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Abstract

We focus on the clonal selection inspired computational models of the immune system
developed for general-purpose optimisation. Our aim is to highlight when these artificial
immune systems (AIS) are more efficient than evolutionary algorithms (EAs). Compared to
traditional EAs, AIS use considerably higher mutation rates (hypermutations) for variation,
give higher selection probabilities to more recent solutions and lower selection probabilities
to older ones (ageing). We consider the standard Opt-IA that includes both of the AIS
distinguishing features and argue why it is of greater applicability than other popular AIS. Our
first result is the proof that the stop at first constructive mutation version of its hypermutation
operator is essential. Without it, the hypermutations cannot optimise any function with an
arbitrary polynomial number of optima. Afterwards we show that the hypermutations are
exponentially faster than the standard bit mutation operator used in traditional EAs at escaping
from local optima of standard benchmark function classes and of the NP-hard PARTITION

problem. If the basin of attraction of the local optima is not too large, then ageing allows
even greater speed-ups. For the CLIFF benchmark function this can make the difference
between exponential and quasi-linear expected time. If the basin of attraction is too large,
then ageing can implicitly detect the local optimum and escape it by automatically restarting
the search process. The described power of hypermutations and ageing allows us to prove that
they guarantee (1+ ε) approximations for PARTITION in expected polynomial time for any
constant ε . These features come at the expense of the hypermutations being a linear factor
slower than EAs for standard unimodal benchmark functions and of eliminating the power of
ageing at escaping local optima in the complete Opt-IA. We show that hypermutating with
inversely proportional rates mitigates such drawbacks at the expense of losing the explorative
advantages of the standard operator. We conclude the thesis by designing fast hypermutation
operators that are provably a linear factor faster than the traditional ones for the unimodal
benchmark functions and PARTITION, while maintaining explorative power and working in
harmony together with ageing.
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Chapter 1

Introduction

1.1 Overview

Artificial immune systems (AIS) are a general computational paradigm inspired by the
working principles of the natural immune system of vertebrates. The learning, classification
and memory capabilities of the immune system used to defend the body against threats have
found natural applications in pattern recognition [22], virus detection [33, 40] and in solving
complex optimisation problems [20]. In this thesis, our focus is on the computational models
of the immune system developed for optimisation applications. These models have taken
inspiration from different aspects of the clonal selection process of the adaptive immune
system [45]. During the clonal selection, the best b-cells at recognising an invading pathogen
are activated to expand, then undergo somatic hypermutation with the hope of creating fitter
b-cells. Given the generality of the clonal selection process in evolving responses for different
pathogens, AIS models for optimisation are not designed with a specific problem in mind:
they rather may be applied to virtually any optimisation problem for which the quality of
solutions can be assessed, thus requiring little understanding of the problem. Numerous
successful applications of AIS for combinatorial optimisation problems have been reported
in the literature. Examples include protein structure prediction [20], graph colouring [18]
and hitting set [17].

Due to the similarities of the clonal selection process of the immune system to the natural
selection process of Darwinian theory of evolution, the optimisation models of AISs are
similar to those of well-established evolutionary algorithms (EAs). While both algorithms
operate in similar iterative loops to evolve solutions to optimisation problems [24], their
major difference lies in the mutation rate used for variation; EAs tend to have low mutation
rates inspired by sexual or asexual reproduction, while AISs apply high mutation rates
inspired by the somatic hypermutation of b-cells. What is unclear is on which classes of
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problems AISs have better performance compared to that of EAs, hence when they should be
preferred to traditional EAs. In this thesis, we aim to provide insights into this matter.

To answer the question of when using AISs is preferable to standard and well-studied
EAs from the literature, we first need to decide on a reasonable framework for AISs. By
considering different aspects of clonal selection as the source of inspiration, several optimi-
sation models of the immune system have been proposed in the literature. What all these
models have in common is the use of a hypermutation operator inspired by the somatic
hypermutation process. Given a combinatorial search space where each candidate solution to
the optimisation problem is a data string of 0-bits and 1-bits with length n (the search space is
exponential in the problem size n), the idea behind hypermutation operators is to flip each bit
with much higher probability than that of standard EAs. Three main different ways have been
proposed in the literature to simulate the somatic hypermutation process for AIS optimisation
algorithms. The first operator is the inversely fitness proportional hypermutation used by an
immune system called Clonalg [23], for which the probability of mutating bits is a function
of the fitness of the candidate solution and is decreased with the increase of the fitness. It has
been rigorously proven in the literature that such an operator is unable to efficiently optimise
even easy unimodal optimisation problems (i.e., problems without any local optima) [93].
The reason is that, the mutation rate (i.e., the probability that each bit flips) at the beginning
of the search is so high that it makes it hard for the solutions to improve at all. It has been
shown in the literature that if the mutation rate is calculated inversely to the best seen solution
instead of an estimate of the optimum, then the operator can solve easy unimodal problems
efficiently. However, this results in a very low mutation rate which makes it hard to call the
resulting operator hypermutation.

Another approach suggested in the literature to perform hypermutations is based on
the observation that somatic hypermutation only happens in some specific areas of the
gene sequence [59, 82]. A well-known method using such observation is called contiguous
hypermutation which is applied by an immune algorithm called B-cell [55]. This operator
only flips bits in a randomly selected interval of the bit string. Such a mutation operator
is biased in the sense that the order of the bits has an influence on the outcome of the
operator [95]. Applying contiguous hypermutation, bits closer to each other have higher
probabilities to be flipped simultaneously compared to bits which are further away. Although
according to the No Free Lunch theorem all randomized search heuristics, both biased and
unbiased, have the same performance over all possible problems, being biased is generally
not a desirable property for a general purpose algorithm in black box optimisation scenarios
where no problem knowledge is assumed to be available.
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The third major approach proposed in the literature to perform hypermutations is to
consider a potential and mutate that number of bits. These hypermutation operators are called
hypermutation with mutation potential or simply HMP and have been introduced for an
immune system called Opt-IA [19]. More formally, a mutation potential (MP) is a function
which returns the maximum number of bits that can be flipped within one hypermutation of a
bit string. Different methods have been suggested to define this function. Some reasonable
ones are the static MP where the potential is always fixed, i.e., cn bits are flipped for a
positive constant c ≤ 1, and the inversely fitness proportional MP for which the potential
depends on the fitness of the solution and decreases with fitness. While the static MP is
always linear in n, the inversely fitness proportional MP is dynamic so it may return lower
potentials than linear after sufficient progress is made. These MPs are proposed to be used in
conjunction with a mechanism called stopping at first constructive mutation (FCM) which
makes the hypermutation operator stop flipping bits as soon as an improvement is found (i.e.,
not all the bits returned by the MP are necessarily flipped) [19].

While the theoretical understanding of Clonalg and B-cell has emphasized the consider-
able drawbacks summarised above to their application for general-purpose optimisation, no
similar drawbacks have been pointed out for Opt-IA in the few available results investigating
its performance. Since Opt-IA applies a rather reasonable choice of hypermutations (i.e.,
HMP are unbiased and FCM allows making progress even when the mutation potential is
very large) and uses ageing operators inspired by the natural death of b-cells, we consider it
as an ideal candidate for the analysis of a complete population-based AIS. To examine the
performance of AIS, we first analyse its operators in isolation (i.e., simple frameworks with
just one AIS operator) for problems with different characteristics and afterwards together
as a complete algorithm. Unlike problem tailored algorithms, AISs are not designed to find
the optimum as quickly as possible for a single problem but they are designed to find good
solutions for a wide range of problems (similarly to other general-purpose randomised search
heuristics). Therefore, one obvious question is how much (optimisation) time they need to
find the solution for a problem with a given structure. Hence, runtime analysis will provide
us with insights on which kind of problems AISs perform efficiently and on which poorly.

In this thesis, we rigorously prove that both ageing and static HMP can efficiently
escape local optima of both standard multimodal benchmark functions and a classical
problem from combinatorial optimisation (i.e., the NP-hard PARTITION problem). While
benchmark functions are specifically designed to analyse the performance of randomised
search heuristics for search landscapes with specific characteristics, classical combinatorial
optimisation problems are more similar to some real-world optimisation applications, hence
are more likely to be reflected in practice. Our analyses of ageing and HMP operators in
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simple frameworks for optimising benchmark problems reveal that they are generally superior
to standard EAs when local optima have to be escaped to identify optimal solutions. We
confirm this insight for the more realistic PARTITION problem for which we provide worst-
case approximation guarantees for both operators. These results are the first proven time
performance guarantees of any AIS for standard combinatorial optimisation problems. While
EAs need some problem specific information to guarantee good solutions of approximation
ratio (1+ε) for PARTITION, we show that AISs do not require such information to efficiently
guarantee the same approximation ratio.

An important drawback revealed by our analyses is that AISs using static HMPs are not
as efficient as standard EAs for hill-climbing (i.e., exploitation - the ability of searching
the neighbourhood of a potentially promising search point). The reason is that, as they get
closer to the optimum, the probability of improving decreases while the potential remains
linear. This in turn implies that, once sufficient progress is made, at each time solutions fail to
improve at the beginning of a hypermutation, a linear amount of fitness function evaluations
will be wasted. Another drawback that is highlighted by our analyses is that if ageing is
used alongside HMPs, as in the standard Opt-IA, then the power of the ageing operator at
escaping from local optima vanishes.

One way to overcome the issue of slow exploitation is to set the mutation potential
inversely proportional to the fitness. Ideally, if as the optimum is approached, the mutation
potential decreases, then the amount of wasted fitness evaluations will decrease in the critical
stages of the optimisation process. However, it has been proved for the standard inversely
proportional HMPs from the literature, that no speed-up is achieved compared to the static
HMPs already for the simple ONEMAX problem [52]. As an attempt to fix this issue, we
propose strategies to properly decrease the mutation potential with respect to the distance to
the best seen local optimum. We prove that these modifications allow inversely proportional
HMPs coupled with ageing to optimise both easy unimodal and multimodal problems faster
than static HMPs. Thus, the power of ageing for escaping local optima is restored. However,
such modifications create a new issue: due to their low mutation rates on local optima,
inversely proportional HMPs now can only escape them if they are combined with ageing.
This conflicts with the main advantage of hypermutations which is their good exploration
ability (i.e., the ability of searching different regions of the search space).

Therefore, we suggest some modifications to the static HMPs by evaluating the fitness
based on some success probability after each bit-flip of a hypermutation, instead of using
the deterministic evaluation scheme of traditional FCM. The probability distribution we
propose is based on the insights gained in our analysis of static HMP for standard benchmark
problems. Since static HMP outperforms EAs when many bits have to be flipped and struggle
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when only few bit-flips are necessary, our chosen distribution is parabolic: the probability of
evaluating after a bit flip is higher at the beginning and at the end of a hypermutation. We
prove that such evaluating scheme makes the operator asymptotically as efficient as EAs in
the exploitation phases while maintaining its essential characteristics for escaping from local
optima, i.e., it still hypermutates. In addition to showing this for benchmark problems, we
further highlight the exploitation ability of the proposed method by proving an upper bound
on the expected runtime to achieve a (1+ ε) approximation for any PARTITION instance
in an expected time which is by a linear factor smaller than the one we can prove for the
traditional static HMP using FCM, and that it finds local optima for the NP-hard VERTEX

COVER problem in an expected time which is rigorously a linear factor smaller than that of
the static version.

1.2 Structure of the Thesis

This thesis is presented in three main parts, Part I: Background, Part II: Opt-IA and Part III:
Fast Opt-IA. The first part contains the necessary background information about the subject,
the preliminaries needed for the runtime analysis and a literature review of the current
theoretical understanding of AISs. The second part includes the theoretical analysis of
the behaviour of the standard Opt-IA on both benchmark problems and combinatorial
optimisation problems. Finally, the third part contains our proposed modifications to Opt-IA
to overcome the drawbacks highlighted by the analyses in the previous chapters. In the
following, the subjects covered in each chapter are introduced briefly.

Part I: Background

Chapter 2 introduces artificial immune systems designed for optimisation applications. We
start by reviewing the natural immune system of vertebrates and providing an overview of
the clonal selection process of b-cells in detail. Then, the commonly used operators by AISs
inspired by clonal selection are introduced. These operators are cloning, hypermutation
and ageing. The chapter is concluded with descriptions of the three most popular AISs for
optimisation, i.e., Clonalg [23], B-cell [55] and Opt-IA [19]. The algorithms which we will
analyse are mainly introduced in detail in this chapter.

After having defined how AISs work, in Chapter 3 we present the basics needed in the
rest of the thesis to theoretically investigate the performance of AISs. To this aim, we first
define the mathematical tools which will be used in the analyses. Then, we introduce the
standard benchmark functions that we will consider and that are widely used for evaluating
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the performance of randomised search heuristics in general. The remainder of this chapter
provides an overview of the state-of-the-art of the theoretical understanding of AISs. These
results cover hypermutation and ageing operators in isolation and complete AISs.

Part II: Standard Opt-IA

In Chapter 4, we analyse the performance of Opt-IA for benchmark functions. We first
consider HMP and ageing both in isolation, and afterwards as a complete AIS. The aim
is to highlight function characteristics for which Opt-IA and its main components are
particularly effective, hence when they may be preferable to standard EAs. Our first result
related to HMP is that the use of FCM is essential: we prove that a simple single-trajectory
algorithm equipped with hypermutations and no FCM requires exponential expected runtime
to optimise any function with an arbitrary polynomial number of optima. From then on we
will always consider the operator in conjunction with FCM. Our second main contribution
is the introduction of a methodology that allows us to derive upper bounds on the expected
runtime of the sophisticated hypermutation operators by analysing much simpler randomised
local search (RLS) algorithms with an arbitrary neighbourhood size. Thirdly, our analyses
show exponential speed-ups of HMP to escape from local optima compared to the standard bit
mutations (SBM) used by EAs. This is achieved, though, at the expense of a linear slow-down
compared to EAs for simple unimodal hill-climbing problems. Then, we analyse the ability of
ageing to escape from local optima of standard multimodal benchmark functions. We prove
that using the operator both with RLS and SBM can make a difference between polynomial
and exponential runtimes. We then concentrate on the analysis of the complete Opt-IA
algorithm. We first show that the algorithm is efficient for all the problems where HMP
in isolation was proven to be efficient. Afterwards, we present a class of functions called
HIDDENPATH, where it is necessary to use both ageing and hypermutations in conjunction,
hence where the use of Opt-IA in its totality is crucial. We conclude the chapter by pointing
out some limitations of the algorithm. In particular, we present a class of functions called
HYPERTRAP that is deceptive for Opt-IA while standard EAs optimise it efficiently with
overwhelming probability.

In Chapter 5, we turn our attention to classical combinatorial optimisation. We perform
analyses for PARTITION (also known as Number Partitioning) which is well-known to be
NP-hard [54, 2] and for which the performance of RLS and EAs is well understood in the
literature [90, 69]. It has been shown that RLS and EAs may get stuck on local optima which
lead to a worst case approximation ratio of 4/3. In order to achieve a (1+ ε) approximation
for arbitrary ε , a clever restart strategy has to be put in place. Herein, we first show the power
of HMPs and ageing at escaping local optima by proving that each of them solve to optimality
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instances that are hard for RLS and SBM. Afterwards, we prove that AISs using HMPs
guarantee arbitrarily good solutions of approximation ratio (1+ ε) in O(n3) expected fitness
function evaluations for any constant ε without requiring any restarts. On the other hand, we
prove that an AIS with SBM and ageing can efficiently achieve the same approximation ratio
in O(n2) expected fitness function evaluations by automatically restarting the optimisation
process when it implicitly detects the absence of progress (i.e., when it is stuck on a local
optimum). While for EAs and RLS the restart strategy has to be decided in advance for each
desired approximation ratio, the considered AISs efficiently identify the same approximation
ratios without requiring such information. To the best of our knowledge, this is the first time
that either HMP or ageing have been theoretically analysed for a standard problem from
combinatorial optimisation and the first time performance guarantees of any AIS are proven
for classical combinatorial optimisation.

Part III: Fast Opt-IA

In Chapter 6, we analyse whether inversely proportional HMP operators can speed up
AIS in the exploitation phase. The idea behind the inversely proportional hypermutations
proposed in the literature is to decrease the potential or the mutation probability the closer
solutions are to the optimum. Our hope is that the amount of wasted fitness function
evaluations decreases automatically when the optimisation process becomes hard (which
leads to high wastage of the potential). Since it has been proven that the inversely proportional
hypermutation operators proposed in the literature for both Clonalg and Opt-IA do not
succeed at this [52, 93], we propose some modifications which provably allow the decrease of
the mutation potential as the distance to the best seen local optima diminishes. We rigorously
prove for standard multimodal benchmark functions that this operator, coupled with ageing,
enables the algorithm to approximate the ideal behaviour of the inversely proportional
hypermutations the more the search space is explored. The operator provides asymptotic
speed-ups in the exploitation phases compared to static HMP while it efficiently escapes
from local optima coupled with ageing operator. A drawback of inversely proportional HMPs
is that low mutation rates on local optima make it difficult for hypermutations to escape, thus
reducing their explorative capabilities.

In Chapter 7, we consider two different strategies to speed up the static HMP operator
in the exploitation phase while keeping its general ability to explore the search space. Instead
of evaluating the fitness of the candidate solution after each bit-flip using FCM, the proposed
alternatives for FCM evaluate the fitness after each bit-flip only with a probability that
follows a parabolic distribution. We first provide a fitness level based mathematical method
to derive upper bounds on the expected runtime of the new HMP operators by using the
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expected runtime of RLS which is easier to analyse (this method is adapted from the one
previously proposed for the standard static HMP). Then, we analyse their performance with
and without ageing on benchmark functions and also classical combinatorial optimisation
problems. We first show that the proposed HMP operator can achieve (1+ε) approximations
for any PARTITION instance in an expected polynomial time which is by a linear factor
smaller than that we have provided for the original static HMP using FCM. Then, we prove a
tight bound on the expected runtime for finding feasible solutions for the VERTEX COVER

problem which is the same as the expected runtime required by EAs previously proven in the
literature. This expected runtime (i.e., Θ(n logn)) represents a linear speed-up compared to
the traditional static HMP operator.

Finally, in Chapter 8, we will conclude this thesis by providing a summary of the results
and discussing promising future work directions.

1.3 Main Contributions

In this thesis we analyse the behaviour of AISs for combinatorial optimisation to identify
characteristics of search environments which they can optimise efficiently compared to EAs.
Our main contributions to the understanding of AISs are summarised in the following.

1. The importance of using the FCM mechanism with HMP is proven for the efficient
optimisation of essentially any problem of interest.

2. A general mathematical framework for the analysis of the expected runtime of HMP
operators is provided. This framework transfers runtime analysis results obtained by
the artificial fitness levels method for RLS to valid upper bounds on the expected
runtime of AISs using static HMP.

3. The ability of ageing at allowing algorithms to escape from local optima by identifying
a gradient leading away from it, is proven. Previously, the ability of ageing at escaping
local optima of a sophisticated benchmark function from dynamic optimisation was
shown when coupled with randomised local search [74]. We prove ageing’s effective-
ness in a greater generality for standard multimodal benchmark problems and classical
problems from combinatorial optimisation using both randomised local search and
standard bit mutations.

4. The first time complexity analysis of a complete Opt-IA, i.e., hypermutations and
ageing together, is provided. It is shown that although each operator separately enables



1.4 Underlying Publications 9

the AIS to escape local optima more efficiently than standard elitist EAs, it is not the
case when both are used together as proposed in the standard Opt-IA.

5. The first time performance guarantees for any AIS for a combinatorial optimisation
problem are provided. It is proved that both ageing and hypermutations (and the
complete Opt-IA) achieve arbitrarily good (1+ ε) approximations for any instance of
the NP-hard PARTITION problem in expected polynomial time for any constant ε .

6. Inversely proportional HMP operators are presented that provably decrease the mu-
tation rate with the decrease in distance to the optima and lead to lower expected
runtimes compared to static HMP for standard unimodal and multimodal benchmark
functions.

7. A new probabilistic evaluation scheme is presented to be used with static HMPs
rather than FCM. It is proved that using such evaluation scheme, AISs can hill-climb
efficiently while still maintaining their capabilities at escaping from local optima.

1.4 Underlying Publications

The results presented throughout this thesis are drawn from the following publications. The
authors are ordered alphabetically and the contribution is divided by the number of the
authors.

• Chapter 4, Analysis for benchmark problems, is derived from [10, 15]:

1. Dogan Corus, Pietro S. Oliveto, and Donya Yazdani (2017). On the Runtime
Analysis of the Opt-IA Artificial Immune System. Proceedings of The Genetic
and Evolutionary Computation Conference, pages 83–90.

2. Dogan Corus, Pietro S. Oliveto, and Donya Yazdani (2019). When Hypermuta-
tions and Ageing Enable Artificial Immune Systems to Outperform Evolutionary
Algorithms. Theoretical Computer Science, in press.

• Chapter 5, Analysis for the NP-hard PARTITION problem, is derived from [11, 13]:

3. Dogan Corus, Pietro S. Oliveto, and Donya Yazdani (2018). Artificial Immune
Systems Can Find Arbitrarily Good Approximations for the NP-hard Partition
Problem. Proceedings of 15th International Conference on Parallel Problem
Solving from Nature, pages 16–28.
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4. Dogan Corus, Pietro S. Oliveto, and Donya Yazdani (2019). Artificial Immune
Systems Can Find Arbitrarily Good Approximations for the NP-hard Number
Partitioning Problem. Artificial Intelligence, volume 274, pages 180–196.

• Chapter 6, Inversely proportional hypermutations, is derived from [14]:

5. Dogan Corus, Pietro S. Oliveto, and Donya Yazdani (2019). On Inversely Propor-
tional Hypermutations with Mutation Potential. Proceedings of The Genetic and
Evolutionary Computation Conference, pages 215–223.

• Chapter 7, Hypermutations with probabilistic intermediate evaluations, is derived
from [12]:

6. Dogan Corus, Pietro S. Oliveto, and Donya Yazdani (2018). Fast Artificial
Immune Systems. Proceedings of 15th International Conference on Parallel
Problem Solving from Nature, pages 67–78.
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Background





Chapter 2

Artificial Immune Systems

2.1 Introduction

Artificial immune system (AIS) models for optimisation are inspired by different immuno-
logical processes happening in the natural immune system of vertebrates, in particular, the
clonal selection process [3]. For this reason, they are often called clonal selection algorithms.
In this chapter, we describe the basic concepts of both natural and artificial immune systems
and define the well-known AISs for optimisation. The state-of-the-art in the theoretical
investigations of AIS will be covered in the next chapter.

In Section 2.2, an overview of the natural immune system with main focus on the
principles of clonal selection theory is provided. The aim is to highlight the biological
concepts which have inspired the design of well-known algorithms in the family of immune
inspired randomised search heuristics. In Section 2.3, we describe the structure of an AIS. As
the general framework of AISs1 is the same as that of EAs, in Subsection 2.3.1 we introduce
a very general evolutionary process which encompasses both classes of algorithms. Two
important frameworks which are the basis for many of the algorithms we consider in the
future chapters are discussed in this subsection. In Subsections 2.3.2 to 2.3.4 the commonly
used operators in AISs including cloning, hypermutation and ageing are explained. Finally,
in Section 2.4, well-known examples of AISs, i.e., Clonalg [23], B-cell [55], and Opt-IA [20]
are introduced in detail.

1From now on by AIS we mean the AISs designed for optimisation problems, i.e., as a randomised search
heuristic.
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2.2 The Natural Immune System of Vertebrates

The immune system is a communication network of different cells and tissues, which spread
throughout the body, with the goal of protecting the host from pathogens, e.g., bacteria,
viruses, and fungi. Generally, the immune system is divided into two parts: the innate immune
system and the adaptive immune system [45]. Whenever the immune system encounters a
pathogen, it triggers an immune response by either one or both of these parts. The innate
immune system is non-specific (i.e., it reacts to all threats in the same way) and does not
change through time, while the adaptive immune system produces specific responses to a
particular pathogen and learns from past experiences.

As the first line of defence against pathogens, the innate immune system tries to protect
the body against invading organisms using tissues like skin, mucus, tears, and stomach
enzymes. Blood cells differentiated from a myeloid cell including eosinophils, neutrophils,
basophils, macrophages, mass cells, and dendritic cells are part of the first line of defence. As
the innate immune system rarely changes in response to life experience, it cannot eliminate
the newly developed pathogens, herein, the second line of defence is triggered by the adaptive
immune system.

The adaptive immune system includes blood cells called t-cells, b-cells, and natural killer
cells which all are differentiated from a lymphoid cell and are called lymphocytes in general.
After information regarding the invading pathogen is passed to b-cells, an adaptive immune
response is generated by the clonal selection of b-cells to produce proteins called antibodies
which are intended to bind to the pathogen and eventually remove it from the body [45]. The
transferred information includes the structure of antigens of the invading pathogen. Antigens
are substances on the surface of a pathogen which can be simple (e.g., containing one single
molecule) or complex. Figure 2.1 shows how an antibody binds to an antigen.

2.2.1 Clonal Selection Theory

Proposed by Burnet in the 1950s [3], the clonal selection theory states that antibodies are
produced in each host’s body only in response to antigens to which the body is exposed.
Clonal selection is initiated in a lymph node when a dendritic cell carrying information
describing an antigen meets a compatible t-cell. A compatible t-cell can recognise a part of
the antigen known as epitope. Mostly, a t-cell can recognize only one epitope of an antigen.
This t-cell activates a b-cell which is also able to recognize (an epitope of) the same antigen.
An effective immune response contains different b-cells producing antibodies against one
specific antigen [45].
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Fig. 2.1 Binding of an antibody and an antigen

Different parts of an antibody are shown in Figure 2.2. Each antibody molecule includes
two symmetric twofold axes [45]. It is composed of two identical heavy protein chains
and two identical light protein chains. Heavy and light chains both have variable (V) and
constant (C) regions. The V regions of a heavy and a light chain combine to form an antigen-
binding site, hence both chains contribute to the antigen binding specificity of an antibody
molecule [45]. The combination of 320 different light chains with about 11,000 different
heavy chains result in almost 106 different antigen-binding sites [45].

The clonal selection theory as stated in [3] by Burnet, includes all the important features
of the adaptive immune system as is known today. This theory contradicted the instructive
hypothesis which was the domain idea in the 1940s claiming antigens act as templates for
the production of antibodies [45] (i.e., it is opposed to what clonal selection theory states: an
antigen gets selected by the b-cells that already can recognize it, hence only specific b-cells
get activated by an antigen).

The clonal selection procedure may be classified into three phases: (1) clonal expansion,
(2) affinity maturation, and (3) programmed death of cells. This classification is made to
clarify how different operators in AISs relate to the phases in the clonal selection of b-cells.
These phases are described in the following.

Clonal expansion

When an antigen binds to a b-cell, the b-cell becomes activated and generates many identical
cells called clones. During the next phases, some of these cells differentiate into plasma
b-cells to secrete antibodies with an identical specificity to the surface receptor of the first
b-cell which was activated by the antigen. A small number of these b-cells then turn into
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Fig. 2.2 Structure of an antibody

b-memory cells at the end of the clonal selection process to be used for future invasion of the
same pathogen. Clonal expansion has inspired the design of cloning operators used in AISs.

Affinity maturation

After the clonal expansion, a process called affinity maturation takes place. The aim of
this process is to increase the affinity (i.e., binding capacity) of the antibodies of the cloned
b-cells with the specific antigen which triggered the clonal selection. This is done by somatic
hypermutation and then selection of b-cells with the best affinities. Somatic hypermutation
is designed to make changes in complementarity-determining regions (CDR) of antibody
V parts (Figure 2.2). This process happens in the germinal center of a lymph node and is a
“critically timed process” [61]. The term somatic means that the mutations introduced in the
b-cells of a host cannot be passed on to its offspring.

During the somatic hypermutation, some of the cloned b-cells make point mutations
(i.e., a mutation causing a single nucleotide base modification) in the V region of their
antibody genes with the aim of increasing the affinity with the antigen. The rate of these point
mutations is approximately 10−4 to 10−3 mutations per base pair2 per generation (i.e., one
new mutation every second generation) [61]. Such a rate is almost six orders of magnitude
greater than the average of natural mutations in the structure of a DNA and due to this, it is
called hypermutation. These mutations are mostly single base substitutions, and occasionally
insertions and deletions (a single change in an amino acid of the V region can increase

2Base pairs are the building blocks of a DNA. Each base pair consists of two complimentary nucleotides.
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the affinity by a factor of about 10). However, only a small number of these cells are able
to increase the affinity. The other mutated cells either do not change the affinity (silent
mutations), or they decrease the affinity, break molecule structure, or even create antibodies
that react to self molecules. The cells that have a low affinity for the antigen as a result of
hypermutation, will most likely not be selected by the antigen and die.

Affinity maturation seems similar to neo-Darwinism which states that random mutations
produce an altered phenotype which leads to survival of the more fit and death of the
less fit. However, this is where the similarity ends. During the past decade, research has
revealed that somatic hypermutation is a complicated controlled process which targets genetic
changes to specific sites within the V region of the antibodies while protecting the rest of
the genome from changes [59, 82]. Therefore, it is not an undirected random process like
Darwinian theory of evolution. Some findings have also shown that somatic hypermutation
can be cumulative and stops after about 15 generations [61, 83]. Although there are many
hypotheses about how the mechanism of somatic hypermutation works, it is not yet fully
understood. The variation operators with high mutation rates used in typical AISs are inspired
by somatic hypermutation.

Programmed death

After somatic hypermutation is applied, each of the cloned b-cells will be tested by a group
of cells in the lymph nodes and spleen. B-cells whose receptors have low affinity with the
antigen, are programmed to die with apoptosis. Apoptosis or programmed cell death is an
internal death program which is activated by the cell itself. Proliferating cells, in particular
lymphocytes, frequently undergo apoptosis. The rate of apoptosis is high during the process
of development of b-cells and also during the adaptive response [45]. The ageing operators
used in AIS are loosely inspired by programmed cell death.

2.3 Structure of an Artificial Immune System and Immune
Inspired Operators

Artificial immune system search heuristics are inspired mostly by the processes described
in Subsection 2.2.1. In this section, we introduce a general evolutionary scheme originally
adopted by EAs which many other randomised search heuristics also fit into (e.g., randomised
local search, simulated annealing), including AISs [46]. After introducing this general
scheme, we explain in detail the immune inspired operators commonly used by AISs.
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EAs iteratively evolve a population of candidate solutions with the aim of creating fitter
solutions. As with any reasonable search algorithm, this structure should enable an EA
to both explore and exploit the search space. While exploration is the ability of searching
different regions of the search space (i.e., trying unexplored regions), exploitation refers
to the ability of searching the neighbourhood of a potentially promising search point (i.e.,
improving an existing known good solution). The candidate solutions in this structure, which
undergo the iterative process, are called individuals in an EA and either b-cells or antibodies
in an AIS3. The environment that these candidate solution are operating in is called the
search space. According to the problem at hand, different search spaces are defined. Some
frequently used search spaces are S = {0,1}n (a combinatorial search space) and S = Rn

(a continuous search space). The points in a search space are the candidate solutions. In
a combinatorial search space S = {0,1}n which is used throughout this thesis, each search
point is a bit string x = x[1]x[2] · · ·x[n] ∈ {0,1}n (i.e., a string of 1-bits and 0-bits). Each
search point is assigned with a fitness value describing how well it optimises a given problem.
This value is determined by a fitness function f : S→ R.

2.3.1 An Evolutionary Algorithmic Scheme

After initialising a population of candidate solutions, EAs apply an iterative process of
selection for reproduction, variation, and selection for replacement (depicted in Algo-
rithm 2.1) [46]. Every iteration of this loop is called a generation. Algorithms differ
according to which operators are used in each stage of the loop. As one would prefer this
iterative process to end at some point of time, some termination criterion is also needed, e.g.,
stopping after reaching a predefined number of generations or a fitness above a predefined
quality. In this thesis, we will not use a termination criterion and instead evaluate the expected
number of fitness function calls (fitness function evaluations) required for an optimal solution
(or a given approximation) to be sampled for the first time.

In the following, for each phase, we introduce the operators used in combinatorial search
spaces with particular emphasis on those considered throughout this thesis.

Initialisation

An EA starts with an initialisation phase. Initialisation refers to the process where the first
population of µ candidate solutions is generated before the main loop can start. Usually, the
population is initialised with random solutions although problem specific information may

3Throughout this thesis, candidate solutions, individuals, search points, b-cells and antibodies are all used
equivalently.
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Algorithm 2.1: General scheme of an EA
1 t := 0; // number of generations

2 initialisation and evaluation of µ individuals;
3 while termination condition is not satisfied do
4 selection for reproduction; // selecting parents for reproduction

5 variation and evaluation; // creating offspring

6 selection for replacement; // selecting the next generation

7 t := t +1;

also be used if available. For the bit string representation, the initial solutions are generated
uniformly at random by setting each bit to 1 independently with probability 1/2. After
initialisation, the fitness of each individual is evaluated by a fitness function.

Selection for reproduction

The goal of the selection for reproduction phase is to determine which individuals will
reproduce in the current generation, and hence undergo variation. The selected individuals
for reproduction are called parents. Some popular operators for this phase are tournament
selection and ranking selection [46].

In generational EAs, where the new generation completely replaces the previous one, it
is crucial that better solutions are selected with high probability than poorer ones [5, 77, 76].
In this thesis, steady-state EAs and AISs are considered where elitism is used and only a
subset of the population is replaced in each generation (i.e., the best individuals are never
lost). Hence, it is not crucial that better individuals have a high probability of reproducing.
Indeed, it is very common in steady-state algorithms to select parents uniformly at random
with replacement.

Variation

After some parents are selected for reproduction, the variation process starts. The role of the
variation is to create offspring by introducing some changes to each parent. While in EAs
the variation operators normally aim to make small changes to the parent inspired by natural
evolution, in AISs the rate of such changes is high, inspired by the high mutation rates of the
b-cells in the natural immune system.

Generally, EAs use two operators to apply variation: crossover and mutation. The
crossover operator imitates sexual reproduction and creates offspring by recombining pieces
of two parents. There are various methods of recombination, e.g., single-point crossover
for which a random point is chosen in the chromosome of two parents and then the bits at
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the right side of this point are swapped resulting in two offspring4. Usually, an evolutionary
algorithm which uses crossover is called a genetic algorithm (GA).

The mutation operator of EAs using a bit string representation usually inverts each bit
value independently with mutation probability pm = χ/n. This is called standard bit mutation
(SBM). The most common mutation rate is pm = 1/n where one bit of the bit string is flipped
in expectation but many more bits may flip. There is also another mutation operator called
k-bit mutation, which inverts the values of exactly k random bits in a bit string. An algorithm
that uses such a mutation operator is called randomised local search or RLSk where the
choice of k determines the neighbourhood size of the local search operators (usually k = 1).

Selection for replacement

After an offspring population is created, a phase called selection for replacement starts
during which some offspring are chosen to be part of the next generation. For generational
algorithms, such a selection phase is not applied as the whole population is replaced at the
end of each generation by a new population of the same size. The selection mechanism of the
steady-state algorithms considered throughout this thesis is the plus selection which selects
the best individuals out of the parent and offspring populations (breaking ties uniformly at
random) until a population of the desired size is built for the next generation [46]. This
operation is typically referred to as (µ + λ ) selection where µ is the size of the parent
population and λ that of the offspring population. From now on, we call this stage simply
selection since this is where the selection pressure occurs in the steady-state algorithms we
consider, i.e., the best µ individuals are kept while the rest are eliminated.

Basic frameworks

All the algorithms which are either subject to our analyses or are used to compare our results
with, fall into the introduced general scheme (i.e., they share the same main phases). The
most simple basic framework widely used is the (1+1) framework (Algorithm 2.4) which
is obtained from Algorithm 2.1 by setting µ = λ = 1. An algorithm using this framework
simply starts by initialising one individual at random, then applies mutation (e.g., SBM,
local mutation, hypermutation, etc.) to create an offspring. During the selection phase, if the
fitness of the offspring is at least as good as that of the parent, it replaces the parent and the
next generation starts. In the (1+1) framework, if the mutation operator used is SBM (see
Function 2.2 ), then the simplest and most studied EA, the (1+1) EA, is obtained. If the

4As AISs do not apply recombination, the crossover operator is not used in the algorithms analysed in this
thesis. For further detail about crossover please see [42].
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mutation operator flips exactly k bits (see Function 2.3), then we get the (1+1) RLSk which
is simply called the (1+1) RLS or just RLS for the case of k = 1. Using this framework, we
will analyse typical AIS mutation operators in isolation (as opposed to in combination with
other immune system operators) to facilitate comparisons with the (1+1) EA and RLS for
which the performance is well understood in the literature.

Function 2.2: Standard bit mutation operator of EAs
input :x ∈ {0,1}n;
output :y;

1 y := x;
2 for i ∈ {1, · · · ,n} do
3 flip y[i] with probability χ/n (where χ is usually 1);

4 return y;

Function 2.3: Local mutation operator of RLSk

input :k, x ∈ {0,1}n;
output :y;

1 count := 0;
2 y := x;
3 repeat
4 choose i ∈ {1, · · · ,n} uniformly at random without replacement;
5 flip y[i] with probability 1;
6 count := count +1;
7 until count = k
8 return y;

Algorithm 2.4: (1+1) framework
1 t := 0;
2 initialise x ∈ {0,1}n uniformly at random;
3 while a global optimum is not found do
4 mutate x using a mutation operator to produce offspring y;
5 if f (y)≥ f (x) then

// for minimisation problems the above clause is f (y)≤ f (x).
Additionally, the inequality is strictly greater or less in

case of strict selection.

6 x := y;

7 t := t +1;
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While the (1+1) framework is the basis for trajectory-based algorithms (i.e., algorithms
with a population of one single individual as opposed to population-based algorithms) we
use a (µ +1) framework for µ > 1 as the basis of many population-based algorithms (see
Algorithm 2.5). A (µ + 1) framework starts with a population of size µ , then chooses a
random individual as the parent and creates an offspring (λ = 1) by some variation method.
Then, it compares the fitness of this offspring with the least fit individual. If the offspring is
at least as fit, then it replaces the least fit individual in the population. Throughout this thesis,
when typical AIS operators that rely on populations are considered (such as ageing), the
(µ +1) framework will be used to analyse the effect of the operator in a minimal framework.
Some other algorithms we consider in this thesis to compare the performance with are the
(µ +1) EA (Algorithm 2.5 using SBM defined in Function 2.2) which is the most popular
steady-state EA, and the (µ + 1) RLSk (Algorithm 2.5 using the local mutation operator
defined in Function 2.3).

Algorithm 2.5: (µ +1) framework
1 t := 0;
2 initialise P = {x1, ...,xµ}, a population of µ individuals uniformly at random;
3 while a global optimum is not found do
4 choose x ∈ P uniformly at random;
5 mutate x using a mutation operator to produce offspring y ;
6 choose z ∈ P with the worst fitness, breaking ties uniformly at random;
7 if f (y)≥ f (z) then

// for minimisation problems the above clause is f (y)≤ f (z).
Additionally, the inequality is strictly greater or less in

case of strict selection;
8 z := y;

9 t := t +1;

2.3.2 Computational Models of Cloning

Inspired by the clonal expansion phase in the clonal selection process, computational models
of cloning create some copies of the parent population. Cloning operators are normally
used by AISs in the selection for reproduction phase to generate the clones of the parent
population to which the variation operators will be applied to create offspring. Cloning
operators from the literature generate clones in either a static manner (i.e., each b-cell gets
an equal number of clones) or proportional to the fitness (i.e., the better the fitness of the
parent, the greater the number of clones). A static cloning operator makes dup copies of
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each individual and according to the AIS model may either put them all in one single new
population of clones (as in Opt-IA [19]) or in separate clone populations, i.e., one for each b-
cell xi where i∈ {1, · · · ,µ} (as in B-cell [55] and Clonalg [23]). Since none of the algorithms
in this thesis use fitness proportional cloning, we do not further explain it.

2.3.3 Computational Models of Hypermutation

Usually the only variation operator in AISs is hypermutation5. Different hypermutation
operators have been proposed in the literature. While some use a mutation probability, others
use a mutation potential (a concept similar to k-bit mutation). In the former, every bit is
flipped independently with some probability (usually much higher than SBM), while in
the latter the operator flips at most a number of bits defined by the mutation potential. For
both approaches, static and dynamic operators exist. While in the static hypermutations the
mutation rate remains the same throughout the run, in the dynamic hypermutation operators
the mutation rate usually depends on the fitness of the candidate solution. In the following,
we introduce the most popular hypermutation operators.

Inversely fitness proportional hypermutation

The inversely fitness proportional hypermutation operator was originally introduced in the
literature to be used by Clonalg [23] which will be fully defined in Subsection 2.4.1. This
operator sets the mutation probability to be lower, the higher is the fitness of each b-cell.
The probability that each bit is flipped is pm = e−ρ·v where ρ is the decay parameter and v
is the normalised fitness value in [0,1]. For maximisation problems, it has been suggested
to normalise the fitness by dividing the fitness of a b-cell by the fitness of the best seen
individual [23].

Contiguous hypermutation

Inspired by the observation that there exist some specific regions in the gene sequence where
hypermutations tend to happen, some hypermutation operators mutate bits in clusters of
regions in a bit string. An example of such operators in the literature is the contiguous
hypermutation operator [55]. This mutation operator was originally proposed for the B-cell
AIS which will be described in Subsection 2.4.2. The contiguous hypermutation operator
first chooses a starting point i, and a length l, both at random. Then, it flips each bit in [i, i+ l]
with probability pm. Using this operator, the bits at the beginning of the bit string have lower

5Note that crossover does not happen in the natural immune system.
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probability of being flipped than the bits at the end of the bit string. This makes contiguous
hypermutation a biased operator as the probability of mutating particular bits is different
according to their positions [95]. Versions that wrap around the bit string (i.e., that assume
that the bit string is circular) have been proposed to remove the bias towards the beginning of
the bit string [50]. Nevertheless, bits that are closer to each other still have higher probability
of being mutated than bits that are further away from each other.

It should be noted that although mutating bits in some specific regions of a bit string is
inspired by some observations regarding the affinity maturation process, the current related
mutation operators are inconvenient to be used in black box optimisation. The inconvenience
is due to the need of problem specific knowledge to decide upon the position of bits.

Hypermutation with mutation potential

The last hypermutation operator we introduce uses mutation potentials. Hypermutations
with mutation potentials (HMP) were proposed to be used in Opt-IA [19]. A mutation
potential (MP) is a function which returns the maximum number of mutation steps that
may occur within one hypermutation. Four different mutation potentials are proposed in the
literature [19]: static MP, fitness inversely proportional MP, fitness proportional MP, and
hypermacromutation MP.

The static MP function is M = cn for a constant 0 < c≤ 1 and is independent of fitness.
Hence, the potential is always linear in the length of the bit string n. The other MPs are
dynamic so they may return lower potentials than linear. The fitness inversely proportional
MP is inversely proportional to the fitness value of the parent, and is obtained by M(x) =
((1− fopt

f (x)) · cn) where fopt is the minimum value of the fitness function or the best seen (for
minimisation problems). The fitness proportional MP is proportional to the fitness value of
the parent and is obtained by M(x) = min{( 1

f (x)− fopt
· cn),cn} where fopt is the minimum

value of the fitness function or the best seen and (for minimisation problems). Finally, the
hypermacromutation MP uses a rather similar idea to contiguous hypermutations and is
independent of both the fitness value and parameter c. It first chooses two integers i and j at
random such that i < j ≤ n, then flips bits only in the range of [i, j] (the mutation potential is
M = j− i+1).

A mechanism called stop at first constructive mutation (FCM) was introduced to be used
together with HMP [19]. Using FCM, the hypermutation operator stops mutating as soon as
an improvement is found, hence the fitness is evaluated after each bit-flip. This policy was
claimed to be adopted to slow-down (premature) convergence and to improve the exploration
capabilities of the HMP operators [19]. Function 2.6 shows how an HMP works.
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Function 2.6: Hypermutation with mutation potential with or without FCM
input :M, x ∈ {0,1}n;
output :y;

1 y := x;
2 count := 0;
3 if FCM is used then
4 while count < M do
5 count := count +1;
6 choose i ∈ {1, · · · ,n} uniformly at random without replacement;
7 flip y[i];
8 evaluate f (y);
9 if f (y)≥ f (x) then // or f (y)> f (x) depending on how

constructive mutation is defined

10 break;

11 return y;

12 if FCM is not used then
13 while count < M do
14 count := count +1;
15 choose i ∈ {1, · · · ,n} uniformly at random without replacement;
16 flip y[i];

17 return y;

2.3.4 Computational Models of Ageing

Inspired by the natural death of b-cells, some AISs use ageing mechanisms in their search
process (e.g., Opt-IA). Some of the most well-known ageing mechanisms from the literature
are static ageing [19], stochastic ageing [19], and hybrid ageing [74]. Using any of these
ageing operators, each individual is assigned with an age := 0 when initialised. At the
beginning of each generation, the age of each individual is increased by one. Whenever
an offspring is created, it inherits the age of its parent unless it is fitter than the parent, in
which case its age is set to 0. The difference among the ageing operators lies in the specific
procedure applied to decide on removal of individuals. While static ageing removes each
individual deterministically after they reach an age threshold τ , stochastic ageing removes
them with a probability pdie at the end of each generation (without reaching any specific
threshold). Hybrid ageing on the other hand, combines these two mechanisms and removes
each individual that has reached an age threshold τ with probability pdie. We will later
analyse ageing operators in isolation using the minimal (µ +1) framework introduced in
Subsection 2.3.1, in particular in the well-studied (µ +1) EAageing shown in Algorithm 2.7
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and (µ+1) RLSageing which is identical to (µ +1) EAageing except that it flips one bit rather
than using SBM.

Algorithm 2.7: (µ +1) EAageing (for minimisation) [74]
1 begin
2 t := 0;
3 initialise P := {x1, ...,xµ}, a population of µ b-cells uniformly at random;
4 for all x ∈ P do
5 x.age := 0;

6 while a global optimum is not found do
// Ageing (age increment):

7 for all x ∈ P do
8 x.age := x.age+1;

9 for a randomly chosen x ∈ P do
10 call Function 2.2;

// Ageing (age assignment):

11 if f (y)< f (x) then
12 y.age := 0;

13 else y.age := x.age;

// Ageing (removal by static ageing):

14 for all x ∈ P do
15 if x.age > τ then
16 remove x;

// Selection:

17 P := (P∪ y);
18 if |P|> µ then
19 remove the least fit individual, breaking ties uniformly at random;

20 if |P|< µ then
21 add (µ−|P|) individuals initialised uniformly at random with age := 0;

22 t := t +1;

2.4 Artificial Immune Systems for Optimisation

In this section the three most popular AISs for optimisation are described.
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2.4.1 Clonalg

Proposed by de Castro and Von Zuben [23], Clonalg is a clonal selection algorithm which
views each individual locally, i.e., each individual competes only with its own clones during
the selection phase. Clonalg was originally proposed for continuous search spaces to perform
machine learning and pattern recognition tasks, however, it has also been adopted for dis-
crete environments and applied for optimisation emphasising multimodal and combinatorial
problems.

The pseudo-code of Clonalg is provided in Algorithm 2.8. After initialising a population
of µ b-cells xi for i ∈ {1, · · · ,µ} and evaluating their fitness, Clonalg then creates a separate
clone population for each individual. Each clone population P(clo)

i contains dup = (β · µ)
copies of the parent xi where β is a user defined parameter. All clone populations will
undergo a variation phase in the next step via the inversely proportional hypermutation
operator. During selection, the best individual from each hypermutated population P(hyp)

i

and xi will be chosen to be potentially part of the next parent population. Finally, the d
individuals with the lowest fitness will be selected to be re-initialised.

2.4.2 B-cell

Proposed by Kelsey and Timmis [55], B-cell is a clonal selection algorithm which uses
contiguous somatic hypermutation. Algorithm 2.9 contains a pseudo-code for the B-cell
algorithm. After initialising a population of µ b-cells, B-cell creates a separate clone
population with size dup = µ for each individual. Then, these clone populations will go
through a variation phase, which includes two operations of metadynamic and contiguous
hypermutation. The metadynamic operator is inspired by the receptor editing of those
lymphocytes with receptor binding to self-molecules [45]. It is essentially an SBM operator
which is applied to a random individual chosen from each clone population. Then, all clones
will undergo the contiguous hypermutation process. Finally, the best b-cell is chosen from
each hypermutated population and their parent to create the next parent population.

2.4.3 Opt-IA

Proposed by Cutello et al. [19, 20], Opt-IA uses hypermutations with mutation potential
(HMP) and ageing operators. This algorithm and its constituent operators are the main
focus of this thesis. A pseudo-code for Opt-IA is shown in Algorithm 2.10. This algorithm
starts by initialising a population of µ b-cells generated uniformly at random with age := 0.
In each generation, a new parent population consisting of dup copies of each b-cell is
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Algorithm 2.8: Clonalg [23]
input :β , d, ρ;

1 begin
2 t := 0;
3 initialise P = {x1, ...,xµ}, a population of µ b-cells uniformly at random;
4 while termination condition is not satisfied do
5 for i ∈ {1, · · · ,µ} do
6 P(clo)

i := /0 and P(hyp)
i := /0

// Cloning:

7 for i ∈ {1, · · · ,µ} do
8 make dup = (µβ ) copies of xi and add them to P(clo)

i ;

// Hypermutation:

9 for i ∈ {1, · · · ,µ} do
10 for all x ∈ P(clo)

i do
11 y := x;
12 flip each bit of y with probability pm = e−ρ·v;

13 add y to P(hyp)
i ;

// Selection:

14 P := /0;
15 for i ∈ {1, · · · ,µ} do
16 choose the fittest in (xi∪P(hyp)

i ) and add to P ;

17 reinitialise the d individuals with lowest fitness.
18 t := t +1;

created (i.e., |p(clo)|= dup ·µ). Afterwards, the population of clones will go through HMP
and hypermacromutation independently. In the next step, the selection operator of Opt-IA
removes the genotype redundancies (if div = 1) and chooses the best µ b-cells out of the
parent population and hypermutated b-cells to create the next generation. If needed, new
randomly initialised individuals are added by the selection operator to fill up the population.
The original selection mechanism of Opt-IA allows no redundancies and randomly generates
new b-cells instead of redundant ones. Note that, in contrast with Clonalg and B-Cell, Opt-IA
uses one shared clone population for all b-cells.
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Algorithm 2.9: B-cell [55]
1 begin
2 t := 0;
3 initialise P = {x1, ...,xµ}, a population of µ b-cells uniformly at random;
4 while termination condition is not satisfied do
5 for i ∈ {1, · · · ,µ} do
6 P(clo)

i := /0 and P(hyp)
i := /0

// Cloning:

7 for i ∈ {1, · · · ,µ} do
8 make dup = µ copies of xi and add them to P(clo)

i ;

// Metadynamics:

9 for a randomly chosen x ∈ P do
10 flip every bit with probability 1/n (i.e., SBM);

// Hypermutation:

11 for i ∈ {1, · · · ,µ} do
12 for all x ∈ P(clo)

i do
13 y := x;
14 choose j ∈ {0,1, · · · ,n−1} uniformly at random;
15 choose l ∈ {0,1, · · · ,n};
16 if l > n− j+1 then
17 l←− n− j+1;

18 for k ∈ {0, · · · , l} do
19 flip y[ j+ k−1] with probability pm;

20 add y to P(hyp)
i ;

// Selection:

21 P := /0;
22 for i ∈ {1, · · · ,µ} do
23 choose the fittest in (xi∪P(hyp)

i ) and add to P ;

24 t := t +1;

2.5 Conclusion

We discussed some important biological background regarding the natural immune system
of vertebrates with an emphasis on clonal selection principles. We introduced the main
components of an evolutionary algorithm and the immune inspired operators commonly used
by AISs. Then, we described how popular AISs work in detail, including the Opt-IA AIS
which is the focus of this thesis. In the next chapter, we will define the background needed to
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perform runtime analyses of AIS and we will discuss the state-of-the-art in the theoretical
understanding of these algorithms.
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Algorithm 2.10: Opt-IA* [19]
input :M, div, τ;

1 begin
2 t := 0;
3 initialise P := {x1, ...,xµ}, a population of µ b-cells uniformly at random;
4 for all x ∈ P do
5 x.age := 0;

6 while termination condition is not satisfied do
7 P(clo) := /0, P(hyp) := /0 and P(macro) := /0;

// Cloning:

8 for all x ∈ P do
9 make dup copies of x and add to P(clo);

// Ageing (age increment):

10 for all x ∈ (P(clo)∪P) do
11 x.age := x.age+1;

// Hypermutation:

12 for all x ∈ P(clo) do
13 call Function 2.6;
14 add y to P(hyp);

// Ageing (age assignment):

15 if f (y)> f (x) then y.age := 0;
16 else y.age := x.age;

// Hypermutation:

17 for all x ∈ P(clo) do
18 create y by applying hypermacromutation (same as the contiguous

hypermutation operator of B-cell);
19 add y to P(macro);

// Ageing (age assignment):

20 if f (y)> f (x) then
21 y.age := 0;

22 else y.age := x.age;

// Ageing (removal for static ageing)

23 for all x ∈
(

P∪P(hyp)∪P(macro)
)

do
24 if x.age≥ τ then remove x;

// Selection:

25 P :=
(

P∪P(hyp)∪P(macro)
)

;

26 if div = 1 then remove any duplicate offspring with the same genotype as
individuals in P;

27 if |P|> µ then remove the (|P|−µ) least fit individuals, breaking ties
uniformly at random;

28 if |P|< µ then add (µ−|P|) individuals initialised uniformly at random
with age := 0;

29 t := t +1;





Chapter 3

Theory of Artificial Immune Systems

3.1 Introduction

In the previous chapter, we provided an overview of the field of artificial immune systems for
optimisation. In this chapter, we discuss the state-of-the-art in the theoretical understanding
of the behaviour and performance of AISs.

We start in Section 3.2 by defining the notions of expected runtime of randomised
search heuristics and the success probability within a predefined number of steps. A wide
range of methodologies are available to perform runtime analyses. In Section 3.3, we
define the methodologies that will be used throughout this thesis. As we want to identify
problem characteristics that a given search heuristic optimises either well or poorly, we
use benchmark functions with significant characteristics to highlight problem features that
make optimisation easy or hard for given algorithms. In Section 3.4, we introduce the
well-established benchmark problems that will serve this purpose in this thesis. We conclude
the chapter by providing an overview of the available theoretical results concerning the
performance of AISs. The majority of these results are focused on the commonly used
operators of AISs, i.e., hypermutation and ageing operators in isolation (i.e., separately
in simple frameworks). These are overviewed in Sections 3.5 and 3.6, respectively. In
Section 3.7, we review the available theoretical results concerning complete standard AISs
as used in practical applications.

3.2 Runtime Analysis

For any optimisation algorithm, the optimisation time T is defined as the first point of time
when the optimum is found. For a bit string representation and a maximisation problem,
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a global optimum is a search point xg ∈ {0,1}n such that f (xg) = max{ f (x) | x ∈ {0,1}n}.
Since fitness function evaluations are often the most costly operations for a randomised
search heuristic, T is defined as the number of times that the fitness function is evaluated
and is a random variable (because different runs may very well find the optimum in different
times). In runtime analysis, we primarily seek the expected value of T , i.e., E(T ). To present
E(T ), we make use of common asymptotic notations (O, o, Ω, ω , and Θ) [4] which allow us
to state how the expected runtime grows with respect to the problem size n.

Besides the expected optimisation time, we are often also interested in estimating the
success probability. This is the probability that the optimum is found within t steps. We
say the optimum is found within t steps with high probability if P(T ≤ t) = 1−o(1), and
with overwhelming probability (w.o.p.) if P(T ≤ t) = 1−o(1/poly(n)) where o(1/poly(n))
denotes the set of functions asymptotically smaller than the reciprocal of any polynomial
function of n. Similarly, overwhelmingly small probability denotes any probability in the
order of o(1/poly(n)). Throughout this thesis, we call an algorithm inefficient for optimising
a given problem if its (expected, or with some success probability) runtime grows as a
super-polynomial function of the problem size n (i.e., nω(1)), and we call it efficient if the
(expected, or with some success probability) runtime grows at most as a polynomial function
of the problem size n.

3.3 Tools for Runtime Analysis

The analysis of randomised search heuristics borrows most of its tools from probability theory
and the theory of stochastic processes [32, 64]. In this section, we introduce the commonly
used techniques in our analyses. We will often refer to the theorems and definitions of this
section in the rest of this thesis.

3.3.1 Basic Probability Theory

We frequently use the expected value of a random variable X . A definition of expectation of
a discrete random variable is provided in Definition 1. An important property of expectation
is given in Theorem 1. For X a binomial random variable, the expected value is provided in
Theorem 2. If X follows a geometric distribution, then the expected value is often referred to
as the waiting time (which is frequently used in our analyses) where X often represents the
runtime until some event happens, and is given in Theorem 3.

Definition 1 (Expectation [64]). The expectation of a discrete random variable X is defined
as E[X ] = ∑i i ·P(X = i) where the sum is over all values that X can take.
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Theorem 1 (Linearity of expectation [1]). Let X be a discrete random variable with expecta-
tion E(X) and a1, · · · ,an ∈ R. Then, E(∑i aiXi) = ∑i aiE(Xi).

Theorem 2 (Expectation of binomial random variables [64]). For X a binomial random
variable with probability distribution of P(X = k) =

(n
k

)
(1− p)n−k pk on k = 0,1, · · · ,n,

E[X ] = np.

Theorem 3 (Waiting time argument [64]). Let X be a geometric random variable with
probability distribution of P(X = k) = (1− p)k−1 p on k = 1,2, · · · . Then, E[X ] = 1/p.

The union bound is another basic argument used in probability theory which is commonly
applied throughout this thesis. It gives an upper bound for the probability of the union of a
set of outcomes by using the sum of their individual probabilities [64]. A formal description
is provided below.

Theorem 4 (Union bound [64]). Assume A1, . . . ,An are arbitrary events in a probability

space. Then, P
(

n⋃
i=1

Ai

)
≤ ∑

n
i=1 P(Ai).

We use the coupon collector problem in some analyses to derive bounds on the expected
time needed until a certain number of bits are chosen at least once by the mutation opera-
tor [78]. Assume there are n different types of coupons and at each trial only one coupon
is drawn. Knowing that each coupon has the same probability of being drawn, we want to
know the expected time to collect all n coupons.

Theorem 5 (Coupon collector problem [25]). The expected time to collect all n coupons
is nHn, where Hn := ∑

n
i=1 1/i is the nth harmonic number. Since lnn < Hn < 1+ lnn, the

coupon collector needs an expected time of (1+o(1))n lnn.

3.3.2 Tail Inequalities

We sometimes want to bound the probability that a random variable deviates from its expec-
tation by a certain value. To do this, tail inequalities are used. These turn the expectation into
bounds on the value assumed by the random variables that hold with some probability [70].
We use four different tail inequalities in this thesis. The simplest one is Markov’s inequal-
ity [1], which gives an upper bound for the probability that a non-negative random variable
exceeds some value.

Theorem 6 (Markov’s inequality [1]). Let X be a random variable with non-negative values,
and E[X ] its expectation. For all t ∈ R+ it holds that P(X ≥ t)≤ E[X ]/t.
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Given its generality, Markov’s inequality is often too weak to yield useful results, but it is
a fundamental tool for derivation of more sophisticated tail inequalities.

Markov’s inequality, though, can be used iteratively to obtain more useful statement.
Let E(T ) = cn lnn. Using Markov’s inequality, we get P(T ≥ e · cn lnn)≤ 1/e. Hence the
probability that T exceeds e · cn lnn is quite high. However, the probability that T exceeds
n consecutive phases of length e · cn lnn is exponentially small: P(T ≥ 2e · cn lnn)≤ 1/e2),
P(T ≥ 3e · cn lnn)≤ 1/e3), · · · ,P(T ≥ ne · cn lnn)≤ 1/en).

The second inequality which is closely related to Markov’s inequality, is Chebyshev’s
inequality which provides much stronger tail bounds by using the variance of the random
variables along with the expectation [1].

Theorem 7 (Chebyshev’s inequality [1]). For X a random variable with variance Var(X) =

E((X−E(X))2), it holds that P(|X−E(X)| ≥ γ
√

Var(X))≤ 1/γ2 for all γ > 0.

Chernoff bounds [26] is another family of tail inequalities which provides us with
considerably stronger bounds if the random variable is a sum of the independent Poisson
trials.

Theorem 8 (Chernoff bounds). Let X1, · · · ,Xn denote independent Poisson trials such that
P(Xi = 1) = pi. Let X = ∑

n
i=1 Xi. Then:

1. For any δ > 0: P(X ≥ (1+δ )E[X ])≤
(

eδ

(1+δ )1+δ

)E[X ]
[64],

2. For any 0 < δ < 1: P(X ≤ (1−δ )E[X ])≤ e(−δ 2E[X ]/2) [64],

3. For any δ ≥ 0: P(X ≥ (1+δ )E[X ])≤ e(−min{δ ,δ 2}E[X ]/3) [26].

For the case of sampling without replacement for hypergeometric distributions, we may
use another tail bound called Serfling’s inequality [86].

Theorem 9 (Serfling’s inequality [86]). Consider a set C := {c1, . . . ,cn} consisting of n ele-
ments, with ci ∈ R where cmin and cmax are the smallest and largest elements in C respectively.
Let µ̄ := (1/n)∑

n
j=1 ci, be the mean of C. Let 1 ≤ i ≤ k ≤ n and Xi denote the i th draw

without replacement from C and X̄ := (1/k)∑
k
j=1 Xi the sample mean. For 1≤ k ≤ n, and

λ > 0:

P
(√

k(X̄− µ̄)≥ λ

)
≤ exp

(
− 2λ 2

(1− f ∗k )(cmax− cmin)2

)
,

where f ∗k := k−1
n .
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3.3.3 Artificial Fitness Levels

Artificial fitness levels (AFL) is a method originally developed to derive upper bounds on the
expected runtime of EAs without having to track the probability that the algorithm moves
from any point in the search space to any other. Instead, the search space is divided into
a small number of non-intersecting levels of increasing fitness and only the probability of
leaving each level for a better one needs to be estimated. Thus, the analysis is considerably
simplified and often tight bounds are even achieved.

Using AFL, we divide the search space into m mutually exclusive partitions A1, · · · ,Am

such that all the points in Ai have a lower fitness than points which belong to A j for all j > i.
The last partition, Am, only includes the global optima. If pi is the smallest probability that
an individual belonging to Ai mutates to an individual belonging to A j such that i < j, then
the expected time to find the optimum is E(T )≤ ∑

m−1
i=1 1/pi [78].

3.3.4 Drift Analysis

Drift analysis uses the expected random decrease in the distance to the optimum achieved in
one step to make statements about the expected time to reach the global optimum [78, 58].
Assume a given algorithm is at distance d from an optimum and each step takes it closer to
the destination in expectation by at least δ (drift). Then, the additive drift theorem states
that the optimum is reached in at most d/δ expected steps1. For any problem at hand, a
proper distance function must be defined. This is often trivial if the expected progress of
the algorithm remains similar throughout the run. However, if this is not the case, defining
a proper distance function for tight bounds on the runtime can be tricky. If the drift is
proportional to the current distance to the optimum, then the multiplicative drift theorem is
usually easier to apply.

Theorem 10 (Multiplicative drift [78]). Let {Xt}t≥ be a sequence of random variables taking
the values in some set S. Let g : S→{0}∪R≥1 and assume that gmax := max{g(x) | x ∈ S}
exist. Let T := min{t ≥ 0 : g(xt) = 0}. If there exists δ > 0 such that E(g(Xt+1) | g(Xt))≤
(1−δ )g(Xt), then E(T )≤ 1

δ
(1+ lngmax) and for every c > 0, Pr(T > 1

δ
(lngmax+c))≤ e−c.

1The same statement holds for lower bounds on the expected runtime: if the drift is at least δ , then the
expected runtime is at most d/δ .
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3.3.5 Ballot Theorem

The Ballot theorem was first used for analysing hypermutation operators with FCM to derive
an upper bound on the probability of picking more 0-bits than 1-bits (or vice versa) in one
step [52].

Theorem 11 (Ballot theorem [32]). Suppose that, in a ballot, candidate P scores p votes
and candidate Q scores q votes, where p > q. The probability that throughout the counting
there are always more votes for P than for Q equals (p−q)/(p+q).

3.3.6 Typical Run Investigations

The typical run investigations method is based on the idea that the global behaviour of
processes is often predictable in contrast to the unpredictability of local behaviours. A good
example for such predictability is the outcome of tossing a coin [78]. Only for a large number
of trials one can give a tight bound on the number of heads (tails) showing up overall with an
exponentially small error.

Using typical run investigations, we divide a process into k phases. These phases should
be long enough to guarantee the occurrence of an event of interest with probability pk and
its failure with probability 1− pk. The last phase leads the algorithm to the global optimum
with failure probability of 1−∑

k
i=1 pi. The overall runtime is a sum of the runtime of all

phases. This method is normally used together with Chernoff bounds to obtain the failure
probability of each phase.

3.3.7 Some Frequently Used Inequalities

The following well-known inequalities are widely used throughout this thesis [64].

1+ x≤ ex (3.1)

(
1− 1

n

)n

≤ 1
e
≤
(

1− 1
n

)n−1

(3.2)

(n
k

)k
≤
(

n
k

)
≤ nk

k!
≤
(n · e

k

)k
(Binomial coefficients) (3.3)

n

∑
i=1

1
i
≤ ln(n)+O(1) (Harmonic series) (3.4)



3.4 Standard Benchmark Functions 39

3.4 Standard Benchmark Functions

Pseudo-Boolean benchmark functions f : {0,1}n → R are widely used to examine the
efficiency of search algorithms. Through such examinations, we can highlight problem
characteristics that hinder efficient optimisation for a given algorithm or that make an
algorithm outperform others. Such understanding on designed benchmark functions also
allows researchers to construct general mathematical techniques to simplify the analysis
of more complicated algorithms on more sophisticated problems [46]. In this section, the
standard benchmark function classes we will use to analyse the algorithms in future chapters
are introduced.

Benchmark functions can be generally categorized into two main classes: unimodal and
multimodal functions. A function f is unimodal if for any non-optimal search point x, there
is always another point with Hamming distance 1 with better fitness [31]. Otherwise it is
multimodal. In Subsections 3.4.1 and 3.4.2, we will respectively introduce the unimodal and
multimodal fitness functions we consider in this thesis.

We will plot functions differently depending on the properties they possess. For unitation
functions, where the function value only depends on the number of 1-bits and not the bit
positions, we usually illustrate the function values over the number of 1-bits in the bit string.
For non-unitation functions, we normally illustrate the function using the Boolean hypercube.
In a Boolean hypercube, which is shown in Figure 3.1, the 2n bit strings are shown using n
levels. Each level i contains all the

(n
i

)
possible bit strings with exactly i 0-bits. These bit

strings are assumed to be ordered in each layer from left to right by the number of consecutive
1-bits at the left side of the bit string. Hence, the left narrow margin shown in the figure,
represents bit strings in the form of 1n−i0i and the right margin shows 0i1n−i [46]. These
definitions are needed to understand more complex functions in the upcoming chapters. Later
on, we simply use a circle to show this hypercube.

3.4.1 Unimodal Functions

We start by introducing one of the simplest unimodal functions widely used to show whether
an algorithm is able to find an optimum by only hill-climbing. This function, called ONEMAX,
counts the number of 1-bits in a bit string with 1n as the global optimum. Two similarly
defined functions are ZEROMAX, which maximises the number of 0-bits, and ZEROMIN

which is the minimisation version of ZEROMAX. ONEMAX is formally defined in (3.5) and
illustrated in Figure 3.2.
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0n

1n/403n/4 03n/41n/4

1n/20n/2 0n/21n/2

0n/413n/413n/40n/4

1n

Fig. 3.1 A Boolean hypercube [16]

ONEMAX(x) :=
n

∑
i=1

xi. (3.5)

We will refer to the number of 1-bits (ones) in a bit-string using |x|1. Similarly, we use
|x|0 for the number of 0-bits (zeros).

ONEMAX has been widely used in the evolutionary computation field to analyse the
performance of algorithms. It is unlikely that an algorithm which cannot optimise ONEMAX

efficiently would be useful in practical applications. It was shown previously that RLS and
the (1+1) EA have expected runtimes of n lnn+O(n) and en lnn+O(n), respectively, to
optimise ONEMAX [31]. While the first result can be proven to be tight by direct application
of coupon collector (Theorem 5, page 34) [78], the second result can be proven via artifi-
cial fitness levels [31] and has been shown to be tight as well [87]. For the performance
of population-based algorithms, it was shown that the (µ + 1) EA needs in expectation
Θ(µn+n logn) steps to optimise ONEMAX [91]. While in Chapter 4 we show that static
HMPs are considerably slower than EAs for optimising this function, in Chapters 6 and 7 we
will show how our modified AISs can achieve expected runtimes which match the asymp-
tomatic performance of EAs for hill-climbing. This asymptotic performance is unbeatable by
unbiased mutation-only (i.e., unary) black box algorithms [57].

A slightly more complicated unimodal function which we usually use to analyse the
hill-climbing performance of randomised search heuristics is LEADINGONES, which counts
the consecutive number of 1-bits at the beginning of the bit string. This non-unitation function
is formally defined in (3.6).
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Fig. 3.2 The ONEMAX function of size n = 50

LEADINGONES(x) :=
n

∑
i=1

i

∏
j=1

x j. (3.6)

LEADINGONES was first introduced to provide an example to show that not all unimodal
functions are optimised in expected O(n logn) steps by EAs [84]. It was shown that the (1+
1) EA and RLS both optimise this function in Θ(n2) [31, 78]. We will use LEADINGONES

as another example in the next chapter, i.e., to show that AISs using static HMP are slower at
hill-climbing compared to EAs. We then, in Chapters 6 and 7, suggest some strategies which,
without compromising the exploration capabilities of the hypermutation operators, improve
their exploitation ability for both ONEMAX and LEADINGONES.

3.4.2 Multimodal Functions

While unimodal functions are commonly used to highlight the exploitation capabilities of
algorithms, multimodal benchmark functions are used to analyse their exploration capabilities.
The first multimodal function we introduce, is the well-studied CLIFFd function. It was
originally introduced to highlight circumstances where non-elitist EAs may outperform elitist
ones [44]. This function is illustrated in Figure 3.3 and is formally defined in (3.7). We
sometimes call the local optima of CLIFF, cliff.

CLIFFd(x) =

∑
n
i=1 xi if ∑

n
i=1 xi ≤ n−d,

∑
n
i=1 xi−d +1/2 otherwise.

(3.7)

CLIFFd consists of a ONEMAX slope with a fitness gap of length d bits between the
local optima and the global optimum. The local optima are followed by another ONEMAX

slope with a lower fitness than the local optima, leading to the global optimum. Hence,
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algorithms that accept inferior solutions (e.g., a move jumping to the bottom of the cliff) can
then optimise the following slope and reach the optimum. This effect was originally shown
for a non-elitist evolutionary algorithm called (1,λ ) EA which can optimise the function in
approximately O(n25) expected fitness function evaluations if the population size λ is neither
too large nor too small [44]. Elitist EAs need Θ(nd) expected steps to optimise CLIFFd

as they do not accept the jump to the bottom of the cliff. A faster expected runtime, but
still exponential, was recently shown for the population-genetics-inspired SSWM (Strong
Selection Weak Mutation) algorithm with expected runtime of at most nd/eΩ(d) [80]. We
will show in Chapter 4 how hypermutations lead to exponential speed-ups compared to these
algorithms that increase exponentially with the distance d between the cliff and the optimum,
and considerably better performance (even quasi-linear) if ageing operators are used.

Fig. 3.3 The CLIFFd function of size n = 50

A similar function to CLIFFd which we will frequently use is the JUMPk function intro-
duced in [31]. JUMPk consists of a ONEMAX slope with a gap of length k bits that needs to
be overcome for the optimum to be found (Figure 3.4). This function is formally defined in
(3.8).

JUMPk(x) :=


k+∑

n
i=1 xi if ∑

n
i=1 xi ≤ n− k

or ∑
n
i=1 xi = n,

n−∑
n
i=1 xi otherwise.

(3.8)

Differently from CLIFF, the slope between the global and local optima leads back to the local
ones. Hence, the function is much harder to optimise for non-elitist algorithms. Mutation-
based EAs require Θ(nk) expected function evaluations to optimise JUMPk. Hence their
expected runtime grows as the length of the gap increases from super-polynomial to exponen-
tial as soon as k = ω(1). We use the JUMPk benchmark function to show that hypermutations
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can achieve considerable speed-ups (an exponential factor of (e/k)k when the jump is hard
to perform) for escaping local optima compared to well-studied EAs.

Fig. 3.4 The JUMPk function of size n = 50

Another multimodal benchmark function which we will use is the well-studied bi-
modal TWOMAX function commonly used to evaluate the global exploration capabilities of
population-based algorithms, to see, e.g., whether a population can identify both optima of
the function. TWOMAX is defined in (3.9) and illustrated in Figure 3.5. Standard (µ+1) EAs
cannot identify both optima of TWOMAX efficiently. Hence, the function is often used to
appreciate the effectiveness of diversity mechanisms for enhancing the global exploration
capabilities of populations-based EAs [35, 88, 75, 79]. We will use this function in Chapter 6
to show the effectiveness of inversely proportional HMPs in conjunction with ageing at
finding both optima.

TWOMAX(x) := max

{
n

∑
i=1

xi, n−
n

∑
i=1

xi

}
. (3.9)

Fig. 3.5 The TWOMAX function of size n = 50
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The last multimodal function we introduce is the TRAP function which is extremely
deceptive for EAs [31]. It is formally defined in (3.10) and illustrated in Figure 3.6. TRAP

has a ONEMAX slope which directs the search towards the 1n search point. However, the
global optimum is exactly at the opposite side, i.e., 0n. It was shown that w.o.p., EAs require
nΘ(n) steps to optimise TRAP [31]. We will show that AISs are efficient for a class of TRAP

functions where the optimum has O(1) 1-bits.

TRAP(x) :=
n

∑
i=1

xi +(n+1) ·
n

∏
i=1

(1− xi). (3.10)

Fig. 3.6 The TRAP function of size n = 50

3.5 Runtime Analysis of Hypermutation Operators

As already discussed in Chapter 2, different hypermutation operators have been proposed in
the literature inspired by affinity maturation in the natural clonal selection of b-cells. Inversely
fitness proportional hypermutations used by Clonalg [23], contiguous hypermutations used
by B-cell [55], and hypermutation with mutation potentials used by Opt-IA [20] are the most
popular ones. In the following, we review the available runtime analyses results for these
classes of hypermutation operators.

3.5.1 Inversely Fitness Proportional Hypermutation Operators

In the inversely fitness proportional hypermutations of Clonalg, the mutation probability
pm = e−ρ·v is a function giving the probability of flipping each bit [23]. This function value
depends on the fitness of the candidate solution: the better the fitness, the lower the mutation
rate. For different values of ρ (i.e., constant, linear, and logarithmic) it was proved that a
(1+1) algorithm applying this mutation operator cannot even optimise the simple ONEMAX
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problem in polynomial time with high probability [93]. The investigation was done assuming
the optimum is known and using it as the best seen individual to achieve the ideal mutation
rate.

However, it was shown that the use of a population may make the operator efficient for
ONEMAX. In particular, a (µ +1) algorithm using the inversely proportional hypermutation
operator with ρ = lnn has an expected runtime of O(µn+n logn) to optimise ONEMAX [94].
However, the reason behind the efficient performance using a population is that the current
best seen solution is always mutated with probability pm = 1/n (just like SBM with default
mutation rate). While advantages may still be gained from the high mutation rates used
by individuals of lower quality, no such advantages may be noticed from the analysis.
In Chapter 6 we will show how inversely proportional hypermutations can be efficient
even in single-trajectory (1+1) algorithms if coupled with FCM and show how inversely
proportional hypermutations may be efficient also if the best individual uses high mutation
rates.

3.5.2 Contiguous Hypermutation Operators

Applied by the B-cell algorithm [55], contiguous hypermutation flips bits in a specific region
of the bit string with some probability and leaves the rest of the bit string untouched. It is
known as a biased operator as the order of the bits affects the outcome of the operator [95].
Applying contiguous hypermutations, the probability of simultaneously only flipping bits
that are closer to each other is much higher than flipping bits that are further away.

Contiguous hypermutation operators were analysed for pm = 1 (i.e., all bits in the chosen
region will be flipped with probability 1) [50]. Such a mutation operator has been shown to be
slow at hill-climbing as it hardly allows any single bit-flips (the probability of flipping exactly
one identified bit is Θ(1/n2)) [50]. Some alternative versions with different approaches to
choose the mutation region were also considered in [50]. In particular, it was suggested that
the selected region wraps around (i.e., it assumes the bit string is circular) which improves
the performance. The efficiency of contiguous hypermutations in a (1+1) algorithm was
also proven for TRAP functions and a family of graphs for the MAX-CUT and MINIMUM

S-T-CUT problems for which standard EAs are not efficient [92]. Contiguous hypermutation
operators used in the complete B-cell AIS have been also analysed for VERTEX COVER and
for the longest common subsequent problem. We will illustrate such results in Section 3.7.

The easiest function for this operator was shown to be extremely hard for the SBMs used
by EAs (they require Ω(nn) steps in expectation) [7, 6]. This function, called MINBLOCK,
partitions the search space into l = ⌈n

2⌉+1 segments of L0⊔L1⊔L2 · · ·⊔Ll = {0,1} where
the fitness of each x ∈ Li is l− i. The set L0 only includes {1n} which is the unique global
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optimum, and L1 includes only {0n} which is the second best point. For each i ∈ {2,3, · · · l},
Li = {x ∈ {0,1}n | x contains i−1 different 1-blocks}. The simple (1+1) algorithm using
the contiguous hypermutation operator optimises MINBLOCK in Θ(n2). The reason for the
bad performance of EAs for MINBLOCK is the symmetry of 0-bits and 1-bits, which leads
the algorithm to find 0n with constant probability 1/2. From then, to find the 1n point, all
bits need to be flipped simultaneously by the EA which requires exponential time.

3.5.3 Hypermutation Operators with Mutation Potential

The available results on HMPs are limited to inversely fitness proportional mutation potentials
M(x) = ⌊(1− fopt/v) · cn⌋ [52] (see Section 2.3.3). The analyses were done for a (1+ 1)
algorithm which uses inversely proportional HMP to optimise ZEROMIN(x) = n+ 1−
ONEMAX(x). The authors in [52] considered some variants of this mutation potential with
and without FCM and also distinguished the cases where the bits are drawn with and without
replacement by the mutation operator. The results show that without FCM, the algorithm
optimises the ZEROMIN function in 2Ω(n) fitness evaluations in expectation. However, using
FCM, the expected runtime is reduced to Θ(n2 logn). The reason is that without FCM, the
high mutation rates at the beginning of the search make any progress very difficult. Using
FCM, as M is always linear through the run, the algorithm is still by a linear factor slower
than the (1+1) EA. It also has been shown in [52] that drawing bits either with or without
replacement does not affect the performance significantly.

The analyses in [52] were expanded to another benchmark function where the use of
inversely fitness proportional HMP is beneficial compared to local mutations [52]. This
fitness function, called SP-TARGET (short path with target) [67], contains a large area of
global optima and a path with a Hamming distance of at least ω(logn/ log logn) to this large
area which directs the local mutations to a local optimum. It is designed in a way that there is
a need for algorithms to make a big jump from this path to the large area of global optima in
order to optimise the function. While the (1+1) EA needs super-polynomial time w.o.p. to
optimise SP-TARGET as a large number of simultaneous bit-flips are needed to do the jump,
the (1+1) algorithm using inversely proportional HMP can flip the required number of bits
efficiently and optimises SP-TARGET in at most O(n3) evaluations in expectation.

3.6 Runtime Analysis of Ageing Operators

As discussed in Subsection 2.3.4, ageing operators assign an age to individuals and then
decide how and when to remove them. At initialisation, an age of zero is given to all
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initialised solutions. This age is increased by one at each generation. Each newly created
individual takes the age of its parent, unless it improves its fitness in which case the age is set
to zero. Then, depending on the type of ageing operator used (stochastic, static, or hybrid),
old individuals are removed from the population and new randomly initialised individuals are
added if needed. The static ageing operator removes individuals deterministically after they
reach a predefined threshold τ , while the stochastic ageing operator removes each individual
with probability pdie at the end of every generation. Hybrid ageing is a combination of
the other two operators and removes the individuals which have passed a threshold τ with
probability pdie.

3.6.1 Static Ageing

The first runtime analysis of the ageing operators investigated the effect of τ (the maximal
age) on the performance of the static ageing operator embedded in the (µ +1) EA [43]. The
importance of setting τ has been demonstrated by designing some families of functions for
which the runtime changes from polynomial to exponential by changing the τ value or when
τ falls out of a specific interval. It was argued that τ should be large enough to allow the
individuals to improve, otherwise it would behave as a random search. Additionally, large
values of τ reduce the effect of the ageing mechanism (i.e., few individuals are removed by
ageing). Some cases to show when small τ values prevent the algorithm from finding local
optima which trap the algorithm were also shown.

The difference between the static ageing used by AISs and the ageing mechanism used
by EAs which typically assigns age zero to newly created offspring was investigated in [51].
The results show that while the static ageing can escape local optima of example functions by
performing restarts when identifying the absence of progress, it does not let the algorithms
perform random walks on plateaus (as the points have the same fitness on plateaus, it
recognises it as the absence of progress). Although the ageing mechanism in EAs helps
them to perform random walks on plateaus (as all offspring are aged zero), it is not helpful
for escaping from local optima. In order to overcome the incapability of static ageing in
performing random walks, the authors suggested to assign an age of zero to any offspring
which is as fit as its parent but does not have the same genotype.

The superiority of static ageing over restart strategies applied by EAs was investigated
in [49]. The analyses were done for the (µ +1) EA applying k-point crossover and static
ageing on a function which is designed to show where ageing is helpful but restarts are not.
While the (µ +1) EA applying k-point crossover and static ageing with τ = ω(µn log µ) (the
common lower bound for τ presented in [43]) needs O(µ ·(τ+n2+µn logn)) expected fitness
function evaluations to optimise the designed fitness function (described in the following),
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any other standard search heuristics without ageing and crossover needs exponential time
w.o.p. In the designed fitness function, most of the points are evaluated by ZEROMAX.
Directing the search towards 0n, a path is reached which guides the search to the local
optimum. This path is easy to find and to follow by single bit mutations. The global optima
are located in an area around the middle of the Boolean hypercube with points in the form of
1n/40n/4q where q ∈ {0,1}n/2 has more than n/12 1-bits. By keeping at least two points in
the local optimum and removing the rest of the locally optimal points (not necessarily all
of them) by ageing, finding a global optimum is possible. While a k-point crossover of the
local optimum with a random individual can easily discover the global optima, without it, it
is unlikely to optimise the function. When crossover operations do not naturally occur in
the natural immune system, in this thesis we will highlight several situations where (hybrid)
ageing, without the need of crossover, is very effective.

3.6.2 Stochastic Ageing

The effectiveness of stochastic ageing was studied in the (µ +1) EA [74]. The authors first
showed that stochastic ageing can perform restarts similarly to static ageing. They showed
this using a function called LOCALOPT which was previously proved to be efficiently
optimised by the (µ +1) EA using static ageing [51]. For the majority of the LOCALOPT

search space, points are evaluated by ZEROMAX. This guides the algorithm towards 0n

which is the start of two different paths. One includes the points in the form of 0n−i1i for
i ∈ {1, · · · , n

2}. The fitness improves in this path with increasing rightmost 1-bits, leading the
algorithm towards the local optimum with i = n/2 1-bits. The other path includes points in
the form of 1i·k0n−(i·k). The fitness improves by increasing the leftmost 1-bits in this path,
reaching the global optimum at the end. It is much easier to find the first path, hence to
discover the local optimum first. After reaching the local optimum, EAs using SBM need
exponential time to find the global optimum.

It was also shown that a (µ +1) EA applying stochastic ageing is as efficient as static
ageing for a function which previously was used to show the efficiency of the latter [49].
However, µ should not be large to obtain such result (µ ≤ nε for constant ε).

3.6.3 Hybrid Ageing

Among the different variants of ageing, hybrid ageing has been shown to be very efficient at
escaping local optima [74]. Arguing that stochastic ageing is only suitable for rather small
population sizes (as it otherwise would have a very small probability of performing restarts),
the hybrid ageing operator was proposed to suit all reasonable population sizes [74]. This
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ageing operator keeps an individual for τ generations and then will give it a probability to
die at each following generation. It was shown that hybrid ageing allows successful escape
from the local optima of a function from dynamic optimisation called BALANCE in expected
polynomial time while static ageing needs at least exponential time w.o.p. [74]. Regarding
the parameter setting for pdie, it was shown that while for the stochastic ageing pdie should
be close to 0 to get desirable results, for hybrid ageing pdie should be rather large, i.e.,
Θ(1−1/µ) for a (µ +1) algorithm.

As hybrid ageing has been shown to be the most efficient operator of the three for
escaping local optima, we use it in the AISs we will analyse later (i.e., instead of the static
and stochastic ageing operators proposed originally for Opt-IA). For the population-based
AISs we analyse in the next chapters, at each generation, we have a main population of size
µ and a clone population of size (µ · dup). When we use ageing to escape local optima,
we want the entire population to die except for the one individual that escapes. Hence we
want the pdie to be set in a way that in expectation one individual survives. A choice of
pdie = (1− 1

(µ· dup)+µ
) serves our purpose.

3.7 Runtime Analysis of Complete Artificial Immune Sys-
tems

The majority of the literature has focused on the immune system operators applied in isolation.
B-cell is the only complete artificial immune system that has had its runtime investigated for
optimisation problems [47].

3.7.1 The Standard B-cell Algorithm

The first runtime analysis of a complete randomised search heuristic (as used in practice)
for a classical combinatorial problem was performed for the B-cell algorithm [47]. The
obtained results indicated that B-cell outperforms EAs on an VERTEX COVER instance which
is known to be difficult for EAs and RLS [34]. This instance is a bipartite graph with two
sets of nodes V1 and V2 where the nodes in V1 are completely connected to all nodes in V2.
The size of the first set is |V1| = εn (i.e., small) and the second set size is |V2| = (1− ε)n
(i.e., large). It was proved that the (1+1) EA and RLS easily get stuck in the local optimum
and only by using restarts they are able to find the minimum cover in expected polynomial
time. However, B-cell can achieve expected polynomial runtime without any restart required.
After finding a feasible solution (for which either V1 or V2 should be selected completely)
in expected polynomial time, B-cell finds either a local optimum if all the V1 vertices are
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deselected or the global optimum if V1 vertices are in the cover. To deselect any of the
vertices, it is enough to flip any bit by the metadynamic operator (Algorithm 2.9, page 29)
and then choose this vertex and length l = 1 during the contiguous hypermutation operation.
In expected polynomial time, the local optimum is found and then a mutation flipping all bits
is the only acceptable move which, again, happens in expected polynomial time.

In the same paper, it was also shown that B-cell is more efficient than an algorithm
using crossover for instances where crossover was proven to be effective previously. As
the contiguous hypermutation of B-cell flips bits in a specific region of the bit string, the
mapping of the nodes in the given graph and the bits in the bit string has significant effects
on the performance. Hence, an ordering heuristic was applied to put nodes sharing common
neighbours closely. This heuristic is used by B-cell to obtain all the above result [47].

The second classical combinatorial optimisation problem where B-cell has been proven
to be more effective than EAs, is the NP-hard problem of computing a longest common
subsequence of a number of strings [53]. It was shown that B-cell optimises some hard
instances of the problem for which EAs using mutation and crossover fail. These hard
instances contain local optima which are far away from the global optimum. Such good results
for B-cell are achievable if they initialise with trivial empty solutions (EAs performance does
not depend on the initialisation). If B-cell starts with a population of random solutions, then
it is proved that it obtains the same lower bound as EAs.

3.8 Conclusion

In this chapter we first introduced runtime analysis and its main tools from probability theory.
We then introduced the standard benchmark functions which will be used to investigate the
searching abilities of AISs in future chapters. The state-of-the-art in runtime analyses of
AISs for different hypermutation and ageing operators in isolation and the complete AISs
were also reviewed. In the next chapter, we will analyse the behaviour of Opt-IA on the
presented unimodal and multimodal benchmark functions and on especially designed ones to
serve our purposes.
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Standard Opt-IA





Chapter 4

Analysis for Benchmark Problems

4.1 Introduction

In this chapter, the main operators of Opt-IA, i.e., ageing and hypermutations with mutation
potential (HMP) are first analysed in isolation and afterwards together as a complete Opt-IA
algorithm. The aim is to highlight function characteristics for which Opt-IA and its main
components are particularly effective, hence when AIS may be preferable to standard EAs.

In Section 4.2, we present an analysis of static HMP to shed light on its power and
limitations in isolation. First, in Subsection 4.2.1 it is proven that the FCM mechanism
(stop at first constructive mutation) is essential for HMP to be efficient. Thus, in the rest
of this thesis, HMP will always be used in conjunction with FCM. In Subsection 4.2.2, a
general mathematical tool is presented that allows us to derive upper bounds on the expected
runtime of HMP by simply transferring any result on the expected runtime of randomised
local search (RLS) which is established via the standard artificial fitness levels method (see
Subsection 3.3.3, page 37). In Subsection 4.2.3, it is shown that the bounds provided by the
mathematical tool are tight for two standard hill-climbing benchmark functions, ONEMAX

and LEADINGONES. In particular, it is shown that while efficient, HMPs are still a linear
factor slower at optimising these hill-climbing problems compared to the SBM (standard bit
mutation) operators typically used by EAs. Hence, this disadvantage compared to SBM for
optimisation of easy problems is rigorously shown. On the other hand, in Subsection 4.2.4,
the superiority of hypermutations at escaping from local optima which are difficult for SBM
to escape from, is rigorously shown for the standard JUMPk (defined in (3.8), page 42) and
CLIFFd (defined in (3.7), page 41) multimodal benchmark functions.

In Section 4.3, we present an analysis of the ageing operator in isolation. Its ability
to escape from some hard local optima for traditional EAs using SBM and crossover is
highlighted by using the CLIFF function. In particular, in Subsection 4.3.1 it is proven
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that ageing applied alongside the local mutations of RLS can solve particularly hard CLIFF

functions in an expected runtime of Θ(n logn). This is the smallest expected runtime
that is achievable by RLS and SBM to optimise any function with unique optimum. In
Subsection 4.3.2, a slightly larger upper bound is provided when ageing is applied in
combination with SBM. On the other hand, in Subsection 4.3.3 we present an important
negative result; If ageing is used alongside HMP, as occurs in the standard Opt-IA, then
the resulting algorithm requires exponential time to escape from the local optima of CLIFF

w.o.p. Thus, an example is provided where the capabilities of ageing at escaping from local
optimum are restricted by hypermutations. The serious implications of this insight become
apparent by considering that the two operators were originally designed to work harmonically
together in Opt-IA.

In Section 4.4, we move our focus to the complete Opt-IA algorithm. We first consider
a simplified version of Opt-IA that does not use any diversity mechanism. After showing
that it can efficiently optimise all of the functions considered previously in the chapter with
appropriate parameter settings, in Subsections 4.4.2 and 4.4.3 we present example search
spaces where the use of Opt-IA as a complete algorithm is either essential or detrimental. We
conclude the chapter by showing that similar results are achieved by the standard Opt-IA as
in the literature when a selection operator which does not allow genotype diversity is used.

4.1.1 Opt-IA Parameters and Settings

Taking into consideration the theoretical understanding of AIS operators from the litera-
ture [52, 74] and also the fact that some operators are not clearly defined in the original
Opt-IA paper [19, 20], we consider a slightly modified Opt-IA for the rest of this thesis which
is depicted in Algorithm 4.1. It uses one hypermutation operator instead of a combination
of two, as we believe it does not benefit from running two hypermutation operators at the
same time (at least not for the reasons given in the literature [19, 20]). This will be argued
later in this chapter. Additionally, we assume that the hypermutation operator selects bits
without replacement as we do not envisage any advantage of selecting with replacement.
Jansen and Zarges previously also proved that selecting with replacement does not affect the
performance for ONEMAX but makes the analysis very complicated [52]. Also, knowing that
hybrid ageing has the best performance for escaping local optima [74], we use hybrid ageing
for Opt-IA as the default ageing operator instead of static ageing. Although we consider the
constant c in the static MP for this chapter, in the upcoming chapters we would just assume
c = 1 as in general, the constant factor does not change the runtime asymptotically, and also
we would ideally want the potential to be the same size as the bit string so the algorithm
can perform the largest possible jumps. Regarding the selection mechanism, although we
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consider both cases of removing and keeping redundancies in this chapter, in the rest of this
thesis all the algorithms accept redundancies because they speed up the takeover time that
makes ageing effective.

4.2 Analysis of Hypermutations with Static Mutation Po-
tentials in Isolation

The aim of this section is to highlight the power and limitations of the static HMP operator
in isolation. For this purpose, we embed the operator (Function 2.6 with FCM and M = cn )
into a (1+1) framework (introduced in Algorithm 2.4, page 21). The resulting algorithm
is called (1+ 1) IA. We will first show in Subsection 4.2.1 that without the use of FCM,
hypermutations are inefficient variation operators for virtually any objective function of
interest. From there on we will only consider the operator equipped with FCM.

Then we will present a mathematical tool that states that the expected runtime of (1+1) IA
is at most a linear factor larger than that obtained for any RLS algorithm using the artificial
fitness levels method. Essentially, the mathematical tool allows us to transfer any known
upper bound on the expected runtime of any RLS algorithm obtained by AFL method,
into a valid upper bound on the expected runtime of the (1+1) IA. If no improvement is
found in the first hypermutation operation, then the operator will perform at most cn useless
fitness function evaluations before one hypermutation process is concluded. Hence, the
(1+1) IA cannot be much slower compared to the standard RLS. We formalise this result in
Theorem 13.

In Subsection 4.2.3, we show that the bounds provided by our AFL method are tight for
some standard benchmark functions by proving that the (1+1) IA has expected runtimes of
Θ(n2 logn) for ONEMAX and Θ(n3) for LEADINGONES, respectively, versus the expected
Θ(n logn) and Θ(n2) fitness function evaluations required by RLS [78]. We conclude the
section by using the standard benchmark functions JUMPk and CLIFFd to show that the
(1+1) IA provides exponential speed-ups for multimodal functions with local optima that
are generally difficult to escape from.

4.2.1 Stopping at First Constructive Mutation is Essential

We start by highlighting the limitations of static HMPs when FCM is not used. Since
M = cn distinct bits have to be flipped at once, the outcome of the hypermutation operator is
characterised by a uniform distribution over the set of all solutions which have Hamming
distance M to the parent. Since M is linear in n, the size of this set of points is exponentially
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Algorithm 4.1: Opt-IA
input :M, div, τ;

1 begin
2 t := 0;
3 initialise P = {x1, ...,xµ}, a population of µ b-cells uniformly at random;
4 for all x ∈ P do
5 x.age := 0;

6 while a global optimum is not found do
7 P(clo) = /0 and P(hyp) = /0;

// Cloning:

8 for all x ∈ P do
9 make dup copies of x and add to P(clo);

// Ageing (age increment):

10 for all x ∈ (P(clo)∪P) do
11 x.age := x.age+1;

// Hypermutation:

12 for all x ∈ P(clo) do
13 call Function 2.6;
14 add y to P(hyp);

// Ageing (age assignment):

15 if f (y)> f (x) then
16 y.age := 0;

17 else y.age := x.age;

// Ageing (removal for hybrid ageing)

18 for all x ∈ (P∪P(hyp)) do
19 if x.age > τ then
20 remove x with probability pdie;

// Selection:

21 P = (P∪P(hyp));
22 if div = 1 then remove any offspring with the same genotype as individuals

in P;
23 if |P|> µ then remove the (|P|−µ) least fit individuals, breaking ties

uniformly at random;
24 if |P|< µ then add (µ−|P|) individuals initialised uniformly at random

with age := 0;
25 t := t +1;

large and thus the probability of a particular outcome is exponentially small. In the following
theorem, we formalise this limitation.
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Theorem 12. For any function with a polynomial number of optima, the (1+1) IA without
FCM needs expected exponential time eΩ(n) to find any of the optima.

Proof. We will first consider the probability that the initial solution is optimal and then the
probability of finding an optimal solution in a single step given that the current solution
is suboptimal. Note that if c = 1, sampling the complementary bit string of an optimal
solution at initialisation may allow the hypermutation operator to flip all the bits in the
next iteration and find an optimal solution. However, since each optimal solution has a
single complementary bit string, the total number of solutions which are either optimal or
complementary to an optimal solution is also polynomial in n. Since the initial solution is
sampled uniformly at random among 2n possible bit strings, the probability that one of these
polynomially many solutions is sampled is poly(n)/2n = 2−Ω(n).

We now analyse the expected time of the last step before an optimal solution is found
given that the current solution is neither an optimal solution nor the complementary bit string
of an optimal solution. When c = 1, the probability of finding the optima is zero since the
hypermutation deterministically samples the complementary bit strings of current b-cells. For
c < 1, we assume that all the optima are at Hamming distance M = cn from the current b-cell.
Otherwise, if none of the optima are at Hamming distance M, the probability of reaching an
optimum would be zero. Then, given that the number of different points at Hamming distance
cn from any point is

( n
cn

)
and they all are reachable with equal probability, the probability

of finding this optimum in the last step for any c ̸= 1 is p≤ poly(n)
( n

cn)
≤ poly(n)

eΩ(n) = e−Ω(n). By

a simple waiting time argument (see Theorem 3, page 35), the expected time to reach any
optimum is at least eΩ(n).

The theorem explains why poor results were achieved in previous experimental work
both on benchmark functions and real world applications such as the hard protein folding
problem [19, 20]. The authors indeed state that “With this policy [without FCM], however,
and for the problems which are faced in this paper, the implemented IA did not provide
good results” [20]. Theorem 12 shows that this is the case for any objective function of
practical interest. Although we are considering static HMPs in this chapter, Theorem 12
can easily be extended to both the inversely proportional HMP considered in [52] and to
the proportional HMPs from the literature [19]. From now on we will only consider HMPs
coupled with FCM (at least until Chapter 7 when we introduce alternative mechanisms). In
the next subsection, we prove that hypermutations are not too slow compared to randomised
local searches. Before that, we state and prove the following helper lemma.

Lemma 1. The probability that the static HMP applied to x ∈ {0,1}n either evaluates a
specific y ∈ {0,1}n with Hamming distance k ≤ cn to x (i.e., event Ey), or that it stops
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earlier on a constructive mutation (i.e., event Ec) is bounded from below by
(n

k

)−1 (i.e.,
P(Ey ∨ Ec) ≥

(n
k

)−1). Moreover, if there are no constructive mutations with Hamming
distance smaller than k, then P(Ey) =

(n
k

)−1.

Proof. Since the bits to be flipped are picked without replacement, each successive bit-flip
increases the Hamming distance between the current solution and the original solution
by one. The lower bound is based on the fact that the first k bit positions to be flipped
have

(n
k

)
different and equally probable outcomes. Since the only event that can prevent

the static hypermutation to evaluate the k-th solution in the sequence is the discovery of a
constructive mutation in one of the first k−1 evaluations, P(Ey∨Ec) is at least

(n
k

)−1. If no
such constructive mutation exists (i.e., P(Ec) = 0) then, P(Ey) is exactly equal to

(n
k

)−1.

4.2.2 Artificial Fitness Levels for Hypermutations

We are ready to show that static HMPs are not much slower compared to any upper bound
obtained by applying the artificial fitness levels method (see Subsection 3.3.3, page 37)
on the expected runtime of the (1+1) RLS, which flips exactly one bit to produce a new
solution and applies non-strict elitist selection. AFL requires a partition of the search
space X into m mutually exclusive sets

⋃
s∈{1,...,m}As = X such that ∀i < j, x ∈ Ai∧ y ∈

A j =⇒ f (x)< f (y). The expected runtime of a (1+1) algorithm A with variation operator
HM(x) : X →X to solve any function defined on X can be bounded from above via AFL

by E(T ) ≤ ∑
m
i=1

1
pi

, where pi = min
x∈Ai

{
P

(
HM(x) ∈

m⋃
j=i+1

A j

)}
[78, 46]. Below, we show

that hypermutations are not much slower compared to randomised local search operators.

Theorem 13. Let E
(
T AFL
A

)
be any upper bound on the expected runtime of algorithm A

established via the artificial fitness levels method. Then, E
(
T(1+1) IA

)
≤ cn ·E

(
T AFL
(1+1) RLS

)
.

Proof. The upper bound on the expected runtime of RLS to solve any function obtained by
applying AFL is E

(
T AFL
(1+1) RLS

)
≤ ∑

m
i=1 1/pi, where pi is s/n when all individuals in level i

have at least s Hamming neighbours which belong to a higher fitness level. The probability of
mutating to one of the solutions in the first mutation step is the same for static HMP. Such a
solution will be evaluated with probability 1/e. If a solution is not found in the first mutation
step, then at most cn fitness function evaluation would be wasted. Since the algorithm is
elitist and only accepts individuals of equal or better fitness, each level has to be left only
once, independent of whether improvements are achieved by one or more bit-flips. Hence
the claim follows.
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4.2.3 Performance Analysis for Unimodal Functions

In the following, the hill-climbing ability of the static HMP is investigated by analysing its
performance for ONEMAX and LEADINGONES.

Theorem 14. The expected runtime of the (1+1) IA to optimise ONEMAX(x) is Θ(n2logn).

Proof. The upper bound follows from Theorem 13 since it is easy to derive an upper
bound of O(n logn) for RLS using AFL [78]. For the lower bound, we follow the analysis
in Theorem 3 of [52] for inversely proportional HMP with FCM to optimise ZEROMIN

(minimisation form of ONEMAX, defined in (3.5) in page 40) . The proof there relies on
inversely proportional HMP wasting cn function evaluations every time it fails to find an
improvement. This is obviously also true for static HMPs (albeit for a different constant c),
hence the proof also applies to our algorithm.

By Chernoff bounds (see Theorem 8, page 36), the initial solution has at least n/3 0-bits
w.o.p. Using the Ballot theorem (see Theorem 11, page 38), we can achieve an upper bound
on the probability of improvement in one hypermutation operation. Here, p is the number of
1-bits and q is the number of 0-bits. The probability of 1-bits being always ahead of 0-bits (i.e.,
picking more 0-bits than 1-bits to flip) through flipping bits in one hypermutation operation
is 1− q−p

p+q = 2i/n. Hence, the probability of improvement in one hypermutation operator is
at most 2i/n. Failing to improve, the operator waists cn fitness function evaluations. As at
least n/3 improvements are needed, we get the upperbound of ∑

n/3
i=1(

n
2i−1) ·cn = Ω(n2 logn)

on the expected runtime.

We now turn to the LEADINGONES benchmark function (defined by (3.6), page 41),
which simply returns the number of consecutive 1-bits from left before the first 0-bit.

The following proof uses the fact that the bits after the leftmost 0-bit are uniformly
distributed throughout the run. The proof comes from Lemma 1 in [57] which shows it is the
case for all unary unbiased algorithms. As HMP with FCM is unary unbiased (it can be seen
as applying at most n unbiased operators RLS1, RLS2,..., RLSn in each generation, where it
is not decided in advance whether all these operators are applied or only a subset of them),
the lemma holds.

Theorem 15. The expected runtime of the (1+1) IA on LEADINGONES is Θ(n3).

Proof. The upper bound is implied by Theorem 13 because AFL gives an O(n2) runtime
for RLS on LEADINGONES [78]. Let E( fi) be the expected number of fitness function
evaluations until an improvement is made, considering that the initial solution has i leading
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1-bits, followed by a 0-bit and n− i−1 bits which each can be either one or zero with equal
probability. Let events E1, E2 and E3 be that the first mutation step flips one of the leading
ones (with probability i/n), the first 0-bit (with probability 1/n) or any of the remaining bits
(with probability (n− i−1)/n), respectively. If E1 occurs, then the following mutation steps
cannot reach any solution with fitness value i or higher and all cn mutation steps are executed.
Since no improvements have been achieved, the remaining expected number of evaluations
will be the same as the initial expectation (i.e., E( fi | E1) = cn+E( fi)). If E2 occurs, then
a new solution with higher fitness value is acquired and the mutation process stops (i.e.,
E( fi | E2) = 1). However if E3 occurs, since the number of leading 1-bits in the new solution
is i, the hypermutation operator stops without any improvement (i.e., E( fi | E3) = 1+E( fi)).
According to the law of total expectation: E( fi) =

i
n (cn+E( fi))+

1
n ·1+

n−i−1
n (1+E( fi)).

Solving this equation for E( fi), we obtain E( fi) = icn+n− i. Since the expected number
of consecutive 1-bits that follow the leftmost 0-bit is less than two [57, 31], the probability
of not skipping a level i is Ω(1). The initial solution on the other hand will have more
than n/2 leading ones with probability at most 2−n/2. Thus, we obtain a lower bound of

(1−2−n/2)
n
∑

i=n/2
( fi) = Ω(1)

n
∑

i=n/2
(icn+n− i) = Ω(n3) on the expectation by summing over

fitness levels starting from level i = n/2.

4.2.4 Performance Analysis for Multimodal Functions

We now focus on establishing that hypermutations may produce considerable speed-ups if
local optima need to be overcome. The JUMPk function consists of a ONEMAX slope with a
gap of length k bits that needs to be overcome for the optimum to be found. Mutation-based
EAs require Θ(nk) expected function evaluations to optimise JUMPk. Hence, EAs require
increasing runtimes as the length of the gap increases, from super-polynomial to exponential
as soon as k = ω(1). The following theorem shows that hypermutations allow speed-ups by
an exponential factor of (k/e)k/n, when the jump is hard to perform. A similar result has
been shown for the recently introduced Fast-GA [29].

Theorem 16. Let cn > k. Then, the expected runtime of the (1+1) IA using static HMP to
optimise JUMPk is at most O(nk+1·ek

kk ).

Proof. The (1+1) IA reaches the fitness level n− k (i.e., local optima) in O(n2 log n) steps
according to Theorem 14. All local optima have Hamming distance k to the optimum and
the probability that static HMP finds the optimum is bounded from below in Lemma 1 by(n

k

)−1. Hence, the total expected time to find the optimum is at most O(n2logn)+ cn ·
(n

k

)
=

O
(

nk+1·ek

kk

)
.
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Obviously, static HMPs can jump over large fitness valleys also on functions with other
characteristics. For instance, the CLIFFd function (defined by (3.7), page 41) was originally
introduced to show when non-elitist EAs may outperform elitist ones [44].

Corollary 1. Let cn > d. Then, the expected runtime of the (1+1) IA using static HMP to
optimise CLIFFd is O

(
nd+1·ed

dd

)
.

The analysis can also be extended to show an equivalent speed-up compared to the
(1+1) EA for crossing the fitness valleys of arbitrary length and depth recently introduced
in [73].

4.3 Analysis of Ageing in Isolation

It is well-understood that the (hybrid) ageing operator can allow algorithms to escape from
local optima. This effect was shown on the BALANCE function from dynamic optimisation
for an RLS algorithm embedding a hybrid ageing operator [74]. However, for that specific
function, an SBM operator would fail to escape, due to the large basin of attraction of the
local optima. In this section we highlight the capabilities of ageing in a more general setting
(i.e., the standard CLIFFd benchmark function) and show that ageing may also be efficient
when coupled with SBM. Then, we show an opposite effect for the case when ageing is
combined with hypermutations. The reason is that while ageing enables the algorithm to
escape from the local optima of CLIFF, the hypermutation operator stops only at the first
constructive mutation.

4.3.1 Ageing Combined with Randomised Local Search

Ageing can allow an algorithm to escape from a local optimum if one not locally optimal
b-cell is created and survives while all the other b-cells die. For this to happen, it is necessary
that all the b-cells are old and have similar age. This is achieved on a local optimum by
creating copies of the locally optimal b-cell (the b-cells will inherit the age of their parent).
Hence, the ability of a mutation operator to create copies enhances this particular capability
of the ageing operator. To this end, we first consider a modified RLS algorithm that with some
constant probability p does not flip any bit and implements (hybrid) ageing. This algorithm,
uses a (µ +1) framework and is called (µ +1) RLSageing

p . It is presented in Algorithm 4.2.
Apart from making ageing more effective, this slight modification to the standard RLS

considerably simplifies the proofs of the statements we wish to make now. In Subsection 4.4.5,
we will generalise the result to an RLS algorithm that does not allow genotype duplicates
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Algorithm 4.2: (µ +1) RLSageing
p

1 begin
2 t := 0;
3 Initialise P := {x1, ...,xµ}, a population of µ b-cells uniformly at random;
4 for each x ∈ P do
5 x.age ∈ P := 0;

6 while a global optimum is not found do
7 for all x ∈ P do
8 x.age := x.age+1;

9 choose an x ∈ P uniformly at random;
10 y := x;
11 with probability 1/2 < 1− p≤ 1 flip one bit of y chosen uniformly at

random;
12 if f (y)< f (x) then // for minimisation
13 y.age := 0;

14 else y.age := x.age;
15 P = (P∪ y);
16 for all x ∈ P do
17 if x.age > τ then
18 remove x with probability pdie = 1− 1

µ
;

19 if |P|> µ then remove the individual with the worst fitness breaking ties
uniformly at random;

20 if |P|< µ then add (µ−|P|) individuals initialised uniformly at random
with age := 0;

21 t := t +1;

as in the standard Opt-IA. Theorem 17 proves a surprising result for the considered (µ +

1) RLSageing
p for CLIFFd . Not only is the algorithm very fast, but our upper bound becomes

lowest (i.e., O(n logn)) when the function is the most difficult (i.e., when the cliff is located at
distance d = Θ(n) from the optimum). In this setting, the algorithm is asymptotically as fast
as any evolutionary algorithm using SBM can be on any function with unique optimum [87].
A similar result has recently been shown also for a hyper-heuristic which switches between
elitist and non-elitist selection operators [60].

Before we move to the main results, we will prove a helper lemma for which we will
closely follow the arguments of Lemma 5 in [74] (stated below as Lemma 2) to get a similar
but more precise bound.
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Lemma 2 (Lemma 5 in [74]). Let the whole population be on a local optimum. Then, as
long as a better local optimum is not found first and no individual reaches age τ +1, all the
individuals will have the same age in expected time O(µ3).

Lemma 3. Consider the (µ +1) EAageing with a population which consists of solutions of
equal fitness. Given that no improvement is found and no solutions reach age τ before, the
expected time until the population consists of solutions with the same age is at most 144µ3.

Proof. Let Xt denote the largest number of individuals in the population having the same
age. While Xt < µ , the size of Xt increases if one of the Xt individuals is selected as parent,
the SBM does not flip any bits and a solution from another age group is removed from the
population. The probability of such an event is:

P(Xt+1 = Xt +1 | Xt)≥
Xt(µ−Xt)

µ(µ +1)
·
(

1− 1
n

)n

.

Similarly, Xt decreases only if a solution from another age group is cloned and one of the
Xt solutions are removed from the population. This event happens with probability:

P(Xt+1 = Xt−1 | Xt)≤
(µ−Xt)Xt

µ(µ +1)
·
(

1− 1
n

)n

≤ P(Xt+1 = Xt +1|Xt).

Let a relevant step be any iteration where Xt ̸= Xt+1. Then, the number of generations
where Xt+1 ≥ Xt in 2µ2 relevant steps has a distribution that stochastically dominates the
binomial distribution with parameters 2µ2 and 1/2. Now, we use Lemma 10.15 in [26]
which states that:

Lemma 4 (Lemma 10.15 in [26]). Let X be a binomial random variable with parameters
n≥ 0 and p = 1/2. Then, P(X ≥ n

2 +
1
2

√n
2)≥

1
8 .

Hence, for any random variable X ∼ Bin(2µ2,1/2), P(X ≥ µ2 + 1
2

√
µ2) ≥ 1

8 using
Lemma 4. Therefore, the probability that Xt increases at least µ2 +µ/2 times in a phase of
2µ2 relevant steps is at least 1/8. Since Xt ≥ 1, the expected number of relevant steps until
Xt = µ is at most (1/8)−12µ2 = 16µ2. The probability of a relevant step is at least:

(µ−Xt)Xt

µ(µ +1)
·
(

1− 1
n

)n

≥ (µ−1)
µ(µ +1)

·
(

1− 1
n

)n

≥ 1
3µ
· 1

3
=

1
9µ

,

for any µ ≥ 2 and n≥ 3. Thus, the expected waiting time for a relevant step is at most 9µ

and the total expected time until the population reaches the same age is at most 144µ3.

We now prove the main result of this section.



64 Analysis for Benchmark Problems

Theorem 17. For µ = O(logn), p < 1 a constant and τ = Θ(n logn), the (µ +1) RLSageing
p

optimises CLIFFd in expected time O
(

µ2n3 logn
d2

)
if d < n/4−εn for any constant 0< ε < 1/4.

Proof. We follow the proof of Theorem 10 in [74] for the (µ + 1) RLS optimising the
BALANCE function and adapt the arguments therein to the ONEMAX landscape and to the
RLS we use. Given that there are i < µ individuals with j 1-bits in the population, the
probability of creating a new individual with j 1-bits is at least (i/µ)p because the RLSp

operator creates a copy with a constant probability p. Hence we follow the proof in [74]
to show that in O(µn+n logn) (which is O(n logn) due to the bound on µ) expected steps
the population climbs up the ONEMAX slope (i.e., samples a solution with n− d 1-bits)
and subsequently the whole population will be taken over by the local optimum. Given that
there are already k copies of the best individual in the population, the probability that one is
selected for mutation is k/µ and the probability that a new copy is added to the population is
at least kp/µ . Thus, in at most ∑

µ

k=1 µ/kp = O(µ log µ) generations in expectation after the
first local optimum is sampled, the population is taken over by the local optimum. Now we
can apply Lemma 3 to show that in expected O(µ3) steps the whole population will have the
same age. As a result, after another at most τ = Θ(n logn) generations the whole population
will reach age τ simultaneously because no improvements may occur unless the optimum
is found. Overall, the total expected time until the population consists only of local optima
with age τ is at most O(µn+n logn+µ log µ +µ3 + τ) = O(n logn). Now we calculate the
probability that in the next step one individual jumps to the bottom of the cliff and the rest
die in the same generation. The first event happens with probability (1− p)(d/n) = Ω(d/n)
(i.e., an offspring solution with n−d +1 1-bits is created by flipping one of the d 0-bits in
the parent solution). The probability that the rest of the population dies is 1/µ · (1−1/µ)µ .
We now require that the survivor creates an offspring with higher fitness (which means it
will have age = 0) by flipping one of its 0-bits (i.e., climbing one step up the second slope).
This event happens with probability at least (1− p)(d−1)/(µn) = Ω

(
d

µn

)
and in the same

generation with probability (1− 1/µ) = Ω(1) the parent of age τ + 1 dies due to ageing.
Finally, the new solution (i.e., the safe individual) takes over the population in O(µ log µ)

expected generations by standard arguments. It takes at least Ω(n) generations before any
of the new random individuals has εn more 0-bits than it had after initialisation since FCM
terminates after each improvement. Using Markov’s inequality (see Theorem 6, page 35), we
can show that the probability that the takeover happens after more than Ω(n) steps is at most
O((µ log µ)/n).

The overall probability of this series of consecutive events is Ω
(d

n

)
· 1

µ

(
1− 1

µ

)µ

·

Ω

(
d

µn

)
· (1− 1

µ
) ·
(

1−O
(

µ log µ

n

))
= Ω

(
d2

n2µ2

)
and the expected number of trials (i.e.,

climb-ups and restarts) until we get a survivor which is safe at the bottom of the cliff is
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O
(

n2µ2

d2

)
. Every time the set of events fails to happen, we wait for another O(µn+n logn) fit-

ness evaluations until the population reaches a configuration where all individuals are locally
optimal and have age τ . Once a safe individual has taken over the population, the expected
time to find the global optimum will be at most O(µn+n logn). Overall, the total expected
time to optimise CLIFFd conditional on the best individual never dying when climbing up the
slopes is E(Ttotal)≤ O(µn+n logn) ·O

(
n2µ2

d2

)
+O(µn+n logn) = O

(
µ2n3 logn

d2

)
. Finally,

we consider the probability that the best individual in the population never dies when climbing
up the slopes due to ageing. After any higher fitness level is discovered, it takes O(µ log µ)

generations in expectation and at most n1/2 generations with overwhelming probability
until the whole population takes over the level. For the first n− logn levels, the probability
of improving a solution is at least Ω(logn/n) and the probability that this improvement
does not happen in τ−n1/2 = Ω(n logn) generations is at most (1−Ω(logn/n))Ω(n logn) =

e−Ω(log2 n) = n−Ω(logn). For the remaining fitness levels, the probability of reaching age
τ before improving is similarly (1−Ω(1/n))Ω(n logn) = e−Ω(logn) = n−Ω(1). By the union
bound (see Theorem 4, page 35) over all levels, the probability that the best solution is
never lost due to ageing is at least 1− o(1). We pessimistically assume that the whole
optimisation process has to restart if the best individual reaches age τ . However, since at
most 1/(1−o(1)) = O(1) restarts are necessary in expectation, our bound on the expected
runtime holds.

4.3.2 Ageing Combined with Standard Bit Mutation

Now we consider the (µ +1) EAageing which differs from the (µ +1) RLSageing
p by using

SBM with mutation rate 1/n instead of flipping exactly one bit. SBM allows the copying
of individuals but, since it is a global operator, it can jump back to the local optima from
anywhere in the search space with non-zero probability. Nevertheless, the following theorem
shows that, for not too large populations, the algorithm is still very efficient when the cliff
is at a linear distance from the optimum. Its proof follows similar arguments to those of
Theorem 17. The main difference in the analysis is that here we need to show that once the
solutions have jumped to the bottom of the cliff, they have a good probability of reaching the
optimum before jumping back to the top of the cliff.

Theorem 18. The (µ + 1) EAageingoptimises CLIFFd in expected O(n1+ε) time if d =

(1/4)(1− c)n for some constant 0 < c < 1, τ = Θ(n logn) and µ = Θ(1), where ε is an
arbitrarily small positive constant.
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Proof. The probability that the SBM operator increases the number of 1-bits in a parent
solution with Ω(n) 0-bits is at least Ω(n)/(ne) = Ω(1). Following the same arguments
as in the proof of Theorem 17 while considering n/4 > d = Θ(n) and µ = O(1) we can
show that with constant probability and in expected O(n logn) time the algorithm reaches a
configuration where there is a single individual at the bottom of the cliff with n−d+2 1-bits
and age zero while the rest of the population consists of solutions which have been randomly
sampled in the previous iteration.

We will now show that the newly generated individuals have worse fitness than the
solution at the bottom of the cliff when they are initialised. Since d = (1/4)(1− c)n, the
fitness value of the solutions with more than n− d 1-bits is at least n− (1/4)(1− c)n−
(1/4)(1− c)n = (n/2)(1+ c). Due to Chernoff bounds (see Theorem 8, page 36), the newly
created individuals have less than (n/2)(1+(c/2))< (n/2)(1+c) 1-bits with overwhelming
probability.

Next we prove that for any constant ε , there exist some positive constant c∗, such that the
best solution at the bottom of the cliff (the leading solution) will be improved consecutively
for c∗ logn iterations with probability at least n−ε . The leading solution with i 0-bits is
selected for mutation and SBM flips a single 0-bit with probability pi = (1/µ) · (i/n)(1−
n−1)n−1. With probability ∏

n−d+1+c∗ logn
i=n−d+2 pi, c∗ logn consecutive improvements occur. We

can bound this probability from below by the final improvement probability p f raised to
the power of c∗ logn since the improvement probability is inversely proportional to the
number of 0-bits. Considering that p f ≥ (n− d + 1+ c∗ logn)/(nµe) = Ω(1), we can set
c∗ := −ε logp f

2 = Ω(1), which yields pc∗ logn
f = n−ε . Here, we note that immediately

after c∗ logn consecutive improvements, all the individuals in the population have at least
n−d +1+ c∗ logn−µ 1-bits. More precisely, there will be one and only one individual in
the population with j bits for all j in [n− d + 1+ c∗ logn− µ,n− d + 2+ c∗ logn]. Since
µ is constant and SBM flips at least k bits with probability n−k(n

k

)
, the probability that a

single operation of SBM decreases the number of 1-bits in any individual below n−d +1
is in the order of O(1/(logn)!). Since this probability is not polynomially bounded, with
probability at least 1−O(1/n) it will not happen in any polynomial number of iterations.
After the consecutive improvements occur, it takes O(n logn) expected steps until the second
slope is climbed and the optimum is found.

The asymptotic bound on the runtime is obtained by considering that the algorithm
will reach the local optimum nε times in expectation before the consecutive improvements
are observed. Since the time to restart after reaching the local optimum is in the order of
O(n logn), the expected time is O(n1+ε logn). As ε is an arbitrarily small constant, the order
O(n1+ε logn) is equivalent to the order O(n1+ε ′).
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4.3.3 Ageing Combined with Hypermutations

In this subsection, we show the undesirable effects obtained when combining static HMPs
with ageing for CLIFFd with linear d. HMPs with FCM, require an increase in the number
of 1-bits in the current solution by d at least once before the hypermutation stops. This
requirement implies the exponential lower bound on the runtime. Hence, the power of
ageing at escaping local optima vanishes. Before stating the main theorem, we introduce a
helper lemma which will be used in the proof of Theorem 19. We used Serfling’s inequality
(see Theorem 9, page 36) for the hypergeometric distribution to obtain the following result,
however the proof can be modified to work with standard Chernoff bounds as well.

Lemma 5. The probability that a solution with at least (n/2)+ |a|+b 1-bits, where−n/2≤
a ≤ n/2 and b < n/2, is sampled at mutation step k, given that the initial solution has

(n/2)+a 1-bits, is bounded from above by e−
b2
k .

Proof. For the input bit string x, let the multi-set of weights C := {ci|i ∈ [n]} be defined
as ci := (−1)xi (i.e., ci = −1 if xi = 1 and ci = 1 if xi = 0). Thus, for permutation π

of bit-flips over [n], the number of 1-bits after the kth mutation step is ONEMAX(x) +

∑
k
j=1 cπ j since flipping the position i implies that the number of 1-bits changes by ci. Let

X̄ := (1/k)∑
k
j=1 cπ j be the sample mean, µ̄ := (1/n)∑

n
j=1 ci the population mean. The

number of 1-bits which incur the weight of −1 when flipped is at least n/2+a. Thus, µ̄ ≤
(1/n)(−(n/2)−a+(n/2)−a)) = −2a/n. To find a solution with at least (n/2)+ |a|+b
1-bits it is necessary that the sample mean X̄ is at least (|a|−a+b)/k. Thus:

X̄ ≥ |a|−a+b
k

=⇒ X̄− µ̄ ≥ |a|−a+b
k

+
2a
n

≥ b
k
+
|a|−a

k
+

2a
n
≥ b

k

=⇒
√

k(X̄− µ̄)≥ b√
k
.

According to Serfling’s inequality:

P
(√

k(X̄− µ̄)≥ b√
k

)
≤ exp

− 2
(

b√
k

)2

(
1− k−1

n

)
(1− (−1))


≤ exp

(
−b2

k

)
.
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Having established our intermediary lemma, we can now prove the exponential lower
bound on the runtime of the (1+1) IA with ageing on the CLIFFd problem. The following
theorem holds for the static HMP operator using FCM.

Theorem 19. The (1+ 1) IA using static HMP and ageing requires at least 2Ω(n) fitness
function evaluations w.o.p. to find the optimum of CLIFFd for d = (1−c)n/4, where 0< c< 1
is a constant.

Proof. The number of 1-bits in any initial solution is between (n/2)−n3/5 and (n/2)+n3/5

w.o.p. due to Chernoff bounds (see Theorem 8, page 36). According to Lemma 5, the
probability that an offspring with more than a+n/10 1-bits is mutated from a parent with
a ≥ (n/2)− n3/5 1-bits is in the order of 2−Ω(n) using the union bound (see Theorem 4,
page 35). Therefore, w.o.p. we will not observe that a solution with less than n−d− (n/10)
1-bits having an offspring with more than n− d 1-bits. However, solutions with b 1-bits
such that n−d− (n/10)≤ b≤ n−d, have higher fitness than post-cliff solutions with less
than b+d 1-bits. Thus, according to Lemma 5, the probability that an acceptable solution is
obtained is in the order of 2−Ω(d) = 2−Ω(n) using the union bound over n mutation steps.

4.4 Analysis of a Complete Opt-IA

After having analysed the operators separately, in this section we consider a complete Opt-IA.
The considered Opt-IA (Algorithm 4.1), uses static HMP coupled with FCM as variation
operator, hybrid ageing and standard (µ +λ ) selection which allows genotype duplicates.
Also, a mutation is considered constructive if it results in creating an equally fit solution or a
better one.

In this section, we first show that Opt-IA is efficient for all the functions considered
previously in this chapter. Then, in Subsection 4.4.2 we present a problem where the use of
the whole Opt-IA is crucial. In Subsection 4.4.3, we show limitations of Opt-IA by presenting
a class of functions where standard EAs are efficient while Opt-IA is not w.o.p. We conclude
the section with Subsection 4.4.4 where we present an analysis for TRAP functions which
disproves previous claims in the literature about Opt-IA’s behaviour on this class of problems.

The following theorem shows the runtime needed by Opt-IA to optimise the benchmark
functions considered previously in this chapter. The theorem uses that the ageing parameter
τ is set large enough such that no individuals die with high probability before the optima are
found.

Theorem 20. Let τ be large enough. Then the following upper bounds on the expected
runtime of Opt-IA hold:
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E(TONEMAX) = O
(
µ ·dup ·n2 logn

)
for τ = Ω(n2),

E(TLEADINGONES) = O
(
µ ·dup ·n3) for τ = Ω(n2),

E(TJUMPk) = O
(

µ ·dup · nk+1·ek

kk

)
for τ = Ω(nk+1),

and E(TCLIFFd) = O
(

µ ·dup · nd+1·ed

dd

)
for τ = Ω(nd+1) .

Proof. The claims use that if τ is large enough (i.e., Ω(n2) for ONEMAX and LEADINGONES,
Ω(nk+1) for JUMPk and Ω(nd+1) for CLIFFd), then with probability 1−o(1) the current best
solution will never reach age τ and die due to ageing before an improvement is found. For
the Opt-IA to lose the current best solution due to ageing, it is necessary that the best solution
is not improved for τ generations consecutively. If the improvement probability for any
non-optimal solution is at least pmin and if the age τ is set to be p−1

minn, then the probability
that a solution will reach age τ before creating an offspring with higher fitness is at most
(1− pmin)

τ ≤ e−n. By the union bound, it is also exponentially unlikely that this occurs in a
polynomial number of fitness levels that need to be traversed before reaching the optimum.
Since the suggested τ for each function is larger than the corresponding p−1

minn, the upper
bounds of the (1+1) IA (which does not implement ageing) for ONEMAX, LEADINGONES,
JUMPk and CLIFFd are valid for Opt-IA when multiplied by µ ·dup to take into account the
population and clones.

4.4.1 A Tight Bound for ONEMAX

Theorem 21 shows that the presented upper bound in Theorem 20 for ONEMAX is actually
tight for sub-logarithmic population and clone sizes (i.e., µ = o(logn) and dup = o(logn)).

Theorem 21. Opt-IA using static HMP needs at least cn2( log(n/3)
2 − µ·dup

3 ) expected fitness
function evaluations for mutation potential cn to optimise ONEMAX.

Proof. By Chernoff bounds (see Theorem 8, page 36), any initial individual has at least
i = n/3 0-bits with overwhelming probability 1− e−Ω(n). Hence, using union bound (see
Theorem 4, page 35), with probability at least 1−µe−Ω(n) all individuals have at least n/3
0-bits.

To calculate the probability of an improvement (i.e., flipping equal or more 0-bits than
1-bits during one mutation operation), we use the Ballot theorem (see Theorem 11, page 38)
in a similar way to [52]. Considering the number of 0-bits as i = q and the number of
1-bits as n− i = p, the probability of an improvement is at most 1− (p− q)/(p+ q) =
1− (n− 2i)/n = 2i/n according to the Ballot theorem1. Hence, the probability that at

1Like in [52] we consider that using cn < n mutations, the probability can only be lower than the result
stated in the Ballot theorem.
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least one out of dup · µ individuals succeeds is P ≤ dup · µ2i/n by the union bound. We
optimistically assume that the rest of the individuals also improve their fitness after such
event happens. Recall that the mutation operator wastes cn fitness function evaluations every
time it does not improve the fitness. Therefore, the expected time to see an improvement
is E(Timprove) ≥

(
n

dup·2µi −1
)
· µcn · dup. Since the mutation operator stops at the first

constructive mutation (i.e., when the number of 1-bits is increased by one), it is necessary to
improve at least n/3 times. So the total expected time to optimise ONEMAX is E(Ttotal)≥
(1−µe−Ω(n))∑

n/3
i=1 E(Timprove) = cn2( logn/3

2 − µ·dup
3 ).

If individuals were to be removed because of ageing, then the new randomly generated
individuals that replace them will have to improve at least n/3 times all over again w.o.p.
Hence, the runtime may only increase in such an event.

4.4.2 Where Using Both Ageing and Hypermutations is Essential

In this section, we design the function HIDDENPATH to illustrate a problem class where
the use of static hypermutation and ageing together is crucial. When either of these two
characteristic operators of Opt-IA is not used, we will prove that the expected runtime
is at least super-polynomial. HIDDENPATH : {0,1}n→ R can be described by a series of
modifications to the well-know ZEROMAX function (similar to ONEMAX except that it
counts the number of 0-bits) . The distinguishing solutions are those with five 0-bits and
those with n−1 0-bits, along with logn−3 solutions of the form 1n−k0k for 5≤ k≤ logn+1
(called SP points). The solutions with exactly n− 1 0-bits constitute the local optima
(LOCALOPT) of HIDDENPATH , and the solutions with exactly five 0-bits form a gradient
with fitness increasing with more 0-bits in the rightmost five bit positions. Given that |x|0
and |x|1 respectively denote the number of 0-bits and 1-bits in a bit string x, HIDDENPATH

is formally defined as in Definition 2. HIDDENPATH is illustrated in Figure 4.1 where OPT

shows the global optimum and the fitness increases with darker shades of gray.

Definition 2. Given the definitions of SP and LOCALOPT as above, for any positive constant
ε < 1, the HIDDENPATH function is defined for all x ∈ {0,1}n by:

HIDDENPATH(x)=



n− ε +
∑

n
i=n−4(1−xi)

n if |x|0 = 5 and x ̸= 1n−505,

0 if |x|0 < 5 or |x|0 = n,

n− ε + εk/ logn if x ∈ SP := {x | x = 1n−k0k and 5≤ k ≤ logn+1},

n if x ∈ LOCALOPT := {x | |x|0 = n−1},

|x|0 otherwise.
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Fig. 4.1 The HIDDENPATH function

Since the all 0-bits string returns fitness value zero, there is a drift towards solutions with
n−1 0-bits while the global optimum is the 1n−logn−10logn+1 bit string. The solutions with
exactly five 0-bits work as a net that stops any static hypermutation that has an input solution
with less than five 0-bits. The path to the global optimum consists of logn− 3 Hamming
neighbours and the first solution on this path has five 0-bits.

Theorem 22. For c = 1, dup = 1, µ = O(logn) and τ = Ω(n2 logn), Opt-IA using static
HMP needs expected O(τµn+µn7/2) fitness function evaluations to optimise HIDDENPATH.

Proof. For convenience we will call any solution with i 0-bits (except the SP solutions)
an Si solution. After O(n logn) generations in expectation, an Sn−1 solution is found by
optimising ZEROMAX. Assuming the global optimum is not found first, consider the
generation when an Sn−1 solution is found for the first time. Another Sn−1 solution is created
and accepted by Opt-IA with probability at least 1/n since it is sufficient to flip the single
1-bit in the first mutation step and any 0-bit in the second step will be flipped next with
probability one. Thus, Sn−1 solutions take over the population in expected O(nµ) generations.
Since, apart from the optimum, no other solution has higher fitness than Sn−1 solutions, the
population consists only of Sn−1 solutions after the takeover occurs. A solution reaches
age τ before the takeover only with probability 2Ω(

√
n), due to Markov’s inequality applied

iteratively (see Theorem 6, page 35) for Ω(
√

n) consecutive phases of length Θ(nµ). We
now bound the expected time until the entire population has the same age. Considering
that the probability of creating another Sn−1 solution is Θ(1/n), the probability of creating
two copies in one single generation is

(
µ

2

)
O
(

1
n2

)
= O

(
log2 n

n2

)
. With probability ω(1), this

event does not happen in o(n2/ log2 n) generations by the union bound (see Theorem 4,
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page 35). Conditional on that at most one additional Sn−1 solution is created in every
generation, we can follow a similar argument as in the proof of Theorem 17. Hence, we can
show that in expected O(µ3n) iterations after the takeover, the whole population reaches
the same age. When the population of Sn−1 solutions with the same age reaches age τ , with
probability 1/µ · (1− (1/2µ))2µ−1 = Θ(1/µ) a single new clone survives while the rest of
the population dies. With probability 1−O(1/n) the survived clone has hypermutated all n
bits (i.e., the survived clone is an S1 solution). In the following generation, the population
consists of an S1 solution and µ−1 randomly sampled solutions. With probability 1, the S1

solution produces an S5 solution via hypermutation. On the other hand, with overwhelming
probability the randomly sampled solutions still have fitness value n/2±O(

√
n), hence

the S1 solution is removed from the population while the S5 b-cell is kept. Overall, after
Θ(µ)+ o(1) expected restarts an S5 solution will be found in a total expected runtime of
O(µ · (n logn+µn+µ3n+ τ +1)) = O(µτ) generations. We momentarily ignore the event
that the S5 solution reaches an Sn−1 point via hypermutation.

Now, the population consists of a single S5 solution and µ − 1 solutions with at most
n/2+O(

√
n) 0-bits. We want to bound the expected time until S5 solutions take over the

population conditional on no Sn−1 solutions being created. Clones of any S5 solutions are also
S5 solutions after hypermutation if one of the first two bits to be flipped is a 0 and the other
is a 1, which happens with O(1/n) probability. Moreover, if the outcome of hypermutation
is neither an S5, an SP nor an Sn−1 solution, then it is an Sn−5 solution since all n bit-flips
will have been executed. Since Sn−5 solutions have higher fitness value than the randomly
sampled solutions, they stay in the population. In the subsequent generation, if hypermutation
does not improve an Sn−5 solution (which happens with probability O(1/n)), it executes n
bit-flips to create yet another S5 solution unless the SP path is found.

This feedback causes the number of Sn−5 and S5 solutions to double in each generation
with probability ω(1) until they collectively take over the population in O(log µ) generations
in expectation. Then, with probability ω(1) all the Sn−5 solutions produce an S5 solution
via hypermutation and consequently the population consists only of S5 solutions. Since the
takeover happens in expected O(log µ) generations, the probability that it fails to complete
in O(log µ) generations for consecutive Ω(

√
n) times is exponentially small. Hence, in

O(
√

n log µ) generations w.o.p. (by applying Markov’s inequality iteratively) the entire
population are S5 solutions conditional on Sn−4 solutions not being created before. Since the
probability that the static hypermutation creates an Sn−4 solution from an Sn−5 solution is
less than (4/n) ·µ , and the probability that it happens in O(

√
n log µ) generations is less than

(4/n) ·µ ·O(
√

n log µ) = o(1), the takeover occurs with high probability, i.e., 1−o(1).
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After the whole population consists of only S5 solutions, except for the global optimum
and the local optima, only other points on the gradient would have higher fitness. The
probability of improving on the gradient is at least 1/n2 which is the probability of choosing
two specific bits to be flipped (a 0-bit and a 1-bit) leading towards the b-cell with the best
fitness on the gradient. Considering that the total number of improvements on the gradient
is at most 5, in O(n2 · 5) = O(n2) generations in expectation the first point of SP will be
found. Now we consider the probability of jumping back to the local optima from the
gradient, which is Θ(1)/

( n
n−4

)
= O(n−4), before finding the first point of the SP. Due to

Markov’s inequality applied iteratively over Ω(
√

n) consecutive phases of length Θ(n2) with
an appropriate constant, the probability that the time to find the first point of SP is more
than Ω(n5/2) is less than 2−Ω(

√
n). The probability of jumping to a local optimum in O(n5/2)

steps is at most O(n−4)O(n5/2) = O(n−3/2) by the union bound. Therefore, SP is found
before any local optima in at most O(n5/2) generations with probability 1−o(1). Hence, the
previously excluded event has now been taken into account.

After 1n−505 is added to the population, the best solution on the path is improved with
probability Ω(1/n) by hypermutation and in expected O(n logn) generations the global
optimum is found. Since all SP and S5 solutions have a Hamming distance smaller than
n− 4 and larger than n/2 to any Sn−1 solution, the probability that a local optimum is
found before the global optimum is at most O(n logn) ·µn

(n
4

)−1
= o(1) by the union bound.

Thus with probability 1−o(1), the time to find the optimum is O(n logn) generations. We
pessimistically assume that we start over when this event does not occur, which implies
that the whole process until that point should be repeated 1/(1−o(1)) times in expectation.
Overall, the dominating term in the runtime is O(τ +n5/2) generations. By multiplying this
time with the maximum possible amount of wasted fitness evaluations per generation (µcn),
the upper bound is proven.

In the following two theorems, we show that static HMP and ageing used in conjunction
are essential.

Theorem 23. Opt-IA using static HMP without ageing (i.e., τ = ∞) with µ = O(logn) and
dup = O(1) cannot optimise HIDDENPATH in less than nΩ(logn) expected fitness function
evaluations.

Proof. The only points with higher fitness than solutions with more than n/2 0-bits are SP

points and S5 points. If all solutions in the population have less than n−c1 logn 0-bits or less
than n− c1 logn 1-bits for some c1 > 1, then the Hamming distance of any solution in the
population to any SP solution or an S5 solution is at least Ω(logn). Since there are no other
improving solution, the probability that an SP or an S5 solution will be discovered in a single
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hypermutation operation is exponentially small according to the last statement of Lemma 1.
As a result, conditional on not seeing these points, the algorithm will find a solution with
n−c1 logn 0-bits in O(µ ·dup ·n2 logn) fitness function evaluations by optimising ZEROMAX

(i.e., Theorem 20). In the rest of the proof we will calculate the probability of reaching an
Sn−1 solution before finding either an SP point or S5 point, or a complementary solution of
an SP point. The latter solutions, if accepted, with high probability would hypermutate into
SP points. We call an event bad where any of the mentioned points are discovered.

Any solution in the search space can have at most two Hamming neighbours on SP

or at most two Hamming neighbours that their complementary bit strings are on SP. The
probability of sampling any of these neighbours is in the order of O(1/n) since it is necessary
to flip a specific bit position. Hamming distance to the remaining SP points and their
complementary bit strings are at least two. The probability of reaching a particular solution
with Hamming distance at least two is at most

(n
2

)−1
=O(1/n2), since two particular bits need

to be flipped. Excluding the two Hamming neighbours (which are sampled with probability
O(1/n)), the probability of reaching any other SP point is O(1/n2) ·O(logn) = O(logn/n2)

by the union bound. Now, taking the Hamming neighbours into consideration, the probability
that any of the logn− 3 SP points (or their complementary bit strings) are discovered is
O(1/n)+O(1/n2) ·O(logn) = O(1/n). For any initial solution with less than n−10 0-bits,
the probability of finding a solution with five 0-bits is at most

(n
6

)−1(n
5

)
= O(1/n). Since the

probability of reaching an S5 point from solutions with more than n−10 0-bits may be much
larger, we first calculate the probability of finding n−11 0-bits before a bad event occurs.

The probability of finding a solution which improves the ZEROMAX value is at least
Θ(1/n) (even when we exclude the potential improvements whose complementary bit strings
are on SP). Since at every static HMP, the probabilities of finding an S5 solution, an SP

solution or its complementary bit string are all in the order of O(1/n) (up to n− 10 0-
bits), the conditional probability that a solution which improves the current best ZEROMAX

value is found before any other improvement is in the order of Θ(1/n)/(Θ(1/n)+O(dup ·
µ/n)) = Ω(1/(dup · µ)). The probability that it happens c1 logn times immediately after
the first solution with more than n− c1 logn 0-bits is added to the population is at least
Ω(dup ·µ)−c1(logn) = (dup ·µ)−O(logn). This sequence of c1 logn improvements implies that
a solution with n−11 0-bits is added to the population. We now consider the probability that
one individual finds the local optimum (i.e., an Sn−1 solution) by improving its ZEROMAX

value in 10 consecutive generations and that none of the other individuals improve in these
generations. The probability that the current best individual improves in the next step
is at least 1/n and the probability that the other individuals do not improve is at least



4.4 Analysis of a Complete Opt-IA 75

(1− c/n)µ ≥ 1/e. Hence, the probability that this happens consecutively in the next 10 steps
is at least (1/ne)10 = Ω(n−10).

Once a locally optimal solution is found, with high probability it takes over the population
before the optimum is found and the expected runtime conditional on the current population
consisting only of solutions with n−1 0-bits is at least

( n
logn

)
≥ (n−logn)logn

(logn)logn . By the law of
total expectation, the unconditional expected runtime is bounded from below by E(T ) ≥
(1−o(1))n−10(dup · µ)−O(logn) (n−logn)logn

(logn)logn . This expression is in the order of nΩ(logn) for
any µ = O(logn) and dup = O(1).

Theorem 24. With probability at least 1− e−Ω(n), Opt-IA using SBM and ageing cannot
optimise HIDDENPATH in less than nΩ(n) fitness function evaluations.

Proof. Since the number of 1-bits in an initial solution is binomially distributed with expecta-
tion n/2, the probability that an initial solution has less than n/3 1-bits is bounded from above
by e−Ω(n) using Chernoff bounds. Hence, w.o.p., the population has a Hamming distance of
at least n/3− logn−1 > n/4 to any solution on the path and any solution with five 0-bits
(SP∪S5) by the union bound. Therefore, the probability of finding either any of the logn
points on SP or one of the

(n
5

)
points on S5 is

(
logn+

(n
5

))
·1/nn/4(1−1/n)n−n/4 ≤ n−Ω(n).

Since accepting any improvements, except for the (SP∪ S5) solutions, increases the
distance to the (SP∪ S5) solutions, the probability of jumping to an solution in (SP∪ S5)

further decreases throughout the search process.

4.4.3 When Using Ageing and Hypermutations Together is Detrimen-
tal

In this subsection, we present a function class for which Opt-IA is inefficient. The class of
functions, which we call HYPERTRAPγ , is defined formally in Definition 3. HYPERTRAPγ

is inspired by the SP-TARGET function introduced in [67] and used in [52] as an example
where hypermutations outperform SBM. Compared to SP-TARGET, HYPERTRAPγ has local
and global optima inverted with the purpose of trapping hypermutations. Also there are
some other modifications to prevent the algorithm from finding the global optimum via large
mutations. The parameter γ defines the distance between the local optima and the path to the
global optimum.

In HYPERTRAPγ , the solutions with |x|1 < n/2 are evaluated by ONEMAX. Solutions
of the form 1i0n−i with n/2≤ i ≤ n, shape a short path which is called SP. The last point
of SP, i.e., 1n is the global optimum (OPT). Local optima of HYPERTRAPγ (LOCALOPT)
are formed by the points with |x|1 ≥ 3n/4 which have a Hamming distance of at least γn to
all points in SP. Also, the points with |x|1 = n/2 are ranked among each other such that bit
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Fig. 4.2 The HYPERTRAPγ function

strings with more 1-bits in the beginning have higher fitness. This ranking forms a gradient
from 0n/21n/2, which has the lowest fitness, to 1n/2−10n/2+1, which has the highest fitness.
Finally, the fitness of points which do not belong to any of the mentioned sub-spaces is
evaluated by ZEROMAX (i.e., the fitness is |x|0).

Definition 3. Given the definitions of SP, OPT and LOCALOPT as above and H(x,SP) show-
ing the minimum Hamming distance of the individual x to all SP points, the HYPERTRAPγ

function with 0 < γ ≤ 1/8 is defined for all x ∈ {0,1}n by:

HYPERTRAPγ(x) :=

|x|1 if |x|1 < n/2,

n/2+ ∑
n
i=1(n−i)·(xi)

n if |x|1 = n/2,

n2 · |x|1 if x ∈ SP := {x | x = 1i0n−i and n/2≤ i < n},

n3 if x ∈ LOCALOPT := {x | |x|1 ≥ 3n/4 and H(x,SP)≥ γn},

n4 if x = 1n = OPT,

|x|0 if |x|1 > n/2 and x /∈ (SP∪LOCALOPT∪OPT).

This function is depicted in Figure 4.2 in which fitness increases with darker shades
of gray. We will show that there exists a HYPERTRAPγ such that Opt-IA with mutation
potential cn gets trapped in the local optima.

Theorem 25. With probability 1−2−Ω(
√

n), Opt-IA using static HMP with mutation potential
cn cannot optimise HYPERTRAPc/8 in less than exponential time.
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Proof. We will show that the population will first follow the ZEROMAX (or ONEMAX)
gradient until it samples a solution with n/2 0-bits and then the gradient of ∑

n
i=1(n− i) · (xi),

until it samples an SP point with approximately n/2 0-bits. Afterwards, we will prove that
large jumps on SP are unlikely. Finally, we will show that with overwhelming probability a
locally optimal solution is sampled before a linear number of SP points are traversed. We
optimistically assume that τ is large enough such that individuals do not die before finding
the optimum.

With overwhelming probability, all randomly initialised individuals have (1/2± ε)n 0-
bits for any arbitrarily small ε = θ(1). Starting with such points, the probability of jumping
to the global optimum is exponentially small according to Lemma 1. Being optimistic, we
assume that the algorithm does not sample a locally optimal point for now. Hence, until an
SP point is found, the current best fitness can only be improved if a point with either a higher
ZEROMAX (or ONEMAX) or a higher ∑

n
i=1(n− i) · (xi) value than the current best individual

is sampled. Since there are less than n2 different values of ∑
n
i=1(n− i) · (xi), and less than n

different values of ZEROMAX (or ONEMAX), the current best individual cannot be improved
more than n2 +n times after initialisation without sampling an SP point.

Let SPlower denote the SP points with less than (1/2+2ε)n 1-bits, and SPupper denote
SP \ SPlower. We will now show that w.o.p. an SPlower point will be sampled before an
SPupper point. The search points with (1/2− ε)n to (1/2 + ε)n 1-bits have at least a
distance of εn to the SPupper points. Using Lemma 1, we can bound the probability of
sampling an SPupper by

( n
εn

)−1 from any input solution with (1/2± ε)n 1-bits. Excluding
SP points, a solution with (1/2± ε)n 1-bits has an improvement probability of at least
1/n2 (i.e., min{1/n2,Θ(1)}= 1/n2 with the second term being the probability of improving
the ZEROMAX or ONEMAX value and the first term being the probability of improving
when the solution has exactly n/2 0-bits). Thus, the conditional probability that the best
solution is improved before any search point in the population is mutated into an SPupper

point is (n−2)/(n−2 + dup · µ ·
( n

εn

)−1
) = 1− 2−Ω(n). This implies that an SPlower point

is sampled before an SPupper point with overwhelming probability. Indeed, by the union
bound, this event happens n2 +n times consecutively after initialisation with probability at
least 1− (n2 +n) ·2−Ω(n) = 1−2−Ω(n), thus a point in SPlower is sampled before an SPupper

point with overwhelmingly high probability. Each point of SP has at least n/2 1-bits at
the beginning of its bit string. In order to improve by any value in one mutation operation,
1-bits should never be touched before the mutation operator stops. Hence, the probability of
improving by X on SP is p(X)< (1/2)X . This yields that the probability of improving by
√

n in one generation is at most dup ·µ · (1/2)
√

n, as there are µ individuals in the population.
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We have now shown that it is exponentially unlikely that even an arbitrarily small fraction of
the path points are avoided by jumping directly to path points with more 1-bits.

Let t be the first iteration when the current SP solution has at least 99n/100 1-bits for
the first time. We will first bound the probability of improving from below in order to find
an upped bound on the conditional probability that more than

√
n new 1-bits are added

given that an improving path point is sampled. An improvement is achieved if the 0-bit
adjacent to the last 1-bit is flipped in the first mutation step, which happens with probability
1/n. Thus, the conditional probability of improving more than Ω(

√
n) points on SP is

at most 2−Ω(
√

n)/(1/n) = 2−Ω(
√

n). Therefore, in generation t, the current best individual
cannot have more than (99n/100)+Ω(

√
n) 1-bits with probability 1− dup · µ · 2−Ω(

√
n)

by the union bound. Similarly, the probability that no jump of size Ω(
√

n) happens in
poly(n) generations is at least 1−dup ·µ ·2−Ω(

√
n). So, we can conclude that the number of

generations to add another n/200 1-bits to the prefix of the current best solution is at least
(n/200)/O(

√
n) = Ω(

√
n) with the same probability.

Now, we show that during this number of generations, the algorithm gets trapped in the
local optima with overwhelming probability with the optimistic assumption that only the best
b-cell in the population can be mutated into a locally optimal solution. Considering the best
current individual, in each generation, a 1-bit is flipped with probability at least 99/100 in the
first mutation step. Thus, the probability of not touching a 1-bit in Ω(

√
n) generations is less

than (1/100)Ω(
√

n). Considering that µ and dup are both poly(n), the probability of flipping
a 1-bit from the prefix in this number of generations and of not locating the optimum in the
same amount of time is:

P≥

(
1−
(

1
100

)Ω(
√

n)
)
·
(

1−
√

n
200
·dup ·µ ·2−Ω(

√
n)
)
≥ 1−2−Ω(

√
n).

After flipping a 1-bit, the mutation operator mutates at most cn bits until it finds an improve-
ment. All sampled solutions in the first n/4− n/100 mutation steps will have more than
3n/4 1-bits and thus satisfy the first condition of the local optima. If the Hamming distance
between one of the first n/4−n/100 sampled solutions and all SP points is at least γn, then
the algorithm is in the trap. We only consider the SP points with a prefix containing more
than 3n/4− γn 1-bits since SP points with less than 3n/4− γn 1-bits have already Hamming
distance more than γn to the local optima.

Similarly to the analysis done in [52], we consider the kth mutation step for k := 4γn(1+
1/5)/(3−4γ) = 6cn

30−5c ≤ cn where the last expression is due to γ = c/8. After k steps, the
expected number of bits flipped in the prefix of length n(3/4− γ) is at least k(3/4− γ) =

(1+1/5)γn. For any mutation potential 0 < c≤ 1, 6cn
30−5c ≤ n/4−n/100. Using Chernoff
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bounds, we can show that the probability of having less than γn 0-bits in the prefix is
P(X ≤ (1−0.2)E(X))≤ e

−γn·6
1000 = e−Ω(n).

Altogether, with probability (1− e−Ω(γn)) · (1−2−Ω(
√

n)) = 1− e−Ω(
√

n), a point in the
local optima is sampled. In O(log µ) = O(logn) generations this individual takes over the
population. Once in the local optima, the algorithm needs at least dup ·µ ·1/

( n
γn

)
time to find

the global optimum according to Lemma 1.

In the following theorem we see how the (1+1) EA using SBM optimises HYPERTRAPγ

in polynomial time w.o.p.

Theorem 26. The (1+1) EA optimises HYPERTRAPγ in O(n3+ε) steps w.o.p. 1− e−Ω(nε )

for ε > 0.

Proof. With overwhelming probability, the algorithm is initialised within n/2±n/10 1-bits
by Chernoff bounds. Since the distance to any trap point is linear and the probability that
SBM flips at least

√
n bits in a single iteration (

( n√
n

)
n−
√

n = 2−Ω(
√

n)) is exponentially small,
so is the probability of mutating into a trap point. As the algorithm approaches the bit string
with n/2 1-bits, the distance to the trap remains linear. Conditional on not entering the
trap, by standard AFL arguments (see Subsection 3.3.3, page 37) it takes the (1+ 1) EA
at most O(

√
n) steps in expectation to find a point with n/2 1-bits, i.e., on the gradient.

After finding such a point, the (1+1) EA improves on the gradient with probability at least
1/n2 · (1− 1/n)n−2 ≥ 1/(en2) which is the probability of flipping the rightmost 1-bit and
the leftmost 0-bit while leaving the rest of the bits untouched. To reach the first point of SP,
there are a linear number of 1-bits that need to be shifted to the beginning of the bit string.
It therefore takes O(n3) steps in expectation to find SP. The (1+ 1) EA improves on SP

with probability at least 1/n · (1−1/n)n−1 ≥ 1/en, which is the probability of flipping the
leftmost 0-bit and not touching the other bits. Hence, the global optimum is found in O(n2)

steps in expectation giving a total expected runtime of O(n3) conditional on not falling into
the trap. By applying Markov’s inequality iteratively (see Theorem 6, page 35) over Ω(nε)

consecutive phases of length Θ(n3) with an appropriate constant, the probability that the
optimum is not found within O(n3+ε) steps is less than e−nε

with ε being an arbitrarily small
constant. Since the probability of finding a local optimum from the gradient points or SP

points is n−Ω(n) in each step, the probability of not falling into the trap in n3+ε steps is less
than (n3+ε ·n−c′n) by the union bound. Overall, the total probability of finding the optimum
within O(n3+ε) steps is bigger than (1− e−nε

) · (1−n3+ε ·n−c′n) = 1− e−Ω(nε ).
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4.4.4 Opt-IA Is Efficient for TRAP Functions

In [19], where Opt-IA was originally introduced, the effectiveness of the algorithm was tested
for optimising the following simple trap function:

SIMPLE TRAP(x) :=

a
z (z−|x|1) if |x|1 ≤ z,

b
n−z(|x|1− z) otherwise,

where z≈ n/4, b = n− z−1, 3b/2≤ a≤ 2b and the optimal solution is the 0n bit string.
The reported experimental results were averaged over 100 independent runs, each with a

termination criterion of reaching 5×105 fitness function evaluations. For all of the results,
the population size was µ = 10 and dup = 1. In these experiments, Opt-IA using either
hypermutations or hypermacromutation never finds the optimum of SIMPLE TRAP. However,
the following theorem shows that Opt-IA indeed optimises SIMPLE TRAP efficiently.

Theorem 27. Opt-IA using static HMP with mutation potential cn needs at most 1 ·µn2 logn
expected fitness function evaluations to optimise SIMPLE TRAP with τ = Ω(n2) for c = 1
and dup = 1.

Proof. Given that the number of 1-bits in the best solution is i, the probability of improving
is at least (n− i)/n if the best solution has more than z 1-bits and i/n otherwise. By following
the proof of Theorem 14, at least one individual will reach 1n or 0n in at most 1 ·µn2 logn
fitness function evaluations in expectation as long as no individual dies due to ageing.

The age of an individual reaches n2 only if the improvement fails to happen in n2 gene-
rations which happens with probability at most (1−1/n)n2

= 2−Ω(n) since the improvement
probability is at least 1/n. This implies that the expected number of restarts by ageing is
exponentially small. By following the proof of Theorem 14, at least one individual will reach
1n or 0n in O(µn2 logn) fitness function evaluations in expectation as long as no individual
dies due to ageing. Pessimistically assuming that 1n is found first, the algorithm finds the
global optimum in one step with probability 1 by flipping all bits and performing n fitness
function evaluations.

Given that Opt-IA was tested in [19] also with the parameters suggested by Theorem 27
(i.e., c = 1, dup = 1, τ = ∞), we speculate that either FCM was not used by mistake or that
the stopping criterion (i.e., the total number of allowed fitness evaluations, i.e., 5× 105)
was too small. We point out that, for large enough τ also using hypermacromutation as
mutation operator would lead to an expected runtime of at most 1 · µn2 logn for TRAP

functions [50], with or without FCM. In any case, it is not necessary to apply both static
HMP and hypermacromutation together to efficiently optimise TRAP functions as reported
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in [19]. On the other hand, the inversely proportional HMP considered in [52] would fail to
optimise this function efficiently because it cannot flip n bits when on the local optimum.

4.4.5 Standard Opt-IA with Genotype Diversity

None of the algorithms considered in the previous sections of this chapter use the genotype
diversity mechanism. In this section, we do not allow genotype redundancies in the population
as proposed in the original Opt-IA algorithm (i.e., div := 1 in Algorithm 4.1) [19, 20]. This
change potentially affects the behaviour of the algorithm. In particular, the probability of
creating copies of individuals may change considerably. In the following, we will first
consider the ageing operator in isolation with genotype diversity (i.e., no genotype duplicates
are allowed in the population). Afterwards we will analyse the complete Opt-IA algorithm
with the same diversity mechanism (as originally introduced in the literature).

We start by analysing the (µ+1) RLSageing with genotype diversity for optimising CLIFFd

(defined by (3.7)) for which the (µ +1) RLSageing
p without genotype diversity was previously

analysed in Section 4.3. The main difference compared to the analysis there is that taking
over the population on the local optima is now harder since identical individuals are not
allowed. The proof of the following theorem shows that the algorithm can still take over and
use ageing to escape from the local optima as long as the population size is not too large.

Theorem 28. For µ = Θ(1) and τ = Θ(n logn), the (µ+1) RLSageing with genotype diversity
optimises CLIFFd in expected O(n logn) fitness function evaluations for any linear d ≤
n/4− ε .

Proof. By Chernoff bounds (see Theorem 8, page 36), with overwhelming probability the
initial individuals are sampled with n(1/2± ε) 1-bits for any arbitrarily small 0 < ε = Θ(1).
Since the population size is constant and there is a constant probability of improving in the
first mutation step, a local optimum is found in at most O(n) steps in expectation by picking
the best individual and improving it O(n) times.

If there is a single locally optimal solution in the population, then with probability 1/µ

this individual is selected as parent and produces an offspring with fitness n−d−1 (i.e., one
bit away) with probability (n−d− i)/n≤ (n−d−µ)/n = Θ(1) where i is the number of
individuals already with fitness n−d−1. In the next generation, with probability (i+1)/µ ,
one of the individuals on the local optimum or one step away from it is selected as parent
and produces an offspring on either the local optimum or one bit away with probability at
least (n−d−µ)/n = Θ(1). Hence, in expected time µ ·Θ(1) = Θ(µ) all µ individuals are
on the local optimum.
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When the last inferior solution is replaced by an individual on the local optimum, the other
individuals have ages in the order of O(µ). Thus, the probability that the rest of the population
does not die until the youngest individual reaches age τ , is at least (1/µ)(µ−1)·O(µ) = Θ(1),
the probability that µ−1 individuals above age τ survive O(µ) consecutive generations.

In the first generation when the last individual reaches age τ , with probability d/n an
offspring is created at the bottom of the cliff (i.e., with a fitness value of n−d +1) and with
probability 1/µ · (1−1/µ)µ = Θ(1) all the parents die together at that step and the offspring
survives. The rest of the proof follows the same arguments as the proof of Theorem 17.

Overall, the total expected time to optimise CLIFFd is dominated by the time to climb the
second ONEMAX slope which takes O(n logn) steps in expectation.

Now, we start analysing Opt-IA with genotype diversity (div = 1 in Algorithm 4.1) to
optimise all the functions for which Opt-IA without genotype diversity was analysed in
Section 4.4. The following are straightforward corollaries of Theorem 20 and Theorem 27.
Since the ageing mechanism never triggers here and the proofs of those theorems do not
depend on creating genotype copies, the arguments are still valid for Opt-IA with genotype
diversity.

Corollary 2. The upper bounds on the expected runtime of Opt-IA using static HMP with
genotype diversity and ageing parameter τ large enough for ONEMAX, LEADINGONES,
JUMPk and CLIFFd are as follows:
E(TONEMAX) = O

(
µ ·dup ·n2 logn

)
for τ = Ω(n2),

E(TLEADINGONES) = O
(
µ ·dup ·n3) for τ = Ω(n2),

E(TJUMPk) = O
(

µ ·dup · nk+1·ek

kk

)
for τ = Ω(nk+1),

and E(TCLIFFd) = O
(

µ ·dup · nd+1·ed

dd

)
for τ = Ω(nd+1).

Corollary 3. Opt-IA using static HMP with genotype diversity needs O
(
µn2 logn

)
expected

fitness function evaluations to optimise SIMPLE TRAP with τ =Ω(µn1+ε), c= 1 and dup= 1.

The following theorem shows the same expected runtime for Opt-IA with genotype
diversity for HIDDENPATH as that of the Opt-IA without genotype diversity proven in
Theorem 22. However, we reduce the population to be of constant size. The proof follows the
main arguments of the proof of Theorem 22. Here we only discuss the probability of events
which should be handled differently considering that genotype duplicates are not allowed.

Theorem 29. For c = 1, dup = 1, µ = Θ(1) and τ = Ω(n2 logn), Opt-IA using static HMP
with genotype diversity needs O(τµn + µn7/2) expected fitness function evaluations to
optimise HIDDENPATH.
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Proof. We follow the analysis of the proof of Theorem 22 for Opt-IA without genotype
diversity. Although the analysis did not benefit from genotype duplicates, not allowing them
potentially affects the runtime of the events where the population takes over. The potentially
affected events are:

• For Sn−1 solutions to take over the population, the probabilities are different here since
a new Sn−1 solution will not be accepted if it is identical to any current Sn−1 solutions.
Here, after finding the first Sn−1 solution, the rest are created and accepted by Opt-IA
with probability at least Ω(1/n · (n−µ)/(n−1)) = Ω(1/n). Therefore, applying the
argument made in the proof of Theorem 22 does not change the runtime asymptotically.

• The arguments about the expected time needed for Sn−1 solutions to reach the same
age after the takeover are the same as in the proof of Theorem 22; without geno-
type duplicates, the probability of creating another Sn−1 is still Ω(1/n). Hence, the
probability of creating two copies in the same generation is still unlikely and we can
adapt the arguments made in the proof of Theorem 22. Therefore, in expected O(µ3n)
generations after the takeover of Sn−1, the population reaches the same age.

• In the proof of Theorem 22, the expected time for S5 solutions to take over the
population of recently initialised individuals is bounded relying on having multiple
copies of one S5 and one Sn−5 solution. This proof strategy cannot be applied with the
genotype diversity mechanism which only allows unique solutions in the population.

In order to create a unique S5 solution from another S5 solution, it is sufficient that the
first bit position to be flipped has value 1 in the parent bit string and the second position
to be flipped has value 0 in all S5 solutions currently in the population, including the
parent. Such a mutation occurs with probability at least (5

n ·
n−5−µ

n−1 )≥ 4/n = Ω(1/n).
This lower bound in the probability implies that the number of S5 individuals in the
population is increased by a factor of 1+Ω(1/n) at every generation in expectation.
For any constant c, the exponent t that satisfies 1 · (1+ c/n)t = µ is in the order of
O(n log µ). Thus, in at most O(n log µ) generations in expectation the S5 solutions
take over the population if no solutions with higher fitness have been added to the
population before the takeover. Due to µ = Θ(1), the expected number of generations
is simplified to O(n). By Markov’s inequality (see Theorem 6, page 35), the probability
that the expected time is in the order of O(n) is Ω(1).

Only the solutions on SP and Sn−1 solutions have better fitness than S5 solutions. The
rest of the proof of Theorem 22 can still be applied if the only remaining non S5

solutions in the population are SP solutions. So, we will only show that it is unlikely
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that an Sn−1 solution will be sampled before the population consists only of S5 and SP

solutions. The number of 0-bits in randomly initialised solutions is in the interval of
[n/2−n2/3,n/2+n2/3] with probability 1−2Ω(n1/3) due to Chernoff bounds. We can
then follow the strategy from Theorem 21 to show that the expectation of T ∗, the time
until an Sn−1 solution descending from a randomly created solution is sampled, is in
the order of Ω(n logn). In order to bound the probability that this event will not happen
in O(n), we will bound the variance of this runtime. Since FCM stops after a solution
with more 0-bits is sampled, we can pessimistically divide the runtime into phases of
length Ti, i ∈ {2, . . . ,n/2+n2/3}, where the best among the newly created solutions
has i 1-bits. The length of phase Ti is distributed according to a geometric distribution
with success probability at most µ ·2i/n due to the Ballot theorem (see Theorem 11,
page 38) and the union bound summed up over µ candidate solutions which can be
improved at every generation. Being geometrically distributed, the variance of Ti is at
most (1− (d · i/n))/(d · i/n)2 for some constant d > 2µ . Summing up over all phases
of independently distributed lengths, we obtain the variance of T ∗ as:

Var(T ∗)≤
n/2+n2/3

∑
i=2

1− (d · i/n)
(d · i/n)2 ≤ n2

d2

n/2+n2/3

∑
i=2

1
i2

=
n2

d2
π2

6
= Θ(n2).

Due to Chebyshev’s inequality (see Theorem 7, page 36), the probability that such an
event happens in O(n) generations instead of its expectation, which is in the order of
Ω(n logn), is at most O(1/ logn). Conversely, the probability that such a failure does
not occur is 1−O(1/ logn).

The path solutions have between 5 to logn+ 1 1-bits, thus the probability that the
hypermutation operator yields an Sn−1 solution as output given an SP or S5 solution
as input is at most

( n
n−4

)−1
= O(n−4). The probability that such a mutation occurs

in O(n) generations is at most O(n−3) by the union bound (see Theorem 4, page 35).
Considering all the possible failure events, the takeover happens in O(n) generations
with Ω(1) probability before any Sn−1 individual is added to the population.

The rest of the proof of Theorem 22 is not affected by the genotype diversity.

4.5 Conclusion

This chapter presented an analysis of the standard Opt-IA artificial immune system. We first
highlighted how both ageing and static HMP may allow an algorithm to efficiently escape
local optima that are particularly hard for standard evolutionary algorithms. Concerning
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hypermutations, we proved that FCM is essential to the operator and suggest considering
a mutation constructive if the produced fitness is at least as good as the previous one. The
reason is that far away points of equal fitness should be attractive for the sake of increasing
exploration capabilities. Our analysis on the JUMPk function suggests that static HMP with
FCM is generally preferable to the SBM operator when escaping the local optima requires a
jump of size k such that (k/e)k ≥ n. This advantage is least pronounced when there is a single
solution with better fitness than the local optima as in the case of JUMPk and the performance
difference with the SBM in terms of expected escape time scales multiplicatively with the
number of acceptable solutions at distance k. Hence, the JUMPk function may be considered
as a worst-case scenario concerning the advantages of hypermutations over SBM for escaping
local optima.

Concerning ageing, we showed for the first time that the operator can be very efficient
when coupled with SBM and hypermutations (i.e., for HIDDENPATH). To the best of our
knowledge, the operator allows the best known expected runtime (i.e., O(n logn)) for hard
CLIFFd functions if used with RLS. However, while ageing and SBM can still optimise
CLIFF efficiently, these advantages of ageing for the function disappear if the operator is
coupled with static HMPs. Afterwards, we presented a class of functions where both the
characteristics of ageing and static HMP are crucial, hence Opt-IA is efficient while standard
evolutionary algorithms are inefficient even if coupled with one extra AIS operator. Finally,
we proved that all the positive results presented for the Opt-IA algorithm without genotype
diversity also hold for Opt-IA with genotype diversity as used in the original algorithm.
However, small population sizes may be required if ageing has to be triggered to escape
from local optima with genotype diversity. To complete the picture we presented a class
of problems where the use of hypermutations and ageing is detrimental while standard
evolutionary algorithms are efficient.

Our analysis shows that for easy problems for which local search strategies are efficient,
using static HMP and ageing may be detrimental. We have shown this effect for the simple
ONEMAX and LEADINGONES functions for which we have proven a linear slow-down in
the expected runtime compared to local search strategies and simple evolutionary algorithms.
While such a slow-down may be considered an acceptable expense in exchange for being
efficient on more complicated optimisation problems, we have shown for HYPERTRAPc/8

that the consequences may be more drastic, by making the difference between polynomial
and exponential runtimes. Indeed, the function is easy for local search algorithms with
neighbourhoods of size greater than 1 and for simple EAs. However, static HMP make
Opt-IA fail with overwhelming probability and ageing does not help the algorithm to escape
from the trap permanently.
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On the other hand, for more complicated multimodal functions, we have shown several
advantages of static HMP and ageing to escape from local optima (i.e., JUMPk and CLIFFd).
Furthermore, the combination of static HMP and ageing may be advantageous to locate
new promising basins of attraction that are hard to find via more traditional optimisation
techniques such as local search or EAs using SBM. We have illustrated such effect in the
analysis of HIDDENPATH, where the combination of static HMP and ageing allow Opt-IA
to locate a new basin of attraction that initially has lower fitness than the easy-to-find local
optima. However, in the long run, having identified this new basin of attraction allows the
algorithm to find the global optimum.

The next chapter focuses on showing that such advantages also hold for a classical
combinatorial optimisation problem. The results will be achieved by building upon the work
presented in this chapter.



Chapter 5

Analysis for the NP-Hard Partition
Problem

5.1 Introduction

In the previous chapter, it was shown how both the hypermutation with static mutation
potentials (static HMP) and the ageing operator of Opt-IA can lead to considerable speed-ups
compared to the performance of well-studied EAs using standard bit mutation (SBM). The
analyses were done for standard multimodal benchmark functions used in the evolutionary
computation community such as JUMP, CLIFF and TRAP. While some of these speed-ups
over standard EA’s performance are particularly impressive, no similar evidence of superior
performance of these two operators is available for more realistic problems.

In this chapter, we perform an analysis for PARTITION, also known as number partitioning,
which is considered as one of the six basic NP-complete problems [37]. PARTITION as
a decision making and an optimisation process arises in many resource allocation tasks
in manufacturing, production and information processing systems [81, 39]. It also has
applications in cryptography [62] and game theory [63]. In Section 5.2, PARTITION is first
introduced and then in Subsections 5.2.1 and 5.2.2, problem specific algorithms and general-
purpose heuristics (i.e., (1+1) EA and RLS) that have been applied in the literature to target
it are covered respectively. In Section 5.3, some preliminaries are introduced regarding the
definition of a local optimum for PARTITION instances and the expected time needed for
immune operators to escape from one.

It has been shown that RLS and EAs using SBM may get stuck on local optima of the
problem which lead to a worst case approximation ratio of 4/3 and, in order to achieve a
(1+ ε) approximation for arbitrary ε , a clever restart strategy has to be put in place. The
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generalised class of worst-case instances leading to such approximation ratio is introduced
in Section 5.4. In Subsection 5.4.1, we first prove that the (1+ 1) EA has exponential
expected runtime on the whole class. Then, in Subsections 5.4.2 and 5.4.3, we show the
power of static HMPs and ageing by proving that each of them solve to optimality the
instances that are hard for RLS and SBM, by efficiently escaping local optima. Afterwards,
in Section 5.5, we focus on worst-case approximation guarantees. In Subsection 5.5.1 we
prove that AISs using static HMP guarantee arbitrarily good solutions of approximation ratio
(1+ε) in expected O(n3) time for any constant ε without requiring any restarts. Furthermore,
in Subsection 5.5.2 we prove that an AIS with SBM and ageing can efficiently achieve
the same approximation ratio in O(n2) expected fitness function evaluations, automatically
restarting the optimisation process by implicitly detecting when it is stuck on a local optimum.
Such expected polynomial runtimes are achievable for RLS and (1+1) EA if the desired
approximation ratio is decided in advance while none of this information is required for
either of the two AISs to efficiently identify the same approximation ratios. This is the first
time that either hypermutations or ageing have been theoretically analysed for a standard
problem from combinatorial optimisation and the first time performance guarantees of any
AIS are proven for a classical problem from combinatorial optimisation.

5.2 The Partition Problem

Given n jobs with positive processing times p1 ≥ p2 ≥ ·· · ≥ pn−1 ≥ pn, the makespan
scheduling problem with m parallel and identical machines is that of scheduling the n
jobs on the m machines in a way that the overall completion time (i.e., the makespan) is
minimised [81]. Assigning the jobs to the machines is equivalent to dividing the set of
processing times into m disjoint subsets such that the largest subset sum yields the makespan.
When m = 2 and the processing times pi are scaled up to be integers p∗i , the problem is
equivalent to the PARTITION problem with the set of integers ai := p∗i . This simple to
define scheduling problem is well-studied in theoretical computer science and is known to be
NP-hard [54, 2]. Hence, it cannot be expected that any algorithm finds optimal solutions to
all instances in polynomial time (unless P = NP). The PARTITION (optimisation) problem is
formally defined as below.

Definition 4. Given positive integers a1,a2, . . . ,an, what is argmin
B⊆[n]

max

(
∑

i∈B
ai, ∑

i∈[n]\B
ai

)
?
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5.2.1 State-of-the-Art of Problem-Specific Algorithms

The PARTITION problem is considered an easy NP-hard problem since there are some
dynamic programming algorithms that provide optimal solutions in pseudo-polynomial time
of O(n∑ pi) [81]. The general idea behind such algorithms is to create an n×∑ pi table
where each pair (i, j) indicates whether there exists a subset of i jobs that sums up to j. Then,
the optimal subset can be computed by simple backtracking. Clearly, such algorithms are not
practical when n×∑ pi is large.

As the NP-hardness of PARTITION suggests, not all instances can be optimised in
polynomial time unless P = NP. Hence, approximation algorithms are used to obtain
approximate solutions. For a minimisation problem, an algorithm A which runs in polynomial
time with respect to its input size is called a (1+ ε) approximation algorithm if it can
guarantee solutions with quality (1+ ε) · f (opt) for some ε > 0 where f (opt) is the quality
of an optimal solution. Such an algorithm is called a polynomial time approximation scheme
(PTAS) if it can provide a (1+ ε) solution for any arbitrarily small ε > 0. If the runtime is
also polynomial in 1/ε , then algorithm A is called a fully polynomial time approximation
scheme (FPTAS).

Since the PARTITION problem is a special case of makespan scheduling with m = 2, any
approximation algorithm for the latter problem may be applied to PARTITION. The first
approximation algorithm for makespan scheduling was presented by Graham in 1969 [38].
He showed a worst-case approximation ratio of 2−1/m where m is the number of machines
(this ratio is 3/2 for PARTITION). Graham also proposed a simple heuristic which guarantees
a better approximation ratio of 4/3−1/(3m) (which is 7/6 for PARTITION) with running
time of O(n logn). This greedy scheme, known as longest processing time (LPT), assigns
the job with longest processing time to the emptier machine at each step. He then improved
the approximation ratio to 1+ 1−1/m

1+⌈k/m⌉ by using a more costly heuristic. This PTAS first
assigns the k largest jobs in an optimal way, then distributes the remaining (small) jobs one
by one in any arbitrary order to the emptiest machine. The ideas behind these heuristics
are widely used in later works, including a heuristic proposed by Hochbaum and Shmoys
which guarantees a (1+ ε) approximation in O((n/ε)1/ε2

) for makespan scheduling on an
arbitrary number of machines [41]. This heuristic first finds an optimal way of assigning
large jobs and then distributes the small jobs using LPT. This is roughly the best runtime
achievable for makespan scheduling on an arbitrary number of machines [41]. However,
when the number of machines is limited, better results are available in the literature. For
m = 2 (i.e., PARTITION), Ibarra and Kim have shown the first FPTAS for PARTITION which
runs in O(n/ε2) and shortly after Sahni showed an FPTAS based on dynamic programming
which runs in O(n2/ε). This runtime is O(n · (n2/ε)m−1) for larger number of machines
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m > 3 [85]. Recently, an FPTAS was shown for PARTITION that admits a sub-quadratic
approximation scheme with time complexity O(n+1/ε5/3) [65]. This is the first time any
sub-quadratic FPTAS is shown for an NP-hard problem.

5.2.2 State-of-the-Art of General-Purpose Heuristics

For the application of randomised search heuristics, a solution to PARTITION can be repre-
sented with a bit string x ∈ {0,1}n where each bit i represents job number i. The bit value
specifies which machine the job i is assigned to: if xi = 0, then job i is placed in the first
machine (M1) and if xi = 1, then it is placed in the second machine (M2). Hence, the goal is
to minimise the makespan f (x) := max

{
∑

n
i=1 pixi,∑

n
i=1 pi(1− xi)

}
, i.e., the fitness function

returns the processing time of the last machine to terminate.
Both RLS and the (1+ 1) EA have roughly 4/3 worst case expected approximation

ratios for the problem (i.e., there exist instances where they can get stuck on solutions by
a factor of 4/3− ε worse than the optimal one) [90]. However, if an appropriate restart
strategy is set-up in advance, both algorithms may be turned into polynomial randomised
approximation schemes, i.e., a PRAS (algorithms that compute a (1+ ε) approximation
in polynomial time in the problem size with probability at least 3/4 [68]) with a runtime
bounded by O(n ln(1/ε)) ·2(e loge+e)⌈2/ε⌉ ln(4/ε)+O(1/ε) [90]. Hence, as long as ε does not
depend on the problem size, the algorithms can achieve arbitrarily good approximations with
an appropriate restart strategy. The analysis of the (1+1) EA and RLS essentially shows
that the algorithms with a proper restart strategy simulate Graham’s PTAS. In this chapter we
will show that AISs can achieve stronger results.

5.3 General Preliminary Results

For the approximation results (especially for the hypermutation), we had to diverge sig-
nificantly from the analysis done in [90], which relies on a constant upper bound on the
probability that the assignment of a constant number of specific jobs to the machines will
not be changed for at least a linear number of iterations [90]. The static HMP makes very
large changes to the solution in every iteration and, unlike for the standard bit mutation
operator, we cannot rely on successive solutions resembling each other in terms of their bit
string representations. Thus, we have worked with ranges of the objective function values.
In particular, we divided the range of objective function values into L intervals, where L is
the number of local optima with distinct makespan values. Measuring the progress in the
optimisation task according to the interval of the current solution allows the achievement
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of the approximation result for the hypermutation operator and the bound on the time until
the ageing operator reinitialises the search process. The bound on the reinitialisation time in
turn allows us to transform the bound obtained in [90] on the probability that the standard
(1+1) EA finds the approximation in a single run into an upper bound on the approximation
time for the (µ +1) EAageing.

We will refer to any solution x of the PARTITION problem as a local optimum if there exists
no solution with smaller makespan which is at Hamming distance one from x. Moreover,
L := {ℓ1, ℓ2, . . . , ℓL} will denote the set of all local optima for a PARTITION instance where
L := |L | and the local optima ℓi are indexed according to non-increasing makespan.

We can now state the following helper lemma which bounds the expected number of
iterations that the (µ + 1) EAageing (Algorithm 2.7 for minimisation, page 26) and the
(1+1) IA (Algorithm 2.4 for minimisation using static HMP) with current fitness better than
ℓi require to reach a fitness at least as good as f (ℓi+1).

Lemma 6. Let x ∈ {0,1}n be a non-locally optimal solution to the PARTITION instance such
that f (ℓi)> f (x)≥ f (ℓi+1) for some i ∈ [L−1]. Then,

1. The (1+1) IA with current solution x samples a solution y such that f (y)≤ f (ℓi+1) in
at most 2n2 expected generations.

2. The (µ +1) EAageing with µ = O(logn), τ = Ω(n1+c) for an arbitrarily small positive
constant c and current best solution x, samples a solution y such that f (y)≤ f (ℓi+1)

in 2en2(1+o(1)) iterations with probability at least 1−n−Ω(nc/2).

Proof. Let Xt be the best solution of the (µ + 1) EAageing or the current solution of the
(1+ 1) IA at time t, and p∗t denote the weight of the largest job in Xt that can be moved
from the fuller machine to the emptier machine such that the resulting solution yields a
better makespan than Xt (given that no other jobs are moved). Moreover, we will define
Dt := f (Xt)− f (ℓi+1) and let rt be the smallest j ∈ [n] such that ∑

n
i=n− j+1 pi ≥ Dt .

We will first prove that p∗t ≥ pn−(rt−1) by contradiction. The assumption p∗t < pn−rt+1

implies that ∑pi≤p∗t pi < Dt . Now, we consider a solution y identical to Xt with the exception
that all the jobs with weight at most p∗t in the fuller machine of Xt are moved to the emptier
machine. Thus, f (Xt) > f (y) > f (Xt)−Dt = f (ℓi+1) while y is a local optimum. Since
there exist no local optima with makespan value in [ f (x), f (ℓi+1)] by definition, the initial
assumption creates a contradiction and we conclude that p∗t ≥ pn−rt+1.

We consider an iteration where only the job with processing time p∗t is moved from
the fuller machine to the emptier machine of Xt , and will denote any such event as a large
improving move. After a large improving move, either the makespan will decrease by p∗t or the
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emptier machine in Xt becomes the fuller machine in Xt+1 and f (Xt)− p∗t < f (Xt+1)< f (Xt).
We will denote the latter case as a switch.

In the former case, if the makespan decreases by p∗t , then rt+1 ≤ rt − 1 since Dt+1 =

Dt − p∗t ≤ Dt − pn−rt+1. Since rt+1 ≤ rt ≤ n by definition, after at most n large improving
moves where f (Xt+1) = f (Xt)− p∗t , we have f (Xt)≤ f (ℓi+1).

If a switch occurs at time t, then the load of the emptier machine of Xt ′ will be at least
f (Xt)− p∗t for any t ′ > t and moving a single job with processing time at least p∗t from the
fuller machine to the emptier machine of Xt ′ will yield a solution with makespan worse
than f (Xt+1). Therefore, if a switch occurs at time t, by the definition of p∗t , for any t ′ > t,
p∗t ′ < p∗t . Since there are at most n distinct processing times among all jobs, there can be at
most n large improvements throughout the optimisation process where a switch occurs. Thus,
we can conclude that in at most 2n large improvements, f (Xt)≤ f (ℓi+1).

We will now bound the waiting time Timp until a large improving move occurs separately
for the (1+1) IA and the (µ +1) EAageing.

For the (1+1) IA, the probability that the job with processing time p∗t is moved from
the fuller machine to the emptier machine in the first mutation step is at least 1/n. Since the
resulting solution has smaller makespan, static HMP stops after this first mutation step. Due
to the waiting time argument (see Theorem 3, page 35), E[Timp] = n. Our first claim follows
by multiplying this expectation with 2n.

For the (µ + 1) EAageing, we will first show that it takes o(n) expected time until the
best solution takes over the population if no improvements are found. Given that there are k
individuals in the population with fitness value f (Xt), with probability (k/µ)(1−1/n)n ≥
(k/µ)(1−1/n)e−1, the (µ +1) EAageing picks one of the k individuals as parent, does not
flip any bit and adds a new solution with the same fitness value to the population. Thus,
in expected ∑

µ

k=1(µ/k)e(1− 1/n)−1 ≤ eµ ln µ(1 + o(1)) = o(n) generations, the whole
population consists of solutions with fitness value at least f (Xt). In the following generations
with probability at least 1/n(1−1/n)n−1 ≥ 1/(en), the SBM only moves the job with weight
p∗t and improves the best solution. Thus, in at most eµ ln µ(1+o(1))+ en = en(1+o(1))
expected iterations of the (µ +1) EAageing, a large improving move occurs.

Since Timp is a waiting time, we can use Markov’s inequality iteratively (see Theorem 6,
page 35) in the following way to show that the ageing operator in the (µ + 1) EAageing

with overwhelmingly probability does not trigger : P(Timp ≥ nc ·E[Timp])≤ P(Timp ≥ nc/2 ·
E[Timp])

nc/2
= n−Ω(nc/2). The second claim is obtained by multiplying the bound on the

waiting time with 2n.
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5.4 Class of Worst Case Instances for Evolutionary Algo-
rithms

The instance from the literature P∗ε leading to a 4/3 worst-case expected approximation ratio
for RLS and the (1+1) EA consists of two large jobs with long processing times p1 := p2 :=
1/3−ε/4 and the remaining n−2 jobs with short processing times pi := (1/3+ε/2)/(n−2)
for 3 ≤ i ≤ n for an arbitrarily small constant ε > 0 (the sum of the processing times are
normalised to 1 for cosmetic reasons) [90]. Any partition where one large job and half of
the small jobs are placed on each machine is naturally a global optimum of the instance
(i.e., the makespan is 1/2). Note that the sum of all the processing times of the small jobs
is slightly larger than the processing time of one large job. The local optimum leading to
the 4/3 expected approximation consists of the two large jobs on one machine and all the
small jobs on the other. It is depicted in Figure 5.1. The makespan of the local optimum is
p1 + p2 = 2/3− ε/2 and, in order to decrease it, a large job has to be moved to the fuller
machine and at the same time at least Ω(n) small jobs have to be moved to the emptier
machine. Since this requires flipping Ω(n) bits, which cannot happen with RLS and only
happens with exponentially small probability n−Ω(n) with the SBM of EAs, their expected
runtime to escape from such a configuration is at least exponential.

Fig. 5.1 The 4/3 approximation local optimum of P∗ε [90]

To highlight the power of the AIS to overcome hard local optima for EAs, in this section
we generalise the instance P∗ε to contain an arbitrary but constant number s = Θ(1) of large
jobs and show how the considered AISs efficiently solve the instance class to optimality by
escaping from local optima efficiently while RLS and the (1+1) EA cannot. Hence, static
HMP and ageing are efficient at locating the optimal solution on a vast number of instances
where SBM and local mutations alone fail. The generalised instance class G∗ε is defined as
follows.
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Fig. 5.2 A local optimum of G∗ε

Definition 5. The class of PARTITION instances G∗ε is characterised by an even number of
jobs n, an even number of large jobs s = Θ(1) and the following processing times:

pi =

 1
2s−1 −

ε

2s if i≤ s,
s−1
n−s · (

1
2s−1 +

ε

2(s−1)) otherwise,

where 0 < ε < 1/(2s− 1) is an arbitrarily small constant. In an optimal solution, each
machine contains half of the large jobs and half of the small jobs.

The instance class has the same property as the instance P∗ε . If all the large jobs are placed
on one machine and all the small jobs on the other (see Figure 5.2), then at least Ω(n) small
jobs need to be moved in exchange for a large job to decrease the discrepancy (the difference
between the loads of the machines). Such a local optimum allows us to derive a lower bound
on the worst-case expected approximation ratio of algorithms that get stuck there. Clearly,
the greater the number of large jobs, the smaller the bound on the approximation ratio will
be. In the following lemma, we will point out some important characteristics of the instance
class.

Lemma 7. Let x ∈ {0,1}n be a candidate solution to the instance I ∈ G∗ε , h and k be the
numbers of large and small jobs respectively on the fuller machine of x and L ⊆ {0,1}n be
the set of local optima of I. Then, the following three properties hold:

Property 1: |{y ∈ R : ∃x ∈ {0,1}n s.t. f (x) = y}|= O(n).

Property 2: |{y ∈ R : ∃x ∈L s.t. f (x) = y}|= O(1).

Property 3: ∀x∈ {0,1}n s.t. f (x)> 1/2, either k =Ω(n) and x /∈L , or max(k,n−s−k)≥(1
2 +a

)
(n− s) for some a = Ω(1).

The lemma provides upper bounds on the number of distinct makespan values that can
be observed, first for all possible solutions in Property 1 and then only among local optima
in Property 2. Finally, Property 3 provides restrictions on the distribution of the small jobs
among the machines which hold for all suboptimal solutions.
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Proof. Since pi = p j = p1 for all (i, j) ∈ [s]2 and pi = p j = ps+1 for all (i, j) ∈ ([n]\ [s])2,
f (x) = h · p1 + k · ps+1. The first property follows from (h,k) ∈ [s]× [n− s] and s = O(1).

For the second property which considers only the local optima L , note that if a local
optimum ℓ with h large jobs and k small jobs exists, then a solution which has h large jobs
and k′ < k small jobs on its fuller machine cannot exist since, otherwise, moving a small job
to the emptier machine would improve ℓ. Moreover, any solution with h large jobs and k′ > k
small jobs on its fuller machine cannot be a local optima since it can be improved by moving
a small job from its fuller machine to its emptier machine. Thus, there exists a unique locally
optimal makespan value for each h ∈ [s]. The property follows from s = O(1).

In order to show the third property, we will partition the set of suboptimal solutions
X ⊂ {0,1}n into three disjoint sets:

• X1 := {x ∈X : f (x)≥ ∑
s
i=1 pi +

( 1
s+1 ∑

n
i=s+1 pi

)
},

• X2 := {x ∈X \X1 : h < s∧ x /∈L } ,

• X3 := X \ (X1∪X2).

For all x ∈ X1, since f (x) ≥ ∑
s
i=1 pi +

( 1
s+1 ∑

n
i=s+1 pi

)
> 1

2 +
1

s+1 ∑
n
i=s+1 pi, moving

a single small job from the fuller machine to the emptier machine always improves the
makespan, thus x /∈L . Moreover, since the sum of the processing times of the large jobs on
the fuller machine can be at most ∑

s
i=1 pi, we get k ≥ (n− s)/(s+1) = Ω(n).

For any x ∈X2, x /∈L by definition. We will prove by contradiction that k = Ω(n). Let
us assume k = o(n). Since the condition h < s implies that there is at least one large job on
the emptier machine, the load of the emptier machine is at least:(

1
2s−1

− ε

2s

)
+(n− s−o(n)) · s−1

n− s

(
1

2s−1
+

ε

2(s−1)

)
≥ 1

2s−1
− ε

2s
+

s−1
2s−1

+
sε(s−1)
s2(s−1)

=
1+ s−1

2s−1
+

sε− ε

2s

≥ s
2s−1

+
ε(s−1)
2s−1

≥ s+ ε(s−1)
2s−1

>
s

2s−1
>

1
2
,

which contradicts that it is the emptier machine. Thus, k = Ω(n).
Finally, we will show that for all x ∈X3, max(k,n− s− k) ≥

(1
2 +a

)
(n− s) for some

a = Ω(1). If x ∈X3 and h = s, then k < n−s
s+1 since f (x) < ∑

s
i=1 pi +

( 1
s+1 ∑

n
i=s+1 pi

)
. The

inequality k < n−s
s+1 in turn implies that n− s−k > (n− s)− n−s

s+1 = (n− s)(1− (1/(s+1)))≥
(1/2+a)(n− s) for some a. If x ∈X3 and x ∈L , then either there are no small jobs on the
fuller machine (k = 0) or the difference between the loads is so small that moving a small job
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to the emptier machine does not improve the makespan. For the latter case, since f (x)> 1
2 ,

the machines cannot have the same number of small and large jobs. Moreover, since s and n
are even integers and x ∈L , if one of the machines has more than half of the large (small)
jobs assigned to it, then more than half of the small (large) jobs has to be assigned to the
other machine, because otherwise moving a single small job from the fuller machine to the
emptier one would improve the makespan. Without loss of generality (w.l.o.g.), let M1 be the
machine with more small jobs and fewer large jobs. Since ∑

n
i=1 pi = 1, the load of M1 is at

least 1/2− ps+1/2. By definition, the number of large jobs in M1, is bounded from above by
s/2−1. Then, the contribution of small jobs to the load of M1 is at least:

1
2
(s · p1 +(n− s)ps+1− ps+1)−

( s
2
−1
)

p1 =
n− s−1

2
ps+1 + p1,

where the first expression makes use of s · p1+(n−s)ps+1 = 1. Dividing by ps+1, the number
of small jobs is at least:

n− s−1
2

+
p1

ps+1
>

n− s−1
2

+
n− s

s
= (n− s)

(
1
2
+

1
s

)(
1−O

(
1
n

))
.

Thus, for all x∈X3, min(k,n− s− k)≥ (n−s)(1
2 +a) where a :=min(1

s −O(1
n),

1
2 −

1
s+1)=

Ω(1).

5.4.1 Standard Bit Mutations Are Inefficient

In this subsection we prove that the (1+1) EA has exponential expected runtime on G∗ε . The
proof is similar to that of the 4/3 approximation [90]. It essentially shows that with constant
probability the algorithm gets trapped in a state where it is exponentially unlikely to move
the extra large jobs out of its fuller machine. That RLS also fails is essentially a corollary.

Theorem 30. The (1+1) EA needs at least nΩ(n) fitness function evaluations in expectation
to optimise any instance of G∗ε .

Proof. The proof is similar to that of the 4/3 approximation [90]. We will first prove that
with constant probability the (1+1) EA initialises with all large jobs in M1 and then fills
M2 with n− s− (n−s)ε

2(s−1) small jobs before moving any large job to M2 (Event E1). From then
on, we will show that the algorithm requires exponential expected time to move a large job.
Since the sum of the processing times of large jobs is larger than 1/2 (the makespan of the
optimum), the expected optimisation time will be exponential as well.

With probability (1/2)s = Θ(1), all large jobs are assigned to the same machine (M1

w.l.o.g.) in the initial solution. The expected number of small jobs initially assigned to
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M1 is (n− s)/2 and since they are assigned independently, the probability that more than
((n−s)/2)+(n−s)3/5 of them are assigned to M1 initially is exponentially small by Chernoff
bounds (see Theorem 8, page 36).

Let kt be the number of small jobs on the fuller machine M1 at time t. As long as
the large jobs are not moved, new solutions are only accepted if the number of small jobs
in M2 increases or stays the same. A single small job is moved to M2 with probability
(kt/n)(1−1/n)n−s−1 ≥ kt/(en).

The expected time conditional on large jobs never having been moved until a (1− ε

2(s−1))

fraction of the total small jobs are moved to M2 is:

(n−s)/2+(n−s)3/5

∑
k=n−s−(n−s− ε(n−s)

2(s−1) )

en
k
≤ en

(n−s)/2+(n−s)3/5

∑
k= ε(n−s)

2(s−1)

2(s−1)
ε (n− s)

≤ 2(s−1)
( e

ε

)( n
n− s

)(
n− s

2
+(n− s)3/5

)
= O(n).

Let c be a constant such that cn−1 is at least twice as large as the above expectation. Due
to Markov’s inequality at least a (1− ε

2(s−1)) fraction of the small jobs are moved to M2 in
cn−1 iterations with probability at least 1/2. Now, we calculate the probability that no large
jobs have been moved in cn−1 iterations. The probability that SBM does not move any large
jobs to the emptier machine (M2) is 1− s/n in each iteration. The probability that the large
jobs are not moved during the first cn−1 iterations is at least (1− s/n)cn−1 ≥ e−cs = Ω(1).
Hence, P(E1) = Ω(1). Now that we found the probability of event E1, we can find the
expected runtime conditional on E1.

Let at least a (1− ε

2(s−1)) fraction of small jobs and all the large jobs be on M2. The sum
of the processing times of small jobs on M2 is greater than the processing time of (s− 1)
large jobs (i.e., (s−1)( 1

2s−1 −
ε

2s)) and greater than:

(s−1)
(

1
2s−1

+
ε

2(s−1)

)
− ε

2

(
1

2s−1
+

ε

2(s−1)

)
=

s−1
2s−1

+
ε

2

(
1− 1

2s−1
− ε

2(s−1)

)
>

s−1
2s−1

+
ε

3
− ε2

4
>

s−1
2s−1

+
ε

4
.

Hence, the makespan can be at most S < 1−
( s−1

2s−1 +
ε

4

)
= s

2s−1−
ε

4 . If a large job was to
be transferred to M2, then its total processing time would become S′ > s

2s−1 +
ε

4 −
ε

2s >
s

2s−1 .
Hence, in order for a large job to be transferred to M2, a processing time of at least ε/4
has to be transferred to M1 in the same iteration. Then the conditional expected time
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to transfer a large job would be exponential since at least a linear number of small jobs
need to be moved from M2 to M1 such that their processing times of order O(1/n) sum
up to a constant ε/4. Such a mutation requires at least a linear number of bits to be
flipped which happens with probability at most n−Ω(n). The probability that such a mutation
happens in nδn steps is still in the same asymptotic order for a sufficiently small constant
δ . Since any mutation that increases the load of M2 will not be accepted and the large jobs
must be equally distributed among the machines in the optimal solution, with probability
P(E1) · (1−n−Ω(n)) = Ω(1) the runtime will be in the order of nΩ(n). The theorem statement
follows since E(T )≥ E(T | E1) ·P(E1) = nΩ(n) by the definition of expectation of a random
variable.

In the following subsection, we will show the efficiency of static HMP for optimising G∗ε .
Afterwards, we will do the same for ageing.

5.4.2 Hypermutations Are Efficient

We will start this subsection by proving some general statements about static HMP. This
operator flips all the bits in a bit string successively and evaluates the fitness after each step.
Unless an improvement is found first, each static HMP operation results in a sequence of
n solutions sampled in the search space. This sequence of solutions contains exactly one
bit string for each Hamming distance d ∈ [n] to the initial bit string, i.e., it is a permutation
of the bit positions. Moreover, the string which will be sampled at distance d is uniformly
distributed among all the bit strings of distance d to the input solution.

The number of possible outcomes grows exponentially in the number of flipped bits until
the n/2 th bit is flipped and afterwards it reduces at the same rate. Thus, the first and the last
constant number of sampled strings are picked among a polynomially large subset of the
search space. The following lemma bounds the probability that a particular target substring
will be satisfied by all solutions sampled by the hypermutation operator between mth and
(n−m)th bit-flips.

Lemma 8. Let xi ∈ {0,1}n be the i th bit string sampled by static HMP. For any arbitrary
subset of indices S ⊂ [n], let xi

S be the subsequence of xi which consists of bit positions
in S. For any given target string s∗ ∈ {0,1}|S| and integer m > |S|, the probability that

∀i ∈ {m, . . . ,n−m}, xi
S = s∗ is at least

(
m−|S|+1
n−|S|+1

)|S|
.

Proof. Let SA and SD denote the set of positions where the initial subsequence x0
S and s∗ agree

and disagree respectively and ord( j) ∈ [n] denote the mutation step when the bit position
j ∈ S is flipped. Then, ∀i ∈ {m, . . . ,n−m},xi

S = s∗ holds if and only if ∀ j ∈ SD,ord( j)≤ m
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(meaning that bit j should be flipped in the first m bit string samples) and ∀ j ∈ SA,ord( j)≥
n−m (meaning that j gets flipped after the (n−m)th bit). Let y1, · · · ,ySD denote the positions
in the set SD and let Ek be the event that in the final permutation y1,y2, · · · ,yk are all within
the first m positions (i.e., for all j ≤ k, ord( j)≤ m ). Hence, ESD is the event that ∀ j ∈ SD,
ord( j)≤ m and:

P(ESD) = P(E1∩E2∩·· ·∩ESD) =

P(E1) ·P(E2 | E1) ·P(E3 | E1∩E2) · · ·P(ESD | E1∩·· ·∩ESD) =

P(E1) ·P(E2 | E1) ·P(E3 | E2) · · ·P(ESD | ESD−1)

where the first and the last equations hold because Ek−i ⊂ Ek ∀i and the second by the
definition of conditional probability. Given that y1,y2, · · · ,yk are in the final permutation
such that ord(yi)≤m for all i≤ k, the probability that also ord(yk+1)≤m (i.e., P(Ek+1 | Ek))
is (m− k)/(n− k) because k positions amongst the first m are already defined. Thus, the
probability that ord( j) ≤ m holds for all j ∈ SD is P(ESD) = ∏

|SD|−1
k=0

m−k
n−k . Similarly, if

ord( j)≤ m holds for all j ∈ SD and there are at least k different j ∈ SA such that ord( j)≥
n−m, the probability that there are at least k + 1 different j ∈ SA such that ord( j) ≥
n−m is (m− k)/(n− k− |SD|). Thus, the probability that, ∀ j ∈ SD, ord( j) ≤ m and

∀ j ∈ SA,ord( j)≥ n−m is
(

∏
|SD|−1
k=0

m−k
n−k

)(
∏
|SA|−1
k=0

m−k
n−k−|SD|

)
≥
(

m−|S|+1
n−|S|+1

)|S|
.

We can observe that the probability bounds we get from this lemma are polynomial if
|S| is a constant. Moreover, if both |S|= Θ(1) and m = Ω(n), we obtain probabilities in the
order of Ω(1).

For G∗ε , we would like to distribute two kinds of jobs evenly among the machines. While
there is only a constant number of large jobs and Θ(n) small jobs, the previous lemma would
provide reasonable probability bounds only for the large jobs. For the small jobs, we will
make use of the fact that the configuration we want is not any configuration but an exact half
and half split. Intuitively, it is obvious that if all the jobs start on one machine, at exactly
the (n/2)th bit-flip the split will be half and half. However, as the starting distribution gets
further away from the extremes, it becomes less clear when the split will exactly happen.
Fortunately, the fact that the number of small jobs is large will work in our favour to predict
the time of the split more precisely.

The following lemma establishes that larger the initial difference in the number of 0-bits
and 1-bits is, the smaller the interval around the (n/2)th bit-flip where we observe a solution
with equal number of 0-bits and 1-bits with overwhelmingly high probability.
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Theorem 31. If the input bit string of static HMP has
(1

2 +a
)

n 1-bits for some constant
a > 0, then with probability 1−e−Ω(nc2), for any c = ω(

√
logn/n) such that c ∈ (0,a), there

exists a k ∈ {n a−c
2a−c , . . . ,n

a
2a−c} such that the number of 1-bits in the k th solution sampled

by HMP has exactly n/2 1-bits.

Proof. Let Yk be the total number of 1-bits flipped by HMP up to and including the kth
mutation step. Given any parent string x ∈ {0,1}n with ((1/2)+a)n 1-bits, Yk is a hyper-
geometrically distributed random variable with parameters n, ((1/2)+a)n, k and expectation
E[Yk] = ((1/2)+a) · k.

Let Xk be the bit string sampled after the kth mutation step. It has ((1/2)+a)n−Yk of
x’s 1-bits which have never been flipped and k−Yk of its 0-bits which are flipped to 1-bits.
Thus, the number of 1-bits in Xk is |Xk|1 = ((1/2)+a)n+ k− 2Yk. Now, we can bound
the probability that |Xk|1 ≥ n/2 after a particular mutation step k ≥ n·a

2a−c by using Chernoff
bounds (see Theorem 8, page 36)1:

P(|Xk|1 > n/2) = P
(

Yk <
k+a ·n

2

)
= P

(
Yk <

k+a ·n
k+2a · k

·E[Yk]

)
≤ P

(
Yk <

(
1− c

2a+1

)
·E[Yk]

)
≤ exp

(
−
(

c
1+2a

)2 E[Yk]

2

)

≤ exp

(
−
(

c
1+2a

)2 (1
2 +a

) n·a
2a−c

2

)
= e−Ω(nc2),

where we used k ≥ n·a
2a−c to obtain the first and the last inequality and Chernoff bounds to

obtain the second. Then, using the same line of arguments, we bound P{|Xk|1 < n/2} at any
given mutation step k ≤ nn·(a−c)

2a−c by e−Ω(nc2):

P(|Xk|1 < n/2) = P
(

Yk >

(
1+

a · c
(2a+1)(a− c)

)
·E[Yk]

)
≤ exp

(
−
(

a · c
(2a+1)(a− c)

)2 E[Yk]

3

)
≤ e−Ω(nc2),

where in the last inequality we used a/(2a+ 1) = Ω(1) and (a− c) = o(1) only when

c = Ω(1). Finally, we use the union bound and the c = ω

(√
logn

n

)
assumption to prove our

1Note that the original statement of Theorem 8 refers to the sum of independent binary random variables,
i.e., binomial distribution. However, it is shown in various works, including [26], that the theorem holds for the
hypergeometric distribution as well.
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claim:

P
(
∀k ∈

[
n · (a− c)

2a− c
,

n ·a
2a− c

]
: |Xk|1 ̸= n/2

)

≤
n

∑
j= n·a

2a−c

P(|X j|1 > n/2)+

n·(a−c)
2a−c

∑
j=1

P(|X j|1 < n/2)≤ n · e−Ω(nc2) = e−Ω(nc2).

Now we have all the necessary tools to prove that the (1+1) IA can solve G∗ε efficiently.
To prove our result, we will use the combination of Property 3 of Lemma 7, Lemma 8, and
Theorem 31 to show that the probability of improvement is at least Ω(1) for any suboptimal
solution and then obtain our bound on the expected runtime by Property 1 of Lemma 7,
which indicates that there can be at most O(n) improvements before the optimum is found.
The heart of the proof of the following theorem is to show that from any local optimum,
static HMP identifies the global optimum with constant probability unless an improvement is
found first.

Theorem 32. The (1+1) IA optimises the G∗ε class of instances in O(n2) expected fitness
function evaluations.

Proof. According to Property 3 of Lemma 7, for any suboptimal solution x, either there are at
least a linear number of small jobs that can be moved from the fuller machine to the emptier
machine to improve the makespan or the number of small jobs in each machine differs from
n−s

2 by a linear factor. For the former case, in the first mutation step the probability that static
HMP flips one of the bits which correspond to the small jobs in the fuller machine is at least
Ω(n)/n = Ω(1). Since such a mutation creates an improved solution, static HMP stops and
the overall improvement probability is at least Ω(1).

For the latter case, the number of small jobs in one of the machines is at least
(1

2 +a
)
(n−

s) for some positive constant a. Using the notation of Theorem 31 with a and c = 1/(a logn),
with overwhelming probability the number of small jobs assigned to each machine will
be exactly (n− s)/2 at some bit-flip between (n− s) (a)−1/(a logn)

(2/a)−1/(a logn) = (n− s)1−(1/ logn)
2−1/ logn and

(n− s) a
(2a)−1/(a logn) = (n− s) 1

2−1/(logn) . According to Lemma 8, the probability that the
large jobs are distributed evenly throughout this interval is at least:(n− s)1−(1/ logn)

2−(1/ logn) − s+1

n− s+1

s

= 2−s(1−o(1)) = Ω(1).
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Therefore, with constant probability either the optimal solution will be found or the hyper-
mutation will stop due to an improvement. Since according to Property 1 of Lemma 7 there
are at most O(n) different makespan values and the probability of improvement is at least
Ω(1) for all sub-optimal solutions, the optimum is found in expected O(n) iterations. Given
that static HMP evaluates at most n solutions in each iteration, our claim follows.

Since the worst case instance for the (1+1) EA presented in [90] is an instance of G∗ε
with s = 2, the following corollary holds.

Corollary 4. The (1+1) IA optimises P∗ε in O(n2) expected fitness function evaluations.

5.4.3 Ageing Is Efficient

In this section we will show that the (µ+1) EAageing can optimise the G∗ε instances efficiently.
Our approach to prove the following theorem is to first show that if a solution where the large
jobs are equally distributed is sampled at initialisation, then it takes over the population and
the (µ +1) EAageing quickly finds the optimum. The contribution of ageing is considered
afterwards to handle the case when no such initial solution is sampled. In such cases we
will show that whenever the algorithm gets stuck on a local optima, it will reinitialise the
whole population after τ iterations and sample a new population. Before we move to the
main results, we will prove a helper lemma.

Lemma 9. For any PARTITION instance with L local optima with different makespans, the
expected time until the (µ+1) EAageing with µ =O(logn) and τ =O(n1+c) for any constant c
either reinitialises the population or finds the optimum is at most L(2en2 + τ)(1+o(1)).

Proof. Let Xt denote the solution with the smallest makespan ( f (Xt)) in the population at
time t. We will first bound the expected time until either the population reinitialises or
given that f (ℓi)> f (Xt)≥ f (ℓi+1), a solution with makespan strictly smaller than f (ℓi+1) is
sampled.

According to Lemma 6, in 2en2(1 + o(1)) iterations we have f (Xt) ≤ f (ℓi+1) with
probability at least 1−n−Ω(nc).

Let kt denote the number of individuals in the population that ties for the minimal
makespan value. If f (Xt)= f (ℓi+1), then at any iteration t, with probability at least (k/µ)(1−
1/n)n ≥ (k/µ)(1−1/n)e−1, SBM creates a copy of one of the best solutions, thus, kt+1 =

kt +1. Therefore, the expected time until either we sample a solution with makespan smaller
than f (ℓi+1) or increase the kt by one is at most (µ/k)(1− 1/n)−1e. Since kt ∈ [µ], the
expected time until the population consists only of solutions with makespan f (ℓi+1) or a
better makespan being sampled is at most ∑

µ

k=1(µ/k)(1−1/n)−1e = (1+o(1))eµ ln µ . This
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occurs in less than τ/2 iterations with probability at least 1− 2−Ω( τ

µ log µ
) = 1− 2−Ω(n1+c′)

for some constant c′ > 0 due to the iterative use of Markov’s inequality. According to
Lemma 3 (Chapter 4, page 63), unless the best fitness is improved, in at most 144µ3 steps the
population reaches the same age. Using Markov’s inequality iteratively, we can bound the
probability that this event happens in at most τ/2 iterations by 1−2−Ω(τ/µ3) = 1−2−Ω(n1+c′′)

for some constant c′′ > 0. Thus, in 2en2(1+o(1))+τ iterations, if we sample a solution with
makespan smaller than f (ℓi+1), the population consists of solutions with the same fitness
and the same age with overwhelming probability which in turn implies that the population
is reinitialised unless an improvement is found before the age of the individuals reach τ .
The total failure probability starting from a an arbitrary Xt s.t. f (ℓi) > f (Xt) ≥ f (ℓi+1)

until either the population reinitialises or a solution with f (Xt)< f (ℓi+1) is in the order of
n−Ω(nc/2)+ 2−Ω(n1+c′)+ 2−Ω(n1+c′′) = 2−Ω(n1+c∗) for some constant c∗ > 0. Since there are
L < 2n local optima with distinct makespan, by the union bound the probability of losing the
best individual before the optimum is sampled for the first time is at least 1−2−Ω(n1+c∗) ·L =

1−2−Ω(nc∗). Since there are exactly L distinct local optima than can be overcome before
finding the optimum, starting from any population in L · (2en2(1+o(1))+τ) iterations either
the optimum is found or the reinitialization occurs with overwhelming probability. Since in
the case of a failure we can repeat the argument again, in 1+o(1) expected repetitions one
of the desired events occur.

We will now show that with probability at least psuccess = Ω(1), the optimal solution
will be found in O(n3/5) iterations starting from a randomly initialised population. Since
Lemma 9 and Property 2 of Lemma 7 imply that the expected time until either the optimum
is found or the population is reinitialised is in the order of O(n2 + τ), in expected O(n3/5)+

O(n2 + τ)/psuccess = O(n2 + τ) iterations the optimum is found.

Theorem 33. The (µ +1) EAageing optimises the G∗ε class of instances in O(n2 + τ) steps in
expectation for τ = Ω(n1+c) for any arbitrarily small constant c and µ = O(logn).

Proof. With probability
( s

s/2

)
2−s= Ω(1), a randomly initialised solution assigns an equal

number of large jobs to each machine. We will refer to such solutions as good solutions. For
any initialised individual, the expected number of small jobs assigned to each machine is
(n− s)/2. By Chernoff bounds, the probability that fewer or more than (n/2)±n3/5 small
jobs are assigned to one machine is e−Ω(n1/5). We will now show that if there is at least one
good individual at initialisation, then in O(µ log µ) generations the whole population will
consist of good solutions with at least constant probability.

For a bad initial solution, the difference between the number of large jobs in M1 and
M2 is at least 2 by definition. With 1− e−Ω(n1/5) probability, the initial number of small
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jobs assigned to each machine does not differ by more than O(n3/5) (event E2) . Thus, the
difference between the loads of the machines is at least Ω(1) for a bad solution, while less
than O(n−2/5) for a good one, both with overwhelmingly high probabilities. In order for
a bad solution to have a better fitness than a good one, it is necessary that at least Ω(n)
small jobs are moved from the fuller machine to the emptier machine which takes at least
Ω(n/ logn) time with overwhelmingly high probability since the probability of SBM flipping
more than logn bits is exponentially small.

If there are k good solutions in the population, the probability that one of them is selected
as parent is k/µ and the probability that SBM does not flip any bits and yields a copy is
(1− (1/n))n > 1/3 (for n≥ 6). Thus, the expected time until the good solutions take over
the population is at most 3µ ∑

µ

k=1(1/k)≤ 3µ ln µ . The probability that the good solutions
take over the population in at most O(n3/5) iterations (before any bad solution is improved to
a fitness value higher than the initial fitness of a good solution) is by Markov’s inequality
in the order of 1−O((logn)(log logn)/n3/5). Thus, if the initial population contains at least
one good solution, it takes over the population with probability 1−o(1). Moreover, since
the discrepancy (the difference between the loads of the machines) of the accepted good
solutions will not increase above Ω(n−2/5), SBM needs to move a linear number of small
jobs in a single iteration to create a bad solution from a good one, which does not happen
with probability at least 1−n−Ω(n).

Starting from a suboptimal good solution, the fitness improves by moving any small job
from the fuller machine to the emptier machine without moving any of the large jobs. The
probability of such an event is at least (n−s)/2n ·(1−1/n)n−1 = Ω(1) considering that there
are at least (n− s)/2n small jobs on the fuller machine. Since the difference between the
number of small jobs is in the order O(n3/5), the small jobs will be distributed exactly evenly
and the global optimum will be reached in expected O(n3/5) iterations. Using Markov’s
inequality (see Theorem 6, page 35), we can bound the probability that the global optimum
will be reached in O(n3/5) iterations by Ω(1).

Since all necessary events described for finding the optimum have probability Ω(1), the
probability that they occur in the same run is at least in the order of Ω(1) as well. Thus,
all that remains is to find the expected time until the population consists of µ randomly
initialised individuals given that one of the necessary events fails to occur and the global
optimum is not found. This expectation is at most L · (2en2 + τ)(1+o(1)) due to Lemma 9
with L = Ω(1) which is in turn due to Property 2 of Lemma 7. Thus, the expectation is
(1/psuccess) ·O(n2 + τ)+O(n3/5) = O(n2 + τ).

Clearly the following corollary holds as P∗ε is an instance of G∗ε .
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Corollary 5. The (µ + 1) EAageing optimises P∗ε in O(µn2 + τ) steps in expectation for
τ = Ω(n1+c) and µ = O(logn).

5.5 (1+ ε) Approximation Ratio Analysis

In this section we will show that both the (1+1) IA and the (µ +1) EAageing are polynomial
time approximation schemes, i.e., they guarantee solutions with makespan at most a (1+ ε)

factor worse than the optimal solution in expected time polynomial in the number of jobs
n and exponential only in 1/ε . Throughout this section we will refer to the largest s :=
⌈2/ε⌉−1≤ n/2 jobs of the instance as large jobs and the rest as small jobs. Before we give
the main results, we present the properties of the PARTITION problem which will be used in
the proofs.

Lemma 10. Let I be any instance of the PARTITION problem with optimal makespan value
y∗ and the set of local optima L . Then,

Property 1: For all j ∈ {s+1, . . . ,n}, p j ≤ ε

2 ∑
n
i=1 pi.

Property 2: If there is at least one small job assigned to the fuller machine of a solution
x ∈L , then x is a (1+ ε) approximation.

Property 3: If ∑
n
i=s+1 pi ≥ 1

2 ∑
n
i=1 pi, then all x ∈L are (1+ ε) approximations.

Property 4: |{y ∈ ((1+ ε) · y∗,∞) : ∃x ∈L s.t. f (x) = y}| ≤ 22/ε .

Proof. Let W := ∑
n
i=1 pi denote the sum of the processing times of all jobs. We will prove

the first statement by contradiction. Let us assume that ps+1 > ε

2W . Thus, all pi for i ∈
{1, . . . ,s+1} would satisfy pi >

ε

2W , which implies ∑
s+1
i=1 pi > ⌈2

ε
⌉ ε

2W >W , a contradiction.
The second statement follows from the first one, since if moving a small job from the

fuller machine to the emptier one does not improve the makespan, then the makespan is at
most W/2+(1/2)(ε/2)W . A trivial lower bound on the optimum, y∗, is W/2, therefore the
approximation ratio is at most

(W
2 + 1

2
ε

2W
)
/(W/2)≤ (1+ ε).

For the third statement, if ∑
n
i=s+1 pi ≥ 1

2 ∑
n
i=1 pi, then any local optimum must have some

small jobs on the fuller machine since the sum of the processing times of large jobs is smaller
than the sum of the processing times of the small jobs. Thus, the claim follows from the
second statement.

The last statement indicates that there are at most 2ε/2 distinct makespan values among
local optima which are not (1+ε) approximations. The second statement states that if a local
optimum is not a (1+ε) approximation, then it cannot have a small job on its fuller machine.
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Thus, in such a solution the makespan is exclusively determined by the configuration of the
large jobs on the fuller machine. Since there are at most ε

2 + 1 large jobs, the number of
different configurations is 2

ε

2+1. Since the complement of each configuration has the same
makespan, the statement follows.

5.5.1 Hypermutations Find (1+ ε) Approximation Ratios

Theorem 34 will show that the (1+ 1) IA can efficiently find arbitrarily good constant
approximations to any PARTITION instance. Before we state our main result, we introduce
the following helper lemma.

Lemma 11. Let xi ∈ {0,1}n be the i th bit string sampled by static HMP with the input bit
string 0n. For any arbitrary subset of indices S⊂ [n] and a function f (x) := ∑ j∈S x jw j with
a set of non-negative weights w j, E[ f (xi)] = i

n ∑ j∈S w j.

Proof. By linearity of expectation, E[ f (xi)] = ∑ j∈S E[xi
j]w j, where xi

j is the jth bit position
of the ith bit string sampled by static HMP. Considering that the initial bit value is zero,
xi

j = 1 with probability i/n. Thus the expectation E[xi
j] is i/n for all j and the claim follows

from moving the multiplicative factor of i/n out of the sum in the expected function value

∑ j∈S(i/n)w j.

We now state the main result of this section.

Theorem 34. The (1+1) IA finds a (1+ε) approximation to any instance of PARTITION in at
most n(ε−(2/ε)−1)(1−ε)−2e322/ε +2n322/ε +2n3 fitness function evaluations in expectation
for any ε = ω(n−1/2).

Proof. Let Xt denote the current solution of the (1+1) IA. We will assume that the algorithm
stops as soon as it finds a (1+ ε) approximation. The expected number of iterations where
Xt /∈ L is at most 2n2(22/ε + 1) due to Property 4 of Lemma 10 and Lemma 6.1 (i.e.,
from any non-locally optimal solution, in at most 2en2 generations, a better locally optimal
solution will be found according to Lemma 6.1 and the number of local optima which are not
(1+ε) is at most 22/ε . Hence, the total number of non-local optima would be 2n2(22/ε +1)).
Moreover, due to Property 3 of Lemma 10 and Lemma 6, any of these local optima would be a
(1+ ε) approximation if ∑

n
i=s+1 pi ≥ 1

2 ∑
n
i=1 pi (which makes the algorithm stop). Therefore,

for the rest of the proof we will assume that ∑
n
i=s+1 pi <

1
2 ∑

n
i=1 pi.

Now, we want to bound the expected number of iterations where Xt ∈L . Let h denote
the configuration of only the large jobs with the minimum makespan H. Note that this
configuration might be different than the configuration of the large jobs in the optimal
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solution since it does not take the contribution of the small jobs to the makespan into account.
However, H ≤ y∗ since introducing the small jobs cannot improve the optimal makespan.
Since both h and its complementary bit string have the same makespan, w.l.o.g., we will
assume that the fuller machines of Xt and h are both M1.

According to Lemma 8, the s ≤ 2/ε large jobs are assigned in the same way as in h
between the n(ε−ε2)th and n−n(ε−ε2)th bit-flips with probability at least

(
ε− ε2)2/ε e−1.

Due to Property 2 of Lemma 10, Xt does not have any small job on M1. Since ∑
n
i=s+1 pi <

W/2, by the n(ε− ε2)th bit-flip the expected total processing time of small jobs moved from
M2 to M1 is at most (ε− ε2)W/2 according to Lemma 11. Due to Markov’s inequality (see
Theorem 6, page 35), with probability at least 1− ((ε− ε2)W/(εW )) = ε , the sum of the
processing times of the moved jobs is at most εW/2 and the makespan of the solution is at
most H + εW/2. Since y∗ ≥ H and y∗ ≥W/2, (H + εW/2)/y∗ ≤ (1+ ε). This implies that
with probability:

p≈ ≥
(ε− ε2)2/ε

e
ε =

ε(2/ε)+1

e(1− ε)−2/ε
=

ε(2/ε)+1(1− ε)2

e(1− ε)−((1/ε)−1)2
≥ ε(2/ε)+1(1− ε)2

e3 ,

a (1+ ε) approximation is found unless an improvement is obtained before. Therefore, due
to Property 4 of Lemma 10, the expected number of iterations such that Xt ∈L is at most
(1/ε(2/ε)+1)(1− ε)−2e322/ε . Considering that static HMP evaluates at most n solutions per
iteration, the expected number of fitness evaluations before a (1+ ε) approximation is found
is at most n(ε−(2/ε)−1)(1− ε)−2e322/ε +2n322/ε +2n3.

In [90], it is shown that the (1+ 1) EA achieves the same approximation ratio as the
(1+1) IA while the leading term in the upper bound on its expected runtime is n log(1/ε)22/ε .
Although this result shows the power of EAs in general, for the (1+1) EA to achieve this, a
problem-specific restart schedule (where each run, or restart, takes O(n log(1/ε)) expected
iterations) has to be decided in advance where either the length of each run or the number of
parallel runs depends on the desired approximation ratio. Consequently, such an algorithm
loses application generality (e.g., if the ideal restart schedule for any constant ε is used, it
would fail to optimise efficiently even ONEMAX or LEADINGONES since optimising these
functions requires Ω(n logn) and Ω(n2) expected fitness function evaluations respectively).
In any case, if knowledge that the tackled problem is PARTITION was available, then using
the (1+ 1) EA would not be ideal in the first place. On the other hand, the AIS does not
require knowledge that the tackled problem is PARTITION, neither that a decision on the
desired approximation ratio is made in advance for it to be reached efficiently.
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5.5.2 Ageing Finds (1+ ε) Approximation Ratios

Theorem 35 shows that the (1+1) EAageing can find (1+ε) approximations. Its proof follows
the strategy used to prove that RLS and the (1+ 1) EA achieve a (1+ ε) approximation
if an appropriate restart strategy is put in place [90, 68]. The correct restart strategy which
allows RLS and the (1+1) EA to approximate PARTITION requires a fair understanding of
the problem. For instance, as discussed at the end of the previous subsection, restarts have
to happen roughly every n ln(1/ε) iterations to achieve the smallest upper bound. However,
the same restart strategy can cause exponential runtimes for easy problems if the expected
runtime is in the order of Ω(nc′). Our parameter choices for the ageing operator are easier
in the sense that no (or very limited) problem knowledge is required to decide upon its
appropriate value and the choice mostly depends on the variation operator of the algorithm
rather than on the problem at hand. For example, if the ageing operator is applied with
RLS, a value of τ = n1+c′′ guarantees that with overwhelming probability no restart will ever
happen unless the algorithm is trapped on a local optimum independent of the optimisation
problem. If RLS1,2,. . . ,k was applied, then a value of τ = nk+c′′′ allows us to draw the same
conclusions. Concerning the (1+ 1) EA, once the user has decided on their definition of
local optimum (i.e., the maximum neighbourhood size for which the algorithm is expected to
find a better solution before giving up), then the appropriate values for τ become obvious.
In this sense, the algorithm using ageing works out by itself when it is stuck on a local
optimum. We will show our result for the more restricted case of µ = 1 which suffices for
the purpose of showing that ageing is efficient for the problem. In particular, the proof is
considerably simplified with µ = 1 since we can use the success probability proven in [90]
without any modification. Furthermore, without proof, the upper bound on the runtime for
arbitrary µ increases exponentially with respect to µ/ε . Our proof idea is to use the success
probability of the simple (1+ 1) EA without ageing and show that ageing automatically
causes restarts whenever the (µ +1) EAageing fails to find the approximation by using only
single bit-flips. Hence, a problem specific restart strategy is not necessary to achieve the
desired approximation.

Theorem 35. The (1+ 1) EAageing with τ = Ω(n1+c∗) for any arbitrarily small constant
c∗ > 0 finds a (1+ ε) approximation to any instance of PARTITION in at most:

(2en2 + τ)2(e loge+e)⌈2/ε⌉ ln(4/ε)+⌈4/ε⌉−1(1+o(1)),

fitness function evaluations in expectation for any ε ≥ 4/n.

Proof. We make use of Theorem 3 in [90] which lower bounds the probability that the
(1+ 1) EAageing finds the (1+ ε) approximation in ⌈en log4/ε⌉ iterations by psuccess :=
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2−(e loge+e)⌈2/ε⌉ ln(4/ε)−⌈2/ε⌉ for any ε ≥ 4/n. Note that, since τ > ⌈en log4/ε⌉, the ageing
operator does not affect this probability.

Since we do not distinguish between an optimal solution and a (1+ ε) approximation,
Lemma 9 and Property 4 of Lemma 10 imply that in at most 2s(2en2+τ)(1+o(1)) expected
time either an approximation is found or a reinitialisation occurs. Multiplying with p−1

success,
we obtain (2en2 + τ)2(e loge+e)⌈2/ε⌉ ln(4/ε)+⌈4/ε⌉−1(1+o(1)).

5.6 Conclusion

In this chapter, we analysed AIS operators for an NP-hard problem. To the best of our
knowledge, this is the first time that polynomial expected runtime guarantees of solution
quality have been provided concerning AISs for a classical combinatorial optimisation
problem. We presented a class of instances of PARTITION to illustrate how static HMP
and ageing can efficiently escape from local optima and provide optimal solutions where
the SBMs used by traditional EAs get stuck for exponential time. Then, we showed how
this capability allows static HMP to achieve arbitrarily good (1+ ε) approximations for
any instance of PARTITION in an expected time that is polynomial in the number of jobs
n and exponential only in 1/ε , i.e., in expected polynomial time for any constant ε . In
contrast to standard EAs and RLS that require a problem specific number of parallel runs
or a restart scheme to achieve such approximations, the AISs find them in a single run. The
two results are achieved in different ways. The ageing operator locates more promising
basins of attraction by restarting the optimisation process after implicitly detecting that it
has found a local optimum. Static HMP finds improved approximate solutions efficiently by
performing large jumps in the search space. Naturally, the proof strategy would also apply to
the complete standard Opt-IA AIS [20, 15] if the ageing parameter is set large enough, i.e.,
τ = Ω(n1+c) for any arbitrarily small constant c.

In the previous and the present chapters we have proven for standard benchmark problems
and a classic combinatorial optimisation problem that AISs can escape from local optima
faster than EAs, albeit being slower in the exploitation (i.e., hill-climbing) phases. In the
following chapters we will propose algorithmic modifications that allow the AISs to be
competitive with EAs also in the hill-climbing phases.
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Chapter 6

Inversely Proportional Hypermutations

6.1 Introduction

In the previous chapters, it was argued that static HMPs have good exploration capabilities by
showing that they can more efficiently escape from local optima of both standard multimodal
benchmark functions and classical combinatorial problems than traditional EAs. On the
other hand, they were also proved to be relatively slow in the exploitation phase compared
to the standard bit mutations used by EAs. The reason is that, as the algorithm gets closer
to the optimum and the improvement probability decreases, it becomes more and more
likely that static HMP wastes cn fitness function evaluations every time it fails to find an
improvement in the first mutation step. In this chapter, we consider whether the inversely
proportional hypermutations from the literature, used typically in AISs such as Clonalg [23]
and Opt-IA [19] (see Subsection 2.3.3, page 23), may overcome the issue. Since the idea
behind inversely proportional hypermutations is to dynamically reduce the mutation rate the
closer a candidate solution gets to the global optimum, the hope is that the amount of wasted
fitness function evaluations is significantly reduced when the improvement probabilities are
small. This may lead to faster runtimes in the exploitations phases.

We start in Section 6.2 by discussing the problems identified in the literature concerning
the inversely proportional hypermutations used in the previous works which lead to inefficient
algorithms even for the simple ONEMAX function. In particular, we argue why FCM is
essential for inversely proportional hypermutations to be efficient. To this end, in Section 6.3,
we define three inversely proportional MPs (mutation potentials) that work in harmony with
FCM. Two of the MPs are adapted from the literature, while the third one is newly introduced.

In Section 6.4, we evaluate the best achievable speed-ups by analysing the operators
for standard unimodal benchmark functions in the ideal situation where the location of the
optimum is known. A result of this first analysis is that a mutation potential that increases
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exponentially with the Hamming distance to the optimum is the most promising out of
the three considered ones (it provides the largest speed-ups). Hence, we use this mutation
potential, called MexpoHD, in the rest of the chapter.

In Section 6.5, we propose an AIS which uses inversely proportional HMP and ageing
to be applied in practical applications where the optimum is not known. The idea behind
the algorithm is that instead of adjusting the mutation potential with respect to the distance
to the global optimum, we adjust it according to the best seen local optimum. Hence, the
more the search space is explored, the better the ideal behaviour of the inversely proportional
hypermutations is approximated through the discovery of better and better local optima.
Although we prove that such algorithm can escape the local optima of CLIFF, we show that
in general, such a strategy does not produce the desired effect, for instance for the TWOMAX

bimodal benchmark function. Since the mutation rate decreases with the distance to the best
found local optimum, the algorithm may encounter difficulties at identifying new promising
optima located in other directions (i.e., the mutation rate increases as the algorithm makes
progress). To this end, in Section 6.6, we define a symmetric inversely proportional HMP
operator that decreases the mutation potential with respect to the distance to the best seen
local optimum and uses the same rate of decrease in all other directions. We prove the
effectiveness of our strategy and subsequent speed-ups over static HMPs for the TWOMAX

benchmark function while showing that the local optima of CLIFF can still be escaped.

6.2 Limitations of the Inversely Proportional Hypermuta-
tions from the Literature

Inversely proportional hypermutations have been used both in Opt-IA [19] and in Clonalg [23]
AISs. However, previous theoretical analyses have highlighted various problems in their
application even when the fitness value of the global optimum is known [93, 52].

The first runtime analyses of inversely proportional hypermutation operators included the
performance analyses of two hypermutation operators for optimising ONEMAX function [93].
The first operator flips every bit with probability H(x,opt)

n where n is the problem size, opt
is the optimum and H(x,opt) is the Hamming distance of x and opt. Using this probability
which has a linear decay (i.e., the probability of flipping each bit in the search point x linearly
depends on the Hamming distance between x and opt), the operator flips in expectation
exactly the number of bits that maximises the probability of reaching the optimum in the next
step. For the second operator, each bit is flipped with a probability which has an exponential
decay and is defined as e−ρv, where v = ONEMAX(x)

f (opt) (the normalised fitness). This is the
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mutation probability used in Clonalg. It was shown that even when the optimum is known,
an algorithm employing any of these two mutation operators will require exponential time to
optimise ONEMAX w.o.p. The reason is that the initial random solutions have roughly n/2
1-bits, hence have very high mutation rates. Such rates hardly allow an algorithm to make
progress with any reasonable probability. Therefore, the behaviour of the mutation operator
leads to very inefficient algorithms even for the simple ONEMAX function when the optimum
is assumed to be known. In the following sections we will show how by stopping at the first
constructive mutation, FCM can solve the problem affected by the inversely proportional
hypermutation of Clonalg.

On the other hand, the inversely proportional HMP proposed for Opt-IA suffers from
a different problem [52]. It uses a mutation potential of M = ⌈(1− f (opt)/ f (x))⌉cn for
minimisation problems, where f (opt) is the best known fitness [52]. In an analysis for
ZEROMIN, such a mutation potential was shown not to decrease below cn/2 with cn being the
highest possible mutation potential [52]. Hence, the mutation potential does not decrease as
desired. As a result, it is unable to asymptotically improve the runtime of static hypermutation
for neither ONEMAX nor LEADINGONES [52].

The ideal behaviour of the inversely proportional hypermutation is that the mutation rate
is minimal in proximity of the global optimum and should increase as the difference between
the fitness of the global optimum and that of the candidate solution increases. However,
achieving such behaviour in practice may be problematic because the fitness of the global
optimum is usually unknown. As a result, in practical applications some information about
the problem is used to identify bounds on (or estimates of) the value of the global optimum1.
Thus, the closer is the estimate to the actual value of the global optimum, the closer should
the behaviour of the inversely proportional hypermutation be to the desired one. On the other
hand, if the bound is much higher (i.e., for a maximisation problem) than the true value, then
there is a risk that the mutation rate is too high in proximity of the global optimum, i.e., the
algorithm will struggle to identify the optimum. In the following section, we introduce three
inversely proportional hypermutation MPs which do not suffer from the problems described
above, i.e., the mutation rate decreases as the optimum is approached and FCM allows for
progress when the rate is high.

1Alternatively, the fitness of the best candidate solution is sometimes used as a reference point and the
mutation rate of the rest of the population is inversely proportional to the best.
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6.3 Inversely Proportional Mutation Potentials with FCM

In this section, we introduce three new inversely proportional mutation potentials to be
used in conjunction with FCM. Two of these MPs are inspired by the inversely proportional
hypermutation rates proposed in the literature, while the third one is newly proposed by us
based on the performance of the first two.

6.3.1 Hamming Distance Based Linear Decrease

Zarges analysed an inversely proportional hypermutation operator where the probability
of flipping each bit increases linearly with the Hamming distance to the optimum (or
its best available estimate) [93]. Precisely, this operator flips each bit with probability
min{H(x,best)}/n where n is the size of the problem and min{H(x,best)} is the minimum
Hamming distance of the current point to a best individual. As the expected number of
bit-flips is min{H(x,best)} during each execution of a mutation operator, a mutation potential
inspired by this inversely proportional hypermutation is:

MlinHD(x) := min{H(x,best)}.

6.3.2 Fitness Difference Based Exponential Decrease

In Clonalg’s inversely proportional hypermutation operator, the mutation probability de-
creases as an exponential function of the fitness of the current solution [23]. Precisely,
each bit flips with probability e−ρ·v where v is the normalised fitness value and ρ is a
decay parameter that regulates the speed at which the mutation rate decreases. Since we
consider maximisation problems, we use v = f (x)

f (best) as suggested by [93] where f (best) is
the best known fitness value. Using this mutation operator as a mutation potential (i.e., its
expected value) gives M = n · e−ρv. According to both practical and theoretical results [93],
a reasonable value for ρ is lnn. We call this mutation potential MexpoF(x) and define it as:

MexpoF(x)(x) :=
⌊

n1− f (x)
f (best)

⌋
.

6.3.3 Hamming Distance Based Exponential Decrease

It is well understood that fitness-proportional selection is sensitive to the difference between
the fitness values of candidate solutions, i.e., it struggles to distinguish between solutions
that have similar, yet different, fitness values [76, 77, 89, 66]. For this reason, nowadays
selection operators that rank individuals by fitness (e.g., tournament, linear ranking, comma
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Table 6.1 The expected runtimes achieved by the (1+1) IA with different MPs and (1+1) EA

Algorithms ONEMAX LEADINGONES

(1+1) EA Θ(n logn) [31] Θ(n2)[31]

(1+1) IA with M = n Θ(n2 logn) Θ(n3)

(1+1) IA using MlinHD Θ(n2) Θ(n3)

(1+1) IA using MexpoF(x) O(n(3/2)+ε logn), Ω(n(3/2)−ε) O(n3/ logn), Ω(n(5/2)+ε)

(1+1) IA using MexpoHD O(n(3/2)+ε logn), Ω(n(3/2)−ε) O(n(5/2)+ε/ lnn), Ω(n(9/4)−ε)

selection) are generally preferred. We also consider a measure that avoids using the fitness
values directly. To this end, we suggest a mutation potential which is similar to MexpoF(x) with
the exception that it uses the normalised Hamming distance to the best estimate rather than
the normalised fitness. We call this mutation potential MexpoHD and define it as MexpoHD=

n · e−ρ
n−H(x,best)

n where n is the problem size (the maximum Hamming distance between any
two points), H(x,best) is the Hamming distance to the best known solution and ρ is the
decay of the mutation potential. For the choice of ρ = lnn, we get:

MexpoHD(x) :=
⌊

n
H(x,best)

n

⌋
.

6.4 Analysis in Ideal Conditions

In this section, we evaluate the performance of the proposed inversely proportional MPs,
assuming the optimum is known (i.e., f (best)= f (opt)). Under this assumption, the operators
exhibit their behaviour in ideal conditions. Our aim is to evaluate what speed-ups can be
achieved in this ideal situation compared to the well-studied static HMP. To achieve such
comparisons we perform runtime analyses of the (1+1) IA using the inversely proportional
HMP on the ONEMAX and LEADINGONES unimodal benchmark functions for which the
performance of the same algorithm using static HMP was analysed in Chapter 4.

The (1+1) IA using inversely proportional HMP simply uses one candidate solution in
each iteration to which hypermutation is applied (Algorithm 2.4 using Function 2.6 with the
related M values). The results proven in this section and comparisons with static HMP are
summarised in Table 6.1. The original inversely proportional HMP of Opt-IA [20] has the
same expected runtimes as the (1+1) IA using static HMP [52].
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Fig. 6.1 Inversely proportional mutation potentials for ONEMAX
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Fig. 6.2 Inversely proportional mutation potentials for LEADINGONES

Figures 6.1 and 6.2 show how the studied MPs decrease during the run of the algorithm
when optimising ONEMAX and LEADINGONES, respectively. In Figure 6.2, expected values
are shown for those using Hamming distance.

6.4.1 Behaviour for ONEMAX in Ideal Conditions

The following theorems derive the expected runtimes of the three variants of inversely
proportional MPs for the function ONEMAX. By decreasing the mutation potential linearly
with the decrease of the Hamming distance, a logarithmic factor may be shaved off from the
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expected runtime of the (1+1) IA compared to the expected runtime achieved by the same
algorithm using static MP.

Theorem 36. The (1+ 1) IA using MlinHD optimises ONEMAX in Θ(n2) expected fitness
function evaluations.

Proof. Considering i as the number of 0-bits in the candidate solution, the probability of
improvement in the first step is i/n. Knowing that at most n improvements are needed to
find the optimum and in case of failure, H(x,opt) = i fitness function evaluations would be
wasted, the total expected time to optimise ONEMAX is at most ∑

n
i=1

n
i · i = O(n2).

In order to prove a lower bound, we use the Ballot theorem (see Theorem 11, page 38).
By Chernoff bounds (see Theorem 8, page 36), the number of 0-bits in the initialised
solution is at least n/3 w.o.p. Considering the number of 0-bits as i = q and the number
of 1-bits as n− i = p, the probability of an improvement is at most 1− (p−q)/(p+q) =
1− (n−2i)/n = 2i/n by the Ballot theorem, where i = H(x,opt). This means that we need
to wait at least n/(2i) iterations to see an improvement and each time the mutation operator
fails to improve the fitness, i fitness function evaluations will be wasted. Considering that at
least n/3 improvements are needed, the expected time to optimise ONEMAX is larger than

∑
n/3
i=1

n
2i · i = Ω(n2).

The following theorem shows that a greater speed-up may be achieved if the potential
decreases exponentially rather than linearly. Its proof deviates from the proof of Theorem 36
only in the amount of wasted evaluations. Note that for ONEMAX, the Hamming distance of
a solution to the optimum and its difference in fitness, are the same.

Theorem 37. The (1+ 1) IA using either MexpoF(x) or MexpoHD optimises ONEMAX in
O(n(3/2)+ε logn) and Ω(n(3/2)−ε) expected fitness function evaluations for any arbitrarily
small constant ε > 0.

Proof. We prove the results for MexpoF(x) which applies to MexpoHD as well. To prove the
upper bound, we know that by Chernoff bounds the initialised solution has at most n/2+ εn
0-bits w.o.p. for any arbitrary small ε = Θ(1). The probability of improvement in the first
mutation step is at least i/n with i showing the number of 0-bits. As we need at most n/2+εn
improvements and each time the mutation fails to make an improvement at least n1− n−i

n fitness
function evaluation would be wasted, the total expected time to find the optimum will be
E(T )≤ ∑

n/2+εn
i=1

n
i ·n

i
n =≤ n(3/2)+ε logn by putting i = n/2+ εn in ni/n.

To prove the lower bound, we again consider i as the number of 0-bits. By Chernoff
bounds, i is at least n/2− εn in the initialised bit string. The probability of improvement
is at most 2i/n by the Ballot theorem in Chapter 3), and the number of wasted fitness
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function evaluations at each failure is n
i
n . If we consider the time spent between levels

n(1/2 + ε/2) and n(1/2 + ε), we get the expected time of n
n/2−εn

n ·∑n/2+εn
i=n/2+nε/2 Ω(1) =

n1/2−ε · εn/2 ·Ω(1) = Ω(n3/2−ε).

6.4.2 Behaviour for LEADINGONES in Ideal Conditions

In the previous subsection, it was shown that decreasing the mutation potential linearly with
the Hamming distance to the optimum gives a logarithmic factor speed-up for ONEMAX

compared to using static MP. The following theorem shows that no improvement over static
mutation potentials are achieved for LEADINGONES. The main reason for the lack of
asymptotic improvements is that the expected time to leave each fitness level is linear for
LEADINGONES.

Theorem 38. The (1+ 1) IA using MlinHD optimises LEADINGONES in Θ(n3) expected
fitness function evaluations.

Proof. The proof for the lower bound is the same as the proof of Theorem 15 (page 59) for
the expected runtime of the (1+1) IAhyp

≥ with the exception that the amount of wasted fitness
function evaluations in case of failure is H(x,opt) instead of n now. Considering i as the
number of leading 1-bits, we denote the expected number of fitness function evaluations until
an improvement happens by E( fi). Any such candidate solution has i leading 1-bits with a
0-bit following, and then n− i−1 other bits which are distributed uniformly at random [31].
We take into account three possible events E1, E2 and E3 that can happen in the first bit
flip: E1 is the event of flipping a leading 1-bit which happens with probability i/n, E2

is the event of flipping the first 0-bit which happens with probability 1/n, and E3 is the
event of flipping any other bit which happens with probability (n− i− 1)/n. So we get
E( fi | E1) = H(x,opt)+E( fi), E( fi | E2) = 1, and E( fi | E3) = 1+E( fi). Knowing that the
bits after the left most 0-bit are distributed uniformly at random [31], the value of H(x,opt)
is not less than 1+ (n−i−1)

2 −εn w.o.p. by Chernoff bounds (see Theorem 8, page 36). Hence,
by the law of total expectation, the expected number of fitness function evaluations for every
improvement is E( fi) =

i
n

(
1+ n−i−1

2 − εn+E( fi)
)
+ 1

n ·1+
n−i−1

n (1+E( fi)). Solving the
equation for E( fi) gives us E( fi) =

in−i2−i−iεn
2 .

As we are computing the lower bound, we have to take into account the probability of
skipping any level i. To do this, we need to calculate the expected number of consecutive
1-bits that follow the leftmost 0-bit, called free riders [31]. The expected number of free riders
is ∑

n−i−1
i=1 i ·1/2i+1 < 1

2 ·∑
∞
i=0 i · (1/2)i = 1

2 ·
1/2

(1−1/2)2 = 1. This means that the probability of

not skipping a level i is Ω(1). On the other hand, with probability at least 1− 2−n/2, the
initial solution does not have more than n/2 leading 1-bits. Thus, we obtain a lower bound
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of (1− 2−n/2)∑
n
i=n/2 E( fi) = Ω(1)∑

n
i=n/2

in−i2−i−iεn
2 = Ω(n3) on the expected number of

fitness function evaluations.
Now we prove the upper bound. The probability of improvement in each step is at least

1/n which is the probability of flipping the leftmost 0-bit. Since at most n improvements
are needed and each failure in improvement yields n−i−1

2 +1+ εn wasted fitness function
evaluations in expectation (i.e., E[H(x,opt)]) where i is the number of the leading 1-bits, the
expected time to find the optimum is at most ∑

n
i=1 n ·

(n−i−1
2 +1+ εn

)
= O(n3).

Theorem 39 shows that exponential fitness-based MP gives us at least a logarithmic and
at most a

√
n factor speed-up compared to static MP. Before proving the main result, we

introduce the following lemma that will be used in the proof of the upcoming theorems.

Lemma 12. For large enough n and any arbitrarily small constant ε , n1/nε

= (1+ lnn
nε )(1±

o(1)).

Proof. By raising
(
1+ lnn

nε

)
to the power of nε

lnn ·
lnn
nε , we get

(
1+ lnn

nε

) nε

lnn ·
lnn
nε =(1±o(1))e

lnn
nε =

(1±o(1))n1/nε

.

Theorem 39. The (1+1) IA using MexpoF(x) optimises LEADINGONES in O(n3/ logn) and
Ω(n(5/2)+ε) expected fitness function evaluations for any arbitrarily small constant ε > 0.

Proof. We first prove the upper bound. As already shown in the proof of Theorem 38, the
expected number of leading 1-bits is less than 1 in the initialised bit string. The probability
of improvement in the first step is 1/n. In case of failure in improving at the first step, at
most n

n−i
n fitness function evaluations would get wasted where i is the number of leading

1-bits. Therefore, the total expected time to find the optimum is E(T )≤ ∑
n−1
i=1 n ·n(n−i)/n =

O(n3/ logn) considering that ∑
n−1
i=1 ni/n = ∑

n
i=2(n

1/n)i−1 < ∑
n
i=1(n

1/n)i−1 = 1−n
1−n1/n (using the

general partial power series sum: ∑
m
i=0 ai = 1−am+1

1−a for a ̸= 1) that gets in turn bounded from
above by n2/(logn) using Lemma 12.

The proof for the lower bound is similar to the proof of Theorem 38, except in the calcula-
tion of E( fi) when we want to consider the amount of wasted fitness function evaluations in
case of E1 happening. Here we have E( fi) =

i
n

(
n(n−i)/n +E( fi)

)
+ 1

n ·1+
n−i−1

n (1+E( fi)).

Solving it for E( fi) gives us E( fi) = i ·n(n−i)/n +n− i. Hence, the expected time to optimise
LEADINGONES is (1−2−n/2)∑

n
i=n/2 E( fi) = Ω(1)∑

n
i=n/2

(
i ·n(n−i)/n +n− i

)
=

Ω(1)
(

∑
n
i=n/2(n− i)+∑

n
i=n/2

(
i ·n(n−i)/n

))
. Evaluating the second sum in the interval

i ∈ [n/2+ εn
2 ,n/2+ εn], we get εn/2 · (n/2+ εn) ·n1/2−ε/2 = Ω(n(5/2)−ε).
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An advantage of Hamming distance-based exponential decays for MPs compared to
fitness-based ones is shown by the following theorem for LEADINGONES. The reason can
be seen in Figure 6.2. While the initial fitness is very low, the potential is very high, but
the actual number of bits that have to be flipped to reach the optimum (i.e., the Hamming
distance), is much smaller. More precisely, fitness-based potentials suggest to flip n bits when
only n/2 bits have to be flipped in expectation to reach the optimum in one step. MexpoHD

exploits this property, thus wastes fewer fitness evaluations than MexpoF(x).

Theorem 40. The (1+ 1) IA using MexpoHD optimises LEADINGONES in O(n(5/2)+ε

lnn ) and
Ω(n(9/4)−ε) expected fitness function evaluations for any arbitrarily small constant ε > 0.

Proof. The proof for the upper bound is similar to the proof of Theorem 38, however, each
failure in improvement yields nH(x,opt)/n wasted fitness function evaluations. Since the bits
after the leading ones are uniformly distributed, by Chernoff bounds the number of 0-bits
(Hamming distance to the optimum) is less than 1+((n− i−1)/2)+ εn w.o.p. Hence, the
expected time to optimise LEADINGONES is ∑

n
i=1 n ·n

1+((n−i−1)/2)+εn
n = n∑

n
i=1 n

1
2−

i
2n+ε+ 1

2n =

n ·n1/2+ε+ 1
2n ∑

n
i=1 n−

i
2n . Knowing that ∑

∞
i=0 n−

i
2n = 1

1−n(−1/(2n)) and n−1/(2n) ≤
(
1− lnn

2n

)
(1−

o(1)) for all n > 1 by Lemma 12, we get 1−n(−1/(2n)) < lnn
2n (1+o(1)). Hence, the expected

time is E(T )< n(3/2)+ε ·n1/(2n) ·O
( n

lnn

)
= O

(
n(5/2)+ε

lnn

)
.

The proof for lower bound is also similar to the proof of Theorem 38. By taking the
same steps and solving the equation for E( fi),we get E( fi) = in1/n+ n−i−1

2n −ε +n− i. Then, by
taking into account the probabilities of starting with less than n/2 leading 1-bits and skipping
a level i, we get the expected runtime of

(1−2−n/2)
n

∑
i=n/2

E( fi)≥Ω(1)
n/2+εn

∑
i=n/2+εn/2

(
in1/n+((n−i−1)/2n)−ε +n− i)

)
≥Ω(1)

n/2+εn

∑
i=n/2+εn/2

in1/2−ε+(1/(2n))−(i/(2n)) = Ω(n(9/4)−ε).

Given that MexpoHD provides larger speed-ups on the unimodal benchmark functions
compared to the other analysed inversely proportional MPs and is stable to the scaling of
fitness functions, we will use it in the remainder of the chapter.



6.5 Inefficient Behaviour In Practice 123

6.5 Inefficient Behaviour In Practice

In this section, we will focus on problems that MexpoHD may encounter in realistic applications
where the optimum is unknown. To this end, the best found solution will be used by the
operator rather than the unknown optimum. We combine MexpoHD with (hybrid) ageing, as
in the Opt-IA. The pseudo-code is provided in Algorithm 6.1. It is essentially the same as
Algorithm 4.1 (page 56) with the inversely proportional MP, µ = 1, dup = 1, and pdie = 1/2.

The algorithm can take advantage of the power of ageing (shown rigorously in Chapter 4
and 5) at automatically restarting the search process once it is stuck on a local optimum.
Our aim in the design of the algorithm is that, the greater the number of local optima that
are identified by the algorithm, the better MexpoHD should approximate its ideal behaviour.
However, we will show that this is not the case all the time, e.g., it is not true for the well-
studied bimodal benchmark function TWOMAX (defined by (3.9), page 43). TWOMAX is
usually used to evaluate the global exploration capabilities of EAs, i.e., whether the population
identifies both optima of the function. Our analysis shows that once the (1+1) Opt-IA with
MexpoHD escapes from one local optimum, the mutation rate will increase as the algorithm
climbs up the other branch. As a result, the algorithm struggles to efficiently identify the
other optimum and wastes more and more fitness function evaluations as it approaches it.
Thus, the whole purpose behind inversely proportional HMP is defeated.

On the bright side, we will show that MexpoHD combined with ageing can escape from
local optima. We will use the well known CLIFFd function (defined by (3.7), page 41) for this
purpose where we have proven that static HMP combined with ageing fails (see Theorem 19,
page 68).

We first start with the analysis of TWOMAX. The following theorem shows that after
the algorithm escapes from the local optimum, the mutation rate increases as the algorithm
climbs up the opposite branch. This behaviour causes a large waste of fitness evaluations
defying the objectives of inversely proportional HMP.

Theorem 41. The expected runtime of the (1+ 1) Opt-IA with MexpoHD for TWOMAX is
O(n2 logn) and Ω(n2−ε) with τ = Ω(n1+ε) for some small constant ε > 0.

Proof. We first prove the upper bound. Let xt be the current solution at the beginning of the
iteration t. Immediately after the initialisation, the best seen solution is the current individual
x1 itself and the mutation potential is nH(x1,x1)/n = n0 = 1. Note that xt ̸= xt+1 if and only
if either f (xt+1)≥ f (xt) or xt+1 is reinitialised after xt is removed from the population due
to ageing. Thus, the mutation operator flips a single bit at every iteration until ageing is
triggered for the first time. The improvement probability will be at least 1/n until either 1n

or 0n is sampled. Given that the ageing threshold τ is at least n1+ε for some constant ε > 0,
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Algorithm 6.1: (1+1) Opt-IA with MexpoHD

1 begin
2 t := 0;
3 initialise x ∈ {0,1}n uniformly at random;
4 set x.age := 0 and best := x;
5 while a global optimum is not found do
6 x.age := x.age+1;
7 M := MexpoHD;
8 call Function 2.6;
9 if f (y)> f (x) then

10 y.age := 0;

11 else y.age := x.age;
12 if f (y)≥ f (best) then
13 set best := y;

14 for w ∈ {x,y} do
15 if w.age≥ τ then
16 with probability pdie = 1/2, reinitialise w uniformly at random with

w.age = 0;

17 Set x = arg max
z∈{x,y}

f (z);

18 t := t +1;

the probability that the current solution will not improve τ times consecutively is at most
(1− 1

n)
n1+ε

= e−Ω(nε ). Hence, the first optimum will be found before ageing is triggered w.o.p.
Given that the ageing operator is not triggered, the expected time to find the first optimum is
at most O(n logn) with a proof similar to that of the standard RLS [31]. After finding the
first optimum, no single bit-flip can yield an equally fit solution. The individual then reaches
age τ and the ageing reinitialises the current solution. Thus, with (1−2−n) ·

(
1− e−Ω(nε )

)
probability a new solution will be initialised in τ +n steps. Now, the current best is the first
discovered optimum.

Let the first and second branch denote the subsets of the solution space which consist of
solutions with less than and more than Hamming distance n/2 to the first discovered optimum
respectively. We first consider the case when the new solution is initialised on the first branch.
Given that the current solution has fitness i, the distance to the best seen is n− i and the
mutation potential is n

n−i
n . Since the first constructive mutation ensures that the probability

of improvement is always at least 1/n, w.o.p. the ageing will not be triggered until either
optimum is discovered. Thus, given that the current solution is always on the first branch, the
proof of Theorem 37 carries over and the expected time to find the first discovered optimum
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once again is at most O(n3/2 logn) in expectation. When the first discovered optimum is
sampled again, w.o.p. the current solution is reinitialised with the first discovered optimum
as the best seen solution in at most τ +n iterations.

Now, we consider the case where the current solution is on the second branch. A lower
bound on the probability that the current solution will reach the optimum of the second
branch before sampling an improving solution in the first branch will conclude the proof
since the expected time to do so is O(n3/2 logn) given that the current solution does not
switch branches before.

We will start by bounding the mutation potential for a solution in the second branch with
fitness value n− k. Since the MexpoHD is always smaller than MlinHD, we can assume that no
more than n− k bits will be flipped.

W.l.o.g, let the second branch be the branch with more 0-bits. For a hypermutation
operation with mutation potential N, the Nth solution that will be sampled has the highest
probability of finding a solution with at least n− k 1-bits (i.e., switching to the first branch).
The current solution has n− k 0-bits and k 1-bits. If more than k/2 1-bits are flipped, then
the number of 1-bits in the final solution after n− k mutation steps is less than n− k since
the number of 0-bits flipped to 1-bits is less than n− k− k/2 and the number of remaining
1-bits is less than k/2. The event that at most k/2 1-bits are flipped is equivalent to the
event that in a uniformly random permutation of n bit positions at least k/2 1-bits are ranked
in the last k positions of the random permutation. We will now bound the probability
that exactly k/2 1-bits are in the last k positions since having more 1-bits has a smaller
probability. Each particular outcome of the last k positions has the equal probability of

∏
k−1
i=0 (n− i)−1. There are

( k
k/2

)
different equally likely ways to choose k/2 1-bits and k!

different permutations of the last k positions, thus the probability of having exactly k/2

1-bits in the last k positions is
k−1
∏
i=0

1
n−i ·

( k
k/2

)
· k! =

k−1
∏
i=0

1
n−i ·

(
k!

(k/2)!

)2
<
( k

n−k

)k
. For any

k ∈ [4, n
2 −Ω(

√
n)], this probability is in the order of Ω(1/n4). Using a union bound (see

Theorem 4, page 35) over the probabilities of having more than k/2 1-bits and the probabilities
of improving before the final step, we get k

2 · (n− k) ·Ω(1/n4) = Ω(1/n2). Since the new
solutions are uniformly sampled, the number of bits in the solutions are initially distributed
binomially with parameters n and 1/2 which has a variance in the order of Θ(

√
n) and implies

that with constant probability k is less than n
2 −Ω(

√
n) in the initial solution. Given that

the expected time in terms of generations is in the order of O(n logn), the total probability
of switching branches while k ∈ [k, n

2 −Ω(
√

n)] is at most
(
1−1/n2)O(n logn)

= 1−Ω(1).
Finally, we will consider the cases of k ∈ {1,2,3} separately. When k = 1, the probability of
flipping less than k/2 1-bits is equivalent to the probability of not flipping the single 1-bit
which happens with probability 1/n. For k = 2, similarly we have to flip at most one 1-bit
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with probability O(1/n). For k = 3, it is necessary that at least two 1-bits are not flipped
which happens with probability at most O(1/n2). Thus, the probability of switching branches
when k < 4 is at most O(1/n), which gives a lower bound on the total probability of switching
branches in the order of 1−Ω(1) given that the initial solution has at least k > n

2 −Ω(
√

n)
1-bits (which also occurs with at least Ω(1) probability). Given that no switch occurs, the
expected time to find the second optimum is ∑

n/2+εn
i=1

n
i ·n

n−i
n = O(n2 logn).

For the lower bound, we simply show that after finding one of the optima (the goal is to
find both optima), the algorithm will need in expectation Ω(n2−ε) generations to traverse a
constant interval of length εn before reaching the second optimum. Without losing generality,
we assume the branch leading to 0n is discovered first. After dying due to ageing, we
assume the algorithm re-initialises on the second branch. The probability of improvement
is at most 2i/n by the Ballot theorem, and every time the algorithm fails to improve, at
least n

n−εn
n fitness evaluations would be wasted. Hence, the expected time would be at least

∑
εn
i=1(

1
2ε
) ·1+( 1

2ε
−1) ·n1−ε = Ω(n2−ε).

Now we show that differently from static MP, MexpoHD combined with ageing can escape
from the local optima of CLIFFd (defined by (3.7), page 41), hence optimises the function
efficiently.

Theorem 42. The (1+ 1) Opt-IA with MexpoHD and τ = Ω(n1+ε) for an arbitrarily small
constant ε , optimises CLIFFd with d < n(1

4−ε) and d = Θ(n) in O(n3/2 logn+τn1/2+ n7/2

d2 )

expected fitness function evaluations.

Proof. The analysis will follow a similar idea to the proof of Theorem 41. After initialisation,
the initial mutation potential is M = 1 since the current solution is the best seen solution.
With single bit-flips, it takes in expectation O(n) to find a local optimum (i.e., a search
point with n−d 1-bits) as the improvement probability is always at least (n−d)/n = Ω(1).
Since the local optima cannot be improved with single bit-flips, in τ generations after it
was first discovered, ageing will be triggered and in the following Θ(n) steps the current
solution will be removed from the population with probability 1−2−Ω(n). The Hamming
distance of the reinitialised solution is distributed binomially with parameters n and 1/2
and w.o.p. is smaller than n/2+n2/3, yielding an initial mutation potential of M = O(n1/2).
We pessimistically assume that the mutation potential will not decrease until a local optima
is found again, which implies that the expected time will be at most O(n3/2 logn+ τn1/2)

since each iteration will waste an extra O(n1/2) fitness function evaluations. After finding a
local optimum again, the mutation potential will be M = 1 since it replaces the previously
observed local optimum as the best seen solution. The process of reinitialisation and reaching
the local optima will repeat itself until the following event happens.
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If the local optima produces an offspring with n−d +1 bits with probability d/n and if
this solution survives the ageing operator (with probability (1− pdie)), then the reinitialised
solution will be rejected since its fitness value is less than n−d w.o.p. The Hamming distance
of this new solution to the best seen will be exactly one since it is created via a single bit-flip,
thus its mutation potential will be M = 1. Moreover, if the surviving offspring improves
again (with probability (d−1)/n) in the next iteration, it will reset its age to zero and will
have Hamming distance of at least two to any local optimum. In the expected O(n logn)
generations, this solution will reach the global optimum unless a solution with less or equal
n−d 1-bits is sampled before. Initially, this is impossible since for at least ω(1) steps we
have M = 1, and later M < 3 holds as long as the distance to the last seen local optimum is at
most n/ lnn since n

n/ lnn
n = e. Note that the number of 1-bits does not always reflect the actual

Hamming distance since more than one bit can be flipped in an accepted offspring. We will
pessimistically assume that all improvements have increased the Hamming distance by three
until the total Hamming distance reaches n/ lnn, which implies that there have been n/(3lnn)
accepted solutions. The Ballot theorem (see Theorem 11, page 38) implies that sampling a
solution that is at least as good as the parent (which are the only solutions that are accepted)
has probability at most 2i/n where i is the number of 0-bits in the solution. Since the
probability of improving in the first step is at least i/n, we can conclude that the conditional
probability that an accepted offspring is a strict improvement is at least 1/2. Thus, when the
Hamming distance to the local optima reaches n/ lnn, in expectation, the current solution
will have at least n/(6lnn) extra 1-bits compared to the local optima and at least n3/5 extra
1-bits w.o.p. by Chernoff bounds. The Hamming distance to the local optima can be at most
2d since both the local optima and the current solution have less than d 0-bits. Since d < n/4,
the mutation potential is at most

√
n. Thus, no hypermutation can yield a solution with less

than n−d+2 1-bits. Therefore, once a solution with n−d+2 bits is added to the population,
the algorithm finds the optimum w.o.p. in O(n logn) iterations and in at most O(n3/2 logn)
fitness function evaluations since the mutation potential is at most

√
n. The probability of

obtaining a solution with n− d + 2 1-bits at the end of each cycle of reinitialisation and
removal of the local optima due to ageing is (1− pdie)

2 · (d/n) · ((d−1)/n). Since each such
cycle takes O(n3/2) fitness evaluations, our claim follows.

Hence, we conclude that if the algorithm identifies some slope that leads away from
the previous local optimum, then the mutation rate will increase as the new optimum is
approached. Firstly, this makes the new optimum hard to identify. Secondly, the high
mutation rates can lead to high wastage of fitness function evaluations defeating our main
motivation of reducing such wastage compared to static MP.
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6.6 An Efficient Inversely Proportional Hypermutation Op-
erator with Mutation Potentials for Opt-IA in Practice

In the previous section, we observed in the analyses of both CLIFF and TWOMAX that
towards the end of the optimisation process, the mutation potential may increase as the
current solution approaches an undiscovered, potentially promising optimum. This behaviour
is against the design intentions of the inversely proportional MPs since in the final part of
the optimisation process it gets harder to find improvements and high mutation potentials
lead to many wasted fitness function evaluations. The underlying reason for this behaviour
in both the CLIFF and TWOMAX landscapes is the necessity to follow a gradient that leads
away from the local optimum to find the global one. Considering that this necessity would be
ubiquitous in optimisation problems, we propose a new method to control mutation potentials
in this section. The newly proposed mutation potential is called Symmetric MexpoHD and is
defined as:

Symmetric MexpoHD := max
{⌊

n
H(best,x.org)−H(x,x.org)

n

⌋
,1
}
.

Symmetric MexpoHD is inversely proportional to the current solution’s Hamming distance
to its origin, where the origin is defined as the ancestor of the current bit string after the last
removal of a solution due to ageing. At the initialisation, the origin of each solution is set to
itself and newly created offspring inherit the origin of their parents. An Opt-IA applying this
mutation potential is shown in Algorithm 6.2.

This mutation potential reliably decreases at the same rate it would decrease if it was
approaching the currently best seen local optimum as the current solution improves and
moves away from its origin up until the Hamming distance to the best found solution is
covered. From then on, the algorithm will perform a local search since the mutation potential
will be minimal (i.e., one bit will be flipped). Every time a local optimum is found, ageing is
triggered after approximately τ steps and then both surviving and reinitialised individuals
reset their origin to their own bit string. Figure 6.3 illustrates how the mutation potential
is determined according to the ratio of the Hamming distance between the current solution
and its origin (H(x,x.org)) and the Hamming distance between its origin and the best seen
solution (H(best,x.org)).

The following theorem shows that once one optimum of TWOMAX has been identified,
the value of the Symmetric MexpoHD potential decreases as both optima are approached as
desired and the wished for speed-up (calculated in Section 6.4 for hill-climbing ONEMAX in
ideal conditions) in the expected runtime is achieved.
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Fig. 6.3 The geometric representation of Symmetric MexpoHD

Algorithm 6.2: (1+1) Opt-IA with Symmetric MexpoHD

1 begin
2 t := 0;
3 initialise x ∈ {0,1}n uniformly at random;
4 set x.origin := x, x.age := 0, and best := x;
5 while a global optimum is not found do
6 x.age := x.age+1;
7 M := Symmetric MexpoHD;
8 call Function 2.6;
9 y.origin := x.origin;

10 if f (y)> f (x) then
11 y.age := 0;

12 else y.age := x.age;
13 if f (y)≥ best then
14 best := y;

15 for w ∈ {x,y} do
16 if w.age≥ τ then
17 with probability pdie = 1/2, reinitialise w uniformly at random with

w.age = 0;
18 set w.origin = w;

19 Set x = arg max
z∈{x,y}

f (z);

20 t := t +1;

Theorem 43. The (1 + 1) Opt-IA using Symmetric MexpoHD with τ = Ω(n1+ε) for any
arbitrarily small constant ε > 0, needs O(n(3/2)+ε logn) fitness function evaluations in
expectation to optimise TWOMAX.

Proof. The expected time until the first branch is optimised is O(n logn) since the best seen
search point is the current best individual and consequently the mutation potential is M = 1.
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Since the improvement probability is at least 1/n and τ = Ω(n1+ε), the ageing operator does
not get triggered before finding one of the optima w.o.p. Once one of the optima is found,
ageing reinitialises the individual while the first discovered optimum stays as the current best
seen search point. For the randomly reinitialised solution, the Hamming distance to the best
seen is binomially distributed with parameters n and 1/2. Using Chernoff bounds, we can
bound the distance to the previously seen optima by at most n/2+n2/3 w.o.p. This Hamming

distance implies an initial mutation potential of M < n
n
2+n2/3

n = n
1
2+

1
n1/3 which decreases as

the individual increases its distance to the origin and can never go above its initial value
where the distance is zero. Pessimistically assuming that the mutation potential will be

n
1
2+

1
n1/3 = O(n1/2) throughout the run, we can obtain the above upper bound by summing

over all levels and using a coupon collector’s argument (see Theorem 5, page 35).

The following theorem shows that Symmetric MexpoHD is also efficient for CLIFFd .

Theorem 44. The (1+ 1) Opt-IA using Symmetric MexpoHD with τ = Ω(n1+ε) optimises
CLIFFd with d < n(1

4 − ε) and d = Θ(n) in O(n(3/2)+ε logn+ τn1/2 + n7/2

d2 ) expected fitness
function evaluations.

Proof. The proof is almost identical to the proof of Theorem 42. The most important
distinction is that once a solution with n− d + 2 1-bits is created, its mutation potential
remains as M = 1 until the global optimum is found. The reason is that when ageing is
triggered, the surviving solutions all reset their origins to themselves, i.e., they start doing
randomised local search.

6.7 Conclusion

An analysis of inversely proportional HMP was presented in this chapter. Previous theoretical
studies have shown disappointing results concerning the inversely proportional hypermu-
tations from the literature. Here, we proposed a new inversely proportional HMP operator
based on Hamming distance and exponential decay. The crucial insight is that FCM is
essential with high mutation rates and that the mutation potential should be minimal in prox-
imity of the optimum. We have shown its effectiveness in isolation for unimodal functions
compared to static HMP in the ideal situation when the optimum is known. Furthermore, we
have provided a symmetric version of the operator for the complete Opt-IA AIS to be used in
practical applications where the optimum is usually unknown. We have proved its efficiency
for two well-studied multimodal functions where the achieved expected runtimes match the
ideal expected runtimes.
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While we have shown that speed-ups in the exploitation phase may be achieved via
inversely proportional HMP, other inconveniences may arise from their use. For instance,
the capabilities of static hypermutations of using high mutation rates for escaping from local
optima may be lost because inversely proportional HMP are likely to have very low mutation
rates in proximity of local optima. For instance, it is unlikely that inversely proportional
HMP can guarantee the arbitrarily good approximation ratios of static HMP for PARTITION

as seen in Chapter 5. However, such problems may be overcome by Opt-IA with inversely
proportional HMP due to the capabilities of the ageing operator at escaping local optima.

In the next chapter, we present an alternative strategy to speed up static HMP and we
show that it leads to greater speed-ups compared to inversely proportional HMPs. We will
prove that this strategy does not suffer from the limitations pointed above.





Chapter 7

Hypermutations with Probabilistic
Intermediate Evaluations

7.1 Introduction

Up until now, we have shown that static HMPs are by a linear factor slower than standard
EAs in the exploitation phase although they are considerably more efficient at escaping local
optima. The same problem was identified for the inversely proportional HMPs from the
literature as well. In Chapter 6, we proposed some modifications to the inversely proportional
HMP to make it reduce the mutation potential properly as it gets closer to the optimum
and we proved asymptotic speed-ups compared to static HMP for exploitation. However, a
reduction of the mutation potential as local optima are approached leads to new problems,
e.g., the hypermutations can only escape local optima if combined with ageing. This conflicts
with the main advantage of hypermutations which is to have a good exploration capability.

In this chapter, we propose some alternatives for the FCM mechanism to be used by static
HMP which allow it to be as efficient as randomised local searches in the exploitation phases
while maintaining its characteristic capability of escaping from local optima. Rather than
evaluating the fitness after each bit-flip of a hypermutation as the traditional FCM requires,
we propose to evaluate it based on the probability that the mutation will be successful. The
probability of hitting a specific point at Hamming distance i from the current point,

(n
i

)−1,
decreases exponentially with the Hamming distance for i < n/2 and then it increases again
in the same fashion. Based on this observation, we evaluate each bit with some probability
that follows a parabolic distribution such that the probability of evaluating the ith bit-flip
decreases as i approaches n/2 and then increases again. The idea behind this strategy is that
HMP will be efficient at identifying improvements at a Hamming distance of n/2 only if a
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large fraction of such points are improving ones. On the other hand, for smaller or larger
distances the probability of identifying improvements is much higher. We introduce this
mechanism in Section 7.2. In Section 7.3, we rigorously prove that the static HMP using
such a mechanism, which we call probabilistic first constructive mutation (FCMp), locates
local optima asymptotically as fast as RLS for any function where the expected runtime of
RLS can be proven with the AFL method (introduced in Subsection 3.3.3, page 37). At the
same time, we show that the operator is still exponentially faster than EAs for the standard
multimodal JUMP, CLIFF, and TRAP benchmark functions in Section 7.4.

In Chapters 4 and 5, we proved that the FCM mechanism does not allow HMP to
produce solutions of lower quality, thus cancelling the advantages of ageing. Furthermore,
the high mutation rates of hypermutations combined with FCM make the algorithm return
to the previous local optimum with very high probability. While the latter problem is
solved by our newly proposed FCMp mechanism that does not evaluate all bit-flips in a
hypermutation, a solution to the former problem requires a further modification. Hence, we
propose the probabilistic best found mutation mechanism (BFMp, introduced in Section 7.2)
which returns the best solution it has found if no constructive mutation is encountered. We
rigorously prove in Section 7.5 that Opt-IA then benefits from both operators for all problems
where it was previously analysed in this thesis as desired, i.e., hypermutations and ageing
work effectively and in harmony together.

Finally, after evaluating the performance of the (1+1) IA with the new strategies on stan-
dard benchmark problems, in Section 7.6 we show that they are also efficient for optimising
instances of more realistic problems from combinatorial optimisation, i.e., PARTITION and
VERTEX COVER. In Subsection 7.6.1, we first show that the (1+1) IA using static HMP
with FCMp optimises the worst case PARTITION instance for the (1+1) EA more efficiently
than the (1+1) IA using the traditional static HMP using FCM. Then, we prove that a (1+ε)

approximation is achievable for any PARTITION instance by the (1+1) IA using static HMP
with FCMp in O(n2) for any constant ε , i.e., a linear speed-up compared to static HMP using
FCM. This result is particularly surprising because the AIS relies on flipping approximately
n/2 bits, i.e., where our parabolic probability is the lowest. Afterwards, in Subsection 7.6.2,
we analyse the performance of the (1+1) IA using static HMP with FCM and also FCMp

for the VERTEX COVER problem. We follow a similar approach to [34] which has proved
for the (1+1) EA a tight bound of Θ(n logn) for finding a feasible vertex cover for a graph
(i.e., not necessarily the minimum vertex cover). We show that linear speed-ups are achieved
by the use of static HMP with FCMp compared to the standard static HMP using FCM,
thus matching the bound of the (1+1) EA. We use the term fast to call the operators and
algorithms that use static HMP with either FCMp or BFMp.
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7.2 Parabolic Sampling Distributions

Recall that static HMPs using FCM mutate at most M = cn distinct bits for a constant
0 < c≤ 1 and evaluate the fitness after each bit-flip. Although FCM prevents the hypermu-
tation operator to waste further fitness function evaluations if an improvement has already
been found, for any realistic objective function the number of iterations where there is an
improvement constitutes an asymptotically small fraction of the total runtime. Hence, the
fitness function evaluations saved due to FCM stopping the hypermutations, have a very small
impact on the global performance of the algorithm. Therefore, we propose an alternative for
FCM, called FCMp, that instead only evaluates the fitness after each bit-flip with a probabil-
ity that depends on how many bits have already been flipped in the current hypermutation
operation. Let pi be the probability that the solution is evaluated after flipping the ith bit.
The used parabolic probability distribution is defined as follows, where 0 < γ ≤ 11:

pi =


1/e for i = 1 and i = n,

γ/i for 1 < i≤ n/2,

γ/(n− i) for n/2 < i < n.

(7.1)

The lower the value of γ , the fewer the expected fitness function evaluations that occur
in each hypermutation. On the other hand, with a small enough value for parameter γ , the
number of wasted evaluations can be dropped to the order of O(1) per iteration instead of the
linear amount wasted by the traditional FCM operator when improvements are not found. At
the same time, it still flips many bits (i.e., hypermutating). Figure 7.1 shows the evaluation
probabilities for two different choices of γ . A static HMP that uses FCMp is formally defined
in Definition 6 and its pseudo-code is shown in Function 7.1.

Definition 6 (Static HMP with FCMp). Static HMP with FCMp flips at most n distinct bits
selected uniformly at random. It evaluates the fitness after the i th bit-flip with probability pi

(as defined in (7.1)) and remembers the last evaluation. FCMp stops flipping bits when it
finds an improvement; if no improvement is found, it will return the last evaluated solution. If
no evaluations are made, the parent will be returned.

In the next section, we will prove the benefits of FCMp over the standard FCM, when
incorporated into a (1+1) framework (by calling Function 7.1 in Algorithm 2.4, page 21).
However, for the operator to work effectively in conjunction with ageing, a further modifica-
tion is required. Instead of stopping the hypermutation at the first constructive mutation, we

1Note that 0 < γ < 1/e is an efficient choice for the results we will present.



136 Hypermutations with Probabilistic Intermediate Evaluations

Function 7.1: Fast HMP with FCMp

input :x ∈ {0,1}n;
output :y;

1 y := x;
2 count := 0;
3 while count < n do
4 count := count+1;
5 choose i ∈ {1, · · · ,n} uniformly at random without replacement;
6 flip y[i];
7 evaluate y with probability defined by (7.1);
8 if f (y)≥ f (x) then // or f (y)> f (x) depending on how constructive

mutation is defined.

9 break;

10 return y as the offspring;

Function 7.2: Fast HMP with BFMp

input :x ∈ {0,1}n;
output :y;

1 y := x;
2 count := 0;
3 best := (x,−∞);
4 while count < n do
5 count := count+1;
6 choose i ∈ {1, · · · ,n} uniformly at random without replacement;
7 flip y[i];
8 evaluate y with probability defined by (7.1);
9 if f (y)≥ best[2] then

10 best := (y, f (y));

11 return the best best[1] as the offspring;

will execute all n mutation steps, evaluate each bit string with the probabilities in (7.1) and as
the offspring, return the best solution evaluated during the hypermutation or the parent itself
if no other bit strings are evaluated. We will prove that such a modified operator, which we
call BFMp (Best Found Mutation), may allow the complete Opt-IA to escape local optima
more efficiently. This happens because BFMp can produce solutions of lower quality than
the local optimum on which the algorithm is stuck while individuals on the local optimum
die due to ageing. Static HMP with BFMp is shown in Function 7.2 and formally defined as
follows.
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Fig. 7.1 The parabolic evaluation probabilities from (7.1)

Definition 7 (Static HMP with BFMp). Static HMP with BFMp flips n distinct bits selected
uniformly at random. It evaluates the fitness after the i th bit-flip with probability pi (as
defined in (7.1)) and remembers the best evaluation found so far. BFMp returns the mutated
solution with the best fitness found. If no evaluations are made, the parent will be returned.

For γ = O(1/(lnn)), only one function evaluation per hypermutation is performed in
expectation (although all bits will be flipped). Since BFMp returns the best found one, this
solution will be returned by the operator as it is the only one it has encountered. Interestingly,
this behaviour is similar to that of the HMP without FCM that also evaluates one point per
hypermutation and returns it. However, while HMP without FCM has exponential expected
runtime for any function of interest with a polynomial number of optima (see Theorem 12,
page 57), we will show that static HMP with BFMp can be very efficient. From this point
of view, BFMp is a very effective way to perform hypermutations with mutation potential
without FCM.

In Section 7.5, we consider static HMP with BFMp in the complete Opt-IA framework
hence analyse its performance combined with cloning and ageing. This algorithm, which we
call Fast Opt-IA, is depicted in Algorithm 7.3. After initialising a population of µ b-cells
with age := 0, at each iteration, the algorithm creates dup copies of each b-cell. These copies
are mutated by the fast hypermutation operator, creating a population of mutants called P(hyp)
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which inherit the age of their parents if they do not improve the fitness; otherwise their age
will be set to zero. At the next step, all b-cells with age≥ τ will be removed with probability
pdie. If fewer than µ individuals have survived ageing, then the population is filled up with
new randomly generated individuals. At the selection phase, the best µ b-cells are chosen to
form the population for the next generation.

Algorithm 7.3: Fast Opt-IA
1 begin
2 t := 0;
3 initialise P := {x1, ...,xµ}, a population of µ b-cells uniformly at random;
4 for all x ∈ P do
5 x.age := 0;

6 while a global optimum is not found do
7 P(clo) := /0 and P(hyp) = /0;
8 for all x ∈ P do
9 make dup copies of x and add to P(clo);

10 for all x ∈ (P(clo)∪P) do
11 x.age := x.age+1;

12 for all x ∈ P(clo) do
13 call Function 7.2;
14 if f (y)> f (x) then
15 y.age := 0;

16 else y.age := x.age;
17 add y to P(hyp);

18 for all x ∈ (P∪P(hyp)) do
19 if x.age > τ then
20 remove x with probability pdie := 1− 1

µ+(µ·dup) ;

21 P := (P∪P(hyp));
22 if |P|> µ then
23 remove |P|−µ solutions with worst fitness from P breaking ties

uniformly at random.
24 if |P|< µ then
25 add µ−|P| solutions to P with age := 0 generated uniformly at random;

26 t := t +1;
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7.3 Artificial Fitness Levels for Fast Hypermutations

We start our analysis by relating the expected number of fitness function evaluations to the
expected number of fast hypermutation operations until an optimum is found. Lemma 14
holds for both FCMp and BFMp mechanisms and quantifies the number of expected fitness
function evaluated by using these two schemes. To prove the result, we use the following
lemma known as Wald’s equation.

Lemma 13 (Wald’s equation [64]). Let X1,X2, · · · ,Xi be non-negative, independent, identi-
cally distributed random variables with distribution X. Let T be the stopping time for this
sequence. If T and X have bounded expectation, then E[∑T

i=1 Xi] = E[T ] ·E[X ].

Lemma 14. Let T be the random variable denoting the number of fast hypermutation
operations applied until the optimum is found. The expected number of function evaluations
in a fast hypermutation operation given that no improvement is found is in the order of
Θ(1+ γ logn). Moreover, the expected number of total function evaluations is at most
O(1+ γ logn) ·E[T ].

Proof. Let the random variable Xi for i∈ [T ] denote the number of fitness function evaluations
during the ith execution of the fast hypermutation. Additionally, let the random variable
X ′i denote the number of fitness function evaluations at the ith operation assuming that
no improvements have been found before. For all i it holds that Xi ≤ X ′i since finding
an improvement can only decrease the number of evaluations. Thus, the total number of
function evaluations E[∑T

i=1 Xi] can be bounded from above by E[∑T
i=1 X ′i ] which is equal

to E[T ] ·E[X ′] due to Wald’s equation (stated in Lemma 13) since all X ′i are identically
distributed and independent from T .

We now write the expected number of fitness function evaluations in each operation
as the sum of n indicator variables Yi ∈ {0,1} for i ∈ [n] denoting whether an evaluation
occurs right after the ith bit mutation. Referring to the probabilities in (7.1), we get E[X ′] =

E
[

n
∑

i=1
Yi

]
=

n
∑

i=1
P(Yi = 1) = 1

e +
1
e +2

n/2
∑

i=2

γ

i =
2
e +2γΘ(logn) = Θ(1+ γ logn). The second

statement is obtained by multiplying this amount with E[T ].

In Lemma 14, γ appears as a multiplicative factor in the expected runtime measured in
fitness function evaluations. An intuitive lower bound of Ω(1/ logn) for γ can be inferred
since smaller asymptotic values will not decrease the asymptotic order of expected evaluations
per operation. However, in Section 7.5, we will provide an example where a smaller choice
of γ reduces E[T ] directly. For the rest of our results though, we will rely on E[T ] being
the same as for the traditional static hypermutations with FCM while the number of wasted
fitness function evaluations decreases from n to O(1+ γ logn).
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We now analyse the fast hypermutation operators in a (1+ 1) framework, starting by
establishing a relationship between RLS and the Fast (1+1) IA (similar to Theorem 13 in
Chapter 4 which shows the relationship between RLS and (1+1) IA).

Theorem 45. Let E
(
T AFL

A
)

be any upper bound on the expected runtime of algorithm A
established by the artificial fitness levels method. Then,

E
(

T AFL
Fast (1+1) IA with FCMp

)
≤ E

(
T AFL
(1+1) RLS

)
·O(1+ γ logn).

Proof. The upper bound on the expected runtime of RLS to solve any function obtained by
applying AFL is E(T AFL

(1+1) RLS)≤ ∑
m
i=1 1/pi, where pi is s/n when all individuals in level i

have at least s Hamming neighbours which belong to a higher fitness level. The probability
of mutating to one of the solutions in the first mutation step is the same for FCMp. Such a
solution will be evaluated with probability 1/e. If a solution is not found in the first mutation
step, then according to Lemma 14 at most O(1+γ logn) fitness function evaluation would be
wasted. Since the algorithm is elitist and only accepts individuals of equal or better fitness,
each level has to be left only once, independent of whether improvements are achieved by
one or more bit-flips. Hence the claim follows.

Apart from showing the efficiency of the Fast (1+1) IA, the theorem also allows us to
easily achieve upper bounds on the runtime of the algorithm, by just analysing the simple
RLS. For γ = O(1/ logn), Theorem 45 implies the upper bounds of O(n logn) and O(n2) for
classical benchmark functions ONEMAX and LEADINGONES, respectively. Both of these
bounds are asymptotically tight since each function’s unary unbiased black-box complexity
is in the same order as the presented upper bound [57] (i.e., no unbiased mutation-only black
box search heuristic may be asymptotically faster).

7.4 Fast Hypermutations for Benchmark Functions

In this section, we will use the mathematical methodology derived above to show that linear
speed-ups may be achieved by the fast hypermutation operators compared to the static HMP
using FCM. Afterwards, we show that exponential speed-ups are still achievable for the
standard multimodal benchmark functions. We will also show that for some of these functions
the fast hypermutations may outperform the static HMPs with FCM.

Corollary 6. The expected runtime of the Fast (1+1) IA using static HMP with FCMp to opti-
mise ONEMAX and LEADINGONES is respectively Θ(n logn(1+ γ logn)) and Θ(n2 (1+ γ logn)).
For γ = O(1/ logn) these bounds reduce to Θ(n logn) and Θ(n2).
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FCMp samples the complementary bit string with probability one if it cannot find any
improvements. This behaviour allows an efficient optimisation of the deceptive TRAP

function (defined in (3.10), page 44). Since n bits have to be flipped to reach the global
optimum from the local optimum, EAs with SBM require exponential runtime w.o.p. [78].
By evaluating the sampled bit strings stochastically, the Fast (1+ 1) IA provides up to a
linear speed-up for small enough γ compared to the (1+1) IA on TRAP as well (i.e., it is a
linear factor faster at reaching the local optimum).

Theorem 46. The Fast (1+1) IA using static HMP with FCMp needs Θ(n logn(1+ γ logn))
expected steps to optimise TRAP.

Proof. According to Corollary 6, we can conclude that the current individual will reach 1n

in O(n logn · (1+ γ logn)) steps in expectation. The global optimum is found in a single
mutation operator with probability 1/e by evaluating after flipping all bits for which the
number of additional fitness evaluations is O(1+ γ logn) in expectation. This bound is
asymptotically tight since each function’s unary unbiased black-box complexity is in the
same order as the presented upper bound [57].

The results of the (1+1) IA on JUMPk (see Theorem 16, page 60) and CLIFFd functions
(see Corollary 1, page 61) can also be adapted to the Fast (1+1) IA in a straightforward
manner, even though they fall out of the scope of Theorem 45.

Theorem 47. The expected runtime of the Fast (1+1) IA using static HMP with FCMp to
optimise CLIFFd is O

((n
d

)
· (d/γ) · (1+ γ logn)

)
which also holds for the JUMP function.

Proof. As CLIFFd behaves as ONEMAX for solutions with less than n−d 1-bits, we can use
Corollary 6 to conclude that the algorithm will sample a solution with n−d 1-bits in at most
O(n logn(1+ γ logn)) fitness function evaluations. The Hamming distance of locally optimal
points to the global optimum is d, thus, the probability of reaching the global optimum at
the dth mutation step is

(n
d

)−1 while the probability of evaluating is γ/d. Using Lemma 14,
we bound the total expected time to optimise CLIFF by E(T ) = O

((n
d

)
· (d/γ) · (1+ γ logn)

)
.

The proof is exactly the same for JUMP.

For CLIFFd (and JUMPk), the superiority of the Fast (1+ 1) IA in comparison to the
deterministic evaluations scheme (i.e., FCM) depends on the function parameter d (or k for
JUMPk). If γ = Ω(1/ logn), the Fast (1+1) IA performs better for d = o(n/ logn) while the
deterministic scheme is preferable for larger d. However, for small d the difference between
the runtimes can be as large as a factor of n in favour of the Fast (1+1) IA, while even for
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Table 7.1 The expected runtimes of the (1+1) IA and the Fast (1+1) IA

Function (1+1) IA Fast (1+1) IA

ONEMAX Θ(n2 logn) Θ(n logn(1+ γ logn))

LEADINGONES Θ(n3) Θ
(
n2 (1+ γ logn)

)
TRAP Θ(n2 logn) Θ(n logn(1+ γ logn))

JUMPk>1 O(n
(n

k

)
) O

(
(k/γ) · (1+ γ logn) ·

(n
k

))
CLIFFd>1 O(n

(n
d

)
) O

(
(d/γ) · (1+ γ logn) ·

(n
d

))
the largest d, the difference is less than a factor of logn in favour of the deterministic scheme.
Here we should also note that for d = Ω(n/ logn), the expected time is exponentially large
for both algorithms (albeit considerably smaller than that of standard EAs) and the logn
factor has no realistic effect on the applicability of the algorithm. Hence, we believe that the
fast variant should be more efficient in practice.

Table 7.1 shows the expected runtimes of the (1+1) IA using static HMP with FCM
versus the expected runtime of the Fast (1+1) IA. For γ = O(1/ logn), the Fast (1+1) IA
is asymptotically at least as fast as the (1+1) EA and faster by a linear factor compared to
the (1+1) IA for the unimodal and TRAP functions. For not too large jump and cliff sizes
(i.e., o(n/ logn)), the Fast (1+1) IA has an asymptotic speed-up compared to the (1+1) IA
for the same parameter setting. For not too small jump and cliff sizes both AISs are much
faster than the (1+1) EA.

7.5 Fast Opt-IA for Benchmark Functions

In this section, we consider the effect of our proposed evaluation scheme on the complete
Opt-IA algorithm. First we start by proving its effectiveness on easy functions like ONEMAX

and LEADINGONES.

Theorem 48. The Fast Opt-IA using static HMP with BFMp optimises ONEMAX and
LEADINGONES in expected O(µ ·dup ·n logn · (1+γ logn)) and O(µ ·dup ·n2 · (1+γ logn))
fitness function evaluations respectively for τ = c ·n logn for some constant c.

Proof. For ONEMAX, we pessimistically track only the best individual. Considering the
improvement by the first bit-flip, in at most ∑

n
i=1 en/i = O(n logn) generations the optimum

will be found where i represents the number of 0-bits. Taking into account the wastage of
O(1+ γ logn) fitness evaluations in case of failure and the evaluation of dup · µ b-cells at
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each generation, we get O(µ ·dup ·n logn · (1+ γ logn)) as the upper bound on the expected
runtime. Since the improvement probability is at least 1

en at each step, the improving b-cell
would not die w.o.p. before reaching the optimum.

We show the upper bound on LEADINGONES using that the probability of improvement
is at least 1

en in the first bit-flip, and get the bound of O(µ ·dup ·n2 logn · (1+ γ logn)) on the
expected number of fitness function evaluations needed for optimising LEADINGONES since
at most n improvements have to be made.

In Chapter 4, we saw that HIDDENPATH (see Definition 2, page 70) is a function where
the use of both ageing and hypermutation operators is necessary to find the optimum in
polynomial time. To prove our upper bound, we can follow the proof strategy of Theorem 22
in Chapter 4 (page 71), which established an upper bound of O(τµn+µn7/2) for the expected
runtime of Opt-IA using static HMP with traditional FCM on HIDDENPATH. We will see
that Opt-IA benefits from an n/ logn speed-up (regarding the second term in the runtime
which is the dominant term) in the provided upper bound due to BFMp.

Theorem 49. The Fast Opt-IA using static HMP with BFMp needs O(τµ + µn5/2 logn)
fitness function evaluations in expectation to optimise HIDDENPATH with µ = O(logn),
dup = 1, γ = Ω(1/ logn)≤ 1/(5lnn) and τ = Ω(n(logn)3).

Proof. For simplicity during the analysis, we call a non-SP point an Si solution where i is the
number of 0-bits. We also pessimistically assume that until the very end, the global optimum
point is not evaluated.

After initialisation, an Sn−1 solution will be found in expected O(n(logn)2) generations
by hill-climbing the ZEROMAX part of the function according to Theorem 48. This individual
creates and evaluates another Sn−1 search point with probability γ/(2n) (i.e., with probability
(n−1)/n a 0-bit is flipped and then the 1-bit is flipped with probability 1/(n−1), and the
solution will be evaluated with probability γ/2 after the second bit-flip). Hence, after at
most µ ·O(n) generations in expectation, the whole population will consist only of Sn−1

solutions. Considering that the probability of producing two Sn−1 in one generation is(
µ

2

)
·O(γ/n) ·O(γ/n) = O(1/n2), with probability at least 1− o(1) we see at most one

new Sn−1 per generation for any phase length of o(n2) generations. Taking into account
that the probability of creating a new Sn−1 individual is γ/(2n) and following the proof
of Theorem 22 (page 71), we can conclude that in O(µ3 ·n/γ) generations in expectation,
the whole population reaches the same age while on the local optimum. Using Markov’s
inequality iteratively (see Theorem 6, page 35) we can bound the probability that a population
that consists of Sn−1 individuals of the same age will be observed in at most O(µ3 ·n(logn)2)

generations with probability 1−o(1). Then, after at most τ generations, with probability (1−
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1/(2µ))2µ−1 ·1/(2µ), one solution survives and the rest are removed from the population.
In the following generation, while µ−1 randomly initialised solutions are added instead of
the removed solutions, we consider the event that the survived solution creates and evaluates
an S1 solution. The expected number of evaluations between the second and (n− 1)th
mutation step is 2∑

n/2
i=2 γ/i≤ 1/2 since γ ≤ 1/(5lnn). The probability that there is at least

one evaluation is at most 1/2 by Markov’s inequality, therefore with probability at least
(1− 1

e ) ·
1
2 ·

1
e = Ω(1), only the S1 solution is evaluated. If an S1 or S5 solution is not created

before the newly generated individuals reach the Sn−1 level, we repeat the arguments starting
from the takeover of the population by Sn−1 individuals. Since the jump to S1 occurs with
at least constant probability, in expectation we repeat the same process at most a constant
number of times and the runtime until the success has the same asymptotic order as the
runtime until the first attempt, i.e., O(µ3 ·n(logn)2) hypermutation operations.

After the Sn−1 individual is added to the population, from this search point, the hyper-
mutation operator finds an S5 solution by flipping at most six bits and evaluating it with
probability at least γ/6, which requires O(logn) attempts in expectation which in turn implies
that the expected time until this event occurs is O(µ3 · n(logn)3). This individual will be
added to the population with its age set to zero if the complementary bit string (Sn−1) is
not evaluated with probability (1−1/e). In the same generation the S1 solution dies with
probability 1− 1

2µ
due to ageing.

Next, we show that the S5 solutions will take over the population, and the first point
of SP will be found before any Sn−1 is found. An S5 creates an Sn−5 individual and an
Sn−5 individual creates an S5 individual with constant probability 1− (1/e) by evaluating
complementary bit strings. Thus, it takes O(1) generations until the number of S5 and Sn−5

individuals in the population doubles. Since the total number of S5 and Sn−5 increases
exponentially in expectation, in O(log µ) = O(log logn) generations the population is taken
over by them. After the takeover, since each Sn−5 solution creates an S5 solution with
constant probability, in the following O(1) generations in expectation each Sn−5 creates an S5

solution which have higher fitness value than their parents and replace them in the population.
Overall, S5 solutions take over the population in O(log logn) generations in expectation.

For S5, HIDDENPATH has a gradient towards the SP which favours solutions with more
0-bits in the first (the rightmost) five bit positions. Every improvement on the gradient takes
O((2/γ) ·n2) generations in expectation since it is enough to flip a precise 1-bit and a precise
0-bit in the worst case. Considering that there are five different fitness values on the gradient,
in O(5 ·2 ·n2/γ) = O(n2/γ) generations in expectation the first point of the SP will be found.
Applying Markov’s inequality, this time will not exceed O(n5/2/γ) with probability at least
1− (1/

√
n).
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Now we go back to the probability of finding a locally optimal point before finding an
SP point. Due to the symmetry of the hypermutation operator, probability of creating an
Sn−1 solution from an S5 solution is identical to the probability of creating an Sn−1 solution
from an Sn−5 solution. The probability of increasing the number of 0-bits by k given that
the initial number of 1-bits is i and the number of 0-bits is n− i, is at most (2i/n)k due to
the Ballot theorem (see Theorem 11, page 38) since each improvement reinitialises a new
ballot game with higher disadvantage. Thus, the probability that a local optimal solution is
sampled is O(n−4). The probability that such an event never happens before finding SP is
1−o(1). After finding SP, in O(n logn) generations in expectations the global optimum will
be found at the end of the SP. The probability of finding any locally optimal point from SP

is at most O(1/n4), hence this event would not happen before reaching the global optimum
with probability 1−o(1). Overall, the runtime is dominated by O(τ +n5/2/γ) which give
us O((τ + n5/2/γ) · µ(1+ γ logn)) as the expected number of fitness evaluations. Since
Ω(1/ logn) = γ ≤ 1/(5lnn), the upper bound reduces to O(τµ +µn5/2 logn).

HIDDENPATH was artificially constructed to fit the behaviour of the Opt-IA to illustrate its
strengths. One of those strengths was the ageing mechanism’s ability to escape local optima
in two different ways. First, it allows the algorithm to restart with a new random population
after it gets stuck at a local optimum. Second, ageing allows individuals with worse fitness
than the current best to stay in the population when all the current best individuals are
removed by the ageing operator in the same iteration. If an improvement is found soon after
the worsening is accepted, then this temporary non-elitist behaviour allows the algorithm to
follow other gradients which are accessible by variation from the local optima but leads away
from them. On the other hand, even though the FCM mechanism is coupled with ageing
in the Opt-IA, it does not allow worsenings. More precisely, for the hypermutation with
FCM, the complementary bit string of the local optimum is sampled with probability one
if no other improvements are found. Indeed, HIDDENPATH was designed to exploit this
ability. However, by only stopping on improving mutations, the traditional hypermutations
with FCM do not allow, in general, to take advantage of the power of ageing at escaping
local optima. For instance, for the classical benchmark function CLIFFd with parameter
d = Θ(n), hypermutation with FCM turned out to be a worse choice of variation operator
to couple with ageing than both local search and SBM (see Theorem 19, page 68). Ageing
coupled with RLS and SBM based EAs can help the algorithm to reach the optimum by local
moves, which respectively yields upper bounds of O(n logn) and O(n1+ε logn) for arbitrarily
small positive constant ε on the runtimes (see Theorems 17 and 18 in Chapter 4, page 64).
However, hypermutations with FCM require an increase in the number of 1-bits in the current
solution by d at least once before the hypermutation stops. This requirement implies the
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exponential lower bound on the runtime for the CLIFF function in Theorem 19 in Chapter 4
(page 68), regardless of the evaluation scheme as long as the hypermutation only stops on a
constructive mutation.

The following theorem demonstrates how BFMp (which instead of stopping the hyper-
mutation at the first constructive mutation, executes all n mutation steps and evaluates each
bit string with the probabilities in (7.1) and returns the best found solution) allows ageing
and hypermutation to work in harmony in Opt-IA.

Theorem 50. The Fast Opt-IA using static HMP with BFMp with µ = 1, dup = 1, γ =

1/(n log2 n) and τ = Θ(n logn) needs O(n logn) fitness function evaluations in expectation
to optimise CLIFFd with any linear d ≤ n/4− ε for an small constant ε .

Proof. With γ = 1/(n log2 n), the expected number of fitness function evaluations per itera-
tion O(1+ γ logn) would be in the order of Θ(1). On the first ONEMAX slope, the algorithm
improves by the first bit-flip with probability at least (n−d)/n = Θ(1) and then evaluates
this solution with probability p1 = 1/e = Θ(1). This implies that the local optimum will be
found in O(n) fitness evaluations in expectation after initialisation.

A solution at the local optimum can only improve by finding the unique globally optimum
solution, which requires the hypermutation to flip precisely d 0-bits in the first d mutation
steps which occurs with probability

(n
d

)−1. We pessimistically assume that this direct jump
never happens and assume that once a solution at the local optimum is added to the population,
it reaches age τ in some iteration t0. We consider the following chain of events that starts at
t0. First a solution with (n−d +1) 1-bits would be added to the population with probability
1
e ·

d
n . Then, the locally optimal solution will die due to ageing with probability 1/2 while

the post-cliff solution will survive with probability 1/2. In the next iteration, the post-cliff
solution would improve the fitness with constant probability and hence resets its age to
zero. If all of these events occur consecutively (which happens with constant probability),
the algorithm can start climbing the second ONEMAX slope with local moves (i.e., by
considering only the first mutation steps) which are evaluated with constant probability. Then,
the CLIFFd function is optimised in O(n logn) expected fitness function evaluations like
ONEMAX unless a pre-cliff solution (i.e., a solution with less than n− d 1-bits) replaces
the current individual. The rest of our analysis will focus on the probability that a pre-cliff
solution is sampled and evaluated given that the algorithm has a post-cliff solution with age
zero at iteration t0 +1.

If the current solution is a post-cliff solution, then the final bit string sampled by the
hypermutation has a worse fitness level than the current individual. The probability that
BFMp evaluates at least one solution between mutation steps two and n− 1 (event Env),
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is bounded from above by
i=2
∑

n−1
γ/i < 2γ · logn = 2/(n logn). We consider the O(n logn)

generations until a post-cliff solution (i.e., solutions with more than n−d 1-bits) with age
zero reaches the global optimum. The probability that event Env never occurs in any iteration
until the optimum is found is at least (1−2/(n logn))O(n logn) = e−O(1) = Ω(1), a constant
probability. Thus, every time we create a post-cliff solution with age zero, there is at least
a constant probability that the global optimum is reached before any solution that is not
sampled at the first or the last mutation step gets evaluated. The first mutation step cannot
yield a pre-cliff solution, and the last mutation step cannot yield a solution with better fitness
value. Thus, with a constant probability the post-cliff solution finds the optimum. If it fails to
do so (i.e., a pre-cliff solution takes over as the current solution or a necessary event does
not occur at iteration t0 +1), then in at most O(n logn) iterations another chance to create a
post-cliff solution comes up and the process is repeated. In expectation, a constant number
of trials will be necessary until the optimum is found and since each trial takes O(n logn)
fitness function evaluations, our claim follows.

Note that the above result requires a γ in the order of Θ(1/(n log2 n)), while Lemma 14
implies that any γ = ω(1/ logn) would not decrease the expected number of fitness function
evaluations below the asymptotic order of Θ(1). However, having γ = 1/(n log2 n) allows
Opt-IA, with constant probability, to complete its local search before any solution with
larger Hamming distance is ever evaluated. In Theorem 50, we observe that this opportunity
allows Opt-IA to hill-climb the second slope before jumping back to the local optima. The
following theorem rigorously proves that a very small choice for γ in this case is necessary
(i.e., γ = Ω(1/ logn) leads to exponential expected runtime).

Theorem 51. At least 2Ω(n) fitness function evaluations in expectation are executed before
the Fast Opt-IA using static HMP with BFMp with γ = Ω(1/ logn) finds the optimum of
CLIFFd for d = (1− c)n/4, where c is a constant 0 < c < 1.

Proof. Consider a current solution with more than n−d and less than n−d+2
√

n 1-bits. We
show that w.o.p., BFMp will yield a solution with less than n−d and more than n−2d+2

√
n

1-bits before the initial individual is mutated into a solution with more than n− d + 2
√

n
1-bits. This observation will imply that a pre-cliff solution with better fitness will replace the
post-cliff solution before the post-cliff solution is mutated into a globally optimal solution.
We will then show that it is also exponentially unlikely that any pre-cliff solution mutates
into a solution with more than n−d +

√
n 1-bits to complete our proof.

We first provide a lower bound on the probability that BFMp with post-cliff input solution
x yields a pre-cliff solution with higher fitness value than x. We start by determining
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the earliest mutation step, rmin, that a pre-cliff solution with better fitness than x can be
sampled. For any post-cliff solution x, CLIFFd(x) = ONEMAX(x)− d + (1/2), and any
pre-cliff solution y with ONEMAX(x)−d +1 1-bits, it holds that CLIFFd(y) > CLIFFd(x).
We obtain the rough bound of rmin ≥ d− 2

√
n by considering the worst-case event that

static HMP with BFMp picks d 1-bits to flip consecutively. Let ℓ(x) denote the number
of extra 1-bits a post-cliff solution has in comparison to a locally optimal solution (i.e,
ONEMAX(x) = n−d + ℓ(x)). Now, we use Serfling’s inequality (see Theorem 9, page 36)
to show that with a constant probability, static HMP with BFMp will find a pre-cliff solution
before 3ℓ(x) mutation steps and it will keep sampling pre-cliff solutions until rmin.

For the input bit string of BFMp, x, let the multi-set of weights C := {ci|i∈ [n]} be defined
as ci := (−1)xi (i.e., ci =−1 when xi = 1, and ci = 1 when xi = 0). Thus, for a permutation π

of bit-flips over [n], the number of 1-bits after the kth mutation step is ONEMAX(x)+∑
k
j=1 cπ j

since flipping the position i implies that the number of 1-bits changes by ci. Let µ̄ :=
(1/n)∑

n
j=1 ci be the population mean of C and X̄ := (1/3ℓ(x))∑

3ℓ(x)
j=1 cπ j the sample mean.

Since the CLIFFd parameter d is less than n/4, then µ̄ ≤ (1/n)((−3n/4)+(n/4)) =−1/2.
In order to have a solution with at least n− d + 1 1-bits at mutation step 3ℓ(x), the

following must hold:

3ℓ(x)X̄ ≥−ℓ(x) ⇐⇒ X̄ ≥−1
3

=⇒ X̄− µ̄ ≥−1
3
+

1
2
=

1
6
⇐⇒

√
3ℓ(x)(X̄− µ̄)

≥
√

3ℓ(x)
6

.

The probability that a pre-cliff solution will not be found in mutation step 3ℓ(x) follows
from Serfling’s inequality, with sample mean X̄ , population mean µ̄ , sample size 3ℓ(x),
population size n, cmin =−1 and cmax = 1:

P

(√
3ℓ(x)(X̄− µ̄)≥

√
3ℓ(x)
6

)

≤ exp

−
2
(√

3ℓ(x)
6

)2

(
1−
(

3ℓ(x)−1
n

))
(1− (−1))2

≤ e−Ω(ℓ(x)).
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Thus, with probability (1− e−Ω(ℓ(x))), we will sample the first pre-cliff solution after
3ℓ(x) mutation steps. We focus our attention to post-cliff solutions with 1≤ ℓ(x)≤ 2

√
n and

can conclude that for such solutions the above probability is in the order of Ω(1). Since the
number of 0-bits changes by one at every mutation step, the event of finding a solution with
at most n−d bits implies that at some point a solution with exactly n−d 1-bits has been
sampled. Let k0 ≤ 3ℓ(x) be the mutation step where a locally optimal solution is found for
the first time. Due to the Ballot theorem the probability that a solution with more than n−d
1-bits is sampled after k0 is at most 2d/n≤ 1/2. So, with probability at least 1/2, the static
HMP with BFMp will keep sampling pre-cliff solutions until rmin ≤ d−2

√
n = Ω(n). We

will now consider the probability that at least one of the solutions sampled between k0 and
rmin is evaluated. Since the evaluation decisions are taken independently from each other, the
probability that none of the solutions are evaluated is:

rmin

∏
i=k0

(
1− γ

i

)
≤

rmin

∏
i=3ℓ(x)

(
1− γ

i

)
≤

rmin

∏
i=6
√

n

(
1− γ

i

)
≤

rmin

∏
i=6
√

n

(
1− 1

(c1 logn)i

)
,

for some constant c1 since γ =Ω(1/ logn). We will separate this product into ⌊log(rmin/6
√

n)⌋
smaller products and show that each smaller product can be bounded from above by
e−1/(2c1 log). The first subset contains the factors with indices i ∈ {(rmin/2)+ 1, . . . ,rmin},
the second set i ∈ {(rmin/4)+ 1, . . . ,rmin/2} and jth set (for any j ∈ [⌊log(rmin/6

√
n)⌋])

i ∈ {rmin2− j + 1, . . . ,rmin2− j+1}. If some indices are not covered by these sets due to the
floor operator, we will ignore them since they can only make the final product smaller. Note
that we assume any logarithm’s base is two unless it is specified otherwise;

⌊log(rmin/6
√

n)⌋

∏
j=1

rmin2− j+1

∏
i=rmin2− j+1

(
1− 1

(c1 logn)i

)

≤
⌊log(rmin/6

√
n)⌋

∏
j=1

(
1− 2 j−1

(c1 logn)rmin

)rmin2− j

≤
⌊log(rmin/6

√
n)⌋

∏
j=1

e−1/(2c1 logn)

≤ e−⌊log(rmin/6
√

n)⌋/(2c1 logn) = e−Ω(1),

where in the second line we made use of the inequality (1− cn−1)n ≤ e−c and in the final
line our previous observation that rmin = Ω(n). This implies that at least one of the sampled
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pre-cliff individuals will be evaluated at least with constant probability. At this point, we have
established that a pre-cliff solution will be added to the population with constant probability
if the initial post-cliff solution x has a distance between

√
n and 2

√
n to the local optima.

Let Ei,k for k > 1 denote the event that hypermutation samples a solution with i−k 0-bits
given that the initial solution has i 0-bits. Since the number of 0-bits change by one at every
mutation, Ei,k implies Ei,k−1. In particular, for Ei,k to happen first Ei,k−1 must happen and then
another improvement must be found. Given Ei,k−1, the probability that a new improvement
is found is less than 2i/n because of two reasons. First, the number of 0-bits has decreased
with respect to the initial solution and second, there are fewer solutions to be sampled before
BFMpterminates. Thus, we can conclude P(Ei,k)≤ P(Ei,k−1)

2i
n ≤

(2i
n

)k
. This implies that it

is exponentially unlikely that a pre-cliff solution is mutated into a solution with more than
n−d +

√
n 1-bits. Moreover, the probability that post-cliff solutions are improved by more

than n1/6 is less than 4−n/6, which implies that w.o.p. it takes at least n(1/2)−(1/6) = n1/3

iterations before a solution x with ℓ(x)<
√

n is mutated into a solution x′ with ℓ(x′)> 2
√

n.
Since we established that a pre-cliff solution is evaluated with constant probability at each
iteration, we can conclude that at least one such individual is sampled in n1/3 iterations w.o.p.
Since the Fast Opt-IA cannot follow the post-cliff gradient to the optimum w.o.p., it relies
on making the jump from the local optima to global optimum. Given an initial solution
with y ∈ {(n/3), . . . ,n− d + 2

√
n} 1-bits, the probability of jumping to the unique global

optimum is 2Ω(−n) as well, thus our claim follows.

7.6 Fast Hypermutations for Classical Combinatorial Op-
timisation Problems

In this section, we analyse the performance of Fast (1+1) IA using static HMP with FCMp

for two combinatorial optimisation problems, PARTITION (see Definition 4, page 88) and
VERTEX COVER. Starting by analysing the performance on PARTITION, we first prove
that the Fast (1+ 1) IA can efficiently solve the worst case instance of PARTITION for
the (1+ 1) EA (defined in Subsection 5.4, page 93). In Chapter 5, it was proven that the
(1+1) IA can optimise this instance in O(n2) evaluations. In this section we will show that
Fast (1+ 1) IA can optimise the same instance in O(n logn) evaluations. Then, we show
that the Fast (1+1) IA can obtain a (1+ ε) approximation for any instance of PARTITION

in O(2en2 · (22/ε +1) · (1+ γ logn)+(1/ε(2/ε+1)(1− ε)−2e322/ε n
2γ
· (1+ γ logn)) expected

fitness function evaluations, i.e., a linear speed-up compared to the upper bound provided for
standard static HMPs with FCM.
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Afterwards, we analyse the performance of the Fast (1+1) IA for VERTEX COVER for
identifying a vertex cover for any graph. It has been shown in the literature that RLS and the
(1+1) EA can find a cover in expected Θ(n logn) fitness function evaluations [34] while the
contiguous somatic hypermutations of B-cell require expected Θ(n2 logn) evaluations [47].

7.6.1 Performance Analysis of Fast Hypermutations for PARTITION

Theorem 52. The Fast (1+1) IA using static HMP with FCMp optimises the worst case
instance of PARTITION for the (1+1) EA (i.e., P∗ε ) in O(n

γ
· (1+ γ logn)) expected fitness

function evaluations.

Proof. For s = 2, the proof idea is identical to that of the Theorem 32 in Chapter 5 (page 101)
which proves an upper bound of O(n2) for the (1+1) IA to optimise the class of worst case
instances for EAs.

By Property 3 of Lemma 7 in Chapter 5 (page 94), we know that for any non-optimal
solution, either there are a linear number of small jobs on the fuller machine that can be
moved to the emptier one, or the number of small jobs on each machine differ from the
optimal configuration (i.e., half and half) by a linear factor.

For the case where there are at least a linear number of small jobs that can be moved
from the fuller machine to the emptier one, as the Fast (1+1) IA evaluates the first bit-flip
with probability 1/e, the probability of moving each of these linear number of small jobs
(which improves the makespan, hence the mutation operator stops) is Ω(n)

n ·
1
e until no move

is accepted. Since according to Property 1 of Lemma 7 (page 94), there are at most O(n)
different makespan values for the problem, the expected number of hypermutation operations
with constant improvement probability is at most O(n). For the second case, Theorem 8
in Chapter 5 (page 98) implies that for at least a linear number of bit-flips, the two large
jobs are on different machines with probability at least Ω(1). During this interval of linear
length, we will sample an optimal solution where both the large and the small jobs are
evenly distributed with overwhelmingly probability according to Lemma 31 in Chapter 5
(page 99). By considering that the Fast (1+1) IA evaluates a solution with probability at
least 2γ/n, the optimum is sampled at most O(n/γ) times in expectation before it is evaluated.
Taking the wasted fitness function evaluations occurring in case of failure into account, i.e.,
O(1+ γ logn) according to Lemma 14, we get an upper bound of O(n

γ
+n logn).

In Theorem 34 in Chapter 5 (page 106), we proved that the (1+1) IA can find arbitrarily
good constant approximations for any PARTITION problem instance in O(n3) expected fitness
function evaluations. In this subsection, we show that, although the Fast (1+1) IA has a low
probability of evaluating bit strings with approximately half of the bit-flips, it still finds the
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same approximation as that of the (1+1) IA in an expected runtime which is smaller by a
linear factor compared to the upper bound of static HMP. The reason is that the leading term
in the runtime is due to the exploitation phases where new local optima have to be identified.
In such phases, the Fast (1+1) IA is a linear factor faster than static HMPs with FCM.

Before proving the approximation result, we state the following helper lemma which
was originally introduced in Chapter 5 for the (1+1) IA and the (1+1) EA (see Lemma 6,
page 91) stating the required expected number of iterations to find the next local optimum
starting from a non-locally optimal point for any PARTITION instance. Similarly to Chapter 5,
by local optimum we mean a solution with makespan that cannot be improved by moving
one single job. Moreover, ℓ1, ℓ2, · · ·ℓL denote local optima of a PARTITION instance where L
is the number of local optima and for any i ∈ L, f (ℓi)≥ f (ℓi+1).

The proof of the following lemma is identical to that of Property 1 of Lemma 6 (page 91)
except that here, the probability of moving a specific job to the emptier machine in the first
mutation step is 1/(en) instead of 1/n. Therefore, the proof is omitted.

Lemma 15. Let x ∈ {0,1}n be a non-locally optimal solution to the partition instance such
that f (ℓi)> f (x)≥ f (ℓi+1) for some i ∈ [L−1]. Then, the Fast (1+1) IA using FCMp with
current solution x samples a solution y such that f (y) ≤ f (ℓi+1) in at most 2en2 expected
generations.

The following theorem shows that the Fast (1+ 1) IA can efficiently find arbitrarily
good constant approximations to any PARTITION instance. Similarly to before, by large jobs
we mean s := ⌈2/ε⌉− 1 ≤ n/2 largest jobs. Clearly, by choosing a smaller ε (i.e., better
approximation ratios), the number of jobs labelled as large (i.e., s) will increase and the
expected time to find such approximation will be exponential in 1/ε .

Theorem 53. The Fast (1+1) IA using static HMP with FCMp finds a (1+ε) approximation
for any PARTITION instance in O(2en2 ·(22/ε +1) ·(1+γ logn)+ 1

2γ
ne3ε

−( 2
ε
+1)(1−ε)−2(1+

γ logn)) expected fitness function evaluations for any ε = ω(1/
√

n).

Proof. The proof idea is similar to that of Theorem 34 in Chapter 5 for the (1+1) IA (page 106).
We denote the current solution with Xt and assume the algorithm stops as soon as it

finds a (1+ ε) approximation. By Lemma 15, we know that any non-locally optimal point
would find a point such that its makespan is at least as good as the next local optimum in at
most 2en2 generations in expectation. As the number of local optima with different fitness
which are not (1+ ε) approximations is at most 22/ε according to Property 4 of Lemma 10
in Chapter 5 (page 105), before finding a (1+ ε) approximation the expected number of
generations where Xt /∈L is 2en2 · (22/ε + 1). If ∑

n
i=s+1 pi ≥ 1

2 ∑
n
i=1 pi, then any of these
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local optima would be (1+ ε) and the algorithm would stop. Therefore, for the rest of this
proof, we assume ∑

n
i=s+1 pi <

1
2 ∑

n
i=1 pi.

Now, we want to find the expected number of generations where Xt ∈L before finding a
(1+ ε) approximation. Hence, for the rest of the proof, we only assume locally optimal solu-
tions which are not (1+ ε) approximations and we show the expected number of generations
before such solutions would eventually find a (1+ ε) approximation. To do this, we use a
specific configuration of large jobs for which we know that, when reached, the small jobs
would be also distributed in a way that a (1+ ε) approximation would be achieved. This
configuration is the optimal configuration of only large jobs assuming there is no small job.
We call such configuration H and denote its makespan with h. While h might be different
than the makespan of the large jobs in the optimal makespan fopt , we know that h ≤ fopt .
W.l.o.g, we assume both the fuller machines of Xt and H are M1.

By Lemma 8 in Chapter 5 (page 98), the large jobs would have the same configura-
tion as in H between n(ε − ε2)th and n− n(ε − ε2)th bit-flips with probability at least(

n(ε−ε2)−(2/ε)+1
n−(2/ε)+1

)2/ε

≥ (ε−ε2)2/ε

e . By Property 4 of Lemma 10 (page 105), if there is any
small job on the fuller machine, then this solution is already a (1+ ε) approximation. So we
assume there is no small job on M1. Since ∑

n
i=s+1 pi <

1
2 ∑

n
i=1 pi =W/2, using Lemma 11 in

Chapter 5 (page 106), by n(ε−ε2)th bit-flip, the expected total processing time of small jobs
moved from M2 to M1 is at most (ε− ε2) ·W/2. Using Markov’s inequality (see Theorem 6,
page 35), the probability of moving at most εW/2 jobs to M1 is at least 1− ( (ε−ε2)W

εW ) = ε .
This is the probability that the makespan is at most h+ εW/2. As the optimal makespan,
fopt , is larger than h and fopt ≥W/2, we get h+εW/2

fopt
≤ (1+ ε).

Overall, with probability:

p≥ (ε− ε2)2/ε

e
· γ

n/2
· ε =

2γε1+(2/ε)(1− ε)2

ne3 ,

a (1+ ε) approximation is found unless an improvement is achieved before (i.e., the
first term of the runtime in the theorem statement). Considering that at most (1+ γ logn)
evaluations are performed during each iteration, the approximation is found in at most
O(2en2 ·(22/ε +1) ·(1+γ logn)+ 1

2γ
ne3ε

−( 2
ε
+1)(1−ε)−2(1+γ logn)) expected fitness func-

tion evaluations.

For γ = 1/ logn, and some constant ε , the runtime is dominated by 2en222/ε . For such a
setting, the Fast (1+1) IA is by a linear factor faster than the (1+1) IA for finding a (1+ε)

approximation for any PARTITION instance.
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7.6.2 Performance Analysis of Fast Hypermutations for VERTEX COVER

In this section, we consider the classical NP-hard VERTEX COVER problem to analyse the
performance of the Fast (1+1) IA. In VERTEX COVER, the input is a graph and the problem
is to find a minimal set of vertices such that all edges of the graph are covered by at least one
vertex in that set.

Definition 8. Given an undirected graph G = (V,E), the VERTEX COVER problem asks to
find a minimal subset of vertices, V ′ ⊆V , such that every edge e ∈ E is adjacent to one of
the vertices in V ′.

To use AISs (or EAs) to optimise VERTEX COVER instances, each vertex of the graph is
denoted by a bit in the bit string; If xi = 1, then it means that vertex i is included in the cover
set. We use the fitness function used in [56, 71] (for minimisation) to evaluate the fitness of
candidate solutions:

f (x) =
n

∑
i=1

(
xi +n(1− xi)

n

∑
j=1

(1− x j)ei, j

)
,

where ei, j is an edge connection between vertex i and vertex j and is one if there is an
edge between these vertices in the graph G. This fitness function sums the number of vertices
in the cover (the first term) and gives a large penalty to the number of uncovered edges (the
second term)2.

In the following theorems, we analyse both the (1+1) IA with FCM and the Fast (1+
1) IA with FCMp for finding a cover for any given graph. We will prove that the Fast (1+
1) IA is by a linear factor faster than the (1+1) IA.

Theorem 54. The expected time until the (1+ 1) IA using static HMP with FCM finds a
feasible solution to vertex cover is Θ(n2 logn).

Proof. To prove the upper bound, we use the same proof idea as Theorem 1 in [34] which
provides an upper bound on the expected runtime of the (1+1) EA and RLS for finding a
feasible solution to vertex cover.

Let k denote the number of vertices that are incident to at least one uncovered edge and u
be the total number of uncovered edges. The optimisation goal is to find the expected time
until the number of uncovered edges is u = 0.

Looking at only the first bit-flip, the probability of improvement is at least k/n and each
accepted offspring decreases the number of uncovered edges by u/k in expectation. The

2Note that edge based presentations for VERTEX COVER have also been considered in the literature [48].
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reason is that, on average, each of the k vertices are connected to u/k uncovered edges in
expectation, hence, at the end of each improving step, the expected number of uncovered
edges is at most ut+1 :=(ut− k

nk ut)= (ut− 1
nut)= ut(1− 1

n), hence the drift (i.e., the expected
number of uncovered edges) is δ := 1/n. Now, we can use multiplicative drift analysis (see
Theorem 10 in Chapter 3, page 37) to compute the expected time until all the edges are
covered (i.e., u = 0). Assuming g to be the number of uncovered edges, gmax is n(n−1)/2
for a complete graph. Hence, we get an expected runtime of E(T )≤ 1

δ
(1+ ln(n · (n−1))≤

O(n logn) to cover all edges. By pessimistically assuming that in the case of a failure at
improving in the first mutation step, n fitness function evaluations are wasted, the overall
expected runtime is O(n2 logn).

To prove a lower bound on the expected time to find a cover, we assume that the given
graph is complete (i.e., the number of edges is n · (n−1)/2). The size of a cover for such
a graph is n−1. By Chernoff bounds (see Theorem 8, page 36), we know that w.o.p. the
initialised solution (cover) includes at most 2n/3 of vertices (i.e., the number of 1-bits). To
compute the expected time until all n−1 vertices are selected, we use the Ballot theorem.
Considering the number of 0-bits as i= q and the number of 1-bits as n− i= p, the probability
of an improvement is at most 1− (p− q)/(p+ q) = 1− (n− 2i)/n = 2i/n by the Ballot
theorem (see Theorem 11, page 38). Since the operator stops at the first constructive mutation,
it is necessary that at least n/3 improving hypermutation occur. Hence, the expected runtime
for the cover to be identified is at least ∑

n/3
i=1
( n

2i ·1+( n
2i −1) ·n

)
= Ω(n2 logn).

Theorem 55. The expected time until the Fast (1+1) IA using static HMP with FCMp finds
a feasible solution to vertex cover is Θ(n logn · (1+ γ logn)).

Proof. The proof for both upper bound and lower bound is similar to that of Theorem 54.
We start with the upper bound first. For the Fast (1+1) IA, the probability of improvement
in the first bit-flip is k/(ne) which does not change the runtime asymptotically. However,
in case of failure at improving the fitness, the Fast (1+1) IA wastes at most O(1+ γ logn)
fitness function evaluations in expectation. This yields an expected runtime of E(T ) =
O((1+ γ logn) ·n lnn). Note that this time is O(n lnn) for the choice of γ = 1/ logn.

Regarding the lower bound, the proof is identical to that of Theorem 54 except that the
expected wastage when failing to find an improvement is Ω(1+ γ logn), which makes the
expected runtime larger than ∑

n/3
i=1(

n
2i ·1+( n

2i −1) · (1+ γ logn)) = Ω(n logn · (1+ γ logn)).
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7.7 Conclusion

We have presented two alternatives for the FCM mechanism, FCMp and BFMp, and have
rigorously proved for several significant benchmark problems from the literature that they
maintain the exploration characteristics of the traditional operator while outperforming them
up to linear factor speed-ups in the exploitation phase.

The main modification that allows the algorithm to achieve the presented improvements
is to sample the solution after the ith bit-flip stochastically with probability roughly pi = γ/i,
rather than deterministically with probability one. The analyses show that the parameter γ

can be set easily. Concerning FCMp, that returns the first sampled constructive mutation
and is suggested to be used in isolation, any γ = O(1/ log(n)) allows optimal asymptomatic
exploitation time (based on the unary unbiased black box complexity of ONEMAX and
LEADINGONES) while maintaining the traditional exploration capabilities. Concerning
BFMp, which does not stop at first constructive mutation and is designed to work harmoni-
cally with ageing as in the standard Opt-IA, considerable lower values of the parameter (i.e.,
γ = 1/(n log2 n)) are required to escape from difficult local optima efficiently (e.g., CLIFF)
such that the hypermutations do not return to the local optima with high probability. While
these low values for γ still allow optimal asymptotic exploitation in the unbiased unary black
box sense, they considerably reduce the capability of the operator to perform the large jumps
required to escape the local optima of functions with characteristics similar to JUMP, i.e.,
where ageing is ineffective due to the second slope of decreasing fitness. Additionally, Fast
AIS still suffer on HYPERTRAPc/8 introduced in Chapter 4 (see Definition 3, page 76).

We have also shown that linear speed-ups are achieved by the fast hypermutation operators
for the PARTITION and VERTEX COVER combinatorial optimisation problems that have many
real world applications [81]. Future work should consider an adaptation of the parameter γ

to allow it to automatically increase and decrease throughout the run [30, 27].



Part IV

Conclusion





Chapter 8

Summary and Final Remarks

Various general-purpose optimisation algorithms have been designed with the aim of identi-
fying high quality solutions by imitating the principles of the adaptive immune system of
vertebrates [24]. While several successful supplications to complex optimisation problems
have been reported for different clonal selection inspired AISs [20, 17, 18], it is still largely
unclear when AISs will have better performance than more traditional search heuristics, such
as stochastic local search and evolutionary algorithms (EAs), hence when they should be
preferred. This thesis has shed considerable amount of light on this question.

As the theoretical analyses of some well-known AISs, e.g., Clonalg [23] and B-cell [55],
have proved some serious drawbacks regarding their general applicability [93, 50], the main
focus of this thesis was Opt-IA [19, 20] which was the least investigated among the well-
known AISs, yet seemed the most promising to us. Opt-IA applies three different immune
system operators, i.e., cloning, hypermutations with mutation potential, and ageing, which
make it probably the closest existing computational model to the natural immune system
designed for optimisation problems. In this thesis, we investigated the performance of Opt-IA
operators to identify their advantages and disadvantages particularly in comparison to those
used by traditional EAs.

We started by analysing hypermutation with static mutation potential (static HMP)
in isolation for optimising standard benchmark problems to highlight its behaviour and
performance in different settings. The first important finding was the necessity of using
the HMP operator in conjunction with the FCM (stopping at first constructive mutation)
mechanism. We proved that if FCM is not used, then AISs applying hypermutations need at
least expected exponential time to optimise any reasonable function. Concerning exploitation
capabilities, we proved that static HMPs are always at most by a linear factor slower than
RLS for any function that can be analysed with the artificial fitness levels method. This result
was proven with the introduction of a methodology that allows us to derive upper bounds on
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the runtime of complicated HMP operators by analysing the simpler RLS algorithm. The
derived bounds are a linear factor larger than those of RLS. Proving that these bounds are
tight for some easy hill-climbing benchmark functions, we concluded that EAs and RLS are
better options than static HMP for easy unimodal functions. After showing HMPs are not as
efficient as EAs for exploitation, we then rigorously proved their significant superiority at
escaping local optima of standard multimodal benchmark functions. We also proved that for
functions where very large jumps in the search space are needed, HMPs outperform SBM
making a difference between polynomial and exponential runtimes.

By analysing the (hybrid) ageing operator in isolation (i.e., without any other immune
inspired operator), we showed how it allows EAs and RLS to have an impressive performance
for escaping difficult local optima of standard benchmark problems. Compared to what
was known about (hybrid) ageing’s efficiency previously (i.e., that it is efficient on specific
examples of a complex search space from dynamic optimisation and only when combined
with RLS [74]), our analyses revealed that ageing can be very effective for general classes of
functions and when applied with both RLS and SBM. In particular, we proved that ageing
coupled with RLS can optimise difficult CLIFF functions in O(n logn) time in expectation
which is the smallest runtime achievable by RLS and SBM for any function with unique
optimum [57]. However, we surprisingly discovered the opposite effect when ageing is
coupled with HMP, i.e., in the original framework they are supposed to work together. The
reason behind such failure is that, while ageing helps the algorithm to escape from local
optima by accepting individuals of lower fitness, HMP only stops at a first constructive
mutation (i.e., it cannot identify solutions of lower quality).

After analysing both operators in isolation, we then presented the first ever analysis of
the complete population-based Opt-IA. We highlighted problem characteristics for which
the combination of ageing and HMP is either crucial or detrimental by presenting example
landscapes. If a given landscape includes a local optimum which, once discovered, requires
a large jump to find new parts of the search space of lower fitness leading to the global
optimum, then the use of Opt-IA is crucial (i.e., both ageing and hypermutations are needed
to optimise such landscape). However, a landscape with a large area of local optima (with
many improving points) far away from the global optimum, can trap Opt-IA easily after being
discovered by large jumps. While FCM makes the algorithm stop after each improvement
inside the local optima area, ageing cannot be helpful as after the algorithm escapes, the
probability of HMP sampling the local optima again is very high. On the other hand, EAs
and RLS rarely find such local optima due to the their very low probability of making big
jumps.
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After investigating the Opt-IA operators both in isolation and in combination for standard
benchmark functions, we showed that the conclusions drawn from our analysis for such
functions also hold for a classical combinatorial problem with ties to real world applications.
Considering the ability of hypermutations to make large jumps, we looked at the NP-hard
PARTITION problem. Previously, the performance of EAs and RLS for finding a (1 +

ε) approximation for any PARTITION instance was analysed by Witt [90]. He showed that
SBM and RLS can achieve arbitrarily good constant approximation in expected polynomial
time. However, his results are only obtainable when a problem specific restart scheme is
adapted, or alternatively, a problem specific number of parallel runs are used. Our analyses
of AISs using HMP revealed that these algorithms are able to find a (1+ε) approximation in
an expected polynomial time, which is slightly larger than the expected time proved for EAs.
However, the approximation is achieved efficiently in every single run rather than requiring
problem-specific restarts. Our analysis of the ageing operator in isolation also proved that it
guarantees (1+ ε) approximations in polynomial expected time by automatically restarting
the search. The two results are achieved in different ways. The ageing operator locates more
promising basins of attraction by restarting the optimisation process after implicitly detecting
that it has found a local optimum. Hypermutations find improved approximate solutions
efficiently by performing large jumps in the search space. These results were the first time
performance guarantees for any AIS derived for a problem from combinatorial optimisation.
In contrast with EAs, the AISs do not need problem specific information to reach the desired
approximation ratio, i.e., neither the knowledge that the tackled problem is PARTITION nor a
decision on the desired approximation ratio to be made in advance. If knowledge that the
tackled problem is PARTITION was available, then using the (1+1) EA would not be ideal
in the first place.

The described analyses for both benchmark problems and classic combinatorial opti-
misation problems revealed two significant drawbacks of the considered AISs. First, the
exploration effectiveness of HMPs comes at the expense of a considerable slow-down in
the exploitation phase. Second, the impressive capabilities of ageing coupled with local
mutations at escaping local optima disappear when the operator is coupled with HMP. To
target these issues, we then introduced alternative ways for AIS to perform hypermutations.

One reasonable way to speed up the exploitation of HMPs is to use the idea of dynamically
decreasing the mutation potential as solutions get closer to the global optimum. The obvious
issue of such scheme is that of setting a suitable measure to decide whether the algorithm
is close to the global optimum. This idea was originally used by both Clonalg and Opt-IA.
While the analysis of Clonalg showed that it needs expected exponential time to optimise the
easy ONEMAX function [93], the inversely proportional HMP of Opt-IA was proved to have
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an expected runtime which is a linear factor slower than that of EAs for easy hill-climbing
functions [50], i.e., the asymptotic result on easy functions matches those of static HMP
which we proved in this thesis. These results motivated us to develop effective strategies to
define inversely proportional HMPs that provably decrease the mutation rate as the optimum
is approached. The analyses revealed that the proposed HMP operator based on Hamming
distance and exponential decay, successfully obtains asymptotic speed-ups in exploitation
compared to static HMP. Using the proposed operator in combination with ageing, the more
the search space is explored, the better the algorithm approximates the ideal behaviour of
the inversely proportional hypermutations (i.e., that the mutation rate decreases inversely to
the distance to the global optimum). However, using such inversely proportional mutation
potentials puts some limits on hypermutations: the low mutation rates on local optima mean
that they will be able to efficiently escape local optima only when applied together with
ageing.

As using the idea of inversely proportional HMPs introduces new issues, we suggested
alternative strategies for FCM to reduce the number of fitness evaluations wasted. An
AIS using static HMP with the alternative schemes, which is called Fast AIS, samples the
solution after the ith bit-flip with a probability approximately γ/i rather than deterministically
evaluating after each bit flip. Hence, the algorithm still hypermutates but wastes fewer
fitness function evaluations. We proved that such a scheme can speed up the expected
runtime of the traditional static HMP by a linear factor at hill-climbing while it still escapes
local optima more efficiently than traditional EAs. In addition to some standard multimodal
benchmark problems, we proved the latter by analysing the Fast AIS performance in obtaining
a (1+ ε) approximation for any PARTITION instance and showing that it achieves such
approximation ratios in an expected time which is by a linear factor smaller than the upper
bound we provided for static HMP using FCM. However, the suggested Fast AIS was not
efficient at escaping local optima while used alongside ageing, and hence suffered from
the same issue as the original static HMP using FCM. The Fast AIS can be made to work
alongside ageing efficiently to escape local optima by not stopping at the first constructive
mutation and instead using a much smaller probability of evaluation (to make it unable to
discover the local optima after escaping them via ageing). While such a strategy successfully
achieves its goal, we found that it is not efficient on its own for escaping local optima which
need large jumps. In other words, it is only effective for landscapes similar to the CLIFF

function where there is a second slope with increasing fitness leading away from the local
optima.

The ever growing successful uses of elitism and high mutation rates in EAs and steady-
state GAs [29, 72, 8, 21, 28], neither of which occur in the natural (Darwinian) evolution,
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are evidence of how the immune system paradigm may be more suited for general purpose
optimisation than Darwinian evolution.

8.1 Future Work

In this thesis, we have concentrated mainly on the effectiveness of AIS operators for single-
individual algorithms (i.e., we have not analysed the effects of b-cell interactions in pop-
ulations of antibodies in the natural immune system). Indeed only recently have some
advantages of populations over single-individuals been shown concerning the more tradi-
tional evolutionary and genetic algorithms [8, 9, 21]. Exploiting antibody interactions in the
natural immune system in population-based AISs is a promising research direction where
natural features of an AIS such as elitism, high mutation rates, and memory cells may prove
to be very effective at maintaining a diverse population and hence to have a significant impact
on the general-purpose multimodal optimisation typically present in real world applications.

Another potential future work is comparing the performance of hypermutations with
heavy-tailed mutation operators [29, 36] that are gaining momentum in the evolutionary
computation field. These mutation operators have been recently exploited in the design of
so-called fast EAs to allow a larger number of bit flips more often than the standard bit
mutations (SBM) traditionally used in EAs and GAs. Since these analogies are very similar
to hypermutations in AIS, the comparison between them will provide insights to decide
which operator to use for a particular search space. This can also potentially lead to the
design of more powerful mutation operators.

The next promising future work is to identify classical combinatorial optimisation prob-
lems where AISs provably outperform EAs and other randomised search heuristics. In this
thesis, we showed the efficiency of AISs for classical combinatorial problems where EAs
are also proven to work efficiently. Additionally, assessing the performance of the proposed
modifications to AISs (in Chapters 6 and 7) experimentally on both classical combinatorial
problems and real-world applications and comparing their performance with the traditional
AISs would potentially give more insights into the effectiveness of the proposed modifi-
cations. An example problem can be the protein folding test-beds used in [20] where the
original Opt-IA was introduced.

Regarding the proposed modification to the hypermutation with mutation potential opera-
tor, some improvements are needed to make the operator adaptive. As we saw in Chapter 7,
in the proposed fast hypermutation operators, different γ values are needed to escape local op-
tima depending on the use of ageing operators. Hence, automatically adapting this parameter
is a natural future work.
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