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Abstract 

Vacuum-Assisted Delivery (VAD) is an obstetric practice used to assist child 

delivery during the second stage of labour. During the procedure, the obstetric 

professional attaches the VAD device to the scalp of the foetus through suction 

and tractive force is then applied alongside maternal contractions to assist the 

baby’s passage through the delivery channel. VAD is more prevalent than 

obstetric forceps due to its ease of use, lower maternal morbidity and improved 

cosmetic outcome for the mother and her baby. However, safety concerns such 

as unintentional cup detachment or high vacuum, can lead to induced trauma to 

the foetus. Since its original inception, there have been limited efforts to evaluate 

the safety of VAD devices or optimise their design and operation. Here, an 

engineering approach to assess the devices’ failure modes is proposed to inform 

training, best obstetric practice and improved VAD design. 

An instrumented experimental recreation of VAD has been developed to achieve 

a comprehensive understanding of the mechanics of VAD devices and the 

associated trauma. It features an instrumented adaptation of a commercially 

available VAD device (the Kiwi® Omnicup™) connected to a tensile testing 

machine to simulate obstetric traction onto a head scalp model (fabricated using 

textile reinforced silicone). A pneumatic control system provides an actively 

controlled vacuum to the instrumented device. Optical markers, placed onto the 

scalp model, combined with a high-speed camera system provide tracking of 

scalp deformation during the mechanical simulation of an obstetric traction. 

Experimental factors such as traction speed, magnitude of vacuum imposed & 

changes to the design geometry of the VAD cup and pneumatic architecture 

including the consideration of frictional attributes of the maternal environment, 

were investigated. The results from the experimental studies show that a 

simulated obstetric VAD traction produces a characteristic response from which 

a number of key clinically relevant metrics can be determined and highlight the 

association of clinical factors and mechanical factors to device performance. The 

research informed on the conception of an atraumatic concept to prevent cup 

detachment. Upon evaluation of the technical and commercial feasibility of the 

concept, commercial and research opportunities were identified, which could help 

improve the performance of VAD devices, in the future. 
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Abbreviations/Glossary of Terms 

 

Term Explanation/Definition 

ACOG American College of Obstetricians and Gynecologists 

Caput Succedaneum During labour, the serosanguinous fluid accumulating in the subcutaneous tissue of 

the foetal scalp & the periosteal tissue of the foetal skull, is similar to oedema but 

termed caput succedaneum. 

Cervical Effacement  & 

dilation 

 

As labour progresses the cervix shortens and thins out, a process termed effacement. 

The cervix also stretches open, termed dilatation, allow the passage of the baby 

through the birth canal. 

 

Chignon Build-up of bloody fluid caused by induced pressure by the application of a VAD 

device to create cohesion between the cup effector and the scalp. 

Episiotomy Surgical incision of the perineum and posterior vaginal wall 

Flexion Point Located 3 cm forward of the posterior fontanelle along the sagittal suture and is the 

ideal application point for VAD to be placed to maintain flexion of the foetal head 

during traction 

Fontanelles Gaps between the foetal skull bones which allows the passage of the baby through 

the maternal pelvis  

Gravida/Parity  

 

Primigravida: A woman pregnant for the first time Multigravida: A woman pregnant 

multiple times 

Introitus Entrance to the vaginal canal 

Ischial spine Anatomical bony landmark in pelvis 

Mento-vertical diameter Engagement diameter of baby head during cephalic delivery 

Moulding 

 

Suture apposed(+1): Fetal head bones touching and not overlapping 

Sutures overlapped but reducible (+2): Fetal head bones gently overlapping and can 

be restored back to position with a gentle touch 

Suture overlapped and not reducible(+3): The extreme case leading to overlapping of 

bones not easily restored to position. 



Term Explanation/Definition 

 OA, OT, OP position: 

Orientation of foetal 

head  

OA: Occipito anterior- Occipital bone positioned towards mother’s belly 

OP:Occipito posterior- Occipital bone positioned away from  mother’s belly 

OT: Occipito transverse- Occipital bone positioned sideways to the mother’s belly 

Oedema Oedema is any serous fluid collection in extra vascular tissue and can be the result 

of multiple causes e.g. infection, inflammation or trauma. During labour, the 

serosanguinous fluid accumulating in the subcutaneous tissue of the fetal scalp & the 

periosteal tissue of the foetal skull, is similar to oedema but termed caput 

succedaneum. 

Presentation of fetal 

body 

Cephalic: Baby’s head presenting downwards to pelvis 

Breech: Baby’s buttock presenting downwards to pelvis 

RCOG Royal College of Obstetricians and Gynaecologists 

Serosanguinous Referring to blood and the serum liquid part of blood. 

Stations of Delivery (-1 

to +5) 

The station of delivery is used to describe the position of the presenting part of the 
baby in relation to a bony anatomical landmark in the maternal pelvis, the ischial 
spines. This is conventionally measured in centimetres, above (minus) or below (plus) 
the ischial spines. The clinical description “-3 above spines” would therefore represent 
a high head, the leading edge of which sitting at a plane where it is only just entering 
the maternal true pelvis. +1 represents a head which has advanced 1cm beyond the 
the plane of the ischial spines.  

 

 

Subgaleal haematomas 
Bleeding in between the skull periosteum and the scalp galea aponeurosis 

Terms of delivery  
UK 
Pre Term: Delivery at a gestational age of 24-36 weeks and 6 days pregnancy 
(~11%). 
Full Term: Delivery at a gestational age of 37-40 completed weeks pregnancy 
(~80%).  
Post Term: Delivery at a gestational age of >40 weeks pregnancy (~10 %).  
USA 
Early term- (37 0/7 weeks of gestation through 38 6/7 weeks of gestation) 
Full term- (39 0/7 weeks of gestation through 40 6/7 weeks of gestation) 
Late term- (41 0/7 weeks of gestation through 41 6/7 weeks of gestation), Post term- 
(42 0/7 weeks of gestation and beyond) to more accurately describe deliveries 
occurring at or beyond 37 0/7 weeks of gestation. 

 

Type of labour 
Unaided/spontaneous vaginal delivery (ie., no instruments required), In the UK an 
unaided or spontaneous normal delivery is usually managed by a trained midwife, 
without the involvement of a physician. In other parts of the developed world, 
physicians may routinely attend normal deliveries. In developing nations, if a woman 
is cared for in labour by a trained birth attendant, their skills will be more akin to that 
of a midwife. 

Iatrogenic: Medically caused. An induced labour is iatrogenic. 
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Chapter 1  

Introduction to Research 

 

Complications during childbirth result in the need for obstetricians to use ‘assisted 

delivery’ in over 12% of cases. Whilst this is preferable to the risk of maternal and 

foetal trauma imposed by emergency C-Section, assisted delivery systems 

remain poorly understood and under-developed (1). 

Vacuum-Assisted Delivery (VAD) is a mainstay of assisted delivery techniques 

utilised during the second stage of labour. During the procedure, the obstetric 

professional attaches the VAD device to the scalp of the foetus using negative 

pressure and tractive force is then applied alongside maternal contractions to 

assist the baby’s passage through the delivery channel. VAD is more established 

than obstetric forceps due to its ease of use, lower maternal morbidity and 

improved cosmetic outcome for her baby. However, safety concerns, such as 

unintentional cup detachment or high vacuum, can lead to induced trauma to the 

foetus (2, 3). Single-use integrated hand-pump VAD systems such as the Kiwi 

Omni Cup™ developed by Clinical Innovations Inc. (CI) have been dominating 

the VAD market for the past two decades but they have not shown significant 

improvement on delivery rate success in comparison to their predicates (4). 

Despite their growing prevalence, there has been a limited effort to evaluate the 

safety of VAD devices or attempts to optimise their design and operation. 

Formed in 1994, Pelican Feminine Healthcare Group (PFH), part of the Eakin 

Healthcare Group, is a small-medium enterprise (SME) specialising in the 

manufacture of disposable medical products for the UK and Irish market, such as 

stoma care and general feminine healthcare.  PFH acted as the exclusive 

distributor of the Kiwi Omni Cup™ in the UK until CI established its own 

distribution channels. Commercially, PFH identified that there was a marketing 

prospect to regain market coverage. Driven by this identified commercial need, 

PFH collaborated with the University of Leeds under a Medical Research Council 

industrial grant, to lead on informing novel, original and innovative research in the 

field in an effort to aid their aspiration of developing of a VAD device capable of 

improving clinical outcomes.  
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1.1 Research aim & Objectives 

 

The research aim is to achieve an engineering understanding of the key design 

parameters of commercially available VAD devices and their impact on 

performance and trauma in order to inform the design of a less traumatic device. 

The research objectives are organized as follows: 

 

Objective 1 Perform a review of published literature to identify the clinical 

gaps of understanding in VAD device design 

 

Objective 2 Understand and characterise the mechanics of VAD device 

performance based on the most prevalent form of trauma during 

VAD: Cup Detachment 

 

Objective 3 Investigate VAD device design improvements to improve VAD 

performance 

 

Objective 4 Recommend engineering design inputs for an atraumatic VAD 

device and evaluate the feasibility of commercial translation and 

clinical implementation 

 

 

1.2 Thesis Overview 

 

The thesis spans 7 chapters which address the research objectives and then 

provide a general discussion and reflection of their potential to inform future 

opportunities in this field. A brief synopsis is presented below: 

 

Chapter 2: Literature Review 

This chapter provides an overview of the existing literature published on modern 

obstetrical practices related to Vacuum Assisted Delivery (VAD) since its original 

inception in 1968. The clinical use behind the operation of their medical use was 

understood and the design evolution of the VAD systems leading the current state 
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of art is discussed. The findings from this literature review revealed a paucity of 

engineering understanding behind the operational use of VAD devices and 

subjective evidence on how the device performance impacts the most prevalent 

form of trauma identified: cup detachment. This presented a real opportunity for 

driving forward research to achieve a better understanding of VAD operation from 

an engineering perspective. 

 

Chapter 3: Development of a VAD simulator 

The clinical outcomes identified in the literature overview showed that the most 

prevalent indication of trauma associated with VAD usage was cup detachment. 

A VAD simulator concept was conceived based on guidance from an experienced 

clinician to establish its core design requirements. This informed the basis for the 

design and development of a test measurement system to understand the 

dynamics of cup detachment. 

 

Chapter 4: Design and Development of an Experimental Measurement 

System to detect Cup Detachment 

This chapter looked at the development of an experimental VAD model to develop 

a comprehensive understanding of the mechanics behind VAD devices and any 

associated trauma. The tensile mechanical properties of different silicone-textile 

assembly formulations were benchmarked against scalp mechanical properties 

reported in the literature. The best formulation was then used in the fabrication of 

the head scalp model. The Kiwi Omnicup™ was used as a template for 

instrumentation of the VAD cup system. The control, sensing & data acquisition 

aspects were devised to control and provide sensory feedback on the vacuum 

inside the VAD cup. Optical markers, placed onto the scalp model, combined with 

a high-speed camera system provide tracking of scalp deformation during 

mechanical simulation of obstetric traction. The evaluation of the measurement 

system has shown that a simulated obstetric VAD traction produces a 

characteristic response from which a number of key clinically relevant metrics can 

be determined. Image analysis shows that loss of vacuum is strongly affected by 

the geometry and physical properties of the VAD device during its interaction with 

the scalp. Experiments will be devised from the proposed methodology to 

investigate clinical and mechanical factors related to device performance. 
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Chapter 5: Experimental Evaluation of VAD Systems 

This chapter details the experimental approach taken to identify key influencing 

clinical and mechanical factors capable of affecting the propensity of cup 

detachment. The learnt outcomes from the experimental efforts lead to 

suggestion of engineering improvements to drive innovation in the form of an 

atraumatic VAD cup system concept in an effort to reduce VAD trauma by 

avoiding cup detachments. The technical and commercial feasibility of the 

concept based on the engineering suggestions will be evaluated with a view 

towards commercialisation in the form of a new product introduction (NPI) to the 

market in the following chapter. 

 

Chapter 6: Translating research outcomes to the design of a commercial 

system  

The concept of a portable atraumatic VAD device used in emergency child birth 

to assist delivery of babies that allows medical professionals to perform safer 

VAD delivery during difficult labour, was evaluated in this chapter. Unlike the 

passive vacuum assisted device from current competitors, the proposed 

innovation will reduce unintentional cup detachments. The costs to healthcare 

provision behind the occurrence of a VAD cup detachment was then calculated 

based on the clinical care path decisions associated with this undesired 

healthcare outcome. An IP analysis was performed to understand the patent 

landscape and a regulatory pathway then analysed to discuss future 

consideration for the device development process. This work was performed in 

collaboration with the industrial partner of this project. 

 

Chapter 7: General discussion, Conclusion & Future works 

The concluding chapter of this thesis gives a general discussion of the outputs 

and findings from the presented research. The research objectives were 

reviewed in context of the produced work and suggestions about future work for 

continuation of the proposed research to propose value creation in the form of 

more innovative atraumatic VAD devices. 
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Chapter 2  

Literature Review 

 

This chapter provides a resumé of literature published on modern obstetrical 

practices related to Vacuum Assisted Delivery (VAD). The clinical use behind the 

operation of their medical use is understood and the design evolution of the VAD 

systems leading the current state of art is discussed. The acquired knowledge is 

then used to provide suggestions of improvement in the field and the motivation 

behind the research aim of this thesis in an effort to create an atraumatic VAD 

device.  
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2.1 Vaginal Birth 

 

Parturition (human Labour) can be regarded as the most exciting epilogue of 

life. After months of foetal development and maternal delivery anticipation, it 

represents the most unpredictable and complex stage where both mother and 

her child are at maximum risk. Maternal biological pathways are triggered to 

maintain the rhythmic coordination between the contraction of the corpus and 

the yielding (cervix effacement) of the uterine cervix to prepare the birth canal 

for foetal progression(5) 

The process of normal delivery can be summarized in 7 discrete steps, also 

called the cardinal movements of birth: Engagement, Descent, Flexion, Internal 

Rotation, Extension, Restitution & external rotation and Expulsion. During the 

first stage of normal/classic labour (5-8 hours on average depending on parity), 

the foetus’ head moves to its best presenting diameters to the maternal pelvis 

by rotating anteriorly and changing its shape from a nearly circular shape to an 

elliptical one due to changes in uterine pressure (6, 7). The foetus aligns itself 

to the bony pelvis and engages in a cephalic (vertex) presentation;accounting 

for nearly95% of all births (Figure 2-1) (8, 9). 

At this instant, the mother achieves full cervical dilation (opening up to 10-

12cm) and full effacement (thinning of cervix to 100 %). She enters the second 

stage of labour (2-3 hours) in an effort to push down her new-born through the 

birth canal via series of expulsive contractions.  

Hereafter, third stage of labour is reached once the baby is delivered with her 

placenta removed straight after. If normal vaginal delivery is not possible due 

to associated factors as shown in Table 2-1, the obstetric team have two main 

options; providing additional assistance to the mother through Instrumental 

Vaginal Delivery, or performing an emergency caesarean (‘C-Section’) (10, 

11). However, the emergency C-Section is typically only used as a last resort 

(when instrumental delivery is not achievable or fails) because it risks 

significantly greater maternal morbidity (more blood loss and postnatal 

aftercare) (12) (13).
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Figure 2-1: Timeline of normal delivery events. A: Foetus aligns to the bony maternal pelvis in a cephalic presentation(vertex/head 
first), B: Baby progressing through the stations of delivery, C:Baby’s head scalp is visible at the introitus, D: Delivery of the baby 
is completed where the body delivers, either spontaneously or with the healthcare professional (accoucheur) holding the foetal 
head, sometimes to help delivery of the shoulders. This also marks completion of the second stage of labour(14). E: Front view 
of stations of delivery gauged with respect to the ischial spine (-3 to +3). Zero station is achieved when the head is aligned to the 
ischial spine. Each 1 cm increment from this reference constitutes of an increase of +1 delivery station(15). 

A B C D

0 +1 +2 +30 +1 +2 +3 0 +1 +2 +3Sacrum

Pubic Symphysis

M
V
D MVD

M
V

D

Stations of Delivery Stations of Delivery Stations of Delivery

Introitus

E



 

8 
 

Table 2-1 - Factors assessed at vaginal examination which could impact labour. Extracted and modified from (13, 21) 

Term Factors Examples 

Power  Reduction of expulsive force   • Insufficient cervical effacement and dilation  

• Abnormal volume of maternal amniotic fluid  

• Not ruptured maternal membrane  

Passenger  Foetal Complication   • Unsuitable position: Breech or shoulder   

• Persistent malposition  

• Twin Pregnancy  

• Abnormality of foetal head (too big)  

• Entanglement with Umbilical Cord Presence of 

excess Caput, hydrocephalus asynclitism  due to 

unfavourable positions & stations or excessive 

moulding   

Passage  Maternal/Birth Canal complication  • Contraction or deformation of bony pelvis  

• Abnormality in pelvis (too small)  

• Tumours or infection  

• Scars from previous injuries   

• Presence of Oedema  
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2.2 Instrumental Vaginal Delivery 

 

Instrumental Vaginal Delivery is a clinical means of providing additional 

mechanical assistance to the mother’s contractions, providing both additional 

force and guidance to baby during the second stage of labour (when the mother’s 

cervix is fully dilated and the baby’s head has made contact with the bony pelvis). 

Instrumented delivery comprises two families of instruments: Obstetric Forceps 

and Vacuum Assisted Delivery (VAD) devices. Combined these have a reported 

usage in 12-15% of registered deliveries in the UK (11, 16) and approximately 

5% in USA (17). Obstetric professionals are trained per professional body 

guidelines such as the USA & UK College of obstetricians (ACOG or RCOG) to 

identify the prerequisites for instrumental vaginal delivery (18). In addition, 

simulation based techniques such as mannequins or computational visualisation 

are used to complement or improve their proficiency (19, 20). Instrument 

selection is driven by the clinical training received to identify complicated birth 

scenarios (21). Other contributing factors are linked to the stations of delivery and 

orientation of the foetal head (anterior or posterior); VAD can be preferred over 

the forceps for low cavity (+3) as well as posterior mid-cavity (0 to +2) delivery 

but no clear preference for normal mid-cavity delivery (22). In countries with 

significant instrumental delivery rates (IDR>10%) as indicated in Table 2-2, lower 

caesarean delivery rates were observed (23). It is interesting to note that there 

exists a wide range of differing practices with regards to instrumental delivery and 

the selection of instruments is motivated by the training and decision making 

abilities of the healthcare professional (21, 24). 

 

Table 2-2: Instrumental delivery rates in EU Countries(23)   

Instrumental Delivery Rate 

(IDR) 
Countries 

IDR< 5% Bulgaria, 

Czech,Estonia,Greece,Croatia,Italy,Cyprus

,Latvia,Lithuania,Hungary,Malta,Poland,Po

rtugal,Romania,Slovenia,Slovakia 

 

5 %< IDR< 10% (Average: 7.64 

%) 

Belgium,Denmark,Germany,Netherlands, 

Austria,Finland,Sweden,Iceland 
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Instrumental Delivery Rate 

(IDR) 
Countries 

IDR>10% 

(Average: 12.5 %) 

Ireland,Spain,France,Luxembourg,UK, 

Norway,Switzerland 

 

In the UK,  the decision to perform instrumental is associated and influenced by 

the desired outcomes of key stakeholders involved in the clinical care pathway. 

The latter includes the clinical operative staff responsible for performing VAD 

delivery (Obstetricians & Trained midwives), the community responsible for 

managing the pre-birth (midwives) & after-birth care (nurses), the mother & baby 

and the purchasing unit of the hospital trust (Table 2-3). In the event that a birth 

requires an assisted delivery, the clinician must review a number of prerequisites 

(often termed ‘indications for use’) before they proceed. The main prerequisites 

comprise of ensuring that the mother has an empty balder and rectum (This is to 

ensure that there is more space for the baby’s passage and ensuring less 

damage to those organs), that there is full cervical dilation  and that the position 

of the baby’s head is in the appropriate station of 0 to +5, as shown in Figure 2-1 

(such that the baby’s head is sufficiently exposed for VAD attachment or forceps 

contact) (25).  
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Table 2-3: shows the desired outcomes of the stakeholders identified during the identification of the clinical care pathway (26) 
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Stakeholders for Clinical Care Pathway in UK 

Obstetricians/Senior 

Midwives 

Nurses & Midwives 

(Community & Clinical) 

Mother & Baby NHS Supply Chain 

Purchasing/CCGs/Hospitals/Trusts 

Better Patient 

outcomes 

Reduction of time in 

aftercare 

• Aesthetically pleasing, 

reassuring design, 

• Non-invasive 

• Improve revenue stream 

• Increase productivity 

• Less number or less qualified staff 

required Reduce waiting lists 

• Reduce theatre time, re-admissions, 

complications, length of patient stay 

Easy to use and safe 

familiar device 

supplied with good 

training material 

More focused on Patient’s 

welfare. 

Safe for baby and not 

uncomfortable during 

procedure 

• A Cost-Effective Solution and popular 

solution with good supply chain.   

• Minimal product variability (One 

standard size), Minimal recycling 

Help to shorten time 

to care 

No additional processing i.e. 

sterilization or machine set 

up 

No adverse 

consequences to future 

development of baby 
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2.2.1 Obstetric Forceps 

Modern obstetrical forceps, usually made of stainless steel, were first introduced 

in the 16th century to help assist troublesome child birth. Key design elements 

feature a curved blade, shaped to match the contours of the baby head and 

provide easy manoeuvrability through the birth canal. Forceps are available in a 

wide variety of designs to accommodate differing delivery needs, as shown in 

Figure 2-2. For example Simpson’s forceps are widely used for outlet deliveries 

because they conform well to the baby’s head, Keilland’s forceps are used to 

assist rotational delivery due to their narrow profile. Closed blade systems like 

Simpson-Luikart forceps were designed to conform to the curve of the maternal 

pelvis (cephalic pelvic curve) (27-30). The use of the forceps requires extensive 

training but remains clinically challenging (31), with links to increased maternal 

morbidity (e.g. anal sphincter injury) and cosmetic damage to the baby’s head 

(32). As a consequence, use of VAD devices has increased in the past decade, 

pursued as a less traumatic alternative to forceps (33). 

 

 

Figure 2-2: Examples of obsetric forceps. Top: Key design features of 
Kielland Forceps(34), Bottom: Illustration of Simpson Forceps(35) 
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2.2.2 VAD Systems 

Vacuum Assisted delivery (VAD) was brought into widespread clinical use 

through the introduction of a system proposed by Malmström (36), aiming to 

impart assistive forces through a suction interface on the baby’s head. In general 

the VAD consists of a suction cup which is placed on the flexion point of  the 

scalp, a negative pressure is then applied (either via manual or electric pump) 

(Figure 2-3) such that the healthcare professional can assist by pulling the VAD 

handle in tandem with the mother’s contractions (37).  

Since the original VAD device from Malmström, there has been little evidence of 

innovation in device design or function. While this is not uncommon in surgical 

instrumentation it should be considered in the context of growing clinical evidence 

(emergence of developing countries and improved quality of care) that VAD 

systems could, and should, be improved for improved safety and efficiency.  

 

 

Figure 2-3: Modern adaptations of conventional VAD system and their 
design features. A: Medela Basic Electric pump for VAD use, B: Medela 
Manual Pump VAD system, C: Utah Med Ltd VAD system, D: Cooper 
Surgical MityVac VAD system 
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The first step is critical in which the clinician must identify the correct location for 

VAD attachment on the baby’s scalp; the flexion point situated 30mm from the 

anterior fontanelle and 60mm from the posterior fontanelle in the direction of the 

sagittal suture, as shown in (Figure 2-5) (38). The VAD device is then 

manoeuvred through the delivery channel onto this point and a vacuum is applied 

to create a secure attachment with the scalp. This differential pressure with the 

atmosphere causes the first intermittent layers of the scalp to expand outwards 

from the aponeutica galea to fill inside the cup. The result is an elevated region 

of scalp filled with fluid, known as the caput succedaneum (or colloquially as a 

‘chignon’ or ‘localized oedema’) which forms a mechanical scalp-device interface 

(39-41). 

After a caput is formed and held, the VAD device can be employed by the clinician 

to assist the mother using the VAD handle during each maternal contraction. This 

process has two main aims; firstly to ensure correct orientation of the baby’s 

head, secondly to assist descent (movement) through the birth canal. The 

clinician angles each pull to promote flexion of the baby’s head, bringing the chin 

towards the chest and orientating the occipital end of the scalp toward the pelvis 

(42) (Figure 2-1).Full flexion is achieved when the ‘Mento-Vertical Diameter 

(MVD, the vector between the chin and VAD flexion point) points towards the 

entrance to the birth canal (42, 43). The procedure typically lasts around 10 

minutes over 2-3 pulls, each exerting a force up to 115N (44). This process 

achieves a success rate of over 80% when used with a commonly available VAD 

device (Kiwi OmniCup™) (44). 

The position of the baby is constantly monitored by the clinician’s other hand. In 

some cases a ‘counter-traction’ is applied, a force opposing the main direction of 

movement in order to maintain device position and orientation during traction. 

This technique is also reported to help the clinician gauge and regulate the 

tractive force, particularly during outlet deliveries when the foetal head must pass 

through a narrow (and thus restrictive) introitus (44, 45) (Figure 2-5).  
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Figure 2-4:  Two- handed traction technique with the Kiwi OmniCup(46, 47) 

 

The VAD device is used until the emergence of the baby’s head past the introitus, 

termed ‘crowning’. At this point further assistance is typically not required since 

the baby’s head represents the most significant resistance to movement during 

the birth process. Ending use of VAD consists of releasing the vacuum to prepare 

for crown delivery, where the clinician or midwife guides the final emergence of 

the baby. In some cases, a VAD is required to assist in rotational delivery which 

involves addressing a malposition of the baby’s head. This follows the same basic 

procedure described above but with a redirection of traction along the axis of the 

maternal pelvis (37). 
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Figure 2-5: Process steps during VAD. A: Cup placement-A vacuum source is applied to create a chignon by manual/electric 
pumping after placement on the flexion point. On caption-Illustration of Malmstrom's cup placement on a foetal head (36), B: 
Traction- Applied traction with a counter traction used to overcome resistant introitus, C: Cup Release: VAD is released after the 
crowning of the head and clinician proceeds to crown delivery. 
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2.3 Interaction of VAD with Foetal head 

 

In order to perform VAD, there needs to be first a continuous attachment of the 

cup effector onto the foetal head. The cup is first positioned by the healthcare 

professional over the flexion point (Figure 2-5) of the presenting part of the foetal 

head called suboccipitobregmatic diameter (SOB) located on the parietal region 

reported to be 11.54 ±0.62cm (N=319) (9) (Figure 2-6).  The scalp is displaced 

by the suction to fill the resultant void inside the cup. The deformation 

experienced by the scalp is linked to its intrinsic mechanical properties. The 

thickness of the scalp of  the parietal region of 1 month old  baby was 3.5mm in 

median with a range of 1.9 to 9.1mm on the parietal region (48). 

 

 

Figure 2-6: Diameter of circle represents the suboccipitobregmatic 
diameter (SOB). Picture courtesy of Sorbe et al. (38) 

 

The compliance of scalp is dependent on the mobility of its constituent parts the 

skin, subcutaneous tissue, the galea aponeurotica, the subaponeurotic 

connective tissue over the fixed pericranium onto the cranium (49-52). Gel-like 

chemicals, glycosaminoglycans binding the skin to surrounding tissues and the 

fibrous structure of the collagen & elastin present in the skin dermis contributes 

to the non-linear viscoelastic properties of the scalp (53, 54). The toughness of 

scalp is characterised by the keratinised epidermis, collagen-rich and fibrous 

dermis and amorphous gel-like deep reticular layers of the dermis present on the 

skin (55). In the parietal region where the VAD cup is applied, the region is tighter 

when compared to other regions of the head due to the presence of a dense 

galeal layer (Figure 2-7).  
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Research behind the characterisation of mechanical properties of human foetal 

head scalp is understated due to the amount of studies produced in the area and 

the complex structure of the scalp. However, a recent study by Falland-Cheung 

et al. (55) conveyed information about the elastic modulus, tensile strength, strain 

at maximum load and strain to failure of different scalp regions of adult human 

heads (left temporal, frontal parietal, right temporal, occipital) (Table 2-4). The 

tests were performed against ISO 527-2 using pre conditioned tissue 

(8mmx4mm) at 20mm/min. Out of this data, it is important to note that the Young’s 

modulus at the occipital end was 19.10 MPa (SD: 6.74 MPa) at a strain at the 

maximum force of 20.27% (SD: 4.79%) and the tensile strength was 2.75 MPa 

(SD: 0.96MPa) at a strain to failure of 29.35% (SD: 9.52%).  

 

 

 

Figure 2-7 : Distinctive layers of the scalp present on the cranium: Skin & 
Dense connective tissue, Epicranial Aponeurosis, Loose areolar 
connective tissue & Pericranium onto the skull ((56)).  
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Table 2-4: Mechanical properties of tested scalps. Left: Tested regions of 
the scalp. Right: Table with reported values of mechanical properties of 
human scalp tested against ISO 527-2 (55) 

 

Region Elastic 

Moduli 

(MPa) 

Tensile 

Strength 

(MPa) 

Strain at 

Fmax (%) 

Strain to 

failure 

(%) 

Left 

temporal 

24.3± 

10.67 

3.42± 

1.49 

19.09± 

4.56 

28.74± 

9.06 

Fronto-

Parietal 

22.31± 

9.31 

3.11± 

1.28 

20.21± 

5.26 

30.45± 

10.4 

Right 

Temporal 

25.2± 

9.1 

3.61± 

1.52 

18.89± 

4.04 

27.11± 

7.35 

Occipital 19.10± 

6.74 

2.75± 

0.96 

20.27± 

4.79 

29.35± 

9.52 
 

 

2.4 Associated Trauma with VAD & Cup Detachment 

 

Despite being an established instrument in labour wards across the world, there 

remain safety concerns behind the use of VAD devices. The chignon created by 

the vacuum action of the VAD device, shown in Figure 2-8,creates a striking 

visual impression of trauma, but in actuality it typically only persists for a few 

hours before dissipating, with associated cup-marks healing within one to four 

days post partum (57).  

The adverse events which cause more profound trauma to the baby are less 

common, but also less visually apparent, making detection challenging. The 

mechanical interaction between VAD device and scalp can result in damage to 

the underlying scalp anatomy to varying degrees (58). Subgaleal haematomas 

(SGH) occur in approximately 6 in 10, 000 VAD deliveries, when excess blood 

from the emissary veins accumulates beneath the epicranial aponeurosis (galea). 

This requires immediate attention as the blood can spread across the entire 

calvarial vault. If not diagnosed promptly, the resultant blood loss could lead to a 

life threatening hypovolemic shock (a 1 cm depth increase in subgaleal space 

could accommodate up to 260mL of blood (59-61), approaching the circulation 

volume of a 3kg baby (62-64). The occurrence of SGH is strongly linked to 

inappropriate cup placement in VAD(65). In the majority of SGH cases, the 
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leading edges of the cup were located too close to the anterior fontanelle (less 

than the recommended 30mm) (66) and even small errors in placement can lead 

to severe injury (67). High traction forces increases the propensity of unintentional 

cup detachments (often termed ‘pop-offs’)(68). Whilst the determination of safe 

traction levels remains highly subjective by obstetricians, there is a real need to 

investigate the impact of cup detachment (3). This is problematic firstly because 

an uncontrolled cup detachment can cause, or exacerbate, head trauma to the 

baby (as noted in Cephalohaematomas and SGH) but also because it can impose 

a profound change in the delivery plan. In the UK, after two or three pop-offs have 

occurred the delivery team must revert to an emergency caesarean section with 

significantly higher risks of morbidity and poorer outcomes for mother and baby 

alike (10, 11).  

This creates a more prolonged second stage labour where the baby experiences 

more stress but can also lead to more maternal frustration, in an already delicate 

situation. Therefore, it is critical to evaluate the suitability of the VAD device and 

proceed to the right care decision whilst preventing unnecessary delay to the 

delivery of the baby.



 

21 
 

 

Figure 2-8 :Trauma associated with VAD. A:Elevation of scalp after VAD(36), B: Dissipation of caput succedaneum after a few 
hours leading to a cup mark (36) C: Baby head with SGH (56) D: All trauma levels associated with VAD 
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2.5 Design Evolution of VAD 

 

Given the wide use of ventouse delivery for operative delivery it is instructive to 

consider how VAD device design, function and performance has evolved since 

their inception.  

Although wide-scale use of VAD techniques has only occurred since the 1950’s, 

the concept and early prototype systems have been in existence far longer. In 

1848 Sir James Young Simpson, inventor of the Simpson’s forceps also proposed 

their alternative; the ‘Air Tractor’ can be credited as the first VAD device, 

motivated in an effort to reduce maternal trauma (69). The device comprised of a 

brass syringe attached to a 3 inch diameter cup made of vulcanized rubber 

covering a metal insert. Entry to the cup was covered by a brass wire gauze 

where a piece of sponge or flannel was housed to inherently prevent obstruction 

of the vacuum inlet (70). The device wasn’t widely adopted due to reported 

concerns behind its limited suction force leading to Simpson to concentrate on 

the commercialisation of his forceps invention. Despite not being popular in the 

UK, Simpson’s work inspired others. In 1886 French inventor Soubhy Saleh 

produced a rubber cup connected to a separate vacuum pump while in the USA 

Stillman patented a VAD-like device in 1875 comprising of an oval cup with 

collapsible rings to facilitate entry, coupled to a traction handle (71). The 

‘Atmospheric Tractor’ from McCahey followed in 1890 featuring a near-

hemispherical rubber cup which was depressed, much like a plunger, onto the 

baby’s head without an external vacuum pump (36). In 1912 Kuntzsch developed 

the ‘’vakuumhelm’’ which employed a manometer to gauge the vacuum level 

inside an attachment cup. This was used in two successful trials on still-born 

infants but, like the devices preceding it, was not developed or used clinically 

(39). 

It was only after several more decades and the introduction of the ‘ventouse 

eutocique’ device in 1947 that VAD devices achieved clinical recognition (72). 

This device consisted of a straight sided aluminium cup (diameter 40-65mm) and 

a braided pull cord for improved angular manipulation (73). Vacuum was 

generated in the cup using an electric pump which included a waste trap for 

amniotic fluid and blood (74). A similar approach was patented by Finderle in 

1952, albeit with a horn-shaped cup, but despite a reported 221 successful cases 

the device was discontinued (75). However, it was the introduction of 

Malmström’s VAD system in 1953 which brought more widespread clinical use 

and closely represents those systems used today(76). Malmström produced 

improved designs between 1957-1968 (36). The latter consisted of a vacuum cup 
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with a curved cross-section (diameter 33-60mm), designed to create a 

mechanical interlock with scalp tissue when a vacuum was applied through an 

external pump. Traction is controlled by metal chain and handle to the cup. While 

it represented a step-change in VAD device design, there were some limitations 

in performance: the metal cup caused scalp bruising and when posterior delivery 

was attempted, the device would fail due to leverage movement caused by the 

metal chain onto the suction tube (77). Stöstedt and Bird (74) addressed these 

problems through the design of a shallower profile cup for easier vaginal insertion 

and a neoprene or polypropylene mesh inlay for less traumatic scalp interaction. 

Bird also emphasised the need to place the cup over the flexion point in the 

median position to promote flexion toward the narrowest diameter of the foetal 

head. To facilitate this, he separated the suction and traction ports, moving the 

suction port to the side of the cup, enabling placement over the flexion point even 

in problematic positions(43). Bird's modification of the Malmstrom cup, coupled 

with the emphasis on correct placement over the flexion point, and his advice on 

the finger-thumb traction technique remain the basis of best practice in vacuum-

assisted delivery. Further variations on this design were introduced by O’Neil et 

al. in 1987, replaced the chain attachment with a curved metal rod linked to the 

cup by a ball joint, intending to improve manipulation (78). However, across three 

studies (627 women) results showed there was no difference in maternal and 

neonatal outcome between these three variations on a metal cup design (1).  

Driven by concerns that rigid metal cups could lead to scalp trauma on the infant, 

the 1970s saw the introduction of pliable cups made from elastomeric materials 

(57, 59). Kobayashi introduced a VAD system consisting of a hemi-ellipsoid 

Silastic™ cup with a 65mm opening and a central stem (see Figure 2-9). The 

compliance of the elastomeric material allowed it to be folded  to ease insertion 

with minimal maternal trauma (77). Other VAD devices, such as the Menox Silc™ 

cup and the Mityvac™ cup, employed similar approaches and used elastomers 

to provide a ‘soft’ inner cup which helped to enhance contact area between scalp 

and cup. Obstetricians using these devices reported well-controlled delivery with 

minimal trauma (79). However they also showed significant limitations because 

they could only be used to assist outlet delivery stations (+3 or +5, see Figure 

2-1) and were not advised for deliveries requiring rotation of the baby’s head due 

to their compliant nature inhibiting the application of torque.  
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Figure 2-9:Single Use VAD Systems.  A & B:Examples of Single Use 
Instrumented devices with a reusable pump. C: Cooper Surgical Mystic 2 
VAD system, D: Clinical Innovation Kiwi Omni Cup  

 

 

Figure 2-10: Evolutionary trail of modern VAD devices. A: Medela 
conventional cup system (80), B: Description of the features of the VAD 
cups in panel A.  
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Figure 2-11: Evolutionary track of VAD device design A:James Young 
Simpson’s ‘Air Tractor’(81), B:Saleh’s rubber cup with finger grips(71), C: 
McCahey’s designs, D:Stillman’s design(71), E: Couzigou’s ventouse 
eutocique(81), F:Finderle’s horn VAD device(81), G: Malmstrom’s VAD 
device proposed in 1968(81), H: Bird’s modified VAD device proposed in 
1969(81) . 
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The last major innovation to VAD systems came during the 1990s, catalysed by 

moves to reduce transmissible infection through single-use instrumentation. In 

response, two single use VADs, complete with integrated hand-pumps entered 

the market; the MityOne™(also known as the Mystic II) by Cooper Surgical Ltd 

and the Kiwi Omni Cup by Clinical Innovations Inc. The MityOne™ has two 

models with different cup designs, the M-Style (mushroom-shaped cross-section) 

cup is a clear polyethylene cup with a flexible coupling to account for bending 

during delivery and the MitySoft™ which features a more rigid shaft but a larger 

softer cup suited for low-station delivery (82). The Kiwi Omni cup was developed 

at a similar time and comprises a low-profile rigid plastic cup accommodating an 

integrated suction tube connected to a manual hand-pump via a flexible wire. Like 

the ‘air tractor’, a sponge is placed inside the cup to avoid obstruction to the 

vacuum inlet. The handle also features indicators to display vacuum-level and 

traction level during use (83, 84). However despite the addition of 

instrumentation, the device has not shown significant improvement on delivery 

rate success in comparison to older cups (e.g. Malmström or Bird’s cups) and 

actually presents higher rates of cup detachment (up to 30%)(84-86).  

The evolution of VAD devices described here provides an insight into the 

motivations driving change and the relatively modest innovations which have 

occurred as a result. Key advances addressed easing cup insertion and handling 

inside the birth canal, reduction of device failure rate and the use of 

instrumentation to help regulate the procedure. However, much of this evidence 

is circumstantial and there is no direct literature on the assessment of VAD device 

design attributes of commercially available VAD devices. With the growing 

popularity of VAD, there is an urgent need to evaluate the performance of design 

attributes of VAD devices especially when little is known on how these factors 

contribute to maternal/foetal trauma during operational device failure. 
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2.6 VAD Mechanics behind Cup Detachment 

 

Understanding the mechanics of VAD use is central to inform improvements in 

both device design and clinical utility. However, much like the limited evidence 

available to explain VAD device evolution, there is a paucity of literature on how 

these systems behave during their interaction with the scalp of a baby and how 

device performance could be quantified.  

The most expansive research in this area was conducted by Malmström to inform 

development of his VAD system in the 1960s. Studies focused on optimising the 

maximum traction forces the VAD can exert until cup detachment (pop-off). A 

rubber ball was used to simulate the scalp of the baby to which a VAD was 

attached and loaded using fixed weights. The study investigated the effect of 

applying different levels of vacuum (30-80kPa) across a range of cup diameters 

(40-60mm), as shown in Figure 2-12 (36). The results are intuitive, showing 

increased levels of maximum tractions as a function of increasing vacuum and 

cup diameter. 

 

Figure 2-12: Replotted Traction Experiments by Malmstrom (27) 
VE60:60mm diameter cup, VE50:50mm diameter cup, VE40: 40mm diameter 
cup. Predicted curves displays Force values (calculated by the 
multiplication of the  Vacuum Induced by the contact cross-sectional area 
of cup onto scalp). 
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Based on these experiments and his personal experience, Malmström 

recommended that his VAD system would be safe and clinically effective if the 

vacuum is achieved at a rate of -20kPa/min up to a maximum of -80kPa (87). The 

rationale was that this would allow the soft tissue layers of the scalp to conform 

inside the hemispherical suction cup, thereby creating a chignon (Figure 2-13). 

However, Svenningsen challenged this approach, proposing that the vacuum be 

rapidly applied to -80kPa as a time saving measure. This was supported by a 

study (n=60) which showed no difference in VAD traction forces compared to a 

slower vacuum rate, although consideration of how this may result in tissue 

trauma was not detailed (88). 

 

 

Figure 2-13: Attachment of cup onto flexion point and creation of chignon 
and overview of the contact angles of scalp present at the entry of VAD cup 
system. 
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Litigation related to malpractice in VAD has catalysed research into improved 

safety and clinical outcome, which have typically been associated with the 

characteristics of applied traction (89). Vacca reported that a traction force of 

115N would be sufficient for successful delivery in 80% of cases but that the 

traction should not exceed 135N as this would significantly increase the risk of 

maternal sphincter damage and scalp injury to the baby (39). This is supported 

by an investigation by Saling into the traction forces recorded during clinical use 

of the Malmström device (60mm Malmström Cup) which reported a maximum 

force of 125N for successful delivery. This revealed that neonatal birthweight and 

progression of delivery (i.e. the station) has a causative link with the tractive force 

required. Revealingly it also highlighted a need to investigate the effect of applied 

traction on foetal morbidity (e.g. traumatic lesions and foetal head compressions) 

(90, 91). Building on this work, Muise et al. investigated the effect of applying 

angular traction using a range of modern VAD devices. These experiments used 

a scalp model (ex vivo canine hind quarters) and found that the application of 

angled traction resulted in a linear reduction in the safe maximal tractive force 

which could be applied (92-94).  

With the growing popularity of VAD over the forceps to assist vaginal delivery in 

the past decade, VAD is associated with less morbidity to the mother(95). 

However, the latter may be associated with more serious complications in the 

newborn (65, 96). Incorrect cup placement can intensify unintentional cup 

detachments(95). Bestgen et al. recreated experimentally cup detachments on 

porcine belly (97). This work introduced the concept of defining a maximum 

traction force to avoid both scalp trauma and cup detachment, now seen in 

instrumented VAD systems like the Kiwi OmniCup™(44). However, definition of 

what constitutes a safe level of traction force remains subjective and strongly 

dependent on device type (68). Accordingly, these must be informed by a more 

rigorous evidence-base, in particular on the biomechanics of VAD systems and 

how these relate to device performance and clinical outcomes. 
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2.7 Literature Summary 

 

Since its introduction, VAD has established itself as a vital tool in the limited array 

of choices available to clinicians when complications occur in vaginal delivery. 

The underlying approach, to create a negative pressure against the baby’s 

exposed scalp which can support the application of assistive force, is well-suited 

to the clinical workflow and has remained fundamentally unchanged through the 

history of VAD systems. Nevertheless, VAD technology has evolved over time 

with key drivers being increased safety (e.g. use of softer materials for the cup), 

ease of use (e.g. lower profile cups to facilitate placement) and prevention of 

adverse events (e.g. repositioning cables for rotational delivery). Latterly there 

has also been the introduction of single-use systems and a focus on feedback 

mechanisms to inform best practice (e.g. alarms to alert the clinician to loss of 

suction (98-100) and force sensors to detect the level of traction (3, 101).  

It is questionable if these features and development are clinically valuable, or 

rather serve to provide product differentiation in a highly competitive and risk-

averse commercial market. This perhaps best explains the incremental nature of 

innovation in VAD systems to date where it is difficult to obtain the engineering 

knowledge necessary to inform and justify more radical design changes and the 

potentially expensive regulatory approval they would incur. Nevertheless, the 

clinical evidence-base provides a strong argument that more significant 

innovation is required to make VAD systems safer and easier to use.  
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2.8 Conclusion 

 

The ease of use and lower maternal morbidity associated VAD devices can make 

them an appealing delivery option. However, to further improve these devices to 

improve factors ranging from clinical usability through to maternal and foetal 

morbidity, requires a better understanding of the mechanical interaction between 

the VAD and the foetal scalp. 

Since mainstream adoption in 1968 design changes have been reported, 

motivated by usability enhancement for easier clinical use inside the birth canal, 

the desire to reduce device failure rates during rotational delivery and gauging of 

vacuum/force feedback during traction. However, there exists a paucity of 

engineering understanding behind operational use of VAD devices. There is 

minimal evidence to inform VAD device design or clinical use and with the 

growing popularity of VAD, there is an urgent need to evaluate the performance 

of these medical devices.  

This presents a real opportunity for driving research in achieving a better 

understanding of VAD operation from an engineering perspective. Supported 

evidence to quantify physical parameters such as safe tractive forces as well 

prevention of unintentional cup detachments could influence VAD best practice 

and perhaps provide insight on how future devices can be engineered to make 

VAD less traumatic.  
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Chapter 3  

Development of a VAD simulator 

 

This chapter formulates the research motivation in improving clinical outcomes 

associated with VAD use from an engineering perspective. A VAD simulator 

concept inspired by observation of the clinical requirements of VAD use will be 

introduced. The design requirements of model features of the VAD simulator will 

be established to account for simulation aspects of clinical and mechanical 

factors capable of influencing the dynamics of an identified trauma associated 

with the performance of VAD delivery: Cup detachment. The detailed design and 

development of the VAD simulator to investigate the failure dynamics associated 

with this trauma mode, will then be further discussed in the following chapter.  
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3.1 Research Motivation 

 

Poor clinical judgement leading to the wrong VAD device selection and incorrect 

VAD usage have been shown to intensify cup detachment (102). This can lead 

to profound changes in the delivery plan leading to complicated clinical outcomes 

for the mother and her baby in the event of an unsuccessful VAD. 

Training workshops with VAD simulators have been formulated to improve & 

reaffirm the technical competence of obstetric trainees in performing instrumental 

delivery (103). However, they do not provide a quantitative understanding of 

important clinical factors leading to cup detachment such as insufficient vacuum 

application, high axial/side forces or wrong vector of pull due to oblique traction 

or incorrect cup placement. Providing an evidence based understanding on the 

impact of such factors during VAD can help supplement the training of the clinical 

professionals; thereby inform best practice in the field and introduce best control 

measures to ensure safer VAD.  

Whilst the cup-scalp interface is poorly understood but fundamental to device 

performance (ability to apply traction) and clinical outcome (i.e. scalp trauma), the 

mechanics of the cup-scalp interlock requires much improved definition, in 

particular how it correlates to clinical & mechanical factors associated with the 

design of VAD cup systems and their respective pneumatic architecture. 

Understanding the dynamics of chignon formation would allow investigation into 

how the vacuum should be applied (rate and magnitude) and how it should be 

maintained over time. Interlinked with these factors are the mechanical properties 

of the cup which will dictate the relative level of scalp and cup deformation (and 

thus stress at the interface) during use. These properties have been explored 

(through metal, plastic and elastomeric cup designs) but without rigorous 

quantification of the resultant performance. Furthermore, the mechanics at the 

skin-cup interface should not be neglected; the surface tribology will determine 

how the scalp moves relative to the cup during chignon formation and pop-off, 

while localised mechanical properties will dictate how the cup surface 

accommodates the presence of hair or caput (leading to potential pressure loss).  

Another area of impact is the application of tractive effort and how the 

characteristics of this relate to device performance. Although this is partially 

governed by the needs of the mother and baby, it remains uncertain how the 

magnitude, rate and direction of traction relate to device performance and 

outcome. Clinicians currently acknowledge that the force during VAD is 

transferred to the scalp; producing a compressive force on the skull and forming 

a compound structure resembling a ‘’sliding bag’’ (104).  Clinical experience 
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provides intuition behind the end use of the device. However the current field of 

research necessitates much detailed engineering explanation of how the device 

operating procedures impact the trauma level linked with VAD end use. Upon 

achievement of a thorough understanding of the influence of mechanical & clinical 

factors, innovations to improve safety, such as instrumented VAD systems which 

can guide the user to maximise device performance, minimise potential device 

failures and improve maternal outcomes.  

In this chapter, the design requirements of a physical experimental test set up will 

be addressed to inform on the biomechanics of VAD device design interaction 

during the dynamic simulation of an over traction the most concerning adverse 

event of VAD delivery: Cup detachment.  

 

3.2 Clinical Simulation Requirements 

 

Since the current research field surrounding the discussion of VAD devices still 

remains clinically driven, it was critical to outline an approach to define design 

and simulation requirements for the VAD simulator with an experienced clinical 

user of VAD cup system. 

Dr John Anderson, Consultant Obstetrician & Gynaecologist, Bradford Teaching 

Hospitals NHS Trust, assisted the research team with his clinical expertise 

around VAD. Dr Anderson, performed a VAD demonstration with a CI Kiwi 

OmniCup™ on an instrumental delivery birth simulator (MODEL-med® Lucy and 

Lucy’s Mum) (Figure 3-1). The training session provided an appreciation of the 

technical procedural steps in achieving VAD and helped in the definition of the 

essential simulation requirements of the VAD simulator concept discussed in the 

next section. 
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Figure 3-1: Key VAD procedural steps demonstrated by Dr John Anderson 
on a VAD Training Model. A&B: Identification phase, C,D&E: Application 
and Insertion phase of VAD, F&G: Traction Phase, H:End of VAD Procedure-
Crowning and release of vacuum on foetal head. 

 

The first step in VAD comprises of the identification of the flexion point on the 

foetal head. The health care professional uses his middle finger to estimate the 

insertion distance. After applying obstetric cream on the outside of the cup, the 

cup is then inserted immediately after a contraction onto the flexion point located 

on the presenting SOB diameter (11.54 ±0.62cm) during cephalic presentation of 

the baby’s head (Figure 3-2). The cup positioning is performed by one hand 

operation with the thumb applying on the dome and two fingers resting on the 

rim. The second hand is then used to sweep any present maternal issue from the 

periphery of the cup to prevent entrapment. Upon satisfactory correct placement, 

the healthcare professional immediately creates a vacuum attachment by 

generating a negative pressure either by manual or electric pumping. The 

recommended safe level of vacuum magnitude on a Kiwi Omni Cup™ ranges in 

between 60-80kPa (46).  
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Figure 3-2 : A coronary view of the stations of delivery used to assess 
descent of the baby with the SOB shown as the major presenting diameter 
to be accounted for (Adapted from:(15) (9)) 

 

Once cup placement is achieved, the clinician adopts a kneeling position or sits 

on a low stool to perform the traction procedure. During the traction phase, 

traction is performed as a two-handed procedure with the pulling hand applying 

the tractive force and the other used to monitor the descent but also to apply a 

counter traction/counter pressure.  This gesture complements the mother’s 

pushing efforts or the involuntary uterine contractions to encourage flexion 

exposing the foetus to favourable presenting diameters necessary to achieve 

spontaneous delivery. For high to mid outlet foetal head positions (descent 

phase), a downward tractive force is applied along the axis of the pelvis in tandem 

with the maternal contraction.  The procedure is continued until the foetal scalp 

becomes visible or reaches the pelvis outlet (perineal phase). The vector of 

tractive forces is then gradually changed upwards with the clinician adopting a 

standing position. The direction of pull has been shown to be most effective when 

it is applied perpendicular to the cup (93). At the end of the VAD procedure, 

baby’s head is seen at the entry of the introitus and the operator presses on a 

valve and releases the imposed vacuum to complete birth.  

Based on the comprehension of the clinical requirements presented above, an 

experimental concept will be introduced in the following section to establish the 

core simulation requirements required to be considered during a VAD simulation 

leading to a cup detachment. With an appropriately designed VAD simulator, the 

biomechanics of VAD device performance can be characterised to help advance 

understanding in this field of research and provide a foundation with which to 

improve our limited understanding of VAD biomechanics during cup detachment.  

 

-5
-4
-3
-2
-1
0

+1
+2
+3
+4
+5

Ischial 
Spine

Perineum

Iliac
 Crest

S
O
B

OP

M
V
D

S
M

B

SOB

Pelvic inlet

Iliac
 Crest



 

37 
 

3.3 Design Requirements of a VAD simulator 

 

This section will relate to the definition of design requirements of the VAD 

simulator to emulate the clinical interaction of an adapted instrumented version 

of the Kiwi® Omni Cup™ system (Figure 3-3) onto a representative foetal head 

exposed under controlled traction. Inspired by the clinical simulation 

requirements established above, the model features of the proposed concept will 

comprise of three main interfacing units as shown in Figure 3-4. Further design 

requirements of a representative foetal head scalp model will be discussed. The 

baseline instrumentation aspects of the adapted VAD device will focus on supply 

and control of safe coverage of vacuum levels as indicated by the graduations of 

the Kiwi Omni Cup system and design considerations to emulate the pumping 

architecture atypical of VAD devices. During VAD, Vacuum levels or magnitude 

is measured by the amount of air evacuated out of the VAD device either by 

manual or electric pumping and is measured in kPa or mmHg or psi. Cup 

geometry changes to the current cup design will also be accounted for to 

demonstrate the design intent of the recessed edges and its importance for scalp 

retention in the event of cup detachment. The vacuum levels inside the VAD 

device will be dynamically detected by a vacuum transducer. The motion of the 

device will be actuated by the actuator frame of uni-axial tensile testing machine 

to re-enact obstetric traction. A detailed summary of the key model features and 

design specifications of the VAD simulator can be viewed in Table 3-1. 

 

Figure 3-3: Kiwi Omni Cup™ MTE (with traction indicator) 
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Figure 3-4: Design concept of VAD Simulator with model features 
highlighted to simulate the clinical use of VAD. An overview of phase 
development of the process of development of this concept model can be 
seen from Appendix A2 

Load Measurement &
Simulation of Traction

Instrumentation of
VAD Device

Foetal Head 
Scalp Model
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Table 3-1: Summary of the model features, the simulation requirements and the system specifications of the VAD simulator  

Model Features Simulation Requirement System specifications 

Foetal Head Scalp 

Model & Frictional 

attributes of the 

maternal environment 

 

• Replicate the cup placement of the VAD device onto 

the presenting SOB diameter of the baby’s head: 

(11.54 ±0.62cm) (9) 

• Utilise a head scalp surrogate exhibiting the similar 

mechanical characteristics as foetal head scalp with 

the capability of enduring repetitive straining during 

testing. 

• Simulate exposure to the aqueous environment of 

maternal fluid surrounding the baby’s head 

• An equivalent model of the foetal head scalp will need to be 

developed with a conformable material capable of being 

moulded onto a presenting diameter of 12cm. 

• The Scalp element will need to reflect the mechanical 

properties addressed in the literature review. 

• Different lubricants with viscosity <1.17cP applied onto soft 

scalp (105) 

Load Measurement & 

Simulation of Traction 

• Simulation of over traction with tractive forces up to 

200N at over a range of speed of traction(106) 

 

• A Uni-axial tensile system with a capable load cell (200N) 

should be selected to measure the range forces to be 

simulated to achieve VAD delivery at cover a range of tractive 

speed (50 to 200 mmmin-1)(90) 
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Model Features Simulation Requirement System specifications 

 Vacuum 

Measurement inside 

Instrumented VAD 

Cup System 

 

• Capable of measurement changes in vacuum inside 

VAD device during the simulation of a traction leading 

to a cup detachment. 

• Transducer should be sensitive enough to detect the vacuum 

changes inside the cup of the VAD device. 

• The system should be able to accurately detect the event of 

cup detachment. 

 Vacuum Control and 

supply inside 

Instrumented VAD 

Cup System 

 

• Control of Vacuum Supply using commercial 

pneumatic architecture within recommended ranges 

described by the device manufacturer 

• Selection of pneumatic components to reflect commercial 

pumping architecture 

• System should be able to deliver a vacuum of a range 

covering 60kPa-80kPa (39) 

Cup Geometry 

Changes to 

instrumented VAD 

Cup System 

• Limit the coverage of the mechanical interlock by 

design of changes in the cup geometry of a VAD cup 

system. 

• Design adaptions to Kiwi Omni Cup to reduce the effect of 

mechanical interlock. 
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3.4 Load Measurement & Simulation of Traction 

 

Traction or tractive force is defined as the application of an axial force in line with 

the maternal pelvis to aid the presentation foetal head to favourable diameters 

biomechanically advantageous for spontaneous delivery. It is measured in 

Newton (N). During VAD, the traction is expected to be applied constantly over a 

maternal contraction is observed. By a steady traction, the foetal head progresses 

through stations of delivery through a defined speed of traction (tractive speed) 

measured in mmmin-1 (Figure 3-2)(Table 3-2).  

Exertion of high axial tractive forces (overtraction) is known to increase the 

propensity of unintentional cup detachment. Based on graduation on the traction 

indicator of the Kiwi Omni Cup, high tractive forces range in between 90N to 

140N. This implies that a suitable force measurement system will need to be 

selected to axially apply forces to cover that range but as well monitor the load 

during the simulation of an overtraction.  

 

From Malmström experiments, the maximum retention forces ranged between 

30N and 200N for the respective applied vacuum magnitude range of 30 and 

80kPa (36). Calculations from Saling’s traction experiments indicate that the 

average traction speed ranges between 40-80 mm/min (90) (Table 3-2). This can 

also be defined In the event of an overtraction leading to a cup detachment, it is 

expected that speed of traction would be slightly more elevated. As such, a 

commendable range of speed of traction simulation of 50 to 200 mmmin-1 would 

be suitable for investigation. Currently there are no clear definition of traction 

levels, qualitative terms are used during the procedure. Gentle traction is first 

encouraged during the first minute to allow for the chignon to equilibrate. Strong 

traction is then applied depending on the magnitude of the vacuum originally 

applied. Higher forces are generally expected during the perineal phase due to 

the narrowing of the birth canal at the pelvic floor and the presentation of the 

widest diameter of the foetal head.  
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Table 3-2: Calculations for the average speed of traction during VAD 
extracted from Saling’s Traction Experiments (91) 

S
ta

ti
o

n
 o

f 

D
e
li

v
e

ry
 f

ro
m

 

P
e

ri
n

e
u

m
 

D
is

ta
n

c
e

 f
ro

m
 

P
e

ri
n

e
u

m
 (

m
m

) 

N
u

m
b

e
r 

o
f 

T
ra

c
ti

o
n

s
 

(R
o

u
n

d
e

d
 t

o
 

n
e

a
re

s
t 

tr
a
c

ti
o

n
) 

D
u

ra
ti

o
n

 o
f 

a
p

p
li
e

d
 

T
ra

c
ti

o
n

s
 (

m
in

) 

(R
o

u
n

d
e

d
 t

o
 

n
e

a
re

s
t 

m
in

u
te

) 
S

p
e

e
d

 o
f 

T
ra

c
ti

o
n

 

(m
m

/m
in

) 

Pelvic inlet (-3) 80 3 3 80 
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20 2 1 40 

 

3.4.1 Instrumentation of VAD Device 

The event of a cup detachment has been perceived to be too fast to allow for 

corrective obstetric device manoeuvres (77). This suggests that it is likely that to 

be able to capture the dynamics of cup detachment, the VAD simulator will need 

to feature a pneumatically controllable instrumented VAD device equipped with 

sensors responsive to fast changes to the applied vacuum.  

The Kiwi Omni Cup™ MTE (with traction indicator) will be used as a template for 

evaluation due to its robustness as well as ability to be instrumented. This device 

consists of an integrated suction tube connected to a manual hand-pump via a 

flexible wire and tube (Figure 3-3). The handle also features indicators to display 

vacuum-level and amount of traction the VAD device experienced during an 

obstetric pull. The flexible wire (16.5cm) is coupled with 4mm vacuum tubing 

connected to the hand pump. The traction cord loops around an anchor point 

which also comprises of 2 inlet holes to aid suction flow. A soft spherical cut out 

sponge is glued on the anchor point to prevent obstruction to the inlet holes but 

also to distribute the vacuum evenly. It will be critical that the alignment of the 

wire to the cup is central during simulation of traction experiments. Appropriate 

fixtures would need to be designed to secure the attachment of the VAD device 

onto a load cell and then onto the frame of the tensile testing machine.  

Understanding the impact of the recessed edges contributing to the mechanical 

interlock will be an area which will need to be explored. 
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3.4.2 Foetal Head Scalp Model 

As highlighted in Chapter 2, despite previous attempts in the use of physical scalp 

models made from rubber and a variety of ex vivo tissues, there has been no 

reflection on how accurately they represent the anatomy of a baby’s head as well 

as the geometry and mechanical properties of the scalp during the application of 

vacuum and traction. Whilst, in-Silico simulation requires well defined 

biomechanical parameters and obtaining data from real cases is difficult and 

inherently limited in scope; there exists a need to develop improved VAD models. 

As such there is a need to develop a higher fidelity physical head scalp model to 

test and evaluate VAD devices in order to improve our limited understanding of 

VAD biomechanics as highlighted in Section 3.1. 

Since the primary point of action of VAD happens on the foetal head, it is critical 

that the simulation comprises of an appropriate foetal head scalp model on which 

the mechanics of the cup interaction can be characterised. It can be a 

considerable challenge to model the complex compound structure of the scalp, a 

simplified approach would be to develop a scalp surrogate reflecting the non-

linear viscoelastic mechanical properties reported in Section 2.3.In the occipital 

region, the Young’s Modulus of the tested scalp was reported to be 19.10 MPa 

(SD: 6.74 MPa) at a strain at the maximum force of 20.27% (SD: 4.79%) and the 

tensile strength was 2.75 MPa (SD: 0.96MPa) at a strain to failure of 29.35% (SD: 

9.52%) (Table 2-4).The surface tribology can impact the relative motion of the 

scalp inside cup during chignon formation and cup detachment whereby localised 

mechanical properties can dictate how well the cup surface can accommodate 

the scalp. The simulation should also account for the aqueous maternal 

environment such as the amniotic environment with reported viscosity (water-like) 

of less than 1.17 Cp (105). 

 

3.5 Chapter Summary 

 

From the previous chapter, the clinical outcomes behind from the most prevalent 

indication of trauma associate with VAD usage: Cup Detachment, have been 

translated to form an engineering perspective on the scale of future innovation in 

VAD device design. This led to the conception of a VAD simulator and the 

definition of its system requirements to simulate clinically relevant operating 

procedures of VAD. This will form the basis of the design and development of a 

test measurement system presented in the next chapter to understand the 

dynamics of a cup detachment. 
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Chapter 4  

 Design and Development of an Experimental Measurement 

System to detect Cup Detachment 

 

This chapter presents the development of an instrumented experimental re-

enactment of VAD to achieve a comprehensive understanding of the mechanics 

of VAD devices and the associated trauma: Cup Detachment. It features the 

development of a representative head-scalp model on which a commercially 

available, instrumented VAD device (the Kiwi® Omnicup™) interfaces to simulate 

an obstetric traction. Upon creation of a measurement system alongside defined 

experimental methodology, an insight into the dynamics of a cup detachment will 

be provided.  
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4.1 Introduction 

 

Following the design specifications of a VAD simulator presented in the previous 

chapter, the design and development of a configurable pneumatic experimental 

set up to control and sense the vacuum magnitude inside an instrumented Kiwi 

Omni during the simulation of an obstetric traction on a uni-axial testing machine 

(Instron E10000), will be presented in this chapter. 

First, since there was no account of a reliable head scalp model presented in 

literature, a representative simple model of the foetal head scalp replicating the 

clinical situation upon which VAD needed to be developed. Considering that the 

clinical performance of a VAD device relies on the deformation of scalp inside the 

cup contributing to the chignon, a suitable scalp surrogate had to be developed 

to meet the design specifications. Based on initial developments, the learning 

from past creations will be used to consolidate the approach to develop a robust 

head scalp model. The mechanical performance of various fabricated silicone-

textile composite formulations will be evaluated against those requirements for 

integration into the final assembly of the foetal-head scalp model. A quantifiable 

approach using engineering metrics of securing the capture of the dynamics of a 

cup detachment with the VAD simulator will then be proposed. This will consist 

of development robust experimental methodology behind the dynamic in-vitro 

simulation of an overtraction to understand the chain of events leading to a cup 

detachment. The obstetric traction will be emulated and sensed by the frame and 

load cell on a uni-axial tensile tester respectively. Local deformations on the scalp 

simulant arising due to VAD will be observed through the displacement of placed 

pin markers onto the developed foetal head scalp by high speed imagery whilst 

data acquisition of physical parameters such as vacuum level inside the 

instrumented VAD cup, load experienced during traction will be provided by a 

Data Acquisition and Control Unit (DAQ). The latter will also be utilised to 

synchronise the activation of the high-speed camera to record the motion of the 

pin markers ensuring a real-time observation of the dynamics of cup detachment.  

A schematic of the interacting components and their association to the relevant 

sections can be seen from Figure 4-1.  
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Figure 4-1:  Control schematics of interaction of different developed 
instrumented units of the in-vitro simulation of VAD set up to capture the 
dynamics of cup detachment on a developed VAD simulator 

 

4.2 Development of a Foetal Head Scalp Model  

 

This section will present the work behind the development of a foetal head scalp 

model against the design specifications addressed in the previous chapter 

(Figure 4-2). Skin substitutes made out of soft elastomeric material have been 

extensively used during design verification processes of consumer products such 

as electric shavers to complex drug delivery medical systems (107). Such 

materials exhibit great resistance to stress/impact due to their reactive ability to 

absorb energy; making them ideal for repetitive testing (108). The feasibility of 

the manufacture of a soft elastomeric foetal head scalp and placement onto the 

developed head model, will be assessed through a preliminary evaluation. The 

learning from this evaluation will then be utilised to formulate an approach to 

reinforce the initially developed elastomeric material with a textile constraint layer 

and replicate the mechanical requirements of the foetal head scalp. Different 

formulations will be manufactured and tested per an iteration of the ASTM D412-

06a standard (Section 4.2.2.1). The chosen formulation which meet the desired 
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specification will then be integrated into the final configuration for the evaluation 

of the measurement system in Section 4.5.3.  

 

 

Figure 4-2: Silicone-textile composite scalp placed onto the hemispherical 
head model based on requirements provided in Table  3-1. 

 

4.2.1 Initial Development 

The first iteration of the foetal head model consisted of the design of a 120mm 

outer diameter (OD) hemisphere to model the presenting SOB diameter with an 

extended square profile (Figure 4-3). With the advent of rapid prototyping using 

3D printed technologies, the head model was manufactured out of Nylon by Multi 

Jet Fusion (MJF) (HP Designjet 3D colour printer). MJF involves the infra-red 

thermal fusing of polymer based powder particles layer by layer with fusing & 

detailing agents ((109)).  
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Figure 4-3: First iteration of the head model 

 

Cured silicone elastomers have been shown to effectively mimic specific 

mechanical behaviour of tissues during the in-vitro simulation of tissue 

biomechanics (110). In this preliminary evaluation, a similar approach will be 

undertaken. Ecoflex 00-30, known for its excellent mechanical properties and 

ease of manufacture, was chosen to be integrated as the surrogate in the head 

scalp model. With an elastic modulus of 10 psi (68.95kPa) at 100% deformation 

and a durable pot life of 45 min, Ecoflex 00-30 is a platinum-catalysed rubber 

silicones curable at room temperature (4 hours at 23 °C) with relatively minimal 

shrinkage. Its low viscosity (3000 cps) allows it to be easily mixed and dispensed. 

Equally proportioned Part A and Part B of Smooth On ™ Ecoflex 00-30 silicone 

was first thoroughly mixed and degassed in a planetary mixer (THINKY,ARA-

250,Intertronics) for 90s at 2000rpm. Prior to silicone pouring, a mould release 

agent (Smooth On Universal™ Mould release) has been applied and left to settle 

for 5 minutes on both moulds. All presenting holes were covered with a non-

adhesive filler to prevent silicone leakages. The prepared silicone (240g) was 

then transferred into a two-part designed cavity moulds and allowed to rest for 3 

hours (Figure 4-4)(Figure 4-5).  At the end of silicone curing, the moulds are 

pulled apart and the scalp is peeled off the bottom top mould for integration into 

the head scalp model. 
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Figure 4-4: Fabrication steps to create a Scalp. Step 1: Silicone Preparation 
and Pouring, Step 2: Casting, Step 3: Curing Step 4: Demoulding Removal 
of top mould from bottom mould  
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Figure 4-5 : Experimental overview of silicone casting. A-Top Mould, B-
Bottom Mould, C- Silicon Curing, D- Demoulded Silicone Scalp 

 

In earlier trials on identifying the right scalp surrogate, it was quickly realised that 

the silicone material experienced too much elongation over strain and the clamps 

were not rigid enough to contain the deformation of the material. This prompted 

to the second iteration of the design. Hereafter, the foetal head model featured 

an improved redesign of the original conception but manufactured by plastic 

extrusion based additive manufacturing technology with recyclable Polylactic 

Acid (PLA) filaments (Ultimaker 2 Extended +). The top of the construct followed 

the unaltered hemispherical curvature whereas sides of the design are grooved 

to achieve good surface contact area with the developed enveloped soft material. 

Surrounding the hemispherical construct, an extended circular profile (5mm from 

the epicentre) with 8x 5mm holes will provides space to attach a 128 mm OD 

steel ring to prevent the unwanted scalp movement on the side by providing a 

clamp down force (Figure 4-6). Perforations around the side of the construct were 

made to allow the flow of air during application of a vacuum to control the stiffness 

of the scalp to prevent over elongation of the scalp. 

 

A B

C D
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Figure 4-6: Optimised head model with grooved walls for improved contact 
with the moulded scalp surrogate 

 

Despite the original efforts, it was hard to quantify the stiffness of the scalp 

exposed to a vacuum underneath. The applied vacuum was found to be 

interfering with local deformation of the scalp surrounding the VAD. As such, 

exploratory work on assessing less invasive improvements to the mechanical 

properties of silicone was required. 

In a recent effort by Tausif et al. at the School of Design, University of Leeds, 

non-woven textile material such as Polyethylene (PET), regenerated cellulose 

(Lyocell) and Polyphenylene terephthalamide (PPTA)  have been added to an 

elastomeric material (thermoplastic polyurethane(TPU)) to improve its tensile 

modulus and tensile strength (111). The presented study was a good basis to 

explore the integration of a constraint layer such as a textile material to reinforce 

the cured silicone matrix to improve its mechanical properties. With a better cure 

time and ease of manufacture than TPU, an initial effort was made by combining 

silicone with loose Polyethylene (PET) fibres (Figure 4-7). The outcome of this 

exploration motivated the evaluation of more silicone-textile configurations with a 

view to mimic a more realistic mechanical response similar to biological scalp in 

the next section. 
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Figure 4-7: Evolution of head scalp models in the VAD simulator A: Over 
elongation of the material with the original conception. B: Vacuum 
controlled scalp with the optimised head model. C: Silicone-textile Scalp 

4.2.2 Development of a silicone-textile composite scalp 

In this section, different woven and non-woven textile material will be combined 

with the manufacture of Ecoflex 00-30 into tensile die sets dimensioned as per 

ASTM 412-06a standard. The resulting composite will then be evaluated against 

the mechanical properties defined in the system requirements in Chapter 3.  The 

chosen formulation will then be integrated into the construction of the foetal head 

scalp to envelop the construction of a hemispherical foetal head model as shown 

in Figure 4-2. 

 

4.2.2.1 Mechanical Testing 

As highlighted in the Section 2.3, the developed scalp material should have an 

anticipated elastic modulus in the range of 1.91± 0.67 MPa within the lower 

specification of 20.27± 4.79 % elongation: 15.48 % elongation. A desirable tensile 

strength will allow for the material to withstand tensile forces without the 

occurrence of yielding or rupture under tensile loading. As such, the tested 

material should exhibit good tensile strength properties with the desired 

configuration able to withstand stresses more than 1MPa at an elongation of 

Upper Specification Limit (USL) of 29.35 ± 9.52 %:38.7% (Section 3.3). The 

reported values are consistent with the deformation profile of skin tensile tests in 

the forearm region whereby initial stretching of the collagen fibres observed at 

40% elongation (112).  

A B C
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ASTM D412-06a, an internationally recognised test method for evaluating 

vulcanised rubber and thermoplastic elastomers under tension will be used for 

the mechanical evaluation of test samples manufactured to the correct 

dimensions as shown in the tensile test specimen in Figure 4-8. 

After manufacture, the test samples will then need to be appropriately clamped 

in a uni-axial tensile testing apparatus. The test will be performed at a standard 

speed of 100mm/min until at least 100% elongation of the gauge length or 

breaking. The collected data (stress against % strain/elongation graph) will then 

be analysed to determine the modulus of elasticity or Young’s modulus (E) from 

the gradient of the straight line portion as shown in Figure 4-9 (Equation 4-1).  

The Tensile Strength (TS) can be obtained by calculating the Load divided by the 

cross-sectional area at the % elongation at break as can be seen below (Equation 

4-2 & Equation 4-3). 

 

 

𝑌𝑜𝑢𝑛𝑔′𝑠 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 (𝐸) =
𝜎

𝜀
= (

𝑔𝑎𝑢𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

𝑐𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎
) × 𝑠𝑙𝑜𝑝𝑒 

 

Equation 4-1 

 

 

𝑇𝑒𝑛𝑠𝑖𝑙𝑒 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ (
𝐹

𝐴
) =

𝐿𝑜𝑎𝑑

𝐶𝑟𝑜𝑠𝑠 − 𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐴𝑟𝑒𝑎
 

 

Equation 4-2 

 

%
𝑆𝑡𝑟𝑎𝑖𝑛

𝐸𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛
= (

𝐿 − 𝐿0

𝐿0
) × 100%   

𝑤ℎ𝑒𝑟𝑒 𝐿 ∶ 𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ  

𝑎𝑛𝑑 𝐿0: 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐺𝑎𝑢𝑔𝑒 𝐿𝑒𝑛𝑔𝑡ℎ  

 

Equation 4-3 
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Figure 4-8: Tensile specimen dimensions based on ASTM D412-06a 
standards. A- Length of test specimen, B-Breadth of the barbell ends for 
clamping, C: Thickness of sample, D-Gauge length of elongation 

 

 

Figure 4-9: Tensile Stress-Strain Curve for Scalp testing alongside the 
representation of the tensile specimen at different stages of the test.  
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4.2.2.2 Materials and method 

Commercially available Samuel Taylor Spandtex N64 and Sulky® Soft’n Sheer™ 

non-woven nylon cut-away permanent stabilizer as well as textile assemblies 

provided by the School of Design, University of Leeds, were combined with a 

silicone base (Ecoflex 00-30) to produce elastomeric composites. Woven 

samples of preformed carded Polyethylene terephthalate (PET) (1.6 decitex 

(dtex), 38mm) and non-woven Polyphenylene terephthalamide (PPTA/para-

aramid) (1.7 dtex, 58mm), regenerated cellulose (Lyocell) (1.7 dtex, 38mm) will 

be included in this study. All non-woven preforms were carded (nominal mass 

area density of 70gm-2, parallel-laid) and pre-needled (42 punches cm-2). One 

woven format of the same Lyocell formulation was also included in this test 

evaluation. The silicone was manufactured as detailed in section 4.3.2. The 

prepared silicone was then poured into 2mm or 4mm deep acrylic laser cut 

Stencils designed to fit 5 ASTM D412-06a (Die C- Tensile Set dimensions-

6mmx33mm) test specimens. A sheet of textile material (School of Design, 

University of Leeds) was sandwiched in between 2mm deep stencils whereas 

Ecoflex 00-30 sample was produced using a 4mm stencils. Once set, the silicone 

or the silicone composite is allowed to rest at room temperature for 3 hours and 

then demoulded to be trimmed to shape for tensile testing (Figure 4-10). 

The prepared 5 test specimens were then securely positioned at the tag ends into 

pneumatically controlled Instron 250N Gripper set (2712-052) (Figure 4-11). A 

tensile test was then performed at 100mm/min with a 50mm end extension on an 

Instron 5500 equipped with a 500N load cell. Data were collected at intervals of 

2 ms (500Hz) via the Bluehill™ Universal machine control interface.  

In addition to the silicone composite testing, the mechanical properties of 2 

synthetic skin simulants: SynDaver 4N & 10N (Adult Skin, SynDaver Labs, FL, 

USA, SKU:141503 & 141514) were also tested to establish recognised baselines 

in testing. The tissue simulants were first stored in saline solution and cut to size 

(15mmx70mm). The average thickness of the SynDaver 4N and SynDaver 10N 

were 1.9mm and 2.4mm respectively. The skin simulants were securely 

positioned into a pneumatically controlled Instron 250N Gripper set (2712-052) to 

expose a gauge length of 30mm. Destructive tensile test was then performed at 

100mm/min on an Instron 3369 equipped with a 500N load cell. Data was 

collected at intervals of 2ms (500Hz) via the Bluehill™ Universal machine control 

interface. 
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Figure 4-10: Preparation steps of the silicone-textile composites. A- First 
layer (2mm) silicone preparation, B-First layer cured and laser cut textile 
sheet to fit tensile template C- Placement of textile sheet, D-secure 
clamping of tensile set for second layer silicone preparation (2mm), E- 
Curing and setting of samples 

 

 

Figure 4-11: Tensile testing of material evaluated in the conception of a 
silicone-textile scalp. A-Tensile testing of silicone-textile barbell specimen, 
B- Tensile testing of SynDaver 4N Skin Simulant 
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4.2.2.3 Results and Evaluation 

The graphical results of this characterisation work can be viewed in Appendix 

A1. A summary of results based on defined metrics, introduced in Figure 4-9, is 

displayed on Table 4-1 and a graphical representation of the observed results 

can be viewed in Figure 4-12. 

Table 4-1 :Summary of the material evaluation for implementation in the 
head scalp model  

Material 
Evaluated 

Mean  Elastic Modulus 

(MPa) at 0<ε<15.48% 

(n=5) ± Standard 

Deviation (SD) 

Mean Stress (MPa) at 

ε=38.87%  

(n=5) ± Standard 

Deviation (SD) 

Ecoflex 00-30 
0.04 ± 0.01 

0.01 ± 4.34E-04 

Ecoflex 00-30 + Carded 
PET 1.6 dtex, 38mm 

0.06 ± 0.04 
0.03 ± 4.79E-04 

Ecoflex 00-30+Spandtex 
(A6 Polyester +Nylon) 

0.05 ± 0.014 
0.02 ± 3.08E-04 

Ecoflex 00-30+Sulky 
1.65 ± 0.50 

0.48 ± 4.55E-04 

Ecoflex 00-30 +PPTA 
1.7dtex, 58mm 

0.96 ± 0.20 
0.20 ± 2.46E-04 

Ecoflex 00-30+Lyocell 1.7 
dtex ,38mm 

1.04 ± 0.21 
0.34 ± 3.16E-04 

Ecoflex 00-30+Woven 
Lyocell 1.7 dtex 38mm 

1.50 ± 0.58 
1.19 ± 0.0012 

SynDaver 4N 
1.30 ± 0.10 

0.24 ± 3.00E-05 

SynDaver 10N 
9.47 ± 1.18 

1.88 ± 2.71E-04 

Desired Mechanical 
Properties 

1.91 ± 0.67 >1MPa 

 

 

The mean elastic modulus of PET 1.6 dtex 38mm and Spandtex composite 

didn’t defer from Ecoflex 00-30. However, there were strong indication of good 

silicone-textile integration with the Polyphenylene terephthalamide (PPTA/para-

aramid) (1.7 dtex, 58mm).  However only the combination of the Sulky® Soft’n 

Sheer™ non-woven nylon cut-away permanent stabilizer and the woven 

regenerated cellulose (Lyocell) (1.7 dtex, 38mm) Ecoflex 00-30 met the desired 

mean elastic modulus properties at 38.97%. It is interesting to note that the 

SynDaver 4N was close to the desired range for the elastic modulus but didn’t 

have the required tensile strength properties whilst SynDaver 10N displayed the 

opposite characteristics. Ecoflex 00-30 with woven regenerated cellulose 

(Lyocell) (1.7 dtex, 38mm) met the second requirement of the design 
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specifications by exhibiting good tensile strength properties (>1MPa). This lead 

to the consideration of this evaluated silicone-textile configuration to be 

integrated into the final design of the foetal head scalp model (Figure 4-12).  

 

 

Figure 4-12 : Data for the Mean Elastic Modulus for 0<e<15.48% (Left y axis- 
Blue) & Mean Stress at e=38.87% (Right y axis-Red) 

 

  



 

59 
 

4.2.3 Fabrication of Silicone-textile Scalp Composite 

The fabrication of the silicone-textile scalp involved the same process steps as 

indicated in the manufacture of the silicone scalp in section 4.2.1. Half of the 

silicone prepared (120g) was first added into the bottom mould. The top mould 

was then gently pressed to ensure the silicone flows on the side of the circular 

profile. After this process step, a layer of the textile material was then positioned 

and then the remaining the silicone was dispensed. A centred bottom cast part 

was then pressed and secured into place by bolts and nuts. The unit is left to cure 

for 3 Hours. Once cured, the bolts are removed and an external pressure source 

(1bar) was applied to the relief hole on the top part to separate the newly moulded 

silicone from the top cast. The top cast is slowly levered off with a flat head 

screwdriver from the bottom cast to reveal the scalp model. Upon release of the 

scalp, the flashes of silicone are carefully removed by blowing pressurised air 

and then rinsed with distilled water. The moulds are then allowed to air dry for 2 

days until next usage. 

Throughout the time of study, the silicone-textile composite manufacturing 

technique has been conceived during the fabrication and trial of various 

formulation of scalps (Figure 4-13). Due to the physical manipulation of samples 

and the compressive nature of the moulding process, it is recognised that 

misalignment and pre-stressing of the imbedded textile material can happen This 

can cause defects and artefacts such as bubble entrapment, uncured silicone, 

residual silicone flashes and thinning layer (Figure 4-13). The conformance of a 

flat sheet of textile onto a hemisphere can lead to material overlapping i.e. 

creases. The quality of the composite scalps manufactured has been controlled 

through visual inspection in an effort to discard scalps prone to the defects and 

artefacts. In section 4.5, an evaluation of silicone scalp composed of the chosen 

formulation will be presented during the combined measurement system 

evaluation. 
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Figure 4-13: Overview of scalps manufactured over the time of study. A-Silicone scalp, B-Loose PTE fibre scalps, C-Sulky scalps, 
D- Lyocell scalp and list of associated defects with the current manufacturing technique
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4.3 VAD Pneumatic Instrumentation 

 

As highlighted in Chapter 3, the Kiwi Omni Cup will be used as a template for 

investigation. In this section, the technical aspects of the VAD pneumatic 

controller alongside the sensing unit to pneumatically instrument VAD cup will be 

covered (Figure 4-14). A summary of the hardware configuration utilised to 

construct the pneumatic sensing and control units can be seen from Table 4-2. 

 

Table 4-2 shows a summary of Simulation Control & Sensing Hardware 

Testing Variable Unit Hardware Manufacturer & Model 

Vacuum Pressure 

 

Vacuum 

Sensing 

Vacuum 

Sensor 

Panasonic ADP5110 

Vacuum output Pneumatic 

Controller 

Vacuum 

Regulator, 

valve  & 

Pump with 

reservoir 

SMCITV2090-21F2BSS, 

Normally closed Valve 

SMC VX214AA  & Medap 

Venta Multi Care 26 Pump 

with Festo Air Reservoir 2L, 

G 1/2, CRVZS Series,  

 

 

 

Figure 4-14: Pneumatic components used to pneumatically instrument the 
VAD cup 

 

Vacuum Sensor
with Output acquired

by DAQ 

VAD Vacuum 
Supply Port

from 
Vacuum Regulator

Vacuum Regulator
Fed by Pump/Reservoir
input controlled by DAQ

VAD
Attachment 

Fixture to Load Cell

Head Scalp
Model fixed to

base of Uni-axial 
Machine
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4.3.1 Pneumatic Controller unit 

The pneumatic control kit comprises of a vacuum pump, reservoir, regulator & in-

line control valve for a controlled supply of the vacuum level inside the interfacing 

VAD device (Figure 4-15). 

Connected in line with the pump by 8mm OD tubing, a 2L vacuum reservoir 

(Festo Air CRVZS) is used to counteract any vacuum disturbances created by 

the vacuum pump (Medap Venta) but also used in buffered vacuum regulation 

experiments in the following chapter to emulate different VAD pneumatic 

architecture. The output of the vacuum is controlled electronically by using a 

vacuum regulator (SMC ITV2090) with high sensitivity (0.2% FS) and 

repeatability (0.5% FS). An electro-pneumatic solenoid based vacuum regulator 

can be set up to deliver vacuum to the VAD cup up to -80kPa with  supply vacuum 

pressure ranges between -13.3kPa to -101kPa via a 4mm SMC push fit connector 

with a response time of 0.1s (10Hz) (Figure 4-16). The NI DAQ 6211 is central 

towards the control of the input of the regulator to deliver the supply of vacuum 

to the instrumented VAD whilst acquiring the changes in vacuum levels via the 

sensing unit. 

 

 

Figure 4-15: Instrumentation of the VAD controlled by the VAD Pneumatic 
controller and the vacuum recorded by the VAD Sensing Unit. Both systems 
are monitored by the DAQ. 
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Figure 4-16: Schematic of the electro-pneumatic Vacuum Regulator 
showing the feedback control schematic of a set pressure based on an 
input signal(113) 

 

4.3.2 VAD sensing Unit 

Whilst, it is anticipated that the cup detachment is a very fast event, it is important 

that the vacuum sensor is fast and sensitive to any vacuum changes experienced 

in the cavity of the instrumented cup. Measurement of vacuum can be achieved 

by an either absolute or gauge pressure sensor relative to atmospheric pressure 

(101.3kPa). As a result, negative readings are obtained. The instrumentation of 

the VAD cup features the use of an analogue gauge vacuum sensor (Panasonic 

ADP 5110) connected to the analogue input of the DAQ and powered by 5V input. 

With a built in amplifier, temperature compensating circuit and compact in size, 

the negative pressure measurement sensor can record vacuum changes of up to 

-100 kPa  with high accuracy (±1.25% FS). To optimize sensing, the sensor was 

placed within close proximity of the interfacing port hole (4mm SMC push fit 

connector) (Figure 4-14). 

 

4.3.3 Calibration of VAD Pneumatic controller and Sensing Units 

Linearity & calibration tests were performed to evaluate the response of the 

Vacuum sensor & regulator present in the sensing and pneumatic controller units 

respectively, upon incremental vacuum changes. A linear regression fit was 

applied to obtain the characteristic correlation between the voltage output from 

the sensor to the connecting DAQ unit and the vacuum level acquired by a 

calibrated Digitron 2022P digital manometer (R2= 0.9998, n=48) (Figure 4-17). 

Once calibrated, the relationship between the voltage input of the pneumatic 
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controller to delivery of the vacuum was cross-verified with the already calibrated 

vacuum sensor. A linear regression fit was applied to obtain the characteristic 

correlation between the voltage input and vacuum supplied by the pneumatic 

controller (R2= 0.9997, n=39) (Figure 4-18). In addition, the in-built vacuum 

sensor providing the display of the vacuum levels on the electro-pneumatic 

regulator was calibrated accordingly (R2= 0.9999, n=39).  (Figure 4-19).  

 

 

 

Figure 4-17: Calibration Curve for voltage input to the vacuum sensor as 
result of vacuum changes created by the pump and validated by the Digital 
Manometer (n=48). 
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Figure 4-18: Calibration curve for the voltage output from the electro-
pneumatic regulator to control the vacuum sensed by the calibrated 
vacuum sensor. The supply of vacuum to the regulator was -80 kPa and 
generated by the pump (n=39). 

 

 

 

Figure 4-19: Calibration curve for the voltage input to electro-pneumatic 
regulator against vacuum levels changes generated by the pump (n=39). 
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4.4  Experimental methodology to detect cup detachment 

 

Following the creation of the foetal head scalp model and the instrumentation of 

the VAD cup, the Instron E10000 was chosen as the uni-axial tensile test platform 

to develop the experimental methodology behind the in vitro simulation of an over 

traction. The testing methodology behind the interaction of essential hardware 

components utilised for detection or control of testing variables will be discussed 

in this section. A summary of the testing variables and detection hardware/unit 

alongside their operating software can be viewed in Table 4-3: Summary of the 

testing variables measured by the hardware and operated by its designated 

software utilised in the test measurement system. 

Table 4-3: Summary of the testing variables measured by the hardware and 
operated by its designated software utilised in the test measurement 
system 

Testing Variable Hardware/Detection 

Unit 

Operating Software 

Vacuum Pressure 

 

VAD Sensing Unit National Instrument (NI) 

LabVIEW Virtual 

interface 

Vacuum output VAD Pneumatic 

Controller Unit 

National Instrument (NI) 

LabVIEW Virtual 

interface 

Traction Load (N) Instron Load Cell (200N) Instron Wavematrix 

Software 

Traction Speed 

(mm/min) 

Instron Frame with 

associated couplings & 

Software 

Instron Wavematrix 

Software 

5V Digital  

Synchronisation signal 

Output signal 

Generated by DAQ and 

Supplied to Instron 

Controller by BNC cable 

National Instrument (NI) 

LabVIEW Virtual 

interface 

Visual detection of cup 

detachment & scalp 

deformation 

High speed camera 

(Phantom V9.0) & 2mm 

studded pin markers 

Phantom Camera 

Control (PCC) 

 

 



 

67 
 

4.4.1 Test Assembly 

The Instron Electropuls E10000 equipped with a 200N load cell was chosen due 

to its extensive actuator stroke coverage (60mm) with configurable workspace 

(Tee slotted test base & Extended frame) and direct output of unfiltered acquired 

Force data (5000Hz) from its controller unit. With the head scalp model affixed to 

the Tee slotted base of the machine, traction simulation can be performed 

through the coupling of the pneumatically instrumented cup to the load-cell 

equipped actuator (Figure 4-20). 

A commercially available VAD device (Kiwi Omni Cup) was modified to expose 

only the 16.5cm wire in bracket and the anchor point was sealed with epoxy glue 

to prevent unwanted vacuum interferences from the pump handle. Two precisely 

tap threaded 4mm holes were made to fit in 4mm push fit connectors to 

accommodate the vacuum control and sensing lines from the pneumatic 

controller and sensing unit developed in the abovementioned section (Figure 

4-14). The wire was secured with a gripping fixture. The coupled assembly was 

then directly connected to the load cell affixed to the actuator of the frame via a 

designated piggy back fixture (See Appendix A2 for Fixtures Design). 

A specialised National Instrument (NI) LabVIEW Virtual interface (VI) was created 

to allow the user to initialise the vacuum inside the cup via the regulator and 

record the output from the sensors input via buffered acquisition to the DAQ NI-

6211 (Panel A in Figure 4-22. The back end of the LabVIEW software was 

programmed to acquire 5000 samples of data at a sampling frequency of 5000Hz 

in the acquisition control loop. Digitally controlling the initiation of the test is 

another benefit of using the E10000. The 5V synchronisation signal with 1µS 

delay (Low to high) was used to trigger the start of the test on the Instron 

Wavematrix directly from the NI LabVIEW VI (Figure 4-21).  The same signal was 

used with a pre-set delay to activate the recording of the test with a high speed 

camera (High to Low); whereby the displacement of affixed pin markers was 

tracked to provide a visual perspective of the occurrence of cup detachment. This 

technical aspect will be discussed in the following section.  
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Figure 4-20: Assembly components of the VAD simulator. The foetal head 
scalp model and the pneumatically controlled VAD cup onto an Instron 
E10000 and a high speed camera records the test performed. 

 

Figure 4-21: Details of how a synchronisation signal is sent from the NI DAQ 
to start the data acquisition of the load & vacuum and recording of the high 
speed camera 
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4.4.2 Test Methodology 

First, the head scalp model is affixed at the bottom base of the Instron machine. 

A liquid leveller is used to ensure that the head scalp model is horizontal to the 

platform of the uni-tensile machine. The instrumented cup is then attached to the 

cross head and the 200N load cell with the coupling fixtures (Figure 4-20). The 

machine cross head is then adjusted so that the cup touches the periphery of the 

head scalp model and is coincident with a scribed marking. A reference-graded 

metre rule is placed adjacent to the foetal head scalp. The High-Speed camera 

is then focussed on the pin markers to capture the interaction region of VAD cup 

with the foetal head scalp model as addressed in the following section.  Once in 

position, the flowchart of the test protocol is then followed to perform a simulation 

of an over traction by operating the created LabVIEW VI and the Wavematrix 

software (Figure 4-22).  

 

 

Figure 4-22 : Test flowchart with the 2 interfacing software used during the 
data acquisition of the test method to simulate an overtraction. A:The test 
flowchart associated with the LabView Interface. B: The test flowchart 
associated with the Instron Interface. 
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4.4.3 Visual Detection of Cup Detachment with Pin Markers 

During simulation of an over traction, true strain information on the scalp around 

the periphery of the interfacing cup would be useful to indicate on the visual 

detection of a cup detachment. In this original effort, spanned over 10mm,  three 

in-line visual markers (2mm studded steel pins) were inserted 2 mm apart from 

each other just directly underneath the instrumented cup in the head scalp model 

at 4 distinctive positions (left & right sides and ±10 mm away from the centre) as 

shown in Figure 4-23. A laser-cut paper template was applied onto the head scalp 

model to help the placement of the pins. A high speed camera (Phantom V9.0), 

triggered by the synchronisation signal (TTrigger) via capture serial connection, was 

programmed to capture the full coverage of the test at 100 Second (FPS) or by 

inducing a timed delay to focus at 1600 Second (FPS) the coverage on the failure 

dynamics of the cup detachment. During the physical simulation, a meter rule 

was placed in the frame of view to aid in the measurement of the displacement 

of the pin position. However, due to the convex structure of the scalp model, 

technical difficulties persisted in assessing the characterisation of the true strain 

information from all the slotted pin markers. The consideration of an additional 

vision system would need to be integrated in the overall rig assembly to obtain 

information about strain radially; however this wasn’t feasible during the time of 

study and is further discussed in Section 7.2. Only axial vertical deformation 

information from the side pins could be interpreted (Panel B of Figure 4-23). 

However, the displacement of the side pin markers can still be used to provide a 

visual indication of the relative motion of the scalp to the cup during the 

occurrence of the cup detachment event. 

 

Figure 4-23: Pin markers onto Scalp. A: Schematic of pin markers 
placement position on foetal head scalp model at indicated by distances 
a,b,c & d, B: Experimental placement of pin markers on foetal head scalp 
model and identification of the side pins 
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Gamma: 1 AU, Toe: 1 AU is applied to the generated video file using the Phantom 

Camera Control (PCC) Software. Each frame is then converted into TIFF format. 

Upon conversion, the images are then imported into Matlab and an image 

tracking corner detection algorithm (Harris-Stephens) is used to detect the 

coordinates of the side pins on each recorded frame in a specified region of 

interest (ROI) (114)(Figure 4-24). Each image is composed of rows and columns 

of pixels. By calculating the number vertical pixels in a known distance (20mm) 

from the graduated scale present on the placed meter rule, the pixel axis to 

Cartesian axis is known. The initial coordinates of each pin marker at the start of 

the image detection (TTrigger) is then used as a reference to calculate the 

change in length for all the resulting frames at each point location based on the 

pixel calibrated axis (Figure 4-25). The resolution pin marker detection by this 

method is 0.01mm/pixel. The file is then saved containing the change in vertical 

displacement profile of the side pins. A flowchart of the image analysis process 

can be seen on Figure 4-26. 

 

 

 

Figure 4-24: pixel displacement calibration using calibrated meter rule & 
setting of ROI using image detection algorithm (Harris-Stephens) on Matlab 
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Figure 4-25: Automatic tracking of the pin position at frames elapsed from 
Trigger. Red marked shows the start of the test. Blue markers show End of 
the Test.  

 

Figure 4-26: Image analysis flowchart to obtain the y displacement of the 
side pins 
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4.5 Dynamics of Cup Detachment 

 

An experimental simulation of over traction at 100mm/min using the developed 

test assembly and test methodology was performed on a manufactured silicone-

textile scalp with an applied vacuum level of -70kPa. The experiment was first 

recorded with the developed vision system at 100Hz to understand the chain of 

events leading to cup detachment. The same experiment was then repeated with 

the vision system capture rate increased to 1600 Hz to isolate the cup 

detachment event and inform on the dynamics of cup detachment. 

 

4.5.1 Data Processing 

Prior to the evaluation of the data acquired during the simulation, data processing 

of the acquired datasets was first required (Figure 4-27). The DAQ raw dataset 

for each experimental repeat contains time-series data on vacuum magnitude, 

the traction load & the synchronisation signal acquired captured at 5000Hz whilst 

the dataset for the pin markers contains pin displacement information either 

sampled at 100Hz or 1600Hz. Considering the difference in sampling rates, the 

two datasets had to be aligned around the common reference point Trigger time 

index (TTrigger) (Figure 4-28 & Figure 4-29). TTrigger  was set to 0s and 6s for the 

experiments performed at 100 and 1600Hz respectively and can be identified 

when the synchronisation signal drops from a high to low value (5V to 0V) (Figure 

4-21).  

A resampling coefficient of d (100/5000) or (1600/5000) to align the DAQ acquired 

dataset to the nearest frame of the pin markers dataset. Once aligned, a threshold 

magnitude of 0.04 was applied to the differential of the pin position dataset 

(velocity) to identify the frame at which negative displacement is observed and 

the relevant time index is reported (Tpop). The maximum load was then detected 

and the time index is reported (Tmax). The time series data of the load and vacuum 

data are concatenated around this new reference (Tmax) to understand the 

dynamics of the system prior to cup detachment (Figure 4-33 & Figure 4-34). 



 

74 
 

 

Figure 4-27: Data Processing flowchart for the acquired pin markers and 
DAQ data sets 
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Figure 4-28: Time-series data acquisition of the traction load and vacuum 
level for the experimental capture at 100Hz 

 

Figure 4-29:Post-Processed Time-series data acquisition of the 
displacement of the pin markers displacement (mm) data for the 
experimental capture at 100Hz. Tpin shows initial movement of the pin 
markers, Tmax is the maximum identified Traction load. Tpop is the detected 
time at which Pop Off arises through threshold setting on the differentiated 
time series profile of the acquisition of the displacement of the pin markers.  
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Figure 4-30: Chain of events at different time points registered on the test 
and the relevant capture image of the test associated with each time stamp 
described in Figure 4-29.  
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4.5.2 System dynamics 

At the start of the simulation of over traction, there appears to be no movement 

of the marker pins but an initial load response is observed (Figure 4-30). This is 

attributed to the tensioning of the wire of the instrumented VAD and confirmed by 

the acquired images at the time frame of the event (TTrigger and Tpin). After the wire 

stretch, the motion of the place pin markers affirms the uniform straining of the 

soft elastomeric material until a maximum load is reached (Lmax) at a specific time 

(Tmax) and vacuum (Vmax). At this point, it is interesting to note the gradual 

decrease in the vacuum inside the VAD cup (Figure 4-33). Imminently after Tmax, 

in this phase, a drastic change in displacement is noticed. A slow exponential 

decreasing slope in the transient of the vacuum changes suggests the inclusion 

of a leak affecting the net flow rate of the system. This continues up until Tpop. At 

this moment (Tpop) in the time series of test, it is highly likely that the scalp material 

has lost contact with the VAD cup and a drop in the scalp is observed by the 

increase in velocity of the side pin markers (Figure 4-31& Figure 4-32). Visual 

confirmation is provided by the high-speed imagery footage indicates that the 

likelihood of pop detachment happened in between Tmax and Tpop (Figure 4-34). 

10 frames after Tpop, the net flow equilibrium inside the cup is completely 

disrupted and the vacuum has been phased off by the inclusion of atmospheric 

pressure in the system (Figure 4-34). A distinctive ‘’cup detachment’’ pop sound 

is shortly heard.   

 

Figure 4-31: Time-series data acquisition of the traction load and vacuum 
level for the experimental capture at 1600Hz 
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Figure 4-32 : Pin Marker Threshold setting of 0.04mms-1 to detect the Pop-
Off event on the differentiated displacement pin markers dataset (velocity) 
against time elapsed from trigger for the experimental capture at 1600Hz. 

 

Figure 4-33: Time-series data acquisition centred around Tmax of the traction 
load and vacuum level for the experimental capture at 1600Hz. Tmax is the 
maximum traction load identified. Tpop is the location of the pop-off event. 
Events of Tpop ± 10 frames or ± 0.000625s are also indicated.  
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Figure 4-34: Chain of events leading to a cup detachment starting from T 
max to Tpop+ 10 Frames. The time points registered on the test and the relevant 
capture image of the test associated with each time stamp described in 
Figure 4-33. On left a schematic on the net flowrate (Qnet) inside the cup is 
shown at various time events during the test. Qout represents suction flow 
rate towards the vacuum supply or the sensor. Qleak represents the leak 
introduced in the closed system. 
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4.5.3 Repeatability and Reproducibility 

An evaluation of the manufacture of the scalps produced with the current 

fabrication technique was performed. Another test scalp (Scalp 2) was 

manufactured to be compared against the already manufactured scalp to 

understand the reproducibility of the acquisition of data with the current 

experimental set up (Scalp 1). 5 experimental repeats of an over traction were 

performed on each scalp at a traction speed of 100mmmin-1 and at a vacuum 

level of -70kPa supplied to the pneumatic were performed on each manufactured 

scalp. 

It was expected that with the current fabrication technique that the manufactured 

scalp will exhibit different elastic profile due to the nature of the compressive 

nature and control of the embodiment of the textile material inside the scalps. 

From the experimental results, different profiles of elastic deformation in initial 

straightening were observed (Figure 4-37). It is interesting to note that minimal 

variations were recorded around the set of experimental repeats for each tested 

configuration. A Tukey Simultaneous test for differences of Means was used to 

identify differences in the means in Lmax and Tmax at a 95% confidence interval. 

The pairwise comparisons in between the different groups of speed shows that 

there is no difference in the means of Lmax and Tmax with high p-value reported 

across groups ranging from (p= 0.641 & 0.826). No observable difference in Vmax 

was noticed when the vacuum applied was constant. The details of the statistical 

analysis can be viewed in the Appendix A3. An interval plot summary of the 

collected metrics can be viewed in Figure 4-35 & Figure 4-36. The interval 

displays the mean of the test metrics and a deviation of experimental repeats 

performed for each evaluated scalp. 

There were observable differences during the quantification of the load and 

vacuum metrics at the time of cup detachment provided by the visual system(Lpop 

and Vpop). The latter could have been influenced by the change in scalp material 

properties but as well from the physical positioning of the cup onto the scalp. This 

will certainly need to be further verified by automated experimental control and 

more extensive material characterisation and testing which wasn’t possible within 

the time of this study. Nevertheless, whilst the scalps exhibit different 

characteristics, the system dynamics of cup detachment using the current 

methodology remains unaffected as the same chain of events are observed.  

Metrics such as the load and the vacuum at Tmax (Lmax and Vmax) and the time of 

at cup detachment (Tpop) can be utilised to quantify the dynamics of cup 

detachment.  
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Figure 4-35: Interval plots of Lmax, Vmax, and Tmax for evaluating Two 
manufactured scalps. Y axis represents the Lmax,Vmax & Tmax and X axis 
represents tested scalps. 

 

 

Figure 4-36: Interval plots of Lpop, Vpop, and Tpop for evaluating Two 
manufactured scalps. Y axis represents the Lpop,Vpop & Tpop and X axis 
represents tested scalps.
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Figure 4-37: Times-series plot f 5 experimental repeats of the load (N) & Vacuum (-kPa) acquired at 5000Hz with load and vacuum 
markers at Tmax and Tpop reported for the evaluation of 2 scalps. 
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Figure 4-38 :Time series plot in Figure 1 37, centred around Tmax with load and vacuum markers at Tmax and Tpop reported for the 
evaluation of 2 scalps. 
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4.6 Chapter Summary 

 

Following the definition of the system requirements in the previous chapter, an 

instrumented experimental simulation of VAD has been conceived. First, the 

design and manufacture of this VAD simulator considered the design and 

development of a representative head scalp model with a silicone-textile 

formulate to replicate the mechanical properties of the scalp. The Kiwi Omnicup™ 

was then used as a template for instrumentation and coupled to a uni-axial tensile 

testing machine for the simulation of traction experiments. The control, sensing 

& data acquisition aspects were devised to control and provide sensory feedback 

on the vacuum inside the VAD cup. Pin markers were placed onto the head scalp 

model, combined with a high-speed camera system provide a qualitative tracking 

of scalp deformation during mechanical simulation of obstetric traction. 

Inherently, this was used to aid in the visual detection of cup detachment. In 

combination with measurement datasets of the load and vacuum levels acquired 

by the acquisition unit, the dynamics of cup detachment were then informed. The 

evaluation of the measurement system has shown that a simulated obstetric VAD 

traction produces a characteristic response from which a number of key metrics 

can be determined. Experiments will be devised from the proposed methodology 

to investigate the clinical impact of system variables including the applied traction 

speed, magnitude of vacuum imposed, and changes in the geometry of the VAD 

cup and pneumatic architecture in the next chapter. 
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Chapter 5  

Experimental Evaluation of VAD Systems  

 

This chapter details the experimental approach taken to identify clinical and 

mechanical factors capable of affecting the propensity of cup detachment. 

Following the insight provided into the dynamics of cup detachment in the 

previous chapter, the next objective of this research consists of assessing the 

performance of current VAD cup systems with the VAD simulator to provide 

engineering recommendations into the conception of an atraumatic device. 

Different experimental configurations surrounding the instrumented VAD cup will 

then be evaluated to understand their contribution to the failure dynamics with 

VAD simulator developed in the previous chapter. The outcomes will be 

evaluated to inform engineering actions which can improve performance of VAD  

and reduce trauma occurring due to unintentional cup detachments. 
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5.1 Investigation of Clinical and Mechanical Factors affecting 

VAD Performance 

 

A range of different factors are recognised to affect the performance of VAD 

delivery (1). For instance, clinical training is fundamental to ensure safe and 

consistent application of VAD. There have been considerable efforts to improve 

the proficiency of obstetric trainees through simulation-based workshops 

focussed on cup placement and the theory of vacuum delivery(21). However, 

there remains a lack of basic knowledge into the mechanics of VAD use to inform 

best practice, in particular understanding what constitutes safe application of a 

vacuum and tractive forces.  

The design of the VAD cup system can affect the performance in achieving and 

retaining physical contact with scalp upon application of a vacuum. Commercially, 

variants of VAD pneumatic architecture consists of either electric or manual 

supply of vacuum (Hand/Foot Pumps). Electric pumps for VAD use (Medela 

Basic) can provide a more regulated, faster and steady supply of vacuum at high 

flow rates (30L/min) and in combination with the large residual volume (Reservoir) 

can help compensate for air leakages. There still remains unverified commercial 

claims on whether such pneumatic components can reduce rate of cup 

detachment and are more beneficial for safely performing VAD. In addition, those 

systems are often thought to be bulky and impose constraints to the healthcare 

professional as assistance would be required when clinical events which require 

vacuum level readjustments, such as cup malposition or trapped maternal tissue 

,occur. Alternatively, hand operated pumps as utilised in Mityvac or the Utah 

Medical (UM) VAD systems can be regarded as more cost beneficial but require 

clinical preparation such as sterilisation. Integrated hand pumped traction 

system, for example, the Kiwi Omni cup has been the latest commercial 

development known in the VAD market but reports of high rates of cup 

detachment puts concern on the optimisation of its design to resist cup 

detachment albeit being clinically intuitive (30.1%) (86). There needs to be more 

objective evidence in recognising the contribution of the concerning VAD 

pumping components as it can have a significant impact on the dynamics of cup 

detachment. 

With, the mechanics of the cup-scalp interlock requiring improved definition, the 

importance of the mechanical interlock created by the recessed edges of the cup 

design is crucial to the performance of VAD. Furthermore, a better understanding 

of how clinical factors influence the dynamics of cup detachment can help device 

manufacturers to develop more robust training material for clinicians. This can 
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raise awareness in the limitation in performance of those medical devices in 

different conditions and make the latter more adept in their decision-making 

process to perform safer VAD. 

Subsequently, clinical factors and mechanical factors such as cup geometry or 

changes in the volumetric attributes of the VAD system will be added to the scope 

of study; to provide a quantifiable comprehension of how they affect device 

performance (ability to apply traction) and clinical outcome (i.e. scalp trauma). 

 

5.2 Parametric experimental Study 

 

In this section, a parametric experimental test protocol was developed based 

around the investigation of the clinical and mechanical factors. The study of 

clinical factors comprised of an investigation around the applied vacuum 

magnitude inside the instrumented VAD, speed of traction and the frictional 

attributes of the maternal environment. The study on mechanical factors focused 

on observing effect on changes in cup geometry of the instrumented VAD cup 

and simulation of various pneumatic configurations adopted in current VAD 

devices. The simulation of the traction will be based on the similar methodology 

as introduced in Section 4.4.2. A depiction of the test plan can be seen in Figure 

5-1 and further details will be provided in the sub-sections. 

 

5.2.1 Test Protocol 

Experimental tests were performed according to the test protocol matrix 

highlighted above on the developed VAD simulator and its alteration to fit the 

requirements of each individual study as detailed in this section (Table 5-1). Five 

experimental repeats (n=5) of each study were performed on the developed VAD 

simulator for each tested configuration, using the same experimental 

methodology introduced in the previous chapter (Section 4.4.2). As previously 

utilised during the understanding of chain of events leading to a cup detachment 

with the current set up, the rate of capture of the visual system was set to 1600Hz. 

Any notable deviation to the experimental study will be listed as a deviation. The 

test protocol matrix is summarised in Table 5-1 and the study conditions of the 

vacuum level and the traction speed were chosen to meet the clinical 

requirements in Section 3.4. 
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Table 5-1: Test protocol matrix during this parametric study of clinical and mechanical factors. 

Study 

ID 

Investigation 

Title 

Type of 

Factor 

Pneumatic 

Configuration 

ID 

Set 

Vacuum 

(kPa) 

Speed of 

Traction 

(mm/min) 

Cup 

Geometry 

Frictional 

Attribute 

Head Scalp 

Model 

1 
Vacuum magnitude 

inside the VAD 
Clinical 1 (State 1) Multiple1 100 Unchanged Dry 1 

2 
Impact of Speed of 

Traction 
Clinical 1 (State 1) -70 Multiple2 Unchanged Dry 1 

3 
Changes in Cup 

Geometry  
Mechanical 1 (State 1) -70 100 Multiple3 Dry 1 

4 
Frictional Attributes 

of the Maternal 
Environment 

Clinical 1 (State 1) -70 100 Unchanged Multiple4 
Deviation4 

Scalp2 used 

5 
Changes in 

Pneumatic VAD 
Configuration 

Mechanical Multiple5 -70 100 Unchanged Dry 
Deviation5 

Scalp2 used 

 
1 Refer to Section 5.2.2  
2 Refer to Section 5.2.3 
3 Refer to Section 5.2.4 
4 Refer to Section 5.2.5 
5 Refer to Section 5.2.6 
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Figure 5-1: Pneumatic Test configurations for the study of the regulated buffered vacuum source. The configuration 1, state 1 is 
the control simulations for all the cases in all presented studies.  (a)- relates to changes in cup geometry , (b)-relates to changes 
in traction speed, (c)-relates to addition of lubricants on the surface of the foetal head scalp, (d) relates to pneumatic  changes 
in the control & delivery of the vacuum by the pneumatic unit.
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5.2.2 Study 1: Vacuum magnitude inside instrumented VAD 

The experimental investigation into the physical simulation of over-traction at a 

set tractive speed of 100mmmin-1 will be performed at 4 different vacuum levels 

(-55,-60,-65 & -70 kPa as control) set using the LabVIEW VI and delivered by the 

pneumatic controller unit (configuration 1 state 1) to the instrumented VAD set up 

with unchanged cup geometry. The test configuration at -70kPa will be used as 

control for the data analysis of the collected results. The aim of this study is to 

understand to develop a working principle of how the vacuum magnitude 

influences the retention of the chignon and influence the dynamics of cup 

detachment. 

 

5.2.3 Study 2: Traction Speed 

The experimental investigation into physical simulation of over-traction at 

different traction speed (50,100 as control,150, 200 mmmin-1) and with a set 

vacuum level of -70 kPa set using the LabVIEW VI and delivered by the 

pneumatic controller unit (configuration 1 state 1) to the instrumented VAD set up 

with unchanged cup geometry. The test configuration at 100 mmmin-1 will be used 

as control for the data analysis of the collected results. The aim of this study is to 

understand to develop a working principle of how the traction speed imposed by 

the obstetrician can contribute to the retention forces of the chignon and influence 

the dynamics of cup detachment. 

 

5.2.4 Study 3: Changes in Cup Geometry  

In this study, the effect of the mechanical interlock will be investigated based on 

the depiction in Figure 5-2.  In the absence of a mechanical interlock the 

maximum retention forces (Fpopoff) would be reduced as the forces due to the 

contribution of the mechanical interlock (Fm) will be impacted. To investigate into 

this working principle, two inserts were designed and manufactured using PLA 

(Ultimaker Extended 2+) to limit the coverage of the mechanical interlock thereby 

reducing the effects of the term Fm. When the inserts are combined with the 

unchanged VAD cup, the volume capacity of the original cup (Vcup) and impacts 

the expected surface scalp contact area upon chignon built up after vacuum 

exposure (SCA). Once inserted, the percentage difference in SCA and Vcup to the 

unchanged VAD configuration are 2.3% & 10.4 % (Insert A) and 5.4% and 13.6% 

(Insert B). See Appendix B1 for the profile of the scalp expected in the presence 

of the Inserts. The design intent of insert B can be considered as worst case since 
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it limits the coverage of the mechanical interlock the most. The provided model 

The experimental investigation of the changes in cup geometry was performed at 

set tractive speed of 100mmmin-1. An applied vacuum level of -70 kPa was first  

set using the LabVIEW VI and delivered by the pneumatic controller unit 

(configuration 1 state 1) to the instrumented VAD set up with different Cup 

geometry VAD configurations (Table 5-2). The test configuration with the 

unchanged cup geometry will be used as control for the data analysis of the 

collected results. 

 

Table 5-2: Cup profile tested with their cross section, surface area, contact 
volume and schematic upon combination with the respective insert.  

 Cup geometry Configuration 

 Unchanged (Control) Insert A Insert B 

Cup Profile 

Schematic 

   

Scalp contact 

Area 

excluding 

sponge 

volume  

(mm2) 

6634.23 6481.20 

 

6278.61 

% Change to 

Unchanged 

Configuration 

 

2.3 5.4 

Cup Volume 

excluding  

sponge 

volume (mm3) 

22939.03 20558.08 19817.88 

 

% Change to 

Unchanged 

Configuration 

 

10.4 13.6 
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 Cup geometry Configuration 

 Unchanged (Control) Insert A Insert B 

Inserts 

Fabrication 
 

  

 

 

 

Figure 5-2: Cup Geometry changes in instrumented VAD. In diagram 
annotations shows the cup geometry changes upon insertion of fabricated 
inserts to reduce the contact area of the scalp and volume capacity of the 
VAD cup. In the displayed constitutive equation, the impact of Fm will be 
investigated through different addition of inserts. Flumped will contain the 
terms (Fv:Force due to the applied vacuum and Ff:Force due to frictional 
effects). T represents the Tension in the scalp. 
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5.2.5 Study 4: Frictional Attributes of the Maternal Environment 

This experimental study concerned the assessment of the frictional impact of 5 

different lubricants applied onto the surface of the foetal head scalp model based 

on the depiction shown in Figure 5-3. The impact of sliding friction (µk) will be 

studied since it can affect the tangential forces present on the contact surfaces 

of the cup and the foetal scalp (Ff). Since the maternal environment consists of 

vaginal discharge, foetal matter and blood, a variety of lubricated formulations 

were applied on the foetal head scalp model to simulate the frictional attributes 

of the maternal environment as defined in Section 3.3. The latter consist of a leak 

detector, a silicone based lubricant, aqueous surfaces (water misted and water 

soaked VAD sponge) and a commercially available gynaecological lubricant as 

used in VAD (Table 5-3). A physical simulation of over-traction at different traction 

speed of 100 mmmin-1 and at a vacuum level of -70 kPa set using the LabVIEW 

VI and delivered by the pneumatic controller unit (configuration 1 state 1) to the 

instrumented VAD set up to initiate contact with the pre-conditioned foetal head 

model. After each test, the surface of the scalp was cleaned with distilled water 

and wiped dry. The dry test configuration with no lubrication will be used as 

control performed on Scalp 1 for the data analysis of the collected results. During 

the performance of the studies, a deviation was observed during the testing of 

Lubricant A, B and D. For those tested configurations, the dry test configuration 

with no lubrication will be used as control performed on Scalp 2 for the data 

analysis of the collected results (Table 5-3).  

Table 5-3: List of lubricants used during the study of assessing the impact 
of lubricant on the traction force 

Lubricant 

ID 

Lubricant 

Description 

Lubricant 

Manufacturer 

Scalp Tested 

A Leak Detector 

Spray (Aqueous 

blend of 

surfactants) 

Rocol™ Leak Detector 

(115) 

2 

B Silicone based 

Lubricant 

Servisol® Super 40 

(116) 

2 

C Distilled Water mist Vaporiser with Milli-Q 

Distilled water (117) 

1 

D Water based 

Lubricant and 

additives 

Pelican™ PELIJelly 

Lubricant (118) 

2 
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Lubricant 

ID 

Lubricant 

Description 

Lubricant 

Manufacturer 

Scalp Tested 

E Distilled water 

Soaked Sponge 

Kiwi Omni Cup™ 

Sponge soaked in Milli-

Q Distilled Water for 30 

Seconds (117) 

1 

Dry Control- No 

Lubricant 

N/A 1 & 2 

 

 

Figure 5-3: Investigation of the Frictional Attributes of the maternal 
environment using different formulation of lubricants (low viscosity to high 
viscosity) to provide an insight the tribology of the cup interaction. (µk-
Sliding Coefficient of Friction). In the displayed constitutive equation, the 
impact of FF will be investigated through application of different lubricant 
formulations on the foetal head scalp model. Flumped will contain the terms 
(Fv:Force due to the applied vacuum and Fm:Force due to mechanical 
interlock). T represents the Tension in the scalp. 

 

5.2.6 Study 5: Changes in Pneumatic VAD Configuration 

This study considered an investigation of the volumetric flow rate effects of the 

pneumatic architecture (Qnet) adopted by current commercially available VAD 

design displayed in Figure 5-4. The connection of the pneumatic components in 

the first state of the first pneumatic configuration are organised in such a way to 

investigate the impact of using a continuous supply of regulated vacuum to the 

instrumented cup (V1). This test configuration will be used as control to this 

experiment. The second state of that pneumatic configuration emulates the 

d=50mm

T T

T

µk
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simulation of a vacuum and atypical to instrumented hand-help pump systems as 

shown in Figure 2-9.This involves an initial development of the chignon and then 

turning on the normally open solenoid valve prior to the over traction experiment.  

The connection of the pneumatic components in the first state of the second 

pneumatic configuration features a continuous supply of regulated vacuum (V2) 

but connected in line with a volumetric tank (2L reservoir) can buffer the dynamics 

by deferring the timing of cup detachment due to a greater volumetric flowrate 

(capable of compensating for leaks) atypical of an electric pump system shown 

in Figure 2-10. The sizing of the pneumatic lines was chosen due to physical 

constraint of the test bed in the tensile testing machine (E10000) affecting the 

optimal placement of the pneumatic components.  

The second state of that pneumatic configuration offers the similar characteristics 

as the second state of the first configuration but with a bigger residual volume of 

buffered vacuum. This experiment was performed on scalp 2 due to deviation 

during the study addressed in section 5.2.5. The tests were performed at an 

applied pull rate of 100 mmmin-1 and with a set vacuum level of -70 kPa set using 

the LabVIEW VI and delivered by 2 configuration pneumatic controller unit in 2 

controllable states to the instrumented VAD set up with unchanged cup geometry 

(Figure 5-1).  

 

Table 5-4: The pneumatic configuration and the effective volume after valve 
based on the schematic shown in Figure 5-1 & Table 5-1. 

Pneumatic ID Pneumatic 

configuration 

State Control Volume 

(CV) (cm3) 

1 1 1 0.0015463 

 2 1 2 

3 2 1 165.49899 

 4 2 1 
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Figure 5-4: Pneumatic Architecture volumetric flow rate changes as a 
function of volume  

 

5.3 Experimental Results  

 

The full Load-Time and Vacuum-Time traces with an indication of the Load & 

Vacuum(Lmax, Vmax & Lpop,Vpop) at their respective time events (Tmax & Tpop 

respectively) and the representative interval plots of the test metrics used for the 

statistical analysis can be viewed in Appendix B2. Representative time centred 

series centred plot at maximum traction time (T=Tmax): Load-Time and Vacuum-

Time traces during the typical simulation of an over traction performed per the 

presented Test Methodology in the previous chapter (Section 4.4.2), are shown 

in Figure 5-5, Figure 5-6, Figure 5-7, Figure 5-8 and  Figure 5-9 (Pneumatic 

Configuration 1) & Figure 5-10 (Pneumatic Configuration 2)  for each concerned 

study and their concerned test configurations testing according to the test 

protocol matrix in Table 5-1. The results will be evaluated in the next section. 

After the evaluation of the results, a discussion of the experimental observations 

based on the clinical and mechanical factors evaluated in this experimental study 

will be made. 
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Figure 5-5: A representative time centred series centred plot at maximum traction time (T=Tmax) of the sensory output of the load 
and the vacuum detected by the VAD simulator with graph markers indicated at T*Pop (T=Tmax-Tpop) for each Test configuration in 
Study ID 1
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Figure 5-6: A representative time centred series centred plot at maximum traction time (T=Tmax) of the sensory output of the load 
and the vacuum detected by the VAD simulator with graph markers indicated at T*Pop (T=Tmax-Tpop) for each Test configuration in 
Study ID 2
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Figure 5-7: A representative time centred series centred plot at maximum traction time (T=Tmax) of the sensory output of the load 
and the vacuum detected by the VAD simulator with graph markers indicated at T*Pop (T=Tmax-Tpop) for each Test configuration in 
Study ID 3
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Figure 5-8: A representative time centred series centred plot at maximum traction time (T=Tmax) of the sensory output of the load 
and the vacuum detected by the VAD simulator with graph markers indicated at T*Pop (T=Tmax-Tpop) for each Test configuration in 
Study ID 4
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Figure 5-9: A representative time centred series centred plot at maximum traction time (T=Tmax) of the sensory output of the load 
and the vacuum detected by the VAD simulator with graph markers indicated at T*Pop (T=Tmax-Tpop) for each Test State in 
Pneumatic VAD configuration 1 in Study ID 5
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Figure 5-10: A representative time centred series centred plot at maximum traction time (T=Tmax) of the sensory output of the load 
and the vacuum detected by the VAD simulator with graph markers indicated at T*Pop (T=Tmax-Tpop) for each Test State in 
Pneumatic VAD configuration 2 in Study ID 5.



 

103 
 

5.4 Experimental Evaluation  

 

Acquired responses shared similar trends as the observed time-series graphs 

presented during the evaluation of the scalp material in Section 4.5.3. The same 

dynamic profile of loading and stable vacuum (except for Study 2- Pneumatic 

configuration 1 State 2) were observed up until time of maximum scalp retention 

load (Tmax) was reached. After Tmax, noticeable differences were noted which 

lead to the statistical analysis of the test metrics (Tmax, Lmax, Vmax & Tpop, 

Lpop, and Vpop) to comment on the significance of those differences.  An 

empirical statistical evaluation, based on observation of defined metrics (Lmax, 

Vmax ,Tmax, Lpop, Vpop, Tpop)  against a systematically controlled 

experimental test configuration (control) present in each study was performed to 

conclude on the effects of the observed differences associated with the 

experimented conditions.   

 

The means of the metrics were compared using a Tukey Simultaneous test for 

differences of Means across experimental conditions for each individual study at 

a 95% confidence interval. During the comparison, a null hypothesis testing of 

equal means (p>0.05) and the alternative hypothesis highlighting unequal means 

(p<0.05) were used. A regression analysis was performed to comment on the 

significance of the interactions of test metrics showing identifiable trends at a 95% 

confidence interval. An example generated report of both set of statistical analysis 

can be viewed in Appendix B3 for relevant studies.  

 

5.4.1.1 Vacuum magnitude inside the VAD  

The study results indicate that the working principle of the vacuum applied inside 

the VAD cup has a direct correlation with the maximum retention load of the scalp 

(Lmax) due to an increased time to break contact with the scalp (Tmax). It is 

interesting to note that the vacuum (Vmax) sensed by the sensory unit of the 

instrumented VAD device at Tmax hasn’t deviated from the initially applied vacuum 

suggesting that the cup is still in contact with the scalp. Cup detachment was 

visually detected at Tpop and Lmax increases proportionally as the vacuum 

magnitude is increased. Regression analysis on the collected data (n=20) shows 

that there is a strong correlation between the following set of data Lmax & Vmax 

(R2=96.7%), Lpop and Vpop (R2=96.3%), Tmax and Tpop (R2=98.4%) (Figure 

5-11).  
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Figure 5-11: Regression line showing relationship between Lmax(N) and 
Vmax for each tested Traction speed (mm/min) for Study 1 

 

5.4.1.2 Traction Speed 

From the acquired results, no changes in Lmax and Vmax were observed as the 

speed of traction/pull has increased (Figure 5-12). A Tukey Simultaneous test for 

differences of Means showed no differences in the means in Lmax and Tmax at 

a 95% confidence interval with high p-value reported across groups ranging from 

(p= 0.111 to 0.975). The vacuum applied was regulated and there were no 

differences in Vmax. As anticipated, the most noticeable difference observed in 

this study is the decrease in the time to reach Lmax (Tmax) (p=0) as speed of 

traction is increased. Regression analysis on the collected data (n=20) shows 

also that there is a strong correlation between the following set of data Tmax(s) 

& Speed of Traction (R2=85.59%) and Tpop & Tmax (R2=100%) (Figure 5-13) 
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Figure 5-12: Interval plot of Tmax (N) against tested Traction speed 
(mm/min) conditions for Study 2 

 

 

Figure 5-13: Regression line showing relationship between Tmax(s) and 
tested Traction speed (mm/min) conditions for Study 2
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5.4.1.3 Changes in Cup Geometry  

This study highlights the importance of the mechanical interlock as a function of 

the design intent of the recessed edges contributing to additional retention load 

of the scalp prior to cup detachment. The interval plots show that the maximum 

retention forces (Lmax) were influenced by the changes in cup geometry 

experimented conditions (Figure 5-14). The pairwise comparisons in between the 

different groups of varying cup geometry demonstrates that there is a statistically 

significant difference in the means of Lmax with a low p-value when means of the 

unchanged configuration was compared to the one with Insert B (p=0.040) 

(Figure 5-15). However there were no significant differences in means of Tmax 

(p=0.233-0.706) across all groups evaluated in this study. The analysed results 

highly suggest that changes in the mechanical interlock has a statistically 

significant impact on the maximum retention forces of the scalp and therefore 

impact the timing of failure (Tmax). By design, Insert B presented with the worst 

cased approach with limiting the effects of the mechanical and observations at 

the maximum tractive forces (Lmax) were subsequently different from the 

unchanged configuration (Figure 5-15). 

 

 

Figure 5-14: Interval Plot of Lmax (N) against changes in cup geometry for 
Study 3 
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Figure 5-15: Tukey simultaneous analysis of means of Lmax against tested 
experimental condition for study ID 3. Only Insert B showed difference in 
means compared to unchanged configuration. 

 

5.4.1.4 Frictional Attributes of the Maternal Environment  

The addition of the lubricants used in the study increased the retention forces 

with the most viscous lubricants (B&E) having the most impacting effect 

compared to water based lubricants (C & D) (Figure 5-16). The pairwise 

comparisons between all the different groups tested aside the control scalps 

shows statistically significant differences in the means of both Lmax & Tmax with 

a very low p-value reported across groups of lubricants tested (p= 0) (Figure 

5-17).  This contradicts the working principle introduced on the effects of 

lubricants in Section 1.3.4. A possible explanation would be that the presence of 

the layer of lubricants used in this study offered more resistance to leaks (Similar 

to lubricating sealant). As previously demonstrated in Section 4.5.3, there were 

no noticeable differences in performance between dry scalp 1 and dry scalp 2. 

There were not noticeable differences in Lmax between the water based lubricants 

(A & C & E) (Figure 5-17). Lubricant B and D had the greatest effect on the 

maximum tractive forces indicating their chemical formulation might have 

adhered better to the tested head scalp surface as compared to the other tested 

lubricants .  
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Figure 5-16: Interval plot of Lmax (N) against test lubricant formulation in 
Study 4 

 

 

Figure 5-17: Tukey simultaneous analysis of means of Lmax against tested 
across all tested experimental condition and the scalps control for study ID 
4 
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5.4.1.5 Changes in Pneumatic VAD configuration 

Pair-wise comparison across the states of each pneumatic configuration shows 

a significant difference in observed means of Lmax across all the experimented 

conditions compared to the control (Pneumatic ID 1) (Figure 5-18). The 

noticeable increase in vacuum experienced (with Pneumatic ID 2 (similar to the 

Kiwi OmniCup system) can be explained by the changes in volume inside the cup 

as a result of scalp stretching. Figure 5-19 shows that there are considerable 

vacuum differences (Vmax) at Lmax between the 2 states in that pneumatic 

configuration. This intensified the vacuum originally applied leading to higher 

retention load (Figure 5-20). However, the time-series trace reveals a faster time 

to reach Tpop from Tmax (Figure 5-9). This suggest that control of the vacuum 

compensates for volume changes in the cup but also buffers potential introduction 

of leaks as demonstrated by the delaying effects of the trace of the pneumatic 

configuration 2 from Tmax to Tpop (Figure 5-10). The results indicate that Qnet 

has an observable impact on the dynamics of cup detachment. 

 

 

Figure 5-18: Comparison of means of Lmax (N) against tested Pneumatic 
configuration ID for study 5.  
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Figure 5-19: Comparison of means of Vmax (kPa) against tested Pneumatic 
configuration ID for study 5.  

 

 

 

Figure 5-20: Interval plots of test metrics- Lmax(N), Vmax(kPa), Tmax(s) 
against tested Pneumatic configuration ID for study 5 
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5.5 Discussion 

 

The evaluation of the results provided in the previous section, study 1 revealed 

that the maximum retention forces prior to cup detachment (Lmax) have a 

proportional linear relationship with the vacuum applied (Vmax). This suggests that 

obstetricians need to be cautious when load dependency is dependent on the 

vacuum level in the cup. It is critical to monitor the vacuum inside the cup as this 

inherently influences scalp retention inside the cup. Study 2 shows that the speed 

of traction influences the time at which the maximum retention forces occur (Tmax). 

If the obstetrician is tempted to pull faster, the likelihood of cup detachment will 

increase. Training may be required to develop awareness on what the 

appropriate speed of traction should be to reduce unintentional cup detachment. 

Study 3 highlighted the importance of the mechanical interlock (formed between 

the scalp and recessed edges of the cup) in increasing the load retention of the 

device (and thus decreasing unintentional cup detachments). This is an important 

aspect which should be considered in the design of future VAD devices. However, 

this finding should be approached with caution as more load retention does not 

necessarily increase the likelihood of successful application of VAD devices and 

would require clinical verification. Study 4 demonstrated that lubricants used on 

the surface of the head can increase retention forces by creating a sealing 

interface capable of reducing micro leaks at the cup scalp interface. The findings 

in Study 5 demonstrated changes in the pneumatic VAD architecture can have a 

significant impact on the dynamics of cup detachment. This confirms that 

regulating the vacuum source inside the cup could compensate for any 

associated volumetric changes inside the VAD cup system as the scalp deforms. 

A similar effect is observed by using a reservoir system which delays the onset 

of unintentional cup detachment by minimising changes in the vacuum inside the 

cup. 

In comparison to previous studies on the mechanics of VAD devices as indicated 

in Section 2.6, this experimental evaluation provides an objective and quantitative 

investigation into the mechanical and clinical factors which impact on VAD 

performance. Considered together, the results suggest that there are 

opportunities to improve VAD device design; such as changes in cup geometry 

and pneumatic architecture to reduce the likelihood of unintentional cup 

detachment. 
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5.6 Chapter Summary 

 

Experiments have been devised to investigate the clinical and mechanical factors 

including applied force rate, magnitude of vacuum imposed, and the impact of 

lubrication, the effect of vacuum buffered source and geometry alterations of the 

VAD cup. 

The results from the performed parametric experimental studies in the previous 

section, demonstrate the importance of both clinical and mechanically related 

factors on the dynamics of cup detachment and on the performance of VAD 

devices. The research outcomes generated from this experimental evaluation of 

VAD system provided an insight on the mechanics of interaction of the VAD cup 

system and a representative foetal head scalp model and provided a quantifiable 

way to assess the impact of clinical & mechanical factors on the dynamics of cup 

detachment. The following outcomes will be translated in the next chapter to 

improve the performance of VAD cup system to reduce the effect of failure rate 

associated with cup detachment.
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Chapter 6  

Translating research outcomes to the design of a 

commercial system 

 

This chapter evaluates how the research outcomes generated from the previous 

chapter, could be translated into a commercial system in the form of new market 

introduction (NPI) of an atraumatic VAD device. The evaluation will focus on the 

improvement of clinical outcomes associated with VAD device performance to 

reduce the risk of cup detachment during an obstetric over-traction. This work 

was performed in collaboration with the industrial partner of this project: Eakin 

Healthcare Group (EHG), with the aim of translating the outcomes of this 

research towards a new commercial Vacuum Assisted Delivery (VAD) device to 

reduce unintentional cup detachments. EHG contributed to this process by 

facilitating interaction and discussion with relevant subject matter experts (SMEs) 

to evaluate the proposed opportunity technically and commercially.
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6.1 Assessment of Clinical and Commercial Opportunities 

 

Vacuum Assisted Delivery (VAD) devices have emerged as the instrument of 

choice for assisted delivery, surpassing forceps due to ease of use, decrease in 

maternal morbidity and improved cosmetic outcome for the baby.  

In the VAD market, as highlighted by the literature review, a variety of device 

configurations exist commercially. In the single use instrumented category, the 

Kiwi Omni cup as manufactured by Clinical Innovation (CI) with its hard low profile 

Polyethylene VAD cup is the market choice. Another single use system is 

provided by Cooper Surgical Ltd (CS). CS traditionally sells single piece models 

with an integrated pump design alongside different cup designs (Mystic 2 with a 

semi rigid-stem or Mityone with a rigid stem). In addition, a reusable pump 

(mityvac) can be used to deliver vacuum to cup systems with different shape 

factors (mushroom shaped with a flexible joint and bell shaped with a soft 

lip).Other notable competitors in the market are device manufacturers of more 

conventional types of VAD system such as Utah medical and Medela AG (Figure 

2-3). Conventional cup systems feature an optimised version of the Malmstrom 

device (Bird low profile 2nd generation) in transparent plastic or metal format with 

an add-on traction handle.  

Despite the growing popularity of VAD, the clinical evidence on the safety and 

efficacy of such devices remains unclarified with an elevated propensity for 

delivery failures (30.1%) occurring due to VAD cup detachment associated with 

the leader in the field (86). However, the healthcare economics evaluating the 

potential financial impact arising as a function of cup detachment hasn’t been yet 

established. The causation of a pop-off leads to a decision pathway to further 

obstetric care/surgical procedures. The decision making of the obstetrician is 

important in the clinical care pathway (21). After electing to use VAD, the 

obstetrician follows a clinical pathway based on guidelines and experience (119) 

(Figure 6-1). In the event of a cup detachment, either a repeat is performed 

(pathway 2a) or the process is completely aborted and a low-section C section is 

performed (pathway 3). If a repeat of the procedure is unsuccessful, pathway 3 

is followed. Any deviation by the decision factors in the decision tree proposed 

below leads to a cost introducing event. The reimbursement opportunities as 

results of events in the clinical care pathway can be viewed in Figure 6-2.  

Instrumental delivery rates in the majority of EU countries range between 7.2% 

to 10.9% (23) (Table 2-2). Table 6-1 shows a summary of the market potential of 
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VAD.  For example, in UK (England), in 2017, 5% of all registered birth (31,311 

procedures) contributed a total available market (TAM) of £782,775, factoring the 

cost of £25 for the market leader in VAD devices (Kiwi Omni Cup). The estimated 

market share of the Kiwi Omni cup is rated at 70% and the rest is assumed to be 

shared with all the other VAD device manufacturers present in the market. Based 

on the clinical care pathway listed above, the differential in cost of pathway 2 and 

3 to pathway 1 ranges in between £1680-£5623 (119) (Figure 6-2).With the 

reported failure rate of 30.1% of the Kiwi device and 18.2% with other VAD 

devices, there are 6313 births at risk, which leads to a potential estimated cost of 

£10,605,840-£35,498,000 to the NHS as a result of unintentional cup 

detachments. The monetary benefit associated with this reimbursement 

opportunity shows promise for future progression to commercial development of 

the proposed concept especially in the key identified markets (USA and EU) 

established in Table 6-1. 

 

 

Figure 6-1: Clinical care pathway behind operative delivery and clinical 
outcomes in the event of VAD failure (21, 119) 
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Table 6-1 : Market opportunity analysis based Total Available Market (TAM), Serviceable available market (SAM), and serviceable 

obtainable market (SOM) of the identified countries with a receptive VAD market in Table 2-2 

 Countries 

 UK 

(England)(120) 
Australia(121)  USA(17, 122) 

EU Countries 

(n=26)(23) 

No of Registered births in 2017 626,203 309,142 3,855,500 5,075,000 

TAM [All Instrumental Deliveries- 

Forceps+VAD] (Percentage Total Birth-

Births) 

[Monetary Market @ £25 per Birth] 

12%-75,145 

£1,878,625 

11%-34,006 

£850,150 

3.1%-119,521 

£2,988,025 

6.84%-347,130 

£8,678,250 

SAM [Instrumental Deliveries-VAD Only] 

(Percentage Total Birth-Births) [Monetary 

Market @ £25 per Birth] 

5%-31 311 

£782,775 

6.6%-20,404 

£510,100 

 

2.6%-100,243 

£2,506,075 

4.1%-208,278 

£5,206,950 

 

SOM (30% Market Capture from SAM) 

[Monetary Market @ £25 per Birth] 

9393 

 

£234,825 

6121 

 

£153,025 

30,073 

 

£751,825 

62,484 

 

£1,562,100 
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Figure 6-2: Reimbursement chart showing NHS operational cost associated 
with clinical costs linked to clinical care pathway as shown in Figure 6-1 
(119)  

 

Table 6-2: Estimated calculations for the cost saving potential of the 

proposed device in UK 

Determining Cost saving Potential of new Device in UK 

Cost Difference 

Range(£) 

£1680-5623 

[Comparison of Pathway 2 & 3 to Pathway 1] 

Cost Saving 

Potential of 

preventing Cup 

Detachment 

 

Total Births at risk:6313 

[£10,605,840-£35,498,000] 

(30.1% devices failing of 21918(Kiwi Market share: 70% 

of 31,311 births in UK)=4603 Births at risk) 

(18.2% devices failing of 9394 (Other VAD  Market 

share: 30% of 31,311 births in UK)=1710 Births at risk) 
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6.2 Assessing technical opportunities to improve VAD 

performance 

 

From the assessment provided in the previous section, it is evident that there is 

a clinical and commercial need for an atraumatic VAD capable of preventing 

unintentional cup detachments. In this section, key design opportunities, 

identified through the research outcomes established in Chapter 5, will be 

assessed in terms of their technical and commercial feasibility to realise an 

atraumatic VAD system which offers improved performance.  

 

6.2.1 Evaluation of Design Opportunities 

The research outcomes from Chapter 5 have identified three main design 

opportunities which offer the potential to improve VAD performance. In this 

section, the technical feasibility of their integration into the proposed concept will 

be evaluated, prior to investigating their commercial and clinical value. Figure 6-3 

shows the design opportunities in relation to the VAD system which comprise 

three main areas: 

 

A. Changing the cup geometry to improve scalp retention 

B. Optimising pneumatic architecture to minimise vacuum degradation 

C. Integration of sensors to determine vacuum level in the VAD cup 
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Figure 6-3: Design aspects considered during the conception of an 
atraumatic VAD cup system. A: Changing the cup geometry to improve 
scalp retention. B: Integration of a reservoir to provide a continuous 
volumetric flow rate to the pneumatic architecture C: Sensing unit 
integration in the dynamically sensing the vacuum inside the VAD cup 
system. 

 

 

Design Opportunity A: Changing Cup Geometry 

From the experimental evaluation in section 5.4.1.3, the mechanical interlock at 

the recessed edges remains an important aspect to consider as it offers additional 

retention of the scalp. However, designing a device with optimised recessed 

edges can be perceived as a radical change to healthcare professionals; 

introducing a risk to product adoption. It could also present a constraint to 

commercial development as further clinical evaluations will be required to 

demonstrate safety and efficacy against current systems. Changing the cup 

geometry presents limited novelty and falls back into the loop of product 

differentiation but with added costs and potentially no added clinical benefits. A 

fail safe option is to adopt the current VAD cup in the Kiwi Omni cup. 
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Design Opportunity B: Pneumatic Architecture 

The pneumatic vacuum control of the vacuum flow rate is instrumental in 

maintaining stability of the applied vacuum in a VAD cup system and as well 

delaying the dynamics of cup detachment. Therefore, it was important to consider 

the integration of a buffered vacuum regulated system capable of hosting a 

significantly high volumetric flow rate such as an external reservoir to counteract 

not only downstream unwanted vacuum changes but also the intrusion of 

potential leaks. Leaks can be manifested in various forms. Hair on the baby’s 

head or entrapment of maternal tissue (detrimental to vacuum integrity), the 

presence of already present caputs (reduction of contact area), cup malposition 

(uneven surface placement) or incorrect vector of traction (tilting or vacuum line 

pinching) can all contribute to the formation of leaks affecting the performance of 

the VAD device. However, despite the functional advantages in maintaining the 

vacuum inside the VAD cup system, connection to an external reservoir can be 

cumbersome. An inbuilt consideration of pneumatic architecture will need to be 

considered in the overall design of the concept.  

 

Design Opportunity C: Integration of Sensing Systems 

Equipping a VAD device with a controlled vacuum and an alarm system to warn 

of changes in the vacuum applied could be a unique product offering. This could 

help resolve escalation to further care and reduce associated costs incurred 

during the operational management of the event. However, choosing the right 

sensing system is important. Following the insight provided in Chapter 4, it is now 

known that the vacuum degradation leads on to cup detachment. Equipping the 

device with a fast reacting digital vacuum sensor capable of sensing changes 

(1000Hz) is essential to sense the initial drop in vacuum noticed after the 

maximum retention force. However, from the displayed dynamics of cup 

detachment within the presented studies on clinical & mechanical factors in 

Section 5.3, the healthcare professional will not be be capable of manually 

reacting in the time frame of cup detachment between Tmax and Tpop (0.05s-

0.25s). Therefore, an alternative automated approach is proposed in the following 

section to address this opportunity.   
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6.2.2  Concept for an atraumatic VAD device 

Through evaluation of the technical opportunities A-C with EHG, the new VAD 

concept will integrate improvements in pneumatic architecture, combined with the 

integration of a vacuum sensing system, as shown in Figure 6-4.  

 

 

 

Figure 6-4 : Concept of the device operation to reduce cup detachment by 
an adaptive tensioning mechanism triggered by vacuum sensing input. 
Left: Device and Operations. Right: Dynamic monitoring control and 
monitoring of cup detachment. 

 

Unlike the current state of art (Kiwi Omni Cup from CI), the proposed innovation 

will be capable of adaptively warning the end user of potential unintentional cup 

detachment during the VAD procedure leading to better clinical outcomes. In 

terms of device configuration, the concept atraumatic device will feature a single-

use cup with an integrated electric pump. The suction cup will be powered by a 

re-usable electronic instrumented hand grip pump. The latter is equipped with a 

vacuum sensor and a retractable mechanism to apply and maintain traction on 
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the cup and counter unintentional cup detachment. The device is designed for 

transient use and is capable of adaptively warning the obstetrician of a potential 

unintentional cup detachment during the VAD procedure. Figure 6-4 shows the 

working operation of the concept device in the event of a cup detachment during 

normal VAD use. When vacuum degradation is observed during traction, the 

sensor activates a mechanism. This relieves tension but maintains the original 

positioning of the VAD cup on the baby’s head ensured by the continuous 

regulation of the vacuum by the electric pump. 

 

6.2.3 Intellectual Property (IP) Analysis  

The proposed device comprises of key technologies requiring a regulated source 

of vacuum, a vacuum sensing module, and an activated mechanism to perform 

VAD delivery and counter cup detachment. The IP state of art was analysed to 

identify the potential of protecting the key technological claims of the proposed 

VAD device. Table 6-3 shows a summary of potential infringement of currently 

filed/ expired IP around the novel contribution aspects of the proposed VAD 

device.  

In the IP state of art of VAD devices, CI holds a significant number of patents 

around their present invention of the Kiwi Omni Cup. The main patent (ID 1) 

combining the use of a vacuum sensor to carry out VAD expires in 2022. 

However, there is workability around the patent as the core technology will be 

based on a predictive metric. The patent around the design of the Kiwi Omni cup 

(ID 2) has expired and can be used as a template for the design of new VAD 

products. The main constraint of achieving IP around the concept design will be 

from the patent surrounding the invention by Meditech Development Inc. (ID3). 

They have devised a system capable of a portable vacuum regulated source 

which could have impact on the general concept of the proposed VAD invention. 

With regard to potential instrumentation such as the addition of a vacuum sensor 

to interface with an ECG monitor, the product patent associated with Texas Tech 

University (ID 4) has expired. Any invention comprising of a pull sensing module 

with alarms will be influenced by the technology proposed by Advanced Obstetric 

Systems (ID 5).  

There has clearly been efforts in the past to control/mitigate pop-offs. However, 

the knowledge brought forward by the research provides a new perspective on 

controlling the event via the detection of a vacuum degradation and then a 

reactive mechanism to prevent unintentional cup detachment. This provides a 

real opportunity for further research and development with an offering not seen 

so far in the current IP state of art.  
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Table 6-3: IP Analysis to identify IPs which can be a barrier to innovation. The relevance in risk is colour coded. Green-Free to 

operate, Yellow- Presented IP might be a concern but there might be workability around it. 

ID Patent Assignee Analysis Status Relevance/Risk 

1 US20020165556A1 Clinical Innovations Llc, Murray, 

Utah 84123 (US) 

Instrumented Palm 

Pump 

Valid but Expiry in 

2022 

Claims related to the monitoring of 

the vacuum and thresholding of the 

vacuum as a magnitude. The patent 

expires in 2022. The patent can be 

worked around as the core 

technology of vacuum degradation 

will be based on a predictive metric. 

2 EP 1152702 B1 

US6355047B1 

Clinical Innovations Llc, Murray, 

Utah 84123 (US) 

Kiwi Device with Traction 

indicator. This is the only 

VAD device with a 

traction indicator on the 

market. 

Expired The re-usable cup of the proposed 

VAD device will be identical to the 

Kiwi Device. 

3 US 9138216 B2 

 

 

Meditech Development 

incorporated, CA (US) 

Controllable vacuum 

output from vacuum 

source with tuneable 

LED display bar 

TBA The main claims in this patent 

comprises of a system capable of a 

portable vacuum pump as a 

standalone unit to connect to a VAD 

device and regulate the internal 

pressure inside the cup.  

https://www.lens.org/images/patent/US/20020165556/A1/US_2002_0165556_A1.pdf
https://www.lens.org/lens/patent/015-440-030-833-833
https://patentimages.storage.googleapis.com/58/42/79/552e870acca720/US6355047.pdf
https://patentimages.storage.googleapis.com/de/52/c8/c45cd350a43779/US9138216.pdf
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ID Patent Assignee Analysis Status Relevance/Risk 

4 WO 2002/043599 

A1, US 6620171 B2 

US 7069170 B2 

Texas Tech University System  

(Formerly 

Medevco Inc) 

 

VACULINK, MODEL 

VCL 3000:  Wireless Add 

on accessory to existing 

VAD devices connected 

to a foetal HR monitor. 

Device is capable of 

detecting pressure 

changes inside the cavity 

of the VAD cup and  

 

Expired/Not 

Renewed 

Can impose constraints on design in 

case of adding a vacuum sensor for 

in line vacuum detection. This needs 

to be further evaluated. However, this 

is an add on device and the sensor in 

the proposed device is integrated in 

the embodiment of the handle 

5 US 7291156 B1 Advanced Obstetric Systems Llc Pull sensing module on 

handle capable of 

emitting alarms on load 

thresholding 

Priority in 2007 The emission of alarms as a result of 

potential risk to cup detachment is 

based on load thresholding 

technology however the proposed 

device uses vacuum degradation 

metrics. 

 

https://www.lens.org/images/patent/WO/2002043599/A1/WO_2002_043599_A1.pdf
https://www.lens.org/images/patent/WO/2002043599/A1/WO_2002_043599_A1.pdf
https://www.lens.org/lens/patent/088-147-802-205-884
https://www.lens.org/lens/patent/120-102-666-781-148
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6.2.4 Regulatory requirements 

In an effort to help ensure clinical acceptance and usage, it is important that the 

proposed device does not differ significantly from currently available VAD cup 

system formats. As such, the proposed concept should feature a sterile, 

disposable suction cup attached to the scalp with a soft inner liner/mesh to 

prevent tissue damage and satisfy the regulatory requirement established below. 

If a manufacturer intends to sell medical devices in the EU, the latter must 

conform to the regulations of the Medical Device Directive (93/42/EEC). As 

outlined by Annex IX of the directive, the proposed re-usable non-invasive 

instrumented pump handle system is considered as an active medical device due 

to the presence of external power source i.e. AC mains or battery powered. 

Subsequently, the full assembly is considered of the pump and the single use 

invasive cup is considered as a Class 2a medical device according Rule 2 & 5. 

The device development of the product should follow all stipulated annexes of 

the directive except section 4 of Annex II & Annex III. The technical dossier for 

regulatory submission as defined by guidance on Design-Dossier Examination 

and Report (NBOG BPG 2009-1) will comprise of the following main 

documentations: 

• Manufacturer details & Notified Body review  

• Device description and product specification & Classification Statement 

• Requirements regarding manufacturing, Design and construction 

• Pre-clinical evaluation 

• Clinical evaluation/performance evaluation 

• Risk analysis and risk management 

• Review of declaration of conformity 

• Post-market surveillance 

A manufacturer who intends to sell VAD devices in the USA must conform to the 

regulations of the 21 CFR § 884.4340 as established by the Federal Food, Drug, 

and Cosmetic Act (FDA) (Table 6-4). The new VAD device should demonstrate 

substantial equivalence to a legally marketed predicate device marketed 

interstate commerce prior to May 28, 1976, the enactment date of the Medical 

Device Amendments. The introduction of a new VAD device will not necessitate 

a stringent premarket approval application process. A 510(k) premarket 

notification of intent to market the device with substantially equivalent devices 

listed in Table 6-4, should be sufficient. As a result, the proposed will occupy a 

Class 2 (Performance standards) status and will be registered under the product 

code: HDB. Compliance to registration and listing 21 CFR Part 807, labelling (21 

CFR Part 801), good manufacturing practice requirements as set by the quality 
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system regulation (21 CFR 820) and the electronic product radiation control 

provision ( 21 CFR 1000-1050). 

 

Table 6-4: Regulatory pathway of predicate/substantially equivalent VAD 

devices following the 510(k) route in USA 

Product code: HDB, Regulation no: 884.4340, Class: 2 (Performance 

standards) 

Notified bodies: Accelerated Device Approval Services, Llc, Regulatory 

Technology Services, Llc, Third Party Review Group, Llc, Tuv Sud America 

Inc. 

Premarket Review code: OHT3 & DHT3B 

Product code for Powered/Manual Suction pump: BTA 

Device/Model Supplier Applicable 510K 

M-Style/Mushroom Cup with 

MityVac 

 

 

M-style with wall suction and 

Universal release valve 

Cooper Surgical K020447 

K934011 

K890307 

VAC-6000M/MTE (Traction 

indicator) 

Clinical 

Innovations 

K011532 

K981260 

 

Powered Suction PUMP 

 

Medela AG K130123 

K041579 

CMI-H671001C0 Pump 

CMI (H671101A1) 

Utah Medical K881967 

K895446 
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6.3 Discussion  

 

The analysis in this chapter shows that there is commercial potential for an 

atraumatic VAD device. Furthermore, this is technically feasible. However, there 

will be significant risks/challenges in the development of the concept towards a 

final product. The inclusion of electronic hardware, for vacuum sensing purposes 

and control of the relative motion of the traction system, can impose a technical 

and regulatory barrier. This will be dependent on the resources and capabilities 

available to the device manufacturer, as the integration of electronics will require 

further verification and validation to ensure compliance with appropriate medical 

device development standards. Clinical challenges may also be a barrier in 

demonstrating that there is a significant improvement in VAD performance. In this 

clinical domain, conducting an appropriate clinical study with child delivery will 

carry significant risks to the company. In addition, there are currently no methods 

for evaluating the performance of VAD devices to mitigate cup detachment. 

Whilst, increased litigation resulting from VAD incidents can deter manufacturers 

from entering this complex market, there is a necessity to create more advanced 

prototypes and achieve clinical validation. Clear clinical outcomes/benefits need 

to be demonstrated compared to the current state of the art. Building an informed 

position in the market (clinical evidence, market appreciation and optimisation of 

training material) would be beneficial for the introduction of this concept to the 

market. Even modest changes could enhance the performance of the VAD 

devices and thus reduce the costs and risks of commercialisation; although the 

performance gains would be lower. 

 

6.4 Chapter Summary  

 

The concept of a portable device used in emergency childbirth to assist delivery 

of babies that allows medical professionals to perform safer VAD delivery during 

difficult labour, was introduced in this chapter. This is achieved by using an active 

sensing attachment device with a feedback mechanism aimed at reducing 

unintentional cup detachment. The cost to healthcare provision behind the 

occurrence of an unintentional VAD cup detachment was calculated based on the 

clinical care path decisions associated with this undesired healthcare outcome. 

An IP analysis was performed to understand the patent landscape and the 

regulatory aspects. The next stages of development for the proposed concept will 

be further discussed in the following chapter.   



 

128 
 

Chapter 7  

General Discussion, Future Works and Conclusion 

 

The concluding chapter of this thesis provides a review of the presented research 

against defined research objectives outlined in Chapter 1. A general discussion 

of the produced works and suggestions about future work for the continuation of 

the intended research will be detailed. Concluding remarks will establish the 

closure of the presented work. 
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7.1 Assessment of Research Objectives 

 

Section 1.1 detailed defined research objectives established during the 

conception of the main research aim. The research aim was to achieve a robust 

engineering understanding of the key design parameters of commercially 

available VAD devices and their impact on performance and trauma in order to 

evaluate the design of a less traumatic device. This section provides an 

assessment on how each objective was addressed in the presented research. 

 

1. Perform a review of published literature to identify the clinical gaps 

of understanding in VAD device design 

The literature review revealed that cup detachment can lead to an 

escalation of further obstetric care and is closely linked to the end use of 

VAD devices. The occurrence of uncontrolled cup detachments was 

identified to instigate head trauma to the baby and lead to profound change 

in delivery plans which could lead to higher risks of morbidity and poorer 

outcomes for mother and baby. An investigation into the evolution of VAD 

devices demonstrated that there have been minimal changes in the design 

of VAD cup systems since its original inception by Malmström. The most 

noticeable design changes, identifiable in the most up-to-date devices, for 

example the Kiwi ® Omni Cup™ focus on usability concerns such as 

insertion of the device into the birth canal (low profiled cup) and gauging 

the level of traction with visual indicators. The outcomes of these 

improvements have the end use of the devices but the details of the 

biomechanics behind the contact of the cup with the foetal head remains 

under investigated. Rigorous evidence-based research on its influence on 

clinical outcomes is much needed. 

 

2. Understand and characterise the mechanics of VAD device 

performance based on the prevalent form of trauma during VAD: Cup 

Detachment 

Based on the findings established in the previous objective, the motivation 

behind the presented research was formulated to improve an appreciation 

of clinical gaps of understanding surrounding device performance and its 

influence on cup detachment from an engineering perspective. In order to 

accomplish this objective, an expert clinical opinion by Dr John Anderson 

helped the research team to develop the conception of a VAD simulator. 
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This led to a comprehensive understanding of the biomechanics of VAD 

device performance and its resulting effects on the dynamics of cup 

detachment in Chapter 3. The detailed design and development of the 

model features alongside the technical requirements of the simulator in 

Chapter 4. An experimental methodology was then proposed to inform on 

the dynamics of cup detachment. From the experimental evaluation of the 

test measurement system, an introductory but quantifiable approach to 

inform the dynamics of cup detachment, a medium for characterisation of 

the performance of VAD devices was assessed to investigate the next 

objective in Chapter 5. 

 

3. Investigate VAD device design improvements to improve VAD 

performance 

A parametric study based on the investigation of selected experimental 

factors associated with VAD device performance (clinical and mechanical 

factors) was performed to report on its subjected impact on the dynamics 

of cup detachment. The aim of this study was to provide recommendations 

to improve their end use based on objective observations. Five 

experimental studies were performed per a test protocol matrix and the 

results were evaluated empirically against a defined control condition for 

each study. Findings in Study 1 & 2 demonstrated that cup detachment 

can be intensified at a lower vacuum magnitude and at high traction speed. 

Study 3 demonstrated the importance of the mechanical interlock. 

However, this necessitates further work to achieve a better understanding. 

Study 4 demonstrated that the practice of smearing lubricant around the 

cup edges helps in reducing micro-leaks at the cup scalp interface. Further 

tribology studies would be required to provide further insight into the 

observed effects. Study 5 revealed that changes in the pneumatic VAD 

architecture showed the significance of having a regulated source of 

vacuum to compensate for any associated volume changes inside the 

VAD cup system. Combined with a reservoir, a delay in the dynamics of 

cup detachment is observed. The observed results were judged to be 

sufficient to meet the requirements of these objectives and suggestions on 

improving the current VAD cup system investigation were made in an effort 

to deter the occurrence of cup detachment. 
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4. Recommend engineering design inputs for an atraumatic VAD device 

and evaluate the feasibility of commercial translation and clinical 

implementation. 

In Chapter 6, the details of a conceptual design for atraumatic VAD capable 

of sensing the dynamics of cup detachment and offering a control 

mechanism to deter cup detachment was evaluated based on the research 

outputs gathered from the experimental study performed in Chapter 5. The 

outcomes of this assessment showed that design opportunities to improve 

VAD performance could be introduced. Unlike the passive vacuum assisted 

device from current competitors, the proposed innovation would reduce the 

failure of existing devices as a result of unintentional cup detachment. The 

costs to healthcare provision incurred by VAD cup detachment was then 

calculated based on the clinical care path decisions induced by the 

occurrence of cup detachment. The patent landscape and the pathway to 

commercialisation were considered as routes to clinical implementation. 

From this initial due diligence, it is anticipated that there would be 

associated risks involved in engineering the product as it features 

integration of electronic components for sensing purposes and 

programming of processors capable of controlling the relative motion of the 

traction system. These aspects will be proposed in the future works section 

of this chapter.  
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7.2 General Discussion and Future works 

 

The presented work will be assessed in this section to address the limitations 

experienced in the stages of development of the VAD test simulator and the 

relevant experimental studies performed to evaluate VAD device performance. 

Furthermore, details of future works will be provided to advance the state of the 

research, validate designs of new VAD devices and assess their performance 

against commercially available devices. Upon achievement of such task, further 

details on progressing the introduced concept of an atraumatic VAD set up to the 

commercial phase will be evaluated in the form of a risk register.  

 

7.2.1 Discussion 

Following the review of the literature, a more rigorous evidence-base to inform on 

the biomechanics of VAD systems and quantification of its impact on clinical 

outcomes was required. This motivated the presented research in assessing the 

performance of commercially available VAD cup systems. Inspired by clinical 

requirements, the design and development of a VAD simulator entailed the 

creation of a novel head scalp model onto which in-vitro simulation of VAD was 

performed by means of an instrumented VAD test set up. The presented research 

work was the first quantifiable approach in evaluating the performance of VAD 

devices in comparison to previously reported physical VAD models (36, 93, 97). 

The chain of events leading to a cup detachment was successfully characterised; 

providing a much needed insight into the dynamics of cup detachment. Upon, 

construction of the VAD test simulator and its detailed experimental methodology 

to quantifiably assess cup detachment, combinatorial studies focused on the 

clinical and mechanical factors associated with device performance. Engineering 

recommendations were then provided in an effort to engineer improvements to 

improve VAD device performance. The research outcomes were translated into 

the design of a commercial system capable of reacting to dynamics changes 

associated with cup detachment by identifying key design opportunities. 

Compared to previous work on cup detachment warning mechanisms(98-100), 

the technical feasibility assessment of the identified opportunities revealed that 

adaptively reacting to sensed vacuum changes can help prevent cup 

detachment. Furthermore, clinical and commercial avenues were explored to 

provide justification for the future development of the atraumatic VAD cup system 

concept.  
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Despite all the advancements proposed by the presented research, certain 

aspects of the proposed research endured technical limitations. For example, the 

current model is simplified to look into axial traction. Oblique traction can 

contribute to unequal vector forces which disturb the overall performance of the 

VAD devices, significantly influenced by constraints in the maternal environment 

such as maternal tissue and the bony pelvis. To investigate on such effects, 

improvement to the capabilities of the VAD simulator will have be addressed. The 

load sensing aspect of the VAD will have be upgraded to a multi-axial load cell to 

measure the effect of angular traction. The base of the head scalp model will 

need to incorporate a tilting mechanism as the actuator end of the tensile tester 

needs to be constrained axially to the load cell. 

The evaluation of the effects of mechanical interlock on the biomechanics of cup 

detachment will be more complete if the profile of the chignon can be detected 

during the relative motion of the developed chignon. This requires further 

instrumentation in the VAD cup system to enhance the detectability of the profile 

through improvements of the transparency of the cup system and visual detection 

methods. By measures of such improvements, different cup profiles can be 

investigated to contribute to the learning of the contact mechanics of the scalp 

and the cup system.  

Supplementing the investigation of clinical factors, the consideration of the shape 

factor of the baby’s head with presence of caputs or hair can be integrated in the 

overall design of the head scalp model. To experiment on such conditions, 

significant design adaptions to the current head scalp model would have to be 

considered. However, the robustness of the method of manufacture of the 

moulded silicone-textile scalps will need to be improved with more advanced 

techniques such as vacuum casting and embodiment of preformed textile sheet 

inside the built design of the casting moulds. Within the design of the mould, 

defined depots can be accommodated for silicone extrusions and  can act as 

visual markers to improve the detectability of silicone strain. Advance video 

measurement system such as digital image correlation (DIC) can aid in the 

quantitative measurement of strain on the surrogate scalp during VAD simulation. 

Reflecting on clinical practice, the process of adding a smear of lubricant can help 

in improving retention forces. However, it would be interesting to investigate on 

the tribology aspects influencing the contact mechanics at the cup and scalp 

interface by a detailed study of the thickness of the lubricants to evaluate the 

effective coefficient of friction and its underlying impact on the dynamics of cup 

detachment. 
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The discussed enhancements to the VAD test simulator can bring the latter into 

contention for a test evaluation method of new conceptions of VAD devices to 

supplement device development activities. 

 

7.2.2  Future Works 

Based on the discussion on the research outputs delivered from the presented 

research, the future direction for the continuation of activities related to the 

research and commercial aspects of the project will be suggested in this section. 

Certainly, there will be challenges in the developmental path of the atraumatic 

device which could impact the delivery of the solution to be clinically 

implemented. An initial risk register was conceived to understand the risks 

associated with the advancement of the newly conceived atraumatic VAD system 

from the conception stage to the developmental stages. Table 7-1 provides a 

summary of key considerations of the technical, clinical & commercial challenges, 

the presented risks which should be mitigated to progress from the current 

concept to a commercially viable offering on the market. In future considerations, 

from a research point of view, advanced prototypes of the atraumatic VAD 

concept will need to be functionally evaluated and IP filing around the 

technological advancements will be required. Before entering commercial 

development for further verification and validation activities, usability studies or 

stake holder validation will need to be addressed to ensure that the product can 

be easily adopted in clinical practices. Business processes will then follow to 

achieve a market place for the supply and distribution of the device for the chosen 

route to market. 
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Table 7-1: Risk register for Future works of technical and commercial development of VAD device 

Risk Register for new VAD Device Development 

Risk ID Risk Description Mitigation 

1 Technical Challenges 

Further Research Considerations 

 

Advanced prototypes need to be generated to 

demonstrate functionality. Work on predictive 

method will be further established. 

Transition to Commercial 

Development 

Further verification and validation work of test 

metrics and predictive metric to design. 

 

Further validation of rig in scope that it 

becomes an approved industrial standard for 

testing new VAD devices 
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Risk Register for new VAD Device Development 

Risk ID Risk Description Mitigation 

2 Clinical Challenges Product difficult to clinically validate 

Since there is no immediate change in the 

cup design, the only clinical impact is to 

assess the usability impact of the traction 

mechanism and its impact with the 

stakeholders (Table 2-3) 

Long term study, Multicentre study in the form 

of clinical trials. 

3 
Industrialisation 

Capabilities 
Lack of expertise in area 

Contracted Manufacturer needs to be 

identified if capability is not possible in house. 

Licensing opportunity might need to be 

considered. 

4 Product Adoption Resistance to uptake new product 

Stakeholder Validation will be performed prior 

to commercialisation.  Develop training 

material and use sales channels to deliver 

training. 
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Risk Register for new VAD Device Development 

Risk ID Risk Description Mitigation 

5 Reimbursement 

New medical products experience 

problems in cost coverage in 

healthcare system 

Existing reimbursement code will be used but 

a premium price will be charged since there is 

significant contribution to the clinical pathway 

in cost saving benefits of preventing a pop-

off. 

Business assessment and new trends in VAD 

usage needs to be used. Further discussion 

with stakeholders responsible for purchasing. 

6 Competition 

Gaining market Share 

 

If patent is filed around technology, there will 

be no freedom to operate for competitors 

Competitor decides to implement a 

traction control system 

 

Licensing opportunities required or advice 

from patent attorney required. If financial gain 

exceeds cost of licensing, then a business 

opportunity. 
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Risk Register for new VAD Device Development 

Risk ID Risk Description Mitigation 

7 Patent Patent is not granted 

Concept is novel, inventive and innovative 

and is backed with structured research from a 

PhD thesis. 

8 Regulatory 

EU regulatory framework is 

changing and becoming more 

stringent. Approval times might have 

an impact on product launch 

Documentations will need to be created to 

address the EU MDR directive.  

Regulatory timeline for approval typically 9 

months for class 2a. 

9 Route to Market 
Commercial partner does not have a 

sales & distribution network 

A distributor with market access to hospitals 

or clinics and capable of handling commercial 

orders will need to be considered  
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7.3 Concluding Remarks 

 

The research presented in this thesis has investigated an area of key clinical 

need, improving the performance of VAD devices, which has seen minimal 

technical development since their inception. The literature review highlighted a 

lack of rigorous understanding in how VAD devices function, in particular the 

mechanics of their use.  

This research therefore addressed these limitations and developed evidence-

based means of investigating and documenting VAD performance. The methods 

developed in this work have enabled further experimental investigation to 

understand the mechanical interaction of the VAD cup with the foetal head scalp 

during the occurrence of unintentional cup detachment. The physical in-vitro 

simulation of VAD procedures proposed an original assessment of VAD device 

performance against a robust controlled test methodology. The experimental 

studies undertaken provided a deeper insight into mechanical and clinical factors 

associated with VAD. 

Considering the current state of research of VAD was clinically oriented, this was 

the first known approach to propose improvements to VAD based on quantifiable 

research outcomes with an engineering focus. However, the presented research 

can be further advanced to improve the visibility of demonstrable objective 

evidence in this critical area of care. To achieve a better state of understanding 

around the biomechanics of VAD devices, elaboration on the current limitations 

discussed in the previous section is needed to progress the current state of 

research.  

In conclusion, informing stakeholders of VAD involved in the clinical outcomes 

about the impact of cup detachment and its outlying links to clinical and 

mechanical factors can complement best practice in training for, and performing, 

VAD. In addition, improved understanding of VAD mechanics is critical to inform 

the development of new atraumatic VAD devices appropriate for modern 

healthcare systems. These have a direct opportunity to bring improvements in 

healthcare delivery, reducing healthcare costs, improving efficiency by avoiding 

unnecessary operative delivery and most crucially, by reducing maternal and 

child trauma. 
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Appendices 

Appendix A1-Results for Evaluation for silicone textile foetal 

head scalp 

 

A1. 1:Stress(MPa) against Strain (%) for Ecoflex 00-30 (n=5) 

 

A1. 2: Stress(MPa) against Strain (%) for Ecoflex 00-30+Carded PET 1.6 dtex 
(n=5) 
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A1. 3:Stress(MPa) against Strain (%) for Ecoflex 00-30 +Spandex (A6 
Polyester+Nylon) (n=5) 

 

 

A1. 4: Stress(MPa) against Strain (%) for Ecoflex 00-30+Sulky (n=5) 
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8.9  

A1. 5 Stress(MPa) against Strain (%) for SynDaver 4N (n=5) 

 

A1. 6:Stress(MPa) against Strain (%) for Ecoflex 00-30+PPTA 1.7dtext, 
58mm (n=5) 
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A1. 7:Stress(MPa) against Strain (%) for Ecoflex 00-30+Lyocell 1.7 
dtex,38mm  (n=5) 

 

A1. 8:Stress(MPa) against Strain (%) for Ecoflex 00-30+Woven Lyocell 1.7 
dtext 38mm (n=5) 
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A1. 9:Stress(MPa) against Strain (%) for SynDaver 10N (n=5) 
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Appendix A2- E10000 Fixtures Design 

 

 

A2. 1: Coupling fixture to base of Instron E10000 

 

 



 

153 
 

 

 

A2. 2 Coupling Fixture to 200N LoadCell 
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A2. 3: Fixture underneath Foetal Head Scalp model to connect to Instron 
Base Coupling 

 



 

155 
 

 

A2. 4: Gripping Fixture Attachment 
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A2. 5:Rig Development 

 

Appendix A3: Statistical Evaluation of Scalps 

Tukey comparison of means 

One-way ANOVA: Lmax (N) versus Scalp 

Method 

Null hypothesis All means are equal 

Alternative hypothesis Not all means are equal 

Significance level α = 0.05 

Equal variances were assumed for the analysis. 

Factor Information 

Factor Levels Values 

Scalp 2 1, 2 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Scalp 1 5.857 5.857 1.09 0.327 

Error 8 43.020 5.377       

Total 9 48.877          

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

2.31893 11.98% 0.98% 0.00% 

Means 
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Scalp N Mean StDev 95% CI 

1 5 113.53 3.14 (111.14, 115.92) 

2 5 115.059 0.951 (112.667, 117.450) 

Pooled StDev = 2.31893 

Tukey Pairwise Comparisons 

Grouping Information Using the Tukey Method and 95% Confidence 

Scalp N Mean Grouping 

2 5 115.059 A 

1 5 113.53 A 

Means that do not share a letter are significantly different. 

Tukey Simultaneous Tests for Differences of Means 

Difference 

of Levels 

Difference 

of Means 

SE of 

Difference 95% CI T-Value 

Adjusted 

P-Value 

2 - 1 1.53 1.47 (-1.85, 4.91) 1.04 0.327 

Individual confidence level = 95.00% 

Tukey Simultaneous 95% CIs 

Interval Plot of Lmax (N) vs Scalp 

 

 

A3. 1 Interval plot of Lmax(N) against test lubricant formulation  for 
comparison of scalps 
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Interval Plot of Lmax (N) vs Scalp
95% CI for the Mean

The pooled standard deviation is used to calculate the intervals.
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A3. 2 Tukey simultaneous analysis of means of Lmax against tested across 
all tested experimental condition and the scalps control for comparison of 
scalps
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Appendix B1- Calculation of Contact Area and Volume with Inserts 

Plug profile for Insert A 

 

 

B1. 1: Calculation of mass properties of scalp plug formed due to presence of Insert A 
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Plug profile for Insert B 

 

B1. 2: Calculation of mass properties of scalp plug formed due to presence of Insert B
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Plug profile for Unchanged Configuration 

 

B1. 3: Calculation of mass properties of scalp plug formed with Kiwi cup
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Appendix B2-Experimental Results 

Vacuum magnitude inside the VAD  

 

B2. 1:Time Series of sensory output of the load and the vacuum detected by the VAD simulator with graph markers of value of 
Load (Lmax) and Vacuum (Vmax) at Tmax and Load (Lpop) and Vacuum (Vpop) for Study ID 1
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B2. 2: Interval plots of metrics used for analysis- Lmax(N), Vmax(kPa), 
Tmax(s) for Study ID 1 

 

 

 

B2. 3: Interval plots of metrics used for analysis- Lpop,Vpop,Tpop for Study 
ID 1
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B2. 4: Time centred at series centred at maximum traction time of sensory output of the load and the vacuum detected by the 
VAD simulator with graph markers of value of Load (Lmax) and Vacuum (Vmax) at T*max (T=Tmax-Tmax=0s) and Load (Lpop) 
and Vacuum (Vpop) the time of cup detachment (T*pop) (T=Tmax-Tpop) respectively.  for Study ID 1 
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Traction Speed 

 

B2. 5:Time Series of sensory output of the load and the vacuum detected by the VAD simulator with graph markers of value of 
Load (Lmax) and Vacuum (Vmax) at Tmax and Load (Lpop) and Vacuum (Vpop) for Study ID 2
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B2. 6: Interval plots of metrics used for analysis- Lmax, Vmax, Tmax for 
Study ID 2 

 

B2. 7: Interval plots of metrics used for analysis- Lpop,Vpop,Tpop for Study 
ID 2
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B2. 8: Time centred at series centred at maximum traction time of sensory output of the load and the vacuum detected by the 
VAD simulator with graph markers of value of Load (Lmax) and Vacuum (Vmax) at T*max (T=Tmax-Tmax=0s) and Load (Lpop) 
and and Vacuum (Vpop) the time of cup detachment (T*pop) (T=Tmax-Tpop) respectively.  for Study ID 2
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Changes in Cup Geometry  

 

B2. 9:Time Series of sensory output of the load and the vacuum detected by the VAD simulator with graph markers of value of 
Load (Lmax) and Vacuum (Vmax) at Tmax and Load (Lpop) and Vacuum (Vpop) for Study ID 3
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B2. 10: Interval plots of metrics used for analysis- Lmax, Vmax, Tmax for 
Study ID 3 

 

 

B2. 11: Interval plots of metrics used for analysis- Lpop,Vpop,Tpop for 
Study ID 3
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B2. 12: Time centred at series centred at maximum traction time of sensory output of the load and the vacuum detected by the 
VAD simulator with graph markers of value of Load (Lmax) and Vacuum (Vmax) at T*max (T=Tmax-Tmax=0s) and Load (Lpop) 
and Vacuum (Vpop) the time of cup detachment (T*pop) (T=Tmax-Tpop) respectively.  for Study ID 3
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Frictional Attributes of The Maternal Environment  

 

B2. 13: Time Series of sensory output of the load and the vacuum detected by the VAD simulator with graph markers of value of 
Load (Lmax) and Vacuum (Vmax) at Tmax and Load (Lpop) and Vacuum (Vpop) for Study ID 4
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B2. 14: Interval plots of metrics used for analysis- Lmax, Vmax, Tmax for 
Study ID 4 

 

 

B2. 15: Interval plots of metrics used for analysis- Lpop,Vpop,Tpop for 
Study ID 4
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B2. 16: Time centred at series centred at maximum traction time of sensory output of the load and the vacuum detected by the 
VAD simulator with graph markers of value of Load (Lmax) and Vacuum (Vmax) at T*max (T=Tmax-Tmax=0s) and Load (Lpop) 
and Vacuum (Vpop) the time of cup detachment (T*pop) (T=Tmax-Tpop) respectively.  for Study ID 4
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Changes in Pneumatic VAD configuration 

 

B2. 17: Time Series of sensory output of the load and the vacuum detected by the VAD simulator with graph markers of value of 

Load (Lmax) and Vacuum (Vmax) at Tmax and Load (Lpop) and Vacuum (Vpop) for Study ID 5
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B2. 18: Interval plots of metrics used for analysis- Lmax, Vmax, Tmax for 
Study ID 5 

 

 

B2. 19:  Interval plots of metrics used for analysis- Lpop,Vpop,Tpop for 
Study ID 5
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B2. 20: Time centred at series centred at maximum traction time of sensory output of the load and the vacuum detected by the 
VAD simulator with graph markers of value of Load (Lmax) and Vacuum (Vmax) at T*max (T=Tmax-Tmax=0s) and Load (Lpop) 
and Vacuum (Vpop) the time of cup detachment (T*pop) (T=Tmax-Tpop) respectively.  for Study ID 5
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Appendix B3-Example report generated by Minitab for the 

statistical analysis of the metrics 

Regression Analysis for Study ID 1 

Regression Analysis: Lmax(N) versus Vmax(kPa) 
The regression equation is 

Lmax(N) = - 6.774 - 1.705 Vmax(kPa) 

Model Summary 

S R-sq R-sq(adj) 

1.94713 96.70% 96.52% 

Analysis of Variance 

Source DF SS MS F P 

Regression 1 1999.36 1999.36 527.35 0.000 

Error 18 68.24 3.79       

Total 19 2067.60          

Fitted Line: Lmax(N) versus Vmax(kPa) 

 

 

B3. 1  Regression line showing relationship between Lmax(s) and tested 
Traction speed (mm/min) for Study 1 

 

Tukey Simultaneous comparison of means (Lmax) for Study ID 4 

 

One-way ANOVA: Lmax versus Lubricant Condition 
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Method 

Null hypothesis All means are equal 

Alternative hypothesis Not all means are equal 

Significance level α = 0.05 

Equal variances were assumed for the analysis. 

Factor Information 

Factor Levels Values 

Lubricant Condition 7 Dry Scalp1, Dry Scalp2, Lubricant A, Lubricant B, Lubricant C, 

Lubricant D, Lubricant E 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Lubricant Condition 6 140.58 23.430 11.15 0.000 

Error 28 58.84 2.101       

Total 34 199.42          

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

1.44959 70.50% 64.17% 53.90% 

Means 

Lubricant 

Condition N Mean StDev 95% CI 

Dry Scalp1 5 113.53 3.14 (112.20, 114.86) 

Dry Scalp2 5 115.059 0.951 (113.731, 116.387) 

Lubricant A 5 115.549 0.392 (114.221, 116.877) 

Lubricant B 5 119.199 0.884 (117.871, 120.527) 

Lubricant C 5 114.381 0.700 (113.053, 115.709) 

Lubricant D 5 118.792 0.352 (117.464, 120.120) 

Lubricant E 5 115.483 1.551 (114.155, 116.811) 

Pooled StDev = 1.44959 

Tukey Pairwise Comparisons 

Grouping Information Using the Tukey Method and 95% Confidence 

Lubricant 

Condition N Mean Grouping 

Lubricant B 5 119.199 A    

Lubricant D 5 118.792 A    

Lubricant A 5 115.549    B 

Lubricant E 5 115.483    B 

Dry Scalp2 5 115.059    B 

Lubricant C 5 114.381    B 
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Dry Scalp1 5 113.53    B 

Means that do not share a letter are significantly different. 

Tukey Simultaneous Tests for Differences of Means 

Difference of Levels 

Difference 

of Means 

SE of 

Difference 95% CI T-Value 

Adjusted 

P-Value 

Dry Scalp2 - Dry Scalp1 1.531 0.917 (-1.380, 4.441) 1.67 0.641 

Lubricant A - Dry Scalp1 2.021 0.917 (-0.890, 4.932) 2.20 0.325 

Lubricant B - Dry Scalp1 5.671 0.917 (2.760, 8.581) 6.19 0.000 

Lubricant C - Dry Scalp1 0.853 0.917 (-2.058, 3.764) 0.93 0.964 

Lubricant D - Dry Scalp1 5.264 0.917 (2.353, 8.175) 5.74 0.000 

Lubricant E - Dry Scalp1 1.955 0.917 (-0.956, 4.865) 2.13 0.363 

Lubricant A - Dry Scalp2 0.490 0.917 (-2.420, 3.401) 0.54 0.998 

Lubricant B - Dry Scalp2 4.140 0.917 (1.229, 7.051) 4.52 0.002 

Lubricant C - Dry Scalp2 -0.678 0.917 (-3.589, 2.233) -0.74 0.989 

Lubricant D - Dry Scalp2 3.733 0.917 (0.823, 6.644) 4.07 0.006 

Lubricant E - Dry Scalp2 0.424 0.917 (-2.487, 3.335) 0.46 0.999 

Lubricant B - Lubricant A 3.650 0.917 (0.739, 6.560) 3.98 0.007 

Lubricant C - Lubricant A -1.168 0.917 (-4.079, 1.742) -1.27 0.858 

Lubricant D - Lubricant A 3.243 0.917 (0.332, 6.154) 3.54 0.021 

Lubricant E - Lubricant A -0.067 0.917 (-2.977, 2.844) -0.07 1.000 

Lubricant C - Lubricant B -4.818 0.917 (-7.729, -1.907) -5.26 0.000 

Lubricant D - Lubricant B -0.407 0.917 (-3.317, 2.504) -0.44 0.999 

Lubricant E - Lubricant B -3.716 0.917 (-6.627, -0.805) -4.05 0.006 

Lubricant D - Lubricant C 4.411 0.917 (1.500, 7.322) 4.81 0.001 

Lubricant E - Lubricant C 1.102 0.917 (-1.809, 4.013) 1.20 0.888 

Lubricant E - Lubricant D -3.309 0.917 (-6.220, -0.399) -3.61 0.018 

Individual confidence level = 99.64% 

Tukey Simultaneous 95% CIs 

Interval Plot of Lmax vs Lubricant Condition 
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B3. 2: Interval plot of Lmax(N) against test lubricant formulation  in Study 4 

 

 

B3. 3 Tukey simultaneous analysis of means of Lmax against tested across 
all tested experimental condition and the scalps control for study ID 4 

 

Lubricant ELubricant DLubricant CLubricant BLubricant ADry Scalp2Dry Scalp1

121

120

119

118

117

116

115

114

113

112

Lubricant Condition

L
m

a
x

112.94

114.591

115.795

119.439

114.275

118.901

115.606

Interval Plot of Lmax vs Lubricant Condition
95% CI for the Mean

The pooled standard deviation is used to calculate the intervals.


