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times, Thomas Demeester, Tim Rocktäschel, Lucas Sterckx and everyone I
met at the UCL NLP group for enlightening research discussions; and Afonso,
Sebastião, David, Pedro, Mariana, Rui and everyone I met at Priberam for a
memorable stay in Lisbon. Thank you all for a great project.

I would like to express my sincere appreciation to all colleagues in
Sheffield’s Natural Language Processing Group. I thank Mark, Makis, James,
Hardy, Ignatius, Zeerak and Tope for their friendship, support and for being
awesome lab mates. I am also grateful to other PhDs, Post-docs, Staff and
Visitors for various discussions, ideas and assistance.

Special thanks to all Christian friends in the City Life Church family, and
especially brothers Ayo, Femi and their families, for being a blessing, and a
continual source of spiritual support and encouragement. Thank you for all
you do, and may God continue to bless you abundantly in all your endeavours.

1This work was supported by the European Union’s Horizon 2020 research and innovation
project SUMMA (http://summa-project.eu/) under grant agreement No 688139.



vi

I will also like to appreciate many of my pre-Sheffield colleagues and friends
for sending greetings and for continued relationships.

Last but not least, my deepest gratitude to my parents, brothers, sisters
and my extended family for providing emotional and moral support.



Abstract

Large reams of unstructured data, for instance in form textual document
collections containing entities and relations, exist in many domains. The
process of deriving valuable domain insights and intelligence from such docu-
ments collections usually involves the extraction of information such as the
relations between the entities in such collections. Relation classification is
the task of detecting relations between entities. Supervised machine learning
models, which have become the tool of choice for relation classification, require
substantial quantities of annotated data for each relation in order to perform
optimally. For many domains, such quantities of annotated data for relations
may not be readily available, and manually curating such annotations may
not be practical due to time and cost constraints.

In this work, we develop both model-specific and model-agnostic ap-
proaches for relation classification with limited supervision. We start by
proposing an approach for learning embeddings for contextual surface pat-
terns, which are the set of surface patterns associated with entity pairs across a
text corpus, to provide additional supervision signals for relation classification
with limited supervision. We find that this approach improves classification
performance on relations with limited supervision instances. However, this
initial approach assumes the availability of at least one annotated instance per
relation during training. In order to address this limitation, we propose an
approach which formulates the task of relation classification as that of textual
entailment. This reformulation allows us to use the textual descriptions of
relations to classify their instances. It also allows us to utilize existing textual
entailment datasets and models to classify relations with zero supervision
instances.

The two methods proposed previously rely on the use of specific model
architectures for relation classification. Since a wide variety of models have
been proposed for relation classification in the literature, a more general
approach is thus desirable. We subsequently propose our first model-agnostic
meta-learning algorithm for relation classification with limited supervision.
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This algorithm is applicable to any gradient-optimized relation classification
model. We show that the proposed approach improves the predictive per-
formance of two existing relation classification models when supervision for
relations is limited. Next, because all the approaches we have proposed so far
assume the availability of all supervision needed for classifying relations prior
to model training, they are unable to handle the case when new supervision
for relations becomes available after training. Such new supervision may need
to be incorporated into the model to enable it classify new relations or to
improve its performance on existing relations. Our last approach addresses
this short-coming. We propose a model-agnostic algorithm which enables
relation classification models to learn continually from new supervision as
it becomes available, while doing so in a data-efficient manner and without
forgetting knowledge of previous relations.
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Chapter 1

Introduction

1.1 Motivation

The arrival of the information age has made available a deluge of information in
various forms, including audio, video and text. In particular, the World Wide
Web (WWW) has further accelerated the rate of growth of this information,
as well as providing a scalable and cost-effective way of accessing and utilizing
this information. For instance, it has been estimated that the amount of
digital data available to us will grow by about 50 folds from the year 2010 to
2020 (Gantz et al., 2012), resulting in an exponential increase in the volume
of information within this period. It is desirable to be able to store this
information in a form that is maximally useful, available and easy for both
man and machine to reason with in the process of solving problems.

This is one of the main motivations for constructing repositories of knowl-
edge such as Knowledge Bases (KB). A KB provides a structured format for
organizing, accessing and utilizing information on a large scale. Knowledge
bases contain factual information about various entities, their attributes and
the relationships between them. The knowledge contained in a KB is stored in
such a way as to make machines able to efficiently and effectively read, write,
update and reason over such knowledge. KBs typically store information in
the form of Resource Description Framework(RDF) 1 triples, which consist of
a subject entity, a predicate , and an object entity or attribute value.

In recent years, several efforts have been made in the construction of large
knowledge bases, through various community-driven and academic efforts.
Examples of such knowledge bases include Freebase (Bollacker et al., 2008a)
, NELL (Carlson et al., 2010), YAGO (Suchanek et al., 2007), DBPedia

1www.w3.org/TR/2004/REC-rdf-concepts-2004-0210
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(Auer et al., 2007) and Wikidata (Vrandečić, 2012). In industry, knowledge
bases serve as useful repositories of knowledge that can be easily queried and
power various modern day applications, for instance web search and smart
personal assistants such as Google Now, Apple’s Siri, Microsoft’s Cortana, and
Amazon’s Alexa. Examples of industrial knowledge bases include Google’s
Knowledge Graph, Microsoft’s Satori and Facebook’s Entity Graph.

Although knowledge bases can be quite large and contain many facts, en-
tities and relations, they are frequently incomplete. Thus, the facts contained
in knowledge bases needs to be updated from time to time. Moreover, because
entities are constantly evolving in their roles, associations and attributes,
real-life KBs frequently need to be augmented with new relations to extend
their coverage.

However, a major challenge that arises when extending knowledge bases
to new relations is the lack of sufficient quantities of annotated training data
with which to train classification models for the new relations. State-of-the-art
approaches for detecting relations between entities are supervised models
which require sufficient quantities of supervision to achieve good performance.
While sufficient quantities of labelled training data is needed to learn good
models for relation classification, such quantities of labelled training data
may not be readily available, and even when available, may be expensive and
time-consuming to create. Thus, there is the need for the development of
approaches for relation classification both when there is zero annotated data,
and when there is only limited annotated data for relations. This is the major
problem we address in this thesis.

Relation classification aims to detect relations between various entities from
text. It is an essential part of many knowledge base population approaches (Ji
and Grishman, 2011), and can be useful for a variety of other language
processing systems, such as question answering, information retrieval and
conversational artificial intelligence systems. A variety of approaches and
models have been proposed for the task in the literature, ranging from
unsupervised methods which primarily employ clustering-based techniques to
semi-supervised methods which provide some guidance in the form of seed
instances, to various fully supervised methods, including those that employ
manual feature engineering, kernel methods, and deep representation learning
methods.
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1.2 Aims

Our overall aim in this work is to develop novel approaches for relation
classification from text that do not rely on extensive amounts of labelled data,
and instead are able to utilize zero or little supervision data for classifying
relations. In order to achieve this, we address the following challenges faced
in relation classification with zero and limited supervision:

• Existing approaches for relation classification with limited supervision
(Rocktäschel et al., 2015; Demeester et al., 2016) propose combining
matrix factorization with propositional logic rules. Rocktäschel et al.
(2015) assumed that there is sufficient initial supervision for relations
that can be used to extract such rules, which may not always be the case
especially for new relations with few supervision instances. Demeester
et al. (2016) assumed the existence of a relevant external resource that
can be used to generate such rules as a source of additional supervision
to improve performance for new relations. However, relevant external
resources are not always available for all domains, can be incomplete and
sometimes contain outdated information, thus rendering any supervision
obtained from them unreliable. In Chapter 3 we propose an alternative
approach to the use of logic rules when supervision is limited, by
investigating how information which is already present within text
corpora can be utilized effectively to provide additional supervision for
relation classification with limited supervision.

• Many knowledge bases have text descriptions of the relations included
in their relation ontology. These descriptions can be regarded as giving
a definition to the relations. However, previously proposed approaches
to relation classification with limited supervision have mostly ignored
this information. The challenge with utilizing such descriptions lies
chiefly in how to incorporate them into relation classification systems
in such a way as to allow for generalization to the wide range of lexical
variations used in expressing relations in text. The work reported in
Chapter 4 investigates how relation descriptions can be used to classify
relations when no annotated training data is available.

• While a great variety of supervised models have been proposed for
the task of relation classification, the majority of current state-of-the-
art models are based on the use of neural networks, which requires
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substantial quantities of supervision data for each relation. In addition,
these approaches to relation classification do not have any explicit
objective that encourages the models to share and exploit knowledge
among all relations. In a limited supervision setting, it should be useful
if models are encouraged to exploit knowledge of how to classify one
relation to improve performance on other relations. In Chapter 5 we
investigate how to reduce the quantity of annotated data required to
train supervised neural relation classification models.

• Current approaches for training relation classification models assume the
availability of all supervision data for relations in advance before training
the model. In order to incorporate newly available supervision into
such models after training, either to improve performance on existing
relations or to enable classification of new relations, they usually need
to undergo substantial retraining. This can be expensive and may
lead to the model forgetting how to classify old relations. There is
thus the need for models that are able to utilize new supervision as it
becomes available, without the need for substantial retraining. Such
new supervision can either be used to improve performance on old
relations, or to acquire the ability to classify new relations, or both. In
Chapter 6 we investigate how to develop relation classification models
that are able to learn continually from new supervision as it becomes
available, while being data efficient and not forgetting knowledge from
previously seen relations in the process.

1.3 Contributions

The contributions of this thesis include the following:

Contextual Pattern Embeddings for Relation Classifica-
tion with Limited Supervision

While previous work proposed the use of rules mined from external sources,
we propose the modelling of contextual surface patterns and their interactions
within a Factorization Machines (Rendle, 2010) model for relation classification
in limited supervision settings. Contextual patterns, which are the set of
surface patterns that are associated with entity tuples in text, are readily
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Figure 1.1 Summary of our Contributions

available within any text corpus, and have the advantage that they do
not require consulting external sources to obtain. We investigate learning
embeddings for these contextual patterns within a Factorization Machines
model for relation classification. We demonstrate that by explicitly modelling
the correlations between knowledge base relations and contextual surface
patterns we achieve performance equivalent to matrix factorization combined
with propositional rules, despite not using such additional supervision in our
approach.

Zero-shot Relation Classification as Textual Entailment

We propose an approach and a model for utilizing textual entailment (Fyodorov
et al., 2000; Condoravdi et al., 2003; Bos and Markert, 2005; Dagan et al., 2005;
MacCartney and Manning, 2009) for relation classification without labelled
data. In this formulation, sentences containing at least two entities of interest
can be thought of as the premise, and the textual description of the relation
of interest as the hypothesis. We show that this formulation leads to several
advantages, including the ability to perform zero-shot relation classification
by exploiting relation descriptions, use existing textual entailment models for
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relation classification, and utilize readily available textual entailment datasets
to enhance the performance of relation classification systems.

Model-Agnostic Meta-Learning for Relation Classifica-
tion

We propose to consider the task of relation classification as an instance of
meta-learning (Schmidhuber, 1987; Naik and Mammone, 1992; Thrun and
Pratt, 1998), and develop a model-agnostic meta-learning protocol for training
relation classifiers to achieve enhanced predictive performance in limited
supervision settings. This enables us to explicitly optimize the parameters of
relation classification models during training for enhanced performance on all
relations with limited supervision. We demonstrate that the proposed meta-
learning approach improves the predictive performance of two state-of-the-art
supervised relation classification models.

Lifelong Relation Classification with Meta-Learning

While most existing relation classification models assume that all supervision
data needed for learning is available at training time and are unable to adapt
to exploit newly available supervision data to classify new relations without
substantial retraining, we propose an approach to make relation classification
models able to learn continually by incorporating supervision for new relations
as it becomes available, without the requirement for substantial retraining and
without forgetting knowledge from past relations, based on a combination of
ideas from lifelong learning (Ring, 1994; Thrun, 1996; Zhao and Schmidhuber,
1996) and optimization-based meta-learning.

1.4 Thesis Structure

This rest of the thesis is organized as follows:
Chapter 2 begins by reviewing the task of relation classification and

approaches that have been proposed for it in the literature. It also discusses
various metrics used for evaluating relation classification systems.

Chapter 3 presents an approach for learning contextual patterns em-
beddings within a factorization machine framework for relation classification
with limited supervision. It shows that effectively modelling the interactions
among contextual surface patterns and relations can perform better than
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combining matrix factorization with propositional logic rules for relation
classification with limited supervision.

Chapter 4 describes a principled way to incorporate relation descrip-
tions to enable the classification of relations with zero supervision labels, by
formulating the task as one of textual entailment. It demonstrates that this
approach performs well on two relation classification benchmarks.

Chapter 5 proposes a model-agnostic algorithm with a training objective
that explicitly encourages relation classification models to learn to perform
well on all relations, especially when there is only limited supervision. It
shows that when evaluated on two datasets, the approach improves predictive
performance of two state-of-the-art relation classification models in the limited
supervision setting.

Chapter 6 proposes an approach to enable relation classification mod-
els exploit newly available supervision to classify new relations continually
and efficiently, without forgetting previously learned relations. It reports
the results of experiments conducted on two lifelong relation classification
benchmarks which demonstrate the effectiveness of the proposed approach in
both limited supervision and full supervision settings.

Finally, Chapter 7 concludes with a discussion of our reseacrh contribu-
tions and possible directions of future work.

1.5 Publications

This thesis is based on work reported in the following publications:

1. Model-Agnostic Meta-Learning for Relation Classification with
Limited Supervision
Abiola Obamuyide and Andreas Vlachos
Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics (ACL 2019), Florence, Italy.
Association for Computational Linguistics.

2. Meta-Learning Improves Lifelong Relation Extraction
Abiola Obamuyide and Andreas Vlachos
Proceedings of the ACL 2019 Workshop on Representation Learning
for NLP (RepL4NLP), Florence, Italy.
Association for Computational Linguistics.
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3. Zero-shot Relation Classification as Textual Entailment
Abiola Obamuyide and Andreas Vlachos
Proceedings of the EMNLP 2018 Workshop on Fact Extraction and
VERification (FEVER),Brussels, Belgium.
Association for Computational Linguistics.

4. Contextual Pattern Embeddings for One-shot Relation Ex-
traction
Abiola Obamuyide and Andreas Vlachos
Proceedings of the 31st Conference on Neural Information Process-
ing Systems (NIPS 2017) Workshop on Automated Knowledge Base
Construction (AKBC), Long Beach, CA, USA.



Chapter 2

Related Work

In this chapter we present an overview of related work in relation classification.
We define the task of relation classification, and discuss various approaches
that have been proposed for it and the representative methods of each
approach. We also elucidate the drawbacks associated with each approach
and solutions that have been proposed in the literature, and then conclude
with a definition of the evaluation metrics used to measure the performance
of relation classification systems.

2.1 Introduction

Relation classification is the task of identifying the semantic relationships
between two or more arguments, which are usually entities (Culotta et al.,
2006; Bach and Badaskar, 2007). It is an important task for information
extraction. In this thesis, we assume that there are two candidate entities
involved in each relation, and further that the entities have been identified in a
preprocessing stage. This is a common setup for extracting relationships, and
is sometimes referred to as just relation extraction in the literature. Examples
of semantic relations which can exist between two entities include “spouse
of” relation between Barack and Michelle Obama, “founder of” relation
between Steve Jobs and Apple, and “capital of” relation between Paris
and France.

The output of relation classification can be used to populate an empty
knowledge base (KB) of relations, or to augment existing knowledge bases
such as DBPedia (Auer et al., 2007), Freebase (Bollacker et al., 2008a),
YAGO (Suchanek et al., 2007) or Wikidata (Vrandečić, 2012). A relation
schema specifies how the information in a KB is structured, including the



10 Related Work

set of allowable entities and relation types. For instance, the schema might
specify that the spouse of relation can only hold exclusively between two
entities of a certain type (e.g. persons); that the capital of relation can only
hold between two geopolitical entities which have a geographical location
attribute, etc. Thus, a knowledge base contains structured information about
entities and their relationships, arranged according to a predefined schema.
The task of identifying and labelling the spans of text which are entities
is known as named entity recognition (Grishman, Ralph Sundheim, 1996),
and is usually required before relation classification. The entire pipeline,
from entity identification, coreference resolution and entity linking to relation
classification, and afterwards updating a knowledge base with the extracted
information is usually carried out as part of the process of knowledge base
population (Ji and Grishman, 2011).

2.2 Approaches to Relation Classification

A variety of approaches and setups have been proposed and explored in
the literature for extracting relations from text (Bach and Badaskar, 2007;
Sarawagi, 2008; Konstantinova, 2014; Pawar et al., 2017), and they can be
broadly categorized according to the degree of supervision required in each
approach. These are (i) Fully Supervised methods (ii) Unsupervised meth-
ods (iii) Semi-Supervised Methods, and (iv) Distantly Supervised methods.
In addition to these, we also discuss specific methods for identifying rela-
tions relevant to this thesis, such as Neural Networks methods and Matrix
Factorization methods.

2.2.1 Fully Supervised Relation Classification

Supervised methods for relation classification require the true labels of all
supervision instances. Each instance in the training set is annotated with one
of a predefined set of relations. The task is often formulated as a multi-class
classification task, with each relation corresponding to a class. Usually an
additional dummy or negative relation class is also included to represent
instances that do not express any of the target relations. Traditionally, these
methods are based on the use of features or kernels.
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Feature-based Methods

This approach utilizes a set of features derived from each relation instance
to make a classification decision on the instance. The performance of these
methods is dependent on the feature set used, and a lot of effort is usually
spent on feature engineering - finding a set of features with good discriminative
performance on the relation instances. These features can be any combination
of lexical, syntactic or semantic features of the instances.

Kambhatla (2004) explored the impact of a number of lexical, syntactic
and semantic features for extracting relations, and presented results of uti-
lizing such features within a maximum entropy classifier on the Automatic
Content Extraction (ACE) (Doddington et al., 2004) dataset. They found
that a combination of the features gives the best performance on the dataset.
Similarly, a systematic study of the effectiveness of a variety of feature combi-
nations for relation classification was carried out by Jiang and Zhai (2007).
They report that while they found each of the lexical, syntactic and semantic
features to be effective on their own, syntactic features were generally the
most effective of the three, and that simple lexical, syntactic and semantic
features generally performs well. They also report some gains in performance
when using all the three types of features.

Kernel-based Methods

The performance of feature-based relation classification methods rely largely
on the set of features used, thus requiring a lot of manual effort in the design
and selection of discriminative features. Instead of explicit feature engineer-
ing, kernel-based methods offer the alternative of designing kernel functions
which compute similarities between instances efficiently in an implicit, high-
dimensional feature space. One of the earliest application of kernel methods
for natural language tasks was by Collins and Duffy (2002) who proposed
kernels whose computations are performed over parse trees, and Lodhi et al.
(2002) who present kernels whose computations are defined over strings of
characters (sequences). The kernels proposed by Collins and Duffy (2002)
compute similarity of two instances as the number of shared subtrees in
their syntactic trees. The kernel utilizes a high-dimensional, implicit feature
space where each dimension represents one possible subtree, such that the
value computed by the kernel for any two instances represents their inner
product in the high-dimensional space. Similarly, the kernel proposed by
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Lodhi et al. (2002) compute the similarity of two instances as the number of
shared subsequences in their string (sequence) representations.

Kernel-based methods for relation classification represent relation instances
as a vector of lexical, syntactic and semantic features. The similarity between
two relation instances is then computed in terms of the degree of overlap
in their representations. There are different types of kernels that have been
proposed for the task of relation classification, including sequence kernels,
syntactic tree kernels and composite kernels.

Sequence kernels represent each relation instance as a sequence of items
and the kernel function measures the similarity of two instances by computing
the extent of overlap of their subsequences. Bunescu and Mooney (2005b)
present an extension of the sequence kernels proposed by Lodhi et al. (2002)
which is able to work with sequences composed of combinations of words and
part of speech tags. Bunescu and Mooney (2005b) represent each component
of sequences (i.e each word or PoS tag) with a feature vector representation,
thus turning each relation instance into a sequence of vector representations.
A Support Vector Machines (Cortes and Vapnik, 1995) classifier is then
trained to distinguish positive from negative relation instances.

Syntactic tree kernels define their computations over parse tree representa-
tion of relation instances, and measure the similarity of two relation instances
by computing the extent of overlap of their subtrees. The parse tree of a
relation instance represents the instance in terms of its syntactic constituents,
such as verb phrases, noun phrases and the words in the instance. It is also
possible to augment the parse tree of instances with additional information
such as part of speech tags. Syntactic tree kernels for relation classification
are explored in Zelenko et al. (2003), who proposed kernels which compute
similarities over the shallow parse tree representations of relation instances,
together with algorithms for computing such kernels.

Some tree kernel approaches are based on the use of features derived from
the dependency parse tree of an instance, which describes the grammatical
relations between the words that make up the sentence. In a dependency
tree, the words that make up a sentence form the nodes, with a directed
edge from a word (dependent) to its parent. The tree kernels proposed by
Zelenko et al. (2003) for parse tree representations was extended by Culotta
and Sorensen (2004) to compute the similarity between two given dependency
trees. In order to represent each relation instance, Culotta and Sorensen
(2004) consider the smallest subtree of each sentence which contains both the
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subject and object of the relation. In addition, they also augment each node
in the dependency tree with additional features such as its PoS tag, entity
type, WordNet hypernyms and position.

Bunescu and Mooney (2005a) proposed a shortest path dependency kernel
for relation classification, which is based on the idea that the relation between
two entities can be determined based on the information along the shortest
dependency path between the two entities. Each relation instance is repre-
sented as the lexicalized shortest path between the two entity mentions in its
dependency tree, and the kernel is designed to compute the similarity between
two relation instances from this representation. To prevent data sparsity
resulting from the use of just words in the lexicalization of a dependency
path, words are replaced by their corresponding word classes, such as part of
speech tags and entity types.

It is also possible to combine the information from multiple individual
kernels into a single composite kernel. As stated by Pawar et al. (2017),
information captured by a sequence kernel can be combined with information
captured by a syntactic tree kernel into a single composite kernel, through
a sum, linear combination or a product of the two kernels. It is however
important to ensure the individual kernels are normalized prior to their
combination, in order to have balanced contribution from all kernels in the
final result.

Zhao and Grishman (2005) proposed to combine information obtained
from sentence tokenisation together with that obtained from parsing for
relation classification. They designed different kernels to take advantage
of each type of information. They observe that performance progressively
increases as they add each of their kernels, since each successive kernel helps
to address mistakes made by previously added kernels. They report that
a composite kernel made up of a combination of all the kernels results in
the best overall performance. Nguyen et al. (2009b) also explored the use of
composite kernels to capture various syntactic and semantic information for
relation classification. They designed a kernel to capture syntactic information
obtained from the constituency and dependency tree of relation instances,
and a separate kernel to capture information obtained from entity types and
lexical sequences. They combine the kernels into a composite kernel, and
report that it outperforms previous systems.
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2.2.2 Unsupervised Methods

Unsupervised methods for relation identification aim to be able to discover
relations without any labelled data or predefined relation inventory. There
are a number of approaches under this paradigm, including clustering-based
methods and topic-based methods.

Hasegawa et al. (2004) proposed an early clustering-based approach to
unsupervised discovery of relations. Their approach requires only that named-
entity mentions must be identified beforehand, for instance by preprocessing
the corpus with a named entity tagger. The approach starts by grouping
co-occuring entity pairs together and then aggregating their contexts across
the corpus together. Based on the aggregated entity pair contexts, similarities
between the entity pairs are computed and those with the highest similarity
are grouped together in a cluster as belonging to a relation. For a given entity
pair, Hasegawa et al. (2004) consider it to be co-occuring if they are not more
that N words apart, where N is a parameter which is set empirically. The
words in between entities in the pair, aggregated across all its occurrences in
a corpus, is taken as the context for the mention pair. Then, a vector of tf-idf
counts is computed for each mention pair with its context. To determine the
similarity of two pairs of mentions, the cosine product of their context vectors
is taken. Mention pairs are then clustered according to their similarity scores
using hierarchical clustering.

The Discovery of Inference Rules in Text (DIRT) algorithm was proposed
by Lin and Pantel (2001) as a way of inducing relation types by generalizing
dependency paths of relation instances. Their proposed algorithm is inspired
by the distributional similarity hypothesis (Harris, 1954; Firth, 1957), but
instead of identifying similar words, identifies dependency paths which tend
to link the same set of words. They compute similarities between depen-
dency paths, and generate inference relationships between the most similar
dependency paths. Lewis and Steedman (2013) presented an approach for
discovering clusters of relation types in a bilingual setting, using English and
French as a case study. Their approach is based on exploiting the alignments
between named entities in the two languages to discover text patterns express-
ing the same relations. Inspired by Latent Dirichlet Allocation (LDA)-based
topic models (Blei et al., 2003), Yao et al. (2011) propose a series of methods
for discovering clusters of relation triples from a corpus that utilizes generative
probabilistic models for modelling entity pairs and the syntactic dependency
paths between them. Unlike standard topic models where the observations
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are words and each word is assumed to be drawn from a topic distribution
indicated by a latent topic indicator variable, Yao et al. (2011) assume that a
document is made up of an exchangeable collection of relation facts, where
each relation fact is drawn from a relation type distribution selected by a
latent relation type variable. Their approach further imposes entity type
constraints on the induced relations, and exploits features on the dependency
path between entity mentions. Building on the work of Yao et al. (2011), De
Lacalle and Lapata (2013) propose to automatically integrate general domain
knowledge in the form of first order logic rules into topic models. This has
the advantage that induced relation clusters respect the contraints imposed
by both the data distribution and human-specified domain rules.

An approach based on paraphrase acquisition was proposed for unsuper-
vised relation discovery by Romano et al. (2006). For their approach, they
assume a list of lexico-syntactic templates which entail the relations of interest
and a syntactic matcher to identify the occurences of the given templates from
text. The syntactic matcher is based on a sequence of three transformations,
which include syntactic dependency parsing text, then matching the entailing
templates in the dependency parse, and finally extracting candidate relation
arguments which match the template argument variables. The authors give
an example for the template “X interact with Y”, for which their approach
produces the paraphrases “X bind to Y”, “X activate Y”, etc.

2.2.3 Semi-Supervised Approaches

While unsupervised relation discovery methods can detect relations without
supervision data, the extracted clusters of relations are sometimes incoherent,
and mapping the relation clusters into a semantic relation schema afterwards
is not always straightforward. However, generating labelled data for fully
supervised relation classification can be time consuming and expensive in
terms of both cost and the effort required. It is desirable to have relation clas-
sification methods that are not dependent on completely annotated training
data, thus reducing both the cost and manual effort required for extracting
relations. Semi-supervised approaches have been proposed to improve on
unsupervised methods by utilizing limited supervision together with a large
amount of unlabelled data for extracting relations. We next give an overview
of representative methods under this approach.
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Bootstrapping Methods

Bootstrapping-based approaches for extracting relations typically require just
a few seed instances of each relation, in addition to a large unlabelled corpus
of text, such as the Web. The seed instances given to these approaches usually
include example subject and objects of each relation. Based on the given
initial supervision, these approaches return as output relation instances from
the unlabelled corpus. Examples of early boostrapping approaches include
the Dual Iterative Pattern Relation Expansion (DIPRE) algorithm (Brin,
1998) and Snowball (Agichtein and Gravano, 2000).

The DIPRE algorithm is based on the pattern relation duality principle,
which states that given a good set of relational patterns, a good set of entity
tuples can be obtained, and conversely, given a good set of entity tuples, a
good set of patterns can be obtained. Algorithm 1 below gives a sketch of
the DIPRE algorithm.

Algorithm 1 Dual Iterative Pattern Relation Expansion (DIPRE)
Require: Set of S tuples known to be in relation R
Output: Set S grown over multiple iterations

1: while there are no new tuples to be added do
2: Find all occurrences of the tuples from S on the Web
3: Learn patterns P from these occurrences
4: Search the web using P to find new tuples T
5: Add T to S
6: end while

DIPRE accepts as input seed instances the entities pairs and the patterns
between them specified in form of tuples. It then proceeds iteratively, first
finding occurrences of the entity pairs on the Web, extracting relation patterns
from the found entity pairs, searching the web with the acquired patterns to
find new entity pairs, and augmenting the initial set of seed instances with
the newly-found instances. The process is repeated until a predefined number
of entity pairs have been found by the system. Brin (1998) report that with
just three seed examples of the “author” relation, their system was able to
generate 15257 unique author and book instances from a corpus of 24 million
web pages.

Agichtein and Gravano (2000) propose a system called Snowball that
improves the DIPRE boostraping algorithm by generalizing how its relation
patterns and tuples are generated, represented and evaluated. Instead of
using regular expressions to match entity mentions in the relation patterns as
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was done in DIPRE, Snowball made use of entity tags instead. This improves
the precision of the patterns, since this ensures that selected entities are valid
relation arguments. Snowball represents the words surrounding entities with
vectors, which enables similarities of entity context to be computed with the
inner product between vectors. In addition, Snowball evaluates the precision
of discovered patterns in each iteration and discards those which have low
precision, as determined by a confidence score which can be computed as
the fraction of correct tuples the pattern is able to correctly extract to the
total number of tuples retrieved. Tuples can in turn be evaluated based on
the confidence values of the patterns that extract them. Thus unlike DIPRE,
Snowball is able to filter out low quality patterns and tuples in each of its
runs in order to improve the quality of extracted relation facts.

Active Learning based Approaches

A shortcoming common to all bootstrapping-based approaches is that they
suffer from semantic drift (Riloff and Jones, 1999; Curran et al., 2007), a
phenomenon whereby the precision of their extractions gradually deteriorates
over time. However, labelling a sufficient number of supervision instances for
training supervised systems can be expensive and time consuming. This is one
of the main motivations behind the introduction of active learning techniques
(Settles, 2010) to select the most useful training instances for annotation,
thereby reducing the time and cost of data labelling, under the assumption
that the model is allowed to request for the labels of a limited number of
unlabelled instances. In order to determine which instances would be selected
for annotation from a large pool of unlabelled instances, various criteria have
been proposed. The overall objective of all active learning approaches is to be
able to achieve performance comparable to that of a fully supervised system
with a fraction of the training data.

One of the earliest applications of active learning for extracting relations
was by Sun and Grishman (2012), who propose a system called LGCo-Testing
that uses active learning based on the co-testing (Muslea et al., 2000) selective
sampling framework for relation classification. It uses two classifiers based
on two different views of the data, a maximum entropy classifier which uses
features local to each relation instance (local view), and a k-nearest neighbour
classifier which utilizes global features based on the distributional similarities
between words occurring in the relation contexts computed from a 2 billion
token corpus (global view). The instances selected for annotation are then
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those with labels on which the global and local classifiers disagreed the
most. When compared to a completely supervised system, the authors report
that their approach leads to reduction in annotations by up to 97% while
maintaining the same level of performance.

Open Information Extraction (OpenIE)

Banko et al. (2007) proposed the concept of open information extraction,
which is able to discover potentially interesting relations between entities
automatically from a text corpus. They introduced TextRunner, an early
OpenIE system. TextRunner is made up of three core modules, namely the
self-supervised learner, the single-pass extractor, and the redundancy-based
assessor.

The self-supervised learner heuristically labels extracted entity tuples as
either positive or negative candidate relation instances, based on a set of
predefined rules. It then represents each candidate relation instance with
a vector of features, and trains a Naive Bayes classifier to distinguish the
positive from the negative relation instances.

The single-pass extractor is run once over the corpus to annotate it with
PoS tags and noun phrase chunks. It considers each pair of noun phrase
chunks found within a sentence as a candidate relation instance, and obtains
the relation name by heuristically eliminating unimportant phrases from the
words occurring between such pairs. It uses the Naive Bayes classifier built in
the previous step to classify each relation instance into positive and negative
relation instances, and then accepts and stores only the positive relation
instances into the system.

The redundancy-based assessor assigns a probability of correctness to each
extracted fact tuple, by first automatically merging extracted relation tuples
which have the same entities and relation names, while keeping track of the
number of sentences from which each extraction was made. It then uses the
sentence counts to compute the probability of correctness of each extracted
tuple.

Fader et al. (2011) observed that the output of TextRunner suffers from
a number of shortcomings, which severely affect its quality. These include
incoherent extractions and uninformative extractions. Incoherent extractions
occur when the extracted relation phrases does not have any meaningful
interpretation. This is usually as a result of the word by word sequential
decisions made by TextRunner on whether or not to include words in the
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relation phrase. The authors give an example of a sentence that leads to such
extractions in TextRunner as “Extendicare agreed to buy Arbor Health Care
for about US $432 million in cash and assumed debt.”, for which TextRunner
returns an extraction such as (Arbor Health Care, for assumed, debt). The
relation phrase “for assumed” is not valid since it starts with a preposition.

Uninformative extractions are those which omit important information
from the relation phrase. For instance, from the sentence “Bill Gates made a
donation to the UN”, TextRunner may extract (Bill Gates, made, a donation)
instead of (Bill Gates, made a donation to, the UN). The authors note that
though this problem can be partially addressed with syntactic constraints,
this can result in the extraction of overly long relation phrases such as “is
offering only modest greenhouse gas reduction targets at” from the sentence
“The Obama administration is offering only modest greenhouse gas reduction
targets at the conference”.

To address the above short-comings of TextRunner, Fader et al. (2011)
propose ReVerb, an OpenIE system with better quality of extractions.

In order to correct the problem of incoherent extractions, ReVerb intro-
duced the use of syntactic constraints on possible relation phrases that can be
extracted. One of such constraints is that a relation phrase has to be either a
verb, a verb followed by a preposition, or a verb followed by nouns, adjectives
or adverbs together with a preposition. If there are adjacent matches within
a sentence, they are merged into a single relation phrase. Also, the system
requires that the relation phrase must be located between its two arguments
within a sentence.

To address the problem of uninformative extractions, ReVerb uses lexical
constraints, such as requiring that for a relation phrase to be valid, it must
have been observed with at least k relation arguments in the corpus, where k
is a hyperparameter set to 20 in ReVerb.

Overall ReVerb adopts a different approach to TextRunner for extracting
relations. In contrast with TextRunner, it makes globally informed decisions
about relation phrases rather than word-by-word decisions.

2.2.4 Distant Supervision

Distant Supervision is an approach to obtaining noisy labels for training data
(relation instances for training relation classification models) from existing
semantic knowledge bases, such as Freebase, Wikidata or DBPedia. It is
regarded as a method for obtaining weak labels for training data since the
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annotations obtained from it are not always the ground truth labelling of the
data. However, it is a popular method as it provides an inexpensive way to
provide labels for unlabelled data. One of the earliest proposals to create
“weakly labelled” training data from a knowledge base was carried out for the
biomedical domain by Craven and Kumlien (1999). Later, similar ideas were
proposed by Mintz et al. (2009), Bunescu and Mooney (2007) and Nguyen
et al. (2007). Mintz et al. (2009) utilized Freebase as the knowledge base
for generating weak labels for various relations and referred to the idea as
“distant supervision”, a term which is now commonly used to refer to the
approach. In order to annotate sentences with relations from the knowledge
base, distant supervision utilizes a labelling heuristic known as the distant
supervision assumption, which can be summarized thus:

Distant Supervision Assumption : If two entities participate in
a relation, then any sentence that contains the two entities might
express that relation.

As an illustration, given that the entity pair Barack Obama, United States
is present in the knowledge base for the relation country of birth, the
following sentences which contain both entities are considered by distant
supervision to be instances of the country of birth relation:

1. Barack Obama was born in Honolulu, Hawaii, United States

2. Barack Obama is the 44th President of the United States

3. Barack Obama was seen with his wife Michele in Chicago, United States

To train a relation classifier for the country of birth relation, all of
the above sentences are taken as positive relation instances. Since negative
relation instances are also required to train a relation classifier, other sentences
which do not contain the entity pairs known to be participating in this relation
are taken to be negative instances. After the extraction of features from the
training instances, any supervised classifier, such as Logistic Regression may
then be trained to classify test relation instances.

As a result of the noisy data annotation, which leads to both false positives
in the training data (for instance the second and third sentences above) and
false negatives (when a sentence that expresses a relation is omitted from
the training data because the entities in the sentence are not present in the
knowledge base), distantly supervised relation classification systems suffer
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from reduced performance compared to relation classification systems trained
on manually annotated data. As a result of this, a variety of approaches have
been proposed to address the problem of false positives and false negatives.
We give a brief overview of these approaches.

Reducing False Positives in Distant Supervision

A number of approaches have been proposed to address the issue of false
positives in distant supervison data, and Roth et al. (2013) present a survey
of these approaches. The fundamental premise of distant supervision is that
all sentences containing entities known to be in a relation in a knowledge base
are likely to express that relation. As the example sentences above illustrates,
this is not always the case. Hence Riedel et al. (2010) argue that the distant
supervision assumption is too strong. They proposed instead the expressed-
at-least-once assumption, which relax the fundamental distant supervision
assumption, requiring only that at-least one of the selected sentences should
express the relation of interest.Riedel et al. (2010) then proposed a noise
reduction model based on the new assumption. The noise reduction approach
of Riedel et al. (2010) utilizes a factor graph which models the relation existing
between two entities and the sentences which might express the relation. The
model is not given information about which sentences express each relation,
but rather the model is penalized whenever it does not satisfy the expressed-
at-least-once constraint. They consider the task as an instance of constraint
driven semi-supervised learning (Chang et al., 2008), and utilized Gibbs
sampling (Geman and Geman, 1984; Jensen et al., 1995) with SampleRank
(Wick et al., 2009) for inference.

Following their proposal, a number of other noise reduction approaches
have also been proposed (Hoffmann et al., 2011; Surdeanu et al., 2012a).
These approaches are typically based on a probabilistic graphical modelling
framework with the expressed-at-least-once assumption included as a con-
straint, though they differ with respect to the dependencies assumed to be
present in the data, the modelling stage at which the constraint is enforced
and the specific graphical model inference method employed.

Hoffmann et al. (2011) introduce MultiR, which extends the model of
Riedel et al. (2010) to the multi-label setting. MultiR is able to model
entity pairs which participate in overlapping relations, for instance the pair
(Satya Nadella, Microsoft) which participates in the relations employee_of
and ceo_of at the same time. To allow predicting more than one relation



22 Related Work

per entity pair, MultiR has a variable for each entity pair and relation
that indicates if the relation holds for the entity pair, thus allowing for the
prediction of more than one relation for that pair. Values are assigned to the
variables via distant supervision during training. The model also contains
factors that represent the per-sentence relation predictions and ensure that
for each entity pair, only one relation is predicted per sentential context. In
other words, while it allows each entity pair to take part in multiple relations,
only one such relation can hold for the entity pair in a particular sentence. To
estimate model parameters, the authors employ a perceptron-style (Collins,
2002) training algorithm.

Building on the work of Hoffmann et al. (2011), Surdeanu et al. (2012a)
proposed the Multi-Instance Multi-Label Relation Extraction (MIMLRE)
model, a probabilsitic graphical model which makes predictions in two stages.
In the first stage, a multi-class relation classifier makes predictions for each
sentential context. The predictions from the first stage is then aggregated
by a collection of per-relation binary classifiers in the second stage to make
predictions for each entity pair. In this model, the expressed-at-least-once
constraint is implemented by means of a feature in the per-relation classifiers
which fires when the relation has been predicted at least once for the entity
pair in the set of its sentential contexts. The authors report results which
show that their approach outperforms the previous approaches of Riedel et al.
(2010) and Hoffmann et al. (2011).

A number of other noise-reduction approaches are based on the use of
surface patterns. A generative, hierarchical topic model for reducing false
positives by scoring and filtering relational patterns was proposed by Alfonseca
et al. (2012). The model was inspired by that proposed for multi-document
summarization in Haghighi and Vanderwende (2009), except that Alfonseca
et al. (2012) consider relation patterns as words and entity pairs as documents.
In addition, Alfonseca et al. (2012) further divide entity pairs into groups
according to which relations they participate in. The generative model
assumes three topic distributions : a background topic distribution over
patterns common to all relations, an entity pair-specific topic distribution
over patterns, and a relation-specific topic distribution which is used to
estimate the probability that a surface pattern expresses a relation. The
authors employ Gibb’s sampling as the inference algorithm. As noted in Roth
et al. (2013), the advantage of approaches that use topic models for noise
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reduction, in contrast to those that use the expressed-at-least-once-assumption,
is that they do not require separate negative instances for training.

Takamatsu et al. (2012) proposed a different generative model for noise
reduction. In contrast to the model of Alfonseca et al. (2012), which utilizes
the indirect approach of first modelling the generative process of patterns
and then utilizing that to model their probability of expressing a relation,
Takamatsu et al. (2012) aim to directly model the probability of a pattern
expressing a relation or not. The underlying assumption of their model is
that if a pattern matches a relation’s entity pair, then either the pattern
expresses the relation, or it has a high overlap in entity pairs with other
patterns that express the relation, although it does not explicitly rule out
the possibility that the entity pairs of a pattern which expresses a relation
may still be observed with other patterns that do not express the relation. In
addition, unlike the approach of Riedel et al. (2010), the model of Takamatsu
et al. (2012) groups relation patterns together for each entity pair, and has
the advantage that it is able to handle cases where there is only one mention
of an entity pair in the corpus. They evaluate their approach on a dataset
derived from Wikipedia and report better performance compared to previous
noise reduction approaches.

Reducing False Negatives in Distant Supervision

False negatives are instances which are assumed to not have any relations
because they are not present in the knowledge base used for distant supervision.
This is often a result of the incompleteness of the knowledge bases used
for distant supervision, as most of them are incomplete. Even the largest
knowledge bases, such as Freebase and Wikidata are still missing instances of
many relations (for instance, Min et al. (2013) report that 93.8% of persons
in Freebase have no place of birth attribute). Consequently, if such false
negatives are used as part of distant supervision training data, they would
lead to suboptimal performance for relation classification models trained with
such data. In order to reduce the impact of false negatives on performance,
Min et al. (2013) extend the MIML model of Surdeanu et al. (2012a) to
use fewer negative training examples and instead utilize more positive and
unlabelled examples. They propose a 4-layer hierarchical graphical model with
latent variables that represent the true label assignment of training examples.
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To train their model, they utilized hard Expectation Maximization (EM) 1

together with a log-likelihood objective. The authors evaluate their model on
the KBP dataset of Ji et al. (2010) and report performance improvements
over the approaches proposed in Surdeanu et al. (2012a) and Hoffmann et al.
(2011) for reducing noise.

Xu et al. (2013) propose to increase the quantity and quality of supervision
data through the use of a pseudo-relevance feedback mechanism. The approach
assumes entity pairs which appear more frequently in relevant sentences are
likely to express the relation of interest, and augments a knowledge base with
missing relation instances extracted by exploiting information from the passage
retrieval model of Xu et al. (2011). To increase recall of such entity pairs, the
passage retrieval model utilizes coarse features, which they combine with fine
features obtained from the system of Hoffmann et al. (2011) to encourage high
precision. After relation mentions are annotated with distant supervision, the
passage retrieval model, which is a ranker based on Support Vector Machines
(Cortes and Vapnik, 1995), is trained on the same dataset to provide relevance
feedback on the distantly annotated mentions. The distantly annotated
mentions are then filtered with the passage retrieval model, and thereafter
used to train the MultiR model of Hoffmann et al. (2011). When compared
with the same model trained on the unfiltered distantly annotated mentions,
they report that their approach leads to improvements in performance.

Some approaches propose to mitigate the impact of false negatives by
augmenting distantly annotated data with manually annotated data. Nguyen
and Moschitti (2011) explored combining manually labelled data from the
ACE (Doddington et al., 2004) dataset with distantly annotated text from
Wikipedia. For their experiments, they linearly interpolated the outputs
of kernel-based supervised relation models from Zhang et al. (2006) and
Nguyen et al. (2009a). They report that the models trained on both distantly-
annotated data and manually annotated ACE data outperform that trained
on manually annotated ACE data alone.

Pershina et al. (2014) extended the MIML model of Surdeanu et al. (2012a)
with a new layer containing a set of latent variables to model the human
ground truth labels for each instance in distantly annotated relation instances.
The human ground truth labels were extracted from the KBP dataset of (Ji

1In hard EM, the expectation step computes the most probable value (or assignment) of
the latent variable, while in soft EM the expectation step retains a probability distribution
over the possible values of the latent variable. See, for instance, MacKay (2003) for more
information.
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Figure 2.1 Illustration of a fully-connected neural network with one input
layer, one hidden layer and one output layer.

and Grishman, 2011) and incorporated into the training process of MIML
in the form of “relation guidelines” which encode the entity type preferences
and indicative dependency paths of each relation. During training, the
labels obtained from such relation guidelines are able to override the labels
assigned to relation mentions by the original MIML model. When evaluated
on the KBP dataset, the authors report their approach improves performance
compared to various previous models such as those proposed in Surdeanu
et al. (2012a), Mintz et al. (2009), Hoffmann et al. (2011) and Min et al.
(2013).

Angeli et al. (2014) explored the use of various active learning criteria
for selecting a limited number of distantly annotated mentions for manual
annotation. They combine such manually annotated mentions together with a
much larger distantly annotated corpus for relation classification. The authors
compared three active learning criteria for selecting instances to annotate:
sampling uniformly at random, sampling by high Jensen-Shannon divergence,
and a new criterion proposed by the authors, which samples instances which
are both uncertain and representative of the other instances . They perform
experiments on the 2010 and 2013 versions of the KBP dataset, and report
that the use of active learning generally improves over the MIML model
of Surdeanu et al. (2012a) trained without active learning, and that their
proposed active learning criterion outperforms the other alternatives.
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2.2.5 Neural Networks Methods

In this section we first present an overview of neural networks and their
various variants. We then present specific neural network architectures and
approaches that have been proposed for relation classification.

Artificial Neural Networks, usually referred to as Neural Networks (NNs),
are learning models inspired by, and which are a simplification of, how neurons
work in biological brains. They are usually made of a set of interconnected
nodes, with each node being the artificial analogue of the biological neuron. A
node receives input, processes it and then passes on the result of its processing
to other nodes connected to it. The edge connecting two nodes is typically
associated with a parameter value, which is learnt during training. They can
be nested arbitrarily deeply in layers, with each layer computing an arbitrary
transformation of its input. Neural networks have the ability to use non-linear
activation functions to map layer inputs to outputs, and as a result they
are able to learn highly non-linear compositional functions to map inputs to
outputs. They are trained by minimizing the empirical loss on data using a
gradient-based optimization algorithm such as Stochastic Gradient Descent
(Nemirovski and Yudin, 1978). The process of passing inputs through the
successive layers of a neural network to produce outputs is known as forward
propagation, while the gradient of the loss with respect to the parameters of the
network is computed with a procedure termed backpropagation (Rumelhart
et al., 1988; Werbos, 1990), which utilizes the chain rule of calculus together
with dynamic programming for efficient gradient computations. Figure 2.1
gives an illustration of a feed-forward neural network with a single hidden layer.
In order to utilize neural networks for natural language tasks, each word in
the input is usually represented by an embedding vector, also known as a word
embedding vector. Common neural network-based architectures that have been
proposed include Recurrent Neural Networks (RNNs) (Jordan, 1986; Elman,
1990), Long-short term memory (LSTM) (Hochreiter and Schmidhuber, 1997)
networks and Convolutional Neural Networks (CNNs)(LeCun et al., 1998).

RNNs can be thought as a flexible variant of feed-forward neural networks.
In contrast to feed-forward neural networks which have a predefined number
of hidden layers, RNNs are able to change the number of their hidden layers
such that each layer of the network corresponds to a new time step of the
input and share parameters between the layers. RNNs are made mainly of
recursively defined functions which accept as input the current input and
previous state, and produce a current state vector, which can optionally be
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Figure 2.2 An illustration of the computations performed by an RNN model,
drawn with recurrent connections (left), and unfolded in time (right). L is a
loss function which measures the discrepancy between model outputs o and
true target values y at each timestep t (Goodfellow et al., 2016).

mapped to an output vector for the current time step. To encode an input of
a certain length, RNNs are unrolled in time to the same length as the input,
which enables them to encode inputs of arbitrary length.

As illustrated in Figure 2.2, when given input x at every time step t, a
RNN produces hidden representations h and outputs o through the following
computations (Goodfellow et al., 2016):

h(t) = tanh
(
b + W h(t−1) + Ux(t)

)
o(t) = c + V h(t)

(2.1)

where b, c are bias vectors and U, V, W are parameter matrices.
In practice , the RNN model as defined suffer from the problem of vanishing

and exploding gradients (Bengio et al., 1994; Pascanu et al., 2013), where
the magnitude of gradients reduce to zero or increase to excessively large
values during training as a result of repeated matrix multiplications during
the backpropagation process, thus making learning difficult.

LSTMs are a special type of RNNs proposed to address the problem of
vanishing and exploding gradients during training. They introduce mech-
anisms which prevent the underflow and overflow of gradients during the
training process. LSTMs introduce a series of gates to decide which informa-
tion should be kept and which should be discarded during the backpropation
process. Specifically, LSTMs are equipped with an input gate i, a forget gate
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f and an output gate o, all of which are dependent on the current input and
the previous hidden state for their computations at each time step t. The
computations performed by an LSTM model are summarized in the Equations
below:

it = σ (Wixt + Uiht−1 + bi)
ot = σ (Woxt + Uoht−1 + bo)
ft = σ (Wfxt + Ufht−1 + bf )
ct = it ◦ tanh (Wcxt + Ucht−1 + bc) + ft ◦ ct−1

ht = ot ◦ tanh (ct)

(2.2)

where c, h and b are the cell state, output and bias vectors respectively,
and U, W are parameter matrices.

A bidirectional LSTM (BiLSTM) variant, which runs separate LSTMs
forward and backward over the sequence, was introduced by Graves et al.
(2013). The hidden state of each time step is obtained by concatenating
the hidden states from the forward and backward LSTMs at each time step.
Cho et al. (2014) introduced a slight variation of LSTMs called the Gated
Recurrent Unit (GRU). In contrast to LSTMs, the GRU uses a fewer number
of gates and no separate memory component, and therefore has the advantage
that it requires fewer computational resources.

Relation Classification with Neural Networks

A number of methods for relation classification have been proposed that
rely exclusively on the use of various neural network architectures. Socher
et al. (2012) proposed the use of Matrix-Vector Recursive Neural Networks
(MV-RNN), which learns compositional representation for phrases in a parse
tree structure, for relation classification. MV-RNNs represent every word
and phrase in the syntactic tree with a vector that represents its inherent
meaning, and a matrix which describes how the word or phrase alters the
meaning of nearby constituents. They evaluated on the SemEval-2010 relation
classification dataset (Hendrickx et al., 2010) and report improved performance
relative to an SVM and a maximum entropy classifier baseline.

Zeng et al. (2014) proposed a convolutional neural network for relation
classification. Their model makes use of a concatenation of lexical and sentence
level features extracted from each relation instance. They evaluated their
approach on the SemEval-2010 corpus and compared to baseline methods,
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including the Matrix-Vector Recursive Neural Networks proposed in Socher
et al. (2012), and report performance improvements compared to the baselines.

Zhang and Wang (2015) proposed a Recurrent Neural Network (RNN)
model for relation classification. The advantage of using RNNs in their
approach, as compared to using CNNs, is that they are able to account for
long range dependencies in text. They conducted experiments on two datasets,
the SemEval-2010 dataset and the KBP37 dataset used by Angeli et al. (2014).
They compared to the models of Socher et al. (2012) and Zeng et al. (2014)
and report performance improvements compared to both models. Zhang
et al. (2017) proposed a dataset (TACRED) and an LSTM-based model for
relation classification. Their model utilizes an attention mechanism which
takes into account the position of the subject and object entities in a sentence
for relation classification. They report that their model outperformed various
CNN and LSTM baselines on their dataset.

Adel et al. (2016) compared the performance of CNNs to other models such
as Support Vector Machines for relation classification. They report that the
performance of the models varies per relation class, and that a combination
of different models achieves the best performance. Vu et al. (2016) propose to
combine both recurrent neural networks and convolutional neural networks for
relation classification, in order to benefit from the inductive biases inherent in
both models. The authors report that the combination of both models using
a simple voting scheme outperformed various baselines on the SemEval-2010
dataset, including the models proposed in Socher et al. (2012), Zeng et al.
(2014) and Zhang and Wang (2015).

2.2.6 Relation Classification with Matrix Factorization

A matrix-factorization approach for extracting relations was proposed by
Riedel et al. (2013), in the context of universal schema, which unifies the
relation schemas used by OpenIE extraction methods (surface patterns)
and predicates used by structured knowledge bases such as Wikidata and
YAGO, into a unified schema. The joint schema makes it possible to eas-
ily infer asymmetric implications among relational predicates, such as that
"#A started #B in his garage" => founder_of(A,B), and that its con-
verse founder_of(A,B) => "#A started #B in his garage" is not neces-
sarily true. Riedel et al. (2013) further model relation detection as a low-rank
matrix factorization problem. Within the matrix, observed relational facts
are given a value of 1. During training, model F by Riedel et al. (2013) learns
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latent feature representations for entity pairs and relations with a ranking
objective which scores observed relational facts higher than unobserved ones.
Prediction for an unobserved (candidate) fact is made my measuring the
compatibility between the learned latent representation of the entity pair and
relation making up the candidate fact. In evaluations conducted on the NYT
dataset (Sandhaus, 2008), the authors show that their approach improves in
performance compared to approaches proposed by Mintz et al. (2009); Yao
et al. (2011); Surdeanu et al. (2012a) for extracting relations.

2.3 Evaluation Metrics for Relation Classifi-
cation

A number of evaluation metrics are employed to measure the performance
of relation classification systems. This section discusses these metrics , after
defining some basic terms.

True Positives: The instances predicted by a classifier as instances of a
relation, and which are truly instances of the predicted relation.

True Negatives: The instances predicted by a classifier as not instances
of a relation, and which are truly not instances of the relation.

False Positives: The instances predicted by a classifier as instances of a
relation, but which are not instances of the predicted relation.

False Negatives: The instances predicted by a classifier as not instances
of a relation, but which are instances of the relation.

Accuracy: This is defined as the ratio of correct predictions to that of
all predictions, i.e,

Accuracy = TP + TN

TP + TN + FP + FN
(2.3)

This metric can be used for tasks which are balanced in regard to the
number of instances of each class.

Precision: This is the ratio of a classifier’s correctly predicted instances
to all instances predicted for a specific class:

Precision = TP

TP + FP
(2.4)
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Recall (or True Positive Rate (TPR)): This is the ratio of a clas-
sifier’s correctly predicted instances to that of all instances in a specific
class:

Recall = TP

TP + FN
(2.5)

False Positive Rate (FPR) (or Fallout): This is the ratio:

FPR = FP

FP + TN
(2.6)

Specificity (or True Negative Rate (TNR)) : This is the ratio of
true negatives to all negatives:

Specificity = TN

TN + FP
= 1− FPR (2.7)

F-Measure (F1) : This is a single score which measures the harmonic
mean of precision and recall:

F1 = 2PR

P + R
(2.8)

Im multi-class relation classification, the F1 score can be computed in one of
two ways: Macro F1 computes the precision, recall and F1 scores independently
for each relation, then takes the average of F1 scores across relations to obtain
the overall F1 score. On the other hand, Micro F1 aggregates the true positives,
false positives and false negatives of all relations together to compute the
final F1 score.

2.3.1 Ranked Evaluation Measures

In some settings, especially when the output of the extractor is a ranked,
e.g. a ranked list of entity pairs that are likely to take part in a relation,
evaluation measures inspired by those used to evaluate information retrieval
systems are often used. We discuss some of these measures next.

Precision at k: This is the value of precision computed using the top k
ranked results.

Average Precision (AP) : Given a ranked list of relation instances,
we can compute the precision at every point where a true positive instance
is retrieved. The average of the values obtained this way across the entire
ranked list is known as average precision.



32 Related Work

Mean Average Precision (MAP): This is the mean of the average
precision value across all relations of interest.

Precision-Recall Curve This is a plot of precision versus recall at
various thresholds. It illustrates how precision changes with recall in the
ranked list of results. The area under this curve (Area under the Precision-
Recall Curve) can be used to give an aggregate measure of the performance
of an extractor which outputs a ranked list of extractions.

Receiver Operating Characteristic (ROC) Curve This is a plot of
the true positive rate (recall) versus the false positive rate. It illustrates how
recall level changes with false positive rate at various thresholds. The area
under this curve (Area under the ROC Curve) can also be used to evaluate
the performance of a relation classifier.

2.4 Summary

In this chapter we surveyed relevant background work in relation classification.
We described various supervision settings and model choices that can be used
to carry out the task, and different metrics that can be employed to evaluate
the performance of relation classification systems.

The next chapter discusses our first proposed approach for improving
performance of relation classification with limited supervision, based on the
use of contextual surface patterns.



Chapter 3

Contextual Pattern
Embeddings for Relation
Classification

As the survey of relation classification in the last chapter indicates, the task of
extracting relations has been widely studied, and a variety of approaches have
been proposed for it. A well-known method for extracting relations from a
corpus of documents is universal schema (Riedel et al., 2013), which is based
on matrix factorization. However, in order to perform well on new relations,
this approach requires a lot of annotated examples of each new relation for
training. In order to address this problem, existing approaches Rocktäschel
et al. (2015); Demeester et al. (2016) propose combining matrix factorization
with propositional logic rules. Rocktäschel et al. (2015) assumed that there
is sufficient training data for new relations that can be used to generate
such rules, while Demeester et al. (2016) assumed the availability of relevant
external resources such as WordNet (Miller, 1995), from which such rules can
be generated. However, such relevant resources are not always available in all
domains, and even when available, are not guaranteed to be up-to-date and
complete. Thus, they can not always be relied upon as a source of additional
supervision for relations with limited supervision instances. An approach
that does not assume sufficient initial training data, and does not rely on the
use of external resources, but instead effectively exploits supervision signals
already present within the corpus, is thus desirable for providing additional
supervision to models for extracting new relations.

This chapter investigates such an approach. We propose and show how
contextual surface patterns, incorporated within a factorization machines
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Figure 3.1 The Universal Schema matrix

framework (Rendle, 2010), can be utilized in the same experimental setup
as Rocktäschel et al. (2015) and Demeester et al. (2016), for extracting new
knowledge base relations without assuming the availability of relevant external
resources to provide additional supervision. We test our approach on the
standard New York Times dataset (Sandhaus, 2008), and compared to using
matrix factorization with propositional logic rules, as proposed by Rocktäschel
et al. (2015) and Demeester et al. (2016), and find that with limited training
data, our approach obtains gains in performance comparable to the previous
state-of-the-art approaches that utilize matrix factorization combined with
additional supervision signals in the form of propositional logic rules. In
addition, when using the full training data our approach obtains competitive
performance compared to matrix factorization-based baselines.

The rest of the chapter is structured as follows. We start with a detailed
discussion of extracting relations with universal schema in Section 3.1. In
Section 3.2 we discuss the limitations of the previous approaches for extracting
relations with limited supervision in the framework of universal schema.
Section 3.3 describes our proposed solution to the limitations. It also presents
our experimental results and discusses our findings. We describe other relevant
work in Section 3.4 and conclude with a summary in Section 3.5.

3.1 Relation Classification with Universal Schema

Universal Schema (Riedel et al., 2013) is an approach to relation classification
that jointly embeds textual surface patterns, knowledge base relations and
entity pairs in a common embedding space through matrix factorization. It
sidesteps the problem of aligning relations to sentences from the training
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corpus, which can generate noisy training data and cause sub-optimal perfor-
mance of distantly supervised relation classification approaches. It achieves
this by performing joint inference across surface patterns, knowledge base
relations and entity pairs. This approach casts the problem of extracting
relations between entities as one of link prediction over a universal schema
consisting of the union of textual surface patterns, structured knowledge base
relations and entity pairs. The universal schema matrix is as illustrated in
Figure 3.1, with entity pairs in the rows and relations in the columns. Each
cell of the matrix represents a relation between two entities, where cells with
value 1 are observed relations and the empty ones are unobserved relations
we would like to predict. The framework learns latent feature vectors for
relations and entity pairs by factorizing this matrix, and utilizes facts from
text and the knowledge base stipulating that a certain relation holds among
two entities to provide supervision signals for relation classification.

Formally, let T and R be the set of entity pairs and relations (structured
knowledge base and surface relations) respectively. Each entity pair t = (e1, e2)
consists of the subject e1 and the object e2 entities respectively. Given a
matrix M (for instance Figure 3.1), consisting of observed positive facts (cells
with value 1) and unobserved facts (the empty cells), we would like to be able
to complete the matrix by predicting the missing values. One well-established
way to achieve this is by factorizing the matrix M . This can be conceived as
a matrix factorization problem of the form:

M = T R⊤ ∈ R|T |×|R| (3.1)

where T ∈ R|T |×k and R ∈ R|R|×k are the matrices containing latent
vector representations of entity pairs and relations respectively.

Model F by Riedel et al. (2013) represents each entity pair t ∈ T and
relation r ∈ R by latent vectors θt ∈ Rk and θr ∈ Rk respectively, and models
the score s of a fact f = r(e1, e2) as:

s(f) = ⟨θt, θr⟩ (3.2)

where ⟨., .⟩ is the scalar (dot) product.
The score is afterwards mapped to a probability with the logistic function:

p(f) = σ
(
s(f)

)
= 1

1 + exp
(
− s(f)

) (3.3)
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Since each relation and entity pair is represented by a low-dimensional
vector representation, this leads to similar relations (and entity pairs) having
representations that are close in latent space.

3.1.1 Learning

An important consideration for learning in the universal schema framework
is that the matrix consists of only positive data, i.e., the observed facts,
and does not have any explicit negative data since negative facts are not
observed. Learning from positive-only data is known as implicit feedback
(Rendle et al., 2009a) in the recommendation literature, where the task is
to recommend for users interesting items given their history of known item
interactions, e.g purchases or ratings. In order to address this problem, Rendle
et al. (2009a) proposed Bayesian Personalized Ranking (BPR) which learns
parameters that ranks observed user interactions higher than unobserved
ones. The assumption underlying BPR is that unobserved user interactions
are not necessarily negative interactions, but should be given lower scores
than observed positive interactions by the learned model.

In the framework of universal schema, one can think of a relation as the
user for which we want to recommend entity pairs given the other entity
pairs which are known to be participating in that relation. Thus, Riedel et al.
(2013) also adopt a BPR ranking objective to estimate model parameters.
Specifically, given an observed tuple (e1, e2) of a relation r during training,
negative training data is generated for r by sampling other entity pairs (e3, e4)
which have not been observed to be participating in the relation. Parameters
are then estimated such that the model gives an observed positive fact
f+ = r(e1, e2) a higher score than a sampled unobserved fact f− = r(e3, e4).
The objective maximized by the model can then be expressed as:

L =
∑

f+∈F+

f−∈F−

log
(

σ
(
s(f+)− s(f−)

) )
(3.4)

where F+ is the set of all observed facts and F− is the set of all sampled
negative facts.
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Figure 3.2 The Universal Schema matrix without training instances of the
relation is_located_in(X,Y)

3.2 Predicting Relations with Limited Super-
vision

A major weakness of approaches like universal schema is that they are
unable to accurately predict knowledge base relations whose instances were
unobserved at training time. This problem is illustrated in Figure 3.2, where
no training instances of the relation is_located_in(X,Y) are available for
training. At test time, any predictions for this relation would essentially be
random predictions, since the model would not have been able to learn any
useful representations for the relation.

To address this problem, Rocktäschel et al. (2015) and Demeester et al.
(2016) propose to inject prior knowledge in the form of propositional logic
rules to improve performance for relations with zero or few training labels.
Such rules, which can be of the form X is a city in Y => is_located_in
(X,Y), can for instance be obtained from domain experts or mined from a
resource such as WordNet (Miller, 1995). They can then be injected into
the universal schema matrix prior to, during, or after matrix factorization,
to enable the extraction of relations with limited training instances. As an
illustration, injecting the rule X is a city in Y => is_located_in (X,Y)
before matrix factorization turns Figure 3.2 into Figure 3.1. This process
essentially adds two training instances for the relation is_located_in (X,Y)
into the matrix in Figure 3.2, which can afterwards be factorized to extract
relations.

In order to utilize this approach, we need to first obtain or generate
such rules. Rocktäschel et al. (2015) generated such rules from the training
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data, under the assumption that new relations have sufficient training data
that can be used for this purpose. However, this is not always the case, as
it is possible to have new relations for which we have very few, or even a
single training instance in the universal schema matrix. In such cases, the
approach proposed by Rocktäschel et al. (2015) may not be effective, since the
method relies on an initial training set for rule extraction. Another option for
generating such rules was proposed by Demeester et al. (2016), who assumed
the availability of an external resource such as WordNet, from which such
rules can be generated. The weakness of this approach is that such external
resources are not guaranteed to be available for all domains.

As an alternative solution to address these problems, we explore the use of
contextual surface patterns which are already present in many textual corpora
to provide additional supervision for extracting new relations. Intuitively, the
occurrence of contextual patterns like X is a city in Y and X is a part
of Y with an entity pair should make such an entity pair more likely to be an
instance of the is_located_in (X,Y) relation. Even though the occurrence
of such patterns may be sparse in a text corpus, our hypothesis is that
explicitly modelling them and their interactions can serve as a good source of
additional supervision for extracting knowledge base relations with limited
training instances. The next section describes our approach to modelling such
patterns and their interactions.

3.3 Factorization Machines for Relation Clas-
sification with Limited Supervision

This section describes our approach for extracting relations with limited
supervision, which investigates the usefulness of modelling contextual surface
patterns and their interactions in computing the probability score of facts
when supervision is limited. We start with a description of Factorization
Machines (FMs) (Rendle, 2010, 2012) on which we develop our approach.

Factorization Machines (FM) are a generalization of matrix factorization
proposed in the context of recommender systems as a way to learn effective
scoring functions with sparse inputs, in order to assess how likely it is that
a user-item combination occurs in reality. More concretely, they model the
scoring of a possibly sparse, real-valued input feature vector f ∈ Rd according
to the following equation:
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Figure 3.3 Input observations as a matrix with contextual pattern information.
Each row in the matrix represents a fact (an instance), and the three variables
with names starting with “cn:” are contextual patterns.

s(f) =
d∑

m=1
bmfm +

d∑
m=1

d∑
n=m+1

⟨φm, φn⟩fmfn (3.5)

The first summand is a linear model, where each feature fm is weighted by
a corresponding feature weight bm ∈ R. The second summand captures the
interaction between all possible feature pairs under a low-rank assumption.
Each feature fm has a corresponding embedding φm ∈ Rk with k << d,
and the interaction between two features is captured via their dot product
⟨φm, φn⟩ multiplied by the product of their values in the instance fmfn. The
dot products among all feature pairs represent the weights that we would have
in a model having a weight for each feature combination (d(d− 1)/2 weights)
but with fewer parameters (d(1 +k)) and thus easier to learn from less and/or
sparse data. Modelling feature interactions in the context of recommender
systems, since some features would represent the item and others the user, and
the linear component of the model would only capture that some users tend to
buy more items or that some items are more popular among users. The feature
embeddings that are used to capture their interactions can inform us whether
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a particular user will buy a particular item. The above equation represents
an order-2 FM which captures interactions between pairs of features, but
higher order FMs can capture interactions among feature groups of higher
cardinality at additional computational cost. In this work, we make use of
order-2 FMs due to their linear time computational cost with respect to the
input size (Rendle, 2010).

An alternative view is that we learn the rank-k factorization of the matrix
containing the weights for each feature pair, hence the name factorization
machines. Rendle (2010) showed that a FM model is effective in several
learning settings, even those with sparse features, and is also capable of
approximating the behaviour of many matrix and tensor factorization models.

A FM model learns factorized interaction parameters for all its features
and their interactions, which can be very helpful since surface pattern features
are sparse and supervision for new relations can be limited. We leverage
this ability to learn feature interactions from sparse data to incorporate
contextual information into our relation classification approach to improve
its performance with limited data.

In order to apply FMs for learning relation extractors, we represent a
candidate fact as a triple (r, t, ct) consisting of a relation r ∈ R, an entity
pair t ∈ T and the contextual surface patterns ct of the entity pair. The
contextual surface patterns represent the counts of surface patterns that have
been observed together with tuple t in a text corpus, normalized to sum to
one. We generate f , the fact feature vector by concatenating vectors encoding
each of these elements. The relation r and tuple t are encoded as one-hot
feature vectors of dimensionalities |R| and |T | respectively. Thus, relations,
entity tuples and contextual patterns constitute the variables of our model,
and are the only variables we learn embeddings for with our approach. 1

The intuition behind using the contextual surface pattern features being
that they provide evidence of the surface patterns that are descriptive of the
entity pair in the text corpus, allowing the model to learn which combinations
of surface patterns are indicative of which knowledge base relations. Hence,
the model is able to draw on statistical evidence from surface patterns across
a text corpus in order to derive more reliable estimates for the interaction
factors of relations. This also gives us the benefit of making the most of
surface relations, which are easily obtained but noisy, to learn with very few
annotation labels for new relations.

1We did not learn embeddings for the other possible variables such as the individual
entities in a tuple or their types.
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In the left-hand part of the matrix in Figure 3.3 each instance has either
a surface relation or a KB relation active, thus their correlations may be
ignored unless we consider the contextual patterns on the right-hand side. For
example, the first row in Figure 3.3 represents that the tuple Paris,France
was observed with the surface relation X is a city in Y and that the same
tuple was observed with two contextual surface patterns, cn:X is a city
in Y and cn:X is a part of Y, hence each of them have a value of 0.5.
Similarly, the sixth row represents that the same tuple Paris,France with
the same contextual patterns having the KB relation is_capital_of(X,Y).
This allows the FM model to learn the interaction between the surface
patterns X is a city in Y and X is a part of Y and the KB relation
is_capital_of(X,Y). Furthermore consider that we want to predict which
is a more likely entity tuple between London,UK and London,France for
the knowledge base relation is_located_in(X,Y). Observe that the tuples
London, UK and Paris, France have more contextual surface pattern overlap
than the tuple London,France. The proposed model would be aware of such
correlations to give a higher score for the fact (London,is_located_in,UK)
than (London,is_located_in,France). We henceforth refer to the Factor-
ization Machines model without contextual pattern embeddings as FM and
that with contextual pattern embeddings as FMC.

3.3.1 Objective Formulation

Given a text corpus, we aim to extract relations between entities with limited
training data for each relation by learning a model that can differentiate
between true and false facts, i.e. assign high scores to the former and lower
scores to the latter using Equation 3.5. However, only examples of observed
true relations between entities (positive facts) are available at training time. In
order for the model to effectively discriminate between positive and negative
facts, it needs to have also seen examples of negative facts. One way to
achieve this is to treat observed relations as true facts and all unobserved
relations between entities as false facts. However since the facts we seek to
extract are unobserved, this carries the risk that we treat plausible relations
between entities as negative, which can consequently lead to inferior model
performance. Following the work of Riedel et al. (2013), we make use of the
alternative approach of treating unobserved facts as unknowns, and left for
the model to infer. This is achieved using a ranking-based objective, which
optimizes to rank observed facts higher that unobserved ones. Concretely, we
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make use of the Bayesian Personalized Ranking (BPR) (Rendle et al., 2009b)
objective, which optimizes for the maximal difference between the score of
observed and unobserved facts. Given a set of observed F+ and unobserved
F− facts, we estimate model parameters Θ that satisfy the following objective:

min
Θ
−

∑
f+∈F+

f−∈F−

log
(

1 + eδ(f+,f−)
)

+ λ∥Θ∥2
2 (3.6)

where δ(f+, f−) = s(f+)−s(f−) and λ is a regularization hyper parameter.
The objective in Equation 3.6 essentially maximizes the difference δ(f+, f−)

between the scores of observed and unobserved facts.
Since the set F− is unobserved, it is generated automatically from F+ by

random sampling. Specifically, in each iteration and for every positive fact
f+ in the current batch, we fix the relation r and randomly select an entity
pair t′ ∈ T , such that (r, t′, ct′) has not been observed.

3.3.2 Dataset

For our experiments, we make use of the dataset of Riedel et al. (2013), which
consist of data from New York Times (NYT) corpus (Sandhaus, 2008). The
corpus has been preprocessed with a named entity recogniser and the entities
have been linked, where possible, with their corresponding Freebase (Bollacker
et al., 2008b) entities. The shortest dependency path between each pair of
entities in a sentence has also been extracted as the surface relation.

3.3.3 Setup and Evaluation

We use the same dimensionality for the embeddings and the same pre-
processing (named entity recognition and linking, syntactic parsing) as the
other approaches we compare with in order to ensure a fair comparison. For
all experiments, we make use of a latent dimension size of 100, L2 regular-
ization penalty of 0.01, and ran our model for 1000 epochs. Our approach is
implemented in Tensorflow (Abadi et al., 2016), and uses Adam (Kingma and
Ba, 2014) for optimization, with a learning rate of 1× 10−4 and batch size
of 1024. We sample one unobserved fact at random per positive fact during
training.

We make use of the same evaluation setup as Riedel et al. (2013), who
retrieved for each relation the top 1000 entity tuples from each system, the
top 100 of which is then pooled and manually annotated. These provided
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a set of results that is used to compute precision measures for each system.
We computed Mean Average Precision (MAP) and weighted Mean Average
Precision (wMAP) for each run. While MAP computes the mean of average
precision scores across all the relations for each system, weighted MAP takes
into account the number of true facts for each relation.

Relation # M09 Y11 S12 R13-N R13-F R13-NF R13-NFE FMC
person/company 104 0.67 0.63 0.69 0.72 0.75 0.75 0.78 0.80
location/containedby 75 0.48 0.51 0.53 0.42 0.68 0.66 0.68 0.68
person/nationality 30 0.13 0.38 0.12 0.13 0.18 0.18 0.20 0.20
author/works_written 29 0.50 0.51 0.52 0.45 0.61 0.63 0.69 0.67
parent/child 19 0.14 0.25 0.62 0.46 0.76 0.78 0.76 0.79
person/place_of_death 19 0.79 0.79 0.86 0.89 0.83 0.85 0.86 0.83
person/place_of_birth 18 0.78 0.75 0.82 0.50 0.83 0.81 0.89 0.81
neighborhood/neighborhood_of 12 0.00 0.00 0.08 0.43 0.65 0.66 0.72 0.62
person/parents 7 0.24 0.27 0.58 0.56 0.53 0.58 0.39 0.56
company/founders 4 0.25 0.25 0.53 0.24 0.77 0.80 0.68 0.67
film/directed_by 4 0.06 0.15 0.25 0.09 0.26 0.26 0.30 0.07
sports_team/league 4 0.00 0.43 0.18 0.21 0.59 0.70 0.63 0.48
team/arena_stadium 3 0.00 0.06 0.06 0.03 0.08 0.09 0.08 0.09
team_owner/teams_owned 2 0.00 0.50 0.70 0.55 0.38 0.61 0.75 0.63
roadcast/area_served 2 1.00 0.50 1.00 0.58 0.58 0.83 1.00 0.58
structure/architect 2 0.00 0.00 1.00 0.27 1.00 1.00 1.00 1.00
composer/compositions 2 0.00 0.00 0.00 0.50 0.67 0.83 0.12 0.83
person/religion 1 0.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00
film/produced_by 1 1.00 1.00 1.00 1.00 0.50 0.50 0.33 1.00
MAP 0.32 0.42 0.55 0.45 0.61 0.66 0.63 0.65
Weighted MAP 0.48 0.51 0.56 0.52 0.66 0.66 0.68 0.68

Table 3.1 Results using the full training dataset. The # column is the number
of true facts in the test pool.

3.3.4 Results and Discussion

Limited Supervision In the limited supervision experiments, we perform
evaluations with a fraction τ ∈ [0, 0.5] of the training labels for each relation.
Figure 3.4a presents the results of limited supervision experiments for the two
variants of our approach FM and FMC. The figure shows that the difference
in performance between models FM and FMC is wider when less supervision
data is available. These results demonstrate that the contextual information
incorporated by model FMC enhanced its performance when less supervision
labels are available to the model.

Figure 3.4b presents results of FMC compared to state-of-the-art models
from Rocktäschel et al. (2015) (R15-Joint) and Demeester et al. (2016) (D16-
FSL). Note though that this comparison is not fair to our approach, since it
does not make use of any rules to generate extra supervision data, and this
affected its performance when there are zero supervision instances (when τ =
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(a) Comparison of the models FM and FMC.

(b) Comparison of model FMC with previous work. Results ob-
tained from (Demeester et al., 2016).

Figure 3.4 Comparison of model FM with FMC (a), and FMC with previous
work (b).
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Relation # patterns
location/containedby 786
person/company 332
person/nationality 235
author/works_written 229
person/place_of_birth 216
person/place_of_death 117
parent/child 77
neighborhood/neighborhood_of 74
film/directed_by 25
company/founders 25
sports_team/arena_stadium 23
sports/teams_owned 19
person/religion 16
film/film/produced_by 15
person/parents 12
sports_team/league 9
broadcast/area_served 7
structure/architect 7
composer/compositions 6

Table 3.2 Number of associated surface pattern fact mentions of each relation
in the training set.

0.0). Nevertheless, it was still able to obtain better coverage, as measured by
the wMAP AUC.

Full Supervision We also perform experiments on the full training
portion of the dataset to investigate the model’s performance when full
supervision is available. Table 3.1 presents the results for several approaches
that do not use external supervision data from the literature (M09: Mintz et al.
(2009), Y11: Yao et al. (2011), S12: Surdeanu et al. (2012b), R13-*: Riedel
et al. (2013)), and our FM implementation with contextual information (FMC).
When full supervision is available, FMC is still able to obtain competitive
performance with the use of contextual information. FMC performs well on
both relations with very few true facts in the test pool and those with the
most facts in the test pool.

Table 3.2 presents the relations with the most surface patterns in the
training corpus. The relations that model FMC performs well on in Table
3.1 tend to rank high on this table, e.g. location/contained_by and per-
son/company, which suggests that the incorporation of contextual surface



46 Contextual Pattern Embeddings for Relation Classification

patterns within a FM model is useful for better modelling of knowledge base
relations in general.

3.4 Related Work

Welbl et al. (2016) and Petroni et al. (2015) also explored the use of factor-
ization machines for extracting relations. Welbl et al. (2016) explored the use
of bigrams, which are pairs selected from {e1, r, e2} , as the variables of their
model, while Petroni et al. (2015) proposed using additional features such as
document metadata. However, such features are not always available. We
propose using contextual surface patterns, since these are always available in
the data, which gives our approach the ability to capture correlations between
surface patterns and knowledge base relations that is not possible in both of
these approaches. In addition, neither Welbl et al. (2016) nor Petroni et al.
(2015) investigated the effectiveness of their approach for extracting relations
in the limited supervision setting.

3.5 Summary

This chapter considered the task of learning to extract relations with limited
supervision data. We proposed a FM based model that utilized contextual
surface patterns, which are readily available within the data, as additional
supervision when labelled data for relations is limited. We showed that our
approach improved extraction performance compared to previous approaches
and obtained competitive results when full supervision is available.

The approach we have presented in this chapter needs at least one instance
of each relation during training in order to be able to make predictions for
the relation at test time. In the next chapter we investigate an approach that
is able to make predictions for new relations at test time.



Chapter 4

Zero-shot Relation
Classification via Textual
Entailment

The previous chapter proposed an approach for extracting relations with
limited supervision based on the use of a Factorization Machines model. The
major weakness of this approach is that it assumes the availability of at least
one supervision instance for each relation. This implies that the approach
is not applicable for relation classification when there are zero supervision
instances for some relations. This chapter proposes an approach for relation
classification without any annotated instances, by framing the task as that of
textual entailment.

This reformulation brings a number of advantages. First, we are able to
utilize relation descriptions to provide supervision for classifying relations
which have no labelled instances. Relation descriptions are easy to obtain, and
are also available as part of many relation ontologies, making them a readily
available source of supervision. The second advantage of our approach is that
we are able to leverage existing textual entailment resources, such as datasets
and models, for relation classification. For instance, we can pre-train a textual
entailment model on a textual entailment dataset, and use the pre-trained
model for zero-shot relation classification. Finally, our approach allows us to
seamlessly combine any available supervision data for relations together with
data from textual entailment to provide additional supervision for relation
classification. In our experiments, we demonstrate that this combination
leads to improved performance.
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The rest of this chapter is organized as follows. Section 4.1 starts by
providing the background on textual entailment needed to understand our
approach. We define textual entailment and discuss a number of tasks,
datasets and models that have been proposed for it. We next describe
our approach of relation classification by textual entailment in Section 4.2,
where we find that in contrast to previous relation classification models,
our approach is able to perform zero-shot classification of relations without
training instances. We discuss related work in Section 4.3 and thereafter
conclude with a summary in the last section.

4.1 Background on Textual Entailment

The task of recognising textual entailment (also referred to as natural language
inference) considers the directional relationship between two fragments of text.
It evaluates whether the meaning of a fragment of text (the hypothesis) can
be inferred given another fragment of text (the premise). If the meaning of
the hypothesis follows from that of the premise, then the premise entails the
hypothesis and an entailment relation holds between the two text fragments.
A contradiction relation exists in the case when the meaning of the hypothesis
contradicts that of the premise, and a neutral relation is said to exist when
the pair of text neither contradict nor entail each other.

The Recognising Textual Entailment tasks (Dagan et al., 2005) were
proposed as a way to enable the development of textual entailment models
that are transferable to other natural language tasks such as information
extraction and question answering, amongst others. Since the introduction
of this task, various textual entailment models and approaches have been
developed for it (Bos and Markert, 2005; Jijkoun and de Rijke, 2005; Roth
et al., 2009; Glickman et al., 2006). These approaches are based on the
use of shallow lexical features, and rely on surface form similarity for their
predictions.

To enable the development of approaches which require the availability of
reasonably large quantities of supervision data, Bowman et al. (2015) released
the Stanford Natural Language Inference (SNLI) corpus and reported the
performance of a number of baseline approaches on the corpus. The release
of this dataset accelerated the development of neural models and approaches
for textual entailment. For instance, Rocktäschel et al. (2016); Bowman
et al. (2016); Parikh et al. (2016); Chen et al. (2016a) have proposed various
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neural network-based models based on LSTMs (Hochreiter and Schmidhuber,
1997). These models were evaluated on the SNLI corpus, and surpassed the
performance of the previously introduced models that made extensive use of
hand-engineered natural language pipelines. Recently, a multi-genre version
of this dataset was released by Williams et al. (2017).

A simple baseline approach, when learning representations to determine
entailment between pairs of text, is to treat the pair of input as separate
fragments of text and independently learn a representation for each fragment.
We can then concatenate the learned representations to make predictions.
However, a model that works this way may not be able to fully account for
any intra- and/or inter-dependencies in its inputs to reason effectively about
the entailment of word and phrase pairs in the premise and hypothesis. The
model proposed by Rocktäschel et al. (2016) made use of conditional encoding
and an attention mechanism to address this problem. Instead of treating the
premise and hypothesis as independent pieces of text, conditional encoding
learns a hypothesis representation that is dependent (that is, conditioned)
on the representation learned for the premise. They further introduced a
word-by-word attention mechanism, which they found allowed their model
to reason explicitly about pairs of words and phrases in the premise and
hypothesis.

A model that uses tree-structured recursive neural networks to compute
representations for the premise and hypothesis was proposed by Bowman
et al. (2016). The model works by concatenating its internal representations
of both the premise and the hypothesis, their difference, and element-wise
product and feeding the result into a number of neural network layers and a
linear transformation layer. The output of this process is then finally passed
through a softmax layer to make predictions. The approach though is not
parameter efficient, as it requires a large number of parameters to obtain
modest performance on the SNLI corpus.

Parikh et al. (2016) proposed a decomposable attention model for the task
of textual entailment. The model incorporates a novel attention computation
step that attends to the words and phrases in the premise and hypothesis in a
joint manner. The model also utilizes word position information in the form
of an intra-sentence attention mechanism that encodes the compositional
relationship between the words in a sentence. When compared to that of
Bowman et al. (2016), this model requires fewer parameters and achieves
higher accuracy on the SNLI dataset. Chen et al. (2016b) present a hybrid
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neural model that consists of two sub-models. While one sub-model exploits
sequential language information through the use of LSTMs, the other utilizes
recursive language information through the use of tree-structured LSTMs.
The sequential model replaces the intra-attention mechanism of Parikh et al.
(2016) with attentional information derived from bidirectional LSTMs. They
show that this change results in gains in the prediction accuracy of their
model.

4.2 Relation Classification via Textual Entail-
ment

Given a unit of text containing two entities (subject and object entities),
relation classification seeks to determine the relation between the two entities
as expressed by the given unit of text. In order for humans to be able to
determine if a relation is expressed in a text fragment, they make reference
to some predefined notion or meaning of the specific relation. This meaning
can be obtained from prior knowledge, or from a lexicon of definitions. This
information is also available as part of many relation ontologies, for instance
Freebase or Wikidata, in the form of relation descriptions. For instance , the
TAC-KBP 1 tasks provide guidelines for task annotators to use in extracting
example instances of relations from given document collections, and for human
assessors to use in evaluating the correctness of various system outputs. These
guidelines include the text descriptions of the relations in their ontology. The
assessors use these descriptions as a guide to assess the correctness of the
instances of relations extracted by the various systems participating in the
task. This indicates that relation descriptions provide useful information in
extracting relations in that ontology from document collections. Thus, our
hypothesis is that such descriptions should also provide useful information
for classifying relations without labelled supervision instances.

If we think of relation descriptions as providing a definition of the meaning
of a relation, then this implies we can consider the task of relation classification
as one of determining if the meaning of a relation can be inferred between
two entities in a given fragment of text. In other words, we can consider
the descriptions as the hypothesis of a textual entailment task, with the text
fragments as premise and the task of relation classification becomes that of

1https://tac.nist.gov/2015/KBP

https://tac.nist.gov/2015/KBP
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Relation Subject (X) Object (Y) Text (Premise) Description
(Hypothesis)

religious_order Lorenzo
Ricci

Society of
Jesus

X (August 1, 1703 –
November 24, 1775)
was an Italian Jesuit,
elected the 18th Supe-
rior General of the Y.

X was a
member of the
group Y

director Kispus Erik Balling X is a 1956 Danish ro-
mantic comedy written
and directed by Y.

The director
of X is Y

designer Red Baron
II

Dynamix X is a computer game
for the PC, developed
by Y and published by
Sierra Entertainment.

Y is the de-
signer of X

Table 4.1 Examples of relations, entities, sample text instances, and relation
descriptions.

determining if the meaning of the relation can be inferred from that of the
text. Given text from which we wish to determine the presence of certain
relations, we can join the description of the relation of interest to each text
instance to form a textual entailment instance.

More formally, we propose to formulate the task of relation classification
as that of textual entailment as follows. Given a unit of text T which
mentions a subject X and a candidate object Y of a knowledge base relation
R(X, Y ), and a natural language description d(X, Y ) of R, we wish to evaluate
whether T expresses an instance of R(X, Y ). This is equivalent to a textual
entailment problem in which the unit of text and the relation description can
be considered as the premise P and hypothesis H respectively. For instance,
given the relation spouse_of(X,Y) and its description “Y is the spouse of X”
and the text “Michelle is married to Barack”, we formulate this task as
one of determining the truthfulness of the hypothesis “Michelle is the spouse
of Barack”, given the text. The challenge then becomes that of determining
the truthfulness of the hypothesis given the premise. Table 4.1 gives further
examples of knowledge base relations and their natural language descriptions.

This reformulation brings a number of advantages. The first is that, just
as humans are able to identify instances of relations when given the textual
description of a relation, it provides a way to utilize relation descriptions for
zero-shot relation classification. We achieve this by pairing to each potential
relation instance a description of the candidate relation, as shown in Table 4.1,
and training a textual entailment model on the resulting data. At test time,
given the description of a new relation and its candidate instances, we can
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pair the description with the instances to generate premise and hypothesis
pairs for classification.

The second advantage of our approach is that it allows us to use exist-
ing textual entailment resources, such as datasets and models, for relation
classification. As discussed in section 4.1, a number of large, manually anno-
tated datasets and elaborate models have already been proposed for textual
entailment, and all of this can be directly applied to the task of relation
classification. In the experiments section, we show that we can perform
zero-shot relation classification just by pretraining a textual entailment model
on an existing textual entailment dataset.

Additionally, our approach allows for the augmentation of any available
relation classification data with existing textual entailment data to enhance
performance for relation classification. This can be useful, for instance, when
there is some supervision data available for relation classification. In this
case, we can simply generate a textual entailment dataset from the existing
labelled instances by pairing each relation instance with the description of its
relation label, and adding this to an existing textual entailment dataset. In
our experiments, we show that this approach can lead to improvements in
performance for relation classification.

4.2.1 Model

The problem of determining whether the meaning of a piece of text is entailed
by another can be handled with a textual entailment model, and we take
as our base model the textual entailment model introduced by Chen et al.
(2016b). We make use of the Enhanced Sequential Inference Model (ESIM )
variant, which we briefly described previously. We now present a more detailed
description of this model.

ESIM utilizes Bidirectional Long Short-Term Memory (Hochreiter and
Schmidhuber, 1997; Graves and Schmidhuber, 2005) (BiLSTM) units as a
building block and accepts two sequences of text as input. It then passes
the two sequences through three modelling stages - input encoding, local
inference modelling and inference composition, and finally a prediction stage
which returns the class with the highest classification score, out of the three
classes entailment, contradiction and neutral.

In this section we first briefly describe the input encoding, local infer-
ence modelling and inference composition stages. We then describe how we
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adapt the input encoding and inference composition stages using conditional
encoding in the following subsection.

The input to the input encoding stage is two sequences of vectors, {pi}
and {hj}, or more compactly two matrices P ∈ RI×d for the premise and
H ∈ RJ×d for the hypothesis, where I and J are respectively the number
of words in the premise and hypothesis, and d is the dimensionality of each
vector representation. Then the input sequences are processed with BiLSTM
units to yield new sequences P̄ ∈ RI×2d for the premise and H̄ ∈ RJ×2d for
the hypothesis:

P̄ , −→c p,←−c p = BiLSTM(P ) (4.1)
H̄ , −→c h,←−c h = BiLSTM(H) (4.2)

where −→c p ,←−c p ∈ Rd are respectively the last memory cell states in the forward
and reverse directions of the BiLSTM that reads the premise. −→c h ,←−c h ∈ Rd

are similarly defined for the hypothesis.
In the local inference modelling stage, soft alignments between words in

the premise and hypothesis are computed using neural attention. This stage
takes as input the word representations p̄i and h̄j obtained from the input
encoding stage. It first computes the interaction eij between each word in
the premise and hypothesis as the dot product of their vectors, eij = p̄T

i h̄j,
and then uses this to compute their soft alignment:

p̃i =
J∑

j=1

exp (eij)∑J
f=1 exp (eif )

h̄j, ∀i = 1, 2, ..., I (4.3)

h̃j =
I∑

i=1

exp (eij)∑I
f=1 exp (efj)

p̄i, ∀j = 1, 2, ..., J (4.4)

The stage then computes new vector representations si and tj for each
word in the premise and hypothesis as:

si = [p̄i; p̃i; p̄i − p̃i; p̄i ⊙ p̃i] (4.5)
tj = [h̄j; h̃j; h̄j − h̃j; h̄j ⊙ h̃j] (4.6)

where the symbols ; and − respectively denote vector concatenation and
elementwise subtraction, while ⊙ denotes elementwise product. The new
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vector representations si and tj are conveniently output as matrices S ∈ RI×k

and T ∈ RJ×k for all words in the premise and hypothesis respectively, where
k is the dimensionality of each vector representation.

Similar to the input encoding stage, the inference composition accepts
as input the output of the previous stage, S for the premise and T for the
hypothesis, and then the input sequences are processed with BiLSTM units to
yield new representations s̄i and t̄j, which are output as matrices S̄ ∈ RI×2k

and T̄ ∈ RJ×2k for all words in the premise and hypothesis respectively:

S̄ , −→c s,
←−c s = BiLSTM(S) (4.7)

T̄ , −→c t,
←−c t = BiLSTM(T ) (4.8)

where −→c s ,←−c s ∈ Rk are respectively the last cell states in the forward and
reverse directions of the BiLSTM that reads the premise. −→c t ,←−c t ∈ Rk are
similarly defined for the hypothesis.

The new representations are then max- and average-pooled elementwise
to obtain a single vector representation:

s̄ ave =
I∑

i=1

s̄i

I
, s̄max = Imax

i=1
s̄i

t̄ ave =
J∑

j=1

t̄j

J
, t̄max = Jmax

j=1
t̄j

x =
[
s̄ ave ; s̄max; t̄ ave ; t̄max

]
(4.9)

The vector x is then passed through a Multi-Layer Perceptron (MLP)
classifier with a softmax output layer to make predictions:

y = softmax
(

Wy

(
σh (Whx + bh)

)
+ by

)
(4.10)

where Wy, Wh are parameter matrices, by, bh are bias vectors, and σh

is an activation function. Note that while the SNLI and MultiNLI datasets
require three-way classification, our task requires two-way classification since
we have only positive and negative classes.

ESIM with Conditional Encoding

We make the following adaptations to the model architecture of ESIM, which
we found to be beneficial in the low-data regime when supervision is limited.
When used for relation classification, ESIM encodes the sentence indepen-
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dently of the relation description. Given a new target relation’s description,
we want representations computed for the sentence to take into account the
representations for the target relation description. In order to achieve this, we
explore the use of conditional encoding, proposed for the task of textual entail-
ment using LSTMs by Rocktäschel et al. (2016), and extended to BiLSTMs
by Augenstein et al. (2016). The idea of conditional encoding for pairwise
sequence classification tasks is to initialize the starting memory cell state
when processing a sequence with the final memory cell state obtained from
processing the other sequence. In our case we implement conditional encoding
for BiLSTMs (cBiLSTM) by initializing the forward and reverse memory cell
states of the BiLSTM that reads each sentence with the last forward and
reverse memory cell states of the BiLSTM that reads the relation description.
This was done for both the input encoding and inference composition stages
of ESIM. Thus, Equations 4.1 and 4.7 can be expressed as Equations 4.11
and 4.12 respectively:

P̄ = cBiLSTM(P ,−→c h,←−c h) (4.11)
S̄ = cBiLSTM(S,−→c t,

←−c t) (4.12)

We refer to the adapted ESIM as the Conditioned Inference Model (CIM )
in subsequent sections.

4.2.2 Dataset

We evaluate our approach using datasets from Adel et al. (2016) and Levy
et al. (2017). The dataset of Adel et al. (2016) (LMU-RC ) is split into training,
development and evaluation sets. While the training split was generated
by distant supervision, the development and test data were obtained from
manually annotated TAC-KBP system outputs. We obtained the descriptions
for the relations from the TAC-KBP relation ontology guidelines.2 This
turns each instance in the dataset into a tuple consisting of a relation, its
subject and object entities, a sentence containing both entities and a relation
description.

We applied a similar process to the dataset released by Levy et al. (2017)
(UW-RE), which was derived from the WikiReading dataset (Hewlett et al.,

2https://tac.nist.gov/2015/KBP/ColdStart/guidelines/TAC_KBP_
2015_Slot_Descriptions_V1.0.pdf

https://tac.nist.gov/2015/KBP/ColdStart/guidelines/TAC_KBP_2015_Slot_Descriptions_V1.0.pdf
https://tac.nist.gov/2015/KBP/ColdStart/guidelines/TAC_KBP_2015_Slot_Descriptions_V1.0.pdf
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Dataset Model F1 (%)

LMU-RC ESIM 20.16
CIM 22.80

UW-RE ESIM 61.32
CIM 64.78

Table 4.2 Zero-shot relation learning results for ESIM and CIM using Distant
Supervision (DS) data.

Dataset Supervision F1 (%)

LMU-RC TE 25.54
TE+DS 26.28

UW-RE TE 44.38
TE+DS 62.33

Table 4.3 Zero-shot relation learning results for model CIM pre-trained on
two sources of data: Textual Entailment (TE), or both Distant Supervision
and Textual Entailment (TE+DS).

2016). It consists of 120 KB relations and a set of question templates for each
relation, containing both positive and negative relation instances, with each
instance consisting of a subject entity, a knowledge base relation, a question
template for the KB relation, and a sentence retrieved from the subject
entity’s Wikipedia page. We wrote descriptions for each of the 120 relations
in the dataset, with each relation’s question templates serving as a guide.
As an example, given the KB relation director(X,Y), its associated question
template Who is the director of X? is converted to a relation description of
the form The director of X is Y. Thus all instances in the dataset now include
the corresponding relation description, making them suitable for the task of
zero-shot relation classification using our approach. 3

In addition to the two datasets, we also utilize the MultiNLI natural
language inference corpus (Williams et al., 2017) in our experiments as a
source of supervision. We map its entailment and contradiction class instances
to positive and negative relation instances respectively.

4.2.3 Experiments and Results

We conduct two series of experiments. The first set of experiments tests the
performance of our approach in the zero-shot setting, where no supervision
instances are available for new relations. The second set of experiments

3This conversion was performed by the author.
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measure the performance of our approach in the limited supervision regime,
where varying levels of supervision is available.

Implementation and Hyperparameters

Our approach is implemented with Tensorflow (Abadi et al., 2016). We
initialize the word embedding layer with 300D Glove (Pennington et al., 2014)
vectors and apply Dropout with a keep probability of 0.9 (this value is used
for all experiments and not tuned for any particular individual experiment)
to all layers. The result reported for each experiment is the average taken
over five runs with different random seeds. In order to prevent overfitting to
specific entities, we mask out the subject and object entities with the tokens
SUBJECT_ENTITY and OBJECT_ENTITY respectively.

Zero-shot Relation Learning

For this experiment we created ten folds of each dataset, with each fold
partitioned into train/dev/test splits along relations. In each fold, a relation
belongs exclusively to either the train, dev or test splits.

Table 4.2 shows averaged F1 across the folds for the models on the LMU-
RC and UW-RE datasets using their Distant Supervision (DS)-generated
training data. We observe that even without training data for the test
relations, the models were still able to make predictions for them, though at
different performance levels. CIM obtained better performance compared to
ESIM, as a result of its use of conditional encoding.

Table 4.3 shows F1 scores of model CIM pre-trained on only MultiNLI
(TE) or a combination of MultiNLI and distant supervision (TE+DS) data
in the zero-shot setting. We find that CIM pre-trained on only textual
entailment data is already able to make predictions for unseen relations,
while using a combination of distant supervision and textual entailment data
achieved improved F1 scores across both datasets, demonstrating the validity
of our approach in this setting. We also observe that using TE+DS data
performs worse than using DS data alone in the case of the UW-RE dataset,
unlike in the case of LMU-RC. This is possibly because DS data performs
much better for the former.
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Figure 4.1 Limited supervision results: F1 scores on UW-RE as fraction of
training data (τ) is varied. When τ=0, we get the zero-shot results in Table
4.2

Figure 4.2 F1 scores on LMU-RC as fraction of training data (τ) is varied.
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Limited Supervision Relation Learning

For the experiments in this limited-supervision setting, we randomly partition
the dataset along relations into a train/dev/test split. Similar to the zero-
shot setting, a relation belongs to each split exclusively. Then for each
experiment, we make available to each model a fraction τ of example instances
of unobserved relations as supervision. Note that the particular example
instances used are a disjoint set of instances which are not present in the
development and evaluation sets.

In addition to ESIM and the proposed CIM, we also report results for
the TACRED Relation Extractor (TACRED-RE), the position-aware RNN
model that was found to achieve state-of-the-art results on the TACRED
(Zhang et al., 2017) dataset. TACRED-RE is a supervised model that expects
labelled data for all relations during training, and thus not applicable in the
zero-shot setup.

Results for this set of experiments are shown in Figure 4.1 for the UW-RE
dataset. We find that only about 5% of the training data is required for
both ESIM and CIM to reach around 80% in F1 performance, with CIM
outperforming ESIM in the 0-6% interval. However, beyond this interval, we
do not observe any major difference in performance between ESIM and CIM,
demonstrating that CIM performs well in both the zero-shot and limited
supervision settings. For context, when given full supervision on the UW-RE
dataset, CIM and TACRED-RE obtain F1 scores of 94.82% and 87.73%
respectively. A similar trend is observed for the LMU-RC dataset, whose plot
can be found in Figure 4.2.

In general, all models obtain better results on UW-RE than on LMU-RC.
We hypothesize that the performance difference is due to UW-RE being
derived from Wikipedia documents (which typically have well-written text),
while LMU-RC was obtained from different genres and sources (such as
discussion forum posts and web documents), which tend to be noisier.

Qualitative Results

Figure 4.3 depicts a visualization of the normalized attention weights assigned
by our model on randomly drawn instances from the development set. We
observe that it is able to attend to words that are semantically coherent with
the premise (“novel” and “author”, Figure 4.3a), (“studied” and “university”,
Figure 4.3b), (“show” and “channel”, Figure 4.3c).
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(a)

(b)

(c)

Figure 4.3 Attention visualization
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4.3 Related Work

Recent work, including Adel et al. (2016) and Zhang et al. (2017), proposed
models that assume the availability of supervised data for the task of relation
classification. Adel et al. (2016) conducted a study that compared the
effectiveness of Convolutional Neural Networks (CNNs) to other models for
relation classification. For their study, they made use of a dataset derived from
the TAC-KBP tasks. They report that the different models performed well
on a different subsets of the relation slots, and that each relation has specific
properties that make particular models suitable for extracting them. Zhang
et al. (2017) proposed a model and dataset for relation classification. Their
model makes use of an attention mechanism that takes into consideration the
position of the tokens in the sentence relative to the position of the subject
and object entities. They also derived a relation classification dataset from
the TAC-KBP tasks. However, a major shortcoming common to the proposed
approaches by Adel et al. (2016) and Zhang et al. (2017) is that they identify
only relations observed at training time, and are unable to generalize to new
(unobserved) relations at test time. Our work proposes a way to address this
weakness by using the natural language description of relations paired with a
textual entailment model.

Levy et al. (2017) showed that the task of slot filling in relation extraction
can be reduced to a question answering problem. The task we address in this
work is that of zero-shot relation classification, which determines if a given
relation exists between two given entities in text. As a result the output of
our approach is a binary classification decision indicating whether a given
relation exists between two given entities in text, while Levy et al. (2017)
returns the span corresponding to the relation slot (“answers”) from the text.

Our approach is also inspired by recent methods for leveraging knowledge
from a set of source tasks to target tasks, such as recent transfer learning
methods in natural language processing (Peters et al., 2018; McCann et al.,
2017). Peters et al. (2018) and McCann et al. (2017) show that representations
learned from language modelling and machine translation respectively can
enhance performance when transferred to a number of other natural language
tasks. Both approaches did not consider the task of relation classification,
and moreover, our work utilizes relation descriptions within the framework of
textual entailment to enable zero-shot relation classification.
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4.4 Summary

In this chapter we showed how relation classification can be formulated as
a textual entailment task, and that this leads to several advantages. In
contrast to previous relation classification models, we were able to perform
zero-shot classification of relations through the use of relation descriptions
and use existing textual entailment models and datasets to perform relation
classification. We performed experiments on two datasets, and demonstrated
the effectiveness of our approach in both quantitative and qualitative results.

The approaches we have proposed in this chapter relies on the use of a
textual entailment model. However, a number of models have been proposed
in the literature specifically for relation classification. In the next chapter,
we propose a way to improve the performance of these relation classification
models when trained with limited supervision.



Chapter 5

Model-Agnostic Meta-Learning
for Relation Classification

The previous chapters proposed approaches to relation classification with
improved predictive performance, both in settings with limited supervision
instances and in settings with zero supervision instances for new relations.
However these previous approaches assume the use of specific types of model
architectures. The implication of this is that the previously proposed ap-
proaches may not be directly applicable when a different model architecture
is used.

However, there is a wide range of other model architectures that have
been proposed for relation classification, especially supervised models based
on neural networks, for instance recursive neural networks (Socher et al., 2012;
Hashimoto et al., 2013), convolutional neural networks (Zeng et al., 2014;
Nguyen and Grishman, 2015), recurrent neural networks (Zhang and Wang,
2015; Xu et al., 2015; Zhang et al., 2017) or some combination of recurrent and
convolutional neural networks (Vu et al., 2016). These models are typically
highly data inefficient, requiring significant quantities of supervision data to
generalize well. A relation classification approach that reduces the amount of
supervision required by these models, and that does not adversely affect their
performance in the process, is therefore highly desirable.

In this chapter we aim to address this shortcoming, in order to move
beyond our previously proposed approaches for relation classification with
limited supervision, by proposing a model-agnostic approach to enhance
the predictive performance of a wide range of other relation classification
models. We explore a more general approach for training relation classification
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models in settings with limited supervision, which is applicable to any existing
gradient-optimized relation classification model.

Motivated by the observation that meta-learning leads to learning a bet-
ter parameter initialization for new tasks than ad hoc multi-task learning
across all tasks (Finn et al., 2017), we frame the task of supervised relation
classification as an instance of meta-learning. By leveraging gradient-based
meta-learning, we propose a model-agnostic meta-learning protocol for train-
ing relation classifiers to achieve enhanced predictive performance in limited
supervision settings. During training, our algorithm aims to not only learn
good parameters for classifying relations with sufficient supervision, but also
learn model parameters that can be fine-tuned to enhance predictive per-
formance for relations with limited supervision. We conduct experiments
on two relation classification datasets, and demonstrate that the proposed
meta-learning approach improves the predictive performance of two state-of-
the-art supervised relation classification models, the position-aware relation
classification model proposed in Zhang et al. (2017) (TACRED-PA) and
the contextual graph convolution networks proposed in Zhang et al. (2018)
(C-GCN ), with varying amounts of supervision available at training time.

The rest of this chapter is structured as follows. We begin by providing
background on meta-learning in Section 5.1. We define meta-learning and
discuss the various approaches that have been proposed for it in the literature.
Next, we describe how we apply meta-learning for relation classification, and
provide a model-agnostic metal-learning procedure for training relation classi-
fication models to enhance their predictive performance in limited supervision
settings in Section 5.2. In Section 5.3 we report and discuss the results of
experiments conducted using two state-of-the-art relation classification models
on two datasets, and Section 5.5 concludes with a summary.

5.1 Background

Meta-learning, also known as learning to learn (Thrun and Pratt, 1998),
aims to develop models and algorithms which are able to exploit background
knowledge to adaptively improve their learning process with experience. A
number of meta-learning approaches have been proposed, and broadly fall into
the three following lines of work: learning how to update model parameters
from background knowledge (for instance, Andrychowicz et al. 2016; Ravi
and Larochelle 2017), specific model architectures for learning with limited
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supervision (for instance, Vinyals et al. 2016; Snell et al. 2017), and model-
agnostic methods for learning a good parameter initialization for learning
with limited supervision (for instance, Finn et al. 2017; Nichol et al. 2018).

We next give a brief overview of the model-agnostic methods for meta-
learning, which learn a good parameter initialization for target tasks from a
set of source tasks, as proposed in Finn et al. (2017) and Nichol et al. (2018).
These algorithms work by training a meta-model on the set of source tasks,
such that the meta-model provides a good parameter initialization for target
tasks which are taken from the same distribution as the source tasks. At
test time, such an initialization can be fine-tuned with a limited number of
gradient steps using a limited amount of training examples from the target
tasks, in order to achieve good performance on the target tasks.

In formal terms, let p(T ) be the distribution over tasks and fθ be the
function learned by a neural model parametrized by θ. During adaptation
to each task Ti sampled from p(T ), the model parameters θ are updated
to task-specific parameters θ′

i. For a single gradient step, for instance, this
update can be carried out as:

θ′
i = θ − α∇θLTi

(fθ) (5.1)

where LTi
is the loss on task Ti and α is the step size hyperparameter.

The model parameters θ are trained to optimize the performance of fθ′
i
,

after taking a number of gradient steps with limited example instances from
tasks sampled from p(T ). This can be achieved by utilizing the meta-objective:

min
θ

∑
Ti∼p(T )

LTi
(fθ′

i
) =

∑
Ti∼p(T )

LTi
(fθ−α∇θLTi

(fθ)) (5.2)

The optimization of the meta-objective is performed across tasks using
SGD, by making updates to θ:

θ ← θ − ϵ∇θ

∑
Ti∼p(T )

LTi
(fθ′

i
) (5.3)

where ϵ is the meta step size parameter.
Intuitively, the meta-objective explicitly encourages the model to learn

model parameters that can be quickly adapted to achieve optimum predictive
performance across all tasks using a few gradient descent steps. In the next
section, we describe how we apply this framework to improve performance of
relation classification models with limited supervision.
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5.2 Model-Agnostic Meta-Learning for Rela-
tion Classification

If we consider each relation Ri as a task, then one approach to supervised
relation classification with limited supervision is to directly train a multi-class
classifier for all relations jointly. For all relations Ri from a distribution p(R),
this approach directly optimizes for the following objective:

θ∗ = min
θ

∑
Ri∼p(R)

LRi
(fθ) (5.4)

where LRi
is the loss on relation Ri. This assumes that joint training on

all relations would naturally result in the optimal model parameters θ∗ with
good predictive performance for all relations. This is however not necessarily
the case, especially for relations with limited training instances from which
the model can learn to generalize.

We propose to instead utilize meta-learning to explicitly encourage the
model to learn a good joint parameter initialization for all relations, which
can then be fine-tuned with limited supervision from each relation’s training
instances to achieve good performance on its test set. Such parameter
initializations would be especially beneficial for enhancing performance on
relations with limited training instances.

Observe though that directly optimizing Equation 5.2 requires computing
second order derivatives over the parameters, which can be computationally
expensive. Thus, we follow Nichol et al. (2018) by approximating the meta-
objective in Equation 5.2 with the training Algorithm in 2. Though the
Model-Agnostic Meta-Learning (MAML) algorithm of Finn et al. (2017) also
has a first-order variant known as First-Order MAML (FOMAML), here we
use the algorithm of Nichol et al. (2018) (REPTILE) for simplicity.

Subsequently we refer to our overall training procedure as summarized in
Algorithm 2 as Meta-learning Relation Classification (MLRC ). We assume
access to fθ (learner model), which is a relation classification model parame-
terized by θ and a distribution over relations p(R). The algorithm consists
of the meta-learning phase (lines 1-10), followed by the supervised learning
phase (line 11) which fine-tunes the meta-learned parameters, both carried
out on a relation classification model using the same data for both stages.

In the first phase of learning, each iteration in our approach starts by
sampling a batch of relations from p(R) (line 3). Then for each relation
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Algorithm 2 Meta-Learning Relation Classification (MLRC )
Require: distribution over relations p(R)
Require: relation classification function fθ

Require: gradient-based optimization algorithm (e.g. SGD)
Require: step size ϵ, learning rate α

1: randomly initialize θ
2: while not done do
3: Sample batch of B relations Ri ∼ p(R)
4: for all Ri do
5: Sample train instances D = {x(j), y(j)} from Ri

6: Evaluate ∇θLRi
(fθ) using D

7: Compute adapted parameters:
θ′

i = SGD(θi,∇θLRi(fθ), α)
8: end for
9: Compute update of meta-parameters:

θ = θ − ϵ 1
B

i=B∑
i=1

(θ′
i − θ)

10: end while
11: Fine-tune fθ with standard supervised learning.

we sample a batch of supervision instances D from its training set (line 5).
We then obtain the adapted model parameters θ′

i on this relation by first
computing the gradient of the training loss using the sampled relation instances
(line 6) an updating the parameters with a gradient-based optimization
algorithm such as SGD or Adagrad (Duchi et al., 2011) (line 7). At the end
of the learning iteration, the adapted parameters on each sampled relation in
the batch are averaged, and an update is made on the model parameters θ

(line 9).
In the second phase of learning, we first initialize the model parameters

with that learned during meta-training. We then proceed to fine-tune the
model parameters with standard supervised learning by taking a number of
gradient descent steps using the same randomly sampled batches of supervision
instances from the relations’ training set as was used during meta-learning
(line 11).

5.3 Experiments

5.3.1 Relation Classification Models

We adopt as the learner model (fθ) two recent supervised relation classification
models, the position-aware model of Zhang et al. (2017) (TACRED-PA) and
the contextual graph convolution networks proposed in Zhang et al. (2018)
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(C-GCN ), both of which are multi-class models with parameters optimized
via stochastic gradient descent.

5.3.2 Setup

We conduct experiments in a limited supervision setting, where we provide
all models with the same fraction of randomly sampled supervision instances
during training. Further, for each experiment the supervision instances within
each fraction is exactly the same across all models. We report results for each
experiment by taking the average over ten (10) different runs.

5.3.3 Datasets

We evaluate our approach on the SemEval-2010 Task 8 relation classification
dataset (Hendrickx et al., 2009) (SemEval), and on the TACRED dataset
(Zhang et al., 2017) (TACRED). The SemEval dataset has a total of 8000
training and 2717 testing instances respectively. For experiments the training
set is split into two, and we use 7500 instances for training and 500 instances
for development. For TACRED, we use the standard training, development
and testing splits as provided by Zhang et al. (2017).

5.3.4 Experimental Details and Hyperparameters

We initialize word embeddings with Glove vectors (Pennington et al., 2014)
and did not fine-tune them during training. Model training and parameter
tuning are carried out on the training and development splits of each dataset,
and final results reported on the test set.

We ensure all models have access to the same data. For model MLRC, for
each fraction, we train for 150 meta-learning iterations on TACRED dataset
and 1000 meta-iterations on the SemEval dataset using that fraction of data.
We then fine-tune with standard supervised learning using exactly the same
data as was used during meta-learning.

For both relation classification models, that is TACRED-PA and C-GCN,
we use the same hyperparameters as in Zhang et al. (2017) and Zhang et al.
(2018) respectively.
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(a)

(b)

Figure 5.1 Results obtained using TACRED-PA as the learner model on
(a) SemEval, and (b) TACRED datasets
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(a)

(b)

Figure 5.2 Results obtained using C-GCN as the learner model on (a) SemEval,
and (b) TACRED datasets
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Relation # F1(%)
TC-PA MLRC

Instrument-Agency 3 0 8.44
Content-Container 4 0.93 30.9
Member-Collection 5 3.04 24.19
Entity-Destination 7 14.33 35.36
Entity-Origin 7 2.85 24.62
Message-Topic 7 0.8 12.32
Component-Whole 8 2.68 14.87
Product-Producer 9 0.68 10.29
Cause-Effect 11 2.93 28.52
Average 3.13 21.05

Table 5.1 Results with 1% training data on SemEval using TACRED-PA
as the learner model. The # column is the number of instances of each
relation during training, and TC-PA denotes the TACRED-PA model (trained
without meta-learning), while MLRC denotes the same model trained with
our approach.

Relation # F1(%)
C-GCN MLRC

Instrument-Agency 4 0 21.83
Member-Collection 4 4.53 23.81
Cause-Effect 5 4.52 12.84
Component-Whole 5 3.72 8.91
Message-Topic 5 0.32 3.23
Content-Container 6 2.35 31.98
Entity-Origin 6 2.42 5.74
Entity-Destination 9 10.38 36.05
Product-Producer 12 2.21 9.83
Average 3.38 17.14

Table 5.2 Results with 1% training data on SemEval using C-GCN as the
learner model. The # column is the number of instances of each relation
during training, and C-GCN is the C-GCN model trained without meta-
learning, while MLRC denotes the same model trained with our approach.
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5.3.5 Evaluation Metrics

For the TACRED dataset, we follow Zhang et al. (2017) and report micro-
averaged F1 scores. We use the same evaluation script as Zhang et al. (2017)
for computing this metric. For the SemEval dataset, we report the official
measure, which is the F1 score macro-averaged across relations, which we
compute using the official evaluation script that comes with the dataset.

5.3.6 Results and Discussion

The results obtained on the SemEval and TACRED datasets using TACRED-
PA as the learner model (fθ) are shown in Figures 5.1a and 5.1b respectively.
We find that on both datasets, our approach improves performance as more
supervision becomes available, with the largest gains obtained at the early
stage when very limited supervision is available. For instance on SemEval,
given just 1% of the training set (first datapoint in Figure 5.1a), our approach
improves the F1 performance of TACRED-PA from 3.13% to 21.05%, repre-
senting an absolute increase of 17.92%. Table 5.1 gives a further breakdown
of the F1 scores of individual relations when both approaches are given access
to 1% of the training set. We observe that MLRC considerably improves the
performance of TACRED-PA on relations with the least number of training
instances, likely by leveraging background knowledge from relations with
more training instances. On the TACRED dataset, MLRC improves the
performance of TACRED-PA from 2.98% to 34.59% with just 0.5% of the
training data (fifth datapoint in Figure 5.1b), which is an absolute increase
of 31.61%.

A similar trend is observed using C-GCN as the learner model on both
datasets, as presented in Figures 5.2a and 5.2b. For instance on SemEval, we
improve the F1 performance of C-GCN from 3.38% to 17.14% using just 1%
of the training data (first datapoint in Figure 5.2a ). Table 5.2 gives a further
breakdown of the F1 scores of individual relations when both approaches are
given access to 1% of the training set. Similarly on TACRED, the performance
of C-GCN is improved from 7.59% to 23.18% (first datapoint in Figure 5.2b)
by using 0.1% of its training set.

Further, we find that the proposed approach does not adversely affect
performance when full supervision is available during training. For instance,
when given full supervision on the TACRED dataset, while TACRED-PA
obtains an F1 score of 65.1%, its performance is improved to 65.2% by using
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our approach, demonstrating that the proposed approach does not adversely
affect performance when provided full supervision during training.

5.4 Related Work

In recent work, Han et al. (2018) proposed a dataset and evaluation setup
for few-shot relation classification which assumes access to full supervision
for training relations (specifically 700 instances per relation). In contrast, we
address a different setting in which only limited supervision is available for
all relations. In addition, the setup in Han et al. (2018) requires a model
architecture specific to few-shot learning based on distance metric learning.
On the other hand, the approach proposed in this chapter has the advantage
that it applies to any gradient-optimized relation classification model.

5.5 Summary

In this chapter, we show that the performance of supervised relation classi-
fication models can be improved, even with limited supervision at training
time, by framing relation classification as an instance of meta-learning, and
proposed a model-agnostic learning protocol for training relation classifiers
with enhanced predictive performance in limited supervision settings. We
demonstrate the effectiveness of this approach using two state-of-the-art neu-
ral relation classification models on two relation classification datasets, in all
cases improving performance when limited supervision instances is available
for training relation classifiers.

The methods we have proposed up to this chapter assume that all su-
pervision data is available at the start of training, and to incorporate new
supervision data after training will require substantial retraining. This can be
computationally expensive. For instance, the approach presented in this chap-
ter requires more total training time compared to only performing supervised
training, since it involves both a meta-training and supervised training phase.
In the next chapter we mitigate this problem, and present an algorithm that is
able to continually incorporate new supervision data as it becomes available,
without the need for substantial retraining.





Chapter 6

Lifelong Relation Classification
with Meta-Learning

The model-agnostic approach proposed in the last chapter for relation clas-
sification is general in the sense that it applies to any gradient-optimized
relation classification model. One important assumption of the approach is
that supervision for all relations is available before training commences. This
implies that the approach is unable to detect an evolving set of novel relations
observed after training without substantial retraining the model, which can
be computationally expensive and may lead to catastrophic forgetting of
previously learned relations.

This problem can be partially addressed by zero-shot relation classifica-
tion approaches, such as the approach proposed in Chapter 4, which are
able to classify at test time relations that are not seen at training time.
However, though the zero-shot relation classification approaches can classify
unseen relations, their zero-shot performance is lower when compared to their
performance for seen relations, and are unable to continually exploit any
newly available supervision to improve performance without considerable
retraining. It is thus desirable for relation classification models to have the
ability to continually incorporate newly available supervision, in order to
enable them utilize new supervision as it becomes available to both improve
their performance on previously known relations and to enable them classify
new relations.

One approach to tackle this problem was proposed by Wang et al. (2019),
who introduced an embedding alignment approach to enable continual learning
for relation classification models. They consider a setting with streaming
tasks, where each task consists of a number of distinct relations, and proposed
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to align the representation of relation instances in the embedding space to
enable continual learning of new relations without forgetting knowledge from
past relations. While they obtained promising results, a key weakness of
their approach is that the use of an alignment model introduces additional
parameters to already over-parameterized relation classification models, which
may in turn lead to an increase in the quantity of supervision required for
training. In addition, their approach can only align embeddings between
observed relations, and does not have any explicit objective that encourages
the model to transfer and exploit knowledge gathered from previously observed
relations to facilitate the efficient learning of yet to be observed relations.

This chapter investigates and present results for an approach that gives
relation classification models the ability to continually learn without forgetting
from new supervision data, based on a combination of ideas from lifelong
learning and optimization-based meta-learning. We propose to consider
lifelong relation classification as a meta-learning challenge, to which the
machinery of current optimization-based meta-learning algorithms can be
applied. Unlike the use of a separate alignment model as proposed in Wang
et al. (2019), our approach does not introduce additional parameters. In
addition, our proposed approach is more data efficient since it explicitly
optimizes for the transfer of knowledge from past relations, while avoiding
the catastrophic forgetting of previously learned relations. Empirically, we
evaluate on lifelong versions of the datasets by Bordes et al. (2015) and Han
et al. (2018) and demonstrate considerable performance improvements over
prior state-of-the-art approaches.

The remainder of this chapter is structured as follows. Section 6.1 starts
by defining and contrasting lifelong learning and meta-learning, and gives an
outline of recent research directions in both learning setups in order to provide
motivation for our proposed approach. Thereafter, Section 6.2 describes our
proposed algorithm for lifelong relation classification with meta-learning which
gives relation classification models the ability to utilize new supervision as
it becomes available, without the need for substantial retaining and without
forgetting knowledge of how to detect previous relations. In Section 6.4 we
discuss results obtained on experiments conducted on two lifelong relation
classification benchmarks. Finally, Section 6.5 concludes with a summary.
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6.1 Background

In this section we provide relevant background work on lifelong learning, and
then contrast it with recent works in gradient-based meta-learning. This
serves to provide motivation for our main hypothesis in this chapter, which
is that complementary gains can be obtained from the synthesis of ideas
from the two learning settings for building relation classification models that
are able to learn continually with limited supervision, without forgetting
knowledge of past relations.

In the lifelong learning setting, also referred to as continual learning (Ring,
1994; Thrun, 1996; Zhao and Schmidhuber, 1996), a model fθ is presented
with a sequence of tasks {Tt}t=1,2,3..,T , one task per round, and the goal is
to learn model parameters {θt}t=1,2,3,..,T with the best performance on the
observed tasks. Each task T can be a conventional supervised task with its
own distinct train (T train), development (T dev) and test (T test) splits. At
each round t, the model is allowed to exploit knowledge gained from the
previous t− 1 tasks to enhance performance on the current task. In addition,
the model is also allowed to have a small-sized buffer memory B, which can
be used to store a limited amount of data from previously observed tasks.

A prominent line of work in lifelong learning research is developing ap-
proaches that enable models learn new tasks without forgetting knowledge
from previous tasks, i.e. avoiding catastrophic forgetting of old tasks (Mc-
Closkey and Cohen, 1989; Ratcliff, 1990; McClelland et al., 1995; French,
1999). Approaches proposed to address this problem include memory-based ap-
proaches (Lopez-Paz, David and Ranzato, 2017; Rebuffi et al., 2017; Chaudhry
et al., 2018); parameter consolidation approaches (Kirkpatrick et al., 2017;
Zenke et al., 2017); and dynamic model architecture approaches (Xiao et al.,
2014; Rusu et al., 2016; Fernando et al., 2017).

In contrast to lifelong learning, meta-learning, or learning to learn (Schmid-
huber, 1987; Naik and Mammone, 1992; Thrun and Pratt, 1998), aims to
develop algorithms that learn a generic knowledge of how to solve tasks from
a given distribution of tasks, by generalizing from solving related tasks from
that distribution. While recent gradient-based meta-learning algorithms were
proposed and evaluated in the context of few-shot learning, in this chapter we
demonstrate their effectiveness when utilized in the lifelong learning setting for
relation extraction. This follows similar intuition as recent work by Finn et al.
(2019), who explored the usefulness of meta-learning for online (regret-based)
learning.
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6.2 Meta-Learning for Lifelong Relation Clas-
sification

It can be inferred from the previous section that a lot of lifelong learning
research has focused on approaches to avoid catastrophic forgetting (i.e.
negative backward transfer of knowledge) while recent meta-learning studies
have focused on effective approaches for positive forward transfer of knowledge
(for few-shot tasks). Given the complementary strengths of the approaches
from the two learning settings, we propose to embed meta-learning into the
lifelong learning process for relation classification.

As stated previously, given tasks T sampled from a distribution of tasks
p(T ), and a learner model fθ, gradient-based meta-learning methods learn
a prior initialization of the parameters of the model which, at meta-test
time, can be quickly adapted to achieve good performance on a new task
using a few steps of gradient descent. During adaptation to the new task,
the model parameters θ are updated to task-specific parameters θ′ with
good performance on the task. In formal terms, one view of gradient-based
meta-learning algorithms is that they are optimizing the meta-objective:

min
θ

ET ∼p(T ) [LT (θ′)] =

min
θ

ET ∼p(T ) [LT (U (DT ; θ))] (6.1)

where LT is the loss and DT is training data from task T , and U is a
gradient descent learning rule such as SGD. Note that U is not restricted to
only vanilla SGD, and it can be any gradient descent learning rule. Thus, we
can embed the meta-learning objective directly within lifelong learning for
relation extraction.

Our algorithm for lifelong relation extraction is illustrated in Algorithm 3.
We start by randomly initializing the parameters of the relation extraction
model (the learner) (line 1). Then, as new tasks arrive, we augment their
training set with randomly sampled task exemplars from the buffer memory
B (lines 2-9). We then sample a batch of relations from the augmented
training set (line 10). Then for each sampled relation Ri, we sample a batch
of supervision instances Dtrain

Ri
from its training set (line 11-12). We then

obtain the adapted model parameters θi
t by first computing the gradient of

the training loss using the sampled relation instances (line 13) and updating
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the parameters with a gradient-based optimization algorithm (such as SGD
or Adagrad (Duchi et al., 2011)) (line 14). At the end of the learning iteration,
the adapted parameters on all sampled relations in the batch are averaged,
and an update is made on the task parameters θt (line 16). This is done until
convergence on the current task, after which exemplars of the current task
are added to the buffer memory (line 18). Task exemplars are obtained by
first clustering all training instances of the current task into 50 clusters using
K-Means, then selecting an instance from each cluster with a representation
closest to the cluster prototype. Finally, the model parameters are updated
to the current task’s adapted parameters (line 19).

Algorithm 3 Meta-Learning for Lifelong Relation Extraction (MLLRE)
Require: Stream of incoming tasks T1, T2, T3, ...
Require: Relation extraction function fθ

Require: Optimization algorithm (e.g. SGD)
Require: Step size ϵ, learning rate α
Require: Buffer memory B

1: Randomly initialize θ
2: while there are still tasks do
3: Retrieve next task Tt from stream
4: Initialize θt ← θ
5: repeat
6: if B is not empty then
7: Retrieve exemplars E of random task from B
8: Update task training set Dtrain

t = Dtrain
t ∪ E

9: end if
10: Sample random relations {Ri}N

i=1 from Dtrain
t

11: for each Ri do
12: Sample train instances Dtrain

Ri
of Ri

13: Evaluate ∇θtLRi(fθt) using Dtrain
Ri

14: Compute adapted parameters:
θi

t = SGD(θt,∇θt
LRi

(fθt
), α)

15: end for
16: Update task parameters:

θt = θt − ϵ 1
N

N∑
i=1

(θi
t − θt)

17: until Convergence
18: Add exemplars of Tt to B
19: Update θ ← θt

20: end while

6.3 Relation Classification Model

In principle the learner model fθ could be any gradient-optimized relation
classification model. However, in order to use the same number of parameters
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Method FewRel SimpleQuestions

ACCw. ACCa. ACCw. ACCa.

Origin 0.189 0.208 0.632 0.569
GEM 0.492 0.598 0.841 0.796
AGEM 0.361 0.425 0.776 0.722
EWC 0.271 0.302 0.672 0.590
EA-EMR (Full) 0.566 0.673 0.878 0.824
EA-EMR (w/o Sel.) 0.564 0.674 0.857 0.812
EA-EMR (w/o Align.) 0.526 0.632 0.869 0.820
EMR 0.510 0.620 0.852 0.808
MLLRE 0.602 0.741 0.880 0.842

Table 6.1 Accuracy on the test set of all tasks ACCwhole (denoted ACCw.)
and average accuracy on the test set of only observed tasks ACCavg (denoted
ACCa.) on the Lifelong FewRel and Lifelong SimpleQuestions datasets. Best
results are in bold. Except for MLLRE, results for other models are obtained
from Wang et al. (2019).

and ensure fair comparison to Wang et al. (2019), we adopt as the relation
classification model fθ the Hierarachical Residual BiLSTM (HR-BiLSTM )
model of Yu et al. (2017), which is the same model used by Wang et al. (2019)
for their experiments. The HR-BILSTM is a relation classifier which accepts
as input a sentence and a candidate relation, then utilizes two Bidirectional
Long Short-Term Memory (Hochreiter and Schmidhuber, 1997; Graves and
Schmidhuber, 2005) (BiLSTM) units with shared parameters to process the
Glove (Pennington et al., 2014) embeddings of words in the sentence and
relation name, and the final representation for each sequence is obtained via
max-pooling the BiLSTM outputs of its component words. The model then
selects the relation whose representation has maximum cosine similarity to
that of the sentence as its response.

Given the BiLSTM representation of a sampled relation r+
rel, its (sentence)

instance ssent, and a randomly sampled negative relation r−
rel, the model is

trained with the following ranking loss (Yu et al., 2017):

L = max
{
0, γ − cosine

(
r+

rel; ssent

)
+ cosine

(
r−

rel; ssent

)}
(6.2)

where cosine is the cosine similarity function and γ is a hyperparameter.
Hyperparameters Apart from the hyperparameters specific to meta-

learning (such as the step size ϵ), all other hyperparameters we use for the
learner model are the same as used by Wang et al. (2019). We also use the
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(a)

(b)

Figure 6.1 Results obtained using 100 training instances for each task on (a)
Lifelong FewRel and (b) Lifelong SimpleQuestions datasets.

same buffer memory size (50) for each task. Note that the meta-learning
algorithm uses SGD as the update rule (U), and does not add any additional
trainable parameters to the learner model.
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(a)

(b)

Figure 6.2 Results obtained using 200 training instances for each task on (a)
Lifelong FewRel and (b) Lifelong SimpleQuestions datasets.
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6.4 Experiments

6.4.1 Setup

We conduct experiments in two settings. In the full supervision setting, we
provide all models with all supervision available in the training set of each
task. In the second, we limit the amount of supervision for each task to
measure how the models are able to cope with limited supervision. Each
experiment is run five (5) times and we report the average result.

6.4.2 Datasets

We conduct experiments on Lifelong FewRel and Lifelong SimpleQuestions
datasets, both introduced in Wang et al. (2019). Lifelong FewRel is derived
from the FewRel (Han et al., 2018) dataset, by partitioning its 80 relations
into 10 distinct clusters made up of 8 relations each, with each cluster serving
as a task where a sentence must be labeled with the correct relation. The 8
relations in each cluster were obtained by clustering the averaged Glove word
embeddings of the relation names in the FewRel dataset. Each instance of the
dataset contains a sentence, the relation it expresses and a set of randomly
sampled negative relations. Lifelong SimpleQuestions was similarly obtained
from the SimpleQuestions (Bordes et al., 2015) dataset, and is made up of 20
clusters of relations, with each cluster serving as a task.

6.4.3 Evaluation Metrics

We report two measures, ACCwhole and ACCavg, both introduced in Wang
et al. (2019). ACCwhole measures accuracy on the test set of all tasks and
gives a balanced measure of model performance on both observed (seen)
and unobserved (unseen) tasks, and is the primary metric we report for all
experiments. We also report ACCavg, which measures the average accuracy
on the test set of only observed (seen) tasks.

6.4.4 Results and Discussion

Full Supervision Results

Table 6.1 gives both the ACCwhole and ACCavg results of our approach
compared to other approaches including Episodic Memory Replay (EMR) and
its various embedding-aligned variants EA-EMR as proposed in Wang et al.
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(2019). Across all metrics, our approach outperforms the previous approaches,
demonstrating its effectiveness in this setting. This result is likely because
our approach is able to efficiently learn new relations by exploiting knowledge
from previously observed relations.

Limited Supervision Results

The aim of our limited supervision experiments is to compare the use of an
alignment module as proposed by Wang et al. (2019) to using our approach
when only limited supervision is available for all tasks. We compare three
approaches, Full EA-EMR (which uses their alignment module), its vari-
ant without the alignment module (EA-EMR_NoAlign) and our approach
(MLLRE). Figures 6.1a and 6.1b show results obtained using 100 supervision
instances for each task on Lifelong FewRel and Lifelong SimpleQuestions.
Figures 6.2a and 6.2b show the corresponding plots using 200 supervision
instances for each task. From the figures, we observe that the use of a separate
alignment model results in only minor gains when supervision for the tasks is
limited, whereas the use of our approach leads to wide gains on both datasets.

In summary, because our approach explicitly encourages the model to learn
to share and transfer knowledge between relations (by means of the meta-
learning objective), the model is able to learn to exploit common structures
across relations in different tasks to efficiently learn new relations over time.
This leads to the performance improvements obtained by our approach.

6.5 Summary

This chapter investigated the effectiveness of utilizing a gradient-based meta-
learning algorithm within a lifelong learning setting to enable relation classifi-
cation models that are able to learn continually. We show the effectiveness
of this approach, both when provided full supervision for new tasks and
when provided limited supervision for new tasks, and demonstrated that the
proposed approach outperformed current state-of-the-art approaches.



Chapter 7

Conclusions and Future
Directions

As stated in Chapter 1, the main aim of this work is to investigate novel
approaches for relation classification that does not require extensive amounts
of supervision data for relations. Specifically, we set out to address the
following research questions:

• Given a text corpus, and limited supervision for relations, how do
we utilize existing supervision signals within the corpus, such as the
interactions between entities as indicated by their contextual surface
patterns, to determine what relations exist between the entities?

• Given just the textual descriptions of relations, is it possible to extract
such relations between entities, even without access to any annotated
training instances for such relations?

• How do we make existing supervised neural relation classification models,
which typically require a lot of annotated training data for each relation,
more data efficient?

• How can we develop relation classification models that are able to
continually incorporate limited supervision data, as it becomes available,
in order to be able to both extract new relations and improve their
performance on existing relations?

In order to address these questions, this thesis has proposed both model-
specific and model-agnostic methods for relation classification in settings with
zero and limited annotated data, including when such data is made available
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continually. This rest of this chapter provides a summary of our contributions
and concludes with directions for future work.

7.1 Research Contributions and Findings

7.1.1 Contextual Pattern Embeddings for Relation Clas-
sification

In Chapter 3 we investigated how to make the most of limited available
supervision for relations, by leveraging it together with the contextual surface
patterns between entities, for effective relation classification. The advantage
offered by the use of contextual surface patterns for relation classification
is that, unlike the use of propositional logic rules, they are easily available
for any domain of interest. In order to model the interactions between
contextual surface patterns and relations, we learn embeddings for them within
a Factorization Machines (FM) model. Using a FM model for this purpose
enabled us to model all possible pairwise interactions between contextual
surface patterns and relations with factorized parameters, which is especially
helpful for mitigating the sparsity of contextual patterns. Making use of
factorized parameters also allows the model to generalize to unobserved
interactions between contextual patterns and relations, as well as incorporate
any available supervision for relations.

In our experiments, we made use of the NYT dataset used by both
Rocktäschel et al. (2015) and Demeester et al. (2016). Both previous works
proposed the use of logic rules to provide additional supervision when anno-
tated training data is limited. The propositional rules are used to provide
supervision for relations with no training instances. The assumption is that
the logic rules are available or can be automatically mined from relevant
external resources. This assumption however can be violated in practice, as
relevant external resources are not always available, especially in low-resource
domains and languages.

When compared to approaches which make use of propositional logic rules
as for relation classification, we find that our approach performs better. This
is even more telling given that our approach uses less data compared to the
previous approaches. In addition, our approach also performs competitively
when full supervision is available for relations. This outcome demonstrates
that explicitly modelling contextual surface patterns can be beneficial for
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relation classification, both in a setting where there is a limited supervision
instances for relations and even when full supervision is available.

7.1.2 Relation Classification as Textual Entailment

Given no annotated training data for relations, in Chapter 4 we investigated
the possibility of relation classification between entities using just the textual
descriptions of the relations. In order to achieve this, we proposed formulating
the task of relation classification as that of textual entailment, with the
sentence containing the entities as premise and the relation description as
hypothesis. The task of textual entailment is a well-studied sub-field of
natural language processing, and a lot of resources, such as annotated datasets
and models, have been developed and made available for it over the years.
Formulating relation classification as textual entailment has advantages for
the task of relation classification.

Formulating the task of relation classification as textual entailment enables
us to utilize existing textual entailment datasets to provide supervision for
classifying relations with no labelled data. For instance, in experiments
using the MultiNLI textual entailment dataset, we found that just training
on the entailment dataset alone, without any additional annotated data for
relations, is sufficient to enable us perform zero-shot relation classification.
This performance is further improved when the entailment dataset is combined
with annotated training data for the relations.

The approach also enables us to utilize existing textual entailment models
for the task of relation classification. Though initial work on entailment
recognition was done on small annotated datasets, the introduction of the SNLI
and MultiNLI datasets, which are fully annotated and orders of magnitude
larger than previous entailment datasets, enabled the development of various
elaborate neural models for entailment recognition. By formulating relation
classification as textual entailment, we were able to utilize these models for
the task of classifying relations.

Overall, our experiments demonstrate that classifying relations with tex-
tual entailment resources, for instance datasets and models, is a viable
approach.
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7.1.3 Model-Agnostic Meta-Learning for Relation Clas-
sification

Inspired by model-agnostic meta-learning approaches, Chapter 5 proposes a
model-agnostic protocol for training supervised relation classification models
in limited supervision settings. The algorithm considers each relation as a
supervised task, and utilizes a gradient-based meta-learning procedure to
learn a parameter initialization to enable relation classifiers learn with limited
supervision.

In our experiments, which were conducted using two relation classifica-
tion models and on two relation classification datasets, we show that our
approach markedly improves the performance of the two relation classification
models when training data is limited. Further, we also find that when pro-
vided full supervision during training, performance is not adversely affected,
demonstrating that this approach is effective for relation classification.

7.1.4 Lifelong Relation Classification with Meta-Learning

Chapter 6 developed a meta-learning approach for the task of lifelong relation
classification. We proposed to embed meta-learning into the lifelong learning
setting of relation classification, to enable relation classification models that
are not only able to learn continually without forgetting, but also utilize data
efficiently in the process. Experiments conducted on two lifelong relation
classification benchmarks showed that our approach leads to improved data-
efficiency and performance for lifelong relation classification.

This work demonstrated that it is possible for relation classification models
to continually learn and incorporate new supervision data as it becomes
available, without any need for substantial retraining, and in a data-efficient
manner.

7.2 Future Directions

In this section we discuss the various ways in which the work reported in this
thesis can be further extended in the future.



7.2 Future Directions 89

7.2.1 Active Learning for Sample Selection

In our limited supervision experiments, the supervision instances used for
training were selected randomly. Though this was done to ensure the general
applicability of our proposed approaches, it is likely sub-optimal in terms
of performance, as the randomly selected samples are not guaranteed to be
able to provide quality learning signals to the model. A better alternative to
random sampling of the instances would be the use of various active learning
criteria (Settles, 2010) for sample selection, as this would further boost the
performance of the various approaches proposed in this thesis.

7.2.2 Multitask Learning Across the KBP Pipeline

We have focused specifically on the task of relation classification in this
work. However, relation classification is a just one component in the overall
knowledge base population pipeline (Ji and Grishman, 2011). Other important
tasks, which include entity recognition, coreference resolution and entity
linking were not explored in this thesis. It is likely that by exploiting learning
signals from these tasks jointly, we can further improve the data efficiency of
our approaches.

7.2.3 Multilingual and Multidomain Relation Extrac-
tion

A promising direction of exploration for the methods proposed in this thesis
is their application to languages other than English, and other domains, for
instance documents from the biomedical domain. It is possible that there are
data efficiency gains that can be obtained by leveraging data from multiple
languages and domains.
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