper from below for most of the width 

of the paper, but at about 1 cm from the other edge of the paper this 
strip was taken over the paper through a slit cut in the paper and the 
end of this strip was also cemented to the paper.

The paper was then wrapped over the cheese keeping it in the 

centre of the cheese. The paper was neither slack nor tight over the
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cheese. The two ends of the paper overlapped and were gummed 

together so that the paper enclosed the cheese underneath it. The 

free ends of the copper foil strips were bent twice at right angles 

as shown in Fig. 2.2, conforming to the shape of the cheese. The 

strips were then fixed to the core with Durofix and any extra length 

of the strips beyond the core was cut off. This also prevented any 

movement of strips with respect to the core and also prevents their 

flying off during winding. Both strips were kept to one end of the 

cheese to facilitate overend withdrawal of yarn from the other end 

during unwinding of the cheese.
The strain gauge wire was cemented on either side of the 

first copper foil strip with Durofix as shown in Fig. 2.2. Then 

the cheese was turned through a small angle, a further portion of 

wire was placed in position with some tension and.was again cemented 

to the paper. This process was continued until about 2-y to turns 

of wire was fixed to the paper. The placing of the wire was such 

that it gave a neat helix with the other end of the wire falling on 
the other copper foil strip. This end was also fixed at both sides 

of the strip with Durofix. Then the wire at both ends was soldered 
to the strips. For a good joint it was essential that the strips 
were clean. The resistance of the gauge was measured by a resistance 
meter of 5$ accuracy. This incidentally also checked the soldering of 

the wire. Then a thin layer of Durofix was applied to the edges of
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the strips to cover them up. . This was done to prevent the y a m  finding 

its way underneath any uncovered comer of the strip and resulted in 

plucking of the strips during unwinding. This could give wrong 

results and could also result in the breakage of the delicate wire.

The axial distance between the two ends of the wire was about 1.5 cm. 

The gauge was then left overnight at room temperature. After the 

drying period was over the resistance of the gauge was again 

measured. The gauge was now ready for use.

Another gauge was also prepared under similar conditions 

to be used as a dummy gauge for temperature compensation. Care was 

taken to keep the resistance of the dummy gauge close to the resistance 

of the active gauge to facilitate balancing of the bridge.

2.4.3 Test Procedure
The base of the gauge was prepared and the winding tension 

during its preparation was recorded at intervals. Then the gauge was 

prepared and its resistance measured. A similar dummy gauge was also 

prepared. The two gauges were connected to the strain gauge apparatus 

in their respective positions by spring loaded crocodile jaws with 

leads soldered to the jaws. This method may seem rather crude but 
it was convenient and as a large number of repetitions of the same 
measurement gave consistent results seemed justified.

After the strain gauge apparatus was balanced and set the 

reading on the dial was recorded and the adjustment switch was put to
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tlie zero position and the gauge was disconnected. Then some winding 

was done over the gauge. Initial winding was done carefully to avoid 

any damage occurring to the gauge. The winding was stopped after 

recording the winding tension, the cheese diameter was measured and 

the gauge was again connected to the apparatus. The adjustment switch 

was put in the operation position. The reading on the dial was noted. 

This process of recording and winding was repeated several times until 

the cheese was built up to the required radius. The same process was 

repeated at intervals during unwinding. The gauge factor of the 

gauge was not known in the absence of the calibration of the gauge 

which was difficult to arrange, the winding test shows the radial 

deformation of the cheese only qualitatively.

2.4.4 The First Test
Fig. 2.3 shows the per cent change in the gauge resistance

l ... .
at the gauge radius of 2 cm plotted against the outer radius R of the 

cheese. The compression TT of the cheese at the gauge radius is given 

by the expression

Ü = ( ~ .  z ioo) x r / (F x 100) ;it

rARwhere (—r—  x 100) is the per cent change of the gauge resistance,A
r is the gauge radius of the cheese and F is the 'gauge factor*. F 

is expected to be constant over a reasonable range of strain but is
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dependent on the construction of the gauge» Therefore the compression 

D of the cheese is directly proportional to the per cent change in the 

gauge resistance and can be represented qualitatively by the change 
in the gauge resistance. The figure shows a large initial compression 

of the cheese at the gauge radius and little compression later on.

An increase in the outer radius after about 3.2 cm does not appear to 

cause any further compression at the gauge radius.

The behaviour of the gauge resistance during unwinding is 

also shown in the figure. The change in resistance as the cheese is 

unwound is similar. The recovery of the resistance after unwinding 

is not complete; the resistance returns to only 99,55$ of the 
original resistance. The loss of nearly half of the total change in 

resistance indicates an unrecoverable part or non-elastic compression 

of the cheese.

2.5 Development of the Gau^e

The result of the first test was surprising in that the 

deformation stopped when only a few layers of yarn had been added.

It was therefore necessary to find out whether this was a correct 

picture of the behaviour of the package or whether there was some 
fault in the method of measurement.

•2.5.1 Tests 2.A and 2.B

These tests were devised to ascertain the reproducibility
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of the results and the effect of repeated winding on.the compression 

Of the cheese. To achieve this two similar gauges, 2.A and 2.B were 

prepared under similar conditions and-were used as active and dummy 
gauges. The cheeses were unwound"to a radius of 2,05 cm during the 
second unwinding.

Pigs. 2.4 and 2.5 show the results of tests 2.A and 2.B 

respectively. These figures show the resistance of the gauges during 

winding and unwinding as the per cent of the resistance before each 

winding. The compressional behaviour of both the cheeses at the gauge 

radii, which is represented qualitatively by the resistance of the 

gauges, is similar. The changes in gauge resistances for first winding 

are 0.66$ and. 0.65$ for 2.A and 2.B respectively for winding tensions 

of 21.1g and 21,7g. The non-recoverable part of the change in the 

resistances are 0.4$ and 0.41$ respectively. As the results for these 

tests are very close to each other, both in behaviour and magnitude 

it may be reasonably concluded that the results are reproducible.

Gauges 2.A and 2.B show higher changes in the gauge resistances 

for first winding as compared to second and third windings. The values 

for these changes are 0.66$, 0.42$ and 0,45$ for 2.A, and 0.65$, 0.53$ 
and 0.34$ for 2.B for the first, second and the third winding 
respectively for nearly equal values of the winding tension. This 
shows that the radial deformation of the cheese reduces for second and 

subsequent windings probably because after the first winding the cheese
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suffers a large amount of permanent deformation and as a result of 

which it is more resistant to the later windings.

A comparison with Test 1 shows that the results of the tests 
2.A and 2.B are similar to the results of Test 1. The curves of the 

tests 2.A and 2.B also show a quick large initial fall in the gauge 

resistance and then practically no change. The magnitude of the 

resistance change in Test 1 is higher, namely, 1.08^ for Test 1 to.

0.66$ for Test 2.A, and 0.65$ for Test 2.B. This difference is 

possibly due to a higher winding tension used in Test 1, i.e. 28.8g 

as compared to 21.1g for Test 2.A, and 21.7g for Test 2.B.

2.5»2 The Slotted Paper Base. Test 5.
An examination of the paper base for the previous tests 

showed it to be crimped after unwinding. The crimping of the paper 

base was considered to be undesirable because it shows that the paper 

is not able to follow the change in the circumference of the cheese 

surface as it shrinks under the pressure applied by the subsequent 

winding and instead of shrinking the paper base crimps and the 

reduction in the length of the wire may be less than, it should be. In 

this test an attempt is made to eliminate the crimping of the paper 
base by adopting a slotted construction of the paper base for fixing 
the wire. This type of paper base did not show crimping after the 
unwinding. This is shown in Fig. 2.6. The strips of paper alternated 

with the blank spaces created by cutting alternate strips with a razor
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blade and removing them. The wire was fixed "to the strips of paper 

with Durofix and over the blank spaces the wire was free. Now as 

the cheese contracted circumferentially at this radius due to further 
winding the strips moved closer to each other and any crimping of 

the strips was not likely. The strips in moving closer to each 

other would allow the wire to shrink in the gaps. The paper was 

gummed to the cheese at two spots near the edge to prevent any 

movement of the paper with respect to the cheese but each individual, 

strip was not gummed to the cheese.

Fig. 2.7 shows the result of Test 3« Again the graph is 
of a similar shape. The magnitude of the change in the resistance 

of the gauge is 0.35$ for the winding tension of 23.9g. The non- 

recoverable part of the change in the gauge resistance due to the permanent 
deformation of the cheese is about 28.5$. These values are different 

from the values of the previous tests and this difference is probably 

due to the changed value of the gauge factor because of the different 
type of paper base.

During second winding the winding tension is reduced to 19.5g 

from 23.9g and consequently the change in the gauge resistance is 0.25$ 

as compared to 0.35$. The non-recoverable part of the change in the 
gauge resistance is about 20$.
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2.5*3 Pre-strained Gauge Wire. Test 4

In Test 5» as the cheese compresses the strips at the gauge 

radius move closer to each other and while these strips move the wire, 

if not sufficiently prestrained while fixing, may become slack 

between the gaps. If this happens then the wire would cease to 

contract and after some initial change no further change in the 

resistance of the gauge would possibly be shown. This test is 

devised to check such a possibility. This is tested by preparing 

two gauges one with a high tension in the gauge wire and the other 

with a low tension in the gauge wire. Now if any slackening of the 

gauge wire due to the compression of the cheese should occur it 
should occur first in the gauge with the low tension in the wire.
This gauge should show a smaller fall in the gauge resistance and 

should cease to show the change in the gauge resistance earlier as 

compared to the other gauge with the high tension in the wire. In 

order to ensure the comparability of the results the gauges are made 

on the same paper base.
In this test two gauges, 4.A and 4.B, were made by fixing 

two gauge wires on the same slotted paper base. Before fixing the 

wire of gauge 4.A was strained by a weight of 15g freely suspended 
from it. The wire of the gauge 4.B was similarly strained by a weight 

of 5g. Only 1-j- turns of wire was used in each case keeping the 

length of the wire used approximately equal to obtain nearly equal 

resistances for the two gauges. The two wires crossed each other at
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one point and they were kept separate by a small piece of paper gummed 

over the wire of the first gauge. The copper foil strips were marked 
to indicate which leads were for which gauge.

The two gauges, which had nearly equal resistances, were 

balanced by a dummy gauge of nearly same resistance. The position 

of the pointer on the dial of the strain gauge apparatus was noted 

in each case at the start of the winding. The per cent change in the 

resistance of the gauge represented by one division of the dial was- 

found out separately for each*gauge. The test was carried out as 

before except that the changes in this case were read off on the dial 
for both the gauges by connecting each of them turn by turn to the 
strain gauge apparatus.

The results of this test for the gauges 4.A and 4.B are 

shown in Figs. 2.8 and 2.9 respectively. The compressional behaviour, 

represented by the changes in the gauge resistances, of the two gauges 

is similar. The magnitudes of the changes in the gauge resistances 

are also close, namely, 0.17?« for 4.A and 0.18?» for 4.B. This, 
incidentally, further shows that the results are reproducible as the 
behaviour of the compression in this test is similar to that of the 
previous tests.

Gauge 4.B with the low tension of 5g in the gauge wire when 
fixed show a slightly higher fall of 0.18$ in the gauge resistance as 

compared to that of 0.17$ for Gauge 4.A with the high tension of 15g
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in the wire when fixed. The values for the second winding are 0.11/5 

for Gauge 4.B and 0.1$ for Gauge 4»A. This shows that the tensioning 

of the gauge wire differently while fixing has no apparent effect on 

the results with the winding tensions used during the windings and a 

tension of 5g in gauge wire when fixing it stretches the wire 

sufficiently to be able to measure the changes caused due to the 

compression of the cheese. However, a tension of 10g in the gauge 

wire is adopted as standard as this tension in the gauge wire will 

stretch the wire sufficiently to measure the compression of the cheese 

even with high winding tensions. A higher tension can result in 

breaking the wire if not handled very carefully.

2.5.4 Rubber Base Gauge. Test 5

The compressional behaviour of the cheese was further checked 

by making two gauges, 5.A and 5.B, on the same cheese base. In the 

gauge 5«B a rubber base was used for fixing the gauge wire. For 

preparing this gauge a band of rubber was placed on the cheese in a 

stretched condition with the gauge wire fixed to the rubber band firmly 

at all points. The band would contract as soon as the cheese compresses 
due to further winding and the wire which was fixed to the band would 
be forced to contract as well along with the band. In this case the 
possibility of the compression of the cheese not indicated by the change 

in the gauge resistance due to the slackening of the wire was considerably
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reduced. For comparing the results a ¡plotted paper base gauge 5.A 

was also made on the same cheese along with the rubber base gauge 

5.B having leads at the other end.

The construction of the rubber base gauge was similar to the 

paper base gauge. A band of rubber of about 2 cm wide was cut from 

a balloon and was placed on the cheese base of 2 cm radius. The 

rubber sleeve was in a slightly stretched condition and caused some 

compression of the cheese underneath it. The rubber band was not 

fixedto the cheese as it was tightly held over the cheese by its own 

tension and was not likely to slip over the cheese. Bostik no. 1 was 

used for fixing the wire and the copper foil strip leads to the rubber 

band. The resistances of the two gauges were kept close to each other 

and were balanced by the same dummy gauge. The conduction of the test 

was similar to the conduction of the previous test.

Figs. 2.10 and 2.11 show the results of the test for the 

gauges 5.A and 5*B respectively. The compressional behaviour 

indicated by the rubber base gauge 5.B, is nearly similar to that 

shown by the paper base gauge 5*A but is greater in magnitude. For 

the second,winding also the changes in the resistances of the gauges 

are similar.

2.5*5 Conclusion
The results of these tests indicate that the method
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developed seems to be capable of showing the compression of the cheese 

qualitatively. Although it seems strange that after a few layers 
deformation stops a variety of different gauges confirm this behaviour. 

For a quantitative measurement of the compression it is necessary to 

calibrate the gauge. However, the great difficulty in calibrating 

the gauge is that there is no guarantee that the same calibration will 

hold for subsequent windings. Each time the winding is done the gauge 

factor is likely to alter as the paper on which the wire is fixed is 

not likely to keep exactly the same relative position with respect to 

the cheese. Also even slight crimping of the paper can alter the gauge 

factor. The calibration method is likely to involve imposition of 

pressure on the cheese and due to this gauge factor is likely to be 

incorrect even for the first winding. The imposition of the pressure 

on the cheese can deform it permanently which is •undesirable. If the 

paper is firmly fixed on the cheese by some adhesive to avoid slip of 

the paper then that adhesive may alter locally the compressional 

property of the cheese. This makes it necessary to calibrate the 

gauge for each winding and the gauge once calibrated cannot be used 

repeatedly. Also as the cheese suffers a permanent deformation after 
each winding the results of two or more windings are not comparable. 
Moreover for each different test a new gauge is necessary. This is 

because the cheese base on which the gauge is built must be prepared 

with the same winding tension in the yarn as would be used for further
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winding. This rules out the use of the same gauge to measure the 

effects of different winding tensions. Also it is not possible to 

construct two gauges on exactly similar cheese bases and, therefore, 

it cannot be presumed that one of the gauges would have the same 

gauge factor as the other gauge which can be ■used for calibration 
only.

All these objections make accurate calibration of the gauge 

impossible and attention must be directed to the shape of the curve,

i.e. the way the deformation changes rather to absolute values.

The results of the winding tests show qualitatively the 

compression of the cheese. There is a quick, large, initial compression 
of the cheese at any radius for some initial winding at that radius 

and as the winding continues further there is little increase in the 

value of the compression at that radius. This behaviour is 

consistently shown by all the winding tests.

The curve (a) of Fig. 2.12 shows the per cent change in the 

resistance of the gauge at the radius of 2 cm plotted against the 

winding tension in the yarn. This curve suggests the radial deformation 

of the cheese is probably related to the winding tension in the yarn.

The curve (b) shows the permanent change in the gauge resistance after 
the unwinding is completed plotted against the winding tension in the 

yarn. This shows that the permanent radial deformation of the cheese 

at any radius is nearly half of the total radial deformation of the



42

cheese at that radius as the cheese was built up to a given outer 
radius. This is shown by all the winding tests.

2.6 Measurement of Axial Strain 
2.6,1 Introduction

An approach similar to the one used for measuring the radial 

deformation of the cheese was used to measure the axial deformation 

of the cheese by fixing the gauge wire nearly parallel to the axis 

of the cheese on a rectangular piece of paper wrapped over the cheese 

and a large change in the resistance of the wire was shown. However 

when the gauge wire was fixed on a helically wound strip of paper on 

the cheese to avoid the slip of the paper the wire snapped after 
showing a much larger change in the resistance. Hence this method 

was abandoned.

An alternative, simple, mechanical gauge is developed to 

measure the axial deformation of the cheese and consists of two stiff 

cardboard tags at the two ends of the cheese held in position by two 

strips of paper gummed to the cheese. The axial deformation of the 

cheese at the gauge radius is given by the change in the distance 
between the tags measured by a vernier calliper.

Winding tests were conducted to measure the effect of different 
winding tensions on the axial deformation of the cheese, the axial 

deformation of the cheese at different radii and the effect of repeated
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windings on the axial deformation of the cheese at the same radius. 

Another set of tests was done with a different spacing between the 
adjacent wraps of the yarn.

■ 2.6.2 Electrical Resistance Method 

(a) Preliminary Test. Test 6

The construction of this gauge was similar to the one used 

for measuring the radial deformation of.the cheese, and is shown in 

Pig. 2.13» It consisted of a rectangular piece of thin paper 

encircling the cheese. The two ends of the paper which overlapped 

each other were gummed together. Two copper foil strips 0.5 cm wide 

were fixed to one end of the paper with Durofix and acted as leads 

for the gauge. The resistance wire was fixed to the paper with Durofix 

keeping it at a small angle to the axis of the package as shown in 

the figure. The two ends of the wire were soldered to the respective 

copper foil strips. The gauge was prepared at a radius of 2 cm. A 

similar dummy gauge with.nearly same resistance was also made.

The measurement of the change in the gauge resistance was 

done by using a Bruel and Kjcer Strain Gauge Apparatus. The procedure 
was the same as was used for measuring the radial strain. In this 
case also the per cent change in the gauge resistance was proportional 

to the axial strain .of the cheese at the gauge radius.
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Fig. 2.14 shows the per cent change in the gauge resistance, 

which is representative of the axial strain at the gauge radius of 2 

cm, plotted, against the outer radius of the cheese. The curve shows 

that the resistance of the gauge and hence the axial length of the 

package falls initially with an increase in the outer radius of the 

cheese and then starts increasing as the winding continues. The 

change in the gauge resistance is about 0.9$ when the outer radius 

is '3?.2. cm. The return curve shows the axial strain during unwinding. 

Initially the rate of fall of the axial strain is slow but increases 

later as the unwinding proceeds towards the gauge radius. A permanent 

strain is indidated by the permanent change in the resistance of about 

0.5$. •
This test was used as a preliminary test to ascertain the 

possibility of measuring the axial strain of the cheese. However for 

this method to be useful it has to be developed further. The main 

objection to this type of gauge is the likelihood of the paper carrying 

the resistance wire slipping over the cheese as the paper is not fixed 

to the cheese and in such an eventuality the gauge would fail to show 
the full axial deformation. Also as the paper covers a large part of 

the cheese it could affect the transmission of shear force between the 
layers and thus disturb the behaviour of the whole cheese.

(b) Development of the Gauge. Test. 7

In this case the paper for mounting the resistance wire was
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replaced by a long strip of paper 0.5 cm wide helically wound over 

the width of the cheese of radius 2 cm with a gap of about 0.2 cm between 

'the successive wraps of the strip. The two ends of the helically wound 

strip were gummed to two other strips at the end of the cheese. Each 

of the end strips was about 0.5 cm wide and was gummed to the cheese 

at about 1 cm from the edge of the cheese keeping it parallel to the . 

edge. The resistance wire was fixed to the strip as shown in Pig.

2.15 with its ends soldered to the two copper foil strips which acted 

as leads for the gauge. A similar dummy gauge was also prepared.

This type of gauge is shown in Pig. 2.15.
In this type of construction it is unlikely that the paper 

strip slips over the cheese as it does not resist axial expansion, 
also it permits contact between the two adjacent layers containing 

the gauge.

Pigs. 2.16 and 2.17 show the resistance of the gauge as 

per cent of the original resistance at the radius of 2 cm as the cheese 

was built up further in Test 7 and Test 8. As before these show a 

slight initial fall in the gauge resistance for the immediate winding 
. and then an increase in the resistance for the subsequent winding.

The magnitude of the change in the gauge resistance in Test 7 is 
nearly 3.7 times to that in the previous test when the outer radius 

is 4.35 cm. But possibly due to high extension the gauge wire snapped 

when the outer radius was 4«35 cm and no further winding was done.
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Thé test was repeated again, as Test 8 with a new gauge but this time 

also the gauge wire snapped presumably due to high extension and 

because of this, this method was abandoned.

This it seems established that there is axial expansion of 

the cheese greater than either paper or wire will follow. .The one 

is strong and slips while the other is weak and breaks. In view of 

the 2fo change of resistance before the wire broke an extension of at 

least 1$ of the length might be occurring. If so this should be 

measurable with reasonable accuracy by simpler methods.

2.6.3 Mechanical Gauge for Measuring Axial Deformation 
(a) Construction of the Gauge

Pig. 2.18 shows the construction of this type of gauge. It 

consisted of two stiff cardboard tags each 0.5 cm wide and 2 cm long. 

Each of the tags was gummed to a separate thin paper strip about 1 cm 

wide. These strips along with their tags were gummed round at each 

end of the cheese encircling it. The paper strip was at about 0.5 cm 

from the edge of the cheese and was parallel to it. With this 

arrangement the tags project out from the cheese.

The distances between the far ends and the near ends of the 
tags were measured by a vernier calliper capable of measuring 0.001 in 

and were marked as 'a' and *b' respectively. The gauge length was

. The strain was measured by measuring the length 'a' attaken as *b*



47

intervals by stopping the winding and the change in the distance 'a' 

was expressed as the per cent change of the gauge length 'b'. This 

was done on the assumption that the tags themselves were not strained 

and the movement of the tags with respect to each other in the axial 

direction represented the deformation of the axial length *b*. In 

fact it probably corresponds to a length a little greater than 'b*.

(b) Procedure

After preparing the cheese base of the required radius two 

strips of thin paper, each 1 cm wide and long enough to encircle the 

cheese were cut out and on these stiff cardboard tags of 2 cm xo-5. cm 
size were gummed. Then each of these strips was gummed to.each end of 

the cheese at about 0.5 cm from the edge of the cheese taking care that 

the long edges of the tags were in the same line parallel to the axis 

of the package. The tags came in between the paper strip and the 

.cheese. The cheese was left for some time to allow the gum to dry.

The tags were firmly fixed to the cheese. Before the commencement of 

the winding the distances ’a' and ’b' were measured. The distance 
'a* was measured at intervals by stopping the winding. Similar 
measurements were taken during the unwinding of the cheese. These 
were tabulated and the axial strain of the length was expressed as 

the per cent change in the gauge length 'b*. The observations and 

calculations for winding tests are given in Appendix B.
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This type of gauge was simpler to make and use and took less time to 

make it as compared to electrical resistance strain gauge. Also no 

calibration was required. However its success was due to the large 

strain of the length and the effect of slight inaccuracy in measuring 

the strain was negligible.

2.6.4 Preliminary Test. Test 9

Fig. 2.19 shovrs the gauge length at the radius of 2cm as 

per cent of the original gauge length with the outer radius R during 

winding and unwinding. The cheese surface at the radius of 2 cm . 
contracts axially for a slight initial increase in the outer radius. 

But as the outer radius R increases farther from about 2.25 cm the 
cheese surface expands axially at a steady rate. During unwinding 

the cheese surface contracts slowly at first and rapidly later. The 

expansion is large and is about 4.35$ when the outer radius is 5 cm. 

It also shows a fairly large permanent strain of about 2,£$ when the 

unwinding is complete.

The behaviour of the axial strain in this test is similar 

to that of Test 7. The magnitude of axial strain, when R is about 

4.25 cm, is 3.15$ as compared to that of 1$ of Test 7» presuming a 
gauge factor of 2 for that gauge. For this gauge to show equally 

high strain the gauge factor should be low - about 0.6 instead of 2 

usual for made up gauges. Yet the similar behaviour of the two types
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of gauges suggests that the former method is capable of measuring 

the axial strain up to a certain level.

2.6.5 Winding Tests

The winding tests for measuring the axial strain of the 

cheese were divided into two groups according to the space between 

the adjacent wraps of yarn in the cheese. In the first group of tests 

there were 20 threads per cm at the core. The effect of varying the 

winding tension was mea sured on a base prepared at the same winding 

tension at which the subsequent winding was done. Also the effect 

of repeated windings on the same base was observed. This concluded by 

measuring the axial deformation of the same cheese at different radii. 

In the second group of tests the above tests were repeated with 10 

threads per cm at the core instead of 20.

Another test was conducted to observe the effect of varying 

the winding tension in the yarn on the shear force causing the axial 

deformation at the gauge radius. In this test the cheese bases for 

different windings were prepared at the same winding tension in the 

yarn. In such a case the shear force at the gauge radius should be 

proportional to the axial strain of the cheese at that radius while 
the material resisting deformation is the same.
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2.6.6 The First Group of Tests

In this group of tests the spacing between the adjacent 

wraps of yarn at the core was 0.05 cm, i.e. nearly one diameter of 
the yarn.

(a) Effect of Varying the Winding Tension in the Yarn, Test 10

In this test the effect of varying the winding tension in 

the yarn on the axial deformation of the cheese at the radius of 2 

cm was measured. The range of winding tension varies from about 8g 

to about 40g. A number of windings were done one for each winding 

tension of the range. During these windings the cheese base for the 

gauge was prepared at the same winding tension in the yarn at which 

the subsequent winding was done. The results of the present test are 

shown in figures from 2.20 to 2.26.

These figures show that the behaviour of the axial 

deformation of the cheese at the gauge radius is similar to that of 

the previous test, namely, there is a slight reduction in the gauge 

length for some initial winding and subsequently the gauge length 

increases at a fairly steady rate as the winding continues. During 

unwinding the change in gauge length is very slow to start with but 
becomes faster as the gauge radius is approached. The permanent 
deformation of .the cheese at the gauge radius after the unwinding is 

complete is high and is generally more than half of the total
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deformation of the cheese at that radius.

Pig, 2,26 shows the per cent axial deformation of the cheese 

at the radius of 2 cm plotted against the winding tension in the y a m  

for different outer radii of the cheese. This figure shows that there is 

practically no difference in the magnitude of the axial deformation of 

the cheese as the winding tension in the yarn is varied,

(b) Repeated Winding Test, Test 10

The results of the repeated winding on the cheese are shown

in Pig. 2.22 which shows the gauge length at the radius of 2 cm as

per cent of the original gauge length during repeated winding and 

unwinding at the winding tensions of 27.2g, 26,8g and 28.7g. The 
values of the axial deformation for the outer radius of 5 cm and the 

permanent deformation after.the unwinding is over in the three cases 

are 4$ and 1.65$, 3«1$ and 0,6$ and 3«4$ and 0.7$ respectively. The 

behaviour of the strains in the three cases are similar but the 

magnitudes of the total strain and the permanent strain are higher 

for the first winding as compared to those of the subsequent windings.

(c) Axial Deformation of the Cheese at Different Radii. Test 11
Test 11 was devised to measure the deformation of the cheese

at different radii. Gauges- were inserted at radii of 2 cm, 2.5 cm,

5 cm and 5.5 cm. Each time winding was stopped the lengths of all 

gauges were measured.
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During unwinding also the deformation was measured at 

intervals at all the gauge points, each gauge being removed as it 
was released.

The results of the test are given in Fig. 2.27 which shows 

the gauge length as per cent of the original gauge length at the radii 

of 2 cm, 2.5 cm, 3 cm and 3.5 cm as the cheese is built up to a radius 

of 5.1 cm.' It shows that the behaviour of the deformation at all the 

four radii is similar showing an initial fall in the gauge length for 

some initial winding and then a steady increase in the gauge length.

The magnitude of the deformations at different radii are different.

Fig. 2.28 shows the per cent axial deformation of the cheese with the 

radius of the cheese for the outer radius of 5.1 cm of the cheese.

This shows that the maximum axial deformation is at the radius of about 

2.5 cm.

2.6.7 Package with Increased Thread Spacing

In these tests the spacing between the adjacent wraps of y a m  

at the core was 0.1 cm giving 10 threads per cm.

(a) Effect of Varying the Winding Tension in Yam. Test 12

. In this test the effect of varying the winding tension in 

the yarn on the axial deformation of the cheese at the radius of 2 cm 

is measured. The range of winding tension varies from about 6g to 

about 42 g. This test is similar to;Test 10 described before. The
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results of this test are shown in figures from 2*29 to 2.37.
These figures show that the behaviour of the axial deformation 

at the gauge radius is similar to that of the previous tests. The 
magnitude of the axial deformation at the gauge radius for the outer 

radius of 5 cm is higher, namely about 6.8$ as compared to that of 

about 4.7/S of Test 10. During unwinding the change in length towards 

original undeformed length is slower initially and in some cases a 

slight increase in the deformation is indicated on initial unwinding.

The permanent axial deformation at the gauge radius after the unwinding 

is complete is also high and is generally about half of the total 

axial deformation at that radius.
Fig. 2.37 shows the per cent axial deformation of the cheese 

and the radius of 2 cm plotted against the winding tension in the yarn 

for the outer radii of 3 cm, 4 cm and 5 cm of the cheese. In this 

case also the magnitude of the axial deformation of the cheese appears 

to be independent of the winding tension in the yarn,

(b) Effect of Repeated Winding

Figs. 2,32 and 2.35 show the effect of repeated windings on 
the axial deformation of the cheese at the radius of 2 cm at two 
different winding tensions in the yam, namely about 23g and about 35g 
respectively. It shows that the axial deformation of the cheese at 

the radius of 2 cm is greater due to the first winding as to those of 

the subsequent windings especially in the second case of higher winding
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tension in the yam. Also the permanent axial deformation of the 

cheese after first unwinding is greaterihaithat of the subsequent 

windings. The pattern of the axial deformation is similar in all 

the windings of both the cases.

(c) Axial Deformation of Cheese at Different Radii. Test 13

The method of measuring the axial deformation of the cheese 

at the radii of 1.5 cm, 2 cm, 3 cm, 3*5 cm, 4 cm and 4.5 cm in this 

test was similar to that of Test 11. The results of this test are 

shown in Figs. 2.38, 2.39 and 2.40. Fig. 2.38 shows the gauge length 
as per cent of the original gauge length at various radii as the cheese 
is built up to the outer radius of 5 cm. The magnitude of the initial 
reduction in the gauge length due to some initial winding reduces as 

the radius of the cheese at which the measurement is done increases.

At the radius of 4t  cm there is no reduction in the axial gauge 

length. Fig. 2.39 shows the per cent axial deformation of the cheese 

plotted against the radius of the cheese for the outer radius of _10_
n *cm., The maximum axial deformation of the cheese occurs at the radius 

of about 2.5 cm. Fig. 2.40 gives a three dimensional view of the axial 

deformation of the cheese. It shows the axial deformation at any 
radius r of the cheese for any outer radius H of the cheese.
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2.6.8 Effect of Winding Tension on Axial Deformation of a 
Uniform Cheese Base. Test 14

This test was conducted to assess the effect of varying the 

winding tension in the y a m  on the axial extension of a cheese base 

prepared at the same winding tension, namely about 26.5g»for each 

winding. This did not correspond to a real cheese but was included 

in case it was useful in exploring the behaviour of the cheese. For 

this a range of winding tensions varying from about 10g to 35S was 

chosen and a separate winding was done for each value of the winding 

tension. The results of the test are given in Figs, from 2.41 to 2.43 

which show the gauge length at the radius of 2 cm as per cent of the 
original gauge length during winding and unwinding.

The behaviour of the axial deformation is similar in all the 

cases but the magnitude of axial deformation is different for each 

winding and is proportional to the winding tension in the yarn. The 

initial fall in the gauge length is also proportional to the winding 

tension in the yarn. At the low value of 9.6g of the winding tension 

in the yarn there is practically no initial shortening of the gauge 

length.

Fig. 2.44 shows the per cent axial deformation of the cheese 
at the radius of 2 cm plotted against the winding tension in the yarn for 

the outer radii of 3 cm, 4 cm and 5 cm. This figure shows a steady 

increase in the amount of axial strain with the increase in the winding

tension of the y a m



ra
te

 
o

f 
a

x
ia

l 
d

ef
o

rm
at

io
n

 
c%

3
T E S T .  <3

radius R cerna

Rate of axial deformation of cheese -wlHv R a t 

constant r.

FIG. 2.45

..........  .. — .......... ..1 ■ .. —



56

2.6,9 Discussion of Results '

The axial deformation is fairly large - up to about 5°/° 

or more. This makes its measurement easy and eliminates the problem 

of calibration. The results of the various tests agree with each 

other in general and are reliable. The results can be summarised 

as follows. Each layer of yarn contracts slightly while about 3 mm 

or so thickness of material is wound over it; then it begins to 

expand and when the outer radius has increased by another 3 mm or so 

it is back to its original length. : Then it continues to expand at a 

rate more or less proportional to the growth of the outside radius. 

The rate of expansion for layers near the outside is greater than 

for those near the core. This is shown by Fig. 2.45 based on the 

results of Test 13. ■ .

This expansion is not all recoverable when the package is 

unwound - rather more than half .of it seems permanent. There is a 

large hysteresis in unwinding but on rewinding the behaviour is 

almost the same as on the first winding; the extension rising to 

higher level and almost half of the additional extension being 

recoverable.
The winding tension hardly affects the behaviour - it must 

by making a harder package beneath the gauge radius affect the 

resistance to deformation in the same way as it increases the 

deforming force. If however the tension is different in winding
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over the gauge from that used in winding the inner part the axial 

deformation is changed a great deal - for instance in a package of 

5 cm radius the strain at 2 cm radius increases by about 0.2/£ for 
each gramme increase in winding tension over the gauge. This shows 

that all the results are likely to be affected quite a lot by 

fluctuations in tension during winding.

The spacing of the threads has some effect on the behaviour 

a wider spacing producing rather greater deformation - it would be 

expected to reduce the elastic modulus of the package rather more 
than it reduces the deforming forces.

The rather large axial deformation throws some slight 

doubt on the validity of the measurement of radial deformation. The 

helical winding used in those tests (to accommodate leads and prevent 

wire crossing) means that if these gauges responded correctly the 

sensitivity to axial strain of those gauges (with 2% turns of wire 

and 1,5 cm axial distance between the two ends of the wire) would be 

about 1/20 of that to, radial; the large axial strain thus could 

produce errors in the measurement of the smaller radial strain. If 

the gauge was fully sensitive to the axial strain a 5c/° axial 
extension could reduce the change in the gauge resistance of about 
0.08^ per cm increase of the outer radius. In fact, as was shown 
in the first axial tests, the gauges do not seem to respond fully 

to axial extension because of slipping of the paper base and the
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error would be much less than might be expected. This prediction 

was tested by winding a straight-wound gauge wire along with a 

previously used helically-wound type of gauge on the same base. In 

this gauge the ratio of axial distance between the two ends of the 

wire to the length of the wire was 1/8.5. The results are shown 

in Figs. 2.46 and 2.47« The maximum apparent reduction of the 

change in the gauge resistance if the gauge was fully sensitive to 

the axial extension of 3»4$ measured by the axial gauge would have 

been 0.1^ per cm increase of the outer radius. However the actual 

effect as shown by the difference between the changes in the 

resistances of the two gauges is only 0.007/» per cm increase of the 

outer radius. This is apparently due to the large slip of the paper 
base which might have occurred, particularly as the width of the base 

was much smaller than that of the first axial test and was also
r  -'slotted. 'The results suggest that the slow compression of the cheese 

does in fact occur rather more than was previously suspected and the 

qualitative conclusions about the radial deformation should thus be 

modified. The whole method however did not seem sufficiently 

accurate to justify a further prolonged series of tests.
Further discussion of the results is deferred until the 

theoretical approach to the problem has been presented.
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CHAPTER III 

THEORETICAL

3.1 Introduction

The approach to the theoretical solution of the cheese 

model is basically the same as has been used by Catlow and Vails 

and others. However there are important differences due to the 

fact that in the present case the model is a cross-wound cheese 

and not a parallel wound pirn. In the case of a pirn the axial 

component of the tension in the yarn is fairly small and was in 

fact considered to be zero and the circumferential stress of the 

added layer at the outer radius is constant regardless of the radius. 

The material was assumed to be homogenous and isotropic. In the 

cheese model the tension in the yarn, due to the wind angle, has 

two components the circumferential and the axial. Also due to the 

change in the wind angle with the outer radius the circumferential 

and the axial components of the tension are functions of the radius 

of the cheese at which the winding takes place. The cheese is not 
considered to be homogenous. The top layer of the cheese contacts 

the lower layer at a number of crossing points which bear the 
pressure imposed by the top layer. Also the cheese is not considered 
to be isotropic because the behaviour of these crossing points under 

compression is not likely to be the same as that of the whole yarn
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under longitudinal forces. Poisson's ratio of the cheese model is 

assumed to be negligible because the yarn is not close-packed as is 

likely in parallel winding and in general the yarn which is compressed 

radially can expand sideways, i.e. deform in cross section. Poisson's 

effect is likely to be much smaller in this case and its omission 

simplifies the analysis considerably.

Another difference appears in the analysis} corresponding 

elements of the cheese at different radii (i.e. those subtending the 

same angle at the axis and of the same axial length) contain the 

same number of yarn elements and crossing points. Although the size 
of the element of the cheese increases with radius the load bearing 

crossing points do not. Therefore it is more convenient to consider 
forces on elements rather than stresses (these correspond in fact to 

stresses in the individual yarns). One unfortunate effect of this 

is that it is not possible to check the theory against that of 

Catlow and Walls by simply letting the wind angle tend to zero, 

which would otherwise be possible.
In the solution the yarn is treated as elastic. The 

tension in the yarn is the only force acting on the yarn and acts 

along a tangent to the cheese; aerodynamic and centrifugal forces 
in the package are neglected. The effect of centrifugal force on 
the.package while winding; was considered and was found to be small.

It is assumed that the tension is known in the yarn when it takes its 

place on the outside of the package.
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The approach to the theoretical solution of the cheese 

model is as follows. A layer is added at the outer radius of the 

cheese. This layer imposes a known pressure on the cheese and 

causes it to deform. A second order differential equation is 

developed to give the radial deformation of the cheese due to the 

pressure imposed by the added layer. The equation is integrated 

numerically by Euler's modified method to give radial deformation 

at any radius of the cheese from the core radius to the outer radius 

The boundary conditions for the solution of the equation are that 

the compression at the core is zero as the core is assumed to be 

incompressible and that the pressure imposed at the outer radius 

by the added layer is known.

Now the next layer is added and the differential equation 

due to the addition of this layer is again solved, but the outer 

radius and the radius of the cheese have,increased by the thickness 

of the layer added previously. The pressure imposed by the second 

layer added depends on the outer radius at which it is added and is 

therefore different from the previous layer. The total compression 

of the cheese at any radius is equal to the combined compression of 

the cheese at that radius due to the addition of both the layers. 
This procedure is continued till the cheese is solved up to the 
desired value of the outer radius of the cheese. The total value 

of the compression of the cheese at a given radius is obtained by
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the addition of the successive incremental compressions caused by 

the addition of the successive layers to make the cheese of required 

radius. The values of other variables are also similarly obtained. 

The solution is rather complicated because the coefficients of the 

differential equation describing the effect of adding one layer are 

themselves functions of the total effects of previous layers.

When a trellis-like layer reduces in radius it can do so 

by reducing the length of - i.e. the tension in - its elements or 

by changing the trellis angle slightly so it increases in axial 

length. Conversely axial forces may produce radial deformations. 

Changes in axial length of adjacent layers will tend to be different 

and it is necessary to examine how they can move relative to each 

other. Some small elastic deformation in the nature of a shear 

within the layer probably occurs but there is also the possibility 

of much laxgsr movements occurring by either slipping of the layers 

or perhaps by rolling of the yarns of one layer over those of the 

other - this probably depends on some function of shear force and 

radial pressure. Initially it will be assumed that there is no such 

relative movement in order to discover what the forces tending to , 

produce such movements would be. *
Because the differential equation involves the incremental 

compression and other quantities as functions of the cheese radius 

and its solution gives these quantities at every radius of the cheese
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due to the addition of a layer at the outside of the cheese these 

quantities at each radius grow as the outer radius of the cheese 

increases and thus are functions of two variables, namely their 

present radius - or, better, that at which they were wound on, and 

the outer radius of. the cheese.

The differential equation giving the incremental 

compression of the cheese due to the addition of a layer at the 

outer radius of the cheese involves the compression of the cheese 

prior to the addition of the layer in its coefficients. The cheese 

therefore cannot be solved for any value of the outer radius until 
solutions for previous values are known. Therefore the cheese is 

solved up to the desired outer radius by starting from the core and 
by increasing the outer radius layer by layer and simultaneously 

calculating the new values of the dependent variables at every 

radius of the cheese. A computer program in KDF 9 Algol is written 

to solve the cheese up to the desired value of the outer radius in 

this manner and is given in Appendix A.

In the present chapter the equations are developed to 

give the values of the incremental compression, the circumferential, 

and the axial components of the force through the face of an element, 
.•.the change of tension in the yarn, the shear force and the pressure 
on an element at any radius of the cheese. The numerical method of 

integrating the equation is described which also includes the calcula-
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tion of total values of the compression, pressure, etc. at any 

radius of the cheese. An estimate of the error in calculating 

the value of the compression is given. The chapter concludes with 
the presentation and discussion of the computed results.

3.2 The Equation for the Compression of the Cheese 

3.2.1 The Element at Any Radius € ,

Consider an element at any radius p in a cheese of outer 

radius R. This element was wound originally at r and as the cheese 

was subsequently built from r to R the radius r deformed by U such 

that <? = r + U. This element is formed of a number of layers of

small thickness composed of a number of threads in tension laid 

side by side with a gap which depends on the radius at which the 

element is situated. In such an arrangement the radially adjacent 

layers contact each other. The element subtends an angle / at the
fcentre of the cheese. The number of threads in one layer of an 

element in either axial or circumferential direction remain constant 

regardless of the radius P  . The dimensions of the .element are k  , 

d̂ . and W in the circumferential, radial and axial directions 

respectively and they are chosen so that a diagonal lies in the yarn 
direction. The diagonal length of the element at p is L and the 
threads are at an angle a to a plane perpendicular to the axis of 

the package. In the element
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cosa ss ¡zfc/L = fc/J(/p)2 + ¥2 = ? / j + a2, 

where a = ¥// ; and

sina = ¥/L = ¥ / v / ) 2 + ¥2 = a/>/?2 + a2, 

tana = ¥/ j/g, = a/p 

and L =>/¥2 + (/? )2 = f  + a2

(i)

. • • o • • (ii)

© « • •« » (xil)

• • • « o o (XV)

Such an element is shorn in Pig. 3*1.

The element is so chosen that if <f> became 2 IT t ¥ would become 

'x'; where x is the traverse per wind. In such an element the 

number of ends in the axial and circumferential directions are the 
same because in one full circle in the circumferential direction the 

same number of ends will appear as will appear in one traverse. 

x/2TT, denoted by *a', is therefore a constant for a given cheese 

the value of which depends on machine setting, namely, the traverse 

per wind. This is termed as 'machine constant*.

x/2~rt = a = ¥/ •». (3o1)

From the construction of the element it is evident that a 
layer is supported by the layer beneath at a number of crossing 
points. ¥hatever pressure which may be imposed by any layer is 

carried by the next lower layer on these crossing points. As the 

number of threads in the element remain constant regardless of the
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radius of the cheese the total number of crossing points will also 

remain constant at any radius q  of the cheese. Let K<f> be the 

number of threads in a layer through a boundary face of the element 

(the same through each, because of the proportions of the element 

chosen), then the total number of crossing points in the element to 

support the upper layer are

2(K/)2 ... ... (v)

If the winding at the core radius 's* is started by laying 

threads touching each other and 'D* be the diameter of the yarn' then

K/ *a W.cosaos/D;

where aQg is the wind angle at the core radius s. Substituting 
the value of cosaos

K JLsJL ••« .•• (vi)

To enable the spacing of the adjacent threads to be altered the 
relation is written as

K = a.s. space / ( Ja2 + a2 x D) . . .  »• O (3*2)

where by assigning different values to 'space* the spacing of the 

adjacent threads can be altered. The maximum value of space = 1
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gives the spacing of one diameter and a value of less than 1 gives 

a wider spacing of the adjacent threads.

The number of ends per layer per face of the element are 

k/ and the total number of the ends through the face of the element 
in either the circumferential or the axial direction is (K./.dQ>/Dp) 

where dp/Dp is the number of layers in the element. This number 

is equal to

K./.dr/D;

where D is the original diameter of the y a m  and r is the original 

radius at which the element was added. If Q and Z be the nett 

circumferential and axial components of the force through the face 

of the element, then

Q a .T. cosa, ... ... (3.3)

and , -Z ■ - ,T. sina. ........  (3.4)

Note that in any single layer there are shear forces along the face 

of the element but those in successive layers are in the opposite 

direction so that the nett effect is zero.

3.2.2 The Addition of a Laver at R

Now consider that a layer of thickness dR is added at the 
outer radius R of the cheese. This imposes pressure over the cheese *

* Dp .M veJut dmmehei
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as a result of which the element at q deforms. The relations 

between small deformations of the element are obtained by differen­

tiating the relations (i) and (iii) with respect to R. Differen­
tiating (i) with respect to R

• 2 , 
-sina.9 = <f>.u/L - <f>. ̂  .I/!

or l/L = ^  + tana.6 ... ... (vii)

^  L ^  TT ^where 1 = g-̂ .cLR, u = g^.dR and 9 = .g-“ .dR0 Differentiating

(iii) with respect to R

2 „ w u : sec a.9 » -rz - o0¥ -
** m 2

or ^  *s ^  - 9/(sina.cosa) ' • o • • o • (viü)

where w : ss ,^~.dR. From (viii)

© » “ ̂ r).3ina.cosa , i' < • • « • • * (ix)

If the change in axial strain, that is w/W = 0, then the above 
relations reduce to r , •

u/ç) b  l/D — 9.tana , ■- . ... ... (3.5)
l/L a u/ç + ©.tana ... ... (3«6)

» - u.sina.cosa^. ........  (3.7)and 9
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Due to the addition of the layer of thickness dR at the 

outer radius R the tension in the thread has changed by t (**^^.dR) 

from T to (T+t) and the angle of the thread has changed from a to 

(a+©). The total number of threads through the face of the element 

is K./.dr/D. The changes in the circumferential and the axial 

components of the force through the face of the element are 

q(=s.— .dR) and z(= g^.dR) respectively. The change in the 

circumferential component of the force through the face of the 

element, i.e. Q, is given by the expression

q = ~  ( (T+t) cos(a+0) - T.cosa )

or q = ■" p —  (T.cosa.cos© + t.cosa.cos© - T.sina.sin© - •
t.sina.sin© - T.cosa)

As 0 is small, therefore sin© ** 0 and cos0 ±  1, Therefore

q „ (-¿.cosa _ T.sina.0 - t.sina.©) ... (3.8)

Similarly the change z in the axial component of the force through 

the face of the element, i.e. Z, is given by the expression

z S3 (t.sina + T.cosa.0 + t.cosa.0) ... (3«9)

The element is under equilibrium and by resolving the changes in the 

■ forces along the axis of the symmetry of the element
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or

d_o .
p + 5 r ,dr “ P =

dr (3.10)

The change in the circumferential strain of the element is u/r 
where u is g^.dR and the change in the radial strain of the 

element is "du/'&r. Eliminating q from (3.8) and (3.10)

ItE•or
z J :
D (t.cosa - T.sina.9 - t.sina.9) • o • (*)

The change in the radial strain of the element, i.e. , is related 

to the change of pressure per crossing point, therefore

P |^.E.2(K/): ... (3.11)

2where 2(k /) is the total number of the crossing points supporting 

the element and E is the Modulus of Compression of the cheese and 

is defined as l/2(K./) times the force required to produce unit 

strain in the thickness of the element. The value of E is not 

necessarily constant hut in the present analysis it is assumed as 

constant. Differentiating (3.11) with respect to r

= 2.(K.i02. E . ^"®r ... (xi)
3r

Eliminating-g-- from (x) and (xi)

-.2o u
"dr -t v  ■■ (t.cosa - T.sina.9 - t.sina.9) ... (3.12)
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Now * t* is the change in the tension T in the yarn due to change 1 

in the length L of the thread due to the addition of the layer at 

the outer radius R, therefore,

t s EY.l/L . . . . . .  ( m )

where EY is the Elasticity of the yarn in Extension and is defined 

as the force in the yarn required to produce unit strain in the 

length of the yarn. Substituting the value of l/L from equation 

(3.6)

t a E Y . Q  + ©.tana).

Substituting the value of 9 from equation (3.7)

t « EY.(| - |.sin2a)

2or t = EY.— .cos a (3.13)

Substituting the value of t from equation (3.13) and of 9 from 

equation (3.7) in equation (3.12) '

or

*a 2u
> r 2(

2o u

2.K (EY.x.cos^a + T.^s.sin2a.cosa +• N. p *2 p
EY(ç) .cos^a.sin a )

EY
fcr2 = 2.K.D.E*?

u 3 r » T . 2 u . 2 \^•.cos cu(1 + tan a + p sin a) (xiii)
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3.2,3 Values -g£.e-i-X and a

The values ofq f a and T in equation (xiii) are current 
values. Now

R
e  = r + 'gi*dR » r + u »*r

where U is the compression of the cheese at the radius r for the 

outer radius R of the cheese and r is the original radius at which 

the element was wound. This compression U of the cheese at r is 

due to the successive additions of the layers of thickness cLR as 

the cheese was built up from R = r to R = R. The value of U at r 
is given by the integral

g^.cLR where ^ . d R  = u, 
r

and its numerical value is obtained as the commulative total of us

at r produced by the addition of the successive layers at the outer

radius as it increases from R = r to R = R. Similarly,

R R
a = a0 + [ T = T0 + f |f.<3R}

Jr Jp

where a0 and To are the wind angle and the tension in the yarn 

with which the element containing the yarn was wound at r. The 
differences between q and r and a and o0 are small and might be 

neglected, though in numerical solution they can be taken account of. 

That between T and Tq is not small because EY is involved and in fact
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T0 and
.R

■&T^■.dR might he of the same order. Now 
r

R ■ " " '
T = T0 + | g^.dR ........  (xiv)J r

and substituting the value of ^ “ .dR (=t) from equation (3 .1 3) and 

using the original values r and aQ in the above relation .

R '
T = T0 + ] EY.iU.dRj.cos^o/r 

Jr /

or
p

T = T0 + EY.cos a0.u/r • ... ... (xv)

Substituting the values of T and replacing a and g by a0 and r 

respectively in equation (xiii)

a 2u
a r2 “ 2.K.D.E*r

2EY u 3 /v Tn . 2 . sin an t „w /----- '.“ «cos aQ (1 + tan aQ + _ ._o (u+xj) ) . . ( 3

Substituting the values of cosa0, tana0 and sina0 in terms of r

b u ■ EY 2 m 2 2u.r t, Trt a a
5 ?  - 2.IC.D.E-(r2+a2)5/2 + r>(r2+a2)-.(u+U)) .. (3.14)

3.2.4 Values of q, z, p, Z and Q 

Prom equation (3.9)

z = (t.since + T.cosa.0 + t.cosa.©)

Replacing q and a by the original values r and o0 respectively and
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substituting the values of t, T and 0 in the above equation

K.^.dr u 2 . _ / u . \z = — g-- .IEY.— .cos aQ.sma0 + T0.cosa0^-— .sina0.cosa0;

+ EI.^.cos2a0.cosa0.(-^.sina0.cosa0) + EY.p,cos2a0.

cosa0.(-^.sina0.cosa0))

or z K.^.dr ,EY.
(r2+a2 ) 5/ 2

-•| --2- .(u+U)) ... (5 .1 5 )
(r +a )

Substituting the original values of £ , dg and a and substituting 

the values of t, T and 0 in equation (3.8) and simplifying

v J  j 2 m 2  2K.0.dr u.r . 1o a a
q =  D •“ *, 2 2\3/o 11 + W ~  + , 2 isVr +a j '2  r r.(r +a /

. (u+U)).(3.16)

Substituting the value of / as W/a in equation (3.1 1 )

P 2K2 .¥ 2 „ 2 u
2 ,E*3ra

(3.17)

When the element itself was wound at r, i.e. when R = r, 

the axial component of the force ZQX. -through the face of the element 
is given by the following equation

n K. ̂  > dr — __
53 • T0.cosaor

(R=r)

However as the cheese is built up from this radius to any other
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radius R, the axial component of the force through the face of the

element has changed» If -g^.dR (=»z) is the change in Z due to

the addition of a layer at the outer radius then the total change
*R ̂ 2in Zor when the outer radius is R is given by the integral j i^.dR. 

Therefore the current or the residual axial component of the force 

through the face of the element is given by the expression

Z
rR

Jor 3R .<m 0*0 0*0 (3*18)

Similarly the residual circumferential component Q of the force 

through the face of the element is given by the expression

Q *» Qor | -g^odR • •• • •• (3«19)
■'r

3.2.5 Axial Forces
During the winding of the cheese the thread changes its 

direction at the ends and therefore the axial component of the 

tension in the yarn at the ends is zero. Therefore in a more 

realistic model the axial force of a layer would vary from a value 
of zero at the package end by increments of shear force caused by 

friction between layers so that

ZZ
c)V*¥ c>F

•Si-dr = 0 1 9 9 9 9 9  9 (xvii)



A - no axial deformation.

B - axial deformation by shear u>lthIn layers.

C* axial deformation by shear and slip helueen 

la y  ets.

£ F  at C^VoO * i f  dr

Region« of tK* cK«e»e

F|G.3.2.
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where V is the axial distance of the element from the end of the package, 

and F is a friction force and acts only where there is a tendency to 

slip and where, in the absence of such a force, there would be relative 

movement between the layers. In the region where this tendency to slip 

is absent F is zero and does not change' with V. Thus there might be 

three regions near the end of the package - A where there is no tendency 

to slip, B where there is shear, and C where slip might occur before 

the shear stabilises.

In the solution, which is based on the assumption that the 

axial deformation of the package is zero, the tension and its axial 

component in the yarn in an element change with r but not with the 

axial position of the element, i.e. V. The solution derived here 

would apply to that region where there is no tendency for the layers 

to slip, i.e. A. This is shown in Fig.,3«2.

Apart from slipping this end region would be expected to 

deform elastically, each element deforming by shearing through an 

angle proportional to the change in the value of F each time a layer 

of thickness dR is added. In fact the deformation must be compatible 

with both shear and extension of these elements and can only be calcu­
lated by a full solution of this complicated system. If in this region 
the resistance to extension in the layer were ignored the deformation 

due to shear would be proportional to | F.dr for each layer of 

thickness dR added. The total F at any r is the sum of the calculated 

Z's outside that r but the axial distribution of F is not known. If
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it could be assumed uniform and the axial length of this region also 

did not vary with r then the deformation would vary with r as:-

r
(

■*s

R
Z.dr).dr 

r

On the other hand, if extension only determined the deformation it
rRwould vary as Z, i.e. as I z.clR. The tendency for layers to slip '
Jr

over each other at any point will depend on the ratio f/p  which 

again cannot be known without a full solution but it seems reasonable 

to expect this to be linked with the value of the sum of P's in the
axial direction, i.e.

fRregion. The value of
J r

Z.dr and the value of P in the central 
''r
Z.dr is given by the following expression

R .R .R
Z.dr = Zo.dr + 1

r r Jr ■

R
"bZ
^R*

r
dR.dr (3.20)

These functions have been evaluated in the program - not because 

they represent actual behaviour but because they are involved in 
the boundary condition of any complete solution. If they vary in a 

similar way with external conditions it seems likely that the
• i ■ '

deformation varies in that way. If they behave in different ways 

no conclusion can safely be drawn.
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3*2,6 Change of Wind Angle

The value of wind angle depends on *x' which is defined 

as traverse length per wind. A change of wind angle is accomplished 

by altering the value of x. In the equation derived the element is 

so chosen that when W, the axial length of the element, becomes x,

/ becomes 277 . This gives the relation x/277 = W/V “ 'a* - a 

constant for a given cheese termed as a machine constant. A change 

in wind angle due to a change in x would either change W or / and 'a'. 

A change in W or / alters the size of the element and in order that 

the forces are comparable in the cases of cheeses with different 

wind angles these are worked out on a standard size of the element, 
one which is of constant length, thickness and subtends a constant 

angle at the axis. The standard size of the element adopted is 

that when x = 5 cm, ¥ = 1 cm; this gives / = 2 7l.w/x and the 

thickness chosen is 0.1 cm. The computer program is arranged to 

output the results of the solution of the problem in this form.

3.3 Integration of the Differential Equation' 

3.3.1 Boundary Conditions
The differential equation (3.14) is

EY u.r2

2.K.D.E (r2+a2)^2
Tio
EY

2 2
A? + ---&2- -2~ (u+U) ) » say, P(u,r).
r r.(r +a )
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This is a second order differential equation in u and r and hence 

two boundary conditions are necessary to solve the equation. An 

analytical solution is not likely to be possible and, therefore, 

the equation is to be integrated numerically. The necessary 

boundary conditions arqfas follows, (in this case the more strictly 

correct version in which the rs on R.H.S. are replaced by (>s can 

be y.sed).

1. At the core radius 's’ the deformation in r due to the addition 

of a layer of thickness dR at R is zero, as the core is assumed to 

be incompressible. This means that U, the total compression of the 

cheese, at core radius 's' is also zero. Therefore the first 

boundary condition is that when

r as s u = o, also U = o .  ........  (5*21 )

2. At the outer radius R, the change in'the pressure of the element 
caused by the winding of a layer is the pressure imposed by the 

element of the layer added. This pressure is given by the expression

’OR

Therefore at r= E,

~7>u T0 R
*r 83 2-k *d -e V r o c

. (3.22)

... ... (3»23)

Above equation gives the second boundary condition.
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3.3.2 Procedure for Solving the Equation

The numerical solution can be obtained by adding layers 

of yarn at the outside of the package and adding their effects to 

get the total changes necessary to evaluate the coefficients. 

Alternatively the effects of adding smaller layers at intervals of 

R can be calculated and then integrating with respect to R to get 

the coefficients.

The second method gives a more complex program but should 

be more accurate. The first method will probably be sufficiently 

accurate if the added layers are sufficiently small; it is 

necessary to compromise between a more complex program and a longer 

number of iterations for the best use of the computer.

As the necessary boundary conditions are established the 

calculations for solving the equation can be started. The start 

can be made either at the core radius 's' or at the outer radius R. 

For the first solutions the start was made at the core, although 

for solving the second case with varying values of E and EY, as 

explained later, it is advantageous to start the calculation at the 

outer radius R.

From the first boundary condition u and U are zero at core 
^ 2U

radius 's’, this gives — ^ as zero at the core radius. A guess of 

the value of-g^ is niade at r = s. The equation is integrated
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numerically using the modified method of Euler for integration.

The calculation is carried up to the radius when r = R. ,The

calculated value of at R is compared with the correct value of

•^7 at r = R obtainable from equation (3*23)» i.e. from the second

boundary condition. If the two values are different a fresh guess

of the value of ^  at r = a is made and the entire calculation is

repeated. The second value of at r = R is again compared with
"Quthe correct value of ̂  at r =  R. If different again the entire

”3 ucalculation is repeated with yet another value of -g—  at r = s.
"3 IIThis value of is obtained by linear interpolation from the

previous two sets of values of -g— at r = a and at r = R. The
*3uprocess is repeated again and again till the value of at r = R

^  u
is sufficiently close to the correct value of at r = R, The

last calculation is the solution of the equation. This gives the 

value of u at any radius r such that s 4 r £ R for the addition 

of a layer of thickness dR at the outer radius R.

3.3.3 Interpolation of the Value of ~Su/br at the Core Radius

The formula for linear interpolation of the next value of
Bu "̂ Ju-ĝ 7 from the two previous sets of values of , = 7̂ at r = s and at

r = R is

ndu = sdu + [duVVl]’ x ^cdu " du) ........  (3.24)
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where ndu 

C 

D1

sdu

du

cdu

is the new value of Bu/ Br at . r = s; 

is the first guess of the value of Bu/dr at r = s; 

is the first calculated value of Bu/dr at r = R 

obtained from C;

is the second guess of the value of 3u/ 3r at r = s 

is the second calculated value of Bu/Br at r = R 

obtained from sdu;

is the correct value of 'bu/'Br at r = R obtained 

from the second boundary condition.

3.3.4 Euler's Modified Method for Integrating the Equation

For integrating the equation the cheese is divided into 

a number of layers. Starting from' the known values at the core,

i.e. at the beginning of the first layer the values at the beginning 

of the second layer are calculated. This is repeated for the next 

layer and continued until the cheese is solved up to the given 

radius when r = R. The method is as follows.

Let tu, tdu and td2u represent the values of u, ^ 7  and
* 2u— -p respectively at the radius denoted by ckj, i.e. at rtkj »or
Let dr be the thickness of the layer, i.e. the step length. Then 

at (r + dr), i.e. at r[k + 1j

u cs tu + tdu.dr; 

du = tdu + td2u.dr;
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d2u = F(u, rtk + 1j );

The values obtained are the projected values; these values are 

averaged and the new values are calculated and suffixed by 'a'.

dua = tdu + (td2u + d2u).dr/2; 

ua = tu + (tdu + dua).dr/2 ; 

d2ua = F(ua, rck + 1j);

Now u and ua are compared and if different the calculation is

repeated again using the new values, and the process continued

until two successive values are sufficiently close to each other.

The values of u, du and d2u obtained from the last
Bu B^ucalculation are the values of u, ~  and — 7  at rrk + 1i . For

, 3rBu B *"ucalculating the values of u, and — at the next step of the

radius, i.e. at r^k + 2j the values at r[k + 1j are used as the 

starting values and the calculation is repeated as above. The 

process is continued till the whole range of radius from r = s to 

r = R is exhausted. .

3.3#5 Calculation of the Value of U
•¿jr.dR).

.
This is the total deformation of r as the cheese was built up from 

R = r to R = R before the addition of the layer of thickness dR at 

the outer radius R. The integration of the equation at any R



\ f  a t  Tj u< +  u a+ u 3 + a 4 + u 5* U 4

Calculation of tke value of U

FIG. 3.3
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requires the prior knowledge of U at every step of r for the outer 

radius R. Therefore the calculation has to start right from the 
beginning (i.e. from the core) and proceed for s ̂  r ^  R every 

time a layer is added at the outer radius R. Then as the cheese is 

built up layer by layer the values of u and U are calculated at each 

step of r for the addition of each layer at the outer radius R. The 

values of U at each step of r obtained from the previous solution 

are used in the next solution for the addition of the next layer at. 

R. This type of calculation is made possible by the fact that for 

the first layer added U is zero and makes it possible to solve the 

equation for the addition of the second layer.

In Pig. 3.3 x-axis represents the radius r, y-axis 

represents the outer radius R and the z-axis represents the 

deformation of r due to the addition of a layer at the outer radius 

R, i.e. u (=£-^.dR). Consider the point r ^ .  This represents 

the values after the addition of the first layer. Since this is 

the only layer added u and II are numerically zero and there is no 

curve for u with respect to r. Consider the point This

represents the values after the addition of the second layer over 

the first layer. The outer radius is R2 and the radius of the cheese 

is r^. The curve for u, i.e. u^, with respect to r is drawn.

Likewise the picture is completed for many points r^R^, r^R^, r^R^

etc. These represent the addition of many more layers. The curves 

u2* u3* u4* e"*:c# are 4rawn. Prom these curves the values of U can
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be calculated at any point, for example

Ü at r2 = 

+

+

value of u 

value of u 

value of u

at r2 from 

at r2 from 

at r^ from

curve U2 

curve u^ 

curve u^

However any later curve of u, say u2 when R = R^ can only be drawn 

when the value of U at all steps of r, i.e. and r2, when R = R2 

is known.

It may be observed that if the size of the layer added be 

doubled the value of u for the addition of each layer too would be 

nearly doubled, but the number of layers added to make the given 

outer radius would be halved. The .value of U at any radius r would 

remain nearly the same,as now the number of u's to be added to give 

U would be halved though the value of each u would be almost twice.

3.5«6 Error in the Values of R and U at r

In the solution the cheese is built up from r to the final 
radius RO by "adding a number of layers, say *n', each of thickness dR, 

i.e.
r + n x dR = RO

However, while the layer is being added at R it causes compression u 

of the cheese at r (= R) and the outer radius would be short of (R + dR)
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by nearly u; and after the addition of 'n' layers the outer radius
n

would be short of RO by £  u. The values of u^, u2, ... , u^

depend on R, the radius at which the layer is added. The effect

of this error can be reduced by adding extra layer so that the total
. n

does in fact reach RO. The value of £  u is small and is 

approximately 0.16 cm in a cheese with the values of 0 .0 5 cm, 100g, 

5000g, 5 cm, 1D, 0,1 cm and 20g for the diameter of the yam, E, EY, 

x, spacing, dR and T respectively as compared to the value of RO of 

5 cm.

The addition of a layer at the outer radius causes the

radius r of the cheese to shorten by u, the deformation in r. When

the next layer is added the value of u should then be read off at

(r + u) and not r to get the correct value U at r. However for

keeping the computer program simple the value of u is read at r

and not at (r + u) in evaluating the value of II. The error introduced

at the end of the completed cheese would approximately be equal to
n

the difference of the values of u at r and at (r + X  u). The

difference is small and in the above cheese is' approximately equal
’ n

to the difference in the values of u at r (= 2 .9  cm) and (r + £  u)

(- (2.9 - 0.0153) cm ) when the radius -under consideration is 2 .9 cm. 
The u is caused by the increase of 0,1 cm in the outer radius to 

make it 5 cm. If, for softer material the deformation in r was 

larger, the radii could be adjusted in the program to correct this.
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3.4 Theoretical Results with Discussion 

3.4.1 Values of the Variables

The tensions, pressures, etc« within a precision wound 

cheese have been calculated by program 15 using a range of values 

of yarn modulii which include those applicable to the yarn used in 

the experiments of Chapter 2 to measure the deformation of a precision 

cheese. Similarly the dimensions of the cheese are the same, namely 

a core radius of 1 cm and a final outer radius of 5 cm. The diameter 

of the yarn is 0 .0 5 cm as 20 wraps of yarn when laid side by side 

touching each other on the experimental cheese make 1 cm.

In order to study effects of varying winding tension, 

spacing of the adjacent wraps of yarn, traverse per wind i.e. wind 

angle, Modulus of Compression of cheese and Elasticity of yarn in 

Extension on the tensions, pressures etc. in the cheeses a number 

of cheeses with different combinations of the values of these 

variables are solved. Also the cheeses with isotropic yarn and with 

near parallel winding are solved. These cheeses are numbered from 1 

to 14 and their details are given in Table 3.1. The detailed 

results of each cheese are given in Appendix C and the forces are 
converted to facilitate comparisons to total forces acting through' 
the faces of a standard size of element of length 1 cm, thickness 

0 .1 cm and subtending an angle of 2 "w/ 5 at the axis of the cheese.
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Table 3.1

cheese
no

winding
tension

g
spacing

D

traverse 
per wind 

cm
E
g

EY
g

1 20 1 5 200 5000
2 30 1 5 200 5000
3 40 1 5 200 5000
4 20 2 5 200 2000

' 5 20 3 5 200 2000
6 20 1 7.5 200 5000
7 20 1 2.5 200 5000
8 20 1 5 100 5000
9 20 1 5 400 5000

10 20 1 5 200 2000
11 20 1 5 200 8000
12 20 1 5 1000 1000
13 20 1 0.05 1000 1000
14 20 1 5 600 600

3«4.2 Forces Through the Face of the Added Element

Because the wind angle changes with winding-on radius the

forces in the added layer vary with radius. Qq , P0 and Z0 of the

element added are shown by curves (i) and (ii) of Pig. 3.4. The
fR

curves (iii) show I Zo.dr with r in a completed cheese of 5 cm
 ̂r

radius. The number on the curve shows the cheese to which that 

curve refers.

Q0 and P0 increase and Z0 reduces with R. This is due to

the reduction in the wind angle with R. The values of Qq , P<>» Z0 
fR

and Zo.dr also depend on the winding tension T in the yarn and 
■* r



R0»5cw; To*20gj itowctse * S ctH¿ space *1Dj E"2009; EY*5000g;

FIG.3.5
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increase proportionally to the increase in T as shown by curves 1,

2 and 3. An increase in the spacing of the adjacent wraps of y a m

from 1D to 2D and 3D reduces the number of threads through the face

of the element added to y and y respectively and therefore Qq , P0,

Z0 and I Z0.dr also reduce to y and ^ as shown by curves 2, 4 and 
J r

5. A decrease in traverse per wind reduces the wind angle and as a

consequence Q0 and Fo increase and Z0 and 

shown by curves 7 » 2 and 6.

R
Z0.dr reduce. This is

3»4o3 Changes Due to the Addition of a Layer at R

Fig. 3.5 shows the effect on pressure, tension, etc. within 

a cheese with a realistic value of 25 of the ratio of EY/e when a 

layer of thickness dR (= 0.1 cm) is added at R (= 4.9 cm). The 

value of p (=^.dR), shown by curve (a), shows that it reduces 

very rapidly initially with r and there is no significant change in 

p at r below 3 cm. The most of the pressure imposed by the added 

layer, is supported by a few layers at the outer part of the cheese 

because of the value of the ratio EY/E (= 25) which allows the 

yarn to lose its tension quickly for small value of U and the cheese 

not being allowed to deform axially (the effects of a smaller ratio 
will be seen later). The incremental compression u (= i^.dR), 

shown by curve (b), depend on 'p' and is, therefore, similar. The 

change in tension i.e. t = (^-f.dR), shown by curve (c), depends on 

•u* and the changes 'q' and ‘z' in Q and Z, shown by curves (d) and
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(e) respectively, depend on • t 1 and these changes are also similar 
to 'p*.

3.4.4 Results in a Completed Cheese with Typical Yarn Properties

Figs. 3.6 to 3.11 show the distribution of pressure, 

compression etc. within a completed cheese (no. 2) of radius of 5 cm. 

Fig. 3*6 shows P at all values of r and R. The pressure at any- 

given r increases rapidly for some initial increase in R from r but 

after the addition of few layers there is no significant increase in 

P at r. This is shown most obviously by the curve at r = 1.4 cm.

This indicates that most of P0, the pressure imposed by the layer 

added, is supported by a few layers at the outer part of the cheese 

and the inner part is left comparatively unaffected. This is due to 

a high value of the ratio El/S which allows the yarn in a few layers 

beneath the added layer at R to lose all its tension for a small 

value of U in these layers and any further increase in U uses up 

P0, again, due to the high value of the ratio EI/e .

In the completed cheese the maximum pressure occurs at 

the core and the pressure curve shows a minimum at the radius of
1.4 cm. The pressure then increases gradually with the radius and 
falls rapidly again after the radius of 3.9 cm.- The built up of 

the pressure at the core is due to the core being incompressible so 

that the layers just above it do not lose their tension and contribute
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to the pressure at the core. The later gradual increase in the 

pressure with r is probably due to the increasing value of P0 with 

R due to the changing wind angle. Finally the pressure falls off 

towards the end of r as the number of. layers above r affecting the 
pressure at r reduce.

Fig. 3.7 shows U at all values of r and R in a completed 

cheese of 5 cm radius. U at any radius depends on P and on the 

thickness of elastic material beneath that radius. Thus the curves 

of U against R for constant r are similar in shape to those of P,

but the curves of U against r at constant R increase with r so

that the slopes of these curves is greater than those of the curves 

for P. The maximum value of U occurs at ra£h 3»9 cm and represents 

a relatively small deformation of 0.017 cm or about 0.42?i of the 

radius. If the modulus-ratio was changed so that.the deformation 

was affected by a greater number of layers the maximum would occur 

at a smaller value of r.

The change in the tension of the yarn, i.e. t (*«Ĵ “ .dR) 

and the corresponding residual tension T in the yarn at any r for 

any R in the completed cheese of radius 5 cm is shown by Fig. 3«8.

The value of t depends on u/r and is zero at the core radius as U

is zero and T in the yarn is equal to T0, the winding tension in the 

yarn. At other points the curves are roughly what one would expect 

to get by dividing those of Fig; 3«7 by r - as at any radius the
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change of length approximately proportional to U is occurring on 

a basic length approximately proportional to r. Over the middle 

region the change of tension is greater than the original winding 

tension and the yarn is therefore in compression. The behaviour
.R.r 3 Tof the total change in ' t', i.e. j .g-ĵ .dR, at any r as R increases 

from R = r to RO is similar to that of U as shown by the curve of
3 Tg^r.dR at r = 1.4 cm; T becoming negative. In the completed

J r
cheese the maximum value of the total change in tension of 24.4g 

or the minimum residual tension of -4 .4g is at the radius of about 

1 .9cm.

Pigs. 3.9 and 3.10 show respectively Q and Z at any r 

for any R in the completed cheese of 5 cm radius. The value of 

Q and Z depend on T and a but the changes in Q and Z, i.e.
,R■ 3a."SR.dR and tR ^z dR, at a given r as R increases from R = r
wr „ r
to RO mainly depend on the change in tension T of the yarn as the

change in a'is small.

The changes in Q and Z at a given r, like the change in 

the tension in the yarn, become insignificant after the addition 

of a few layers at r. This is clearly shown by the curves of Q and Z 

at r = 1.4 cm becoming parallel to the R-axis. Also Q and Z change 

sign when T becomes negative indicating that Z is now trying to 

expand the element axially. The value of Q0 increases and that of 

Zq reduces with R and the effect of this is evident in the curves

of Q and Z
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Fig. 3.11 shows the shear force on an element at all 

values of r and R in the completed cheese. A positive value of 

the shear force shows the tendency of the outer layers of the 

cheese to contract relative to the inner layers and vice versa.

The shear force at any r at first quickly builds up to a maximum 

positive value and after attaining its maximum value starts reducing 

steadily as R increases from R = r to RO. The shear force at r is 

at first positive and increases with R because the tension in the 

y a m  in the layers added above r is positive but at a certain value 

of R the yarn in the layer at r loses all its tension. The shear 

force at r, then, has a maximum value and any further increase in 

R causes the yarn at r to compress and acquire a negative tension 

and as more layers are added the yarn in the layers above r,

similarly, acquire negative tension. This starts a decline in the
f Rshear force on the element at r. The shear force, i.e. 1 Z.dr,
*r

at r is maximum when T at r is zero. This is shown, for example, by 

the curve of T at r = 1.4 cm in Fig. 3.8; T at this radius is zero
r Rwhen R = 2 cm for which value of R J Z.dr at r = 1.4 cm is also

■ r
maximum. Addition of each layer after R = 2 cm causes an addition 

of positive shear force at r but it also causes a loss in it due to 

radial deformation of the cheese and the result is a nett loss in 

the shear force and therefore the shear force at r reduces steadily 

as R increases. This effect is further enhanced due to a reducing
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value of Z0 and an increasing value of Q0 with R; the latter 

causing a hitler compression of the cheese and therefore a greater 
103S in the shear force at r.

As before the incompressibility of the core causes a 

slightly different behaviour of the shear force in the region near 

the core from that in the rest of the package and this results in 

a minimum of the shear force near the core. In this example of 

Pig. 3.11 the reduction and going negative of the shear force has 

reduced the shear at the core to almost zero - the Z in the inner 

layers almost balancing that in the outer layers.

3.5 Compression of Cheese Under Different T»finding Conditions

This section gives effects of varying the variables like 

winding tension, E, etc, on the pressure, compression etc. in a 

cheese. This is done by computing the results in a cheese for three 

different values of one variable keeping the other variables 

constant. The variables are the winding tension in the yarn, the 

spacing of the adjacent wraps of thread, the traverse per wind, the 

Ilodulus of Compression of the cheese and the Elasticity of y a m  in 
Extension. Effects of varying the value of each variable is shorn 
by a set of two figures each figure having 6 sets of curves. The 

curves marked as (a), (b), (c) of the first figure and the curves 

marked as (d), (e) and (f) of the second figure show P, U,
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,R ill
*R dR and T, Q, Z and Z.dr respectively at any radius of

r
the cheese for three values of the variable for the completed 

cheese of 5 cm radius« The curves marked as (a ) , (b ), (c ) of the

values of r, namely 1.0 cm, 1.9 cm, 2.9 cm and 3.9 cm, as the 

cheese is built up from these radii to the final outer radius of 

5 cm for two extreme values of the variable. This representation

showing effects of the variation of each variable on the cheese.

3.5.1 Effects of Varying the Winding Tension in the Yarn

An increase in the winding tension of the y a m  from 10g

to 20g and 30g increases the pressure and the shear force imposed

by the element added at the outer radius of the cheese proportionately
3 tand causes a proportional increase in the values of P. U, J ĝ -.cLR, 

etc. The per cent changes in T, Z and Q are the same for all the 
three values of the winding tensions in the yarn. This is also 

suggested by the equation (3.14) in which the term, T0.a /(EY.r ) , 

containing Tc is small as compared to the other terms due to the 
large value of EY and therefore a change in the value of the tension 

has little effect on the value of the compression of the cheese 

except the linear change caused by the change in the boundary

first figure and (d ), (e ) and (p ) of the second figure show
f^aT r®respectively P, U, 1 f^.cLR and T, Q, Z and J Z.dr at different

of P, U, j ^-.dR and T, Q, Z and j
r r

Z.dr is uniform for
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condition, i.e.-the change in the pressure imposed by the added 

layer. The results are shown by Fig. 3.12 and Fig. 3.13«

3.5.2 Effects of Varying therSpace Between Ad.jacent .Wraps of Yarn 

To study effects of the spacing of the adjacent coils of 

yarn three values of the space between the adjacent wraps of yarn, 

namely 1D, 2D and 3D, are chosen. The results are given in Fig. 3.14 

and Fig. 3.15.

An increase in the spacing of the adjacent wraps of yarn

from 1D to 2D or 3D reduces the number of threads in the element and

therefore the force through the face of the element added at R to f

or y and the number of crossing points in the element to -J- or i.e.

from 490 to 122.5 or 54.5. This shows that pressure of the element

reduces but the pressure per point increases and consequently U is

higher in the cheese with the spacing of 3D as compared to that of

the cheese with a spacing of 1D. This is shown by curves (b) of
» R ̂  T

Fig. 3.14. Similarly curves (c) show a higher value of \ ÿ-^.dR 

in the former cheese. In both cases however the change with 

spacing is fairly small.

P is higher in the cheese with the spacing of 1D but the 

pressure/point is higher in the other cheese and is 16.5g per point 

at r = 1.4 cm in the later cheese as compared to 10.3g per point of 

the former cheese at the same radius. This probably is due mainly
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to the assumption of no axial extension which makes the change in 

a very small.
The curves (d ) and (e ) of Fig. 3.15 for Q and Z are similar

to the pressure curves (a ) of Fig. 3.14. The curves (A), (b ), (c),
R

(D) and (e ) for P, U f J ^j|.dR and T, Q and Z show a slightly
Jr

greater tendency to flatten for the cheese with a spacing of 3D 

betwefen adjacent wraps of yarn and this is due to the cheese being 

comparatively softer because of the less number of crossing points 

giving in effect a change in the ratio of tangential to radial 

elastic modulii.
The curves (f) show a progressive increase in the magnitude 

of the negative shear force tending to expand the cheese axially and 

acts on a larger part of the cheese as the spacing between the 

adjacent wraps of yarn increases and this is due to a progressive 

increase in the compression of the cheese. The cheese with a spacing 

of 1D between adjacent coils of yarn does not show any tendency to 

axial expansion as shear force is never negative. The curves (f ) 

show a similar situation with a marked tendency for the cheese with 

a spacing of 3D between adjacent wraps of yarn to expand axially at 

the radius of 1.9 cm.

3.5.3 Effects of Varying the Traverse -per Wind

The values of xf the traverse per wind, chosen for this 

study are 7.5 cm, 5 cm, and 2.5 cm and the results are shown in
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Fig. 3.16 and Fig. 3.17.
A reduction in the value of x, the traverse per wind, 

reduces the wind angle, and therefore the number of threads in a 

given axial width. ¥, which varies with (D.seca), increases. This is 

shown by the value of K, when W = 1 cm, changing from 14.78 to 12.45 

and 10.22 as x changes from 2.5 cm to 5 cm and 7.5 cm for fixed 

spacing at the core. The value of when x = 5 cm and W = 1 cm is 

taken as standard and kept the same in different solutions and 

therefore the axial width ¥ of the element, according to the 

definition of the element" in the analysis, must change and this is 

altered by the same factor, called angle, by which x is altered. 

However, to facilitate direct comparison of the results, the results 

are expressed on the standard size of the element which has been 

defined already. The alteration in the value of K due to a change 

of x and hence a alters the number of crossing points in an element
■n

of standard size and this number is 345.2, 489.5 and 494.9 when x =

2.5 cm, 5 cm and 7.5 cm respectively. Incidentally the maximum number 

of crossing points in an element of standard size would occur when 

a = 45° and theoretically this type of cheese would offer maximum 

resistance to radial deformation.
A change in the value of x from 7.5 cm to 2.5 cm reduces 

the number of pressure bearing crossing points in the cheese giving
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in effect a higher value of the ratio of EYto E and therefore the

pressure of the added layer affects comparatively a fewer number of

layers underneath it and vice versa. This is shown by the curves of

U, P, etc, flattening earlier and.quicker when x =•2.5 cm. This

causes P when x = 7.5 cm to be nearly equal to P when x =2.5 cm

though the value of P0 is higher in the latter case due to a higher
3Tvalue of K and a smaller value of a. Similarly U and I are

f ̂  rnearly equal. Also the maximum values of TJ, I ~^\cLR, etc. occur 

comparatively hearer the centre of the cheese when x = 7.5 cm.

Due to higher value of Z0 when x =-7.5 cm, the shear 
force is higher in this cheese. The changes in the direction of 

the shear force roughly occur at the same radii in both the cases 

as shown by curves (f) of Fig. 3.17, but the radius at which shear

force is zero is larger in the cheese with x = 2.5 cm showing that
<* ' • • .

a greater part of the cheese is subjected to a tendency to expand 

axially. Also the shear force at r = 1.9 cm, as shown by curve (f ) 

of Fig. 3.17» has a smaller maximum and becomes negative earlier,

3.5.4 Effects of Varying the Modulus of Compression of Cheese

Three values of E, namely 100g, 200g and 400g giving three 

values of the ratio of EY to E of 50, 25 and 12.5 respectively, are 

chosen to study effects of varying the value of E on the cheese.

The results are shown in Fig. 3.18 and Fig. 3.19.
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The pressure curve (a) of Fig. 3.18 shows that the

pressure inside the cheese is smaller when E is smaller, i.e.

100g. This is due to the higher value of the ratio of El to E,

i.e. modulus ratio. Beddoe2also gives similar results, namely

when the modulus ratio is changed from 1 to 20 the pressure at the

tube of a yarn beam reduces to nearly half. Because of the lower

value of E = 100g the value of U is higher as the material is

easier to compress radially; this is shown by the curves (b) and

(B) of U. Also the initial compression of the cheese at any r is

easy and a greater value of U occurs for some initial increase in R

from when R = r; allowing the yarn at r to lose all its tension.

Any further increase in U at r is difficult because of the high value

of ET and the cheese being not allowed to expand axially. This

condition is reached gradually when the value of E is higher, i.e,

when E = 400g. This means that the cheese, when E = 400g, is affected

by the addition of comparatively a greater number of layers at that

radius. This is• shown by comparatively gradual flattening of the 
,R __

curves of U, P, \ ^.dR, etc. at constant r with R when E = 400g

as compared to when E = 100g. This also results in higher value 

of P at any r.
The curves (f) for the shear force show considerable 

difference as the value of E is changed. When the value of E is 100g 

the shear force is negative for a greater part of the cheese trying
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to expand that part of the cheese axially and the magnitude of the 

shear force is also higher as to that when E - 400g. In the later 

case the shear force is positive throughout failing to show any 

tendency for the axial expansion of the cheese. The build up of the 

shear force at constant r with R is also different in the two cases 

as shown by the curves (f ) of Fig. 3.19» In the case when E is 100g 

the shear force at r = 1.9 cm reverses its direction earlier with a 

much smaller maximum and continues to increase in the other direction 

steadily attaining a.fairly large negative value, whereas in the other 

case the maximum of the shear force is much higher and it is never 

negative. It appears that the value of E has considerable influence 

on U, P and j Z.dr.
Jr ’

3.5.5 Effects of Varying the Elasticity of Yarn in Extension

Effects of varying’the value of the Elasticity of yarn in 

Extension on the compression of the cheese is studied by using three 

values for it, namely 2000g, 5000g and 8000g. The results are shown 

in Fig. 3*20 and Fig. 3*21. The values of modulus ratio are 10, 20 

and 40 respectively.

A high value of EY causes the yarn to lose all its tension 

quickly even for a slight compression of the cheese which results in 

the shortening of the length of the yarn and once the tension is 

lost in the yarn it is difficult to compress the cheese further as
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it would require further shortening of the y a m  to a state of

compressive strain which is difficult, again, due to the high value

of EY. Therefore U, with the high value of EY, is much smaller and

is shown by curves (b) of Pig. 3.20. The pressure of the added layer,

once the yarn in a few layers immediately below the added layers has

lost its tension completely due to the initial compression, is quickly

utilised in converting the yarn to a state of compressive strain in

these layers and the pressure of the added layer fails to reach

beyond these few layers. This is diown by the quicker flattening of
dTthe curves of P, U, J g^.dR, etc. at constant r as R increases from

R = r. As only a few layers are affected by the addition of a layer 

at R when EY is high, P is much less as compared to when EY is low.

in lopsided curves like (b) and (c) of Pig. 3«20 with the maximum 

values occurring nearer the ends of the cheese rather than at the mid 

radius.

both these changes cause an increase in the value of modulus ratio. 

The behaviour of the shear force in this case is similar to its 

behaviour in the previous case when E is varied. It appears that

This is shown by the pressure curves (a) and (A)• This also results

The effect of increasing the value of EY on the shear force

inside the cheese is similar to that of lowering the value of E as

like E, EY also has considerable influence on P, U and
r
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the cheese.
It may he observed that the changes of all the variables 

except U with EY are very much like the changes with E - as would be 

expected because the ratio EY/E is the main cause. The difference 

between the values of U in the two cases is because a low value of 

E allows easy compression and the yarn loses all its tension only 

when the value of U is comparatively high whereas a high value of 

EY permits the yarn to all its tension even for a small value of U 

and in both cases the value of U does not change much once the tension

in the yarn is lost - due to high modulus ratio.

It appears that the value of modulus ratio, which is a 

measure of the anisotropy of the yarn, is of considerable importance 

as the behaviour of the cheese depends on its value. This is in 

agreement with the results of Beddoe, and follow from the form 

of the equation.

3.5.6 Effects of Varyin?: the Modulus Ratio

The effects of varying E or EY, i.e. in effect varying 

the modulus ratio of yarn, influences the behaviour of the cheese 
considerably. Therefore in order to study effects of varying modulus 
ratio four values of modulus ratio are chosen to cover a wider range

of it than when E or EY were varied separately. These are

1(= 1000/1000), 10(= 2000/200), 2 5(= 5000/200) and 50(= 5000/100).

The results are shown in Eigs. 3.22 and 3.23.
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The results confirm the comments already made. However 

the cheese made with the isotropic yarn show a very different 

behaviour and this difference increases with the increase of the 

modulus ratio. The cheese shows high values of P and low values of
P 3T
I * * “

U and I ^-.dR. The tension in the yarn is always positive. A 
r

cheese made with an isotropic yarn is always likely to show a tendency 

to contract axially.

3.5.7 Cheese with an Isotropic Yarn
The yarn can be made isotropic with the value of.modulus 

ratio as •unity by assigning equal values to ET and E, Two values 

of EY (or E), namely 600g and 1000g are chosen. The results are 

shown in Pig. 3.24. The curves (a), (b) and (c) show P, U and
jitI crr.cLR and T respectively with r for R of 5 cm and the curves Jr °R -d

(A), (b ) and (c) show P, U and I ^jT.dR and T at constant r of• Jr
1.9 cm as R increases from 1.9 cm to 5 cm.

fR fcTThe results show that P and I £^.dR remain virtually
'r

unaffected by a change in the value of E (or EY) from 600g to 1000g 

whereas U is higher when EY (or E) is lower. This is as would be 

expected, e.g. if E (= EY) was very large then there would be 

virtually no U because the smallest deformation would cause the yarn 

to lose its tension and it would then add nothing to the pressure, 

whereas the opposite case of a very low E (= EY) would permit 

deformation but not increase the pressure etc. in proportion.
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3.5»8 Parallel ¥ound Cheese with Isotropic Yarn

A parallel wound cheese is obtained by reducing the value

of x, i.e. traverse per wind, equal to the diameter of the yarn,

namely 0.05 cm. By this the axial component of the tension in the

yarn becomes small and the circumferential component of the tension

in the yarn becomes nearly equal to the tension ifeelf. Because of

this type of element construction the number of crossing points in

the element is greatly reduced and is 8 in an element of standard size

as against 490 when x = 5 cm; in effect increasing the value of

modulus ratio considerably. The pressure imposed by the added

layer is increased due to a higher value of: K and a reduced value
of a. The results expected would therefore be similar to that of

a cheese with high modulus ratio*

Fig. 3.25 shows the results of two cheese with the values

of x of 0.05 cm and 5 cm. Curves (a), (b) and (c) show P, U and 
fRdTj =^.dR and T for both the cheeses with r when RO is 4.5 cm and 

curves (a ), (B)'and (c) show the same at r = 1.9 cm as R increases 
from 1.9 cm to 4.5 cm. The cheese with parallel winding show

.Rr j Tlarger values of U and J ^-^.dR but a smaller value of P. Also
Rthe values of U, P and J JdT.dR cease to grow with R after some 

increase in R from when R = r. These results are similar to the 

results of the cheese made with a yarn of high modulus ratio shown 

before.
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However the present analysis is not suitable for a 

parallel wound cheese as the contact between the yarns of the 

adjacent layers is no longer theoretically a point contact but is 

a line contact and the construction of the element for a parallel 

wound cheese would be different. In all practical cases this will 

be an area of contact which will tend to a line for a = zero but 

will be changing little for other values of a. This effect will 

be discussed later.

3.6 Summary of Results

The values of U, P, f .jĵ .dR, I Z.dr, etc. are
Jr **r

proportional to the winding tension in the yarn and change according 

to it.

The modulus ratio, i.e. the ratio of EY to E, is important 

and has considerable effect on the behaviour of the cheese. A high 

value of the ratio results in smaller values of the pressure, greater 

changes in the tension of the y a m  and the yarn acquires negative 

tension. Q and Z also become negative in those layers in which the 

yarn has a negative tension. Due to this the shear force changes 

sign and generates a tendency for the cheese to expand axially. The 
maximum of the shear force at a given r occurs when tension in the 

yarn at r is zero. The magnitude of this tendency and the part of 

the cheese subjected to this tendency increase with the increase in 

the value of the modulus ratio. The value of U, i.e. the amount of
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the compression, is influenced by the individual values of E and EY

and is high when E or EY is low and vice versa. Another influence

is that the pressure of the added layer at the outer radius R affects

only a few layers immediately below R and the rest of the layers

remain virtually unaffected. This is' shown by the curves of P, U, 
f ̂  3 T^r-.dR, etc. becoming flat very soon. These curves show large
Jr
initial changes at r due to some increase in R from when R = r and 

little changes for subsequent increase in R. This also results in 

a pressure distribution in the cheese which does not vary much with 

r except near the outer part of the cheese where pressure falls 
rapidly.

The behaviour of the cheese made with isotropic yarn is 

quite different. In this cheese the y a m  is not likely to acquire 

negative tension and the cheese probably would not show any tendency 

to expand axially though it might show a strong tendency to contract 

axially. The pressure within the cheese increases steadily towards 

the core unlike the cheese made with a. yarn of high modulus ratio.

A change in traverse per wind, i.e.,wind angle, affects 

the circumferential and axial components of the tension in the yarn 

and also the number of pressure bearing points in the cheese.
Maximum number of crossing points are available when a = 45° and 

theoretically the resistance of this type of the cheese to radial 

deformation would be maximum. A change of wind angle from 45°
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reduces the number of crossing points which in effect is equivalent 

to lowering the value of E and the results are therefore similar to 

those obtained with a higher value of the modulus ratio. Near 

parallel winding can be obtained by reducing the traverse per wind 

equal to the diameter of the yarn. But the analysis based on this 

type of element construction is not applicable to that case as the 

contact between the adjacent layers in that case is theoretically 

no longer a point contact.

An increase in the spacing of the adjacent wraps of yarn 

from the minimum value of one diameter of the yarn reduces the 

number of ends in the element proportionally but the number of 

crossing points reduces as the square of the reduction in the number 

of the ends and this in effect is again equivalent to the lowering 

of the value of E and the results are therefore again similar to 

those obtained with a higher value of the modulus ratio.
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CHAPTER IV

THE MODIFIED THEORY

4*1 Introduction

In the theoretical analysis of the previous chapter E, 

the Modulus of Compression of cheese, and EY, the Elasticity of yarn 

in Extension are assumed to have constant values under all conditions. 

However the values of E and EY are not constant particularly when 

the loads are small, though at high loads the variation in them may 

he small. The results of the previous chapter shows that small 

values of the pressure in the cheese and of tension in the yarn do 

occur; the former occur beneath the added layers at the outer radius 

of the cheese and the latter may occur at any radius after the 

addition of a few layers beyond that radius. The tension in the yarn 

may even show a negative value. Further the results of the previous 

chapter show that the behaviour of the cheese is sensitive to the 

value of modulus ratio and that it alters considerably as modulus 

ratio is changed. Now with the changing values of E and EY with the 

pressure in the cheese and the tension in./the yarn, modulus ratio 

within the cheese changes constantly as the cheese is built up and 

this could alter the behaviour of the cheese considerably. Therefore 

the provision should be made in the theoretical analysis to take 

into account the variation in the values of E and EY due to the 

changing values of the pressure in the cheese and the tension in the
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yarn as the cheese is built up. To allow this provision in the 

theoretical analysis it is necessary to determine the relations 

between E and P, the pressure in the cheese and between EY and T, 

the tension in the yarn.

This chapter describes the methods to determine 

approximately the above relations. In developing the analysis 

which incorporates these relations it was found advantageous to 

integrate the differential equation numerically from outside to 

the core and not from core to the outside as was done in the 

previous chapter. The Runge-Kutta method is used to integrate 

the equation instead of Euler’s modified method. A new computer 

program is written to solve the equation and is given in Appendix 

A with flow diagram. The chapter ends with the presentation and 

discussion of the results calculated by the program.

4.2 Relation Between EY and T 

4.2.1 Tension’ Strain Curve

EY, the Elasticity of yarn in Extension, is defined as the 

force or tension required in the y a m  to produce unit strain in the 

length of the yarn. It is expressed in g. This is determined by 
conducting a load-elongation test on the yarn on the Instron Tester. 

The particulars for the test were: cross head speed = 0.5 in per sec; 

chart speed = 20 in. per sec; length of the yarn tested = 10 in.

The trace of the load extension curve was obtained on a paper with



Tension - strain curve oí- tke yam
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cm markings. Therefore one cm of paper represents a strain of 

(0.5 /(20 x 10 x 2,54) ) and is approximately equal to 0.001. ,
Pour tests were conducted and in each test the tensioning 

of the yarn was repeated four times. The maximum load used in 

tensioning was 55 go The chart movements in cm were read off 

from each of the sixteen plots against tension values of 2g, 5g*

10g, 20g, 30g, 40g, 50g and 54g and these are tabulated in Table 

4.1. These sets of values are then averaged to obtain the values ■ 

of strain in the yarn at different values of the tension in the yarn. 

Fig. 4.1 shows the tension T in the yarn plotted against the 

strain 's' in the yam.
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Table 4»1

tension in (g) 
tlie yarn 2 5 10 20 30 40 50 54

chart
movement 1 1.2 2.6 3.3 ■5.0 6.4 7.5 8.4 8.8
(cm) 2 1.3 2.4 3.2 5.0 6.2 7.2 8.0 8.4

3 1.4 2.4 3.3 4.8 6.1 7.1 8.0 8.3
1st Test 4 1.3 2.3 3.2 4.7 5.9 6.9 7.8 8.3

1 2.4 3.8 5.1 7.4 9.6 11.4 12.8 13.6
2nd Test 2 1.8 2.9 4.0 5.8 6.4 8.7 10.0 10.6

3 1.3 2.5 3.5 5.3 6.4 8.1 9.2 10.0
4 1.3 2.4 3.4 5.2 6.6 7.9 9.0 9.4

1 1.2 2.0 2.7 4.0 5.0 5.9 6.7 7.0
3rd Test 2 0.8 1.5 2.2 3.5 4.4 5.3 6.0 6.3

3 1.0 1.7 2.4 3.5 4.5 5.4 6.1 6.4
4 1.0 1.6 2.3 3.4 4.4 5.3 6.0 6.3

4th Test
1
2
3
4

1.3
1.0
1.0
0.9

2.1
1.7
1.7 
1.6

2.8
2.4
2.3
2.3

4.0
3.5
3.4
3.4

5.0
4.5
4.4
4.3

5.8
5.3
5.2
5.1

6.6
6.1
5.9
5.8

6.9
6.3
6.2
6.1

Total 20.2 35.2 48.4 71.9 90.1 108.1 122.4 128.9

Average 1.26 2.2 3.03 4.49 5.63 6.75 7.65 8.05
Strain 0.0013 0.0022 0.0030 0.0045 0.0056 0.0068 0.0077 0.0081
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4.2.2 Relation Between BY and T

The tension-strain curve of Pig. 4.1 is roughly hyper­
bolic. This curve is redrawn in Pig. 4.2 on a log scale such that 

log^T = X and log^s = Y. The curve of Pig.- 4.2 is a straight 

line and its slope as measured from the figure is 7/4. Row from 

the- graph

log1QT = 0.168+ 4-(log10s + 5)

or Y'. log^ qT = 0.96 + l°s10s ■+ 3

or 4/7T M  = 1247.S • • • • ••

The value of EY at any instant is the slope of the tension-strain 

curve at that instant, i.e. dT/ds. Differentiating the above 

relation with respect to s

dT £  -3/7 
ds°7* 1247.

Therefore

EY = ~  * 2184.T5//7ds

or EY = tencon.T^ ........  (4.1)

where the values of tencon and y depend on the extensional behaviour 
of the yarn. The equation (4.1) gives the required relation between

EY and T
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4.3 Relation Between E and P

In the cheese a layer at any radius of the cheese is 

supported by a similar layer beneath it. The contact between the 

two layers is made at a number of crossing points and the pressure 

of the upper layer is applied to the layer beneath through these 

points. The yarn deforms at these points of contact. The area 

occupied by a given number of crossing points increases with the 

radius making the cheese non-homogeneous. Therefore the Modulus 

of Compression of cheese (in the radial direction), i.e. E, if 

defined on the basis of the area would not be constant but will 

vary with the radius. To avoid this E is defined on the basis of a 

crossing point and as the number of crossing points remain constant 

with the radius E also remains constant. Therefore E is defined as 

the force required to produce unit strain in the thickness of a 

crossing point and is expressed in g.

An experiment is devised, which attempts to simulate the 

conditions of the pressure application on the layer of the cheese, 

to determine the value of E approximately. From the results of the 

experiment the approximate relation between E and P is obtained.

The method is as follows.
A cloth thickness tester is used to measure the deformation 

of crossed threads. Two series of threads are laid on the anvil of 

the tester, one series lying transverse to the other series thereby'



No. of crojsirvg points s5x5s25.

Measuremervfc of th* value of £.
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giving a number of crossing points as shown in Fig. 4»3. Only 

minimum tension is applied to the series of the threads to keep 
them straight. The tKtckne*s _• of the crossing points is read 
off from the dial of the tester under different pressures of the 

pressure foot. From these the value of E is computed.

4.3.1 The Cloth Thickness Tester • ”

This consists of an engineer's dial gauge from which the 

return spring has been removed and to which has been added a 

loading pan for gravity return of the main spindle. The base of 

the spindle carries a circular pressure foot with a diameter of 

0.375 in. The pressure foot and gauge is mounted above a steel 
anvil set in a wooden table.

The pressure during test is applied by the foot and may 

be varied in steps of 1 lb/sq.in. from 1 lb/sq.in. to 10 lbs/sq.in. 

by using different weights or different combinations of weights.

4.3.2 The Preparation of the Sample

A series of threads was prepared by laying the desired 

number of threads for which E is to be measured so that the ends 

of the threads fell on a gummed paper strip. The threads were 
carefully laid side by side almost touching each other with only 

enough tension in the threads to keep them straight. The ends were 

then stuck to the gummed tape by moistening the paper. Another



116

piece of gummed, paper tape was stuck to the threads from the top 
thereby enclosing the threads between the paper strips. The 

length of the exposed threads was about 15 cm. Another series 

containing the same number of threads was also prepared. This 

series was laid transverse to the first series during the test 

thereby giving a number of crossing points.

Four sets of threads with two series in each set containing 

2, 4» 8 and 14 threads were prepared for the first test thereby 

giving 4» 16, 64 and 196 crossing points respectively. For the 

second experiment four sets of threads with. 6 layers in each set 

containing 6, 8, 10 and 12 threads were prepared thereby giving 36, 

64, 100 and 144 crossing points respectively.

4.3.3 The Experiment

The first series of threads was placed on the anvil under 

the pressure foot of the tester. This was kept in position by a 

cellotape fixed, to the paper strip of the threads and the board of 
the tester. Again minimum tension was used to keep the threads 

straight. The other series of threads was fixed over the first 

keeping the threads of the second series approximately at right 
angles to those of the first. Care was taken to ensure that no 

crossing point was out of the pressure foot. For the second test 

the alternate series of threads were kept parallel with the remaining 

series of threads lying transverse to the first set of series thus
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forming six layers. The threads of.one series were;kept-approximately 

above the threads of the series below parallel,to it. The two 

parallel series were, however, separated by the threads of the 

transverse series.

Before starting the experiment the anvil and the pressure 

foot were cleaned by withdrawing a paper sheet through them under 

pressure. The dial position was also set to zero. The pressure 

foot was lowered very gently to avoid any impact. In all the 

observations the pressure was increased from 1 lb/sq. in. to 10 lbs/ 

sq.in. in steps of 1 lb/sq.in. Also when adding weights the pressure 

was taken off the threads by lifting the pressure foot by the 

platform lever. The pressure per point, i.e. P#, is given by the 
expression . . . . . .  ? • -

Pi » A x p x 453.6/n;

where A is the area of the pressure foot, p is the pressure in lbs/ 

sq.in. and n is the number of crossing points. The observations 

and calculations for both the experiments are given in Appendix D.

4.5.4 Results of the Experiments

The results of,the first experiment are shown in Figs. 4.4 

to 4.6. The thickness of the layer in in., i.e. TH which consists of 

two diameters of yarn, under different values of the pressure per
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crossing point in g, i.e. Ps is shown in Fig. 4.4. Fig. 4.5 shows'

TII plotted against log^Ps. The curve is a straight line.

In calculating the strain of the crossing point it is 

necessary to know the original thickness of the crossing point at

no load. However the thickness of the crossing point,, i.e. of the

layer, under no load, according to the curve of Fig. 4.5* would be

infinite and therefore it would be necessary to take the original

thickness of the crossing point at some small value of the load.

The value of the thickness of the crossing point changes very 

rapidly in this region and therefore a slight variation in the load 

can cause large errors in the calculated values of the strain. To 

avoid this the thickness of the crossing point at a given pressure,

Ps, the value of which depends on the cheese conditions, is taken 

as the original thickness of the layer to obtain the values of the 

strain under different loads. In the cheese the pressure at the 

outside is zero before the addition of the layer and is Pq after 

the addition of the layer. Therefore the thickness.of the crossing 

point at an equivalent pressure of Po/2 is taken as its original 

thickness to calculate strain. P0 for a given cheese varies with R 

but this variation is not much. In a cheese with x = 5 cm, D = 0.05 cm, 
dR = 0.05 cm, spacing = 1D the value of Po/2 at the core radius of 

1 cm is 461 g and at the final radius of 4.9 cm of the cheese at which 

the last layer is added is 585g tfhen the winding tension in the yarn 

is 30g. The average of these two values is taken as the approximate



119

value for determining the value of Ps. These values of Ps are 

0.35g, 0.7g and 1.05 g when the winding tensions in the yarn are 

10g, 20g and 30g respectively for the cheeses with the specification 

above.

1.05g are read off from the curve of Pig. 4.5. These are .028 in., 

.0256 in. and .0246 in. respectively. These values are used to draw 

the stress strain curves of Pig. 4.6 which shows strain *st' of the 

crossing point plotted against stress, i.e. log^Ps. There are 

three curves for three different values of the thickness 'Til' 

corresponding to the three values of the winding tension in the yarn 

as shown in the figure. The relation between E and Ps is obtained 

from these curves.

4.3.5 Relation Between E and P

The value of TÏÏ at the values of Ps of 0.35g» 0.7g and

The value of É is given by the expression

E dPs
dst

Let X = loS10Ps . (iii)

Differentiating (iii) with respect to X

dPs
dX Ps.log 10 e . (iv)

Substituting the value of dPs from (iv) in (ii)



-iH
ic

fe
ne

rs
 o

r 
la

ye
r 

T
H

(=
6

D
)|

*0

i>

E xp e rim en t. 2

0 9

0-4 L  
o

1 » i r—....i1"-... i ■ ».... i i 1 i 1 1 i i2 3 4 5 G 7 8 9 40 1| ft 13
Jitersare per jso ln t-P s  tg3

D e fo rm a t io n  of la y e r  u n d e r  Jotessate

F IG .4.7



th
ic

k
n

e
ss

 o
f 

la
y

er
 T

H
C

-6
D

) 
c

in
i

Experiment.!.

FIG.4.S



st
ra

in
 o

f 
la

ye
r 

at
*

0 -G

0-5

0-4

0-3

0-2

o-<

O

t  cgi1° E- 2-3025*1^ = 7-8 5. ?*
Experiment. 5L

X  (= log(0Ps)

Determiruflion of tke oalue of E

FIG.4.9



120

E = Ps. log 10» ~ —°e dst

where prcon is constant for a given cheese and is equal to

(loge10. ~ ~  is the slope of the curve of Fig. 4.6 and is

constant for a cheese wound with a given winding tension in the yarn, 
els *fcThe value of. and hence of *prcon’ depends on the winding tension

in the yarn and the compressional behaviour of the yarn with which 

the given cheese is wound.

The results of the second experiment are given in figures 

from 4*7 to 4.9# These results have been calculated in a way similar 

to those of the first experiment. In this experiment the layer was 

formed by six series of threads and therefore the thickness of the 

layer was equal to six diameters of the yam. The following table 

gives the summary of the results.

Table 4.2

or E = pro on. Ps .......  (4.2)

g ■ D - dia. of '
__________________ ______________ yarn in cm.

Winding tension in y a m  10g 20g 30g 10g 20g 30g
First Experiment 8.5 x Ps 7.87 x Ps 7.25 x Ps .Q36 .033 .031
Second Experiment 7.85 x Ps 7.11 x Ps 6.76 x Ps .037 .033 .031
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The second experiment gives consistently lower values of 

the modulus than the first. As it reproduces conditions in the 

cheese more realistically than the first these values are to be 

preferred. For the present calculations which are necessarily only 

an approximation of the real behaviour of the package a figure of -

7.5 for the constant’prcon*would be sufficiently accurate.

4.4 The Value of EY As a Function of T .

The need for the variation of the value of EY according 

to the tension T in the yarn is clearly demonstrated by Fig. 4.1.

The curve shows that the value of EY varies considerably with T, 

particularly for small values of T and small values of T, as shown 

by the results of Chapter 3» do occur inside the cheese. Therefore 

a provision to vary the value of EY with T according to the equation 

(4.1), namely,

EY = tencon.Ty

should be provided in the integration of the equation (3.14). 

However an equation different in form from equation (3.14) is used 

because of convenience in writing the program.

The equation (3.12), namely,

(t.cosa - Tsina.9 - t.since.e)
2.K.E.D
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is due to the addition of a layer of thickness cLR at the outer 

radius R of the cheese. Substituting the values of cosa, sina and 

0 from equation (3*7) in terms of r and u the above equation becomes

a^u
Sr

u / , r u a_________r
2 ■ “ ' to 7 1  + r* ( 2 2// 2 2 ^tr +a ; (r+a ) (r+a,)^

T .(T+t)),
2.K.E.D

or S 2u 1
2 “ 2.K.E.D or

___£____ it . £»£.-♦.(.?+*), \/ 2 2^  KX + , 2 2s } •”(r +a ) “■ r.(r +a )
(4.3)

The equation (4.3) is used to solve the cheese. The above 

equation by substituting the values of t and T in terms of u, r, U, 

and T0 can be reduced to the former equation (3.14)«

The integration of the equation (4.3) is similar to the 

integration of equation (.3• 14). In this case a knowledge of the 

values of T at each step of r, instead of U, before the addition 

of the layer of thickness dR at R is required. The value of t, " 

i.e. the change in T as R increases by dR is obtained by the equation 

(3 .1 3), namely

t *= EY. —  . cos2a. r ^

The value of 'EY used in the above equation is the value 

at r when outer radius was R and u is the change in U as R increases 

by dR and is obtained by extrapolation from the values of u,
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— r, etc. at the previous step.of r, i.e. at (r - dr). Prom this 
dr 2
the new values of T and EY, when outer radius is (R + dR), are 

calculated hy the following relations

TR+dR = TR + t

and EYR+dR “ tencon. abs(TR+(iR)

The use of absolute value of ( ^ +(jr) keeps EY positive according , 

to its definition though T might become negative due to large U. 

This is repeated at each step of r, i.e. the radius of the cheese.

4.5 Modification of the Equation (4.5) to Allow E to Vary with P

4.5.1 Values of E, e. ^ / d r  and ^e/dr

The influence of the pressure on the value of the Modulus 

of Compression of the cheese is demonstrated by Pigs. 4.4 and 4.7. 

As in the case of EY this is of greater importance at low values of 

P which occur in the cheese just underneath the added layer. The 

value of E is given by the relation (4.2) and in the cheese it is 

given by the equation

E -nrcon.P
2.(K. ^ ) 2

(4.4)• • • • o •
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where P/ (2E/) is the pressure per crossing point and the negative 

sign ensures that the value E is always positive (pressure being 

negative in the present convention). Now E, like P, is a function 

of both r and R. The addition of a layer at the outer radius R 

causes a change p in the pressure P and therefore the value of E 

which depends on the pressure also changes, say by e, Here e = .g^.dR. 

'Then

2

p.prcon
2.(K.jz0 2

(4.5)

Differentiating (4.5) with respect to r

be an prcon
* r  " “ -br- 2#(Koy )2

Substituting the value of from equation (3.10)

'be
br q.

prcon
dr.2(K./)2

or b e
br

prcon.a---P-----.. q
2.iT.dr.¥ ■ *

6 0 0 (4.6)

Similarly by differentiating (44) with respect to r

bE
br =

prcon.a 
2.K2.dr.¥

(4.7)0 6 0 6 0 0
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4.5.2 Modification of Equation (4.3) 

The equation (3.11) is

P = B u
2.(K . I ) 2

E

In this equation p is the change in P as the outer radius 

of the cheese increases from S to (R + dR). E is the current value 

of the Modulus of Compression of the cheese when outer radius is 

(R + dR)., Differentiating this relation with respect to r

I e - 2 .(k .»o 2.'(2 - & e + ‘̂ . ! 2 )or Br

Substituting the value of from equation (3.10)

q j  = 2 .(K ./)2 ( ^ . E  + ^ . | J ) . d r .
B  r

Substituting the value of q from equation (3.8)

2 .(K. / ) 2
J?-

Br
•au B E  \
Br* B r  '

K^.dr
dr.D (t.cosa - since G (t+T)).

Substituting the value of G, cosa and sina

ifu _ 1 r /, u.a2(T+t)O “ • o o JJ • • 0 O
dr 2.K.D.E (r + a ; T r.(r +a;

) -
Bu BE 
B r  *^r / E.

• • • (4.8)
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In the above equation T is the value of the tension in the yarn 

when outer radius was R and t and u are the changes in T and U 

respectively due to an increase in the outer radius from R to 

(R + dR). E and -fhr are the values when the outer radius is

(R + dR).
Now

"dr

E = (Er + e) ••• ••• ( 4 • 9 )

a ^3 /93,,
3,14 â ?  - (4.10)

c>E,where E„ and — R are the values when the outer radius was R and R flr

Br'- î r
the outer radius increased from R to (R + dR).

e(= ̂ .dR) and — (= ■ ----) are the changes in E and • as

4.5.3 Relation Between E. ̂ u/ar and e 

Prom equation (4.5)

2.(K.g0 2
prcon *.e .

Substituting the value p from equation (3.11)

2.(K./)2.|^.E » 2.(K„/y
prcon

Substituting the value of E from (4.9)
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du \ er“ » + e) =* — — — —3r R prcon -

or e = „ - E^.prcon. — 7 / (1 + prcon.|^) ........  (4.11)

4.6 Integration of the Equation (4.8) :

4.6.1 Boundary Conditions

The equation (4.8) is a second order differential equation 

with two variables, namely, u and E and therefore requires four 

boundary conditions for its solution. At the core radius s, u and 

TJ are zero as the core is assumed to be incompressible. Therefore 

q at the core radius s given by equation (3 .8) is also zero and 

therefore Q0 = Qos, irrespective of the value of R. Row,from 

equation (.4 .7 ) '

*bt at s prcon.a 
2.K2.dr.W

Qos

and -jpp at s is constant irrespective of the outer radius R.

•The pressure imposed by the element of the layer added 

at R i3 PoR and at R, is equal to the change in P, i.e. p.
By equation (3.22)

p _ g./.dR m . R .
°R = " D ,
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The Modulus of Compression of cheese is related to P hy equation 
(4 .4), therefore at S

E = - -  °n‘Ff . «, 2222- . dE . T
2.(K. / ) 2 -2..K.D ° Jt^a 2

The change in pressure p and E are related by the equation (3*11) 

and substituting the values of E and p in this equation (3.11) when 

r = R

PoR = _ 3 u  _ prCOn-PoR
2.(K.d)2 ii)a

"du ■ /or r—  = - 1/prcon.ar ■

The above relation appears in this form because at r = R pressure 

P is equal to p, previous value of P being zero.

Therefore the four boundary conditions are that when r = s

(1 ) u = 0 and U = 0; ........  (4 .1 2)

(2) — . q (a constant quantity
r 2.K.dr.W os irrespective of R); ... (4.13)

and when r = R

(3)

(4)m

E prcon
2.K.D dR.T

0
R

J3?+a2

"b_u
■^r 1/prcon

... (4.14)

... (4.15)o * •
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4.6.2 Procedure for Integrating Equation (4.8)

Applying a method, similar to the one used before for

solving Equation (3.14), to start the solution of equation (4.8) at

the core radius the values to be assumed are those of jr— and E at

the core radius. The values known at the core radius from the

boundary conditions are those of u, U and For the correct

solution the calculated values of E and.~ must agree with thoseor
of the boundary conditions at r = R. The method uses E and .as 

separate variables and the iterative solution requires one.loop 

with in another in the computer program. This can be avoided by 

using equation (4 .1 1 ).

The equation (4.11) is

e = - Er  ,prcon.~ / (1 + -Aprcon).

With'the help of this equation the value e, i.e. the change in the

value of E at any r, due to the increase in the outer radius from

R to (R + dR) can be directly calculated. This requires the knowledge

of E at each step of r when the outer radius was R and is similar to

U in this respect. This, however, is known from the previous solution.

The relations enables the value of E when.the outer radius is (R + dR)
to be determined uniquely from the values of E^ and instead of

■fcEits being extrapolated from the values of E and at the previous

step of r, i.e. at (r - dr). Therefore the boundary conditions for
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E or are no longer necessary and in the computer program only

one loop is required thus effecting a considerable saving in the 
computer time.

Now if the equation is being integrated from core radius

s to the outer radius R and as the correct solution is approached

this relation fails to give the value of e at R; because at this

radius the previous value of E, i.e. ED, is zero as there was no

pressure before the addition of the layer. Also the denominator

of the relation for the correct solution is zero because ,r—  for-ar
the correct solution is equal to (- l/prcon) and this makes the 

denominator zero. The relation then takes the indeterminate form 

of o/o. For the correct solution the value of e at r = R is known 

from the boundary condition and can be used instead of getting it 

from the above relation. But for a trial solution which is near 

the correct solution an.approximate value of e equal to the value 

of e for the correct solution obtainable from the boundary condition 

has to be used. This makes the program difficult and will affect 

the accuracy of the results due to the approximation.

This difficulty is avoided by integrating the equation 
from outer radius R to the core radius s. - At starting radius r = R 
both and e are known by the boundary condition (equation (4.14)).

At this radius E and e are equal as P and p are both equal to
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and. there is no need to use this relation at r = E.

The solution starts by assuming a value of u at r = R.

The calculated value of u at the core radius is compared to the

value of u available from the boundary condition, i.e. zero. The

calculation continues to repeat, each time with a fresh value of u

at r = R, till the value of u at core is close to o. In this case
6the Runge-Kutta method is used to integrate the equation with r

as Euler's modified method, used in the previous case, gave

divergent successive values of u. - To make the program efficient

the fresh value of u at r = R at first, is obtained by quadratic
7interpolation; the method is given by Beckett and Hart . In the 

event of the quadratic equation having imaginery roots the value of 

u is automatically interpolated linearly.

4.7 The Results

Program 36 written in KDF 9 Algol to solve the cheese 

model according to the modified version of the theory is given in 

Appendix A. The program incorporates a provision by which the cheese 

can be solved either with constant values of E and EY or with values 

of E and EY entirely dependent on P and T respectively or with some 

constant initial values of E and EY which remain as the constant 

part and the further changes in the values of E and EY depend on P 

and T as before. The three types of solutions are obtained by
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assigning zero values to ’prcon' and 'tencon1 and constant values 

to IE and ISY or by assigning zero values of IS and IEY and required 

values to.'prcon' and 'tencon' or by assigning required values to 

prcon, IE, tencon and IEY respectively.

The results are divided into three sections, each section 

containing three solutions for three values of the winding tension. 

In the first section a constant value of E of 100g is assumed and 

the value of EY is allowed to vary according to the relation (4 .1 ). 

This is done to study the effect of the variation of the value of EY 

on the behaviour of the cheese. The starting value of EY ih the 

layer added, depends on the value of the winding tension in the 
yarn.

4.7.1 E Constant. EY Varies with T . ,

" The results of the solutions in which E has a constant 

value of 10Qg and EY varies with T according to the relation (4 •1) 

are.shown in Figs. 4.10 and 4.11. In the solutions the starting values 

of the modulus ratio are high, namely about 94» 79 and 59 when the 

winding tensions are 30g, 20g and 10g respectively. The values of 

the modulus ratio at a given r reduces as R increases from r and reaches 

its minimum value as the tension in the yarn continues to fall. Then 

the modulus ratio at r increases for some increase in R due to the 

yarn acquiring negative tension as the compression of the cheese at 

r continues with R. Finally the modulus ratio becomes constant as 

further increase in R does not affect the cheese at r. This is
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shown by the curves (g ) of Fig. 4.11« The modulus ratio acquires

■ low values before it starts increasing again and apparently due to

this a slightly greater number of layers are affected by the addition

of a layer at R as compared to the cheese with a constant modulus

ratio of 50 (5000/l00). This is shown by the curves of P, U and
[R 3T1 ,̂ -̂ .dR at constant r showing comparatively gradual flattening 
Jr

with R. These curves when T0 is 10g show a lesser tendency to 

flatten possibly due to a lower starting value of the modulus ratio. 

The low values of modulus ratio also allow comparatively greater
»R 3Tvalues of U and \ jj^.dR. Also the pressure inside the cheese is 

higher than might be expected.

An increase in winding tension from 10g to 30g does not
f &Tincrease P, U, J ^.dR, etc. proportionately because the modulus

ratio changes. Trebling the winding tension increases the modulus

ratio by about 1.6 times. However the total change in tension is

more than three times and is probably due to a higher value of EY,

when T0 is high, which gives a greater change of tension for the

same amount of compression. The shear force I Z.dr depends on
r

tension and shows, similarly, more than proportional increase with 

the increase in the winding tension. This increase in shear force 
is accompanied by a sharper and quicker reversal in its direction. 

This is shown by curves (g) and (g ) of Fig. 4.11. The shear force 

has a larger negative value and a greater part of the cheese is
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subjected to negative shear as compared to that of the cheese with • 

a constant value of modulus ratio of 50 (5000/100).. Also the

change in the direction of the shear at any r is sharper and quicker.

4.7«2 E and EY Vary with P and T

The program solves very slowly the cheese in which E and 

EY vary with P and T respectively. After long runs it is able to 

solve the cheese for small values of R. The main reason for the slow 

running is that many trial solutions are required. The value of u 

at r = R converges slowly to the correct value. The substitution of 

quadratic interpolation instead of linear interpolation for the value 

of u at r « R gave slight improvement. Another reason for the slow 
progress is that many trial solutions fail due to the value of E 

becoming very small or the value of u becoming very large. 

Consequently checks are inserted in the program which cause the 

program to abandon the solution likely to fail and attempt the 

solution with a fresh reduced value of u at r = R. This further 

increased the number of trial solutions. The maximum starting value 

of u at r = R is limited for which the solution does not fail. This 

limits the range of starting values of u at r = R and makes the 
interpolation of the correct value of u at r = R slower.

Fig. 4.12 shows a plot of the values of u at the core 

radius s (y-axis) against the starting values u at R for the addition 

of a layer at R. This took 15 solutions to obtain the correct
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solution. The line S3 shows the rough limit of the starting value ■ 

of u at r = E beyond which no solution is available because E 

becomes zero. The solution failed for values of u at r.= R marked 

as 4» 5 and 6. In the event of a solution failing the next value 

of u at r = R is the average of the previous two values; these are 

(a) the one for which solution is available and the second (b) for 

which the solution fails. If the solution fails for the new averaged 

value too then (b) is changed, (a) remains the same. This continues 

and (b) gets closer to (a), till the solution is available for (b).

In the solution shown in Fig. 4.12 the value of u at r = R was reduced 

by small steps instead of by averaging.

An attempt to improve the solution by reducing the; 

thickness dR of the added layer to 0.05 cm and less from 0.1cm 

showed some saving of the time due to the reduced number of trial: 

solutions. However the thickness of 0.05 cm gave best results and 

further reduction in the thickness of the layer increased the number 

of solutions required for a given value of R without a corresponding 

reduction in the time of each solution. /

Unfortunately the change in the value of dR gave a 

different solution to the problem as shown by Fig. 4.13. This 
figure shows P for three values of dR, namely 0.1 cm, 0.05 cm and 

0.02 cm, with r for given values of R and P at r = 1 cm as R 

increases from 1 cm. The winding tension in the yarn is 30g. E is
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proportional to P and is therefore shown qualitatively by the curves 

of P. Usually a solution which is very dependent on step size 

indicates an error in the numerical analysis. In this case however 

the reason appears to be a physical one rather than a mathematical 

one.

The value of E depends on pressure and therefore it would 

vary within the layer added at R being maximum at the lower end of 

the layer and zero at the upper end of the layer. The added layer 

dR is excluded from the solution - it merely provides a boundary 

condition for it. With E in its present form some of the tension 

would be lost within layer and use of thick layer may lead to large 

errors. However use of a thin layer with low pressures and low 

values of E at r = R leads to a loss of y a m  tension very close to 

the surface and to a slow convergence of the solution - the situation 

is approaching that of a zero force acting on zero resistance. These 

difficulties can be avoided by setting a lower limit to E in the 

program. In, fact this seems to correspond to the practical situation 

where a lower limit to P and hence to E is' set by use of a pressure 

roller. The diameter of the y a m  in the layer added is proportional 

to the pressure and therefore would differ slightly with the winding 
tension in the yarn. In making a comparative study this slight 

difference in the diameter due to different values of T0 is ignored 

as this would not affect the comparison and the great amount of time
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which this program takes.to solve the cheese for even small values

of E. is saved by not re-ruuning the program.

The results of the available solutions in which E and EY

vary with P and T respectively are shown in Pigs. 4.14 and 4.15.

These results apply only for the value of dR used in this program.

In effect this was such as to limit the lowest value of E to the

values stated in the figures. The starting values of the modulus

ratio are very high, namely 1001 and 793 when the values of T0 are

20g and JOg respectively and due to this the effect of the added

layer is limited to even fewer layers immediately beneath the added
rRlayer. This is shown by the curves of P, U and I .g-r.dR of Pig.
 ̂r

4.14 becoming flat very sharply. This prevents the build up of 

higher value of P, E and TJ inside the cheese. Due to small U the 

tension in the yarn does not become negative at higher radii. This 

affects the shear force. The change in the sign of shear force from 

positive to negative does not occur at higher radii and at Smaller 

radii the shear force changes its sign a second time becoming 

positive again. This is due to the tension not becoming negative 

and the addition of a layer at R, when R is large, results in a nett 

addition of the positive shear.

The modulus ratio at a given r with R falls sharply in the 

beginning due to the fall in the value of EY as the tension falls. 

The value of E changes little from the starting value and as the



o
r cerni2 9 O

R  cerni
4 4 2 3 4

0
t  t e m i

2 3 4 o
R h ctto

2 3 4



ZQ1 CQl

X*5cW; space ■tDi E=(p«on.P+IO)g; EY=2IS4."^7R0=3 Scm 

F IC.4.H7



138

subsequent increase in R, after the initial increase' in R from R = r, 

does not affect the layer at r the value of the modulus ratio remains ' 

low and constant. The value of the modulus ratio is higher when 

winding tension is lower» i.e. 10g, because of the comparatively low 

increase in the value of EY with the increase in the winding tension.

4.7.3 Solutions ¥ith Initial Value of E

In actual winding it is usual to apply pressure to the 

cheese during winding in order to make a firm hard cheese by some 

external means like a pressure roller apart from the pressure 

produced by the winding tension in the yarn. This is equivalent 

to raising the starting values of E and P and lowering the starting 

value of the modulus ratio and by avoiding the very small values of 

E giving results not so critically dependent on the arbitrary choice 

of step length. This is done in the theoretical solution by assigning 

some value to IE which is then equivalent to the increase in the 

starting value of E due to the pressure of the pressure roller. The 

value of IE chosen for this solution is 10g which is roughly 

equivalent to a pressure of 1.3g per crossing point. The results 

of the solutions for three values of 10g, 20g and 30g of winding 
tension in the yarn are given in Pigs. 4.16 and 4.17.

The initial value of E reduces the starting values of the 

modulus ratio and the results are accordingly modified. How the 

added layer affects a greater number of layers underneath it as
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compared to the previous case and therefore the growth of P, E, U, 

etc. at any radius r with R is higher. The tension in the yarn at 

a given r becomes negative as the cheese is further built up. The 

shear force at a given r changes its sign quickly and sharply and 

its negative value increases steadily with R.

Due to higher starting values of E the starting values of 

the modulus ratio are lower as compared to the previous case and 

the initial fall in their values due to the fall in the values of 

EY for initial increase in R are also smaller. In.this case the 

increase in El as R increases is accompanied by an increase in E 

and therefore the subsequent increase in the values of the modulus 
ratio after the initial fall are similar but greater in magnitude 

to those of the previous case.

4.8 Summary of Results-

The value of modulus ratio at a given r falls sharply for 

slight initial increase in R from R = r and then increases as T 

becomes negative but the high starting values of the modulus ratio 

prevents further change in the value of the modulus ratio as R 

increases further. This is shown by all the three cases particularly 

so by the second case in which the values of the modulus ratio are 

highest. In this case the shear force is generally with a positive 

sign as the tension in the yarn at higher, radii remains positive due
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to comparatively low values of U.
BT-In all the cases the values of P, U, 1 g^.cLR, etc* are 

not proportional to the winding tension in the yarn and is due to 

the change in the modulus ratio with the increase in the winding 
tension.

An increase in the starting value of E, which is taken as 

the value of E due to the pressure of the pressure roller on the 

cheese during winding, gives different results. The changes in the 

modulus ratio are similar to those of the other cases but are 

different in magnitude. The shear force shows a different 

behaviour and has generally a higher negative value with a sharper 

and quicker reversal in its direction.
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CHAPTER V 

CONCLUSIONS

5.1 Mechanics of Deformation of Cheese

The first object of any discussion of the results which have 

been presented must be to resolve the apparent contradiction between

(a) the measured axial and radial deformation of the cheese, (b) the 

fact that measured and calculated behaviour regarding radial deformation 

agree so well when the calculations are for a very restricted solution 

with no axial expansion whereas in reality there is considerable axial 

expansion.

The experimental indication of the radial deformation of the 

cheese was itself rather unexpected. ¿/The results show that the cheese 

at a given radius shows fairly large radial compression for some initial 

winding at that radius, but after this initial compression there is no 

further radial deformation as the winding continues^/ In the absence of 

the calibration of the gauge the radial deformation of the cheese is 

known only qualitatively but this behaviour is shown consistently by 

different types of gauges and with different.winding tensions in the 

yarn, iny effect of the axial expansion on the experimental indication 

of the radial deformation is small and the. cheese at the most would 
show very slight continuous compression with the outer radius after 

the large initial compression...

However the axial deformation of the cheese behaves differently.
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The cheese at r shows slight initial axial contraction for some slight 

increase in R from r = R and then a steady axial expansion at r with 
R. The initial increase in R which causes the axial contraction of 

the cheese is roughly the same which causes the large initial radial 

contraction of the cheese. At higher values of r = R the initial axial 

contraction of the cheese is not shown.

This is surprising for if there was no compression of the

cheese at r then axial expansion of the trellis-like layer of the

cheese at r would only be possible by extending the length of the yarn,«
i.e. by extending the length of each member. In view of the large axial 

deformation of about 57» - which would need correspondingly large 

extension of the yarn - this type of extension does not seem possible 

even if allowance were made for Poisson's effect, so far neglected.

This is because of the large value of EY; a 57» extension of y a m  would 

require a tension of over 1000g and the thread would rather break than 

extend. Therefore this type of extension could only be very small and 

the axial extension of the order of 5^ could only be possible due to

change of the angle of the thread along with the compression of the

cheese of about 1 fo.

Therefore a continuous axial expansion of the cheese at r with 
increasing R only seems possible when there is a continuing radial 

compression of the cheese with a continuous build up of the pressure 

and the shear force at r with R. Also the initial large compression 

of the cheese should imply an axial extension of the cheese instead of
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the axial contraction as shown by the experimental results.

The compression of the cheese calculated theoretically is 

qualitatively very similar to the one indicated experimentally; even 

the magnitudes in the two cases seem to be of the same order though 

this cannot be confirmed in the absence of the calibration of the 

gauge used in the experimental method. This was very surprising 

because the theoretical analysis is of a rather artificial package 

in which no axial deformation is allowed.

Thus in discussing the results of the work the object must 

be to explain (l) the apparently conflicting requirements of axial and 

radial deformations, (2) why the theory for the artificially restricted 

model fits so well with the experimental results for radial deformation 

- which themselves showed a rather odd behaviour.

To do this it seems necessary to take a broader view of the 

deformation process. ^It is clear that when the y a m  in tension is 

wound on the package there is in general a component - positive or 

negative - of axial tension in each layer of the package. The axial 

force must however diminish to zero at the.ends of the package because 

there is no force applied externally. Moving in from the end the axial 
force builds up by the shear force between layers; this arises mainly 
from friction between layers. Ultimately',1if the package is long 

enough a region will be reached in which the axial tension in adjacent 

layers have reached the values for which there is no tendency for 

relative movement to occur.
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In practice this situation might not arise. If it does, and 

if the friction at the core is included in this argument, then when 

this does arise the problem will fit the restricted solution developed 

here. Moving closer (axially) to the centre of the package will show no 

further shear forces, no changes ih the axial component of the tension, 

and no axial deformation. Until this stage is reached, i.e. in the end 

region of the package, there will be shear forces, axial component of 

the tensions varying from zero at one end of the region to the value 

calculated here at the other end. Within this region the behaviour 

will be so complicated that it seems almost impossible to predict it.

The introduction of shear force introduces another dimension (axial 

co-ordinate) to the whole solution; also at the package ends the wind 

angle varies; and there is possibility also that slipping will occur 

between layers if the equilibrium demands a too high value of the shear 

force.
/  ■This view of the deformation process doe3 suggest that the

solution derived here is applicable to the central region of the cheese 

(where the radial deformation was measured) and it also suggests that 

the axial deformation takes place largely in a different part so that 

the contradiction between the two sets of experiments no longer exist.

If this explanation holds it implies that the axial extension 

all takes place in the end regions and therefore this, as a percentage, 

is greater than the values given. It also implies that radial compression 

to permit axial expansion takes place in these end regions. This is not
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apparent, because the package diameter tends to be larger towards the 

ends because of the change in wind angle due to reversal of the traverse 

Another implication of this view of the mechanism of deformation is that 

the axial deformation should be nearly independent of the length of the 
package, other things being equal; provided that it is long enough 

for the central region to exist at all radiiy The amount of the axial 

deformation would be difficult to estimate without carrying out a full 

two-dimensional solution - that is one in which all variables are 

functions of three parameters r, R and V. Allowance would also have 

to be made for slip between the layers where this was indicated.

In the absence of a full-scale solution some slight indication 

of the sort of axial deformation to be expected might be obtained by 

looking at three functions as mentioned briefly in Chapter 5. The 

axial force Z in any layer reduces from the calculated value in the 

central region to zero at that end. The way in which it reduces is not 

known nor is the length over which it reduces but it would be expected 

that the greater the length of the deforming region the greater would 

be the movement of the package-end. Another indication of elastic 

extension will be deformation by shear. The shearing effect on any 

element depends on the value of the shear force F. The total F at any 
radius is the sum of the Z’s in the inner (axially) region outside 

that radius. The angle of shear will be dependent on the distribution 

of F in the deforming region - and the greater the length over which 

the total F is distributed the smaller would be the angle of the
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deforming element. The only case for which this effect can be 

evaluated is that in which F is distributed uniformly over the same 

length at any r. Then the angle of shear would be expected to be
r Rproportional to I Z.dr. The deformation at any layer due to this
r fr rRwould be the total deformation from the core outwards, i.e. Z.dr.dr.

Js Jr
This however includes some deformation of the inner layers which 

would have taken place before the layer at r was added, i.e. in the 

practical case before the gauge was inserted. This has to be subtracted.

Finally there is the extension due to slip; the tendency to slip will
.r=R

depend on the ratio of P/P where the total P at any r is [ Z.dr; thus 
R r=r

the value of ([ Z.dr) / P may give some indication of the possibility 
Jr

of extension occurring by slip.

None of these expressions by itself means anything at all - 

but the extent to which their values vary in a similar manner with r 

and R suggests the general form of the distribution of axial extension. 

Pig. 5.1 shows the value of the integral

r R
Z.dr.dr

s Jr

when modulus ratio is 50 for the central region of the cheese for all 

values of r and R. The curves of this figure are similar to the curves 
of Pig. 2.40 which shows the measured axial deformation of the cheese. 

The similarity between the two sets of curves suggests that the above 

integral gives an approximate picture of the axial deformation of the 

cheese. The axial component of the force through the face of each
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element, i.e. Z is also given in Fig. 5.1» This curve shows that the axial 

force in most of the layers except near the core and near the outside 

of the package is negative because of negative tension in the yarn and 
tries to expand the layer.

is probably a reason for pressure transmission through the layers to 

cause continual compression of the cheese with R) is probably greatest

for all values of r and R. A negative value of the ratio indicates that 

if slip takes place it would probably result in axial contraction of the 

cheese and vice-versa. The figure shows higher negative values of the 

ratio at smaller radii of the cheese which corresponds to the axial 

contraction of the cheese shown by the value of the integral and by 

the measured results of axial deformation. Also the value of the ratio 

at a given radius r is initially negative and high when r = R for small 

values of R but this value reduces as R increases. This also corresponds 

to the diminishing initial contraction of the cheese at r = R with R.

For larger values of R the value of the ratio with r is generally 

positive and would indicate axial expansion of the cheese by slip if 

any. The behaviour of this ratio also seems to be compatible with the 
measured axial expansion of the cheese and the deforming force which 

is probably related to the value of the integral.

These three factors which show separately various aspects 

of the tendency of the package to deform axially agree to the extent

The tendency for the layer to slip (initially at least - which

,R
when is greatest. Fig. 5.2 shows the value of this ratio
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that they all suggest axial expansion reaching a maximum at about'mid­

values of radius and they all suggest a small initial contraction. 

While none of the expression evaluated has any direct physical meaning 

because in practice each influences the others, the fact they agree 

to this extent not only with each other but with the measured deforma­

tions supports the picture of the nature of the deformation which has 

been given. The ratio of total shear force to pressure per element 

has been evaluated for a number of values of the winding parameters 

and the results are shown in Pigs. 5.3 and 5.4 and in tables of 

Appendix E. Obviously because of the definition of this term its 

absolute values are not of interest (and should not be compared with 
friction coefficients) but its variation with r and R is .

A change in the winding tension in the yarn does not changer Rthe value of the ratio as both Z.dr and P change proportionately
Jr

with the tension when.E and EY have constant values. The results 

suggest that as x and E decrease and as ’space’ and EY increase layers 

in a greater part of the cheese would probably tend to slip due to 

an effective increase in the value of the modulus ratio. Layers in 

the other cheese with low values of 'space' and EY and high values —  

of x and E would probably have a higher initial tendency to slip at 
r as winding proceeds from that radius. This seems to be particularly 

so when x = 7.5 cm. Another feature of note is that the values of 

. this ratio at a constant r reaches its minimum value very quickly in 

all cases for a small increase in R from R = r. This probably suggests
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that the added layer has a strong tendency to slip very soon after 

its addition. It also suggests that the difficulties of winding due 

to slip of the added layer would probably increase with the increase 

in modulus ratio, traverse per wind - i.e. wind angle and the closer 

spacing of the adjacent wraps of yarn. Another possibility which 

emerges is that if the cheese could be kept intact at the winding 

radius by some external means like the pressure of a pressure roller 

then the cheese would perhaps remain stable as shear to pressure 

ratio would probably decrease with R.

The value of R for which slip may occur at r would probably 

depend on the rate of build up of shear and pressure at r with R. 

This is much influenced by the modulus ratio. The following tables 

gives the value of the ratio at r = 1.4 cm with R for different 

values of modulus ratio*

Table 5.1 ••
,R

( 2.dr) / P 
Jr

at r = 1.4 cm

Modulus
ratio 1.5 2.0 2.5

R(cm)
3.0 • 3.5 4.0 4.5 5.0

50 -0.269 -0.104 0.041 0.179 . 0.281 0.365 0.434 0.491
25 -0.337 -0.225 -0.125 -0.039 0.031 0.089 0.137 0.178
10 -0.397 -0.315 -0.249 -0.186 -0.145 -0.105 -0.071 -0.042
1 -0.531 -0.448 -0.392 -0.350 -0.317 -0.290 -0.268 -0.249

The value of the ratio changes from -0.531 to -0.249 and from 

-0.269 to 0.491 with R when the modulus ratio is 1 and 50 respectively.
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This suggests that the layers in a cheese of a low modulus ratio yarn 

would probably have a greater tendency to slip off by contracting 

axially nearer the outside of the cheese (more likely if slip occurs 

the very first layer added would probably slip off) and the layers in 

a cheese of a high modulus ratio y a m  would probably tend to slip off 

by expanding axially at some radius inside the cheese. This seems to 

be supported by practical experience. The harder types of y a m  with 

lower values of modulus ratio, which are likely to be smoother as well, 

tend to slip off as they are being wound and the cheese can only be 

wound with some difficulty; but the cheese once made shows little or 

no trouble afterwards. The cheese made with softer spun yams like 
woollen, worsted, etc., which are likely, to have high values of modulus 

ratio, tend to become unstable when large in diameter.

5.2 Central Region of the Cheese

Having suggested how the measured and calculated results can 

be combined to give a picture of the behaviour of a real package, it 

remains to discuss in greater detail the meaning of the different 

results actually obtained. The indication of the radial deformation 

in the various curves of Chapter 2 are not only supported by the
calculations of Chapter 5 but they are also strongly supported by the

8 9results of ITakashima ’ and others while analysing the tension, pressure, 

etc. in a warp beam. Their results are reproduced in Fig. 5.5. The 

curves (a) show the radial distribution of pressure calculated
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theoretically in the yarn wound with constant winding tension on a 

beam of outer radius three times the radius of the -core for different 

values of the modulus ratio. It is evident that with the increase in 

the modulus ratio the pressure of the added layer is supported by the 

yarn layers immediately beneath it. These are strikingly similar to 

the results obtained in the present work and shown by the curves (a) 

of Fig. 3.22. The results of the residual tension distribution shown 

by curves (b) of Fig. 5.5 are similar to those shown by curves (c) of , 

Fig. 3»23. However the magnitudes of the differences in pressures 

with different modulus ratio are larger in their case and is evidently 

due to the difference in the structure of a parallel wound beam and a 

cross wound package.

The curves (c) of Fig. 5«5 show the values of circumferential 

stress in the core determined experimentally by them., Their results 

for cotton yarns are qualitatively similar to our results of radial 

deformation of the cheese. However when nylon yarn is wound the results 

are different; the curves then do not become flat so early and sharply 

and the circumferential stress in the core continues to increase with 

the outer radius. They estimate the value of modulus ratio of cotton 

and nylon yarn as 33 and 6 when winding tension in the yarn is 30g and 
29 and 5 when winding tension in the y a m  is 50g. The peculiar 

behaviour of the circumferential stress in the core with the cotton 

yarn is due to the high value of the modulus ratio of the cotton yarn.

A similar behaviour can be expected from a cheese wound with cotton
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yarn and is indeed shown by our results.

The measured results of radial deformation give resistance . 

changes of between 0.3$. to 0.4$ at the gauge radius of 2 cm for winding 

tensions of about 20g. . The computed results for the compression of 

the cheese at the same radius in which the modulus ratio is a function 

of the pressure in the cheese, the pressure of the pressure roller and 

tension in the yarn is about 0.6$. A similar value of U is also 

available when the modulus ratio has a constant value of 50 (5000/l00). 

This suggests a gauge factor of between 0.5 to 0.7. A similar value 

of the gauge factor was suggested by the test to measure the axial 
deformation of the cheese (page 48).

The reason for this type of behaviour, namely the curve of 

TJ becoming flat with R, would be apparent by considering a trellis 

like layer which is prevented from expanding sideways. If the trellis 

is not allowed to expand sideways then the pressure on it would have 

to shorten the length of the members - which is difficult as the 

members are difficult to compress longitudinally (due to high value 

of EY). Therefore the pressure would be supported by the trellis and 

the pressure would affect only slightly the trellis (or layer below). 

The resistance to the expansion of the trellis is provided by the 
frictional forces. Now as the cheese is further built up the pressure 

does not reach the layer (or trellis) at r as it is supported by the 

layers (or trellises) above. Therefore the compression of the package 

at r stops which corresponds to the flattening of the curve. If the
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yarn was of a low modulus ratio then the picture of radial deformation 

would probably be different and the compression of- the package at r . 
would continue with R.

Considering that the analysis is applicable to the central 

region of the cheese some conclusions can be drawn about the behaviour 

of the central part. One factor which influences the package most is 

the modulus ratio of the yarn, i.e. the ratio of the longitudinal 

modulus of the y a m  to it3 lateral modulus, A package made with a 

yarn of high modulus ratio like cotton, woollen, worsted, etc. would 

behave very differently from the package made with a y a m  of low 

modulus ratio like filament nylon. In the former the pressure inside 

the package would be low and except at the very outside where the 

pressure falls off rapidly the pressure variation within the package 

would be small. The y a m  is likely to acquire negative tension and 

the compression at a given radius is caused by a small increase in 

the outer radius of the package from that radius. . In the latter type 

of cheese the pressure in the cheese continues to build up with the 

outer radius of the package and its value at the core is considerably 
higher than in the former kind. The pressure within the package falls 

continuously from the core to the outside and the difference is 
considerable. The tension will not reduce so much as in the former 

case and the yarn is not likely to acquire negative tension. The 

amount of the compression of the package depends on the individual 

values of E and EY and reduces with the higher values of both. In
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both the cases the compression is likely to be small.

The residual tension in the yarn, like pressure, depends 

considerably on the modulus ratio of the yarn. With a high modulus 

ratio of y a m  the residual tension in the yarn falls sharply with r 

near the core and quickly becomes negative showing the y a m  in 

compression. After the initial fall it changes little with r till ■ 

it rises again near the outside of the package. The tension at a 

constant r is affected only by a small increase in R from R = r.

With a low modulus ratio of y a m  it falls gradually with r till it starts 

rising from near mid radius of the cheese. Total changes in the 

tension are comparatively smaller and is not likely to become negative. 

The tension in the y a m  at r shows a continual progressive decrease 

with R.

Pressure, compression, etc. tend to increase with the winding 

tension in the y a m  but the axial deformation does not seem to show 

any increase. With yams of high modulus ratio the increases are 

proportionately less due to increase in the working value of E because 

of higher pressures the y a m  becoming harder to compress. This effect 

would be less marked with yams of low modulus ratio, particularly those 

which have high value of E, because the value of E in those cases would 

be less sensitive to pressure.
The greater spacing between the adjacent wraps of y a m  reduce 

the number of pressure bearing crossing points more than the number of 

ends in the element and this effectively reduces the value of E and the
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cheese consequently show higher values of radial and axial deformation.

A wind angle of 45° would give maximum number of crossing 

points and this type of cheese should show maximum resistance to . 

radial deformation. A reduction in the value of wind angle would 

result in a fewer crossing points and therefore in a lower effective 

value of E and the cheese would show a higher compression. The effect 

is Only slight for reasonable changes in the wind angle. For a large 

wind angle the added layer would tend to show a strong tendency to 

slip.

5.3 Effects of Pressure Roller
For obtaining a solution by the modified theory of Chapter 4 

in which E is proportional to P it was found essential, to use some 

initial value of E in order to obtain a solution not critically 

dependent on the thickness of the added layer at R, i.e. to add a 

constant to the value of E caused by the pressure of the added layer 

at R. As thickness of added layer reduces its pressure also reduces 

and therefore the value of B at r = R reduces and that of modulus 

ratio of yarn increases. This results in very rapid changes in tension 

and it is lost very quickly. These changes are confined to the very 
outside of the package leaving its inside unaffected. Due to these 

rapid changes the working of the program becomes difficult. This 

situation is then similar to the difficulty experienced in actual winding 

of yarns (particularly of high modulus ratio). To ease the winding
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process some additional pressure is applied by some external means 

usually by a pressure roller. The pressure of the roller by pressing 

the y a m  at the time of winding - which is in effect equal to raising 

the value of E and thereby lowering the value of modulus ratio of the 

y a m  which has already passed the highly compressible stage when put 

on the cheese - helps the y a m  to retain tension longer and thus 

facilitates winding. This pressure of the roller appears in the 

computer solution as initial value of E and likewise makes the solution 

easier and it also sets the lower limit of E. This is a positive feed 

back process which suggests a critical pressure below which package 

cannot be wound with stability - and a critical layer thickness below 

which the computer solution will not converge rapidly.

The effect of this is twofold; firstly it lowers the modulus 

ratio of the y a m  and prevents very quick loss of tension in the y a m  

and secondly it increases the outer part of the cheese affected by the 

added layer and which in turn promotes greater growth of pressure 

inside the cheese and therefore lower values of modulus ratio. This 

seems to be what actually happens in the cheese when wound under the 

pressure of the pressure roller.

When winding yarns of low modulus ratio, which tend to slip 
off near the outer radius of the cheese,, the additional pressure would 
in effect reduce the shear to pressure ratio and keep the cheese stable 

at the winding radius till the cheese itself becomes stable at that 

radius due to the fall in the value of the ratio at that radius with R
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as shown before. The value of the ratio at r = E decreases as R 

increases and in a completed cheese of average radius there should not 

be any tendency to slip at the outside of the cheese.

From the slipping point of view also the additional pressure 

helps in the formation of the cheese of a yarn of high modulus ratio 

by reducing the effective value of the modulus ratio. As stated in 

the discussion of radial deformation the modulus ratio of these types 

of y a m  is comparatively more sensitive to pressure and the higher 

starting value of E due to additional pressure permits greater values 

of E and P inside the cheese. The overall effect would be to reduce 

the value of shear/pressure ratio and probably the cheese would remain 

stable when large. Increasing the pressure this way should be more 

effective and better than by increasing the pressure by increasing the 

winding tension in the yarn. A high winding tension in the y a m  may 

strain the yam, cause excessive breakage of the y a m  and the increase 

in the value of E would, to some extent, be compensated by the increase 

in the value of EY due to higher tension in the yam.

5.4 General Comments

The theoretical analysis developed in the present work is not 

applicable to a random wound cheese because of the basic inherent 

differences in the two types of packages. In the random wound cheese 

the wind angle remains constant with r but the number of threads in a 

given axial width changes with r, therefore the number of crossing 

points in the element --which does not vary with r for the precision
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wound cheese - does vary in this case. Also the space between the 

adjacent wraps of yarn varies considerably with the radius and the 

formation of the layer is not there. Also the theoretical analysis 

developed is not applicable to a conical package, precision wound or 

random wound, because of the different geometrical shape.

The theory in the form set out here is also not applicable 

to a parallel wound package. In that case the contact between the 

wraps of yarn of radially adjacent layers in an undeformed state is 

a line contact and changes to a surface contact in the deformed state. 

This surface would vary with the radius of the cheese. In the present 

case the contact between the wraps of y a m  of radially adjacent layers 

is nearly a point contact in an undeformed state and changes to a 

surface contact surrounding the point in the deformed state. However 

the area of contact would still be nearly independent of the radius 

but would depend on the number of crossing points which is independent 

of r. The analysis is based on the independence of the number of 

crossing points of radius and therefore it is not possible to derive 

the equation for parallel winding as a particular case of the present 

analysis. Strictly in this analysis there should be a small allowance 

for the change of modulus of crossing point with angle of crossing; 
the error introduced by omitting this is likely to be very small for 

the range of angles met in practice. For very small angles it would 

increase.

The mechanism for the deformation of the cheese put forward
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is only a plausible one from the results obtained so far. The 

problem turned out to be much more complex than it was thought to 

be at the start of the project. The present analysis of a very 

restricted type of cheese was considered to be as a necessary 

inevitable step to be able to solve the much more complex realistic 

case. In fact it was not even hoped that the results of this case 

might be directly applicable to the central region of the cheese 

which they seem to be.
i

In summarizing the work it should be kept in view that the 

theoretical solution attempted is that of a very restricted type of 

cheese, namely in which no axial deformation - elastic or by slip of . 

layers - is allowed. In practice this type of cheese is not likely 

to be met. The values of the physical properties of the yarn like 

diameter, E, etc. are only approximate and therefore the results would 

also be only approximate, but the difference from results with exact 

values of the yarn properties would only be small and qualitatively 

these results would remain the same in both the cases. . However, the

results strongly suggest that this restricted solution is probably
* . . . . .

applicable to the central region of the cheese. "The confirmation of 

the mechanism of deformation of the cheese suggested should be possible 
by a series of practical tests to measure the radial deformation of the 

cheese at different places corresponding to different regions of the 

cheese. The method developed and used for the indication of the radial 

deformation seems to be capable of showing the radial deformation
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qualitatively but in the absence of the calibration of the gauge, which 

appears to be impossible, quantitative measurements of the radial 

deformation of the cheese cannot be made; and in the absence of 

quantitative results the element of doubt in the difference of the 

magnitudes of radial deformation at various regions and radii would 

always remain. Therefore it would be advisable to develop a new 

direct method for the measurement of the radial deformation before 

these tests are attempted.

Another check can be made by measuring the axial deformation 

of the packages of different lengths under the same winding conditions. 

If the central region exists in the packages of different lengths and 

the end regions, which are supposed to contribute to the axial 

deformation, are of the same length in each of them then the axial 

deformation of the packages of different lengths would be of the same 

order because the winding conditions are the same. However these 

results would be based on the assumption stated above and also that 

the end regions are not affected by the change in the length of the 

packages. If they are then the results would not be comparable. Also 

it could be possible that the central region may not exist in packages 

of smaller widths than the one tested in the present project.

The object of measuring the value of E was to determine the 

nature of the relationship between E and the pressure and hence this 

relation is only approximate. However it would be useful to determine 

the value of E of the yarn under different tensions to see how the
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value of E is affected not only "by the pressure but by the tension

in the yam. For this the method for the measuring of the value of,
9E would need modification. The method of Eakashima is not useful 

here as that method of measuring the value of E restrains the y a m  to 

expand sideways which restraint is not there in the cheese. Their 

value of E would be higher because of this restraint and consequently 

the value of the modulus ratio would be lower. The increasing gap 

between the adjacent wraps of y a m  with radius due to a reduction in ■ 

wind angle might cause slightly smaller value of E with r because due 

to wider gap bending of yam, i.e. crimping, would be easier. However 

the effect would only be small.

Though the cheese has not been solved completely useful 
results have been obtained. From the winding point of view it emerges 

that the pressure roller, helpful in winding all types of yam, has 

its effect not directly through the pressure it applies but through 

the effect of this on modulus ratio. It is to be preferred to a high 

winding tension for making a firm and a stable package. High winding 

tensions could result in a denser package but not necessarily one in 

which the y a m  layers did not slip. The slip of the y a m  at the 

winding radius can be eliminated by reducing the wind angle. Again 
the increase of winding tension in the y a m  is not likely to help in 
this case. *

The other useful aspect is the information regarding pressure 

and tension inside the package and its variations, which are important
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in the subsequent processes like weaving and package dyeing.

s^The tension variations in pirns were important enough to 

provoke the study of Catlow and Walls. In cheeses and cones the radius 

ratios are greater and because of the nature of contact between y a m  

layers the effective modulus ratios are probably greater. Also the 

increasing use of these packages for direct weft supply means that 

the variations in the package are more likely to result in variations 

in the cloth. The tension in the yarn in packages of cotton, woollen, 

worsted yarn, etc. would be, except at the core and near the outside, 

fairly even (though the y a m  may be in compression), and therefore 

these packages could be comparatively of large diameters with high 

ratios of outer radius to core radius without introducing much 

variation in the ratio of residual to winding tension. On the other 

hand packages of filament yams like nylon should not be large because 

of large tension variation which increases with the outer radius of 

the package. Also a great amount of pressure would be exerted on the 

core in the case of these materials.

A similar situation also exists as regards pressure inside 

the packages which would probably matter in package dyeing. Again 

the packages of softer spun yam. like cotton, etc. would have low 
pressures inside with little variations throughout except near the 

outside of the package. On the other hand a package of filament y a m  

like nylon would have a great pressure variation inside the package 

with comparatively much higher values of the pressure inside the
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package and would probably be much more difficult to dye successfully.

Finally one aspect of such studies which.,has not been 
mentioned but might become increasingly important would be the winding 

of reinforcing yarns in the making of cylindrical shells of plastics
materials
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APPENDIX A 

COMPUTER PROGRAMS

A«1 Computer Program 15 for Solving the Equation (5.14)

Program 15 is written in KDF 9 Algol to solve the equation 

developed in Chapter 3 using constant values of E and EY. The 

symbols used in the equations cannot possibly be used in the program 

and hence an equivalent notation is used for the program. The 

program is accompanied by its notation, necessary explanations and 

flow diagram.

A. 1.1 Notation
The symbols are given in the order in which they occur in 

Program 15. Only those symbols are given in the notation which are 

either additional or have been changed for the program. The 

remaining symbols which correspond to the theoretical notation are 

used as such.

T - is To, the winding tension in the yarn.
i

Hr - is the radius at which the calculation starts. It is normally 

the core radius, 
b - = a x a.

R - = (R + dR).
, 2  2x- U  + a )m -



K1, K2, K3, K4, K5, K6 - are constants used in the calculations 

for solving the equations and are evaluated before the 

calculations start.

cdu-= at R. Its value is available from the boundary condition.

sdu-is the guess or the estimation of the value of at the

core radius s.
•audU - ss

d2u
r
^u

au, asu - are the values of u and U at the mid radius of a layer 

and are obtained by averaging the values of these at the two 

end radii of the layer.

Su - = U.

c - is a small number to specify the permissible difference between

two successive values of u at a given r.

d - is a small number to specify the permissible difference between

the values of 3-^ at r = R and cdu. o r

SZ - is
R R

J dR). dr = J z.dr

z - = W.
Z - - If.dS =

^Ug - is a small number used to vary the estimated value of at s
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C, C1, D1 - are used in the formula to interpolate the value of 

sdu from the values of at r = R and r = s of the last two 
solutions.

angle - is used to change the wind angle by changing x.

space - is used to alter the spacing between the adjacent wraps of 

yam.

FI, F2, F3,'F4, F5, F6, F7, F8 - are integers to denote the formats 

used in the program.

k - is a counter to number the steps of r or layers with r.

p - is a counter used in conjunction with 'h* or 'k* or both to

call the value of a variable at any r.

ct - is a counter to count the number of repititions of calculation 

for.one step or r.

h - is a counter to count and number the steps of R.

1 - is a counter to.count the number of times the calculation is

repeated to solve the equation for the addition of a layer at

R. .

Arrays, preceded by letter T or P before the symbol of the 

variable, have been used to retain the values of the respective 
variable at all values of r,

SZR- «
r

Zo.dr
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za - =s Zo.

QJt - II JO o 0
pr - = '^R*da = P

SAZ -

ZZ - 

SSAZ 

SZZ

Sq -

St - 

Spr

A. 1.2 Structure of the Program

The program can be conveniently divided into four parts.

The first part consists of declarations in which real, integer and 
array variables, procedure ’trapezium', format declarations are made. 

The procedure trapezium is used to solve the equation from the core 

radius to the outer radius for one solution due to the addition of

= Z, this appears only in the write statements of the program. 

fR (R £ Z
- - Jr Jr

Z dr, this appears only in the write statements of the 

program.

= j  ' l f “dR*r
(R 3 t

“  J 'b IlbdRe\r ^

- -  f  H —  .
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a layer at R. This procedure is explained later. The data from 

the data tape is also read in the program, -

In the second part of the program the values of constants, 

e.g. a, b, K, K1, K2, etc,, used later in the calculations are worked 

out. These values appear in the output in a tabulated form, )

In the third part the first layer is added to the core. . As 

the core is incompressible u and U at the core radius s are zero. 

The values of ZR£13,, QRD1» pr£l3, Spr£lJ and cdu are worked 

out and appear in the output.

The fourth part of the program is the main part and it ; 

appears under a loop under for statement. This loop causes a layer 

of thickness cLR to be added at the outer radius R of the cheese. The 

equation is solved for the addition of this layer, then the next 

layer is added and the equation due to the addition of this layer is 

also solved. The process is repeated till the cheese ,is built up to 

the required value of R, i.e. RO. This part can be divided into five 

sub-parts. ■ ', •

The first subpart calculates the values of ZRth}, QR[h], 

SZRQil, cdu, etc. after advancing the counter ’h* by 1. The second 

subpart under the label "diff press" finds out the correct solution 
of the equation due to the addition of the layer at R. This uses the 

procedure "trapezium" to solve the equation from the core radius s 

to the outer radius R and the later portion of this subpart



interpolates the value of du at the core.

The procedure trapezium once called integrates the equation 

due to the addition of.a layer at R with an assumed value of du (guessed 
or interpolated from the results of previous trial solutions) at s.

From the values of u, du, d2u at the core (or any other step of rtk3) 

the values at' the next step of the radius, i.e. r[k + 13 , are 

interpolated by Euler’s modified method. The values are then 

averaged repeatedly by the loop labelled ’correction’ and the. 

integration moves to the next step of r only when the difference 

between the two successive values of u at the same radius r[k + 1J 

is small and less than the limit set for it. The final values of 

u, du, etc. at rPc + 1] are assigned to T arrays by k, which had 

moved up by 1 before the assignment. This process of solving the 

cheese layer by layer is controlled by the loop labelled ’layer’ 

and allows the calculation to proceed up to r = R. During the 

integration the value of Su at each step of r is called with the 

help of the counter ’k ’ which denotes the step of r at which the 

calculation is done.

The loop ’diff press’ ensures the correct solution of the 

equation due to the addition of a layer at R. As the program goes 

out of the procedure trapezium the value of du at R is compared to 

cdu, the correct value of du at r = R according to the boundary 

condition. If the two values differ more than the permissible
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difference the program goes hack to 'diff press' loop with a new 

value of du at s. This new value of du at s, i.e. sdu, is for the 

first time another guess of the value of du at s. For the second 

and the subsequent times the value is an interpolated one obtained 

from the results of the last two solutions. Exit from the 'diff 

press' loop is only possible when the condition of the difference 

of du at r = R and cdu is satisfied. The counter '1' counts the 

number of the solutions; i.e. the number of times the program enters 

the diff press loop to obtain the correct solution of the equation 

due to the addition of a layer at R. '

In the third subpart the values of the variables at each 

step of r available from the final correct solution are transferred 

from T arrays to P arrays in order to retain them and T arrays are 

then free and available for the next solution. In the next part the 

values of the remaining variables are calculated and these are 

assigned to respective arrays. The final subpart causes the values 

of the required variables at every step of r for every step of R to 

be output in a tabulated form.' - ; } >

A.1.3 Features of the Program
(a) Use of Arrays

The cheese has been divided into a number of layers.

During the calculations and during the output of the results it is 

necessary to call the value of any desired variable at any step of
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r. To enable this the values of the variables are assigned to arrays 

one array for one set of the values of one variable. There are 

two types of arrays preceded by letters T and P. T arrays are 

intermediate arrases and are used during trial solutions, P arrays 

are final arrays to retain the values permanently after each final 

integration of the equation due to the addition of a layer at R.

T arrays assign the values of the variables from the final correct 

solution to P arrays. These values are then retained by P arrays 

and T arrays are then released to be used again for the next 

solution due to the addition of the next layer at R,

(b) Commulative Totals

For any commulative total of a variable which is the 

integration of its value at a given r as R increases from r = R, e.g,
3zj -g^.cLR (= SAZ), the following type of statement is used

Sq[pl := Sq{j?3 + q[p3 ;

here 'p* refers to a particular layer,(or step of r, i.e. r[pl ), 

Sq[p3 on the right hand side was the value of Sq at rjp] before 

the addition of the layer at R and q[p3 is the change in Q at rfpl 

due to the addition of the layer at R to be added to it to give the 

new value of Sq£p] after the addition of the said layer.

For any commulative total of a variable which is the
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integration of the variable with respect to r for a given R, e.g.
.»R
I Zo.dr (= SZR), the following type of statement is used.
J T

S Z R M  := SZR Ch - Q + ZRlhJ ;

here *h* refers to the layer added. SZR[h - 1] is the previous 

commulative total before the addition of the layer to which ZRfh] , 

the value of Zq of the layer added at R, is to be added,

(c) Calling a Particular Value

Any change in the value of any variable at a given r due 

to the addition of layer at R as also its integral with respect to 

R can be called directly by its respective array having a counter 

of the same value as layer (or the step of r) whose value is to be 

called. Variables r, u, du, d2u, Z, q, t, pr, Su, SAZ, Sq, St, Spr, 

Q and ZZ come in this group.

Any value of the integral of a variable with respect to r 

at any r for a given R is called by the following type of statement

SZRthl - SZR[p - 1J ;
R

here 'h* is the number of the outermost layer and SZR[h] = J Zo.dr,s
•p' is the number of the layer (or the step of r) at which the value 

jR .R = rfpl
of SZR, i.e, I Zo.dr, is to be called and SZRfp - 13 = J  ̂Zo.dr.

rip} s
Variables SZR, SSAZ and SZZ come in this group.
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(a) Change of Wind Angle and Space Between Adjacent Wraps of Tarn 

A change in the wind angle is accomplished by assigning 

a different value to 'angle' which changes the values of 'x' and 

z(=W) read in the program from .the data tape. The value of x and 

z read in the program from the data tape are those of a standard 

size of element for which / = 277/5. A value of 1 of 'angle' gives 

the standard size of the element. After the completion of the 

calculations Q and Spr (= P) are multiplied by angle in the write 

statements and are then for an element of standard size. i

The maximum value of 'space' of 1 gives a spacing of one 

diameter between the adjacent wraps of yarn. To increase this 

spacing the value of 'space' is reduced, e.g. a value of \  gives

spacing of two diameters between the adjacent wraps of yarn.,
! , _ :

!
A.1.4 Flow Diagram for Program 15 ;
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4

This condition ensures 
that the two successive 
values of u do not 
differ more than a 
small number specified

=. by c

Value of Su evaluated at r[k]. The values 
of u, du, d2u, r, ct, su etc. are assigned 
to T arrays with the help of the counter k.

. ’!

This is entered 
only once, sdu 
:= sdu + g(from 
data); the values 
of du at r=s and 
r=R from the soIn 
retained by C and 
D1 respectively.

This condition 
ensures that the 
calculation is 
done up to r = R. 
Exit is only 
■possible when the 
cheese is completed.

'1 i

Assigns the value 
of du at s to Cl. 
New value of sdu 
interpolated from 
the results of the 
two trial solu­
tions. The values 
of du at r=s and 
r=R are assigned 
to C and D1 and 
are retained for 
the next inter­
polation

This condition 
ensures the correct 
solution in which 
du at r =s R differs 
from cdu by less 
than_the small ! 
number specified 
by d.
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A-IS
^ E S T A B L I S H  EBTSJ15ÜÜAPU+T/15? - ; ■,. V ni,..- m : , :: U n  sun
COMP. OF CHEESE. t w ZERO. , . ; v,n.Uo es .U ., v:, tb? v,rr: valu- o
0/PL-> i 2V : \ ; = ,
begin "■: iu a; - 1  \ > ry:j ; -a;
comment This program calculates the compression ,(U); of . „

the package (precision wound) : at any radius r as the 
cheese isVbuilt up layer b y  layer- It ' israssumed that 
there is no slippage, between the layers and between 
cheese and core.,The differential equation is integra 
ted b y  modified method:of Euler; 

library AO, r - H u  uvu }xb •'{ rsns}
real E, T, D, EY, sr,‘ r,.rs,' (ir/MR , 1 :R, RO, x, a, 
eorrsetib,-m, K,cKTi :K2,;K3, K4, K5, K6, cdu, sdu, du, 

d2u, u, au, ;Su,iasu, cyld,s;SZ,* z/ Z, g, C,
Cl, D1, sangle, (space;a '

integer F I , F2,;"F3, F 4 , .F5, Pô, F7,;F3, k, p, ct, h, l; 
real array Tr[l : 120], (Pr[ \ : 120] ; s.î 1 . f );

Tu[ 1 :120], ipu [ 1 :120}, 1 ; : ) : ; ;
Tdu[1: 120] , (Pdut1: 120],2 ; 

üusTd2ü[l :120]^ -Pd2u[ l :120]^v<)
TSu[ 1 :120],. psu[ 1:120],:. ; ;

I f  Tct[l:120], Pct[l :120],: couiu c l l u n  e l s «
PZ[1 :120] v 1 rSZR[0:]20], ’r i l c h r ;
ZR[1s120]Vi:QR[1: 1 2 0 ] , ut[k]

1 f pr [ 1 ; 120 ], : q [ 1 :1 2 0  ], t [ 1 :1 2 0  ], s r c 1 
SAZ[ 1 î 120] ,* î SSAZ[0j 120] ,

F3 Sq[1:120], St[1:120],
. F2 :Spr[l :120]j-,i, 

procedureitrapezlunT (tu,]tdu, td2u);
value ::tu, It du, td2u; s : F l  i s  ' 
real ctu,ttdu,»td2u;i> 1 " ].UI
comment This procedure is 'used to solve the cheese from 
F?;=f sr. t h e rcore radius s to:the outer radius R- It
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23 Xr- -a ( >’ V ’ 323 )■;. [ ; -
also approximates the value of U as the sum of

i;: -x xxx the - previous value I of U and the present value of u, 
begin real  ̂ua;: dua, d2ua; aa R  x j ): r> 23 ;< *

rr: vxx;TSu[k] :-Su; v •; -Tutk] s-u; : - Tr[k] :»r; 
x. • - xTdu[k] :=du; Td2u[k] :=»d2u; ?ct[k]:=ctj 

layer: c;tu:«u; tdu:-du;* td2u:-d2u; :
ap 1 ; ret :®1; ik:=k+T^ rr;-»r+drj * m:»rxr+b; 
clc: (2 u:» tu+tduxdr;
;;; ;^,;A.n,Su:®PSu[k] x ■
•; ? ' €  2d u : =tdu+td2uxdr;; : 
d 2 u :-K1xuxrxrx(1+(u+Su)Xb/(r x m )
K 1 :* x Y /(+TXb/.(EYxrxr ))/(mt.K 5 );;,x) j 1:3 :- ’rx r ( : v , ) i  

correction:^ x d : 0t ; **ct +2 ; > ); ' 1:3 ; :2 n 3 .;;Cx :x ;x : ' 3j ;
I:ji:= :x2 xdua:-tdu+(td2u+d2u ) x d r /2 ; 

writ*. tdxt (7 2 , {| ua~:«tu+(tdu+dua)Xdr/2; - { i3 :- }2 2 i c ] 1 ; * 
d2ua:-K1xuaxrxrx( 1+(ua+Su)Xb''(rxm)

+TXb/(EYxrxr) ) /(mT 1 .5 ); : 
dur- tdu+(td2u+d2ua)xdr/2 ; 
u : -tu+( tdu+du )xdr ̂2 ;

d2u : =*K 1 xuxrxrx ( 1 + ( u+Su ) x b /( rxm ) 
textiT'J, I ; +TXb/(EYxrxr) ) /(mt1 • 5 ) Î 3 , : 26 ^  ] ! ) ♦ ■

if abs(u-ua) ;> c .then-goto correction else
TSu[k] :-PSu[k]+u; Tu[k]:-u; Tr[k] :«rj 
Tdu[k] :-du;, =;Td2u[k] :-d2u; Tct[k] :-ct;

if r < (R-(dRfdr/2.) ) (t h e n ; goto »layer else
end Ri-.a-RVRjend of .'procedure; . :-2R(C'j ;-C;

FI : »format (_[2 sdvddJ_); ) r 2 +2 ) to 3 ); . 1 ] 1 ] |
F2 :«format (J[2s-d.'ddddddddd2) ; b )Td, 5 ) ;
F3 : »format (_[2sndj_ ) ; ? 2 a [ H  ) ;
F4 :»f ormat (J_2 s7nddd. ddddddc_l) ; ; ;
F 5 5 -format ( J[2s-ndd .• ddddddj^ ) ; f ( ( ( 1 ~ ; : ) 12+3 ) : 0 3 } x - > l } :
F6 ;=*f ormat (_[2s-nddd. dddddd2) ;
F7:-format (X2s”nddd^*dddddJ_); lx ) *



' W *

F 8 : »format (J2s-ndddd. dddddcX) 0);
open(2 0 ); open(7u )j
E:=read(20); • ... T:=read(20)» . EY;»read(20); 

for. R ;~ (D:»read(20);c;• sr.:_»read(20); s:»read(20);
dr :=read(20) • RQ:»read(20); z:»read(20); 
d R :»read(20); s d u :»read(20); . x :»read(20); 
c:=read(20); - d:=read(20);;’) r g:»read(20); 
angle:=read(20);u spacei»read(20); ;) 11 -" } t 
close(20); ' [ 1  ] ddfhi j
x :»x/angle;d -M z :»z Wanglejihj ■ j; f 1 1 h ) : ;  ' pr | h] :»0 * 
a:»x/6 .28 3 18) b:=axa;

dirr jV-.Ki±axsXspace/(Dx(sxs+b)t0;5 ) ; r;:^rxrfb;
K 1:-EY/(2xKxExE); K2:»T/(2xKxRxE);‘ :K 3 1»TxKxdRxz '(rxa);

: »KXdrXzxEY/(D x a ); . „ 1 ■ K5: »2XKxKxzXzXE/bm, 

if 1»1 k 6 :»2xKxKxdrxzxE/a;
write text(7.9,JJ.7slaJ[l5s2bXl3s2KXl2s2KlXl2slK2XcjJ);

write(70;p6,a); 
write(7°jF6,b); 

it >write(70,F6,K);
write (7°#F6, K1.);
write (70^F4, K2 );:<( $ ¿ix:u) -'(du-H ): 

write text (7^*XL7si K3l 1 3 9sXK5 /1. 000X 7 si K6 / 1 0OoXcXl) $
write(70,F6,K3))

£ 1 4 ; write(70,F7,K4);:
write(70;F6;(K5/lOOO)5;k
write(70;F4;(K6^1000)); 1 Fu[p] :v:*u[pj • 

Rj-s+dR; SSAZ[0] ;'r [ p ’sZR [ 0 ] -»6; -Tc'uip; j '
ZR[ 1 ] :=K3xa 7( ((R-dRv2 )T2+b )T0 J5 ); 1 'c ■ SZR[ 1 ] :»ZR[ t ]; 
QR[l]:»K3x(R-dR/2 )/(((R-dR/2 )T2 +-b)T0.5 );
Ii1^’?i write(7^,F4,ZR[i]); '’- ’* 
r.^::-d;write(7O,F4,0R[1]xahgle); 

r w pip p r [l]:»-KxzxzXdRxTx(R-dR/2)/((((R-dR/2)t2+b)T0 5)xrXb); 
Spr[ 1 ] :=pr[ 1 ] ; u k ] )

write(70*F^iPr[ 1 ]xangle);



cdui=-K2xdRx(R-dR/2)/((((R-dR/2)T2+b)T O . 5 )); 
write(70,p4,cdu);

L L  v  < 1 h:=>1; SAZ[h] iaO ; 1 Sqth] :*Oj St[h]:-0; 
for R:=*(R+dR) s t e p ; dR until RD do
begin K:-h+l; 1 ■ 1:2 11 .1 V; i-ll •

ZR[h] :=»K3xa/( ((R-dR/2 )T2+b )TO. 5 ) •' p •> ] 2 -m i p H  2;
QR[h]s-K3x(R-dR^2)y(((R-dR^2 )T2+b)T0.5 ); 
c d u : =-K2xdRx( R-dR/2)/(.((R-dR /2)T2 + b ) TO .* 5 ); 
SZR[h]:«SZR[h-l]+ZR[h];

writ - UPSu[h]:*=0; ]SAZ[h]^=Oj HSq[h] :-0; 1: St[h]_:-0; Pprth] :=0
l!»0; : , :7 . Cr~;2  H " • ] );

diff press

if it 1=1 r Ai­

ks

( t h e n 5

= 1 ;:: r : = s r ; S u : = 0 * 
dut=sdu; ,1 :=1 -M ; ;d2u:==0; ct 
wri t, e (7 ̂ t rape z ium (u , d u , d2u );

m:=rxr+b;
I taOj

begin 'D 1 :=du;7:2Cj:=sdu;; jsdu:=»sdu+g; 
for ; : - goto diff p r e s s - 7/> 
e n d };. y.rtp] : -77'.<Piu[p]; 

if abs(cdu-du) > dj then ■ < .Prf 01 ) t 

begin Clj.-sduj, r ~ »Puf p ] };
s d u :®sdu+(sdu-C)x(cdu-du)/(du-P 1 ); 
D 1 : *®. du ; , ' 2;, C : =C 1 j ]);

end;
goto diff“press; p ] ):

for p : « l i  step; until k do 
begin 0PSu[p3:=■* T£u[p]; Pu[p]:«Tu[p]; 
 ̂ (7vPr[p]i-Tr[p]; Pdu[p]:=Tdu[p]; 

vri 1 '(7 7 Pd2u[p]:-Td2u[p]j Pet[p]:«Tct[p ] 5
.-'r:7; en d ;

i rit 0 t: Pu[k+1 ] 5»Pd2u[k+13 :«PSu[k+1 ] :=0; r pp. ]-•-.>,[ n  _ 1 
r:»sr-dr/2;r * -t 5 jSZ:=0;: ] k:*0$ n  ;

new sig z: r:»r+dr;::ti k:*k+l;? 1 ; m:»rxr+b; 
au:=(Pu[k+1 ]+Pu[k] )/2;. 2 .7  ;



asu:=*(PSu[k+1 ]+PSu[k] )/2|
Z s =K4xauxrXax( T-T/EY-rx(au+asu)/m) /mT 1.5;
SZ:=SZ+Zjf-; PZ[k]:«Z;;

If r < (H-dr) t h e n -goto new,slg,z;j, 
r:=*sr-dr/2;
for p:» 1 step 1 until k do
begin r:»r+drj m:*rxr+b; j ;au:=»(Pu[p+1]+Pu[p]) ̂2; 

t [ p]: =EYxauxr/mj r:} } e 
q[p] :=K6x(Pd2iu[p+l3+Pd2u[p] )/2;

end ; ~t [p'i );
write text(7°*[[6s3ZR[_12s]QR[12s]cdu[12s]SZ[c]])j

. write(7°*P6,ZR[hl ) . $ ; ;  7- 1 i )); 
write(70,F6,QR[h]xangle)Ji>- ;})'; 
write(70,F6,cdu); [hj-r.znfp-i i WP'pP'fbU- 
write(7°iF4,SZ); , p-1 } )')j;

write text(70j[[3s]r[10sju[12s]du[12s]d2u[12s]Su[6sjct[7sjZ 
te;;t (TPt f. f [ 12s]qt 12s]t [ 11s]pr[c]]); 
for p;« 1 step’1 until k do
begin pr[p] :*=K5xPdu[p];!) |

wrlte(70*F1,Pr[p])i --bi ) )■.;
write(7^jF2,Pu[jj] );r J pOxan;7 ; 5 ’

- . iind;- write(70,F2,Pdu[p] );
Lipi* writ'e(70,F2,Pd2u[p])5

oi-. n ? - w r i t e(7^,F2,PSu[p]); 
il’lpr write(7°jF3,Pct[p]) j
P! write(7^,F5,PZ[p])|

write(70,F5,q[p]xangle);
write(70,F5,t[p]),*
write(70,F4,pr[p]xangle);

end;
write text (7°* [ [3s]r[8s]SAZ[ 12s]Sq[ 12s2stjj2sj^prjj Is^

SZRi 11 s|S RAZ[ 12 sJSZZTcJJ); 
for p: =» 1 step 1 until k do 
begin SAZ[p] :=*SAZ[p] +PZ[p] j

SSAZ[p]:=SSAZ[p-l]+SAZ[p];
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Sq[p]:=Sq[p]+q[p];
St[p]:=St[p]+t[p]; 
Spr[p]:=Spr[p]+pr[p];

e n d ; .
jfor p:=* 1 step 1 until k  do 
begin write(7O,F1,Pr[p] );

write(7Ü *f 6*SA Z [p]);
write (70,F6,Sq[p]xangle); /:
write(7ü,F5,St[p]);
write(7ü,F7,Spr[p]xangle);
write(7^,F7,(SZR[h]-SZR[p-l]));

. write(7^,F7,(SSAZ[h]-SSAZ[p-l]));
write(7^ jF 8 , ((SZR[h]-SZR[p-1] )+(ScAZ[h]-

ssAZ[p-i ]))•)';
end; - : - *

write text( J O , [ [3sjrj[1 °sJZZj[12s]Q[c] 1 );
for p;=» Istep 1until k do 
begin write (70,F1,Pr[p]);

r write(7ü íF 6 í (ZR[p]+SAZ[p]));
: write(J O ,F4,(Q R [p]+Sq[p])xangle)

end;

end-*-
close(7ü );
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A.2. Computer Program 36 for Solving the Equation (4.8)

A.2.1 Introduction

A new program, namely 36, is written in KDF 9 Algol to 

solve the equation (4.8) ..which uses varying values of E and El 

depending on the pressure in the cheese and the tension in the yarn. 

This necessitates the use of many more symbols. These are given in 

the additional notation. This program is a development of the 

previous program and the structure of the program is basically the 

same as outlined in § A.1.2 on page A.4. This program also uses 

the features given in § 4.1.3 on page A.7. It incorporates a 

provision in it to run it with constant values of E and EY; i.e. 

in that case it reduces to the previous program.

. This program integrates the equation from the outer radius 

R to the core radius s using the Rungekutta method unlike the 

previous program which integrated the equation from s to R using 

Euler's modified method. The reason for these differences are 

given in Chapter 4» The results obtained from the two programs with 

the same data were the same (up to five significant figures). The 

starting value of u at r = R (in the previous case it was the value 
of du at r = s) is obtained by quadratic interpolation. In the 

event of quadratic equation having imaginery roots the value of u 

at r = R is obtained by linear interpolation. This replaces the 

linear interpolation of the previous program. The procedure called
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'trapezium' to solve the chee3e from r = R to r = s is also 

different. These differences can be observed in the flow diagram 

of this program. The output of the results in this program has 

been modified to obtain the results at specified intervals of r 

for specified intervals of R; in the previous program the output 

was obtained at every step of r for every step of R. The provision 

effects a considerable saving of computer time.

A.2.2 Additional Rotation

The symbols are given in the order in which they appear 

in the program and only those are included which are additional 

to this program and do not correspond to the theoretical notation.

CE - 
dE - 

RT - 

IEY - 

t -

K1, K2

IE - 

Su - 

d -

is the value of E at r = R. ,

= 3 e/ ‘dr.

is the residual tension in the yam, i.e. T.

is the value of El read in the program from the data tape.

_^R.dR.
, K3, K4, K5, K6 - are constants used in the calculations 

for solving the equations. The values of these are different 

from those of the previous program.
is the value of E read in the program from the data tape.

is the guessed or the interpolated value of u at R.

is a small number to specify the tolerance between the value

of u at s and zero
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y e,mm - are used in guessing the value of u at R.. Inside the 

procedure e = .ĝ .cLR.

f - is used in the procedure to control the output of the 
detailed calculations«

g,n - are to specify the interval of E for the output of results. 

u1, u2, u5 and su1, su2, su3 - are used to retain the values of u 

at s and u at R respectively from the trial solutions for 

interpolating the next value' of u at R.

L1, D1, G1, C1, L - are used in the interpolation of the next 

value of u at R.

ee - is a number used in the procedure to prevent the value of 

u becoming large and causing program failure, 

ccc - is a small number used in the procedure to prevent the value 

of E becoming small and causing program failure. 

c,cc- specify the interval of r for the output of results, 

nn - specifies the size of the arrays and is equal to the number 

of layers into which the cheese is divided for the solution.

SQR -
R

- j Qo.dr
Jr

SPR - Po. dr

Additional symbols declared in the procedure 'trapezium'.
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11, 12, 13, 14 - each, one is used to retain the value of (d2u x dr), 

i.e. du, at different stages during the calculations of the 

values for the next step of r,

e -

de -

tr - is used to retain the value of r during the calculations of 

the values for the next step of r.

aa,da* It is

de
"br — “hr

A.2.3 Additional Features of Program 36 

(a) Solution With Constant Values of E and EY

The values of E and El at the start of the solution, i.e. 

at r = R, are given by the following statements respectively,

PE[h] := PRfh] x prcon / KP + IE and

EY := tencon x RT j y + IEY ’

Now if 'prcon' and 'tencon' are made zero then this program reduces 

to Program 15 with constant values of E and EY equal to IE and IEY 

respectively read in the program from the data tape. If IE and IEY 

are made zero then the values of E and EY are entirely dependent on 

P and To Any other combination of the values of E or EY can also

be used
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00 Output of Results
For getting the output of results at specified intervals of. 

r the for statement which causes the output is modified as follows

for p :- 1, cc step c until k do.

Now by assigning appropriate values to cc and c the results can be 

output at specified intervals of r. For example, if cc = c = 5> 

dr = 0.1 cm and s = 1 cm then the output will appear only when 

r = 1.0 cm, 1.4 cm, 1.9 cm etc.
For getting the output of the results at specified intervals 

of R the following condition is inserted in the program before the 

output statements.

if h/n = g then begin g := g + 1; output statements; end: 

where h is the number of the last layer'added, n is the size of the 

interval and g controls the entry to the output statements. For 

example if n = 5 and. g = 1 then the output statements would be 

entered for the first time when h = 5 giving h/n equal to g, i.e. 1 

As it enters the output statements g becomes 2 and the next time 

the entry to the I output statements would only be possible when h =

10. How if the step lengtli is 0.1 cm then output will appear only 

when R. = 1.5 cm, 2.0 cm, 2.5 cm, etc.
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A.2.4 Flow Diagram. for Program 56
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\

2

2

x

evaluated. PSu£b3, SAZ Qil, PSq[h3, PSt[,h3, 
Sprfhl are declared as zero to ensure that 
these exist in the computer store as such 
before the start of the calculation.
Counter 1 has a value 1. This counter 
counts the no. of trial solutions to 
obtain the correct solution.

' '

diff press loops Thi 3 loop is entered each 
of u at R. u at R 
3r the first 2 entries 
ed one from the 
as two or three solu- 
ent entries. The 
e variables including 
procedure, namely, u, 
ited. Here R includes 
11 and the solution 
- dR)

time with a new value 
has a guessed value f< 
and has an interpolat 
results of the previoi 
tions for the subsequ 
starting values of th 
the parameters of the 
du and d2u, are evalut 
the added layer as we 
required is up to (R

r

'procedure1 trapezium is called with actual 
ions of the procedure 
es of the variables 
priate members of T

parameters. Declarat 
and the starting valu 
assigned to the appro 
arrays.
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3

1

Write statements for r, u, d2u, E, e, EY 
and dE. By assigning some value to f from 
the data tape this output appears only 
when h, i.e. the number of layers added_,> f. 
This is useful in the event of program 
failure as the output can be obtained after 
any value of *h* (for which the program 
does not fail) for detailed scrutiny to spot 
the reason for failure. However calling 
this output is very wasteful of time and 
paper.

layer loop: Each time this loop is entered 
by onestepof r. 
The values of r, u, 
ered are retained 
e Runge-Kutta 
trapolation of thè

the calculation advances 
This is done in stages, 
du, d2u for the layer ent 
by tr, tu, tdu, td2u. Th 
method is used for the ex 
values at the next step.

■r

First stage. Values of u, du extrapolated 
at the mid radius of next layer and from 
these values t, RT, q, de, dE, e, E, are 
evaluated. During these calculations app­
ropriate values of PEI, PdE, PE from the 
last solution are called by X. In this 
case these values are the average of the 
two end values of the layer as this is at 
the mid radius.

Comment, In the 
trial soln. E may 
become very small 
and cause program 
failure. There­
fore E is not 
allowed to have a 
lower value than 
ccc.





Second stage. Correction of value of du 
through new value of (d2uxdr) equal to 12. 
Third stage. New value of (d2uxdr) = 13 
through 12. On the basis of 13 the value 
of the variables at the end radius of the 
layer are evaluated. Counter k moves down 
by one. _̂_____ _

The program 
goes back to 
diff press loop 
with a new re­
duced value of 
su. Counter 1 
does not change 
The value of su 
is obtained 
according to 
the value of 1.

Comment. The op­
eration of this 
condition along 
with its inner 
conditions depend­
ing on the value 
of 1 has been 
explained before.
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3

A new.reduced 
value is 
assigned to• 
su and
program goe3 
to diff press 
loop. 1 doe3 
not change. '

Comment. This 
has been 
explained 
before

2

3

I

2

I

Values of d2u and EY are evaluated and are 
to be used when the calculation proceeds 
to next layer. : Values of the variables 
calculated above are assigned to appropri­
ate members of the arrays. This completes 
one layer,_____■______ ____________

11

Comment. This 
condition en­
sures that the 
solution con­
tinues till r 
= s. ■

Values of su 
and u assig­
ned to su1 and 
u1 and are re­
tained for the 
first inter­
polation. 1 
increases by 1
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2

A new 
value of 
su at (R 
-dr). 
Program 
goes to 
diff 
press 
loop

A new value of 
su at (R-dR). 
Program goes 
to diff press 
loop. See 
comment on 
other side.

Comment. Up to a 
certain no. of 
layers given by 
mm, the second 
guess of the value 
of su is obtained 
by 1st route.
After that the 
second guess of 
the value of su 
is obtained by 
another route.
This is done to 
obtain a' better 
approximation of 
the value of su 
to minimise time.

2

Values of su: 
and u are ass­
igned to su2 ... 
and u2. The 
program goes 
to diff press 
loop with a 
new value of 
su interpola­
ted linearly 
from the ; 
results of theAprevious ?rsolu­
tions. 
up by 1,

1 goes

Comment. This 
is the third 
solution and 
the values of u 
at r=R and at 
r=s are retained 
for the 
interpolation.

Comment. This 
condition en­
sures the cor­
rect solution. 
Exit is only 
possible when 
u at s is less 
than d, a small 
number.

C
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'
Values of u and su are assigned to u3 and 
su3. 1 moves up by one. The values of 
Li, D1, G1, C1, are evaluated. These are 
used in the quadratic interpolation of 
the new value of su from the results of 
the previous three trial solution.

The values 
of u and su3 
are assigned 
to u3 and 
su3. The 
next value 
of su is 
interpolated 
linearly see 
comment. 
Program goes 
to diff 
press loop.

Comment. This 
tests the roots 
of the quad- ■ 
ratio equation 
formed for 
interpolation.
If imaginary 
the program 
would fail. In 
that case the 
interpolation - 
is linear other­
wise quadratic.
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j
2

.

i

1

Ho improvement 
is indicated 
in the output 
with values

Comment 
test is 
applied to 
check the

This

in the value 
 ̂ . of su by d.

The values of su2, u2 are assigned to su1 
and u1 and those of su3 and u3 are assigned 
to su2 and u2. These last two sets of 
values are retained to interpolate the ' 
next value of su. The program goes to diff 
press loop.

1

Loop under for statement. The loop causes
the values of the variables from the 
correct solution to be transferred from T 
arrays to P arrays. P arrays retain these 
values and T arrays are free to be used
again.

k \■ "■ . \

Por loop. This loop i 
ment calculates the vs 
pr, SAZ, SSÀZ and Spr 
from r=s to r=R.

rnder the for state- 
ilues of RT, Z, SZ, 
at each step of r

4



Comment. ' This

ot

y

Loop under for statement. This loop causes 
the values of r, SAZ, Sq, St, Spr, SZR, SSAZ, 
SZZ to appear in the output in the manner 
described above._____ ____________________ _

d

5 1 ■
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Loon -under for statement. This loop causes
the values of r, ZZ, Q, E, dE and EY to 
appear in the output in the manner 
described above.

4-------------------- c p:k L
Comment! This 
condition 
ensures that 
the cheese is 
built up to 
the given. 
outer radius 
RO. :
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A 2.5 Computer Tiogro-yf],.^
^ E S T A B L I S H  EBTS J3600APU+T/l 5 ;  , : ' ' ■ , ■ - ^ * ' 

COMP. OP CHEESE. W ZERO. E AND.EY VARING; • * 
O/PL-» .: , yc-j I ’ ’, . ' . ,, '- •[
begin "r ? r' ■ • ■ i ?
commentt This program calculates-the compression (Sigma u) of 

the package (precision wound) at any radius r as the 
cheese*Is built.up layer b y  layer. It Is assumed that 
there Is no slippage-between the'layers and between 
cheese and core. The diff erential • equation ‘¿is- Integra 
ted by the" method of Runge-Kutta. A »varing < value ’'of

library
real

Integer

the Modulus of Compressioni'with pressure-’is “used. Also a 
varing value of the Elasticity of y a m  with residual ten­
sion is used; * -' l Tu! r } Trlk] :-rr
AO , AS f . »'• * • - U:. r.i j f - - - , J , ’
E, CE, dE,iT* :D,;EY, y,*RTi^tencdh,llEY,rt , I •sri^rVls, 
dr, dR, R , ' R O ; x ,  a, b, m, K, K1 , K2, K3, K4, K5, K 6,
KP, cdu,^du, IE, d2u, u,;su, Su, d, e, SZ, z, f, g, mm, 
ul , u 2 , u 3 » sul , . su2,'' su3 ,L1, D1 , G1, Cl, L, ee, 
angle, space, prcon,vccc;
F1, F 2 , F3, F4, F 5 , ' iF 6 , - : F 7 , F8, k, p, h, c, cc, 1, nn, n; 
open(2o); “ •v ‘*^)j
prcon:=read(2o); T:«read(2o); tencon:=read(2o); 
D:=read(2o); sr:=read(2o); s:«read(2o); 
dr :=read(2o); \RO:«^read(2o); z:«read(2o); 
dR:=read(2o); su:«read(2 0 ); x:«read(20)5 
cc:«read(2o);;c:=read(2o); d:=read(2o); 
e: «read (2o); g:=read(2o); f :«read(2o); 
a n g l e :«read(2o ); space:«read(2 0 ); nn:«read(2o); 
IE:«read(2o); IEY:«read(2o); y:«read(2o); 
n:«read(2o); - rmm:*read(2 0 ); ccc:=read(2o ); 
ee:«read(2 0 ) ; H  ; .)'*■- ; i ^  ;;;
close(2o ); *- r"' i ■ - i i r: ’■ i ' .! *
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begin
real array Tr, Pr,. Tu, - Pu,' Tdu, Pdu, Td2u, Pd2u, TSu, PSu, TE, 

TEY, PEY, PE, TdE, PdE,:Tq; Pq, TSq, PSq, Z, ZR, QR, 
PR, pr, Tt, Pt, SAZ, TSt; PSt; Spr[1:nn], S Z R , * SQR,‘ : - 
SPR, SSAZ[o :nn]; ' ' r i ; - > ] i ■ :

procedure trapezium (tu, tdu, td2u, press);
value tu, tdu, td2u;r-AU-Ao/'l o;-A\n) 

real tu, tdu, td2u; label -press;. :v < :
comment-This procedure is used to solve the cheese 
>. from core to the outer radius R. It also

t» : :*< calculates the values of Su,-E, dE, q:and 
Sq at every step of the Inner radius r; 

begin real (?LA  11,12,13» 14, de, le, tr, fq; ) : • : " v/K#>
Tt[k]:=t;. TSu[k]:=Su+u;. :Tu[k]:=*u; Tr[k]:=r; 
Tdu[k}:=du; •; -Td2u[k] :=d2u; A  TEY[k] :=EY; 
TE[k):=E; TdE[k]:=dE; '-TSq[k]:=PSq[k]+Tq[k];

/ TSt[k] :=PSt[k]+t; ; e:=E; 
if h > f then begin 
write(7o,F1,r);
write(70,F6,u); - -< d u / (*'* pre:n>Au); 
write(7o,F7,d2u);

^  - ! b /write(7o,F7,E);
i ■ write(70,F7>e); .) ‘il I/Aa ,
3 j write(70,F8,EY); H  

write(7o,F4,dE); 
end;

layer: tr:*=r; 5. tu:=u; tdu:=du; '.td2u:=d2u; ■ ; ; ; /
11 :=td2uxdr; V? - ) a ;

3 " . : ~ ( r:=tr+dr/2;
i ' ■ m:*rxr+b;;.u:«tu+tduxdr/2+drxll/8; ^  - ^ j a

; ■ du:=tdu+ll/2; a  ,/ a
. t:=(PEY[k]+PEY[k-1])xuxr/(2xm); 
RT:=T+(PSt[k]+PSt[k-1 ])/2+t; 

q:*=K4xrx(t+RTxuXb/(rxm))/mT0.5; ’ - '



de : =-K6xq; '• ■ - /> ■ ', 5■ " 'r *■r : - :
: dE : = (PdE[k]+PdE[k-1])/2+de;

e:=- (PE[k]+PE[k-1 ] )xprconxdu/(2x(l+prconXdu) ); 
Eï-(PE[k]+PE[k-1])/2+e; 

lf abs(E) < ccc then - 1 i ; r : ' .•
begin If 1=1 then su i=su-su/(10 X h x h ) else lf 1=2 then 
su:=(su+su1)/2 else su:=(su+su2)/2;
goto press - ' --v/ ‘ ■ 1-1 ■r'- ¿Ilril
end; ' : ' -*•- • , ''; 1 •i:~ )/■- >
12 :=(K 1x r x (t+RTxuxb/(r x m ))/(mîO.5 x E )-dExdu/E)x d r ;
¿\ du:=tdu+12/2;
13 : = (K 1 xrx ( t+RTxuxb/ ( rxm ) ) / ( mro. 5XE ) - dExdu/E )xdr ;

k:=k-1 ; r :=tr+dr ; - m  : =rxr+b ; ' ; ’ '> ‘ 
u:=tu+drxtdu+13xdr/2; " du :=tdü+13; * r t P 1 : - ' * 
tî=PEY[k]xuXr/m; Î'RT:=T+PSt[k]+t; ; Td"[k3:---

q:=K4xrx(t+RTxuxb/(rxm))/mT0.3;; J ?
de:*-K6xq;• ».*•-J ; -> ’ '• ï'-q;
dE:=PdE[k]+de;:
e:=-PE[k] x  prcon x du/(l+prconxdu)j 
E:=PE[k]+e; ;

lf abs (E) < ccc then h
begin lf ; 1=1 then • su : =3U-su/( 1 OXhxh ) else lf 1=2 then 
su:=(su+su1)/2 el3e.su:=(su+su2)/2;

. . t - .......  >goto press ^ v r-- »- • t F- ; j 
end; ■ ? t ■ • /
14 :=( K 1 xrx ( t+RTxuXb/ ( rxm ) ) / ( mîO. 5XE ) - dExdu/E ) Xdr ;

u :=tu+(tdu+(il+12+13)/ 6 )xd r ; 
lf abs(u) > ee then * H
begin lf/1«! then su:= s u - s u / ( 1 OXhxh) else lf 1=2 thaï 
su:=(su+su1 )/2 elsersu;°(su+su2)/2; 
goto press  ̂ J v;?
end; - . L-■ .1 ’

du s = tdu+ ( 11 +2x12+2x13+14 ) /6 ;
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end

X t : =PEY [ k ] xuxr/m; RT:=T+PSt[k]+t;
q : =K4xrx ( t+RTxuXb/ ( rxm) )/mtO. 5 j 

* . - de:=-K6xq;' ; • - - X x x  x
v ■ •dE:=PdE[k]+de; 'XX jj
; 7 : r r . e : *=- PE [ k ] xprconxdu/( 1 +prc onxdu ) ; 
x x  E:«PE[kj+e5?:.i.-^-i.);
i £  abs (E) < (cccXO.OOl) then
begin i £  1=1 then su:=su-su/(lOXhxh) else If 1=2 then 
su:=(su+su1)/2 else su:=(su+su2)/2;
goto press 
end: : i x x x x

- / i
w  / ? i\ : ■- ! ;

v o;
«■» /  ÍV-/T- 1 *•--/ V— ' i i

d2u : =K 1 xrx ( t+RTxuXb/ ( rxm) ) / ( mtO. 5xE j- dExdu/E ;
; ; ; .  ; i' RT : «=abs (RT ) ; EY : =tenconxRTty+IEY ;

Í X  ? f TSu[k] :=PSutk]+u;;. 1: -Tu[k] :=u; -1.1 - Tr[k] :“r;’
Tdu[k] :=du;’ Td2u[k] :=d2u; TE[k]:=E; TdE[k]:=dE; 
TSq[k]:=PSq[k]+q; TEY[k] :=EY;
TSt[k]:=PSt[k]+t; Tt[k]:=t; Tq[k]:=q;
If h  y  f - then' begin 
wrlte(7d,F1jr);)? 
wrlte(7o,F7>u)$);

X: ■ U7::- Xkrite(70,F7,du); 1 ̂ x x x  —  Lr'IIh
write(7o,F7,d2u); .
write(70,F7,q)j 'C -Xf
wrlte(7o,F7*e);!• 
wrlte(70,F7>de) j -X 

i -  : > •wrlte(70,F7,E); - ' V iol:--;
' •• i: ‘write(70,F 5 i d E * J x ' * xixii ’ j;

’ x wrlte(70,F5,EY);
-X 1 ] x- end; * '' ■ " x v ■' • • • ( x  .x x « x. *x ': x  ;•> ;x!xx> ;; 

1 £  r > : (s-dr/2) then goto layer else 
'"•v ’} : end' of procedure; x  '•‘■■-1 i I :?x,?x ■-

FI :«format ([d. ddj_); > ■ {{{■ ' ■  • ' ) ~ ’: • :;;- X -  x  ]}’
: F2 :«format([^s-nd.ddddddddjj; xx x. 1 r l,v r xx.Li
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F3 ̂ f ormatit^snd^);7 ‘
F4: «format (Ĵ 2 s-ndd.dddddddcJ_)j'
F 5 :“format([2s-nddddd.ddddcJJj 
F 6 : «format ([2s-ndd.dddddddJ_);
F 7 : “format ( [ 2  s-nddd. ddddddj_);

F8 :«f ormat ([2s-ridddd* dddddJJ $ ; ) *
open(7o); ' —  ■; i'v-ivLM P3tLi.] v ^ i h l

x:“x]/anglej • z :«z/anglej<•’*'*•'*]*

ri-i.
■ *- r Vi ' * -»7' *i. i - 4 - *

iXC. ': a:=x/6.28318; • ■ l£„b:“aXaj ,i£:
Kt«axsXspace/(Dx(sXs+b)t0.5); KP:=2xKxKxzXz/b;
K1 :=l/(2xKxD);^K2i=T/(2xKkD)j); K3.*“TxKxdRXz/(DXa);
K 4 :«-KxdrXz/(D x a ); >lK5s“2xKxKxzXz/b j 
K6 :=-prconXz/(KPxdrxa)| v V  * i i 1--' ; 1 -. ■ ‘ 5 ;>'•>'fc;;

write t ext(7 0 , i i ? s M . 1 3 sjbjj3 s]KJJ2 sjKP[_12 s]Kl [ } 2 sjK2[cJJ[)'5 ? 
viv; write(7o,F7,a); U 7--^ ; T ~ } i o .  L < ;}; 
r'i'Uh !:w r ite(70,F7,b)ji

write(70,F7,K)jib(h]:«-K 
- '! [ ̂  ] : write (70 ¿F7 ,KP) ¡5 -^ L b. j : ■

<iibf : ■:Write(70,F7,K1);
b-' ; write(70,F4;K2); 'c;

write t e x t (70*I L 7 s l K 3 h 3 s ] K 4 / 100[8sjK6[_11 sjK5/l00[_oJJ_); 
t:M.-..Vi write(70jF7,K3)p 
r itv ]** wr ite(7o,F8,KVloo ) j )A ^0.!;- 

. .; - i: -.' i write (70,F7,K6) $ 0  ; / (-~ . 5x C ; - 5 :>mi u ;
v  : wrlte(7o,F5,K5/lOO);".

R:“ S+dRj t if SSAZ[o] s*“0 5" SZR[o]:=0;
ILL ; ; ZR[1]:«K3xa/(((R-dR)t2+b)T0.5); SZR[ 1 ] :«ZR[ 1 ]$

QFI.1 ] :“K3x(R-dR)/(((R-dR)T2+b)t0.5)5 ™  < —
pr[1 ] :“-KXzXzXdRxTx(R-dR)/( (((R-dR)t2+b)t0.5)><DXb); 
Spr[l ] :«pr[1 ]*, • : ::• y(i.
PE[1 ] :«-prconxpr[1 ]/KP+IE$ PEY[1 ] :“ tenconxTty+IEYj 
cdu:=-K2xdRx(R-dR)/((((R-dR)T2+b)T0.5)xPE[1]); 

write text(70,[£8sJZR[12sJpF [12sJE[_12 sjEY[_l2 s J c d u H 2 sJjpr[ c ]±)$



write(70,F7,ZR[l]); 
write(7o,F7,QR[l Ixaiigle);/' :
write(7o,F7,PE[ 1 ]); 
write(70,F8,PEY[1 ]);

J ? -a write(7o,F2,cdu);
write(7o,F5,pr[ 1 jxangle); 

h:=1; SAZ[h]:=o;-PSq[h]:=0; PSt[h]:=0; Pq[h]:=o; 
PSu[h]:=o; -PdE[1]:«-K6xQP[h]; 0 ;  

for R:**(R+dR) step *■ dR until RCL'do'H : ( M 4 1 ;

begin h :*h+1 j ■’ - - ( t - •' ■ . .0 / ?
ZR[h]:=K3xa/(((R-dR)t2+b)t0.5);< 0 
QF[h]:=K3x(R-dR)/(((R-dR)T2+b)T0.5)r );
pr [h ]:=-KxzXzXdRxTx(R-dR)/((((R-dR)1 2 + b )T O . 5 )xDxb) 
CE:=-prconXpr[h]/KP+IE;"; vPEY[h];=tenconXTTy+IEY; 
c d u :=-K2xdRX(R-dR)/((((R-dR)?2+b)tO.5)xCE);
SZR[h]:=SZR[h-1]+ZR[h]jiif ^
Is— 15 PE[h]:=CE; PdE[h]:=-K6xQR[h];
PSu[h] :=o;.- SAZ[h] s*K)j_P3q[h] :=o; PSt[h]:=o; Spr[h] :=o;

diff press: du:=cdu;f-E:=CE;" ̂  (G1 s
k:=h; r:=R-dR; -iu:=su; ■ -Su:=o; m:=rxr+b; > ;r? ; ) ;  

dE :=-(QR[h]+PSq[h] )xK6; • 
t:=PEY[k]xuxr/m;;:RT:=T+PSt[k]+t;
Tq[k] :«K4>q?x(t+RTxuXb/(rXm) )/nrt;P• 5j . ccnflil not 
d 2 u := K 1 x r x (t+RTxuXb/(r x m ))/(m p d . 5 x E )-dExdu/E; 
RT:=abs(RT); EY:=tenconXRTry+IEY; 
trapezium(u,du,d2u,"diff press); 

if 1=1 then /;
begin 1:=1+1; : rul :=u;'! - su1 :=su; if h < mm 

then ~su: =su+eXsu/(h x h ) else begin 
e:=e+1; su:=su+exsu/(hxh); end; 

goto diff press
end;

i£  1=2 then . ■ „....'.I. ; ^  1 1/.1 : .V,.
begin 1:=1+1; u2:=u; su2:=su;

s**
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su:=su2+(su2-su1)x(o-u2)/(u2-u1); J i •' i 
goto diff press 1 ” ;-t 1

end; i';‘ ,ry:; : . . r - i  ¡. j;
if abs(u) > d then ^*^1- i; ' p, J :r~ -i-1

begin 1:=1+1; u3s= u; "*su3s*3 :su; - - - -i *
L1 :=(su3-su2)/(su2-su1);

; ;* D1 :=(su3-su1 )/(su2-su1 ); 
iV; -  ; ;P , G1 := L1xL1xul-D1XD1xu2+(L1+D1 )xu3; 

i - Cl :*=L1x (L1x u 1-D1x u 2+u 3) j h 5 ?;
• ’ if (G1x G1-4x D1XC1X u 3) < 0 then 

' : begin su:=su+(su3-su2)x(o-u3)/(u3-u2);
■ -t p 1 1 - . : - Lp sui :«su2; su2 :*=su3;
'••t... ' . ’ * u1 :'=*u2; u2:«= u3;

U  p ) *• - write (7o
"■p H?- I» ^ p y h : 1 goto diff press

; i ~" 1-'

, *  f-

end:

end;
if G1 > 0  then
L:«=-2XD1Xu3/(G1 + (G1xG1 -4XD1xC1xu3)tO.5) else 
;L :=-2XD1 Xu3/(G1- (G1XG1-4XD1x C1x u 3 )T0,5 
s u : =su3+Lx (su3- su2) 
i£ ab s ((su- su3) / su3) - < d then 
begin write text (70,[¿12sj^ condition not 

r it:: (;satlsf ied[cc ] ]);
- it '( write(70,F2,u);
U t (:write(70 ,F4, 1); 

end; Lv: ̂ ‘ 1 - i j >) '■" ■ -*J r p
su1 : *=su2; : - su2: *=su3 i .' J ’ 
u 1 : = u2; u2:» u3; 
goto diff press p;■ ■ ;

■r 11

■■ - \ *
k:«=h; p  "’-it ' * ; P t
for p:« 1 step 1 until k cto
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begin PSu[p]:=;TSu[p]j Pu[p]:=Tu[p];
3 Pr[p]:=Tr[p]; Pdu[p]:=Tdu[p]; 

Pd2u[p]:=Td2u[p]; PE[p]:=TE[p];
. PdE[p] :=TdE[p];; Pq[p] :=Tq[p]j 

PSq[p] :=TSq[p]; PEY[p] :=^TEY[p];
' y *.PSt[p] :=TSt[pJ; P t [ p ) :=Tt[pI; 1

end;: . U  r ■ * :: i c ’ : , ?
SZ :«p| •• r:=sr+dr; V: f.y

for p :=1 step 1 until k d £ # .TV., ])• 
begin r:=r-dr; m:=rxr+b; r’ /,RT:=T+PSt[p];

Z[p]:=K4xax(Pt[p]-HTxuxr/m)/mtOi5; • *
SZ :*=SZ+Z[p]$ v.IFH-j):
pr[p]:=K5xPE[p]xPdu[p];i i> ]  :r ¡a); 
saz[p ]:*=SAZ[p3+z[p];'%(c7; Lhj~!,,' i ’}): 
SSAZ[p]:«SSAZ[p-;i ]+SAZ[p]; v.iu' : : ; - ̂ ) } ) ;

Spr [ p ] :=Spr[p]+pr[p]; ,(?.• :I h > :',r<l r■-1 } } - t { ; : z ? Z l h } ~

end; r-i j}});
If h/n = g then
begin g:=g+1; , ZjJ r. j 3pj:-j ': M 'J;-
write text(70,[ [7sjZRM2sjQRjj2sjcduM2s l̂CEjiJsj_l|_6s]SZ[c ] ] ) ;  

; write(70,F7,ZR[h]);]}.; 
write(7o,F7,QR[h]xangle);; 
write(70,F2icdu);’ p,' ’-“i; J/ ; '/j
write(7o,f6,CE); .' 
write(7o,F3,l); I p j ’i
write(7o,F4,SZ); v i • ’ .

write text(70,[ [ 1 s_]r Jj0 s_]u [_12 sjdujj2 sJd2u[j2 s JSuJj 1 sJZ 
v  L 12 s l q M 3 s j t M  3 s]pr[c] ]);

‘..V- for p:=* 1, cc step c until k do 
begin ;write(7o,Fl,Pr[p]);

write(7o,F2,Pu[p]);
; - write(7o,F2,Pdu[p]);

write(70,F2,Pd2u[p]); 
write(7o,F2,PSu[p]);
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write (7o,F7,Z[p] ); 
write(70,F7,Pq[p]xangle); 
write(7o,F6,Pt[p]); 
write(70,F5#pr[p]xangle)j

end;
write text (70,[_[.1 s i r [ 8 s j S A Z h 2 s j S q h 2  s JSt[_12 s JSprJM1 sj_

SZR£11 s'JSSAZ [11 sJSZZ[cJJ[); ̂  '
• > for p:*= 1, cc step c until k do 

begin write(7o,F1,Pr[p]);
write(7o,F7,SAZ[p]); 
write(7o,F7jFSq[p]xangle); «

; - write(70jF6,PSt[p]); .
write(70>F8,Spr[p]xangle); 
write(70,F8,(SZR[h]-SZR[p-1]));

' - write(70,F8,(SSAZ[h]-SSAZ[p-1]));
, - write(70,F5,((SZR [h ] -SZR[p-1])+(SSAZ[h]-

ssAzip-1])));

write text(70,[i1 s M j l 0 s j Z Z M 2 sjQ£ 1 3 s M j 4 s2dE JM3 s i E Y U  JJ J l 

for p;*= 1, cc step c until k do 
begin write (7o,F1,Pr[p]);

7 ” w r ite(70,F7,(z r [p ]+s a z [p 1 )); - — T .*:%...
; write(70,F7,(QR[p]+PSq[p])xangle)j '

write(70,F7,FE[p]); " f
. write (70 ,F8,PdE[p ]);... , ,

write(70,F5,PEY[p]);:” t 7 :

end; ,
close(7o);

; ’ end-»
1



B.1

APPENDIX B 

TEST 1

Average winding tension for preparing the base for the gauge = 29 g; 

rad. of the base = 2 cm; app. resistance of the gauge, i.e. G.Res.

= 660 ohm.

During first winding.

Calibrating resistance = 470,000 ohm; movement on dial = 1.2 div.;

1 div. of dial = 0.0002128 x 660/12 = 0.117?« change in G. Res.

During unwinding. '

Lower limiting frequency = 80 cs/sec.; writing speed = 500; 

potentiometer db range = 10; paper speed =0.3 mm/sec.; 

calibrating resistance = 470,000 ohm; movement of pen = 4  div.;

1 div. of paper chart = 0.0002128 x 660/4 = 0.0345$ change in G.Res.

Table B.1

No ’• '
During winding During unwinding

Dia. of winding 
cheese tension 

cm_____g___
movement 
on dial 
div.

fa change 
in G. 
Res.

dia. of 
cheese 
cm

movement 
of pen. 
div.

fa change 
in 0.
Res.

1 4 mm 0.00 9.35 0 1.08
2 4.05 32 3.1 0.36 9.1 0 1.08
3 4.1 35 7.1 0.83 8.8 0.6 1.06
4 4.2 30 7.8 0.91 8.45 0.6 1.06
5 4.35 29 8.5 1 8.15 0.6 1.06
6 4.85 27 : 9 .0 1.05 7.7 0.9 1.05
7 5.65 • 27 : 9 .1 1.06 7.4 0.9 1.05
8 6.45 26 9 .2 1.08 7 1.4 1.03
9 7.3 28 9 . 2 1.08 6.6 2 1.01
10 8.25 27 9 .2 1.08 6.2 2.3 1
11 9.35 27 9 . 2 1.08 5.7 2.6 0.99
12 5.2 3.2 0.97
13 4.6 8.1 0.8
14 4 18.2 0.45
Average winding tension = 28.8 g.
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TEST 2.A

Average winding tension for preparing the base for the gauge = 25 g; 

rad. of the base = 2 cm; app. resistance of the gauge, i.e. G.Res.

= 670 ohm.

During first winding.

Calibrating resistance = 470,000 ohm; movement on dial = 3.8 div.;

1 div. of dial = 0.0002128 x 670/3 . 8  = 0.0375# change in G. Res. 

During unwinding. .....

Lower limiting frequency = 80 cs/sec.; writing speed = 500; 

potentiometer db range = 10; paper speed = 0.3 mm/sec.;
Calibrating resistance = 470,000 ohm; movement of pen = 4*5 div.;

1 div. of paper chart = 0.0002128 x 670/4.5= 0.0313# change in G.Res.

Table B.2

No
During winding During unwinding

Dia. of winding 
cheese tension 

cm g
movement 
on dial 
div.

#  change 
in G. 
Res.

dia. of 
cheese 

cm

movement 
of pen. 
div.

#  change 
in G. 
Res.

1 4 ■ 0.0 10 0 0.67
2 4.05 23 7.1 0.27 9.7 0 0.67
3 4.15 21 11.8 0.44 9.15 0 0.67
4 4.5 21 15.1 0.57 8.5 1 0.64
5 5.5 23 17 0.64 7.6 1 0.64
6 6.5 21 17.1 0.64 6.9 1.3 0.63
7 7.85 21 17.2 0.65 6 1.3 0.63
8 8.8 20 17.3 0.65 5.4 1.6 0.62
9 9.35 20 17.5 0.66 5 2.2 0.6
10 10 20 17.8 0.67 .. 4.55 3.2 0.57
11 4.3 4.2 0.54
12 4.1 6.1 0.48
13 4.05 7.7 0.43
14 4 8.6 0.4

Average winding tension =21.1 g.
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Calibrating resistance = 470,000 ohm; movement on dial = 3.8 div.;

1 div. of dial = 0.0002128 x 670/3.8 = 0.0375$ change in G.Res. 

During unwinding.

Lower limiting frequency = 80 cs/sec; writing speed = 500; 

potentiometer db range = 10; paper speed = 0.3- mm/sec.; 

calibrating resistance = 470,000 ohm; movement of pen = 11.5 div.;

1 div. of paper chart = 0.0002128 x 670/11.5 = 0.0123$ change in G.Res.

During second winding.

Table B.3

During winding During unwinding

No. Dia. of winding 
cheese tension 

cm g

Movement 
on dial 
div.

$  change 
in G. 
Res.

Dia. of 
cheese 

cm

movement 
of pen. 
div.

$  change 
in G. 
Res.

1 4 0.0 10 0 0.42
2 4.05 - 3.8 0.13 9.8 0.8 0.41
3 4.15 24 7.1 0.27 9.2 0.8 0.41
4. 4.35 22 8.7 0.33 8.65 0.8 0.41
5 4.8 22 10 0.38 8 0.8 0.41
6 5.55 22 10.5 0.39 7.25 0.8 0.41
7 6.7 22 10.5 0.39 6.55 2.4 0.39
8 7.85 21 10.7 0.41 5.65 3.3 0.38
9 8.45 20 10.9 0.41 4.95 4.1 0.37
10 9.45 20 11.2 0.42 4.65 5.7 0.35
11 10 20 11.2 0.42 4.45 8.9 0.31
12 4.3 12.2 0.27
13 4.15 13.8 0.25
14 4.1 13.8 0.25

Average winding tension = 21.4 g.

The cheese was unwound up to a radius of 2.05 cm.
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During third winding. The winding started at a radius of 2.05 cm. 

Calibrating resistance = 470,000 ohm; movement on dial = 12.2 div.; 

1 div. of dial = 0.0002128 x 670/12.2 = 0.0117$ change in G. Res. 
During unwinding. '

Lower limiting frequency = 80 cs/sec.; writing speed = 500; 

potentiometer db range =10; paper speed = 0.3 mm/sec.; 

calibrating resistance = 470,000 ohm; movement of pen = 9 div.;

1 div. of paper chart = 0.0002128 x 670/9 = 0.0158$ change in G.Res.

Table B.4

No.

During winding During unwinding

Dia. of winding 
cheese tension 

cm g

Movement 
on dial 
div.

$  change 
in G. 
Res.

Dia. of 
cheese 

cm

movement 
of pen. 
div.

$  change 
in G, 
Res.

1 4.1 0.25 10 0 0.48
2 4.4 22 11 0.38 9.45 0.6 0.47
3 4.75 22 15.5 0.43 8.95 1.3 0.46
4 5.85 22 18 0.46 8.5 0.6 0.47
5 . 6.65 21 17.2 0.45 7.85 1.3 0.45
6 7.75 21 18.5 0.46 7.05 0.6 0.47
7 8.9 18 19.1 0.47 6.2 1.3 0.46
8 9.45 21 19.1 0.47 5.65 1.9 0.45
9 10 20 19.7 0.48 5.1 2.5 0.44
10 4.6 4.4 0.41
11 4.2 8.9 0.34
12 4.1 10.8 0.31
13 4 18.4 0.19

Average winding tension = 20.9 g
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TEST 2.B

Average winding tension for preparing the base for the gauge = 24.7 g.J 

rad. of the base = 2 cm; app. resistance of the gauge, i.e.G.Res. = 675 ohm« 

During first winding.

Calibrating resistance = 470,000 ohm; movement on dial = 3.8 div.;

1 div. of dial e 0.0002,128 x 675/3.8 = 0.0378^ change in G.Res.

During unwinding. .

Lower limiting frequency = 80 cs/sec.; writing speed = 500; 

potentiometer db range = 10; paper speed = 0.3 mm/sec.; 

calibrating resistance = 470,000 ohm; movement of pen = 4.5 div.;

1 div. of paper chart = 0.0002,128 x 675/4.5 = 0.032 $  change in G.Res.

Table B.5

During winding ; During unwinding

Ho. Dia. of winding 
cheese tension 

cm g

movement 
on dial 
div.

$  change 
in G. 
Res.

Dia. of 
cheese 

cm

movement 
of pen. 
div.

$  change 
in G. 
Res.

1 4 .0 . 0.0 10 0 0.65
2 4.05 24 7.4 0.28 9.6 0 0.65
3 4.25 23 13 0.49 9 0 0.65
4 4.6 19 15 0.57 8.2 0 * 0.65
5 5.15 22 16.5 0.62 7.05 0.5 0.64
6 5.6 25 16.5 0.62 6.4 0.5 0.64
7 6.7 24 16.8 0.64 5.45 0.8 0.62
8 7.65 20 16.8 0.64 4.9 2 0.59
9 8.7 20 16.8 0.64 4.55 3 0.55
10 9.45 20 17 0.64 4.4 4 0.52
11 10 20 17.2 0.65 4.15 5 0.49 .
12 4 7.5 0.41

Average winding tension = 21 .7 g.
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Calibrating resistance = 470,000 ohm; movement on dial = 3.5 div.;

1 div. of dial = 0.0002128 z 675/3.5 »0.0411 $$ change in G. Res. 
During unwinding.

Lower limiting frequency = 80 cs/sec«; writing speed. = 500; 

potentiometer db range = 10; paper speed = 0.3 mm/sec; 

calibrating resistance = 470,000 ohm; movement of pen = 1 2  div.;

1 div. of paper chart = 0,0002128 z 675/12 = 0.012 $  change in G. Res.

During second winding.

Table B.6

During winding During tinwinding

No. .Dia. of winding 
cheese tension 
cm g

movement 
on dial 
div.

fo change 
in G. 
Res.

Dia. of 
cheese 

cm

movement 
of pen. 
div.

fo change 
in G. 
Res.

1 4 •• 0 0.0 10 0 0.37
2 4.05 25 3 0.12 9.2 0 0.37
3 4.1 25 4.8 0.20 8.55 0 0.37
4 4.4 24 6.8 0.28 7.9 0.5 0.32
5 5.2 19 7.8 0.31 7.25 1.0 0.32
6 5.95 21 7.9 0 .3 2 6.55 ,1.2 0.31
7 7.2 20 7.9 0.32 5.9 1.2 0.31
8 8.1 20 7.9 0.32 5.25 1.5 0.31
9 8.85 19 7.9 0.32 4.6 2.5 0.3
10 9.3 20 7.9 0.32 4.35 3 0.29
11 10 20 8 0.33 4.2 . 6.5 0.25
12 4.15 12.5 0.18
13 4.05 13.5 0.13
14

Average winding tension = 21.3 g.

The cheese was unwound up to a diameter of 4.05 cm.



During third winding. The winding started at a diameter of 4.05 can. 

Calibrating resistance = 470,000 ohm; movement on dial =11.2 div«; 

1 div. of dial = 0.0002128 x 675/11.2 = 0.0128 $  change in G.Res. 

During \inwinding.

Lower limiting frequency = 80 cs/sec.; writing speed = 500; 

potentiometer db range =10; paper speed = 0.3 mm/sec.; 

calibrating resistance = 470,000 ohm; movement of pen =11 div.;

1 div. of paper chart = 0.0002128 x 675/11 = 0.013$ change in G.Res.

Table B.7

No.
During winding During unwinding

Dia. of winding 
cheese tension 
cm - g '

movement 
on dial 
- div.

$ change 
in G 
Res. -

Dia. of 
cheese 
. cm

movement 
of pen. 

-- div.

$  change 
in G. 
Res.

1 4.05 - 0 0.13 10 0 0.34
2 4.2 22 5 0.19 9.55 0 0.34
3 4.45 22 11 0.27 ' 9.05 0.5 0.33
4 ■ 5.0 24 13.4 0.3 8.25 0.5 0.33
5 5.8 22 15.1 0.32 7.5 0.5 0.33
6 7.35 22 15.8 0.33 6.85 1.5 0.32
7 8.85 20 16.1 0.34 6.1 1.5 0.32
8 9.35 19 16 0.34 5.45 2 0.31
9 10 20 16.2 0.34 5 3 0.3
10 4.6 5.5 0.27
11 4.2 10.5 0.2
12 4 19.5 0.08

Average winding tension =21.3 g.
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TEST 5

Average winding tension for preparing the base for the gauge = 25 g; 

rad. of the base = 2 cm; app. resistance of the gauge, i.e. G.Res = 630ohm 

During first winding.

Calibrating resistance =470,000 ohm; movement on dial = 3*5 div,;

1 div. of dial =0.0002128 x 630/3.5 = 0.0393 $> change in G. Res.

During unwinding.

Lower limiting frequency = 80 cs/sec.; writing speed =500; 

potentiometer db range = 10; paper speed = 0.3 mm/sec.j 

calibrating resistance = 470,000 ohm; movement of pen = 8 div.;

1 div. of paper chart = 0.0002128 x 630/8 = 0.0167 $  change in G.Res.

Table 1«8.

No.

During winding During unwinding

Dia. of winding 
cheese tension 

cm g

movement 
on dial 

div.

change 
in G. 
Res.

Dia. of 
cheese 

cm

movement 
of pen. 
div.

c/o change 
in G. 
Res.

1 4 0 0.0 10.2 0 0.35
2 4.05 24 3.3 0.13 9.85 0.5 0.34
3 4.1 25 6 0.23 9.5 0 0.35
4 4.4 24 8.2 0.31 8.8 0.5 0.34
5 5.7 25 9.2 0.35 7.85 1 0.33
6 6.8 24 9 0.35 7.15 1 0.33
7 7.3 25 9 0.35 6.65 1.5 0 . 3 2
8 8.3 21 9 0.35 6.1 1.5 0.32
9 9.1 25 9 0.35 5.35 2 0.32
10 10.2 22 9 0.35 4.8 2.5 0.31
11 4.35 5 0.27
12 4.1 10 0.18
13 4 14 0.12

Average winding tension = 23.9 g•
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Calibrating resistance = 470,000 ohm; movement on dial = 9.2 div.;

1 div. of dial =0.0002128 x 630/9.2 = 0.0145$ change in G. Res. 
During unwinding.

Lower limiting frequency = 80 cs/sec.; writing speed = 500; 

potentiometer db range = 10; paper speed = 0.3 mm/sec.; 

calibrating resistance = 470,000 ohm; movement of pen = 1 0  div.;

1 div. of paper chart = 0.0002128 x 630/10 = 0.0134 $  change in G.Res,

During second winding.

Table B.9

No.
. During winding During unwinding

Dia. of winding 
cheese tension 

cm g

movement 
on dial 
div.

$  change 
in G. 
Res.

Dia. of 
cheese 

cm

movement 
of pen. 
div.

$  change 
in G. 
Res.

1 4 ' « ■ 0 0.0 9.25 0 0.24
2 4.05 23 6.9 0.11 8.65 1 0.23
3 4.1 24 11 0.16 8.2 0 0.24
4 ' 4.7 23 14.4 0.21 7.35 - 0.5 0.25
5 5.1 22 15.2 0.22 6.6 - 0.5 0.25
6 6.4 20 16.5 0.24 6 - 0.5 0.25
7 7.15 19 16.5 0.24 5.2 „ 2 0.21
8 8.8 5 16.2 0.24 4.6 4 0.19
9 9.25 20 16.6 0.24 4.2 5.5 0.18
10 4.1 7 0.15
11 4 15 0.04

Average winding tension = 19.5 g.
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TEST 4 .A

Average winding tension for preparing the base for the gauge =15.8 g.; 

rad. of the base = 2  cm; app. resistance of the gauge, i.e. G.Res. =

341 ohm; tension in the gauge wire = 15 g.

During first winding.

Calibrating resistance = 88,000 ohm; movement on dial = 17.8 div.;

1 div. of dial = 341 x 100 / (88,000 x 17.8) = 0.0218 $  change in G.Res.

Table B.10 .. .. . ......

During winding During unwinding

Bo. Dia. of winding movement fo change dia. of movement $  change
cheese tension on dial in G. cheese of pen. in G.
. cm g div. Res. cm div. Res.

1 4 0.0 9.75 7.7 0.17
2 4.05 15 3.1 0.07 9.25 7.5 0.16
3 4.2 15 6.5 0.14 ... 8.8 . 7.5 0.16
4 4.55 16 7.3 0.17 8.2 7.5 0.16
5 4.85 15 7.7 . 0.17 7.5 7.2 0.16
6 5.35 15 7.7 0.17 6.8 7.5 0.16
7 6.05 15 7.7 0.17 5.9 7.2 0.16
8 6.75 15 7.7 0.17 5.25 6.9 0.15
9 7.5 15 7.7 0.17 4.75 6.7 0.15
10 8.5 14 7.7 0.17 4.2 5.5 0.12
11 9.1 15 7.7 0.17 4 3.2 0.07
12 9.75 15 7.7 0.17

Average winding tension = 15 g<
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Calibrating resistance = 88,000 ohm; movement on dial = 36.8 div.;

1 div. of dial =341 x 100/(88,000 x 36.8) = 0.0105 $ change in G. Res.

During second winding.

Table B.11

During winding . During unwinding

Eo. Dia. of winding 
cheese tension

___cm__ ___ g ___

movement 
on dial, 
div.

i  change 
in G. 
Res.

dia. of 
cheese 

cm

movement 
of pen. 
div.

i  change 
in G. 
Res.

1 4 0 0 9.9 9.3 0.1
2 4.05 16 5 0.05 8.95 9.5 0.1 •
3 4.25 16 7.5 0.08 8.1 9.5 0.1
4 4.05 17 8.7 0.09 7.1 9.4 0.1
5 5.6 15 9.3 0.1 6.2 .9.3 0.1
6 6.65 15 9.3 0.1 5.35 9.1 0.1
7 7.9 16 9.3 0.1 5 ■ 8.6 0.9
8 9.1 16 9.3 0.1 4.6 8.2 0.09
9 9.9 16 9.3 0.1 4.3 7.4 0.08
10 4 2.5 0.03

Average winding tension = 15»9 g.

TEST 4.B

Average winding tension for preparing the base for the gauge = 15*8 g.; 

rad. of the base = 2 cm; app. resistance of the gauge, i.e. G. Res. = 

341 ohm; tension in the gauge wire = 5 g.

During first winding.

Calibrating resistance = 88,000 ohm; movement on dial = 17.8 div.j 

1 div. of dial = 341 x 100/(88,000 x 17.8) = 0.0218 $  change in G. Res.
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Table B.12

During winding ' Daring unwinding

No. Dia. of winding movement $  change dia. of. movement change
cheese
cm

tension
g

on dial, 
div.

in G. 
Res.

cheese
cm

of pen 
div. -

in G. 
Res.

1 4 mm 0.0 9.75 .8.3 0.18
2 4.05 15 3.1 0.07 9.25 8 0.17
3 4.2 15 7 0.15 8.8 8.1 0.18
4 4.55 16 8.1 0.18 8.2 8 0.17
5 4.85 15 8.3 0.18 7.5 7.8 0.17
6 5.35 15 8.3 0.18 6.8 7.8 0.17
7 6.05 15 8.3 0.18 5.9 . 7.8 0.17
8 6.75 15 8.3 0.18 5.25 7.6 0.17
9 7.5 15 8.3 0.18 4.75 7.3 0.16
10 8.5 14 8.3 0.18 4.2. 6 0.13
11 9.1 15 8.3 0.18 4 1.8 0.04
12 9.75 15 8.3 - 0.18

Average winding tension = 15 g.

During second winding.

Calibrating resistance = 88,000 ohm; movement on dial = 37.2 div.;

1 div. of dial = 341 x 100/(88,000 x 37.2) »0.0104 $ change in G. Res.



B.13

Table B.13

During winding During unwinding
No. Dia. of winding movement io change dia. of movement */o change

cheese tension on dial in 0. cheese of pen. in 0.
cm g. div. Res. cm div. Res.

1 4 0 0.0 9.9 10.7 0.11
2 4.05 16 6 0.06 8.95 10.8 0.11
3 4.25 17 8.6 0.09 8.1 10.8 0.11
4 4.65 17 10 0.10 7.1 10.6 0.11
5 5.6 15 10.5 0.11 6.2 10.5 0.11
6 6.65 15 10.7 0.11 5.35 10.3 0.11
7 7.9 15 10.7 0.11 5 9.8 0.1
8 9.1 15 10.7 0.11 4.6 9.3 0.1
. 9 9.9 17 10.7 0.11 4.3 . 8.7 0.09
10 4 1.5 0.02

Average winding tension = 15*9 g.

TEST 5.A

Average winding tension for preparing the base for the gauge = 15#6 g.; 

rad. of the base = 2 cm; app. resistance of the gauge, i.e. G. Res. = 

386 ohm; tension in the gauge wire = 1 0  g.

During first winding.

Calibrating resistance = 22,000 ohm; movement on dial = 26 dlv.;

1 div. of dial = 386 x 100/(22,000 x 26) = 0.0675 $  change in 0. Res.
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Table B. 14

During winding During unwinding

No. Dia. of winding movement f> change dia. of movement fa change
cheese tension on dial. .in G. cheese of pen. in G.

cm g. div. Res. cm div. Res.
1 4 16 0 0.0 9.9 2 0.13
2 4.05 16 1.2 0.08 9.4 2 0.13
3 4.3 15 1.8 0.12 8.95 2 0.13
4 4.75 15 2 0.13 8.5 1.9 0.13
5 5.1 16 2.2 0.15 7.6 1.8 0.12 *
6 5.7 16 2.4 0.16 7 1.8 0.12
7 6.4 16 2.4 0.16 6.2 1.7 0.11
8 7.05 15 2.2 0.15 5.25 1.7 0.11
9 8.15 15 2.1 0.14 4.55 1.5 0.1
10 9.15 15 2 0.13 4.3 . ' ' 1.2 0.08
11 9.9 14 2 0.13 4 0.7 0.05

Average winding tension == 15.4 g. •, . *

During second winding.

Calibrating resistance = 44,000 ohm; movement on dial = 41 div.; .

1 div . of dial = 586 x 100/(44,000 x 41) - 0.0214 f> change in G. Res.

Table B.15

During winding During unwinding
No. Dia. of winding movement f> change dia. of movement fa change

cheese tension on dial. in G. cheese of pen in G.
cm g. div. Res. cm div. Res.

1 4 0 0.0 10.05 5 0.11
2 4.05 16 1 0.02 9.3 4.9 0.1
3 4.15 16 3 0.06 8.7 4.8 0.1
4 4.4 17 4 0.09 7.7 4.7 0.1
5 4.65 16 5 0.11 6.7 4.6 0.1
6 5.55 17 5 0.11 5.9 4.5 0.1
7 6.45 17 5 Oil 1 5.3 4.5 0.1
8 7.3 15 5 0.11 4.75 3.9 0.08
9 8.1 18 5 0.11 4.4 3.3 0.07
10 9.35 16 5 0.11 4 1.2 0.03
11 10.05 16 ..1 _____ 0.11

Average winding tension = 16.4 g.
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Average winding tension for preparing the base for the gauge = 15*6 go; 

rad. of the base = 2 cm; app. resistance of the gauge, i.e. G. Res. = 

385 ohm; tension in the gauge wire = 10 g.

During first winding.

Calibrating resistance = 22,000 ohm; movement on dial = 25*8 div.;

1 div. of dial = 385 x 100/(22,000x 25.8) o 0.0678 % change in G. Res.

Table B.16 ’

TEST 5.B

During winding______  ' During unwinding
No. Dia. of winding 

cheese tension 
cm g

movement 
on dial, 
div.

fo change 
in G. 
Res. ’

did. of 
cheese 

cm
movement 
of pen. 
div.

$  change 
in G. 
Res.

1 4 0 0.00 9.9 4 0.27
2 4.05 16 4.8 0.33 9.4 3.8 0.26
3 4.3 15 4.5 0.31 8.95 3.8 0.26
4 4.75 16 4.4 0.30 8.5 3.7 0.25
5 5*1 16 4.2 0.28 7.6 3.6 0.24
6 5.7 16 4.1 0.28 7 3.6 0.24
7 6.4 15 4 0.27 6.2 3.6 0.24
8 7.05 15 4 • 0.27 5.25 3.5 0.24
9 * 1 8.15 16 4 0.27 4.55 . 3.3 0.22
10 9.15 14 4 0.27 4.3 3 0.2
11 9.9 15 4 0.27 4 1.6 0.11

Average winding tension = 15*4 g*

During second winding.

Calibrating resistance = 44,000 ohm;, movement on dial = 41 div.;

1 div. of dial = 385 x 100/(44,000 x 41) = 0.0213 $  change in G. Res.
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Table B.17

During winding During unwinding
No. Dia. of winding movement i% change dia. of movement $  change

cheese tension on•dial. ,in G. cheese of pen. in G.
cm g. div. Res. cm div. Res.

1 4 mm 0 0.0 10.05 6.2 0.13
2 4.05 16 2.9 0.06 9.3 6.1 - 0.13
3 4.15 16 4.7 0.1 8.7 6 0.13
4 4.4 16 5 0.11 7.7 6 0.13
5 4.65 17 5.7 0.12 6.7 6 , 0.13
6 5.55 16 - 6 0.13 5.9 5.9 0.13
7 6.45 17 6.2 0.13 5.3 5.8 0.12
8 7.3 17 6.2 0.13 4.75 5.3 0.11
9 8.1 16 6.2 - 0.13 4.4 4.3 0.09
10 9.35 17 6.2 0.13 4 0 0.0
11 10.05 16 6.2 0.13

Average winding tension = 16.4 g.

TEST 6

Average winding tension for preparing the base for the gauge = 20.1 g.; 

rad. of the base = 2 cm; app. resistance of the gauge, i.e. G.Res. = 

740 ohm.

During first winding.

Calibrating resistance = 470,000 ohm; movement on dial = 3.9 div.;

1 div. of dial « 740 x 100/(470,000 x 3.9) ■ 0.0404 $  change in G. Res. 
During unwinding.

Lower limiting frequency = 80 cs/sec.; writing speed « 500; 

potentiometer db range = 10; paper speed = 0.3 mm/sec.;
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calibrating resistance = 470,000 ohm; movement of pen = 7 div.;

1 div. of paper chart = 740 x 100/(470,000 x 7) = 0.0225 change in G.Res.

Table B.18

No.

During winding During unwinding

Dia. of winding 
cheese tension 

cm g
movement 
on dial, 
div.

fo change 
in G. 
Res.

dia. of 
cheese 

cm

movement 
of pen 
div.

fo change 
in G. 
Res.

1 4 mm 0 0 10.4 0 0.91
2 4.2 25 - 7 - 0.28 9.75 1 0.89
3 5.15 25 - 4.1 - 0.17 9.05 3 0.84
4 6.15 25 0.7 0.03 8.5 4 0.82
5 7.15 30 4.7 0.19 7.85 7 0.75
6 8.05 28 11.2 0.45 7.1 10 0.68
7 8.95 25 14.3 0.59 6.3 11.5 0.65
8 9.75 24 19.4 0.78 6.05 14 0.59
9 10.4 22 22.4 0.91 5.5 16.5 0.54
10 5.1 19 0.48.
11 4.7 22 0.41
12 4.4 18.5 0.49
13 4.1 21.5 0.43
14 4 18 0.5

Average winding tension = 25*5 g.

TEST 7

Average winding tension for winding the cheese base = 24.5 g.; 

dia. of cheese base = 4 cm; app. resistance of the gauge = 790 ohm; 

calibrating resistance = 470 K.ohm; movement on dial = 1.3 div.;

1 div. of dial = 790 x 100/(470,000 x 1.3) - 0.129 $  change in G. Res. 

During winding.



Table B.19

No.
cheese
dia.
cm

winding
tension
g

movement 
on dial 
div.

fo change 
in G. 
Res.

1 4 0 0.0
2 4.05 26 - 0.9 - 0.12
3 4.15 26 - 1.2 - 0.15
4 4.35 25 - 0.9 - 0.12
5 4.55 27 0 0.0
6 4.75 25 0.7 0.09
7 5.1 25 1.7 0.22 ;
8 5.8 25 3.7 0.48
9 6.4 25 5.2 0.67
10 7 25 8 -. 1.03
11 7.75 24 11 1.42
12 8.2 22 13.8 1.78
13 8.7 23 16 2.06
14 9.5 gauge wire broken

Average winding tension = 24«8 g0

TEST 8n

Average winding tension for winding the cheese base = 23.7 g;

dia. of cheese base = 4 cm;

app. resistance of the gauge = 780 ohm;

calibrating resistance = 470 K.ohm; movement on dial =1.8 div.;
1 div. of dial = 780 x 100/(470,000 x 1.8) = 0.092 tfo change in G.Res 

During winding.
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Table B.20

No.
cheese
dia.
cm

winding
tension

g

movement 
on dial 
div.

change 
in G.
Res.

1 4 0 0.0
2 4.05 25 - 0.2 - 0.02
3 4.1 26 .... - 0.7 - 0.06
4 4.55 25 - 0.2 - 0.02
5 5.35 25 ... 2.2 0.2
6 6.1 25 3.7 0.34
7 6.8 25 8.8 0.81
8 7.7 24 14.9 1.37
9 8.4 gauge wire broken

Average winding tension = 25 g.

TEST 9

Dia. of cheese base = 4 cm; ",
• ' - * ■

average winding tension for preparing the cheese base = 24#1 g; 
axial gauge length = 3.779 iu.

Table B.21
durine: winding during unwinding

No
cheese
dia.
cm

winding
tension

g

change in 
g. length 
.001 in

g.length 
as $  of 
original

cheese
dia.
cm

change in 
g. length 
.001 in

g.length 
as *fo of 
original

1 4 0 100.00 10 166 104.38
2 4.05 26 - 5 99.87 9.65 166 104.38
3 4.2 25 - 14 99.63 9.35 165 104.36
4 4.45 25 - 8 99.79 8.7 163 104.3
5 5.25 25 11 100.29 8.3 161 104.25
6 5.85 24 34 100.9 7.9 159 104.2
7 6.65 25 70 101.85 7.5 158 104.17
8 7.5 25 97 102.56 7 157 104.15
9 8.35 24 124 103.27 6.2 149 103.93
10 9.3 24 145 103.83 5.9 139 103.67
11 10 23 166 104.38 5.2 132 103.48
12 4.75 127 103.35
13 4.4 109 102.88
14 4 107 102.82

Average winding tension = 24#6 g,
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TEST 10.i.

average winding tension for preparing the cheese base « 8 g. 

axial gauge length = 3*785 in.

Dia. of cheese base = 4 cm;

Table B*22

during winding during unwinding
No cheese

dia.
cm

winding
tension

g

change in 
g.length 
.001 in

g. length 
as $  of 
original

cheese
dia.
cm

change in 
g. length 
.001 in

g. length 
as io of 
original

1 4.0 0 ' 100.00 9.95 190 105.1
2 4.1 8 - 3 99.92 9.10 190 105.1
3 4.25 7 - 5 99.87 8.45 190 105.1
4 4.55 8 6 100.16 7.75 190 105.1
5 5.25 9 25 100.66 6.75 186 104.91
6 6.15 9 48 101.27 6.10 177 104.67
7 7.0 9 95 102.46 5.5 167 104.41
8 8.0 9 138 103.64 4.9 150 103.96
9 8.8 9 161 104.25 4.4 132 103.48
10 9.95 10 190 105.01 4.0 101 102.67

Average winding tension = 8.7 g.

TEST 10.ii.

Dia. of cheese base = 4 cm;
average winding tension for preparing the cheese base = 206 g. 

axial gauge length = 3.796 in.
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Table B.25
during winding during unwinding

No cheese
dia.
cm

winding
tension

g
change in 
g. length 
.001 in

g. length 
as fo  of. 
original

cheese
dia.
cm

change in 
g. length 
.001 in

g.length 
as fo  of 
original

1 . 4.0 — 0 100.00 10.4 194 105.11
2 4.1 20 - 6 100.16 9.25 194 105.11
3 4.4 19 0 100.00 8.55 194 105.11
4 4.95 20 7 100.18 7.75 194 105.11
5 5.9 22 32 100.84 6.9 194 105.11
6 6.55 20 56 101.47 6.2 189 104.98
7 7.5 22 84 102.21 5.75 183 104.82
8 8.15 19 110 102.90 5.25 169 104.45
9 9.1 21 146 103.84 4.55 150 .< 102.95
10 10.4 20 194 105.11 4.0 104 .102.74

Average winding tension = 20.3 g®

TEST 10.iii
Dia. of cheese base == 4 cm; ■ *

average winding tensions for preparing the cheese base = 25. 1* 8i
axial gauge length = 4.133 in; .....

First winding and unwinding ..... . ..

Table B.24 ■ ■ - ■

during winding during unwinding
Tin cheese winding change in g.length cheese change in g.length

dia. tension g. length as fo  of - dia. g. length as fo  of
cm g .001 in original cm .001 in original

1 4.0 0 100.00 10.5 174 104.21
2 4.1 28 - 3 99.93 9.85 174 104.21
3 4.45 29 + 4 100.10 8.8 171 104.14
4 4.9 29 16 100.39 8.3 168 104.07
5 5.6 29 39 100.94 7.75 165 103.99
6 6.15 27 57 101.38 7.2 161 103.90
7 6.85 28 77 101.86 6.55 154 103.73
8 7.5 29 96 102.32 5.8 145 103.51
9 8.2 27 119 102.88 5.25 135 103.27
10 9.0 25 141 103.41 4.6 103 102.49
11 9.7 25 155 103.75 4.4 88 102.13
12 10.5 24 174 104.21 4.2 70 101.69
1? 4.0 68 101.65

Average winding tension = 27.2 g,
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Second winding and unwinding
Table B.25

No
during winding during unwinding

cheese
dia.
cm

winding
tension

g

change in 
g. length 
.001 in

golength 
as *fo of 
original

cheese
dia.
cm

change in 
g. length 
1 *001 in

g.length 
as ‘fo of 
original

1 4 —  ' • 68 101.65 10.6 201 . 104.86
2 4.1 27 65 101.57 10.0 201 104.86
3 4.15 27 66 101.60 9.0 199 104.82
4 4.55 28 74 101.79 7.85 195 104.72
5 5.05 28 92 102.23 7.15 191 104.62
6 5.55 29 103 102.49 5.95 177 104.28
7 6.2 28 122 102.96 5.5 173 104.19
8 6.75 27 136 103.29 4.9 158 103.82
9 7.25 27 147 * 103.56 4.45 136 103.29 *
10 8.0 27 159 103.85 4.0 99 102.40
11 8.7 25 174 104.21
12 9.6 25 189 104.58
13 10.6 24 201 .104.86

Average winding tension = 26o8 S©

Third winding and unwinding
Table B.26 r- -

during winding during unwinding
No cheese winding change in g.length cheese change in g. length

dia. tension g.length as $  of dia. g. length as $  of
cm g

OO
0 original cm .001 in original

1 4.0 mm 93 102.25 10.5 231 105.59
2 4.1 33 82 101.98 9.75 231 105.59
3 4.4 33 88 102.13 9.3 231 105.59
4 5.0 32 108 102.61 8.8 228 105.52
5 , 5.8 30 131 103.17 8.2 226 105.47
6 6.4 30 149 103.61 7.5 224 105.42
7 7.1 30 164 103.97 6.9 222 105.37
8 8.1 27 187 104.53 6.3 217 105.25
9 8.9 25 200 104.84 5.5 209 105.06
10 9.9 24 219 105.3 ■4.9 196 104.74
11 10.5 23 231 105.59 4.55 167 104.04
12 4.0 127 103.07

Average winding tension = 28.7 g>
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TEST 10.lv

average winding tension for preparing the cheese base = 26.2 g; 

axial gauge length = 3*766 in.

Dia. of cheese base = 4 cm;

Table B.27

during winding during unwinding

No cheese
dia.
cm

winding
tension

S

change in 
g. length 
.001 in

g.length 
as $  of 
original

cheese
dia.
cm

change in 
g. length 
.001 in

g.length 
as fo of 
original

1 4.0 0 100.00 10.0 188 104.99
2 4.15 26 - 3 99.92 9.4 188 104.99
3 4*3 28 - 6 99.84 9.0 188 104.99
4 5.05 27 7 100.19 8.35 185 104.92
5 5.75 27 23 100.61 7.75 182 104.84
6 6.65 25 50 101.33 6.95 169 104.49
7 7.4 25 84 102.23 5.85 160 104.25
8 9.2 26 145 103.85 5.15 148 103.93
9 10.0 25 188 104.99 ... 4.55 135 103.54
10 . 4.0 109 102.90

Average winding tension = 27.3 g.

TEST 10.v

Dia. of cheese base = 4 cm;
average winding tension for preparing the cheese base » 33*2 g. 

axial gauge length = 3*788 in. '
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Table Bo28

during winding during unwinding
Ho cheese

dia.
cm

winding
tension

g

change in 
g. length 
.001 in

g. length 
as fo of 
original

cheese
dia.
cm

change in 
g. length 
.001 in

g.length 
as of 
original

1 4.0 0 100.00 10.0 171 104.512 4.05 32 - 3 99.92 9.05 170 104.49
3 4.15 34 - 6 . 99.84 7.75 167 104.41
4 4.4 33 - 1 99.97 6.95 163 104.30
5 5.25 35 19 100.19 6.0 154 104.06
6 6.15 35 49 . 101.29 5.1 143 103.77
7 6.8 32 76 102.01 4.6 124 103.27
8 7.7 35 110 102.90 4.0 95 102.77

... 9.. 8.75 . 32 140 103.69
10 10.0 30 171 104.51

Average winding tension = 33.1 g.

..-........... TEST 10.vi
Dia. of cheese base = 4 cm;

average winding tension for preparing the cheese base = 40.6 S i

axial gauge length = 1>.800 in.

Table B.29

during winding during unwinding
Ho cheese winding change in g.. length cheese change in g.length

dia. tension g. length as fo of dia. g. length as fo of
cm ÉC .001 in original cm .001 in original

1 4.0 0 100.00 9.75 177 104.66
2 4.1 40 - 3 99.82 8.95 176 104.63
3 4.15 39 - 10 99.74 8.30 168 104.42
4 4.45 41 - 3 99.82 7.5 168 104.42
5 5.4 40 18 100.47 5.85 146 103.84
6 6.1 40 42 101.11 5.15 141 103.71
7 7.0 40 81 102.13 4.5 128 103.37
8 8.0 40 113 102.97 4.0 95 102.50
9 8.95 40 . 147 103.87
10 9.75 43 177 104.66

Average winding tension = 40.3 g.
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TEST 11

average winding tension for preparing the cheese base = 24.5 g; 

gauge dia. d1 = 4 cm; axial g. length b1 = 429 in;

gauge dia. d2 = 5 cm; axial g. length b2 = 4.25 in;

gauge dia. d3 =* 6 cm; axial g. length b3 = 4.33 in;

gauge dia. d4 = 7 cm; axial g. length b4 = 4.33 in.
During winding

Table B.50

Dia. of cheese base = 4 cm;

No
cheese
dia.
cm

winding
tension

g

A1 A2
g.length 
change 
.001 in

g.length 
as $  of 
original

g. length 
change 
.001 in

g. length 
as fo of 
original

1 4 _ •; 0 100
2 4.1 26 - 6 99.86
3 4.3 26 - 3 99.93
4 4.45 27 2 100.05
5 4.7 28 8 100.19
6 5 28 21 100.49 0 100
7 5.15 26 34 100.79 - 7 99.84
8 5.3 27 37 100.86 - 4 99.91
9 5.55 26 43 101 5 100.12
10 6 26 58 101.35 21 100.49
11 6.1 27 62 101.45 34 100.8
12 6.35 26 66 101.54 40 100.94
13 6.6 26 73 101.7 52 101.22
14 7 25 88 102.05 72 101.69
15 7.1 25 93 102.17 77 101.81
16 7.4 25 97 102.26 82 101.93
17 7.9 25 107 102.5 98, 102.3
18 8.4 24 117 102.73 110 102.58
19 9.1 24 131 103.05 128 103.01
20 9.6 22 140 103.26 141 103.31
21 10.1 21 148 103.45 153 103.6

Average winding tension = 25.5 g.
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Table B.30 (continued)

No*
cheese
dia»
cm

winding
tension

g

A3 A4
g.length 
change 
.001 in.

g. length 
as fo  of 
original

g.length 
change 
.001 in.

g.length 
as fo of 
original

10 6 26 0 100
11 6.1 27 - 8 99.82
12 6.35 26 - 3 99.93
13 6.6 26 9 100.21
14 7 25 34 100.79 0 100
15 7.1 25 42 100.97 - 7 99.84
16 7.4 25 49 101.13 8 100.19
17 7.9 25 66 101.52 30 100.69
18 8.4 24 82 -101.89 50 101.16
19 9.1 24 103 102.38 75 101.73
20 9.6 22 119 102.75 95 102.2
21 10.1 21 132 103.05 109 102.52

Average winding tension => 25.5 g.
During unwinding

Table B.31

cheese _____ ^1_____ , ____^2____________  A3 A4
No dia.

cm
€• g•

length length 
change as of 
.001 in original

g. g* g. g» go
length length length length length 
change as of change ■ as fo of change 
.001 in original .001 in original .001 in

go
length 
as f> of 
original

1 10.1 148 103.45 153 103.6 132 103.05 109 102.52
2 9.45 147 103.43 152 103.57 131 103.03 108 102.5
3 9.2 143 103.33 151 103.55 127 102.93 105 102.43
4 8.6 142 103.31 148 103.48 122 102.82 95 102.2
5 8.05 141 103.29 146 103.43 117 102.7 87 102.01
6 7.35 138 103.22 140 103.29 104 102.4 80 101.85
7 7 134 103.12 137 103.22 98 102.26 51 101.18
8 6.4 129 103.01 128 103.01 74 101.71
9 6 123 102.87 116 102.73 59 101.36
10 5.45 112 102.61 101 102.37
11 5 100 102.33 71 101.67
12 4.45 82 101.91
13 4 49 101.14
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TEST 12.1

Dia. of cheese base = 4 cm; space between adjacent wraps = 2D;
average winding tension for preparing the cheese base = 6.3 g;
axial gauge length = 3.87 in.

Table B.32

No
during winding during unwinding

cheese
dia.
cm

winding
tension

g

change in 
g. length 
/.001 in.

g.length 
as fo of 
original

cheese
dia.
cm

change in 
g. length 
/.001 in.

g.length 
as fo of 
original

1 4 —, 0 100 10.2 301 107.77
2 4.15 7 - 3 99.92 9*55 310 108.01
3 4.55 8 - 3 99.92 8.8 308 107.96
4 5.9 9 42 101.08 8.05 295 107.62
5 6.8 9 82 102.12 7.3 290 107.49
6 7.65 9 129 103.33 6.45 269 106.95
7 8.55 8 196 105.06 5.65 ' 248 ■ 106.41
8 9.3 8 251 106.49 5.05 211 105.45
9 10.2 8 301 107.77 4.4 163 104.21
10 4 124 103.2

Average winding tension = 8.3 g.

TEST 12»ii

Dia. of cheese base == 4 cm; space between adjacent wraps = 2D; 

average winding tension for preparing the cheese base = 122 g; 

axial gauge length = 3.829 in.



Table B. 33

during winding during unwinding
No cheese 

dia. < 
cm

winding
tension

S

change in 
g. length 
.001 in.

g. length 
as fo of 
original

cheese
dia.
cm

change in 
g. length 
.001 in.

g.length 
as f  of 
original

1 4 — 0 100 9.9 276 107.21
2 4.2 11 - 8 99.79 8.9 288 107.52
3 4.65 12 - 1 99.97 8.35 288 107.52
4 5.55 13 25 100.65 7.45 286 107.46
5 6.65 14 62 101.62 6.45 275 107.18
6 7.3 13 108 102.82 5.65 236 106.16
7 8.25 13 162 104.23 4.95 196 105.12
8 9.15 13 219 105.72 4.45 164 104.28

. 9 9.9 13 276 107.21 4 120 103.14
Average winding tension = 12.8 g.

,

TEST 12.iii • : - .

Dia. of cheese base = 4 cm; space between adjacent wraps = 2D;

average winding tension for preparing the cheese base s 18.2 Si

axial gauge length = !5.8 in; i
Table B.34

during winding during unwinding
No cheese winding change in g.length cheese change in g.length

dia. tension g.length as f  of dia. g. length as f  of
cm g .001 in. original cm .001 in. original

1 4 0 100 9,95 219 105.76
2 4.15 19 - 6 99.84 8.85 228 106
3 4.55 19 - 4 99.89 8.4 233 106.13
4 5.7 20 28 100.74 7.4 228 106
5 6.7 19 54 101.42 6.55 220 105.79
6 8 19 98 102.58 5.65 198 105.21
7 8.7 19 132 103.48 5.05 171 104.5
8 9.3 19 168 104.42 4.35 150 103.95.
9 9.95 17 219 105.76 4 103 102.71

Average winding tension = 18.9 g.
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TEST 12.iv

Space between adjacent wraps = 2D; dia. of cheese base = 4 cm;
average winding tension for preparing the cheese base = 22*7 g;
axial gauge length = 3.78 in; .

First winding and unwinding.

Table B.35

during winding during unwinding

No cheese
dia.
cm

winding
tension

g

change in 
g. length 
.001 in..

g.length 
as fo of 
original

cheese
dia.
cm ...

change in 
g. length 
.001 in.

g.length 
as $  of 
original

1 4 0 100 9.75 247 106.54
2 4.1 25 - 6 99.84 8.9 252 106.66
3 4.5 23 - 3 99.92 7.95 257 106.8
4 5.1 22 10 100.26 7.1 247 106.54
5 5.85 22 40 ... 101.06 6.35 234 106.18
6 6.8 24 87 102.3 5.65 . 229 106.06
7 7.6 25 143 103.78 5.2 211 105.58
8 • 8.4 20 190 105.02 4.6 182 104.82
9 9.15 22 208 105.5 4 131 103.46
10 9.75 22 247 106.54 - ■ ■..'.

Average winding tension = 22.8 g.
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Second winding and unwinding
Table B.36

No
during winding during unwinding

cheese
dia.
cm

winding
tension

g

change in 
g.length 
.001 in.

go length 
as fo of 
original

cheese
dia.
cm

change in 
go length 
.001 in.

g o length 
as of 
original

1 4 — 131 103.46 9.85 362 109.56
2 4.15 22 112 102.96 8.85 367 109.7

. 3 4.65 22 120 103.17 8.2 362 109.56
4 5.2 22 134 103.54 7.25 354 109.36
5 5.95 22 160 104.23 6.45 337 108.91
6 7.1 20 225 J05.95 5.6 315 108.34
7 7.9 22 261 106.9 4.9 291 107.7
8 8.75 21 298 107.88 4.4 254 106.72
..9 9.2 24 333 108.81 4 187 104.94
10 9.85 22 362 109.56

Average winding tension = 21.9 g.
Third winding and unwinding ,

Table B.37

during winding during unwinding
No cheese winding change in g.length cheese change in go length

dia. tension g. length as of dia. g, length as io of
cm g .001 in. original cm .001 in. original

. 1 4 187 104.94 10.15 392 110.38
2 4.15 24 162 104.28 9.45 403 110.68
3 4.5 21 174 104.6 8.65 399 110.56
4 5.5 25 202 105.34 7.75 392 110.38
5 6.5 22 252 106.66 6.8 384 110.16
6 7.3 22 287 107.6 5.8 372 109.84
7 8.15 22 326 108.68 5 337 108.92
8 9.1 22 360 109.52 4.4 304 108.04
9 10.15 25 392 110.38 4 212 105.61

Average winding tension = 22.9 g.



Dia. of cheese base = 4 cm; space between adjacent wraps = 2D;
average winding tension for preparing the cheese base = 2 7 .4 g;
axial gauge length =3.85 in.

Table B.58

during winding during unwinding

No cheese
dia.
cm

winding
tension

g

change in 
g. length 
.001 in.

g.length 
as fo of 
original

cheese 
dia. 
cm .

change in 
g. length 
.001 in.

g. length 
as io of 
original

1 4 0 100 9.9 232 106.03
2 4.1 27 - 9 99.77 9.05 232 106.03
3 .4.55 27 - 6 99.84 8.3 227 105.9
4 . 5.15 27 5 100.13 7.5 224 105.82
5 5.95 28 34 100.84 6.8 217 105.64
6 6.95 27 80 102.08 5.85 . 202 105.25
7 7.55 26 124 103.22 5 177 104.6
8 8.55 26 179 104.65 4.3 148 103.85
9 9.3 29 206 105.41 4 110 102.86
10 9.9 26 232 106.03

Average winding tension = 27 g.

TEST 12.vi

Dia. of cheese base = 4 cm; space between adjacent wraps = 2D; 

average winding tension for preparing the cheese base = 32.3 g; 

axial gauge length =3.8 in.
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Table B.39

during winding during unwinding
No cheese

dia.
cm

winding
tension

g

change in 
g. length 
.001 in.

g.length 
as fo of 
' original

cheese
dia.
cm

change in 
g. length 
.001 in.

g.length 
as fa of 
original

1 4 _ 0 100 10.4 260 106.84
2 4.1 33 - 7 99.82 9.15 263 106.92
3 4.5 32 - 7 99.82 8.4 266 107
4 5.55 32 19 100.5 7.5 267 107.03
5 6.3 32 56 101.47 6.75 255 106.72
6 7.35 33 113 102.88 5.9 235 106.19
7 8.45 33 165 104.34 4.95 209 105.5
8 9.4 32 215 105.66 4.4 . 174 104.58
9 10.4 32 260 106.84 4 129 103.4

Average winding tension = 32.4 g.

TEST 12.vii . . ..

Dia. of cheese base =: 4 cm; space between adjacent wraps = ;2D;

average winding tension for preparing the cheese 'base a 35 g•

axial gauge length = 3.805 in.

First winding and unwinding
Table B.40

during winding during unwinding
No cheese winding change in g.length cheese change in g. length

dia. tension g. length as f  of dia. g. length as f> of
cm g .001 in. original cm .001 in. original

1 4 0 100 10 289 107.6
2 4.15 35 - 10 99.74 9.25 288 107.56
3 4.45 40 - 10 99.74 8.7 287 107.54
4 5.5 36 22 100.58 7.85 286 107.51
5 6.15 34 63 101.65 6.75 280 107.35
6 7.1 34 112 102.94 6.15 271 107.12
7 7.95 34 178 104.67 5.25 259 106.8
8 8.7 35 229 106.02 4.45 219 105.75
9 9.15 32 257 106.75 4 - 155 104.07
10 10 ___2á___ 289 107.6

Average winding tension = 35 g.
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Second winding and unwinding
Table B.41

during winding during unwinding
No cheese winding change in g.length cheese change in g.length

dia. tension g. length as fo of dia. g. length as $ of
cm g /.001 in. original cm /.001 in. original

1 4 155 , 104.07 9.75 359 109.44
2 4.1 35 143 103.76 9 366 109.6
3 4.45 35 140 103.68 8.35 371 109.75
4 4.95 35 161 104.23 7.6 375 109.85
5 5.95 35 201 105.26 6.55 363 109.55
6 6.75 35 • 237 106.22 5.7 * 348 109.14
7 7.85 34 285 107.49 5.05 326 108.56
8 8.85 34 314 108.25 4.55 297 107.8
9 9.3 34 331 108.7 4 197 105.17
10 9.75 34 359 109.44

Average winding tension = 34.6 g.

Third winding and unwinding

Table B.42

during winding during unwinding
No cheese winding change in g. length cheese change in g. length

dia. tension g. length as fo of dia. g. length as *fo of
cm g /.001 in. original cm .001 in. original

1 4 197 105.17 10.05 423 111.12
2 4.15 35 185 104.86 9.1 427 111.23
3 4.5 35 195 105.12 8.3 424 111.13
4 5.2 35 230 106.04 7.5 418 110.99
5 6.3 35 283 107.44 6.8 409 110.73
6 7.15 35 323 108.48 6.05 405 110.62
7 7.8 35 348 109-14 5.2 383 110.06
8 8.35 . 35 378 109.93 4.4 333 109.24
9 9.05 35 401 110.52 4 222 105.83
10 9.55 35 410 110.78
11 10.05 35 423 111.12

Average winding tension = 35 g
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TEST 12.viii
Dia. of cheese base = 4 cm; space between adjacent wraps = 2D;
average winding tension for preparing the cheese base = 41.6 g;
axial gauge length =3.86 in.

Table B.43

during winding • ■ during unwinding
No cheese

dia.
cm

winding
tension

g

change in 
g. length 
.001 in.

g.length 
as $  of 
original

Cheese
dia.
cm

change in 
g. length 
.001 in.

g.length 
as $ of 
original

1 4 •m . 0 100 9.9 264 106.84
2 4.15 44 - 7 99.82 9.1 270 107
3 4.55 42 - 6 99.84 8.1 273 107.08
4 5.15 42 17 100.44 7.2 266 106.89
5 6.25 40 68 101.76 6.2 255 106.61
6 7.15 40 134 103.47 5.5 243 106.3
7 7.9 39 174 104.51 4.95 225 105.83
8 8.5 - 40,. 207 105.36 4.3 183 104.74
9 9.45 40 251 106.5 4 145 103.76
10 9.9 40 264 106.84

Average winding tension = 40.8 g.

TEST 13

Dia. of cheese base = 3 cm; space between adjacent wraps = 2D; 

average winding tension for preparing the cheese base = 23.4 g;

gauge dia. d1 = 3 cm; axial g. length b1 ss 3.8 in;

gauge dia. d2 = 4 cm; axial g« length b2 = 3.93 in;

gauge dia. d3 ' = 5 cm; axial g. length b3 = 3.99 in;

gauge dia. d4 = 6 cm; axial g. length b4 = 3.96 in;

gauge dia. d5 = 7 cm; axial g. length b5 s 4 in;

gauge dia. d6 = 8 cm; axial g. length b6 = 4 in;

gauge dia. d7 s 9 cm; axial g. length b7 = 3.99 in.
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During winding

Table B»44

No
cheese
dia.
cm

winding
tension

S
g.length 
change 

X001 in.

g. length 
as tfo of 
original

g. length 
change 

/.001 in.

g.length 
as fo of 
original

1 3 0 100
2 3.2 23 - 8 99.79
3 3.5 23 - 10 99.74
4 4 24 - 7 99.82 0 100
5 4.1 24 - 2 99.95 - 12 99.69
6 4.45 24 0 100 - 13 99.67
7 5 25 12 100.32 10 100.25
8 5.15 24 14 100.37 14 100.36
9 . 5.4 24 17 100.45 24 100.61 .
10 6 24 31 100.82 45 101.14
11 6.15 25
12 6.45 . 24
13 7 24 59 101.55 104 102.64
14 7.1 24
15 7.4 24
16 8 24 131 103.44 262 106.66
17 8.15 25
18 8.45 24 ’
19 9 24 110 102.89 214 105.44
20 9.15 24
21 9.45 23
22 10 23 131 103.44 262 106.66

Average winding tension = 24 g<
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During winding
Table B.44 (continued)

No
cheese
dia.
cm

winding
tension

S

A3 A4
g.length 
change 
.001 in.

g. length 
as fo of 
original

g.length 
change 
.001 in.

g.length 
as fo of 
original

7 5 25 0 100
8 5.15 24 - 10 99.75 -

. 9 5.4 24 - 1 99.97
10 6 24 38 100.95 0 100
11 6.15 25 - 6 99.85
12 6.45 24 2 100.05
13 7 24 111 102.78 58 101.45
14 7.1 24
15 7.4 24
16 8 24 332 108.32 317 107.92
17 8.15 25
18 8.45 24
19 9 24 263 106.59 . 234 105.85
20 9.15 24
21 . 9.45 23 ‘
22 10 23 332 108.32 317 107.92

Average winding tension = 24 g.

Table B.45

A5 A6 A7
No

cheese
dia.
cm

winding
tension

S
g.length g.length g.length g.length g.length g.length 
change as °/o of change a3 fo of change as fo of 
.001 in. original >001 in. original .001 in. original

13 7 24 0 100
14 7.1 24 - 5 99.87
15 7.4 24 - 2 99.95
16 8 24 83 102.08 0 100
17 8.15 25 - 3 99.92
18 8.45 24 11 100.28
19 9 24 187 104.67 100 102.5 0 100
20 9.15 24 4 100.1
21 9.45 23 17 100.43
22 10 23 277 106.92 200 105 92 102.3
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During unwinding
Table B.46

Ho
cheese
dia.
cm

A1 A2 A3 A4
g. g.

length length 
change as $ of. 
.001 in original

g*length 
change 
.001 in

g.
length 

as fo of 
original

g. g.
length length 
change as fo of 
.001 in original

g. g.
length length 
change as fo of 
.001 in original

1 10 131 103.44 262 106.66 332 108.32 317 107.92
2 9.45
3 9 131 103.44 262 106.66 333 108.35 317 107.92
4 8.25
5 8 131 103.44 262 106.66 333 108.35 317 107.92
6 7.2
7 7 122 103.21 251 106.38 323 108.1 300 107.5
8 6.4 275 106.9
9 6 - 110 102.89 229 105.83 283 107.09 235 105.88
10 5.25 251 106.29
11 5 90 102.37 174 104.42 197 104.94
13 4.3 141 103.58
14 4 70 101.84 118 103.01
15 3.55 50 1 0 1 . 3 2 -
16 3 41 101.08

Table B.47

No
cheese
dia.
cm

A5 A6 A7
g.length 
change 
.001 in.

g.length g.length 
as fo of change 
original .001 in.

g.length g.length g.length 
as $ of change as $ of 
original .001 in. original

1 10 277 106.92 200 105 92 102.3
2 9.45 81 102.07
3 9 280 107 193 104.82 64 101.6
4 8.25 185 104.62
5 8 274 106.85 170 104.25
6 7.2 240 106
7 7 210 105.25
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TEST 14.i
Dia. of cheese base = 4 cm;
average winding tension for preparing the cheese base = 27 g; 

axial gauge length = 4.228 in.

Table B.48

during winding during unwinding
No cheese

dia.
cm

winding
tension

S

change in 
g. length 

./.001 in.

g. length 
as fo of 
original

cheese
dia.
cm

change in 
g.length 
/.001 in.

g. length 
as fo of 
original

1 4 0 . 100 10 226 105.42
2 4.05 37 - 4 99. § 9.3 224 105.37
5 4.20 37 - 6 99.86 8.75 224 105.37
4 4.45 38 - 3 99.93 8 222 105.33.
5 4.8 37 9 100.22 7.15 217 105.21
6 5.6 37 51 101.22 6.6 210 105.04
7 6.9 35 111 102.66 5.85 201 104.82
8 7.7 33 151 103.62 5.3 189 104.54
9 8.6 32 183 104.39 4.4 132 103.17
10 9.55 30 209 105.02 4 94 102.26
11 10 29 226 105.42

Average winding tension = 34.5 g.

TEST 14.ii

Dia. of cheese base = 4 cm;

average winding tension for preparing the cheese base = 2 7  g; 

axial gauge length = 4.163 in.
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Table B. 49

during winding during unwinding
No 'cheese winding change in g.length cheese change in g.length

dia. tension g. length as $  of dia. g. length as i  of
cm g .001 in. original cm .001 in. original

1 4 0 100 10.05 213 105.11
2 4.1 34 - 6 99.86 9.45 213 105.11
3 4.15 34 - 8 99.81 8.7 209 105.02
4 4.5 34 - 2 99.95 8.05 205 ' 104.92
5 5.6 35 51 101.22 7.3 203 104.87
6 6.5 33 87 102.09 6.6 197 104.73
7 7.35 31 122 102.93 6 189 104.54
8 8.25 30 153 103.68 5.4 176 104.22
9 9.25 29 185 104.44 4.8 158 103.79
10 10.05 27 213 105.11 4.2 128 103.07
11 4 103 102.47

Average winding tension = 31.9 g.

■ TEST 14.iii

Nia. of cheese base =: 4 cm;

average winding tension for preparing the cheese base = 26 g;

axial gauge length = 4.225 in.
Table B.50

during winding during unwinding
No cheese winding change in g.length cheese change in g. length

dia. tension g. length as Ì  of dia. g. length as i  of
cm g .001 in. original cm .001 in. original

1 4 0 100 10 188 104.44
2 4.1 31 - 9 99.75 9.3 188 104.44
3 . 4.2 32 - 8 99.81 8.4 186 104.39
4 4.4 33 - 1 99.98 7.8 184 104.35
5 5.05 32 24 100.57 7.25 181 104.28
6 5.75 30 48 101.13 6.5 176 104.16
7 6.6 30 84 101.99 5.85 169 103.99
8 7.3 29 116 102.74 5.4 161 103.8
9 8.1 27 142 103.36 4.7 142 103.36
10 8.9 27 160 103.78 4.2 109 102.58
11 10 26 188 104.44 __4____ 84 101.99

Average winding tension = 29.7 g»
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TEST 14.iv

Dia. of cheese base = 4 cm; 

average winding tension for preparing the cheese base =26.5 gj 

axial gauge length = 4.176 in.

Table B.51

during winding . during unwinding
No

cheese
dia.
cm

winding 
tension 
. g

change in 
g. length 
.001 in.

g.length 
as c/o of 
original

cheese
dia.
cm

change in 
g. length 
.001 in.

g.length 
as fo of 
original

1 4 0 100 10 153 103.67
2 : 4.1 27 - 4 99.9 9.55 153 103.67
3 4.25 28 - 1 99.98 9.15 153 103.67
4 4.95 29 17 100.41 8.5 151 103.62
5 6.2 27 54 101.3 7.7 149 103.58
6 6.75 27 71 101.7 6.75 140 103.36
7 7.95 27 105 102.52 6 130 103.12
8 8.7 25 126 103.02 5.4 122 102.93
9 ■ 9.65 25 142 103.41 4.8 99 102.38
10
11

10 25 153 103.67 4.45
4

80
64

101.92
101.54

Average winding tension = 26.7 g.

TEST 14.v

Dia. of cheese base = 4 cm;

average winding tension for preparing the cheese base = 26.5 g; 

axial gauge length = 4.2 in.
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Table B.52

during winding during unwinding
No cheese

dia.
cm

winding
tension

g

change in 
g. length 
.001 in.

g.length 
as f  of 
original

cheese
dia.
cm

change in 
go length 
.001 in.

go length 
as f  bf 
original

1 4 0 100.00 10 160 103.81
2 4.1 27 - 6 99.86 9.4 160 103.81
3 4.3 28 3 100.07 8.85 160 103.81
4 5 29 16 100.38 8.3 156 103.71
5 6.2 28 58 101.38 7.7 153 103.64
6 7.1 27 89 102.12 6.95 149 103.55
7 8.05 26 119 102.83 6.5 146 103.47
8 8.6 25 131 103.12 5.8 137 103.26
9 9.05 25 143 103.4 5.15 125 102.98
10 10 25 160 103.81 4.75 102 102.43
11 4.3 68 101.62
12 4 60 101.43

Average winding tension = 26.7 g.

TEST 14. vi

Ma. ; of cheese base =* 4 cm;

average winding tension for preparing the cheese 'base = 26.2 g;
axial gauge length = 4.235 in.

Table B.53

during winding during unwinding
No cheese winding change in go length cheese change in g.length

dia. tension go length as f  of dia. go length as fo of
cm g „001 in. original cm .001 in. original

1 4 0 100.00 10 118 102.79
2 4.15 24 - 5 99.88 9.5 117 102.76
3 4.4 24 - 4 99.91 8.8 115 102.71
4 5.3 24 11 100.3 8.3 114 102.69
5 6.15 23 32 100.76 7.55 111 102.62
6 6.75 20 47 101.11 6.8 108 102.55
7 7.65 19 65 101.53 5.95 98 102.31
8 7.9 25 75 101.77 5.55 95 102.24
9 8.6 22 94 102.22 5 79 101.86
10 ■ 9.4 21 107 103.01 4.3 65 101.53
11 10 20 118 102.75 4 48 101.13

Average winding tension = 22.2 g.



B.42

average winding tension for preparing the cheese base = 26.3 gj 
axial gauge length = 4.148 in.

TEST 14.vii

Dia. of cheese base = 4 cm;

Table B.54

during winding during unwinding

No cheese
dia.
cm

winding
tension

S

change in 
g. length 
.001 in.

g.length 
as . fo of
original

cheese
dia.
cm

change in 
g. length 
.001 in.

g.length 
as ̂  of 
original

1 4 0 100.00 10.1 110 102.65
2 4.1 20 0 100.00 9.5 109 102.62
3 4.2 20 - 3 99.93 9 . 108 102.6
4 4.5 21 1 100.02 8.25 106 102.55
5 5.05 21 10 100.24 7.6 104 102.5
6 5.85 21 25 100.6 6.85. 100 102.41
7 6.85 20 40 100.96 6.1 94 102.27
8 7.65 20 55 101.32 5.6 91 102.19
9 8.65 19 77 101.85 4.9 81 101.95
10 9.35 19 94 102.26 4.5 63 101.52
11 10.1 20 110 102.65 4 43 101.03

Average winding tension = 20.1 g.

TEST H.viii

Dia. of cheese base = 4 cm;
average winding tension for preparing the cheese base = 27.3 g? 

axial gauge length = 4.17 in. *



B.43

Table B.55

during winding during unwinding
Ko cheese winding change in g.length cheese change in g.length

dia. tension g.length as ‘fo of dia. g. length as òf
cm g .001 in. original cm .001 in. original

1 4 — 0 100.00 10 73 101.75
2 4.1 17 - 1 • 99.98 9.3 71 101.7
3 4.35 17 - 2 99.95 8.8 69 101.66
4 4.7 17 2 100.05 8 65 101.56
5 5.6 17 12 100.29 7.55 64 101.54
6 6.8 17 29 100.7 6.8 60 101.44
7 7.7 16 41 100.98 6.1 56 101.34
8 8.4 16 53 101.27 5.65 55 101.32
9 9.3 15 64 101.54 4.6 44 101.05
10 10 15 73 101.75 4.2 24 100.58
11 4 19 100.46

Average winding tension = 16.3 g.

TEST 14.ix

Dia. of cheese base == 4 cm;
average winding tension for preparing the cheese base = 26.5 g;
axial gauge length = 4.163 in.

*

Table B.56

during winding during unwinding
No cheese winding change in g. length cheese change in g.length

dia. tension g. length as °/o of dia. g. length as °/o of
cm g /.001 in. original cm ✓ 1001 in. original

1 4 0 100.00 10 45 101.08
2 4.1 13 0 100.00 9.55 45 101.08
3 4.25 14 - 1 99.98 8.8 43 101.03
4 4.55 14 1 100.02 8.05 38 100.91
5 5.25 14 7 100.17 7.7 35 100.84
6 6 14 11 1)00.26 7 30 100.72
7 6.7 14 16 100.38 6.45 27 100.65
8 7.95 13 31 100.74 5.8 22 100.53
9 8.9 13 38 . 100.91 5.15 12 100.29
10 9.65 12 42 101.01 4.4 9 100.22
11 10 12 45 101.08 4 7 100.17

Average winding tension = 13.3 g.
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TEST 14.x

average winding tension for preparing the cheese base = 26.2 g; 

axial gauge length = 4®142 in.

Dia. of cheese base = 4 cm;

Table B.57

during winding during unwinding

No cheese
dia.
cm

winding
tension

S

change in g. length 
g. length as ft of 
.001 in. original

cheese
dia,
cm

change in g.length 
g. length as fo of . 
.001 in. original

1 4 0 100.00 10 30 100.72
2 4.1 9 0 100.00 9.3 27 100.65
3 4.25 9 1 100.02 8.7 27 100.65
4 4.55 9 3 • 100.07 8.1 26 100.63
5 5.55 10 8 100.19 7.5 26 100.63
6 6.9 10 15 100.35 ' 6.75 22 100.53
7 7.75 10 19 100.46 6.05 19 100.46
8 8.5 10 21 100.51 5.45 16 100.39
9 9.25 10 24 100.58 4.85 13 100.31
10 10 9 30 100.72 4.3 8 100.19
11 »4 5 100.12

Average winding tension = 9.6 g.



B.45

Average winding tension for preparing the base for the gauge = 1.5g; 

rad. of the base = 2 cm; tension in the gauge wire =10; 

axial distance between the two ends of the wire = 1.6 cm; 

length of the wire = 13.6;

resistance of the helically-wound gauge = 296 ohm; 

resistance of the straight-wound gauge = 248 ohm.

For helically-wound gauge.

Calibrating resistance = 200,000 ohm; movement on dial = 1 4  div.;

1 div. of dial = 296 x 100/(200,000 x 14) = 0.0106$ change in G.Bes. 

For straight-wound gauge.

Calibrating resistance = 200,000 ohm; movement on dial =11.6 div.;

1 div. of dial = 248 x 100/(200,000 x 11.6) = 0.0107$ change in G.Res 

Axial gauge length = 3*732 in.

During second winding

TEST 15

-*
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Table B.58

No cheese winding change g. length helically wound straight wound
dia. tension in g. as fo of movement fo change movement $ change
cm S length original on dial in on dial in

.001 in div G.Res. div. G.Res.
1 4 0 100.00 0 100.00 0 100.00
2 4.1 15 - 8 99.79 3.4 99.96 2.8 99.97
3 4.6 15 - 2 99.95 6.8 99.93 5.6 99.94
4 5.35 15 2 100.05 7.5 99.92 6.1 99.93
5 6.55 15 29 100.78 8 99.92 8.3 99.91
6 7.25 15 49 101.31 7.3 99.92 8.3 99.91
7 8.1 15 76 102.04 7.3 99.92 7.8 . 99.92
8 8.9 ‘ 15 96 102.57 7.2 99.92 8. 99.91
9 9.8 16 127 105.4 7.5 99.92 9.6 99

Average winding tension = 15.1g.

During unwinding

Table B.59

No
cheese
dia.
cm

change in 
g. length 
.001 in.

go length 
as fo of 
original

helically wound straight wound
movement 
on dial 
div.

c/o change 
in

G.Res.
movement 
on dial 
div.

fo change 
in

. G.Res.

1 9.8 127 103.4 ' 7.5 99.92 9.6 99.9
2 9.2 122 103.27 7 99.93 9.3 99.9
3 8.35 122 103.27 6.9 99.93 7.9 99.92
4 7.4 122 103.27 6.7 99.93 7.6 99.92
5 6.45 117 103.14 6.3 99.93 6.3 99.93
6 5.35 104 102.79 5 99.95 5.2 99.94
7 4.7 77 102.06 5 99.95 6.8 99.93
8 4.2 59 101.58 3.5 99.96 4.3 99.95
9 4 32 100.86 0 100.00 2.3 99.98
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APPENDIX C

Table C„1

Assumption w = 0; std. size of the element; RO = 5 cm; dR = 0.1 cm;

T = 20g; spacing = 1D;

r or■p Zo Qo ~ 7
RO--— :----------Zo.drit

tra­
verse 2.5 5 7.5 2.5 5 7.5 2.5 5 7.5
cm
1.0 137.4 389.8 590.7 690.7 489.8 329.9 2382 7548 12881
1.4 101.6 309.3 500.1 715.0 544.2 390.9 1893 6118 10658
1.9 76.2 241.8 410.1 727.5 577.4 435.0 1441 4718 8349
2.4 60.8 197.0 388.2 733.3 594.2 460.0 1094 3606 6431
2.9 50.5 ' 165.6 343.2 736.4 603.7 475.1 812 2687 4830
3.4 43.2 142.7 293.3 738.3 609.5 484.7 575 . 1908 3443
3.9 37.7 1 2 5 .2 225.6 739.5 613.3 491.3 370 1231 2229
4.4 33.5 111.4 201.8 740.3 616.0 495.8 191 • • 634 1151
4.9 30.1 100.3 182.4 740.9 619.9 499.1 . 30 100 183

The values for winding tensions of 10g and 30g are 0.5 and 1.5 times 

the above valués respectively. The values for spacing of 2D and 5D 

between adjacent wraps of the yarn are ? and \  of the above values

respectively.
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Table C»2

Assumption w = 0; std. size of the element; RO = 5 cm;

T = 20g; traverse = 5 cm;, spacing = 1D; E = 200g; EY = 5000g;

r ■aR,dR -aR,dR
"STIf-“ -||.dR c)Z

•^R,dR

1.0 - 0.000000 - 0.1 - 0.0 0.00 0.00
1.4 - 0.000000 - 0.2 - 0.001 0.00 - 0.02
1.9 - 0.000003 - 0.8 - 0.006 - 0.2 : - 0.07
2.4 - 0.000011 - 3.0 - 0.021 - 0.6 - 0.20
2.9 - 0.000041 - 10.4 - 0.067 - 2.0 - 0.55
3.4 - 0.000143 - 33.6 - 0.2 - 6.1 - 1.42
3.9 - 0.000458 - 101.4 - 0.564 - 17.3 - 3.53
4.4 - 0.00137 - 287.9 -  1.512 - 46.6 - 8.42
4.9 - 0.0039 - 776.5 - 3.875 -119.7 - 19.39
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Table C.3 

Cheese Ro.1

T = 20g; traverse = 5 cm; spacing = 1D; E = 200g; El = 5000g;

Assumption w = 0; std. size of the element; RO = 5 cm;

-P

R \ r 1D u 1.9 2.4 2.9 3.4 3.9 4.4 ; 4.9
1.0 0000
1.5 2592 684
2.0 3484 2354 726
2.5 3716 2789 2473 747
5.0 3781 2910 2958 2619 759
3.5 3800 2946 3104 ' 3182 2737 766
4.0 3807 2958 3152 3365 3377 2834 771
4.5 3809 2962 3168 3427 3597 3546 2916 774
5.0 3809 2963 31-74— -3_45Q_ 3677 3805 369.6— 2988 776

-U x 105
1.0 0000
1.5 0000 1.91
2.0 0000 6.56 2.49
2.5 0000 7.78 8 .5 0 2.77
3.0 0000 8.11 10.16 9.72 3.02
3.5 0000 8.22 10.67 11.82 10.91 3.26
4.0 0000 8.25 10.83 12.50 13.46 12.06 3.43
4.5 0000 8.26 10.88 12.73 14.33 15.09 13.18 3.70
5.0 0000 8.26 10.91 12.81 14.66 16.19 16.71 14.26 3.9-Q

f'r

1.0 0000
1.5 0000 5.15
2.0 0000 17.72 5.58
2.5 0000 20.99 19.02 5.20
3.0 0000 21.90 22.7 6 18.25 4.84
3.5 0000 22.18 23.88 22.18 17.49 4.54
4.0 0000 22.26 24.25 23.45 21.58 16.82 4.29
4.5 0000 22.29 24.37 23.89 22.99 21.04 16.22 4.07

.5.0 0000 . 22.31 24.42 24.05 . 23.50 22.58 20.56 15.70 3.87
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Table C.4 
Cheese no„1

Assumption w = 0} std. size of the element; RO = 5 cm;

T = 20g; traverse = 5 cm; spacing = 1D; E = 200g; EY = 5000g;

Q
R X r 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1.0 0000
1.5 489.8 404.0
2.0 489.8 61.9 416.2
2.5 489.8 -27.3 28.1 439.5
3.0 489.8 -5 2 .0 -79.8 51.8 457.3
3.5 489.8 -59.5 -112.2 -65.0 75.6 471 .0
4.0 489.8 -61.9 -122.7 -102.7 -47.8 96.9 481.8
4.5 489.8 -62.7 A 26.3 -115.7 -90.3 -31 .9 115.7 490.7
5.0 489.8 -63.0 -127.6 -120.4 -105.7 -78.7 -17.3 132.5 498.2

Z

1.0 0000
1.5 389.8 2 2 9 .8
2.0 389.8 35.7 174.5
2.5 389.8 -15.0 12.0 145.8
3.0 389.8 -29.1 -33.1 17.4 125.6
3.5 389.8 -33.3 _46.7 -21.3 20.9 110.3
4.0 389.8 -34.7 -51.1 -33.8 -12.9 22.9 98.4
4.5 389.8 -35.2 -52.7-38.2 -24.6 -7.3 23.8 88.8
5.0 389.8 -35.3 -53.2 -39.7 -28.8 -18.2 - 3.4 24.1 81.0

. .R . -I*-"- ■
Z.cLr

r
1.0 0000
1.5 1266 230
2.0 1275 530 174
2.5 1017 348 428 146
3.0 762 114 315 394 126
3.5 550 - 92 146 332 365 110
4.0 376 -264 - 15 207 337 340 98
4.5 232 -407 -154 80 244 335 318 89
5.0 111 -528 -273 - 35 -141 265 329 298 81
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Table C.5 

Cheese no, 1

Assumption w = 0; std. size of the element; RO = 5 cm;

T = 20g; traverse = 5 cm; spacing = 1D; E = 200g; EY = 5000g;

dR

R \ r 10 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1.0 0000
1.5 0000 -140.2
2.0 0000 -482.3-161.2
2.5 0000 -571.5 -549.3 -154.7
3.0 0000 -596.2 -657.4 -542.4 -146.4
3.5 0000 -603.7 -689.6 -659.1 -528.0 -138.5
4.0 0000 -606.1 -700.1 -696.9 -651.5 -512.6 -131.5
4.5 0000 -606.9 -703.7 -709.9 -694.0 -641.4 -497.6 -125.3 .
5.0 0000 -607.2 -705.0 -714.6 -709.4 -688.2 -630.6 48

[ R &  I HR' J r
dR

1.0
1.5

0000
0000 - 79.4

2.0 0000 -273.7 - 67.4
2.5 0000 -324.3 -2 2 9 .8 - 51.2
3.0 0000 -338.4 -275.0 -179.6 - 40.1
3.5 0000 -342.7 -288.6 -218.3 -144.7
4.0 0000 -344.0 -293.0 -230.9 -178.6
4.5 0000 -344.5 -294.5 -235.2 -190.2
1*0 0000 -344.7 -295.0 -236.7 -194.5 ■160.9 -128.5 -

22 .6
87.5 - 19.4

dZ
"SR.dR.dr

1.0 0000
1.5 -472 - 79
2.0 -1796 -1112
2.5 -5122 -2362
3.0 -4263 -3482
3.5 -5233 -4445
4.0 -6066 -5276
4.5 -6793 -6003
5.0 . -7437 -6646

- 6 7
- 882 - 51 
-1881 - 690 - 40
-2808 -1508 - 557 - 32 
-3627 - 2292 -1244 - 462 
-4349 -3003 -1921 -1050 
-4992 -3641 -2546 -1643

27
390
902

23
336 19
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Table C .6

Cheese no. 2 -

Assumption w = 0; std. size of the element; RO = 5 cm;

T = 30g; traverse = 5 cm; spacing = 1D; E = 200g; EY = 5000g;

- P

rY 1 .0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9

1.0 0000
1.5 3887 1026;
2 .0 5225 3530 1088
2.5 5574 4183 3709. 112 0
3.0 5670 4364 4436 3928 113 8
3.5 5699 4419 4656 4773 4105 1149
4.0 5709 4437 4727 5047 5065 4251 11 5 6
4.5 5712 4443 4752 5141 5396 5319 4375 1161
5.0 5713 4445 4760 5175 5516 5707 5544 4481 1165

- U x 105

1 .0 0000
1.5 0000 2.8 6
2 .0 0000 9.84 3.74
2.5 0000 +1 1 . 6 6 12.74 4.16
3.0 0000 12.17 15.25 14.87 ■ 4.54
3.5 0000 12.32 16.00 -17.73 1 6 .3 6 4.89
4.0 0000 12.37 16.24 - 18.74 20.19 18.09 5.23
4.5 0000 12.39 16.33 19.09 21.51 t 22.64 19.77 5.54
5.0 0000 12.39 16.36 19.22 21 .98 24.29 25.06 21.40 5.85

f ^ d R  I aR,CUiJT

1 .0 0000
1.5 0000 - 7.72
2 .0 0000 -26.59 - 8.37
2.5 0000 -31.48 -28.53 - 7.81
3.0 0000 -32.85 -34.13 -27.38 - 7.27
3.5 0000 -33.26 -35.82 -33.27 -26.24 - 6.82
4.0 0000 -33.39 -36.37 -35.18 -32.37 -25.23 - 6.43
4.5 0000 -33.44 -36.55 -35.84 -34.48 -31.57 -24.34 - 6.09
5.0 0000 -33.45 -3 6 .6 2 -36.07 -35.25 -33.87 -30.84 -23.54 - 5.81
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Table C.7 

Cheese no, 2 -

Assumption w = 0; std. size of the element; RO = 5 cm;

T = 30g; traverse = 5 cm; spacing = 1D; E = 200g; EY = 5000g;

Q

>Y 1 .0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1 .0 0000
1.5 734.7 606.0
2 .0 734.7 92.7 6 2 4 .2
2.5 734.7 41.0 42.1 659. 2
3.0 734.7 - 78.1 -119.7 77. 6 685.9
3.5 734.7 - 89.3 -168.4 - 97.5 113.4 70 6..5
4.0 734.7 - 92.9 -184.1 -154. 1 - 71.7 145«.3 7 2 2.,8
4.5 734.7 - 94.2 -189.5 -173. 6 -135.5 - 47.,8 173.,6 736.1
5.0 734.7 - 94.6 -191.5 -180.7 -15 8 .6 -118..0 - 25«.9 198.8 747.2

Z

1.0 000
1.5 584.7 345.0
2 .0 584.7 53.8 261.8
2.5 584.7 -2 2 .2 18.3 218.8
3.0 584.7 -43.3 -49.5 26.3 188.4
3.5 584.7 -49.7 -69.9 -3 1 . 8 3 1 . 6 165..5
4.0 584.7 -51.7 -76.5 -5 0 .6 -19.2 34«.4 147«.6

4.5 584.7 -52.5 -78.8 .-57.1 -3 6 .8 -1 0.,8 35«,8 133.3
5.0 584.7 -52.7 -79.7 -59.4 -43.1 -27«,2 - 4..9 36.3 121.5 .

2.dr 
r

1 .0 0000
1.5 1901 345
2 .0 1915 796 262
2.5 1529 524 642 219
3.0 1148 174 475 592 188
3.5 829 - 134 221 500 548 166
4.0 569 - 392 - 19 313 ' 507 511 148
4.5 353 - 606 - 228 122 367 504 477 133
5.0 172 - 787 - 406 - 50 214 398 495 448 121



C.8

Table C.8
Cheese no. 2

Assumption w = Q; std. size of the element; RO = 5 cm;

T = 30g; traverse = 5 cm; space = 1D; E = 200g; EY = 5000g;

rY 1.0 1.4 1.9 2.4 2.9 5.4 5.9 4.4 4.9

1.0 0000
1.5 0000 -210.3
2.0 0000 -723.6 -241.9
2.5 0000 -857.3 -824.0 -252.0
5.0 0000 -894.4 -985.7 -813.6 -219.6
5.5 0000 -905.6 -1034.4 -988.7 -792.1 -207.8
4.0 0000 -909.2 -10502 -1045 -977.2 -769.0 -197.3
4.5 0000 -910.5-1056 -1065 -1041 -962.1 -746.4 -187.9
5.0 0000 -910.9 -1058 -1072-1064 -1032 -945.9-725.2-179.6

,R
! -of-“r

1.0 0000
1.5 0000 -119.0
2.0 0000 -410.2 -101.0
2.5 0000 -486.2 -344.5 - 76.7
5.0 0000 -507.5 -412.3 -269.2 - 60.0'
5.5 0000 -515.7 -452.7 -327.3 -216.9 -48.7
4.0 0000 -515.7 -459.5 -346.1 -2.677 -179.6 - 40.1
4.5 0000 -516.5 -441.6 -352.6 -285.2 -224.8 -152.0 - 33.9
5.0 0000 -516.7 -442.4 -354.0 -291.6 -241.2 -192.7 -130.8 - 29.1

#R .R
Jr L i - d?-ar

1.0 0000
1.5 - 708 -119
2.0 - 2692 -1666 - 101
2.5
5.0
5.5
4.0
4.5
5.0

-  4680
- 6391
- 7844
- 9095 
-10184 
-11150

-5541
-5220
-6664
-7910
-8999
-9965

-1522
-2820
-4209
-5457
-6521
-7484

77 
-1035 
-2261 
-5436 
-4502 
-5458

- 60 
- 835 
-1864 
-2879 
-5817

- 48
- 692 
-1575 
-2465

- 40
- 585 
-1555

- 54
- 505 - 29



- C.9 -

Table C.9 

Cheese no.5

Assumption w = 0; std. size of the element; RO = 5 cm;

T = 10g; traverse = 5 cm; spacing = 1D; E = 200g; EY = 5000g;

- P

H \ r 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1.0 0000
1.5 1296 342
2.0 1742 1177 363
2.5 1858 1395 1236 373
3.0 1890 1455 1479 1309 379
3.5 1901 1473 1552 1591 1368 383.
4.0 1904 1479 1576 1682 1688 1417 385
4.5 1905 1481 1584 1713 1799 1773 1458 387
5.0 1905 1482 1587 1725 1839 1903 1848 1494 388

- U x 103

1.0 0000
1.5 0000 0.95
2.0 0000 3.28 1.25
2.5 0000 3.89 4.25 1.39
3.0 0000 4.06 5.08 4.86 1.51
3.5 0000 4.11 5.33 5.91 5.45 1.63
4.0 0000 4.12 5.42 6.25 6.73 6.03 1.74
4.5 0000 . 4.13 5.44 6.36 7.17 7.54 6.59 1.85
5.0 0000 4.13 5.45 6.41 7.33 8.10 8.35 7.13 1.95

dT
7>R°dR

1.0 oooo
1.5 0000 - 2.57
2 .0 0000 - 8 .8 6 - 2.79
2 .5 0000 -1 0 .5 0 - 9.51 - 2.60
3 .0 0000 -10.95 -11.38 - 9.15 - 2.42
3 .5  0000 -11.09-11.94-11.09-8.75-2.27
4 .0  0000 -11.13 -1 2 . 1 2 -11.73 «10.79 - 8.41 - 2.14
4 .5 0000 -11.15 -12.19 -11.95 -11.50 -1 0 . 5 2 - 8 . 1 1 - 2.03
5 .0  0000 -11.15 -1 2 .2 1 -12.03 -11.75 -11.29 -10.28 - 7.84 - 1.94



C.10

Table C.10
Cheese no, 3

Assumption w = 0; std. size of the element; RO = 5 cm;

T = 10g; traverse = 5 cm; spacing = 1D; E = 200g; ET = 5000g;

Q

■hV 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1.0 0000
1.5 244.9 202.0
2.0 244.9 30.9 208.1
2.5 244.9 -13.6 14.1 219.8
3.0 244.9 -26.0 -40.0 25.9 228.7
3.5 244.9 -29.7 -56.1 -32.5 37.8 235.5
4.0 244.9 -30.9 -61.3 -51.3 -23.9 48.4 240.9 -•
4.5 244.9- -31.3 -63.2 -57.8 -45.1 -15.9 57.9 245.4 •
5.0 244.9 -31.5 -63.8 -60.2 -52.9 -39.3 - 8.6 66.3 249.1

Z

1.0 0000
1.5 194.9 114.9
2.0 194.9 17.7 87.2
2.5 194.9 - 7.6 6.0 72.9
3.0 194.9 -14.6 -16.6 8.6 62.8
3.5 194.9 -16.8 -23.4 -10.7 10.4 55.1
4.0 194.9 -17.5 -25.6 -17.0 - 6.5 11.4 49.2
4.5 194.9 -17.7 -26.4 -19.1 -12.3 *- 3.7 11.8 44.4
5.0 194.9 -17.8 -26.7 -19.9 -14.5 - 9.2 - 1.7 12.0 40.5

] z.<
Jr

Ir

1.0 0000
1.5 632.9 114.9
2.0 636.8 264.6 87.2
2.5 507.3 173.2 213.5 72.9
3.0 379.9 56.2 157.1 196.5 62.8
3.5 273.4 - 47.1 7 2 .0 165.7 182.4 55.1
4.0 186.1 -133.3 - 8.3 102.9 “ 168.3 169.9 49.2
4.5 113.9 -205.1 - 78.1 39.1 121.3 167.2 158.8 44.4
5.0 53.2 -265.7 -138.0 - 18.5 69.7 131.7 164.1 149.0 40.5



C.11

Table C.11
Cheese no. 3

Assumption w = 0; std. size of the element; RO = 5 cm;

T = 10g; traverse = 5 cm; spacing = 1D; E = 200g; EY = 5000g;

dR

rV 1 .0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1 .0 0000
1.5 0000 - 70.1
2 .0 0000 -2 4 1 .1 - 80.6
2.5 0000 -285.7 -274.6 - 77.3
3.0 0000 -298.1 -328.6 -271.2 - 73.2

■ 3.5 0000 -301.8-344.8-329.6-264.0-69.3
4.0 0000 -303.0 -350.0 -348.4 -325.7 -256,3 - 65.7
4.5 0000 -303.4 -351.9 -354.9 -347.0 -320.7 -248.8 - 62.6
5 .0 0000 -3 0 3 .6 -35.2.5 -357.3 -354.7 -344.1 -315.3 -241 .2 - 59.9

3z
Jr3 R ,dR

1 .0 0000
1.5 0000 - 39,8
2 .0 0000 -136.9 - 33.7
2.5 0000 -162.3 -1 1 5 . 0  - 25.6
3.0 0000 -169.3 -137.5 - 89.9 - 2 0 .1
3.5 0000 -171.4 -144.3 -1 0 9 .2 - 72.4 - 16.1
4.0 0000 -172.1 -146.5 -115.5 - 89.3 - 59.9 - 13.4
4.5 0000 -172.4 -147.3 -117.6 - 95.2 - 75.0 - 50.7 - 11.3
5.0 0000 -172.4 -147.6 -118.4 - 97.3 - 80.5 - 64.3 - 43.7 - 9.7

dz
Jr Jr

1.0 0000
1.5 -236.5-39.8
2.0 -898.8 -556.3 - 33.7
2.5 -1562 -1182 -441 - 25.6
3.0 -2133 -1742 -941 - 3 4 5 - 2 0 . 1
3.5 -2617 -2224 -1405 - 755 - 279
4.0 -3035-2639 -1814 -1147 -622
4.5 -3398 -3003 -2176 -1502 - 961
5.0 -3721 -3325 -2497 -1821 -1274

16.2
231
525
822

13.4
195
452

11.3
168 9.7



- C.12

Table C.12 
Cheese no. 4

Assumption w = 0; std. size of the element; RO = 5 cm;

T = 20g; traverse = 5 cm; spacing = 2D; E = 200g; EY = 2000g;

- P " ' ' "

R \ r 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1.0 0000
1.5 1345 342
2.0 1889 1257 363
2.5 2056 1536 1305 373
■3.0 2109 1626 1608 1377 379
3.5 2128 1657 1711 1722 1436 383
4.0 2134 1688 1749 1849 1823 1484 386
4.5 2137 1673 1764 1897 ..1972 1910 1524 387
5.0 2138 1674 1770 1917 2033 2083 1986 1559 388

, - - U x 103 ...

1.0 0000
1.5 0000 4.05
2.0 0000 14.89 5.52
2.5 0000 18.20 19.88 6.18
3.0 0000 19.27 24.49 22.79 6.74
3.5 0000 19.63 26.07 28.50 25.51 7.27
4.0 0000 19.76 26.64 30.58 32.38 28.15 7.64
4.5 0000 19.81 26.87 31.40... 35.04 36.23 30.71 8. 24 .
5.0 0000 19.84 26.96 31.73 36.12 39.51 40.02 33.18 8.69

ra S t ..
. ....... . Jr 'SR-CLii .......

1.0 0000
1.5 0000 - 4.37
2.0 0000 -16.07 - 4.95
2.5 0000 -19.65 -17.81 - 4.64
3.0 0000 -20.80 -21.93 -17.11 - 4.32
3.5 0000 -21.20 -23.34 -21.40 -16.36 - 4.05
4.0 0000 -21.34 -23.86 -22.97 -20.77 -15.70 - 3.82
4.5 0000 -21.40 -24.06 -23.57 -22.48 -20.21 -15.12 - 3.63

- 5.0 0000 -21.42 -24.15 -23.82 -23.17 -22.04 -19.70 -14.60 - 3.46



C.13 -

Table C.15 

Cheese no, 4

Assumption w = 0; std. size of the element; RO = 5 cm;

T = 20g; traverse = 5 cm; spacing = 2D; E = 200g; EY = 2000g;

Q

eV 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1.0 0000
1.5 244.9 212.5
2.0 244.9 53.0 217.2
2.5 244.9 4.3 31.5 288.1
5.0 244.9 -11.3 -28.0 42.8 236.6
3.5 244.9 -16.7 -48.5 -20.9 54.8 242.9
4.0 244.9 -18.6 -55.9 -44.2 -11.7 65.4 248.0
4.5 244.9 -19.4 -58.9 -53.2 -37.5 - 3.2 74.8 2 5 2 .1
5.0 244.9 -19.7 -60.0 -56.9 -47.9 -31.1 4.5 83.1 255.6

Z

1.0 0000
1.5 194.9 121.0
2.0 .194.9 30.8 91.2
2.5 194.9 3.1 13.6 75.8
3.0 194.9 - 5.7 -11.3 14.5 65.0
3.5 194.9 - 8.8 -19.9 - 6.6 15.3 57.0
4.0 194.9 - 9.9 -23.1 -14.3 - 2.9 15.5 50.7
4.5 194.9 -10.3 -24.3 -17.3 -10.0 - 0.5 15.5 45.7
5.0 194.9 -10.5 -24.8 -18.6 -12.9 - 7.0 1.1 15.2 41.6

,R Z.dr
r

1.0 0000
1.5 670.7 121.0
2.0 729.7 319.2 91.2
2.5 621.7 253.9 249.3 75.8
3.0 499.7 145.5 212.8 224.5 65.0
3.5 393.2 43.7 135.7 211.3 205.4 57.0
4.0 304.5 - 43.2 57.8 156.7 207.2 189.3 50.7
4.5 230.7 -116.3 - 11.9 96.1 168.4 201.1 175.5 45.7
5.0 168.6 -178.3 - 72.4 39.3 120.5 173.7 194.0 163.6 41.6



C.14

Table C.14
Cheese no. 4

T = 20g; traverse = 5 cm; spacing = 2D; E = 200g; EY = 2000g;

Assumption w = 0; std. size of the element; RO = 5 cm;

,R
■&R.dR

A r 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1.0 0000
1.5 0000 - 59.7
2.0 0000 -219.1 - 71.5
2.5 0000 -267.8 -257.2 - 68.9
3.0 0000 -283.4 -316.7 -254.3 - 65.3
3.5 0000 -288.8 -337.2 -318.0 -247.0 - 61.8
4.0 0000 -290.7 -344.7 -341.3 -313.6 -239.3 - 58.6
4.5 0000 -291.5 -347.6 -350.3 -339.3 -308.0 -231.9 - 55.9
5.0 0000 -291.5 -348.7 -354.0 -349.7 -335.8 -302.2 -224.9 - 53.4

!> «
1.0 0000
1.5 0000 - 33.6
2.0 0000 -123.8 - 29.8
2.5 0000 -151.5 -107.3 - 22.7
3.0 0000 -160.4 -132.3 - 84.0 - 17.8
3.5 0000 -163.5 -140.8 -105.1 - 67.5 - 14.4
4.0 0000 -164.6 -144.0 -112.9 - 85.8 - 55.8 - 11.9
4.5 . 0000 -165.0 -145.2 -115.8 - 92.8 - 71.8 - 47.1 - 10*0
5.0 0000 -165.2 -145.6 -117.1 - 95.7 - 78.4 - 61.4 - 40.5 - 8.6

-R .R
1.
J p ^ d R . d r  ......

1.0 0000
1 *5 - 199 - 34
2.0 - 805 - 502 - 30
2.5 -1448 -1101 - 406 - 2 3
3.0 -2013 -1653 - 885 -317 - 18
3.5 -2498 -2133 -1341 - 709 - 256 - 14
4.0 -2916 -2549 -1748 -1093 - 583 - 212 - 12
4.5 -3282 -2914 -2110 -1445 „ 9 H  - 491 - 179 - 10
5.0 -3605 -3237 -2432 - 1 7 6 3 - 1 2 2 3 - 7 8 0  -422 - 1 5 4 - 9  -



C.15

T = 20g; traverse = 5 cm; spacing = 3D; E = 200g; EY = 2000g;

- P

Table C.15
Cheese no.5

Assumption w = 0; std. size of the element; RO = 5 cm;

r V 1.0 1.4 1.9 2.4 2.9 3.4 5.9 4.4 4.9
1.0 0000
1.5 834 228
2.0 1082 742 242
2.5 1158 858 786 249
5.0 1151 886 919 835 253
5.5 1155 894 955 992 874 255
4.0 1156 896 965 1037 1054 907 257
4.5 1156 897 968 1051 1110 1109 955 258
5.0 1157 897 969 1056 1128 1176 1158 959 259

- U x 'I03 -

1.0 0000
1.5 0000 5.41
2.0 0000 17.61 6.86
2.5 0000 20.36 22.31 7.61
5.0 0000 21.04 26.08 25.54 8.30
5.5 0000 21.22 27.09 30.35 28.71 8.95
4.0 0000 21.27 27.39 51.72 34.61 31.80 9.56
4.5 0000 21.29 27.48 52.15 36.44 38.88 54.80 10.14
5.0 0000 21.29 27.51 32.29 37.04 41.21 45.10 57.71 10.70

rR c)t ..

1.0 0000
1.5 0000 - 5.84
2.0 0000 -19.01 - 6.14
2.5 0000 -21.99 -19.98 - 5.71
5.0 0000 -22.72 -23.56 -19.18 - 5.32
5.5 0000 -22.91 -24.26 -22.74 -18.41. - 4.99
4.0 0000 -22.97 -24.52 -23.81 -22.20 -17.74 - 4.7
4.5 0000 -22.98 -24.61 -24.14 -23.37 -21.68 -17.14 - 4.46
5.0 0000 -22.98 -24.63 -24.24 -23.76 -22.98 -21.22 -16.60 - 4.25



C.16

T = 20g; traverse = 5 cm; spacing = 3D; E = 200g; EY = 2000g;

Q

Table C.16
Cheese no. 5

Assumption w = 0; std. size of the element; RO = 5 cm;

r V 1.0 1.4 1.9 2.4 2.9 . 3.4 . 3.9 4.4 4.9
1.0 0000
1.5 163.3 128.3
2 .0 163.3 8.7 133.3
2.5 163.3 -18.3 0.1 141.4
3.0 163.3 -24.9 -32.5 8.1 147.6
3.5 163.3 -26.6 -41.2 -27.6 15.9 152.5
4.0 163.3 -27.1 -43.6 -37.9 -22.2 22.9 156.3
4.5 163.3 -27.3 -44.4 -41.1 -34.0 -17.2 29.2 159.5
5.0 163.3 -27.3 -44.7 -42.1 -37.9 -30.3 -12.5 34.9 162.1

- Z
1.0 0000
1.5 129.9 73.1
2.0 129.9 5.3 55.9
2.5 129.9 -10.0 0.2 47.0
3.0 129.9 -13.8 -13.4 2.8 40.6
3.5 129.9 -14.8 -17.1 - 9.0 4.5 35.7
4.0 129.9 -15.1 -18.1 -12.4 - 5.9 5.5 32.0
4.5 129.9 -15.2 -18.4 -13.5 - 9.2 - 3.9 6.1 28.9
5.0 129.9 -15.2 -18.5 -13.8 -10.3 - 7.0 - 2.4 6.4 26.4

Z.dr
r

1.0 0000
1.5 400.6 73.1
2.0 377.0 148.4 55.9
2.5 282.4 76.2 123.8 50.1
3.0 196.2 - 4.5 77.3 116.4 40.6
3.5 126.1 -73.2 17.8 87.9 109.6 35.7
4.0 69.1 -129.7 - 36.1 42.9 92.9 103.1 3 2 .0

4.5 22.2 -176.6 - 82.1 - 0.3 58.5 94.7 97.2
5.0 -17.3 -216.0 -121.3 -38.5 23.1 67.9 94.7

28.9
91.8 26.4



C. 17

Table C.17

Cheese no, 5

Assumption w = 0; std. size of the element; RO = 5 cm;

T = 20g; traverse = 5 cm; spacing = 3D; E = 200g; EY = 2000g;

f•*T*‘3R.dR
R \ r 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1.0 0000
1.5 0000 - 53.1
2.0 0000 -172.7 - 59.2
2.5 0000 -199.7-192.4-56.6
3.0 0000 -206.3 -224.9 -190.0 - 53.6
3.5 0000 -208.0 -233.6 -225.6 -185.3 - 50.7
4.0 0000 -208.5 -236.1 -235.9 -223.4 -180.2 - 48.1
4.5 0000 -208.7 -236.9 -239.1 -235.2 -220.3 -175.2 - 45.9
5.0 0000 -208.7 -237.2 -240.2 -239.1 -233.5 -217.0 -170.4 - 43.8

1.0 0000
1.5 0000 - 30.0
2.0 0000 - 97.8 - 24.7
2.5 0000 -113.1 - 80.4 - 18.7
3.0 0000 -116.9 - 94.0 - 62.8 - 14.6
3.5 0000 -117.9 - 97.7 - 74.6 - 50.7 - 11.8
4.0 0000 -118.2 - 98.7 - 78.1 - 61.2 - 42.0 - 9.8
4.5 0000 -118.3 - 99.0 - 79.1 - 64.4 - 51.4 - 35.6 - 8.2
5.0 0000 -118.3 - 99.2 - 79.5 - 65.5 - 54.5 - 44.1 - 30.7 - 7.1

1.0 0000
1.5 - 179 - 30
2.0 - 647 - 399 - 25
2.5 -1097 - 827 - 313 - 19
3.0 -1479 -1203 - 655 - 245 - 15
3.5 -1801 -1524 - 967 - 526 - 198 - 12
4.0 -2078 -1800 -1240 - 790 - 434 - 164 - 8
4.5 -2319 -2042 -1481 -1028 -663 -367 -139 - 8
5.0 . -2533 -2255 -1694 -1240 - 8 7 3 - 5 6 8  -316 -120 - 7



C»18

T = 20g; traverse = 7,5 cm; spacing = 1D; E = 200g; EY = 5000g;

Table C.18
Cheese no. 6

Assumption w = 0; std. size of the element; RO = 5 cm;

- P

R \ r 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1.0 0000
1.5 1993 491
2.0 5060 2008 547
2.5 3449 2562 2073 578
3.0 3587 2758 2613 .2201 597
3.5 3638 2829 2810 2794 2308 609
4.0 3657 2857 2885 3021 2961 2395 617
4.5 3664 2867 2915 3111 3221 3106 2467 623
5.0 3668 ■ 2872 2928 3149 3329 3400 3233 2528 627

U x 10-5
1.0 0000
1.5 0000 1.58
2.0 0000 6.47 2.34
2.5 0000 8.25 8.86 2.60
3.0 0000 8.89 11.17 ' 9.88 2.80
3.5 0000 . 9.12 12.02 12.55 10.82 2.99
4.0 0000 9.20 12.34 13.57 13.88 11.77 3.18
4.5 0000 9.24 12.47 13.97 15.10 15.26 12.72 3.36
5.0 0000 9.25 12.52 14.12 15.61 16.71 16.66 13.65 3.54

IrR .
JIr i»R,CUt

1.0 0000
1.5 0000 - 3.27
2.0 0000 -13.38 - 4.41
2.5 0000 -17.07 -16.73 - 4.34
3.0 0000 -18.38 -21.08 -16.51 - 4.13
3.5 0000 -18.85 -22.68 -20.96 -15.95 - 3.92
4.0 0000 -19.04 -23.28 -22.66 -20.47 -15.41 - 3.73
4.5 0000 -19.11 -23.53 -23.34 -22.27 -19.98 -14.91 - 3.56
5.0 0000 -19.14 -23.63 -23.62 -23.01 -21.88 -19.53 -14.45 - 3.41



C.19

Table C.19
Cheese no. 6

T = 20g; traverse = 7.5 cm; spacing = 1D ; E = 200g; EY = 5000g;

Assumption w = 0; std. size of the element; RO = 5 cm;

Q
R N r 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 - 4.9
1.0 0000
1.5 329.9 326.8
2.0 329.9 128.9 339.0
2.5 329.9 56.7 70.9 360.2
3.0 329.9 31.2 -2 3 .8 80.1 377.0
3.5 329.9 21.9 -58.5 -22.3 96.0 389.7
4.0 329.9 18.3. -71.7 -61.4 -11.3 111.2 399.6
4.5 329.9 16.9 -77.0 -77.0 -54.0 0.3 125.0 407.5
5.0 329.9 16.3 -79.2 -83.4 -71.7 -45.6 11.4 137.6 414.0

Z

1.0 0000
1.5 590.7 418.5
2.0 590.7 166.2 319.8
2.5 590.7 84.1 67.8 269.3
3.0 590.7 41.4 -21.9 60.6 233.1
3.5 590.7 29.4 -54.6 -16.2 59.7 205.5
4.0 590.7 24.9 -66.9 -45.3 - 6.6 59.1 183.6
4.5 590.7 23.1 -72.0 -56.9 -33.0 0.6 57.9 165.9
5.0 590.7 21.8 -73.9 -61.7 -43.8 -23.6 5.6 56.3 151.4

*Rf Z.dr Jr

1.0 0000
1.5 2280 420 ..-
2.0 2770 1287 321
2.5 2496 1170 945 270
3.0 2120 822 858 831 234
3.5 1745 318 597 795 756 207
4.0 1424 153 321 621 777 696 183
4.5 1154 -117 66 405 -642 .747 642 168
5.0 924. -345 -156 198 . 471 651 717 600 153



- C« 20

Table C.20

Cheese no. 6

Assumption w = 0; std. size of the element; RO = 5 cm;

T = 20g; traverse » 7.5 cm; spacing = 1D ; E = 200g; EY = 5000g;

dR

R r 1 .0 1 . 4  1 .9  2 .4  2 .9  3 .4 3 .9  4 . 4 ........4 .9
1 .0 0 0 0 0
1 .5 0 0 0 0 -  6 4 .1
2 .0 0 0 0 0 - 2 6 2 .1  -  9 6 .0
2 .5 0 0 0 0 - 3 3 4 . 2 - 3 6 4 . 1 - 9 9 .8
3 . 0 0 0 0 0 - 3 5 9 . 7 - 4 5 8 . 8 - 3 7 9 . 9 - 9 8 .1  .

3 .5 0 0 0 0 - 3 6 9 .1  - 4 9 3 .5  - 4 8 2 .3  - 3 7 9 .1  -  9 5 .0
4 . 0 0 0 0 0 - 3 7 2 .6  - 5 0 6 .7  - 5 2 1 .4  - 4 8 6 .4  - 3 7 3 .5 - 9 1 .6
4 .5 0 0 0 0 - 3 7 4 .0  - 5 1 2 .0  - 5 3 7 .0  - 5 2 9 .0  - 4 8 4 .4 - 3 6 6 ,2  -  8 8 .3
5 .0 0 0 0 0 - 3 7 4 .6  - 5 1 4 .2  - 5 4 3 .4  - 5 4 6 .8  - 5 3 0 .4 . 479.8 - 3 5 8 .2  -  8 5 .1

JrT>RedR
1 .0 0 0 0 0
1 .5 0 0 0 0 -  8 1 .6
2 .0 0 0 0 0 - 3 3 3 .9  -  9 0 .6
2 .5 0 0 0 0 - 4 2 6 .0  - 3 4 2 .3  -  7 4 .1
3 . 0 0 0 0 0 - 4 5 8 .7  - 4 3 1 .7  - 2 8 2 .9  -  6 0 .3
3 .5 0 0 0 0 - 4 7 0 .7  - 4 6 4 .4  - 3 5 9 .4  - 2 3 3 .7  -  4 9 .5
4 . 0 0 0 0 0 - 4 7 5 .2  - 4 7 7 .0  - 3 8 8 .5  - 3 0 0 .0  - 1 9 6 .5 -  4 2 .0
4 . 5 ' 0 0 0 0 - 4 7 7 .0  - 4 8 1 .8  - 4 0 0 .2  - 3 2 6 .4  - 2 6 4 .7 - 1 6 8 . 0 - 3 6 .0  .

5 .0 0 0 0 0 - 4 7 7 .9  - 4 8 3 .9  - 4 0 5 .0  - 3 3 7 .2  - 2 7 9 .0 - 2 1 9 .9  - 1 3 5 .5  -  3 1 .2

f j H-dE-toJr Jr
1 .0 0 0 0 0
1 .5 -  441 -  81
2 .0 -  2172 -  1434  -  90
2 .5 -  4269 -  3 3 9 3  - 1 3 0 8  -  75
3 .0 -  6225 -  5301  -2 9 5 5  - 1 0 7 4  -  60
3 .5 -  7 9 4 7 -  70 0 5  - 4 5 6 3  - 2 4 4 5  8 8 8  -  51
4 . 0 -  94 5 3 -  8 5 0 2  - 6 0 2 7  - 38 1 6  - 2 0 4 9  -  7 47 -  4 2
4 .5 -1 0 7 7 9 -  9 8 2 5  - 7 3 3 5  - 5 0 8 8  - 3 2 4 0  - 1 7 4 9 -  639  -  36
5 .0 - 1 1 9 5 8 - 1 1 0 0 4  - 8 5 0 5  - 6 2 4 3  - 4 3 6 2  - 2 7 9 9 - 1 5 1 5  -  552  -  33



C.21

T = 20g; traverse = 2.5 cm; spacing = 1D; E = 200g; EY = 5000g;

Table C.21
Cheese no. 7

Assumption w = 0; std. size of the element; RO = 5 cm;

- P

H \ r 1.0 1.4 1.9 2.4 2.9 5.4 3.9 4.4 ■ 4.9
1.0 0000
1.5 2859 899
2.0 5285 2401 914
2.5 3343 2608 2587 922
3.0 3353 2642 2865 2749 925
3.5 3355 2649 2919 5102 2885 928
4.0 3355 2650 2930 5179’ 5508 2996 929
4.5 3355 2651 2933 5197' 5410 5491 3094 930
5.0 3355 2651 2934 5202 5457 5620 3655 5180 931

- U x 103

1.0 0000
1.5 .0000 2.62
2.0 0000 7.00 5.15
2.5 0000 7.61 8.91 3.53
3.0 0000 7.71 9.86 10.54 3.88
3.5 0000 7.73 10.05 11.89 12.09 4.20
4.0 0000 7.73 10.09 12.18 13.89 13.58 4.51
4.5 0000 7.73 10.10 12.25 14.31 15.82 15.00 4.79
5.0. . 0000 7.73 10.10 12.27 14.42 16.41 17.73 16.37 5.06

fH -“Jr ■
1.0 0000
1.5 0000 - 8.66
2.0 0000 -25.15 - 7.95
2.5 0000 -25.14 -22.45 - 7.16
3.0 0000 -25.47 -24.86 -21.57 - 6.57
3.5 0000 -25.55 -25.53 -24.11 -20.47 - 6.10
4.0 0000 -25.55 -25.43 -24.71 -^25.49 -19.70 - 5.72
4.5 0000 -25.55 -25.46 -24.85 -24.21 -22.96 -19.04 - 5.40
5.0 0000 -25.55 -25.46 -24.88 -24.40 -25.80 -22.49 -18.45 - 5.13



C.22

T = 20g; traverse = 2,5 cm; spacing = 1D; B = 200g; EY = 5000g;

Table C.22
Cheese no. 7

Assumption w = 0; std. size of the element; RO = 5 cm;

Q
R \ r 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1.0 0000
1.5 690.6 405.3
2.0 690.6 -112.6 438.9
2.5 690.6 -183.8 - 89.2 470.7
3.0 690.6 -195.6 -176.9 - 50.1 »494.5
3.5 690.6 -197.9 -193.9 -150.7 - 17.2 513,,1
4.0 690.6 -198.4 -197.6 -172.5 -128.4 11,.0 528.1
4.5 690.6 -198.5 -198.5 -177,8 -154.9 -109,,1 35.6 .540.5
5.0 690.6 -198.5 -198.7 -179.1 -161.9 -140,.3 - 92.1 57.2 550.9

Z

1.0 0000
1.5 137.4 57.7
2.0 137.4 -16.0 46.0
2.5 137.4 -26.1 - 9.3 39.1
3.0 137.4 -27.8 -18.5 - 4.1 34.0
3.5 137.4 -28.2 -20.3 -12.5 - 1.2 30.1
4.0 137.4 -28.2 -20.7 -14.3 - 8.8 0.7 27.0
4.5 137.4 -28.2 -20,8 -14.7 -10.6 - 6,4 1.9 24.5
5.0 137.4 -28.2 -20.8 .-14.9 -11.1 - 8.2 -4.7 2.6 22.4

Z.dr 
r ■

1.0 0000 .............
1.5 304 58
2.0 204 55 46
2.5 97 - 39 67 39
3.0 14 -119 5 72 34
3.5 - 52 -184 - 56 30 73 30
4.0 -104 -236 -107 - 17 44 72 27
4.5 -146 -278 -150 - 59 - 6 51 70
5.0 -182 -314 -186 - 95 ■ - 29 21 56 23



C.23

Table C.23
Cheese noa 7

Assumption w = 0; std. size of the element; ' RO = 5 cm;

T = 20g; traverse = 2.5 cm; spacing » 1D ; E = 200g; EY = 5000g;

dR

R\r 1 .0 1 .4  1 .9 2 .4 2 .9  3 . 4 3 .9  4 . 4  4 .9
1 .0 0 0 0 0
1 .5 0 0 0 0 - 3 0 9 .7
2 .0 0 0 0 0 - 8 2 7 .6  - 2 8 8 .6
2 .5 0 0 0 0 - 8 9 8 .8  - 8 1 6 ,7 - 2 6 2 .6
5 . 0 0 0 0 0 - 9 1 0 .6  - 9 0 4 .5 - 7 8 3 .5 - 2 4 1 .9
3 .5 0 0 0 0 - 9 1 2 .9  - 9 2 1 .5 - 8 8 4 .0 - 7 5 3 .6  - 2 2 5 .2
4 . 0 0 0 0 0 - 9 1 3 .4  - 9 2 5 .1 - 9 0 5 .9 - 8 6 4 .8  - 7 2 7 .3 - 2 1 1 .4
4 .5 0 0 0 0 - 9 1 3 .5  - 9 2 6 .0 - 9 1 1 .1 - 8 9 1 .4  - 8 4 7 .4 - 7 0 3 .9  - 1 9 9 .8
5 .0 0 0 0 0 - 9 1 3 .6  - 9 2 6 .3 - 9 1 2 .4 - 8 9 8 .3  - 8 7 8 .6 - 8 3 1 .6  - 6 8 3 .1  - 1 8 9 .9

,R _
| I f - “

■ ■ ■ ■

1 .0 0 0 0 0
1 .5 0 0 0 0 -  4 4 .0
2 .0 0 0 0 0 - 1 1 7 .6  - 3 0 .2
2 .5 0 0 0 0 - 1 2 7 .3  - 8 5 .5 - 2 1 .8
3 . 0 0 0 0 0 - 1 2 9 .4  - 9 4 .7 - 6 4 .9 - 1 6 .6
3 .5 0 0 0 0 - 1 2 9 .8  - 9 6 .5 - 7 3 .3 - 5 1 .6  - 1 3 .2
4 . 0 0 0 0 0 - 1 2 9 .8  - 9 6 .8 - 7 5 .0 - 5 9 .3  - 4 2 .5 - 1 0 .8
4 . 5, 0 0 0 0 - 1 2 9 .8  - 9 6 .9 - 7 5 .5 - 6 1 .1  - 4 9 .6 - 3 5 .9  -  9 . 0
5 .0 0 0 0 0 - 1 2 9 .8  - 9 6 .9 - 7 5 .6 - 6 1 .6  - 5 1 .4 - 4 2 .4  - 3 0 .9  -  7 . 7

j Y - i - ^'r r
1 .0 0 0 0 0
1 .5 -  287 -  4 4
2 .0 -  8 1 4 -  4 76  -  30
2 .5 - 1 2 5 3 -  8 9 8  -  342 -  22
3 . 0 - 1 6 0 8 -1 2 5 1  -  675 -  261 -  17
3 .5 - 1 9 0 2 - 1 5 4 5  _  966-  533 - 2 0 8  -  13
4 . 0 - 2 1 5 3 - 1 7 9 6  - 1 2 1 6 -  7 7 4 -  4 36  -  172 -  11
4 .5 -2 3 7 1 - 2 0 1 4  - 1 4 3 4 -  996 - 6 4 9  -  3 67 - 1 4 4  -  9
5 . 0 - 2 5 6 4 - 2 2 0 6  - 1 6 2 6 - 1 1 8 8 -  8 4 0  -  5 54 - 315 - 124 - 8



C„24

T = 20g; traverse = 5 cm; spacing = 1D; E = 100g; EY = 5000g;

Table Co24
Cheese no. 8

Assumption w = 0} std. size of the element; RO = 5 cm;

- P
r V 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1.0 0000
1.5 2224 683
2.0 2630 1890 726
2.5 2687 2061 2046 747
3.0 2697 2088 2256 2187 759
3.5 2698 2092 2293 2444 2302 766
4.0 2698 2093 2301 2496 2609 2400 771
4.5 2699 2094 2302 2507 2676 2756 2485 774
5.0 2699 2094 2303 2510 2692 2839 2888 2559 776

- U i 103
1.0 0000
1.5 0000 3.01
2.0 0000 8.31 3.57
2.5 0000 9.06 10.08 3.95
3.0 0000 9.18 11.11 11.58 4.31
3.5 0000 9.20 11.30 12.94 13.08 4.65
4.0 0000 9.20 11.33 13.21 14.83 14.56 4.96
4.5 0000 9.20 11.34 13.27 15.21 16.72 16.00 5.27
5.0- 0000 9.20 11.34 13.29 15.29 17.23 18.60 17.40 5.55

6 t
•*R#dR

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

0000
0000 - 8.11
0000 -22.44 - 8.00
0000 -24.45 -22.56
0000 -24.77 -24.87
0000 -24.83 -25.29
0000 -24.84 -25.37
0000 -24.85 -25.39
0000 -24.85 -25.39

- 7.42
-21.73 - 6.91 
-24.29 -20.98 - 6.48 
-24.80 -23.77 -20.30 
-24.91 -24.38 -23.31 
-24.94 -24.52 -24.02

-  6.11
-19.70 - 5.79 
-22.90 -19.15 - 5.52



C.25

Cheese no. 8

Assumption w = 0; std. size of the element; RO = 5 cm;

T = 20g; traverse = 5 cm; spacing = 1D; E = 100g; EY = 5000g;

Table C.25 • •

Q
rV 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 • 4.9
1.0 0000
1.5 489.8 323.2
2.0 489.8 - 66.6 346.3
2.5 489.8 -121.4 - 74.1 373.7
3.0 489.8 -130.1 -140.8 - 51.5 395.0
3.5 489.8 .-131.7 -152.8 -127.7 - 29.5 412.0
4.0 489.8 -132.0 -155.2 -142.8 -113.9 - 9.2 425.9
4.5 489.8 -132.1 -155.7 -146.1 -132.3 -100.9 9.2 ,437.5
5.0 489.8 -132.1 -155.8 -146.9 -136.6 -122.5 - 88.8 26.0 447.4

Z

1.0 0000
1.5 389.8 183.8
'2.0 389.8 -37.7 145.1
2.5 389.8 -68.9 -30.9 123.9
3.0 389.8 -73.8 -58.9 -17.1 108.4
3.5 389.8 -74.7 -63.9 -42.3 - 8.1 -96.4
4.0 389.8 -74.9 -64.9 -47.3 -31.2 - 2.1 86.9
4.5 389.8 -74.9 -65.1 -48.4 -36.3 -23.6 1.9 79.1
5.0. 389.8 -74.9 -65.2 -48.7 -37.5 -28.7 -18.1 4.7 72.7

i ZJr »dr

1.0 0000
1.5 , 981 184
2.0 703 196 145
2.5 359 - 106 199 124 ■
3.0 . 85 - 374 - 13 211 108
3.5 -131 - 589 -217 59 214 96
4.0 -305 - 763 -390 -102 103 212 87
4.5 -449 - 907 -534 -244 - 27 131 207 79
5.0 -571 -1029 -655 -365 -146 24 148 202 73



C.26

Table C.26
Cheese no, 8

Assumption w = 0; std. size of the element; RO = 5 cm;

T = 20g; traverse = 5 cm; spacing = 1D; E = 100g; El = 5000g;

R \ r 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1.0 0000
1.5 0000 -221.0
2.0 0000 -610.8 -231.1
2.5 0000 -665.6 -651.5 -220.5
3.0 0000 -674.4 -718.2 -645.7 -208.7
3.5 0000 -675.9 -730.2 -721.8 -633.2 -197.5
4.0 0000 -676.2 -732.5 -737.0 -717.6 -618.7 -187.4
4.5 0000 -676.3 -733.1 -740.2 -735.9 -710.4 -604.1 -178.5
5.0 0000 -676.3 -733.2 -741.0 -740.3 -732.0 -702.2 -589.9 -170.5

1.0 0000
1.5 0000 -125.5
2.0 0000 -347.0 - 96.7
2.5 0000 -378.2 -272.8 - 73-1
3.0 0000 -383.2 -300.8 -214.1 - 57.2
3.5 0000 -384.1 -305.8 -239.3 -173.7 - 46.2
4.0 0000 -384.2 -306.8 -244.3 -196.9 -144.8 - 38.2
4.5 0000 -384.3 -307.0-245.4 -202.0 -166.3 -123.3 - 32.3
5.0 0000 -384.3 -307.0 -245.6 -203.1 -171.3 -143.3 -106.7 - 27.7

,R f R i_l r  i r ' s i - ' f f i - d r
1.0 0000
1.5 - 758 - 126
2.0 -2369 -1446 - 97
2.5 -3779 -2315 -1110 - 73
3.0 -4940 -3970 -2209 - 873 —  57
3.5 -5913 -4942 -3171 -1781 - 708 - 46
4.0 -6747 -5775 -4002 -2602 -1478 - 590 - 38
4.5 -7474 -6502 -4729 -3327 -2192 -1254 - 501 - 32
5.0 -8119 -7147 -5374 -3971 -2833 -1884 -1083 - 433 - 28



C.27

Table C.27
Cheese no, 9

Assumption w = 0; std. size of the element; RO = 5 cm;

T = 20g; traverse = 5 cm; spacing ■ 1D; E = 400g; EY = 5000g;
■ - P

rV 1 .0 1 .4 1 .9 2 .4 2 .9 3 .4 3 .9 4 . 4  4 .9

1 .0 0 0 0 0
1 .5 2867 684
2 .0 44 0 7 28 5 4 726
2 .5 5037 3742 2901 747
5 .0 5 2 9 8 41 0 9 3801 3031 759
3 .5 5411 42 6 9 41 9 2 4 0 2 4 31 4 3 766
4 . 0 5463 43 4 2 43 7 0 44 7 6 4230 3 2 3 4 771
4 .5 5487 43 7 7 4455 4691 47 4 7 44 0 7 3 3 0 9 7 74
5 .0 5499 43 9 4 44 9 7 4 7 9 8 50 0 2 49 8 6 4561 33 7 3  7 76

-  U x 'I0 3

1 .0 0 0 0 0
1 .5 0 0 0 0 1 .1 2
2 .0 0 0 0 0 4 .6 9 1 .6 9
2 .5 0 0 0 0 6 .1 5 6 .7 7 1 .9 3
3 . 0 0 0 0 0 6 .7 5 8 .8 7 7 .8 4 2 .1 1
3 .5 0 0 0 0 7 .0 1 9 .7 8 1 0 .4 0 8 .7 5 2 .2 8
4 . 0 0 0 0 0 7 .1 3 1 0 .2 0 1 1 .5 7 1 1 .7 8 9 .6 2 2 .4 4
4 .5 0 0 0 0 7 .1 9 1 0 .4 0 1 2 .1 3 1 3 .2 2 1 3 .1 1 1 0 .4 6 2 .5 9
5 .0 0 0 0 0 7 .2 2 1 0 .4 9 1 2 .4 1 1 3 .9 3 1 4 .8 4 1 4 .4 2 1 1 .2 6  2 .7 3

flf.dRJr
1 .0 0 0 0 0
1 .5 0 0 0 0 -  3 .0 3
2 .0 0 0 0 0 - 1 2 .6 5 -  3 .7 9
2 .5 0 0 0 0 - 1 6 .5 9 - 1 5 .1 5 -  3 .6 2
3 .0 0 0 0 0 - 1 8 .2 2 - 1 9 .8 5 - 1 4 .7 1 -  3 .3 9
3 .5 0 0 0 0 - 1 8 .9 3 - 2 1 .9 0 - 1 9 .5 3 - 1 4 .0 3 -  3 .1 8
4 . 0 0 0 0 0 - 1 9 .2 5 - 2 2 .8 3 - 2 1 .7 3 - 1 8 .8 9 - 1 3 .4 2 -  3 .0 0
4 .5 0 0 0 0 - 1 9 .4 0 - 2 3 .2 7 - 2 2 .7 7 - 2 1 .1 9 - 1 8 .2 8 - 1 2 .8 7 -  2 .8 4
5 . 0 0 0 0 0 - 1 9 .4 8 - 2 3 .4 9 - 2 3 .2 9 - 2 2 .3 3 - 2 0 .6 9 - 1 7 .7 4 .C\J1o.CMT—



C. 28

T = 20g; traverse = 5 cm; spacing = 1D; E = 400g; EY = 5000g;

Table C»28
Cheese no. 9

Assumption w = 0; std. size of the element; R0 = 5 cm;

Q

r V 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1.0 000
1.5 489.8 461.6
2.0 489.8 199.6 467.9
2.5 489.8 92.5 139.8 486.5
3.0 489.8 48.1 4.0 157.0 501.4
3.5 489.8 28.8 -55.0 13.9 180.0 512.7
4.0 489.8 20.1 -81.8 -51.4 33.5 200.6 521.4
4.5 489.8 15.9 -94.7 -82.4 -36.1 5 2 .2 218.5 528.4
5.0 489.8 13.8 -101.0 -97.7 -70.5 -20.9 69.1 234.2 534.1

Z

1.0 0000
1.5 389.8 262.4
2.0 389.8 113.6 196.0
2.5 389.8 52.7 58.6 161.3
3.0 389.8 27.5 1.8 52.1 137.6
3.5 389.8 • 16.6 -22.9 4.6 49.4 120.0
4.0 389.8 11.6 -34.2 -17.0 9.2 47.0 106.4
4.5 389.8 9.2 -39.6 -27.3 - 9.9 12.2 44.6 95.6
5.0 389.8 8.0 -42.2 -32.5 -19.3 - 4.8 14.1 42.4 86.7

1 Z -r
.dr

1.0 0000
1.5 1465 262
2.0 1811 849 196
2.5 1704 841 635 161
3.0 1493 670 649 552 138
3.5 1279 474 532 600 495 120
4.0 1088 291 386 528 564 449 106
4.5 923 130 243 420 .523 531 411 96
5.0 782 - 9 112 307 443 512 501 379 87



C.29

T = 20g; traverse = 5 cm; spacing = 1D; E = 400g; EY = 5000g;

Table 0.29
Cheese no. 9

Assumption w = 0; std. size of the element; RO = 5 cm;

dR

r V 1.0 1.4 1.9 2.4 2.9 5.4 5.9 4.4 4.9
1.0 0000
1.5 0000 - 82.6
2.0 0000 -544.6 -109.5
2.5 0000 -451.7-457.6-107.7
5.0 0000 -496.1 -575.4 -457.1 -102.3
5.5 0000 -515.4 -632.4-580.3 -423.7 - 96.9
4.0 0000 -524.1 -659.5 -645.5 -570.2 -408.9 - 92.0
4.5 0000 -528.3 -672.0 -676,6 -639.8 -557.2 -394.8 - 87.6
5.0 0000 -550.4 -678.4 -691.9 -674.2 -630.5 -544.2 -381.8 - 83.8

1.0 0000
1.5 0000 - 46.9
2.0 0000 -195.7 - 45.8
2.5 0000 -256.6 -183.2 - 35.7
5.0 0000 -281.8 -240.1 -144.9 - 28.1
5.5 0000 -292.7 -264.8 -192.4 -116.2 - 22.7 .
4.0 0000 -297.7 -276.0-214.0 -156.4 - 95.7 - 18.8
4.5 0000 -300.1 -281.4 -224.5 -175.5 -150.4 - 80.6 - 15.8
5.0 0000 -301.3 -284.0 -229.4 -185.0 -147.5 -111.0 - 69.0 - 13.6

R ,R
f r Bz
Jr Jr -Ss*dE*to

1.0 0000
1.5 - 274 - 47
2.0 -1261 - 795 - 46
2.5 -2455 -1869 - 675 - 56
5.0 -5555 -2926 -1548 - 552 - 28
5.5 -4504 -5879 -2421 -1241 - 428 - 23
4.0 -5554 -4721 -3226 -1971 -1017 - 555 - 19
4.5 -6102 -5465 -5955 -2662 -1641 - 854 - 298 - 16
5.0 -6765 -6127 -4606 -3298 -2244 -1596 - 750 - 255 14



C.50

T = 20g; traverse = 5 cm; spacing = 1D; E = 200g; El = 2000g;

Table C.50
Cheese no» 10

Assumption w = 0; std. size of the element; RO = 5 cm;

- P

* Y 1.0 1.4 1.9 2.4 2.9 5.4 5.9 4.4 4.9
1.0 0000
1.5 2955 684
2.0 4691 5011 726
2.5 5501 4085 5055 747
5.0 5875 4575 4095 5156 759
5.5 6050 4810 4601 4505 5265 766
4.0 6159 4927 4852 4877 4509 5551 771
4.5 6185 4988 4982 5175 5152 4685 5425 774
5.0 6209 5020 5052 5550 5495 5597 4857 5484 776

- U x '>03

1.0 0000
1.5 0000 2.55
2,0 0000 10.27 5.70
2.5 0000 15.95 15.47 4.28
5.0 0000 15.61 20.87 18.08 4.70
5.5 0000 16.42 25.44 24.67 20.20 5.07
4.0 0000 16.81 24.75 27.95 27.92 22.19 5.42
4.5 0000 17.02 25.59 29.64 51.90 51.02 24.08 5.76
5.0 0000 17.15 25.74 50.55 54.05 55.75 54.05 25.91 6.07

IrR S'? :
JI ^ R 0^

1.0 0000
1.5 0000 - 2.52
2.0 0000 -11.09 - 5.51
2.5 0000 -15.05 -15.85 - 5.21
5.0 0000 -16.86 -18.69 -15.58 - 5.01
5.5 0000 -17.72 -21.00 -18.52 -12.96 - 2.85
4.0 0000 -18.15 -22.14 -20.99 r17.91 -12.57 - 2.67
4.5 0000 -18.58 -22.74 -22.26 -20.46 -17.50 -11.86 - 2.55.......
5.0 0000 -18.50 -25.05 -22.95 -21.85 -19.95 -16.76 -11.40 - 2.42



- C.31 -

Table C.31 

Cheese no,10

Assumption w = 0; std. size of the element; RO = 5 cm;

T = 20g; traverse = 5 cm; spacing = 1D; E = 200g; El = 2000g;

Q

* \ r 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1.0 0000
1.5 489.8 475.5
2.0 489.8 241.7 481.7
2.5 489.8 134.1 177.1 498.7
5.0 489.8 84.7 37.5 190.6 512.7
5.5 489.8 61.1 -29.2 43.6 212.3 523.3

. 4.0 489.8 49.4 -62.3 29.5 62.9 232.3 531.4
4.5 489.8 43.4 -79.5 -67.3 -14.2 82.1 249.6 537.9
5.0 489.8 40.1 -88.6 -87.5 -55.3 2.0 99.4 264.7 543.2

Z

1.0 0000
1.5 389.8 270.7
2.0 389.8 138.7 202.1
2.5 389.8 77.8 75.1 165.6
5.0 389.8 49.8 16.7 63.9 140.9
5.5 389.8 36.4 -11.2 15.2 58.9 122.6
4.0 389.8 29.8 -25.1 - 9.0 17.9 54.9 108.6
4.5 389.8 26.3 -32.3 -21.5 - 3.2 19.7 51.4 97.4
5.0 389.8 24.5 -36.1 -28.2 -14.5 1.0 20.8 48.3 88.3

,R
Z.dr

r
1.0 0000
1.5 1514 271
2.0 1976 949 202
2.5 1944 1016 701 166
3.0 1764 883 767 602 . 141
3.5 1560 700 679 691 534 122
4.0 1368 519 545 646 640 482 109
4.5 1198 355 405 552 624 596 439 97
5.0 1050 210 273 443 -558 601 558 404 88



C.32

Table C.32
Cheese no. 10

Assumption w= 0; std. size of the element; RO = 5 cm;
T = 20g; traverse ¡= 5 cm; spacing = 1D; E = 200g; El = 2000g;

.R
7>R.dR

fi\r 1 .0 1 .4  1 .9 2 .4  2 .9  3 . 4 3 .9  4 . 4  4 . 9

1 .0 0 0 0 0
1 .5 0 0 0 0 -  6 8 .8  .

2 .0 0 0 0 0 - 3 0 2 .5  -  9 5 .7
2 .5 0 0 0 0 - 4 1 0 .2  - 4 0 0 .3 - 9 5 .5
3 . 0 0 0 0 0 - 4 5 9 .5  - 5 3 9 .9 - 4 0 3 .6  -  9 0 .9
3 .5 0 0 0 0 - 4 8 3 .1  - 6 0 6 .6 - 5 5 0 .6  - 3 9 1 .3  -  8 6 .2
4 . 0 0 0 0 0 - 4 9 4 .8  - 6 3 9 .7 - 6 2 3 .7  - 5 4 0 .7  - 3 7 7 .2 - 8 1 .9
4 .5 0 0 0 0 - 5 0 0 .9  - 6 5 6 .8 - 6 6 1 .5  - 6 1 7 .8  - 5 2 7 .4 - 3 6 3 .7  -  7 8 .1  . . .
5 . 0 0 0 0 0 - 5 0 4 .1  - 6 6 6 .0 - 6 8 1 .6  - 6 5 9 .0  - 6 0 7 .5 - 5 1 4 .0  - 3 5 1 .3  -  7 4 .6.R

«lr"i>RoClK
1 .0 0 0 0 0
1 .5 0 0 0 0 -  3 8 .7
2 .0 0 0 0 0 - 1 7 0 .1  -  3 9 .8 '
2 .5 0 0 0 0 - 2 3 1 .5  - 1 6 6 .7 -  3 1 .4
3 . 0 0 0 0 0 - 2 5 9 .5  - 2 2 5 .1 - 1 3 3 .1  -  2 4 .8
3 .5 0 0 0 0 - 2 7 2 .9  - 2 5 3 .0 - 1 8 1 .8  - 1 0 6 .8  -  2 0 .0
4 . 0 0 0 0 0 - 2 7 9 .6  - 2 6 6 .9 - 2 0 6 .0  - 1 4 7 .7  -  8 7 .8 -  1 6 .6
4 . 5 ’ 0 0 0 0 - 2 8 2 .9  - 2 7 4 .1 - 2 1 8 .6  - 1 6 8 .9  - 1 2 2 .9 -  7 3 .7  -  1 4 .0
5 .0 0 0 0 0 - 2 8 4 .8  - 2 7 7 .9 - 2 2 5 . 2 - 1 8 0 .2  - 1 4 1 .6 - 1 0 4 .4  -  6 3 .2  -  1 2 .0.R

Jr Jrli- d R * d1,

1 .0 0 0 0 0
1 .5 -  225 -  39
2 .0 - 1 0 9 5 -  6 93  -  4 0
2 .5 -2 1 9 6 - 1 6 9 4  -  6 08 -  31
3 . 0 -3 2 6 1 - 2 7 1 4  - 1 4 3 0 -  4 8 2  -  24

3 .5 - 4 2 2 2 - 3 6 5 3  - 2 2 7 4 - 1 1 4 9  - 3 8 8  -  20
4 . 0 - 5 0 7 3 - 4 4 9 3  - 3 0 6 7 - 1 8 5 3  -  941  -  3 20 - 1 7
4.5 - 5 8 2 7 - 5 2 4 0  - 3 7 9 0 -2 5 3 1  - 1 5 4 0  -  7 8 8 - 2 6 9 - 1 4
5 . 0 - 6 4 9 8 - 5 9 0 8  - 4 4 4 5 - 3 1 6 2  - 2 1 2 9  - 1 3 0 7 -  672  -  231 -  12



C.33

T = 20g; traverse = 5 cm; spacing = 1D; E = 200g; EY = 8000g;

Table C.33
Cheese no, 11

Assumption w = 0; std. size of the element; RO = 5 cm;

- P

r V 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1.00 0000
1.5 2351 684
2.0 2890 2033 726
2.5 2984 2269 2182 747
5.0 3003 2315 2465 2326 759
3.5 3006 2325 2525 2667 2443 766
4.0 3008 2327 2540 2748 2842 2542 771
4.5 3008 2328 2544 2768 2945 2998 2626 774
5.0 3008 2328 2545 2774 2973 3123 3137 2700 776

- U x 105

1.0 0000
1.5 0000 1.64
2.0 0000 4.86 1.99
2.5 0000 5.43 5.99 2.21
3.0 0000 5.54 6.77 6.87 2.40
3.5 0000 5.56 6.93 7.88 7.74 2.59
4.0 0000 5.57 6.97 8.11 9.01 8.60 2.77
4.5 0000 5.57 6.98 8.18 9.33 10.14 9.44 2.94
5.0 0000 5.57 6.99 . 8.19 9.42 ,10.57 11.27 10.25 3.10

1.0 0000
1.5 0000 - 7.06
2.0 0000 -21.00 - 7.14
2.5 0000 -23.45 -21.46 - 6.62
3.0 0000 -23.92 -24.24 -20.63 - 6.12
3.5 0000 -24.0 2 -24.84 -23.65 -19.86 - 5.78
4.0 0000 -24.05 -24.98 -24.37 -23.11 -19.19 - 5.45
4.5 0000 -24.05 -25.02 -24.55 -23.94 -22.63 -18.58 - 5.17
5.0 0000 -24.05 -25.03 -24.61 -24.17 -23.58 -22.20 -18.04 - 4.93



C.34

T = 20g; traverse = 5 cm; spacing = 1D; E = 200g; EY = 8000g;

Table C.34
Cheese no, 11

Assumption w = 0; std, size of the element; RO = 5 cm;

Q

R\r 1 .0 1 .4 1 .9 2 .4 2 .9 3 . 4 3 .9 4 . 4  . 4 .9

1 .0 0 0 0 0
1 .5 4 8 9 .8 3 5 1 .9
2 .0 4 8 9 .8 -  2 7 .4 3 7 1 .3
2 .5 4 8 9 .8 -  9 3 .9 -  4 2 .2 3 9 7 *4
3 . 0 4 8 9 .8 - 1 0 6 .8 - 1 2 2 .5 -  1 8 .7 4 1 7 .5
3 .5 4 8 9 .8 - 1 0 9 .6 - 1 3 9 .9 - 1 0 8 .6 4 . 0 4 3 3 ..3
4 .0 4 8 9 .8 - 1 1 0 .3 - 1 4 4 .0 - 1 2 9 .9 -  9 3 .9 2 4 .,8 4 4 6 .1
4 .5 4 8 9 .8 - 1 1 0 .4 - 1 4 5 .0 - 1 3 5 .4 - 1 1 9 .1 -  8 0 .,1 4 3 .5 4 5 6 .7
5 .0 4 8 9 .8 - 1 1 0 .5 - 1 4 5 .3 - 1 3 6 .9 - 1 2 6 .0 - 1 0 9 .,0 -  6 7 .4 .. 6 0 .4 4 6 5 .7

Z

1 .0 00 0
1 .5 3 8 9 .8 2 0 0 .2
2 .0 3 8 9 .8 - 1 5 .4 1 5 5 .6
2 .5 3 8 9 .8 - 5 3 .2 - 1 7 .6 1 3 1 .8
3 .0 3 8 9 .8 - 6 0 .6 - 5 1 .2 -  6 .1  1 1 4 .6
3 .5 3 8 9 .8 - 6 2 .1 - 5 8 .5 - 3 5 .9  1 .2 1 0 1 .5
4 . 0 3 8 9 .8 - 6 2 .5 - 6 0 .2 - 4 3 .0  - 2 5 .7 5 .9 9 1 .1
4 .5 3 8 9 .8 - 6 2 .6 - 6 0 .7 - 4 4 .8  - 3 2 .6 - 1 8 .7 9 . 0 8 2 .7
5 . 0 ’ 3 8 9 .8 - 6 2 .6 - 6 0 .8 - 4 5 .3  - 3 4 .5 - 2 5 .4 - 1 3 .7 1 1 .0  7 5 .7f RZ.dr

r
1 .0 0 0 0 0
1 .5 1082 2 00
2 .0 8 8 8 30 4 156
2 .5 5 6 8 36 275 132
3 .0 301 -221 93 272 115
3 .5 8 8 -431 -101 147 265 101
4 . 0 -  83 - 6 0 2 - 2 6 8 -  3 179 255 91
4 .5 -2 2 5 - 7 4 4 - 4 0 9 - 1 3 9 60 197 245 83
5 .0 - 3 4 4 - 8 6 3 - 5 2 8 - 2 5 7 -  54 101 207 2 34 76



C.35

Table C.35
Cheese no. 11

Assumption w = o; std. size of the element; RO = 5 cm;
T = 20g; traverse = 5 cm; spacing = 1D; E = 200g; EY = 8000g;

,R

3.0
3.5
4.0
4.5
5.0

."Sr ,dR

A r 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1.0 0000
1.5 0000 -192.3
2.0 0000 -571.6 -206.1
2.5 0000 -638.1 -619.6 -196.8
3.0 0000 -651.1 -699.9 -612.9 -186.2
3.5 0000 -653.8 -717.2 -702.8 -599.6 -176.2
4.0 0000 -654.5 -721.4 -724.1 -697.6 -584.7 -167.2

. 4.5 0000 -654.7 -722.4 -729.5 -722.8 -689.7 -569.9 -159.3
5.0 0000 -654.7 -722.7 -731.0 -729.7 -718.5 -680.7 -555.6 -152.2

£ & « ...................

1.0 0000
1.5 0000 -109.2
2.0 0000 -324.7-86.2
2.5 0000 -362.5 -259.3 - 65.2
3.0 0000 -369.9 -293.0 -203.1 - 51.0
3.5 0000 -371.5-300.3-232.9-164.5-41.2
4.0 0000 -371.5 -302.0 -240.0 -191.3 -136.8 - 34.1
4.5 0000 -371.9 -302.5 -241.8 -198.3-161.4 -116.2 - 28.8
5.0 0000 -371.9 -302.6 -242.3 -200.2 -168.1 -138.8 -100.4 - 24.7

,R ,R
J r Jr -o5“

1.0 0000
1.5 - 657 - 109
2.0 -2183 -1338 - 86
2.5 -3571 -2673 -1034 - 65

-4725
-5694
-6525
-7250
-7892

-3817
-4784
-5614
-6339
-6981

-2103
-3054
-3880
-4604
-5246

812
•1693
-2502
-3222
-3862

51 
- 657 
-1402 
-2105 
-2741

- 41
- 546 
-1188 
-1807

- 34
- 464 
-1025

- 29
- 400 25



- C.36 -

Table C.36 

Cheese no. 12

Assumption w = 0; std. size of the element; RO = 5 cm;

T = 20g; traverse = 5 cm; spacing = 1D; E = 1000g; EY = 1000g;

P

Ar 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1.0 0000
1.5 3225 684
2.0 6472 4033 726
2.5 9413 7064 4106 747
3.0 11951 9682 7023 4150 759
3.5 14099 11896 9492 7031 4188 766
4.0 15906 13759 11569 9454 7072 4221 . 771
4.5 17426 15327 13316 11492 9497 7126 4249 774
5.0 18708 16648 14789 13211 11543 9576 7183 4275 776

- U x 105

1.0 0000
1.5 . 0000 0.54
2.0 0000 3.23 1.22
2.5 0000 5.65 6.90 1.78
3.0 0000 7.75 11.80 9.89 2.23
3.5 0000 9.50 15.95 16.7 6 12.31 2.59
4.0 0000 11.01 19.44 22.54 20.78 14.30 2.90
4.5 0000 12.27 22.37 27.39 27.91 24.14 15.99 3.17
5.0 0000 13.32 24.85 31.49 33.92 32.44 27.03 17.49 3.40

1.0 0000
1.5 0000 - 0.30
2.0 0000 - 1.74 - 0.55
2.5 0000 - 3.05 - 3.09 - 0.67
3.0 0000 - 4.18 - 5.28 - 3.71
3.5 0000 - 5.14 - 7.14 - 6.29
4.0 0000 - 5.94 - 8.70 - 8.46
4.5 0000 - 6.62 -10.02 -10.28
5.0 0000 - 7.19 -11.13 -11.82

- 0.71
- 3.95 - 0.72

6.66 - 3.99 - 0.71
- 8.95 - 6.73 - 3.94 - 0.70 
-10.88 - 9.05 - 6.65 - 3.85 - 0.68



C.57

T = 20g; traverse = 5 cm; spacing = 1D; E = 1000g; EY = 1000g;

Table C.37
Cheese no,12

Assumption w = 0; std. size of the element; RO = 5 cm;

Q

»V 1.0 1.4 1.9 2.4 2.9 5.4 5.9 4.4 . 4.9
1.0 0000
1.5 489.8 556.1
2.0 489.8 496.5 561.6
2.5 489.8 460.7 487.9 574.5
5.0 489.8 429.7 424.4 485.6 582.1
5.5 489.8 405.6 570.7 406.9 484.4 587.4
4.0 489.8 581.6 525.4 542.4 403.5 487.9 591.4
4.5 489.8 565.1 287.4 288.2 555.2 404.2 492.5 594.5
5.0 489.8 547.5 255.4 242.4 275.0 555.6 409.1 497.4 596.9

Z

1.0 0000
1.5 589.8 504.9
2.0 589.8 282.9 255.4
2.5 589.8 262.9 205.1 190.6
5.0 589.8 245.8 179.0 161.1 159.8
5.5 589.8 251.2 156.8 156.0 155.5 157.6
4.0 589.8 218.9 158.2 114.9 111.5 114.7 120.8
4.5 589.8 208.6 122.4 97.1 92.6 , 95.4 100.9 107.6
5.0 589.8 199.9 109.2 82.1 76.8 79.1 84.2 90.5 97.0

Z.drjr
1.0 0000
1.5 1715 505
2.0 2901 1551 255
2.5 5685 2549 1178 191
5.0 4178 2872 1807 959 160
5.5 4467 5187 2214 1485 812 158
4.0 4618 5559 2462 1831 1268 706 121
4.5 4675 5452 2600 2052 1580 1113 625 108
5.0 4665 5456 2659 2182 1787 1400 994 562 97



C.38

Table C.38
Cheese no,12

T = 20g; traverse = 5 cm; spacing = 1D; E = 1000g; El = 1000g;

Assumption w = 0; std. size of the element; RO = 5 cm;

i > ,
dR

rV 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1.0 0000
1.5 0000 - 8.09
2.0 0000 - 47.7 - 15.8
2.5 0000 - 83.5 - 89.4 - 19.9
3.0 0000 -114.5 -153.0 -110.5 - 21.6
3.5 0000 -140.6 -206.7 -187.3 -119.3 - 22.1
4.0 0000 -162.6 -251.9 -251.8 -201.4 -121.6 - 21.9
4.5 0000 -181.1 -290.0 -306.0 -270.5 -205.3 -120.8 - 21.5
5.0 0000 -196.7 -322.0 -351.8 -328.7 -275.9 -204.2 -118.6 - 20.9

fRI 2>ZJ r'-QR*dR
1.0 0000
1.5 0000 - 4.48
2.0 0000 - 26.4 - 6.5
2.5 0000 - 46.4 - 36.7 - 6 . 5
3.0 0000 - 63.6 - 62.8 - 35.9 - 5.8
3.5 0000 - 78.1 - 85.0 - 61.0 - 32.1 - 5.1
4.0 0000 - 90.4 -103.7 - 82.1 - 54.3 - 27.9 - 4.4
4.5 0000 -100.7 -119.4 - 99.9 - 73.0 - 47.3 - 24.2 - 3.8
5.0. 0000 -109.5 -132.7 -114.9 - 88.9 - 63.6 - 41.0 - 21.1 - 3.3

1  .R
J r  ) P ' l f > a B * d r

1.0 0000
1.5 - 25.4 - 4.5
2.0 -169.8 -110.7 - 6.5
2.5 -454.1 -360.5 -132.0 - 6.5.
3.0 -848.4 -724.9 -389.0 -124.9 - 5.8
3.5 -1315 -1166 -739.3 -357.6 -110.4 - 5.1
4.0 -1823 -1653 -1150 - 669 -313.7 - 95.9 - 4.4
4.5 -2351 -2164 -1595 -1031 -585 -272.2-83.1- 3.8
5.0 -2885 -2682 -2059 _1424. - 901 -508.1 -236.6 - 72.4 - 3.3



C.39

T = 20g; traverse =0.05 cm; spacing = 1D; E = 1000g; EY = 1000g;

Table C.39
Cheese no, 11

Assumption w = 0; std. size of the element; RO = 4.5 cm;

- P

r V 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1.0 0000
1.5 2545 1005
2.0 2674 2116 1005
2.5 2682 2180 2306 1005
3.0 2682 2185 2410 2466 1005
3.5 2682 2185 2420 2612 2601 1005
4.0 2682 2185 2421 2629 2792 2718 1005
4.5 2682 2185 2421 2632 2818 2955 2822 1005
5.0 --

- U x ‘I03

1.0 0000
1.5 0000 18.15
2.0 0000 38.15 21.34
2.5 0000 39.31 48.95 24.05
3.0 0000 39.40 51.14 58.98 26.49
3.5 0000 39.41 51.36 62.49 68.54 28.72
4.0 0000 39.41 51.39 62.90 73.57 77.68 30.80
4.5 0000 39.41 51.39 62.96 74.26 84.43 86.47 32.75
5.0

,R
(
i ^ R  ^

1.0 0000
1.5 0000 -12.95
2.0 0000 -27.25 -11.23
2.5 0000 -28.08 -25.76 -10.02
3.0 0000 -28.14 -26.92 -24.58 - 9.13
3.5 0000 -28.15 -27.03 -26.04 -23.63 - 8.45
4.0 0000 -28.15 -27.05 -26.21 -25.37 -22.85 - 7.90
4.5 0000 -28.15 -27.05 -26.23 -25.61 -24.83 -22.17 -7.44



C.40

T = 20g; traverse = 0.05 cm; spacing = 1D; E = 1000g; EY = 1000g;

Table C.40
Cheese no. 11

Assumption w = 0; std« size of the element; RO = 4.5 cm;

Q
¿ \ r 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1.0 0000
1.5 799.9 282.0
2.0 799.9 -290.1 550.8
2.5 799.9 -525.0 -230.5 399.2
5.0 799.9 -525.7 -276.7 -183.1 434.6
5.5 799.9 -525.9 -281.3 -241.4 -145.3 .462.1
4.0 799.9 -525.9 -281.9 -248.4 -214.7 -113.9 484.1
4.5 799.9 -326.0 -282.0 -249.4 -224.3 -193.3 - 86.9 502.3
5.0

Z x 102

1.0 0000
1.5 6.366 1.586
2.0 .6.366 -1.689 1.465 '
2.5 6.365 -1.878 -0.982 1.324
3.0 6.365 -1.893 -1.177 -0.614 1.194
3.5 6.366 -1.894 -1.197 -0.808 -0.401 1.084
4.0 6.366 -1.895 -1.999 -0.832 -0.592 -0.266 0.990
4.5 6.365 -1.895 -1.999 -0.835 -0.618 -0.452 -0.175 0.911
5.0

( J* Z.dr) 2x 10

1.0 0000
1.5 7.336 1.586
2.0 -0.259 -2.659 1.465
2.5 -5.852 -8.059 -0.459 1.324
3.0 -9.937 -12.13 -4 .2 5 2 0.582 1.194
3.5 -13.07 -15.26 -7.355 -2.216 1.117 1.084
4.0 -15.57 -17.76 -9.849 -4.673 -1.014 1.407 0.991
4.5 -17.62 -19.81 -11.90 -6.716 -3.012 -0.253 1.566 0.911
5.0



C.41

Assumption w = 0; std. size of the element; RO = 4,5 cm; 

r = 20g; traverse=  0,05cm; spacing = 1D; E = 1000g; EY = 1000g;

Table C.41
Cheese no. 13

dR

p \ r 1.0 1.4 1.9 2.4 2.9 5.4 5.9 4.4 4.9
1.0 0000
1.5 0000 -517.9
2.0 0000 -1090 -449.2
2.5 0000 -1125 -1030 -400.8
5.0 0000 -1126 -1077 -985.0 -565.5
5.5 0000 -1126 -1081 -1041 -945.5 -557.9
4.0 0000 -1126 -1082 -1048 -1015 -914.0 -515.9
4.5 0000 -1126 -1082 -1049 -1024 -995.2-886.9-297.7
5*o

( i l l - « ) * ’°2
1.0 0000
1.5 0000 -2.961
2.0 0000 -6.236 -1.886
2.5 0000 -6.425 -4.555 -1.529
5.0 0000 -6.440 -4.527 -5.266 -1.001
5.5 0000 -6.441 -4.547 -5.461 -2.596 -0.788
4.0 0000 _6.442 -4.549 -5.484 -2.787 -2.138 -0.642
4.5

JL.0-
0000 -6.442 -4.550 -3.487 -2.814 -2.325 -1.808 -0.556

( Jr  J r^ R 'dIt* dr ) 1 1 °2

1.0 0000
1.5 -19.57 - 2.96
2.0 -46.02 -26.06 -1.89
2.5 -66.14 -45.99 -18.34 - 1.55
5.0 -82.04 -61.88 -55.95 -15.89 - 1.001
5.5 -95.14 -74.98 -47.02 -26.66 -11.04 - 0.79
4.0 -106.3 -86.09 -58.13 -37.75 021.79 - 9.08 - 0.64
4.5 -115.9 -95.75 -67.77 -47.56 -31.58 -18.35 - 7.65 - 0.54



Co 42

T = 20g; traverse = 5cm; spacing = 1D; E = 600g; EY = 600g;

Table C.42
Cheese no. H

Assumption w = 0; std. size of the element; RO = 5 cm;

P

R r 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 . 4.9
1.0 0000
1.5 3266 690
2.0 6531 4056 728
2.5 9480 7096 4117 748
3.0 12022 9717 7039 4157 759
3.5 14172 11934 9510 7040 4192 766
4.0 15980 13798 11589 9465 7077 4223 771
4.5 17501 15367 13336 11503 9504 7130 4251 774
5.0 18784 16689 14810 13223 11550 9581 7186 4276 777

- U x 103

1.0 0000
1.5 0000 0.92
2.0 0000 5.41 2.04
2.5 0000 9.47 11.53 2.97
3.0 0000 12.96 19.12 16.52 3.72
3.5 0000 15.92 26.64 27.98 20.53 4.32
4.0 0000 18.41 32.46 37.61 34.67 23.84 4.84
4.5 0000 20.50 37.38 45.72 46.56 38.13 26.66 5.28
5.0 0000 22.27 41.49 52.55 56.58 54.10 45.08 29.15 5.67

J > “
s \ r 1.05 1.45 1.95 2.45 2.95 3.45 3.95 4.45 4.95
1.00
1.5 -0.16 -0.29
2.0 -0.36 -1.90 - 0.54
2.5 -0.54 -3.36 - 3.20 - 0.66
3.0 -0.70 -4.61 - 5.49 - 3.79 - 0.70
3.5 -0.82 -5.67 - 7.42 - 6.44 - 4.00 - 0.71
4.0 -0.95 -6.57 - 9.06 - 8.67 - 6.78 - 4.04 - 0.71
4.5 -1.04 -7.32 -10.43 -10.54 - 9.11 - 6.83 - 3.98 - 0.69
5.0 -1.12 -7.95 -11.58 -12.12 -11.08 - 9.19 - 6.74 - 3.89



D.1

APPENDIX D

D.1 Relation between EY and T

Table D.1

Wo. T (g) X = loff-j Q® ■s T = log,

1 2 0.301 0.0012 3.0792
2 5 0.699 0.0022 3.3424

3 10 1 0.003 3.4771

4 20 1.301 0.0045 3.6532

5 30 1.4771 0.0056 3.7482

6 4° . 1.6021 0.0068 3.8325

7 5° 1.699 0.0077 3.8865
8 54 1.732 0.0081 3.9085
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D«2 Measurement of the value of E 

D.2.1 Observations

Table D.2

Experiment 1. 
Thickness of layerpressurelbs/aa =lbs/sq. Reading on dial#

in* The number of
crossing points

Experiment 2.
Thickness of layer = 6D. 
Reading on dial.
The number of crossing points

196 64 16 4 144 100 64 36

1 28.9 24.6 21.2 15.8 1-37.5 '1-32.5 1-27.5 18.5
2 27 22.9 18.2 13.5 1-29.5 1-25.5 1-19.5 11
3 25.6 21.5 16.7 12.4 1-24.5 1-21 1-15 7
4 24.6 20.7 15.2 11.6 1-21.5 1-18 1-12 4
5 23.8 19.7 15 11.2 1-18.5 1-15.5 1- 9.5 2
6 23.3 19.2 14.4 11.2 1-16.5 1-13.5 1- 8 0
7 22.7 . 18.7 14 10.9 1-14.5 1-11.5 1- 6.5 48
8 22.2 18.2 13.5 10.5 1-13 1-10 1- 5 47
9. 21.8 17.7 13.2 10.4 1-12 1- 9 1- 4 46
10 21.4 17.3 12.9 10.1 1-11 1- 8 1- 2 45



- D.3

D.2.2 Calculations 

Experiment 1

Table D.3

press, 
lbs/sq 
in.

196 points 64 points
thickness 
of layer 
in in. 
i.e. TH

pressure/ 
crossing 
pt. in g 
i.e. Ps

log1QPs
thickness 
of layer 
in in. 
i.e. TH

pressuré 
crossing 
pt. in g 
i.e. Ps

log10ra

1 .0189 0.256 7.4082 .0246 0.783 7.8938
2 .027 0.512 i.7093 .0229 1.566 0.1948
3 .0256 0.768 1.8854 .0215 2.349 0.3709
4 .0246 1.024 0.0103 .0207 3.132 0.4958
5 .0238 1.28 0.1072 .0197 3.915 0.5928
6 .0233 1.536 0.1864 .0192 4.698 0.6719
7 .0227 1.792 0.2531 .0187 5.481 0.7389
8 .0222 2.048 0.3113 .0182 6.264 0.7969
9 .0218 2.304 0.3624 .0177 7.047 0.848
10 .0214 2.56 0.4082 .0173 7.83 0.8938

Table D.3 (continued)

press.
lbs/sq
in

16 points 4 points
thickness 
of layer 
in in. 

i.e. TH

pressure/ 
crossing 
pt. in g 
i.e. Ps

los10ps
thickness pressure 
of layer grossing 
in in. pt. in g 
i.e. TH i.e. Ps

log10P3

1 .0212 3.132 0.4956 .0158 12.52 1.0976
2 .0182 6.262 0.7967 .0135 25.04 1.3987
3 .0167 9.363 0.9728 .0124 37.56 1.5747
4 .0158 12.53 1.0978 .0116 50.08 1.6997
5 .015 15.66 1.1947 .0112 62.60 1.7966
6 .0144 18.79 1.2739 .0112 75.12 1.8757
7 .014 21.92 1.3408 .0109 87.64 1.9427
8 .0135 25.05 1.3988 .0105 100.2 2.0008
9 .0132 28.18 1.4499 .0104 112.7 2.0519
10 .0129 31.13 1.4956. .0101 125.2 2.0976



F/rneriment 2
Table D.4

144 points 100 points
press.
lbs/sq
in

,thickness 
of layer 
in in. 

i.e. TH

pressure/ 
crossing 
pt. in g 
i.e. Ps

log1QPs
thickness 
of layer 
in in. 

i.e. TH

pressure/ 
crossing 
pt. in g 
i.e. Ps

log1QPs

1 .0875 0.348 Ï.5416 .0825 0.501 T .  6998
2 .0795 0.696 1.8426 .0755 1.002 0.0008
3 .0745 1.044 0.0187 .071 1.503 0.1769
4 .0715 1.392 0.1436 .068 2.004 0.3018
5 .0685 1.74 0.2405 .0655 2.505 0.3988
6 .0665 2.088 0.3198 .0635 3.006 0.4779
7 .0645 2.436 0.3867 .0615 3.507 0.5449
8 .063 2.784 0.4446 .06 4.008 0.603
9 .062 3.132 0.4958 .059 4.509 0.6541
10 .061 3.48 0.5416 .058 5.01 0.6998 .

Table D.4 (continued)

64 points 36 points
press, 
lbs/sq. 
in

thickness 
of layer 
in in. 
i.e. TH

pressure/ 
crossing 
pt. in g 
i.e. Ps

l°g,0P3
thickness 
of layer 
in in. 
i.e. TH

pressure/ 
crossing 
pt. in g 
i.e. Ps

log1QPs

1 0.0775 0.783 Ï.8937 .0685 1.391 0.1433
2 0.0695 1.566 0.1949 .061 2.782 0.4443
3 . 0.065 2.349 0.3709 .057 4.173 0.6204
4 0.062 3.132 0.4958 .054 5.564 0.7554
5 0.0595 3.915 0.5928 .052 6.955 0.8423
6 0.058 4.698 0.6719 .05 8.346 0.9215
7 0.0565 5.481 0.7389 .048 9.737 0.9984
8 0.055 6.264 0.7969 .047 11.13 1.0465
9 0.054 7.047 0.848 .046 12.52 . 1.0976
10 0.052 7.83 0.8938 .045 13.91 1.1433
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Table D.5

Assumption w = 0; std. size of the element; RO = 4*8 cm;
y ?T = 10g; traverse = 5 cm; spacing = 1D; E = 100g; EY = 2185. T g;

- P

R \ r 1.0 1.3 1.7 2.3 2.7 3.3 3.7 4.3 4.7
1.0 0000
1.4 981 335
1.8 1317 918 356
2.4 1533 1222 1049 372
2.8 1566 1266 1185 981 377
3.4 1578 1283 1245 1342 1169 382
3.8 1580 1286 1254 1414 1368 1044 384
4.4 1581 1287 1258 1449 1476 1456 1234 387
4.8 1581 1287 1259 1456 1498 1566 1474 1098 388

- U x 105

2 4

1.0 0000
1.4 0000 1.32

J . 8
2.8 0000 5 45- 0000

3.90
5*68

,,,1.83 
{,+7.80

7 ■ 21
7.03 2.37

3.4 0000 5.77 8.15 9.58 9.22 2.60
3.8 0000 5.78 8.21 10.03 10.71 8.58 2.73
4.4 0000 5.79 8.24 10.24 11.46 12.31 11.12 2.94
4.8 0000 5.79 8.24 10.28 11.60 13.15 13.35 9.99 3.05

- C 7>R*dR

1.0 0000
1.4 0000 4.35
1.8 0000 9.50 5.17
2.4 0000 10.44 11.63
2.8 0000 10.65 12.87
3.4 0000 10.75 13.47
3.8 0000 10.76 13.57
4.4 0000 10.77 13.62
4.8 0000 10.77 13.62

5.06
10.32 4.72
12.38 10.80 4.37
12.95 11.98 10.02 4.13
13.24 12.77 11.40 10.31
13.30 12.94 12.04 11.32

3.87
9.64 3.70
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Table D.6

Assumption w *= 0; std. size of the element; RO = 4.8 cm;
3/7T = 10g; traverse = 5 cm; spacing = 1 D; E = 100g; EY = 2185. T g

R
Z.dr

r

rY 1.0 1.3 1.7 2.3 2.7 3.3 3.7 4.3 4.7
1.0 0000
1.4 460.1 92.4
1.8 405.3 123.3 64.1
2.4 209.6 - 36.4 28.8 50.5
2.8 69.6 -172.6 -75.6 74.0 46.7
3.4 -108.2 -349.0 -237.8 - 1.3 62.8 41.3
3.8 -203.8-444.4 -330.9 - 77.4 16.3 75.3 38.6
4.4 -322.6 -563.2 -448.6 -187.0 - 76.8 44.1 70.7 34.9
4.8 -388.6 -629.2 -514.4 -251.2 -137.6 -- 0.1 49.0 73.4 32.9

ey/e

1 .0  0000
1.4 58.62 45.91
1.8 58.62 16.22 42.92
2.4 58.62 15.39 26.93 43.32
2.8 58.62 18.20 34.32 13.39 • 44.56
3.4 58.62 19.26 37.24 31.70 19.83 45.83
3.8 58.62 19.43 38.09 34.76 29.29 4.36 46,65
4.4 58.62 19.50 38.49 36.18 33.09 20.05 10.28 47.52
4.8 58.62 19.52 37.94 36.45 34.61 29.69 24.65 14.18
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Table D.7

Assumption w = 0; std. size of the element; RO = 4.8 cm; 

T = 20g; traverse = 5 cm; spacing = 1 D; E = 100g; El = 2185.

- P

1.0 1.3 1.7 2.3 2.7 3.3 3.7 4.3 4.7
1.0 0000 ■
1.4 1847 671
1.8 2419 1721 712
2.4 2688 2108 1977 743
2.8 2712 2144 2159 1892 754
3.4 2719 2156 2223 2505 2271 765
3.8 2720 2158 2231 2589 2580 1993 769
4.4 2721 2158 2233 2617 2695 2683 2360 773
4.8 2721 2158 2234 2622 2713 2818 2746 2077 776

- u n o 5

1.0 0000
1.4 0000 2.42
1.8 0000 6.95 3.35
2.4 0000 8.91 11.09 3.82
2.8 0000 9.08 11.98 11.66 4.19
3.4 0000 9.14 12.28 15.15 15.94 4.72
3.8 0000 9.14 12.31 15.58 17.81 14.72 4.76
4.4 0000 9.15 12.33 15.73 18.47 19.45 18.16 5.14
4.8 0000 9.15 12.33 15.75 18.57 20.27 21.00 16.77 5.32

( S t
“ ] “3R* SR

1.0 0000
1.4 0000 10.68
1.8 0000 20.50 12.74
2.4 0000 22.56 25.89 11.71
2.8 0000 22.88 28.01 21.61 11.26
3.4 0000 22.99 28.79 26.43 21.90 10.67
3.8 0000 23.00 28.89 27.26 24.01 21.18 9.69
4.4 0000 23.01 28.92 27.55 24.93 25.59 21.51 9.11
4.8 0000 23.01 28.92 27.59 25.09 26.70 23.76 20.24 8.68



D.8

Table D.8

3 /7T = 20g; traverse = 5 cm; spading = 1 D; E = 100g; EY = 2185. T g;

j Z.dr
•'r

Assumption w = 0; std. size of the element; RO = 4.8 cm;

hY 1.0 1.3 1.7 2.3 2.7 3.3 3.7 4.3 4.7
1.0 000
1.4 812 152
1.8 594 103 96
2.4 77 - 374 - 87 85
2.8 - 241 - 689 - 352 82 77 ,
3.4 - 636 -1085 - 729 -146 54 . .. 68
5.8 - 842 -1289 - 933 -330 - 79 98 68
4.4 -1093 -1540 -1183 -574' -303 - 19 89 62
4.8 -1253 -1680 -1323 -713 -439 -135 16 108 59

ey/e

1.0 0000
1.4 78.89 56.88
1.8 78.89 15.09 51.11
2.4 78.89 52.66 46.72 54.09
2.8 78.89 54.38 53.28 26.81 55.34
3.4 78.89 34.93 55.47 48.51 28.77 56.90
3.8 78.89 35.00 55.72 51.10 39.61 23.49 59.38
4.4 78.89 35.01 55.80 51.96 44.85 45.69 26.07 60.78
4.8 78.89 35.02 55.82 52.09 43.88 49.37 34.29 11.82 61.81



D.9

Table D.9

3/7T = 30g; traverse = 5 cm; spacing = 1 D; E = 100g; EY =2185. T 'g;

Assumption w = 0; std. size of the element; RO = 4.8 cm;

- P

R r 1.0 1.3 1.7 2.3 2.7 3.3 3.7 4.3 4.7
1.0 0000
1.4 2667 1006
1.8 3461 2480 1069
2.4 3748 2943 2846 1115
2.8 3765 2974 3040 2763 1132
3.4 3769 2980 3088 3402 3260 1147
3.8 3770 2982 3094 3484 3646 2921 1154
4.4 3770 2982 3095 3510 3778 3880 3409 1160
4.8 3770 2982 3096 3513 3793 4012 3868 3041 1163

- - U x 103

1.0 0000
1.4 0000 3.43
1.8 0000 9.80 4.77
2.4 0000 11.96. 14.38 5.41
2.8 0000 12.09 15.99 15.38 5.66
3.4 0000 12.12 16.20 18.55 19.13 6.32
3.8 0000 12.12 16.22 18.93 21.14 20.19 6.86
4.4 0000 12.12 16.23 19.05 21.80 26.35 25.14 7.08
4.8 0000 12.12 16.23 19.06 21.87 27.11 28.08 22.47 7.40

fR BT
J *>R#r

cLR

1.0 0000
1.4 0000 18.01
1.8 0000 31.95 21.60
2.4 0000 36.32 42.93 19.72
2.8 0000 36.68 45.70 35.13 18.12
3.4 0000 36.77 46.42 41.43 36.46 16.99
3.8 0000 36.78 46.50 42.35 40.05 30.91 16.63
4.4 0000 36.78 46.53 42.65 . 41.40 36.56 34.64 14.93
4.8 0000 36.78 46.53 42.68 41.55 37.65 38.15 30.37 14.37
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Table D.10

Assumption w = 0; std. size of the element; RO = 4.8 cm;
3/7T ss 30g; traverse = 5 cm; spacing = 1  D; E = 100g; EY = 2185. T g;

fRI z‘dr■̂ r

B Y 1.0 1.3 1.7 2.3 2.7 3.3 3.7 4.3 4.7
1 .0 0000
1.4 1111 196
1.8 690 8 111
2.4 - 218 - 848 - 300 105
2.8 - 722 01348 0 748 45 105
3.4 -1318 -1944 -1331 - 384 1 95
3.8 -1645 -2270 -1656 - 691 -241 109 88
4.4 -2049 -2674 -2059 -1088 -614 -110 65 86
4.8 -2268 -2893 -2278 -1306 -831 -304 - 79 133 82

ey/e

1.0 0000 ^ ■■

1.4 93.87 63.36’' I
1.8 93.87 29.10 54.39
2.4 93.87 48.16 65.44 59.33
2.8 93.87 49.31 71.13 44.05 63.12
3.4 93.87 49.58 72.50 62.06 .48.62 65.61
3.8 93.87 49.61 72.65 64.16 58.74 20.94 66.39
4.4 93.87 49.62 72.70 64.83 62.00 48.92 42.18 69.87
4.8 93.87 49.62 72.71 64.90 62.36 52.25 53.71 14.19 70.98



D.11

T =s 20g; traverse = 5 cm; spacing = 1 D; E = - 7.49.Pg; 
3/7EY = 2185. T 'g; dr = dR = 0,05 cm;

Table D.11
Assumption w = 0; std. size of the element; RO = 4.2 cm;

- P

R\r 1.0 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1

1.0.) 000
1.4 510 433
1.8 510 508 468
2.2 510 508 555 489
2.6 510 508 555 601 513
3.0 510 508 555 602 638 532
3.4 510 508 555 602 640 672 548
3.8 510 508 555 602 640 673 709 561
4.2 510 508 555 602 640 673 711 745 573

TJ x 105

1.0 000
1.4 000 6.17
1.8 000 7.21 6.50
2.2 000 7.21 7.76 7.18
2.6 000 7.21 7.76 9.06 7.60
3.0 000 7.21 7.77 9.07 9.87 8.02
3.4 000 7.21 7.77 9.07 9.89 10.37 8.45
3.8 000 7.21 7.77 9.07 9.90 10.40 11.01 8.90
4.2 000 7.21 7.77 9.07 9.90 10.40 11.04 11.78 9.35

-R
\ 3T
) W dR

1.0 0000
1.4 0000 21.71
1.8 0000 23.47 20.53
2.2 0000 23.47 21.76 19.93 -
2.6 0000 23.47 21.77 20.74■ 18.83
3.0 0000 23.47 21.77 20.75 20.10 17.82
3.4 0000 23.47 21.77 20.75 20.10 19.68 16.95
3.8 0000 23.47 21.77 20.75 20.10 19.69 19.16 16.23
4.2 0000 23.47 21.77 20.75 20.10 19.69 19.17 18.72 15.60
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Table D.12

Assumption w = 0; std. size of the element; RO = 4.2 cm; 

T = 20g; traverse = 5 cm; spacing = 1 D; E = - 7.4g.Pg;.3./ ' /
EY = 2185. T dr = dR = 0.05 cm;

R
Z.dr 

r

1.0 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1

1.0 000
1.4 115.6 - 13.4
1.8 7.6-113.1 8.6
2.2 - 46.9 -167.6 -37.7 17.1
2.6 - 59.7 -180.4 -50.5 11.0 26.5
3.0 - 50.1 -171.7 -41.8 19.8 39.8 32.0
3.4 - 29.4 -150.1 -20.2 41.4 61.5 59.5 35.0
3.8 1.2-119.5 -10.4 72.0 92.2 90.2 73.2 36.3
4.2 38.0 - 82.7 47.1 108.7 128.8 126.9 110.0 81.5 36.8

ey/e

1.0 0000
1.4 1001 416
1.8 1001 479 233
2.2 1001 479 328 96
2.6 1001 479 329 209 298
3.0 1001 479 329 210 83 375
3.4 1001 479 329 211 86 131 421
3.8 1001 479 329 211 87 129 187 449
4.2 1001 479 329 211 87 129 186 239 470



D.13

T = 30g; traverse = 5 cm; spacing = 1  D; E = - 7.05 Pg; 
3/EY = 2185. T'l?; dr = dR = 0.05 cm;

Table D.13
Assumption v = 0; std. size of the element; RO = 4.2 cm;

- P

H\r 1.0 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1

1.0 0000
1.4 821 663
1.8 822 790 715
2.2 822 791 881 760
2.6 822 791 882 949 796
3.0 822 791 882 951 1016 824
3.4 822 791 882 951 1018 1082 848
3.8 822 791 882 951 1018 1086 1146 868
4.2 822 791 882 951 1018 1086 1151 1209 886

- U x 103

1.0 0000
1.4 0000 7.02
1*8 0000 8.45 7.72
2.2 0000 8.45 9.75 8.19
2.6 0000 8.45 9.7 6 10.66 8.70
3.0 0000 8.45 9.76 10.69 11.29 9.24
3.4 0000 8.45 9.76 10.69 11.32 12.16 9.80
3.8 0000 8.45 9.76 10.69 11.32 12.20 13.14 10.34
4.2 .0000 8.45 9.76 10.69 11.32 12.20 13.19 14.17 10.87

IR ^I '
I 'àR*dRJr

1.0 0000
1.4 0000 30.70
1.8 0000 32.54 29.66
2.2 0000 32.55 31.15 27.83
2.6 0000 32.55 31.17 30.00 26.19
3.0 0000 32.55 31.17 30.00 29 .2 1 24.82
3.4 0000 32.55 31.17 30.00 29.23 28.38 23.67
3.8 0000 32.55 31.17 30.00 29.23 28.42 27.70 22.67
4.2 0000 32.55 31.17 30.00 29.23 23.42 27.75 27.13 21 .78



D.14

Table D.14

T = 30g; traverse m 5 cm; spacing = 1 D; E = - 7.05 Pg; 
3/?EY = 2185.T ' 'g; dr = d R  = 0.05 cm;

Z.dr

Assumption w = 0; std. size of the element; RO a 4.2 cm;

R\r 1.0 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1
1.0 0000
1.4 288.9 18.9
1.8 202.0 -53.0 34.8 - -
2.2 187.6 -67.3 32.9 51.4
2.6 212.2 -42.8 57.5 84.0 60.4
3.0 259.2 4.2 104.5 131.1 119.7 64.5
3.4 321.1 66.1 166.4 193.0 181.7 141.1 65.9'
3.8 392.1 137.2 237.5 264.1 252.8 212.4 153.1 65.84.2 468.4 213.4 .313.7 340.3 329.0 288.6 ■229.6 159.4 64.9

ei/e

1.0 000
1.4 793 197
1.8 793 286 133
2.2 793 286 184 279
2.6 793 286 184 2.77 338
3.0 793 286 184 6,74 135 372
3.4 793 286 184 6.8 133 172 3953.8 793 286 184 6.8 133 171 189 4114.2 793 286 184 6.8 133 171 187 199 424



D.15

Table D.15

T = 10g; traverse = 5 cm; spacing = 1 D; E *= (-8.18.P + I0)g;
3 /7EY = 2185.T 'g; dr = dR = 0.05 cm;

Assumption w = 0; std. size of the element; RO = 3.8 cm;

- P

* v 1.0 1.3 1.7 2.1 2.5 2.9 3.3 3.7
1 .0 000
1.4 540 254
1.8 576 438 273
2.2 578 445 511 287
2.6 578 446 522 533 297
3.0 578 446 523 551 576 302
3.4 578 446 523 553 606 517 310
3.8 578 446 523 553 608 630 627 314

- U x 103

1.0 000
1.4 000 , 3.78
1.8 000 6.61 4.27
2.2 000 6.70 7.94 4.57
2.6 000 6.71 8.08 8.45 4.86
3.0 000 6.71 8.09 8.69 9.78 5.36
3.4 000 6.71 8.09 8.70 10.12 11.40 5.51
3.8 000 6.71 8.09 8.70 10.23 11.92 11.79 5.88

fR «— J T>R,dR

1.0 000
1.4 000 10.21
1.8 000 13.56 10.01
2.2 000 13.76 12.57 9.47
2.6 000 13.76 12.79 12.67 8.94
3.0 000 13.76 12.80 13.00 12.15 8.74
3.4 000 13.76 12.81 13.03 12.63 11.38 8.16
3.8 000 13.76 12.81 13.03 12.66 11.82 11.43 7.90



D.16

T = 10g; traverse = 5 cm; spacing = 1 D; E = (-8.18.P + 10)g;
%EY = 2185.T 'g; dr = dR = 0.05 cm;

f R] Z.dr 
J r

Table D.16
Assumption w = 0; std. size of the element; RO = 3.8 cm; ,

E\r 1.0 1.3 1.7 2.1 2.5 2.9 3.3 3.7
1.0 000
1.4 118.4 16.3
1.8 - 72.2 -126.4 17.4
2.2 -226.4 -278.5 - 67.5 21.0
2.6 -342.3 -394.4 -180.4 - 39.2 22.7
3.0 -433.2 -485.3 -271.1 -126.0 - 15.0 21.7
3.4 -505.2 -557.3 -343.0 -197.7 - 81.2 - 2.4 23.2
3.8 -563.7 -615.8 -401.6 -256.2 -139.4 - 55.4 9.7 22.4

ey/e

1.0 000
1.4 345 78
1.8 299 217 247
2.2 299 221 176 113
2.6 . 299 221 181 171 151
3.0 229 221 181 182 154 160
3.4 229 221 181 . 183 165 125 187
3.8 229 221 .181 183 165 227 124 197



D.17

Assumption w = 0; std. size of the element; EO = 3.8 cm;

T -  20g; traverse = 5 cm; spacing = 1 D; E = (-7.49.P + 10)g; 
EY = 2185.T^?g; dr = dE = 0.05 cm;

Table D.17

-  P

A r 1.0 1.3 1.7 2.1 2.5 2.9 3.3 3.7

1.0 0000
1.4 1043 503
1.8 1103 833 545 - .
2.2 1104 846 985 576
2.6 1104 846 1005 1043 593
3.0 1104 846 1006 1080 1141 606
3.4 1105 846 1006 1082 1194 1160 622
3.8 1105 846 1006 1082 1199 1235 1221 631

■ -  U i  105

1.0 0000
... _

1.4 0000 5.78
1.8 0000 9.56 6.33
2.2 0000 9.68 11.32 6.69
2.6 0000 9.68 11.50 12.05 7.23
3.0 0000 9.68 11.51 12.39 14.25 7.91
3.4 0000 9.68 11.51 12.41 14.78 15.53 8.12
3.8 0000 9.68 11.51 12.42 14.82 16.32 17.30 8.64

rR 'S t

i

1.0 0000
1.4 0000 20.78
1.8 0000 27.50 20.01
2.2 0000 27.84 23.89 18.73
2.6 0000 27.86 24.23 24.35 17.89
3.0 0000 27.86 24.25 24.94 23.31 17.40
3.4 0000 27.86 24.25 24.98 24.03 23.17 16.21
3.8 0000 27.86 24.25 24. 99 - 24.10 24.13 21.87 15.67
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Table D.18

T = 20g; traverse = 5 cm; spacing = 1 D; E = (- 7.49.P + 10)g; 
EY = 2185.T ^ g ;  dr = dR = 0.05 cm;

Z.dr
J r

Assumption w = 0; std. size of the element; RO = 3.8 cm;

»V 1.0 1.3 1.7 2.1 2.5 2.9 3.3 3.7
1.0 000
1.4 231.2 24.3 - .
1.8 - 97.3 -232.7 33.4
2.2 -352.3 -484.7 -107.9 2.7
2.6 -544.0 -676.3 -294.6 - 55.3 44.6
3.0 -688.5 -820.8 -438.9 -192.7 - 8.6 43.4
3.4 -801.4 -933.7 -551.8 -305.1 -112.6 7.3 46.6
3.8 -891.2 -1024 -641.6 -394.9 -201.6 - 71.8 28.2 45.2

ey/e

1.0 000
1.4 303 111
1.8 294 228 119
2.2 294 231 156 129
2.6 294 231 160 158 161
3.0 . 294 231 160 164 132 171
3.4 294 231 160 164 141 131 198
3.8 294 231 160 164 141 139 96 208 .
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Table P.19

Assumption w = 0; std. size of the element; RO = 3.8 cm; 1 

T = 30g; traverse = 5 cm; spacing =13); E = (-7.05.P + 10)g; 
EY = 2185.T5/̂ 7g; dr = dR » 0.05cm;

- P

r V 1.0 1.3 1.7 2.1 2.5 2.9 3.3 3.7
1.0 000
1.4 1532 761
1.8 1619 1274 819
2.2 1622 1293 1422 866
2.6 1622 1294 1454 1570 890
3.0 1622 1294 1456 1632 1653 920
3.4 1622 1294 1456 1636 1731 1769 938
3.8 1622 1294 1456 1636 1739 1882 1822 955

- U x 105

1.0 0000
1.4 0000 6.99
1.8 0000 11.70 7.85
2.2 0000 11.84 13.37 8.20
2.6 0000 11.84 13.61 14.66 9.06
3.0 0000 11.84 13.62 15.41 17.64 9.41
3.4 0000 11.84 13.63 15.44 18.30 18.76 10.04
3.8 0000 11.84 13.63 15.44 18.36 19.75 20.42 10.48

IrR ^T- I -STj.diC

1.0 0000
1.4 0000 3 0 .3 3
1.8 0000 37.78 29.70
2.2 0000 38.18 36.37 27.51
2.6 0000 38.20 36.92 35.24 26.72
3.0 0000 38.20 36.96 36.15 33.29 24.91
3.4 0000 38.20 36.96 36.22 34.19 32.37 23.93
3.8 0000 38.20 36.96 36.22 ' 34.29 33.46 32.52 22.74
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Table D.20

Assumption w = 0; std. size of the element; RO = 5.8 cm;»
T as 30g; traverse = 5 cm; spacing = 1 D; B = (-7.05.P + 10)g;

3/7EY = 2185.T 'g; dr = dR = 0.05 cm.

fR
| Z.dr

r V 1.0 1.3 1.7 2.1 2.5 2.9 3.3 3.7
1 .0 000
1.4 366.4 50.0
1.8 - 50.9 -256.0 54.0
2.2 -374.0 -574.9 -131.6 69.1
2.6 -61.03 -811.6 -361.3 - 38.7 67.5
3.0 -783.0 -983.8 -533.0 -199.3 6.2 73.2
3.4 -918.1 -1119 -668.0 -333.6 -116.9 47.0 71.93.8 -1025 -1226 -774.9 -440.3 -222.5 - 44.3 62.2 71.7

ey/e

1.0 000
1.4 293 64.8
1.8 282 186 60
2.2 282 187 159 144
2.6 282 187 166 136 159
3.0 • 282 187 167 142 108 189
3.4 282 187 167 143 116 893.8 282 187 167 143 116 100

201
90 215



E.1

APPENDIX B

Table E.1 

Cheese No,8

Assumption w = 0; std. size of the element; RO =5.0 cm;
T = 20g; traverse = 5 cm; spacing = 1 D; E = 100g; El = 5000g;

2.dr.dr

1.0 1.4 1.9 2.4 2.9 5.4 5.9 4.4 4.9
1.0 0
1.5 0 2664
2.0 0 2772 3807
2.5 0 1464 2314 ' 3207
5.0 0 500 - 75 862 1702
5.5 0 - 420 -1900 -1847 - 819 - 279
4.0 0 -1560 -3760 -4585 -4222 -5164 -2424
4.5 0 -1880 -4950 -6398 -6635 -5988 -4790 -4032
5.0 0 -2476 -6271 -8479 -9457 -9445 -8745 -7667 -6994

rR
( I Z.dr ) / P 
Jr

1.0 —

1.5 -0.442 -0.269
2.0 -0.267 -0.104 -0.199
2.5 -0.135 -0.041 -0.098 -0.166
5.0 -0.032 0.179 -0.006 -0.096 -0.142
5.5 0.049 0.281 0.095 -0.024 -0.093 -0.125
4.0 0.113 0.365 0.170 0.041 -0.040 -0.088 -0.113
4.5 0.166 0.434 0.232 0.097 -0.010 -0.048 -0.083 -0.102
5.0 0.211 0.491 0.284 0.145 0.053 -0.008 -0.051 -0 .0 79 -0.094
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Table E.2
Assumption w = 0; std. size of the element; RO s 5 cm;

fR
( Z.dr) / P Jr

Cheese no. 1
T = 20g; traverse = 5 cm; spacing = 1D; E = 200g; EY = 5000g;
rV 1.0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9
1.0
1.5 -0.489 -0.337
2.0 -0.366 -0.225 -0.239
2.5 -0.274 -0.125 -0.173 -0.196
3.0 -0.201 -0.039 -0.106 -0.150 -0.166
3.5 -0.145 0.031 -0.047 -0.107 -0.133 —0.144
4.0 -0.099 0.089 0.005 -0.062 -0.100 -0.120 -0.127
4.5 -0.061 0.137 0.049 -0.023 -0.063 -0.095 -0 .10 9 -0,.1155.0 -0.029 0.178 0.086 -0.010 -0.038 -0.070 1 0 « 0 CO '-O ¿0 .100 -0,.104

Cheese no. 10
T = 20g; traverse = 5 cm; spacing = 1D; E = 200g; EY = 2000g;
1.0 -
1.5 -0.517 -0.397
2.0 -0.421 -0.315 -0.268
2.5 -0.354 -0.249 -0.231 -0.222
3.0 -0.301 -0.186 -0.187 -0.191 -0.186
3.5 -0.258 -0.145 -0.148 -0.161 -0.163 -0.158
4.0 -0.223 -0.105 -0.112 -0.132 -0.142 -0.144 -0.136
4.5 -0.194 -0.071 -0.081 -0.107 -0.121 -0.127 -0 .1 2 9 -0 .1255.0 -0.169 -0.042 -0.054 -0.083 -0.101 -0.111 -0 . 1 1 5  -0 .116 -0. 113

Cheese no.' 13
T = 20g; traverse = 5 cm; spacing t= 1D; E = 1000g; EY == 1OOOg;
1.0 -
1.5 -0.531 -0.446
2.0 -0.448 -0.380 -0.324
2.5 -0.392 -0.333 -0.287 -0.256
3.0 -0.350 -0.297 -0.257 -0.231 -0.211
3.5 -0.317 -0.268 -0.234 -0.211 -0.194 -0.180
4.0 -0.290 -0.242 -0.211 -0.194 -0.179 -0.167 -0.157
4.5 -0.268 -0.224 -0.195 -0.178 -0.166 -0.156 -0.147 -0. 140
5.0 -0.249 -0.206 -0.175 -0.165 -0<155 —0.146 -0.133 -0.131 -0. 125
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APPENDIX P

CONSIDERATION OP CTHTRTfflTflAT. FORCE

P.1 Effect of Centrifural Force

In a rotating package an element at any radius r will generate 

centrifugal force thereby reducing the pressure it exerts on the layer 

beneath it while the package is rotating. Similarly the element at 

the outer radius R will generate centrifugal force as soon as it is 

added to the rotating package. The centrifugal force so developed will 

reduce the effective pressure imposed by the element on the package 

beneath it during rotation.
For a given rotating package, the magnitude of the centrifugal 

force develbped in the element will depend on the mass of the element 
and on the circumferential speed of the element, which itself depends 

on the angular velocity and the radius of the element.

In some cases of winding, when spindle speed is very high and 

the diameter of the package is large, it may be possible that the 
centrifugal force developed in the element just added to the package 

is large. This force may reduce the effective pressure imposed by 

the element beneath it considerably and thus affect the compression 
of the package significantly. It may also be possible, in an extreme 

case, that the centrifugal force developed in the element overcomes 

its pressure altogether rendering the'winding impossible. It shall 

be useful to determine the magnitude of centrifugal force developed 

and .its effect on the compression of the package.
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However, the centrifugal force to reduce the pressure of the 
element exists as long as the package is rotating. As soon as the 

package is stationary the full pressure of the element is available 
and is imposed over the cheese beneath it. But if the centrifugal 

force is large, it might affect the formation of the package, specially 

when there is a possibility of slip between core and cheese or between 

layers.

F.2 Centrifugal Force of the Element
The centrifugal force of the element is given by the 

expression
m. (wv)2. r 

gr

where m is the mass of the element in g,

of the element in.radians per sec., r is the radius in cm at which 

the element is rotating and gr is the acceleration due to gravity in 

cms per sec. per sec.

P.2.1 Hass of the Element
The total number of threads in the element are

2.K./.dr
D

The diagonal length of the element at r is ’L 1. The average length 

is L/2, where

L = / V r 2 + a2'

(F.1)

wv is the angular velocity



therefore, the total length of yarn in the element is

. £ » £s¿J& . . /r2 + 2̂
D * 2  D

If ’mass' be the mass per unit length (in g per cm) of the yarn and 

'm' be the total mass of the element then

m K./.dr
D

2
+ a mass • • • (i)

How if 'count' is the count of unstretched y a m  in the cotton system 

then the 'mass' of the y a m  in g per cm is given, by the expression

mass 455.6
count x 840 x 91»44

The y a m  wound on the cheese is in a stretched condition, stretched 

by the winding tension in the yarn. Therefore the apparent count at 

the time of winding is count.(1 + T/EY); EY being the Elasticity of 

y a m  in Extension. Therefore

__________  4S3..6 ----------------------------- , v
mass = count x (1 + T/EY). x 840 x 91.44 ........

P.2.2 Angular Velocity of the Element
If 'rev' be the revolutions per minute of the spindle, then 

angular velocity 'wv' in radians per sec. of the element is

=ä rev x 2 x 3.14159 /  60 (iii)WV • • •
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p.3 Consideration of the Centrifugal Force

The centrifugal force of the element at r in a rotating ' 

package was present before the addition of the layer at R and is also 

present after the addition of a layer. The change in the centrifugal 

force of the element can occur only due to the deformation u in r; 

mass and angular velocity of the element remaining constant.

In the equation (3.11) ’p 1 represents the change in the 

pressure of the element due to the addition of the said layer. This 

change of pressure p will also include change of pressure of the 

element because of any change in the centrifugal force. Therefore 

the main equation (3.14) remains unaltered.
The centrifugal force of the element added reduces the 

pressure imposed by the element beneath it given by the equation (3.22). 

The nett pressure imposed is given by the expression

PoR cosaoR + 2.m.R
&

Therefore the boundary condition at r = R is given by the following 

expression

at (r=R) as -
T .dR.cosa „0 Oil

2.K.D.E
2m.(wv^ ,R 

2(K.fl02.E.i: (F.2)

The solution of equation (3.14) with the above boundary condition at 

r = R gives the value of u in a rotating package.



p.4 Changes in Computer Program 15
Program 15 is changed as follows to do calculations for a 

rotating package. Only change in the program is in the boundary 

condition at the outer radius R. This condition in the program is 

given by the following equation

(at r=R) = 2.K.D."s + cfcdu

where cfcdu represents the second part of the equation (P.2) namely
2dR /p2 2 mass.(wv) .R #

2.K.D.E ‘ gr *

where mass = 453.6/(840 x 91.44 x count x (1+T/e y)); ,

and wv = rev x 2 x 3.14159/60.

The values of count, rev and gr are read in the program 

through the data tape. The value of ’cfcdu' appears in the output.

By giving a value of zero to ’rev’ the program reduces to 15 giving 
results for a stationary package.

P.5 Results and Conclusions
The values (Shosen for count of yarn in cotton system, 

revolutions per minute of the spindle and acceleration due to gravity 

in cms/sec./sec. are 11, 900 and 931 respectively. These values are 

representative of the cheese used in the practical work. The results 

are tabulated in the table P.1.
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Table F.1

Ho.
outer
radius
R
cm

#  reduction 
in P0 due 
to centri­

fugal force

radius
r
cm

U
rev = 0 

a
U

rev = 900 
b

100a

1 1.1 0.093 1.0 0000 0000 00
2 1.5 0.151 1.5 0.01542 0.01555 0.522
3 2.0 0.212 2.0 0.02215 0.02205 0.542
4 2.5 0.317 2.5 0.02695 0.02677 0.668
5 3.0 0.446 3.0 0.0285 0.02808 0.777
6 3.5 0.6 3.5 0.02641 0.02618 0.87
7 4.0 0.776 4.0 0.02125 0.02102 0.989
8 4.5 0.976 4.5 0.01254 0.01240 1.129
9 5.0 1.202 4.9 0.00284 0.0028 1.409

The above table is compiled with the values of x, angle and 

space as 5, 1 and 1 respectively. The results show that the reduction 
in the pressure imposed by the added layer due to the centrifugal 

force of the layer is maximum at the outermost radius and is 1.2#'of 

the pressure which would be imposed if the cheese was stationary.

Also the maximum difference in the compression of a rotating and a 

stationary cheese is 1.41# of the compression of a stationary cheese. 
This occurs at the radius of 4.9 cm. At the other radii differences 

are smaller. Hence the effect of centrifugal force of the cheese, in 
the present case, is small.



NOTATION

radius at which an annular element was wound.

original radial thickness of the element./
current radius of the element.

current radial thickness of the element

present outer radius on to which the y a m  is wound.

radial thickness of the element being wound at outer 
R.

V - is the axial distance of the element from the end of the cheese.

10 - is the final radius of the cheese to which it is built up.

/ - is the angle subtended by the element at the axis.

K - is a constant related to the number of ends in the element.
K/ - is the number of ends in the element in either axial or

circumferential direction (see definition of element).

D - is the diameter of the yarn.

E - is the Modulus of Compression of the cheese. It is defined
as the force required to produce unit radial strain at one
crossing point. It is expressed in g.

• *

e - is the change in E due to the addition of a layer at R. It 
is equal to C^j|.dR).

EY - is the Elasticity of y a m  in Extension. It is defined as the 
force or tension in the y a m  required to produce unit strain 
in the length of the yam. It is also expressed in g.

s - is the radius of the core or former on which the package is
built.

x - is the traverse per wind. The value of x depends on machine 
setting.

a - is equal to x/277 = w//.

- is the axial length of the element.

r - is the
dr - is the

<? - is the

de - is the

V - is the

dR - is the 
radius

W



is the change in W due to the addition of a layer at the outer
, jpradius R. It is equal to

is the angle which the threads in the element make with a plane 
perpendicular to the amis of the cheese.
is the change in a due to the addition of a layer at the outer 
radius E. It is equal to ^S.dE.

is the total radial distance mowed by the element in deforming 
and ia equal to (<2- r).
is the incremental value of U and is equal to

is the tension in the yarn.
is the change in T due to the addition of a layer at R, It 

"STis equal to -^g-.dR.

is the radial pressure acting on the element.
is the change in P due to the addition of a layer at the outer

-BP
radius R. It is equal to -g^adK.
is the circumferential component of the force through the face 
of the element.
is the change in Q due to 
radius R. It is equal to

the addition of a layer at the outer

is the axial component of the force through the end face of 
the element.
is the change in Z due to the addition of a layer at the outer

JOradius R. It is equal to §TT»dK.
is the diagonal length of the element at q .

is the change in L due to the addition of a layer at the outer
8 L . B ■■radius R. It is equal to -£jj>d£t.

is a constant used in the relation of E and P, Its value 
depends on the compressions! behaviour of the yarn.



tencon - is a constant used in the relation of EY and T. Its value 
depends on the extensional behaviour of the yarn.

The suffix ’o' at the bottom of the quantity represents the
/value of the quantity at the time of winding, e.g. T0, represents the 

winding tension in the yarn. A suffix representing any of the radii 

at the bottom of a quantity show the radius at which the suffixed 

quantity is being considered, e.g.' a ^ represents the wind angle 

at the outer radius R or Tr represents the tension in the yarn at 

radius r.


