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Abstract 

Bulk metallic glasses (BMGs) have shown a unique combination of mechanical, chemical, 

and physical properties, but their room-temperature brittleness has been the stumbling block 

for real structural applications. To respond to this challenge, the concept of developing 

composite microstructures by combining the glassy matrix with crystalline phases at 

different length scales has been developed, through which an improvement in compression 

and tensile ductility has been obtained in several Zr- and Ti-based BMG composites. 

However, these BMG composites showed a macroscopic strain-softening phenomenon with 

an early onset of necking (i.e., the maximum strength occurs at the yield point) because of a 

lack of work hardening mechanisms (endows the materials with minute damage tolerance), 

which would give rise to serious engineering problems therefrom. In this thesis, three series 

of ZrCu-based BMGs and Bulk Metallic Glass Matrix Composites (BMGMCs) were 

designed which are Zr-Cu-Al-Ag, Zr-Cu-Al-Ag-Ti and Zr-Cu-Al-Nb. All these alloys were 

prepared and characterised in terms of thermal behaviour, phase formation and mechanical 

properties. 

The Zr50Cu45-xAl5Agx (x = 0, 0.5, 1 and 2.0 at. %) alloy systems were designed based on 

the Zr-Cu-Al BMGMC system. The effect of the Ag element addition to the base alloy 

system has been studied. It is found that the cooling rate (sample size) strongly affects the 

phase formation and the mechanical properties of the alloy, exhibiting big differences due 

to the formation of the brittle phases, the volume fraction and size of the B2-CuZr phase. 
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By investigating these alloys, it also provides a scope for preparing medium/large-sized 

single B2-CuZr phase BMGMCs in the following chapters. 

In addition, a new series composition of the Zr50-xCu44Al5Ag1Tix (x = 0.5, 1, 2, 3, 4 and 

5 at. %) alloy has been designed based on the Zr-Cu-Al-Ag alloy system. By carefully 

controlling the Ti content of the alloy compositions, the 6 mm Zr49.5Cu44Al5Ag1Ti0.5 and 

Zr49Cu44Al5Ag1Ti1 alloys have exhibited good work-hardening ability and plasticity during 

compression tests. The martensitic transformation from the metastable B2-CuZr phase to 

the monolithic B19’ martensitic phase was observed after the compression tests. The 

deformation-induced martensitic transformation process leads to a significant improvement 

of compressive plasticity, with plastic strain of 12.3 % and obvious work hardening 

behaviour. 

Finally, the glass forming ability (GFA), thermal properties, kinetics and mechanical 

properties of Zr50Cu45-xAl5Nbx (x = 0.2, 0.4, 0.6, and 0.8 at. %) BMGs have been investigated. 

The alloy displayed a significant compressive strain of 7.1 % at room temperature. The 

results showed that the GFA is enhanced with an increase of Nb content. The plastic strain 

exhibits a trend of increasing with the Nb content.  

The current findings offer a new paradigm for developing BMGMCs with improved 

ductility for practical engineering materials. These studies and observations provide an 

understanding of the formation, deformation and microstructural optimisation of the ZrCu-

based BMGs and BMGMCs. 
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Chapter 1 

Introduction 

1.1 Introduction 

Since the discovery of the first Bulk Metallic Glasses (BMGs), these materials have attracted 

much scientific interest and commercial attention [1]–[3]. BMGs exhibit excellent 

properties such as high strength, high elastic limits, high hardness and good corrosion and 

wear resistance, which are certainly desirable properties for real-life applications [2], [4]–

[6]. These advantages provide them the potential for high-performance engineering and 

structural applications. These unique materials can be fabricated by solidification of liquid 

alloys with sufficiently high cooling rates, which will inhibit the nucleation and growth of 

the crystalline phases.  

Various BMG systems have been successfully developed such as Mg- [7], Pd- [8], Ti- 

[9], Fe- [10], Al- [11], Ca- [12], Zr- [13], La- [14] and Cu-based systems [15]. Among these 

BMGs, ZrCu-based BMGs are currently well recognised due to their enhanced glass forming 

ability (GFA) and mechanical properties [13], [16]–[18]. However, along with the 

development of BMGs, some disadvantages have strongly hindered the wider application of 

BMGs in engineering and structural applications. The drawbacks of BMGs are room 

temperature brittleness under deformation and strain-softening behaviour [2][19]. In order 

to overcome these problems, several concepts have been introduced: (a) increase in the 
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Poisson’s ratio of the alloy systems [20], (b) chemical and microstructural inhomogeneity 

such as phase separation or in-situ formation of Bulk Metallic Glasses Matrix Composites 

(BMGMCs) [21]–[23], (c) control of the sample size and cooling rate effect of the alloys 

[24]–[26] (d) ex-situ introduction of the second phase into the BMG matrix and formation 

BMGMCs [27]–[29] Methods (a) and (b) are based on the intrinsic properties of BMGs and 

(c) and (d) are generally controlled by external factors. 

Forming BMGMCs has been proven to be an effective way to improve mechanical 

properties among the methods mentioned above. BMGMCs are formed based on the glassy 

matrix and combined with different reinforcement materials or second phase particles. 

During the development of BMGMCs, they have presented a lot of advantages compared 

with the traditional BMGs such as enhanced room-temperature compressive plasticity. The 

combination of multiple phases and glassy matrix contribute to changes in microstructure 

features after deformation, which significantly improves the mechanical performance of 

BMGs. The main drawbacks for the current BMGMCs are strain softening and early necking 

[30]. In order to solve these problems, a new concept of transformation-induced plasticity 

(TRIP) reinforced BMGMCs has been introduced [22], [31], [32]. According to recent 

research, the TRIP method has been introduced into Ti-based and ZrCu-based BMGMCS. 

These alloy systems can form a metastable crystalline phase during the fast cooling process 

and can be transformed into a martensitic phase during the plastic transformation process. 

This method has intensively improved the compressive plasticity, tensile ductility and work-
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hardening behaviour during deformation. However, the main problems for the current TRIP 

reinforced BMGMCs is that they cannot form large-sized samples because the 

microstructure is very sensitive to cooling rate and alloy compositions. The GFA, 

dimensions and volume fraction of the metastable phase in the glassy matrix should also be 

carefully controlled [33]. An alloy system should be carefully designed and tested to fulfil 

these requirements. 

Current works are established on the ZrCu-based BMGs and BMGMCs. Three alloy 

systems, namely Zr-Cu-Al-Ag, Zr-Cu-Al-Ag-Ti and Zr-Cu-Al-Nb have been designed and 

studied, mainly focusing on the microstructure, GFAs and formation mechanisms. The aim 

of this thesis is to get a better knowledge of the ZrCu-based BMGs and BMGMCs by 

investigating the relationship between the microstructure, alloy composition, sample size 

and mechanical properties. New alloy systems with enhanced plasticity and sample size 

mechanical properties will be designed. A detailed thesis outline of each chapter is given 

below. 

The objectives of this thesis are: 1. Design new TRIP reinforced Zr-Cu-Al-based 

BMGMCs; 2. Increase the sample size of the new alloy system. 3. Investigate the glass 

forming ability and mechanical properties of the alloys. 4. Investigate the alloying element 

effect to the alloy system. 
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1.2 Thesis Outline 

This thesis is composed of seven chapters which mainly study the ZrCu-based BMGs 

and BMGMCs  

Chapter 2 provides a literature review of BMGs and BMGMCs, including the formation 

mechanisms, structural nature and mechanical properties of BMGs and BMGMCs. Methods 

which enhance and improve the mechanical performance of the BMGs and BMGMCs are 

also introduced. 

Chapter 3 presents detailed experimental methods. 

Chapter 4 introduces the Ag element to the Zr-Cu-Al BMGMC system. The 

microstructures, GFAs and mechanical properties are carefully examined for the alloy 

systems. The sample size and cooling rate effect to the alloy systems are studied and provide 

a scope for Chapter 5. 

Chapter 5 investigates the effect of the Ti element on the Zr-Cu-Al-Ag alloy systems by 

replacing the Zr content. Large-sized single B2-CuZr phase BMGMCs with enhanced 

plasticity and work-hardening property are fabricated. The microstructure details are also 

investigated. 

Chapter 6 investigates the effect of minor Nb addition to the Zr-Cu-Al BMGs systems. 

The GFAs of the alloy systems are assessed. The mechanical properties and deformation 

mechanisms are also studied. 
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Chapter 7 presents an overall conclusion and lists the main findings of the thesis, as well 

as giving suggestions for future work. 
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Chapter 2 

Literature Review 

2.1 Introduction to Metallic Glass 

Traditional metallic materials are commonly formed by their constituent atoms having an 

ordered crystalline structure. When the solid materials exhibit random atomic arrangement, 

this is referred to as an amorphous or glassy structure. It is also known that when the molten 

liquid is undercooled into a solid, with sufficiently high cooling rates, the nucleation of the 

crystalline phase is limited [2]. Using these theories, scientists have started to investigate 

ways and methods of making amorphous alloys. The Duwez group applied the rapid 

quenching technique with a very high cooling rate (approximately 106 K/s), successfully 

making the amorphous structure Au75Si25 alloy in the 1960s, which was the first metallic 

glass (MG) [34]. Following the discovery of this alloy, researchers started to focus on 

making ribbon and foil shaped MGs. Pond et al. have made MG foils that are meters long 

using the rolling method [35], and Turnbull’s group have introduced a concept to assess the 

Glass Forming Ability (GFA) of MGs based on classical nucleation theory and experiments 

[26]. They indicated that when the Reduced Glass Transition Temperature (Trg), the ratio 

between the Glass Transition Temperature (Tg) and Melting Temperature (Tm), is 1/2, the 

nucleation rate will reach 106 cm-3 s-1 and the glass formation becomes difficult. When Trg > 

2/3, the nucleation rate is 10-30 cm-3 s-1, and under a proper cooling rate the MGs can be 

formed. When Trg = 1, the crystallisation will never occur. 
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The commercial casting manufacturing process has driven the rapid development of metallic 

glasses, and MG films with thicknesses under 50 µm can be fabricated [36][2]. Further 

investigations of metallic glasses revealed more compositions. However, the ribbon, foil and 

film-shaped MGs have limited MG developments in structural applications. The demands 

of obtaining large-sized MGs for real-life applications became very popular. The term Bulk 

Metallic Glasses (BMGs) has been defined by scientists as MGs with diameter or section 

thickness over millimetres. The Pd77.5Cu6Si16.5 rod-shaped BMGs were developed by Chen 

et al. with a cooling rate of 103 K/s in 1974 [37]. A year later they discovered Pt-Ni-P and 

Au-Si-Ge BMG systems [38] [39]. In the early 1980s, Turnbull et al. fabricated centimetre 

sized Pd-Ni-P BMGs using boron oxide to purify the molten materials and further suppress 

the heterogeneous nucleation [8][40]. The problem at this stage was the high cost of Pd and 

Au, so the researchers started to look for the low-cost BMGs.  

Since the 1990s, a lot of BMG compositions with general elements have been 

discovered by Inoue’s group and Johnson’s group. This has been a huge step for BMG 

development. Multiple component BMGs, such as the most famous Ti-Zr-Cu-Ni, Zr-Ti-Cu-

Ni-Be and Zr-Al-Ni-Cu systems were fabricated [9], [41]–[43]. They have established a 

variety of methods and theories for BMG research. More and more alloy systems have been 

reported since the year 2000, such as Cu-, Ti-, Ni-, Co-, Mg- Fe-, La- and Ca-based BMGs 

[12], [14], [44], [45]. The Zr-TiCu-Ni-Be alloy system exhibits excellent GFA which can be 

fabricated into rods up to 14 mm diameter. These BMGs have excellent properties, such as 
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high yield strength, high hardness, high elastic limit, high fatigue resistance, very good 

corrosion resistance and magnetic properties. These properties make BMGs applicable in 

industrial applications and many of them are considered for the potential of structural 

applications. After decades’ development, a lot of them have already been applied in 

commercial applications: the Fe-based BMGs have been used to fabricate ‘current sensors’, 

the Zr-Cu-based BMGs have been made for wear-resistant gear, Ni-based BMGs have been 

applied to make ‘micro geared motors’, and Mg- and Ca-based BMGs, which have very 

good biocompatibility, have the potential for medical applications [2].  

2.2 Theories of Bulk Metallic Glass Formation  

In order to have a deeper understanding of BMGs’ formation mechanisms, scientists 

have done a lot research into thermodynamic, kinetic and structural aspects. These are the 

key factors to understand the formation of BMGs, especially for multi-component BMGs.  

2.2.1 Structure of Bulk Metallic Glasses 

The structure of BMGs has been investigated for decades due to their unique atomic 

arrangement. Many theories and models have been developed to investigate the structural 

nature of BMGs [46], [47]. Turnbull suggested that when designing MGs, the large size 

differences of the constituent elements contribute to enhance GFA [48]. Frank and Kasper 

studied the dense packing of the MGs and they found three different clusters of 12 atoms 

surrounding the 1 central atom [49], [50]. The three arrangements are shown in Figure 2. 1, 
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they represent the FCC (Face-Centred Cubic) structure, HCP (Hexagonal Close Packing) 

and an icosahedral packing respectively. Miracle et al. suggested the efficient packing is the 

fundamental principle of the MGs and BMGs [50]. They assumed that each solute atom is 

surrounded by a first coordination shell of solvent atoms. 

 

Figure 2.1: The three cluster models and corresponding arrangements [50].  

Sun et al. [51] examined the nature of microstructure of the Zr-Cu-Ni-Al alloys. They 

used synchrotron radiation HE-X-Ray Diffraction (XRD) to investigate diffraction patterns. 

The icosahedral short-range order (ISRO) was considered to analyse the XRD curves. They 

found that the stable ISRO structure can hinder the diffusion of the atom to form crystalline 

nuclei. The atomic pair distribution function (PDF) was found by taking the Fourier 

transformation of the scattering function S (Q). In order to get the results, they used several 

compositions of this alloy system. They also demonstrated that the radial distribution 
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function (RDF) J(r) or pair distribution function (PDF) g(r) can provide structural 

information for the amorphous materials. The PDF is shown in Equation 2.1 

𝑔(𝑟) = ∑ 𝑤𝑖.𝑗𝑔𝑖.𝑗(𝑟)i.j                  (2.1) 

In this equation g(r) indicates the total PDF and gi.j(r) shows the partial pair distribution 

function, which is between the range of the ith and jth atomic pairs. The alloy gets more 

stable with an increase in Cu atoms in this alloy system and the glass forming ability can be 

improved. The bond length of the Zr-Zr bond can also be significantly increased. They also 

noticed that efficient cluster packing (ECP) is another factor to influence the structure of 

amorphous materials. The FCC structure of the Zr-Cu-Ni-Al system is shown in Figure 2. 

2. They treated this alloy system as a pseudo-ternary Ω-α-β alloy system. The solvent atom 

is Ω, the solute atoms are α and β. Comparing different compositions of this alloy system, 

the Cu atoms play a very important role. The stability of the ECP model can be enhanced 

when the small Cu atoms substitute the large Zr atoms in the alloy and the glass forming 

ability of this alloy system can be improved. That means that small changes in the atomic 

structure of the bulk metallic glass can lead to significant differences in glass forming ability. 

The mechanical properties can also be changed. 
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Figure 2.2 

Figure 2.2: The ECP of the FCC structure for the Zr-Cu-Ni-Al bulk metallic glass. (a) and (b) show 

the{100} and {110} plane view respectively [51]. 

2.2.2 Thermodynamics of Metallic Glass Formation 

For the thermodynamic aspects, the driving force for the nucleation of crystallisation is 

the Gibbs free energy difference (ΔG) between the supercooled liquid phase and nucleus. 

BMGs naturally exhibit small ΔG between the supercooled liquid phase and crystalline 

phase, which results in a low nucleation rate and contribute to high GFA [2]. Free energy 

can be expressed as: 

∆G = ∆𝐻𝑓 −  𝑇∆𝑆𝑓                   (2.2) 

where Hf and Sf are the enthalpy of fusion and entropy of fusion respectively. When ΔG is 

negative, the whole system will become thermodynamically stable.  

The crystallisation temperature of BMGs is strongly depending on the heating rate due 

to the nucleation process is a thermally activated process [52]. The BMGs are formed during 
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the rapid quenching due to the low driving force for the crystallisation in the supercooled 

liquid. The nucleation and growth rate are both low and lead to the suppression of the 

crystallisation. The driving force for crystallisation (ΔG) is obtained by the Gibbs free 

energy difference ΔGl-s between the supercooled liquid and the crystals. Equation 2.3 

indicates that the specific heat capacity ΔCp(T) has a strong relationship with free energy. 

∆𝐺𝑙−𝑠(𝑇) = ∆𝐻𝑓 − ∆𝑆𝑓𝑇0 − ∫ ∆𝐶𝑃
𝑙−𝑠(𝑇)𝑑𝑇 + ∫

∆𝐶𝑃
𝑙−𝑠(𝑇)

𝑇
𝑑𝑇

𝑇0

𝑇

𝑇0

𝑇
        (2.3) 

where ΔHf and ΔSf are the enthalpy and entropy of fusion respectively at temperature T0, 

where the crystal phase and the liquid are in equilibrium. Busch et al [53]–[55]. reported 

that the thermodynamic functions of different BMGs were determined by ΔSf  and ΔCp(T) 

the relationship is shown in Figure 2. 3.     

 

Figure 2.3: The Angell plot of Gibbs free energy variation between the liquid and crystalline state 

for different glass-forming materials [53].  
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There are some parameters derived from the thermodynamic aspects which are applied 

evaluate the GFA of the BMGs. The supercooled liquid region ΔTx is obtained by Tx-Tg, 

the Tx is the crystallisation temperature of the MGs during the heating process. In a general 

view, the higher the Tg, the lower Tl for most of the MGs. Another parameter γ = Tx/(Tg+Tl) 

was suggested by Lu and Liu [56], [57] which is widely applied to assess the GFA of the 

MGs.  

2.2.3 Kinetics of Metallic Glass Formation 

For the kinetics aspects, understanding the viscosity or diffusion behaviour of the 

supercooled liquid is very important [52], [58]. A variety of methods were developed to 

evaluate the viscosity [59][60]. In general, the viscosity behaviour is characterised by the 

liquid fragility. The liquid fragility indicates the structural evolution during the rapid cooling 

process, hence the fragility has a strong relationship with the GFAs. Figure 2. 4 illustrates 

the fragility plot produced by Angell [52]. The materials are classified as kinetically ‘strong’ 

and ‘fragile’ liquid. The viscosity of strong glass-forming liquids exhibits an Arrhenius 

relation with the temperature. The fragile liquids show a non-Arrhenius behaviour and 

usually described by the modified Vogel-Fulcher-Tamman (VFT) relationship [61] as 

shown in Equation 2.4 

η(T) = η0𝑒𝑥𝑝 (
𝐷∗𝑇0

𝑇−𝑇0
)          (2.4) 
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where D∗ is the fragility parameter which identifies the thermal property of liquid, T0 is the 

VFT temperature, at which the barriers with respect to flow would go to infinity, and η0 is a 

constant inversely proportional to the molar volume of the liquid. 

 

Figure 2.4: The Angell plot of different types of metallic-glass-forming liquids [53]. The materials 

are classified as kinetically ‘strong’ and ‘fragile’ liquid. 

2.2.4 Alloying Element Effect to the Glass Forming Ability 

The GFA of BMGs is complex and is strongly related to the joint effects of kinetics, 

thermodynamics and structures. Various researches have studied the influence factors of the 

GFAs and possible solutions to enhance the GFA. The alloying element of the BMGs is one 

of the important factors which strongly influence the GFA of the BMGs [62], [63]. ZrCu- 
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and Ti-based BMGs are among the most widely investigated BMGs. Several well studied 

alloy systems have been established such as Zr-Cu-Ni-Al, Zr-Cu-Al-Ag and Ti-Zr-Be-Al 

alloy systems. A variety of the research is based on these two alloy systems. The following 

discussion of the minor addition effect on the GFA of the alloy system will mainly focus on 

the ZrCu- and TiZr-based BMGs. 

For the Zr-Cu-Ni-Al bulk metallic glass system, the composition of the Zr55Cu30Al10Ni5 

has been widely investigated because it exhibits very high GFA. Inoue and Zhang reported 

in 1995 [64] that Zr55Cu30Al10Ni5 can be cast into the form of a cylindrical rod with diameter 

of 30 mm and length of 50 mm using the suction casting process and remain amorphous. 

The investigation of this composition became popular in recent times. The Zr element has a 

large atomic size compared to other elements, which will enhance the stability of the liquid 

phase. When the Zr content is higher than the eutectic composition, the mechanical 

properties will be enhanced for as-cast materials. This alloy system has extended eutectic 

and hypoeutectic compositions. Haruyama et al. [65] have investigated the free volume 

characterisation of the cold-rolled Zr55Cu30Al10Ni5 bulk metallic glass. They found volume 

dilatation of cold-rolled Zr55Cu30Al10Ni5 due to the free volume change during the cold-

rolling process causing dilatation. The constituent elements Al and Ni have contributed to 

the enhanced GFA due to the atomic radius and heat of mixing differences. 

The Zr-Cu-Al-Ag BMG system exhibited excellent GFA with suitable Ag elements. This 

alloy system shows a very wide supercooled liquid region, the range of ΔTx varies between 
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70 to 110 K [66]. Jiang et al. reported that a series of alloy compositions of this alloy system 

can be cast with a diameter of at least 20 mm and the amorphous phase can be observed. 

Even for ingots of the alloy of 25 g the amorphous phase still occurs. Among these alloy 

compositions, Zr46(Cu4.5/5.5-Ag1/5.5)46Al8 should be highlighted [67]. From their 

investigations, the constituent elements Ag and Al were the elements that affect the GFA of 

the alloy. With increasing Al content, the decrement of the supercooled liquid region 

occurred. The effect of the Ag element was also investigated from kinetic and 

thermodynamic perspectives. They used the classical nucleation theory and calculated the 

steady-state crystal nucleation rate per unit volume Iss. This parameter can produce the 

relationship between the kinetics and thermodynamics.  

Iss =
A

η(T)
exp

16πσ3

2kB[∆Gl−s(T)]2                     (2.5) 

The viscosity is temperature-dependent and is expressed as η(T), σ is the interfacial 

energy between the liquid and the crystal. From the equation it shows that in order to get 

good GFA, the driving force should be low and the viscosity should be high around melting 

temperature. According to the investigation, there exists the local atomic packing ratio and 

Gibbs free energy difference between the crystalline and amorphous phases. In order to get 

good GFA, the Gibbs free energy differences should be minimized and the local atomic 

packing ratio should be increased.  

TiZr-based MG was first reported by Tanner et al. in 1977 [68]. Ti-Zr-Ni-Be system was 

reported by Johnson and Peker in 1994 [41]. From that time Ti-based BMGs developed 
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some systems with more complex and multi-component compositions. In the following 

years the development of the alloy systems tended to form Ti-Ni-Cu-Al [69]and Ti-Cu-Ni-

Sn [70]. These alloys can be easily fabricated by copper die suction casting and injection 

casting. A recent investigation by Tang et al. found that the Ti-Zr-Ni-Be-Cu alloy system 

can be cast up to 50 mm in diameter, which indicated good GFA of the Ti-based BMGs [28]. 

During the development of Ti-based BMGs most of the alloy systems with very good GFA 

contain the element beryllium element. This element will significantly increase the glass 

forming ability of BMGs, enhance the plastic strain and make them easier to be fabricated 

in their supercooled liquid region. In recent years most of the alloy designs will start from 

the Ti-Zr-Be ternary alloy system combined with other elements with different requirements.  

In 2012, Gong et al. developed a Ti-Zr-Be-Al system [71]. According to their 

investigation, the short-range order of the Al element will strongly increase the GFA of the 

alloy system. The Al element will suppress crystallisation formation. The liquid phase and 

atomic mobility are limited by this element. The formation of short-range order clusters 

during the melt will significantly enhance the GFA of the alloy system. 

Guo et al. also reported ductile BMGs based on the Ti-Zr-Be system [72]. They added 

Cu and Ni into the system which resulted in very good GFA; the as-cast rod can be up to 14 

mm in diameter. The yield strength is about 1680 MPa and the elastic strain limit is up to 

5 %. They indicated that when designing good GFA alloy compositions, the following 

factors should be considered: they should form a wide supercooled liquid region, good 
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chemical interaction in the system, low liquidus temperature and the glass transition 

temperature should be reduced. 

2.3 Introduction of Metallic Glass Composites 

BMGs exhibit a lot of excellent properties such as high strength, high elastic limit, high 

hardness and good magnetic properties [6], [28], but along with the development of BMGs 

these materials exhibit some obvious drawbacks such as low fracture toughness, low 

ductility and failure under tensile loading. Due to the monolithic structure of BMGs, the 

unhindered shear bands after deformation will rapidly propagate. There are no other 

microstructure features to stop the propagation of single shear bands, which usually 

contributes to catastrophic failure. These drawbacks lead to many problems and limit the 

application of BMG materials. However, the main drawbacks for the BMGs are brittleness 

at room temperature and low fracture toughness. These problems limit further applications 

of BMGs. In order to overcome the BMGs’ disadvantages, the concept of forming Bulk 

Metallic Glass Matrix Composites (BMGMCs) has been introduced and proven to be an 

effective way to improve the mechanical properties. BMGMCs are formed based on the 

glassy matrix and combine with the different reinforcement materials or second phase 

particles. 

The combination of multiple particle phases, dendrites and glassy matrix contribute to 

the changes of the dislocation and microstructure features after deformation, which 
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significantly improves the mechanical properties of BMGMCs. In order to get the desired 

properties, the volume fraction of the second phases should be controlled. During the 

investigation of BMGMCs two directions of designing and making these alloys are 

developed in-situ and ex-situ methods. Eckert et al. have classified the general manufacture 

methods, which are shown in Figure 2. 5 [73]. 

 

Figure 2.5: Classified BMGMCs manufacture processes [73]. 

The in-situ process is achieved by choosing the chemical compositions which will form 

the second phases in the glassy matrix during the solidification. The solidification will not 

produce the homogeneous phase, and the crystalline phases will be generated with the glassy 

matrix. The in-situ process is usually done by directly casting the materials into the mould 
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and the shape of the second phase is usually dendritic. If subsequent processing is applied 

to the as-cast alloys, the microstructure of the alloy can be controlled. The first toughened 

Zr-Ti-Nb-Cu-Ni-Be in situ BMGMCs were reported by Kim and Hays in 2000 [74]. The 

ductile dendritic phase was embedded into the BMG matrix, which strongly enhanced the 

plasticity under compression of the alloy. For ex-situ methods it can be separated to the 

following: (i) Combining the glassy phase and reinforcing the second phase particles in the 

general alloying process. (ii) Adding the reinforcements (crystalline second phase) directly 

into the glass forming process [73]. 

In 2007, the general developing strategy for designing BMGMCs was developed as 

follows: (i) The desired composite system should have a highly processable monolithic 

metallic glass matrix with sluggish crystallization. (ii) The composite system should have a 

stable crystal structure that cannot cause heterogeneous nucleation of the matrix so that the 

dendrites will form in the equilibrium systems. (iii) For the dentritic BMGMCs, the shear 

modulus of the dendrite needs to be lower than the glassy matrix, hence they would inhibit 

the propagation of shear bands and cracks in the glass matrix. (iv) The microstructure should 

have enough size and spacing for the glassy matrix and second phases [75]. 

The ductility is the main factor that influences the application of BMGs to structural 

applications. The BMGMCs are designed and developed to overcome this drawback. For 

the BMGMCs, the major factor that affects ductility is reinforcement material [76]. It is well 

known that the ductility of BMGMCs can be ascribed to the ductile dendritic crystalline 
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phase, which stabilises against the shear localisation and propagation of critical shear bands 

upon loading. 

The reinforcement can be particles, fibres and dendrites. The microstructure will be 

changed when introducing the reinforcement into the BMGs and the mechanical properties 

should be enhanced. The strengthening effect is produced by the second phase particles in 

the BMGMCs. The yield strength of the composites can be obtained by using the rule of 

mixtures which is shown in Equation 2. 6 

𝜎𝑐 = 𝑉𝑟 × 𝜎𝑟 + (1 − 𝑉𝑟) × 𝜎𝑚                 (2.6) 

where 𝜎𝑐   is the yield strength of the composites and the volume fraction of the 

reinforcement is 𝑉𝑟 , which can be particles, dendrites and fibres [77]. Yield strength of the 

reinforcement and matrix can be represented by 𝜎𝑟  and 𝜎𝑚  respectively. From the 

equation, the strength of the BMGMCs increases with the increasing volume fraction of the 

reinforcement. There are some factors of the reinforcement which will strongly affect the 

mechanical properties of the whole alloy system: The particle shape and size, volume 

fraction of the reinforcement and shear band initiation and propagation [78]–[80]. 

Most of ductile BMGMCs are formed based on the ZrCu- and Ti-based alloy systems. 

The Ti-based BMGMCs were first designed and reported by Hofmann et al. [81] which 

aimed to compare with the most famous Ti-6Al-4V commercial alloy. The alloy system Ti-

Zr-V-Cu-Be was applied and the density for the alloy system is about 4.97 to 5.15 g/cm3. 



22 

 

They have introduced their design strategy for the Ti-based BMGMCs: (i) A suitable Ti-

based BMG matrix alloy system should be decided first and should be highly-processable. 

(ii) The two-phase microstructure should be formed, which is usually bcc dendrites plus 

liquid. (iii) Dendritic phase with lower shear modulus is desirable. (iv) The deformation 

microstructure length scale in the glass phase should be homogenized and coarsened.  

The very famous Ti-Zr-Be system was set for the matrix materials and both V and Cu 

were added into the system to form the dendritic phases. These types of BMGMCs have 

yield strength up to 1597 MPa. At the same time, they also developed the Ti-Zr-V-Cu-Al-

Be alloy system [82]. The Al element will reduce the density and enhance the ductility of 

the alloy. They also exhibit very good mechanical properties and the comparison between 

these alloy systems and commercial Ti-6Al-4V is shown in Figure 2. 6. The Ti-Zr-V-Cu-Be 

system has very good properties by controlling the shear band movement which can be 

found from the stress-strain curve. The serrated feature on the curve proves the shear band 

movement was stable. Throughout their investigation of Ti-based BMGMCs, it is found that 

these alloys exhibit good tensile ductility and toughness. The mechanical properties are 

much better than the commercial Ti alloys.  

The shape memory effect was also found in the Ti-based BMGMCs. Garagerella et al. 

reported the Ti-Cu-Ni shape memory BMGMCs [32]. The B2 and B19’ Ti(Ni,Cu) ductile 

martensitic precipitates were found with the TiCu and Ti2(Cu,Ni). The compressive strength 

and strain were significantly enhanced and it also showed good work-hardening behaviour 
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[32]. They also found multiple shear bands during the compression test, which was due to 

the stress concentrations around the precipitates, and the heterogeneous stress distribution 

was observed. The yield strength of the as-cast rod is up to 1172 MPa. This alloy system 

showed very good plasticity and contains no toxic elements. A large amount of alloy 

composition within this system can be cast over 10 mm diameter. The composition effect is 

the main factor affecting the properties of this alloy system. This is kind of the effect was 

also observed in the CuZr- based BMGMCs. A detailed study will be introduced in the 

following sections. 
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Figure 2.6: Tensile test of Ti-Zr-Be-V-Cu and Ti-Zr-Be-V-Cu-Be alloy system. (A) The room 

temperature tensile test strength-strain curve for 6 different compositions compared with 

commercially pure titanium and Ti-6Al-4V alloy. (B) The necking image of Ti-6Al-4V and 

commercially pure titanium. (C) Shear band morphology of one test sample. (D) Necking SEM 

images of test samples (E) The corresponding microstructure of necking images [82]. 

Another Ti-Zr-V-Cu-Be system has been reported by Qiao et al. [83]. The alloy was 

found with 43 % dendrites with 1–2 μm and the yield strength was about 1420 MPa. They 

found the shear band movement was hindered by the dendrites and dimples were found all 

over the fracture surface, which is the typical ductile fracture mechanism. The formation of 

BMGMCs has enhanced and improved the mechanical properties of BMGs. 

The ZrCu-based BMGMCs were also fabricated via different fabrication process. Lu et 

al. [84] reported that the nanocrystalline structure was obtained by controlling the crystalline 

nucleation during the solidification process. In 1993, Johnson et al. [18] developed a quinary 

Zr41.2Cu12.5Ni10Ti13.8Be22.5 metallic glass with a critical cooling rate of 1 K/s. This alloy 

became the first commercial BMG and is known as Vitreloy 1 (Vit 1). Johnson et al. then 

introduced Nb element to the Vit l alloy system and successfully obtained dendrite 

reinforced BMGMCs. The bcc β-Zr(Ti) is observed from the SEM images. 
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2.4 Deformation Behaviour 

The desire of making more real-life applications for BMGs materials has driven research 

towards the detailed study of the deformation of BMGs  

The mechanical properties of the engineering materials are very important parameters for 

BMGs. BMGs only have amorphous microstructure, there are no grains or grain boundaries 

and mobile dislocation compares with the crystalline alloys. The mechanical properties of 

BMGs are enhanced by this microstructure. They exhibit high strength and high hardness, 

but there are also some drawbacks of BMGs, such as low plasticity and lack of work 

hardening behaviour. In order to improve these disadvantages, the deformation behaviour 

should be studied first. 

2.4.1 Homogeneous and Inhomogeneous Deformation 

There are two kinds of deformation mechanism for the BMGs: homogeneous and 

inhomogeneous plastic deformation. For the homogeneous deformation, the temperature 

and strain rate are high but for the inhomogeneous deformation the temperature is low and 

strain rate is high.  

The term homogeneous deformation can be explained as, in the region of high 

temperature (0.6Tg < T < Tg) and high strain rate being applied to the BMGs, the plastic 

strain will distribute continuously in the viscous form BMGs and every element in the alloy 

system will contribute to the strain. For the inhomogeneous deformation, a low temperature 
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(T < 0.6Tg), which is usually about half of the Tg, is applied on the BMGs. The shear bands 

will form the deformation and concentrate in these areas. Shear bands usually form on the 

planes which are close to 45˚ of the loading axis. These localised deformations are 

inhomogeneous deformations. Most investigations focus on the inhomogeneous 

deformation, especially the shear bands. 

The inhomogeneous deformation will come along with the formation of shear bands and 

sudden fracture. Shear transformation zones (STZ) were reported by Argon et al. [38]. Along 

with an increase in stress, a localised distortion was created by the STZ and some thin and 

planar bands were formed. These bands are referred to as shear bands. Figure 2. 7 shows the 

schematic of the STZ. When the deformation occurs, the small cluster of close-packed atoms 

will rearrange and accommodate a characteristic shear strain under the applied shear stress. 

 

Figure 2.7: Schematic of the shear transformation zone [3]. 
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The quantified process for the STZ was also reported and the activation free energy for 

the STZ is shown as Equation 2.7: 

∆F0 = [
7−5v

30(1−v)
+

2(1+v)

9(1−v)
β2 +

1

2γ0
∙

τ0

μ(T)
] ∙ μ(T) ∙ γ0

2 ∙ Ω0               (2.7) 

where v is Poisson’s ratio, τ0 is the thermal shear stress at which the STZ transforms, β is the 

ratio of the dilatation to the shear strain (of order ~ 1), γ0 is the characteristic strain of an 

STZ. Ω0 is generally believed to encompass between a few and perhaps ~ 100 atoms. The 

STZ is a very important element for the plastic deformation in metallic glasses. Two 

assumptions were made to explain the inhomogeneous deformation caused by the shear 

bands. One is the formation of the free volume, which will decrease the viscosity in the shear 

bands during the deformation. Another is that adiabatic heating will decrease the viscosity 

in the shear bands. 

Homogeneous deformation in the metallic glass occurs with high temperature and high 

strain rate. STZ theories can be used to explain the deformation process. The homogeneous 

deformation can be defined by a large amount of atomic-scale independent events forming 

a statistical superposition. The size and energy scale will be unique. The deformation 

behaviour of Zr55Cu30Al10Ni5 bulk metallic glass was reported by Zhang et al. [85]. They 

applied the compression test to Zr55Cu30Al10Ni5 samples in the supercooled liquid region 

and found that the deformation behaviour in the supercooled liquid region was strongly 

influenced by the temperature and strain rate. The viscosity of the materials will change 

from the Newtonian flow regime to the non-Newtonian flow regime when the strain rate 
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increases. They established the metallic glass strain rate, viscosity and temperature 

relationship. They found that the viscosity and temperature relationship around the glass 

transition temperature can be expressed by the Arrhenius function: 

         𝜂N = 𝐵exp(
H

RT
)                         (2.8) 

where η is the viscosity H is the activation energy in the viscosity region and B is the 

structural parameter. They also applied the stretched exponential function to demonstrate 

that the bulk metallic glass deformation behaviour and function can be expressed by 

Equation 2.9: 

          
𝜂

𝜂𝑁
= 1 − exp [

D

(𝜂𝑁𝜀̇)𝛽].                            (2.9) 

The free volume theory is one of the most famous. The traditional free-volume theory 

states that the viscosity of the liquid is strongly related to its own volume. Turnbull and 

Cohen established a widely applicable theory based on the traditional free-volume theory 

[27]. They suggested that the liquid atoms are in a condensed state and some atoms’ 

movements are trapped by the neighbouring atoms. There is little space for the atoms to 

move: the atom can only move when there is a large space formed next to it, allowing it to 

move further.  

2.4.2 Shear Band Nucleation and Propagation 

Shear bands are major research topics for the deformation mechanism of BMGs. The 

STZ must be examined precisely when investigating the mechanical properties of the bulk 
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metallic glass. When plastic flow occurs, stress is applied to the STZ and the shear band are 

formed on the localised area during the process.  

Qu et al. reported the composition Zr53Cu18.7Al16.3Ni12 bulk metallic glass with very high 

plasticity. They found that when the applied load is in the longitudinal direction, atomic 

strain saturation occurs, and the structure moves to the closest packing when the yield of the 

atoms is in the transverse plane. The connection between the atomic flow movement and 

shear was investigated. When the atomic flow reaches a homogeneous level and coexists 

with the large scale shear band, this will enhance the formation of the shear transformation 

zone and promote the multiplication of shear bands. Shear band formation and propagation 

will strongly influence the mechanical and deformation behaviours. Good mechanical 

properties can be found for this alloy system. Zr55Cu30Al10Ni5 reported as the bulk metallic 

glass with very good GFA and Zr60Cu20Al10Ni10 has high resistance to embrittlement. Figure 

2. 8 shows that mechanical properties are strongly influenced by the composition of the 

materials. Greer et al. summarised the shear bands mechanism in the BMGs and BMGMCs. 

The shear band nucleation and propagation will control the yielding and plasticity of most 

BMGs and BMGMCs [86], [87]. 
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Figure 2.8: Effect of the composition of the Zr-Cu-Ni-Al system to Poisson’s ratio and Young’s 

modulus [85]. 

Greer et al. [4] figured out the major features of shear bands: they usually form along the 

maximum shear stress planes; they exhibit low flow stress when the cohesion is maintained 

and cracks may develop; they will contribute to local distortion of the materials; when the 

flow stress decreases this will lead to local heating; and they are very thin, about 20 nm. 

Three scenarios were established for the formation of shear bands. For the first one, the 

amount of homogeneous and active STZs exceed the percolation limit. The percolation limit 

is the point where STZs interact with each other and align in a two-dimensional plane. The 

percolated STZs will mainly form on the plane with the maximum shear stress. The 

deformation band will then form and lead to shear strain formation and the shear bands will 

subsequently develop. This theory demonstrates that the shear band is the inherent structural 

change within the amorphous microstructure. The second scenario indicates that the shear 

bands will form when the local stress is much bigger than the global average value. The 



31 

 

shear bands are very easy to form even in small sizes. The third scenario describes that the 

shear band nucleation consists of two continuous stages: the structural rejuvenation which 

will create a viable band for the shearing–this stage can be finished in microseconds and the 

shear-off and sliding of the original rejuvenation planes. Large plastic strain will be applied 

and local heating will form and lead to the formation of shear bands. The shear band 

nucleation will initiate from the large stress concentration in the glassy matrix. 

Wang et al. [88] reported that the alloy composition Zr46Cu31.6Ag8.4Al8 exhibited good 

plastic behaviour such as compressive plastic strains. A slight change in the composition of 

the alloy will cause a huge difference in plasticity. They also found that during compression 

tests, the likelihood of formation of shear bands increased with increasing number of atoms 

which take part in the yielding. This is because increasing the Zr content of the alloy will 

affect the plasticity of the materials. When the content of Zr increases, both the formation 

of the Zr-Zr bond volume and the bond length will increase, and more shear bands can be 

formed during the movement of the atoms. The composition change will strongly influence 

the final structure of the materials. This gives very similar results compared with the Zr-Cu-

Ni-Al bulk metallic glass system. 

Due to the unique structure of BMGs and BMGMCs, the yield stresses are different in 

tension and compression. A suitable yield criterion should be developed to investigate the 

yield behaviour of these alloy systems. Donovan et al. [89] reported that the yielding process 

will follow the Mohr-Coulomb criterion. According to this theory, yielding behaviour 
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depends on the applied shear stress and the stress normal to the shear displacement. Due to 

the unique structure of BMGs and BMGMCs the flow strength-to-modulus ratio is not 

negligible. The Mohr-Coulomb criterion can be expressed as: 

𝜏𝑦 = 𝜏0 + 𝛼𝜎𝑛                  (2.10) 

where 𝜏𝑦  is the effective shear yield stress, 𝜏0  is a constant, 𝛼  represents the system 

specific coefficient, which controls the strength of the normal stress effect, and 𝜎𝑛 is the 

shear displacement. Atomic level analysis for the pressure-dependent yielding was 

investigated by Schuh and Lund [40]. This theory is based on the STZs concept and proved 

that the Mohr-Coulomb criterion is suitable for the BMGs. 

2.5 Methods for Plasticity and Work Hardening Improvement 

During the development of BMGs, various concepts have been introduced to improve 

their mechanical properties. The main problems for BMGs are a lack of plasticity and no 

work-hardening behaviour. The following sections will demonstrate the methods which will 

provide the solutions to overcome these drawbacks. 

2.5.1 Phase separation 

The phase separation process of BMGs can be explained by a homogeneous glassy phase 

with a specific composition separating into two glassy phases with different compositions 

[90]. The phase separation is mainly caused by the spinodal decomposition or nucleation 

and growth. Phase separation is more likely to happen in the BMGs alloy systems that 
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contain at least one atom pair with large positive enthalpy. The first phase separation 

phenomenon in La-Zr-Al-Cu-Ni alloy system was reported by Turnbull [91]. The was the 

first reported phase-separated BMG with no nanocrystalline structures. In order to obtain a 

two-phase BMG, two alloy systems with good GFA were selected (La-Al-Cu-Ni and Zr-Al-

Cu-Ni). Both Zr and La have negative heats of mixing with the other three elements, but Zr 

and La have a positive heat of mixing. Two amorphous phases with different compositions 

were observed from the La-Zr-Al-Cu-Ni alloy system. Inoue indicated that there are two 

different kinds of phase separation situations [92]. One is nano-scaled fine crystalline 

structure dispersed into the glassy matrix of the as-solidified samples, which is usually due 

to the low GFA of the BMG systems. Another is when two completely amorphous phases 

form during the solidification process or reheating of the original homogeneous amorphous 

alloy. Phase separation will occur between two phases which have a thermodynamically 

stable miscibility gap. The binary alloy systems with zero or positive heat of mixing have 

more chance to form the phase separation alloys. However, compared with the traditional 

theory of the formation of BMGs, the phase separation behaviour formation is a 

contradictory process. Negative heats of mixing of the alloy systems are more desirable for 

BMGs, but a positive heat of mixing is an important factor for the phase separation process. 

The interesting fact is that along with the development of BMGs, a variety of phase separated 

BMGs have been discovered such as Pd-Ni-P [93], Al-Ni-Y-Co-Pb [94], Cu-Zr-Ti [95], Cu-

Zr-Al [96] and Zr-Cu-Ni-Al [97]. Most of the phase separation evidence was obtained by 
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small-angle x-ray diffraction (SAXS), TEM and DSC. At least two elements with positive 

heat of mixing will form phase-separated BMGc.  

The studies of BMG phase separation have introduced another way to form ‘composite 

like’ BMGs which exhibit a unique microstructure and lead to the enhanced mechanical 

properties. The wide supercooled liquid range will enable the study of the decomposition 

behaviour of BMGs. There are two common types of microstructures for the amorphous 

phase separation: the droplet-type structure by the nucleation and growth mechanism; and 

the interconnected-type structure by spinodal decomposition. The free energy will increase 

in the metastable region due to the infinitesimal composition fluctuation. The nucleation of 

the new phase must lower its free energy to enable the following process. Figure 2. 9 

indicates that the Y28Ti28Al24Co20 exhibits a spinodal decomposed interconnected-type 

microstructures with dark and bright contrasts. The Ti-riched and Y-riched phase are 

observed. 
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Figure 2.9: (a) BF- TEM micrograph showing a typical microstructure formed by phase separation 

in as-melt spun alloy, (b) Corresponding SAED pattern showing double halo rings, and (c) DF-

TEM micrograph obtained using inner diffuse halo ring marked in (b). 

Chen et al. recently reported a Cu47.2Zr46.5Al5.5Nb0.8 BMG which shows phase-separation 

structure. The phase separation structure leads to the large room temperature plasticity of 

16%. The phase separation was examined by the EDS and EELs which are proved to be an 

effective method to check the phase separation structure [98].   

2.5.2 Increase in Poisson’s ratio 

Poisson’s ratio or shear modulus to bulk modulus ratio reflects the complexity level 

between the shear band nucleation of and volume fraction. They have strong relationship 
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between the chemical bond and structure [99]. Lewandowski et al. [100] indicated that 

BMGs shows enhanced ductility and plasticity when the Poisson’s ratio is larger than 0.31–

0.32. In year 2011, Demetriou et al. designed a Pd79Ag3.5P6Si9.5Ge2 BMG which exhibits 

excellent ductility and fracture toughness which is very similar to the low carbon steel [101]. 

Na et al. investigated the relationship among the Poisson’s ratio, fragility index and plasticity 

of the BMGs. They found that the fragility value can be expressed with Poisson’s ratio. A 

larger Poisson’s ratio will contribute to the high fragility value. For the BMGs with high m 

values, the liquid phase viscosity is reduced and further reduce the propagation of the shear 

bands, finally lead to the ductile deformation behaviour. The Zr-TM-Al (TM=CO, Ni, Cu) 

alloys have been studied by Xu and Ma. The Zr61Ti2Cu25Al12 alloy has a Poisson’s ratio = 

0.367, and it showed a very high fracture toughness. Their researches have indicated that 

high ductility BMGs are usually obtained from the rich main element alloy composition 

system, such as high Zr alloy system [102], [103].  
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Figure 2.10: The Correlation between the Poisson’s ratio and the fragility index for Cu-based 

BMGs [104].  

2.5.3 Phase Transformation Induced Plasticity 

The concept of transformation-induced plasticity (TRIP) has been widely investigated and 

applied to steels and ceramics for many years. This technique has significantly increased 

materials’ plasticity and work hardening ability at high stength [105]. In order to get good 

work hardening, plasticity and uniform ductility, this effect has been introduced to make 

BMGMCs. The formation of this effect involves very complex thermodynamic and kinetic 

processes. The ideal process is to form a metastable austenite phase into the amorphous 

matrix. When the back-stress effect is applied to the alloy, the transformation phase 

combined with the amorphous matrix will produce a highly improved plasticity and strength 

[106]. However, the requirements for successful achievement of this effect are very high: 

the BMG matrix should have a good GFAs; the metastable phase must be formed and must 

not decompose to the other brittle phases during the cooling; the fabrication process and 

alloy compositions must not influence the martensitic transformation of this austenite phase 

during the deformation . The studies of TRIP effect in BMGMCs have mainly focussed on 

the CuZr- based BMGs. CuZr BMGs have very good GFAs and will form a cubic B2-CuZr 

phase with specific composition ranges. Moreover, the B2-CuZr phase undergoes a stress-

induced martensitic transformation to B19’-CuZr phase. The B2-CuZr phase has the 
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potential to be the metastable phase of the TRIP process. The crystal structure 

transformation process is shown in Fig 2. 11 (a) and (b).  

 

Figure 2.11: The transformation process of (a) The Crystal structure of B2-CuZr to (b) B19’-CuZr 

martensitic structure [107]. 

Pauly et al. [107] reported the martensitic transformation (B2 to B19’) in the Cu-Zr-Ti and 

Cu-Zr-Al systems. The yield strength of the alloy can be up to 1246 MPa and the fracture 

strain is 14.9 %. The Cu-Zr-Ti system also shows good work hardening ability. In their study 

they have indicated that the Ti element will destabilise the B2 CuZr phase at a relatively low 

temperature and will lead to the formation of Zr2Cu and Zr7Cu10 phases. However, the Al 

element has no significant influence on the B2 phase formation [107]. This group has done 

further investigation for the microstructure nature of Cu-Zr-Al BMGMCs as shown in 

Figure 2.12. They indicated that different melting conditions will strongly affect the volume 

fraction of the B2 phase and the content of the B2 phase is the key factor in changing the 

mechanical properties. The plasticity is much better for samples with a volume fraction of 

the crystalline phase between 5–30 vol. %, compared with samples with a volume fraction 
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over 50 vol. %. They have tested the mechanical properties of the B2 CuZr phase in 

Cu47.5Zr47.5Al5 for the first time. They also found that the glass solidification and crystalline 

phase growth processes will occur at the same time. They have figured out a way to improve 

the ductility of the BMGMCs without sacrificing strength [108], [109]. In 2010, Pauly et al. 

applied a tensile test to the CuZr-based BMGs and found nano-sized precipitate and clear 

twinning in the microstructure. They suggested that the temperature rise could cause 

nanocrystallisation in shear bands of deformed samples. They have clearly demonstrated the 

CuZr-based BMGs’ deformation process as shown in Figure 2.13. When loading is applied 

to the alloy, local stress concentration will occur. The B2 phase will precipitate after a period 

and reduce the stress concentrations. The STZs will also form and develop, but the 

propagation of the shear bands can be hindered by the B2 nanocrystals. The twinning of B2 

crystals forms and further absorbs the stresses from the matrix. The whole process 

significantly delays the fracture of the alloy and increases the ductility [31].  
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Figure 2.12: (a) The TEM images of deformed Cu47.5Zr47.5Al5 alloy with typical twins contrast. (b) 

HRTEM images of the lattice planes, the twins and B2 CuZr phase were examined. The inset 

shows the FFT of the twins and B2 phase. 

 

Figure 2.13: The deformation process in the CuZr based alloy systems. (a) The glassy matrix is 

shown in blue and the local stress concentrations shown in red to yellow will generate at the 

beginning of loading. (b) A variety of nanocrystal morphologies are formed due to stress. The 

STZs start to develop in this region at the same time and are blocked by the nanocrystals. (C) The 

STZs will band together to form a nascent shear band which will absorb the stress and hinder the 

fracture propagation. 

In 2010, Wu et al. [84] performed tensile tests to the Zr48Cu47.5Al4Co0.5 alloy system and 

an obvious work-hardening process has been observed. They have investigated the B2 CuZr 

phase morphology change during different strain conditions. At the beginning of the plastic 

deformation process, the B2 phases are round and stress concentrations are formed around 

these phases. The phases will then extend along the loading direction during the work-
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hardening stage, followed by the formation of small shear bands. For the near fracture stage, 

the cracks will approach these phases and result in a stress decrease. They suggested that 

most of the fracture caused by cracks were due to the crystalline phase and glass matrix 

interface separation. The microstructures and tensile test processes are shown in Figure 2.14 

(a)–(c). 
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Figure 2.14: (a) The SEM image of tensile test sample, (b) Martensite phase after the TRIP 

process, (c) Tensile engineering stress-strain curve for different stress conditions, inset shows the 

true stress-strain curve [106]. 

Hofmann compared tensile properties of TRIP reinforced BMGMC Zr48Cu47.5Al4Co0.5 

with body centre cubic (bcc) dendrite reinforced Zr39.6Ti33.9Nb7.6Cu0.5Be12.5. The results and 

microstructure are shown in Fig 2. 15. The TRIP reinforced material exhibited very good 

tensile plasticity and work-hardening behaviour, even when the crystalline volume fraction 

was smaller than the bcc reinforced BMGMC [22]. 

 

Figure 2.15: The tensile test curves and SEM images of TRIP reinforced BMGMCs and bcc 

dendrite reinforced BMGMCs [22].  
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Detailed studies of alloy composition and cooling rate effects on the microstructures of 

CuZr- based TRIP alloys have also been performed by Wu et al. [33] in 2011. Alloy 

compositions of (Zr0.5Cu0.5)Alx (x = 1, 2, …, 10 at. %) with as-cast diameters up to 10 mm 

have been investigated. They found that with different cooling rates (casting sizes) of the 

samples, the phase formation process can be very different. They summarised the as-cast 

sample microstructure changing process for this alloy system: the fully amorphous phase 

forms first when the casting diameter is low and the B2 phase combined with the amorphous 

phase structure will form when the casting diameter is increased. The Al2Zr, B2 and 

amorphous phases will form together with large casting diameters. They indicated that the 

casting size is a key factor affecting the microstructure. The B2 phase could be 

homogeneously distributed in the glassy matrix, with a spherical shape, when the diameter 

was 3 mm. However, the shape of the B2 phase became patch-like and randomly distributed 

in the glassy matrix when the diameter was 4 mm. They also demonstrated that the 

composition inhomogeneity is caused by the temperature gradient during the rapid cooling 

process. Larger casting sizes provided more thermal diffusion space and the composition 

inhomogeneity became large. The microstructure features with different Al content and 

cooling rates were also plotted by the group as shown in Figure 2. 16. 
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Figure 2.16: The microstructure changes with different Al content and diameters of 

(Zr0.5Cu0.5)Alx (x = 1, 2, …, 10 at. %) [110]. 

They have indicated that tensile ductility was found for the single B2-CuZr phase type 

samples, and samples with intermetallic Al2Zr phases exhibited brittle properties. The 

blocking effect was observed for the tensile samples: the shear band propagation was 

obstructed by the crystalline B2-CuZr phase, and secondary shear bands were generated 

around the B2-CuZr phase. The rapid crack process was significantly delayed by this effect. 

Further investigation by the same group has indicated that the volume fraction, size and 

distribution of the metastable B2-CuZr phase have strong relationships with the mechanical 

properties. They reported that the BMGMCs exhibit the best mechanical properties when 

the sample contains the B2-CuZr phase and amorphous matrix structure only. The yield 

stress decreases with an increase in B2-CuZr phase volume fraction, which generally obeys 

the rule of mixtures (ROM). In contrast, the fracture strength shows a near-constant value. 
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This will not change with the volume fraction of the B2-CuZr phase. The B2-CuZr phase 

has relatively low yield stress but the glassy matrix has very high yield stress, and according 

to the ROM, the yield stress will vary with the volume fraction of B2-CuZr. The 

deformation-induced martensite phase has a similar fracture strength to the glassy matrix, 

so the fracture strength has no big differences between samples. Despite the cooling rate 

effect for the TRIP BMGMCs, researchers found that there are still some other factors to 

influence the phase structure and morphology of the samples. Kou et al. [111] have 

suggested that the casting mould shape can change the morphology and plasticity of the 

TRIP reinforced BMGMCs. Pauly et al. found that by applying different melting currents 

before the casting process, the volume fraction and distribution of the B2-CuZr phase 

exhibited very obvious differences which lead to the mechanical properties variations. 

Okulov et al. [112] have applied the Joule Heat-treatment process to Cu47.5Zr47.5Al5 

BMGMCs ribbons. The microstructure can be controlled through this rapid heating method 

and this was the first time the single B2-CuZr phase combined with glassy matrix could be 

fabricated other than using the casting process. 

The mechanical properties of the TRIP reinforced BMGMCs is strongly dependent on 

the martensitic transformation. The martensitic transformation ability of the metastable 

phase plays a key role in the plasticity and work-hardening ability. Wu et al. have 

systematically investigated the effect of alloying elements on the stacking fault energy of 

the B2-CuZr phase. The Cu element was substituted by minor addition of alloying elements 
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and they found that the {011} <100> slip system has the lowest stacking fault energy, so the 

phase transformation is more likely to happen in this system. The alloying elements can 

significantly change the electronic density of B2-CuZr during the phase transformation. The 

alloying elements which reduced the electronic density charge redistribution can further 

reduce the stacking fault energy of the CuZr phases, and vice versa. They have indicated 

that with the same volume fraction of the B2-CuZr phase, but different stacking fault energy, 

BMGMCs can exhibit different mechanical properties. The BMGMCs with lower stacking 

fault energy has lower yield strength but better plasticity. The BMGMCs with higher 

stacking fault energy exhibit in a contrary way. The reduction in stacking fault energy of the 

metastable phase will contribute to the formation of twin nuclei and further development of 

the twin structure. The TRIP effect formation should become easier under this situation and 

further reduce the stress concentration in the amorphous matrix.   

 

Figure 2.17: The B2-CuZr phase stacking fault energy dependence of the electronegativity and 

atomic radius difference with different alloying elements [84].   
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Along with the development of TRIP reinforced BMGMCs, the desire to make relatively 

large samples with good plasticity and work-hardening ability became very strong. Making 

large size TRIP reinforced BMGMCs poses some challenges: the GFA of the amorphous 

phase should be high; the cooling rate will rapidly decrease when the sample size becomes 

large. The low cooling rate will contribute to the formation of the brittle phase, lower the 

volume fraction of the amorphous matrix, enlarge the metastable phases and cause random 

distribution of metastable phases. An effective way to manipulate the nucleation and crystal 

growth is desired. Song et al. recently announced an attempt to solve these problems. They 

introduced the idea of heterogeneous nucleation to control the microstructures of the 

BMGMCs. Figure 2. 18 shows the heterogeneous nucleation process for the TRIP reinforced 

BMGMCs. 

 

Figure 2.18: The schematic of the heterogeneous nucleation process for developing large-sized 

BMGMCs. (a) The suitable alloying elements have increased the GFA of the matrix. (b) The 

alloying elements will form intermetallic with the main elements due to the decrease in 
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temperature. (c) The high melting point intermetallic will contribute to the formation of the 

homogeneous distributed metastable phase. (d) The remaining molten materials will form the 

amorphous matrix [113]. 

The Cu47Zr48Al4Ag1 alloy was selected as base alloy, and minor addition of Sn was 

added into the glassy matrix. Sn will form Zr5Sn3 with Zr due to the negative heat of mixing. 

The high melting point of about 1988 ºC will make this intermetallic structure retain in the 

microstructure and become the heterogeneous nucleation nucleus. The B2-CuZr phase will 

precipitate homogeneously as a consequence. The crystalline nucleation and growth is a 

competitive process during the solidification: more heterogeneous nucleation means the 

grain growth driving force will become smaller, which will suppress the rapid growth of the 

B2-CuZr phase and form a homogeneous distributed fine structure. The Zr-Cu-Al-Nb alloy 

system was reported by Wu et al. which exhibited large tensile plastic deformation after the 

tensile test, and they indicated that the B2 phase can effectively improve the local stress 

concentration. The B2 phase can stabilise the tensile plastic deformation by boosting the 

interaction of shear bands  

The detailed studies of the deformation mechanism of TRIP reinforced BMGMCs were 

conducted by the neutron diffraction technique. Wu et al. have reported that the crystalline 

structures with different orientations showed significant anisotropic properties. Most of 

martensitic transformation occurred on the (110) plane. They found that the atoms of the 

martensite phase were all located on the interface between the amorphous matrix and the 
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crystalline phase. To summarise, the TRIP effect can significantly improve the mechanical 

properties of BMGMCs. This kind of BMGMC has strong potential to be developed and 

investigated. 

2.6 Summary of literature review 

In this chapter, a brief history and the development of BMGs and BMGMCs have been 

introduced. The nature of BMG formation has been investigated through kinetic, 

thermodynamic and structural aspects. BMGMCs were then introduced and deformation 

behaviours and mechanisms were investigated. The last section introduced several methods 

to improve the plasticity and work-hardening behaviour of BMGs. 
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Chapter 3 

Experimental Methods 

3.1 Materials Preparation 

3.1.1 Alloy Preparation 

The constituent elements of different alloy systems were made in batches of 2–5 g. All the 

constituent elements were in sheet format with purities ≥ 99.99 %. All the elements were 

carefully ground using abrasive paper to remove oxides or dirt from the surfaces. The 

elements were then cleaned using isopropanol and cut into small pieces. The elements were 

weighed on a Precisa XB 120A electronic mass balance device with an accuracy of 0.1 mg. 

Elements were finally cleaned in isopropanol for 5 minutes using an ultrasonic cleaning 

machine before the arc melting process. 

3.1.2 Arc Melting 

Arc melting process was performed using the MAM1 Edmund Buhler arc melter. The 

arc melter consists of three parts: a vacuum chamber with copper hearth, a water-cooling 

system and a power supply. The melting chamber setup is shown in Figure 3. 1 (a) and (b). 

Due to the high-level melting requirements of BMGs and BMGMCs, the chamber was 

cleaned using isopropanol, and the copper hearth was cleaned using 4000 grit grinding paper 

and isopropanol. The constituent elements were placed on the water-cooled copper hearth 

and a commercial purity titanium ‘getter’ was also placed at the centre of the hearth. The 
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chamber was sealed and pumped down to a pressure below 0.1 Torr, then backfilled with 

0.3 bar of argon and pumped down to 0.1 Torr again. This process was repeated three times 

in order to reduce the oxygen in the chamber. The chamber was then evacuated to a pressure 

below 5.0 × 10-5 Torr. Once the vacuum was below this value, 0.7 bar of argon was 

introduced into the chamber to create an ideal atmosphere for the following melting process. 

The ‘getter’ was melted first to consume the remaining oxygen in the chamber and then 

the constituent elements were melted to form a single master alloy. The master alloy was 

flipped over and re-melted at least four times to ensure chemical homogeneity of the alloy 

system. The ‘getter’ was melted prior to each melt of the master alloy. The weight loss of 

all the alloy ingots after melting was less than 0.1 wt. %. The alloy ingot was removed from 

the chamber and cleaned using isopropanol before the casting process. 

 

Figure 3.1: (a) MAM1 arc melter configurations for melting. (b) Melting mould. 
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3.1.3 Copper Mould Suction Casting 

A rapid solidification process with the high cooling rate was applied to form BMGs and 

BMGMCs. A suction casting method was used for this research and the setup is shown in 

Figure 3. 2 (a) and (b). The master alloys were cast using copper moulds with diameters of 

2 mm to 6 mm. The inner surfaces of the copper casting mould were cleaned by a 6 μm 

diamond paste to remove the dirt, and the outer surfaces were cleaned by using an abrasive 

paper. This aims to enhance the cooling rates during the casting. 

 

Figure 3.2: (a) MAM1 arc melter configurations for casting. (b) Casting mould. 

At the beginning of the casting process, different casting pressures were set with 

corresponding casting diameters. The rest of the evacuation processes were the same as the 

melting process described in Section 3.1.2. Once the chamber pressure was below 5.0 × 10 

-5 Torr, the casting process was performed by melting the titanium ‘getter’ first and then the 
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master alloy. When the master alloy was fully melted, the pressure valve was released, the 

molten alloy entered the casting mould and finally solidified in the mould with the desired 

diameters. 

3.2 Characterisation 

3.2.1 X-Ray Diffraction (XRD) 

An X-Ray Diffraction technique (XRD) was applied to examine amorphous features and 

crystalline phases. The XRD patterns indicate the Bragg peaks of different kinds of 

crystalline phases and the amorphous trace can also be detected. 

The as-casted rods were cut into thin disks with thicknesses around 1 mm. All the thin 

disks were polished by abrasive papers to produce flat surfaces. All the disks were cleaned 

in the ultrasound cleaning machine before the XRD test to avoid impurities. Disks were 

attached to the sample holder and the number of disks must be enough to cover an area of 1 

cm2. 

A Siemens D5000 X-Ray Diffractometer with a monochromatic radiation source Cu Ka 

(λ = 0.15418) was used. The scanning regime was set as follows: step size of 0.05o, step 

speed of 0.5o/min and diffraction angle (2θ) from 20o to 90o. 
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3.2.2 Thermal Analysis 

Thermal properties of the as-cast rods were examined using Differential Scanning 

Calorimetry (DSC) and Differential Thermal Analysis (DTA). The GFA of BMGs and 

BMGMCs can be found through this technique. The crystallization temperature Tx and glass 

transition temperature Tg can be obtained from the DSC trace. The supercooled liquid region 

ΔTx can be calculated (Tx -Tg), which indicates the glass forming ability of the BMGs and 

BMGMCs. 

Perkin Elmer Diamond DSC and Perkin Elmer Diamond DTA were used to test these 

thermal properties. A baseline was set by two empty aluminium pans before each test with 

the same conditions and then subtracted for the subsequent test. The actual test for each 

sample with 8–10 mg was placed into one aluminium pan and the other empty pan was used 

for reference. The heating rates varied between 5–20 K/min up to 800 K with argon flow. 

The melting temperature, Tm, and liquid temperature, Tl, were also examined using 

Perkin Elmer DTA-7. The heating rate was 20 K/min and the sample weight for a single test 

was 20 mg. 

3.2.3 Compression Test 

A compression test was applied to examine the mechanical properties of BMGs and 

BMGMCs. Samples were tested by a ZWICK Z050TH machine at room temperature. The 

test sample rods were prepared with an aspect ratio (length: width) of 2:1. Five rods were 
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cut from original as-cast rods in order to ensure reproducibility and statistical properties of 

the specimens. Both the top and bottom ends of each rod were carefully machine-polished 

before the test. In order to avoid orthogonal deviation, the parallelism of both ends was 

precisely controlled and the planarity was also checked by a calliper. 

In each test, sample was placed between two compression platens. Sample was set on a foil. 

Graphite lubricant was applied to the surface between the sample and platen to reduce 

friction. The strain rate of the compression test was set as 2 × 10-4 s–1 at room temperature. 

The engineering stress and strain curves were converted to the true stress and strain curves 

by following equations: 

σ𝑇𝐶 = σ𝐸𝐶(1 + ε𝐸𝐶) (3.1) 

ε𝑇𝐶 =  ln(1 + ε𝐸𝐶) (3.2) 

where σEC and εEC are the engineering stress and strain respectively. σTC and εTC are the true 

stress and strain respectively. 

3.2.4 Tensile Test  

Tensile test specimens were machined and polished into dumbbell-shaped rods from as-

cast rods. The test specimen is shown in Figure 3. 3. The sample gauge dimensions were 1.5 

mm × 8 mm. 
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Figure 3.3: Tensile test specimen. 

Tensile tests were conducted using the ZWICK Z050TH machine with 20 kN load cell and 

a strain rate of 1 × 10-4 s–1 at room temperature. Five samples were tested for each 

composition to ensure the reproducibility and statistical properties of the specimens. The 

tensile sample properties such as 0.2 % proof stress (Rp0.2), ultimate tensile stress (UTS) and 

total strain to failure (εtot) were determined. The engineering stress and strain curves were 

converted to the true stress and strain curves by the following equation: 

σ𝑇𝑇 = σ𝐸𝑇(1 + ε𝐸𝑇) (3.3) 

ε𝑇𝑇 =  ln(1 + ε𝐸𝑇) (3.4) 

where σET and εET are the engineering stress and strain respectively. σTT and εTT are the true 

stress and strain respectively. 

3.2.5 Scanning Electron Microscopy 

Scanning Electron Microscopy (SEM) was applied to test amorphous features and 

second phases of the BMGs and BMGMCs. The fracture surfaces after compression and 

tensile tests were also examined by this technique. FEI Inspect F detector was used with an 
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accelerating voltage of 15–20 kV, a beam current of 45 µA and a spot size of 5. Both 

backscatter and secondary electron detectors were used. The energy dispersive spectrometer 

(EDS) was also applied to analyse the alloy compositions. The SEM samples were mounted 

using cold resin to avoid crystallisation. The sample was ground with silicon carbide 

grinding and polishing paper from P120 to P4000. The fine polish was also applied using 

oil-based diamond suspension from 3 µm to 1 µm. The fractured sample after compression 

and tensile tests were also examined by this technique. 

3.2.6 Transmission Electron Microscopy and High-resolution Transmission Electron 

Microscopy 

The microstructures of BMGs and BMGMCs were examined and studied using 

transmission electron microscopy (TEM). The TEM specimens were cut from the as-cast 

rods and deformed samples. The specimens were ground to thin foil specimens with a 

thickness between 20–30 µm. An ion milling process was conducted on the specimens by 

Gatan Precision Ion Polishing PIPSII with a beam energy of 2.5 keV and milling angle 

between 8°–10°. Liquid nitrogen was added during the ion milling process to prevent 

unwanted crystallisation. The FEI Tecnai F20 TEM was used for examining amorphous 

features, crystalline phases and obtaining selected area diffraction (SAED) patterns with an 

accelerating voltage of 200 kV. The nano-scale features were further inspected using high-

resolution TEM (HRTEM). JEOL-2010F and JEOL JEM F200 were used with an 
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accelerating voltage of 200 kV. All the TEM images were post-processed by a Gatan Digital 

Micrograph software. 
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Chapter 4 

Investigation of the Effect of Ag Element to the Zr-Cu-

Al Bulk Metallic Glass Composites 

4.1 Introduction 

BMGs have attracted great attention owing to their unique structure and properties. They 

exhibit high strength, high hardness, large elastic strain limit and good corrosion resistance 

[1]–[3], [43]. However, the room-temperature brittleness, lack of plasticity and strain-

softening behaviour of the monolithic BMGs have strongly limited their applications in the 

structural and engineering aspects [114]–[116]. To overcome these drawbacks, many 

approaches have been applied to the BMGs, such as introducing second phase particles into 

the BMG matrix to form BMGMCs [117]–[120]. Recently, a new concept of introducing 

TRIP effect to reinforce the BMGMCs has been studied. This effect is achieved by forming 

a metastable phase into the amorphous matrix; when an external load is applied to the alloy, 

the phase transformation combined with the amorphous matrix will produce improved 

plasticity and work hardening behaviour [84], [105], [110], [121]. This idea came from 

previous research in steels which strongly enhanced the toughness and work-hardening 

properties. The TRIP effect has been introduced to the ZrCu-based and Ti-based BMGMCs. 

For the ZrCu-based BMGMCs, the TRIP effect is due to the transformation from the 

metastable B2-CuZr phase to the martensitic B19’ phase during the deformation which has 

significantly improved the mechanical properties of the alloys.  
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According to recent research [107], [119], [122], [123], the TRIP reinforced ZrCu-based 

BMGMCs exhibit enhanced mechanical properties when forming the amorphous phase 

combined with a single B2-CuZr phase structure. However, most of the single B2-CuZr 

phase TRIP reinforced Zr-Cu-Al or Zr-Cu-Al-based BMGMC systems exhibit sample size 

around 2–3 mm for the rod samples. As stated in the recent research, the as-cast sample with 

microstructure which consists of an amorphous phase and single B2-CuZr phase usually 

exhibit better plasticity under tension [121]. However, increasing the sample size (reduced 

cooling rate) will significantly influence the microstructure formation. The brittle phases 

such as Cu10Zr7 and CuZr2 will precipitate due to the low cooling rate, the volume fraction 

and morphology of B2-CuZr phase exhibit significant variation with different sample size. 

Thus, obtaining a single B2-CuZr phase structure with the increasing sample size is desirable 

for the current researches. In order to increase the sample size, the GFA of the alloy system 

should be enhanced first and the Ag element has been proved to strongly enhance the GFA 

of the BMGs according to research, which can form rod sample up to 25 mm in diameter 

[67][124].  

The aim of this chapter is to find a method which will increase the sample size of the 

traditional Zr-Cu-Al BMGMCs. The alloy design process is explained as: the Zr-Cu-Al alloy 

system has been selected as the base alloy due to the extensive studies in the recent years. 

They have exhibited enhanced mechanical properties and the TRIP effect has been 

successfully obtained for this alloy system. As stated in the previous research, the Al content 
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will strongly influence the GFA and phase formation of Zr-Cu-Al alloy systems. Moreover, 

the aim of this chapter is investigating the effect of Ag element on the alloy system, hence 

the Al content has been fixed. The minor addition of alloying element Ag was introduced to 

the Zr-Cu-Al alloys. The Zr50Cu45-xAl5Agx (x = 0, 0.5, 1, and 2 at.%) are prepared, the GFAs, 

microstructures and mechanical properties of this alloy system are studied. 

4.2 Experimental Work 

The constituent elements of alloys Zr50Cu45-xAl5Agx (x=0, 0.5, 1, and 2 at.%) alloys with 

purity > 99.9 % were prepared under an argon atmosphere using arc melting. The alloy 

ingots were melted four times to ensure compositional homogeneity. The weight losses for 

the alloys after the melting were less than 0.1 wt. %. The ingots were then fabricated into 

rod shapes with 3–6 mm diameters using copper mould suction casting. The amorphous 

features and crystalline phases were examined using the Siemens D5000 XRD with the 

monochromatic radiation source Cu Ka, and the diffraction angle (2θ) was set between 30o 

and 80o. The GFAs and thermal properties were examined using the Perkin Elmer Diamond 

DSC with a heating rate of 20 K min-1. Room temperature compression tests were carried 

out by a Zwick machine with a maximum load of 50 kN at an engineering strain rate of 2 × 

10–4 s-1. The microstructure nature of the as-cast samples and fracture samples were 

investigated by the FEI Inspect F SEM and FEI Tecnai TEM. The specimens for the TEM 

were ground and polished to 20 micrometres before the ion milling process was applied. 
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The Gatan PIPS Ion Milling device was used under the liquid nitrogen cooling condition in 

order to prevent unpredicted crystallisation induced by the heating from the machine [125]. 

4.3 Results and Discussions 

4.3.1 Microstructure features of as-cast samples 

Figure 4. 1 (a)–(d) shows the XRD patterns of as-cast Zr50Cu45-xAl5Agx (x = 0, 0.5, 1, 

and 2 at. %) alloy. The Zr50Cu45Al5 base alloy exhibits a composite structure which consists 

of an amorphous phase and single B2-CuZr phase with 2 mm sample size. When the casting 

diameter is 3 mm, the Al2Zr phase is also observed from the XRD curve. For the 

Zr50Cu44.5Al5Ag0.5, it exhibits a fully amorphous structure up to 2 mm. The 3 mm sample 

shows a single B2-CuZr phase structure. From 4 mm and onwards, the Cu10Zr7 phase and 

B19’ martensite phase is observed. For the Zr50Cu44Al5Ag1 specimen, it exhibits a fully 

amorphous structure up to 2 mm. This alloy composition exhibits a single B2-CuZr phase 

structure from 3 mm to 5 mm. The B19’ martensitic phase and Cu10Zr7 brittle phases are 

obtained in 6 mm sample. For the Zr50Cu43Al5Ag2 sample, it exhibits a fully amorphous 

feature up to 3 mm. The microstructure becomes a single B2-phase structure when the 

casting diameter is 4 mm diameter. The Cu10Zr7 phase is observed when the casting diameter 

reaches 5 mm. The XRD results indicate that the Ag content has significantly enhanced the 

GFA of the Zr-Cu-Al base alloy, the fully amorphous structure can be obtained up to 4 mm. 
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which enables the alloys to form the same microstructures even with the reduced cooling 

rate (larger sample size). 
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Figure 4.1: XRD patterns of the as-cast Zr50Cu45-xAl5Agx (x = 0, 0.5, 1, and 2 at. %) alloys with 

different cooling rate (sample size): (a) x = 0, (b) x = 0.5 (c) x = 1, (d) x = 2. The Ag content has 

significantly enhanced the GFA of the Zr-Cu-Al base alloy.   

 

Figure 4. 2 shows phases present in this Zr50Cu45-xAl5Agx (x = 0, 0.5, 1, and 2 at. %) alloy 

system has strong dependence on the Ag content and sample size (cooling rate). The minor 

addition of Ag element has enhanced the GFA of the base alloy and leads to the formation 

of fully amorphous structure up to 3 mm. It is also found that with the suitable alloy 

composition and cooling rate, the single B2-CuZr phase can be retained during the cooling 

process without the formation of B19’ martensitic phase, Cu10Zr7 and CuZr2. The Ag 

element has enlarged the sample size range which can form single B2-CuZr phase, compared 

with the base alloy. The phase formation of the alloys exhibits big differences with the 

sample size (cooling rate), even with the same Ag content. Increasing sample size will 

contribute to the decrease of cooling rate, the microstructure changes from fully amorphous 

structure to amorphous combined with single B2-CuZr phase structure and finally becomes 

a structure which consists of amorphous structure, B2-CuZr phase and other brittle phases. 

The formation of single B2-CuZr phase structure can only be retained with specific alloy 

compositions and cooling rate. 
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Figure 4.2: Microstructure variations with Ag content and sample size (cooling rate) of Zr50Cu45-

xAl5Agx (x = 0, 0.5, 1, and 2 at. %) alloy system. 

4.3.2 Thermal properties of as-cast samples  

The effect of Ag on the GFA and thermal properties of as-cast samples are further 

examined by DSC. Figure 4. 3 shows the DSC curves of the Zr50Cu45-xAl5Agx (x = 0, 0.5, 1, 

and 2 at. %) alloy system. The glass transition temperature (Tg), crystallisation temperature 

(Tx) and supercooled liquid region (ΔTx) can be obtained from the DSC results. When the 

material passes Tg, the baseline will move towards the endothermic direction and form a 

step. As shown in the Figure 4.4, A is the point which starts to deviate from the base line 

and D is point where deviation ends. The baseline is extended from both point A and D. 

Point C is the half vertical distance between the two lines. Making tangent from point C and 

intersect with the baseline is point B which is Tg. The results indicate that the Tg value of the 
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base alloy increased from 649 K to 676 K which further proves the Ag element has enhanced 

amorphous phase stability. As discussed in the previous XRD results, the size of the fully 

amorphous sample increases with the Ag contents. According to the Inoue’s empirical rule 

the larger the ΔTx the better GFA of the alloys. However, the current alloy series, 

Zr50Cu44.5Al5Ag0.5 sample exhibits the largest ΔTx values. The variations of these thermal 

properties may due to competition between the B2-CuZr phase and amorphous matrix 

during cooling process.  
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Figure 4.3: DSC curves of the as-cast 3 mm Zr50Cu45-xAl5Agx (x = 0, 0.5, 1, and 2 at. %) alloy 

system. The determination of Tg is shown below the DSC curves. 

4.3.3 Mechanical properties 

In order to examine the mechanical properties of the current alloy system, the 

Zr50Cu44Al5Ag1 alloy series is selected and tested by the compression tests, due to the wider 

range of single B2-CuZr phase structure. The compression test stress-strain curves of all the 

Zr50Cu44Al5Ag1 specimens and the 2 mm Zr50Cu45Al5 base alloy specimen are shown in the 

Figure 4. 4. The compression test results exhibit very big differences among the specimens. 
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The alloys exhibit a yield strength range between 763 MPa to 1325 MPa, and the plasticity 

range from 0.3 % to 2.4 %. The base alloy exhibits a yield strength of 1325 MPa and a 

plastic strain of 1.8 %. The 2 mm Zr50Cu45Al4Ag1 specimen exhibits a typical BMG 

compression curve which exhibit a fracture strength of 1650 MPa and 0.3 % plasticity. The 

3 mm specimen shows a yield strength of 1368 MPa with a plastic strain of 1.3 %. 

Furthermore, the 4 mm specimen exhibits a yield strength of 1221 MPa and the best 

plasticity of 2.3 % among all the specimens. The fracture strength is 1700 MPa, and the 

stress increase with the plastic strain behaviour is observed in this specimen. The increased 

plasticity of this alloy is mainly due to the work-hardening behaviour caused by the phase 

transformation during the deformation. The 5 mm specimen exhibits a yield strength of 838 

MPa with a plastic strain of 2.1 %. The 6 mm specimen exhibits a yield strength with 943 

MPa and a plasticity of 1.9 %.  
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Figure 4.4: Room-temperature compression test curves of as-cast 2 mm Zr50Cu45Al5 base alloy and 

2–6 mm Zr50Cu44Al5Ag1 alloys. The repeat results are shown separately.  
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According to the XRD results, the 2 mm Zr50Cu44Al5Ag1 sample has a fully amorphous 

feature, and the compression result shows a typical amorphous alloy compression curve. 

The 6 mm Zr50Cu44Al5Ag1 has a structure which consists of amorphous phase, B2-CuZr 

phase and other brittle phases, the compression curve exhibits very similar behaviour as 

fully crystalline materials. The compression test results satisfy the microstructure of these 

two alloys. However, the 3–5 mm samples have the same microstructures but they show big 

differences upon compression tests. All the alloys have not exhibited significant mechanical 

properties improvements compared with the base alloy. 

As a result, the microstructure of as-cast 3–5 mm Zr50Cu44Al5Ag1 samples are examined 

by the SEM. Figure 4.5 (a)–(c) shows the morphology of the 3–5 mm samples respectively. 

When the sample size is 3 mm, the spherical B2-CuZr particles precipitate on the amorphous 

matrix with size 65–200 μm and volume fraction is 11 %. The grey part shows the glass 

matrix and the dark parts are the B2 phases. For the 4 mm sample, the volume fraction 

further increases to 37 % and the size of the B2-CuZr phase has been increased up to 500 

μm. When the sample size reaches 5 mm, the volume fraction reaches 83%. The spherical 

shaped phase is no longer be observed, instead of patch-like shapes. This phenomenon is 

due to the ‘Soret effect’ of the BMGs [110]. The large temperature gradient is formed during 

the rapid cooling process of BMGs results in composition inhomogeneity. Increasing the 

casting size will lead to the decrease of cooling rate and there will be more room for the 
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thermal diffusion process. The large compositional inhomogeneity will occur due to the 

above reason.  

 

Figure 4. 5: SEM images of the as-cast (a) 3 mm (b) 4 mm (c) 5 mm Zr50Cu44Al5Ag1 BMGMCs. 

By comparing the SEM results with the compression results, the volume fraction of the 

B2-CuZr phase and morphology of the sample microstructure has great influence for the 

current alloy system. A more homogenised distribution of the B2-CuZr phase will contribute 

the better mechanical performance. The patch-like pattern indicates the formation of large 

amount of B2-CuZr phase, and trigger a random distribution of the B2-CuZr phase. The 

volume fraction of the B2-CuZr phase is also a key parameter for the enhanced mechanical 

property. For the current alloy system, the mechanical variation among the samples may 

mainly due to the above reason, the microstructure of the alloy system exhibits big 

differences with the increase of sample size. The current alloy system has not exhibited 

significantly enhanced properties compared with the base alloy. However, the main output 

of the current chapter is by introducing the Ag element into the base alloy, the GFA of the 
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base alloy have been significantly enhanced and the single B2-CuZr phase can be obtained 

with sample size up to 5 mm.  

4.4 Conclusion 

The Zr-Cu-Al-Ag1 alloy exhibits a relatively large range of forming single B2-CuZr phase 

microstructure. The mechanical properties exhibit large variations due to the volume 

fraction of the B2-CuZr phase and the formation of other brittle phases such as Zr10Cu7 

during the casting process 

The results of this chapter have produced a general view of the Ag content influence of 

the base Zr-Cu-Al alloy system. However, the single B2-CuZr phase can be obtained from 

the current alloy system, the large grain size and variation of volume fraction still have 

strong effect to the alloy system. The single B2-CuZr phase combined with amorphous 

phase structure can only be obtained with a suitable composition range and cooling rate. It 

should satisfy both thermodynamics and kinetics equilibrium. For the current study the Ag1 

alloy exhibit a exhibited a wider range of an amorphous and B2-phase structure and 

enhanced glass forming ability compared with the base alloy, and it was chosen as the base 

alloy for the following studies. 
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Chapter 5 

Formation of Zr-Cu-Al-Ag-Ti Bulk Metallic Glass 

Composites with Enhanced Work-Hardening Ability 

and Plasticity 

5.1 Introduction 

BMGs exhibit high strength, large elastic limit, high yield strength and high hardness due to 

the long-range disordered and short-range ordered structural characteristics, which makes 

them attract significant attention [3], [43]. However, this unique structure also leads to room 

temperature brittleness and lack of plasticity, which has strongly limited their applications 

in engineering materials [19], [126]. In order to conquer these problems, the formation of 

BMGMCs has been introduced and proven to be an effective way to improve the mechanical 

properties of BMGs [4], [19], [23], [126] During the development of BMGMCs, a variety 

of concepts has been investigated, such as in-situ formation of ductile crystalline phases in 

the glass matrix [81], [82], [127]–[129]. In contrast, the lack of work hardening behaviour 

is still a challenge for BMGMCs. As discussed in the Chapter 4, the TRIP effect has been 

found in the Zr-Cu-Al-Ag BMGMCs. However, the sample size and microstructure 

instability strongly affect this TRIP reinforced Zr-Cu-Al-Ag BMGMCs.  

According to the literature and the last chapter’s results, the specimens which consist 

of the amorphous phase and B2-CuZr phase microstructure exhibit better mechanical 



75 

 

properties [33]. As a result, the Zr50Cu44Al5Ag1 alloy system was selected as the base alloy 

because it formed an amorphous and B2-CuZr phase structure up to 5 mm. In order to further 

increase the sample size and enlarge the single B2-CuZr structure range, Ti was introduced 

to the base alloy by partially replacing Zr. The reasons for selecting Ti as an additional 

element are: (i) Ti addition will affect the thermal stability of B2-CuZr phase according to 

the recent research [31][130]; (ii) Ti has zero heat of mixing with Zr and large negative heat 

of mixing with Cu, Al and Ag (as shown in Table 5. 1) [131], it will enhance the GFAs by 

stabilising the liquid phase according to the empirical rules and further raise the chance to 

obtain medium/large-sized samples that contain amorphous phase and B2-CuZr phase 

microstructures; (iii) Ti and Zr have similar chemical properties as they are in the same 

group in the periodic table; (iv) Ti and Zr tend to form a homogeneous solid solution [132]. 

As a result, Ti is added to the alloy system.  

In summary, the aim of this chapter is to design a new series of ZrCu-based TRIP 

reinforced BMGMCs based on the last chapter’s results with improved mechanical 

properties and increased sample size. In the following sections, the Zr50-xCu44Al5Ag1Tix (x 

= 0.5, 1, 2, 3, 4 and 5 in at.%) alloy systems are designed and the effect of Ti addition on the 

alloy systems are investigated. A wide range of B2-CuZr phase structure is obtained 

throughout adjusting Ti content. The alloys are named as Ti0.5, Ti1, Ti2, Ti3, Ti4 and Ti5 for 

convenience. 
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5.2 Experimental Work 

The constituent elements of Zr50-xCu44Al5Ag1Tix (x = 0.5, 1, 2, 3, 4 and 5 in at. %) alloys 

with purity > 99.9 % were prepared under an argon atmosphere using arc melting. The alloy 

ingots were melted four times to ensure compositional homogeneity. The weight losses for 

the alloys after the melting were less than 0.1 wt. %. The ingots were then fabricated into 

rod shapes with 3–6 mm diameters using copper mould suction casting.  

The amorphous features and crystalline phases before and after the mechanical tests were 

examined using the Siemens D5000 XRD with the monochromatic radiation source Cu Ka, 

and the diffraction angle (2θ) was set between 30o and 80o. The GFAs and thermal properties 

were examined using the Perkin Elmer Diamond DSC and DTA with a heating rate of 20 

K/min-1. Room temperature compression tests were carried out using a Zwick machine with 

a maximum load of 50 kN at an engineering strain rate of 2 × 10–4 s–1. The tensile tests were 

conducted using the same machine with an engineering strain rate of 2 × 10–4 s–1 at room 

temperature. A camera was applied to calibrate and measure the strain during the tests. The 

microstructure nature of the as-cast samples and fracture samples were investigated by using 

the FEI Inspect F SEM and FEI Tecnai TEM. More detailed crystalline structures were 

further examined in the JEOL 2010 HRTEM. The specimens for the TEM were ground and 

polished to 20 micrometres before the ion milling process. 
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Table 5. 1: Heat of mixing (kJ/mol) for the binary systems of the Zr, Cu, Al, Ag and Ti elements 

[131]. 

ΔHmix Zr Cu Al Ag Ti 

Zr 0 -23 -44 -20 0 

Cu  0 -1 +2 -9 

Al   0 -4 -30 

Ag    0 -2 

Ti     0 

 

5.3 Results and Discussion 

5.3.1 Microstructures of as-cast samples 

The microstructures of as-cast rods were first examined using XRD. Figure 5.1 shows 

the XRD patterns of as-cast 3 mm Zr50-xCu44Al5Ag1Tix (x=0.5, 1, 2, 3, 4 and 5 at. %) alloys. 

All the alloys have a broad hump at 2θ = 38°–39°, which proves the formation of amorphous 

structure. The Ti1-Ti5 alloys exhibit a fully amorphous structure without any clear sharp 

peaks. The Ti0.5 sample presents a small sharp peak on the amorphous hump which is B2-

CuZr phase. The results indicate the addition of the Ti element will enhance the GFA of the 

Zr-Cu-Al-Ag base alloy and increase the fully amorphous phase structure sample critical 

diameter to 3 mm. Considering the aim of this chapter, to fabricate samples which consist 

of single B2-CuZr phase and amorphous phase microstructure with increased sample size, 
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all the alloys are then cast into 6 mm sample size. The XRD patterns of 6 mm samples are 

shown in Figure 5. 2. For the Ti0.5 specimen, both B2-CuZr phase and B19’ martensite phase 

are observed. For the Ti1 specimen, with an increase of sample size, the B2-CuZr phase is 

found and all the crystalline peaks are B2-CuZr phase peaks. Comparing with the results in 

Chapter 4, the size of sample which consists of amorphous plus B2-CuZr phase structure 

has been increased from 5 mm to 6 mm. For the rest of 6 mm samples, the B2-CuZr phase, 

B19’ martensite phase and Cu10Zr7 phase can be found from the XRD patterns. Increasing 

the sample size will reduce cooling rate and further reduce the of GFA and contribute to the 

formation of brittle phases for these four compositions. The cooling rate cannot prevent 

partial decomposition of the B2-CuZr phase. The CuZr2 phase exhibits more sluggish 

behaviour due to Zr diffusing slower than Cu, as a result, the Cu10Zr7 phase usually 

precipitates first [133]. The Ti1 alloys show a wide range of casting size with amorphous 

plus B2-CuZr phase structure. The B2 phase is at the dominate position and confirms that 

some of the B2 phases are very stable during the casting process. The results indicate a 

suitable amount of Ti suppresses the diffusional transformation of this metastable B2-CuZr 

phase into a mixture of stable Cu10Zr7 and CuZr2. However, a small amount of Ti such as 

0.5 at. % cannot suppress the formation of these brittle phases with reduced cooling rate. 

Introducing more Ti will enhance the amorphous phase and destabilise B2-CuZr phase. The 

results prove that the amorphous plus B2-CuZr structure sample can only be obtained with 

suitable Ti contents and cooling rate.  
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Figure 5.1: XRD patterns of as-cast 3 mm Zr50-xCu44Al5Ag1Tix (x=0.5, 1, 2, 3, 4 and 5 at %) alloys. 

 

Figure 5.2: XRD patterns of as-cast 6 mm Zr50-xCu44Al5Ag1Tix (x=0.5, 1, 2, 3, 4 and 5 at %) alloys. 
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The Ti1 sample exhibits the widest range of forming amorphous plus B2-CuZr structure, and 

the as-cast 3 mm sample was first examined using HRTEM as shown in Figures 5. 3 (a) and 

(b). Figure 5. 3 (a) depicts the general morphology of the sample which exhibits an 

amorphous phase. It is interesting to find that there are some lattices embedded in the glass 

matrix which are marked by a yellow circle, the inset shows the fast Fourier transformation 

(FFT) image of the selected region. Figure 5. 3 (b) shows the enlarged area of lattice 

structure. Large-sized crystalline features are not detected for this specimen. 

 

Figure 5.3: (a) The HRTEM images of the as-cast 3 mm Zr49Cu44Al5Ag1Ti1 sample with lattice 

feature marked by yellow circles. (b) The enlarged area of the lattice structure and the 

corresponding SADP. 

The microstructure features of as-cast 6 mm Ti1 sample are also examined, as shown in 

Figure 5. 4 (a)–(d). Figure 5.4 (a) shows the BF-TEM image of the sample, the darker nano-

sized B2-CuZr phase is clearly observed in the amorphous matrix which exhibits spherical 



81 

 

shapes with varying size between 15–40 nm. Figure 5. 4 (b) shows the HRTEM image of 

the interface between the ordered atomic structure and amorphous structure. Figure 5. 4 (c) 

presents the HRTEM image of the spherical crystalline phase. The measured d-spacing is 

0.237 nm and it shows a similar result with the published B2-CuZr phase. The inset shows 

the corresponding SAED pattern, which further proves the formation B2-CuZr phase. 

Figures 5. 4 (d) shows the SEM image of the sample, the large-sized B2-CuZr phase particles 

can be clearly observed and are homogenous distributed in the amorphous matrix. The sizes 

are generally below 50 μm. The volume fraction of the B2-CuZr phase is 25 %. The 

formation of the B2-CuZr phase in the amorphous matrix can be also clearly observed. The 

B19’ martensitic phase is not detected in this as-cast specimen which agrees with the XRD 

results. Increasing the sample size of this alloy system did not cause the dramatic 

microstructure variations. Introducing addition of Ti has strongly enhanced the GFA and the 

B2-CuZr particles are homogenous distributed in the 6 mm sample which contributes to the 

enhanced mechanical properties with a relatively large-sized sample. 
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Figure 5.4: (a) The BF-TEM image of the B2-CuZr phase embedded on the amorphous matrix. (b) 

HR-TEM micrograph of as-cast 6 mm Ti1 alloy, shows the interface between the amorphous 

matrix and crystalline B2-CuZr phase. (c) The TEM image of the B2-CuZr phase. The inset shows 

the SAED pattern of B2-CuZr phase taken from zone-axis [0 1 0]. (d) SEM image of the B2-CuZr 

particles and the amorphous matrix.  
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5.3.2 Thermal properties of as-cast samples 

The effect of Ti content on the thermal stability and thermodynamic properties of this alloy 

system were further investigated and examined using DSC and DTA. Figure 5.5 shows the 

DSC traces of 3 mm Ti0.5, Ti1, Ti2, Ti3, Ti4 and Ti5 obtained under continuous heating with 

a heating rate of 20 K/s. The Tg and Tx values are obtained from the curves and marked on 

the curves with arrows. The results from the DSC curves indicate that with an increase in 

temperature, all the samples experienced a glass transition into an undercooled liquid and 

then the crystallisation process occurred. The Tg value increases from 673 K to 680 K and 

the Tx values ranging between 738 K to 748 K, which indicates that by increasing the Ti 

content from 0.5 to 5, the thermal stability of the amorphous phase increased. The sharp 

crystallisation peak can be found for the Ti0.5 to Ti3 alloys, while Ti4 and Ti5 exhibit two-

step exothermic events with two exothermic peaks. The variation of Tg, Tx and ΔTx with Ti 

content are summarised in Table 5.2. The calculated ΔTx values show that the supercooled 

liquid region has a relatively large range and further enhances the GFAs.  
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Figure 5.5: DSC trace of as-cast Zr50-xCu44Al5Ag1Tix (x=0.5, 1, 2, 3, 4 and 5 at %) specimens. 

According to recent research, there will be a eutectoid phase transformation at high 

temperatures for the CuZr-based BMGMCs [130]. The low-temperature equilibrium phases 

such as Cu10Zr7 and CuZr2 will transform into B2-CuZr phases during continuous heating. 

A new parameter K was defined, which equals Tf / TL where Tf is the final temperature of the 

B2-CuZr phase transformation and TL is the liquidus temperature. This parameter was 

suggested to predict the tendency of forming B2-CuZr phase in different CuZr-based 

BMGMC alloy systems. The reason for using these values is that the nucleation and growth 

rate of the CuZr intermetallic are governed by the precipitation driving force and this can be 

assessed by the Gibbs energy of the CuZr intermetallic. Equation 6.1 expresses the Gibbs 

energy of the CuZr intermetallic. 
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  0𝐺𝑚
𝐶𝑢𝑍𝑟 = 0.50𝐺𝐶𝑢

𝑓𝑐𝑐
+ 0.50𝐺𝑍𝑟

ℎ𝑐𝑝 + 𝛥0𝐺𝑓
𝐶𝑢𝑍𝑟 (6.1) 

where  0𝐺𝐶𝑢
𝑓𝑐𝑐

 and  0𝐺𝑍𝑟
ℎ𝑐𝑝

 represent the molar Gibbs free energy of fcc Cu and hcp Zr in 

the CuZr intermetallic respectively. The 𝛥𝐺𝑓
𝐶𝑢𝑍𝑟 can be expressed as 𝛥𝐺𝑓

𝐶𝑢𝑍𝑟 = 𝑎 + 𝑏𝑇, 

where a and b are parameters to be evaluated based on some thermodynamic models. 

Therefore, the Gibbs free energy of the equiatomic CuZr intermetallic should be roughly 

evaluated by the phase transformation temperature Tf. 

In order to check the thermal stability of B2-CuZr phase in this Zr-Cu-Al-Ag-Ti alloy 

system, DTA was applied for high-temperature measurements to obtain the eutectoid phase 

transformation parameters K, Tf and TL. Figure 5.6 shows the DTA results of the Ti0.5 to Ti5. 

All the alloys exhibit an obvious endothermic peak at a high temperature around 1000 K. 

This peak was formed after the glass transition and crystallisation event, and before the 

endothermic melting process. The Tf and TL are indicated by arrows on the curves and the 

detailed Tf and TL values and calculated K values are all shown in Table 5.2. As the content 

of Ti increases from 0.5 at. % to 5 at. %, the eutectoid transformation shifts to higher 

temperatures, and the Tf values gradually increase from 1027 K to 1053 K with increasing 

Ti content. In contrast, the TL values decrease from 1198 K to 1153 K with increasing Ti 

content. The K values can be then obtained, which are between 0.869 and 0.913. Compared 

with the literature [162], these values indicate the alloys can be fabricated to relatively large 

sizes and the B2-CuZr phase formation become easier. 
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The above results have illustrated that with an increase in Ti content, Tf gradually increases. 

Therefore, the B2-CuZr phase thermal stability is reduced with increasing Ti content. The 

substitution of Zr by Ti has significantly increased the B2-CuZr phase transformation 

temperature, thus destabilising the B2-CuZr phase. The single B2-CuZr phase structure 

would be easier to retain for lower Ti contents. It is known that B2-CuZr phase will be stable 

at a high melting temperature above 988 K and should decompose eutectoid into the stable 

Cu10Zr7 and CuZr2 at a lower temperature. As the Ti content increases, the B2-CuZr phase 

will become easier to decompose at lower temperatures, which is why the Cu10Zr7 was 

detected for the high Ti content samples. Due to the reduced thermal stability of B2-CuZr 

phase, the amorphous phase is prone to form during the casting process. The volume fraction 

of B2-CuZr phase would decrease with increasing Ti content and the amorphous phase will 

be enhanced, which corresponds well with the XRD results and also the ternary Cu-Zr-Ti 

BMGMCs [130].  
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Figure 5.6: DTA trace of as-cast Zr50-xCu44Al5Ag1Tix (x=1, 2, 3, 4 and 5 at %) specimens.  

Table 5. 2: Thermodynamic properties of Zr50-xCu44Al5Ag1Tix (x=0.5, 1, 2, 3, 4 and 5 at %) alloys 

as-cast rods obtained from DSC and DTA. 

x Tg (K) Tx (K) ΔTx (K) Tf (K) TL (K) Trg (K) K 

0.5 673 740 67 1027 1198 0.56 0.856 

1 676 739 63 1030 1192 0.57 0.864 

2 680 747 67 1033 1185 0.57 0.872 

3 683 742 59 1038 1178 0.58 0.881 

4 687 748 61 1043 1175 0.58 0.888 

5 680 738 58 1053 1153 0.58 0.913 
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5.3.3 Mechanical Properties 

As shown in Figure 5.7, the true compressive stress-strain curves of 6 mm Ti0.5, Ti1, Ti2, Ti3, 

Ti4 and Ti5 are obtained. These specimens exhibit different yielding behaviours and 

plasticity with the different microstructure natures.  

The Ti0.5 exhibits a yield strength of 1490 MPa, high plastic strain of 12.3 % and fracture 

strength of 1720 MPa. Obvious plastic strain can be observed in this specimen even with the 

formation of some B19’ martensitic phase. For the Ti1 specimen, the yield strength is 1453 

MPa and fracture strength is 1680 MPa with a plastic strain of 9.1 %. The increase in stress 

with strain phenomenon is caused by work-hardening behaviour which cause by the TRIP 

effect. For the Ti2 and Ti3 alloys, the yield strengths are 1692 MPa and 1130 MPa 

respectively, and the fracture strengths are 1723 MPa and 1233 MPa with plasticity 1.7 % 

and 1.3 % respectively. The low yield strength for the Ti3 alloys is caused by the formation 

of brittle Cu10Zr7 crystalline phases. However, even though the B2-CuZr phase was obtained 

for these two specimens, the specimens still exhibit low yield strengths. The Ti4 and Ti5 

exhibit typical BMG compression curve, they exhibit fracture strength of 1687 MPa and 

1493 MPa respectively. They have very small plasticity which are all less than 1 %. The 

amorphous phase combined with small amount of brittle phases structure of these two alloys 

contributes to a high fracture strength but no obvious plasticity and work-hardening 

behaviour. 
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The compression tests results demonstrate that 6 mm Ti1 specimens exhibit good mechanical 

properties due to the formation of single B2-CuZr phases. The specimens with brittle phases 

have shown relatively low yield strength and lack of plasticity even with the formation of 

the B2-CuZr phase. The work-hardening behaviour is believed to be caused by the TRIP 

effect. Detailed microstructure studies are given in the following sections. 

 

Figure 5.7: True stress-strain compression curve of the 6 mm Zr50-xCu44Al5Ag1Tix (x=0.5, 1, 2, 3, 4 

and 5 at %) alloys. 

The fracture surfaces of all the 6 mm samples were examined using SEM. The fracture 

surface of the Ti0.5 and Ti1 sample is shown in Figure 5.8 (a) and (b) respectively. Vein-like, 

fishbone-like patterns are observed, the different sized shear bands interact with each other. 

Meanwhile, small amounts of granulated structures were also observed. The granulated 
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structure is mainly caused by the formation of the crystalline phases of the samples. The 

fracture surface of the Ti2 and Ti3 samples are shown in Figure 5.8 (c) and (d) respectively. 

The amount of granulated structures is obvious increased and embedded with the vein-like 

pattern. This is due to the increase of crystalline phase volume fraction, the brittle phases 

and B2-CuZr phase are co-existing in these two samples which lead to the morphology of 

the samples. Figure 5.8 (e) and (f) are the fracture surfaces of the Ti4 and Ti5 samples 

respectively. The vein-like shear bands dominate the fracture surface, the shear bands sizes 

vary between 40-50 μm and no secondary shear bands were observed. This morphology 

contributes to a relatively high yield or fracture strength but lack of plasticity. The shear 

bands will propagate very quickly during the deformation and lead to the fracture of the 

sample. The fracture microstructures of the samples correspond well with the compression 

test results. The compression tests results have demonstrated that the formation of brittle 

crystalline phases will strongly affect the mechanical properties of this alloy system. The 

single B2-CuZr phase structure is more desired for the TRIP reinforced BMGMCs which is 

consistent with the previous chapter’s results and the literature. 
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Figure 5.8: (a)-(f) SEM images of fracture surfaces for all the 6 mm specimens from Ti0.5 to Ti5.  
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The longitudinal surfaces of the 6 mm Ti0.5 and Ti1 samples were also examined by SEM as 

shown in Figure 5. 9 (a) and (b). Both samples exhibited high-density shear bands due to the 

large plasticity. The samples exhibit large number of primary shear bands which interact 

with the small secondary shear bands, shear bands were accumulated together and form a 

squama-like pattern which strongly enhanced the plasticity of the materials. The shear bands 

hindered further fracture propagation with multiple shear bands from different directions. 

These shear bands stacked together and increased the internal energy in the shear bands 

which led to the high plasticity during the compression 

 

Figure 5.9: SEM images of the longitudinal surface of the deformed 6 mm (a)Ti0.5 (b)Ti1 

specimens. Large shear bands aggregations are observed. 

In order to further examine the reason for the enhanced mechanical properties of the 

specimens. The detailed microstructure features of deformed 6 mm Ti1 sample was 

investigated by TEM and HRTEM. Figure 5. 10 (a) shows a BF-TEM image and the 

corresponding SAED patterns, which indicates the formation B19’ martensitic phase narjed 
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by yellow circle. The XRD results and TEM images of the as-cast 6 mm Ti1 sample shown 

in the previous section indicate that no B19’ formation in the as-cast alloy. These results 

have proved the transformation from the B2-CuZr phase structure to the B19’ martensitic 

structure during the deformation. The B2-CuZr SAED pattern was also obtained from the 

image. This phenomenon has further verified the occurrence of the TRIP effect, which can 

be observed for this alloy and it has contributed to the enhanced mechanical properties. 

These results have proved the formation of martensitic phase after the deformation process 

which is also embedded in the glassy matrix. The B2-CuZr and B19’ phases coexist after 

the deformation and not all the B2-CuZr phases have experienced the TRIP process. Figure 

5.10 (b) shows the HRTEM image of the B19’ phase in the (a). Figures 5.11 (a) and (b) 

show the nanocrystals after the deformation process, the image clearly indicates that the 

density of the nanocrystals has obviously increased compared with the as-cast sample, and 

some of them have grown to the size of 30-50 nm. The amorphous phase can still be 

observed and the nanocrystals are embedded in the amorphous matrix. The twining-like 

features are also obtained from the image which are indicated by the yellow arrows. These 

features are indicative of twinning formation and will be further investigated in the future. 

As demonstrated before, the TRIP effect is usually accompanied by the formation of 

twinning. These microstructures will strongly enhance the work-hardening behaviour of the 

alloy. 
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Figure 5.10: (a) Bright-field TEM images of the deformed 6 mm Ti1 samples after the compression 

tests. (b) The HRTEM image of the B19’ martensitic phase. 

 

Figure 5.11: (a) and (b) The nano-sized B2-CuZr crystalline phase is an indicative of twinning 

feature. 

The whole deformation process can be explained as follows: When the loading is applied 

to the alloy, local stress concentrations will occur. The B2 phase will precipitate after a 

period and reduce the stress concentrations. The shear transformation zones (STZs) will also 
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form and develop, but the propagation of the shear bands can be hindered by the B2 

nanocrystals. The twinning of B2 crystals forms and further absorbs the stresses from the 

matrix. The whole process significantly delays the fracture of the alloy and increases the 

ductility of the alloy system. The combination of the B2 phase and glassy matrix lead to the 

heterogeneities of the microstructure. This structure will strongly affect the propagation of 

the shear bands so the shear band will move in a wave-like shape and no big shear bands 

can be formed. The local stress-strain difference will cause shear band movement to become 

more difficult. The shear bands gather together and lead to an increase in surface area and 

the energy between shear bands is reduced. By confirming the martensitic transformation in 

the current alloy systems and comparing with the previous studies of ZrCu-based BMGMCs, 

one of the common phenomena is the ‘blocking effect’ of the B2 phase. The shear band 

movement is hindered or delayed by the B2 crystals, which strongly enhances the plasticity 

of the materials. Some of the research also indicated that a combination of micro- and nano-

sized B2 phases was obtained after compression and tensile tests. The martensitic 

transformation will prevent early necking under the tensile condition. The results for both 3 

mm and 6 mm samples show good compressive plasticity and work-hardening behaviour. 

The 3 mm tensile properties are also improved. 

According to previous research, the B2 phase has very similar elastic properties to a 

glassy matrix [122], [134] so there will be no local stress distribution between the glassy 

matrix and crystalline phase. It is also known that the hardness of the crystalline phase is 
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smaller than the amorphous matrix, so it is easier to deform under external force. The 

deformed amorphous matrix will experience a softening process due to the formation of 

shear bands. However, the metastable B2-CuZr phase transformation will lead to an increase 

in hardness through the phase transformation to the B19’ martensitic phase. During the 

deformation process the shear band movement will also be stopped by the B2 crystals; the 

ductile crystals will strongly affect any further movement of the shear bands. In addition, 

some of the B2 phases will undergo a martensitic transformation during the deformation 

process, which will cause the work hardening behaviour and prevent large shear band 

movement. 

The 3 mm and 6 mm samples were tested by the tensile tests. Due to the time limits and 

machining difficulties, only the Ti1 samples were fabricated to the tensile test samples. The 

other samples will be examined in the future. The stress-strain curve after the tensile test is 

shown in Figure 5. 12. The yield strength of 3 mm sample is 1878 MPa and the fracture 

strength is 1901 MPa with the plastic strain of 1.8 %. The nanocrystals in the 3 mm sample 

have not contributed to significant plasticity during tensile. For the 6 mm sample the work-

hardening behaviour was obtained, it shows a yield strength of 1321 MPa and fracture 

strength of 1563 MPa with a plastic strain of 2.3%. 
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Figure 5.12: Tensile test stress-strain curve of the 3 mm and 6 mm Ti1 sample. 

The SEM images of fracture surfaces after the tensile test are shown in Figure 5. 13. 

Figure 5. 13 (a) shows many dimple structures combined with a small number of shear bands. 

The dimple structure is a ductile metallic alloys feature which proves that the formation of 

B2-CuZr phase has led to the enhanced mechanical properties. The fishbone-like patterns 

formed along with the dimple structures are shown in Figure 5.13 (b). Figure 5.13 (c) shows 

the B2-CuZr phase after the tensile test. The equiaxed crystalline structure has been 

stretched to an elliptical shape but these crystals have hindered the propagation of the large 

shear bands and the ‘block effect’ can be clearly observed. Figure 5. 13 (d) shows the edged 

of the fracture surface with granulated structures. The reason for the enhanced tensile results 

of the 6 mm Ti1 sample is believed due to the TRIP effect. The B2 phase can stabilise the 

tensile plastic deformation by boosting the interaction of shear bands. 
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Figure 5.13: (a)–(b) SEM images of 6 mm Ti1 sample fracture surface after the tensile tests. (c)-(d) 

The ‘block effect’ due to the B2-CuZr phase is observed. The alloy presents ductile features after 

the tensile tests. 
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5.4 Conclusions 

In this chapter, a new series of Zr-Cu-Al-Ag-Ti TRIP reinforced BMGMCs were designed 

and investigated based on the Zr-Cu-Al-Ag alloy system. The effects of Ti content on the 

GFAs and mechanical properties of the alloy systems have been studied. The addition of Ti 

content has enhanced the GFAs of the alloy system and samples with a microstructure which 

consists of the amorphous phase combined with the single B2-CuZr phase were obtained. 

This type of BMGMC exhibits good GFA with an as-cast rod up to at least 6 mm in 

diameter. The martensitic transformation from the metastable B2-CuZr phase to monolithic 

B19’ phase was observed after the compression tests. The deformation-induced martensitic 

transformation process leads to significantly improved compressive plasticity, with plastic 

strain of 9.1 %, and work hardening behaviour. 

The Zr49Cu45Al4Ag1Ti1 specimen can be cast to a rod sample up to at least 6 mm with a 

amorphous plus B2-CuZr phase structure. Improved GFAs and mechanical properties can 

be obtained for this sample. It has the potential to be fabricated to a larger size by modifying 

the compositions and has the potential to be applied to real-life applications. 
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Chapter 6 

The Effect of minor Nb Addition on the Glass-Forming 

Ability and Mechanical Properties of Zr-Cu-Al-Nb Bulk 

Metallic Glasses  

6.1 Introduction 

BMGs exhibit unique properties such as high strength, high elastic strain limit and high 

hardness due to the absence of long-range ordered structure[2] [3][135] [136]. Defects such 

as dislocations and stacking faults cannot be generated in this structure. These characteristics 

contribute to the enhanced mechanical properties of BMGs [137]. However, room-

temperature brittleness and lack of plasticity are still the main drawbacks of BMGs 

[126][138]. Developing BMG alloys with enhanced plasticity and good GFAs are desirable 

for researchers. 

It is widely accepted that, for alloys with large atomic size, mismatched negative enthalpy 

of mixing among the constituent elements will enhance the GFA and improve the 

mechanical properties [43]. The atomic packing efficiency is enhanced due to these effects. 

However, recent researches have indicated that the minor addition of the elements that have 

positive heat of mixing with the constituent elements can also improve the GFAs and 

mechanical properties of BMGs [139]–[143]. From the literature, Zr-Cu-Al alloys with the 

addition of various Ag contents can be cast to sample sizes up to 25 mm in diameter [67]. 
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The Fe element was introduced to the Zr-Cu-Al system and strongly enhanced the GFA of 

the system [144]. The effect of positive heat of mixing of elements has strongly attracted 

attention. In addition, as demonstrated in Chapter 4, minor Ag addition has significantly 

enhanced the GFA of the base Zr-Cu-Al alloy.  

Among the various BMGs, ZrCu-based BMGs are considered to have potential in 

structural applications due to their good GFAs and mechanical properties [145]. Recently 

the Zr-Cu-Al-Nb alloy systems have been reported by some groups, exhibiting good work-

hardening, improved GFAs and plasticity. Phase separation was observed in the Zr-Cu-Ni-

Al-Nb and Zr-Cu-Al-Nb systems as reported by Chen et al [146][98]. The plasticity was 

strongly enhanced due to this BMG ‘composite-like’ effect. Another investigation by Wang 

et al. also indicated the occurrence of the phase separation phenomenon. Deformation-

induced nano-crystallisations were also observed in this system [147]. However, the effect 

of minor addition of Nb on thermal stability, and mechanical properties of ZrCu-based 

BMGs are rarely studied. Therefore, understanding the GFAs, thermal stability and the 

mechanical properties of the BMGs are very important. The influence of the alloying 

element on the mechanical properties should also be studied. As a result, a series of Zr50Cu45-

xAl5Nbx (x = 0.2, 0.4, 0.6, and 0.8 at. %) systems were developed and investigated based on 

the Zr50Cu45Al5 alloy which was introduced in chapter 4. The investigation into the effect of 

Nb addition on the ZrCu-based BMGs is discussed in this chapter. The alloys are names as 

Nb0.2, Nb0.4, Nb0.6 and Nb0.8 for convenience. 
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6.2 Experimental Work 

The constituent elements of Zr50Cu45-xAl5Nbx (x = 0.2, 0.4, 0.6 and 0.8 at. %) alloys with 

purity > 99.9 % were prepared under an argon atmosphere using arc melting. The alloy 

ingots were melted four times to ensure compositional homogeneity. The weight loss for the 

alloys after melting were less than 0.1 wt. %. The ingots were then fabricated into rod shapes 

with 2-4 mm diameters by using copper mould suction casting. 

The microstructure nature of the as-cast samples was investigated using the Siemens 

D5000 XRD with the monochromatic radiation source Cu Ka, and the diffraction angle (2θ) 

was set between 20o and 80o. Thermal properties and annealing processes were examined 

and performed using the Perkin-Elmer diamond DSC and Perkin-Elmer DTA under an argon 

atmosphere with different heating rates. Room temperature compression and tensile tests 

were performed using a Zwick-Roell machine with initial strain rates of 2 × 10–4 s–1 and 1 × 

10–4 s–1 respectively. A camera was applied to calibrate and measure the strain during the 

tensile tests. The compression test specimens were cut from the as-cast rods with an aspect 

ratio (length : width) of 2:1, and both the top and bottom ends of the as-cast rods were 

carefully polished to ensure parallelism. Cross-section surfaces following the mechanical 

tests were examined using the FEI Inspect F SEM. Detailed microstructure information and 

amorphous features were examined using the FEI Tecnai TEM and JEOL 2010 HRTEM. 

The specimens for the TEM were ground and polished to 20 μm before the Ion milling 

process was applied. 
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6.3 Results and Discussions 

6.3.1 Microstructure features of as-cast samples 

Figure 6.1 displays the XRD patterns of as-cast Zr50Cu45-xAl5Nbx (x = 0.2, 0.4, 0.6 and 0.8 

at. %) rod specimens. As shown in Figure 6.1, the critical diameter of Nb0.2 is 2 mm, whereas 

the Nb0.4 and Nb0.6 show the same critical diameter of 3 mm, Nb0.8 exhibit the critical 

diameter of 4 mm. All the 2 mm specimens show a broad halo hump around 2θ = 38°, which 

indicates the formation of the amorphous feature of the alloys. Clear crystalline peaks are 

obtained for the 3 mm Nb0.2 sample and the 4 mm Nb0.6 samples. The peaks are indexed as 

B2-CuZr and Al2Zr. Comparing with the result in chapter 4, the critical diameter of 

Zr50Cu45Al5 has been enhanced due to the minor addition of Nb contents. 
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Figure 6. 1: XRD patterns of the as-cast Zr50Cu45-xAl5Nbx (x = 0.2, 0.4, 0.6 and 0.8 at. %) alloys. 

6.3.2 Glass forming ability and thermal stability of as-cast samples 

Understanding the glass transition and crystallisation process is very important to determine 

the thermal stability of BMGs. In general, the glass transition and crystallisation kinetics are 

studied using thermal annealing techniques. The non-isothermal tests are performed using 

DSC. Figure 6.2 (a)-(d) shows the DSC curves of the as-cast 2 mm diameter Zr50Cu45-

xAl5Nbx (x = 0.2, 0.4, 0.6 and 0.8 at. %) alloys at different heating rates of 10, 20, 40 and 60 

K/min respectively. The values of Tg, Tx and ΔTx can be obtained from the DSC curves. 

Detailed DSC results are shown in Table 6.1-6.3. The DTA tests were also applied to all the 

2 mm samples and the DTA curves are shown in Figure 6.3. The Tl values are also obtained 

from the curves. In addition, γ (= Tx/(Tg+Tl)) and Trg (=Tg/Tl) are simple and reliable 

parameters which can also indicate the GFA of the alloys. All the parameters obtained from 

the DSC and DTA curves are summarised in Table 6. 1.  
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Figure 6. 2: DSC curves of the as-cast 2 mm Zr50Cu45-xAl5Nbx (x = 0.2, 0.4, 0.6 and 0.8 at. %) 

BMG samples, (a) Nb0.2, (b) Nb0.4 (c) Nb0.6 and (d) Nb0.8 at heating rates of 10 K/min, 20 K/min, 40 

K/min and 60 K/min respectively.  
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Figure 6. 3: DTA curves of the as-cast 2 mm Zr50Cu45-xAl5Nbx (x = 0.2, 0.4, 0.6 and 0.8 at. %) 

BMG samples. The Tl values are obtained from the curve.  

All the alloys exhibit a clear endothermic event which corresponds to the glass transition 

process. The exothermic peaks are observed at higher temperatures, which indicate the 

crystallisation process of the alloys. According to the DSC traces, both glass transition and 

crystallisation events have shifted to a higher temperature with an increase in Nb content. 

According to Inoue’s theory [2], the width of the supercooled liquid region is indicated by 

ΔTx, which can be used to evaluate the stability of the amorphous phase and estimate the 

GFA of the alloys. The supercooled liquid regions ΔTx at a 20 K/min heating rate of the four 

samples are 55 K, 49 K, 50 K and 48 K respectively. The Nb0.2 specimen exhibits the largest 

ΔTx value but the critical diameter of this alloy is the smallest among these four compositions. 

The Trg values for the four alloy compositions are 0.590, 0.597, 0.601 and 0.609 respectively. 
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The γ values for the four alloy compositions are 0.401, 0.400, 0.403 and 0.404 respectively. 

As demonstrated in the literature, alloys which display good GFAs usually have Trg higher 

than 0.5 or γ values higher than 0.35. All the four compositions exhibit higher Trg and γ 

values, however the Nb0.2 alloy exhibited a lower GFA with critical diameter 2 mm even 

with the high ΔTx, Trg and γ values. According to the above results, the Nb0.8 exhibited the 

best GFA among these four compositions. 
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Table 6. 1: Tg, Tx, Tl, Tx, Trg and γ values of the Zr50Cu45-xAl5Nbx (x = 0.2, 0.4, 0.6 and 0.8 at. %) 

BMG samples at a heating rate of 20 K/min 

 Tg /K Tx /K Tl /K ΔTx /K Trg γ 

Nb0.2 687 742 1165 55 0.590 0.401 

Nb0.4 697 746 1167 49 0.597 0.400 

Nb0.6 700 750 1163 50 0.601 0.403 

Nb0.8 705 753 1158 48 0.609 0.404 

 

Table 6. 2: The Tg values of the as-cast 2 mm Zr50Cu45-xAl5Nbx (x = 0.2, 0.4, 0.6 and 0.8 at. %) 

BMG samples at heating rates of 10 K/min, 20 K/min, 40 K/min and 60 K/min. 

 10 K/min 20 K/min 40 K/min 60 K/min 

Nb0.2 677 687 698 704 

Nb0.4 688 697 706 710 

Nb0.6 692 700 709 712 

Nb0.8 698 705 711 715 
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Table 6. 3: The Tx values of the as-cast 2 mm Zr50Cu45-xAl5Nbx (x = 0.2, 0.4, 0.6 and 0.8 at. %) 

BMG samples at heating rates of 10 K/min, 20 K/min, 40 K/min and 60 K/min. 

 10 K/min 20 K/min 40 K/min 60 K/min 

Nb0.2 735 742 751 756 

Nb0.4 738 746 755 759 

Nb0.6 743 750 758 763 

Nb0.8 747 753 760 764 

For the general BMG alloy systems, the transformation temperatures will become higher 

at faster heating rates [2]. The Tg and Tx values with different heating rates (β) were measured 

according to this concept. The activation energy for the glass transition (Eg) and 

crystallisation (Ex) of the BMG system are determined. There are two well-known methods 

which can be used to determine the activation energy for glass transition and crystallisation 

processes of the alloy systems, known as the Kissinger and the Ozawa methods [2]. The 

Kissinger model is a widely accepted model to assess reactions that are thermally activated 

in solid-state materials, and it can also be applied to study the crystallisation process[148]–

[152]. As shown in Equation 6.1, E is the activation energy for reactions such as glass 

transition and crystallisation. T is the characteristic temperature, β is the heating rate, R is 

the gas constant and C is a constant. The E/R value is the slope of the line ln(T2/ β) vs 1000/T, 

hence by plotting this line the value of Eg and Ex can be obtained. 
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ln (
𝑇2

𝛽
) =  

𝐸

𝑅𝑇
+ 𝑐     (6.1) 

The Kissinger plot of Eg and Ex of the four compositions are shown in Figure 6.4 (a) and 

(b), the activation energy can be then calculated for these four compositions. The Eg values 

for these Nb0.2 to Nb0.8 alloys are 256 kJ/mol, 309 kJ/mol, 337 kJ/mol, and 422 kJ/mol 

respectively. The Ex values for these four alloy compositions are 364 kJ/mol, 373 kJ/mol, 

384 kJ/mol and 482 kJ/mol. 

 

 

Figure 6. 4: The Kissinger plots of Zr50Cu45-xAl5Nbx (x = 0.2, 0.4, 0.6 and 0.8 at. %) BMG samples 

at temperature (a) Tg (b) Tx. 
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Another approach to determine the activation energy of the BMGs is using the Flynn-Wall-

Ozawa plot [2]. The activation energy can be determined by plotting the ln(T/ β) vs 1/T, and 

the gradient is the activation energy. The Eg and Ex values are also calculated by using the 

Ozawa method as shown in Figure 6.5 (a) and (b). 

ln(𝛽) =  
𝐸𝑥

𝑅𝑇𝑋
+ 𝑐 （6.2） 

The Eg values for the Nb0.2 to Nb0.8 alloys are 267 kJ/mol, 321 kJ/mol, 355 kJ/mol, and 

435 kJ/mol respectively. The Ex values for these four alloy compositions are 377 kJ/mol, 

386 kJ/mol, 397 kJ/mol and 495 kJ/mol respectively. 
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Figure 6. 5: The Ozawa plots of Zr50Cu45-xAl5Nbx (x = 0.2, 0.4, 0.6 and 0.8 at. %) BMG samples at 

temperature (a) Tg (b) Tx. 

According to the results above, the heating rate-dependent phenomenon is observed. This 

rate-dependent glass transition process is due to the BMG relaxation process in the glass 

transition region. The grain nucleation has a strong relationship with the thermal activities. 

Both the Kissinger method and Ozawa results exhibit similar tendencies for these four alloy 

compositions. The Eg and Ex values increase with increasing Nb contents. The Eg value of 

the Nb0.2 alloy is much smaller than the other three alloys, the Nb0.4 and Nb0.6 alloys exhibit 

very similar Eg values and the Nb0.8 alloy has the highest Eg value. The Ex values of Nb0.2, 

Nb0.4 and Nb0.6 exhibit similar values, but the Nb0.8 shows a large increase compared with 

the other samples. These results indicate that the glass transition process of Nb0.8 must 

overcome a higher activation barrier compared with other three alloys, which further results 

in higher thermal stability and resistance to crystallisation than the other three samples. 
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Compared with some other Cu-Zr-Al-Nb alloy systems that exhibit crystallisation phase or 

phase separation, their Ex values are 238 kJ/mol and 260 kJ/mol [147]. The current alloy 

systems exhibit relatively higher activation energies which reflects the higher thermal 

stability of these alloy systems. 

The activation energy represents the needs of atoms to overcome the obstructions with 

the surrounding atoms during the different transformation processes. It also indicates the 

interaction between the atoms [2]. A larger activation energy of the alloy system is due to to 

a more obvious interaction effect between the atoms. For the ternary Zr-Cu-Al alloy systems, 

a large negative heat of mixing can be obtained. Strong interatomic bonding ability was also 

observed for this alloy system [153]. Introducing Nb content with a positive heat of mixing 

with Zr and Cu will increase the repulsion between atoms and make the movement of the 

atoms become difficult. It is difficult for the Nb content to form intermetallics with Zr and 

Cu, consequently it will prevent the formation of the heterogeneous nucleation and enhance 

the formation of the amorphous phase. The atomic radius of the alloying elements are Zr = 

0.16 nm, Cu = 0.128 nm, Al = 0.143 nm and Nb = 0.148 nm [154]. The addition of Nb 

content will contribute to local chemical inhomogeneity and the local free volume 

distribution fluctuation [15]. It is known that the amorphous alloy formation involves 

competition between the liquid phase and the corresponding crystalline phases. With a 

suitable cooling rate or fabrication process, the liquid phase can be stabilised during cooling 

which further suppress the formation of the crystalline phases. The dense-packed atomic 
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structure is the dominated structure of amorphous metals. The liquid phase will become 

more stable with a denser packing density and slower diffusion of the constituent elements 

[155]. According to Cao et al [156], elements with small positive heat of mixing with Cu, 

such as Nb = 3 kJ/mol, will retard the nucleation and growth of the crystalline phases due to 

the rearrangement of the positive heat of mixing upon cooling. In addition, the atomic size 

mismatch between the Nb and Cu will generate a higher random packing density which 

further stabilises the liquid phase. Thus, the Nb0.4-Nb0.8 alloys exhibit better GFA properties. 

By adding suitable amounts of the Nb element, the GFAs of the alloy systems will be 

significantly enhanced. These results also demonstrate why some of the Zr-Cu-Al-Nb alloys 

exhibit composite structure such as B2-CuZr phase combined with the amorphous matrix or 

phase separation process. The reason is that the crystalline phase of this alloy system is 

mainly dominated by the long-range ordered Zr and Cu crystalline packing. It is known that 

the Cu element has a repulsive nature with the positive heat of mixing elements. When the 

Nb addition in the alloy system is not enough to support the formation of local heterogeneous 

structure, the long-range diffusion of the Zr and Cu will dominate the process during cooling 

and the formation of the crystalline CuZr phases will become easier. In addition, when the 

Nb addition in the alloy system has exceeded a suitable range, it will also lead to phase 

separation during cooling [157]. 
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6.3.2 Mechanical properties 

The four 2 mm as-cast samples were subjected to the compression test and the true 

compressive stress-strain curves are shown in Figure 6.6. The Nb0.2 exhibits an elastic strain 

of approximately 0 with a fracture strength of 1703 MPa. The yield strength of Nb0.4 is 1756 

MPa and the plastic flow is 1.3 %, the Nb0.6 alloy shows a yield strength of 1820 MPa and 

the plastic flow is 1.6 %, and the Nb0.8 alloy exhibits a yield strength of 1790 MPa and a 

plastic flow of 7.1 %, which is the highest plasticity among the four compositions. None of 

them exhibited work-hardening behaviour during the compression tests, mainly due to the 

fully amorphous feature of the alloys compared with the Cu-Zr-Al-Nb BMGMCs.  

 

Figure 6. 6: The compressive stress-strain curves of Zr50Cu45-xAl5Nbx (x = 0.2, 0.4, 0.6 and 0.8 

at. %) BMGs. 
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The Nb0.8 sample exhibited obvious plasticity compared with the other three samples. In 

order to examine the evolution of the microstructure during the compression test, and the 

reason for the enhanced plasticity of the Nb0.8 sample, SEM was performed for the samples. 

The fracture surfaces after the compression tests are shown in Figure 6.7 (a)-(f). Different 

shaped shear bands were obtained with a variation in Nb contents. Figure 6.7 (a) shows the 

fracture surface of the Nb0.2 sample; the very large-sized (50-100 μm) vein pattern shear 

bands dominate the structure. This vein pattern is the typical morphology of the BMGs after 

the compression tests. No secondary shear bands can be observed from the images, which 

lead to the rapid propagation of the large shear bands and finally contribute to cracks in the 

samples. Figure 6.7 (b) and (c) show the fracture surface of the Nb0.4 and Nb0.6 samples. The 

primary and secondary shear bands can be observed for these two alloys, and some of the 

river-like patterns are also observed. The different shaped and sized shear bands lead to an 

increase in plasticity [19]. The vein-like and river-like patterns are formed with some smooth 

fracture surface. These morphologies are also the typical characteristics of the amorphous 

alloys. Figure 6.7 (d) to (f) show the fracture surface of the Nb0.8 alloy; the shear band 

density has significantly increased. As shown in Figure 6.7 (d), typical ductile features can 

be observed and most of the fracture surface exhibits vein patterns with different sizes. The 

flocculent structure was also obtained from Figure 6.7 (f); the transformation of elastic strain 

into the heat energy and release the during fracture process will contribute to this unique 

morphology.  
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Figure 6.7: SEM images of the fracture surfaces of the (a) Zr50Cu44.8Al5Nb0.2, (b) 

Zr50Cu44.6Al5Nb0.4, (c) Zr50Cu44.4Al5Nb0.6, (d)-(f) Zr50Cu44.2Al5Nb0.8. 
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According to the literature, there are several ways to improve the plasticity of BMGs, such 

as: (1) deformation-induced nanocrystallisation (2) introducing a high Poisson's ratio 

element to the alloy system, (3) having a large free volume of the alloy and (4) introducing 

structure inhomogeneity [121]. The Nb0.8 sample exhibits relatively good plasticity and the 

reason for the enhanced plasticity should be investigated. As shown in the XRD results, 

there are no crystalline structures in the as-cast 2 mm Nb0.8 specimen. Following the 

compression test, the sample was checked by the HRTEM and is shown in Figure 6. 8. The 

fully amorphous feature is shown, and the corresponding SAED pattern exhibits a diffuse 

halo. This indicates that the fully amorphous feature is obtained before and after the 

deformation. There were no nanocrystals, ordered crystalline structures or phase separation 

formation. (It represents a small volume of material and may not be indicative of the whole 

sample). 

 

Figure 6.8: HRTEM images of the as-cast Zr50Cu44.2Al5Nb0.8 alloys with corresponding SAED. 
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For the fully amorphous metals, the free volume of the system can be examined. The free 

volume theory was introduced by Spaepen [158][159], which indicates that the shear 

banding process is initiated due to the free volume. The higher the free volume of the alloy 

system, the larger the atomic mobility. The initiation, interaction and branching of the shear 

bands become easier with a higher free volume. Thus, the plasticity of the alloys has a strong 

relationship with the free volume. The excess free volume will completely vanish when the 

BMGs are heated to a certain temperature [160], [161] The enthalpy change was used to 

reflect this process [162], [163]. For the BMG alloy systems, the area of the exothermic peak 

before the glass transition process in the DSC curve can be measured, which represents the 

enthalpy change of the alloys. The DSC built-in software was applied, and the measured 

values are shown in Table 6. 4.  

Table 6.4: The change in enthalpy prior to the glass transition process and the fragility parameter 

of Zr50Cu45-xAl5Nbx (x = 0.2, 0.4, 0.6 and 0.8 at. %) BMGs. 

 ΔH J/g m 

Nb0.2 1.23 19.44 

Nb0.4 1.58 23.19 

Nb0.6 1.63 25.35 

Nb0.8 2.56 31.27 
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The results demonstrate that the Nb0.2 has the lowest free volume, the Nb0.2 and Nb0.6 

have a similar value and the Nb0.8 exhibit the highest free volume of 2.56 J/g. Combining 

the mechanical test results, it is clear that a higher free volume leads to a higher density of 

the shear bands and further enhances the plasticity. A large free volume of the alloy will also 

enhance the formation of the vein shaped shear bands. 

Amorphous materials are classified into two groups, ‘strong’ or ‘fragile’, according to 

the concept of fragility introduced by Angell [164]. The fragility parameter can be calculated 

using the equation: 

m =
𝐸𝑔

𝑅𝑇𝑔𝑙𝑛10
       (6.4) 

The Eg value is obtained from the Kissinger plots and Tg is obtained from the DSC curve 

with 20 K/min. The m values for the four compositions are 19.44, 23.19, 25.35 and 31.27 

respectively. The m values of the four samples also exhibit a trend which increases with 

increasing Nb content. 
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Figure 6.9: Correlation of plasticity with (a) change in enthalpy prior to the glass transition process 

(b) fragility parameter of Zr50Cu45-xAl5Nbx (x = 0.2, 0.4, 0.6 and 0.8 at. %) BMGs. 

As shown in Figure 6. 9, both changes in enthalpy and fragility parameters exhibit the 

same trend as the plasticity. They show a near-linear function for the current four alloys. As 
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the change in enthalpy and fragility parameters are obtained from the DSC curves and the 

plasticity is obtained from the compression test, and these results exhibit a very similar trend, 

this further proves that the plasticity has a strong relationship with the free volume of the 

alloy systems. This phenomenon was also observed in some other ZrCu-based BMG systems 

[165][166]. 

The enhanced plasticity for the Nb0.8 alloy can be explained due to the Nb addition having 

a positive heat of mixing with the Cu elements and a medium atomic radius. The Nb element 

could cause repulsive interactions between the atoms. The atomic bonding structure will be 

changed when the Nb addition is introduced to the alloy system, which leads to the structure 

inhomogeneity and fluctuation of the free volume distribution. The nucleation and 

propagation of shear bands will be influenced during the deformation process. Secondary 

and tertiary shear bands will be generated. The shear band density is increased, and multi-

shaped shear bands can be formed. The intersections and blocking between the shear bands 

will lead to an increase in plasticity. As can be seen from Figure 6. 7, with increasing shear 

band density, the movement of the shear bands becomes difficult and further resists the 

propagation of the shear bands, which finally leads to the enhanced plasticity. 
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Figure 6. 10: The tensile test stress-strain curves of Zr50Cu45-xAl5Nbx (x = 0.2, 0.4, 0.6 and 0.8 

at. %) BMGs 

Tensile tests were also applied to all the samples and the true stress-strain curves are shown 

in Figure 6. 10. The four samples exhibit very similar properties and the very high fracture 

strengths, which are 1993 MPa, 1720 MPa, 1726 MPa, and 1889 MPa respectively. All the 

specimens have exhibited plasticity <0.1% and no work-hardening ability during the tensile 

tests, and these are typical BMG tensile stress-strain curves. The variation of Nb addition 

has not contributed to the improvement of tensile properties, compared with the crystalline 

second phase enhanced BMGMCs. The fully amorphous microstructure cannot hinder the 

propagation of the large shear bands. Large shear band movement will propagate and 

develop until fracture of the material occurs.  
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6.4 Conclusions 

In this chapter, the Nb element was introduced into the Zr-Cu-Al system, which has a 

positive mixing entropy with Cu. The GFAs, thermal stability and mechanical properties of 

the Zr50Cu45-xAl5Nbx (x = 0.2, 0.4, 0.6 and 0.8 at. %) BMGs have been examined and 

investigated. The influence of minor Nb addition to the alloy system has been carefully 

studied. For the quaternary Zr-Cu-Al-Nb alloy system, it exhibits plastic strain up to 7.1 % 

when the Nb addition is 0.8. The Nb0.4 to Nb0.8 sample shows relatively good GFA with a 

critical diameter up to 5 mm. With suitable Nb addition, the GFA and mechanical properties 

can be enhanced at the same time. The non-isothermal results indicate that this alloy system 

has exhibited large activation energy for both the glass transition and the crystallisation 

process, which indicates good thermal stability of the alloy system. The improved GFA and 

plasticity are mainly due to the structural inhomogeneity of the amorphous phase, which is 

caused by introducing Nb to the alloy system. The results have indicated that the element 

with a positive heat mixing of with the main alloying element can also enhance the GFA 

and plasticity of the alloy system. 
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Chapter 7 

Conclusion and Future Works 

7.1 Conclusion 

The aim of this thesis is to develop ZrCu-based BMGs or BMGMCs with improved 

compression and tensile properties. The main findings for the current works are summarised 

below. 

• The alloying element effect to the base Zr-Cu-Al BMGMCs was investigated, which 

provided a guidance for preparing and designing medium/large sized TRIP reinforced 

BMGMCs. The single B2-CuZr phase as-cast sample size were increased due to the 

minor addition of Ag. A small amount of Ag will suppress the formation of brittle phase 

and stabilise the metastable B2-CuZr phase, which makes it easier to be retained during 

the rapid solidification process. A large amount of Ag will suppress the B2-CuZr phase 

formation and contribute to the formation of amorphous phase. The mechanical 

properties results demonstrate that a more homogenized structure with relatively small 

grain size is desired for the current Zr-Cu-Al based BMGMCs. The work provided a 

scope for designing single B2-CuZr phase structure with increased sample size. 

• A new series of Zr-Cu-Al-Ag-Ti TRIP reinforced alloys were obtained based on the Zr-

Cu-Al-Ag alloy system. The effects of Ti contents on the GFAs, microstructures and 

mechanical properties of the alloy systems were detailed studied. The addition of Ti 
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content enhanced the GFAs of the alloy system, the single B2-CuZr phase were obtained 

up to 6 mm casting size with suitable Ti contents. Transformations from single B2-CuZr 

phase to martensitic B19’ phase are successfully observed and it is believed to cause 

work-hardening behaviour of the samples. The 6 mm Zr49Cu45Al4Ag1Ti1 specimen 

exhibited work-hardening behaviour during both compression and tensile test. It shows 

a yield strength of 1321 MPa and fracture strength of 1563 MPa with a plastic strain of 

2.3% under tension. It has the potential to be fabricated to larger sizes. 

• Minor addition of Nb was introduced into the Zr-Cu-Al system, which has a positive 

mixing entropy with the Cu element. The GFAs, thermal stability and mechanical 

properties of the Zr50Cu45-xAl5Nbx (x = 0.2, 0.4, 0.6 and 0.8 at. %) BMGs have been 

examined and investigated. For the quaternary Zr-Cu-Al-Nb alloy system, it exhibits 

plastic strain up to 7.1 % when the Nb addition is 0.8. The Nb0.4 to Nb0.8 sample shows 

relatively good GFA with a critical diameter up to 5 mm. With suitable Nb addition, the 

GFA and plasticity can be enhanced at the same time. The non-isothermal results indicate 

that this alloy system has exhibited large activation energy for both the glass transition 

and the crystallisation process, which indicates good thermal stability of the alloy system. 

The improved GFA and plasticity are mainly due to the structural inhomogeneity of the 

amorphous phase, which is caused by introducing Nb to the alloy system. The results 

have indicated that the element with a positive heat mixing of with the main alloying 

element can also enhance the GFA and plasticity of the alloy system. 
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7.2 Future work 

• Perform nano-indentation tests to the B2-CuZr phase and glass matrix for the 

Zr50Cu45-xAl5Agx (x = 0, 0.5, 1, and 2 at.%) alloy system which will provide a more 

detailed view of the mechanical properties of the different phases within this alloy 

system.  

• Perform tensile tests for the rest of 6 mm Zr50-xCu44Al5Ag1Tix (x=0.5, 1, 2, 3, 4 and 

5 at %) alloys. Deformed samples should be examined by TEM and HRTEM. The 

nano-sized twin features obtained from Zr49Cu45Al4Ag1Ti1 sample should be 

investigated to get deeper understanding of the martensitic transformation. The 

relationship between the volume fraction of the B2-CuZr and tensile properties 

should be further investigated. 

• Increase the casting size above 6 mm and check if TRIP effect can still be obtained 

for the Zr-Cu-Al-Ag-Ti system.  

• The design strategy should be further modified and try to obtain more TRIP 

reinforced BMGMCs based on this strategy.  

• The strain rate effect to the Zr-Cu-Al-Nb alloys can be studied. 

• More samples with large Nb additions can be prepared and tested. The GFAs and 

mechanical properties can be examined and compared with the current researches. 

  



129 

 

References 

[1] W. L. Johnson, “Bulk glass-forming metallic alloys: science and technology,” MRS 

Bull., vol. 24(10), pp. 42-53, 1999. 

[2] A. Inoue and C. Suryanarayana, "Bulk Metallic Glasses". CRC Press, 2017. 

[3] A.L. Greer, “Metallic Glasses,” in Physical Metallurgy: Fifth Edition, Elsevier, vol. 

1, p. 305, 2014. 

[4] M.F. Ashby and A.L. Greer, “Metallic glasses as structural materials,” Scr. Mater., 

vol. 54(3), pp. 321-326, 2006. 

[5] A. L. Greer, “Metallic glasses...on the threshold,” Materials Today, vol. 12(1–2). pp. 

14–22, 2009. 

[6] M. Chen, “A brief overview of bulk metallic glasses,” NPG Asia Materials. vol. 3(9), 

p. 82, 2011. 

[7] R. Busch, W. Liu, and W. L. Johnson, “Thermodynamics and kinetics of the 

Mg65Cu25Y10 bulk metallic glass forming liquid,” J. Appl. Phys., vol. 83(8), pp. 4131-

4141, 1998. 

[8] H. W. Kui, A. L. Greer, and D. Turnbull, “Formation of bulk metallic glass by 

fluxing,” Appl. Phys. Lett., vol. 45(6), pp. 615-616, 1984. 

[9] X. H. Lin and W. L. Johnson, “Formation of Ti-Zr-Cu-Ni bulk metallic glasses,” J. 

Appl. Phys., vol. 78(11), pp. 6514-6519, 1995. 

[10] Q. Yu, X. D. Wang, H. B. Lou, Q. P. Cao, and J. Z. Jiang, “Atomic packing in Fe-

based metallic glasses,” Acta Mater., vol. 102, pp. 116-124, 2016. 

[11] B. J. Yang, J. H. Yao, Y. S. Chao, J. Q. Wang, and E. Ma, “Developing aluminum-

based bulk metallic glasses,” Philos. Mag., vol. 90(23), pp. 3215-3231, 2010. 

[12] J. D. Cao, N. T. Kirkland, K. J. Laws, N. Birbilis, and M. Ferry, “Ca-Mg-Zn bulk 

metallic glasses as bioresorbable metals,” Acta Biomater., vol. 8(6), pp. 2375-2383, 

2012. 



130 

 

[13] L. Ge, X. Hui, E. R. Wang, G. L. Chen, R. Arroyave, and Z. K. Liu, “Prediction of 

the glass forming ability in Cu-Zr binary and Cu-Zr-Ti ternary alloys,” Intermetallics, 

vol. 16(1), pp. 27–33, 2008. 

[14] Q. K. Jiang, G.Q. Yang, L. Yang, X.D. Wang, K. Saksl, H. Franz, R. Wunderlich, H. 

Fecht and J.Z. Jiang., “La-based bulk metallic glasses with critical diameter up to 30 

mm,” Acta Mater., vol. 55(13), pp. 4409-4418, 2007. 

[15] M. B. Gawande, A. Goswami, Fx. Felpin, T. Asefa, X.X. Huang. R. Silva, X.X. Zou, 

R. Zboril and Rs. Varma., “Cu and Cu-Based Nanoparticles: Synthesis and 

Applications in Catalysis,” Chemical Reviews. vol. 116(6), pp. 3722-3811, 2016. 

[16] W. H. Wang, J. J. Lewandowski, and A. L. Greer, “Understanding the glass-forming 

ability of Cu50Zr50 alloys in terms of a metastable eutectic,” J. Mater. Res., vol. 20(9), 

pp. 2307-2313, 2005. 

[17] D. Ma, H. Tan, D. Wang, Y. Li, and E. Ma, “Strategy for pinpointing the best glass-

forming alloys,” Appl. Phys. Lett., vol. 86(19), p. 191906, 2005. 

[18] Z. Evenson, I. Gallino, and R. Busch, “The effect of cooling rates on the apparent 

fragility of Zr-based bulk metallic glasses,” J. Appl. Phys., vol. 107(12), p. 123529, 

2010. 

[19] C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, “Mechanical behavior of amorphous 

alloys,” Acta Mater., vol. 55(12), pp. 4067-4109, 2007. 

[20] J.J. Lewandowski, W.H. Wang, and A. L. Greer, “Intrinsic plasticity or brittleness of 

metallic glasses,” Philos. Mag. Lett., vol. 85(2), pp. 77–87, 2005. 

[21] D. H. Kim, W. T. Kim, E. S. Park, N. Mattern, and J. Eckert, “Phase separation in 

metallic glasses,” Progress in Materials Science.vol. 58(8), pp. 1103-1172, 2013. 

[22] D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou and W.L. 

Johnson., “Designing metallic glass matrix composites with high toughness and 

tensile ductility,” Nature, vol. 451(7182), p. 1085, 2008. 

[23] D. C. Hofmann, “Shape Memory Bulk Metallic Glass Composites,” Science (80-. )., 



131 

 

vol. 329(5997), pp. 1294–1295, 2010. 

[24] Z. T. Wang, J. Pan, Y. Li, and C. A. Schuh, “Densification and strain hardening of a 

metallic glass under tension at room temperature,” Phys. Rev. Lett., vol. 111(13), p. 

135504, 2013. 

[25] P. B. Macedo and T. A. Litovitz, “On the relative roles of free volume and activation 

energy in the viscosity of liquids,” J. Chem. Phys., vol. 42(1), pp. 245-256, 1965. 

[26] D. Turnbull and M. H. Cohen, “On the free-volume model of the liquid-glass 

transition,” J. Chem. Phys., vol. 52(6), pp. 3038-3041, 1970. 

[27] A. Inoue, M. Yamamoto, H. M. Kimura, and T. Masumoto, “Ductile aluminium-base 

amorphous alloys with two separate phases,” J. Mater. Sci. Lett., vol. 6(2), pp. 194-

196, 1987. 

[28] H. Choi-Yim and W. L. Johnson, “Bulk metallic glass matrix composites,” Appl. Phys. 

Lett., vol. 71(26), pp. 3808-3810, 1997. 

[29] K. Wang, T. Fujita, M.W. Chen, T.G. Nieh, H. Okada, K. Koyama, W. Zhang and A. 

Inoue., “Electrical conductivity of a bulk metallic glass composite,” Appl. Phys. Lett., 

vol. 91(15), p. 154101, 2007. 

[30] J. Eckert, J. Das, S. Pauly, and C. Duhamel, “Mechanical properties of bulk metallic 

glasses and composites,” J. Mater. Res., vol. 22(2), pp. 285–301, 2007. 

[31] S. Pauly, J. Das, J. Bednarcik, N. Mattern, K.B. Kim, D.H. Kim and J. Eckert., 

“Deformation-induced martensitic transformation in Cu-Zr-(Al,Ti) bulk metallic 

glass composites,” Scr. Mater., vol. 60(6), pp. 431–434, 2009. 

[32] P. Gargarella, S. Pauly, K.K. Song, J. Hu, N.S. Barekar, M. Samadi khoshkhoo, A. 

Teresiak, H. Wendrock, U. Kuhn, C. Ruffing, E. Kerscher and J. Eckert., “Ti-Cu-Ni 

shape memory bulk metallic glass composites,” Acta Mater., vol. 61(1), pp. 151-162, 

2013. 

[33] Y. Wu, H. Wu, Z. Zhang, X. Hui, G. Chen, X. Wang and Z.P. Lv., “Formation of Cu-

Zr-Al bulk metallic glass composites with improved tensile properties,” Acta Mater., 



132 

 

vol. 59(8), pp. 2928–2936, 2011. 

[34] W. Klement, R. H. Willens, and P. Duwez, “Non-crystalline structure in solidified 

Gold-Silicon alloys,” Nature, vol. 187(4740), pp. 869–870, 1960. 

[35] R. Pond and R. Maddin, “A Method of Producing Rapidly Solidified Filamentary 

Castings,” Met Soc AIME-Trans, vol. 245(11), pp. 2457-2476, 1969. 

[36] H. A. Davies and B. G. Lewis, “A generalised kinetic approach to metallic glass 

formation,” Scr. Metall., vol. 9(10), pp. 1107-1112, 1975. 

[37] H. A. Davies, J. Aucote, and J. B. Hull, “The kinetics of formation and stabilities of 

metallic glasses,” Scr. Metall., vol. 8(10), pp. 1179-1189, 1974. 

[38] H. A. Davies, “The kinetics of formation of A AuGeSi metallic glass,” J. Non. Cryst. 

Solids, vol. 17(2), pp. 266–272, 1975. 

[39] J. Schroers, B. Lohwongwatana, W. L. Johnson, and A. Peker, “Gold based bulk 

metallic glass,” Appl. Phys. Lett., vol. 87(6), p. 06912, 2005. 

[40] A. J. Drehman, A. L. Greer, and D. Turnbull, “Bulk formation of a metallic glass: 

Pd40Ni40P20,” Appl. Phys. Lett., vol. 41, p. 716, 1982. 

[41] A. P. and W. L. Johnson, “A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0 

Be22.5,” Appl. Phys. Lett.,vol. 63(17), pp. 2342-2344, 1993. 

[42] W. Chen, Y. Wang, J. Qiang, and C. Dong, “Bulk metallic glasses in the Zr-Al-Ni-

Cu system,” Acta Mater., vol. 51(7), pp. 1899-1907, 2003. 

[43] A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys,” 

Acta Mater., vol. 48(1), pp. 279-306, 2000. 

[44] Z.P. Lu, C.T. Liu, C.A. Carmichael, W.D. Porter, and S.C. Deevi, “Bulk Glass 

Formation in an Fe-Based Fe–Y–Zr–M (M = Cr, Co, Al)–Mo–B System,” J. Mater. 

Res., vol. 19(3), pp. 921-929, 2004. 

[45] H. Ma, L. L. Shi, J. Xu, Y. Li, and E. Ma, “Improving glass-forming ability of Mg-

Cu-Y via substitutional alloying: Effects of Ag versus Ni,” J. Mater. Res., vol. 21(9), 

pp. 2204-2215, 2006. 



133 

 

[46] S. Basak, R. Clarke, and S. R. Nagel, “Temperature dependence of the structure factor 

in Nb-Ni glasses,” Phys. Rev. B, vol. 20, p. 4278, 1979. 

[47] J. P. Carini, S. Basak, S. R. Nagel, B. C. Giessen, and C. L. Tsai, “The thermoelectric 

power of the metallic glass Ca0.8Al0.2,” Phys. Lett. A, vol. 81(9), pp. 525-526, 1981. 

[48] D. Turnbull, “Under What Conditions Can A Glass Be Formed,” Contemp. Phys., vol. 

10, pp. 473-488, 1969. 

[49] F. C. Frank and J. S. Kasper, “Complex alloy structures regarded as sphere packings. 

I. Definitions and basic principles,” Acta Crystallogr., vol. 11, pp. 184-190, 1958. 

[50] F. C. Frank and J. S. Kasper, “Complex alloy structures regarded as sphere packings. 

II. Analysis and classification of representative structures,” Acta Crystallogr., vol. 12, 

pp. 483-499, 1959. 

[51] Y. J. Sun, D.D. Qu, Y.J. Huang, K.D. Liss, X.S. Wei, D.W. Xing and J. Shen., “Zr-

Cu-Ni-Al bulk metallic glasses with superhigh glass-forming ability,” Acta Mater., 

vol. 57(4), pp. 1290-1299, 2009. 

[52] R. Busch and I. Gallino, “Kinetics, Thermodynamics, and Structure of Bulk Metallic 

Glass Forming Liquids,” Jom, vol. 69(11), pp. 2178–2186, 2017. 

[53] R. Busch, J. Schroers, and W. H. Wang, “Thermodynamics and kinetics of bulk 

metallic glass,” MRS Bull., vol. 32(8), pp. 620-623, 2007. 

[54] T. A. Waniuk, R. Busch, A. Masuhr, and W. L. Johnson, “Equilibrium viscosity of 

the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass-forming liquid and viscous flow 

during relaxation, phase separation, and primary crystallization,” Acta Mater., vol. 

46(15), pp. 5229-5236, 1998. 

[55] A. Masuhr, T. A. Waniuk, R. Busch, and W. L. Johnson, “Time scales for viscous 

flow, atomic transport, and crystallization in the liquid and supercooled liquid states 

of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5,” Phys. Rev. Lett., vol. 82(11), pp. 2290-2293, 1999. 

[56] Z.P. Lu and C.T. Liu, “A new glass-forming ability criterion for bulk metallic glasses,” 

Acta Mater., vol. 50(13), pp. 3501-3512, 2002. 



134 

 

[57] Z. P. Lu, Y. Li, and S. C. Ng, “Reduced glass transition temperature and glass forming 

ability of bulk glass forming alloys,” J. Non. Cryst. Solids, vol. 270(1), pp. 103-114, 

2000. 

[58] R. Busch, “Thermophysical properties of bulk metallic glass-forming liquids,” JOM, 

vol. 52(7), pp. 39-42, 2000. 

[59] J. Torrens-Serra, S. Venkataraman, M. Stoica, U. Kuehn, S. Roth, and J. Eckert, 

“Non-isothermal kinetic analysis of the crystallization of metallic glasses using the 

master curve method,” Materials (Basel)., vol. 4(12), pp. 2231-2243, 2011. 

[60] K. Song, X. Bian, J. Guo, X. Li, M. Xie, and C. Dong, “Study of non-isothermal 

primary crystallization kinetics of Al84Ni12Zr1Pr3 amorphous alloy,” Journal of Alloys 

and Compounds. vol. 465(1), pp. L7-L13, 2008. 

[61] R. Böhmer, K. L. Ngai, C. A. Angell, and D. J. Plazek, “Nonexponential relaxations 

in strong and fragile glass formers,” J. Chem. Phys., vol. 99(5), pp. 4201-4209, 1993. 

[62] K. M. Cole, D. W. Kirk, C. V. Singh, and S. J. Thorpe, “Role of niobium and oxygen 

concentration on glass forming ability and crystallization behavior of Zr-Ni-Al-Cu-

Nb bulk metallic glasses with low copper concentration,” J. Non. Cryst. Solids, vol. 

445–446, pp. 88–94, 2016. 

[63] Z. P. Lu and C. T. Liu, “Role of minor alloying additions in formation of bulk metallic 

glasses: A review,” Journal of Materials Science. vol. 39(12), pp. 3965-3974, 2004. 

[64] A. Inoue and T. Zhang, “Fabrication of Bulky Zr-Based Glassy Alloys by Suction 

Casting Into Copper Mold,” Mater. Trans. JIM, vol. 36, p. 1184, 1995. 

[65] O. Haruyama, Y. Nakayama, R. Wada, H. Tokunaga, J. Okada, T. Ishikawa and Y. 

Yokoyama., “Volume and enthalpy relaxation in Zr55Cu30Ni5Al10 bulk metallic glass,” 

Acta Mater.,vol. 58(5), pp. 1829-1836, 2010. 

[66] W. Zhang, Q. Zhang, C. Qin, and A. Inoue, “Synthesis and properties of Cu-Zr-Ag-

Al glassy alloys with high glass-forming ability,” Mater. Sci. Eng. B Solid-State 

Mater. Adv. Technol., vol. 148(1). pp. 92-96, 2008. 



135 

 

[67] Q.K. Jiang, Q.K. Jiang, X.D. Wang, X.P. Nie, G.Q. Zhang, H. Ma, H. J. Fecht, J. 

Bendnarcik, H. Franz, Y.G. Liu, Q.P. Cao and J.Z.Jiang., “Zr-(Cu,Ag)-Al bulk 

metallic glasses,” Acta Mater., vol. 56(8), pp. 1785-1796, 2008. 

[68] L. E. Tanner and R. Ray, “Physical properties of Ti50Be40Zr10 glass,” Scr. Metall., vol. 

11(9), pp. 783-789, 1977. 

[69] H. Men, S. Pang, A. Inoue, and T. Zhang, “New Ti-based bulk metallic glasses with 

significant plasticity,” Mater. Trans., vol. 46(10), p. 2218, 2005. 

[70] Y. C. Kim, W. T. Kim, and D. H. Kim, “A development of Ti-based bulk metallic 

glass,” Mater. Sci. Eng. A, vol. 375-377, pp. 127-135, 2004. 

[71] P. Gong, K. F. Yao, and Y. Shao, “Lightweight Ti-Zr-Be-Al bulk metallic glasses 

with improved glass-forming ability and compressive plasticity,” J. Non. Cryst. 

Solids, vol. 358(18–19), pp. 2620–2625, 2012. 

[72] L. Wang and A. Inoue, “Icosahedral and amorphous phases in melt-spun Ti-Zr-Ni-

Cu alloys,” Mater. Trans.,vol. 42(12), p. 2637, 2001. 

[73] J. Eckert, J. Das, S. Pouly, and C. Duhamel, “Processing routes/ microstructure and 

mechanical properties of metallic glasses and their composites,” Adv. Eng. Mater., 

vol.9(6), pp. 443-453, 2007. 

[74] C. C. Hays, C. P. Kim, and W. L. Johnson, “Improved mechanical behavior of bulk 

metallic glasses containing in situ formed ductile phase dendrite dispersions,” Mater. 

Sci. Eng. A, vol. 304, pp. 650-655, 2001. 

[75] Y. Li, S. J. Poon, G. J. Shiflet, J. Xu, D. H. Kim, and J. F. Löffler, “Formation of bulk 

metallic glasses and their composites,” MRS Bull., vol. 32(8), pp. 624-628, 2007. 

[76] D. C. Hofmann, “Bulk Metallic Glasses and Their Composites: A Brief History of 

Diverging Fields,” J. Mater., vol. 849, pp. 71-75, 2013. 

[77] Z. Wang, K. Gerogarakis, K.S. Nakayama, Y. Li, A.A. Tsarkov, G. Xie, D. Dudina, 

D.V. Louzguine-luzgin and A.R. Yavari., “Microstructure and mechanical behavior 

of metallic glass fiber-reinforced Al alloy matrix composites,” Sci. Rep., vol. 6, p. 



136 

 

24384, 2016. 

[78] B. J. Kim, Y. S. Yun, W. T. Kim, and D. H. Kim, “Microstructure Evolution During 

Solidification of Cu–Zr–Ti Alloy Forming B2 Phase Particles Embedded in a Glassy 

Matrix,” Met. Mater. Int., vol. 24(5), pp. 926–933, 2018. 

[79] J. Z. Jiang, D. Hofmann, D. J. Jarvis, and H. J. Fecht, “Low-density high-strength 

bulk metallic glasses and their composites: A review,” Adv. Eng. Mater., vol. 17(6), 

pp. 761-780, 2015. 

[80] C. Fan and A. Inoue, “Ductility of bulk nanocrystalline composites and metallic 

glasses at room temperature,” Appl. Phys. Lett., vol. 77(1), pp. 46-48, 2000. 

[81] D. C. Hofmann, “Bulk Metallic Glasses and Their Composites: A Brief History of 

Diverging Fields,” J. Mater., vol. 2013, pp. 1–8, 2013. 

[82] C. C. Hays, C. P. Kim, and W. L. Johnson, “Microstructure controlled shear band 

pattern formation and enhanced plasticity of bulk metallic glasses containing in situ 

formed ductile phase dendrite dispersions,” Phys. Rev. Lett., vol. (84), p. 2901, 2000. 

[83] J. W. Qiao, T. Zhang, F. Q. Yang, P. K. Liaw, S. Pauly, and B. S. Xu, “A tensile 

deformation model for in-situ dendrite/metallic glass matrix composites,” Sci. Rep., 

Vol. 3. p. 2816, 2013. 

[84] Y. Wu, W.L. Song, J. Zhou, D. Cao, H, Wang, X.J, Liu, Z.P. Lv., “Ductilization of 

bulk metallic glassy material and its mechanism,” Wuli Xuebao/Acta Phys. Sin., vol. 

66(17), pp. 1–18, 2017. 

[85] C. E. Borja, I. A. Figueroa, O. Lozada-Flores, M. Estrada, G.A. Lara-rodríguez, and 

J.A. Verduzco, “Glass formation, thermal and mechanical properties of ZrCuAlNi 

bulk metallic glasses,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 28(6), 

pp. 1157–1165, 2018. 

[86] P. Denis, C. M. Meylan, C. Ebner, A. L. Greer, M. Zehetbauer, and H. J. Fecht, 

“Rejuvenation decreases shear band sliding velocity in Pt-based metallic glasses,” 

Mater. Sci. Eng. A, vol. 684, pp. 517–523, 2017. 



137 

 

[87] A. L. Greer, “Metallic glasses on the threshold,” Mater. Today, vol. 12(1–2), pp. 14–

22, 2009. 

[88] X. D. Wang, H. B. Lou, Y. Gong, U. Vainio, and J. Z. Jiang, “Heterogeneities in 

CuZr-based bulk metallic glasses studied by x-ray scattering,” J. Phys. Condens. 

Matter, vol. 23(7), pp. 075402, 2011. 

[89] P. E. Donovan, “A yield criterion for Pd40Ni40P20 metallic glass,” Acta Metall., vol. 

37(2), 445-456, 1989. 

[90] D. H. Kim, W. T. Kim, E. S. Park, N. Mattern, and J. Eckert, “Phase separation in 

metallic glasses,” Prog. Mater. Sci., vol. 58(8), pp. 1103–1172, 2013. 

[91] C. P. Peter Chou and D. Turnbull, “Transformation behavior of PdAuSi metallic 

glasses,” J. Non. Cryst. Solids, vol. 17(2), pp. 169-188, 1975. 

[92] Y. Yokoyama, T. Yamasaki, P. K. Liaw, R. A. Buchanan, and A. Inoue, “Glass-

structure changes in tilt-cast Zr-Cu-Al glassy alloys,” Mater. Sci. Eng. A, vol. 449–

451, pp. 621–626, 2007. 

[93] H. S. Chen, “Glass temperature, formation and stability of Fe, Co, Ni, Pd and Pt based 

glasses,” Mater. Sci. Eng., vol. 23(2), pp. 151-154, 1976. 

[94] J. He, H. Li, B. Yang, J. Zhao, H. Zhang, and Z. Hu, “Liquid phase separation and 

microstructure characterization in a designed Al-based amorphous matrix composite 

with spherical crystalline particles,” J. Alloys Compd., vol. 489(2), pp. 535-540, 2010. 

[95] Q. P. Cao, J. F. Li, Y. H. Zhou, A. Horsewell, and J. Z. Jiang, “Effect of rolling 

deformation on the microstructure of bulk Cu60Zr20Ti20 metallic glass and its 

crystallization,” Acta Mater., vol. 54(16), pp. 4373-4383, 2006. 

[96] R. L. Freed and J. B. Vander Sande, “A study of the crystallization of two non-

crystalline CuZr alloys,” J. Non. Cryst. Solids, vol. 27(1), pp. 9-28, 1978. 

[97] X.H. Du, J.C. Huang, K.C. Hsieh, J.S.C. Jang, P.K. Liaw, H.M, Chen, H.S. Chou, 

Y.H. Lai., “Designing ductile Zr-based bulk metallic glasses with phase separated 

microstructure,” Adv. Eng. Mater., vol. 11(5), pp. 387-391, 2009. 



138 

 

[98] S. S. Chen, H. R. Zhang, and I. Todd, “Phase-separation-enhanced plasticity in a 

Cu47.2Zr46.5Al5.5Nb0.8 bulk metallic glass,” Scr. Mater.,vol. 72-73, pp. 47-50, 2014. 

[99] G. N. Greaves, A. L. Greer, R. S. Lakes, and T. Rouxel, “Poisson’s ratio and modern 

materials,” Nature Materials. vol. 10(11), p. 823, 2011. 

[100] J. S. Harmon, M. D. Demetriou, W. L. Johnson, and K. Samwer, “Anelastic to plastic 

transition in metallic glass-forming liquids,” Phys. Rev. Lett., vol. 99(13), p. 135502, 

2007. 

[101] M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramm, D.C. Hofmann, W.L. 

Johnson and R.O. Ritchie., “A damage-tolerant glass,” Nat. Mater., vol. 10(2), p. 123, 

2011. 

[102] P. Yu and H. Y. Bai, “Poisson’s ratio and plasticity in CuZrAl bulk metallic glasses,” 

Mater. Sci. Eng. A, vol. 485(1), pp. 1-4, 2008. 

[103] L. Zhang, Y. Q. Cheng, A. J. Cao, J. Xu, and E. Ma, “Bulk metallic glasses with large 

plasticity: Composition design from the structural perspective,” Acta Mater., vol. 

57(4), pp. 1154-1164, 2009. 

[104] J. H. Na, E. S. Park, Y. C. Kim, E. Fleury, W. T. Kim, and D. H. Kim, “Poisson’s 

ratio and fragility of bulk metallic glasses,” J. Mater. Res., vol. 23(2), pp. 523-528, 

2008. 

[105] W. Song, K. Song, Z. Liu, R. Li, Y. Wu, and Z. Lu, “TRIP-reinforced bulk metallic 

glass,” Mater. China, vol. 33(5), pp. 300-311, 2014. 

[106] Y. Wu, Y. Xiao, G. Chen, C. T. Liu, and Z. Lu, “Bulk metallic glass composites with 

transformationMediated work-hardening and ductility,” Adv. Mater., vol. 22(25), pp. 

2770–2773, 2010. 

[107] S. Pauly, J. Das, J. Bednarcik, N. Mattern, K.B. Kim, D.H. Kim and J. Eckertet., 

“Deformation-induced martensitic transformation in Cu-Zr-(Al,Ti) bulk metallic 

glass composites,” Scr. Mater., vol. 60(6), pp. 431-434, 2009. 

[108] B. Escher, I. Kaban, U. Kühn, J. Eckert, and S. Pauly, “Stability of the B2 CuZr phase 



139 

 

in Cu-Zr-Al-Sc bulk metallic glass matrix composites,” J. Alloys Compd., vol. 790, 

pp. 657–665, 2019. 

[109] S. Pauly, J. Das, C. Duhamel, and J. Eckert, “Effect of titanium on microstructure and 

mechanical properties of Cu50Zr50-xTix (2.5 ≤ × ≤ 7.5) glass matrix composites,” in 

Metallurgical and Materials Transactions A: Physical Metallurgy and Materials 

Science, 2008, vol. 39(8), pp. 1868–1873. 

[110] Y. Wu, H. Wang, X.J. Liu, X.H. Chen, X.D. Hui, Y. Zhang and Z.P. Lv., “Designing 

Bulk Metallic Glass Composites with Enhanced Formability and Plasticity,” J. Mater. 

Sci. Technol., vol. 30(6), pp. 566–575, 2014. 

[111] G. Q. Liu, S. Z. Kou, C. Y. Li, Y. C. Zhao, and H. L. Suo, “Effect of minor Fe addition 

on glass forming ability and mechanical properties of Zr55Al10Ni 5Cu30 bulk metallic 

glass,” Trans. Nonferrous Met. Soc. China English Ed., vol. 22(3), pp. 590–595, 2012. 

[112] I.V. Okulov, U. Kuehn, J. Romberg, I. Soldatov, J. Freudenberger, L. Schultz, A. 

Eschke, C-G. Oertel, W. Skrotzki and J. Eckert., “Mechanical behavior and 

tensile/compressive strength asymmetry of ultrafine structured Ti-Nb-Ni-Co-Al 

alloys with bi-modal grain size distribution,” Mater. Des., vol. 62 pp. 14-20, 2014. 

[113] W.L. Song, Y. Wu, H. Wang, X.J. Liu, H.W. Chem, Z.X. Guo and Z.P. Lv., 

“Microstructural Control via Copious Nucleation Manipulated by In Situ Formed 

Nucleants: Large-Sized and Ductile Metallic Glass Composites,” Adv. Mater., vol. 

28(37), pp. 8156-8161, 2016. 

[114] J. Schroers, “Processing of bulk metallic glass,” Advanced Materials. vol. 22(14), pp. 

1566-1597, 2010. 

[115] M. Miller and P. Liaw, Bulk metallic glasses: An overview. Springer, Boston, MA, 

2008. 

[116] G. Kumar, A. Desai, and J. Schroers, “Bulk Metallic Glasses: the smaller the better,” 

Adv. Mater., vol. 23(4), pp. 461-476, 2011. 

[117] H. Wang, “Bulk metallic glass composites,” J. Mater. Sci. Technol., vol. 329(5997), 



140 

 

pp. 1294-1295, 2005. 

[118] J. Qiao, H. Jia, and P. K. Liaw, “Metallic glass matrix composites,” Materials Science 

and Engineering R: Reports. vol. 100, pp. 1-69, 2016. 

[119] F. F. Wu, K. C. Chan, S. S. Jiang, S. H. Chen, and G. Wang, “Bulk metallic glass 

composite with good tensile ductility, high strength and large elastic strain limit,” Sci. 

Rep., vol. 4, pp. 1–6, 2014. 

[120] M. Ferry K.J. Laws, C. White, D.M. Miskovic, K.F. Shamlaye, W. Xu and O. 

Biletska., “Recent developments in ductile bulk metallic glass composites,” MRS 

Commun.,  vol. 3(1), pp. 1-12, 2013. 

[121] Y. Wu, H, Wang, X.J. Liu, X.H. Chen, X.D. Hui, Y. Zhang and Z.P. Lv., “Designing 

Bulk Metallic Glass Composites with Enhanced Formability and Plasticity,” J. Mater. 

Sci. Technol., vol. 30(6), 99. 566-575, 2014. 

[122] K. K. Song, S. Pauly, Y. Zhang, R. Li, S. Gorantla, N. Narayanan, U. Kuhn, T. 

Gemming and J. Eckert., “Triple yielding and deformation mechanisms in metastable 

Cu47.5Zr47.5Al5 composites,” Acta Mater., vol. 60(17), pp. 6000–6012, 2012. 

[123] T. Yamamoto, Y. Yokoyama, T. Ichitsubo, H. Kimura, E. Matsubara, and A. Inoue, 

“Precipitation of the ZrCu B2 phase in Zr50Cu50-xAlx (x = 0, 4, 6) metallic glasses by 

rapidly heating and cooling,” J. Mater. Res., vol. 25(4), pp. 793–800, 2010. 

[124] N. Barekar, P. Gargarella, K. Song, S. Pauly, U. Kühn, and J. Eckert, “Effect of Al 

and Ag addition on phase formation, thermal stability, and mechanical properties of 

Cu-Zr-based bulk metallic glasses,” J. Mater. Res., vol. 26(14), pp. 1702–1710, 2011. 

[125] B. B. Sun, Y.B. Wang, J. Wen, H. Yang, M.L. Sui, Q.J. Wang and E. Ma., “Artifacts 

induced in metallic glasses during TEM sample preparation,” Scr. Mater., vol. 53(7), 

pp. 805-809, 2005. 

[126] M. Chen, “Mechanical Behavior of Metallic Glasses: Microscopic Understanding of 

Strength and Ductility,” Annu. Rev. Mater. Res., vol. 38, pp. 445-469, 2008. 

[127] H. Choi-Yim, R. Busch, U. Köster, and W. L. Johnson, “Synthesis and 



141 

 

characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass 

composites,” Acta Mater., vol. 47(8), pp. 2455-2462, 1999. 

[128] D. C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetrious and W.L. 

Johnson., “Designing metallic glass matrix composites with high toughness and 

tensile ductility,” Nature, vol. 451, no. 7182, pp. 1085–1089, 2008. 

[129] M. M. Khan, A. Nemati, Z. U. Rahman, U. H. Shah, H. Asgar, and W. Haider, 

“Recent Advancements in Bulk Metallic Glasses and Their Applications: A Review,” 

Crit. Rev. Solid State Mater. Sci., vol. 43, no. 3, pp. 233–268, 2018. 

[130] K. K. Song, D. Y. Wu, S. Pauly, C. X. Peng, L. Wang, and J. Eckert, “Thermal 

stability of B2 CuZr phase, microstructural evolution and martensitic transformation 

in Cu-Zr-Ti alloys,” Intermetallics, vol. 67, pp. 177–184, 2015. 

[131] A. Takeuchi and A. Inoue, “Classification of bulk metallic glasses by atomic size 

difference, heat of mixing and period of constituent elements and its application to 

characterization of the main alloying element,” Mater. Trans., vol. 46(12), p. 2817, 

2005. 

[132] U. E. Klotz, C. Liu, P. J. Uggowitzer, and J. F. Löffler, “Experimental investigation 

of the Cu-Ti-Zr system at 800 °C,” Intermetallics,  vol. 15(12), p. 1666-1671, 2007. 

[133] O. Taguchi, Y. Iijima, and Ken-ichi Hirano, “Reaction diffusion in the CuZr system,” 

J. Alloys Compd., vol. 215, no. 1–2, pp. 329–337, 1994. 

[134] H. C. Sun, Z. Ning, G. Wang, W. Liang, S. Pauly, Y. Huang, S. Guo, X. Xue and J. 

Sun., “In-situ tensile testing of ZrCu-based metallic glass composites,” Sci. Rep., vol. 

8, no. 1, pp. 1–12, 2018. 

[135] W. L. Johnson, “Thermodynamic and kinetic aspects of the crystal to glass 

transformation in metallic materials,” Progress in Materials Science. vol. 30(2), 

pp.81-134, 1986. 

[136] X. L. Bian G. Wang, H.C. Chen, L. Yan, J.G. Wang, Q. Wang, P.F. Hu, J.L. Ren, 

K.C. Chan, N. Zheng, A. Teresiak, Y.L. Gao, Q.J. Zhai, J. Eckert, J. Beadsworth, 



142 

 

K.A. Dahmen and P.K. Liaw., “Manipulation of free volumes in a metallic glass 

through Xe-ion irradiation,” Acta Mater., vol. 106, pp. 66-77, 2016. 

[137] M. M. Trexler and N. N. Thadhani, “Mechanical properties of bulk metallic glasses,” 

Progress in Materials Science. vol. 55(8), pp. 759-839, 2010. 

[138] E. Ma, “Tuning order in disorder,” Nature Materials. vol. 14(6), pp. 547, 2015. 

[139] J. S. Kyeong, D. H. Kim, J. I. Lee, and E. S. Park, “Effects of alloying elements with 

positive enthalpy of mixing in Mg65Cu25Gd10 bulk-forming metallic glasses,” 

Intermetallics, vol. 31, pp. 9-15, 2012. 

[140] S. Schmitz, W. Löser, H. Klauß, and B. Büchner, “Effect of elements with positive 

enthalpy of mixing on mechanical properties of bulk metallic glasses,” in Journal of 

Alloys and Compounds, vo. 509, pp. S131-135, 2011. 

[141] K. Jin and J. F. Löffler, “Bulk metallic glass formation in Zr-Cu-Fe-Al alloys,” Appl. 

Phys. Lett., vol. 86(24), pp. 241-909, 2005. 

[142] X. Wang, Q. Cao, Y. Chen, K. Hono, C. Zhong, Q. Jiang, X. Nie, L. Chen, X. Wang, 

J. Jiang, “A plastic Zr-Cu-Ag-Al bulk metallic glass,” Acta Mater., vol. 59(3), 

pp.1037-1047, 2011. 

[143] Z. Chen, J. Gao, Y. Wu, H. Wang, X. Liu, and Z. Lu, “Alloying effects of the elements 

with a positive heat of mixing on the glass forming ability of Al-La-Ni amorphous 

alloys,” Sci. China Physics, Mech. Astron., vol. 57(1), pp.122-127, 2014. 

[144] Q. S. Zhang, W. Zhang, and A. Inoue, “Ni-free Zr-Fe-Al-Cu bulk metallic glasses 

with high glass-forming ability,” Scr. Mater., vol.61(3), pp.241-244, 2009. 

[145] J. Zhang and Y. Zhao, “Formation of zirconium metallic glass,” Nature, vol. 

430(6997), pp.332, 2004. 

[146] S. S. Chen and I. Todd, “Enhanced plasticity in the Zr-Cu-Ni-Al-Nb alloy system by 

in-situ formation of two glassy phases,” J. Alloys Compd., vol. 646, pp. 973-977, 

2015. 

[147] T. Wang, Y. Wu, J. Si, Y. Liu, and X. Hui, “Plasticizing and work hardening in phase 



143 

 

separated Cu-Zr-Al-Nb bulk metallic glasses by deformation induced 

nanocrystallization,” Mater. Des., vol. 142, pp.74-82, 2018. 

[148] U. Koster, “Crystallization Kinetics in Metallic Glagss.,” Key Eng Mater, vol. (97), 

pp. 233-239, 1986. 

[149] D. W. Henderson, “Thermal analysis of non-isothermal crystallization kinetics in 

glass forming liquids,” J. Non. Cryst. Solids, vol. 30(3), pp.301-315, 1979. 

[150] L. C. Zhang, J. Xu, and J. Eckert, “Thermal stability and crystallization kinetics of 

mechanically alloyed TiC/Ti-based metallic glass matrix composite,” J. Appl. Phys., 

vol. 100(3), 2006. 

[151] L. M. Zou, Y. H. Li, C. Yang, S. G. Qu, and Y. Y. Li, “Effect of Fe content on glass-

forming ability and crystallization behavior of a (Ti69.7Nb23.7Zr4.9Ta1.7)100-xFex alloy 

synthesized by mechanical alloying,” J. Alloys Compd., vol. 553, pp.40-47, 2013. 

[152] V. R. V Ramanan and G. E. Fish, “Crystallization kinetics in Fe-B-Si metallic glasses,” 

J. Appl. Phys., vol. 53(3), pp.2273-2275, 1982. 

[153] G. Kumar, T. Ohkubo, T. Mukai, and K. Hono, “Plasticity and microstructure of Zr-

Cu-Al bulk metallic glasses,” Scr. Mater., vol. 57(2), pp.173-176, 2007. 

[154] S. Guo and C. T. Liu, “Phase stability in high entropy alloys: Formation of solid-

solution phase or amorphous phase,” Prog. Nat. Sci. Mater. Int., vol. 21(6), pp.433-

446, 2011. 

[155] Z. P. Lu and C. T. Liu, “Glass formation criterion for various glass-forming systems,” 

Phys. Rev. Lett., vol. 91 pp. 115505 2003. 

[156] D. Cao, Y. Wu, X. J. Liu, H. Wang, X. Z. Wang, and Z. P. Lu, “Enhancement of 

glass-forming ability and plasticity via alloying the elements having positive heat of 

mixing with Cu in Cu48Zr48Al4 bulk metallic glass,” J. Alloys Compd., vol. 777, pp. 

382–391, 2019. 

[157] G. Cao, K. Liu, G. Liu, H. Zong, H. Bala, and B. Zhang, “Improving the glass-

forming ability and the plasticity of Zr-Cu-Al bulk metallic glass by addition of Nb,” 



144 

 

J. Non. Cryst. Solids, vol. 513, pp. 105–110, 2018. 

[158] F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in 

metallic glasses,” Acta Metall., vol. 25(4), pp. 407-415, 1977. 

[159] M. Heggen, F. Spaepen, and M. Feuerbacher, “Creation and annihilation of free 

volume during homogeneous flow of a metallic glass,” J. Appl. Phys., vol. 97(3), 

2005. 

[160] A. van den Beukel and J. Sietsma, “The glass transition as a free volume related 

kinetic phenomenon,” Acta Metall. Mater., vol.38(3), pp. 383-389, 1990. 

[161] P. Tuinstra, P. A. Duine, J. Sietsma, and A. van den Beukel, “The calorimetric glass 

transition of amorphous Pd40Ni4P20,” Acta Metall. Mater., vol43, pp. 2815, 1995. 

[162] K. K. Song, P. Gargarella, S. Pauly, G. Z. Ma, U. Kühn, and J. Eckert, “Correlation 

between glass-forming ability, thermal stability, and crystallization kinetics of Cu-

Zr-Ag metallic glasses,” J. Appl. Phys., vol. 112, p. 6, 2012. 

[163] M. E. Launey, J. J. Kruzic, C. Li, and R. Busch, “Quantification of free volume 

differences in a Zr44Ti11Ni10Cu10Be25bulk amorphous alloy,” Appl. Phys. Lett., 

vol.91(5), 2007. 

[164] L. M. Martinez and C. A. Angell, “A thermodynamic connection to the fragility of 

glass-forming liquids,” Nature, vol.410(6829), pp. 663, 2001. 

[165] S. Mandal and A. J. Kailath, “Enhanced Plasticity of Cu-Zr-Ti Bulk Metallic Glass 

and Its Correlation with Fragility,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 

vol. 50, no. 1, pp. 199–208, 2019. 

[166] Dong, Q，Y.J. Pan, J. Tan, X.M. Qin, C.J. Li, P. Gao, Z.X. Feng, M. Calin and J. 

Eckert. “A comparative study of glass-forming ability, crystallization kinetics and 

mechanical properties of Zr55Co25Al20 and Zr52Co25Al23 bulk metallic glasses,” J. 

Alloys Compd., vol. 785, pp. 422–428, 2019. 



145 

 

 

 


