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Abstract

Double-diffusive convection arises in fluids comprising two diffusive elements

that compete to influence the density of the fluid, such as heat and salt in

the ocean. Instabilities in such systems have previously been shown to

lead to the formation of layered structures, known as ‘density staircases’.

We are interested in the modal interactions that lead to the formation of

such layers. Specifically, we begin by constructing highly truncated mod-

els of double-diffusive convection comprising horizontally uniform ‘elevator

modes’, which are thought to be critical in the formation of layers. We

study the interactions of modes in the truncated modes, and show that we

can obtain layered structures in systems having as few as nine modes.

In view of the importance of elevator modes in layer formation, we then

proceed to study the stability of the elevator modes themselves. That is,

we apply perturbations to an initial state comprising fully developed elev-

ator modes to determine the fastest growing secondary modes. We first

study the stability of steady elevator modes, before extending our analysis

to elevator modes that are oscillatory in time. We discover that form of

the dominant secondary mode in each case is highly dependent on the amp-

litude of the elevator mode. Furthermore, this dependency is influenced by

the parameters governing the background basic state and the fluid itself.

Interestingly, the secondary modes arising from oscillatory elevator modes

are similar in structure to those arising from steady elevator modes, except

that the former modes are oscillatory in time. The fastest-growing second-

ary modes in the oscillatory case are found to be similar to those that lead

to layer formation in our truncated models. This suggests that the elevator

modes may first become unstable to secondary modes, which then interact

with the elevator modes to generate layering modes. The layering modes

then grow in amplitude to eventually dominate and form a layered state.
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This constitutes a relatively simple mechanism describing the initial form-

ation of a layered state from a stably-stratified background density gradient.

We compare our results with those of a purely hydrodynamic system, to

show that large amplitude elevator modes appear to become unstable to

a hydrodynamic, rather than a diffusive instability. We conclude that, al-

though diffusive effects are vital for the formation of the primary instability,

the system may eventually become driven, at least in part, by viscous shear

effects, providing the elevator modes grow to a sufficient amplitude.
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1. INTRODUCTION

1.1 Introduction

Fluid dynamical systems with the tendency to form patterns have been the subject of

much scientific interest over the years (Hoyle, 2006). One of the most interesting pat-

terns is that of layers or ‘staircases’, which appear to form from a disordered turbulent

state. The term ‘staircase’ is the given to stepped vertical density profiles, such as that

shown in Figure 1.1. Thermohaline staircases, for instance, are found in the oceans as

mixed, almost neutrally stratified layers of salinity and temperature with steep gradi-

ent interfaces. These homogeneous layers can be tens to hundreds of metres high and

persist for several years or more (Johannessen and Lee, 1974, Molcard and Tait, 1977).

Double-diffusive convection (DDC) is thought to play a prominent role in the form-

ation of such layers. In classical convection the behaviour of a system depends on one

component—heat—whereas double-diffusive systems rely on two competing elements,

such as heat and a compositional gradient. In an oceanic context, the two competing

elements are heat and salt, and such systems may be referred to as ‘thermohaline’ sys-

tems (Radko, 2013). In contrast to purely thermal convection, instabilities can arise

in double-diffusive systems even with a stable background density stratification. The

mechanism behind this instability is explored further in Chapter 2.

Outside the oceanic context, well-defined layers have been observed in igneous rocks,

which motivated early studies of double-diffusive convection in magma chambers (Turner,

1980). In stellar cores, an unstable chemical composition and destabilizing thermal

gradient can lead to diffusive convection, known in this case as semiconvection. Semi-

convection is thought to play a fundamental role in the evolution of giant stars and

planets. Furthermore, in solar physics, the density of the magnetic gas is influenced

by the magnetic field through magnetic pressure (Hughes and Weiss, 1995, Spiegel and

Weiss, 1982). Since this quantity diffuses, this system is also double-diffusive and has

been the subject of numerical studies which draw parallels with diffusive convection in

2



1.1 Introduction

Figure 1.1: Schematic diagram of a vertical density profile resembling a ‘staircase’, for example

as might be observed in the Ocean in the form of a ‘thermohaline staircase’.

the Ocean (Knobloch et al., 1981, Rosenblum et al., 2011, Wood et al., 2013).

Another, ostensibly different system is rotating turbulence in which a staircase of po-

tential vorticity is formed, manifested by strong jets. A striking example of potential

vorticity layering is on the surface of Jupiter. It is clear that layering can occur in a

wide variety of systems; as such it is desirable to study and understand the nature of

staircase formation.

Staircase formation has been most widely studied in the thermohaline system, largely

due to its origins in oceanography and the abundance of experimental data. Therefore,

one of the main focuses of the project is to gain a better understanding of layering in

such systems. A summary of work in this area was produced by Merryfield (2000),

in which numerous hypotheses concerning the origin of thermohaline staircases were

reviewed. These include: the collective instability of salt fingers, in which collections

of fingers excite gravity waves; metastable equilibria, in which the layered structures

3



1. INTRODUCTION

would persist indefinitely if property jumps across layers were maintained; and thermo-

haline intrusions, giving rise to inclined finger-like intrusions reminiscent of layering.

More recent studies (Radko, 2003, Stellmach et al., 2011) have suggested that a so-

called γ-instability could be responsible for layer formation. The γ-instability describes

the growth of secondary, large-scale γ-modes, which take the form of exponentially

growing, horizontally invariant perturbations in density. We provide an overview of the

γ-instability mechanism later in this chapter.

The nature of staircase formation is not yet fully understood. In this thesis, we seek to

address some of the outstanding questions by building on the work of previous authors.

In Chapter 1, we present a summary of the literature surrounding double-diffusive con-

vection, particularly that relating to layer formation. We discuss in more detail some

of the theories and mechanisms for layering which are outlined above.

In Chapter 2, we lay the groundwork in terms of the mathematical background per-

taining to thermal convection and double-diffusive convection. We develop, from first

principles, the equations governing double-diffusive convection, and discuss the stabil-

ity of the mathematical systems which thereby arise. We then go on to develop the

mathematical basis for the models employed throughout the thesis.

In Chapter 3, we build on the methods of previous authors in producing a limited

representation of a double-diffusive system (Da Costa et al., 1981, Noguchi and Niino,

2010a, Veronis, 1965). The limited representations are used to generate low-order mod-

els of double-diffusive convection. These are then employed in an attempt to identify

which basic modes are vital for the formation of layers. In particular, we ask how many

such modes are necessary for a system to exhibit layer-like behaviour. Our models

appear to support an idea that so-called ‘elevator’ modes play an important, or even

critical, role in the formation of layers. Elevator modes appear as adjacent columns of

vertically alternating fluid velocity, as shown in the schematic of Figure 1.2.
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Figure 1.2: Schematic diagram of fluid velocity, u, representing an elevator mode in a two-

dimensional domain.

We then depart slightly from our original motivation of studying the formation of lay-

ers, per se, and instead go deeper into studying the elevator modes themselves. If, as

seems likely, the elevator modes are important in layering dynamics, then it is very

important to understand their stability properties. This issue has not been fully ad-

dressed to date. There appears to be scope to extend, and build upon, certain models

employed in the literature.

Therefore, in Chapters 4 and 5 we extend the work of previous authors in determ-

ining the form of secondary modes that destabilise a basic state consisting entirely of

elevator modes (Holyer, 1984, Radko, 2016). Over the course of the two Chapters, we

identify the form of secondary modes arising from two distinct double-diffusive systems.

We attempt to address certain unanswered questions, for instance: how do the basic

state parameters affect the form of secondary modes that are generated; how do the

secondary modes differ between the two distinct systems; and to what extent do the

background heat and salt gradients impact the form of the secondary modes, when

compared to a purely hydrodynamic system?

5



1. INTRODUCTION

We conclude by drawing together and discussing the findings from each Chapter. In

this way, we build a picture of how the elevator modes alone may begin to generate,

and subsequently interact with, other modes in order to initiate the formation of layers.

We also discuss some of the limitations of our models and highlight areas which may

be of interest for further study.

1.2 Double-Diffusive Convection

We begin by reviewing the history and background of double-diffusive convection

(DDC), particularly exploring the research surrounding layer formation and outlining

some of the key theories. This will lead into a discussion of low-order models and linear

theory, both of which are of particular relevance to this research project.

In thermohaline convection, such as that observed in the ocean, perturbations to an

initially static basic state may grow by virtue of the diffusivity of heat being greater

than that of salt (Stern, 1960). Consider a parcel of fluid in a system with a stable

salinity gradient (i.e. salinity increases in the direction of gravity) and an unstable tem-

perature gradient (i.e. temperature increases downwards). If the parcel is perturbed

upwards, the heat in the parcel rapidly diffuses into the surrounding colder fluid, and

the parcel becomes heavier as it cools. The salt content of the parcel, however, is gen-

erally retained, as salt diffuses much more slowly than heat. Therefore, the parcel ends

up heavier than the surrounding fluid, causing the parcel to sink.

If the destabilising temperature field is strong enough, then the parcel may cool enough

to overshoot its original position and continue to travel downwards into warmer and

saltier fluid. The parcel will heat up as it descends and may eventually become lighter

than its surroundings, due to a lower salt content in the parcel. This will cause the

parcel to rise back up to begin the cycle again. This type of regime is known as the

‘diffusive’ regime. The behaviour may be expressed as steady or growing oscillations
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1.2 Double-Diffusive Convection

Figure 1.3: A field of salt fingers in an experiment whereby salt solution is poured on top of a

fluid having a stable temperature gradient. Taken from Huppert and Turner (1981).

(Radko, 2013), with growing oscillations being the signature of instability.

If the basic stratification is reversed, such that the system is solutally unstable (saltier

at the top) and thermally stable (colder at the bottom), then a direct (non-oscillatory)

instability may occur. In this case, a parcel perturbed downwards into colder, less salty

surroundings will diffuse both its heat and its salt, thereby continually increasing in

weight. In this way, the stable thermal gradient is eroded much more quickly than

the destabilising solutal gradient, so the system becomes increasingly unstable. This

behaviour results in the emergence of long, thin cells, known as salt fingers, and is

hence referred to as the ‘fingering’ regime. Figure 1.3 shows an example of salt fingers

observed in an experiment by Huppert and Turner (1981). The respective stability

regimes are discussed further in Chapter 2.

The polar regions of the Arctic Ocean, for example, are susceptible to diffusive con-

vection and layers have been observed in such locations Schmitt et al. (1987). In such

regions, cold, fresh water from melting surface ice overlies warmer, saltier water below.
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Salt fingering regimes may be observed, for example, in the Mediterranean, and par-

ticularly the Mediterranean outflow. Here, evaporation of water on the surface of the

Mediterranean Sea leaves the water relatively warm and salty. This warm, salty water

flows over the cooler, fresher water of the Atlantic, leading to conditions conducive to

salt fingering (Schmitt, 1994). The diffusive and salt fingering regimes will be discussed

in more detail in Chapter 2.

The linear stability of double-diffusive systems has been well-studied. Initially noted

as an ‘oceanographic curiosity’ (Stommel et al., 1956), the onset of instability was first

studied in Stern (1960) and expanded upon in Walin (1964). Stommel et al. (1956)

derived a thought experiment in which a pipe was suspended vertically with one end

in warmer salty water (above) and the other in cool, fresh water (below). Pumping

fluid upwards in the pipe would result in the cooler water increasing in temperature

as it rose, while maintaining its freshness, thereby becoming more buoyant than its

surroundings. This would continue in a perpetual ‘Salt Fountain’ if pumping was re-

moved. Stern noted that since the diffusivity of salt is much lower than that of heat, the

pipe is not necessary and indeed this should not merely be a curiosity, but an expected

occurrence in the ocean.

Stern proceeded to investigate the linear stability of this system in two dimensions,

unbounded in the horizontal direction and bounded by rigid horizontal plates in the

vertical direction (Stern, 1960). Stern determined the criterion for marginal stability in

terms of a ‘thermohaline Rayleigh number’, so named as the criterion was found to be

analogous to that of bounded Rayleigh-Bénard convection. In the same paper, Stern

then determined stability criteria in a three-dimensional domain, again in the presence

of boundaries in the vertical direction. Walin extended the work of Stern to study

instabilities in a completely unbounded system, thereby determining a set of criteria

that complemented those of Stern (Walin, 1964). The fastest growing mode in each

case was found to take the form of vertical columns, though the planforms may take
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1.3 Layer Formation

any shape, such as squares, rectangles or sheets.

The above linear theories surrounding marginal stability of double-diffusive systems

set the groundwork for future studies of nonlinear behaviour. Veronis (1965, 1968) per-

formed finite amplitude studies of the nonlinear instabilities in double-diffusive systems,

focusing on marginally unstable cases in vertically-bounded systems. Later studies ex-

tended this work to study larger parameter ranges (Huppert and Moore, 1976). These

studies are discussed further, particularly in Chapter 3, when we employ similar meth-

ods to study vertically-unbounded systems.

1.3 Layer Formation

Since the discovery and initial theoretical studies of double-diffusive convection in the

late ’50s and early ’60s, it quickly became clear from experiments that, following mix-

ing by salt fingers, a state may emerge consisting of stacked layers of constant density

separated by thin interfaces with steep gradients (Stern and Turner, 1969, Turner,

1967). This layered state was found to be characterised by a stepped density gradient,

leading to the coining of the term ‘density staircase’. Although the early experiments

(and indeed most experiments since) comprised salt and sugar as the diffusive compon-

ents, similar long-lived ‘staircases’ were observed and generally accepted to exist in the

Oceans at around the same time (Cooper and Stommel, 1968, Tait and Howe, 1968).

Double-diffusive layering is observed in both the salt fingering and diffusive regimes.

Theoretical arguments, for example in (Radko, 2005), suggest that layers form in a

matter of days, but equilibrate over a time-scale of decades. Thus, oceanographic ob-

servations, although useful in studying the long-term behaviour of layered systems, are

of limited use in studying the formation of layers in such systems. For this reason,

much research on layer formation typically comprises mathematical, numerical and/or

laboratory experiments.

9



1. INTRODUCTION

We also note here that, although not the subject of this thesis, following the initial

formation of layers, the layers have been observed to merge in so-called ‘layer-merging

events’. This phenomenon been observed and studied in various physical and numerical

experiments (Stellmach et al., 2011, Stern and Turner, 1969). It is typically observed in

such studies that the scale of the initial layer formation is relatively small, and adjacent

layers merge to form larger-scale layers (Noguchi and Niino, 2010b). It is the larger

scale layers, formed over many decades, which are typically observed in the Ocean. In

many numerical experiments, the layers continue to merge until a single layer interface

is present in the system. In other experiments, we see that layers stop merging once

a height of the layers reaches an equilibrium value. Radko et al. (2014b) determined

this equilibrium height of layers, and showed that inhomogeneities within the layers are

responsible for stabilising the density staircases.

1.3.1 Experiments

Experiments were initially performed using heat and salt as the diffusing components

(Turner, 1967). Figure 1.3 above, for example, shows the onset of fingering initiated by

setting up a stable temperature gradient and pouring salt solution on the top (Huppert

and Turner, 1981). It was later found that certain issues with the heat-salt experi-

ments could be resolved by instead employing salt and sugar as the faster- and slower-

diffusing components, respectively (Stern and Turner, 1969). One issue was that heat

in the system was readily lost through side-walls. Salt-sugar experiments also revealed

more defined salt fingers, and gradients were able to be maintained for longer periods

of time (such as weeks). The latter point is important for any study of layering, as the

generation of salt fingers occurs on a much shorter time scale than the formation of

layers (Radko, 2013).

Early experiments presented in Turner (1968) showed that layers could form in dif-

fusive systems. It was later shown by experiments in Stern and Turner (1969) that
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1.3 Layer Formation

Figure 1.4: Formation and decay of layers in a salt-sugar system susceptible to fingering con-

vection. Taken from Stern and Turner (1969).

layers may also form in diffusive systems. Figure 1.4 highlights a set of results from the

latter paper, which show (a) a convective layer formed between a dark layer of sugar

mixture (dyed) and a lighter layer of salt mixture; (b) a second layer formed below the

first layer, around an hour after (a); and (c) a decay of the convecting layers, three

days after beginning the experiment.

1.3.2 Numerical Simulations

Improvements in computing power over the years have led to direct numerical simula-

tions of double-diffusive systems becoming increasingly feasible. Numerical experiments

are able to forego some of the limitations and challenges of physical experiments, such

as maintaining constant background gradients, and eliminating boundary effects. Nu-

merical experiments have been performed by numerous authors throughout the years.

Many of the more recent models have reproduced layering. Figure 1.5, for example

shows the formation of layers in a two-dimensional Direct Numerical Simulation (DNS)

from a basic state consisting of uniform heat and salt gradients in a domain comprising

periodic boundaries in both directions (Radko, 2003). Specifically, the perturbations

are periodic on the boundaries, while the basic state comprises a constant linear back-
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Figure 1.5: Two-dimensional direct numerical simulation of fingering convection with periodic

horizontal and vertical boundaries, showing the formation and evolution of layers. Instantaneous

temperature (T ) fields are shown for (a) t = 50, (b) t = 400 and (c) t = 800. Each unit of

time, t is scaled to represent thermal diffusion time on a finger width. Red corresponds to high

values of T , and blue corresponds to low values ot T . Taken from Radko (2003)

ground density gradient. It can be seen that the basic state gives way to salt fingers,

which mix the fluid. Layers then appear to emerge spontaneously from the chaotic

mixing fluid. Figure 1.6 shows similar behaviour obtained from DNS in the diffusive

regime (Prikasky, 2007).

Notably, numerical experiments in both two- and three- dimensions appear to show

that layers typically form in vertically unbounded domains (Radko et al., 2014a,b).

Indeed, in the Ocean, layering tends to occur far from any physical boundaries. This

appears to suggest that certain modes are permitted in vertically unbounded domains

which would not be permitted otherwise, and that these modes are important in layer

formation (Noguchi and Niino, 2010a). Our results support this idea, showing that

vertically-independent ‘elevator modes’ play an important role in the formation of lay-

ers. We note that in certain models, layers are observed to form in the presence of

physical boundaries, though vertically-independent structures, such as salt fingers, are
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Figure 1.6: Two-dimensional direct numerical simulation of diffusive convection with periodic

horizontal and vertical boundaries, showing the formation and evolution of layers. Taken from

Prikasky (2007).

generally included in such models(Paparella and Hardenberg, 2014).

1.4 Theories and Mechanisms

An explanation for the mechanism(s) behind layer formation, particularly in a ‘diffusive’

system, has remained elusive. We here summarise some of the prevailing theories, as

identified and discussed in a review of the literature in Merryfield (2000), and further

in Radko (2013).

1.4.1 Thermohaline Intrusions

Thermohaline intrusions, initially predicted by Stern (1967), consist of quasi-horizontal

structures which spread across lateral temperature and salinity fronts (Radko, 2013).

This theory pertains to both the salt-fingering and diffusive regimes. Merryfield (2000)

argued using linear theory that conventional intrusions are not the only outcome of lat-

eral gradients, and that a staircase-like structure can be obtained. Indeed, experiments

and observations in the ocean have shown the presence of stepped structures in regions

of strong lateral gradients. However, whilst this mechanism is likely to be relevant

for some oceanic observations, layering is observed in simulations and experiments in
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which T and S gradients are entirely vertical, and such systems are the focus of this

thesis.

1.4.2 Stability of Salt Fingers

A second class of ideas suggests that lateral gradients are not required, and instead that

layering is inherent to the dynamics of fingering convection (Stellmach et al., 2011).

The stability of salt fingers was first investigated by Stern (1969), who discovered that

laminar salt-fingers were unstable to long-wavelength perturbations, which he called

the ‘collective instability’. He obtained the criterion for instability (Stern, 1975),

βFS − αFT
ν(αTz − βSz)

> 1, (1.1)

where FS and FT are the heat and salt fluxes of the fingers, and α and β are coefficients

of expansion due to heat and salt, respectively. The collective instability is character-

ised by an excitation of large-scale internal gravity waves by a fully developed and

initially homogeneous field of salt fingers (Radko, 2013). These waves were observed

in experiments just before the formation of density staircases, and so were initially

thought to be directly linked to the formation of layers (Stern and Turner, 1969). It

was later shown that this is perhaps not the case (Stellmach et al., 2011).

Stern (1969) had made assumptions about the coupling of large and small-scale mo-

tions, namely that the salt fingers would rotate with the collective instability, and that

the heat and salt flux would remain constant. A later study by Holyer (1981) showed

that the fluxes actually increase due to the effects of the collective instability, leading

to a modified criterion for instability,

βFS − αFT
ν(αTz − βSz)

> 1/3. (1.2)

This was achieved by separating the small-scale finger motions from the long-scale

internal wave perturbations. As noted above, it was initially thought that staircase

structures could be the result of salt fingers becoming unstable to the collective in-

stability which disrupts the fingers (Merryfield, 2000). This would cause convection
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to set in, driven by buoyancy fluxes from the remaining salt finger interfaces. Direct

evidence for this hypothesis was obtained from qualitative observations in salt sugar

experiments by Stern and Turner (1969)

Holyer (1984) later studied the system under perturbations of all wavelengths. This

was motivated by the findings of other salt-sugar experiments performed around the

same time, which showed a stability parameter about two orders of magnitude less

than that predicted by (1.2). The perturbed equations used in the study exhibited

periodic coefficients and Floquet theory was used to analyse the system. It was found

that small-scale zigzag modes generally grow faster than collective gravity waves, so

the collective instability may not be the primary mechanism for layer formation from

a homogeneous state. Indeed, the aforementioned experiments by Stern and Turner

only exhibited layering when either a sharp interface was present initially, or disturb-

ances were induced during the filling process that triggered convection; carefully set-up

experiments showed vertically uniform fingering (Merryfield, 2000). Subsequent nu-

merical experiments aiming to investigate the evolution of gravity waves excited by the

collective instability also failed to produce layering (Stellmach et al., 2011).

1.4.3 Gamma Instability

This led Radko (2003) to propose the γ-instability as the mechanism by which a layered

state may emerge from an initially homogeneous salt-fingering field. His initial 2D-

simulations seemed to support the idea that a large-scale, horizontally invariant sec-

ondary mode, termed the γ-mode, grows exponentially and eventually disrupts the

salt-fingers, transforming the basic density gradient into a stepped structure consisting

of salt finger interfaces sandwiched between the nearly homogeneous layers. Specific-

ally, a linear stability analysis shows that a density gradient defined by uniform T and

S gradients is unstable to the γ-instability providing the flux-ratio γ = wT/wS is a

decreasing function of the density ratio Rρ. Here, w is a vertical velocity, the overbar

indicates a horizontal average, and Rρ is a measure of the strength of the background
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stratification, as will be described in Chapter 2.

The γ-mode is observed in 3D direct numerical simulations, such as those performed

by Stellmach et al. (2011) and Radko et al. (2014a). In these simulations, a collective

instability is first obesrved to emerge, following a growth of salt fingers. The collective

instability does not appear to influence the formation of layers; rather, the γ-mode

grows exponentially in the background, and eventually reaches a sufficiently large amp-

litude to cause localised overturning in regions of large local density gradient. This leads

to the formation and self-reinforcement of layers in the system. It should be noted, how-

ever, that the γ-instability grows fastest as the vertical wavenumber, kz →∞ (Radko,

2003), and so the instability cannot be said to predict the larger vertical wavelengths

of layers that are observed in these simulations.

Furthermore, the theory of the γ-instability theory is not limited to fingering con-

vection and may be applied to diffusive convection. We show in Chapter 3 that the

layers in diffusive systems may form at relatively small scales, on the order of the

wavelength of the primary instability. This is supported by direct numerical simula-

tions of Noguchi and Niino (2010a) and Noguchi and Niino (2010b), and is perhaps

contrary to the idea that layers form on the scale of the γ-instability which, in the 3D

DNS simulatons described above, is significantly larger (such as 10 to 20 times larger,

according to Radko (2013)) than the wavelength of the primary instability. It may be

that the γ-instability represents only a part of the story, and that layer formation in

certain systems is influenced by—or even predominantly driven by—other mechanisms,

as explored in this thesis.

1.4.4 Thermohaline-Shear Instability

Much of the recent work on double-diffusive convection has stemmed from a paper by

Radko (2016) who showed, importantly, that a system consisting of both a dynamically

stable shear flow and a diffusively stable stratification could become unstable. The
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results are relevant to ocean dynamics, wherein phenomena associated with instabilities

(such as layering) are observed in regions with linearly stable temperature and salt

gradients. Radko (2016) showed that a dynamically stable shear flow can cause a

statically stable double-diffusive system to become unstable. More recently, Brown and

Radko (2019) and Radko (2019) have studied the initiation of diffusive convection by

time-dependent shear. The authors show, using linear stability analysis, that conditions

for thermohaline-shear instability are met in most ocean regions where temperature and

salinity concurrently increase downward, even if that region is double-diffusively stable.

A summary of the work done so far in studying the thermohaline-shear instability is

provided by Garaud et al. (2019).

1.4.5 Stability and Interactions of Elevator Modes

Although staircase formation remains the general motivation for this research project,

we have approached the problem initially by studying the interactions of elevator modes

with secondary instabilities. Similar studies have been performed by previous authors,

and have been shown to be quite informative with regard to diffusive convection and

layering dynamics (Da Costa et al., 1981, Noguchi and Niino, 2010a, Veronis, 1965).

In addition, since elevator modes are seemingly vital in the formation of layers, it

is of great importance to study and understand their stability properties. This has

been the subject of previous study (Holyer, 1984, Radko, 2016, Veronis, 1987), though

there is scope to expand on this work. For example, we here build on the work of the

previous authors by further exploring the parameter space, and studying the stability

of oscillatory elevator modes using so-called ‘floquet theory’, which has not yet been

done. Further critical discussions of the literature are reserved for the relevant chapters.

In the chapters that follow, we first derive, in Chapter 2, the governing equations

of double-diffusive systems and perform linear stability analyses of the systems. This

provides a general introduction to some of the mathematical principles we rely upon

throughout the thesis. We then derive specific models in later chapters that are used to
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study the weakly nonlinear dynamics of double-diffusive systems. The general aim of

each of Chapters 3 to 5 is to gain a deeper understanding of the underlying mechanics

leading to layering. We conclude each Chapter by comparing our results with prevailing

theories and previous studies, in an attempt to place our work in the wider context of

diffusive convection. Chapter 6 provides a general overview of our findings and poses

further questions which may be of interest for further research.
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Chapter 2

Formulation of the Problem
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2. FORMULATION OF THE PROBLEM

2.1 Introduction

The equations governing double-diffusive convection are obtained as an extension to

those governing Rayleigh-Bénard convection, the derivation of which was discussed in

great detail by Chandrasekhar (1961). For completeness, we derive here the governing

equations by way of first-principle expressions for the conservation of mass, momentum

and energy. We then define a set of boundary conditions and basic states constituting

the systems to be studied in later chapters, and express our equations in terms of

perturbations to the basic states. Appropriate scales are introduced to express the

equations in dimensionless form, thereby providing a set of parameters which influence

the resulting dynamics. In anticipation of the analyses in subsequent chapters, we

manipulate the equations into several useful forms.

2.2 Governing Equations

2.2.1 Continuity equation

The mass of fluid contained within an arbitrary fixed volume V is given by the integral

of the density ρ ≡ ρ(x, t), ∫
V
ρdV, (2.1)

where dV = dxdydz is a volume element. The mass of fluid inside the volume can only

vary by passing fluid through its boundary. Hence we define the rate of change of mass

as the total velocity flux through the surface, i.e.

d
dt

∫
V
ρ dV = −

∫
S
ρu · dS, (2.2)

where u is the fluid velocity, and dS = n̂ ·dS is the outward pointing normal associated

with a surface element dS. Making use of the divergence theorem, and noting that the

fluid volume is fixed, we express the conservation of mass as

∫
V

(
∂ρ

∂t
+∇ · (ρu)

)
dV = 0, (2.3)
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which holds for any arbitrary volume V . Hence the integrand equals zero:

∂ρ

∂t
+∇ · (ρu) = 0. (2.4)

This is the general expression for conservation of mass, which, on the assumption of

incompressibility (i.e. density is materially conserved, meaning ∂ρ
∂t +∇ρ = 0), reduces

to the continuity equation

∇ · u = 0. (2.5)

2.2.2 Momentum equation

Newton’s second law concerns the conservation of momentum in a system, and it holds

true in fluids. In this context, the forces acting on a fluid parcel per unit volume are

equated to the product of the acceleration of the fluid parcel and its mass per unit

volume (density). This is expressed mathematically as

ρ
Du
Dt

= ρ

(
∂u
∂t

+ (u · ∇)u
)

= F +∇ · σ, (2.6)

where F represents external body forcing, and the stress tensor σ represents internal

stresses acting on a fluid parcel. In convective systems, we are typically concerned with

gravitational buoyancy forcing only, i.e. F = ρg, with g = −gêz. Examples in which

other forces are also of significance include rotating convection, in which the system

rotates with angular velocity Ω and is subject to a Coriolis force FC = −2ρΩ×u (Ped-

losky, 2013); and Magneto-convection, in which the fluid is electrically conducting, and

convective motion generates a Lorenz force which acts on the fluid (Weiss and Proctor,

2014).

The stress tensor arises as a result of pressure and microscopic shear. It is written

in tensor notation as

σi,j = −Pδi,j + τi,j , (2.7)

where i = 1, 2, 3, P is the (scalar) pressure acting normal to each face of a fluid element,

and the viscous stress tensor τi,j is the ith component of shear stress on a face with
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unit normal in the j direction. Shear stress is a direct result of energy transfer across

a velocity gradient, so a stationary fluid exhibits zero shear stress; the pressure, on the

other hand, may be entirely hydrostatic. We are concerned with Newtonian fluids, in

which the viscous stress is linearly proportional to the local strain rate. The viscous

shear stress tensor is related to the rate of strain tensor as

τi,j = µ

(
∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3µ
∂uk
∂xk

, (2.8)

where µ is the dynamic viscosity, which is here assumed to be constant and δ is the Kro-

necker delta. Substituting (2.8) into (2.7) and (2.6) results in the momentum equation

for a Newtonian fluid, given by

ρ

(
∂u
∂t

+ (u · ∇)u
)

= −∇P + ρg + µ∇2u + 1
3µ∇(∇ · u), (2.9)

2.2.3 Thermal Energy Equation

The rate of change of energy in a fluid system is given by (e.g. Spiegel and Veronis

(1960)):

ρCv

(
∂

∂t
+ u · ∇

)
T + P∇ · u = k∇2T +Q+ µ∇ · (u · ∇u)− 2

3µ(∇ · u)2, (2.10)

where T is the temperature, Q represents a radiation source, and the coefficients Cv
and k are taken to be constant. Terms multiplied by µ represent viscous heating, the

Laplacian term k∇2T represents diffusive heating, and the remaining terms represent

convective heating.

2.2.4 Boussinesq Approximation

Momentum Equation

We here derive the governing equations under what is known as the Boussinesq approx-

imation, in which density variations are assumed to have a negligible effect except in

the bouyancy term. We first take the density field to comprise a reference density and

a deviation from the reference density, i.e.

ρ = ρ0 + δρ. (2.11)
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Substituting this into the momentum equation gives,

(ρ0 + δρ)
(
∂u
∂t

+ (u · ∇)u
)

= −∇P + (ρ0 + δρ)g + µ∇2u + 1
3µ∇(∇ · u). (2.12)

We note that in a fluid at rest with only the reference density, the momentum equation

reduces to the hydrostatic equation,

0 = −∇P + ρ0g. (2.13)

Therefore, we can take hydrostatic pressure out of the equation by defining a new

pressure, say P ′, which is the difference between the actual pressure and the hydrostatic

pressure,

∇P ′ = ∇P + ρ0g. (2.14)

Substituting this into our momentum equation gives,

(ρ0 + δρ)
(
∂u
∂t

+ (u · ∇)u
)

= −∇P ′ + δρg + µ∇2u + 1
3µ∇(∇ · u). (2.15)

It is apparent from 2.15 that for a small change in density from the reference density,

i.e. when δρ � ρ0, there is little change to the inertial terms, but a large change to

the gravity term, which disappears entirely when δρ = 0. In other words, the fluid is

‘almost incompressible’, meaning that small variations in density generally affect only

the gravitational buoyancy term. This is the Boussinesq approximation, which holds

only when δρ� ρ0. Thus, assuming the fluid is generally incompressible (i.e.∇·u = 0))

for small changes in density, we may represent the momentum equation as,

∂u
∂t

+ (u · ∇)u = −∇P
′

ρ0
+ δρ

ρ0
g + ν∇2u, (2.16)

where ν = µ/ρ0 is the kinematic viscosity. Note that under this approximation, the

continuity equation reduces to that shown in equation (2.5)

Energy Equation

Viscous heating is typically neglected under the Boussinesq approximation, because

it is argued that it should be small (Spiegel and Veronis, 1960). We note that there

23



2. FORMULATION OF THE PROBLEM

may be exceptions to this, such as mantle convection (McKenzie and Jarvis, 1980).

Neglecting viscous heating, assuming a lack of radiative heating and accepting that the

fluid is incompressible except for in relation to gravitational terms (i.e. ∇ · u = 0), the

energy equation 2.10 reduces to the advection-diffusion heat equation (herein, the ‘heat

equation’), (
∂

∂t
+ u · ∇

)
T = κT∇2T, (2.17)

where κT = k/ρCv is the (constant) diffusivity of heat. Again, small changes in density

are assumed to have a negligible affect on the diffusivity.

Heretofore, we have considered a fluid having only a single diffusive component. We

are interested, however, in double-diffusive convection, in which instabilities are driven

by competing diffusive components such as heat and salt. We obtain an advection-

diffusion equation for salt (or any other diffusive component) in a similar way as for

the heat equation. The ‘salt equation’ is thus,(
∂

∂t
+ u · ∇

)
S = κS∇2S, (2.18)

where S is the concentration of salt, and κS is the (constant) diffusivity of salt.

2.3 Mathematical Formulation

2.3.1 Boundary Conditions

The choice of boundary conditions greatly affects the resulting dynamics in double-

diffusive convection. Classically, the problem was studied à la Rayleigh-Bénard con-

vection; that is, by investigating a two-dimensional fluid layer sandwiched between two

infinite and perfectly conducting horizontal boundaries. In this case, one may induce

differential heating by maintaining a constant temperature on both boundaries; sim-

ilarly, fixing the concentration of a solute (such as salt) on the boundaries induces a

compositional gradient across the domain. The distance between the two plates repres-

ents a readily available length scale for non-dimensionalisation. It will later be seen that
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2.3 Mathematical Formulation

in such a system we obtain two dimensionless Rayleigh numbers—one for temperat-

ure, and one for composition—expressing the strength of the two background gradients.

An alternative configuration that has been widely employed in studies of this nature

over the past few decades utilises periodic boundaries in both the horizontal and vertical

directions. The rationale behind such an approximation is that phenomena associated

with double-diffusive convection, such as layering, tend to occur far from any physical

boundaries. As noted in Chapter 1, layers are generally not observed in numerical

simulations with impermeable boundaries. They are, however, observed in oceans (Jo-

hannessen and Lee, 1974, Molcard and Tait, 1977). A second motivation for the use

of a periodic domain is that it permits the presence of so-called ‘elevator’ modes as

the form of the primary instability of a static basic state. Elevator modes manifest

as horizontally independent shear modes with infinite vertical extent, and are thought

to be important in the formation of layers. Since the core focus of this study is the

stability of elevator modes, periodic boundaries will be employed throughout – except

when reproducing results obtained in previous studies.

In a doubly-periodic system, there is no externally imposed lengthscale with which

to non-dimensionalise the governing equations, and hence the lengthscale must emerge

from the intrinsic fluid properties. In line with previous studies of this nature (Holyer,

1984, Noguchi and Niino, 2010a, Radko and Smith, 2012), we choose a length scale

defined in terms of the coefficient thermal expansion α, the diffusivity of heat, κT , the

kinematic viscosity ν, gravitational acceleration g, and the background temperature

gradient Tz, i.e.

δ =
∣∣∣∣gαTzκT ν

∣∣∣∣− 1
4

(2.19)

This distance is that of the theoretical salt-finger width found by Stern (1960). Scaling

in this way gives an undisturbed (background) temperature gradient of unity, leading

to a single non-dimensional parameter governing the relative strength of background

gradients. This proves useful as it effectively reduces the number of degrees of freedom
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2. FORMULATION OF THE PROBLEM

of the system. In this section, we begin by deriving the governing equations for a

horizontally and vertically periodic system, before proceeding to do the same with

horizontal rigid boundaries. We then discuss how the two systems relate.

2.3.2 Basic State

We take an infinite, two-dimensional, thermally and compositionally stratified fluid

domain, with linear vertical temperature and salinity gradients Tz and Sz respectively.

The Navier-Stokes equations are written in Boussinesq form as

∂u
∂t

+ (u · ∇)u = − 1
ρ0
∇p+ ρ

ρ0
g + ν∇2u, (2.20)

∇.u = 0 (2.21)
∂T

∂t
+ (u · ∇)T = κT∇2T, (2.22)

∂S

∂t
+ (u · ∇)S = κS∇2S. (2.23)

The density is represented as a linear function of temperature and salinity:

ρ = ρ0[1− α(T − T0) + β(S − S0)], (2.24)

where T0, S0 and ρ0 are (constant) reference values of temperature, salinity and density

respectively. There exists a static (u = 0) basic state with,

T = T0 + Tzz, (2.25)

S = S0 + Szz,

ρ = ρ0[1− (αTz − βSz)z],

p = p0 − gρ0[1− (αTz − βSz)z2/2],

where Tz and Sz represent constant background gradients.
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2.3 Mathematical Formulation

2.3.3 Perturbation Equations

We consider perturbations to this basic state of the form T = T0 + Tzz + T̃ (x, z, t),

where tilde denotes a perturbed variable. This leads to the perturbation equations,

∂ũ
∂t

+ (ũ.∇)ũ = − 1
ρ0
∇p̃− ρ̃

ρ0
gẑ + ν∇2ũ, (2.26)

∂T̃

∂t
+ (ũ.∇)T̃ + wTz = κT∇2T̃ , (2.27)

∂S̃

∂t
+ (ũ.∇)S̃ + wSz = κS∇2S̃, (2.28)

ρ̃ = ρ0(−αT̃ + βS̃), (2.29)

∇.ũ = 0, (2.30)

where w is the vertical velocity and perturbations are not assumed to be small. We

eliminate ρ̃ by substituting for ρ̃ in terms of T̃ and S̃ from (2.29) into (2.26):

∂ũ
∂t

+ (ũ.∇)ũ = − 1
ρ0
∇p̃+ g(αT̃ − βS̃)ẑ + ν∇2ũ. (2.31)

2.3.4 Non-dimensionalisation

As noted above, in the absence of physical boundaries we non-dimensionalise with an

internal lengthscale related to the theoretical width of salt fingers. That is, we define

a length of:

δ =
∣∣∣∣gαTzκT ν

∣∣∣∣− 1
4
. (2.32)

Hence, we scale time with δ2/κT , velocity with κT /δ, temperature and salinity with

|Tz|δ and |Sz|δ, and pressure with ρu2 = ρ0κ
2
T /δ

2. This results in the non-dimensional

perturbation equations (dropping tildes),

∂u
∂t

+ (u.∇)u = −∇p+ Pr(T − S)ẑ + Pr∇2u, (2.33)
∂T

∂t
+ (u.∇)T + sgn(Tz)w = ∇2T, (2.34)

∂S

∂t
+ (u.∇)S + sgn(Sz)R−1

ρ w = τ∇2S, (2.35)

where Pr is the Prandtl number, Pr = ν/κT , and τ is the ratio of diffusivities

τ = κS/κT . Typical values in the ocean are Pr = 7 and τ = 0.01, and we use these
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2. FORMULATION OF THE PROBLEM

values throughout this thesis. Furthermore, Rρ = α|Tz|/β|Sz| is the density gradient

ratio, pertaining to the strength of the background stratification, whilst the two sgn(·)

terms (which are either +1 or −1 depending on the sign of TZ and SZ) pertain to

the nature of the stratification: positive (negative) Tz and Sz places the system in the

fingering (diffusive) regime.

As an aside: for typical parameter values in the ocean (α ∼ 10−4K−1, g ∼ 9.81 ms−2,

Tz ∼ 0.02 K m−1, ν ∼ 1.8×10−6 m2s−1, κT ∼ 1.38×10−7m2s−1) we see that δ ∼ 0.01m.

Thus the characteristic timescale and velocity for temperature and diffusion are t ∼ 818s

and u ∼ 1.3× 10−5 ms−1.

Density

We also scale the density, as it can provide a useful means of interpreting results.

We recognise that the total density is the sum of a background gradient (2.25) and

perturbation (2.29):

ρT = ρ0(1− (αTz − βSz)z − (αT̃ − βS̃)). (2.36)

We then scale T , S and z as before, and scale ρ with ρ0α|Tz|δ. This gives, after dropping

any dashes and tildes, the dimensionless equation for total density:

ρT = −(sgn(Tz)−R−1
ρ sgn(Sz))z − (T −R−1

ρ S) + C, (2.37)

where C is a constant reference density, C = (α|Tz|δ)−1.

2.3.5 Streamfunction Formulation

In this study we will be concerned primarily with 2-dimensional systems. As such,

it is desirable to investigate the behaviour of the fluid in terms of a stream function.

Taking the curl of (2.33) eliminates pressure and leads to the vorticity equation, which

is expressed in the y-direction only. That is,

∂ω

∂t
+ (u.∇)ω = −Pr (Tx − Sx) + Pr∇2ω. (2.38)
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2.3 Mathematical Formulation

We now introduce the stream function, ψ such that

u =
(
−∂ψ
∂z
, 0, ∂ψ

∂x

)
and ω = −∇2ψ.

This yields the governing, nonlinear, dimensionless Boussinesq equations for perturba-

tions to the basic state,(
∂

∂t
− Pr∇2

)
∇2ψ = −J(ψ,∇2ψ) + Pr

(
∂T

∂x
− ∂S

∂x

)
, (2.39)(

∂

∂t
−∇2

)
T + sgn(Tz)

∂ψ

∂x
= −J(ψ, T ), (2.40)(

∂

∂t
− τ∇2

)
S + sgn(Sz)R−1

ρ

∂ψ

∂x
= −J(ψ, S), (2.41)

where all nonlinear terms are captured in the Jacobian, J(a, b) = ∂xa∂zb− ∂za∂xb.

2.3.6 Linear stability analysis

The stability of the static basic state may be considered in terms of the behaviour

of a parcel of fluid within the domain. Figure 2.1 shows the behaviour of a blob of

fluid in a background state consisting of a stable compositional (salt) gradient and a

destabilising thermal gradient. The top and bottom boundaries are periodic and the T

and S gradients are linear in z. This configuration is found for instance in the Arctic

Ocean, in which cold fresh water from glacial outflows lies over warmer (but still cold)

salty water from the Atlantic Ocean.

Figure 2.1: A schematic of the behaviour of a blob of fluid in a double-diffusive system in which

the slower-diffusing component (salt) has a stabilising effect (i.e. sgn(TZ) = sgn(SZ) = 1).
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2. FORMULATION OF THE PROBLEM

As heat diffuses quicker than salt (τ � 1), a parcel displaced downwards will rapidly

heat up and return to its original position while maintaining its salt content. The parcel

may then be warmer than its surroundings, and thus lighter, leading to an overshoot.

If overshoot occurs, the parcel will rapidly cool to the surrounding temperature, again

maintaining its salt content. The parcel will then be heavier than its surroundings and

sink, restarting the cycle and leading to oscillations which may grow, depending on the

strength of the background stratification. We refer to this phenomenon as ‘oscillatory

double-diffusive convection’, or simply ‘diffusive convection’.

The gradients are reversed in areas such as the Mediterranean ocean, in which sur-

face evaporation leaves warm, salty water above the cold, fresh outflow from rivers.

This configuration is shown in Figure 2.2. A parcel of fluid displaced downwards will

cool down more quickly than it will lose its salt content, and so it will become heavier

as it continues to sink. A blob of fluid displaced upwards will also continue its motion,

becoming warmer and lighter as it rises. This instability is known as ’salt-fingering’,

which lends its name to this configuration of T and S.

Figure 2.2: A schematic of the behaviour of a blob of fluid in a system susceptible to salt

fingering, in which the slower-diffusing component (salt) has a destabilising effect (i.e. sgn(Tz) =

sgn(Sz) = 1).

The static basic state is shown to be unstable to growing perturbations of the form,

ψ = Aψe
λ0t cos(kxx), T = AT e

λ0t sin(kxx), S = ASe
λ0t sin(kxx), (2.42)
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2.3 Mathematical Formulation

where kx is a horizontal wave number. These are commonly referred to as ‘elevator’

modes. Equations (4.24) - (4.26) are nonlinear, but the Jacobian terms are zero on

the substitution of such perturbations as 2.42, since ∂z(ψ, T, S) = 0. Hence elevator

solutions satisfy the linear equations

AT (λ0 + k2
x) = sgn(Tz)kxAψ,

AS(λ0 + τk2
x) = sgn(Sz)kxR−1

ρ Aψ, (2.43)
Aψkx
Pr

(λ0 + Prk2
x) = −(AT −AS),

which correspond to Equations (2.22) in Holyer (1984) when kx = 1 and sgn(Tz) =

sgn(Sz) = 1. Solving the simultaneous equations (2.43), we obtain a cubic equation for

the growth rate of perturbations, λ0:

(λ0 + k2
x)(λ0 + Prk2

x)(λ0 + τk2
x) + Pr(sgn(Tz)(λ0 + τk2

x)− sgn(Sz)R−1
ρ (λ0 + k2

x)) = 0.

(2.44)

Since equation (2.44) is a cubic with real coefficients, then the roots are either all real,

or one real and two complex conjugates. Hence instability can occur as overstable os-

cillations (when a pair of complex roots crosses the imaginary axis), or as an exchange

of stabilities (when one of the roots equals zero).

We determine the stability boundary by expanding (2.44) and setting λ0 = σ + iω

in

λ3
0 + aλ2

0 + bλ0 + c = 0, (2.45)

with

a = k2
x(Pr + τ + 1),

b = k4
x(τPr + Pr + τ)± Pr(1−R−1

ρ ),

c = k6
xτPr ± k2

xPr(τ −R−1
ρ ).

Here, ± denotes positive or negative Tz and Sz—positive for salt fingering, negative

for diffusive convection. In the present study, we are primarily interested in oscillatory
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2. FORMULATION OF THE PROBLEM

double-diffusive convection, for which the signs of Tz and Sz are negative. We first seek

the direct non-oscillatory instability, where σ = ω = 0. Hence, in this case, c = 0 and

so

k4
xτPr = ∓Pr(τ −R−1

ρ ),

=⇒ R−1
ρ = τ(1± k4

x). (2.46)

We can also find oscillatory solutions, where σ = 0 and ω is real and non-zero, i.e.

∓ iω3 ∓ aω2 ± ibω + c = 0. (2.47)

Here, ω2 = b and ω2 = c/a. Eliminating ω2 gives c = ab. However, this is only a line

of marginal stability if b > 0. If b < 0 then ω is imaginary and the solution is stable.

Since a is always positive, and b is positive for an oscillatory instability, then c is

also positive. Oscillatory solutions occur when sgn(Tz) = sgn(Sz) = −1; hence, the

frequency of marginal instabilities is given by

ω2 = k4
x(τPr + Pr + τ)− Pr(1−R−1

ρ ). (2.48)

We find the boundary of the instability by setting ab = c.

k6
x(Pr+ τ +1)(Pr+ τ + τPr)−k2

x(Pr+ τ +1)(Pr(1−R−1
ρ )) = k6

xτPr−k2
xPr(τ −R−1

ρ )

=⇒ R−1
ρ = (Pr + 1)

(Pr + τ)

(
1− k4

x(1 + τ)(1 + τ

Pr
)
)

(2.49)

Examining the total density equation (2.37) we can observe that the background density

gradient

ρB = ±(R−1
ρ − 1)z (2.50)

is always unstable if: R−1
ρ ≥ 1 in the fingering (+) configuration; or R−1

ρ ≤ 1 in the

oscillatory (−) configuration. Putting everything together we can see that the system

is unstable to salt-fingers (+) if

1 ≥ R−1
ρ ≥ τ(1k4

x), (2.51)
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2.3 Mathematical Formulation

and unstable to oscillatory double-diffusive convection (ODDC) (−) when

1 ≤ R−1
ρ ≤

(Pr + 1)
(Pr + τ)

(
1− k4

x(1 + τ)(1 + τ

Pr
)
)
, (2.52)

providing b > 0, i.e.

k4
x(τPr + Pr + τ) = Pr(1−R−1

ρ ). (2.53)

2.3.7 Salt Finger Instability

We determine the growth rate of instabilities by finding the three roots λ0 of the cubic

equation (2.44). Calculating the roots in the salt-finger regime (with Tz and Sz both

positive) as a function of R−1
ρ and kx results in the plot of growth rates shown in Figure

(2.3).

Basic state stability of the heat-salt system.
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Figure 2.3: Contours showing the growth rate of perturbations as a function of R−1
ρ and kx for

sgn(Tz) = sgn(Sz) = 1, i.e. in the salt-fingering regime, when Pr = 7 and τ = 0.01.

The solid line showing zero growth rate matches the curve given by the lower bound of

equation (2.51), wherein the curve meets the ordinate at a value of R−1
ρ = τ . We can

thus use equation (2.51) to determine the wavenumber for a given R−1
ρ to give marginal
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2. FORMULATION OF THE PROBLEM

stability, or vice versa.

Alternatively, for a given R−1
ρ we may solve the cubic (2.44) to find the wavenum-

ber of the fastest growing mode, kx.

2.3.8 Oscillatory Instability

We may also solve (2.44) to obtain three roots describing the growth rate and frequency

of perturbations in the oscillatory regime. Figure (2.4) shows the growth rate (max-

imum real part) of perturbations as a function of R−1
ρ and kx in the oscillatory case.

Figure 2.4: Growth rate of perturbations as a function of R−1
ρ and kx for sgn(Tz) = sgn(Sz) =

−1; i.e. in the oscillatory regime.

The solid line showing zero growth rate matches the curve given by equation (2.52) so

that the curve meets the ordinate at R−1
ρ = (Pr + 1)/(Pr + τ), highlighting boundary

of instability. Hence we can use (2.52) to determine the wavenumber for a given R−1
ρ at

marginal stability (as indicated by the red lines in Figure 2.4), or vice-versa, with fre-

quency given by (2.48). Alternatively for a given R−1
ρ we may solve the cubic equation
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2.4 Bounded Domain

Figure 2.5: A schematic diagram of a diffusively stratified fluid vertically bounded by upper and

lower rigid horizontal boundaries separated by a distance d. The upper and lower boundaries

are maintained at a constant temperature and salinity. The temperature T and salinity S in

the fluid domain are each linearly stratified with gradient Tz = ∆T
d and Sz = ∆S

d .

(2.44) to find the wavenumber of the fastest growing mode, k∗x and the corresponding

frequency of oscillations.

2.4 Bounded Domain

In preparation for a brief study of a bounded system in Chapter 3, we here derive the

governing equations in a domain with rigid, horizontal upper and lower boundaries.

Figure 2.5 shows a schematic diagram of this configuration. The lower boundary is

maintained at a fixed temperature T = T0 and salinity S = S0. The temperature and

salinity differences between the top and bottom plates are denoted ∆T and ∆S respect-

ively so that the top plate has temperature T = T0+∆T and salinity S = S0+∆S. The

distance between the two plates is d, so linear temperature and salinity gradients in the

fluid may be defined as Tz = ∆T
d and Sz = ∆S

d , respectively. As in the unbounded case,

the gradients may be either positive or negative—a positive δT gives a stable temper-

ature gradient, and vice versa, while a positive δS gives in unstable salinity gradient,

and vice versa.
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2. FORMULATION OF THE PROBLEM

The boundaries are considered impermeable, stress-free and perfectly conducting (hav-

ing fixed temperature and salinity), which may be expressed as

ψ = ∂2ψ

∂z2 = T = S = 0, (2.54)

on each boundary, where ψ is as defined hereinbefore. Taking the governing Navier-

Stokes equations (2.20–2.23), perturbing the variables as before, and nondimensional-

ising using the length scale d results in the following non-dimensional governing equa-

tions (cf. Baines and Gill (1969) and Da Costa et al. (1981)):

(
∂

∂t
− Pr∇2

)
∇2ψ = −J(ψ,∇2ψ) + Pr

(
RT∂T

∂x
−RS

∂S

∂x

)
, (2.55)(

∂

∂t
−∇2

)
T + sgn(Tz)

∂ψ

∂x
= −J(ψ, T ), (2.56)(

∂

∂t
− τ∇2

)
S + sgn(Sz)

∂ψ

∂x
= −J(ψ, S), (2.57)

where RT = gα∆Td3/νκT = gαTzd
4/νκT is a thermal Rayleigh number, and RS =

gβ∆Sd3/νκT = gβSzd
4/νκT .

Note that we may combine RT and RS into a density gradient ratio, Rρ = RT
RS

= αTz
βSZ

,

as with the unbounded system. Furthermore, we may recover the governing equations

pertaining to an unbounded system by taking d = δ =
∣∣∣gαTzκT ν

∣∣∣− 1
4 , which gives a thermal

Rayleigh number of unity, so that,

(
∂

∂t
− Pr∇2

)
∇2ψ = −J(ψ,∇2ψ) + Pr

(
∂T

∂x
−R−ρ 1∂S

∂x

)
, (2.58)(

∂

∂t
−∇2

)
T + sgn(Tz)

∂ψ

∂x
= −J(ψ, T ), (2.59)(

∂

∂t
− τ∇2

)
S + sgn(Sz)

∂ψ

∂x
= −J(ψ, S). (2.60)

The density gradient ratio Rρ is, here, located in the streamfunction equation; however,
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2.4 Bounded Domain

Figure 2.6: Schematic diagram of instability in a bounded system as a function of RT and RS ,

optimised over kx.

it may equally be comprised in the salinity equation, as in equations (4.24–4.26). Not-

ably, the stability of the system in the bounded domain is dependent on the values of

both RT and RS . The schematic diagram of Figure 2.6 shows the regions of instability

on a plot of RT vs RS (Huppert and Moore, 1976, Veronis, 1965). It is clear from

Figure 2.6 that for a given choice of RT and RS , the bounded system may be either

stable, marginally unstable, or fully unstable.

The stability of the unbounded system, in contrast, is the same along lines of constant

Rρ = RT /RS = αTz
βSZ

.Thisisbecause, intheboundeddomain, thediffusiveeffectsofκT

and κS each play a part in the stability of the system. In the unbounded system, we

have non-dimensionalised using δ as defined in equation 2.19, which includes κT . Thus,

non-dimensionalising the equations using δ gives a thermal Rayleigh number, RT , of 1;

hence, the stability is dependent only on Rρ. Figure 2.7 shows the stable, oscillatory,

salt-fingering, and unstably stratified (R−1
ρ > 1) regions as a function of αTZ and βSZ ,

where the boundaries for stability have been optimised over kx.

37



2. FORMULATION OF THE PROBLEM

Figure 2.7: Schematic diagram of the regions of instability in an unbounded system as a function

of αTZ and βSZ , optimised over kx, wherein the stability characteristics are unchanging along

lines of constant αTZ / βSZ .

In Chapter 3, we discuss the bounded and unbounded systems in more detail with re-

spect to the work of Veronis (1965), Veronis (1968), Da Costa et al. (1981) and Noguchi

and Niino (2010a). For this reason, in Chapter 3 we refer to the Prandtl number Pr

using the symbol σ, and the density gradient ratio Rρ using γ, to permit a more dir-

ect comparison with the work of these authors. The symbols Pr and Rρ are used

in Chapters 4 and 5 to permit comparisons with the work of other authors such as

Stellmach et al. (2011) and Radko (2013).
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Chapter 3

Truncated Models
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3. TRUNCATED MODELS

3.1 Introduction

Truncated Fourier expansions have seen numerous applications in the modelling of con-

vective systems. Perhaps the most notable example is that of the heavily truncated

Lorenz system (Lorenz, 1963), in which velocity and temperature fields are represented

by a total of three different modes. Truncating in this way permits the formulation of

a time-dependent system of ODEs, which can then be solved to analyse modal inter-

actions of the three basic modes and gain insight into the non-linear behaviour of such

systems. We discuss the Lorenz system in section 3.2.

Other examples exist of truncated systems used to model double-diffusive convec-

tion. Such a truncated system was obtained by Veronis (1965), and was later used

by Da Costa et al. (1981) to study modal interactions in double-diffusive convection.

In each of these studies, two extra modes were included to account for the concen-

tration of salt. These studies will be described in section 3.3. The systems studied

by Veronis (1965) and Da Costa et al. (1981) were constrained to a bounded domain,

so no elevator modes were present in the truncation. A further study was therefore

performed by Noguchi and Niino (2010a) who used a truncated Fourier expansion in a

doubly-periodic domain to study the effects of elevator modes. This study is discussed

in section 3.4

Heavily truncated, low-order models provide certain advantages when used to study

convective systems. Firstly, it is possible, with a reduced-order system, to directly

study the interactions of individual modes with one another. This can help to bring

out the important physical processes that are responsible for the behaviour of interest.

Secondly, within the truncated equations, equilibrium solutions can be easily found and

their stability readily computed. This can be valuable to determine whether there are

any parameter ranges at which stable solutions exist.
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There are, however, certain disadvantages to using heavily truncated models. Spe-

cifically, as the amplitude of each mode increases, additional modes may be generated

through further nonlinear interactions. These additional modes would be unaccounted

for by a heavily truncated Fourier series. Thus, behaviour we observed at anything

other than small amplitudes is likely to be unreliable. For this reason, care must be

taken in drawing conclusions from such models, particularly as modal amplitudes in-

crease. Nevertheless, we here analyse the behaviour of the modes at larger amplitudes

in order to gain further insight into the persistence of layering modes which can be

observed in such heavily truncated models.

This chapter starts with an overview of the truncated systems used by previous au-

thors to model both convection and double-diffusive convection, detailing some of the

understandings gained. We then investigate how these studies may be extended by

including additional modes. Specifically, we study the effects of introducing elevator

modes in heavily truncated systems. In this way, we obtain a system of equations that

is of lower-order than that studied by Noguchi and Niino (2010a), but that can be

used to obtain many of the same findings. We also derive two higher-order systems to

study the effects of different configurations of the elevator modes. We verify and use

these models to study the system after modal amplitudes become large, thereby further

extending the work of 3.4.

In § 3.6, we use our findings to explain how the interactions between low-order modes

can lead to the formation (and eventual collapse) of persistent vertical density struc-

tures, which are reminiscent of double-diffusive layers. We then study, in § 3.7, the

stability of equilibrium points identified and studied by Veronis (1965) and Da Costa

et al. (1981) in the presence of elevator modes. We conclude by contrasting our findings

with knowledge gained by other authors through large-scale direct numerical simula-

tions of the governing equations, particularly in relation to the formation of density

layers.
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3. TRUNCATED MODELS

3.2 Lorenz System

Lorenz (1963) employed a heavily truncated ODE system to study the chaotic behaviour

of bounded thermal convection. The perturbations in ψ and T are approximated by a

heavily truncated Fourier expansion, or ‘minimal representation’, of the form

ψ = Aψ sin(kx) cos(mz),

T = AT cos(kx) sin(mz) +AT sin(2mz),

where k and m are horizontal and vertical wavenumbers, respectively. Substituting

these approximate solutions into the governing equations and retaining only terms of

the same spatial form, results in a 3rd-order system of ODEs, which, in contrast to

the governing PDE system, is readily numerically integrated. We do not here cover

the Lorenz (1963) system in detail, as there is a wide array of literature discussing

this topic (Sparrow, 1982). Rather, it is more instructive to discuss an extension and

application of this method to a double-diffusive system, as in the following section.

3.3 Fifth-order Model

A similar minimal representation as employed by Lorenz (1963) can be constructed to

study the weakly non-linear behaviour of double-diffusive systems. As in the Lorenz

system, a heavily truncated Fourier series solution is employed to convert the governing

system of PDEs (2.20–2.22) into a solvable low-order system of ODEs. We can then

study modal interactions by way of numerical simulation, thereby providing insight into

the system as amplitudes become too large for a linear stability analysis to be valid.

Such a minimal representation was first suggested by Veronis (1965), and was later

investigated thoroughly by Da Costa et al. (1981). In each study, the fluid domain is

bounded between two impermeable horizontal plates, as described in Chapter 2. The

minimal representation of the streamfunction (ψ), temperature (T ) and salinity (S)

perturbations in the Da Costa et al. (1981) study are taken to be
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3.3 Fifth-order Model

ψ = a(t∗)2(2p)
1
2
λ

π
sin πx

λ
sin πz, (3.1)

T = b(t∗)2
(2
p

) 1
2

cos πx
λ

sin πz − c(t∗) 1
π

sin 2πz, (3.2)

S = d(t∗)2
(2
p

) 1
2

cos πx
λ

sin πz − e(t∗) 1
π

sin 2πz, (3.3)

where t∗ = pt, p = π2(1 + 1/λ2), and the coefficients are selected to scale and simplify

the resulting system of ODEs. In this case, the wavenumbers (k,m) = (π/λ, π). We

here define wavenumbers as (Kk,Mm), where K,M ∈ Z. In this way, we may identify

harmonics independently of their respective wavenumbers as (K,M). The above sys-

tem thus comprises the modes (1, 1) and (0, 2).

Suppose that only the (1, 1) modes are taken initially; the (0, 2) mode is then gen-

erated through nonlinear interactions in the Jacobian terms of the governing equations

in a bounded system (2.58–2.60), and so is included in the minimal representation.

Indeed, if this process is repeated then further higher harmonics are generated. One

must thus choose when to truncate the system; that is, to choose which generated terms

are neglected and which are kept. Consider the lattice in Figure (3.1) showing possible

modal combinations of K and M , from Veronis (1966). It could be said that this system

is truncated as a triangular array—any additional harmonics generated which lie below

the dashed line in Figure (3.1) are retained, while those above are discarded. Using

the notation previously introduced, this is equivalent to ensuring K + M = 2. The

resulting system of ODEs, after substituting the above minimal representation into the
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3. TRUNCATED MODELS

Figure 3.1: Wavenumber lattice, showing the potential higher-harmonics.

governing equations (2.58–2.60) neglecting such higher harmonics, is

a′ = σ[−a+ rT b− rSd],

b′ = −b+ a(1− c),

c′ = $[−c+ ab], (3.4)

d′ = −τd+ a(1− e),

e′ = $[−τe+ ad],

where

$ = 4π2

p
, rT = π2

λ2p3RT , rS = π

λ2p3RS ,

and ′ symbolises a time-derivative. Note that by removing the salinity terms, i.e. set-

ting d = e = 0, this reduces to the well-known Lorenz (1963) system. Furthermore, the

presence of impenetrable boundaries limits the system to a sin(nπz) dependence and

so no ‘elevator’ (1, 0) mode can be included.

Linearising the system about the trivial static solution a = b = c = d = e = 0 admits

solutions that vary as eσt∗ (Da Costa et al., 1981). The initial instability is an oscillatory

standing wave solution; however, it should be noted that a weakly non-linear analysis
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by Bretherton (1981) predicted travelling-wave solutions begin to dominate when non-

linearity becomes important (i.e. with large-amplitude disturbances). Da Costa et al.

(1981) show that results from nonlinear simulations of this system corresponded quite

closely to those obtained by Huppert and Moore (1976) for the full system.

Knobloch et al. (1981) developed equations governing the problem of magneto-convection,

which resembled those of double-diffusive convection studied here. Hughes and Weiss

(1995) successfully applied reduced order models similar to those of Veronis (1965) and

Da Costa et al. (1981) to the equations derived by Knobloch et al. (1981). The wide-

ranging use of low-order models by previous authors is exemplary of the success of such

models in providing insight into a variety of convective systems.

The linear stability analysis presented in Chapter 2 shows that the fastest growing

mode for a system having periodic boundaries is an elevator mode of the form (1, 0),

corresponding to infinitely long vertical columns. Elevator modes are not permitted

in the system (3.4) owing to the presence of upper and lower rigid boundaries. In a

natural context, salt fingering and staircase formation tend to occur far away from any

physical boundaries and so it is important to minimise any boundary effects (Stellmach

et al., 2011). This suggests that in order to observe layers, the vertical distance between

boundaries must be significantly large, or else periodic boundaries must be used.

3.4 Higher Order Systems

We are interested in extending the system studied by Veronis (1965) and by Da Costa

et al. (1981) to include elevator modes, which are thought to play a critical role in the

formation of layers. This requires the use of periodic boundary conditions, as described

in Chapter 2. A similar study was performed by Noguchi and Niino (2010a), who

studied a truncated system to investigate modal interactions during the formation of

layers in two-dimensional double-diffusive convection. The truncation in the Noguchi

45



3. TRUNCATED MODELS

and Niino (2010a) paper was very specific—the authors performed a direct numerical

simulation (DNS) of the full 2D system and identified from the results which modes

should be included in the low-order model based on their apparent importance.

This is a different approach to that of Lorenz (1963) and Veronis (1965), who include

only first-order modes generated through nonlinear interactions of the basic modes. It

may be the case that Noguchi and Niino (2010a) (herein referred to as NN) included

more modes in their model than was necessary to observed layer formation. In this

chapter, we derive a low-order model of double-diffusive convection, by extending the

system and method of Veronis (1965) to include elevator modes. The model is used to

study the modal interactions which lead to layering. we see that the model is able to

produce results similar to those of NN, but using fewer modes.

Furthermore, NN did not monitor the behaviour of the modes after all modes had

reached the same amplitude as one another. This is because when the lower-order

modes reach a similar amplitude to one another, higher-order modes may no longer

be considered negligible. Such higher-order modes would likely be generated through

further nonlinear interactions, which are excluded in our model by virtue of the heavy

truncation. Nevertheless, we find it instructive to study the behaviours and interactions

of the modes in our lower-order model even after the modes reach a similar order of

magnitude as one another.

3.4.1 Noguchi and Niino Study

We here provide a brief overview of the findings of NN, with the aim of providing a

background with with to compare our novel system. As stated previously, NN studied

the system using Direct Numerical Simulation (DNS) to identify modes thought to be

important to staircase formation. We first provide a brief overview of the findings from

the DNS, before discussing the truncated system of NN.
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3.4 Higher Order Systems

Direct Numerical Simulation

In order to determine which modes were responsible for layer formation, NN ran a

two-dimensional direct numerical simulation of the equations governing double-diffusive

convection in the ‘diffusive’ state. A marginally supercritical value of γ = 0.88 (R−1
ρ =

1.136) was used in the simulation. The calculation was made on a square domain that

was about 20 times larger than the wavelength of the fastest growing mode elevator

mode predicted by linear theory. Periodic boundary conditions were imposed at ho-

rizontal and vertical boundaries, and the system was initialised with a low-amplitude

white-noise disturbance.

The authors monitored the kinetic energy throughout the simulation (see Figure 5

in NN). They found that, following a brief period of total energy decrease, which was

attributed to the damping of disturbances with negative growth rates, the initial ran-

dom perturbations started to grow exponentially with time. The growth rate was

comparable to that of the fastest-growing elevator mode from linear theory. This expo-

nential growth was followed by an ‘explosive growth’ phase, in which the kinetic energy

increased by three orders of magnitude in a relatively short space of time. When the

amplitudes reached O(1), the growth rate slowed down and was no longer exponential.

Interestingly, a sudden formation of layered structures was observed following the ex-

plosive growth phase.

In Figure 3.2 we show the plots of Figure 9 of NN. These plots show the formation

and evolution of layered structures in the system over time. The vertical density profile

was observed to remain almost constant during the linear growth phase, but gave way

to small-wavelength modulations during the exponential growth phase. These mod-

ulations then rapidly developed into step-like structures having a thickness that was

close to the horizontal wavelength of the fastest-growing mode. Over time, horizontal

disturbances in each layer became visible, the disturbances having the same horizontal
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Figure 3.2: Snapshots of net density distribution at four different times in the DNS simulation

of Noguchi and Niino (2010a), showing the formation of discrete layers. Corresponds to Figure

9 in Noguchi and Niino (2010a)

wavelength as that of the fastest-growing elevator modes. The amplitudes of these

disturbances continued to grow and eventually resulted in overturning and subsequent

mixing within the layers. Note that this produced strongly stratified interfaces between

the layers. Over time, the layers were observed to merge into successively larger layers,

each being supported by convective motions within the layer that resembled Rayleigh-

Bénard convection.

The nonlinear interactions of modes in the DNS were analysed to find a set of modes

that play principal roles in the formation of layers. That is, the governing equations

were Fourier-transformed and used to determine ‘energy transfer functions’ which rep-

resented nonlinear-interactions between modes. These were evaluated in the exponen-

tial growth phase, just before the explosive growth phase.

The first mode to emerge during the exponential growth phase corresponded to the

fastest-growing elevator mode from linear theory. The elevator mode is entirely hori-

zontally dependent, so we refer to it herein as a (1, 0) mode. This (1, 0) elevator mode

was observed to interact with a (1, 1) ‘cellular mode’, and a (0, 1) ‘layering’ mode. The

(1, 1) cellular mode had horizontal and vertical structure, while the (0, 1) layering mode

had entirely vertical structure. A fourth mode—the (0, 2) layering mode—was observed

to interact only with the (0, 1) cellular mode.
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3.4 Higher Order Systems

Figure 3.3: Schematic diagrams showing contours of streamfunction, psi for LEFT: a (1, 0)

elevator mode; MIDDLE: a (1, 1) cellular mode; and RIGHT: a (0, 1) layering mode (a (0, 2)

layering mode looks the same as a (0, 1) layering mode but with half the vertical wavenumber).

Figure 3.3 shows schematic diagrams of these modes in terms of the streamfunction

perturbation, ψ (though the shapes of the contours equally apply to the temperature,

T , and salinity, S perturbations). The (1, 0) elevator mode looks like columnar convec-

tion, with adjacent ‘elevators’ travelling in opposite directions. The (1, 1) cellular mode

is so named as it comprises cells of rotating fluid (or, equally, of T and S hotspots). The

(0, 1) layering mode comprises layers of horizontally-moving jets (or banded regions of

T and S). The (0, 2) layering mode is the same but with half the wavelength. It is

worth noting here that the resolution of modes is insufficient to produce well-defined

interfaces between layers in the (0, 1) and (0, 2) layering modes, or in combinations

thereof. This is addressed in § 3.6 when we discuss the modal evolutions in our novel

systems.

Figure 7 of NN shows that the (1, 0) elevator mode was dominant soon after initi-

ation of the simulation. This eventually gave way to the (1, 1) cellular and (0, 1) and

(0, 2) layering modes, which dominated at the start of the exponential growth phase.

We note that the wavelength of the (0, 2) layering mode was found to match the layer

depth after the explosive growth phase shown in Figure 3.2(d). This means that the

emergence of a (0, 2) mode in a low-order model of the system may be indicative of

layer formation in the system.
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Truncated Spectral Model

A truncated spectral model was then produced by NN considering only the four modes

identified. The form of the truncation was not explicitly stated but appears to be given

by

η = A(t)ei(kx) +B(t)ei(kx+mz) + C(t)ei(mz) +D(t)ei(2mz) + c.c. (3.5)

where c.c. stands for complex conjugate. In this way, each combination of trigonometric

functions was included in the formulation. For instance, the formulation includes two

elevator modes, cos(kx) + sin(kx), four cellular (1, 1) modes, and so on, leading to a

potential maximum of 30 modes. This is in contrast to system (3.4), in which only

the cos(kx) sin(mz) term was included for the streamfunction and the system had a

maximum of 5 modes.

In email correspondence, Noguchi, one of the authors of the NN paper, noted to us

that many of the 30 modes are actually degenerate, resulting in a 12th-order system

of equations. As we show later, it may not be necessary even to include all 12 of these

modes to reproduce behaviour observed in numerical simulations.

The wavenumbers (k,m) of these modes were taken from the results of the DNS when

γ = 0.88 (R−1
ρ = 1.136): (0.19, 0) for the (1, 0) elevator mode; (0.19, 0.09) for the (1, 1)

cellular mode; (0, 0.09) for the (0, 1) layering mode; and (0, 0.18) for the (0, 2) layering

mode. Note that the value of k = 0.19 in the (1, 0) elevator mode is the same as

that of the fastest-growing elevator mode when γ = 0.8, as would be expected. The

(0, 2) layering mode has a value of m = 0.18, which is approximately the same as the

horizontal wavelength of the (0, 1) elevator mode. Intial conditions for |A| = 10−1 and

|B| = 10−3 were taken from the DNS simulation at the start of the exponential growth

stage, while |C| = |D| = 0 since they are decaying modes according to linear theory

and do not exist at the initial time.
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Figure 3.4: Time evolution of the amplitude of the temperature perturbation in the system

studied by Noguchi and Niino (2010a)

NN solved the resulting ODE system and obtained the plot shown in Figure 3.4. This

plot shows the amplitude of modes in the temperature perturbation over time. Ini-

tially, the (0, 1) elevator mode (mode ‘A’ in Figure 3.4) and the (1, 1) cellular mode

(mode ‘B’in Figure 3.4) grow at nearly the same rate as that predicted by linear theory,

whereas the (0, 1) and (0, 2) layering modes (modes ‘C’ and ‘D’ in Figure 3.4) are ex-

cited through nonlinear interactions and grow faster than the (1, 0) elevator and (1, 1)

cellular modes.

Eventually, the (0, 1) and (0, 2) layering modes grow rapidly to reach the same or-

der of amplitude as the (0, 1) elevator and (1, 1) cellular modes. It is not clear from

Figure 3.4, but, according to the authors, the (0, 2) layering mode is eventually observed

to overtake the other modes to become the dominant mode.
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3.4.2 Novel Systems

We here use similar methods to those employed by Veronis (1965) and, subsequently,

(Da Costa et al., 1981), to obtain novel low-order systems which behave in a similar

way to the system modelled by NN. In contrast to (Veronis, 1965), we here start with

a baseline cellular (1, 1) mode in each of the perturbations and introduce an elevator

(1, 0) mode of the form given by equation (2.42), i.e.

ψ = a1 cos(kx) + a2 sin(kx) sin(mz),

T = b1 sin(kx) + b2 cos(kx) sin(mz),

S = c1 sin(kx) + c2 cos(kx) sin(mz),

The (1, 0) elevator modes are represented by either cos(kx) or sin(kx). The remain-

ing modes are (1, 1) cellular modes. The addition of elevator modes changes how the

modes interact nonlinearly in the governing equaions. That is, on substitution of the

above perturbations into the governing equations (4.24)–(4.26), nonlinear interactions

in the Jacobian terms generate higher harmonics. We limited the higher harmonics to

those arising within the ‘triangular’ truncation of K+M = 2, as described hereinbefore.

In each perturbation, the baseline elevator mode can optionally be ‘aligned’ or ‘mis-

aligned’ with the x-component of the respective cellular mode. In the case above, the

streamfunction elevator mode takes the form ψE = sin(kx), while the corresponding

cellular mode takes the form ψC = cos(kx), and hence this system is ‘misaligned’.

This choice heavily influences the form of the resulting truncated system. Indeed,

we see that when both aligned and misaligned modes are included, the resulting beha-

viour is most similar to the misaligned system, which suggests that this is the preferred

arrangement.
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This will be discussed further in the following sections, in which we detail the systems

arising from the different truncations. These include: a ninth-order order system gener-

ated using misaligned modes; a tenth-order system generated using aligned modes; and

a 17th-order system generated using a combination of aligned and mis-aligned modes.

Ninth-order system

We begin by noting that, in this Chapter, we employ notation which is similar to that

employed by Da Costa et al. (1981) and Noguchi and Niino (2010a), for convenience

and ease of comparison. Thus, we here make the following substitutions to the nota-

tion used in Chapter 2 (and subsequently in Chapters 4 and 5): Rρ = γ; Pr = σ;

kx = k; and kz = m, where kx and kz are horizontal (x) and vertical (z) wavenumbers,

respectively. We also define rT = 1 and rS = γ, in order to facilitate a comparison of

our equations with those of Veronis (1965) and Da Costa et al. (1981).

Substituting the misaligned perturbations above into the governing equations (4.24)–

(4.26), we obtain the following set of expansions, using the above notation:

ψ = a1 cos(kx) + a2 sin(kx) sin(mz) + a3 cos(mz),

T = b1 sin(kx) + b2 cos(kx) sin(mz) + b3 sin(2mz),

S = c1 sin(kx) + c2 cos(kx) sin(mz) + c3 sin(2mz).

This set of equations comprises 9 modes. The modes coloured red correspond to those

used in the Veronis system. Note that unlike in the NN system, no (0, 2) layering

mode is generated here in the streamfunction expansion, and no (0, 1) layering mode

appears in the temperature or salinity expansions. Substituting these modal equations

back into the non-dimensional system and neglecting higher harmonics results in the
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following ninth-order system of ODEs:

a′1 = −σ
k

(rT b1 − rSc1 + a1k
3)− 1

2kma2a3,

a′2 = 1
p

(σ(rTkb2 − rSkc2 − p2a2) + (k3m− km3)a1a3),

a′3 = −σm2a3 + 1
2kma1a2,

b′1 = −b1k2 + 1
2kma3b2 − ka1,

b′2 = km(a2b3 − a3b1)− pb2 + ka2, (3.6)

b′3 = −4b3m2 − 1
2kma2b2,

c′1 = −τc1k
2 + 1

2kma3c2 − ka1,

c′2 = km(a2c3 − a3c1)− τpc2 + ka2,

c′3 = −4τc3m
2 − 1

2kma2c2,

where p = (k2 +m2).

Tenth-order system

The form of the perturbations in the ‘aligned’ system is as follows:

ψ = a1 cos(kx) + a2 cos(kx) sin(mz),

T = b1 sin(kx) + b2 sin(kx) sin(mz),

S = c1 sin(kx) + c2 sin(kx) sin(mz).

Substituting these modal equations into the governing equations (4.24)–(4.26) results

in the generation of a (0, 1) mode and a (0, 2) mode in the T and S perturbations, but
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no layering modes at all in the ψ perturturbation:

ψ = a1 sin(kx) + a2 sin(kx) sin(mz),

T = b1 cos(kx) + b2 cos(kx) sin(mz) + b3 cos(mz) + b4 sin(2mz),

S = c1 cos(kx) + c2 cos(kx) sin(mz) + c3 cos(mz) + c4 sin(2mz).

Again, the modes coloured in red are those present in the Veronis system. Substituting

the 10 modes above into the non-dimensional system and neglecting higher harmonics

results in the tenth-order system of ODEs shown below, with p = (k2 +m2).

a′1 = σ

k
(rT b1 − rSc1 − a1k

3),

a′2 = 1
p

(σ(rTkb2 − rSkc2 − p2a2),

b′1 = −b1k2 − 1
2kma2b3 + ka1,

b′2 = −km(a2b4 + a1b3)− pb2 + ka2,

b′3 = −b3m2 + 1
2km(a1b2 + a2b1),

b′4 = −4b4m2 + 1
2kma2b2,

c′1 = −τc1k
2 − 1

2kma2c3 + ka1,

c′2 = −km(a2c4 + a1c3)− τpc2 + ka2,

c′3 = −τc3m
2 + 1

2km(a1c2 + a2c1).

c′4 = −4τc4m
2 + 1

2kma2c2,

17th-order system

Including both cos(kx) and sin(kx) terms in combination with a single cellular term

in each of the ψ, T and S perturbations results in the generation of additional cellular

(1, 1) and layering (0, 1), (0, 2) modes. The resulting expansions are as follows:
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ψ = a1 cos(kx) + a2 sin(kx) + a3 cos(kx) sin(mz) + a4 sin(kx) sin(mz)

+ a5 cos(mz) + a6 sin(2mz),

T = b1 cos(kx) + b2 sin(kx) + b3 cos(kx) sin(mz) + b4 sin(kx) sin(mz)

+ b5 cos(mz) + b6 sin(2mz),

S = c1 cos(kx) + c2 sin(kx) + c3 cos(kx) sin(mz) + c4 sin(kx) sin(mz)

+ c5 cos(mz) + c6 sin(2mz).

The modes coloured red are present in the Veronis system. The grey-coloured (0, 2)

layering mode in the streamfunction perturbation emerges only as a result of nonlinear

interactions with even higher-order modes, which are excluded in our truncation. Thus,

this mode makes no contribution to the overall dynamics..

Computing the resulting ODE system from the above equations is a relatively lengthy

and potentially error-prone process. Therefore, we developed a ‘Maple’ program which

first identifies any additional terms that are generated for a given level of truncation

(e.g. K +M = 2 in this case), and then computes the resulting system of ODEs.

The output of the Maple program may be copied and pasted directly into MATLAB.

This has the benefit that, if desired, we may include more terms in the original trunca-

tion, for example a (0, 2) mode in the streamfunction expansion which is never generated

otherwise. Furthermore, we are now able to quickly and reliably obtain ODE systems

of 17th-order and higher. The Maple program was verified against hand-calculated

versions of the Da Costa et al. system, the 9th-order system and the 10th-order system

derived here.
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The resulting 17th-order system is is follows:

a′1 = σ

k
(rT b2 − rSc2 − a1k

3)− 1
2kma4a5,

a′2 = −σ
k

(rT b1 − rSb2 + a2k
3) + 1

2kma3a5,

a′3 = 1
p

(σ(rTkb4 − rSkc4 −Qa3)− (mk3 − km3)a2a5,

a′4 = −1
p

(σ(rTkb3 − rSkc3 −Qa4)− (mk3 − km3)a1a5),

a′5 = −σm2a5 + 1
2km(a1a4 − a2a3),

b′1 = −b1k2 + 1
2km(a4b5 − a5b4)− ka2,

b′2 = −b2k2 + 12km(a5b4 − a3b5) + ka1,

b′3 = km(a2b5 − a5b2 + a4b6)− pb3 − ka4,

b′4 = km(−a1b5 + a5b1 − a3b6)− pb4 + ka3,

b′5 = −b5m2 + 1
2km(a1b4 − a2b3 + a3b2 − a4b1),

b′6 = −4b6m2 + 1
2km(a3b4 − a4b3),

c′1 = −τc1k
2 + 1

2km(a4c5 − a5c4)− ka2,

c′2 = −τc2k
2 + 12km(a5c4 − a3c5) + ka1,

c′3 = km(a2c5 − a5c2 + a4c6)− τpc3 − ka4,

c′4 = km(−a1c5 + a5c1 − a3c6)− τpc4 + ka3,

c′5 = −τc5m
2 + 1

2km(a1c4 − a2c3 + a3c2 − a4c1),

c′6 = −τ4c6m
2 + 1

2km(a3c4 − a4c3),

where p2 = (k2 + m2). The 17th-order system reduces to the 9th- and 10th-order

systems when the amplitudes of approriate modes are neglected. For example, we may

obtain the 9th-order system by setting a1, a3, b2, b4, b5, c2, c4, and c5 to zero.
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3.4.3 Implementation

We integrate the above sets of ODEs using MATLAB. The function ‘ode45’ integrates

a given ODE system using a variable time step, 4th/5th order Runge-Kutta method.

Relative and absolute tolerances can be defined which adjust the time step based on

the solution at a given point. That is, the time step is adjusted automatically based on

errors calculated at each step of the simulation, and the tolerances can be changed to

improve the accuracy of the simulation. For our solutions, the default relative (‘RelTol’)

and absolute (‘AbsTol’) tolerances are RelTol = 10−3 and AbsTol = 10−6.

We have developed a MATLAB program which solves the different sets of equations

over a user-selected parameter range, primarily using ode45. In the following section

(§3.5), we initially check that our results are sensible by comparing the growth rate of

the elevator modes with the growth rate obtained using linear theory. Further verifica-

tion is achieved by comparing the results against an analytical model which we derive

in §3.5. We also study the effects of changing the timestep, the simulation tolerance,

and the order of the Runge-Kutta method used to solve the equations.
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3.5 Verification

We derive a set of equations describing an energy balance in each the system, which we

can use to verify our MATLAB code, and to check the accuracy of the MATLAB ode45

solver. We first derive such a model for the simpler Da Costa et al. (1981) system to

ensure that this method is appropriate.

3.5.1 Da Costa et al. System

To recap, the Da Costa et al. system is given by,

a′ = σ[−a+ rT b− rSd],

b′ = −b+ a(1− c),

c′ = $[−c+ ab], (3.7)

d′ = −τd+ a(1− e),

e′ = $[−τe+ ad].

For the LHS of the above equations, we multiply each variable by itself and a constant,

before summing the respective terms together. The result can be reformulated using

the chain rule to get,

Aaa′ +Bbb′ + Ccc′ +Ddd′ + Eee′ = 1
2
d

dt
[Aa2 +Bb2 + Cc2 +Dd2 + Ee2], (3.8)

where A, B, C, D and E are constants. This represents, essentially, a rate of change of

energy in the system and can be evaluated numerically based on the values of variables

at each step in the simulation. The RHS of equations (3.4) becomes:

RHS = (−σAa2 + σrTAab− σrSAad)

+ (−Bb2 +Bab−Babc)

+ (−$Cc2 +$Cabc)

+ (−τDd2 +Dad−Dade)

+ (−τ$Ee2 + τ$Eade).
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We here define the constants A, B, C, D and E in such a way as to obtain a single

equation for the rate of change of energy in the system. That is, we take,

A = − B

σrT
, C = B

$
, D = −γB, E = −γB/$,

where γ = rS/rT , to obtain the result

1
2
d

dt
[− 1
σrT

a2 + b2 + 1
$
c2 − γd2 − γ

$
e2] = 1

rt
a2 − b2 − c2 + τγd2 + τγe2. (3.9)

Evaluating, numerically, the LHS and RHS of (3.9) at each time step in the simulation,

we are able to plot the LHS and RHS against each other, over time. Qualitatively, this

should yield a straight line (i.e. LHS = RHS). A more quantitative approach includes

evaluating an error between the LHS and RHS over time.

We evaluate the time-derivative in the RHS of equation (3.9) using the so-called ‘Forn-

berg Method’. This is a 4th-order finite difference scheme developed by Fornberg (1998)

which assigns different weights to calculate derivatives of any order on both structured

and unstructured grids using a relatively inexpensive algorithm.

Results

We simulated the governing equations of the Da Costa et al. (1981) system using ode45,

taking RelTol = 10−6 and AbsTol = 10−9. Note that these tolerances are stricter than

the MATLAB default of RelTol = 10−3 and AbsTol 10−6. This is because the Da Costa

et al. (1981) system is, computationally, relatively inexpensive to simulate, so we may

reasonably seek more accurate solutions.

The amplitudes of individual modes are plotted over time in Figure 3.5, reproducing

the results found in the original paper by Da Costa et al. (1981). That is, we take

rS = 0.5, rT = 2.0, where rT and rS are scaled thermal and solutal Rayleigh numbers

RT and RS . This gives a value of γ = 4 and thus R−1
ρ = 0.25 in our notation for a

corresponding unbounded system. We see that our results are at least qualitatively

60



3.5 Verification

0 100 200 300 400 500

-0.5

0

0.5
a

0 100 200 300 400 500

-0.2

0

0.2
b

0 100 200 300 400 500

-0.1

0

0.1
c

0 100 200 300 400 500

-0.5

0

0.5
d

0 100 200 300 400 500

t

-0.2

0

0.2
e

Figure 3.5: Variation of modes in the system of Da Costa et al. (1981) corresponding to Figure

2 thereof, wherein γ = 4, rT = 0.5 and rS = 2.0.

similar to those of Figure 2(a) in Da Costa et al. (1981); that is, the frequencies and

amplitudes match in each case. Though not shown here, we reproduced other plots in

the Da Costa et al. (1981) paper showing similarly good agreement.

Over the same period of time presented in Figure 3.5 we may evaluate the LHS and

RHS of equation (3.9) and plot the results against one another, as shown in Figure

(3.6). The straight line indicates that the LHS and RHS are equal, and that the

simulation is accurate. We can quantify this by looking at the relative error,

E = LHS −RHS
RHS

.

Figure (3.7) shows the error associated with the comparison plotted over time. We

observe the average error to be around 10−6, though at certain points in the simulation

the error exceeds 10−3. In order to determine the cause of these peaks, we overlay the

location of each peak on a plot of the LHS over time in Figure (3.8).
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Figure 3.6: Comparison of LHS and RHS of the energy equation (3.9), over time for the Da Costa

et al. (1981) system with rS = 0.5 and rT = 2.0.
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Figure 3.7: Relative error on a logarithmic scale between the LHS and RHS of the energy

equation (3.9) for the Da Costa et al. (1981) system with rs = 0.5 and rT = 2.0.
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Figure 3.8: Locations of error peaks on a plot of the LHS of equation (3.9) vs. time for the

system of Da Costa et al. (1981) with rs = 0.5 and rT = 2.0. Black circles represent the

locations of error spikes.

A shorter period of time is shown here, for clarity. We see that the peaks only oc-

cur when both the LHS and RHS are relatively small, or close to zero. This means

that the peaks in the relative error are likely more representative of the sensitivity of

results when dividing by a small number, and are not especially representative of the

accuracy of the simulation as a whole.

The relative and absolute tolerances employed by the ode45 solver may be adjusted to

study the effects on the error; however, this is later performed extensively in relation

to the higher order systems and is not reproduced here.
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Figure 3.9: Evolution of the streamfunction perturbation in the 9th-order system when γ = 0.9

(R−1
ρ = 1.11), Pr = 7, τ = 0.01 and (k,m) = (0.19, 0.09). We use tolerances of RelTol = 10−6,

AbsTol = 10−9.

3.5.2 Ninth-order system

In order to validate the 9th-order system, we first run an initial simulation at a su-

percritical value of γ = 0.9. That is, we take rT = 1 and rS = R−1
ρ = 1/γ = 1.11

in equations 3.6. This value of γ is taken to ensure that the system is fully unstable,

and that we can investigate the accuracy of the simulation when amplitudes are large.

The initial conditions and wavenumbers are the same as those used in NN; that is:

(k,m) = (0.19, 0.09); a1 = 10−1; a2 = 10−3; {b1, c1} = 10−1.7; and {b2, c2} = 10−2.7.

These values were taken from the DNS simulation as the modes began to emerge at

t = 50. The layering modes are initialised with zero amplitude.

Figure (3.9) shows the evolution of the amplitude of streamfunction modes over a

time-period of t = 1000, with RelTol = 10−6, AbsTol = 10−9. A discussion of the

behaviour of the modes is provided in § 3.6—at present, we are merely interested in

the accuracy of the MATLAB ODE suite in modelling our equations. To summarise
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Figure 3.9, the (1, 0) elevator and (1, 1) cellular modes begin by growing linearly and

interact to excite the initially zero-amplitude (0, 1) layering mode. Once the modes

reach substantially the same amplitude as one another, we see a rapid growth in the

amplitudes of all modes, following which point the (0, 1) layering mode grows and dom-

inates for around 250 non-dimensional units of time, t. The modes are then disrupted

and the cycle repeats. Thus, we can reasonably limit our analysis here to just the first

two ‘peaks’.

The ninth-order system (3.6) was manipulated using the methods described in §3.5

to obtain a pseudo-energy equation for the system:

1
2
d

dt
[k2a2

1 + p

2a
2
2

− σrT b21 −
σrT

2 b22 − σrT b23 − σrT b24

− σrSc2
1 + σrS

2 c2
2 + σrSc

2
3 + σrSc

2
4] = (3.10)

− σk4a2
1 −

σp2

2 a2
2

+ σrTk
2b21 + σrT p

2 b22 + 4σrTm2b23 + σrTm
2b24

− τσrSk2c2
1 −

τσrSp

2 c2
2 − 4τσrSm2c2

3 − τσrSm2c2
4

We can compare the LHS and RHS of equation (3.10) over time to investigate the error

in the system. We can also investigate the effects of lower- and higher-order Runge-

Kutta methods on the results, along with the effect of changing the time step and the

tolerances.

Figure (3.10) shows a comparison of the LHS and RHS of equation (3.10) for the

simulation shown in Figure (3.9), along with a plot of the relative error between the

two calculations. The comparison plot shows a linear relationship between the two sides

of the energy balance equation, indicating good agreement. The error plot shows that

the average error is of O(10−5) during the exponential growth phase. As the solutions

grow in amplitude and the layering mode overtakes at approximately t = 350, the error
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Figure 3.10: Relative error between the LHS and RHS of the energy balance equation (3.10)

in the 9th-order system when γ = 0.9, Pr = 7, τ = 0.01, (k,m) = (0.19, 0.09), RelTol = 10−6,

and AbsTol = 10−9.

jumps to approximately O(10−2). The lowest errors occur during the ‘layering’ stage,

as modal amplitudes reduce and the error drops below 10−8.

Figure (3.11) shows the change in the time-step, δt, throughout the simulation. The

smallest time-step observed is δt = 0.001, which occurs during periods of largest modal

amplitude (and maximum relative error). The time step is unable to reduce below this

value in the variable-order scheme using the prescribed tolerances. Although not shown

here, if we tighten the tolerances to RelTol = 10−9 and AbsTol = 10−12, the minimum

time step is reduced to δt = 0.0005 and increases the accuracy accordingly.

In another example, we more directly study the effects of reducing the time-step, along

with the effect of changing the order of the Runge-Kutta (RK) method, by temporarily

employing a fixed time-step solver. That is, we take a relatively low, fixed time-step of

δt = 0.01 and then reproduce the 9th-order simulation shown in Figure 3.9 using four

different Runge-Kutta schemes of 2nd-order (RK2), 3rd-order (RK3), 4th-order (RK4)

and 5th-order (RK5). Figure (3.12) shows the error between the LHS vs. RHS of the

energy balance equation (3.10) for the RK2, RK3, RK4, and RK5 simulations. We
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Figure 3.11: Change in time step δt over time t in the simulation used to produce Figure 3.9,

when γ = 0.9, Pr = 7, τ = 0.01 and (k,m) = (0.19, 0.09). Results were obtained using RelTol

= 10−6 and AbsTol = 10−9.

see that simulations using RK2 and RK3 are not sufficiently accurate when δt = 0.01,

as both have O(10) errors at the point when the layering mode first dominates (the

‘peak’). However, in the linear phase and the layered phase the errors are still relatively

low. This suggests that the most difficult part to simulate is when the solutions ‘peak’.

Increasing the order from RK4 to RK5 has very little impact on the solution at this

time step. Taking RK4 as a baseline, Figure (3.13) shows the results as the time-step

is reduced from 10−1 to 10−4 using the RK4 method. We see that as the time-step is

reduced, the simulation becomes more accurate, as would be expected. Taking δt = 0.1,

the peaks in the relative error are of the order 104, while the mean error during the

exponential growth phase remains relatively low, at an order of 10−4. At δt = 0.01,

the amplitude of each error peak has reduced, but the errors are still unacceptably

large. At δt = 0.001, the error peaks each drop below 10−4, which we consider appro-

priate for an accurate simulation. Reducing the time-step further has little effect on

the solution, most likely because the lowest error is now approaching machine precision.
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(a) RK2
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(b) RK3
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(c) RK4
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(d) RK5

Figure 3.12: Relative error between the LHS and RHS of equation 3.10 in the 9th-order system

with γ = 0.9, Pr = 7, τ = 0.01, and (k,m) = (0.19, 0.09). The results were obtained using

fixed δt = 0.01 as the order of the Runge-Kutta scheme was increased from 2 to 4.
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(a) δt = 0.1
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(b) δt = 0.01
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(c) δt = 0.001
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(d) δt = 0.0001

Figure 3.13: Relative error over time t in simulations of the 9th-order system, when γ = 0.9,

Pr = 7, τ = 0.01, and (k,m) = (0.19, 0.09). The results were obtained using a 4th-order

Runge-Kutta scheme. δt is reduced from δt = 0.1 to δt = 0.0001.
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We note that the error fluctuations in Figure (3.13d), i.e. when δt = 0.001, are generally

of greater amplitude than when larger time steps are taken. This is likely due to an

increased number of steps, leading to an increased likelihood that a solution will pass

closer to zero on each oscillation.

It is useful to look at both the average error and the maximum error over the en-

tire simulation for numerous values of δt. These are shown in Figure 3.14. The curves

exhibit a comparable reduction in error with reduced time-step size. The average error

begins to level out at δt = 10−2.5, which is consistent with the plots in Figure (3.13),

and indicates that the error approaches that of machine precision at this point. The

error associated with the RK4 method is given by:

E = A(δt4)

where A is a constant. Thus, taking logs of both sides, the error should be,

log10E = log10A+ 4 log10 δt,

and hence the gradient in Figure (3.14) should be 4. We find that, in the straight por-

tion of the ‘average’ curve, the gradient is 3.78, which is relatively near. The difference

may be attributed to the regular peaks observed in the numerical data as the values of

LHS and RHS pass close to zero. More of these peaks exist as the time step is reduced,

and hence the average is slightly higher than it should be at lower time steps.

As a final note on this topic, the simulations for δt = 10−3 take approximately 10

seconds to run. Reducing the time step to δt = 10−4 increases run-time by a factor of

10, as there are 10 times the number of calculation steps. However, we see that the

largest errors are only observed during peaks, and the solutions obtained during the

linear phase and layered phases were seen to be fairly accurate even when using a large

time-step. Therefore, we herein use the more efficient variable time-step, variable order

RK4/5 method for our simulations, and adjust the tolerances accordingly.
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Figure 3.14: Maximum and average error against δt in the 9th-order system, with γ = 0.9,

Pr = 7, τ = 0.01, and (k,m) = (0.19, 0.09). The results were obtained using a 4th-order

Runge-Kutta scheme.

3.5.3 Tenth-order system

The tenth-order system, given by the equations in Section 3.4.2, was manipulated in

the same way as the ninth-order system. The energy equation resulting from the ma-

nipulation was found to be,

1
2
d

dt
[k2a2

1 + p

2a
2
2−σrT b21 −

σrT
2 b22 − σrT b23 − σrT b24 − σrSc2

1 + σrS
2 c2

2 + σrSc
2
3 + σrSc

2
4]

= −σk4a2
1 −

σQ

2 a2
2 + σrTk

2b21 + σrT p

2 b22 + 4σrTm2b23 + σrTm
2b24

− τσrSk2c2
1 −

τσrSp

2 c2
2 − 4− τσrSm2c2

3 − τσrSm2c2
4. (3.11)

We show in Figure (3.15) two examples of the modal evolution of temperature per-

turbation at γ = 0.9, using a) default tolerances of RelTol = 10−6, AbsTol = 10−9,

and b) tighter tolerances of RelTol = 10−9, AbsTol = 10−12. The more accurate simu-

lation, on the right, shows different behaviour following each peak than that on the left.
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(a) RelTol = 10−6, AbsTol = 10−9
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(b) RelTol = 10−9, AbsTol = 10−12

Figure 3.15: Temperature evolution in the 10th-order system with γ = 0.9, Pr = 7, τ = 0.01,

and (k,m) = (0.19, 0.09). The results on the left and right sides were obtained using different

tolerances.

We show in Figure (3.16) plots of the error between LHS and RHS of equation (3.11)

corresponding to the results shown in Figures 3.15a and 3.15b. Firstly, we notice that

the 10th-order system behaves quite differently to the 9th-order system, which will be

discussed further in § 3.6. Secondly, we see that the relative error at certain times

reaches almost 104 when using default tolerances, and exceeds 10−2 even when using

the tighter tolerances. This was initially thought to be because the modal amplitudes

exceed O(104) in this case, whereas in the 9th-order system the amplitudes of modes

reached a maximum of order 103. Indeed, we see that in the 10th-order system the

error increases at each successively larger peak, implying that the errors are higher at

higher amplitudes; however, this phenomenon may be specific to the 10th-order system.

As we discuss further in § 3.6.2, we find that the error is caused by an oscillatory mode

whose frequency appears to increase monotonically with the amplitude of other modes.

Figure (3.17) shows the change in time-step δt for the simulation shown in Figure

3.15b using the stricter tolerances, along with a plot highlighting the change in time

step from t = 600 to t = 800 in more detail. It can be seen that the time step reduces
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(a) RelTol = 10−6, AbsTol = 10−9

0 100 200 300 400 500 600 700 800 900

Time

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g

1
0
 |
E

rr
o
r|

(b) RelTol = 10−9, AbsTol = 10−12

Figure 3.16: Relative error in the 10th-order simulation with γ = 0.9, Pr = 7, τ = 0.01,

and (k,m) = (0.19, 0.09). The results on the left and right sides were obtained using different

tolerances.

0 200 400 600 800 1000

t

0

0.01

0.02

0.03

0.04

0.05

0.06

δ
 t

600 650 700 750 800

t

0

0.5

1

1.5

2

2.5

3

3.5

4

δ
 t

×10
-3

Figure 3.17: Change in time-step in the 10th-order system with γ = 0.9, with γ = 0.9, Pr = 7,

τ = 0.01, and (k,m) = (0.19, 0.09). The results were obtained with RelTol = 10−9 and AbsTol

= 10−12 over the period a) t = 0 to t = 1000, and b) t = 600 to t = 800.
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Figure 3.18: Evolution of the streamfunction modes, ψ′, in the 17th-order system when γ = 0.9,

Pr = 7, τ = 0.01, and (k,m) = (0.19, 0.09). The results were obtained using a fourth-order

Runge Kutta scheme having a constant time-step of δt = 10−3.

until it reaches its limit, given the tolerances. The minimum value is δt = 10−4, and

this value persists for a majority of the simulation. Again, this is likely caused by a

highly oscillatory mode in the system. We find that a different solver, employing a

higher-order Runge-Kutta scheme, is able to overcome this issue, as will be discussed

in § 3.6.2. Thus, the results shown hereinafter for the 10th-order system are obtained

using the higher-order scheme.

3.5.4 Seventeenth-order system

The 17th-order system was simulated using the RK4 method with δt ranging from

10−1 to 10−3, as above. Figure (3.18) shows the modal evolution of the streamfunc-

tion perturbation, ψ′ at δt = 10−3. It can be seen that this solution more closely

resembles the solution to the 9th-order system than it does the 10th-order system. One

difference between the 17th and the 9th-order systems is that, over the same period of

time (0 < t < 1000), we observe two additional ‘peaks’ in the 17th-order system. A
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Figure 3.19: Maximum and average error in the 17th-order system, simulated using γ = 0,

Pr = 7, τ = 0.01, and (k,m) = (0.19, 0.09). over two different ranges of time t.

discussion of the behaviour of this system is reserved for § 3.6. Here, we focus on the

accuracy of the simulations.

The maximum and average relative error, calculated over the range 0 < t < 1000, in the

17th-order system is plotted against δt in Figure 3.19a. Note that 100 points were used

to produce this plot. We see that both the maximum and the average error increase

with increasing time step δt, though the average error fluctuates slightly more than in

the 9th-order system. The gradient of the average error curve is 3.80, which closely

resembles that of the 9th-order system (3.78), suggesting inaccuracies are consistent

across both systems.

Figure 3.19b shows a plot of the maximum and the average error calculated over the

range 0 < t < 200, which represents the exponential growth phase. The maximum error

in this region is generally lower than over the whole range 0 < t < 1000. Furthermore,

the average error curve is straighter and has a gradient of 3.99, which is much closer

to the expected gradient of 4 as calculated on the basis of equation (3.5.2). Hence the

4th/5th-order Runge-Kutta method appears to be highly accurate in the linear phase,

and only marginally less accurate when the solution is non-linear.
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3.6 Evolution of Modes in Truncated Systems

3.6.1 Ninth-Order System

Choice of Parameters

We are now in a position to study the behaviours of modes in each of the 9th-, 10th-

and 17th-order systems in more detail. We start off by simulating the 9th-order system

using oceanic parameters of Pr = 7 and τ = 0.01. We start by taking a value of γ = 0.9

(R−1
ρ = 1.11) and select wavenumbers (k,m) based on the findings of NN. We later

vary these parameters to study the behaviour under different stability characteristics

of the individual modes.

The static basic state is unstable to growing (1, 0) elevator modes for a range of R−1
ρ

defined by equation (2.52) in Chapter 2, which is dependent on k. Figure 2.4 shows

the growth rates of (1, 0) elevator modes (i.e. with m = 0) as a function of k and R−1
ρ .

When k = 0, the system is unstable for:

1 ≤ R−1
ρ ≤ (Pr + 1)/(Pr + τ) = 1.141. (3.12)

This gives a range of γ of 1 ≥ γ ≥ 0.876. NN studied the system at a marginally

supercritical γ = 0.88 (R−1
ρ = 1.136), for which the fastest-growing mode is found to

have (k,m) = (0.187, 0). As discussed in § 3.4, the vertical wavelength of the (0, 2)

layering mode was found to be almost identical to the horizontal wavelength of the

(0, 1) elevator mode. In other words, the authors observed a (0, 1) layering mode (and

(1, 1) cellular mode) with m = k/2.

We initially take γ = 0.9 in our simulations to ensure that the basic state is unstable,

but we later vary this. For each value of γ, we select wavenumbers (k,m) such that

the (1, 0) elevator mode is the fastest-growing elevator mode, and such that m = k/2.

Thus, for γ = 0.9, we get (k,m) = (0.257, 0.129).
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It is pertinent here to discuss the stability of the static basic state as a function of

both k and m. If we take equations (2.42) in Chapter 2 and instead express them as

(ψ, T, S) = (Aψ, AT , AS)ei(kx+mz)eσt, i.e. including non-zero m, we obtain the following

dispersion relation, which should be contrasted with equation (2.44):

(λ0 + (k2 +m2))(λ0 + Pr(k2 +m2))(λ0 + τ(k2 +m2))
(

1 + m2

k2

)

+ Pr(sgn(Tz)(λ0 + τ(k2 +m2)− sgn(Sz)R−1
ρ (λ0 + (k2 +m2))) = 0. (3.13)

Figure 3.20 shows the growth rates of (k,m) modes when γ = 0.9 (R−1
ρ = 1.11), Pr = 7,

and τ = 0.01. Clearly, the fastest-growing modes are (1, 0) elevator modes with m = 0,

but there still exists growing (1, 1) cellular modes with non-zero m. The region of

unstable wavenumbers is limited to a semi-elliptical region that intersects the m = 0

axis. It suffices to say that our choice of (k,m) = (0.257, 0.129) leads to a (1, 1) cellular

mode that grows exponentially with a growth rate that is roughly 80% of the growth

rate of the fastest-growing elevator mode. We later return to this plot when studying

the effects of varying k and m on the results.

Results at γ = 0.9

The absolute magnitudes of the streamfunction ψ′, temperature T ′, salinity S′ and

density ρ′ perturbations are plotted over time for γ = 0.9 (R−1
ρ = 1.11) in Figure

3.21, using the parameters set out above. Figure 3.22 shows the evolution of modes as

shown in Figure 3.21 but without logarithmic scaling and without taking the absolute

magnitude of the modes.

The density perturbation ρ′ was calculated using the following expression derived in

Chapter 2:

ρ′ = −RTT ′ +RSS
′ = −T ′ + S′

γ
.

Therefore, the density is representative of the combined effects of the temperature and

salinity modes.
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Figure 3.20: Growth rates of perturbations to a static basic state in wavenumber (k,m) space

when γ = 0.9 (R−1
ρ = 1.11), Pr = 7 and τ = 0.01. The uncontoured white region represents

stable wavenumbers (i.e. those with negative growth rates).

The modes are initialised using the same values as in NN. That is, the initial state

comprises a dominant (1, 0) elevator mode and a lower-amplitude (1, 1) cellular mode

in each variable. The (0, 1) and (0, 2) layering modes are not present in the initial

state, having an amplitude of zero. These are generated through non-linear interac-

tions as will be described hereinafter. We note, for completeness, that the choice of

initial conditions appears to have little effect on the overall dynamics of the system.

Therefore, we do not vary the initial conditions here. We split the evolution of modes

into the following phases, for ease of explanation: (1) an exponential growth phase

(0 < t < 130); (2) an ‘accelerated’ growth phase (130 < t < 175); (3) a ‘secondary

growth phase’ (175 < t < 275), and (4) a ‘layering’ phase (275 < t < 400). These are

indicated on the streamfunction plot of Figure 3.21. The accelerated growth phase (2)

and the secondary growth phase (3) are separated by a ‘first peak’, while the secondary

growth phase (3) and the layering phase (4) are separated by a ‘second peak’, or ‘burst’.
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1O
2O

3O
4O

Figure 3.21: Modal decomposition of ψ′, T ′, S′ and ρ′ perturbations in the 9th-order system,

when γ = 0.9 (R−1
ρ = 1.11), Pr = 7, τ = 0.01, and (k,m) = (0.257, 0.129).

As noted previously, one of the benefits of employing a low-order model is that we

can attempt to study the specific modal interactions that lead to a behaviour of in-

terest. Thus, below, we describe each of the above phases with reference to the relative

sizes of each of the terms in equations (3.6). The relative sizes are determined numer-

ically using the results of our simulations and are then plotted over time in each phase.

We use the plots to try to explain the behaviour observed in Figures 3.21 and 3.22 in

terms of specific modal interactions.
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Figure 3.22: Unscaled modal decomposition of ψ′, T ′, S′ and ρ′ perturbations in the 9th-order

system between t = 0 and t = 1000 when γ = 0.9 (R−1
ρ = 1.11), Pr = 7, τ = 0.01, and

(k,m) = (0.257, 0.129).

Herein, for brevity and for ease of comparison with equations (3.6), we refer to the

modes based on their respective designations in equations (3.6). That is, we indicate

with a letter the type of mode (ψ = a, T = b and S = c), and with a subscript the

mode’s structure (1 = elevator (1, 0), 2 = cellular (1, 1) and 3 = layering (0, 1) and

(0, 2).). For reference, the 9th-order system of equations is:
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a′1 = −σ
k

(rT b1 − rSc1) −1
2kma2a3 −

σ

k
a1k

3,

a′2 = 1
p

(σ(rTkb2 − rSkc2) +(k3m− km3)a1a3 −
1
p
p2a2,

a′3 = 1
2kma1a2, −σm2a3

b′1 = −ka1 +1
2kma3b2 −b1k2,

b′2 = ka2 +km(a2b3 − a3b1) −pb2, (3.14)

b′3 = −1
2kma2b2 −4b3m2,

c′1 = −ka1 +1
2kma3c2 −τc1k

2,

c′2 = ka2+km(a2c3 − a3c1) −τpc2,

c′3 = −1
2kma2c2 −4τc3m

2,

where p = (k2 +m2). To aid in our discussions in this section, the terms in equations

(3.14) are colour-coded based on their respective roles: the blue terms represent terms

that naturally interact to cause a linear growth of the modes; the red terms are terms

that are generated through nonlinear interactions; and the orange terms are terms that

cause the modes to decay. Note that there are no blue terms in any of the (0, 1) or

(0, 2) layering modes, as these are only generated through nonlinear interactions in the

red terms.

Furthermore, we herein refer to the terms with the subscripts: L, for the ‘linear growth’

terms; N , for the ‘nonlinear’ terms; and D for the ‘decaying’ terms. For example, the

red term in the equation for b′2 is referred to as b2,N , as it is what we have called a

‘nonlinear’ term.

81



3. TRUNCATED MODELS

Exponential Growth Phase

The (1, 0) elevator mode (a1, b1 and c1) is the fastest-growing mode arising from a static

basic state, and initially grows exponentially in each case. The (1, 1) cellular modes

(a2, b2 and c2) similarly grow exponentially, as discussed above, at approximately 80%

of the rate of the (1, 0) elevator modes. The a3 mode is stimulated by the nonlinear

term a3,N which is influenced by a1 and a2. These are both growing modes, and since

a3 � a1a2 initially, the nonlinear term a3,N is much larger than the decaying term a3,D

and a3 begins to grow. This leads to an exponential growth rate for the (0, 1) layering

mode, a3, which is faster than that of each of the (1, 0) elevator and (1, 1) cellular modes.

The (0, 2) layering mode in T (that is, b′3) comprises a nonlinear term, b3,N = −1
2kma2b2.

This is dependent on two (1, 1) cellular modes, and so is also observed in the 5th-order

Veronis (1965) system. Since a2 and b2 are both growing exponentially, b3 similarly

grows exponentially, and faster than both a2 and b2. The (0, 2) layering mode in S

(that is, c3) grows in a similar way, but is instead dependent on a2 and c2.

In summary, in this first phase, the exponentially growing (1, 0) elevator modes and

(1, 1) cellular modes interact to cause the (0, 1) and (0, 2) layering modes to grow at

faster rates than each of the (1, 0) elevator and (1, 1) cellular modes.

Accelerated Growth Phase

The exponential growth phase continues until approximately t = 140 in Figure 3.21.

At this point, the growth rates of the (1, 1) cellular modes (a2, b2, c2) and the (0, 1)

and (0, 2) layering modes (a3, b3, c3) begin to increase. To see why, we first look at the

magnitudes of the terms in equations (3.6) for a′3 and b′2 (equivalently, c′2). These are

shown in Figure 3.23. In each case, the colours of the terms match those in equations

(3.14) above; however, we note that there are actually two separate nonlinear terms

within b2,N = km(a2b3 − a3b1) (and similarly within c2,N ). We therefore colour one of

these terms red and the other purple, for clarity. The resulting growth rate is black.

82



3.6 Evolution of Modes in Truncated Systems

Figure 3.23: Amplitudes of terms in equations (3.6) for the growth rates of the a3 (layering)

and b2 (cellular) modes in the 9th-order system during the ‘accelerated growth’ phase. Here,

γ = 0.9 (R−1
ρ = 1.11), Pr = 7, τ = 0.01, and (k,m) = (0.257, 0.129).

We see that the growth rate, b′2 (shown by the black line in the right-hand plot), is

normally driven by the b2,L term (blue line) during the linear phase, as expected. The

nonlinear term b2,N (red and purple lines) then eventually becomes sufficiently large to

modify this exponential growth. During the accelerated growth phase, we see that a3

and b1 are each larger than a2 and b3, so the −kma3b1 term (red line) in b2,N is larger

than the kma2b3 term (purple line). Indeed, we see from Figure 3.23 that the kma2b3

term (purple) has very little influence on the flow at this stage, as b3 is very small. The

growing b2,N term then interacts with the b2,L term in such a way as to increase the

growth rate of the b2 cellular mode. A similar accelerated growth is observed in c2, due

to the c2,N term.

Though not shown here, we see that the growth rate of the a2 (cellular) mode in-

creases in line with b2 and c2 due to the a2,L = rT b1− rSc2 term. Moreover, although k

and m are small, a1 is sufficiently large to cause the nonlinear a2,N = (k3m−km3)a1a3

term to further enhance the growth of the a2 mode. The increase in a′2 leads to a further

increase in the growth rate of the a3 (layering) mode, and so on. This feedback loop

causes an accelerated growth of all modes except for the (1, 0) elevator modes, which
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are currently large enough in amplitude to continue growing exponentially, unimpeded

by the other modes.

Thus, to summarise, as the a3 (layering) mode grows, it begins to interact with the

already-large a1, b1 and c1 (elevator) modes to increase the growth rates of the a2, b2
and c2 (cellular) modes. Subsequently, via a feedback loop, this further increases the

growth rate of the a3 (layering) mode, and we see an overall accelerated growth of these

modes.

First Peak

At approximately t = 175, the (1, 1) cellular modes and (0, 1) and (0, 2) layering modes

have grown to approximately the same order of magnitude as the (1, 0) elevator modes

in each case. NN only ran their simulations up to this point. It was unclear from the

results presented in the NN study whether either of the (0, 1) and/or (0, 2) layering

modes became the largest modes at this point, and if they did, whether they would

remain dominant thereafter. Notably, in our simulations, the (0, 2) layering modes are

the lowest amplitude modes at this point; however, it may be that the peak observed in

NN actually corresponds to the second peak (the ‘burst’ phase) that we discuss below.

In any case, even though linear theory begins to break down at such large amplitudes,

we consider it is still worth studying the longer-term, non-linear interactions of the

modes.

It is important to note that during these ‘peaked’ stages it becomes much more diffi-

cult to identify the specific interactions in equations (3.6) that lead to the growth and

suppression of specific modes. This is because the modes are all of similar amplitudes

and tend to vary quite wildly during a peak in terms of both amplitude and frequency.

Furthermore, a change in frequency of certain of the modes can correspond to a change

in relative phase of the modes, which heavily influences the behaviour of any related

nonlinear terms, as will be shown below.
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We see in Figure 3.21 that, once the modes reach a similar amplitude, the elevator and

cellular modes reduce in amplitude momentarily before growing once again. Though

not shown here, we see that at t = 170 the nonlinear a1,N term eventually grows to be

comparable in amplitude to the a1,L and a1,D terms. Specifically, at this point, the a2

cellular and a3 layering modes are large enough to disrupt the growth rate of the a1

elevator mode in ψ. The same is true with respect to the b′1 and c′1 elevator modes. The

nonlinear terms in the system affect the frequencies of respective modes just enough

to cause a relative change in phase (at least momentarily) between the modes. For

example, the upper plot of Figure 3.24 shows the modal amplitudes of the a1, b1 and c1

(elevator) modes at this point, while the lower plot shows modal amplitudes of the a2,

b2, and c2 (cellular) modes. The b1 and b2 modes generally track the c1 and c2 modes.

We see in the elevator plots, at around t = 170, that the a1 elevator mode changes

phase with respect to the corresponding b1 and c1 elevator modes. This actually causes

a relative shift in phase of the ‘linear growth’ terms (L) in relation to the ‘decaying’

(D) and ‘nonlinear’ (N) terms in each of the elevator modes, thereby resulting in a

reduction in amplitude of the elevator modes.

This shift in phase does not immediately propagate through the system, so between

t = 175 and t = 185 we see that the growth rate of the a3 (layering) mode tempor-

arily changes sign (not shown here) due to a relative shift in phase between the a1

(elevator) and a2 (cellular) modes in the a3,N term. In the same interval, the relative

phases of the (1, 1) cellular modes in ψ, T and S also change, as shown in the bottom

plot in Figure 3.24, thereby causing a temporary suppression of the cellular modes, too.

Following this transitional period, between t = 170 and t = 190, the elevator modes

(a1, b1, c1) begin to grow exponentially once again. This causes the a3,N = 1
2kma1a2

term to remain relatively large, even when the a2 cellular mode is suppressed. Thus,

the size of the a2,N = (k3m− km3)a1a3 term also remains large, as do the correspond-
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Figure 3.24: Top: Amplitudes of the (1, 0) elevator modes in ψ,T and S; Bottom: Amplitudes

of the (1, 1) cellular modes in ψ,T and S. The results are shown around the ‘first peak’, taking

γ = 0.9 (R−1
ρ = 1.11), Pr = 7, τ = 0.01, and (k,m) = (0.257, 0.129).

ing nonlinear terms b2,N and c2N . The b3 and c3 layering modes have, until now, been

relatively small. At this stage, however, the these modes are large enough to start

influencing the behaviours of the a2, b2 and c2 cellular modes.

Specifically, we see a subtle change in the shapes of the peaks in the lower plot of

Figure 3.24, from t = 200. The change is such that the a2 mode interacts differently

with the b2 and c2 modes. For example, the nonlinear b3,N = −1
2kma2b2 term now

takes on a positive sign for a majority of the time, as a2 and b2 are almost always of

opposite sign. This is shown for the b3 layering mode in Figure 3.25. Prior to the

peak, the amplitude of the b3,N term oscillated around the zero axis. The same thing

happens with respect to the nonlinear c3,N = −1
2kma2c2 term. This results in the b3

and c3 modes essentially ‘jumping off’ the zero-axis and gradually becoming more and

more positive following the first peak.
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Figure 3.25: Amplitudes of terms in the equation for the growth rate of the b3 (layering) mode

in the 9th-order system (3.6) around the ‘first peak’. Here, γ = 0.9 (R−1
ρ = 1.11), Pr = 7,

τ = 0.01, and (k,m) = (0.257, 0.129)

Notably, we still do not see the emergence of a ‘dominant’ layering mode in either ψ′,

T ′, or S′ individually during this peak; however, we do see that immediately following

the peak, the (0, 2) (layering) mode in the density perturbation, ρ′, becomes larger than

the other modes in Figure 3.21. As discussed below, this appears to indicate the start

of layer formation in the system.

Second Growth Phase

The (1, 0) elevator modes continue to grow exponentially following the peak. Mean-

while, the (1, 1) cellular modes are influenced by the now large (0, 1) and (0, 2) modes.

This is perhaps best seen in Figure 3.26, which shows the relative magnitudes of terms

in the equations for a′2 and b′2 in (3.14). The terms in c′2 behave in a similar way to

those in b′2.

We see that growth rate of the b2 cellular mode in T (lower plot) is predominantly

driven by the two nonlinear terms in b2,N , coloured in red and purple, which depend

on the a3 and b3 layering modes, respectively. The b2,L term (blue) is relatively small

87



3. TRUNCATED MODELS

200 210 220 230 240 250 260 270 280

t

-400

-200

0

200

A
m

p
lit

u
d

e

(1,1) Cellular Mode in  (a
2
)

k/p(r
T
 b

2
 - r

S
 c

2
)

(k3m - km3)a
1
a

3

-  p a
2

a
2

200 210 220 230 240 250 260 270 280

t

-150

-100

-50

0

50

100

A
m

p
lit

u
d

e

(1,1) Cellular Mode in T (b
2
)

ka
2

-kma
3
b

1

-pb
2

kma
2
b

3

b
2

Figure 3.26: Amplitudes of terms in the equations for the growth rates of the a2 and b2 (cellular)

modes in the 9th-order system (3.6) during the ‘second growth’ phase. Here, γ = 0.9 (R−1
ρ =

1.11), Pr = 7, τ = 0.01, and (k,m) = (0.257, 0.129).

here. In contrast, the a2,L term (blue) in ψ (upper plot) is of a similar amplitude to

the nonlinear a2,N term (red), but the terms have opposite signs. The result is that

the ‘accelerated growth’ of a2 that we saw previously is now suppressed. This is due

to the due to the (0, 1) and (0, 2) layering modes now largely driving the growth of the

b2 and c2 cellular modes, which causes causes a subsequent change in phase of the a2,L

mode (blue) relative to the a2,N mode (red).

The (0, 2) layering modes, b3 and c3, continue to grow during this phase as the nonlinear

terms b3,N = 1
2kma2b2 and c3,N = 1

2kma2c2 continue to be largely positive.
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Burst Phase

At approximately t = 275 we see a drastic change in the behaviour of modes. Firstly,

we see all modes increase in amplitude almost instantaneously. At the same time, the

frequencies of the modes change. This is a highly nonlinear process. We have very

closely studied the relative amplitudes of the terms in equations (3.14) in an attempt

to understand this process; however, it is not clear exactly which modes are respons-

ible for triggering this change. We do see a momentary change in frequency of the b2
cellular (1, 1) mode shortly prior to the rapid growth. This is caused by a change in the

behaviour of the nonlinear b2,N = km(a2b3 − a3b1) term, which is likely due to having

large layering modes (b3 and a3). A corresponding change in behaviour is observed

in S. It appears that the change in frequency of b2 acts to shift the relative phases

of some of the modes, which subsequently triggers the system to enter the ‘layering’

phase described below. This suggests the large (0, 1) and/or (0, 2) layering modes are

responsible for causing the system to enter the layering phase.

Following the burst phase, the b3 and c3 layering modes remain at substantially the

same amplitudes as they were before the burst phase. This further supports the idea

that the large amplitude (0, 2) layering modes primarily drive this change in behaviour

of all of the modes.

Layering Phase

Following the peak in amplitudes, there exists a period of time between t = 275 and

t = 400 during which all modes gradually reduce in amplitude—some faster than oth-

ers. During this phase, the oscillatory frequencies of all modes are significantly higher

than in the previous phases. Furthermore, the ψ modes oscillate at lower frequencies

than the corresponding T and S modes. To illustrate this, we plot in Figure 3.27 the

magnitudes of terms in the equations for a′1 and b′1 in the 9th-order system (3.14).

We see that the nonlinear terms (red) in each case tend to drive the growth rates
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Figure 3.27: Amplitudes of terms in the equations for the growth rates of the a1 and b1 (elevator)

modes in the 9th-order system (3.6). Here, γ = 0.9 (R−1
ρ = 1.11), Pr = 7, τ = 0.01, and

(k,m) = (0.257, 0.129).

(black), while the ‘linear growth’ terms (blue), which previously caused the elevator

modes to interact and grow in amplitude, now tend to actively dampen the effects of

the nonlinear terms (red), at least in a1. A similar behaviour is observed in the (1, 1)

cellular modes in the system, wherein the modes are largely driven by nonlinear terms

(red/purple) and dampened by the linear terms (blue). The nonlinear terms are large

here due to the dominant (0, 1) and (0, 2) layering modes in the system.

Again, it is difficult here to identify the specific modal interactions that lead to the

behaviour observed. One thing we can conclude is that, as seen in Figures 3.21 and

3.22, the amplitudes of certain modes decay towards fixed values, which appear to be

transient fixed points, while others remain elevated. For example, the a1 elevator mode
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shown in Figure 3.27 moves towards a value determined by the nonlinear a1,N term

(red), and the linear a1,L term (blue), since the decaying term a1,D = −σk2a1 (orange)

is relatively small at this point. We see that these modes remain at a relatively con-

stant amplitude when the linear terms (blue) balance the nonlinear terms (red) in each

case. Another observation is that the b2 cellular and b3 layering modes in T change

sign before reaching their ‘fixed’ points. This is why we observe an initial dip in these

modes even as the same modes in S remain elevated.

Eventually, by roughly t = 400, the amplitudes of all modes have dropped to the

levels observed during the ‘first peak’ and the cycle begins again from this point. Thus,

we see intermittent periods of growth and suppression of all modes.

Comparison with Pure Convection

We here make a comparison of our results with those of Howard and Krishnamurti

(1986), who extended the Lorenz model of convection to include three extra terms to

account for large-scale horizontal motions in the flow. Specifically, in our notation,

the system of Howard and Krishnamurti (1986) employs a (1, 1) cellular mode, a (0, 1)

‘layering’, or ‘horizontal shear’ mode, and a (1, 2) ‘tilting’ mode in streamfunction,

along with a (1, 1) cellular mode, a (0, 2) ‘layering’ mode and a (1, 2) tilting mode in

temperature. Thus, this system is 6th-order.

The system of Howard and Krishnamurti (1986) is not a subset of our 9th-order or

higher systems, as the (1, 2) mode is excluded in our truncation. Nevertheless, we can

draw certain parallels between the two models. In the 6th-order system, the convective

system becomes unstable to steady ‘tilted’ cells. Figure 6 of Howard and Krishnamurti

(1986), which we import here in Figure 3.28, for reference, shows the formation of a

hot plume in the lower part of the region, which rises and tilts from lower left to upper

right. Later, a cold plume forms in the upper part of the region and sinks and tilts

from upper right to lower left. Meanwhile, a leftward-propagating wave forms near the
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bottom of the layer, while a rightward-propagating wave forms near the top of the layer.

Interestingly, we find that the left- and right-propagating waves correspond to the

(0, 1) streamfunction mode in our system, which is essentially a horizontal shear mode,

while tilted plumes form in our system through a combination of the (1, 0) elevator and

(1, 1) cellular modes, modified by the (0, 2) layering mode. For example Figure 3.29

shows contours of the temperature perturbation, T , in our system over one oscillatory

period during the layering phase, starting from t = 278. The parameters have been

selected to permit a direct comparison with Figure 3.28.

We note that in our model the waves and tilted cells propagate and tilt in oppos-

ite directions to those in Howard and Krishnamurti (1986). This is merely a matter

symmetry in the system. Furthermore, in our 9th-order system we do not employ hori-

zontal impermeable boundaries in the vertical direction, so our flow is not distorted in

this region as it is in Howard and Krishnamurti (1986). Nevertheless, we see strikingly

similar results between the two models. Going from left to right in Figure 3.29, we see

the formation of a hot ‘plume’ (yellow) that eventually tilts toward the upper left. We

then see the formation of a cold ‘plume’ (blue) that tilts toward the lower right. Though

not shown here, we see also see corresponding ‘tilted cells’ in the streamfunction per-

turbation that are reminiscent of those in Figure 4(a) of Howard and Krishnamurti

(1986). In our system, this behaviour arises due to the (1, 0) elevator, (1, 1) cellular

and (0, 2) layering modes in T being of a similar amplitude to one another at the start

of the layering phase (and, indeed, for part of the ‘second growth’ stage).

This behaviour suggests that, once layered structures have formed, convective mo-

tions may occur within each layer, as was observed in the full DNS simulations by

NN. In this case, the convective motions appear to correspond to those of Howard

and Krishnamurti (1986), comprising tilted cells and horizontal motions at the up-

per and lower sides of each layer. As discussed above, over time, the (1, 0) elevator
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modes in T become suppressed relative to the (1, 1) cellular and (0, 2) layering modes,

which eventually leads to a mostly vertically banded structure in the domain. That is,

the convective motions appear reduce over time as each layer becomes homogenously

mixed, as in the full system. It may be that, in the presence of higher-order modes,

the layers become more defined and mixing in the cell looks more like that of Howard

and Krishnamurti (1986) in the presence of rigid boundaries. It may be interesting to

extend our system to include the (1, 2) modes, though this is left for future study.

Modal Structure

In terms of the density perturbation, ρ′, as shown in Figure 3.21, we see that the (0, 2)

mode is dominant throughout both the ‘accelerated growth’ phase and the ‘layering’

phase. This implies the formation of density layers, or staircases, immediately following

the first peak. This process can be observed more directly by plotting contours of the

ψ′, T ′, S′ and ρ′ perturbations, calculated by substituting the modal amplitudes from

simulations into the truncated equations,

ψ′ = a1 sin(kx) + a2 cos(kx) sin(mz) + a3 cos(mz),

T ′ = b1 cos(kx) + b2 sin(kx) sin(mz) + b3 sin(2mz),

S′ = c1 cos(kx) + c2 sin(kx) sin(mz) + c3 sin(2mz).

It is also useful to present the ρ′ perturbation as a ‘total density’, ρT , by adding the

density perturbation on to the background basic state using equation (2.37) as derived

in Chapter 2. That is, the scaled total density ρT is given by,

ρT = −(sgn(Tz)−
sgn(Sz)

γ
)z − (T − S

γ
) + C, (3.15)

where C is a constant reference density, C = (α|Tz|δ)−1 and δ is the length scale used

to non-dimensionalise the equations.
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Figure 3.28: Contours of T at successive time intervals within one oscillation period, from

Figure 6 of Howard and Krishnamurti (1986).
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Figure 3.29: Contours of T at successive time intervals within one oscillation period during

the ‘layering’ phase, starting from t = 278. The abscissa shows a horizontal extent (x) of

π/k, while the ordinate shows a vertical extend of πm, to match the plots shown in Figure 6

of Howard and Krishnamurti (1986). Here, γ = 0.9 (R−1
ρ = 1.11), Pr = 7, τ = 0.01, and

(k,m) = (0.257, 0.129).
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Streamfunction Perturbation, ψ′

Figure 3.30: Contour plots of the streamfunction perturbation, ψ′, at different times in the

9th-order system, using γ = 0.9 (R−1
ρ = 1.11), Pr = 7, τ = 0.01, and (k,m) = (0.257, 0.129).

The box is two horizontal and vertical wavelengths in size.

Figures 3.30 to 3.33 show contour plots of the ψ′, T ′ and S′ perturbations, along with

the total density ρT , in the 9th-order system at different times. Comparing the contour

plots with the modal evolution plots shown in Figure 3.21, we see that, at t = 100,

the elevator mode dominates in each of the parameters. The elevator mode manifests

as vertically-oriented bars in ψ′, T ′ and S′ perturbations. The modes are relatively

low amplitude in comparison to the basic state at t = 100, so the total density ρT in

Figure 3.33 is largely representative of the constant background gradient. By t = 200,

the cellular modes in the system reach amplitudes that are approaching those of the

respective elevator modes. The result is a disruption of the elevator modes. Indeed,

at this point the streamfunction perturbation starts to exhibit ‘tilted cell’ behaviour,

as discussed above in relation to the study by Howard and Krishnamurti (1986). The

total density perturbation at this point in time begins to show signs of layering, and in

96



3.6 Evolution of Modes in Truncated Systems

Temperature Perturbation, T ′

Figure 3.31: Contour plots of the temperature perturbation, T ′, at different times in the 9th-

order system, using γ = 0.9 (R−1
ρ = 1.11), Pr = 7, τ = 0.01, and (k,m) = (0.257, 0.129). The

box is two horizontal and vertical wavelengths in size.

particular a ‘stepped’ structure. That is, horizontal bands of relatively constant density

begin to form.

It is illustrative here to look at the total density, ρT , averaged in the x-direction and

plotted against the height of the domain, as shown in Figure 3.34. At t = 100 we clearly

see the background linear density gradient. This begins to give way to a stepped struc-

ture, or ‘density staircase’, at t = 200 and t = 220. Over the period t = 220 to t = 260,

during the ‘accelerated growth phase’, we see the layers become gradually more defined.

At t = 300, the system is in the ‘layering’ phase. This corresponds to a very large

increase in the amplitudes of all modes, and the layering modes begin to dominate in

each case. The total density ρT plot of Figure 3.34 appears to show what we here refer
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Salinity Perturbation, S′

Figure 3.32: Contour plots of the salinity perturbation, S′, at different times in the 9th-order

system, using γ = 0.9 (R−1
ρ = 1.11), Pr = 7, τ = 0.01, and (k,m) = (0.257, 0.129). The box is

two horizontal and vertical wavelengths in size.

to here as ‘over-layering’. For example, the effect of the background density gradient is

no longer distinguishable at t = 300, as the density perturbation at this point is very

large compared to the background gradient. This may, at least in part, be due to the

scaling used to generate Figures 3.33 and3.34. The density perturbation is normalised

with respect to the maximum value of the background density gradient. Specifically,

the density perturbation is divided by 10.87 non-dimensional units before being added

to the background gradient.

Regardless of the scaling used, these figures provide a visual descriptor of how the

growing modes affect the background density gradient. We see that if the density per-

turbation is sufficiently large, the ‘steps’ may grow in amplitude to the point that the

density gradient is, in essence, locally unstable (i.e. heavier fluid overlying a lighter
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Total Density, ρT

Figure 3.33: Contour plots of the total density, ρT , at different times in the 9th-order system,

using γ = 0.9 (R−1
ρ = 1.11), Pr = 7, τ = 0.01, and (k,m) = (0.257, 0.129). The box is two

horizontal and vertical wavelengths in size. The total density is given by adding the density

perturbation ρ′ to the linear background gradient.

fluid at the boundaries between layers). Higher order modes are likely to be generated

before and/or during the layering phase. It is feasible that such higher order modes

may attenuate such over-layering, or permit density overturning that leads to layer

merger events as observed in previous studies (Noguchi and Niino, 2010b).

It was predicted in Radko (2003) that a horizontally-uniform secondary mode in the

form of the γ-instability (as introduced in Chapter 1) may grow and disrupt salt fingers,

at least in a fingering state. It was then suggested in Radko (2013), for example on pages

197–198 with reference to Figure 8.17 thereof, that if the growth of the horizontally-

uniform secondary mode persists, the fluid may develop ‘density reversals’, comprising
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Figure 3.34: The horizontally-averaged total density, ρT , plotted on the abscissa as a function

of height in the domain. This figure shows the evolution of a density ‘staircase’.

top-heavy regions which then overturn to form homogeneous convecting layers. The

density pattern we see in Figure 3.34 may, therefore, be indicative of such ‘density

reversals’.

Finally, we note that the ‘layers’ observed in our model are not as well-defined as

those observed in numerical and physical experiments, nor are they as large-scale. For

example, contrast Figures 3.30 to 3.33 with the results from NN shown in Figure 3.2,

wherein the layers are separated by well-defined diffusive interfaces. Furthermore, lay-

ers observed in the oceans and in experiments tend to be much larger scale (e.g. on

the order of tens to hundreds of metres high in the ocean(Johannessen and Lee, 1974,

Molcard and Tait, 1977)). In contrast, our layers are on the order of the salt finger

width.
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Nevertheless, as described above, Noguchi and Niino (2010b) showed using DNS that

long-lived density layers may not initially form on a large scale. Rather, the first layers

to form in the study were observed to have a height that was comparable to the salt

finger width. The these initial layers merged successively to eventually form the larger-

scale layers typically associated with double-diffusive convection. Thus, the fine-scale

layers observed in our model may be precursors to the larger, longer-lived density layers

typically observed in experiments. If sufficiently high-order modes were to be included

in our model, we may even be able to observe sharper diffusive interfaces between layers,

overturning and homogeneous mixing within layers, or even layer merging events.

Parameter Study

We now briefly study the effect of changing certain parameters on the evolution of

modes in the 9th-order system.

Wavenumber

Starting with the wavenumbers, (k,m), we start by noting that, as shown earlier in

Figure 3.20, when γ = 0.9, the system is unstable for all (k,m) in a semi-elliptical re-

gion between k = 0.4 and m = 0.25. The fastest-growing mode here has k = 0.257. We

previously selected m = k/2 based on the results of NN, which showed that the layers

intially have a depth on the scale of horizontal wavelength of the (1, 0) elevator modes.

The layers are (0, 2) modes, so the (1, 1) cellular modes have a vertical wavelength that

is double the horizontal wavelength of the elevator modes, i.e. k/2.

We have varied the wavenumbers quite widely and arrived at the following conclu-

sions. For any stable value of k, we never see layering. For any values of (k,m) that

give unstable elevator modes and stable cellular modes, we see that the cellular modes

initially reduce in amplitude (if initialised at finite amplitude), but are eventually ex-

cited through nonlinear interactions with the (0, 1) layering mode that is generated.
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Figure 3.35: Evolution of modes in the streamfunction perturbation for different wavenumbers

when γ = 0.9 (R−1
ρ = 1.11), Pr = 7 and τ = 0.01. LEFT: (k,m) = (0.257, 0.05). RIGHT:

(k,m) = (0.257, 0.02).

Peaks are still observed, but the timescales are much longer since the (1, 1) cellular

mode cannot support itself.

If we reduce m towards zero, we observe much wider, longer-lived peaks in the ‘lay-

ering phase’. This is shown for (k,m) = (0.257, 0.05) and (k,m) = (0.257, 0.02) in

Figure 3.35. We only show the streamfunction modes here, for brevity. The other

variables exhibit similarly wide peaks. The fact that the amplitudes remain relatively

time-independent implies the existence of (unstable) fixed points for small m.

If k ≤ m, we do not see any large peaks at all, and the modes in all variables appear

to oscillate around fixed points. This is shown in Figure 3.36 for (k,m) = (0.2, 0.205).

Note that the (1, 1) cellular mode is unstable at these parameters. Increasing m to 0.26,

for example, leads to a stable cellular mode, though the system still eventually evolves

toward the state shown in Figure 3.36. We do see layering in the S and ρ perturbations

in this regime, and this layering is persistent. These values of k and m are unique in

that they change the sign of the a2,N = (k3m − km3) term in the a2 layering mode

shown in equations (3.14). We do not study the effect of this change in detail here.
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Figure 3.36: Evolution of modes in the streamfunction perturbation when γ = 0.9 (R−1
ρ = 1.11),

Pr = 7, τ = 0.01 and (k,m) = (0.2, 0.205).

This would be of interest for future study.

Background Stratification

We now vary the strength of the background state, γ, while selecting k to be the

fastest-growing elevator mode from linear theory, and m to be equal to k/2, as above.

We later discuss the reliability of our solutions as the strength of the background state

is varied. Figure 3.37 shows the evolution of modes in the ψ′, T ′, S′ and ρ′ perturba-

tions when γ = 0.88 (R−1
ρ = 1.136), which represents a marginally unstable state close

to the critical value of γ = 0.876 (R−1
ρ = 1.141). Here, the fastest-growing mode has
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(k,m) = (0.187, 0.09). This regime was studied by NN.
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Figure 3.37: Evolution of modes in the 9th-order system when γ = 0.88 (R−1
ρ = 1.11), Pr = 7,

τ = 0.01, and (k,m) = (0.187, 0.09).

We see that the modes here grow slower than those with γ = 0.9, and that some of

the ‘peaks’ are larger than others. Specifically, we see a repeating pattern of large

peaks (corresponding to the ‘layering’ phase) interspersed with a number of of smaller

peaks (each corresponding to the ‘second growth’ phase). The (0, 2) layering modes

in particular grow more slowly here than when γ = 0.9, likely because of the reduced

growth rates of the (1, 0) elevator and (1, 1) cellular modes. This means that the (0, 2)

modes are not large enough during the smaller peaks to cause the system to enter the

‘layering’ phase. Only when the (0, 2) layering modes are large enough in T and S,

relative to the (1, 1) cellular modes specifically, does the system enter the ‘layering’

phase. This is consistent with our findings when γ = 0.9. Nevertheless, in this case,
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Figure 3.38: Evolution of modes in the 9th-order system when γ = 0.99, (R−1
ρ = 1.01), Pr = 7,

τ = 0.01, and (k,m) = (0.232, 0.116)

intermittent layering is still observed during the smaller peaks, as the (0, 2) layering

mode remains elevated in S and ρ).

Figure 3.38 shows the results when γ = 0.99 (R−1
ρ = 1.01) , which is close to the value

of γ = R−1
ρ = 1 at which the basic state becomes unstably stratified. In this case, the

initial growth of the modes is more rapid than when γ = 0.9. The long-term behaviour

of the modes is similar to that observed when γ = 0.9 in that a series of peaks is formed,

each peak corresponding to a temporary layered state. The peaks are more frequent

in the present example and are much more variable in size, indicating that a stronger

basic state may produce more chaotic mixing.
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It is informative to note that we see a layered state with all unstable values of γ.

We also note here that the long-term behaviour of the modes is somewhat unaffected

by the choice of initial conditions. By way of example, Figure A.9 shows the results

at γ = 0.9 when the (1, 1) cellular mode is initialised with an amplitude of 10−20 in

each perturbation. We see that layering modes are still generated in this system, and

that once the (0, 2) layering modes increase in amplitude to a sufficient extent, modal

interactions result in a rapid increase in amplitude of the cellular and layering modes,

as observed previously. This growth is arrested when the modes reach the same amp-

litude as that of the elevator mode. Thereafter, the long-term behaviour is the same as

that observed when using the initial conditions of NN. Indeed, regardless of the initial

state taken (for instance, taking larger cellular modes than elevator modes), the system

tends towards a state exhibiting intermittent layering, as shown and described above.

Summary of the Ninth-Order System Results

The ninth-order system is able to successfully reproduce results obtained by NN, which

were obtained using a higher-order system of minimum order 12. We see the (1, 0)

elevator and (1, 1) cellular modes initially grow exponentially and interact to generate,

from an initial amplitude of zero, a (0, 1) layering mode in ψ′ and (0, 2) layering modes

in T and S. The layering modes are observed to grow until they are of a comparable

amplitude to the cellular modes, at which point the cellular and layering modes rapidly

increase in amplitude. Following the peak in amplitudes, certain modes are suppressed

while the layering modes dominate in each perturbation. This leads to a layered state

for a period of time, as indicated by the dominant density perturbation (ρ′) modes over

the same period of time.

We have shown here that including (0, 2) layering modes in ψ′ and (0, 1) layering modes

in T ′ and S′, as in NN, is not vital for initiating layer formation via a growth and even-

tual dominance of layering modes in the system. It was suggested by NN that layering

106



3.6 Evolution of Modes in Truncated Systems

modes overtake and eventually dominate in the system, though it was unclear from

their results whether the layering modes would continue to dominate thereafter. Thus,

it was unclear, following the instantaneous layered state, whether the layering mode

would be immediately disrupted, continue to grow, or otherwise remain noticeably el-

evated. Our low-order system not only reproduces the results of NN, but also shows

that the layered state may not be so easily disrupted once it is formed, and the layered

state persists for a substantial period of time. Once a layered state is disrupted, the

layering modes are stimulated once again by interactions between growing elevator and

cellular modes, which leads to intermittent layering over time.

Our study has shown how the introduction of exponentially-growing elevator modes

to the 5th-order system of Veronis (1965) leads to a generation and growth of other

modes in the system. The (1, 0) (elevator) and (1, 1) (cellular) modes in ψ first interact

to generate the (0, 1) layering mode, a3. This is essentially a shear mode. Growth of

this mode causes the cellular modes to grow faster. In turn, a growth in all of the cellu-

lar modes results in a growth of the (0, 2) mode, which eventually dominates. Thus, it

appears that horizontal shear, at least at low amplitudes, has a reinforcing effect on the

cellular motions, but eventually disrupts the elevator modes. Indeed, it was shown by

Radko (2016) and subsequently by Brown and Radko (2019) that a static, diffusively

stable basic state can become unstable to horizontal shear. Thus, the elevator modes

here appear to be important merely in that they generate the horizontal shear mode,

which then subsequently drives layer formation.

The ninth-order system appears to exhibit a local ‘overturning’ of density at step in-

terfaces during a layered state. This was not observed in the 12-th order system of

NN. This overturning may be representative of the initiation of mixing within a layer,

or it may be indicative of the start of a layer-merging event. Furthermore, we saw

in Figure 3.29 that, during the ‘layering’ phase, ‘tilted cells’ may be formed between

regions of horizontal shear. The regions of shear essentially define layer boundaries,
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and within these layers we observe convective plumes that, in a higher-order system,

would act to mix the layers. That is, it may be that the bounded region studied by

Howard and Krishnamurti (1986) (and, indeed, by Veronis (1965) and Da Costa et al.

(1981)) represents a single, long-lived diffusive layer. In which case, it would not be

surprising for our system to behave in a similar way to the Howard and Krishnamurti

(1986) system within each layer, once the layers have formed.

The scale of the layers we observe is small compared to that of layers observed in

the ocean; however, simulations performed by Noguchi and Niino (2010b) suggest that

fine-scale layers do emerge from a seemingly chaotic basic state, and that the layers

merge to eventually form larger-scale layers. The presence of the locally unstable dens-

ity gradients in our simulations is suggestive of further development of the fine-scale

density staircase.

Increasing the strength of the linear background density gradient state, γ causes the

peaks to occur sooner and more frequently, while as γ → 1, the system appears to

enter an increasingly chaotic state. It could be that higher-order modes that we have

neglected in our truncation become more important at higher values of γ. It is very

important to note here that as γ is increased towards 1 (or as R−1
ρ is reduced towards

1), which is the points at which the global density gradient becomes top-heavy, the

solutions most likely become increasingly unreliable as a model of double-diffusive con-

vection. The Lorenz (1963) system, for example, fails as a model of convection well

before the onset of chaos. However, as γ is reduced (or R−1
ρ is increased) towards the

critical point for marginal stability, the results of low-order models appear to be relat-

ively reliable. Noguchi and Niino (2010a), for example, showed that their 12th-order

system quite accurately reproduced the results of the full direct numerical simulations,

at least until the modes reach large amplitudes. Indeed, at larger modal amplitudes,

one might expect a heavily truncated system to be less reliable; however, we have shown

here that our low-order model is able to capture convective ‘tilted cell’ motions within
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individual layers during the ‘layering’ phase. These motions have been observed in

experiments of pure convection within a bounded region (Howard and Krishnamurti,

1986), while convective motions within layers have been observed in numerical exper-

iments of double-diffusive convection (Noguchi and Niino, 2010a, Rosenblum et al.,

2011). Thus, our relatively simple model appears surprisingly capable of capturing

seemingly more complex behaviours.

The potency of our low-order model is suggestive that only a few modes are respons-

ible for the initial formation of layers. That is, the initial formation of fine-scale layers

appears to depend on relatively few modes; once formed, a different mechanism, such

as the γ instability, may take over, causing the layers to evolve and eventually form

long-lived density staircases.

3.6.2 Tenth-order system

It was noted briefly in § 3.5.3, that the modes in the ‘aligned’ tenth-order system be-

have differently to those in the ‘misaligned’ ninth-order system. Figure 3.39 shows the

evolution of modes in the tenth-order system over a period of t = 1500.

The evolution comprises an exponential growth phase wherein the elevator and cellular

modes grow in amplitude and interact with one another to generate layering modes

in the T and S perturbations, as expected and as is consistent with the ninth-order

system. We note that there no layering modes are generated in the ψ perturbation,

and thus there is no horizontal shear in the system, except in the form of horizontally

moving fluid due to the presence of cellular modes.

As the modes reach a similar amplitude to one another, there appears to be a burst

of energy as each of the modes rapidly grows in amplitude. Again, this is somewhat

consistent with the ninth-order system. This is followed by a sudden drop in amplitude
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Figure 3.39: Evolution of modes in the 10th-order system with Simulated using γ = 0.9, Pr = 7,

τ = 0.01, (k,m) = (0.187, 0.09), RelTol = 10−6 and AbsTol = 10−9.

of all modes except for the (0, 2) layering mode in the salinity perturbation S (and thus

in the density perturbation ρ′). The elevator mode then begins to grow exponentially

once again in each perturbation, while the cellular and (0, 1) layering modes continue

to decay. This may be due to an incompatibility between the aligned elevator (1, 0)

and cellular (1, 1) modes in the streamfunction perturbation.

By way of example, Figure 3.40 shows a schematic of modes in the streamfunction
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perturbation ψ′ in the misaligned, 9th-order system (left) and the aligned, 10th-order

system (right). The schematic shows coloured contours of streamfunction perturbation,

along with arrows indicating the direction of fluid flow between streamlines of constant

ψ′. The top row shows the cellular (1, 1) modes alone, in each case, in the absence of

elevator modes.

In the second row, low-amplitude elevator modes are introduced. The misaligned elev-

ator modes in the schematic on the left hand side of figure 3.40, i.e. in the 9th-order

system, cause fluid to flow in general alignment with rows of cells. The aligned elev-

ator modes in the in the aligned, 10th-order system, result in a fluid flowing generally

in-between the rows of cells.

In the third row, we show how the cellular modes begin to influence the elevator modes

(and vice-versa). In the misaligned 9th-order system on the left, the elevator modes

are able to follow the contours of the cellular modes and become wavy in structure, as

we have seen already in § 3.6.1. In the aligned 10th-order system on the right, however,

the elevator modes move with the flow adjacent to a first set of cells and then against

flow adjacent to a second set of cells which are located in-between the cells in the first

set in the vertical direction. The red arrows each show a direction of local flow which is

opposite to that of a respective elevator mode at that point. Thus, the elevator modes

tend to reinforce and ‘stretch’ certain cells, and to suppress and ‘compress’ certain

other cells.

The fourth row of Figure 3.40 shows the approximate resulting structure When the

elevator and cellular modes are of comparable amplitudes. It appears that misaligned

elevator and cellular modes, as in the 9th-order system, may readily coexist, and may

naturally reinforce one another for a period of time. Indeed, in the 9th-order system,

as shown in § 3.6.1, the (0, 1) layering mode in ψ′ eventually grows, disrupts, and con-

tributes to the suppression of the ψ′ elevator mode. In the 10th-order system, it may
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Figure 3.40: Schematic diagrams showing interactions of misaligned (left) and aligned (right)

elevator and cellular modes in the streamfunction perturbation ψ′. The arrows show the direc-

tion of fluid flow along streamlines of constant ψ′. The aligned modes correspond to those in

the 9th-order system, while the misaligned modes correspond to those in the 10th-order system.
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be that the aligned cellular and elevator modes are incompatible with one another.

That is, it may be that the cellular modes grow to disrupt the structure of the elevator

modes, and vice-versa, due to locally opposing flows in certain regions.

As we see later when studying the 17th-order system—which includes both aligned

and misaligned modes—such a configuration of elevator and cellular modes may not

naturally arise. That is, it may be that forcing the elevator and cellular modes to be

aligned, as in the 10th-order system, may produce interactions which are not repres-

entative of those that would naturally occur in double-diffusive convection. Regardless,

we find it insightful to study the modal interactions and layering phenomena in the

10th-order system.

Returning to Figure 3.39, it appears that, following the first ‘peak’ of modes, all modes

except for the (0, 2) salinity rapidly drop in amplitude. The ψ′ elevator mode is the

first mode to begin growing once again. This is likely because there is no (0, 1) lay-

ering mode in ψ′, and so the elevator may grow relatively unimpeded. In contrast,

in the 9th-order system, the elevator mode appears to be suppressed by the layering

and cellular modes, and is unable to grow. The growth of the ψ′ elevator mode in the

10th-order system corresponds to a decay of the cellular mode in each of the ψ′, T ′,

and S′ perturbations. The (0, 1) layering modes in T ′ and S′ almost directly track the

respective cellular modes, indicating that these modes are closely linked. Eventually,

the (0, 1) layering modes and cellular modes begin to grow once again, and the growth

is faster than the linear growth rate of the cellular modes. This implies that certain

interactions lead to the re-excitement of the cellular and layering modes and lead to

another rapid-growth phase. The rapid growth phase is followed by a peak and the

cycle repeats, as in the 9th-order system.

In-between the peaked states, the (0, 2) layering mode in salinity remains dominant,

appearing to gradually decrease in amplitude. This leads to the (0, 2) layering mode
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remaining dominant in the density ρ′ perturbation. Hence, even though the configur-

ation of aligned cellular and elevator modes may not be a natural state of the system,

the configuration still leads to intermittent ‘layering’ phenomena.

Stability of Simulations of the Tenth-order System

Investigations of the 10th-order system highlighted a number of issues with the solver.

Firstly, the variable-time-step solver persistently selected a small time step through-

out the simulation, meaning simulations would take much longer than those of the

9th- and 17th-order systems. Furthermore, simulations would regularly crash at large

modal amplitudes, likely because the solver could not find a solution without reducing

the time step below the specified tolerance.

In an attempt to gain a deeper understanding of these issues, we studied the behaviour

of individual modes both during the exponential growth phase, and during peaks. Fig-

ure 3.41 shows the evolution of modes in the 10th-order system without a logarithmic

scaling, and without taking an absolute magnitude of the modes. The initial expo-

nential growth of elevator modes is clearly visible, as is the eventual dominance of the

(0, 2) layering mode in S′ and ρ′ (and, indeed, to some extent in T ′). Each subsequent

peak is larger in amplitude than the previous peak, though as seen in Figure 3.39 the

peaks eventually appear to reach an upper limit.

Figure 3.42 shows a close-up view of a section of the streamfunction perturbation ψ′

plot between around t = 435 to t = 470. In this region, the amplitudes of the (1, 0)

elevator modes actually reach (non-dimensional) amplitudes of approximately 5000;

hence, the vertical blue lines in Figure 3.42 show the elevator modes only as they pass

through zero. Strikingly, we see here that the cellular (1, 1) mode is highly oscillatory

compared to the elevator mode, and that both the amplitude of and frequency of the

oscillations is related to the amplitude of the elevator mode.
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Figure 3.41: Evolution of modes in the tenth-order system with γ = 0.9, Pr = 7, τ = 0.01,

(k,m) = (0.187, 0.09), RelTol = 10−6 and AbsTol = 10−9.

We see that as the elevator modes reach maximum amplitude (i.e. in between the

vertical lines of Figure 3.42), the frequency of the cellular mode increases and the amp-

litude decreases. The amplitudes of the cellular modes tend to increase again when the

elevator mode is close to zero, while the frequency decreases. The opposite is observed

in the Temperature T ′ and Salinity S perturbations. Figure 3.43 shows the temperat-

ure perturbation in a similar region in which we see that, as well as the cellular (1, 1)

and (0, 1) layering modes tracking one another, the frequency of the modes increases

as the elevator mode passes through zero. This may be because the b1 elevator mode

is out-of-phase with the a1 elevator mode, and the high-frequency motions that we

observe are influenced more by the amplitude of the a1 elevator mode.
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Figure 3.42: Evolution of modes in the streamfunction ψ′ perturbation in the 10th-order system

between t = 435 and t = 470, showing highly oscillatory cellular modes. Simulated using

γ = 0.9, Pr = 7, τ = 0.01, (k,m) = (0.187, 0.09), RelTol = 10−6 and AbsTol = 10−9.

In order to further study the link between the amplitude of the elevator mode and and

the frequency of the cellular mode, we here look at the number of times the cellular

mode in ψ passes through zero in-between each ‘cycle’ of the elevator mode. By way

of example, Figure 3.44 shows the x-axis intersects (corresponding to zero-crossings) of

the elevator mode (top) and the cellular mode (bottom), extracted from our results.

For each sequential pair of zero-crossings in the elevator mode, we obtain the number

of zero-crossings of the cellular mode between the pair of crossings, and the average

value of t between the pair of crossings. This allows us to plot the number of crossings

of the cellular mode against a respective value of t, thereby producing a representation

of the change in frequency of the cellular mode over time. Figure 3.45 shows such a

plot between t = 0 and t = 700 (top), along with a plot of the maximum value of the

elevator mode at the same points in time (bottom), for comparison.
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Figure 3.43: Evolution of modes in the temperature T ′ perturbation in the 10th-order system

between t = 424 and t = 450, showing highly oscillatory cellular and layering modes. Simulated

using γ = 0.9, Pr = 7, τ = 0.01, (k,m) = (0.187, 0.09), RelTol = 10−6 and AbsTol = 10−9.

Qualitatively, it is clear that the frequency (represented by a number of zero-crossings)

of the (1, 1) cellular mode in ψ′ is directly proportional to the amplitude of the (1, 1)

elevator mode in ψ′. This behaviour is not observed in either the 9th- or 17th-order

system, and so this phenomenon appears to be a symptom of forcing the elevator and

cellular modes to be aligned in the x-direction.

We conclude by noting that the highest frequencies were observed when the amp-

litudes of modes became large, such as during peaks. When simulating the system

using ode45, time to simulate is large due to the small time steps required to resolve

the high-frequency oscillations. The simulations regularly crash when the modes reach

a significant amplitude, regardless of the value of γ chosen. It is therefore difficult to

simulate the 10th-order system over large periods of t.
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Figure 3.44: Evolution of modes in the streamfunction ψ′ perturbation in the 10th-order system,

highlighting points where the elevator (top) and cellular modes (bottom) pass through zero.

Simulated using γ = 0.9, RelTol = 10−6, AbsTol = 10−9.
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Figure 3.45: Top: Number of zero-crossings (‘nPoints’) of the cellular mode between a pair of

zero-crossings of an elevator mode in the 10th-order system as a function of time, t. Bottom:

Maxmimum value of the ψ′ elevator mode in the 10th-order system over time. Results shown

between t = 0 and t = 700, and simulated using γ = 0.9, RelTol = 10−6, AbsTol = 10−9.
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We instead simulate the system using a different solver, ode113, which is a variable

time-step and variable order solver. The solver uses an Adams-Bashforth-Moulton

PECE solver of orders 1 to 13, meaning that the system is solved using up to a 13th-

order scheme, depending on the error at each time step. The ode113 solver is thought

to be more efficient than the ode45 solver at stringent tolerances or if the ODE function

is particularly expensive to evaluate, as is the case here due to the high-frequency (1, 1)

cellular modes (Shampine and Gordon, 1975, Shampine and Reichelt, 1997). We see

that ode113 is readily able to solve the 10th-order system, even when the amplitudes

are large and frequencies are high. This allows us to study the evolution of modes

over larger periods of time, for instance to see whether the sequentially larger ‘peaks’

eventually reach an upper limit. Using ode45, only two or three peaks may be ob-

served. The results presented in this section were all obtained using ode113, due to

the unsuitability of the ode45 solver.

Summary of the Tenth-order System Results

The particular alignment of elevator and cellular modes that leads to the 10th-order

system appears to result in a unique evolution of modes over time. The cellular mode

is observed to oscillate with a frequency that is linked to the instantaneous amplitude

of the elevator modes. This leads to simulations which are particularly difficult to solve

using low-order schemes when modal amplitudes are large. As shown in the schematic

of Figure 3.40, the elevator modes, particularly when strong, tend to cause localised

flow reversals in cells of the cellular mode, thereby disrupting the cellular mode. The

cellular mode may then regrow with cells rotating in the opposite direction. The re-

peated suppression of cellular modes may lead to the high frequency oscillations of

cellular modes observed in the 10th-order system.

We see in the following section that no such high-frequency mode is observed in the

17th-order system, and that the 17th-order system behaves more like the 9th-order

system than the 10th-order system. This is suggestive that it is not a preferred con-
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figuration of the system to have elevator and cellular modes which are ‘aligned’. The

dependency of the frequency of the cellular mode on the amplitude of the elevator

mode raises questions with regard to the stability of the elevator modes themselves. In

Chapter 5, we study the secondary modes arising from a basic state consisting entirely

of oscillatory elevator modes. We ask whether the secondary modes generated are os-

cillatory, and whether the frequency of the oscillations are dependent on the amplitude

of the elevator mode. In summary, we find that the frequency of the secondary modes

are not dependent on the amplitude of the elevator mode. This further reinforces the

idea that the alignment of modes in the 10th-order system is not a preferred state.

3.6.3 Seventeenth-order system

Including both aligned and misaligned elevator and cellular modes in the truncated

model leads to a 17th-order system. The 17th-order system comprises a (0, 2) layering

mode in T ′ and S′, as is the case in each of the 9th- and 10th-order systems. The

17th-order system further comprises a (0, 1) layering mode in ψ′, generated from the

misaligned sets of modes, and a (0, 1) layering mode in T ′ and S′, generated from the

aligned sets of modes.

Figure 3.46 shows the evolution of modes in the 17th-order system when γ = 0.9,

for ease of comparison with the results from the lower-order systems discussed herein-

before. The amplitudes of the elevator modes are represented as a sum of squares of

the individual elevator modes, and similarly for the cellular modes. For example, the

amplitudes of the elevator and cellular modes in the streamfunction perturbation, ψ′e
and ψ′c say, are taken to be

ψ′e =
√
a2

1 + a2
2 and ψ′c =

√
a2

3 + a2
4. (3.16)

The modes in Figure 3.46 are therefore representative of the combined effect of aligned

and misaligned modes. We see that, as with the lower-order models, the elevator and

cellular modes interact in the 17th-order system to generate layering modes from zero
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Figure 3.46: Evolution of modes in the ψ′, T ′, S′ and ρ′ perturbations in the 17th-order system

when γ = 0.9.

amplitude. These modes grow faster than the elevator and cellular modes and eventu-

ally overtake, leading to ‘peaks’ and intermittent layering reminiscent of the behaviour

of modes in the 9th-order system.

The behaviour of modes differs between the two systems in that the peaks in the

17th-order system are more frequent. It appears that the layering modes decay more

quickly in the layered states in the 17th-order system than in the 9th-order system. Fur-

thermore, in-between the peaks in the ψ′ perturbation, there is a period during which

the elevator mode grows in amplitude and the cellular mode decreases in amplitude.
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This is also seen in the 9th-order system to some extent during the accelerated growth

phase. 0th-order system and is not observed in the 9th-order system. Thus, it appears

that the ‘aligned’ sets of modes, although seemingly incompatible, still interact with

one another during the simulation to generate and influence the (0, 1) layering modes

in T and S.

Thus, it appears that the modes in the 17th-order system behave most similarly to

those in the ‘misaligned’ 9th-order system, and the ‘aligned’ modes merely influence

the periodicity of the layered state. Furthermore, we do not observe a high-frequency

cellular mode whose frequency is dependent on the amplitude of an elevator mode, as

in the 10th-order system. We conclude that the modes in the 10th-order system alone

are unrepresentative of those arising in the early stages of double-diffusive convection.

The modes in the 9th-order system, on the other hand, appear to be most influential

in the initial formation of a layered state.

Reducing the 17th-order System

The 17th-order system reduces exactly to 9th and 10th order system when appropriate

modes are set to zero, both in the system of ODEs and in the simulations. That is,

initialising only the ‘misaligned’ elevator and cellular modes in the 17th-order system

at non-zero amplitude, and initialising the ‘aligned’ modes at zero amplitude, the mis-

aligned modes never grow. In this way, the associated layering modes never grow, and

the system behaves exactly as in the aligned 9th-order system.

If we take such a reduced seventeenth-order system and perturb, at low amplitude, a

single elevator mode that is horizontally aligned with the existing cellular mode, then

the elevator mode grows and eventually generates, through nonlinear interactions, the

remaining modes which are present in the 17th-order system. Figures 3.47 and 3.48

show, over different time periods, the evolution of modes when the 17th-order system is
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Figure 3.47: Evolution of modes between t = 0 and t = 2000 in the 17th-order system which

has been reduced to a 9th-order system by appropriate initialisation of modes, when γ = 0.9.

An ‘aligned’ elevator mode in ψ′ has been initialised as a small-amplitude perturbation.

reduced to 9th-order, and wherein one of the aligned elevator modes in ψ′ is initialised

as a small-amplitude perturbation, i.e. a1 � 1.

Initially, we see that the modes evolve as in the 9th-order system, except that a low-

amplitude (0, 1) cellular mode exists and is growing over time. The other low-order

modes which are generated are not visible in these Figures, as the total amplitudes of

cellular and elevator modes are shown as the root sums of squares of respective modal

amplitudes, for clarity.
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Figure 3.48: Evolution of modes between t = 2000 and t = 4000 in the 17th-order system which

has been reduced to a 9th-order system by appropriate initialisation of modes, when γ = 0.9.

An ‘aligned’ elevator mode in ψ′ was initialised as a small-amplitude perturbation, and has

generated other modes which have grown to eventually constitute the 17th-order system.

The (0, 1) layering mode in T ′ and S′ is excited from zero-amplitude by interactions

between the low-amplitude elevator mode a1 and a corresponding horizontally-aligned

cellular mode, which already exists, to generate a (0, 1) layering mode in T and S.

This layering mode was observed to form in the aligned 10th-order system. The lay-

ering mode grows over time until it reaches the same amplitude as the other modes at

around t = 2000. Following the peak at t = 2000, all modes which were generated via

the perturbed elevator mode reach a similar amplitude, and the system thereafter be-

haves as in the full 17th-order system. This shows that, although the 9th-order system
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is able to reproduce layering phenomena on its own, the system is sensitive to small

perturbations towards the 17th-order system. Regardless, the 17th-order system only

marginally differs from the 9th-order system in terms of long-term behaviour, and so

the former serves as a suitable, lower-order approximation to the full system, unlike

the 10th-order system.

126



3.7 Equilibrium Points

3.7 Equilibrium Points

The system studied by Veronis (1965) (and subsequently by Da Costa et al. (1981))

was found to have time-independent solutions. The 9th-, 10th- and 17th-order systems

each reduce to the 5th-order Veronis system in the absence of elevator modes (i.e.

a1, b1, c1 = 0); therefore, we would expect the equilibrium points of the Veronis system

to be present in each of our models. We here determine the equilibrium points in

the Veronis system, before working out the stabilities of these points in the 9th-order

system.

3.7.1 Veronis System

If we take zero-amplitude elevator modes, i.e. a1 = b1 = c1 = 0 in the 9th-order system

(3.6), we see that a3 = −σm2a3, which is a decaying mode, and

a′2 = σ

p
(rTkb2 − rSkc2 − p2a2)

b′2 = kma2b3 − pb2 + ka2,

b′3 = −4b3m2 − 1
2kma2b2, (3.17)

c′2 = kma2c3 − τpc2 + ka2,

c′3 = −4τc3m
2 − 1

2kma2c2.

This 5th-order system of equations is equivalent to that studied by Veronis (1965) un-

der the transformation a2 → −a2, with k = πα and m = π (cf. equations (31) of

Veronis (1965)). The transformation a2 → −a2 arises due to the convention adopted

by Veronis (1965) in equation (10), which leads to ψ = −ψ in our notation.

Equations (3.17) similarly match equations (11) of Da Costa et al. (1981) under the

following transformations:
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a2(t) = 2
k

(2p
1
2 )a(t∗),

b2(t) = 2
(2
p

) 1
2
b(t∗), b3(t) = − 1

m
c(t∗), (3.18)

c2(t) = 2
(2
p

) 1
2
d(t∗), c3(t) = − 1

m
e(t∗),

with k = π
λ , m = π and t∗ = pt. See equations (8)–(10) of Da Costa et al. (1981).

We determine steady-state solutions to equations (3.17) by first setting the time deriv-

atives equal to zero, i.e. a′2 = b′2 = b′3 = c′2 = c′3 = 0. We then rearrange the equations

to find

b2 = ka2

p+ k2

8 a
2
2
, b3 = − k

8ma2b2,

c2 = ka2

τp+ k2

8τ a
2
2
, c3 = − k

8τma2c2, (3.19)

and hence,

(a2
2)2 + 8a2

2

(
p

k2 (τ2 + 1) + 1
p

(τrS − rT )
)

+ 64
(
τ2p2

k4 + 1
pk2 (τrS − τ2rT )

)
= 0, (3.20)

which is a quadratic equation in a2
2. This is equivalent to equation (35) in Veronis

(1965) and equation (21) in Da Costa et al. (1981) under the transformations set out

above. Thus, for given values of rT , rS , k and m, we can find equilibrium values of

a2 from equation (3.20), and thereby also equilibrium values of b2, b3, c2 and c3 from

equations (3.19). In this way, we are able to identify the equilibrium points of the

Veronis (1965) system that exist in our higher-order systems, and also determine their

respective stabilities.

3.7.2 Stability of Equilibrium Points

To determine the stability of the equilibrium points, we determine the (complex) ei-

genvalues of the matrix M = ∂x′
∂x , where x = {a2, b2, b3, c2, c3}, i.e.:

128



3.7 Equilibrium Points

M =



−σp σkrT
p 0 −σkrS

p 0

kmb3 + k −p kma2 0 0

−kmb2
2 −kma2

2 −4m2 0 0

kmc3 + k 0 0 −τp kma2

−kmc2
2 0 0 −kma2

2 −4τm2



. (3.21)

If any one of the eigenvalues has a positive real part, then the equilibrium point is un-

stable; otherwise, the equilibrium point is stable. We substitute the equilibrium values

of a2, b2, b3, c2 and c3, determined using equations (3.19) and (3.20), into the matrix M

and calculate the eigenvalues numerically using the MATLAB function eig.

Since equation (3.20) is quadratic in a2
2, we find two ‘sets’ of equilibrium values of

a2
2, each set having positive and negative values of a2. We find that the sign of a2 in

each set does not change the respective growth rates of the equilibrium points. This is

to be expected, as the 5th-order system of equations (3.17) is invariant under the trans-

formation that reverses the signs of a2, b2 and c2, while leaving b3 and c3 unchanged

(Da Costa et al., 1981). Therefore, we here only take positive values of a2. The Veronis

(1965) system is fifth-order, so substituting the equilibrium points into the matrix M

in equation (3.21) and calculating the determinant of the matrix results in two sets of

five complex eigenvalues.

We determine the stability of the Veronis equilibrium points in the 9th-order system

by calculating the eigenvalues of a corresponding 9 × 9 matrix, M , initialised at the

Veronis equilibrium points. We are interested to know whether there are any stable
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(unstable) equilibrium points in the 5th-order system that are unstable (stable) in the

9th-order system. To do this, for a given choice of parameters, R−1
ρ , P r, τ, k and m, we

determine the Veronis equilibrium points and associated eigenvalues in both the 5th-

and 9th-order systems. We then take the maximum real part of each set of eigenvalues.

If this is positive, the solution is unstable; if this is negative, the solution is stable. In

this way, we can compare the growth rates of the eigenvalues in the 5th order with

those in the 9th- order system over a range of different parameters.

Figure 3.49, for example, shows such a comparison over a range of wavenumbers, k

and m, when γ = 0.9 (R−1
ρ = 1.11), Pr = 7, and τ = 0.01, which correspond to values

used in simulations of the 9th-order system in § 3.6. The upper and lower rows of Fig-

ure 3.49 show the results for first and second ‘sets’ of equilibrium points, respectively.

In each case, the figures on the left show the growth rates of the equilibrium points in

the 5th-order system, while those on the right show the corresponding growth rates in

the 9th-order system. The white areas of the plots highlight parameter ranges in which

there are either no real (i.e. no non-complex) equilibrium points, or the equilibrium

points are stable.

In each of the first and second sets, the only equilibrium points having real values are

located in a semi-elliptical region between 0 < m < 1 and 0 < k < 0.62. Outside of this

region, the eigenvalues are stable. Interestingly, although not shown here, the extent of

this region changes vary little as R−1
ρ and Pr are varied in a combination that results

in an unstable static basic state for a given value of k (that is, when Rrm satisfies

equation (2.52). We have also observed that the equilibrium values in the second set

have identical stability characteristics in both the 5th- and 9th-order systems for every

combination of parameters that we have tried in this study. That is, the growth rates

of equilibrium points in the second set appear unaffected by the additional modes and

interactions present in the 9th-order system. Therefore, in the following figures, we

only show results obtained using the first set.
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Figure 3.49: rates of Veronis equilibrium points as a function of k and m in LEFT: the 5th-order

system and RIGHT: the 9th-order system. The top and bottom rows show the results at first

and second ‘sets’ of equilibrium points. The results were obtained using R−1
ρ = 1.11, Pr = 7,

and τ = 0.01, which correspond to the values used in our simulations of the 9th-order system.

In the first set, we do see that some of the equilibrium points that are stable in

the 5th-order system are unstable in the 9th-order system. One such value is at

(k,m) = (0.2, 0.4). In the upper plots of Figure 3.50, we show the growth rates of

equilibrium points at different values of R−1
ρ and Pr using these wavenumbers (keeping

τ = 0.01). In the lower plots of Figure 3.50, we show the results using, instead, values

of (k,m) = (0.2, 0.1), which were shown in Figure 3.49 to give unstable equilibrium

points in both the 5th- and 9th-order systems.

The black lines show the curves of marginal stability of the basic state for constant k,

given by equation 2.52 in Chapter 2. When (k,m) = (0.2, 0.4) there does not appear

to be any clear change at either side of the marginal stability curve; however, at lower

values of m, we do begin to see two distinct regions separated by the marginal stability

curve. Specifically, in the lower plots of Figure 3.50, the behaviour in the 9th-order
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Figure 3.50: Growth rates of Veronis equilibrium points as a function of R−1
ρ and Pr in LEFT:

the 5th-order system and RIGHT: the 9th-order system. The top and bottom rows show the

results at (k,m = 0.2, 0.4) and (k,m) = (0.2, 0.1), respectively.

system outside (above) the curve is the same as that in the 5th-order system, while the

growth rates within (beneath) the curve differ in each case. The growth rates are larger

in the 9th-order system within the marginal stability curve. This is likely because in

the 9th-order system, the static basic state is most unstable to elevator modes within

the curve, i.e. modes with m = 0. As m → 0, the modes within the marginal stabil-

ity curve take on larger growth rates, while outside the boundary, where the elevator

modes are not growing, the equilibrium points behave in the same way as they would in

the 5th-order system. Thus, we see that the equilibrium points in the 9th-order system

are always unstable in the presence of growing elevator modes, while in the 5th-order

system, sans elevator modes, these equilibrium points may be stable.

The same behaviour is observed, perhaps to a greater extent, when looking at the

growth rates of the equilibrium points in the 9th-order system while varying both R−1
ρ

and kx when m << 1. Figure 3.51, for example, shows results with m = 0.001 when
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Figure 3.51: Growth rates of Veronis equilibrium points as a function of R−1
ρ and Pr in the

9th-order system. Values of m = 0.001, Pr = 7 and τ = 0.01 were employed in this case.

Pr = 7 and τ = 0.01. This should be contrasted with Figure 2.4 of Chapter 2 which

shows the stability of the static basic state to elevator modes under the same condi-

tions. Clearly, the growth rates within the boundary at low values of m correspond to

the growth rates of the primary elevator mode instabilities of the basic state, which are

not present in the 5th-order system.

It would be interesting to study the behaviour of these equilibrium points further, for

example in the 10th- and 17th-order systems, though such an in-depth study lies outside

the scope of this thesis. We here conclude that, as might be expected, under certain

conditions—particularly, but not exclusively as m→ 0—the Veronis equilibrium points

that are ordinarily stable in the 5th-order system can be destabilised in the 9th-order

system. This appears to be, at least in part, due to the effects of growing elevator

modes in the 9th-order (and higher) system(s).
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3.8 Discussion

In this Chapter, we have shown that seemingly complex phenomena, such as the form-

ation of layers from a chaotic state, may be reproduced by relatively low-order models.

We have observed the formation of layers using models as low as 9th and 10th-order,

where previous models such as that described by Noguchi and Niino (2010a) used up to

32 modes (decomposing into 12 modes at minimum). We see that the fastest-growing

mode from linear theory—an elevator mode (1, 0)—interacts nonlinearly with a cellu-

lar mode (1, 1) to generate a number of layering modes (0, 1) and (0, 2). The layering

modes generated depend on the particular alignment of elevator and cellular modes.

In each case, the layering modes grow faster than the cellular and elevator modes and

eventually overtake, leading to a ‘layered’ state comprising a dominant layering mode

in the density perturbation.

Our models readily reproduce the results of Noguchi and Niino (2010a) using fewer

modes. Our models differ from those of Noguchi and Niino (2010a) in that a different

approach was taken to obtain the ODE system to be solved. In the latter study, the

modes were identified from a direct numerical simulation of the governing equations. In

contrast, we extended the work of Da Costa et al. (1981) and Veronis (1965) who stud-

ied a minimal representation of double-diffusive convection using a fifth-order model,

but who did not observe layering. The addition of elevator modes to this system resul-

ted in the generation of layering modes, indicating that elevator modes are an essential

component of layer formation in double-diffusive systems. Elevator modes are the

fastest-growing modes in double-diffusive convection, and have long been speculated as

essential components in the formation of layers. Our study supports this speculation,

and shows that very few additional modes may be required to form layering or vertical

staircase structures in diffusive systems.

Additionally, our models extend the work of Noguchi and Niino (2010a) to look at the
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behaviour of modes once an initial layered state has been reached. We see that once all

modes in the system reach the same amplitude, the (0, 2) layering mode overtakes and

dominates for a period of time, particularly in the 9th- and 17th-order models. This

corresponds with a suppression of certain other modes. The layering mode eventually

decays, leading to a growth of the other modes in the system. Eventually, all modes

reach a similar amplitude and grow together to once again form a layered state. This

process repeats indefinitely.

Such intermittent layering suggests that the (0, 2) layering mode is relatively persistent

once it has grown to a sufficient amplitude. Indeed, the direct numerical simulations

of Noguchi and Niino (2010a) show that the (0, 2) layering mode continues to grow in

amplitude once it has overtaken the other modes. The lack of higher-order modes in

our system means that we do not see this continued growth and evolution; however,

our models do show that the system is always trying to evolve to a layered state, even

in the presence of very few low-order modes.

It is informative to note that the elevator modes do not continue to grow indefin-

itely, and appear to be disrupted by the other modes in the system, particularly during

a first ‘peak’ preceding the layered state. This appears to support the findings of Radko

and Smith (2012) who showed, using direct numerical simulations, that an amplitude of

salt-fingers (corresponding to elevator modes) is equilibrated following a rapid growth

in energy in a diffusive system.

We have shown that, during the layered state, the modes appear to exhibit ‘tilted

cell’ behaviour reminiscent of that in pure convection studied by Howard and Krish-

namurti (1986). This suggests that our low order model is able to pick up certain

convective motions within the layers once they have formed. Furthermore, we have

shown that certain stable equilibrium points of the 5th-order Veronis (1965) system

are unstable in the 9th-order system. Some of our simulations suggest the existence
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of fixed points in the 9th-order system, particularly when m is small. It would be of

interest for future study to determine the equilibrium points of the 9th-order system

(if there are any) and work our their stability.

We conclude by noting that this study assumes cellular modes having the same ho-

rizontal wavenumber as the elevator modes exist at the same time as elevator modes.

This is indeed suggested by the simulations of Noguchi and Niino (2010a). However,

since the fastest growing modes in a double-diffusive system are elevator modes, and

since the elevator modes would grow indefinitely in the absence of other modes accord-

ing to linear theory, we ask whether the cellular modes would be generated directly by

the elevator modes, or whether they arise due to other interactions. Indeed, the link

between the frequency of the cellular modes and the amplitude of the elevator modes in

the 10th-order system may be indicative that the cellular modes are generated as sec-

ondary instabilities of the elevator modes. On the other hand, Radko (2016) shows that

layers may form in the presence of horizontal (i.e. vertically-dependent) shear modes,

and in the initial absence of elevator modes. It may be that such layering modes, for

example the (0, 1) layering mode in ψ′, are generated as secondary instabilities of elev-

ator modes and therein cause the system to become more unstable.

In light of the above questions, in the following Chapters we shift our focus from

the evolution of modes in different systems instead to the stability of elevator modes

themselves. In Chapter 4 we begin by studying the stability of elevator modes in

the salt-finger regime, rather than in the diffusive regime as has been studied in this

Chapter. This is partly because the elevator modes in the salt-finger regime are non-

oscillatory, thereby providing a simpler context in which to develop our methods, and

partly because we discovered gaps in the literature surrounding the use of such methods

in the study of salt-fingering convection. We extend this work in Chapter 5 to study

the secondary modes arising from oscillatory elevator modes, and link the results back

to the findings of the present chapter.
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Chapter 4

Instabilities of Non-Oscillatory Elevator Modes
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4.1 Introduction

The linear stability of a static basic state was discussed in §2.3.6. The elevator mode

is the fastest growing mode in a doubly-periodic domain in both the salt-finger and

the oscillatory regimes. The Jacobian terms in the governing equations—for instance

the term J(ψ,∇2ψ) = (∂xψ∂z∇2ψ− ∂z∂∇2ψ)—are all zero, because ∂z is zero for any

elevator mode. Therefore, no additional modes are generated through nonlinear in-

teractions and the elevator mode represents a full solution to the governing non-linear

equations. Mathematically, the elevator modes may grow indefinitely and exponen-

tially. The linear stability model does not account for secondary instabilities generated

by the primary elevator mode. It is informative to take a basic state consisting of fully

developed elevator modes and to study the growth of any secondary perturbations to

this state. Such a study seeks to identify the form of the fastest growing secondary

modes, which grow in amplitude and eventually disrupt the primary elevator modes.

Stern and Simeonov (2005) studied the fastest growing secondary modes arising from a

salt-finger basic state. The authors computed a vertical wavelength of the fastest grow-

ing secondary instability by integrating a system of linear partial differential equations

(PDEs) with time-dependent and horizontally periodic coefficients. It was suggested

that the fastest growing secondary instability limits the amplitude of the primary mode.

It is this philosophy that is applied in the present chapter.

Taking a basic state consisting of the primary instability in the form of a sinusoidal (in

x) elevator mode introduces spatially periodic coefficients into a set of ODEs governing

the behaviour of secondary modes. Solutions to such equations may be sought using

Floquet theory, in which perturbed variables are expanded in an infinite sum of har-

monics, leading to an infinite set of equations for the growth rates of different modes.

Approximate solutions may obtained by truncating the system and solving numerically

for the growth rate. The fastest-growing secondary mode may then be identified as

that having the largest real growth rate. Floquet theory and similar methods have
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been employed in numerous studies to solve ODEs having periodic coefficients. Ex-

amples include: the solution of the Matthieu equation in Stoker (1950), page 201; the

solution of the generalised Orr-Sommerfeld equation governing viscous plane parallel

flows (Orszag, 1971); plane Couette and Poiseuille flows (Davey, 1973, George and Hel-

lums, 1972); flat Stokes Layers (Blennerhasset and Bassom, 2002); and Kolmogorov

flow (Beaumont, 1981).

The theory was applied to double-diffusive convection by Holyer (1984). Holyer used

Floquet theory to study the stability of elevator modes in the salt-finger regime. The

basic state was taken to comprise steady elevator modes, i.e. modes having zero growth

rate. A later study by Veronis (1987) looked at a similar problem taking instead the

fastest-growing elevator mode as the basic state, while Kerr (1992) applied Floquet

theory to study instabilities in steady double-diffusive interleaving. The collective in-

stability described in Chapter 1 was the primary focus of the Holyer (1984) study.

It was found that at relatively low Prandtl numbers of Pr = 10—as encountered in

the ocean—the collective instability, i.e. a mode having horizontal and vertical values

of wavenumber (k and m in Holyer’s notation) of order O
(
10−3), was never the fast-

est growing secondary mode (FGSM). Rather, the fastest growing secondary mode at

Pr = 10 was found to have a horizontal wavenumber of zero, and a vertical wavenum-

ber of m = 0.3. At large Prandtl number (e.g. Pr = 104), Holyer found that the

collective instability was the dominant mode. The Holyer study, although informative,

was limited in that only a small selection of secondary instabilities were investigate

over a narrow range of governing parameters. This was most likely due to limitations

in computational ability at the time.

We here extend Holyer’s results in several ways. First, we examine the other sec-

ondary instabilities that arise from a steady elevator basic state—including those that

are not fastest growing—using the parameters employed by Holyer. We then vary the

strength of the background T and S gradients (in the form of R−1
ρ ), the Prandtl number
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Pr, and the amplitude of the elevators Aψ, thereby deriving a more complete picture of

the relationship between governing parameters and secondary modes. We contrast the

results with those arising from a system in which the basic state is the fastest-growing

elevator mode, rather than a steady elevator mode. This also permits a comparison of

our results with those obtained by Veronis (1987) for fastest-growing elevators.

Finally, we look at the importance of heat and salt in such systems by contrasting

the fastest-growing secondary mode arising from a double-diffusive elevator basic state

with that arising instead from a purely hydrodynamic shear mode. The basic state

in the hydrodynamic system is prescribed in the same way, by taking a horizontally-

dependent, sinusoidal shear flow; however, we no longer consider the influence of heat

and salt. This type of flow is known as Kolmogorov flow (Beaumont, 1981, Meshalkin

and Sinai, 1961, Thess, 1992). In Kolmogorov flow, a single equation describes the

evolution of the streamfunction perturbation in terms of a Reynolds number Re. As

we shall see, the Reynolds number here is analagous to the Prandtl number in diffusive

convection. We find that Kolmogorov flows generate secondary modes which are similar

to those arising from double-diffusive elevator modes, albeit less unstable.

Further instances of Floquet theory as applied to double-diffusive convection are found

in, for example: Radko and Stern (2011) and Radko (2016), in which studies the au-

thors investigate the instabilities arising when a vertically dependent shear mode is

applied to a double-diffusive domain; Radko and Smith (2012), in which the authors

study the saturation of the linear growth of salt fingers, and whose results we reproduce

in this chapter; and Xie et al. (2017) and Xie et al. (2019) in which reduced models are

obtained and studied in the salt-finger regime. We refer to these studies throughout

the present chapter.
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4.2 Secondary Instabilities

In Chapter 2 we looked at the stability of a static basic state, showing that the fastest

growing mode—an elevator mode—grows indefinitely. In other words, elevator modes

represent fully non-linear solutions to the perturbation equations (4.24)–(4.26). This

means that the perturbation may instead be represented as a linear combination of an

elevator mode (A cos(kxx)), and a secondary perturbation. Thus, we have

ψ = Āψ cos(kxx) + ψ′,

T = ĀT sin(kxx) + T ′, (4.1)

S = ĀS sin(kxx) + S′,

where Āξ = Aξe
λ0t for ξ = {ψ, T, S}, and λ0 is the growth rate of the primary, elevator

instability. In this chapter, we are interested in non-oscillatory convection in the salt-

finger regime, meaning that λ0 is real. Furthermore, we are interested in secondary

instabilities that grow faster than the primary elevators; in other words, if we take

λ0 = 0 and we find that the growth rates of secondary perturbations are large in

comparison to the growth rate of elevator modes from linear theory, then the fingers

will be ‘quasi-steady’ for the time it takes perturbations to grow (Holyer, 1984). Hence,

substituting perturbations in the form of (4.1) into the perturbation equations (4.24)–

(4.26) and linearising, under the assumption of a quasi-steady basic state (λ0 = 0),

yields

(
∂

∂t
− Pr∇2

)
∇2ψ′ = kxAψ sin(kxx) ∂

∂z
∇2ψ′+ k3

xAψ sin(kxx)∂ψ
′

∂z
+Pr

(
∂T ′

∂x
− ∂S′

∂x

)
,

(
∂

∂t
−∇2

)
T ′ + sgn(Tz)

∂ψ′

∂x
= kxAψ sin(kxx)∂T

′

∂z
+ kxAT cos(kxx)∂ψ

′

∂z
, (4.2)

(
∂

∂t
− τ∇2

)
S′ + sgn(Sz)

∂ψ′

∂x
R−1
ρ = kxAψ sin(kxx)∂S

′

∂z
+ kxAS cos(kxx)∂ψ

′

∂z
.
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4.2.1 Floquet Theory

Floquet theory is employed to solve PDEs with periodic coefficients—a form consistent

with (4.2) above. The coefficients in (4.2) are independent of z and t, so we can seek

solutions with ψ, T , and S proportional to exp(ikzz + λt), where kz and λ are the

vertical wavenumber and the growth rate of the secondary perturbation, respectively.

The periodicity of the coefficients lies in the x-direction, with a period of 2π/kx. It has

been shown by Coddington and Levinson (1955) that for a linear homogeneous system

system with periodic coefficients, e.g.

ẋ = A(t)x (−∞ < t < +∞), (4.3)

where A is a matrix of complex continuous functions, and

A(t+ T ) = A(t), (4.4)

where T is the period, then if φ(t) is the fundamental matrix for (4.3), so is φ(t+ T ).

The matrix φ(t) is a fundamental matrix of (4.3) if φ̇(t) = A(t)φ(t), so that x = φ(t)c

for some constant vector c. Corresponding to every such φ there exists a periodic

non-singular matrix P with period T , and a constant matrix µ such that

φ(t) = eµtP (t). (4.5)

The system studied in this Chapter is periodic in x, and so our solutions ξ′ = (ψ′, T ′, S′)

will be of the form

ξ′ = eµxP (x), (4.6)

where µ is called a ‘Floquet coefficient’, and P is periodic in x with period X = 2π/kx.

Such a P is obtained through the expansion

P (x) =
∞∑

n=−∞
ξn exp(inkxx), (4.7)

where n ∈ Z. In this way, if µ is replaced by µ+ 2πi/X, then we get

ξ(x)′ = eµtP (x) exp(2πit/X), (4.8)
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where P (x) exp(2πit/X) is still periodic with period X, and the fact that µ is not

unique does not alter our results.

Instead of defining µ in the range 0 < µ < ikx (as above), we find it convenient to

take µ = ifkx and instead vary f between 0 and 1. The Floquet coefficient then be-

comes f , rather than µ. Combining this solution with that of ξ′ ∝ exp(ikzz + λt) as

previously defined, we find that solutions to (4.2) may be written in the Floquet form

ψ′

T ′

S′

 = exp(ifkxx+ ikzz + λt)
∞∑

n=−∞


ψn

Tn

Sn

 exp(inkxx), (4.9)

4.2.2 Application to the Quasi-Steady Equations

On substitution of (4.9) into equations (4.2), the periodic coefficients—which represent

a single elevator mode in x—are, in a sense, absorbed into the infinite sum. By way

of example, the sin(kxx) term in the coefficient k3
xAψ sin(kxx) interacts with ∂ψ′

∂z as

follows:

sin(kxx)∂ψ
′

∂z
= sin(kxx) ∂

∂z

(
exp(ifkxx+ ikzz + λt)

∞∑
n=−∞

ψn exp(inkxx)
)
,

= ikz exp(ifkxx+ ikzz + λt) · sin(kxx)
∞∑

n=−∞
ψn exp(inkxx).

For clarity, we can define B = kz exp(ifkxx+ ikzz + λt), giving

iB sin(kxx)
∞∑

n=−∞
ψne

inkxx = B

2
(
eikxx − e−ikxx

) ∞∑
n=−∞

ψne
inkxx,

= B

2

∞∑
n=−∞

(
ψne

i(n+1)kxx − ψnei(n−1)kxx
)
.

Summation indices may be shifted to recover a factor of exp(ikxx) in each term, i.e.

∞∑
n=−∞

ψne
i(n+1)kxx ≡

∞∑
n=−∞

ψn−1e
inkxx and

∞∑
n=−∞

ψne
i(n−1)kxx ≡

∞∑
n=−∞

ψn+1e
inkxx.
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Thus, the sin(kxx) term and the ∂ψ′

∂z term combine to be written instead in terms of

modal amplitudes. That is,

sin(kxx)∂ψ
′

∂z
= B

2

∞∑
n=−∞

[ψn−1 − ψn+1] einkxx. (4.10)

In other words, the growth rate of any particular secondary mode (ψn, say) is a function

of the amplitudes of neighbouring modes (ψn−1 and ψn+1). Similar expressions may be

obtained for each of the periodic coefficients in (4.2). With this in mind, substituting the

perturbations expressed in Floquet form (4.9) into the governing PDEs (4.2)—noting

that sgn(Tz) = sgn(Sz) = 1 in the salt fingering regime—we obtain the following infinite

set of equations for the growth rate of secondary perturbations λ, in terms of the modal

amplitudes ψn, Tn and Sn:

− λψn = PrK2
nψn −

kxkzAψ
2K2

n

[
K2
n−1ψn−1 −K2

n+1ψn+1
]

+ k3
xkzAψ
2K2

n

[ψn−1 − ψn+1] + iPr
(f + n)kx

K2
n

(Tn − Sn), (4.11)

λTn = −K2
nTn + kxkzAψ

2 [Tn−1 − Tn+1]

+ ikxkzAT
2 [ψn−1 + ψn+1]− i sgn(Tz)(f + n)kxψn, (4.12)

λSn = −τK2
nSn + kxkzAψ

2 [Sn−1 − Sn+1]

+ ikxkzAS
2 [ψn−1 + ψn+1]− i sgn(Sz)R−1

ρ (f + n)kxψn, (4.13)

where K2
n = [(f + n)kx]2 + k2

z . The equations are solved with numerical techniques

described in §4.3. λ may be real or complex. If the real part of any of the calculated

growth rates R(λ) > 0, then the system will be unstable and secondary perturbations

will grow. The (f, kz) mode with the largest positive value of λ will be the fastest

growing secondary mode under the given conditions. Note that f need only be varied

between 0 and 0.5.
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Equations (4.11)–(4.13) are the same as those solved by Holyer (1984) under the fol-

lowing notational changes: R−1
ρ → γ−1, kx → 1, kz → m, f → k, and Aψ → W .

Holyer solved these equations along the f = 0 and kz = 0 axes to determine the fastest

growing mode in: the heat-salt system with Pr = 10 and τ = 0.01; in the salt-sugar

system with Pr = 1000, τ = 1/3; and in a high-Pr system with Pr = 104 and τ = 0.01.

Holyer showed results in each of these systems for single values of R−1
ρ and Aψ, and

only along the f = 0 and kz = 0 axes. Here we extend this work by studying the effects

of varying R−1
ρ and Aψ on the form of the secondary instabilities over a full range of

wavenumbers and for different Prandtl numbers.

Holyer also scaled the governing equations such that the basic state was marginally

stable (meaning that the basic state elevator modes have zero growth rate) when kx = 1.

Here, our system is marginally stable for a different value of kx that is dependent on

the value of R−1
ρ , due to the way we have scaled our equations. Furthermore, it is

unnecessary to assume that the basic state is marginally stable, so we extend the work

to obtain solutions to the equations when kx is chosen to give the fastest-growing basic

state for a given R−1
ρ (under a quasi-steady approximation). The methods by which

we achieve extensions to the work of Holyer are described hereinafter.

4.3 Numerical Implementation and Convergence

To solve our infinite set of equations numerically, we first truncate the expansion (4.9)

at a level of truncation, N , where n ∈ {−N,N}. Collecting individual Fourier com-

ponents, we then express these equations in the matrix form

λη = Aη, (4.14)

where

η = (ψ−N , ..., ψn−1, Tn−1, Sn−1, ψn, Tn, Sn, ..., SN )T

and A is the square matrix of size 3(2N + 1) obtained from (4.11) - (4.13), and is a

function of (kx, kz, f , Rρ, τ , Pr, N , Aψ, AT , AS).
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4.3.1 Solver

The truncated matrix form (5.9) lends itself well to implementation in MATLAB using

in-built eigenvalue solvers. In particular, MATLAB offers two functions for obtaining

eigenvalues and eigenvectors. The first, eig, computes all eigenvalues of the non-

symmetric matrix A using QZ-factorisation, normalising the eigenvectors to Euclidian

length 1. The function eigs instead uses an iterative method to return only a subset

of eigenvalues. This was first thought to be useful in that we could request, say, only

the 5 largest positive eigenvalues and thereby reduce computational demand; however,

eigs was later found to be either slower or negligibly faster than eig. For this reason,

we herein obtain results using the function eig.

The code for the MATLAB program is written such that a user specifies the driv-

ing parameters, including R−1
ρ and the amplitude of the basic state elevator mode Aψ.

The values of AT and AS are calculated from Aψ using equations (2.43). The values of

τ and Pr default to oceanic parameters of 0.01 and 10 respectively; however, we later

study the effect of varying these parameters. The ranges of f and kz to be studied are

specified by the user, along with a desired resolution. Owing to the symmetry of the

system, f need only be varied between 0 and 0.5. However, in verifying the code we

may at times take 0 ≤ f ≤ 1 to ensure that the results are symmetrical about f = 0.5.

The MATLAB program calculates eigenvalues for each specified (f, kz) mode. This

is achieved by iterating over f and kz at the chosen resolution, calculating the matrix

A at each point, and calculating the determinant of the matrix A using either eig or

eigs. As discussed hereinbefore, eig was found to be the most appropriate in the

present study. The matrix A is initially truncated at a relatively low, user-selectable

value of N . On calculating the eigenvalue for a single (f, kz) mode, N is incremented

by 1 and the eigenvalue is calculated again. This process is repeated until the difference

between successive eigenvalues drops below a given tolerance, as discussed in section

§4.3.2. The calculated eigenvalues are stored, and the program then moves on to the
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4.3 Numerical Implementation and Convergence

next (f, kz) mode. This continues until all required eigenvalues have been calculated.

4.3.2 Convergence

In this section we demonstrate that the results we obtain are accurate and that the

program is working correctly. We develop a range of techniques to achieve such confid-

ence. Firstly, we compare preliminary results to those obtained by Holyer (1984) and

Radko and Smith (2012), thereby showing a general agreement. We also ensure that

the method is able to reproduce an exact, linear solution.

We then proceed to study the convergence of eigenvalues as N is increased. A prag-

matic, largely qualitative approach is taken initially, whereby calculated growth rates

are shown to be symmetrical about f = 0.5 for large enough N . A more quantitative

method is then employed to pin-point the value of N at which eigenvalues change only

negligibly with any further increase in N . We also highlight the structure of the eigen-

vectors as a way to gain a deeper understanding of the convergence, paying particular

attention to modal magnitudes at extreme values of N .

Verification

As an initial check on the accuracy of our code, we compare our results with those of

Holyer (1984) at different values of N . Results are compared for a single set of para-

meters only—we take oceanic conditions of Pr = 10 and τ = 0.01, as used by Holyer,

along with R−1
ρ = 0.02 and Aψ = 4, which correspond respectively to γ = 0.5 and

W = 4 in Holyer’s notation. We determine growth rates along the f = 0 and kz = 0

axes, with 0 ≤ kz ≤ 0.5 and 0 ≤ f ≤ 0.5, respectively. The results are shown in Figure

4.1, and corresponding plots from Holyer (1984) are displayed in Figure 4.2.

Our results are in good agreement with those of Holyer, particularly at higher values

of N . The growth rates presented in Figure 4.1b overlap when N = 9 and N = 12.

This suggests that N ≥ 9 is sufficient to ensure convergence when f = 0. For context,
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Figure 4.1: Growth rate of secondary modes along (a) the kz = 0 axis, and (b) the f = 0

axis with Pr = 10, τ = 0.01, R−1
ρ = 0.02 and Aψ = 4. The value of N has little effect on

the calculated growth rates when kz = 0; however, N does impact the growth rates calculated

when f = 0.

(a) (b)

Figure 4.2: Results from Holyer (1984) showing the growth rate of secondary modes along (a)

the kz = 0 axis, and (b) the f = 0 axis with Pr = 10, τ = 0.01, R−1
ρ = 0.02 and Aψ = 4.

The dashed lines are approximate solutions described in the paper. Note the transformation of

coordinates from (f, kz) in our notation to (k,m) in Holyer’s notation.

N = 9 gives a fundamental matrix A of size 57 × 57, so obtaining the determinant of

A requires relatively little in the way of modern day computational power.
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The results obtained with kz = 0 (Figure 4.1a) are independent of N > 0. This is

because kz = 0 modes exhibit no vertical variation and so they do not interact with

the salt fingers. Indeed, when kz = 0 we can solve equations (4.11)–(4.13) exactly,

obtaining for each n the equation

(λ+K2
n)(λ+ PrK2

n)(λ+ τK2
n) + Pr

(
(λ+ τK2

n)−R−1
ρ (λ+K2

n)
)

= 0, (4.15)

where K2
n = ((f + n)kx)2. This is the standard equation for the growth rate of salt

fingers, and is equivalent to that derived in Chapter 2 under the transformation K2
n →

k2
x. This provides an additional opportunity to verify our results: the growth rates

observed when kz = 0 (Figure 4.1a), obtained by solving equations (4.11)–(4.13), should

match those obtained from the exact equation for the growth rates of salt fingers (4.15).

Figure 4.3 shows a comparison of the linear solution computed using (4.11)–(4.13) with

kz = 0, and the independent contributions of equation (4.15) at three different values

of n.

The solutions match, and it is perhaps now clear to see what range of values of n is

required to obtain a complete picture of the behaviour of growth rates. In particular,

only by including the contribution of the n = −1 term do we observe a maximum value

of λ, i.e. the fastest growing mode.

A Comparison with Radko (2012)

In order to further verify our code and methodology, we are also able to reproduce

results obtained by Radko and Smith (2012) in the salt-finger regime. Their model looks

at a competition between linear growth mechanisms and investigates the disruptive

action of secondary instabilities. In other words, the study aims to quantify at what

amplitude the linear growth of salt fingers is arrested in a double-diffusive system. This

is to predict the equilibrium fluxes of heat and salt. A ’growth rate balance’ is assumed,
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Figure 4.3: Comparison of the growth rate of the linear solution (computed using equations

(4.11)–(4.13) with kz = 0) with the contributions from solutions of (4.15) at n = −1, n = 0,

and n = 1.

of the form

λ2 = Cλ1 (4.16)

where λ1 is the linear growth rate of salt fingers, λ2 is the growth rate of secondary

instabilities, and C is a dimensionless O(1) quantity. λ1 is determined from background

gradients and dimensionless parameters using (2.44). λ2 is determined using Floquet

theory, as in Holyer (1984), and is dependent on the amplitude of primary salt fingers.

The primary salt fingers are taken to be those with the largest growth rate, which we

define here as having a horizontal wavenumber of k∗x. The value of C is calibrated by

computing equilibrium temperature and salinity fluxes as

FT = wT = 1
2A

2
T (λ1 + k∗2), and FS = wS = 1

2R
−1
ρ A2

T

(λ1 + k∗2)2

(λ1 + τk∗2) , (4.17)

and comparing these against those obtained from direct numerical simulations. This is

repeated for different values of Rρ, to determine a relationship between the equilibrium

temperature flux, and Rρ.
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We may re-purpose our existing code to reproduce the results of Radko by first taking

λ1 from linear theory (2.44) and calculating λ2 for a series of values of AT . Note that

Aψ and AS can be determined from AT using (2.43). The value of AT is incrementally

adjusted until the growth rate balance (4.16) is satisfied for a particular value of C > 1.

Note that if C < 1 the primary modes grow faster than the secondary instabilities and

continue to grow without being disrupted. The equilibrium eddy fluxes of heat and

salt are then calculated using equation (4.17). This process is repeated for the different

values of C and Rρ that were used by Radko.

Figure 4.4 shows the results obtained from our simulations, while Figure 4.5 shows

an annotated version of Figure 5 of Radko and Smith (2012), for ease of comparison.

The red lines in the annotated figure show the values of FT when Rρ = 1.3, which can

be seen to correspond closely to those obtained from our simulations. Indeed, we see

that the equilibrium eddy fluxes from our simulations and those of Radko and Smith

(2012) are in generally good agreement for each value of C and Rρ, indicating that our

code is working as intended.

Accuracy

We are now in a position to study how the accuracy of our results depends on the level

of truncation N . This provides a check on the convergence of the results and ensures

our conclusions are reliable. Ideally, we would like the program to be able to select a

value of N for each (f, kz) mode for which the eigenvalue changes negligibly with any

further increase in N . Knowledge of which modes require larger values of N to converge

(and so are more error-prone) will help in achieving this goal. We have already seen

from Figure 4.1 that when kz = 0 the choice of N is unimportant, but when f = 0 we

require some N > 9 for convergence. We here investigate, qualitatively, what value of

N may be required when both f and kz are greater than zero.
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Figure 4.4: Heat flux vs. Rρ for various values of C obtained from our simulations.

Figure 4.5: Heat flux vs. Rρ for various values of C from Radko and Smith (2012), Figure 5.
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It is known that solutions should be symmetrical about f = 0.5 due to the inher-

ent symmetry of the system. Therefore, we may qualitatively check our results by

calculating eigenvalues for 0 ≤ f ≤ 1 and 0 ≤ kz ≤ 0.5 at progressively increasing val-

ues of N until such symmetry is achieved. Figures 4.6, 4.7 and 4.8 show the eigenvalues

at N = 3, N = 6, and N = 9 respectively, along with a plot of the absolute difference

between corresponding results to the left and right of f = 0.5. For reference, the figures

show results at 500 wavenumbers in both the f and kz directions.

We see that in all cases the errors are greatest as f → 0, while seemingly accurate

results are obtained along both the f = 0 and kz = 0 axes. The error is given by

E = |λ+ − λ−|, where λ+ represents growth rates for values of f > 0.5, and λ− repres-

ents corresponding growth rates when f < 0.5. When N = 9, the absolute error over

a majority of the domain is less than 10−6, with the exception of a region surround-

ing (f, kz) = (0.1, 0.4). The eigenvalues of different secondary modes have different

convergence properties, so it important to assess the convergence of each eigenvalue

individually. An accurate result for the fastest growing secondary mode is desirable,

but we must also ensure that the growth rates and frequencies of the other second-

ary modes are accurate in order to permit any meaningful conclusions regarding those

modes to be drawn.

In analysing the symmetry of the system it is clear that, for the most part, results

are accurate above N = 9, as seen in Figure 4.8; however, the results at low values of

kz are accurate even at N = 3, as shown in Figure 4.6. In certain regions of (kx, kz)

space, such as around (0.1,0.5), the errors are large, as shown in Figure 4.8b. It may be

that N = 12 or higher is required in such regions, which would considerably increase

computation time if such a value of N was used at every point in wavenumber space.

We therefore wish to take relatively small values of N over the majority of the domain,

while reserving larger values of N for only those points at which the errors are greatest.

To achieve this, we first study the behaviour of individual eigenmodes as N is increased.
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(a) (b)

Figure 4.6: (a) Growth rate, λ, and (b) Absolute error, E, for N = 3, when R−1
ρ = 0.02,

τ = 0.01 and Pr = 10.

(a) (b)

Figure 4.7: (a) Growth rate, λ, and (b) Absolute error, E, for N = 6, when R−1
ρ = 0.02,

τ = 0.01 and Pr = 10.

(a) (b)

Figure 4.8: (a) Growth rate, λ and (b) Absolute error, E, for N = 9, when R−1
ρ = 0.02, τ = 0.01

and Pr = 10.
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We expect eigenvalues to change only negligibly at large values of N . The rate at

which an eigenvalue reaches such a state is dependent on f and kz, as highlighted

in our symmetry analysis—some eigenvalues reach a fixed value at N = 3, others at

N > 12. A method for ensuring eigenvalues have converged for a particular mode

may be as follows: take a minimum value of N , as low as 1; calculate the eigenvalue

λN ; increment N ; calculate the eigenvalue λN+1; and take the difference between the

current and previous eigenvalues to obtain the error, E = λN+1 − λN . This process

may be repeated with successively larger values of N . A solution may be said to have

converged when the error E drops below a threshold value.

Figure 4.9 shows the real part of the eigenvalue <(λ) and the error E for the fast-

est growing mode (f, kz) = (0, 0.32) under the same conditions as in the symmetry

analysis, i.e. (R−1
ρ , Aψ, P r, τ) = (0.02, 4, 10, 0.01). The eigenvalue in this case converges

relatively quickly to a fixed value of λ = 0.444, exhibiting an incremental absolute error

of E = 10−3 at N = 7, dropping below a tighter tolerance of E = 10−5 at N = 10. The

results should be contrasted with similar plots shown in Figure 4.10 for the wavenum-

ber (0.1, 0.45), which was shown in the symmetry analysis to be a particularly tricky

eigenvalue to calculate.

The eigenvalue of the mode (0.1, 0.45) varies significantly in that the predicted growth

rate at low N is of the same order as the growth rate of the fastest growing secondary

mode (FGSM) (0, 0.33), whereas at large N the growth rate is closer to zero. Futher-

more, the value of N required for convergence is much larger for the ‘tricky’ mode than

for the FGSM. In the former case, the eigenvalue reaches a fixed value of 0.0237 at

approximately N = 12 or 13; however, the error does not drop below a tight tolerance

of E = 10−5 until N = 16.

Although it takes relatively little computational time to execute a single calculation
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Figure 4.9: (a) Variation of the growth rate λ with level of truncation N , and (b) the associated

error E as a function of N , for the fastest growing secondary mode (f, kz) = (0, 0.32). Here,

(R−1
ρ , Aψ, P r, τ) = (0.02, 4, 10, 0.01)
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Figure 4.10: (a) Variation of the growth rate λ with level of truncation N , and (b) the associated

error E as a function of N , for the mode (f, kz) = (0.1, 0.45). Here, (R−1
ρ , Aψ, P r, τ) =

(0.02, 4, 10, 0.01)

with N = 16 (on the order of milliseconds), the computational time can become sig-

nificant when producing high-resolution contour plots such as those in Figures 4.6, 4.7

and 4.8, which each have a resolution of 500 × 500 modes. Therefore, the MATLAB

code is written such that, for each mode, a calculation is first performed with N = 3.
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The calculation is repeated with successively higher values of N until the error E drops

below a set threshold. Typically we employ a threshold of 10−5, though Holyer (1984)

used a stricter value of 10−6. As discussed hereinbefore, the parameter range studied

in Holyer (1984) was limited, and so a tighter tolerance was reasonable. Here, we find

a threshold of E = 10−5 provides sufficiently accurate results and permits a broad

parameter regime to be explored.

Eigenmode Spectra

The frequency spectra of the eigenmodes ψn, Tn and Sn (corresponding to the eigenval-

ues with largest real parts) provide additional insight into the convergence of results.

Through a spectral decomposition of the eigenfunctions, we see that modes for which a

larger value of N is required to achieve convergence tend also to have large-amplitude

eigenmodes at extreme values of n. In other words, if we find modes with large ψn, Tn
or Sn for values of n close to N or −N , then it is likely that N needs to be increased in

order to adequately capture the contributions of such harmonics. To illustrate this, we

plot in Figure 4.11 a spectral decomposition of the two modes (f, kz) = (0, 0.32) and

(f, kz) = (0.1, 0.44) which we considered earlier.

In both cases we see peaks at n = 1 and n = −1, indicating that contributions from

these harmonics are significant. Eigenfunction magnitudes decrease with increasing |n|,

meaning that modes having high values of n are not as influential, and may ultimately

be disregarded. A value of n at which a given mode ψn exerts a negligible contribution

is the point at which the truncation should be made. We know that the eigenvalue of

the FGSM reaches convergence at a lower value of n than the (0.1, 0.44) mode. The

reason for this is now clear from the spectra plots: contributions of modes in the eigen-

function for the FGSM all drop below 10−4 at n = 11, while those in the eigenfunction

for the (0.1, 0.44) mode do not drop below this value until n = 15.
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Figure 4.11: Spectral decompositions of eigenfunctions with the largest growth rate in: (a) the

fastest growing mode, (f, kz) = (0, 0.33); and (b) the mode (0.1, 0.45). The y-axis is scaled as

log10 |ψn|.

4.4 Parametric Study

We now turn to solving equations (4.11)–(4.13) using the numerical techniques outlined

in §4.3. We first explore the effect of varying R−1
ρ and Aψ in the Heat-Salt system,

which has Pr = 10 and τ = 0.01. We then do the same for the Salt-Sugar system, with

Pr = 1000 and τ = 1/3; a high-Pr system with Pr = 104 and τ = 0.01; and finally

a low-Pr system with Pr = 0.01 and τ = 0.01. The results are contrasted with those
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presented in Holyer (1984). We find that the dominant secondary mode predicted by

Holyer (i.e. that having f = 0) is not the fastest-growing mode at lower values of Aψ,

and that at large Prandtl numbers it appears that this mode never dominates.

We then proceed to investigate the influence of heat and salt by comparing our results

with those obtained for a hydrodynamic (i.e. heat- and salt-free) sinusoidal shear flow.

We find that the f = 0 mode observed at low Pr and/or large Aψ is similar to that

observed in purely hydrodynamic shear flow. Furthermore, we observe a new mode in

the diffusive system that does not dominate in hydrodynamic shear, indicating that

heat and salt do critically influence the dynamics.

We also look at the secondary instabilities of fastest-growing elevators (as opposed to

marginal elevators). Varying R−1
ρ , Aψ and Pr has a similar effect in the fastest-growing

system as in the marginal system, though the growth rates of secondary instabilities

are larger and they possess slightly different structure.

A Note on Scaling

If we wish to recover results in the dimensions of Holyer (1984) then we must scale our

solutions in accordance with the length-scale set out in §4.2. That is, we scale kz and

λ as

(kz)H = kz

(
lH
l

)
, λH =

(
lH
l

)2
λ, (4.18)

where subscript H denotes the scaling adopted by Holyer, and

(
l

lH

)4
= 1

R−1
ρ

τ − 1
. (4.19)

There is an exception for which we do not need to scale. Holyer studied the heat-salt

system at a value of γ = 0.5, which corresponds to R−1
ρ = 0.02. In this case, with

τ = 0.01, we find that l/lH = 1.
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4.4.1 Heat-Salt System

Basic State Stability

The Heat-Salt system as studied by Holyer (1984) is defined by Pr = 10 and τ = 0.01.

It was shown in Chapter 2 that the basic state is unstable to elevator modes in the

range 1 ≤ R−1
ρ ≤ τ , which corresponds to a range of τ ≥ γ ≥ 1 in Holyer’s notation

under the transformation R−1
ρ = τ/γ.

We first study a quasi-steady basic state in which the elevator modes are assumed

to have not grown appreciably in the time taken for secondary instabilities to grow.

Holyer achieves this by taking a horizontal wavenumber of kx = 1 and changing the

length scale (as a function of Rayleigh numbers RT and RS) to produce a state with

zero growth. However we specify a length on the scale of the ‘buoyancy-layer’ (Howard

and Veronis, 1987) which gives a thermal Rayleigh number of RT = 1, so we instead

vary kx to give zero growth rate for a given R−1
ρ . The growth rates of primary elevator

modes as functions of R−1
ρ and kx are displayed in Figure 4.12, which is the same as

Figure 2.3.

We may select a value of R−1
ρ and determine the value of kx to give either marginal

stability or fastest growth (kx = k∗x). The curve λ0 = 0 in Figure 4.12 represents the

marginal solution—anything within and above this line is unstable, whilst anything on

the line is marginally stable and will not grow.

Comparison with Holyer

We begin with an extension of the results presented by Holyer (1984) for the heat-salt

system with γ = 0.5 and W = 4, which corresponds in our notation to R−1
ρ = 0.02,

Aψ = 4 and kx = 1. Our contribution includes a study of the growth rates of all

secondary modes in the region 0 ≤ f ≤ 0.5 and 0 ≤ kz ≤ 0.6. We also study the effect

of changing the amplitude of the elevator mode Aψ on the observed fastest growing
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Basic state stability of the heat-salt system.
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Figure 4.12: Growth rate of the primary elevator mode λ0 as a function of the background

density gradient ratio R−1
ρ and the basic-state wavenumber kx for the heat-salt system (Pr = 10,

τ = 0.01). The black lines are contours of λ0 = [0, 10−3, 10−2, 10−1].

secondary mode. As previously noted, in the heat-salt system with γ = 0.5 we do not

need to scale our results to compare them with Holyer’s, as l/lH = 1.

Figure 4.13 shows the real and imaginary parts of the growth rates of secondary in-

stabilities when R−1
ρ = 0.02 and Aψ = [10−2, 10−1, 1, 10]. The form of the secondary

instability is dependent on the value of Aψ. At low Aψ, as in Figure 4.13 (a), we see

that the instability takes the form of an elevator mode (kz = 0), which has the same

growth rate as the fastest-growing elevator mode from linear theory. Thus, at low Aψ

the problem reduces to that given by the cubic dispersion relation (4.15). This sec-

ondary elevator arises because the growth rate of the dominant primary instability is

larger than that of any mode driven by low-amplitude, marginal fingers. However, it

should be noted that there exists an oscillatory mode with positive growth rate when

f = 0.5. This means that, although other modes are generated by and interact with

the elevator modes, they do not do so to the extent that they disrupt the growth of the
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Figure 4.13: Real and imaginary part of the growth rates of secondary instabilities λ in the

heat-salt system with R−1
ρ = 0.02, Pr = 10, τ = 0.01 and Aψ = [10−2, 10−1, 1, 10].
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fastest-growing elevator modes.

Figure 4.13b shows growth rates at Aψ = 10−1. Here we see that the (oscillatory)

f = 0.5 mode is now dominant and it has assumed a larger value of kz. The presence of

this mode is interesting as it was not captured in the study by Holyer, who concluded

that the dominant secondary instability in the heat-salt system was a non-oscillatory

mode with f = 0.

We do see a dominant, non-oscillatory f = 0 mode at Aψ = 1, as shown in Figure

4.13 (c). This value of Aψ is closer to the value of Aψ = 4 chosen by Holyer, so similar

results are to be expected. This mode remains dominant (and non-oscillatory) as Aψ
is increased to 10 as shown in Figure 4.13 (d), though its vertical wavenumber kz also

increases. There are still oscillatory modes present at f = 0.5; however, these are no

longer the fastest growing modes.

It is clear that the wavenumber of the fastest growing mode is dependent on the

strength of the basic state. Figure 4.14 shows the values of f and kz of the FGSM

as Aψ is increased. As already described, the FGSM at low Aψ is an elevator mode

with kz = 0. Increasing Aψ leads to an FGSM with f = 0.5 and a finite value of kz
which increases with Aψ until around Aψ = 0.4. At this point, the FGSM takes on

a value of f = 0 and has finite kz. A further increase in Aψ leads to larger kz. The

fastest growing modes with f = 0.5 are oscillatory in time, while all modes with f = 0

are non-oscillatory. This suggests that there exists two different regimes depending on

the strength of the basic state. These are numbered 1 and 2 on Figure 4.14, and the

modes in each regime are referred to herein as ‘R1’ and ‘R2’ modes.

We now look at the eigenfunctions corresponding to the two different regimes. Figure

4.15 shows contours of streamfunction ψ and density ρ perturbations for a mode in R1,

along with the total streamfunction ψT and total density ρT ; Figure 4.16 shows the
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Figure 4.14: Wavenumbers f and kz of the fastest growing secondary mode vs. Aψ for the

heat-salt system with R−1
ρ = 0.02.

same for an R2 mode. The ‘total’ values are obtained by superposing perturbations

of amplitude Aψ with background elevator modes. The amplitudes of the ψ, T and S

perturbations are normalised to the amplitude of the basic state, Aψ. The horizontal

scale of plots is set to show four basic-state wavelengths (x = {0, 8π/kx}), while the

vertical scale permits two secondary z-wavelengths (z = {0, 4π/kz}).

The R1 perturbations take the form of cells with a horizontal wavelength that is twice

as wide as the basic state elevators, and a vertical wavelength of a similar order. These

perturbations are oscillatory in time in the sense that the mode is a travelling wave

moving upwards—there also exists an equivalent downwardly-propagating mode. Not-

ably, the total streamfunction takes on a form similar to that of the 10th-order system

in Chapter 3. The results of the present study are not directly comparable with those

of Chapter 3, as the elevator modes in Chapter 3 were both fastest-growing and os-

cillatory; however, it is promising that we should see similar behaviour here. Indeed,

we see in Chapter 5 that the secondary modes arising in oscillatory double-diffusive

convection are similar to those arising from steady elevators. We have not studied here

whether the frequency of the oscillations is dependent on the amplitude of the elevator
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1O

Figure 4.15: Perturbations and total values of streamfunction and density for the fastest growing

mode (f, kz) = (0.5, 0.486) in the heat-salt system with R−1
ρ = 0.02 and Aψ = 0.17. This

corresponds to an R1 mode of Figure 4.14. The amplitudes are normalised w.r.t. Aψ.

2O

Figure 4.16: Perturbations and total values of streamfunction and density for the fastest growing

mode (f, kz) = (0, 0.4) in the heat-salt system with R−1
ρ = 0.02 and Aψ = 10. This corresponds

to an R2 mode of Figure 4.14. The amplitudes are are normalised w.r.t. Aψ.
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Figure 4.17: Growth rate λ of the fastest growing secondary modes as a function of Aψ for the

heat-salt system with R−1
ρ = 0.02. Regimes 1 and 2 correspond to those shown in Figure 4.14.

modes, as in the 10th-order system. This would be of interest to future studies.

The R2 perturbations are non-oscillatory, and take on a slightly elongate, cellular form.

The secondary modes cause the elevator modes take on a wavey structure, and forms

recirculating regions between the elevator modes, as shown by the total streamfunction

in Figure 4.16. This is similar to the behaviour observed in the 9th-order system in

Chapter 3, which suggests that perhaps the cellular modes observed here are the same

as those observed to cause layering in the truncated models.

Figure 4.17 shows the growth rate of the FGSM as a function of Aψ. The growth

rate increases monotonically with the strength of the basic state. Here we have shown

that the marginal system first becomes unstable to an oscillatory mode with f = 0.5,

albeit with a relatively small amplitude compared to the FGSM from linear theory.

This is somewhat contrary to Holyer’s conclusion that the fastest growing secondary

mode is non-oscillatory with f = 0; however, the f = 0 mode does dominate at larger

values of Aψ.

Finally, it is worth noting at this point how Aψ affects the accuracy of simulations.
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(a) Aψ = 1 (b) Aψ = 10

Figure 4.18: Value of N required to achieve convergence at each point in (f, kz)-space for two

different values of Aψ.

Figure 4.18 shows the ultimate value of N taken to achieve convergence at each simu-

lation point for Aψ = 1 and Aψ = 10. For clarity, we reduced the number of points in f

and kz to 50 in either direction (down from 100). We see that if Aψ ≤ 0.1 then N = 5

is sufficient to ensure that growth rates converge to a tolerance of 10−5. However as

we increase Aψ the solution requires ever higher values of N . When Aψ = 1 certain

points require N = 9, while at Aψ = 10 the majority of points require N ≥ 14, with

some even taking N = 18. Hence simulations at increasingly high values of Aψ require

increasingly more computational time.

Sweep over R−1
ρ and Aψ

The system studied by Holyer was limited in the sense that it was restricted to a single,

very small inverse density gradient ratio R−1
ρ = 0.02 (Rρ = 50). This is much smaller

(greater) than the typical oceanic value of R−1
ρ = 0.5 (Rρ ' 2) (Stern and Simeonov,

2005). With this in mind, we proceed to investigate the influence of R−1
ρ and Aψ on the

form of the secondary instabilities in a heat-salt system. Unlike Stern and Simeonov

(2005) who studied the behaviour of fastest-growing elevator modes (with kx = k∗x), we

restrict our attention (for now) to that of a system with a marginal basic state (λ0 = 0).
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Figures 4.19 to 4.21 show plots of the wavenumber of the fastest growing mode along

with plots of the growth rates of R1 and R2 modes at different values of R−1
ρ . When

R−1
ρ = 0.17, as shown in Figure 4.19, there appears initially to be two different R1 and

two different R2 modes. These are actually the same mode, whose vertical wavenumber

reduces with increasing Aψ. The reason this appears twice is because the growth rate

of the R2 mode overtakes that of the R1 mode for a short period of time at around

Aψ = 1.6. This implies that, as the elevator mode grows, the form of the secondary

instability may flip between an R1 mode and an R2 mode.

Figure 4.20 shows the results at R−1
ρ = 0.5, which corresponds to typical oceanic con-

ditions. Here we see that the R1 mode first dominates at a larger value of Aψ than

when R−1
ρ = 0.17. That is, the fastest growing elevator mode remains dominant until

larger values of Aψ as the strength of the background state is increased. This implies

that, for a given, low value of Aψ, the growth rate of the fastest growing elevator mode

increases faster than the growth rate of the R1 mode, as R−1
ρ is increased.

The system eventually gives way to an R2 mode, whose vertical wavenumber grows

as Aψ is increased. When R = 0.5, we see that the R2 mode becomes the dominant

secondary mode at a larger value of Aψ than when R−1
ρ = 0.17. We later show that

the R2 mode may be generated predominantly by shear effects in the system. If this

is the case, it appears that a more unstable background state may reduce the effects

of shear-driven secondary modes, or enhance the effects of diffusively-driven secondary

modes.

Figure 4.21 shows the results when R−1
ρ = 0.9. This represents the most unstable

background state. We see little difference in results between R−1
ρ = 0.5 and R−1

ρ = 0.9,

except that the fastest-growing elevator mode has a larger growth rate, and so the R1

mode once again becomes dominant at a larger value of Aψ. Similarly, the R2 mode
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Figure 4.19: Relative growth rate and wavenumber of the fastest-growing secondary mode for

R−1
ρ = 0.17, Pr = 10 and τ = 0.01.
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Figure 4.20: Relative growth rate and wavenumber of the fastest-growing secondary mode for

R−1
ρ = 0.5, Pr = 10 and τ = 0.01.
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Figure 4.21: Relative growth rate and wavenumber of the fastest growing mode for R−1
ρ = 0.9,

Pr = 10 and τ = 0.01.
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becomes dominant at a larger value of Aψ, in keeping with the observed pattern.

Overall, the behaviour is consistent across all values of R−1
ρ in that the initial FGSM

is an elevator mode, followed by a mode with f = 0.5 (R1), and finally a mode with

f = 0 (R2). What differs is the value of Aψ required to enter R1 and R2, and the

growth rates of the corresponding secondary modes. It follows that in the Oceanic

case (R−1
ρ = 0.5), as shown in Figure 4.20, the behaviour is similar to that observed

by Holyer (1984) for R = 0.02, as shown in Figure 4.14. The fact Holyer restricted

her search to a low value of R−1
ρ is relatively inconsequential—there is no collective

instability observed, and the f = 0 mode dominates when Aψ is large enough. The

difference here is that Holyer did not observe the R1 mode which first becomes unstable.

It is informative to plot the values of Aψ at which the secondary mode transitions

into R1 and R2 modes as R−1
ρ is varied. Looking at such ‘critical’ values of Aψ allows

us to better understand the behaviour at different R−1
ρ . We call the critical values at

which the R1 and R2 modes become dominant Aψ,R1 and Aψ,R2 respectively. Figure

4.22 shows the values of Aψ,R1 and Aψ,R2 as a function of R−1
ρ for the heat-salt system.

The dashed lines represent the critical values at which the system transitions into an

R1 mode (and subsequently an R2 mode) for a second time as Aψ is increased. These

second critical values are denoted with a dash, i.e. Aψ,R1′ . It is clear that there exists

a region of R−1
ρ in which we see behaviour similar to that in Figure 4.19; namely that

the growth rate of the R2 mode overtakes that of the R1 mode for a brief period as Aψ
is increased, before yielding again to the R1 mode. At R−1

ρ = 0.2 we see that the R1

mode no longer emerges for a second time, and we just have a single value for Aψ,R1

and Aψ,R2.
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Figure 4.22: Critical values of Aψ as a function of R−1
ρ for the heat-salt system, which has

Pr = 10 and τ = 0.01.

4.4.2 Fastest growing elevators with kx = kx∗

The foregoing investigations focused on the stability of a steady basic state, in which kx
was selected to give zero growth rate. However, there exists a fastest growing primary

elevator mode with positive growth rate, the wavenumber of which we define as k∗x.

Radko and Smith (2012) used Floquet theory to analyse the equilibrium amplitude of

salt-fingers and found that predictions using k∗x were more in line with results of DNS

than those with a marginal basic state. Veronis (1987) also showed that the width of

the initial salt-fingers affects fluxes between the fingers, and thus affects the form of the

secondary instability. Therefore, we here study the secondary instabilities arising in a

heat-salt system from a basic state with kx = k∗x, but assuming the basic state is not

growing. That is, since the basic state would be growing, we must make a quasi-steady

approximation and assume that λ0 = 0. If we find secondary instabilities with growth

rates much larger than that of the fastest-growing elevator modes (i.e. λ/λe > 1) then

this approximation is reasonable.
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Figure 4.23 shows the growth rate and wavenumber of the fastest growing mode as

a function of Aψ for the system studied by Holyer (1984), with Pr = 10, τ = 0.01 and

R−1
ρ = 0.02. Note that the growth rate is displayed as a fraction of the basic-state

growth rate; secondary instabilities are meaningful when λ/λ0 > 1. Herein we call this

the growth rate ratio (GRR).
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Figure 4.23: Relative growth rate and wavenumber of the FGSM for R−1
ρ = 0.02, Pr = 10 and

τ = 0.01.

The most unstable mode at low Aψ is no longer an elevator (kz = 0) mode. This is

because the basic state was taken to be the fastest growing elevator mode. The system

instead first becomes unstable to a mode with f = 0, which we have previously categor-

ised as a ‘regime 2’ (R2) mode. This then yields to an R1 mode with f = 0.5, before

returning again to an R2 mode at larger Aψ. This is reflected in the plot of the growth

rate ratio, in which the R1 mode (red line) initially dominates with a GRR greater

than one. The GRR of the R2 mode (blue line) then overtakes for a short period before

yielding again to the R1 mode.

The behaviour is qualitatively similar to that observed for the heat-salt system with a

marginal basic state (c.f. Figure 4.17); however, the instabilities here occur at values

of Aψ that are 10 times smaller than in the marginal case. This implies that those

basic states with a longer wavelengths in the x-direction (smaller kx) are more readily
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destabilised.

Differences are also observed in the eigenfunctions. Figures 4.24 and 4.25 show contours

of the perturbations and total values of the streamfunction and density for the FGSM

in the heat-salt system in the two different regimes. The patterns are similar to those

observed in the marginal case (cf. Figures 4.15 and 4.16); however, the recirculating

regions in both regimes are either slightly elongate (regime 1) or angled (regime 2).

Again, the combinations of primary and secondary modes are similar to those observed

in Chapter 3 for the truncated systems. That is, the regime 1 eigenfunctions resemble

those observed in the 10th-order system, while the regime two eigenfunctions resemble

those in the 9th- and 17th-order systems.

Furthermore, the results are similar to those obtained by Veronis (1987), who em-

ployed a similar analysis to show that the fastest growing elevator modes, with optimal

horizontal width, can be unstable to modes which cause upward and downward pen-

etrations into adjacent elevators. Indeed, the total density shown in 4.25 comprises

such alternately penetrating regions. This feature is, as noted by Veronis, unsurpris-

ing, as it efficiently transports the stabilising property across the finger boundary from

a finger where it hinders instability towards a finger where it assists the instability.

Radko (2016) also notes that such horizontal transport, for instance initiated by purely

horizontal shear, assists in the development of the instability. We note that the results

of Veronis (1987) were obtained in the salt-sugar system, so this may be why the ho-

rizontal intrusions are more prevalent in that study. Furthermore, Veronis (1987) did

not observe the oscillatory R1 mode which occurs at lower value of Aψ, at least in the

heat-salt system.

Sweep over R−1
ρ and Aψ

Figures 4.26, 4.27 and 4.28 show the wavenumbers and growth rates of the fastest

growing modes when R−1
ρ = 0.2, 0.5 and 0.991 respectively. Indicated on the plots
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1O

Figure 4.24: Perturbations and total values of streamfunction and density for the fastest growing

mode (f, kz) = (0.5, 0.47) in the heat-salt system with R−1
ρ = 0.02, Aψ = 0.035 and kx = k∗x.

This corresponds to a point in R1 in Figure 4.23.

2O

Figure 4.25: Perturbations and total values of streamfunction and density for the fastest growing

mode (f, kz) = (0.0, 0.511) in the heat-salt system with R−1
ρ = 0.02, Aψ = 0.08 and kx = k∗x.

This corresponds to a point in R1 in Figure 4.23.
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are regimes 1 and 2, corresponding to secondary instabilities with f = 0.5 and f = 0

respectively. We see that the GRR for any particular Aψ decreases as R−1
ρ → 1, des-

pite the magnitude of the growth rate actually increasing over this range. This is

because the growth rate of the basic state also increases as R−1
ρ → 1. We note that in

each case, as in the marginally stable case, the fastest growing mode (that is not an

elevator mode) has a horizontal floquet factor of f = 0, or f = 0.5, but never inbetween.

The way in which the system first becomes unstable is relatively unchanged by R−1
ρ , in

that we first observe a regime 1 mode which subsequently yields to a regime 2 mode.

This corresponds to the crossing of red and blue lines in the growth rate vs. Aψ plots

as Aψ is increased. One quite striking observation is that as R−1
ρ → 1 the red and blue

lines approach each other until they almost overlap. However, even at R−1
ρ = 0.991

(Figure 4.28) the lines do not reach such a point, with a regime 1 mode (blue) still

dominating at low Aψ and a regime 2 mode (red) dominating at large Aψ. Hence the

two regimes grow at almost the same rate at all values of Aψ as R−1
ρ approaches unity,

implying that when the background T and S gradients are most unstable (large R−1
ρ )

both secondary modes could influence the basic state elevator modes.

It appears that in all cases, the system first becomes unstable to modes with f = 0.5.

The growth rates of such modes are O(10) – O(100) times larger than that of the basic

elevator modes before we even see the f = 0 modes, which implies that as Aψ increases

from a low-amplitude perturbation, the system will first become unstable to a fast-

growing mode with f = 0.5.

However it must be noted that at low values of Aψ and high values of R−1
ρ , the col-

lective instability can be the fastest growing mode. As discussed in Chapter 1, the

collective instability is characterised by very long internal gravity waves, and are thus

represented here by very small values of f and kz. Figure 4.29 shows the growth rate

and wavenumber when R−1
ρ = 0.991, detailing a smaller region of Aψ. Here the growth
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Figure 4.26: Relative growth rate and wavenumber of the FGSM for R−1
ρ = 0.2, Pr = 10 and

τ = 0.01.
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Figure 4.27: Relative growth rate and wavenumber of the FGSM for R−1
ρ = 0.5, Pr = 10 and

τ = 0.01.
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Figure 4.28: Relative growth rate and wavenumber of the fastest growing mode for R−1
ρ = 0.991,

Pr = 10 and τ = 0.01.
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rate plot shows the growth rate of the regime 1 mode, along with the growth rate of the

fastest growing mode with any wavenumber. Here, the FGSM initially has non-zero

(but very small) values of f and kz, indicating the presence of the collective instability.

This subsequently gives way to an R2 mode at Aψ = 0.08 and then an R1 mode at

Aψ = 0.017.

Figure 4.30 shows the growth rate and wavenumber of the FGSM at even lower values

of Aψ. It is clear that f and kz are both non-zero and take on very small values, indic-

ating the presence of the collective instability. Although this is the FGSM at this point,

the growth rate is only marginally larger than that of the basic state elevator mode

and so the quasi-steady approximation may not be accurate. Nevertheless, it indicates

that—perhaps contrary to Holyer’s findings—the collective instability may indeed be

the fastest growing mode under certain conditions in the heat-salt system.
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Figure 4.29: Relative growth rate and wavenumber of the fastest growing mode for R−1
ρ = 0.991,

Pr = 10 and τ = 0.01, presented at low Aψ to capture the collective instability
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Figure 4.30: Relative growth rate and wavenumber of the fastest growing mode for R−1
ρ = 0.991,

Pr = 10 and τ = 0.01, presented at low Aψ to capture the collective instability
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4.4.3 Effect of the Prandtl Number

We have shown that the form of the secondary mode is dependent on the horizontal

scale and amplitude of the basic state Aψ, along with the strength of the background

thermal and compositional gradients R−1
ρ . We now investigate the influence of the

Prandtl number Pr = ν/κT . The Prandtl number may be thought of as akin to the

strength of inertial terms in the system—an infinite Prandtl number represents an

effectively inertia-free system, and vice-versa. For reference, low-Pr double-diffusive

convection is typically observed in the Sun, while a salt-sugar system typically has

Pr = 103 (though τ is also different in each case).

Here we briefly investigate the influence of Pr on the form of the secondary instabil-

ities. Whilst the wavenumber plots presented in the previous section were useful for

describing the interplay between modes, it may not be so easy to spot patterns when

reproducing such plots for a wide range of Prandtl numbers. Therefore, we instead

look at the ‘critical’ values of Aψ at which the dominant mode switches between an R1

mode and an R2 mode. Using Figure 4.26 as an example, Aψ,1 will be the value of Aψ
at which the R1 mode becomes dominant—here, Aψ,1 = 0.2—while Aψ,2 will be the

value at which the R2 mode becomes dominant—here, Aψ,2 = 4.7.

In Figure 4.31 we plot Aψ,1 and Aψ,2 as a function of R−1
ρ for Pr = [0.1, 10, 100]

when kx = k∗x. At higher values of Pr, a larger Aψ is required for the R2 mode (black

line) to dominate. This implies that for infinite Pr, we may never see the R2 mode.

A larger value of Aψ leads to larger velocities within the elevators and correspondingly

high levels of shear between the elevators. Thus, a larger Pr implies that a larger

shear would be required to see a shear-driven flow. Owing to the fact that the R2

mode is observed at larger values of Aψ, and that the R2 mode is less prominent at

higher values of Pr, we hypothesise that the R2 mode is, at least in part, shear-driven.

The shear instability is perhaps reinforced by diffusive effects—that is, the instability

leads to the passing of diffusive components into adjacent elevators, as described above.
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ρ for Pr = [0.1, 10, 100] and τ = 0.01.
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We investigate this hypothesis further in section 4.5. We here conclude that a large

value of Pr corresponds to relatively low inertial effects, suggesting that the R1 in-

stability predominantly observed at high Pr is driven entirely by diffusive, rather than

shear effects.

4.4.4 Salt-Sugar System

It can be difficult to generate meaningful results from experiments using the heat-salt

system, because the system evolves over long time-scales (Merryfield, 2000). For this

reason, researchers may resort to either field data (Molcard and Tait, 1977), or experi-

ments with two other different diffusive components—-most commonly salt and sugar

(Stern and Turner, 1969). In this configuration, salt plays the role of the faster-diffusing

component, while sugar plays the role of the slower-diffusing component. Mathemat-

ically, this results in a change of the Prandtl and Lewis numbers to Pr = 1000 and

τ = 1/3 respectively. Holyer (1984) studied the salt-sugar system and concluded that

the fastest growing secondary mode in such a system was oscillatory with f = 0.5—

much like the R1-modes we observed in the heat-salt system at low Aψ. Veronis (1987),

on the other hand, found a fastest growing secondary mode with f = 0 which corres-

ponds to an R2 mode. We once again expand on the work of Holyer to study the

salt-sugar system over a much larger range of wavenumbers (f, kz) and amplitudes Aψ.

Figure 4.32 shows the growth rate of elevator modes as a function of R−1
ρ and kx.

In line with Holyer (1984), we first take R−1
ρ = 0.91 and choose kx to give marginal

stability. Hence, in this case, kx = 1.18. Figure 4.33 shows the growth rate of secondary

modes (left) along with the when R−1
ρ = 0.91, Pr = 1000, τ = 0.01 and Aψ = 100.

Here, the results are scaled using lH =
(

1
((R/τ)−1)

)−4
) as described in the scaling sec-

tion to allow a direct comparison to be made with the results of Holyer (1984). Holyer

identifies the fastest-growing secondary mode under these parameters as that having a

wavenumber f = kz = 0.5, and growth rate λ = 5.8+39.8i. This matches the results we
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Basic state stability of the heat-salt system.
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system when R−1
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Figure 4.34: Wavenumber of the FGSM vs. Aψ in the salt-sugar system, when R−1
ρ = 0.91

see in Figure 4.33, indicating that our model is working as expected. Furthermore, we

see from our model that the fastest growing non-oscillatory mode has f = 0, kz = 0.15,

and a growth rate of λ = 3.89, which is also in agreement with Holyer.

We now proceed to vary the strength of the elevator modes by varying Aψ. Figure

4.34 shows the wavenumber of the fastest growing mode for 0 < Aψ < 20. We see

that the fastest-growing mode initially occurs at low Aψ as an R1 mode, with f = 0.5;

however, between Aψ = 2 and Aψ = 9, we see an additional mode with finite f and kz
emerges as the fastest growing mode. This ‘intermediate’ mode eventually gives way

to the R1 mode, before emerging again at Aψ = 20. Although not shown here, the R1

mode eventually dominates once again, and remains the FGSM until approximately

Aψ = 600, at which point an R2 mode takes over as the FGSM. Thus, we see here

that the modes observed by Holyer (1984) are the fastest growing modes at low Aψ,

while those observed by Veronis (1987) are observed at large Aψ. We further see the

emergence of an ‘intermediate’ mode which has not prveiously been documented.

The behaviour observed is generally consistent with that in the heat-salt system, so

we do not investigate this system further at this time. It may be of interest to further

study the ‘intermediate’ mode, for example to determine whether this mode is more

prominent in different parameter regimes. For now, we move on to studing the role of

heat and salt in the system, before looking at the stability of oscillatory elevator modes.
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4.5 Role of Heat and Salt

Previous studies have investigated the stability of purely hydrodynamic, sinusoidal

shear flows, generally referred to as Kolmogorov flows. Beaumont (1981) studied the

stability of a vertical sinusoidal velocity profile (i.e. U = U(z)i) using Floquet theory

applied to the so-called Orr-Sommerfeld equation. The Orr-Sommerfeld equation, de-

rived as in Lin (1966), describes the growth of perturbations to a viscous fluid subject

to a spatially periodic velocity profile. For ease of comparison with Beaumont (1981),

we here derive the Orr-Sommerfeld equation using a slightly different notational con-

vention than has been used so far in this thesis. The equations are later transformed

to be consistent with our usual notation.

The viscous momentum equation describing perturbations to a static basic state, non-

dimensionalised using the thermal diffusivity κT , but in the absence of stratification,

becomes (
∂

∂t
− Pr∇2

)
∇2ψ = −J(ψ,∇2ψ). (4.20)

where Pr = ν/κt is here an inverse Reynolds number, as discussed below. We note that

Re = ρUd/ν could instead be obtained by non-dimensionalising using the viscosity, ν,

as opposed to κT . We take the perturbation ψ to be the sum of a spatially periodic

basic state and a secondary perturbation, i.e. ψ = ψ̄ + ψ′, with ψ̄(x) = ψ̄(x + T ) for

some period T and all x. We then assume a secondary perturbation of the form,

ψ′ = φ(z)eiα(z−ct), (4.21)

where c = cR+icI is a complex wave velocity and α is a positive wavenumber. The sign

of cI then determines the stability of the basic flow to this perturbation (Beaumont,

1981). Noting that ψ̄′ = U(z) and φ = −φ′′, where prime denotes differentiation with

respect to z, we obtain the viscous Orr-Sommerfeld equation,

(U − c)(φ′′ − α2φ)− U ′′φ = Pr

iα
(φiv − 2α2φ′′ + α4φ). (4.22)
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To retrieve the equations in the form of Beaumont, we require Pr = 1/Re. Hence Pr is,

in this case, an inverse Reynolds number. This system is identical to that of Beaumont,

except that Beaumont employed a z-dependent basic state (U = cos z), in contrast to

our x-dependent basic state. Since we are not interested here in gravitational terms we

may assume, without loss of generality, that Beaumont used an x-dependent basic state.

Thereby, U = cosx is consistent with an elevator mode of the form ψ̄ = Aψ sin (kxx)

when Aψ = kx = 1. The vertical wavenumber is transformed by α → kz, and the

growth rate is transformed by −iαc→ λ, hence λR = αcI .

Beaumont expanded the function φ(x) in Floquet form as,

φ(x) = eγx
∞∑

n=−∞
ane

2πinx
T , (4.23)

where n ∈ Z, and T is the period of the basic state (T = 2π). To obtain the equations

in our usual notation, we employ the following transformations: Floquet factor γ → f ;

eigenmode an → ψn; and horizontal wavenumber 2π/T → kx = 1. We assume a basic

state streamfunction of the form ψ̄ = Aψ cos (kxx), giving U = ψ̄′ = −Aψkx sin(kxx),

and Ū ′′ = Aψk
3
x sin (kxx). Note that we could equally take ψ̄ = Aψ sin (kxx) as our

initial state. Furthermore, introducing the amplitude Aψ affects the Reynolds number;

to retreive the equations in the form of Beaumont, we require Pr/Aψ = Re. This

makes sense intuitively—for a given Pr, a larger basic state streamfunction (and thus,

velocity) will give a larger Reynolds number. Increasing Aψ increases the strength of

the shear.

4.5.1 Beaumont Results

Beaumont showed that steady Kolmogorov flow is unstable for Re >
√

2. The author

derived an infinite system of equations, not dissimilar to ours, and determined the

growth rates of secondary modes. In Figures 1 and 2 we present results obtained using

our code, taking parameters consistent with Beaumont. That is, we take Aψ = kx = 1,

and Re = 1/Pr = [10, 20].
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Figure 4.35: Growth rate of secondary instabilities in steady Kolmogorov flow with Re = 10.

Figure 4.36: Growth rate of secondary instabilities in steady Kolmogorov flow with Re = 20.

Note that f is now on the vertical axis and kz is on the horizontal axis to permit a

direct comparison with the results of Beaumont. We see that the results are identical

to those of Beaumont (1981), with the fastest-growing secondary mode having a floquet

factor f = 0 and a finite vertical wavenumber kz. The FGSM is non-oscillatory, though

growing modes do exist having finite λi. Increasing Re from 10 to 20 for the same value

of Aψ = 1 (which is equivalent to reducing the Prandtl number Pr) reveals a FGSM

having a larger growth rate and a lower value of kz than that observed when Re = 10.

Increasing Re (reducing Pr) may be thought of as strengthening the inertial terms (i.e.

ρUδ) or weakening any viscous effects. This suggests that in fixed-amplitude sinusoidal

hydrodynamic shear, the fastest growing secondary mode has a larger growth rate, and

a longer wavelength in the z-direction, when basic state inertial effects are stronger.
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Figure 4.37 shows the growth rate of fastest-growing secondary modes having positive

growth rates when Pr = 10 (Re = 1/10), which corresponds to that in the heat-salt

system. The results are shown at Aψ = 10, Aψ = 12, and Aψ = 15. The white regions

here are stable. We see that, initially, there are no secondary modes with positive

growth rates; i.e. we do not see a mode with f = 0.5. At Aψ = 12, the FGSM has

f = 0 and kz = 0.125. Increasing Aψ further, to 15, leads to the vertical wavenumber

of the FGSM increasing to 0.175. This behaviour is similar to that observed for the

R2 mode in the heat-salt system. Indeed, the plot of the growth rate as a function of f

and kz for this system appears to resemble that of Figure 4.13 for the heat-salt system,

wherein the R2 mode has comparable vertical wavenumbers of kz = 0.2 at Aψ = 1, and

kz = 0.38 when Aψ = 10.

Relating this back to double-diffusive convection, one might expect that increasing

the strength of inertial terms (reducing Pr or increasing Aψ) could lead to a faster-

growing, underlying secondary mode arising due to hydrodynamic shear. If the inertial

effects are strong enough, this underlying instability may eventually dominate over a

‘diffusive’ instability. To the contrary, removing intertial effects from the system, for

instance by increasing the Prandtl number towards infinity, may ensure that secondary

modes indicative of hydrodynamic shear never appear. Indeed, it was observed from

Figure 4.31 that as Pr is increased, we require an increasingly larger value of Aψ to

observe a dominant mode having f = 0.

Furthermore, as shown in Figure 4.37, increasing Aψ in the Kolmogorov system results

in the vertical wavenumber of the FGSM increasing, as with the f = 0 mode in the

double-diffusive system. Furthermore, the f = 0 mode emerges at lower values of Aψ in

the double-diffusive system, when compared to the Kolmogorov system. This leads us

to conclude that the f = 0 mode observed at large Aψ in the double-diffusive system is

largely a shear-induced instability that is perhaps reinforced by double-diffusive effects.
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Figure 4.37: Growth rate of secondary modes in the Kolmogorov system when Pr = 10 and,

Top: Aψ = 10; Middle: Aψ = 12; and Bottom: Aψ = 15.

188



4.6 Shear-free System

4.6 Shear-free System

Kerr and Tang (1999) studied a double-diffusive system enclosed between two vertical

boundaries and stratified by a vertical salinity gradient. The boundaries were heated

to create a horizontal temperature difference. Under certain conditions, the resulting

instability was found to be destabilised by an increased horizontal salinity gradient

and stabilised by a background shear flow. Indeed, it is not unusual to see shear flows

providing a stabilising effect in double-diffusive systems. Linden (1974), for example,

showed that convection can be suppressed by shear in a salt fingering system.

Therefore, in order to further understand the influence of hydrodynamic shear on the

secondary instabilities in our system, we now study the secondary instabilities that

arise in the absence of any shear term in the momentum equation. Specifically, rather

setting T = S = 0 as we did in § 4.5, we now delete the Jacobian shear term in the

momentum equation of (4.24)–(4.26). This gives,

(
∂

∂t
− Pr∇2

)
∇2ψ = Pr

(
∂T

∂x
− ∂S

∂x

)
, (4.24)(

∂

∂t
−∇2

)
T + sgn(Tz)

∂ψ

∂x
= −J(ψ, T ), (4.25)(

∂

∂t
− τ∇2

)
S + sgn(Sz)R−1

ρ

∂ψ

∂x
= −J(ψ, S), (4.26)

Substituting for perturbations in the form given by equation (4.1), linearising, and

seeking solutions in Floquet form, we get,

− λψn = PrK2
nψn + k3

xkzAψ
2K2

n

[ψn−1 − ψn+1] + iPr
(f + n)kx

K2
n

(Tn − Snn),

λTn = −K2
nTn+kxkzAψ

2 [Tn−1 − Tn+1]+ ikxkzAT
2 [ψn−1 + ψn+1]−i sgn(Tz)(f+n)kxψn,

λSn = −τK2
nSn+kxkzAψ

2 [Sn−1 − Sn+1]+ ikxkzAS
2 [ψn−1 + ψn+1]−i sgn(Sz)R−1

ρ (f+n)kxψn,
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4. INSTABILITIES OF NON-OSCILLATORY ELEVATOR MODES

We first determine the secondary instabilities arising when R−1
ρ = 0.02 and when kx = 1

(corresponding to marginal growth. These parameters correspond to those used to gen-

erate Figures 4.13, so we can make direct comparisons of the results in each case. Figure

4.38 shows contours of the growth rate of secondary modes as a function of f and kz

at specific values of Aψ from 0.01 to 10.

We see that, initially, as Aψ is increased from 0.01 to 0.1, the fastest growing mode

‘jumps’ from the kz = 0 axis to the f = 0.5 axis. This behaviour was observed in our

previous simulations of the full system, but notably was not observed in the Kolmogorov

system. Unlike in the full system, however, where a further increase in Aψ to 1 resulted

in an f = 0 mode becoming the dominant mode, we here see that the fastest growing

mode remains an f = 0.5 mode. Further increasing Aψ to 10 leads only to changes in

kz. That is, we see that the fastest growing mode remains on the f = 0.5 axis. We

have even studied the system up to Aψ = 10000, and we find the dominant mode is

always an f = 0.5 mode, though it is not always oscillatory.

The behaviour at low Aψ is consistent with that of the full system, as low Aψ im-

plies low shear. At larger values of Aψ, i.e. when shear terms are larger in the full

system, the dominant mode is always an f = 0 mode. In the purely hydrodynamic

Kolmogorov system, in contrast, we never see an f = 0 mode. Rather, the secondary

instabilities in the Kolmogorov system more closely resemble those at large Aψ (large

hydrodynamic shear) in the full system. This further supports the our hypothesis that

the f = 0 modes are largely shear-driven instabilities, while the f = 0.5 modes are

largely diffusively-driven.
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Figure 4.38: Real and imaginary part of the growth rates of secondary instabilities λ in the

shear-free heat-salt system with R−1
ρ = 0.02, Pr = 10, τ = 0.01 and Aψ = [10−2, 10−1, 1, 10].
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4.7 Conclusions

We have seen that the form of the secondary modes arising from steady (in time)

elevator modes is highly dependent in the amplitude of the elevator modes. At low

amplitudes, we see an oscillatory mode with f = 0.5 as identified in the study by

Holyer (1984), while at larger amplitudes, we see a non-oscillatory mode with f = 0,

as identified in the study by Veronis (1987). We have thus developed a more complete

picture of the stability properties of steady elevator modes, which shows that the dif-

ferent modes observed by previous authors are each present in the system, but that

different values of Aψ are required to observe them.

In particular, we see that the f = 0 modes, driven by higher-amplitude elevator modes,

are likely symptomatic of a shear instability. Indeed, the effect of increasing the Prandtl

number on the results is that a higher value of Aψ is required to observe a mode with

f = 0. This is because larger Prandtl number corresponds to lower intertial terms,

and so the viscious shear effects become less effective. Our hypothesis is supported by

a model of hydrodynamic shear which was developed using similar Floquet methods.

The modes observed in such systems always have f = 0. Furthermore, the vertical

wavenumber of the secondary mode increases with increasing Aψ, as in the heat-salt

system.

Finally, we conclude here by noting that the structure of the f = 0 mode corres-

ponds closely to that of the cellular mode used in the truncated models of Chapter

3. This is particularly interesting, as the truncated models are oscillatory in nature,

while we are here looking at a steady, salt-fingering system. This similarity is discussed

further in Chapter 5, when we look at the stability of fully oscillatory elevator modes.
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Chapter 5

Instabilities of Oscillatory Elevator Modes
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5.1 Introduction

In this Chapter, we investigate the instabilities arising from oscillatory elevator modes,

which are the fastest-growing modes in double-diffusive convection when the temperat-

ure gradient is destabilising. We extend the Floquet methods developed in Chapter 4

to study the stability of steady elevator modes, and develop a new model which takes

into account the time-dependency of the basic state. The findings of previous stud-

ies, such as those of Holyer (1984), Veronis (1968), and Radko and Smith (2012) in

combination with the results presented in Chapter 4, provide a broad picture of the be-

haviour of steady elevator modes. We here apply these methods to investigate whether,

in combination with the upended basic state temperature and salinity gradients, the

oscillatory nature of the primary modes affects the structure of the known secondary

modes. We also study whether oscillating elevator modes give rise to any different sec-

ondary modes, and we begin to compare the results with a fully hydrodynamic system

to determine the influence of inertia on the secondary modes.

We find that the observed secondary modes exhibit structures similar to those of sec-

ondary modes arising from a steady basic state, except that the structures oscillate

in time. Additional secondary modes are discovered, and it is found that the system

responds to changes in the width of the basic state, or varying fluid parameters, in

the same way as a system comprising steady elevator modes—that is, an increase in

the Reynolds number drives a shear instability comparable to that arising in a purely

hydrodynamic, oscillatory shear flow.

Despite the interest in Floquet analysis as applied to (infinitely long) salt-fingers, little

attention has been paid to its applications in the diffusive regime. Perhaps the only

notable example is found in a recent paper by Radko (2016) in which Floquet ana-

lysis was used to show that a system consisting of both a dynamically stable shear flow

and a diffusively stable stratification could become unstable. The results are relevant to
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ocean dynamics, wherein phenomena associated with instabilities (such as layering) are

observed in regions with linearly stable temperature and salt gradients. Radko showed

that a dynamically stable shear flow can cause a statically stable double-diffusive sys-

tem to become unstable. We are interested in cases in which a static diffusive state is

in itself unstable, i.e. in the absence of any external shear.

The time-dependency of the basic state makes it trickier to model than its steady

counterpart. In other applications of Floquet theory, including that of Radko (2016)

discussed above, the basic state is assumed to be quasi-steady in time; however, in the

presence of an inherently time-dependent basic state, this assumption no longer makes

sense. Instead we formulate our Floquet expansion in such a way that accounts for

the oscillatory nature of the basic state, but maintains the assumption that the basic

state amplitude does not grow (significantly) in the time that it takes for secondary

perturbations to grow.

This Chapter begins in §5.2.1 with an introduction to time-dependent Floquet ana-

lysis, followed by a derivation of the equations governing the growth rates of secondary

instabilities arising from time-dependent elevator modes. In §5.3 we discuss methods

for solving the resulting eigenvalue problem, while in §5.3.2 we look at ensuring the

solutions are accurate. §5.4 comprises a parametric study, in which we sweep over

different parameters and compare our results with those of Chapter 4.

We then outline the potential for future studies on the basis of our model, includ-

ing studying an associated purely hydrodynamic oscillatory shear flow and a simplified

set of equations for studying a high Prandtl number system. We conclude by compar-

ing how the fastest growing secondary modes in the oscillatory system relate to those

modes included in the truncated models of Chapter 3.
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5.2 Secondary Instabilities

The stability of a static basic state was explored in Chapter 2, showing that the system

is unstable to infinitely long, oscillatory, x-dependent elevator modes. Elevator modes

are full solutions to the governing nonlinear equations, hence they do not interact with

themselves to produce other modes. This means that we can take such a solution as a

basic state and look at secondary perturbations to that state. In the diffusive case, the

growing elevator solutions are oscillatory, so perturbations may be written as

ψ = Āψ cos(kxx) + ψ′,

T = ĀT sin(kxx) + T ′, (5.1)

S = ĀS sin(kxx) + S′,

where Āξ = Aξe
λ0t for ξ = {ψ, T, S}, and λ0 is the growth rate of the primary instabil-

ity. In the oscillatory regime the growth rate is complex, i.e. λ0 = σ+iω, where ω is the

basic state frequency. The fastest growing elevator modes are defined to be those with

kx = k∗x. In order to find secondary modes that grow much faster than these elevator

modes, we may make the assumption that the basic state is quasi-steady with σ = 0

and ω 6= 0. Alternatively we may take a marginal basic state with kx chosen to give

zero growth rate (but non-zero ω), resulting in a purely oscillatory basic state which

satisfies the same conditions.

Substituting perturbations of the form of (5.1) into the governing nonlinear perturb-

ation equations (4.24)- (4.26) and linearising, under the assumption of a quasi-steady

basic state with λ0 = iω, yields(
∂

∂t
− Pr∇2

)
∇2ψ′ = kxĀψ sin(kxx) ∂

∂z
∇2ψ′+ k3

xĀψ sin(kxx)∂ψ
′

∂z
+Pr

(
∂T ′

∂x
− ∂S′

∂x

)
,

(
∂

∂t
−∇2

)
T ′ + sgn(Tz)

∂ψ′

∂x
= kxĀψ sin(kxx)∂T

′

∂z
+ kxĀT cos(kxx)∂ψ

′

∂z
, (5.2)

(
∂

∂t
− τ∇2

)
S′ + sgn(Sz)

∂ψ′

∂x
R−1
ρ = kxĀψ sin(kxx)∂S

′

∂z
+ kxĀS cos(kxx)∂ψ

′

∂z
.
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5.2 Secondary Instabilities

where ω is real and non-zero, and Āξ = Aξe
iωt + A∗ξe

−iωt where ξ = {ψ, T, S} and A∗ξ

is the complex conjugate of Aξ.

5.2.1 Floquet Theory

The basis of Floquet theory was discussed in Chapter 4 in relation to a system with a

steady basic state. It was shown that a set of PDEs with periodic coefficients may be

reduced to an infinite eigenvalue problem by expanding the variables (in this case, the

secondary perturbations) in an infinite sum of integer multiples of wavenumbers in the

direction of periodicity. This method may be applied to systems which are periodic in

multiple directions. Indeed, Radko and Smith (2012) studied 3D salt fingers using a

so-called ‘double-Floquet expansion’ in two spatial directions. In this Chapter, we use

a double-Floquet expansion in space and time to model 2D oscillatory elevator modes

which are periodic in both space and time.

The coefficients in equations (5.2) are independent of z, periodic in x with period

2π/kx and periodic in t with period 2π/ω; hence, solutions may be written in the

double-Floquet form
ψ′

T ′

S′

 = exp(ifkxx+ ikzz + λt)
∞∑

n=−∞

∞∑
m=−∞


ψn,m

Tn,m

Sn,m

 exp(inkxx+ imωt), (5.3)

where n and m are integers and f is the ‘Floquet coefficient’ governing the fundamental

wavelength in x. Instead of defining the value of kx, we here employ the spatial Floquet

coefficient f to limit the parameter space to be explored to a range of 0 < f < 0.5. This

is explained further in the section on Floquet theory in Chapter 4. In contrast, since

the value of the growth rate, λ, is to be calculated, and may take any (complex) value,

we do not require a temporal Floquet coefficient that can varied to limit a parameter

range to be studied.
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It is, however, important to limit the values of λ that we take in some way (Blen-

nerhasset and Bassom, 2002). We note that λ is a complex growth rate defined by

λ = λR + iλI . In the same way that the total horizontal wavenumber of a perturbation

is given by kx,T = (f +n)kx with 0 < f < 0.5 and n ∈ Z, the total temporal wavenum-

ber of such a variable is given by λi,T = λI +mω with m ∈ Z. We may limit λI to the

range 0 ≤ λI ≤ ω whilst still capturing any value of λi,t through the infinite sum over m.

It may at first appear unnecessary to restrict λ in this way, since λI is a calculated

value. However, for any particular λI , only one value of m will correspond to the largest

growth rate λR. We observe in simulations that the modes with the largest values of λR
typically have large positive or negative values of λI with correspondingly large values

of m with the opposite sign. In other words, if λI is large and positive, the modes with

maximum growth rate have large negative values of m (and vice versa). This means

that the total wavenumber (λI , T ) = λI + mω, which is representative of the form of

the perturbation, is actually not large. The value of m taken is typically the maximum

value possible, m = M . Such large values of m are misleading, as they imply that the

solution is not converged. We return to this issue again in § 5.3.3.

Floquet Equations

We are now in a position to obtain the infinite set of equations governing the growth

rates of secondary instabilities. We substitute the Floquet form of perturbations (5.3)

into the governing PDEs (5.2) to deal with the periodic coefficients. Here, we demon-

strate how the equations are obtained by looking at just one term in the momentum

equation. For example, the coefficient k3
xĀψ sin(kxx) interacts with ∂ψ′

∂z as follows:

k3
xĀψ sin(kxx)∂ψ

′

∂z

= k3
xĀψ sin(kxx) ∂

∂z

(
exp(ifkxx+ ikzz + λt)

∞∑
n=−∞

∞∑
m=−∞

ψn,m exp(inkxx+ imωt)
)

= ik3
xkzĀψ exp(ifkxx+ ikzz + λt) · sin(kxx)

∞∑
n=−∞

∞∑
m=−∞

ψn,m exp(inkxx+ imωt).
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For clarity we set B = k3
xkzĀψ exp(ifkxx+ ikzz + λt), giving

iB sin(kxx)
∞∑

n=−∞

∞∑
m=−∞

ψn,me
i(nkxx+mωt)

= B

2
(
eikxx − e−ikxx

) ∞∑
n=−∞

∞∑
m=−∞

ψn,me
i(nkxx+mωt)

= B

2

∞∑
n=−∞

∞∑
m=−∞

(
ψn,me

i(n+1)kxx − ψn,mei(n−1)kxx
)
eimωt.

Summation indices may be shifted to recover a factor of exp(ikxx) in each term, i.e.

∞∑
n=−∞

ψn,me
i(n+1)kxx ≡

∞∑
n=−∞

ψn−1,me
inkxx,

∞∑
n=−∞

ψn,me
i(n−1)kxx ≡

∞∑
n=−∞

ψn+1,me
inkxx.

Hence, the periodic coefficients and partial derivatives are replaced with modal amp-

litudes as

k3
xĀψ sin(kxx)∂ψ

′

∂z
= B

2

∞∑
n=−∞

∞∑
m=−∞

[ψn−1,m − ψn+1,m] ei(nkxx+mωt). (5.4)

The periodicity in t is handled in the same way. Taking a factor of Āψ out of B (and

redefining B appropriately), equation (5.4) becomes

B

2 (Aψeiωt +A∗ψe
−iωt)

∞∑
n=−∞

∞∑
m=−∞

[ψn−1,m − ψn+1,m] ei(nkxx+mωt)

= B

2

∞∑
n=−∞

∞∑
m=−∞

(
Aψ [ψn−1,m−1 − ψn+1,m−1] +A∗ψ [ψn−1,m+1 − ψn+1,m+1]

)
ei(nkxx+mωt).

Similar expressions may be obtained for each set of periodic coefficients in (5.2). The

inclusion of the time-periodicity doubles the number of modes in each of the three per-

turbation variables (ψ, T, S). Expanding as above, and noting that in the oscillatory

regime sgn(Tz) = sgn(Sz) = −1, we obtain the following infinite set of equations for

the growth rate of secondary perturbations λ in terms of the modal amplitudes:
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λψn,m = −imωψn,m − PrK2
nψn,m − iPr (f + n)kx

K2
n

(Tn,m − Sn,m)

+kxkz
2K2

n

[(K2
n−1 − k2

x)(Aψψn−1,m−1 +A∗ψψn−1,m+1) (5.5)

−(K2
n+1 − k2

x)(Aψψn+1,m−1 +A∗ψψn+1,m+1)]

λTn,m = −imωTn,m −K2
nTn,m − isgn(Tz)(f + n)kxψn,m

+kxkz
2 [Aψ(Tn−1,m−1 − Tn+1,m−1) +A∗ψ(Tn−1,m+1 − Tn+1,m+1)] (5.6)

+ ikxkz
2 [AT (ψn−1,m−1 + ψn+1,m−1) +A∗T (ψn−1,m+1 + ψn+1,m+1)]

λSn,m = −imωSn,m − τK2
nSn,m − isgn(Sz)R−1

ρ (f + n)kxψn,m

+kxkz
2 [Aψ(Sn−1,m−1 − Sn+1,m−1) +A∗ψ(Sn−1,m+1 − Sn+1,m+1)] (5.7)

+ ikxkz
2 [AS(ψn−1,m−1 + ψn+1,m−1) +A∗S(ψn−1,m+1 + ψn+1,m+1)]

Since we have obtained these equations under the assumption that ω is non-zero, we

cannot reduce them to steady form by simply setting ω = 0. Truncating the system at

N and M , we can express equations (5.5) - (5.7) in the matrix form,

λη = Aη (5.8)

where

η = (...ψn−1,m, Tn−1,m, Sn−1,m, ψn,m, Tn,m, Sn,m...)T ,

and A is a square matrix of size 3(2N + 1)(2M + 1).

The equations decompose into two systems—one with (n+m) even, and one with (n+m)

odd. This is because each ξn,m is a function of ξn±1,m±1 only, where ξ = (ψ, T, S). If

n+m is even (odd), then (n± 1) + (m± 1) is also even (odd). Hence, only even terms

or odd terms interact with one other. Only one of the two systems gives the largest

value of λR—the other is ignored. This is observed in the eigenmode spectra of § 5.3.3
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We may make use of this feature to speed up simulation times. In hindsight, solving the

full eigenvalue problem requires significant computational resources, with simulations

running for days to weeks depending on the desired resolution, level of truncation and

parameter range. Splitting the system in half reduces the order of the problem by a

factor of four—the full system is of the order 3(2N + 1)(2M + 1) = O(12N2) (assuming

N = M), while the reduced systems are each of order 3(N + 1)(M + 1) = O(3N2).

It is unknown beforehand which system (even or odd) will provide the largest growth

rate, so we calculate λ for both systems separately and then select that with the largest

growth rate. Solving two systems of order O(3N2) separately is still faster than solving

the full system at O(12N2). Note that we obtain the two systems by first calculating

the full matrix A and then splitting it into two. The building of the matrix takes a

significant amount of computational time in itself; however, it would be difficult to

make this process any quicker.

5.3 Numerical Implementation and Convergence

To solve our set of ODEs numerically, we first truncate the expansion (5.3) at a value

N and M , such that n ∈ {−N,N} and m ∈ {−M,M}. Collecting individual Fourier

components, we then express these equations in the matrix form

λη = Aη, (5.9)

where

η = (...ψn−1,m, Tn−1,m, Sn−1,m, ψn,m, Tn,m, Sn,m...)T ,

and A is the square matrix of size 3(2N + 1)(2M + 1) obtained from (5.5) - (5.7), and

is a function of (kx, kz, f , Rρ, τ , Pr, N , M , Aψ, AT , AS).
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5.3.1 Solver

The eigenvalue problem (5.8) is solved using the in-built MATLAB function eig, which

computes all eigenvalues of the non-symmetric matrix A using QZ-factorisation, norm-

alising the eigenvectors to Euclidian length 1. We contrasted this solver with a second

MATLAB function eigs, which instead uses an iterative method to return only a sub-

set of eigenvalues.

This study was performed as simulations of the unsteady system were found to re-

quire significant computational resources and take a long time to run—it was thought

that finding only the largest real solutions would improve the speed of simulations. It

was discovered that this was not the case and that, in some cases eigs either struggled

to converge or was not significantly faster. for this reason, all simulations in this chapter

were performed using eig.

The program was built in a similar way to that in Chapter 4, in that the user spe-

cifies the parameters to be investigated (i.e. R−1
ρ , P r, τ and Aψ) and the program then

calculates two different values of kx and ω: one for the marginal state with λR = 0,

and one for the fastest growing mode with kx = k∗x. The program then loops over a

defined range of wavenumbers (f, kz), calculating the growth rate with the largest real

part at each point.

It is important to note at this stage that we restrict the range of λI from which we

obtain modes. It is clear from the form of the double-Floquet expansion (4.9) that the

frequency of each eigenmode is made up of two parts, i.e. Im(λ) = λI + mω. Since m

is an integer, we need restrict our attention only to values of λI ∈ [0, 1). It is not only

desirable to restrict our results as such, but also necessary to ensure the results are ac-

curatey. This will be expanded on in the following section as we study the convergence

of our results.
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5.3 Numerical Implementation and Convergence

Figure 5.1: Growth rate of elevator modes, highlighting the values chosen in our test-case.

5.3.2 Convergence

This section details a number of tests that were performed to ensure the results are

accurate. We discuss how the simulations were improved to obtain reliable results

from which to draw conclusions, while reducing the computational cost. All tests are

performed under the same conditions of R−1
ρ = 1.11, Pr = 10, τ = 0.01 and Aψ = 10.

We take a value of Aψ = 10, as this was shown to give a secondary mode which changes

little with small variations in Aψ. We also choose kx = 0.417 which corresponds to a

marginal elevator mode as determined by equation (2.52) in § 2.3.8. These parameters

correspond to a heat-salt system which is herein referred to as our test case.

The growth rates of elevator modes as instabilities to the static basic state in our test-

case are shown in Figure 5.1. The red lines correspond to the chosen value of R−1
ρ and

the corresponding value of kx giving marginal stability. Figure 5.2 shows a converged

contour plot of the growth rates of secondary instabilities for our test case, which will

serve as a reference throughout this section.
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Figure 5.2: Growth rate of secondary modes in the test case, where R−1
ρ = 1.11, Pr = 10,

τ = 0.01 and Aψ = 10.

5.3.3 Accuracy

It is important to investigate how the results are affected by increasing N and M . If

the truncation level is too low, then we could be missing out important information

and obtaining inaccurate results. On the other hand, if the truncation is unnecessarily

large, the simulations may take a long time to run for very little gain. In this study we

simulate the system at the previously defined test parameters of (R−1
ρ , Aψ) = (1.11, 10),

and increase N and M until the solution ‘converges’.

There are a number of ways to look at convergence, one of which is largely qualit-

ative and involves varying f between 0 and 1, and comparing the growth rates at either

side of f = 0.5 for a range of kz. As the equations possess a symmetry about f = 0.5,

so too should the solutions. This analysis was performed in Chapter 4 for the steady

system, and need not be repeated here; it suffices to say that increasing N and M leads

to better symmetry.
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A more quantitative way to evaluate convergence is to increase N and M at a par-

ticular value of (f, kz) and calculate the eigenvalue at each increment. Evaluating the

difference between subsequent values of λ gives a measure of error, which should de-

crease to an acceptable level (defined by the user) with an increasing level of truncation.

A third method, and the one we first explore here, is to look at the spectrum of eigen-

values. This was performed for the steady system (Chapter 4, §4.3.2) and showed that

the amplitudes of eigenmodes decrease towards the extremes of n. This implies that

the most influential modes are clustered around n = 0 and they become less important

at large n. If we instead found large amplitude modes at the extremes of n then the

level of truncation would be too low, and important information may be omitted. We

follow the same reasoning here, but instead look at the eigenmode spectra over a range

of n and m.

Eigenmode Spectra

Initial testing showed that there was no particular advantage to varying N and M sep-

arately; thus, for this study we set N = M at all times. Figure 5.3 shows the spectrum

of eigenmodes (ψn,m) at (f, kz) = (0, 0.225) and for N = 3. This is the mode with the

largest growth rate from the initial test case shown in Figure 5.2.

In this case, the largest amplitude eigenmodes are clustered around n = 0 and m = 0,

however there are still large values at the edges. This implies that we are missing

important information and the truncation should be increased. Figure 5.4 shows the

same plot for N = 7.

The solutions become more accurate in both the n and m directions with increasing N

and M . For example, we see that the amplitudes at n = 7 drop below 10−5, indicating

that these eigenmodes do not significantly effect the solution. Furthermore, we see
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Figure 5.3: Spectrum of ψn,m with (f, kz) = (0, 0.225) when N = M = 3.
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Figure 5.4: Spectrum of ψn,m with (f, kz) = (0, 0.225) when N = M = 7.
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that when N = 3, the dominant eigenvalue has contributions from only the eigenmodes

with (n+m) even, whereas when N = 7, the contributions are from eigenmodes with

(n+m) odd.

We also see that when N = 7, the largest eigenmodes are now offset in the m-direction

from M = 0. In § 5.2 we noted that the growth rate is given by λ = λ+iλi, and

that the total temporal wavenumber is given by λi,T = λI +mω. Although the largest

eigenvalue has a dominant eigenmode at m = 4, as shown in Figure 5.4, the value of

λI is approximately −4ω. That is, the total value of λi,T is in the range 0 < λi,T < ω.

We see that this is the case at all large values of N = M . The eigenvalues hav-

ing dominant eigenmodes with large m are only marginally faster-growing than those

having dominant eigenmodes with m closer to zero. Therefore, we herein take only

those eigenvalues with 0 ≤ λI ≤ ω, which gives dominant eigenvalues centered around

m = n = 0, and therefore more accurate solutions.

5.3.4 Comparison with Holyer

It is informative to compare the results from the time-dependent system with those

of the Holyer system, in order to ensure the program is working correctly. Hence, we

here momentarily take the gradients Tz and Sz to be positive, in order to emulate the

salt-finger regime. Furthermore, all parameters are set to those used in the Holyer

simulations. Note that the values of the complex conjugate pairs, (Aψ, A∗ψ), etc. are

set to be equal to one other, i.e. Aψ = A∗ψ = W/2. We first simulate the m = 0 case,

and compare the sparsity of the matrices (taking N = M = 1).

The steady system contains three rows of three columns of entries since there are three

variables (ψ, T , S) and three N terms (N = −1, 1, 0) for each variable. The addition

of three M terms (M = −1, 0, 1) in the unsteady system means that the entire steady

pattern is repeated three times, as might be expected.
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Figure 5.5: Sparsity of the matrix A in the salt-finger regime using Left: the steady system,

and Right: the unsteady system.

We now attempt to reproduce the plot shown in Figure 4.1 of Chapter 4 (§ 4.3.2),

showing the growth rate vs. k. Figure (5.6) shows a comparison of λ vs. k using both

the steady system and the unsteady system.

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

k

λ

Perturbation growth rate

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

l

λ

Perturbation growth rate

Figure 5.6: Reproducing the results of Holyer (1984) using Left: the steady system, and Right:

the unsteady system.

The plots are identical to one another—-subtracting one from the other gives errors of

O(10−17). This provides initial confidence that both the system of equations, and the

numerical implementation, are readily able to reproduce well-documented results.
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5.4 Parametric Study

We now investigate the behaviour of the system over a range of parameters, starting

with the case of a marginal basic state. In such a case we first choose a value of R−1
ρ

and then define kx such that the system has zero growth rate before calculating the

corresponding basic state frequency ω. We take oceanic conditions of Pr = 10 and

τ = 0.01 for the initial parametric study. We also take a value of R−1
ρ = 1.06, which

gives kx = 0.4056 and ω = 0.9806 for marginal stability. This value of R−1
ρ is chosen as

our parameters lie sensibly within the ranges R−1
ρ ∈ [1, 1.14] and kx ∈ [0, 0.5], as seen

in Figure 5.1, which is the same as Figure 2.4.

A basic state salt finger amplitude Aψ is prescribed and AT and AS are defined by

AT (λ0 + k2
x) = sgn(Tz)kxAψ,

AS(λ0 + τk2
x) = sgn(Sz)kxR−1

ρ Aψ, (5.10)
Aψkx
Pr

(λ0 + Prk2
x) = −(AT −AS),

where λ0 = iω, and ω is as previously calculated. Note that Aψ is chosen to be real, so

A∗ψ = Aψ, and AT and AS are complex.

5.4.1 Sweep over Aψ

We begin by sweeping over Aψ and plotting the growth rates of secondary instabilities

in (f, kz)-space. Figure 5.7 shows the real and imaginary parts of λ with increasing Aψ.
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Figure 5.7: Growth rate of modes in wavenumber space for increasing Aψ, when R−1
ρ = 1.106
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The first instability to be observed at low Aψ has kz = 0. This is an elevator mode, and

it arises because we have taken a marginal basic state with λR = 0; there exists other

possible basic state elevators with λR > 0 from linear theory, and the one observed

here is that with the largest λR. This is easily verified by comparing the horizontal

wavenumber observed here (i.e. fkx, where f = 0.66 and kx = 0.4056) with the hori-

zontal wavenumber of the FGM from linear theory (i.e. kx∗ = 0.27). If we were to take

the FGM as the basic state, then we would no longer observe this elevator mode at low

values of Aψ.

Increasing Aψ leads to the appearance of a new fastest growing mode with f and

kz both non-zero. We call this an ‘intermediate mode’. The growth rate of this mode

remains dominant as Aψ is increased further, before eventually subsiding and giving

way to a third FGM with f = 0. Further increases in Aψ serve only to increase the

vertical wavenumber kz of this mode, along with its growth rate.

It is useful to identify the wavenumbers of the fastest growing modes and plot them as

a function of Aψ. This provides a clearer picture of the behaviour of secondary modes

and better facilitates a comparison of results as we vary R−1
ρ . Figure 5.11 shows such

a plot, along with a plot of the growth rates of each mode. It can be seen that the

system is first dominated by the basic state elevator which has the same growth rate

at all values of Aψ. The growth rate of the intermediate mode eventually takes over

and this becomes dominant; however, we later see the growth rate of the f = 0 mode

overtake and continue to increase.

Eigenmodes

The fastest growing mode when R−1
ρ = 1.06, Pr = 10, τ = 0.01 and Aψ = 10 has a

wavenumber of (f, kz) = 0.225. By way of example, the eigenmodes of this mode in ψ

and ρ are shown in figure 5.9. Note that the modes in this case are time dependent.

We thus initialise the modes at an arbitrary amplitude of 0.001 and allow them to
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Figure 5.8: Wavenumber of the fastest growing mode when R−1
ρ = 1.06 between Aψ = 1 and

Aψ = 6.

grow. Figure 5.9 shows the fully-developed eigenmodes of the fastest-growing mode

when t = 8.2 · 2π/ω, which represents 8.2 oscillations of the basic state.

Figure 5.10 shows the effect of the perturbations on the growing elevator modes in ψ

and ρ, at t = 5.2 · π/ω, which represents 5.2 oscillations of the elevator modes. The

secondary modes are very similar in structure to those observed in the steady system.

We see that the cells in the density perturbation are elongate, and extend at an angle

to the horizontal.

This causes the total density (i.e. including the effects of the elevator modes) to re-

semble fingers which with interleaving protrusions into neighbouring fingers. This was

observed in our simulations in Chapter 4, and was described in detail by Veronis (1987).

Furthermore, the streamfunction secondary mode is ‘aligned’ with the elevator mode,

causing the elevator modes to become wavy in structure, as observed in the 9th-order

system in Chapter 3.
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Figure 5.9: Contours of ψ and ρ of the fastest-growing secondary mode having (f, kz = 0.225)

when R−1
ρ = 1.06 and Aψ = 10 in the heat-salt system.
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Figure 5.10: Contours of ψ and ρ of the fastest-growing secondary mode having (f, kz = 0.225)

when R−1
ρ = 1.06 and Aψ = 10 in the heat-salt system.

Although not shown here, we see that the eigenmodes oscillate with the same fre-

quency as the basic state. As the basic state changes direction, so too do the angle of

the cells in the density perturbation of the secondary mode. This suggests that, at least

for large Aψ, the fastest growing secondary modes in the unsteady system are largely

the same as those which emerge in the steady system, except that they oscillate with

the basic state frequency.

213



5. INSTABILITIES OF OSCILLATORY ELEVATOR MODES

5.4.2 Sweep over R−1
ρ

We now wish to observe the effect that the value of the density gradient ratio R−1
ρ has

on the growth rate of secondary modes. We simulated a large range of parameters and

produced contour plots of the growth rate as a function of f and kz over many different

values of R−1
ρ and Aψ. For brevity, we here find it most appropriate to instead plot the

wavenumber of the fastest growing modes in each case as a function of Aψ. We also

plot the growth rates of the three distinct modes observed—no other modes arise as we

change R−1
ρ . From equation (2.52), the unstable range of R−1

ρ is defined by

1 ≤ R−1
ρ ≤

(Pr + 1)
(Pr + τ)

(
1− k4

x(1 + τ)(1 + τ

Pr
)
)
. (5.11)

When Pr = 10, the range of values of R−1
ρ prescribing an unstable basic state is

1 ≤ R−1
ρ ≤ 1.141. Figures 5.11 and 5.12 show the results at values of R−1

ρ =

[1.06, 1.07, 1.08, 1.09, 1.10, 1.11], covering almost the full range. The behaviour is sim-

ilar in all cases except that the range of Aψ for which the intermediate mode dominates

becomes smaller as R−1
ρ is increased, until eventually the intermediate mode no longer

dominates at any Aψ. At large R−1
ρ the basic state elevator mode becomes unstable

to a mode with f = 0 and nothing else. Further increasing Aψ serves to increase the

vertical wavenumber of the mode. This is similar to the behaviour observed for the

secondary modes arising from steady elevator modes, as shown in Chapter 4.

As R−1
ρ is increased, the growth rate of the fastest growing elevator mode reduces

as the strength of the background state is weakened, but the curve showing the growth

rate of the f = 0 mode appears relatively unchanged. Thus, the f = 0 mode dominates

sooner as R−1
ρ is increased. This causes the intermediate mode to disappear, and the

system jumps directly from an elevator mode to an R2 mode, using notation introduced

in Chapter 4.
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Figure 5.11: Wavenumber of the fastest growing mode with increasing Aψ for R−1
ρ =

[1.06, 1.07, 1.08] in the heat-salt system.

5.4.3 Sweep over Pr

We now study the effect of the Prandtl number on the growth rates at different values

of R−1
ρ and Aψ. We have seen so far that increasing Aψ leads to a transition between

different fastest-growing-modes, with the largest values of Aψ driving a mode with

f = 0 in all cases. We see the same behaviour at different values of Pr, though the

value of Aψ required to drive this mode changes. Note that changing Pr modifies the

unstable range of R−1
ρ as in equation (5.11).
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Figure 5.12: Wavenumber of the fastest growing mode with increasing Aψ for R−1
ρ =

[1.09, 1.10, 1.11] in the heat-salt system.

We first reduce Pr to 0.1, for which the range of unstable values of R−1
ρ reduces to

1 ≤ R−1
ρ ≤ 9.9. The wavenumbers of the fastest growing modes and the growth rates of

the three distinct modes that we observed are plotted in Figure 5.13 for Pr = 0.1 and

R−1
ρ = [1, 1.004, 1.006, 1.008]. The intermediate mode that was observed at Pr = 10

(which has non-zero f and kz) is no longer present when R−1
ρ is small, and the elevator

mode instead becomes unstable to a mode with f = 0.

To verify the absence of the intermediate mode at low R−1
ρ , we run the simulation at
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Figure 5.13: Wavenumber of the fastest growing mode with increasing Aψ for R−1
ρ =

[2.5, 4.5, 6.5, 8.5], when Pr = 0.1.

R−1
ρ = 4.5 once more but with a greater number of points in Aψ, particularly around the

region Aψ ∈ [0.1, 0.2]. The results are displayed in Figure (5.14). Again, it is quite clear

from the growth rate plot that, initially, the kz = 0 elevator mode is fastest-growing,
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Figure 5.14: Caption

whilst the growth rate of the f = 0 mode is still increasing from low amplitude. As

Aψ is increased, the growth rate of the f = 0 (R2) mode increases until eventually, at

around Aψ = 0.148, the growth rate of the f = 0 mode exceeds the growth rate of the

kz = 0 mode. No intermediate mode is observed. The slightly raised section of the

‘Fastest Growing Mode’ at the intersection of the f = 0 curve and the kz = 0 curve

is a result of the interpolation used to produce the Figure, and is not indicative of an

intermediate mode. Indeed, the wavenumber plot shows no such intermediate mode.

Thus, we conclude that the dominant secondary instability of a marginal basic state

when Pr and R−1
ρ are both small has a horizontal wavenumber that fits within the

basic state (i.e. f = 0) in all cases except when Aψ is sufficiently small—in this case

we see the fastest-growing elevator mode. The disappearance of the intermediate mode

suggests that when Pr = 0.1, inertial effects are sufficiently large relative to diffusive

effects such that an inertial (f = 0) instability dominates for all value of R−1
ρ . This is

consistent with results in the steady system.

Increasing Pr to 100 has the opposite effect. The unstable range of R−1
ρ at this value

of Pr is much smaller than when Pr = 0.01 or Pr = 10. In this case, 1 ≤ R−1
ρ ≤ 1.01.

Figure 5.15 shows the wavenumbers and growth rates of the fastest growing modes at
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R−1
ρ = [1.002, 1.004, 1.006, 1.008], covering almost the full range. We see that the value

of Aψ required to obtain a mode with f = 0 is much larger than at lower Pr. This

is likely because, as observed in Chapter 4, a large Pr corresponds to a low Reynolds

number—diffusive terms are more dominant here than inertial terms. If the f = 0

mode is indeed a shear flow, as predicted, then we would need a much larger value of

Aψ to overcome the diffusion and inject enough momentum to drive the instability.

An intermediate mode dominates at most values of Aψ, until the f = 0 mode takes over.

The wavenumber of the intermediate mode also changes over time, and the behaviour

for each value of R−1
ρ appears unpredictable. Furthermore, we never see a mode with

f = 0.5 in the unsteady system. This shows that there are significant differences in

the secondary modes generated from steady and oscillatory elevators; however, in each

case, as Aψ becomes large enough, a mode with f = 0 always dominates. This, along

with the Pr dependency of the f = 0 mode, suggests that the intermediate mode and

the f = 0.5 (R1) modes observed in the steady and unsteady systems, respectfully, are

largely driven by diffusive effects, while the f = 0 modes are driven by inertial effects.

We see that larger values of Aψ take longer to simulate as the growth rates become

large, thereby requiring larger values of N and M . For this reason, it is impractical

to produce a plethora of plots with Pr any larger than 100. Though not shown here,

we have obtained results at a single value of R−1
ρ with Pr = 1000. The same trends

are observed, in that even higher Aψ is required for a secondary mode with f = 0 to

dominate, and the intermediate modes dominate for a majority of values of Aψ.

5.4.4 kx = k∗x

The foregoing analyses have focused on a system in which the static basic state becomes

unstable to marginal elevator modes, i.e. <(λ0) = 0. In a physical system, however, the

static basic state would instead be destabilised by the fastest-growing elevator modes.

Indeed, studies have shown that simulations taking the fastest growing elevator as the
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Figure 5.15: Wavenumber of the fastest growing mode with increasing Aψ for R−1
ρ =

[1.002, 1.004, 1.006, 1.008], when Pr = 10.
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basic state more accurately predict the resulting dynamics, e.g. (Veronis, 1968). Hence,

it is desirable to study the secondary instabilities arising from such fastest-growing el-

evator modes using the elements of Floquet theory developed thus far. We note, for

completeness, that although we here study the fastest-growing elevator modes, we as-

sume in our analysis that they are quasi-steady, as discussed in Chapter 4.

In the marginal case, the value of kx giving marginal stability was calculated using

equation 2.52. To determine the value of k∗x we first calculate the growth rate and fre-

quency of the primary instability over a range of kx values for a prescribed R−1
ρ using

equation (2.44), i.e.

(λ0 + k2
x)(λ0 + Prk2

x)(λ0 + τk2
x) + Pr(sgn(Tz)(λ0 + τk2

x)− sgn(Sz)R−1
ρ (λ0 + k2

x)) = 0.

(5.12)

The value of kx giving the fastest-growing mode is then readily extracted. The analyses

of preceding sections may then be repeated using the new values of R−1
ρ and kx and ω;

however, in order to apply the method of Floquet theory, we require that the growth

rate of the primary instability is zero. This assumption works as long as the growth

rates of secondary instabilities discovered through the analysis are greater than that of

the primary instability, in which case we may say that the primary modes do not grow

in the time that it takes for secondary instabilities to grow. The larger the growth rates

of secondary modes, the more appropriate this assumption will be.

Sweep over R−1
ρ and Aψ

Before presenting the results at kx = k∗x, we first present a short aside on simulation

time. Simulations of unsteady elevator modes are considerably more computationally

expensive than simulations of steady elevator modes, due to the larger matrices in-

volved, as discussed above. The three sets of results presented in the present section

were simulated continuously over 31
2 days on a desktop PC—this covered three values

of R−1
ρ , a single value of Pr, and a low ’resolution’ (here meaning number of points) in

f , kz and Aψ. Furthermore, each simulation was performed by truncating the system
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with N = M = 8, which is relatively low. Increasing the truncation to N = M = 12

would increase simulation time considerably (at least two-fold). We find that with

N = M = 8, the results presented here are slightly inaccurate at large Aψ; however,

they show quite well the qualitative behaviour of the system as the parameters are

varied. Although the growth rates had not converged to a value from which they would

vary minimally with any change in N or M , the behaviour of the system was consistent

with the findings of our previous studies of the steady and unsteady systems. This

speaks positively to one of the goals of this method: to provide a lightweight, low-order

model able to predict the behaviour of secondary modes over a wide range of paramet-

ers, even at relatively low tolerances.

The studies of non-oscillatory elevator modes presented in Chapter 4 highlighted that

the secondary modes obtained when kx = k∗x were similar in form to those obtained with

marginal elevator modes, except that when kx = k∗x, a lower value of Aψ was required

to observe fastest-growing secondary modes with f = 0. Hence it was concluded that,

at all values of Pr and R−1
ρ , increasing the width of the basic state elevator modes (i.e.

taking the fastest-growing elevator modes) made them more susceptible to inertial, as

opposed to diffusive, instabilities.

As the growth rates of secondary modes need to be larger than that of the primary

elevator mode to be significant, we plot a relative amplitude, λR = λ/λ0. In this way,

values of λR > 1 represent secondary modes which grow faster than the primary ba-

sic state. Large values of LR will lend more credence to the zero-growth assumption.

Figure 5.16 shows contours of λR = λ/λ0 and |Im{λ}| for Aψ = {1, 11, 21, 31, 41} when

R−1
ρ = 1.01. Only the growth rates with λR > 1 are shown, i.e. only those secondary

modes which grow faster than the primary basic state.

At low value of Aψ, the secondary mode grows at about the same rate, or only slightly

faster, than the basic state. This is most clearly seen when Aψ = 5, wherein the fastest
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Figure 5.16: Left: Relative growth rates, and Right: frequencies of secondary modes arising

from the fastest-growing elevator mode in the heat-salt system when R−1
ρ = 1.01, and Aψ =

{1, 11, 21, 31, 41}.
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growing mode (FGM) has small, non-zero values of f and kz, and a relative growth

rate of λR < 2. The quasi-steady assumption that the primary modes do not grow

significantly in the time that it takes for secondary modes to grow may not hold true

at this value of Aψ.

Increasing Aψ to 13 results in a fastest-growing mode with non-zero wavenumbers

and a relative growth rate of λR = 3. Hence, this mode grows three times faster than

the primary mode, and our approximation could reasonably be assumed to hold. This

mode is similar to the ‘intermediate’ mode which was observed in the marginal oscil-

latory case, and notably not observed in the steady system in Chapter 4.

Further increases in Aψ lead to the now well-documented behaviour of the fastest

growing mode jumping from the ‘intermediate’ mode to an ‘inertial’ mode with f = 0,

before increasing in kz. When Aψ = 37, the relative growth rate of the FGM λR = 6.

This makes the quasi-steady assumption more than reasonable at this point. It is not-

able that the value of Aψ at which the f = 0 mode dominates is lower than in the

marginal case. This suggests that, to a certain extent, wider fingers with kx = k∗x

possess either a lower propensity for diffusion, higher levels of intertia, or both.

In each of the cases presented in Figure 5.16, the imaginary part of the growth rate,

i.e. |Im{λ}| is zero for the fastest growing mode. Figure 5.16 shows that the bands of

largest growth rate tend to correspond to bands of lowest frequency. However, hav-

ing zero imaginary part does not mean that the frequency of the secondary mode is

zero—on the contrary, it could mean that the secondary mode oscillates faster than the

primary mode. This would only become clear by studying the frequency spectrum of

the fastest growing modes, and perhaps plotting the eigenfunctions over time.

Figure 5.17 shows the wavenumber of the fastest growing mode as a function of Aψ,

along with the growth rates of the following four modes: the ‘fastest growing mode’,

which represents the mode with largest growth rate anywhere inside the (f, kz) domain;
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the ‘f = 0’ mode, which represents the mode observed at large Aψ in our simulations

with a marginal basic state (the inertial instability); the ‘kz = 0’ mode, which repres-

ents the fastest growing elevator mode; and the primary elevator mode, whose relative

growth rate is necessarily unity.

The ‘Basic State’ and ‘kz = 0’ modes should have identical growth rates, as the basic

state should not drive a second elevator mode which grows faster than itself; however,

as shown in Figure 5.17, these growth rates deviate as Aψ is increased. This effect

was also observed in the simulations with a marginal basic state, and it arises because

simulations with larger values of Aψ require larger values of N and M to converge. In

the present simulations, we take N = M = 8, so the accuracy of the results reduces

with increasing Aψ, which may require up to N = M = 12.

One way to improve the accuracy would be to use larger upper limits of N and M ,

but this may be prohibitively expensive in terms of computational demand (as it is

here). Furthermore, it is unlikely that doing so would improve the descriptive power

of the results. Indeed, it was seen in simulations of the marginal elevator modes that

increasing Aψ above a certain level only serves to increase the value of kz of the fastest

growing secondary instability—a behaviour that is well captured even at low levels of

truncation, as shown above.
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Figure 5.17: Growth rates and wavenumbers of fastest growing modes secondary modes arising

from fastest-growing, oscillatory elevator modes with R−1
ρ = 1.01 – 1.05, Pr = 10 and τ = 0.01.
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5.5 The Role of Heat and Salt

We consider the dominant instability observed at large Aψ to be a shear-driven in-

stability, rather than a diffusive instability. Larger values of Aψ correspond to large

peak velocities, and thus an increased rate of shear between individual elevators. In

this section, we modify our double-diffusive system to remove the influence of heat and

salt and produce a system of equations representing oscillatory hydrodynamic shear.

Beaumont (1981) studied a corresponding steady hydrodynamic shear system, and we

extended this work in Chapter 4. We confirmed that the fastest-growing modes arising

from such a steady hydrodynamic shear had a similar form to those arising from a

steady double-diffusive instability with a strong basic state (a large Aψ). We expect

to observe a similar relationship between oscillatory elevator modes and oscillatory hy-

drodynamic shear.

Unsteady hydrodynamic shear has been studied in a number of ways (Frenkel, 1991,

Frenkel and Xiaojing, 1998) and is typically referred to as unsteady Kolmogorov flow.

Secondary instabilities arising from unsteady Kolmogorov flow have yet to be studied

using Floquet theory. Hence, this section serves as both a contribution to the literat-

ure and a tool for analysing our double-diffusive system. It is expected, based on the

double-diffusive results at high Aψ, that secondary modes in unsteady Kolmogorov flow

will exhibit the same structure as in the steady case, albeit oscillating with the same

period as that of the basic state.

We derive the viscous Orr-Sommerfeld equation (Lin, 1966) by assuming the perturba-

tions T and S, along with the background gradients Tz and Sz, are zero. The equation

governing streamfunction perturbations is,(
∂

∂t
− Pr∇2

)
∇2ψ = −J(ψ,∇2ψ). (5.13)

Taking a shear flow basic state, plus a secondary perturbation, of the form

ψ = Āψ cos(kxx) + ψ′ (5.14)
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where Āψ = Aψe
λ0t, Aψ is the strength of the shear flow, and λ0 = σ + iω, gives,(

∂

∂t
− Pr∇2

)
∇2ψ′ = kxĀψ sin(kxx) ∂

∂z
∇2ψ′ + k3

xĀψ sin(kxx)∂ψ
′

∂z
(5.15)

As in the double-diffusive case, the periodic coefficients are dealt with by expressing

the secondary perturbation in Floquet form:

ψ′ = exp(ifkxx+ ikzz + λt)
∞∑

n=−∞

∞∑
m=−∞

ψn,m exp(inkxx+ imωt), (5.16)

where {n,m} ∈ Z, λ is the growth rate of the secondary instabilities, and f is the

Floquet coefficient. If the basic state shear flow is steady (λ0 = 0), we may disregard

the λ0 terms and need no longer sum over m. In this case, we obtain the infinite set of

equations governing the growth rate of ψ′,

λψn = −PrK2
nψn + Aψkxkz

2K2
n

[(
K2
n−1 − k2

x

)
ψn−1 +

(
k2
x −K2

n+1

)
ψn+1

]
. (5.17)

If the basic state shear flow is purely oscillatory, i.e. λ0 = iω, and Āψ = Aψe
iωt +

A∗ψe
−iωt, then we instead obtain the infinite set of equations,

λψn,m = −(PrK2
n + imω)ψn,m + kxkz

2K2
n

[
(
K2
n−1 − k2

x

) (
Aψψn−1,m−1 +A∗ψψn−1,m+1

)
+
(
k2
x −K2

n+1

) (
Aψψn+1,m−1 +A∗ψψn+1,m+1

)
]. (5.18)

If Aψ is real, then A∗ψ = Aψ, and,

λψn,m = −(PrK2
n + imω)ψn,m + Aψkxkz

2K2
n

[
(
K2
n−1 − k2

x

)
(ψn−1,m−1 + ψn−1,m+1)

+
(
k2
x −K2

n+1

)
(ψn+1,m−1 + ψn+1,m+1)]. (5.19)

As before, the equations may be truncated at n = N and m = M and solved for the

growth rate λ.
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Figure 5.18: Growth rate of secondary modes in unsteady Kolmogorov flow, taking kx = 0.515

and ω = 0.. These correspond to a value of R−1
ρ = 1.06 in the heat-salt system.

5.5.1 Unsteady Kolmogorov Results

The double-diffusive heat-salt system showed interesting behaviour for R−1
ρ = 1.06 in

the range Aψ ∈ {1, 10}. This value of R−1
ρ gives a basic state horizontal wavenumber,

kx = 0.515, and frequency, ω = 0.9582. We thus use these values in a preliminary

study of the unsteady Kolmogorov system. Figure 5.18 shows the modes with positive

growth rates when Aψ = 10 and Aψ = 12.

These preliminary results show that, as in the steady Kolmogorov system studied in

Chapter 4, the fastest growing modes have f = 0 and a value of kz that increases with

increasing Aψ. Figure 5.19 shows the imaginary part of the growth rate, λI indicating

that the modes with f = 0 are oscillating modes, as would be expected. The initial

results are promising, and support the idea that the f = 0 mode observed in the double-

diffusive system is indeed a shear mode. It would be of interest to study this system in

greater detail in a future study, at least because there does not appear to be evidence

of the use of such a Floquet method in the study of oscillatory Kolmogorov flow, as

yet.
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Figure 5.19: Imaginary part of the growth rate λI in unsteady Kolmogorov flow, taking kx =

0.515 and ω = 0.. These correspond to a value of R−1
ρ = 1.06 in the heat-salt system.

5.5.2 High-Pr System

We have discussed the effect of large Prandtl number on the resulting dynamics—large

Prandtl numbers lead to low Reynolds numbers and the resulting flow is highly diffus-

ive. In such a case, we need much larger values of Aψ to observe modes with f = 0,

which subsequently increases simulation time. We here consider a simplified case in the

limit Pr →∞. The simplified case is intended to be quicker to simulate, and so would

allow higher values of Aψ to be studied. An infinite Prandtl number corresponds to an

inertia-free system, so if our hypothesis holds that the f = 0 mode is a shear-driven

instability, then in a system with infinite Prandtl number we would likely never see this

mode.

We have not yet tested this system to determine its efficacy, but we nevertheless provide

a derivation of the system to facilitate any future study. We start with the governing

nonlinear perturbation equations in streamfunction form:(
∂

∂t
− Pr∇2

)
∇2ψ = −J(ψ,∇2ψ) + Pr

(
∂T

∂x
− ∂S

∂x

)
(5.20)(

∂

∂t
−∇2

)
T + sgn(Tz)

∂ψ

∂x
= −J(ψ, T ), (5.21)(

∂

∂t
− τ∇2

)
S + sgn(Sz)R−1

ρ

∂ψ

∂x
= −J(ψ, S), (5.22)
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When Pr >> 1, the momentum equation reduces to:

∇4ψ = ∂T

∂x
− ∂S

∂x
. (5.23)

If we take an elevator basic state, perturb it, and express the perturbations in Floquet

form (as described hereinbefore), we are able recover an equation for ψn,m in terms of

Tn,m and Sn,m:

ψn,m = −i(f + n)kx
K4
n

(Tn,m − Sn,m) . (5.24)

By substituting (5.24) into the equations for Tn,m and Sn,m, we no longer need to solve

for ψn,m, thus reducing the size of the matrix A in our eigenvalue formulation. The

Tn,m and Sn,m equations become:

λTn,m =
(

(f + n)2k2
x

K4
n

− imω −K2
n

)
Tn,m −

(f + n)2kx2

K4
n

Sn,m (5.25)

+ kxkz
2 [Aψ(Tn−1,m−1 − Tn+1,m−1) +A∗ψ(Tn−1,m+1 − Tn+1,m+1)]

+ k2
xkz(f + n− 1)

2K4
n−1

[AT (Tn−1,m−1 − Sn−1,m−1) +A∗T (Tn−1,m+1 − Sn−1,m+1)]

+ k2
xkz(f + n+ 1)

2K4
n+1

[AT (Tn+1,m−1 − Sn+1,m−1) +A∗T (Tn+1,m+1 − Sn+1,m+1)]

λSn,m =
(
−R−1

ρ (f + n)2k2
x

K4
n

− imω − τK2
n

)
Sn,m +

R−1
ρ (f + n)2kx2

K4
n

Tn,m (5.26)

+ kxkz
2 [Aψ(Sn−1,m−1 − Sn+1,m−1) +A∗ψ(Sn−1,m+1 − Sn+1,m+1)]

+ k2
xkz(f + n− 1)

2K4
n−1

[AS(Tn−1,m−1 − Sn−1,m−1) +A∗S(Tn−1,m+1 − Sn−1,m+1)]

+ k2
xkz(f + n+ 1)

2K4
n+1

[AS(Tn+1,m−1 − Sn+1,m−1) +A∗S(Tn+1,m+1 − Sn+1,m+1)]

The range of R−1
ρ required for instability of the elevator mode reduces as Pr is increased,

as shown by

1 ≤ R−1
ρ ≤

(Pr + 1)
(Pr + τ)

(
1− k4

x(1 + τ)(1 + τ

Pr
)
)
. (5.27)

Indeed, if Pr � 1 and τ � 1, then τ/Pr� 1, and

1 ≤ R−1
ρ ≤

(1 + 1
Pr )

(1 + τ
Pr )

(
1− k4

x(1 + τ)(1 + τ

Pr
)
)
, (5.28)
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=⇒ 1 ≤ R−1
ρ ≤ 1 + 1

Pr

(
1− k4

x(1 + τ)
)
. (5.29)

This gives

1 ≤ R−1
ρ ≤ 1 + ε

(
1− k4

x(1 + τ)
)
, (5.30)

where ε = 1/Pr, and hence R−1
ρ → 1 as Pr →∞. In the High-Pr model, we can take

R−1
ρ = 1, in which case the wavenumber of the basic state elevator mode for marginal

stability is

k4
x =

(
1−

R−1
ρ − 1
ε

)
(1 + τ)−1 (5.31)

=⇒ kx = 1
(1 + τ)1/4 (5.32)

Alternatively, we can assume that R−1
ρ and kx are the same as those used in the full

simulations, allowing for a direct comparison of results.

5.6 Conclusions

The secondary modes arising from oscillatory elevator modes are in some ways very

similar to those which arise from steady elevator modes. The difference is that, in

the unsteady system, we do not see a mode with f = 0.5; however, we instead see an

‘intermediate’ mode with finite f and kz. The intermediate mode dominates at lower

values of Aψ, while a mode with f = 0 dominates at larger Aψ.

The structure of the f = 0 mode is generally the same in the unsteady system as

that in the steady system, except that in the formar case it oscillates with the same

frequency as the primary instability. That is, the modes take the form of cells which dis-

tort the elevator modes into wave-like patterns in the streamfunction, and which cause

density interleaving between adjacent elevator modes. These instabilities are thought

to be largely shear-driven, as they occur at large values of Aψ, while the intermediate

modes are thought to be more diffusive in nature.

The f = 0 modes are also observed to be similar to those used in the truncated
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models of Chapter 3. That is, the cellular modes have a vertical scale on the order

of the horizontal scale of the fastest-growing elevator modes, and appear to be aligned

with the elevator modes. This is reminiscent of the cellular modes in the 9th-order sys-

tem, which interact with the elevator modes to generate layering modes. The layering

modes then grow to form a layered structure. The secondary modes observed in the

present study may therefore play a key role in the formation of layers in oscillatory

double-diffusive systems.

We have developed a Floquet system for studying purely hydrodynamic, oscillatory

shear flow. Previous instances of Floquet theory used to study Kolmogorov flow have

been limited to the steady case Beaumont (1981), Xie et al. (2017). The methods

we developed in this chapter to study the secondary modes arising from spatially and

temporally oscillating systems are readily applied to unsteady Kolmogorov flow, and it

would be interesting to perform further study to this effect.

Furthermore, we have developed a simplified, high Prandtl number system which may

be used to study the secondary instabilities at larger values of Aψ than would otherwise

be feasible. Though we have not yet applied this model to study the secondary modes

at large Pr, we consider that the model may be used to shed light on a number of

issues, such as whether f = 0 modes are observed at very large Prandtl numbers.
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6.1 Discussion

We have demonstrated throughout the thesis that elevator modes, which initially form

as primary instabilities of double-diffusive systems, are extremely influential in the sub-

sequent evolution of such systems, particularly in relation to the formation of layers. It

was demonstrated in Chapter 3, using highly truncated models, that nonlinear interac-

tions between elevator modes and cellular modes are responsible for the generation and

growth of layering modes. That is, when elevator modes are not included in such sys-

tems, as in Veronis (1965) and Da Costa et al. (1981), layers are not observed (though

the vertically bounded regions in those studies may be considered to constitute a single

layer).

The layering modes are observed to grow, and dominate, in systems as low as ninth-

order. Taking language introduced in Chapter 3, we find that no (0, 2) mode is required

in the streamfunction perturbation to form layers. The vertical scale of the layers is

found to be half that of the horizontal scale of the elevator mode, which is supported

by direct numerical simulations (Noguchi and Niino, 2010a). This implies that the

layering actually occurs on much smaller scale than that predicted by the γ-instability

theory, which predicts layer scales on the order of 10 to 20 times that of the elevator

modes (Radko, 2013).

We have performed a thorough investigation of the stability of both steady and os-

cillatory elevator modes. We find that, in both cases, the elevator modes become

unstable to secondary modes with a Floquet factor, f = 0.5 at low elevator amplitudes,

and to secondary modes with f = 0 at large elevator amplitudes. Furthermore, the

oscillatory system becomes unstable to an ‘intermediate’ mode at moderate elevator

amplitudes. This behaviour has not been observed in previous studies.

Studying the effect of increasing the Prandtl number, Pr, on the fastest growing sec-
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ondary modes revealed that, in each case, the mode with f = 0 requires larger elevator

amplitudes, Aψ to occur when Pr is large. A large Prandtl number implies a reduction

in inertial terms, and therefore a reduction in shear in the system. Thus, we hypothes-

ise that the f = 0 mode observed in our systems, and by Holyer (1984), is a largely

shear-driven instability.

This is supported by a comparison of our results with those of purely hydrodynamic

shear in both the steady and oscillatory cases. We see that, in such shear flows (re-

ferred to as Kolmogorov flows), the fastest growing mode always takes a value of f = 0,

and that as Aψ is increased, the vertical wavenumber of the fastest-growing mode also

increases. This behaviour is observed in the double-diffusive system. Furthermore, as

the Prandtl number is increased in the Kolmogorov system, a larger Aψ is required to

destabilise the basic state. This is due to the limited influence of inertial terms at high

Pr. This behaviour is consistent with that observed in the double-diffusive system,

further supporting the hypothesis that the f = 0 modes are largely inertia-driven in-

stabilities.

The fastest growing secondary modes arising from oscillatory elevator modes are similar

in structure to those arising from steady elevator modes, except that in the former case

they are oscillatory. Furthermore, an additional mode is observed in the oscillatory

case which is not observed in the steady case (except in the heat-salt system at low

elevator amplitudes). The additional mode has nonzero Floquet factor f and nonzero

vertical wavenumber kz. The presence of these modes warrants further study of the

oscillatory elevator modes, for instance to determine why such modes do not appear to

be fastest-growing the absence of oscillatory motions, and to investigate whether such

modes are important in layering.

The secondary modes arising from oscillatory instabilities at larger values of Aψ inter-

act with the elevator modes to resemble structures observed in the 9th-order truncated
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model. That is, the secondary modes appear to be cellular in nature, and generally

90 degrees out-of-phase (i.e. ‘misaligned’) with the elevator modes. Furthermore, the

secondary modes have f = 0, meaning that they are likely shear-driven instabilities.

This suggests that, perhaps, as the amplitudes of elevator modes increase, secondary

cellular modes are generated through shear instabilities, reinforced by diffusive effects.

The secondary cellular modes may then subsequently interact with the primary elev-

ator modes to generate one or more layering modes. The layering modes, as seen in

Chapter 3, then grow and eventually form layered structures in the system. This is a

relatively simple mechanism for the formation of layers, but is one which appears to be

supported by the results set out in this thesis.

6.2 Development and future work

It would be interesting to repeat the truncated model studies of Chapter 3, instead

taking modes with wavenumbers and amplitudes derived from the stability analyses in

Chapters 3 and 4. This would further highlight any link between the secondary modes

arising from the elevator modes and those leading to layer formation in the truncated

models. Furthermore, in the simulations of Chapter 3, the wavenumbers of the modes

are constant, even as the background gradients are varied via. the value of γ. Taking

instead wavenumbers obtained from the stability analyses of Chapter 3 would remove

a requirement to obtain such wavenumbers from DNS, as was done by Noguchi and

Niino (2010a).

Our study on the stability of oscillatory elevator modes in Chapter 5 may be developed

further. Specifically, it would be interesting to further study the role of heat and salt in

such systems, as we did in Chapter 4 for steady elevator modes. The methods we have

developed to study both spatially and temporally oscillating flows may readily be ap-

plied to purely hydrodynamic systems. Indeed, there appears to be a lack of literature

surrounding the use of such methods to study stability of oscillatory Kolmogorov shear
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flows. Thus, this would make an interesting and perhaps relatively straightforward

application of our methods, though it is outside the scope of the present study. Fur-

thermore, it would be of interest to study the stability of elevator modes at large Prandtl

numbers in more depth, using the simplified high-Pr system we developed in Chapter 5.

The systems and methods developed throughout the thesis may equally be applied

to magnetoconvective systems, as introduced in Chapter 1. Further study may look at

applying the methods we have developed for studying spatially and temporally oscil-

lating flows to such systems.

We conclude by noting that there a universally accepted model for the formation of

layers remains elusive. By studying the basic modes and instabilities arising in such

systems, we are able to make progress in understanding the nature of layer formation,

and the interactions that lead to it. For example, we see in Chapter 3 that layers may

form at scales as small as the wavelength of the primary elevator mode, which is in

contrast to, for example, the γ-instability theory, which suggests that layers form on

larger scales on the order of at least 10 to 20 times the wavenumber of the primary

instability.

We acknowledge that studies such as those presented in this thesis are limited in that,

as modal amplitudes become large, further nonlinear effects arise which remain unac-

counted for; however, the simplicity of the models makes them powerful for identifying

the mechanisms by which double-diffusive systems become unstable, and to develop a

deeper understanding of the interactions which may lead to such seemingly complex

phenomena as layer formation.
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