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Thesis Summary 

Phosphorus is essential for global food production but is a finite resource that is used 

inefficiently. There is therefore an urgent need for increased recycling of phosphorus 

from organic wastes and reduced chemical fertiliser application. Recycling will involve 

mobilising phytoavailable phosphate from sources including phytate, an organic 

phosphate which is prevalent in manures and soils. 

Phytate is present in human excreta, but its fate through sludge treatment processes is 

unclear. This thesis set out to investigate whether phytate is mineralised during 

anaerobic digestion or persists to comprise a fraction of phosphorus in land-spread 

sludge. A further aim was to measure phytate and orthophosphate concentrations in a 

range of soils to assess how land-use affects P speciation. Where phytate is abundant, 

phytase enzymes may play a key role in crop biofertilisation. A final aim was to assess 

the performance of a commercial phytase when used for the liberation of phytate-P for 

plants. 

Evaluation of the available methods for quantifying phosphorus species showed that 

solution 31P Nuclear Magnetic Resonance (NMR) spectroscopy remains the most 

powerful technique available, due to the occurrence of in-source fragmentation in mass 

spectrometry. Subsequently, 31P NMR analysis showed that phytate does persist 

through sludge treatment, comprising 4.5% of phosphorus in the digested product. 

Land-use had a major impact on soil phosphorus speciation as agricultural soils were 

dominated by orthophosphate, reflecting their intensive management compared to 

grassland soil. Phytate was scarce in arable soil, but abundant in pig-pen soil due to 

inputs of monogastric manure. 

Finally, phytase activity was lost in substrates via the immobilisation of both the enzyme 

and phytate on the solid phase. A greater understanding of rhizosphere biochemistry, 

such as the role of organic acids in desorption and maintenance of phytase activity, will 

improve the recycling of soil phytate-P and reduce our reliance on unsustainable 

fertilisers.  
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1: General Introduction 

1.1 Human use of Phosphorus 

Phosphorus (P) is an essential element for life, and is used by organisms in numerous 

capacities, including the production of nucleic acids and phospholipids, and for the 

transport of energy in adenosine triphosphate (ATP; Vaccari, 2009). Plants obtain their 

entire P requirement from the soil, but are only able to absorb inorganic phosphate that 

is freely dissolved in the soil solution. The slow biogeochemical cycling of P and its 

resulting scarcity in natural soils means that it is often the main nutrient limiting plant 

growth (Cordell et al., 2009). Traditionally, this limitation was addressed by the input of 

locally sourced organic material, such as animal manure and ‘night soil’ (human excreta) 

to the soil. However, soil degradation and recurring famines in the 17th and 18th 

centuries led to the pursuit of alternative P sources (Cordell et al., 2009). The first 

synthetic phosphate-rich fertiliser, ordinary superphosphate (Ca(H2PO4)2), was patented 

by Sir John Bennett Lawes of Rothamstead Research and Sir James Murray in 1842 (Ivell, 

2012; Blackwell et al., 2019). Superphosphate, highly soluble and more phosphate-

concentrated than traditional manures, was initially produced via the dissolution of 

animal bones and coprolites in sulphuric acid (Ivell, 2012). When demand for bones 

outstripped supply, new sources of phosphate such as guano (deposits of phosphate- 

and nitrate- rich bird and bat manure) and phosphate-rich rock were developed, giving 

rise to the modern phosphate fertiliser industry (Blackwell et al., 2019). Since the ‘green 

revolution’ of the mid-20th century, humans have mined vast amounts of phosphate rock 

as a source of fertiliser to sustain an increasing human population. However, bypassing 

the slow, natural biogeochemical P cycle in this way has caused an imbalance, 

distributing unnaturally vast amounts of P over a huge geographical area of the planet, 

causing environmental issues such as eutrophication, and generating concern for the 

future supplies of this finite resource (Cordell et al., 2009). 

Phosphate rock refers to natural resources of phosphate-rich sedimentary and igneous 

rock, typically containing between 5-13% P (Cordell & White, 2011). Sedimentary 

phosphate rock often originates from marine sediments on the slopes of continental 
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shelves, such as the major deposits in Morocco, China, the Middle East and the US, and 

predominates known resources (Reijnders, 2014), comprising approximately 80% of the 

total world phosphate rock production (Ptáček, 2016). Igneous resources such as those 

found in Brazil, Canada, Finland, Russia and South Africa (Jasinski, 2019), are much less 

abundant by comparison, and are often of lower grade, containing less than 5% P2O5. 

However, they can often produce higher quality beneficiation products, containing 

fewer impurities (Ptáček, 2016). In the natural biogeochemical P cycle (Figure 1.1), P in 

soil is derived from the natural weathering of these P-rich minerals such as apatite (Ca10-

(PO4)6(OH,F,Cl)2) from uplifted and exposed sedimentary rock, and to a lesser extent 

minerals from igneous sources. Once present in soil, labile and soluble inorganic 

phosphate (PI) is available for plant uptake, but much of the P in soil exists in forms 

unavailable for absorption by biota, being adsorbed to the soil solid phase, precipitated 

by metal cations, or immobilised in organic phosphate compounds (Shen et al., 2011; 

Turner et al., 2005a). The PI that is absorbed by plant biomass is eventually returned to 

Figure 1.1: A simplified overview of natural and anthropogenic fluxes in the phosphorus cycle. 
Black arrows indicate natural flues, black dashed arrows indicate negligible flux, and red 
arrows indicate anthropogenic flows. Figure adapted from Peñuelas et al., (2013). 
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the soil in manure or plant litter, where it is cycled between labile and non-labile forms 

by microorganisms (Ruttenberg, 2003). As soil P is largely immobile, its movement into 

waterways is predominantly caused by the gradual erosion of soils, and by leaching of 

the small soluble fraction with precipitation (Ruttenberg, 2003; Shen et al., 2011). From 

riverine inputs, P makes its way to the sea, where the residence time of dissolved P can 

range between 16,000-30,000 years (Ruttenberg, 1993), within which time P is cycled 

extensively before undergoing passive burial and diagenesis, eventually becoming 

incorporated in sedimentary rock (Ruttenberg, 2003). The application of vast amounts 

of mined phosphate to agricultural land has caused an imbalance in this cycle. The ‘green 

revolution’ dramatically increased worldwide food production by popularising the use 

of new high-yielding agricultural crops and the application of concentrated chemical 

fertilisers to soils (Cordell et al., 2009). These fertilisers, such as ordinary 

superphosphate, contain roughly ten times the concentration of P that is typically found 

in manures, and all but rectified the issue of P-deficiency in the agricultural soils of 

developed countries.  

We are now reliant on chemical P fertilisers for worldwide food production, with 

projected demand for P fertiliser increasing by an average of 2.19% annually between 

2015-2020 (FAO, 2017). However, mined phosphate rock is a finite resource, and a 

temporary 700% spike in the price of phosphate in 2008 when demand outstripped 

supply led to global fears of an imminent ‘peak phosphorus’ scenario, the point at which 

global phosphate rock supplies are largely depleted and the quality and supply of 

phosphate fertilisers begins to fall, which by early calculations was predicted to occur by 

as soon as 2033 (Jasinski, 2008; Cordell et al., 2009; Cordell & White, 2011). Estimated 

global phosphate rock reserves have increased from an estimate of 18 Billion metric 

tonnes in 2008 (Jasinski, 2008), to 70 Billion metric tonnes in 2019 (Jasinski, 2019), owing 

predominantly to the discovery of vast reserves in Morocco, easing fears of an imminent 

crisis. However, according to the latest US Geological Survey data, Morocco now 

controls 71% of the entire global phosphate rock reserve (Jasinski, 2019), which is a 

major geopolitical cause for concern owing to Morocco’s continued occupation of 

Western Sahara and control over its phosphate rock resources (Cordell et al., 2009). A 

further issue is that unlike igneous resources, sedimentary phosphate rock resources, 
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including those from Morocco, often contain high concentrations of contaminants such 

as the heavy metal, cadmium. When applied to soil in contaminated phosphate 

fertilisers, cadmium is absorbed and accumulated by plants. When consumed by 

humans, cadmium can accumulate in the liver and kidneys, sometimes leading to organ 

failure, decreased bone density and cancer (Walan, 2013). As the purest phosphate rock 

is mined first, it is likely that the concentration of cadmium in fertilisers will increase 

over time. For this reason, the EU, which imports the majority of their phosphate rock 

ore from Morocco, has recently introduced regulations to limit the concentration of 

cadmium in fertilisers to a maximum of 60mg cadmium per kilogram of phosphorus 

pentoxide (Ulrich, 2019). These levels can be achieved via the mixing of high cadmium 

rock with low cadmium igneous supplies, but due to the relative scarcity of these, 

decadmination of phosphate rock and phosphoric acid, along with increased 

substitution of phosphate rock with alternative recycled P sources will be the likely 

outcome of these regulations (Ulrich, 2019). 

1.2 Phosphorus Sustainability 

Despite an easing over the concerns for future P security, the global interest generated 

by the 2008 price spike served to draw attention to the fragile and finite nature of global 

P supplies, and called into question the sustainability of food production in a P-scarce 

future (Cordell & White, 2014). A recent paper estimates that at current rates of 

extraction, there is 259 years remaining of future supply (Blackwell et al., 2019). Whilst 

this suggests that there are no immediate concerns, this estimate was revised down 

from 300 years supply estimated in 2016, reflecting the effect of increasing demand. The 

FAO (2009) predicted that food global production must increase by 70% by 2050 to feed 

the projected population of 9 billion. Phosphorus usage is expected to increase year on 

year to meet this requirement, but demand may rise substantially owing to increased 

wealth in developing countries, increased meat consumption, and increased 

competition for fertilisers from biofuel crops (Cordell & White, 2011). Furthermore, the 

quality of phosphate rock ore is already in decline (Smil, 2000), and remaining reserves 

are increasingly difficult to access, contain more impurities, and require more energy-

intensive processing (Neset et al., 2016). 
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As well as issues of scarcity, the mobilisation of vast amounts of P to agricultural soils 

has led to environmental pollution of inland and coastal waters in the form of 

eutrophication (Peñuelas et al., 2013). Overapplication of phosphate can lead to its 

movement into waterbodies via soil erosion or leaching in the solution phase, and can 

result in hypoxia and the creation of dead zones, where waterbodies are stripped of 

oxygen by phytoplankton blooms (Cordell & White, 2014). Phosphorus absorbed by 

plants and consumed by humans is often lost by the disposal of sewage to waterbodies, 

further exacerbating the eutrophication issue, and highlighting the linear nature of 

anthropogenic P use, in which P is applied to soil, absorbed by plants, consumed, then 

lost permanently to waterbodies (Figure 1.1). 

For these reasons, over the past decade, a substantial amount of research has sought to 

explore opportunities for increasing efficiency of fertiliser application and reducing our 

reliance on mined phosphate rock. Depending on soil types, quality and chemistry, no 

more than 8% of fertiliser P added to soils is absorbed by crops, with the remainder 

becoming stabilised in soils or lost to waterbodies (Blackwell et al., 2019). However, the 

lack of a significant gaseous phase in the P cycle, and the low mobility and tendency of 

P to accumulate in soil and other matrices means that there is great potential for its 

recycling and recovery from the largely linearised anthropogenic P cycle. A calculation 

based on global P flows estimated by Cordell et al., (2009), approximates that almost 

54% of P in livestock manure and human excreta is lost to landfill, non-arable soils or 

water bodies annually. Much work is being done to stem this leakage, but challenges lie 

in the uneven local and global distributions of both manure and human excreta, 

impeding its use on arable land. Bennett et al., (2010) noted that global manure 

production was concentrated in specific ‘hotspot’ regions. Within these regions, it is also 

often concentrated near urban areas and ports (European Commission, 2013), and 

likewise, human excreta is most concentrated in large towns and cities, far from the 

arable land in which it is most necessary. 

Major innovations in recent years have included the recovery of P from wastewater 

streams generated by the dewatering of digester effluent, which can have P 

concentrations of 200-500 mg P L-1, via the precipitation of struvite (Magnesium 

ammonium phosphate, NH4MgPO4·6H2O; Batstone et al., (2015)). The retention time for 
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this process can be very short, as demonstrated in struvite nucleation experiments by 

Mehta & Batstone, (2013), where the P concentration of 1L batches of digester effluent 

were reduced from ~120 mg P L-1 to <10 mg P L-1 in under 60 minutes. Struvite is a 

mineral high in phytoavailable phosphate, which can be applied to soil much like a 

regular fertiliser, but is lower in solubility than conventional chemical fertilisers, so 

reduces the risk of runoff and eutrophication (Talboys et al., 2016). Phosphorus recovery 

from wastewater is also often achieved indirectly via the application of manure and 

sludges, along with their incinerated ashes, to soils. In the UK, since the introduction of 

the EU Urban Waste Water Treatment Directive in 1999, disposal of sludge to sea has 

been eliminated, and disposal to landfill has declined significantly, with the majority of 

treated sludge produced instead spread on arable land (DEFRA, 2012).  

Soil application of manures, sludges, food waste and plant litter facilitates the recycling 

of both inorganic P and organic P forms to the soil (Figure 1.2). Whilst inorganic P present 

as soluble phosphate is available for uptake by plants and other organisms, organic P 

(PO) is not immediately phytoavailable, and can accumulate in soils as a significant 

untapped P source (George et al., 2018). PO comprises a wide group of compounds that 

contain both organic groups and phosphate groups, and include orthophosphate 

monoesters such as inositol hexakisphosphate (phytate), orthophosphate diesters 

(DNA, RNA), organic polyphosphates (ATP) and phosphonates (Figure 1.2; George et al., 

2017). Each of these compounds varies in lability dependent on soil conditions, with 

some forming strong interactions within the soil. For example, phytate can become 

strongly bound within the soil solid phase or form insoluble precipitates with metal 

cations due to the high charge density of the molecule owing to the presence of six 

phosphate moieties (Turner et al., 2002). Mobilisation and conversion of PO to 

phytoavailable forms is predominantly mediated by the actions of a range of 

phosphatase enzymes, which are often specific to particular compounds (George et al., 

2018). Alternative approaches to increasing P sustainability aim to reduce exogenous P 

requirements by increasing the bioavailability of these immobilised or organic P forms 

that have accumulated within soils from many decades of P fertilisation. Some work has 

focussed on improving P uptake from organic sources by introducing genes for the 

expression of phosphatase enzymes into the roots of plants. George et al., (2005b) 
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2-aminoethylphosphoric acid  
Phosphonate (C-P bond) 

Orthophosphate (H2PO4
- or HPO4

2-) 
(Phytoavailable inorganic P) 

Myo-inositol hexakisphosphate (Phytate) 
Orthophosphate monoester (P-O-C 

bond) 

Glucose-6-phosphate 
Orthophosphate monoester (P-O-C 

bond) 

Adenosine diphosphate (ADP) 
Organic polyphosphate (P-O-P bond) 

Ribonucleic acid (RNA) monomer 
Orthophosphate diester (P-O-C 

bond) 

Figure 1.2: Example forms of common soil phosphorus groups. Orthophosphate is inorganic 
and is phytoavailable when dissolved in the soil solution. All other compounds shown are 
organic phosphate compounds, and orthophosphate must be liberated from these 
compounds to be available for plant uptake. Figure adapted from George et al. (2017). 
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generated tobacco plants that expressed an Aspergillus niger phytase gene, finding that 

transgenic plants were able to accumulate 3.7-fold more P from phytate-supplemented 

sterile agar than control plants. However, this effect was not replicated when plants 

were grown in P-limited soil, possibly due to phytate being bound and unavailable for 

enzymatic dephosphorylation (George et al., 2005a, 2005b). Many plants respond to P 

deficiency by upregulating the exudation of low molecular weight organic acids such as 

citrate from roots into the rhizosphere, which can modify the rhizosphere chemistry to 

mobilise various P compounds (Richardson et al., 2009). Increasing organic acid 

exudation, along with increasing the abundance of phosphatase enzymes may therefore 

be a promising research avenue for the mobilisation of this accumulated ‘legacy P’.  

1.3 Phytate (myo-inositol hexakisphosphate) and its quantification 

The inositol phosphates are a family of organic orthophosphate monoesters comprising 

a central six-carbon inositol ring, with one to six phosphate groups linked via an ester 

bond (Figure 1.2). Four stereoisomers occur naturally, three of which: scyllo-; neo-; and 

D-chiro- inositol phosphate are relatively poorly understood (Turner et al., 2002, 2012). 

Myo-inositol hexakisphosphate, also known as phytate, is the most abundant of the 

inositol phosphates found in nature and is the most important in terms of P 

sustainability, as it presents a huge reservoir of P which is often highly recalcitrant in 

soils. For this reason, much work over the past decade has focussed on the 

quantification, behaviour and manipulation of phytate within environmental matrices. 

Phytate is synthesized in plants, forming the main P storage compound in seeds and 

grains (Gerke, 2015). Lott et al., (2000) estimated that 51 million tonnes of phytate is 

produced annually in commercial crops, which is equivalent to 67% of annual worldwide 

phosphate application in chemical fertilizers (Gerke, 2015). Monogastric animals (swine, 

poultry, fish and humans) are not capable of the efficient digestion and absorption of 

phytate-P owing to the lack of significant levels of phytate-specific phosphatase 

enzymes (phytases) in the gut (Menezes-Blackburn et al., 2013). This means that much 

of the vast amounts of phytate ingested in high-grain diets passes through the digestive 

tract and is excreted in manure, which can then serve as an important phytate input to 

receiving soils (Lott et al., 2000; Menezes-Blackburn et al., 2013).  
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A major challenge faced in the analysis of organic phosphates, including phytate, in 

environmental samples is the lack of a direct and sensitive analytical technique for their 

detection and quantification. Direct techniques such as solid-state 31P NMR, fourier-

transform infrared spectroscopy (FT-IR) and P-K edge x-ray adsorption resonance 

spectroscopy (XANES) are useful for the identification and quantification of prepared 

metal-phytate salts (He et al., 2007a, 2007b), however their use with manure and soil 

samples is complicated by broad and poorly resolved phytate peaks, owing to the 

presence of paramagnetic ions in the sample matrix, and the wide variety of P 

compounds producing overlapping resonances (Giles & Cade-Menun, 2014).   

1.3.1 Sample extraction  

Most studies instead extract phytate and other PO from environmental matrices prior to 

their analysis. Many procedures involve alkaline extractants such as sodium hydroxide 

(NaOH), which solubilize PO by increasing the negative charge within matrix components 

creating electrostatic repulsion, and by substituting strong polyvalent bridging cations 

such as Al3+ with weaker cations such as Na+ (Turner et al., 2005a). However, the 

extraction efficiency of alkaline solvents can depend on the sample pH. For example, in 

alkaline (calcareous) soils, calcium precipitates can form, which are relatively insoluble 

in alkaline extractants (Turner et al., 2005a). For this reason, some studies employed a 

two-step extraction procedure, first extracting in an acid, then an alkali (Mehta et al., 

1954; Steward & Oades, 1976). Extractions using strong acid and alkali solvents however 

may pose the risk of hydrolysis of PO to PI (Turner et al., 2005a). In response to this, 

milder extraction techniques have been adopted recently, with the most popular 

involving a fast, single-step extraction with 0.25M NaOH in the presence of 0.05M 

Ethylenediaminetetraacetic acid (EDTA) (Bowman & Moir, 1993; Turner et al., 2005a; 

Giles & Cade-Menun, 2014). EDTA releases P from paramagnetic ion complexes (Turner 

et al., 2005a), improving P solubility and increasing extraction efficiency. Despite the 

improvements achieved in PO extraction with the NaOH + EDTA solvent, extraction 

efficiency can still vary depending on the sample matrix. In relatively organic samples, a 

high P recovery is often achieved. For example, in manures of poultry, cattle and swine, 

Turner, (2004) achieved recoveries of 96%, 80% and 95% of total P by extraction in 

0.25M NaOH + 0.05M EDTA. Similarly high extraction efficiency was found by He et al., 
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(2009) in poultry and cattle manure, and in anaerobically digested human sludge, 

recovery of 92% of total P was achieved (Annaheim et al., 2015). Soils are more 

heterogenous in nature than these organic matrices, containing diverse minerals and 

clays, varying organic matter content, and exhibiting wide-ranging pH. As a result, the 

extraction efficiency achieved is often more variable, with greater recovery in soils with 

high P concentrations from organic amendments, and lowest in alkaline soils (Cade-

Menun & Liu, 2014), due to the low solubility of calcium precipitates in the alkaline 

solvent. This heterogeneity means that it is unlikely that a universally effective 

extractant will be developed, but the NaOH + EDTA extractant is currently the most 

effective, often extracting the greatest concentration and greatest diversity of P 

compounds than other solvents, with less hydrolysis of compounds (Cade-Menun & 

Preston, 1996), and is the standard extractant in the field, enabling more 

straightforward comparison of results between studies (Cade-Menun & Liu, 2014).  

1.3.2 Enzymatic Quantification 

Numerous analytical methods exist for the identification and quantification of phytate 

and other PO compounds. Enzymatic hydrolysis procedures are able to provide 

information on enzyme-labile PO forms via the determination of the inorganic phosphate 

released during enzyme incubation by molybdate colorimetry (Giles et al., 2011). 

Molybdate colorimetry is based on the production of phosphomolybdate heteropoly-

acid from the reaction between free dissolved inorganic phosphate with acidified 

ammonium molybdate. The phosphomolybdate is then reduced, producing a blue 

colour that can be measured by spectrophotometry (Murphy & Riley, 1962; Turner et 

al., 2006). In an enzyme assay, inorganic P is measured before and after an enzyme 

incubation, with the difference in phosphate concentration attributed to the hydrolysed 

phosphate from the target PO compound. He et al., (2009) successfully measured 

phytate in NaOH + EDTA extracts of poultry and cattle manures by phytase incubation, 

but incubations of soil have had more limited success. Turner et al., (2003a) used a range 

of enzymes to measure PO in water extracts of Australian pasture soils. They found that 

preparations of phosphomonoesterase and phosphodiesterase enzymes were specific 

to their target compounds, but their crude phytase preparation had a wide substrate 

specificity, hydrolysing other compounds in addition to phytate. Furthermore, they 
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found that activity of phytase appeared to be reduced in extracts of moist soils, possibly 

due to inhibition by humic and mineral substances (Turner et al., 2003a). The substrate 

specificity of many phytases also extends to the stereoisomers scyllo-, D-chiro-, and neo-

inositol phosphates, which are often present in soils, albeit at lower concentrations, 

meaning that the specific quantification of phytate is unlikely and results should instead 

be interpreted as ‘phytase-labile P’ (He et al., 2011). 

1.3.3 Chromatographic Techniques 

Whilst enzyme hydrolysis methods are often less time-consuming, less complex and less 

expensive than more specific analytical techniques, the information that they can 

provide is often limited to broad groups of PO compounds. Chromatographic procedures 

such as high-performance liquid chromatography (HPLC), and high-performance ion 

chromatography (HPIC) can provide more detailed information by separating specific 

compounds in a sample based on their structure and interaction with the stationary 

phase of a separation column (Giles et al., 2011). A difficulty with these methods is the 

general requirement for acidic extraction of samples, as alkaline solvents may damage 

separation columns and cause interference (Ray et al., 2012). Furthermore, the 

detection of phytate and other inositol phosphates is difficult as phytate lacks a 

chromophore, meaning that traditional detection by UV absorption is not possible 

(Rugova et al., 2014). Leytem et al., (2008) analysed P compounds in poultry manure by 

HPLC of acidic extracts, and determined phytate concentrations by post-column 

derivatisation with FeCl3, followed by spectrophotometric detection. Their results 

correlated well with parallel sample analysis by alkaline extraction and solution 31P NMR, 

likely due to the high extraction efficiency achieved by both methods. More direct 

detection has been achieved recently by McIntyre et al., (2019), who developed a 

method for the separation and quantification of phytate in alkaline extracts of soil by 

anion-exchange chromatography with detection by high-resolution electrospray 

ionisation mass spectrometry. Chromatographic separation and detection by mass 

spectrometry is a promising analytical technique, as it highly sensitive and able to 

provide both structural and quantitative information (McIntyre et al., 2017), and it will 

undoubtedly gain popularity in coming years for phytate and wider PO research. 
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1.3.4 Solution 31P NMR 

Solution 31P NMR analysis of NaOH-EDTA extracts is by far the most popular analytical 

method for the detection and quantification of organic phosphate compounds in 

environmental samples such as manure, sludge and soil as it provides the most detailed 

and accurate data available (Doolette & Smernik, 2011).  

Atomic nuclei that have an odd number of protons and neutrons (31P, 1H, 13C) have 

magnetic properties, acting as dipoles due to their positive charge and spin properties 

(Cade-Menun, 2011). When these nuclei are exposed to an external magnetic field in 

NMR, their orientation ceases to be random and they align either parallel or antiparallel 

(precisely 180° in the opposite direction) to the magnetic field. These orientations are 

described as low or high energy configurations respectively, with the low-energy state 

being the most favourable at thermal equilibrium (James, 1998). At this thermal 

equilibrium, nuclei may spontaneously but infrequently transition between the two 

energy states. However, when a radio frequency (RF) pulse with energy equal to the 

difference between the two energy states is applied to the nuclei, they can absorb 

energy and ‘resonate’, transitioning between the two energy states with much greater 

frequency (Figure 1.3). The absorption of energy by the spinning nuclei induces a voltage 

that can then be detected as a signal, with the signal displayed as a free induction decay 

(FID) (James, 1998; Cade-Menun, 2011). Different compounds within a sample have 

Figure 1.3: Transitions of nuclei (blue) between energy states in NMR. At thermal equilibrium, 
there is a small excess in the population of nuclei in the lower energy state (dark blue), and 
infrequent transitions between the two states (black arrows). On application of the RF pulse, 
resonating nuclei transition between energy states at the same rate, but with much greater 
frequency. Due to the excess population in the low energy state at thermal equilibrium, there 
are more transitions from low to high energy state, creating a non-equilibrium population of 
nuclei at the high energy state. Following the RF pulse, the FID is produced only from nuclei 
in this excess population as they transition back to the low energy state (red arrow), because 
the other nuclei effectively cancel each other out. Figure adapted from James, (1998).  
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varying electron configurations which can shield the nuclei, meaning the amount of 

energy required for their resonance is different depending on the chemical environment 

of the nuclei. Therefore, nuclei in different environments absorb and emit energy in 

different ways, producing different resonance signals in the FID. The FID is then Fourier-

transformed to produce an NMR spectrum with peaks for nuclei in each chemical 

environment plotted as ‘chemical shift’ (Cade-Menun, 2011).  

As 31P is the only naturally occurring stable isotope of P, 31P NMR is theoretically able to 

detect all P species in a sample in a single analysis, and under the appropriate 

experimental parameters is robustly quantitative, as the area under each spectral peak 

is proportional to the number of P nuclei in a particular molecular configuration (Cade-

Menun, 2005). However, 31P NMR suffers from limitations of both low sensitivity and 

low resolution. 

Sensitivity in NMR is inherently low because the FID signal can only be detected in the 

small excess population of nuclei that exists in the low energy state relative to the high 

energy state at thermal equilibrium (James, 1998). For example, in a population of nuclei 

at thermal equilibrium, the ratio between the nuclei in the low and high energy states 

might be 0.999872. This means that in a population of 2,000,000 nuclei, there would be 

1,000,000 nuclei in the high energy state, and 1,000,128 in the low energy state. When 

the RF pulse is applied, nuclei resonate between the low and high energy states at the 

same rate, but as the population of nuclei is greater in the low energy state, there will 

be more transitions from low to high, resulting in nonequilibrium populations (Figure 

1.3). The resonance of only the 128 excess nuclei is detected when the RF pulse is 

applied because the other nuclei effectively cancel each other out (Figure 1.3; James, 

1998). Sensitivity can be improved by increasing the sample concentration, thereby 

increasing the population of nuclei in a sample, and this is commonly achieved in 

analyses of soil extracts by freeze-drying and resuspending extracts.   

Resolution in 31P NMR can also be an issue. Figure 1.4 shows a typical 31P NMR spectrum 

of a soil extract. Many peaks are clearly separated and well resolved. However, some 

signals, particularly those generated by orthophosphate monoesters such as phytate, 

are densely packed into a small region, and often overlap, leading to difficulty in peak 
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assignment and quantification (Doolette & Smernik, 2011). Compounds can be 

quantified by measuring the areas under peaks generated for nuclei in a particular 

compound and comparing them to the peak area of an internal standard of known 

concentration. A major consideration within this procedure is that for quantitative 

experiments, nuclei must be allowed to relax to thermal equilibrium between scans. 

Larger molecules have a shorter relaxation time constant (T1) than smaller molecules, 

meaning that their nuclei return to equilibrium at a faster rate after the RF pulse. This 

means that an experiment using inadequately short relaxation delay times between 

scans is likely to generate less signal for small molecules relative to larger molecules, as 

the small molecules are less likely to have reached equilibrium before the subsequent 

application of an RF signal, and means that some compounds are likely to be 

underestimated relative to others (Doolette & Smernik, 2011). This is often overcome 

by using long delay times between RF pulses (scans) to allow full relaxation, but because 

of the low inherent sensitivity of NMR, many thousands of scans are commonly required 

to generate an acceptable signal to noise ratio in the spectrum, resulting in unacceptably 

Figure 1.4: A typical solution 31P spectrum of a NaOH-EDTA extract of soil. For some compound 
groups, peaks are sharp and well separated. However, the orthophosphate monoester region 
can often be crowded and poorly resolved. Figure adapted from Cade-Menun et al., (2012). 



Chapter 1: General Introduction 

 

15 
 

long analysis times. Robertson, (2018) developed a 31P NMR method that enabled the 

quantitative measurement of both orthophosphate and phytate using a short delay time 

of 1s. In this method, short experiments were run prior to soil analysis on soil extracts 

spiked with orthophosphate and phytate, in which spectra were produced over sets of 

100 scans with increasing delay times. A correction factor could then be calculated to 

predict the peak area of the fully relaxed compound relative to that produced at 1s, 

allowing both an increase in sensitivity due to the facilitation of a greater number of 

scans when using a short delay time, and quantitative interpretation of the spectra 

produced when employing a relaxation delay time of 1 second.  

1.4 The behaviour of phytate in environmental samples 

1.4.1 Phytate in livestock manure 

The development of standard methods for phytate analysis and their application to 

wide-ranging environmental samples has resulted in a much-improved understanding 

of the behaviour of phytate in environmental samples and the role it plays in the 

anthropogenic P cycle. The abundance of phytate in manures depends on the physiology 

of the animal, and the amount of phytate in its diet. The manure of grain-fed poultry 

typically has the highest phytate concentration (Ajiboye et al., 2007; Giles & Cade-

Menun, 2014), due to their monogastric digestive system, which has low phytase 

enzyme activity compared to ruminant animals. Swine are also monogastric, and it 

would be assumed that their manure would be rich in phytate due to largely grain based 

diets in commercial farms. However Leytem & Thacker, (2008) measured only low levels 

(<6%) of phytate in manure from swine fed a range of high-phytate diets, suggesting 

that microflora present in the pigs hind gut are able to produce phytase enzymes to 

dephosphorylate phytate. Despite this phytase activity in the hind gut, modern swine 

diets are often supplemented with commercial phytase enzymes and the benefits of this 

are two-fold. There is little evidence that phosphate is absorbed in the hindgut (Leytem 

& Thacker, 2008), meaning that swine gain little benefit from phytate 

dephosphorylation occurring there. Supplementation with phytase releases phosphate 

from phytate earlier in the digestive tract, where it can be absorbed in the small 

intestine, reducing the need for supplementation of feed with exogenous phosphate. 
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Furthermore, phytate degradation reduces its tendency to complex important 

nutritional cations such as calcium, iron and zinc, again reducing the need for 

supplementation of diets with these minerals (Jorquera et al., 2008).  

Due to the vast global population of cattle and their greater rate of excretion, bovine 

manure is responsible for a greater input of phytate to soil than monogastric animals, 

despite the presence of phytase in their ruminant gut (Menezes-Blackburn et al., 2014). 

The gut microflora of cattle is able to produce phytase enzymes that dephosphorylate 

ingested phytate (Menezes-Blackburn et al., 2013), but phytate is degraded surprisingly 

inefficiently. Toor et al., (2005) noted a reduction in phytate from 32% of total P in feed 

to 18% in manure, with the persistence of phytate possibly due to its high concentration, 

its rapid passage through the gut, or via its precipitation to insoluble salts (Menezes-

Blackburn et al., 2013).  

1.4.2 Phytate in human excreta 

As with livestock, the amount of phytate in human excreta depends on the amount 

consumed in diets. Phytate is the main P compound in grain, and so is abundant in 

human diets, and particularly so in those high in grain (Raboy, 2003). Phytate cannot be 

directly absorbed in the human gut, and being monogastric, humans lack phytase 

enzymes for its efficient dephosphorylation. Despite the large amount of studies that 

have quantified phytate in animal manures, very little work has focused on the phytate 

content of human excreta. Joung et al., (2007) used HPLC to measure phytate 

concentrations in faeces of women consuming high- and low-phytate diets. They found 

that like in swine, a considerable amount (74-93%) of consumed phytate is degraded in 

the human gut, concluding that much of this degradation takes place in the colon. 

Despite this level of degradation, faecal phytate-P concentrations varied between 4-

11mg P g-1 excreta, constituting between 24-54% of total faecal P.  

In many modern societies, human excreta is processed in wastewater treatment plants 

(WWTPs), in which solids, nutrients and pathogens are removed from waste water 

which can then be cleaned and returned safely to the environment (DEFRA, 2012). This 

process produces a large volume of solid waste known as sludge, which is then often 

processed via anaerobic digestion to reduce its volume, destroy pathogens, and to yield 



Chapter 1: General Introduction 

 

17 
 

methane gas which can be used as an energy resource. The resulting digested solids are 

rich in nutrients and organic matter, and in the UK 80% of these are returned to land as 

a soil conditioner and nutrient source (DEFRA, 2012). Industry and stakeholder agreed 

guidelines known as the ‘Safe Sludge Matrix’ provide a code of practice for land 

application of sludge in the UK (Water UK, 2010; BRC et al., 2001). Alongside government 

guidelines, this ensures that application is strictly controlled, with the requirement that 

soil is tested prior to sludge application to provide an indication of nutrient requirement 

and to ensure that heavy metal concentrations remain within limits. Untreated or low 

quality sludges containing unacceptable pathogen or heavy metal loads are not 

permitted to be spread and must undergo further processing or be subject to alternative 

routes of disposal (Water UK, 2010). 

The increasing adoption of P recovery and direct application of sludge to land has 

brought elevated interest in the characterisation of P species within wastewater and 

sludge. Considering that plants are only able to take up dissolved inorganic 

orthophosphate, much of which can be rapidly immobilised within the soil environment 

much like phytate, it is important to understand P speciation and concentration within 

sludge prior to its application to soils (Peng et al., 2010). With human faecal phytate 

content measured at 24-54% of total P (Joung et al., 2007), it is likely that wastewater 

sludge is rich in phytate. In anaerobically digested sludges, inorganic orthophosphate 

has been found to be the predominant P form (Hinedi et al., 1989; Escudey et al., 2004; 

Li et al., 2018; Cade-Menun, 2005), whereas aerobically digested sludges tend to have a 

greater variety and concentration of organic P species (Peng et al., 2010; Hinedi et al., 

1989). In anaerobically digested sludge, Annaheim et al., (2015) used 31P NMR to analyse 

P speciation and revealed 91% to be present as inorganic orthophosphate, with the 

remaining 9% identified as phytate. Few studies have attempted to assess the speciation 

of phytate throughout the various treatment stages in a WWTP. Smith et al., (2006) 

characterised P compounds in undigested liquid sludge, anaerobically digested liquid 

sludge and dewatered cake from a single WWTP. 31P NMR analysis identified 

orthophosphate as the dominant pool of P in all three sludge types, making up 65-77% 

of the total extracted P, but they also found that levels of phytate remained unaltered 

by anaerobic digestion, comprising close to 10% of the total P content in all sludge 
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extracts. In contrast, despite not measuring phytate concentration specifically, Li et al., 

(2019) found that orthophosphate monoesters were completely degraded by anaerobic 

digestion, with orthophosphate being the only P compound detected in digested sludge.  

These potentially contradictory results show that it is unclear whether phytate 

persistence during anaerobic sludge treatment process is ubiquitous, and further work 

is required to measure phytate concentration through the multiple stages of the 

process. Recently, large, modern WWTPs have begun to employ ‘advanced anaerobic 

digestion’ processes, in which an additional sludge hydrolysis step is performed prior to 

digestion. This step hydrolyses cells within the sludge via thermal, chemical or 

mechanical processes, improving the destruction of pathogens, and releasing cell 

contents , resulting in an improved efficiency of AD and increased methane production 

(Carrère et al., 2010). There are currently no studies that have assessed the impact that 

the introduction of this hydrolytic step has had on P speciation in digested sludges, and 

it is possible that improved cell lysis, and the resulting increased microbial degradation 

of released compounds will have a large effect on anaerobically digested sludge P.   

1.4.3 Phytate in soil 

Phytate enters the soil in plant residues and animal faeces, and is often the dominant PO 

species in the soil due to relatively low lability, caused by its tendency to form strong 

interactions with the soil solid phase (Jørgensen et al., 2015). The six phosphate groups 

of phytate and its resulting high anionic charge density mean that phytates can bind 

much more strongly to soil solids than most other P compounds. For example, on a per 

molecule basis, phytate sorption capacity is in the region of four times that of the 

orthophosphate anion (Richardson et al., 2006). Strong adsorption of phytate to soil 

compounds such as metal oxides is also governed by the negative charges of the 

phosphate moieties. Shang et al., (1990) found that fully phosphorylated phytate 

(containing 6 phosphate moieties) adsorbed to an aluminium oxide much more rapidly 

than the largely dephosphorylated phytate subsidiary myo-inositol monophosphate (1 

phosphate moiety), due to its greater affinity for the aluminium oxide surface, which 

indicates that phytate may compete for adsorption sites with other P compounds. 

Phytate also associates with clays in soil via interaction of the multiple phosphate groups 
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with positively charged multivalent bridging cations such as Fe3+ and Al3+ on the clay 

surface (Giaveno et al., 2008). 

Due to the low lability and low degradation of phytate relative to other organic P 

compounds, phytate undergoes preferential stabilisation, and it is often stated that it 

preferentially accumulates in soils (Turner et al., 2002; Menezes-Blackburn et al., 2013; 

Celi et al., 2001). For example, Dao, (2004) reported that seven repeated applications of 

dairy manure at a rate of 30 kg P ha-1 increased soil storage of complexed phytase-labile 

P to a concentration of approximately 80 mg P kg-1. However, in the past decade, studies 

have shown that phytate applied to soils can also become rapidly hydrolysed. Doolette 

et al., (2010) demonstrated that when applied to calcareous soils, only 12% of initial 

applied sodium phytate was present after 13 weeks of incubation, and Leytem et al., 

(2006) similarly showed that phytate in poultry manure added to a calcareous soil also 

declined over time, indicating that phytate was mineralised during incubation. These 

findings are not limited to calcareous soils either, as when Annaheim et al., (2015) 

compared acidic soils that had received continuous additions of compost, manure and 

dried sewage amendments, they found no difference between the soil PO content, 

despite differences in PO content of the organic amendments, indicating that no 

significant accumulation of specific P forms had occurred.  

These findings indicate that there is no common pattern to the tendency of phytate to 

accumulate, and that its persistence or lability in soils is governed by a range of complex 

factors, that may be specific to each soil studied. It is possible that phytate accumulation 

is exacerbated in soils in which microbial turnover is limited. Stutter et al., (2015) 

analysed soil P forms in a wide range of British soils, reporting that arable soils were 

dominated by orthophosphate, with a large fraction of monoester P. In the same soils, 

P compounds that are indicators of microbial turnover such as nucleic acids and 

phospholipids were much lower than in grassland soils. The authors concluded that the 

natural ability of soil, plants and microbes to cycle organic P had been depressed in areas 

of high fertiliser inputs. Crop monocultures can reduce the soil microbial diversity 

(Stutter & Richards, 2012), and this may therefore cause accumulation of organic P such 

as phytate that is strongly sorbed, and therefore sparingly mineralised by microbial 

phytase enzymes. Soil management practices may also have an effect, as Cade-Menun 
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et al., (2010) measured greater phytate concentration in no-till soils than traditionally 

tilled soils at all depths measured.  

1.5 Phytate mobilisation 

1.5.1 Phytase enzymes 

Phytases are a broad group of phytate-specific phosphatase enzymes which are 

widespread in nature and are produced by plants, animals, bacteria and fungi to catalyse 

the step-wise dephosphorylation of phytate into its lower ester derivatives myo-inositol 

pentakis-, tetrakis-, tri-, bis-, and mono-phosphate whilst liberating inorganic phosphate 

(Figure 1.5; Jorquera et al., 2008). Four sub-classes of phytase enzymes are known: 

histidine acid phosphatases (HAPs); cysteine phytases (CPhy); purple acid phosphatases 

(PAPs); and β-propeller phytase (βPP; Giles et al., 2011). Each class varies in its 

mechanism of dephosphorylation which can depend on pH and co-factor cations (Giles 

& Cade-Menun, 2014). Phytase enzymes are key to the cycling of phytate-P and are 

responsible for liberating phytate-P in a number of key processes, including seed 

germination, digestion and nutrient acquisition in plants. They have also been isolated 

and commercialised and are now commonly used to aid phytate digestion in livestock 

fed grain-based diets (Jorquera et al., 2008). 

1.5.2 Mobilisation of soil phytate by phytases 

Phytases in soil predominantly originate from microbial sources, with smaller inputs 

from phytase endogenous to animal manures, and small amounts from plant roots 

(Menezes-Blackburn et al., 2013; Giles & Cade-Menun, 2014), and these extracellular 

phytases can be produced by microbes in response to limited available P concentrations 

(Konietzny & Greiner, 2004). The activity of these enzymes in the soil can be governed 

by a wide range of factors, including soil pH, temperature, water content and soil 

chemical and physical conditions, and if these conditions are sub-optimal, enzymes can 

become rapidly immobilized or denatured (George et al., 2005a; Giles & Cade-Menun, 

2014). The solubility of both the phytate substrate and the phytase enzyme in soils is 
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key for phytase activity in soils. Phytate that is strongly adsorbed to the soil solid phase, 

or precipitated with metal cations and no longer soluble is afforded a level of protection 

from hydrolysis (Dodd & Sharpley, 2015). Enzymes have been shown to exhibit an 

affinity for the interface between the soil solid and solution phases due to complex 

hydrophilic and hydrophobic molecular forces (Quiquampoix et al., 2002), and thus can 

also become immobilised in soils via adsorption to mineral surfaces and organic matter 

by electrostatic interaction (George et al., 2005a). Adsorption of fungal phytases seems 

to be dependent on both soil pH and the isoelectric point (the pH at which the enzyme 

carries no net electrical charge) specific to the enzyme (George et al., 2005a). These 

factors determine the extent of electrostatic attraction or repulsion of enzymes to the 

soil solid phase, and so have a significant impact on adsorptive tendencies. In their study, 

George et al., (2005a) found that adsorption of Aspergillus niger phytase was greatest 

at a soil pH of 4.5, below its reported isoelectric point, and decreased as pH increased, 

until all phytase was in solution at pH 7.5 due to greater electrostatic repulsion above 

the isoelectric point. Adsorption reduces the mobility of enzymes in the soil solution and 

can therefore reduce their interaction with substrates. It can also cause irreversible 

deactivation of enzymes due to conformational changes within the molecular structure 

(Leprince & Quiquampoix, 1996). Alternatively, adsorption may also maintain phytase 

activity in some circumstances by providing protection against protease activity and 

microbial degradation (Naidja et al., 2000), and may be a mechanism that enables the 

persistence of enzyme activity in soils in the long term (Giles & Cade-Menun, 2014). For 

example George et al., (2005a) found that the activity of an Aspergillus phytase 

adsorbed to soil declined 2-4 times slower than in the absence of soil. 

Soil phytase activity is supported in the rhizosphere by the exudation of organic acids 

from plants and microbes (Giles & Cade-Menun, 2014; Giles et al., 2017). These organic 

acids such as ascorbate, citrate and oxalate enhance the solubility of phytate by 

chelation or dissolution of phytate complexes with metals and minerals (Giles et al., 

2012), making phytate available in the soil solution for enzymatic degradation. In 

addition, organic acids may enhance the solubility of phytase enzymes. George et al., 

(2005a) found that in low-sorption capacity soil, A. niger phytase adsorption was 

reduced in rhizosphere soil compared to bulk soil, which may be due to increased 
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organic acid abundance in this soil which has been shown to improve the solubility of 

other phosphatase enzymes (Huang et al., 2003). The complementary nature of phytase 

and organic acid exudation was recently demonstrated by Giles et al., (2017), who 

showed that transgenic plants that exhibited combined phytase and citrate exudation 

accumulated more P, and depleted a greater proportion of soil phytase-labile P than 

plants that exuded either phytase or citrate individually. Work such as this shows that 

as our understanding of these complex soil molecular interactions increases, they could 

yield promising mechanisms for increasing the uptake of P from accumulated organic P 

sources, potentially reducing our reliance on chemical fertiliser inputs in the future. 

1.5.3 Applications of phytase enzymes  

Due to the ubiquity of phytate in environmental and agricultural samples such as grain, 

manure, excreta and soil, there has been a great deal of interest during the past two 

decades in the application of phytase enzymes to samples. Phytase enzymes are now 

commonly applied as a supplement to the grain-based feed of livestock, particularly 

monogastrics, where they serve to aid phytate dephosphorylation in the gut, providing 

otherwise unavailable P to the animal (Jorquera et al., 2008). The dephosphorylation of 

phytate in this application has further benefits, as it decreases the anti-nutritional 

chelation of valuable divalent cations (eg. Zn2+, Fe2+/3+, Ca2+) by phytate in the diet, 

decreases the need for supplementation of diets with extra bioavailable phosphate, and 

thereby can decrease the concentration of P in manures by 50% (Jorquera et al., 2008).  

As well as animal feeds, there is great potential for the manipulation of phytase enzymes 

in soil plant systems to increase P uptake from accumulated phytate. However, as 

discussed in section 1.5.2, the heterogeneity of soils, and the tendency of both phytate 

and phytase enzymes to become bound to the soil solid phase poses a challenge. George 

et al., (2005b) generated Nicotiana tabacum plants that expressed a chimeric phytase 

gene from the soil fungus A. niger and found that plants grown in a phytate-

supplemented sterile agar accumulated 3.7 fold more P than non-transgenic plants. 

When grown in phytate amended soil, this translated to a more modest 50% increase 

compared to control plants, but when grown in unamended P-deficient soils, no benefit 

was demonstrated in transgenic plants, indicating that phytate availability is a limiting 
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factor. As discussed in the previous section, a greater understanding of the complex 

chemistry of the rhizosphere is yielding improved results, as a transgenic plant 

simultaneously exuding both organic acids and phytase enzymes can absorb more P than 

plants exuding either individually (Giles et al., 2017). This shows that there is great 

promise for the manipulation of soil phytase enzymes for the provision of phytoavailable 

P from organic P compounds.  An alternative approach involves the direct application of 

phytase enzymes to soils in order to increase phytase activity artificially. Menezes-

Blackburn et al., (2011) demonstrated that high enzyme activity could be maintained 

when E. coli and A. niger commercial feed-additive phytases were immobilised on 

allophanic nanoclays. They proposed that these phytase-nanoclay complexes could 

provide a novel biofertilisation strategy by maintaining and supporting the exogenous 

phytase activity in complex manure and soil environments. In a subsequent paper, they 

evaluated the ability of these complexes to dephosphorylate phytate in dairy manures. 

They found that the stabilised phytases were not able to hydrolyse a significant amount 

of PO in unbuffered manure due to the alkaline pH, but when the phytase-treated 

manure was added to soil under greenhouse conditions, phytase hydrolysis proceeded 

to influence both P nutrition and plant growth, providing an increase in available P 

equivalent to 151 kg P ha-1 (Menezes-Blackburn et al., 2014). Work such as this highlights 

the potential benefits that could be gained by the use of phytase in biofertilisation 

strategies, and further work under field conditions will be of great interest. 

1.6 Aims and objectives of this thesis 

This thesis aims to use a range of analytical methods to investigate the behaviour and 

concentration of phytate through the wastewater treatment process, to assess whether 

it constitutes a substantial proportion of P in the digested sludge that is commonly 

spread on agricultural land in the UK. Whether phytate accumulates upon its application 

to soils is disputed, and this accumulation may be affected by a range of factors. 

Therefore, this thesis aims to assess phytate levels in agricultural and natural grassland 

soils, including a soil recently converted from arable land to a field housing monogastric 

swine, to understand whether the continuous application of phytate in monogastric 

manure has resulted in accumulation. Finally, phytase enzymes are a promising tool for 

improving P sustainability, and are now commercially available for use in animal feeds. 
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There is potential for their use to mobilise accumulated phytate in soils, but the use of 

enzymes in soils is challenging due to the low solubility of both enzyme and substrate. 

This thesis aims to investigate whether a commercially available phytase enzyme is able 

to provide phytoavailable P from phytate when applied to a simple soil-like substrate, 

and investigate the effect of clay content on this ability. The following sections provide 

an overview of the subsequent chapters in this thesis, and the research questions 

addressed in each.  

1.6.1 Phytate analysis by ESI-ToF-MS 

Solution 31P NMR spectroscopy is well established as the standard method for the 

analysis of phytate and other organic phosphates in environmental samples, but suffers 

from inherent issues of low sensitivity and low resolution (McIntyre et al., 2019). In 

Chapter 2, the alternative analysis of phytate by electrospray ionisation time-of-flight 

mass spectrometry (ESI-ToF-MS) is investigated to assess whether it can provide a more 

sensitive method for the detection of phytate and its dephosphorylated subsidiaries 

than 31P NMR. Solutions of sodium phytate and potassium phytate are analysed, along 

with lower inositol phosphates generated during the reaction of phytate with a phytase 

enzyme. Despite optimisation of the procedure, the occurrence of in-source 

fragmentation precludes the application of this method in subsequent chapters. 

1.6.2 Phytate in sewage sludge  

Relatively little work has been carried out to assess phytate content in sludges. As 

discussed in section 1.4.2, some evidence suggests that phytate is able to persist through 

anaerobic sludge treatment processes (Smith et al., 2006), although some work also 

suggests that all organic P is hydrolysed during digestion to leave only inorganic 

orthophosphate in the sludge (Li et al., 2019). As 80% of processed sludge in the UK is 

applied to agricultural land (DEFRA, 2012), it is important to understand the fate of 

phytate through modern advanced anaerobic treatment processes. In Chapter 3, 

sewage sludge sampled from 5 stages of an advanced anaerobic treatment process is 

analysed by both solution 31P NMR, and enzymatic hydrolysis with colorimetry to 

address the first major research question:  
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1. Is phytate present in sewage sludge, does it persist through a modern advanced 

anaerobic digestion sludge treatment process, and does it constitute a 

substantial fraction of total P in the final sludge ‘cake’ that is spread on land? 

1.6.3 Phytate in soil 

The common assumption that phytate accumulates in soils has recently been 

questioned, with some research indicating that freshly applied phytate is rapidly 

hydrolysed in soils (Leytem et al., 2006; Doolette et al., 2010). If phytate applied in 

organic amendments does accumulate in soils, then this phytate could present a 

reservoir of P which could be mobilised for plant uptake, thereby reducing reliance on 

inorganic P fertilisers. In Chapter 4, phytate concentrations are measured in agricultural 

and grassland soils with varying land-use histories by solution 31P NMR and enzymatic 

hydrolysis with colorimetry to address the second major research question: 

2. How does the land-use history of agricultural and grassland soils affect the 

concentrations of phytate in soil? Does phytate accumulate in a previously arable 

soil that has been converted to a pen housing monogastric swine? 

1.6.4 Enzymatic biofertilisation of phytate-treated plants  

Phytase enzymes are commercially produced for use as a supplement for the improved 

digestion of grain-based livestock feeds, and have had a marked effect on both 

productivity and P sustainability by combatting the antinutritional effects of dietary 

phytate, reducing the need for exogenous P inputs, and reducing manure P 

concentrations (Jorquera et al., 2008). Their use in biofertilisation strategies to mobilise 

accumulated phytate-P shows great promise but is less advanced. In Chapter 5, a 

greenhouse-based experiment is developed to test the efficacy of a commercially 

available phytase enzyme in the provision of phytate-P to plants, with or without the 

presence of clay in a simple substrate. A number of plant and substrate variables are 

measured in order to address the third major research question: 

3. Can a commercially available feed-supplement phytase enzyme be used to 

release phytoavailable phosphate from phytate in a simple soil substrate, and 

how does clay content affect this ability?  
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2: Analysis of phytate and the lower inositol 

phosphates by ESI-TOF-Mass Spectrometry 

 

2.1 Summary 

Solution 31P NMR is by far the most established and successful method for the analysis 

of organic P in environmental matrices, and has enabled a greater understanding of the 

types and quantities of the major P compounds in these samples. However, 31P NMR 

suffers from both issues of inherent low sensitivity, and low resolution, particularly in 

the orthophosphate monoester region of spectra. This makes the identification and 

quantification of P compounds that are present at low concentrations, such as the 

partially dephosphorylated esters of phytate, either difficult or impossible. Electrospray-

ionisation time-of-flight Mass Spectrometry (ESI-ToF-MS) holds potential as a highly 

sensitive alternative analytical method that may enable further advances in our 

knowledge of the dynamics of these compounds.  

Very few studies have used ESI-ToF-MS for the analysis of phytate, but in those that 

have, the occurrence of in-source fragmentation during phytate ionisation has been 

reported. This fragmentation involves the removal of phosphate groups from the 

phytate to produce fragment ions with coincidental mass charge ratios with true 

dephosphorylated phytate esters, therefore precluding the accurate quantification of 

these lower esters in mixed samples. Electrostatic conditions within the ionisation 

process have been shown to affect the severity of phytate fragmentation. The aim of 

this chapter was to optimise the conditions within ESI-ToF-MS to reduce or eliminate 

the occurrence of in-source phytate fragmentation in order to develop a highly sensitive 

method for the analysis of phytate and its dephosphorylated esters. Despite the 

optimisation of the source voltage and cone voltage within ionisation, the occurrence of 

fragmentation could not be eliminated, and thus seems to be dependent on numerous 

emergent factors. As demonstrated via the analysis of phytase-mediated 

dephosphorylation of phytate, the direct analysis of mixed samples by ESI-ToF-MS can 

provide valuable qualitative information, but interpretation of quantitative information 

must be approached with caution. 
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2.2 Introduction 

2.2.1 Detection of Inositol Phosphates in 31P NMR 

Solution 31P NMR has become established as the standard method for organic P analysis 

in environmental samples (Cade-Menun & Liu, 2014), and is a powerful analytical tool 

because 31P is the only naturally occurring non-radioactive (stable) P isotope. The short 

half-lives of radioactive P isotopes (maximum 25.34 days; Robinson, 1969) effectively 

means that P is monoisotopic and thus all P species in a sample can be detected in a 

single analysis. Great success has been achieved in the detection and quantification of 

phytate in extracts of environmental matrices, due to its relatively high concentrations 

within these samples, and its relatively straightforward identification in 31P NMR spectra 

by the presence of its 1:2:2:1 peak ratio. However, less success has been achieved in the 

detection of lower order inositol phosphates by 31P NMR. These compounds, the 

products of hydrolysis of phosphate groups from the phytate molecule (Figure 1.5), are 

highly likely to be present in soil and manure samples, albeit at much lower 

concentrations than phytate, due to the activity of phytase enzymes in the rhizosphere 

or in the gut. However, their detection in these samples by 31P NMR is 

underrepresented, with a handful of papers describing their presence, or putative 

presence in extracts of feed and ileal digesta in monogastric livestock (Kemme et al., 

1999; Leytem et al., 2008), and an apparent absence of their detection and identification 

in 31P NMR in extracts of soil.  

As discussed in Chapter 1, Section 1.3.4, NMR suffers from the inherent issues of both 

low sensitivity and low spectral resolution within the orthophosphate monoester region. 

Sensitivity issues can be somewhat eased by pre-concentrating samples prior to the 

analysis, but compounds that are present at low concentrations may still not reach the 

limit of detection. Resolution of the orthophosphate monoester region is also a 

significant issue, particularly in complex soil samples where there are likely to be a wide 

array of organic P compounds present, leading to significant overlapping of peaks (see 

Figure 1.4). Resolution and sensitivity can both be improved by signal averaging, where 

a sample is run over many, sometimes thousands, of pulse cycles to increase signal to 

noise ratios, but this then leads to very long analysis time, particularly when long 

relaxation delay times are employed between pulses. A further complication in soil 
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analysis is the common observation of a broad ‘humic P’ peak in the orthophosphate 

monoester region, which is particularly prevalent in high organic matter soils, and is 

believed to be produced via the association of orthophosphate monoesters with high 

molecular weight organic compounds (Doolette et al., 2010; McLaren et al., 2019). This 

peak would obscure the small monoester peaks that would be generated for lower IPs, 

making their detection and quantification complex or impossible if they were present at 

detectable concentrations. An alternative technique would therefore be beneficial for 

the detection of lower inositol phosphates when they are present at low concentrations.  

2.2.2 Electrospray ionisation time-of-flight Mass Spectrometry (ESI-ToF-MS) 

Mass Spectrometry (MS) is one of the most sensitive analytical techniques for the 

characterisation and quantification of molecules and would appear to be a promising 

approach for the detection of inositol phosphates in low concentrations. In mass 

spectrometry, an analyte in solution is transferred to a gaseous state and is ionised via 

the addition (‘positive mode’) or loss (‘negative mode’) of one or more protons to give 

molecular ions with a positive or negative charge. For clarity, this section will discuss the 

production of negatively charged molecular ions in ESI. Ions are then transferred to a 

detector, which can record their intensity by their mass:charge ratio (m/z) to produce a 

mass spectrum. A number of ionisation techniques exist, but electrospray ionisation 

(ESI) has become the most popular, particularly in studies of large macromolecules, as 

it is a ‘soft’ ionisation technique, which reduces or eliminates the propensity for these 

molecules to fragment during ionisation (Banerjee & Mazumdar, 2012).  

Figure 2.1 is a simplified schematic diagram illustrating the ionisation process in ESI. The 

analyte of interest is dissolved in a polar solvent (e.g. water, methanol) and is pumped 

into the ionisation chamber via a capillary. The orifice of the capillary is highly charged, 

with this charge known as the source voltage, and in negative mode, the solvent 

undergoes reduction reactions supplying negative OH- ions to the solution (Banerjee & 

Mazumdar, 2012). Electrostatic repulsion between the negatively charged capillary and 

the solution causes the formation of a meniscus at the orifice which is then drawn into 

a cone due to competing electrostatic forces and solvent surface tension. From this 

cone, a fine jet of solvent droplets carrying the negative charge is ejected as an aerosol 
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towards the sampling cone, which acts as a counter electrode. During the passage of 

droplets between the capillary and the sampling cone, the negative charges are equally 

distributed on the droplet surface. This means that two forces; droplet surface tension, 

which acts to maintain the spherical shape of the droplet; and Coulomb forces of 

repulsion, which act to distort the shape of the droplet; are in direct competition with 

each other. The nitrogen carrier gas facilitates solvent evaporation from the droplets, 

reducing their volume and increasing the Coulomb repulsive forces until they are no 

longer sustained by the surface tension (Banerjee & Mazumdar, 2012). At this point, 

known as the Rayleigh limit, Coulomb fission occurs, in which droplets spontaneously 

collapse into many smaller charged droplets (Figure 2.1). This process is repeated many 

times as the aerosol moves towards the sampling cone, until droplets have disintegrated 

to highly charged nanodroplets. With the final evaporation of solvent from these 

nanodroplets, the negative charges are passed from the solvent to the analyte 

molecules via proton loss (Banerjee & Mazumdar, 2012).  

Figure 2.1: Schematic diagram of Electrospray Ionisation (ESI). Analyte in solution is 
introduced through a thin capillary. The tip of the capillary is highly charged and creates 
highly charged spray droplets. Solvent evaporates from these droplets which disintegrate 
into smaller and smaller droplets by coulombic fission, until fully evaporated. The analyte 
atoms take on the charge of the droplets, becoming naked molecular ions, which then pass 
down an electrical potential gradient and pressure gradient through the orifice of the 
sampling cone. From here they are directed through the extraction cone into the mass 
analyser. Figure adapted from Banerjee et al., (2012).  
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The ions are propelled through the orifice of the sampling cone and into the mass 

detector via the extraction cone, moving along both an electrical potential gradient and 

a pressure gradient as the mass detector is held at high vacuum relative to the 

atmospheric pressure of the ionisation chamber. Time-of-flight (ToF) mass 

spectrometers detect different ions based on their velocity in the electrostatic field. As 

all ions are moving through the same field, they have the same kinetic energy, so 

become separated only by their mass and charge. Detection is therefore achieved by 

monitoring the arrival of ions at the detector, which will depend on their m/z ratio as a 

function of time (Cooper et al., 2006). 

2.2.3 Inositol phosphate analysis by ESI-ToF-MS 

Despite the high sensitivity offered by ESI-ToF-MS analysis, there are few studies that 

have employed it in the analysis of inositol phosphates. The first direct analysis of a 

mixture of inositol phosphates by ESI-ToF-MS was carried out by Cooper et al., (2006). 

A mixture of phytate (IP6) and myo-inositol monophosphate (IP1; Figure 1.5) were 

introduced to the ion source, but upon detection, the authors were surprised to record 

the abundant appearance of peaks at m/z ratios that are coincidental with the m/z ratios 

that would be generated by inositol bis-, tris- tetrakis- and pentakis-phosphates (IP2-

IP5; Figure 1.5). Although the authors could not exclude the occurrence of significant 

contamination of their standards with these other IPs, they concluded that phytate 

fragmented during the ionisation process, via the breaking of the phosphoester bond 

(O-P), releasing PO3
- from the molecule (Cooper et al., 2006). The consequence of this is 

the production of fragment ions that have the same m/z charge ratio as would be 

expected for true ions of lower IPs, which therefore complicates the quantification of 

IPs in mixed samples. Of the few studies that have aimed to identify and quantify IPs 

using ESI-ToF-MS, most employ a chromatographic separation step prior to analysis in 

order to exclude potential contaminant IPs from samples (Paraskova et al., 2015; 

McIntyre et al., 2019).  

The cone voltage, which is the voltage of the counter-electrode in ESI, is important in 

the ESI process as it guides gas-phase ions into the mass spectrometer, but it has been 

shown to be a critical parameter affecting the fragmentation of ions (Yan et al., 2003). 
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The voltage at the cone should be sufficient to guide enough ions into the detector and 

maintain ion intensity, but should be low enough to prevent fragmentation that might 

occur when the voltage is too high, resulting in increased ion velocity and collisions with 

other gas phase molecules. Indeed, cone voltage has been found to have a clear effect 

on the fragmentation of the inositol phosphates in ESI, with Cooper et al., (2006) 

describing significant fragmentation of all IPs at high cone voltages, and reduced but 

varying degrees of fragmentation at low cone voltage with a pattern of increasing 

fragmentation in more phosphorylated IPs.  

The source voltage, the high charge at the orifice of the capillary from which the charged 

droplets are produced, has also recently been shown to affect phytate fragmentation in 

ESI. McIntyre et al., (2017) identified a pattern of increasing fragmentation with 

increasingly negative source voltage between -1.6kV and -3.6kV, with the relative 

proportion of IP6 ions decreasing, accompanied by increasing proportions of IP5 and IP4 

ions. 

2.2.4 Aims and Objectives  

It therefore would seem that there are potentially numerous factors in ESI that affect 

phytate fragmentation, but of the very little work carried out on inositol phosphates in 

ESI-ToF-MS, none has sought to optimise more than one of these factors. The aim of this 

chapter was to develop a method for the direct identification and quantification of 

phytate and its lower inositol phosphate subsidiaries by ESI-ToF-MS. The adjustment of 

various ionisation conditions including source voltage, cone voltage and analyte 

concentration was carried out in order to optimise the system and minimise or eliminate 

the occurrence of in-source fragmentation. To assess the effectiveness of the optimised 

analytical procedure on a range of inositol phosphates, the system was used to analyse 

the production and dephosphorylation of the various inositol phosphates over the 

course of a reaction between phytate and a phytase enzyme in a continuous flow, real-

time analysis. From the results obtained, a discussion follows as to whether this method 

would be effective for the analysis of inositol phosphates in environmental samples. 
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2.3 Methods 

2.3.1 Solution 31P NMR 

For 31P NMR analysis, solutions of 0.5, 0.05 and 0.005mM phytic acid sodium salt hydrate 

(Na12C6H12O6(HPO3)6; Sigma) were prepared by dissolution of the appropriate mass into 

a solution containing 9 parts 0.5M NaOH + 0.1M EDTA and 1 part deuterium oxide. 

0.5mL of the sodium phytate solution was transferred to a 5mm NMR tube. 31P NMR 

spectroscopy was performed on a Bruker Advance 500 Spectrometer with a mag1 

console (Bruker, Germany). Spectra were recorded at a frequency of 202.456 MHz with 

a 5mm broadband probe at a temperature of 298 K (24.85°C). During each sample 

analysis, the following parameters were unchanged: acquisition time = 0.845s; pulse 

width of 22μs; pulse angle 90°; delay time = 1s; total number of scans = 16,384; pulse 

program = zgig. 31P NMR data was processed in Bruker Topspin 4.0.3. 

2.3.2 ESI-ToF-MS of phytate 

Electrospray ionisation time-of-flight mass spectrometry (ESI-ToF-MS) was performed 

on a Waters Synapt G2-S (Waters Corp., USA). MS analysis was performed in negative 

ion mode over a mass range of 50-800 Da, and the apparatus was tuned to the singly 

charged phytate ion (m/z 658.8; [M-H]-). For all analyses, source temperature was set to 

350°C, cone gas (nitrogen) flow rate was 10 L H-1, and desolvation gas flow rate was 700 

L H-1. Source voltage was varied between -1.5kV and -3.3kV. Cone voltage was initially 

set to 30V, and was reduced to 20V for cone voltage optimisation.  

For phytate analysis, solutions of sodium phytate were prepared in a solution of 5% 

methanol in UHP water to concentrations of 0.5, 0.05, and 0.005mM. Phytic acid 

dipotassium salt (K2C6H12O6(HPO3)6; Santa Cruz Biotechnology) was prepared to 0.5mM 

in 5% MeOH in UHP. For the generation of phytate spectra, phytate solutions were 

added to a 25mL PTFE vessel and drawn into the 250 µL internal syringe of the mass 

spectrometer, then injected into the ESI source at a flow rate of 10 µL min-1. Spectra 

were acquired as an average of 100 individual scans with a scan time of 1 second. To 

assess the effect of varying source voltage on phytate spectra, an experiment was 

programmed into the MassLynx software (Waters, USA) to automatically increase the 

source voltage between -1.5kV and -3.3kv at increments of 0.2kV after each 100-scan 
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analysis. To assess the effect of changing the cone voltage, this process was repeated 

after adjusting the cone voltage from 30V to 20V.  

Data was processed in MassLynx (Waters Corp., USA) software to provide an average 

spectrum. Total intensity of separate inositol phosphate esters (IPs) was calculated in 

Microsoft Excel by summing the total counts for peaks identified at m/z values 

representing ions and their respective sodium or potassium adducts.  

2.3.3 ESI-ToF-MS of the phytate-phytase reaction 

For analysis of the phytase-enzyme mediated dephosphorylation of phytate, an 

analytical process was designed in which the reaction could be analysed in real-time via 

ESI-ToF-MS. A 2 FTU mL-1 enzyme solution was prepared by dilution of a 20,000 FTU mL-

1 stock solution of RONOZYME HiPhos (DSM Nutritional Products, Switzerland) in UHP 

water. 20mM sodium phytate was prepared in UHP water. Prior to the reaction analysis, 

the ESI-ToF-MS system was first purged with the enzyme solution. 250 µL of enzyme 

solution was drawn into the internal syringe from a 25mL PTFE vessel, and pumped to 

the ESI source at a flow rate of 10 µL min-1 over a period of 25 minutes. The internal 

syringe was then emptied and the PTFE vessel was replaced. The reaction vessel 

contained 9.75mL 2 FTU mL-1 phytase, to which was added 0.25mL of 20mM sodium 

phytate, giving a final concentration of 0.5mM phytate. The reaction solution was 

manually agitated for 2 seconds then was connected to the mass spectrometer. 250 µL 

of the reaction was drawn into the internal syringe and was introduced to the ESI source 

at a flow rate of 10 µL min-1. The reaction was then analysed over a 22-minute period 

comprising a total of 1288 scans with a scan time of 1 second, with ionisation achieved 

at a source voltage of -3.1kV, and cone voltage of 20V. Peaks were identified for each IP 

and their respective sodium adducts, and the total ion counts data for each identified 

m/z value per scan was transferred into Microsoft Excel. Total ion counts for each IP 

(IP6-IP1) was then calculated for each scan by summing the total counts for each ion and 

its respective adducts. Data was then smoothed by calculating a mean ion count for each 

set of 10 consecutive scans. A total of three replicate reactions were analysed in an 

identical manner, and a mean reaction was presented over time. Error was calculated 

as SEM and is presented for each IP separately in individual figures.  Figures were 

produced in GraphPad Prism v7.04 (GraphPad Software Inc, San Diego USA). 
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2.4 Results & Discussion 

2.4.1 Phytate in 31P NMR 

The low sensitivity of 31P NMR analysis is demonstrated in Figure 2.2. Three 

concentrations of sodium phytate at 0.5, 0.05, and 0.005mM were analysed over a total 

of 16384 scans with a scan time of 1s in order to maximise the signal to noise ratio. 

Phytate (IP6) can be clearly identified in the 0.5mM solution by the presence of four 

distinct peaks in a 1:2:2:1 intensity ratio at chemical shifts of 5.63, 4,73, 4.37 and 

4.24ppm (Cade-Menun, 2015; Watson et al., 2019). While the four phytate peaks are 

clearly visible at the 0.5mM concentration, these peaks are much smaller at 0.05mM 

and are barely visible above the baseline noise in 0.005mM solutions. 

What is notable about the 0.5mM concentration is the presence of smaller 

contaminating peaks within the 31P NMR spectrum of the pure phytate standard. These 

peaks have been tentatively identified as orthophosphate (5.78ppm) and myo-inositol 

Figure 2.2: Solution 31P NMR spectra of three concentrations of sodium phytate. Spectra are 
presented on the same intensity scale, highlighting the low resolution of 31P NMR at low 
analyte concentrations. At 0.5mM, the phytate appears to have a small amount of inositol 
pentakisphosphate (IP5) impurity (10% of total peak area), which is not visible in lower 
concentrations. Identification of IP5 peaks was based on peak identification of Watson et al. 
(2019). 
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pentakisphosphate (IP5; peaks at 5.08, 4.63, 4.04 & 3.90ppm) by comparison of the 

relative chemical shifts of IP5 measured by Watson et al., (2019) (Table 2.1). In their 

study, the major IP5 isomer generated by thermal degradation of IP6 was 

unsymmetrical, and so generated a separate peak of equal intensity for each P nucleus 

of IP5 in the NMR spectrum. The chemical shift of these five peaks show the same 

approximate spectral distribution as those found in this work, although the third 

potential IP5 peak is obscured by the IP6 peak at 4.37ppm (Table 2.1). Whilst the sum 

integral of these IP5 peaks is approximately equal to 10% of the sum of IP6 peaks in the 

0.5mM phytate spectrum, these IP5 peaks are not detected in the 0.05mM and 

0.005mM dilutions (Figure 2.2). This IP5 contamination may be present in the original 

standard, as the phytate originates from rice, but could also originate due to 

degradation of the IP6 in the alkaline sample necessary for 31P NMR analysis (Cade-

Menun & Liu, 2014).  

This result highlights an inherent issue with the detection of IPs by 31P NMR, which is the 

low sensitivity of NMR as an analytical technique. The main reason for this low sensitivity 

is that the ratio of nuclei in the sample at the grounded energy level is almost equal to 

those in the higher energy state (see Section 1.3.4). In NMR, only the difference between 

these two nuclei populations is detected, meaning that to gain a greater signal, a greater 

number of nuclei (or higher analyte concentration) is required (James, 1998; Doolette & 

Smernik, 2011).  

The poor sensitivity of NMR is overcome in the study of environmental samples by pre-

concentrating samples, via lyophilisation and resuspension of soil extracts in 31P NMR 

analysis of soil P (Cade-Menun & Liu, 2014). In soils with appreciable concentrations of 

phytate, this method is usually sufficient for quantitative analysis. However, for the 

analysis of soils with low concentrations of phytate, or quantification of partially 

Table 2.1: Chemical shift (ppm) of IP6 and IP5 peaks measured by Watson et al., (2019), and 
measured in this study 

 IP6 IP5 

Watson et al, 2019 5.55 4.64 4.28 4.15 5.01 4.54 4.28 3.94 3.83 

This study 5.63 4.73 4.37 4.24 5.08 4.63 - 4.04 3.90 

Difference +0.08 +0.09 +0.09 +0.09 +0.07 +0.09 - +0.1 +0.07 
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dephosphorylated phytate such as myo-inositol pentakisphosphate (IP5), which may be 

present in low concentrations, 31P NMR lacks sufficient sensitivity for quantification.   

2.4.2 ESI-ToF-MS of Phytate (Sodium phytate and Potassium phytate) 

0.5mM sodium phytate was then analysed by ESI-ToF-MS (Figure 2.3). Compiled as a 

mean spectrum of 100 individual scans, the spectrum revealed a complex mixture of 

ions, with peaks present for both singly [M-H]- and doubly [M-2H]2- charged anions of a 

range of IPs with varying degrees of dephosphorylation, as well as numerous peaks for 

each IP that represent ion-adduct formation with one or more sodium cations. The 

major peaks that were identified for 0.5mM sodium phytate are presented in Table 2.2.  

The spectrum generated contained substantial amounts of ions at m/z values that would 

be expected for the multiple dephosphorylated phytate subsidiaries (IP5-IP1), which 

indicates two potential issues: contamination of the phytate standard with these lower 

inositol phosphates; or the occurrence of ‘in-source fragmentation’ whereby the 

ionisation conditions in ESI lead to the loss of phosphate (PO3
-) groups producing 

fragment ions in the mass spectrum with coincidental m/z ratios with those of true lower 

inositol phosphates; and these possibilities are not mutually exclusive. From the 31P 

NMR data, it was found that there is likely to be a small but notable contamination of 

the sodium phytate standard with IP5. In the absence of fragmentation, this would be 

expected to be reflected in the mass spectrum by the presence of a small amount of IP5 

alongside a dominance of IP6 ions. However, this spectrum shows a dominance of IP4 

and IP5 ions, with smaller representation of IP6 ions and IP3 ions (Figure 2.3). This 

suggests that either the contamination of the sodium phytate standard is massively 

underrepresented by the 31P NMR spectrum, which is unlikely due to the dominant 

presence of the four characteristic peaks of IP6 in the spectrum (Figure 2.2), or that 

during the electrospray ionisation process, the high charge state of the phytate molecule 

causes it’s dissociation in the gas phase via the loss of one or more of its phosphate 

moieties [M-xHPO3-H]- (McIntyre et al., 2017). Additionally, there are also peaks present 

in the mass spectrum that indicate the loss of water from the ion [M-xHPO3-yH2O-H]-, 

which is a common occurrence in the ESI-MS analysis of organic compounds in negative  
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mode (Lu et al., 2013), and was also a feature of the phytate spectrum produced by 

McIntyre et al., (2017). 

To compare the fragmentation pattern of phytate in an alternative salt form, a mean 

spectrum was compiled of 0.5mM potassium phytate under the same ionisation 

parameters (Figure 2.4). Whilst this spectrum appears ‘cleaner’ in terms of the density 

of separate peaks, the fragmentation of potassium phytate seems to be more severe 

than that of sodium phytate under the same conditions. The major spectral peaks are 

identified in Table 2.3. Neither IP6 nor IP5 were detected in the potassium phytate 

spectrum. Together, IP3 and its respective potassium adducts made up the dominant 

fraction of ions, with peaks detected for IP4, IP2 and even IP1. The difference in severity  

Table 2.2: Peak identities for the mass spectrum of 0.5mM sodium phytate 
(Figures 2.3 & 2.7) 

Peak m/z Ion Identity 

1 328.9486 [M-2H]2- IP6 
2 339.9397 [M-3H+Na]2- IP6 + Na 
3 350.9394 [M-4H+2Na]2- IP6 + 2Na 
4 361.9310 [M-5H+3Na]2- IP6 + 3Na 
5 372.9232 [M-6H+4Na]2- IP6 + 4Na 
6 400.9785 [M-3HPO3-H2O-H]- IP3 - H2O 
7 418.9928 [M-3HPO3-H]- IP3 
8 422.9688 [M-3HPO3-H2O-2H+Na]- IP3 - H2O + Na 
9 440.9780 [M-3HPO3-2H+Na]- IP3 + Na 
10 444.9460 [M-3HPO3-H2O-3H+2Na]- IP3 - H2O + 2Na 
11 462.9605 [M-3HPO3-3H+2Na]- IP3 + 2Na 
12 480.9583 [M-2HPO3-H2O-H]- IP4 - H2O 
13 498.9670 [M-2HPO3-H]- IP4 
14 502.9420 [M-2HPO3-H2O-2H+Na]- IP4 - H2O + Na 
15 520.9545 [M-2HPO3-2H+Na]- IP4 + Na 
16 524.9257 [M-2HPO3-H2O-3H+2Na]- IP4 - H2O + 2Na 
17 542.9369 [M-2HPO3-3H+2Na]- IP4 + 2Na 
18 564.9160 [M-2HPO3-4H+3Na]- IP4 + 3Na 
19 578.9441 [M-HPO3-H]- IP5 
20 600.9253 [M-HPO3-2H+Na]- IP5 + Na 
21 622.9120 [M-HPO3-3H+2Na]- IP5 + 2Na 
22 644.8939 [M-HPO3-4H+3Na]- IP5 + 3Na 
23 658.9102 [M-H]- IP6 
24 666.8840 [M-HPO3-5H+4Na]- IP5 + 4Na 
25 680.8964 [M-2H+Na]- IP6 + Na 
26 702.8839 [M-3H+2Na]- IP6 + 2Na 
27 724.8673 [M-4H+3Na]- IP6 + 3Na 
28 746.8546 [M-5H+4Na]- IP6 + 4Na 
29 768.8428 [M-6H+5Na]- IP6 + 5Na 
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of fragmentation indicates that the salt environment of the phytate solution influences 

phytate fragmentation patterns in source.  

Little work has focused on the direct analysis of phytate by mass spectrometry with 

electrospray ionisation. The first work to note the unusual behaviour of phytate in this 

analysis was that of Cooper et al., (2006), who described the presence of IP2-IP5 and a 

number of sodium adducts in the spectrum of a solution purportedly containing a 

mixture of only IP6 and IP1. More recently, McIntyre et al., (2017) similarly identified 

numerous dephosphorylated esters of IP6 within their phytate standard when analysed 

by high resolution ESI mass spectrometry. To rule out contamination, they purified their 

standard by collecting a pure IP6 fraction from an anion exchange column separation, 

confirming the occurrence of in-source fragmentation in ESI with the continued 

appearance of these peaks at coincidental m/z ratios in the mass spectrum of the 

purified sample.  

Table 2.3: Peak identities for the mass spectrum of 0.5mM potassium phytate 
at 3.1kV source voltage (Figure 2.4) 

Peak m/z Ion Identity 

a 259.0424 [M-5HPO3-H]- IP1 
b 296.9986 [M-5HPO3-2H+K]- IP1 + K 
c 321.0001 [M-4HPO3-H2O-H]- IP2 - H2O 
d 339.0129 [M-4HPO3-H]- IP2 
e 358.9579 [M-4HPO3-H2O-2H+K]- IP2 - H2O + K 
f 376.9720 [M-4HPO3-2H+K]- IP2 + K 
g 396.9245 [M-4HPO3-H2O-3H+2K]- IP2 - H2O + 2K 
h 414.9311 [M-4HPO3-3H+2K]- IP2 + 2K 
i 418.9839 [M-3HPO3-H]- IP3 
j 456.9471 [M-3HPO3-2H+K]- IP3 + K 
k 494.9008 [M-3HPO3-3H+2K]- IP3 + 2K 
l 498.9573 [M-2HPO3-H]- IP4 
m 532.8629 [M-3HPO3-4H+3K]- IP3 + 3K 
n 536.9197 [M-2HPO3-2H+K]- IP4 + K 
o 570.8250 [M-3HPO3-5H+4K]- IP3 + 4K 
p 574.8781 [M-2HPO3-3H+2K]- IP4 + 2K 
q 612.8434 [M-2HPO3-4H+3K]- IP4 + 3K 
r 650.7947 [M-2HPO3-5H+4K]- IP4 + 4K 
s 688.7606 [M-2HPO3-6H+5K]- IP4 + 5K 
t 726.7175 [M-2HPO3-7H+6K]- IP4 + 6K 
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The dissociation of phosphate groups during ESI has been studied previously in 

phosphorylated peptides (Edelson-Averbukh et al., 2006; Palumbo et al., 2011; Banerjee 

& Mazumdar, 2012) and polyphosphates (Choi et al., 2000). Edelson-Averbukh et al., 

(2006) proposed a mechanism to explain the occurrence of phosphate fragmentation in 

negative mode electrospray ionisation. This mechanism has been adapted in Figure 2.5 

to explain the dissociation of phosphate groups from phytate, to produce an ion with 

coincidental m/z with the IP5 product of IP6 enzymatic hydrolysis. Under the conditions 

of ionisation and collision in the gas phase, a phosphate group can become doubly 

deprotonated to produce a phosphate moiety with a double negative charge [M-2H]2-. 

Electrons migrate from one oxygen to produce a double bond, with the phosphoester 

(C-O-P) bond breaking between O-P to yield two singly-charged fragment ions [M-2H-

(PO3
-)]- and [PO3]-. As phytate is multi-phosphorylated, this process can happen within 

multiple phosphate groups, to yield fragment ions that have coincidental m/z ratios with 

ions of the various partially hydrolysed lower inositol phosphates. The conditions that 

produce this double deprotonation are likely influenced by numerous factors including 

the charge supplied to the aerosol droplets at the source, which is dependent on the 

source voltage at the capillary, the concentration of the analyte (i.e the number of 

molecules that ‘share’ the charge of the droplet upon solvent evaporation), and the cone 

voltage, which can control the internal energy of ions, and the occurrence of collisions 

in the gas phase.  

Figure 2.5: Mechanism for the fragmentation of phytate, adapted from the mechanism 
proposed by Edelson-Averbukh et al., (2006) for the fragmentation of phosphorylated 
peptides. The doubly deprotonated phosphate group of phytate produced in the ion source 
decomposes to form complementary fragments [M-2H-(PO3

-)]- and [PO3]- via the shift of an 
electron pair. 

[M-2H]2- [M-2H-(PO3
-)]- [PO3]- 
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2.4.3 The effect of concentration and source voltage on fragmentation patterns 

In order to optimise the analysis and attempt to minimise or eliminate the occurrence 

of fragmentation, the voltage at the orifice of the metal capillary at the inlet stage of ESI, 

known as the source voltage, was varied, and the mean intensity of ions over 100 scans 

was measured at each level (Figure 2.6 A). The data is also presented as the intensity of 

the molecular ion and its fragment ions relative to the most abundant (Figure 2.6 B). At 

the 0.5mM concentration, a clear trend can be seen for decreasing signal intensity of 

IP3 and IP4, whereas IP5 intensity remains stable, decreasing only slightly between -

2.7kV and -3.3kV (Figure 2.6 A). IP6 became detectable at -2.1kV, increasing to a 

maximum at -2.3kV and remained relatively unchanged before decreasing between -2.9 

and -3.3kV. In terms of relative intensities, which provides an idea of the degree of 

fragmentation occurring in ionised analyte, the overall trend is for decreasing 

proportions of IP3, accompanied by increasing proportions of IP5 and IP6 with 

increasingly negative source voltage. The degree of fragmentation is lowest at -3.1kV, 

which has the greatest proportion of both IP6 and IP5 (Figure 2.6 B). 

This analysis was repeated at dilutions of 0.05mM and 0.005mM phytate to assess 

whether the fragmentation pattern is affected by analyte concentration. The pattern at 

0.05mM phytate was much the same as the more concentrated phytate, with an overall 

dominance of IP3 and IP4 at less negative source voltages. Their intensities decreased 

with increasingly negative source voltage, whilst IP5 and IP6 increased slightly (Figure 

2.6 C). In relative terms, the intensity of IP3 decreased with increasingly negative source 

voltage, whilst that of IP5 and IP6 increased (Figure 2.6 D). However, in the lowest 

concentration analysed, 0.005mM phytate, absolute intensity of all ions was stable 

between -1.5kV and -2.1kV, after which the intensity of all ions began to increase (Figure 

2.6 E). The spectra were dominated by IP3 and IP4 up until -3.1kV, at which point there 

was a sharp drop in intensity of both. Despite the difference in the pattern of absolute 

ion intensity, the pattern of relative ion intensity is remarkably similar to those of the 

greater concentrations, with the dominance of IP3 at less negative voltages replaced by 

dominance of IP4, and accompanied by increased proportions of both IP5 and IP6 (Figure 

2.6 F).  

 



Chapter 2: Phytate analysis by ESI-ToF-MS 

 

44 
 

  

0.005mM sodium phytate 

0.5mM sodium phytate 

0.05mM sodium phytate 

Figure 2.6: The effect of source voltage and analyte concentration on absolute ion intensity 
and relative ion intensity of sodium phytate solutions measured by ESI-ToF-MS. Source voltage 
in negative mode are negative values. At each source voltage, a mean spectrum was compiled 
from 100 scans. Mean intensity for each inositol phosphate was then calculated as the sum of 
peak intensity for each IP and its associated sodium adducts.   
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This analysis showed that the fragmentation pattern of phytate follows approximately 

the same pattern regardless of the concentration of analyte. At less negative source 

voltages, the degree of fragmentation is greatest, with an abundance of IP3 and IP4. The 

severity of fragmentation decreases when increasingly negative voltage is applied to the 

capillary, with IP3 levels decreasing, and levels of IP5 and IP6 increasing. However, at 

higher analyte concentrations, this increase in negative voltage is accompanied by an 

overall decrease in ionisation efficiency, with the intensity of all detected ions 

decreasing. This is reversed in the lower concentration, with ionisation efficiency 

increasing between -2.1kV and -2.9kV.  

McIntyre et al., (2017) provided the first detailed study of the occurrence of in-source 

phytate fragmentation during electrospray ionisation. In their study, source voltage was 

similarly varied, and it was found that the degree of fragmentation increased at more 

negative source voltage between -1.6 and -3.6kV, with a fall in the relative abundance 

of the IP6 ion accompanied by an increase in fragment ions with coincidental m/z ratios 

with IP5 and IP4. Their results contrast the findings of the present study, where 

fragmentation was instead found to decrease with more negative source voltage. This 

suggests that phytate fragmentation patterns in ESI are not easily predicted with regards 

to the source voltage, and are affected by potentially multiple additional factors that 

might include the carrier solvent, salt species and concentrations, and instrumental 

variations.  

2.4.4 Cone Voltage 

The sampling cone is the orifice which a portion of the gaseous ionised analyte passes 

through into the mass analyser (Fenn et al., 1989). The cone voltage is the difference in 

electrical potential between the sampling cone and the extraction cone, and can be used 

to control the internal energy of the gaseous ions (Yan et al., 2003). The potential 

difference is necessary in order to direct ions into the detector vacuum to achieve 

sufficient ion transport to the detector. However, high cone voltage can induce 

significant in-source fragmentation as it increases the internal energy of the ions, 

resulting in an increase in energetic collisions with neutral molecules in the nitrogen 

carrier gas (Yan et al., 2003; Waters, 2015).  
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In the previous assessment of the effect of source voltage and analyte concentration, 

cone voltage was set relatively low by default to 30V in order to maintain the flow of 

ions from the ion source to the vacuum of the mass analyser whilst minimising the 

potential for energetic collisions. To assess whether the fragmentation of phytate could 

be improved by reducing the cone voltage, the ESI-ToF-MS analysis of 0.5mM sodium 

phytate was repeated over a range of source voltages, with cone voltage reduced from 

30V to 20V (Figure 2.7 A). Data was not collected at a cone voltage of 10V as there was 

a large drop in sensitivity. Interestingly, a similar pattern of increased fragmentation at 

less negative source voltages was observed, but the severity of the fragmentation was 

greatly reduced, with IP6 present in the spectra even at the lowest applied source 

voltage. A sharp proportional increase in IP6 was found between -1.9kV and -2.1kV, with 

IP6 becoming the most abundant ion in the spectrum (Figure 2.7 B). The proportional 

prevalence of IP4 and IP3 simultaneously fell from -1.5kV to -2.9kV, followed by an 

increase. At this cone voltage, the optimal source voltage was found to be -2.9kV as the 

proportional abundance of both IP3 and IP4 was lowest relative to IP6. The mass 

spectrum for 20V cone voltage and -2.9kV source voltage is presented in Figure 2.8, with 

major peaks listed in Table 2.2. This was the optimal source voltage when a cone voltage 

of 20V was used, and in this spectrum the IP6 ion and its sodium adducts are present as 

predominantly doubly deprotonated ions [M-2H]2-, whereas fragment ions are singly 

charged (eg. [M-2H-(PO3
-)]-). Cooper et al., (2006) originally identified cone voltage as a 

significant factor affecting phytate fragmentation. In their study, a mixture of each 

inositol phosphate (IP1-IP6) was analysed at a low cone voltage of 20V, and a high 

voltage of 60V. At 60V, they found that all IPs were fragmented to a significant extent, 

but at 20V, the overall intensity of ions was increased, with a pattern of increasing 

fragmentation with greater phosphorylation. Although the present optimisation was 

only performed on fully phosphorylated phytate rather than a mixture of IPs, the 

reduction of cone voltage in this analysis has reduced the occurrence of phytate 

fragmentation, yielding a much greater proportion of the IP6 molecular ion than at 30V. 

This result is logical, as a reduction in cone voltage reduces the internal energy of ions 

as they are propelled into the cone orifice, reducing the collision energy between ions 

and carrier gas molecules (Yan et al., 2003).  
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Figure 2.7: The effect of source voltage on fragmentation of 0.5mM sodium phytate 
solution following optimization of sampling cone voltage to 20V. A: Mean absolute ion 
intensity at each source voltage; B: Intensity of IP ions relative to the most abundant. 

A 

B 
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Overall, these results shows that the fragmentation of phytate in electrospray ionisation 

is affected by both source voltage and cone voltage, with the greatest reduction in 

fragmentation achieved by reducing the cone voltage, thus reducing the frequency of 

dissociative collisions within the gas phase between charged ions and the nitrogen 

carrier gas. The differences observed between this work and that of McIntyre et al., 

(2017) for the effect of source voltage, and Cooper et al., (2006) for the effect of cone 

voltage, suggest that the fragmentation of phytate is highly variable and may be a 

function of many emergent factors unique to each experiment and the apparatus 

employed for its analysis.  

At both the optimal cone voltage and source voltage identified in this system, whilst it 

was not possible to eliminate fragmentation, it was possible to dramatically reduce it. 

However, the continued presence of fragment ions that have coincidental m/z ratios 

with true hydrolysed inositol phosphates means that their quantitative measurement in 

solution is unlikely to be achieved by ESI-ToF-MS without their prior chromatographic 

separation and purification. 

2.4.5 Application of ESI-ToF-MS to the analysis of the enzymatic dephosphorylation of 

phytate 

An objective of this chapter was to test the ability of ESI-ToF-MS to analyse the 

dephosphorylation of phytate in real-time as true dephosphorylated IPs are generated 

by enzymatic hydrolysis. An analytical process was designed in which the molecular 

composition of the reaction between 0.5mM sodium phytate and 2FTU mL-1 phytase 

enzyme could be analysed in real-time. Upon addition of phytate to the phytase 

solution, the reaction mixture was drawn into the internal syringe of the mass 

spectrometer and was pumped continuously into the ESI source for mass spectrometric 

analysis. There was a small amount of day-to-day variation in optimisation settings, so 

minor optimisation procedures were carried out prior to each analysis. With the cone 

voltage set to 20V, a slightly more negative source voltage of -3.1kV was found to 

produce the least fragmentation on the day of the reaction, so was used for each 

analysis. A total of three 22-minute replicate reactions were run, amassing a total of 

1320 scans for each, and from the resulting data set a mean trace for each IP was  
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calculated by summing the peaks for each along with their respective sodium adducts 

over each scan. The data from sets of ten consecutive scans were then averaged to 

increase signal:noise ratios. A composite figure tracing the abundance of each IP over 

time was then produced by calculating an average from the three reactions (Figure 2.9). 

Standard error of the mean is presented separately for each IP in Figure 2.10. As much 

of the reaction occurs within the first two minutes of analysis, the reaction is presented 

on a log2 time scale for clarity. Due to the time taken for the reaction solution to reach 

the ESI source, and the initial very low signal:noise upon initial ionisation, the reaction 

is presented from 0.7 minutes (42 seconds). 

Figure 2.9 shows the pattern of dephosphorylation of phytate measured in real-time by 

ESI-ToF-MS. Initially IP6 is the most prevalent ion in solution, along with substantial 

amounts of IP5 and IP4. Levels of IP6 and IP5 fall rapidly within the first 90 seconds of 

the reaction, accompanied by a rise in IP4 and IP3 to peaks at 1.14 minutes (68s). From 

this peak, IP4 falls to near zero by approximately 6 minutes. IP3 levels also fall, but at a 

slower rate than IP4 until IP4 levels are low at 4 minutes, at which point the rate of IP3 

decline increases until it reaches near-zero at 8 minutes. IP2 levels remain stable from 

the beginning of the reaction, beginning to steadily rise as IP3 levels fall from 3 minutes, 

reaching a peak at approximately 9 minutes. IP1 levels remain near-zero until 

approximately 8 minutes when IP2 is the predominant IP remaining in the reaction. IP1 

becomes the predominant IP in the reaction at approximately 13 minutes. IP2 levels 

continue to fall over the remainder of the analysis time, but IP2 is still present in solution 

at 22 minutes. 

This analysis provides valuable qualitative information about the reaction, highlighting 

that the rate of dephosphorylation by the phytase enzyme is initially rapid for IP6 and 

IP5, but decreases for each of the remaining IPs, with a likely final product of IP1. No 

evidence was found for the existence of fully dephosphorylated myo-inositol (IP0) in the 

spectra. However, a quantitative interpretation of the reaction from this figure may be 

misleading, owing to the fragmentation of IP6 at the beginning of the reaction. As the 

fragment ions produced by the dissociation of [PO3]- have a coincidental m/z ratio with 

the true products of enzymatic hydrolysis, it is not possible to distinguish between the 

two, and therefore it is not possible to account for the proportion of each IP trace that 



Chapter 2: Phytate analysis by ESI-ToF-MS 

 

52 
 

is generated by in-source fragmentation. Furthermore, there is a distinct decrease in the 

overall ion intensity throughout the reaction, which could be interpreted as lower 

concentrations of the lower IPs than the initial IPs at the beginning of the reaction. 

However, as the initial reaction solution taken into the internal syringe pump is a fixed 

volume and the infusion rate is constant throughout, there should be no change in the 

total ion intensity throughout the reaction, despite changes in the composition of the 

reaction mixture. This suggests that the ionisation efficiency within ESI declines as IPs 

Figure 2.10: Mean intensity ± SEM for each separate inositol phosphate during the 
reaction between 0.5mM sodium phytate and 2FTU mL-1 RONOZYME HiPhos phytase 
(n=3). 

IP6 

IP4 

IP2 IP1 
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become increasingly dephosphorylated. Each dephosphorylated IP is likely to be 

optimally ionised at different source voltages, so within the optimised reaction 

conditions of 3.1kV source voltage and 20V cone voltage, the ionisation efficiency of IP6 

and IP5 is high, but this decreases with each further dephosphorylation as the conditions 

are sub-optimal for ionisation of the different IPs. The consequence of this is that the 

analytical conditions are not optimal for the quantification of all IPs in a single analysis.  

2.5 Conclusions 

In this chapter, it was demonstrated that the sensitivity and resolution of 31P NMR is not 

sufficient for the determination of phytate or its dephosphorylated esters when they 

are present at low concentrations. ESI-ToF-MS is able to resolve phytate and all of its 

dephosphorylated esters, even at low concentrations. However, a significant amount of 

in-source fragmentation of phytate was encountered during electrospray ionisation, 

which produced a spectrum with fragment ions that have coincidental m/z ratios with 

lower IPs. This fragmentation could be reduced by reducing cone voltage, and increasing 

source voltage, but could not be eliminated. Via the generation of lower IPs by the 

enzymatic dephosphorylation of phytate, it was shown that it is not possible to quantify 

all IPs in a mixture, for two reasons. Firstly, there is no way to determine the amount of 

lower IP esters that are present in a sample as it is not possible to determine the 

proportion of that signal that has been erroneously generated by fragmentation. 

Secondly, the ionisation efficiency of each IP ester seems to vary, demonstrated by the 

successive loss of ion intensity through the reaction.  

This evidence suggests that the simultaneous quantification of all IP esters within a 

single sample is not possible by ESI-ToF-MS. A potential alternative approach would be 

to separate the esters chromatographically, prior to detection by ESI-ToF-MS. If 

complete separation was achieved, then any peaks occurring within the spectra at 

coincidental m/z ratios with lower IPs could be confirmed as fragment ions. In a recent 

paper, McIntyre et al., (2019) described the development of a method for the 

quantification of phytate in manure and soil samples. They achieved separation of IP6 

from IP5 and contaminants within the extractant solution by ion chromatography, and 

analysed eluate for the IP6 peak by ESI high resolution mass spectrometry. 
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Quantification of phytate by this method was well correlated with results by 31P NMR 

but achieved a much-improved limit of detection, at 0.7mg kg-1 compared to >10mg kg-

1 by 31P NMR. This paper also suggests that chromatographic separation prior to IP 

analysis is necessary for the removal of contaminants from the extracts samples that 

interfere with ESI. However, the above work does not attempt to quantify lower inositol 

phosphates, and they are not identified in the chromatographic separation. In order to 

successfully quantify lower IPs, a method that achieved clear separation of each IP 

would be necessary, and further, the ionisation conditions within the mass 

spectrometer would need to be optimised separately for each fraction. 

For these reasons, it was concluded that quantitative analysis of lower IPs is unlikely to 

be achievable in the complex environmental samples that are to be analysed in this 

thesis. Building upon a successful method developed within the lab for the analysis of P 

compounds in soil (Robertson, 2018), 31P NMR will be used for the analyses undertaken 

in subsequent chapters. Despite the recognised limitations of 31P NMR, it remains the 

most powerful technique for the analysis of phytate and other organic phosphates in 

environmental samples, and using this method, the results generated will be 

comparable with the majority of work in the wider field. 
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3: Analysis of phytate through an advanced 

anaerobic sludge treatment process 

 

3.1 Summary 

Like other monogastric animals, humans lack the production of endogenous phytase 

enzymes in our guts, meaning that we are unable to efficiently digest the phytate found 

in grains in our diets. Therefore, there is likely to be a high concentration of phytate 

entering the sludge treatment process in human excreta. Nearly 80% of digested sludge 

in the UK is spread on arable land, which returns valuable nutrients and organic matter 

to the soil. However, plants can only absorb P in its inorganic orthophosphate form, and 

there is evidence to suggest that due to the high charge density of phytate, it can 

become strongly adsorbed to the soil and preferentially accumulates as it is afforded a 

level of protection from microbial degradation. If phytate is abundant in the digested 

sludge that is applied to land, this would therefore represent a potential waste of 

valuable phytate-P. 

Few studies have analysed the behaviour of phytate through the sludge treatment 

process, and there is conflicting evidence regarding the survival of P other than 

orthophosphate in anaerobic digestion. In this chapter, sludge samples from five stages 

throughout an advanced anaerobic sludge treatment process are analysed for total P, 

orthophosphate and phytate by both colorimetric methods, and solution 31P NMR.  

Total P concentration is found to increase through the process, reaching its greatest 

concentration following anaerobic digestion. Sludges are dominated by orthophosphate 

throughout, making up approximately 80% of extractable P. Phytate is found to be 

present in sludge, but at a relatively low proportion of approximately 4.5%. However, 

phytate does persist through the various stages of the treatment process, and is present 

in the final product, cake, which is spread to land.  
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3.2 Introduction 

Global phosphate fertilizer demand for 2019 is forecast to stand at 45 million tonnes, 

with demand increasing annually by 2.2% between 2015 and 2020 (FAO, 2017). With the 

finite nature of phosphate rock sources widely recognised, and the possibility of a peak 

in phosphate production forecast within the next century (Cordell & White, 2014), it is 

essential for future global food production that alternative sources of P can be identified 

and adopted.  

Municipal wastewater streams provide one such opportunity for resource recovery and 

reuse. Wastewater is rich in P , with an average typical P load of 1.5-2g per person 

entering the wastewater stream daily in Europe via inputs from human excreta, food 

residues and industrial outputs (Egle et al., 2015). The primary purpose of wastewater 

treatment is the removal of contaminants to produce water clean enough to be 

discharged to watercourses, whilst safeguarding both human and environmental health 

(DEFRA, 2012). This translates to a wide variety of processes that are designed to remove 

organic matter, pathogens, nutrients, chemicals and metals that are detrimental to both 

humans and the natural environment (Appels et al., 2008). The impacts of untreated 

wastewater entering the environment can range from hypoxia/anoxia and 

eutrophication of waterways due to the aerobic break down of organic matter and 

unnaturally elevated levels of nitrogen and P, through to health risks posed by 

pathogens such as Escherichia coli. In many countries a secondary purpose to 

wastewater treatment is evolving, as it is now commonly seen as a key intervention 

point for the recovery and recycling of valuable nutrient resources. 

3.2.1 Wastewater treatment in the UK 

A simplified wastewater treatment is depicted in Figure 3.1. The process begins with the 

inflow of raw wastewater from industry and households to a wastewater treatment 

plant (WWTP). Wastewater at the inlet stage is first screened for large debris that would 

not be readily degraded in the process, and sand and grit is settled out. Water then 

moves to primary settlement, in which organic solids sink to form a sludge layer and fats 

and oils float to the top. The middle layer of sewage water is then siphoned off to a 

secondary treatment stage. Secondary treatment effectively carries out the natural  
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aerobic breakdown of organic matter and contaminants in an artificially aerated and 

controlled process, rather than in water bodies where it may contribute to hypoxia and 

eutrophication. Organic debris settles out at this stage, after which the treated water is 

generally considered acceptable and is returned to a water body (Gerardi, 2003). In 

some instances, tertiary treatments are required, particularly in waste streams with 

specific pollutants, or if the effluent is to be discharged into an environment that is 

particularly sensitive. A consequence of both primary and secondary water treatment is 

the generation of large volumes of residual organic matter, or sewage sludge. Before 

the introduction of the EU Urban Waste Water Treatment Directive in January 1999, 

much of the sludge produced in the UK was dumped at sea, or sent to landfill (Table 3.1), 

but since 1999, sea disposal has ceased, landfill rates have decreased and the reuse of 

sludge by agriculture has increased from 440,000 tonnes per year in 1992 to 1,118,000 

tonnes per year in 2010 (DEFRA, 2012).  

Sludge generated by primary and secondary wastewater treatment is generally treated 

prior to its use in agriculture to reduce its volume and create a product that is free of 

pathogens such as E. coli and Salmonella spp. In the UK, sludge treatment predominantly 

involves anaerobic digestion, with 73% of sludge currently treated in this way. 

Alternative aerobic techniques include composting, thermal drying, or lime stabilisation, 

in which lime (CaO) is added to liquid sludge to produce an exothermic reaction which 

both dries and pasteurises the sludge (Haynes et al., 2009).  

3.2.2 Anaerobic digestion (AD) of sludge 

AD is seen as an optimal treatment technique for sludge due to its ability to transform 

organic matter into methane-rich biogas, simultaneously reducing the volume of 

biosolids by 30-50%, destroying pathogens and reducing the environmental and 

Table 3.1: UK sewage sludge disposal 1992-2010 (tonnes dry solids; from DEFRA, 2012) 

Disposal 
Route 

Sludge 
to Sea 

Sludge Reuse Sludge Disposal Total 

Agriculture Other Landfill Incineration Other 

1992 281,588 440,137 32,100 129,748 89,800 24,300 997,673 

2008 - 1,241,639 90,845 10,882 185,890 1,523 1,530,779 

2010 - 1,118,159 23,385 8,787 259,642 2,863 1,412,836 
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operational costs of sludge disposal (Gebreeyessus & Jenicek, 2016). Biogas can be used 

to fulfil the energy requirements of the process, and in larger plants can also contribute 

to national energy supplies (Appels et al., 2008).  

Sludges from primary and secondary settlement are often combined before being 

dewatered, with the excess separated water returned to the inlet stage of the treatment 

process (Figure 3.1). AD requires tightly controlled anaerobic conditions and depends 

on a complex and delicate association between certain groups of microorganisms to 

convert organic matter into CO2 and CH4 (Gerardi, 2003). The AD process begins with 

the hydrolysis of insoluble organic material and high molecular weight lipids, proteins, 

polysaccharides and nucleic acids into soluble constituents, which are further degraded 

by acidogenic bacteria to produce volatile acids and alcohols, ammonia, CO2 and H2S. 

Organic acids and alcohols produced at this stage are then subject to acetogenesis, 

producing acetic acid, as well as CO2 and H2. The final stage, methanogenesis, is 

performed by two groups of methanogenic bacteria, producing methane either by the 

splitting of acetate, or the reduction of CO2 by H2 (Appels et al., 2008; Gerardi, 2003).  

AD can be operated at both mesophilic temperatures (30-38°C) or thermophilic 

temperatures (50-57°C), with mesophilic AD most commonly used (Gerardi, 2003; 

Appels et al., 2008). Thermophilic AD is a quicker process than mesophilic digestion due 

to increased rates of reaction and produces fewer solid outputs and greater destruction 

of pathogens. However, as well as a greater energy requirement, it has a greater 

potential for odour production, produces a poor quality supernatant with higher 

dissolved solids, and is a much less stable process, with thermophilic bacteria much 

more sensitive to fluctuations in temperature than mesophilic bacteria (Appels et al., 

2008). Despite the clear advantages presented by AD, there are some drawbacks to the 

process that can include insufficient decomposition of sludge, long retention times 

necessitating the use of large volume tanks, the vulnerability of the process to changes 

to conditions and inhibitors, impurities in the biogas produced, and the increased 

concentration of indigestible products in the final digestate (heavy metals, industrial 

organics, pharmaceuticals) due to the reduced volume of the digestate (Appels et al., 

2008).  
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3.2.3 Sludge pre-treatment 

Hydrolysis of the influent is commonly recognised as the rate-limiting step in AD (Li & 

Noike, 1992; Vavilin et al., 2008). During hydrolysis, cell walls are broken down to release 

organic constituents for acidogenesis, but cells are relatively unfavourable substrates 

for microbial degradation and are slowly degraded (Appels et al., 2008). In order to 

reduce AD solid retention times and increase the conversion of organic solids to 

methane, many processes are moving to ‘advanced’ AD, which incorporates a form of 

pre-treatment of the AD influent to hydrolyse cellular structures within the sludge, 

effectively bypassing the rate-limiting hydrolysis step (Figure 3.1; Carrère et al., 2010; 

Appels et al., 2008). Many different forms of pre-treatment exist, and include biological, 

mechanical, chemical and thermal processes that aim to enhance the hydrolysis process 

to complement AD. Of these processes, thermal hydrolysis is favoured due to its 

efficiency in sludge solubilisation and the resulting improvement of methane yield 

(Bougrier et al., 2008; Kim et al., 2003), and it has since become widely used, with many 

commercial thermal hydrolysis plants (THPs) currently in operation in the UK, including 

Cambi THP (Kepp et al., 2000) and BioTHELYS® (Veolia Water Technologies, 2015) which 

claims to produce 30-50% more biogas and 20-35% less dry solid waste than 

conventional digestion. Treatment temperatures of between 160-180°C are maintained 

by hot steam injection over a period of 30-60 minutes under pressures ranging from 

600-2500kPa (Carrère et al., 2010; Bougrier et al., 2008) and these conditions have the 

additional advantage of effectively pasteurising sludge prior to AD.  

3.2.4 Sludge phosphorus recovery and reuse  

Municipal wastewater in central Europe contains a P load that could, if fully recovered 

and recycled, replace 40-50% of the annually applied rock-phosphate derived P 

fertilizers (Egle et al., 2016). Many technologies exist for P recovery, but these are often 

targeted at different P-containing flows (i.e effluent, anaerobic digester supernatant, 

digested sludge, and ash from incinerated sludge), and various treatments are favoured 

in different countries according to policy and regulations.  

Anaerobically digested sewage sludge contains high levels of P and other nutrients. 

Various techniques are used to deal with the large amounts of sludge produced 
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depending on the priorities of the plant and government regulations. Some WWTPs opt 

for incineration, which yields further energy while destroying all pathogens and organic 

matter, greatly reducing the mass of the end product. However, P contained in sewage 

sludge ash is poorly available for uptake by plants and must be processed much in the 

same way as phosphate rock ore, but can yield a high quality P fertiliser with the added 

advantage of low heavy metal content once it has been processed (Egle et al., 2015). 

Alternatively, sewage sludge can be directly applied to agricultural land, where it is 

incorporated into the soil to provide nutrients and organic matter that can have positive 

benefits for soil health. In the UK, since the ban on dumping of sludge at sea, and 

discouragement of landfill disposal, this has become the most popular route for sewage 

sludge disposal (Table 3.1; DEFRA, 2012). However,  despite its widespread use in the 

UK, the application of sludge to agricultural land is strictly controlled according to the 

1989 UK ‘Sludge (Use in Agriculture)’ regulations, and the ADAS ‘Safe Sludge Matrix’ 

guidance in order to ensure high standards of food safety and livestock welfare (BRC et 

al., 2001). For example, it is stated that untreated sludge must not be spread on 

agricultural land used for food production. Treated sludge can be applied to land 

growing cereal crops, and may be spread on land growing vegetable crops, provided that 

12 months has elapsed between sludge application and harvest. For salads that are 

eaten raw, this elapsed time is extended to 30 months. Furthermore, treated sludge may 

not be spread on grazed grassland, but may be used provided that it is injected deep 

into the soil at a minimum of three weeks prior to grazing (BRC et al., 2001). 

The fate of P compounds in digested sludge is likely dependent on many factors, 

including the source of the wastewater (domestic/agricultural/industrial), digestion 

processes, and subsequent P recovery treatments. Phytate-P makes up the majority of 

P in grain, and is therefore abundant in human diets (Raboy, 2003). However, phytate 

cannot be directly absorbed and is not efficiently digested in the human gut, so a 

significant proportion passes through into excreta, with Joung et al., (2007) reporting 

faecal phytate-P concentrations between 4 – 11mg g-1, equivalent to 24-54% of faecal 

phosphorus. This leads to the assumption that phytate should therefore be abundant in 

sludge, comprising a significant fraction of the total P in untreated sewage solids.  
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The fact that some papers have noted the persistence of phytate in the sludge effluent 

after AD (Smith et al., 2006; Annaheim et al., 2015) is important when considering that 

this sludge is often applied to agricultural soils. Phytate-P is not available for uptake by 

plants without prior dephosphorylation by phytase enzymes, but its high charge density 

means that it can become rapidly immobilised in soil via the formation of insoluble 

precipitates with metal cations, or interaction with the organic and clay fractions (Giles 

et al., 2011). This means that if phytate survives the wastewater treatment process 

intact and in abundance, a significant fraction of sludge P could be lost to the soil, 

potentially accumulating rather than being bioavailable for crops as would be intended. 

However, a recent paper observed the mineralisation of all orthophosphate monoesters 

during anaerobic digestion, with inorganic orthophosphate the only P compound 

present in 31P NMR spectra of digested sludge extracts (Li et al., 2019). Despite phytate 

not being specifically measured in this study, it may indicate its mineralisation during 

AD. Furthermore, there are currently no papers that have measured phytate 

concentrations in WWTP processes that include a modern hydrolytic step. This is 

potentially important, as cell lysis could release phytate into the digester solution, where 

it would be more bioavailable for microbial degradation in AD, should there be a 

resident phytase-producing microbial population. 

3.2.5 Aims and Objectives 

The aim of this chapter therefore was to confirm the presence, abundance and 

persistence of phytate in sludge throughout an advanced anaerobic sludge treatment 

process through to the final cake destined for land application. Sludge total phosphorus 

concentration (PT), and concentrations and proportions of orthophosphate-P and 

phytate-P in sludge extracts were measured at five consecutive stages in the treatment 

process. Solution 31P NMR was used to measure orthophosphate-P and phytate-P, and 

data was compared to colorimetric measurements of identical samples using a phytase 

enzyme assay in order to assess the suitability of this less-expensive and higher-

throughput method for future samples.  

It was hypothesised that sludge PT would be lowest in the primary sludge, increasing 

with the addition of secondary sludge, and peaking following anaerobic digestion due to 
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the inherent reduction in sludge mass. Orthophosphate was expected be the dominant 

P-fraction in all sludges, with phytate making up a smaller but significant fraction. There 

was expected to be good agreement between 31P NMR and colorimetric data, but the 

measurement of phytase-labile P could overestimate phytate due to the broad substrate 

specificity of the enzyme.  

Phytate was hypothesized to persist throughout the treatment process due to its lower 

bioavailability compared to orthophosphate, with little variation in its concentration and 

was expected to be present as a small (~10%) fraction of total extractable P in the final 

dewatered sludge. 
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3.3 Methods 

3.3.1 Wastewater treatment plant (WWTP) & Sampling 

Sludge samples were obtained from Esholt wastewater treatment plant near Bradford, 

UK. A schematic of the Esholt wastewater treatment process with sampling points is 

presented in Figure 3.2. The plant is owned and operated by Yorkshire Water Ltd, serving 

a population equivalent of 750,000 (350,000 people, and an equivalent of 400,000 

designated to industry), and imports both liquid sludge and cake to the site (ratio 

imported:indigenous 34:66). The final sludge mixture following addition of secondary 

sludge comprises 70% primary sludge and 30% secondary sludge. The plant handles a 

maximum of 82 tonnes of dry-solid throughput per day, employing advanced AD with a 

BioThelys thermal hydrolysis plant (THP) supplied by Veolia Water Technologies. Within 

the THP, sludge is heated to 165°C at 6 bar pressure for 20 minutes, prior to introduction 

to digesters, in which mesophilic AD is carried out with a solid retention time of 11 days. 

There are currently no P removal or recovery techniques employed at the plant, 

(Personal communication, Yorkshire Water, 2019). Sludge was sampled on a single day 

in March 2019 at five successive points in the treatment process (Figure 3.2). These were 

primary sludge (PS), secondary sludge/THP feed (SS), digester feed (DF) digested sludge 

(DS), and dewatered cake (CK; Figure 3.2). At each sample point, a single 5L bucket of 

sludge was taken, transported to the University of Sheffield and refrigerated until use. 

3.3.2 Sample Processing 

A summary of the sample preparation and analysis procedures can be found in Figure 

3.3. All samples apart from CK were in liquid form and had to be largely dewatered in 

the lab. Due to the high solids content of the samples, filtration was not a viable option 

for solid separation. Samples were instead split into 50mL falcon tubes and centrifuged 

at 4,700 x g for 5 minutes. Supernatant was discarded and solid material was removed 

and spread into large plastic weighing boats. Solid samples were then left to air dry for 

2 days in a fume cupboard. Once dry, samples were broken up and ground. The fibrous 

and tacky nature of the samples meant that ball milling was not an adequate 

homogenisation method. Instead, coarsely ground samples were subsequently frozen  



Chapter 3: Phytate in Sludge 

 

65 
 

  

Fi
gu

re
 3

.2
: S

ch
em

at
ic

 o
f 

th
e 

w
as

te
w

at
er

 t
re

at
m

en
t 

p
ro

ce
ss

 a
t 

Es
h

o
lt

 W
W

TP
 n

ea
r 

B
ra

d
fo

rd
, U

K
. C

ir
cl

es
 s

h
o

w
 p

o
in

ts
 a

t 
w

h
ic

h
 s

am
p

le
s 

w
er

e 
ta

ke
n

 t
h

ro
u

gh
 

th
e 

p
ro

ce
ss

, f
ro

m
 P

ri
m

ar
y 

Sl
u

d
ge

 (
P

S)
, S

ec
o

n
d

ar
y 

Sl
u

d
ge

 (
SS

),
 D

ig
es

te
r 

Fe
ed

 (
D

F)
, D

ig
es

te
d

 S
lu

d
ge

 (
D

S)
, a

n
d

 f
in

al
 d

ew
at

er
ed

 C
ak

e
 (

C
K

).
 



Chapter 3: Phytate in Sludge 

 

66 
 

under liquid nitrogen and homogenised with a pestle & mortar to pass a 2mm sieve. 

Homogenised samples were stored in 50mL falcon tubes at 5°C prior to use.  

For each sampling point, three 1g replicates of each sludge were extracted in 50mL 

falcon tubes with 20mL 0.25M NaOH + 0.05M EDTA for 16 hours in an end-over-end 

shaker. Extracted samples were centrifuged for 10 minutes at 4700 x g, and the 

supernatant filtered through Whatman No. 1 filter paper into fresh tubes. These were 

then frozen at -80°C before lyophilisation with an Edwards Modulyo Freeze Dryer. 

Lyophilised extracts were re-ground with a pestle and mortar, weighed, and stored at 

5°C.  

 

Figure 3.3: A schematic diagram of the methods used to determine Total P, 
Orthophosphate P and Phytate-P in sludge and extracts 
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3.3.3 Colorimetric Analyses 

3.3.3.1 Sludge & Sludge Extract Total P (PT) – PT of sludge and 0.25M NaOH + 0.05M 

EDTA extracts were measured colorimetrically following a modified version of the acid-

peroxide digestion protocol devised by Lindner, (1944). Three 20mg replicates of each 

dried sludge, and one 20mg replicate of each sludge extract were weighed into acid-

washed digest tubes. Samples were then subject to acid-peroxide digestion and were 

subsequently measured for PT by a modified version of the molybdate blue reaction 

(Murphy & Riley, 1962). 50mg samples were digested in 1mL concentrated H2SO4 for 30 

minutes at 350°C under reflux. Tubes were then cooled and 0.2mL 30% H2O2 added to 

the tube, which were uncapped and returned to 350°C. Samples were heated until 

vapour production ceased, after which they were removed from the heat. H2O2 addition 

was repeated if necessary, before samples were left open overnight to cool. Digests 

were then diluted to 10mL with UHP water, transferred to 15mL falcon tubes and 

centrifuged for 5 minutes at 4700 x g. PT was measured by the addition of the following 

to a 4mL cuvette: 0.5mL digest, 0.2mL 0.1M L-ascorbic acid, 0.5mL developer 

(ammonium molybdate antimony potassium tartrate in 2M H2SO4), 0.5mL 3.44M NaOH, 

and 2.1mL UHP water. Colour was left to develop for 40 minutes and absorbance 

measured at 882nm on a Cecil CE 1020 spectrophotometer. 

3.3.3.2 Colorimetric determination of extract MRP & phytase-labile P – A bespoke 

method was designed in order to measure extract MRP and phytase-labile P based upon 

similar enzymatic quantification procedures (He et al., 2009; Menezes-Blackburn et al., 

2014). 10mg samples of extracted sludge were resuspended in 10mL of 0.1M acetate 

buffer (pH 4.5). Each suspension was then split into two 5mL aliquots, to which was 

added 1mL of either 10 FTU mL-1 phytase enzyme, or 1mL of 10 FTU mL-1 denatured 

phytase enzyme that had been autoclaved in a Prestige 2100 Benchtop Autoclave with 

an 11min hold cycle at 121°C at 15 psi, then centrifuged for 5 minutes at 4,500 x g to 

remove precipitated protein. Mixtures were incubated at 37°C with shaking for 24 

hours, before molybdate-reactive P (MRP) was measured by molybdate colorimetry. 

Extract PI was estimated as MRP of the suspension treated with denatured enzyme. 

Phytase-labile P was calculated as the difference in MRP between phytase- and 

denatured phytase-treated suspensions. Each colorimetric sample was measured 
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against an identical sample in which colour development was prevented by replacing 

100µL 0.1M L-ascorbic acid with 100uL UHP. Absorbance of this blank sample was 

subtracted from primary sample absorbance to account for the colour of the 

resuspended extract. 

3.3.4 Solution 31P NMR 

Solution 31P NMR was carried out according to the method developed by Robertson, 

(2018) according to the recommendations of Cade-Menun & Liu, (2014), for the 

quantitative analysis P compounds in soil samples. This method was adapted for use 

with sludge samples containing comparatively high P concentrations, and optimisation 

of the method was validated with a spike-recovery procedure. 

3.3.4.1 Sample preparation – For solution 31P NMR spectroscopy of 0.25M NaOH + 

0.05M EDTA extracts of sewage sludge, 50mg of lyophilised extract was resuspended in 

1mL of 1M NaOH + 0.1M EDTA. Due to the high P concentration of sludge extracts, and 

viscosity of the concentrated sample, 0.2mL of this resuspension was then added to a 

1.5mL Eppendorf tube and diluted to 1mL with 0.7mL 1M NaOH + 0.1M EDTA and 0.1mL 

of 4mM methylene diphosphonate (MDP; internal standard) in D2O for signal lock. Tubes 

were vortex mixed and left to settle for 5 minutes, before centrifuging at 9000rpm for 5 

minutes. 0.5mL of the preparation was transferred to a 5mm NMR tube. 

3.3.4.2 31P NMR parameters – 31P NMR spectroscopy was performed on a Bruker 

Advance 500 Spectrometer with a mag1 console (Bruker, Germany). CK samples and 

spiked samples were analysed following an upgrade of the NMR mag1 console to an AvII 

console. This increased sensitivity and signal:noise ratio within spectra, but integration 

was not affected, and data were comparable. Spectra were recorded at a frequency of 

202.456 MHz with a 5mm broadband probe at a temperature of 298 K (24.85°C). 10% 

D2O was included in all samples as a signal lock. During each sample analysis, the 

following parameters were unchanged: acquisition time = 0.845s; pulse width of 22μs; 

pulse angle 90°; delay time = 1s; total number of scans = 16,384; pulse program = zgig. 

Peak areas of signals were integrated using Bruker Topspin 4.0.3, and calibrated to the 

peak area of the MDP internal standard for absolute quantification. Calculation of 

orthophosphate and phytate concentrations was achieved by integration of their peaks 
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at 6.0 - 5.6 ppm and 4.78 - 4.68ppm respectively, relative to the peak of the MDP internal 

standard at 17.19 - 16.92ppm, followed by correction to account for the proportion of 

signal observed for each compound at 1s relaxation delay. For phytate, the second peak 

was used for integration as this was the most clearly defined peak and was well 

separated from the orthophosphate peak. This peak accounts for 2 of the 6 P nuclei 

within the molecule, so the integral was multiplied by three. 

3.3.4.3 31P NMR Optimisation - An optimisation procedure was carried out for sludge 

extract samples to provide a correction factor for integrals due to the insufficient but 

necessary relaxation delay time of 1s, and the method was validated with a spike-

recovery assay. 

As the delay time of 1s is insufficient to allow full relaxation of P compounds between 

scans, an optimisation procedure was carried out prior to integration in which delay time 

was increased. Sludge samples were analysed according to the parameters described 

above, but over 100 scans. In a series of seven analyses, delay time was set to 1, 2, 5, 

10, 20, 30 and 40s. Integrals for each compound were plotted over increasing delay time 

to calculate the proportion of the signal produced with a delay time of 1s compared to 

the signal produced when nuclei are allowed to fully relax.  

Spike & Recovery – Following sample analysis, three sludge sample extracts were 

selected, and spiked with 10uL of 7.25mM (0.0725 µmol) sodium dihydrogen 

orthophosphate, and 5uL of 15mM (0.45 µmol) phytic acid sodium salt dihydrate. Spiked 

samples originated from the original resuspensions and were analysed following the 

same 31P NMR parameters to be directly comparable. Recovery of spiked compounds 

was calculated as the observed increase in concentration above un-spiked values, 

divided by the expected increase. The three replicates of CK sludges were spiked, as un-

spiked samples for these sludges were also recorded after the machine console was 

updated, meaning that the analysis would be directly comparable. 

3.3.5 Statistical Analysis 

Concentrations of PT, along with orthophosphate-P and phytate-P measured by both 

colorimetry and 31P NMR were compared between sludge samples using one-way 

ANOVA. Absolute concentrations of orthophosphate and phytate-P were also converted 



Chapter 3: Phytate in Sludge 

 

70 
 

to percentage contribution to total extracted P. Percentage contributions were 

compared between sludge samples by one-way ANOVA. Where significant differences 

were present, one-way ANOVAs were followed by Tukey multiple comparison tests. 

Statistical analysis was performed using GraphPad Prism v.7.04 (GraphPad Software Inc, 

San Diego USA). 
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3.4 Results 

3.4.1 Total Phosphorus of Sludge 

PT content of sludge was measured by H2SO4-H2O2 digestion, followed by molybdate 

blue colorimetry. There was a statistically significant difference between measured 

total P levels in each of the sludges (One-way ANOVA, p < 0.0001; Tukey multiple 

comparisons test, α=0.05; Figure 3.4). PT of PS was the lowest found throughout the 

process, with an average P content of 8118 µg P g-1 sludge. This increased sharply in 

SS to an average of 15971 µg P g-1 and increased again after THP in the DF sludge to 

18765 µg P g-1. The digested sludge (DS) collected after anaerobic digestion had the 

greatest level of PT at 25997 µg P g-1, which then fell slightly in dewatered cake (CK) 

to a final concentration of 23263 µg P g-1. 

3.4.2 Total Extractable Phosphorus 

Total extractable P was measured by H2SO4-H2O2 digestion, followed by molybdate 

blue colorimetry of the lyophilised 0.25M NaOH + 0.05M EDTA sludge extracts. The 

extraction efficiency of sludge samples was high, with P recovery of between 81-93% 

of sludge PT (Figure 3.5). Total extractable P therefore followed the same pattern of 

P concentration as unextracted sludge (PS < SS < DF < CK < DS). A statistically 

significant difference in P concentration of sludge extracts was observed between all 

sludge types (One-way ANOVA, p < 0.0001; Tukey multiple comparisons test, α=0.05; 

Figure 3.5). 

3.4.3 Colorimetric determination of sludge MRP and phytase-labile P 

Absolute content of P compounds in sludge extracts were measured colorimetrically. 

Orthophosphate-P was estimated as molybdate-reactive P (MRP) in extracts, 

phytase-labile P was calculated as the increase in MRP after phytase incubation. The 

difference between total extractable P and the sum of MRP and phytase-labile P was 

designated as ‘residual P’ (Figure 3.6). There was a significant difference in the 

absolute concentration of MRP between sludges (One-way ANOVA, p<0.0001; Tukey 

multiple comparisons test, α=0.05; Figure 3.6 A ), which made up the largest fraction  
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Figure 3.4: Sludge total phosphorus concentration (µg P g-1 sludge) measured by 
molybdate colorimetry. Samples are represented as individual points (n=3) with 
horizontal bars indicating mean ± SEM. Results of one-way ANOVA are inset. 
Significant differences are represented as different letters above bars (Tukey 
multiple comparison, α = 0.05). 

Figure 3.5: Extract total phosphorus (µg P g-1 sludge) measured by molybdate 
colorimetry. Mean extraction efficiency (%) is presented for each sludge. Samples 
are represented as individual points (n=3) with horizontal bars indicating mean ± 
SEM. Results of one-way ANOVA are inset. Significant differences are represented 
as different letters above bars (Tukey multiple comparison, α = 0.05). 
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Figure 3.6: A: Mean absolute concentrations of P fractions in sludges measured 
colorimetrically (µg P g-1 extracted sludge ± SEM, n=3). Total extractable P is presented 
above each bar. B: Mean concentrations of P fractions in sludges as a proportion of total 
extractable P (% ± SEM, n=3). Results of one-way ANOVA are shown for each P fraction. 
Results of Tukey multiple comparison test for each fraction are shown with means to the 
right of bars (α = 0.05). Different letters indicate a significant difference between values for 
that P fraction. 
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of total extractable P in all samples increasing in the same pattern as total extractable 

P levels (PS < SS < DF < CK < DS). 

The greatest concentration of phytase-labile P was found in SS, and a significant 

decrease was observed in DS and CK sludges following anaerobic digestion (One-way 

ANOVA, p<0.0001; Tukey multiple comparisons test, α=0.05; Figure 3.6 A). No 

significant difference in calculated residual-P was observed between sludges prior to 

digestion. However, a sharp and significant increase was observed following 

anaerobic digestion in DS, which then fell slightly in the final CK sludge (One-way 

ANOVA, p<0.0001; Tukey multiple comparisons test, α=0.05; Figure 3.6A). 

Absolute levels of P were then expressed as a proportion of total extractable P (Figure 

3.6 B). There was no significant difference in proportional levels of MRP, which made 

up approximately 80% of total extractable P in all sludge (One-way ANOVA, p>0.05). 

There was a significant difference in the proportion of phytase-labile P, which is 

greatest in the PS at 12.6% and SS at 8.9%, before falling significantly following THP 

treatment to 3.6% in DF. Following digestion, the proportion of phytase-labile P fell 

slightly to between 1.2-1.5% in DS and CK (One-way ANOVA, p<0.0001; Tukey 

multiple comparison test, α=0.05). There was also a significant difference in the 

proportion of residual-P (One-way ANOVA, p<0.05), which increased slightly from 

6.9-8.9% between PS < SS < DF, before making up 20.2% in DS, then falling slightly to 

16% in CK (Tukey multiple comparison test, α=0.05).  

3.4.4 31P NMR Optimisation 

Prior to the integration of NMR signals in sludge spectra, an optimisation procedure 

was carried out to calculate the proportion of the total signal that is produced using 

a 1s delay time, relative to the maximum signal produced when compounds can relax 

fully at longer delay times. Spiked samples were analysed with 100 scans at delay 

times of 1, 2, 5, 10, 20, 30 and 40s, for each compound, integrals were measured and 

presented as a percentage of the largest measured (Figure 3.7). Methylene 

diphosphonate (MDP) was used as an internal standard to represent a peak of 0.4 

µmol P. In sludge samples, the MDP peak was found to increase to a plateau at a 

delay time of 5s, with the integral observed at 1s found to represent 81% of the fully  
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Figure 3.7: Integrals of 31P NMR peaks relative to the largest of: A. MDP; B. 
Orthophosphate and C: Phytic acid, with increasing delay times. Figures A & B show 
relative integrals for the single peaks produced by each compound, figure C shows the 
mean relative integral of the four phytic acid peaks ± SEM. No error bars are present in 
the maximum integral as each replicate was set to 100. 
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relaxed signal (Figure 3.7A). For phosphate, the increase in integrals was a smooth 

curve reaching plateau by approximately 20s, with the signal at 1s representing 47% 

of the total signal (Figure 3.7B). For phytate, integrals were measured for each of the 

four spectral peaks, which were treated as replicates. The increase in integral area 

appears to reach maximum at 10s, with the 1s signal representing 84% of the total 

expected signal (Figure 3.7C). These percentages were used to adjust the integrals 

measured in each sample spectrum to correct for the loss of signal when using a 1s 

delay time. The method was validated in a spike-recovery assay on CK sludge. 

Percentage recovery of spiked orthophosphate and phytate in three CK sludge 

extracts by 31P NMR were 103.78 ± 2.14% and 104.77 ± 5.17 % respectively (Figure 

3.8). 

Figure 3.8: 31P NMR spectra of Black: Sample CK-1; and Red: Sample CK-1 spiked with 5µL 
7.25mM sodium dihydrogen orthophosphate and 5µL 15mM phytic acid sodium salt 
dihydrate. Integration of original and spiked samples enabled the calculation of 
percentage recovery. Mean percentage recovery ± SD for orthophosphate and phytate 
are shown in the figure (n=3). See Appendix A for remaining spike-recovery figures. 

Percentage recovery: 
Orthophosphate: 103.78 ± 2.14% 
Phytate: 104.77 ± 5.17% 

Phytic acid peaks 

Orthophosphate peak 
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3.4.5 31P NMR determination of sludge orthophosphate and phytate 

Typical spectra from a single replicate of each sludge sample are presented in Figure 

3.9. Full spectra for each replicate are presented in Appendix A. Orthophosphate was 

found to be the most abundant P compound in 31P NMR analysis of all sludge 

samples. There was a significant difference in absolute orthophosphate 

concentration between all sludge types (One-way ANOVA, p<0.0001), which 

increased from PS < SS < DF < CK < DS (Tukey multiple comparisons test, α=0.05; 

Figures 3.10 & 3.12A). There was a strong positive linear relationship between 

orthophosphate concentrations measured by NMR and colorimetry (R2 = 0.98, p < 

0.0001; Figure 3.13A). As a proportion of total extractable P, orthophosphate 

comprised between 74.3% and 86.5% (Figure 3.12 B). Despite having the highest  

Figure 3.9: Selected 31P NMR spectra of sludge extracts between 7ppm and 2ppm. A 
phytate standard is included to indicate phytate peaks. Sludge phytate was integrated 
using the second phytate peak, as this was at sufficient distance to avoid distortion by 
the large orthophosphate peak, and was the best separated from other peaks. Signal to 
noise ratio in CK was improved due to the installation of a new 31P NMR console during 
the analysis period. Spectra for all samples are shown in Appendix A. 
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Figure 3.10: Concentration of orthophosphate-P measured by 31P NMR of sludge extracts, 
expressed as µg P g-1 dry weight of sludge. Samples are represented as individual points 
(n=3) with horizontal bars indicating mean ± SEM. Results of one-way ANOVA are inset. 
Significant differences are represented as different letters above bars (Tukey multiple 
comparison, α = 0.05). 

Figure 3.11: Concentration of phytate-P measured by 31P NMR of sludge extracts, 
expressed as µg P g-1 dry weight of sludge. Samples are represented as individual points 
(n=3) with horizontal bars indicating mean ± SEM. Results of one-way ANOVA are inset. 
Significant differences are represented as different letters above bars (Tukey multiple 
comparison, α = 0.05). 
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Figure 3.12: A: Mean absolute concentrations of P fractions in sludge extracts measured by 31P 
NMR (µg P g-1 extracted sludge ± SEM, n=3). Total extractable P is presented above each bar. B: 
Mean concentrations of P fractions in sludges as a proportion of total extractable P (% ± SEM, 
n=3). Results of one-way ANOVA are shown for each P fraction. Results of Tukey multiple 
comparison test for each fraction are shown with means to the right of bars (α = 0.05). Different 
letters indicate a significant difference between values for that P fraction. 
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Figure 3.13: Linear regression of A: Phosphate-P of sludge extracts measured by 
molybdate colorimetry and 31P NMR; and B: Phytate-P measured colorimetrically as 
phytase-labile P and by 31P NMR. Points represent single samples. R2 and p values 
presented on graphs. Where a linear relationship exists, the equation of the regression 
line is presented. 
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absolute orthophosphate concentration, the proportion of orthophosphate was joint 

lowest in DS, whereas the highest proportion was found in DF sludge (One-way 

ANOVA, p<0.05, Tukey multiple comparisons, α=0.05). 

Absolute phytate concentrations measured by 31P NMR were much lower than 

orthophosphate levels and were lowest in PS at 345 µg P g-1. There was a significant 

difference between phytate concentrations (One-way ANOVA, p<0.0001), with all 

other sludges having a significantly greater concentration than that found in PS, 

increasing between 712 and 915 µg P g-1 in the order DF < CK < SS < DS (Tukey multiple 

comparisons test, α=0.05; Figures 3.11 & 3.12A). As a proportion of total extracted 

P, phytate-P ranged between 3.9% and 6.1% in the order DS < DF < CK < PS < SS ( 

One-way ANOVA, p<0.05; Figure 3.12B). Interestingly, despite containing the highest 

absolute concentration of phytate-P, DS contained the lowest proportion of phytate-

P of any sludge. There was no linear relationship between phytate levels measured 

by 31P NMR and those measured colorimetrically as ‘phytase-labile P’ when 

measured by linear regression (R2 = 0.07, p = 0.34; Figure 3.13B).  

There was no significant difference observed in absolute residual-P levels calculated 

in PS, SS, DF, and CK which ranged between 1625 and 2296 µg P g-1 sludge (Figure 

3.12A). However, levels in DS were significantly greater than all others, standing at 

5040 µg P g-1 (One-way ANOVA, p<0.0001; Tukey multiple comparisons test, α=0.05). 

This was also the highest proportion of residual P found in all sludges, at 21.7% of 

total extracted P, with the lowest proportion found in DF, and increasing through SS 

& CK <PS < DS (One-way ANOVA, p<0.05; Tukey multiple comparisons test, α=0.05; 

Figure 3.12 B). 
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3.5 Discussion 

This is the first study to employ a combination of colorimetric methods and solution 31P 

NMR to specifically measure the concentrations and proportions of orthophosphate and 

phytate in sludge samples taken over five consecutive points in an advanced anaerobic 

digestion sludge treatment process. Overall it was found that orthophosphate makes up 

the greatest concentration and proportion of extractable sludge P, standing at 

approximately 80%, with good agreement between analytical techniques. Phytate-P 

measured colorimetrically as phytase-labile P was found to be initially high at ~12% in 

PS, but fell dramatically following digestion to 1.2%. However, when measured by 31P 

NMR, phytate-P proportions were found to remain relatively stable throughout the 

process, and there was no linear relationship between results of the two methods. 

When compared to evidence from spike-recovery experiments with 31P NMR, this 

suggests that colorimetric measurement of phytase-labile P in sludge samples may be 

inaccurate, both over- and under-estimating phytate levels depending on sludge 

sample. Persistence of phytate-P in the final digested sludge cake may have important 

impacts on soil P stoichiometry when applied to agricultural soil, which is the preferred 

route of disposal in the UK. The 4.5% fraction of total sludge-P measured as phytate-P is 

likely to become rapidly and irreversibly immobilised in soil, accumulating in a form 

inaccessible to crops. 

3.5.1 Sludge Total Phosphorus & Extraction Efficiency 

Sludge PT concentration increased through consecutive stages of the wastewater 

treatment process, peaking in the product of anaerobic digestion (DS), before falling 

slightly in dewatered cake (CK). As there are no current P removal techniques used on 

sludge at Esholt, the change in P concentrations can be explained by looking at the 

changes within the sludge during processing. PS is the product of primary gravitational 

settlement of suspended solids in the wastewater, meaning that a portion of the PT 

contained in the wastewater is settled out at this stage. However, the remainder, 

comprising unsettled suspended solids, dissolved organic matter and soluble P moves 

with water to secondary treatment, where it is stripped from the water and metabolized 

by aerobic microorganisms. The biological floc produced is settled out to produce 
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secondary waste-activated sludge, which is then returned to the sludge treatment 

process. At Esholt, sludge has a final ratio of 64:36% primary:secondary sludge when 

mixed. The increase in PT from PS to SS can therefore be explained by the addition of 

the nutrient-rich activated sludge to the mix.  

PT was greatest in DS, following anaerobic digestion. Over a retention time of 15 days, 

sludge solids undergo mesophilic digestion, resulting in the production of methane gas, 

and a reduction in sludge mass of approximately 50% on a dry solids basis (personal 

communication, Yorkshire Water Ltd, 2019). This therefore coincides with an increase 

in concentration of P within the solids fraction to its peak at almost 26000 µg P g-1 sludge. 

PT concentration then decreased slightly with dewatering to 23263 µg P g-1 in CK. PT 

content of Esholt sludge is similar to concentrations found in other studies. Smith et al., 

(2006) measured PT of undigested sludge, digested sludge and cake at 9000, 21000 and 

16000 µg P g-1 respectively, whereas the concentration of P in dried anaerobically 

digested sewage sludge measured by Annaheim et al., (2015) was slightly higher at 

33200 µg P g-1. Phosphorus concentration of sludge extracts followed the same pattern 

as that of sludge PT, and extraction efficiency was high, ranging between 81% in CK to a 

high of 93% in PS. This indicates that the range of P compounds and their proportions 

within the extract are likely to be highly representative of the actual range within 

unextracted sludge. 

3.5.2 31P NMR Optimisation 

To improve the signal:noise ratio of 31P NMR spectra, it is necessary to increase the 

number of scans to increase the amount of signal. Background noise is random, and 

improvement of sensitivity is proportional to the square root of the number of scans 

(Bünemann et al., 2011). This means that to double the signal:noise, the number of scans 

must be quadrupled, leading to long analysis times.   

With a relaxation delay time of 1s and 20,000 scans, analysis time was over 8 hours per 

sludge sample. This delay time is insufficient for the full relaxation of compounds 

between scans but is necessary, as any longer delay would have meant unacceptable 

analysis time. The level of relaxation achieved for each separate compound is dependent 

of their individual relaxation constants, or T1 values, which decrease with increasing size 
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of molecules. Using a relaxation time that does not enable full relaxation causes a 

proportional underestimation of signal obtained for each compound, depending on the 

level of relaxation achieved. For example, whereas full relaxation would produce 100% 

of the expected signal, 50% relaxation would result in 50% of the expected signal. When 

comparing the signals of multiple compounds with different T1 times, this may lead to 

overestimation of one compound compared to one that has not been allowed to relax 

to the same degree. To overcome this issue, the proportion of signal achieved by the 

three compounds of interest (MDP standard, orthophosphate and phytate) was 

measured in spectra over relaxation times ranging between 1 – 40 seconds, enabling the 

calculation of a correction factor for integration and absolute quantification. Previous 

work in this lab found T1 times for solutions of orthophosphate and phytate of 9.04 and 

1.09s respectively (Robertson, 2018). As the smallest compound of interest, 

orthophosphate has the longest T1, and this was reflected in the finding that a delay 

time of 1s recovered only 47% of the total orthophosphate signal. MDP and phytate, 

being larger molecules, were able to relax to a greater degree at 1s, but the signal 

generated was found to be only 81% and 84% of total signal respectively.  The analysis 

of spiked sludge samples produced recovery values for orthophosphate of 103.78 ± 

2.14%, and for phytate of 104.77 ± 5.17 % when using this method to adjust integrals 

according to relaxation delay times. This indicates that the above technique successfully 

enables the absolute quantification of these compounds within sludge extracts. 

3.5.3 Orthophosphate-P in sludge treatment 

Orthophosphate-P was identified as the major P constituent in all 5 sludges with both 

the colorimetric assay and 31P NMR, comprising approximately 80% of total extracted P. 

The observed domination of the 31P NMR spectra by orthophosphate is typical of 

anaerobically digested sludges, and similar to the patterns reported by Hinedi et al., 

(1989) and Escudey et al., (2004) in anaerobically digested sludges. Furthermore,  these 

results agree with those of Smith et al., (2006), who measured the orthophosphate 

fraction at between 66–78% of total extracted P in both undigested sludge and 

anaerobically digested sludges from the same process.  
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There was a positive linear relationship between orthophosphate concentration 

measured by molybdate colorimetry and 31P NMR (Figure 3.13A), and both methods 

indicated that absolute orthophosphate concentrations increase with consecutive 

sludges from lowest in PS to greatest in DS, before falling slightly in CK. This pattern 

reflects that of both sludge PT and sludge total extractable P concentrations. Despite 

absolute orthophosphate concentration peaking in DS, when expressed as a proportion 

of total extractable P, the orthophosphate fraction is in fact lower in DS than in DF, 

significantly so according to 31P NMR data, and is accompanied by an increase in the 

fraction designated as ‘residual P’. In this work, residual P is calculated as the difference 

between total extractable P and the sum of orthophosphate and phytate-P, and 

represents the contribution of other P compounds that might include polyphosphates, 

non-phytate monoester P and diester P. The increase in residual P during digestion may 

be explained as an increase in diesters such as phospholipids and DNA resulting from 

the metabolism of orthophosphate by the rich microbial community within the digester 

(Smith et al., 2006). Between DS and CK, the absolute concentration of orthophosphate 

remains relatively stable, but increases proportionally as the residual P fraction falls. It 

is possible that this is due to the loss of microbial-P in the dewatering of DS by 

centrifugation, which would indicate that much of the orthophosphate is bound within 

the solid-phase of the digested material as it was not lost in solution. 

3.5.4 Phytate-P in sludge treatment 

Whilst orthophosphate was by far the most abundant P compound in all sludge extracts, 

phytate P was detectable in all extracts by both colorimetric and 31P NMR methods. 

Within the literature that has attempted to identify and measure P compounds within 

various sludges, phytate (Annaheim et al., 2015; Smith et al., 2006), or orthophosphate 

monoesters that could include phytate (Huang & Tang, 2015; Escudey et al., 2004) have 

been detected in anaerobically digested sludges. Evidence for the loss of 

orthophosphate monoesters during anaerobic digestion was presented in recent work 

by Li et al., (2019), but it is impossible to say whether this was due to the loss of phytate 

or the loss of more bioavailable monoesters during AD, as no attempt to was made to 

identify specific compounds.  
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Faecal phytate concentrations have been measured at between 4000-11000 µg P g-1 

(Joung et al., 2007), and can constitute between 24-54% of faecal PT (Joung et al., 2007; 

Kim et al., 2009), so it was expected that phytate levels would be abundant in primary 

and secondary sludges (PS & SS). From its initial levels in PS and SS, phytate was expected 

to persist throughout the treatment process due to its relatively lower bioavailability in 

comparison to the abundant orthophosphate. As a proportion of total extracted P, 

phytate was expected to comprise approximately 10% of total extractable P throughout 

the process, reflecting the findings of similar work by Annaheim et al., (2015) and Smith 

et al., (2006). 

3.5.4.1 Phytase-labile P – Figure 3.6 A & B show the fractions of P measured by 

molybdate colorimetry. Phytate content was estimated as phytase-labile P, and was 

calculated as the increase in molybdate-reactive P following 24 hours incubation of the 

extract with a phytase enzyme. The absolute concentration of phytase-labile P was 

calculated at 946 µg P g-1 in PS, increasing to its highest recorded concentration in SS at 

1274 µg P g-1. From this peak, phytase-labile P then fell in DF, and fell again following 

digestion to its lowest concentration of 285 µg P g-1 in both DS and CK. As a proportion 

of total extracted P, phytase-labile P was greatest in PS at 12.6% of P, and fell to 8.9% in 

SS. This trend continued again in DF, which exhibited a significant reduction in phytase-

labile P at just 3.6%, accompanied by an increase in the orthophosphate-P fraction. 

However, phytate fractions were lowest following digestion, making up just 1.2% and 

1.5% of total extracted P in DS and CK respectively. These results indicate that phytate 

is initially abundant in undigested sludge, but is negatively affected both by sludge pre-

treatment by thermal hydrolysis, explaining the decrease in concentration between SS 

and DF, and by anaerobic digestion, causing a 10.5x decrease in the proportion of 

phytase-labile P between PS and DS. 

These results would suggest that rather than phytate remaining relatively constant 

throughout the process as observed in similar studies, phytate is actually degraded in 

this treatment process, causing a significant drop in terms of both concentration and 

proportion. However, there is no positive linear relationship between phytate 

concentrations of identical samples when measured by molybdate colorimetry and by 

31P NMR (Figure 3.13B, R2 = 0.07). 
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3.5.4.2 31P NMR – The absolute phytate concentration of sludge extracts was measured 

by integration of the second of the four phytate peaks present in the orthophosphate 

monoester region of 31P NMR spectra. According to this data, absolute phytate 

concentration was lowest in PS at 345 µg P g-1 sludge, increasing to 875 µg P g-1 sludge 

in SS after the addition of sludge from secondary settlement. Phytate levels then 

remained relatively constant throughout the process, with no significant difference 

between concentrations in SS, DF, DS or CK. As a proportion of total extractable P, the 

phytate fraction constitutes between 3.9% and 6.1% in DS and SS respectively (Figure 

3.12B). Taken together, the 31P NMR data indicates that phytate levels increase from PS 

to SS but fall slightly upon thermal hydrolysis pre-treatment in the DF sludge. The 

proportional reduction of phytate from DF to DS is not reflected by the absolute 

concentration of phytate, which increases, but is instead caused by the contribution of 

the large proportional increase in the residual-P fraction to the increase in total 

extractable P during anaerobic digestion.  

The 31P NMR data is consistent with the work of Smith et al., (2006), who found phytate 

levels to remain constant between undigested and digested sludge. However, at 10% of 

total extracted P, the sludges studied by Smith et al., (2006) and Annaheim et al., (2015) 

had over twice the level of phytate as the Esholt sludges studied in this work. 

3.5.4.3 Methodological comparison – With no positive linear relationship existing for 

the measurement of phytate-P between colorimetric and 31P NMR methods, it is not 

possible to conclude how phytate behaves in the wastewater treatment process without 

further evidence.  

Under ideal conditions, 31P NMR enables the user to identify specific compounds within 

a sample and allows their quantification, as the area under the compounds peak(s) are 

directly proportional to the number of P nuclei in a particular molecular configuration 

(Cade-Menun, 2005). Analysis of spiked sludge samples by 31P NMR showed an average 

recovery of spiked orthophosphate of 103.78 ± 2.14%, and of spiked phytate of 104.77 

± 5.17 %. These values indicate that the quantification of the orthophosphate and 

phytate concentrations within sludge extracts is highly accurate by the 31P NMR method, 
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with only a slight underestimation of absolute concentrations occurring for both 

compounds.  

By comparison, measurement of phytate by enzymatic dephosphorylation and 

subsequent colorimetric quantification of the released orthophosphate is a less direct 

approach. In this chapter, phytase-mediated quantification of phytate was tested in 

order to assess whether it could provide a reliable, cheaper and less time and labour-

intensive method to estimate levels of phytate in sludge, compared to traditional 31P 

NMR. Within the sludge extracts, colorimetric estimation of inorganic orthophosphate 

was achieved by measurement of MRP in extracts incubated with denatured phytase 

and agreed well with the 31P NMR determination of orthophosphate. Molybdate 

unreactive P (MUP), the difference between extract total P and MRP, contains a wide 

variety of organic P forms including orthophosphate monoesters (phytates, sugar 

phosphates), diester P (DNA), organic condensed phosphates and phosphonates, as well 

as inorganic polyphosphates (George et al., 2018; Turner et al., 2003a). It was expected 

that a phytase enzyme could be used to dephosphorylate phytate, enabling its 

quantification as the measurement of phytase-labile P. However, the disparity between 

the 31P NMR results, and colorimetric results for phytate quantification indicate that this 

is not the case. It is likely that there are many factors that cause the apparent 

overestimation of phytate in PS and SS, and underestimation in DS and CK by phytase-

mediated quantification when compared to 31P NMR.  

Commercially produced phytase enzymes such as that used in this study often belong to 

the histidine-acid phosphatase (HAP) family of phytases. HAPs have a broad substrate 

specificity for phytate and can sequentially dephosphorylate the five equatorial 

phosphate groups of phytate to produce a final product of myo-inositol 

monophosphate, but they can also dephosphorylate various other phosphate esters 

(Wyss et al., 1999; Oh et al., 2004). Other phytase enzymes such as the alkaline phytases, 

exhibit a strict substrate specificity for phytate, but are often only able to partially 

dephosphorylate phytate to myo-inositol trisphosphate (Oh et al., 2004). 

The use of HAP phytases with broad substrate specificity is an advantage for commercial 

feed enzymes, allowing greater dephosphorylation of phytate in the gastrointestinal 
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tract. This characteristic may however be disadvantageous for its use in quantitative 

assays, as the tendency to act not only upon phytate, but other orthophosphate 

monoesters like sugar phosphates and α and β glycerophosphates, means that ‘phytase-

labile P’ does not just constitute phytate, but these other compounds as well. It’s likely 

that in PS and SS, the overestimation of phytate by this method is due to this broad 

specificity and the degradation of other phytase-labile compounds. In 31P NMR spectra 

of PS and SS sludge extracts, there is a large broad peak present directly between the 

2nd and 3rd phytate peak (Figure 3.9). Whilst this peak was not specifically identified, it 

lies within the orthophosphate monoester region of the spectrum, and may be derived 

from the products of phospholipid hydrolysis in the alkaline extraction, 

glycerophosphates (Doolette et al., 2009). With its broad substrate specificity, the 

phytase enzyme is likely to be able to dephosphorylate glycerophosphate as well as 

phytate (Wyss et al., 1999), and this may help to explain the overestimation of phytate 

observed. 

In contrast to the overestimation of phytate observed in PS and SS, there was a distinct 

underestimation of phytate with this method in DS and CK following anaerobic 

digestion. It is possible that many of the alternative substrates that phytase enzymes 

can target have been hydrolysed during thermal pre-treatment, or metabolized during 

anaerobic digestion. Li et al., (2019) noted a complete loss of detectable monoester P 

31P NMR spectra of an anaerobically digested sludge, suggesting that this loss resulted 

from their hydrolysis and degradation due to their greater bioavailability during AD. In 

this study, the peak tentatively assigned to glycerophosphate in PS and SS is no longer 

present in DF, DS and CK sludge extracts (Figure 3.9), which might indicate that 

phospholipids are degraded and metabolized within the thermal hydrolysis and AD 

processes. Additionally, phytase activity within extract solutions may be inhibited due 

to the difference in the chemical composition of digested sludge. Due to the loss of solids 

mass within the digester, the concentration of metal cations is likely to be greater in 

digested sludge. Igamnazarov et al., (1999) studied the effect of elevated metal cation 

concentration on extracellular Bacterium sp. phytase enzymes, and found that 2mM 

concentrations of Cu2+ and Fe3+ reduced phytase activity to 8% and 29% of their original 

activities. Wyss et al., (1999) noted a similar inhibitory effect of metal cations on phytase 
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activity, and suggested that this is most likely due to the formation of poorly soluble 

phytate-metal salts rather than direct binding of cations to the phytases. It therefore 

appears that this method of enzyme-mediated estimation of phytate concentration is 

unsuitable for use in the complex chemical environments of sewage sludge, due to 

reasons including the presence of additional substrates, and the potential effect of 

increased concentrations of inhibitory agents such as metal cations later in the process. 

3.5.5 Implications for soils amended with AD sludge 

As of 2010, 79% of the sludge derived biosolids produced in the UK are applied directly 

to the land (DEFRA, 2012). Being rich in macronutrients and organic matter, they can 

both reduce the requirement for chemical fertilizer inputs, and have been demonstrated 

to increase productivity (Singh & Agrawal, 2008; Haynes et al., 2009).  

Analysis of the extract of anaerobically digested and dewatered biosolids produced at 

Esholt (sample CK) revealed it to contain a PT concentration of almost 19000 µg P g-1. 

83% of this was present as orthophosphate, which is typical of other anaerobically 

digested sludges (Smith et al., 2006; Escudey et al., 2004; Annaheim et al., 2015), 

whereas in aerobically treated sludge the content of organic P compounds, including 

orthophosphate monoesters and diesters, can be nearer to 50% of PT (Hinedi et al., 

1989). Smith et al., (2006) measured the levels of bicarbonate-extractable 

(phytoavailable) P of sludges through the sewage treatment process and noted that 

whilst phytoavailable P was highest in anaerobically digested sludge, the vast majority 

was actually removed during the dewatering step that followed. The slight decrease in 

absolute phosphate concentration observed between DS and CK in this work may 

indicate that soluble, phytoavailable phosphate is being lost in the same manner. The 

majority of the orthophosphate remaining in the final cake is not immediately 

phytoavailable, being bound to minerals and cations including ferrihydrite and 

aluminium hydroxides, hydroxyapatite and calcium phosphates (Haynes et al., 2009). In 

a study combining sequential fractionation, 31P NMR and XANES, more labile 

orthophosphate forms in sludge included calcium- and some aluminium-phosphates, 

whereas iron- and most aluminium-phosphates were recalcitrant (Ajiboye et al., 2007). 

These phosphate-cation complexes are inherently less phytoavailable when they are 
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applied to the soil, as they must first be solubilised and mineralised before they can be 

taken up by plants. 

Only a slight reduction of the absolute phytate concentration was observed in this study 

during the dewatering step between digested sludge (DS) and final cake product (CK), 

and this may be due to the loss of soluble phytate in the sludge solution. The retention 

of the vast majority of phytate-P indicates that phytate is also bound within sludge, 

either within organic constituents, or associated or precipitated with metal cations. 

When applied to the soil, orthophosphate, non-phytate monoester P and diester P are 

more phytoavailable than phytate (Smith et al., 2006). For phytate-P to be absorbed by 

plants and microbes, the surrounding phosphate groups must first be enzymatically 

cleaved from the inositol ring by phytase enzymes. Due to the presence of 6 phosphate 

groups, phytate has a high charge density and thus a high sorption capacity, forming 

strong associations within insoluble salts of Ca, Fe and Al, and adsorbing to clay particles 

in the soil (Turner et al., 2002). Therefore, it’s likely that the phytate present in land-

applied biosolids is rapidly immobilized, whereas other phosphates and phosphate 

monoesters are more mobile and susceptible to microbial metabolism, resulting in a 

preferential accumulation of an unreactive phytate fraction over time. This was 

demonstrated by Smith et al., (2006) in the repeated analysis of sludge amended soils 

by 31P NMR, where phytate concentrations were found to have stabilized in the soil 81 

days after amendment, in which time concentration of DNA and other monoesters had 

fallen.  

Biosolids contain approximately twice as much nitrogen (N) as P, but agricultural crops 

typically sequester four times as much N than P (Haynes et al., 2009). This leads to an 

overall accumulation in the amount of P relative to N, and importantly, increases the 

risk of leaching and eutrophication once the soil P sorption capacity has been exceeded. 

A net accumulation of P compounds from this input-output imbalance may reinforce the 

tendency for phytate accumulation, as high levels of more labile P compounds such as 

orthophosphate and monoester/diester P will discourage the production of phytate-

degrading enzymes by the microbial population, which are often only produced in 

response to P limitation (Giles et al., 2011). 
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Assuming the CK phytate concentration of 847 µg P g-1 is typical of all UK sludge, based 

on 2010 levels of land application (DEFRA, 2012), 947 tonnes of phytate-P is applied to 

soil every year in sludge amendments. This is of course dwarfed by the application of 

17,584 tonnes of orthophosphate-P applied in sludge under the same assumptions, but 

is nevertheless a significant amount of P, much of which is likely to become immobilised 

and accumulate in soil. 
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3.6 Conclusions 

Understanding the abundance of the key P compounds orthophosphate and phytate in 

anaerobically digested sludge is important considering that the vast majority of sludge 

produced in the UK is returned to agricultural soils. Sludge PT is lowest in primary sludge, 

increasing through the process to a peak of almost 26000 µg P g-1 after anaerobic 

digestion, likely due to the reduced mass of sludge resulting from the digestion process. 

PT then falls slightly to 23263 µg P g-1 after dewatering in the final sludge cake. Using 31P 

NMR and colorimetric techniques, orthophosphate was identified as the major P-

containing compound in all sludges sampled through the advanced sludge treatment 

process of Esholt WWTP, making up approximately 80% of total extractable P, and good 

agreement was achieved between results of the two methods. 

Phytate levels were measured by both 31P NMR and as phytase-labile P, but there was 

no linear relationship between results. With supportive evidence from spike-recovery 

analysis in 31P NMR, it was concluded that phytase-labile P is likely to be an unsuitable 

method for phytate estimation in sludge samples. This method has the potential to both 

overestimate phytate, owing to the broad substrate specificity of the enzyme, and 

underestimate phytate due to inhibition by metal cations in the extract (Igamnazarov et 

al., 1999; Wyss et al., 1999). 

31P NMR analysis revealed that the proportion of phytate-P relative to total extractable 

P remains relatively stable throughout the sludge treatment process, comprising 4.5% 

of total extractable P in the final dewatered sludge cake. This suggests that phytate is 

able to withstand both the high temperature and pressure of thermal hydrolysis pre-

treatment, and the 15-day mesophilic anaerobic digestion process. If phytate-P 

comprises 4.5% of the final land-spread product, this means that in the UK, 947 tonnes 

of phytate-P are spread to agricultural land every year (according to 2010 data for the 

mass of sludge spread to land (Water UK, 2010)). Much of this phytate is likely to become 

rapidly immobilised in soil and could preferentially accumulate relative to other P 

compounds due to its high charge density and tendency to adsorb to clays and 

precipitate with metal cations. In Chapter 4, a variety of soils with varied land-use 

histories will be analysed, to assess the effect that land use history has on phytate 
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concentration. Of particular interest will be the analysis of an agricultural soil from a 

field that has recently been converted from an arable soil to a pig pen, and as such 

receives high input of phytate-rich monogastric manure. 
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4: Measurement of phytate in soils with varied 

land-use history 

 

4.1 Summary 

Phytate can enter the soil in organic amendments such as plant residues, animal manure 

and human wastewater sludge, and is often the most abundant organic P compound 

identified in 31P NMR analyses of soil extracts, leading to the assumption that phytate is 

preferentially stabilised and accumulates. However, some work has also demonstrated 

the rapid degradation of phytate when applied to the soil, indicating that the tendency 

of phytate to accumulate may be affected by a wide range of soil factors. The types and 

quantities of P species in soil are governed by local environmental factors and land 

management, with agricultural practices such as cultivation, fertilisation and harvesting 

having a major effect on soil health and natural P cycling. In this chapter, a combination 

of 31P NMR and colorimetric techniques are applied for the analysis of orthophosphate 

and phytate content of a range of UK agricultural and grassland soils, to understand how 

land-use can affect P speciation.  

Vast differences exist in P speciation between the natural grassland soils and agricultural 

soils. In grassland soils, less than half of the PT content is comprised of orthophosphate, 

with P forms other than orthophosphate and phytate making up the greatest 

proportion, which is reflected by the high organic matter content of these soils. In 

contrast, agricultural soils including arable, pasture, and a pig pen soils are dominated 

by orthophosphate, making up approximately 80% in each. Phytate levels are lowest in 

the arable soil, likely due to detrimental intensive management practices, which have 

denuded the soil also of organic matter. Phytate concentration increases in pasture soil 

but is greatest in the pig pen soil. The high phytate concentration of the pig pen soil is 

of most interest, as it may indicate an accumulation of phytate derived from inputs of 

pig manure and suggests a recovery of the soil since its conversion from arable land. 
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4.2 Introduction 

4.2.1 Phytate accumulation in soil 

Phytate enters the soil in sludge, manure and plant residues, and is often the most 

abundant organic P compound in soils (Jørgensen et al., 2015; Turner et al., 2002). With 

six phosphate groups, phytate has a high charge density, and thus has a propensity to 

adsorb to surfaces in soils via electrostatic interactions and form insoluble precipitates 

with polyvalent metal cations (Turner et al., 2002). This high charge density means that 

phytate often undergoes stronger interactions than other P forms, with phytate sorption 

capacity in the region of four times greater than that of orthophosphate (Celi & Barberis, 

2006; Richardson et al., 2006). This strong adsorptive capacity, and the relative 

abundance of phytate when compared to most other organic P species in the soil, has 

led to the general conclusion that phytate preferentially accumulates in soils as it is not 

immediately available for plant or microbial uptake, has low lability, and is afforded a 

degree of protection from enzymatic degradation in its adsorbed form (Turner et al., 

2002; Menezes-Blackburn et al., 2013).  

However, two studies that assessed soil P speciation after phytate addition show that 

this is not always the case. When phytate in manure (Leytem et al., 2006) and in solution 

(Doolette et al., 2010) was added to calcareous soils, no accumulation was observed 

after many weeks, suggesting phytate had become rapidly degraded in the soil. Similarly, 

in more acidic soils, Annaheim et al., (2015) found no evidence of accumulation of P 

species in soils receiving a range of organic amendments despite variation in P speciation 

within the amendments applied. This suggests that the tendency of phytate and wider 

organic P forms to accumulate in soil is not universal, and accumulation is likely to be 

governed by a wide range of soil and environmental factors such as soil chemistry and 

pH, metal cation and clay content, organic matter content, moisture, microbial diversity 

and land-use history.  

4.2.2 Land-use history 

The speciation and quantity of P forms in soil are governed by biological, chemical, and 

physical factors which themselves can be influenced by environmental factors and land 

use history (Condron et al., 2005). Land use history has a major effect on soil P speciation 
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and accumulation, particularly in agricultural soils (Stutter et al., 2015). These soils can 

often be subject to large inputs of chemical fertilisers, which add large amounts of 

phytoavailable orthophosphate (HPO4
2- and H2PO4

-), and can also receive organic 

amendments such as manure and sludge solids, which also predominantly add 

orthophosphate, but include other complex inorganic and organic P forms, including 

phytate (See Figure 1.2) which are not immediately phytoavailable (Cade-Menun et al., 

2017).  

Organic P compounds are formed within biomass, and enter the soil via the 

decomposition of plant detritus, animal wastes, and soil microbiota (Nash et al., 2014). 

In arable soils, these natural processes are often vastly reduced, as P absorbed by crops 

is removed from fields during harvest and is replenished by the addition of 

predominantly inorganic orthophosphate fertilisers to the soil. Furthermore, arable soils 

can also experience disruptive management practices including soil cultivation and 

fallow periods which may have a significant impact on the soil microbial mineralisation 

processes (Liu et al., 2018). In an analysis of 32 UK soils, Stutter et al., (2015) found that 

arable soils were dominated by orthophosphate and exhibited no accumulation of 

organic P forms. This is likely due to the predominant addition of inorganic P fertilisers, 

and the promotion of organic matter degradation via the aeration of soil during tillage 

(McLauchlan, 2006). Liu et al., (2018) found that genes encoding phytase and 

phosphoesterase enzymes were abundant in arable soils, which may indicate that 

microbial populations adapt to the high temporal variability in bioavailable P in these 

soils by degrading organic P in P-limited or fallow periods. 

Liu et al., (2018) recently found a greater concentration of phytate, along with its 

stereoisomer forms; scyllo-, neo-, and D-chiro- inositol hexakisphosphate in cattle 

grazed grassland soils compared to arable soil. According to Nash et al., (2014), up to 

85% of P absorbed by plants in grazed pastures is returned to the soil in manure. Despite 

being ruminant animals with phytase enzymes present in their gut, phytate digestion in 

cattle is surprisingly inefficient (Menezes-Blackburn et al., 2014), so a large amount of 

phytate is likely to enter the soil from manure in grazed pastures. As these soils suffer a 

lower degree of inorganic P inputs, and less structural disturbance from tillage, the 

cycling of P is likely to be more representative of natural soils, with P derived 
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predominantly from manure and plant litter, and driven by plant and microbial P 

demands (Liu et al., 2018). Stutter et al., (2015) also recorded higher proportions of 

orthophosphate monoesters in intensively grazed soils than in cultivated arable soils. 

However, they also found that orthophosphate diesters such as DNA and RNA, and 

polyphosphates like ATP, which are indicators of healthy microbial turnover, were only 

abundant in more natural, extensively grazed grasslands, indicating that the natural 

ability of the soil to cycle organic P is negatively affected by both chemical fertilisation 

and intensive organic manure fertilisation (Stutter et al., 2015). This loss is even more 

prominent in arable soils, where crop monocultures have been shown to reduce 

microbial diversity (Stutter & Richards, 2012).  

4.2.3 Aims & Objectives 

It’s clear therefore that the accumulation of phytate is dependent on many factors. In 

this chapter, both the orthophosphate and phytate content of UK soils with varied land-

use histories and physiochemical characteristics were compared. Three agricultural soils 

(arable, pasture, and pig pen) and two natural grassland soils (acidic and calcareous 

grassland) were analysed by solution 31P NMR to investigate how various agricultural 

land management practices influence both orthophosphate levels and phytate 

accumulation in comparison to more natural systems. Enzymatic hydrolysis was also 

assessed as a potential alternative to 31P NMR, to see whether it can provide more 

accuracy in soil extract samples than was found in sludge extract samples.  

Of particular interest was the pig pen soil, which was previously an arable field under a 

similar management regime to that of the nearby permanently arable field, but was 

converted to a pig pen in 2016. Since that date, the field has experienced no cultivation, 

no crop monocultures, no harvest and no chemical fertilisation, with the sole nutrient 

input to this soil therefore derived from pig manure. Pigs are monogastric livestock with 

similar digestive systems to humans, and Liang et al., (2018) recently measured pig 

manure orthophosphate-P and phytate-P content at 90.7% and 8.5% of total manure P 

respectively. Proportionally, these proportions are similar to the digested sludge 

measured in Chapter 3, in which orthophosphate-P made up 83.4% and phytate-P made 

up 4.5% of total extractable sludge P. This soil therefore was expected to provide useful 
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insight to the recovery and accumulation of P stocks and organic matter when organic 

amendments similar to sewage sludges are applied to a previously arable field. 

It was hypothesised that land-use history would have a major effect on orthophosphate 

and phytate content of soils. Arable soils were expected to be dominated by 

orthophosphate due to inorganic fertiliser inputs, but would have the lowest 

concentration of phytate of all soils due to low organic P inputs, regular harvest outputs, 

and conventional cultivation practices, which would also result in low organic matter 

content. In contrast, pasture soils with greater organic matter were expected to have an 

intermediate level of phytate due to regular inputs of organic livestock manures, 

absence of cultivation and lack of significant P outputs, with orthophosphate content 

lower in this soil. The pig pen soil was expected to contain an organic matter 

concentration intermediate between the arable and pasture soils as an indicator of 

recovery, and would contain the greatest total P concentration of all soils, due to regular 

inputs of P-rich organic fertiliser and lack of significant outputs. Phytate levels in this soil 

were considered likely to be the greatest measured in all soils due to the monogastric 

nature of pigs, coupled with the legacy of low microbial turnover due to its use as an 

arable soil.  

Compared to agricultural soils, acidic and calcareous grasslands were expected to have 

a much greater organic matter content due to the natural cycling in this soil. Grassland 

soils would have lower total P due to the historical lack of P inputs to these soils. Organic 

P (calculated in this chapter as phytate-P and residual-P) was expected to form a greater 

proportion of total P than orthophosphate due to the natural plant and microbial P 

cycling in these soils. With this greater proportion of organic P, intermediate levels of 

phytate-P were expected in these soils. Between the adjacent acidic and calcareous 

grasslands, overall proportions of orthophosphate and phytate were expected to be be 

similar between the soils, but could be greater in acidic soils, due to the increased cycling 

of P in the greater aboveground biomass in acidic soil.  
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4.3 Methods 

4.3.1 Soil sampling 

A total of five soils with varying land-use history were sampled in autumn 2018. Three 

agricultural soils were sampled from the University of Leeds Spen Farm, Tadcaster, UK 

(53°51'45.3"N 1°20'37.2"W; Figure 4.1A). Two extensively grazed permanent grassland 

soils were sampled from Wardlow Hay Cop, a conical hill in the Cressbrook Dale National 

Nature Reserve in the Peak District National Park, Derbyshire, UK (53°15'45.0"N 

1°43'59.4"W; Figure 4.1B). Sampling sites were chosen primarily due to their use as long-

term study sites with well documented land-use histories. For agricultural soils, difficulty 

was encountered in locating a suitable soil that had received anaerobically digested 

sludge amendments. Spen Farm, whilst not incorporating sludge amendments, has the 

advantage of holding detailed historical records on crop history and fertiliser inputs, and 

exhibits a variety of land-uses within a small geographical area, enabling more 

straightforward comparison between soils. Spen Farm also has an outdoor pig facility 

that has been recently converted from an intensively managed arable soil. Pig manure 

has been shown to contain comparable concentrations of PT, phytate-P and 

orthophosphate-P to anaerobically digested sludge (Turner, 2004; Liang et al., 2018), so 

this soil was selected as a suitable proxy for a soil receiving human sludge amendment. 

Wardlow Hay Cop was selected to represent a comparatively natural grassland 

ecosystem, which experiences only sparse, extensive grazing by sheep and cattle. 

Wardlow also has the unique advantage of having contiguous calcareous and acidic 

grasslands, enabling the comparison of P dynamics within adjacent but contrasting 

natural grassland soils. 

Spen farm is a commercial mixed pasture and arable farm, with brown earth soils of the 

Aberford series of Calcaric Endoleptic Cambisols (Cranfield University, 2019; Holden et 

al., 2019), underlain by dolomitic limestone of the Cadeby formation. Soils are a sandy 

calcareous loam, composed of a boulder clay parent material, limestone residue and 

sandy millstone grit and reach a total depth of between 50-90cm (Holden & Gell, 2009). 

Soils were sampled as a single mass in each field with an area of 50cm2 and depth of 

15cm. The first was an Arable Soil (SAra) which had supported crops since at least 2001 

and had been sown with a monoculture crop of winter wheat two months prior to 
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sampling. The second was a permanent pasture soil (SPas) which was dominated by 

perennial ryegrass grazed intensively by both sheep and cattle, which had not been 

cropped for at least 40 years. The final Spen soil was obtained from a pig pen (SPig), 

which contained no vegetation due to intensive pig foraging. This field had been used as 

a pig pen since 2016, before which it was an arable field supporting a range of crops 

since at least 2001. SAra and SPig soils exhibited no soil horizons due to their history of 

heavy transformation by total inversion ploughing. In SPas soil, the upper 30cm horizon 

is a sandy clay loam, becoming finer below 30cm as the soil extends to the limestone 

bedrock (Holden & Gell, 2009). Each field was surrounded by hedgerows dominated by 

Hawthorn (Crataegus monogyna), Elder (Sambucus nigra) and Holly (Ilex aquifolium; 

(Holden et al., 2019). Crop history for Spen Farm soils is presented in Table 4.1. 

Wardlow soils are well drained silty soils underlain by the Monsal Dale Limestone 

Formation (BGS, 2019). The site has the unique advantage of having a shallow calcareous 

(WCal) grassland adjacent to a deeper acidic (WAc) grassland, which receive no nutrient 

inputs other than that provided by sparse sheep and cattle grazing and atmospheric 

nitrogen deposition. The acidic grassland is located on the south-eastern slope of 

Wardlow Hay Cop, and it’s soil is a paleo-argillic brown earth in the Nordrach series of 

chromic endoleptic luvisols (Cranfield-University, 2019; Basto et al., 2015), derived from 

wind-blown loess deposited following the last glaciation (O’Sullivan et al., 2011) that 

reaches up to 70cm in depth. The upper soil surface horizon reaches 12-15cm deep and 

is a dark brown, humus rich, stoneless silty loam, and the lower mineral horizon extends 

to the bedrock, containing clay and sesquioxides in an almost stoneless, silty clay loam 

matrix (O’Sullivan et al., 2011). Due to the thickness of this soil and high precipitation 

levels, the limestone bedrock does not have an effect on soil surface pH, which is 

therefore extremely acidic due to acid rainfall (Basto et al., 2015). The acidic soil 

supports a Festuca-Agrostis-Galium grassland, which is the most common type of 

unimproved acidic grassland community in the UK, supporting approximately 9 higher 

plant species per square metre (O’Sullivan et al., 2011). The calcareous grassland is 

located adjacent to the acidic grassland on the south western slope of Wardlow Hay Cop 

and extends to a depth of just 10cm to the limestone bedrock. The soil has a sandy loam 

texture and was a humic rendzina of the Lulsgate Complex, but is transitioning to a 
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ranker of the Wetton series due to acid deposition (Phoenix et al., 2019). This soil 

supports a species-rich Festuca-Avenula grassland comprised of a rich mixture of 

grasses, sedges, forbs and herbaceous legumes (O’Sullivan et al., 2011). Both Wardlow 

grassland soils were sampled in November 2018 as a single mass with an area of 50cm2. 

SPas 

SAra 

SPig 

Spen Farm 

(53°51'45.3"N 1°20'37.2"W) 

A 

WCal 

WAc 

Wardlow Hay Cop  

(53°15'45.0"N 1°43'59.4"W) 

B 

Figure 4.1: Aerial view of sampling sites. A: Spen Farm, Tadcaster, UK. SAra = Arable 
soil, SPas = Permanent Pasture soil, SPig = Pig pen. B: Wardlow Hay Cop, Derbyshire, 
UK. WAc = Acidic grassland, WCal = Calcareous Grassland. (Google Maps, July 2019). 
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In WAc, sampling depth was 15cm, but in WCal, sampling depth was up to 10cm due to 

the shallow nature of the soil. 

4.3.2 Sample processing  

Soils were transported to the lab and stored at 5C until processing. Soils were separated 

from the turf layer (if present) which was discarded, after which five cores of 4cm width 

and 10cm depth were taken from each soil mass. Cores for each soil were crumbled to 

pass through a 5mm sieve to remove stone and root debris, and were then mixed 

thoroughly and left to air-dry for 5 days. Once air dried, each soil was milled to a fine 

powder in a Fritsch Pulverisette Ball Mill and passed through a 2mm sieve. Subsamples 

were taken and oven-dried at 80°C for 24 hours to obtain dry weight. 

Soil pH was measured according to the method of Hendershot et al., (2008). Briefly, 

three 10g replicates of each air-dried soil was suspended in 20mL distilled water, and pH 

measured with a Jenway PHM6 pH meter after 30 minutes of intermittent stirring, 

followed by 1 hour settling time. Organic matter was estimated using the loss on ignition 

Table 4.1: Spen Farm crop history of sampled fields from 2001-2019 

Harvest 
Year 

Field 

SAra SPas SPig 

2001 Winter Wheat Pasture Spring Barley 

2002 Potato Pasture Sugar Beet 

2003 Winter Wheat Pasture Winter Wheat 

2004 Oilseed Rape Pasture Oilseed Rape 

2005 Winter Wheat Pasture Winter Wheat 

2006 Sugar Beet Pasture Peas 

2007 Winter Wheat Pasture Winter Wheat 

2008 Winter Wheat Pasture Winter Wheat 

2009 Potato Pasture Oilseed Rape 

2010 Winter Wheat Pasture Winter Wheat 

2011 Oilseed Rape Pasture Winter Wheat 

2012 Winter Wheat Pasture Potatoes 

2013 Peas Pasture Winter Wheat 

2014 Winter Wheat Pasture Peas 

2015 Winter Wheat Pasture Winter Wheat 

2016 Summer Barley Pasture Pig 

2017 Winter Barley Pasture Pig 

2018 Oilseed Rape Pasture Pig 

2019 Winter Wheat Pasture Pig 
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method (Karam, 2008). Air-dried soils were desiccated overnight in an 80°C oven, after 

which 2g was weighed into dried porcelain crucibles. Soils were then heated in a 

Carbolite AAF 1100 muffle furnace at 450°C for 4 hours. Once cool, samples were stored 

in a desiccator jar before weighing was repeated. The reduction in mass was taken as an 

approximation of the organic content of soil. For each soil, three 1g replicates of air-

dried, milled soil were extracted in 20mL of 0.25M NaOH + 0.05M EDTA, then lyophilised 

and re-ground as described in Section 3.3.2.  

4.3.3 Colorimetric Analyses 

4.3.3.1 Soil & Soil extract total phosphorus (PT)  

Soil PT and soil extract PT were measured as described in detail in Section 3.3.3.1. For 

each soil, three 30mg samples of air-dried, milled soil were digested in 1mL 

concentrated H2SO4 and oxidized with H2O2. Acid digested samples were then diluted to 

10mL with UHP water before measurement of P by molybdate blue colorimetry. For 

each of the three extracts of each soil, a single 20mg sample of dried homogenised 

extract was subject to acid digestion and measured for extract PT by molybdate 

colorimetry according to the same method. 

4.3.3.2 Colorimetric determination of extract molybdate-reactive P (MRP) & phytase-

labile P 

Due to the lower P concentration of soil extracts than those of sludge, 100mg extract 

samples were resuspended in 10mL 0.1M acetate buffer (pH 4.5). Samples were then 

split into two 5mL aliquots and measured for molybdate-reactive P and phytase-labile P 

as described in Section 3.3.3.2. 

4.3.4 Solution 31P NMR 

For solution 31P NMR spectroscopy of 0.25M NaOH + 0.05M EDTA extracts of soil, 100mg 

samples of lyophilised extracts in 1.5mL Eppendorf tubes were resuspended in 1mL of a 

mixture containing a 9:1 (v:v) of 0.5M NaOH + 0.1M EDTA, and 4mM methylene 

diphosphonate internal standard (MDP) in D2O. Tubes were vortex mixed and left for 5 

minutes, before centrifuging at 9000rpm for 5 minutes. 0.5mL of this preparation was 

then transferred to a clean 5mm NMR tube. 31P NMR spectroscopy was performed on a 

Bruker Advance 500 Spectrometer with a mag1 console (Bruker, Germany) according to 
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the parameters described in Section 3.3.4.2. The following parameters were unchanged 

for all samples: acquisition time = 0.845s; pulse width 22μs; pulse angle 90°; delay time 

= 1s; total number of scans = 16,384; pulse program = zgig. Peak integration was 

performed in Bruker Topspin 4.0.3 and calibrated to the peak area of the MDP internal 

standard. Due to the existence of a broad peak in the orthophosphate monoester 

region, to avoid overestimation, phytate was measured by integration of the first 

phytate peak (5.7-5.65ppm) which represents the phosphate group at Carbon 2 of the 

inositol ring, and lies outside of the region of this broad peak, whilst being clearly 

separated from the orthophosphate peak. The integral for this peak was multiplied by 

6, as it represents one of the six P nuclei of the phytate molecule (Turner, 2004). 

Peak areas were corrected to account for the underestimation of peak areas due to the 

necessary but insufficient relaxation delay time of 1s, according to the method 

developed by Robertson, (2018). Correction factors were calculated by running a series 

of analyses in which soil extracts from one Spen soil (SPas2) and one Wardlow soil 

(WCal3), both spiked with 10uL of 5mM phytic acid sodium salt hydrate, were analysed 

over 100 scans with delay times of 1, 2, 5, 10, 20, 30 & 40s. Integrals in each spectrum 

were then plotted over time to calculate the proportion of signal produced at 1s 

compared to that produced when P nuclei can fully relax. A single delay time analysis 

was carried out for each of the two sampling locations. SPas was used to represent Spen 

soils, and WCal was used for Wardlow soils. Due to their production of a single peak in 

the spectrum, a single integral was taken at each delay time for MDP and 

orthophosphate. For phytate, a mean integral could be calculated from the four phytate 

peaks.  

To validate 31P NMR determination using this method, three soil samples (SAra, SPas & 

WCal) were used in a spike-recovery analysis. Resuspensions of soil extracts were spiked 

with 10uL of 7.25mM (0.0725 µmol) sodium dihydrogen orthophosphate, and 5µL of 

5mM (0.15 µmol) phytic acid sodium salt dihydrate and analysed in an identical manner 

to the original un-spiked samples. Recovery was calculated as the observed increase in 

concentration over expected increase. 
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4.3.5 Statistical Analysis 

Concentrations of PT and total extractable P, and both colorimetric and 31P NMR 

measurements of orthophosphate and phytate concentrations were compared between 

soils using one-way ANOVAs. Where significant differences existed, one-way ANOVAs 

were followed by Tukey multiple comparisons tests (α=0.05). Measurements of 

orthophosphate-P and phytate-P by both techniques were compared using simple linear 

regressions. Statistical analysis was performed in GraphPad Prism v7.04 (GraphPad 

Software Inc, San Diego, USA). 
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4.4 Results 

4.4.1 Soil properties (pH and organic matter) 

Soil pH of the three Spen Farm soils was 6.94 ± 0.01, 7.1 ± 0.01 and 5.38 ± 0.01 in SAra, 

SPas & SPig respectively. In Wardlow soils, pH was measured at 4.25 ± 0.01 in WAc, and 

6.54 ± 0.01 in WCal (Table 4.2). Organic matter was markedly lower in Spen Farm soils 

than in Wardlow soils, ranging between 4.36% in SAra to 8.17% in SPig and reaching 

12.38% in SPas. In Wardlow soils, organic matter content was over double that of the 

SPas soil, at 29.57% in WCal and 35.96% in WAc (Table 4.2). 

 

4.4.2 Total Phosphorus of Soil 

There was a statistically significant difference between PT of soils measured by 

molybdate-blue colorimetry (One-way ANOVA, p<0.0001; Figure 4.2). PT of WAc was 

lowest, with an average of 728 µg P g-1, and was closely followed by SAra, which 

contained on average 765 µg P g-1. WCal and SPas contained intermediate levels of P, 

averaging at 860 µg P g-1 and 887 µg P g-1 respectively. SPig had the greatest 

concentration of PT of any of the soils studied, at 1167 µg P g-1 (Tukey multiple 

comparisons test, α=0.05; Figure 4.2). 

4.4.3 Total Extractable Phosphorus 

There was a statistically significant difference between total extractable P of 0.25M 

NaOH + 0.05M EDTA extracts of soil (One-way ANOVA, p<0.0001; Figure 4.3). Extraction 

efficiency ranged from a low of 43.9% of total soil P in SAra to a high of 60.8% in SPas 

soil. Mean extract PT was lowest in SAra at 335.6 µg P g-1 soil and increased in the order 

SAra < WAc < WCal < SPas to the greatest concentration of 612.2 µg P g-1 soil in SPig 

(Figure 4.3). 

Table 4.2: pH and organic matter content of Spen and Wardlow soils 

 Soil 

SAra SPas SPig WAc WCal 

pH 6.94 ± 0.01 7.10 ± 0.01 5.38 ± 0.01 4.25 ± 0.01 6.54 ± 0.01 

Organic 
matter (%) 

4.36 ± 
0.067 

12.383 ± 
0.155 

8.17 ± 
0.169 

35.96 ± 
0.143 

29.57 ± 
0.266 
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Figure 4.2: Soil total phosphorus concentration (µg P g-1 soil) measured by molybdate 
colorimetry. Samples are represented as individual points (n=3) with horizontal bars 
indicating mean ± SEM. Results of one-way ANOVA are inset. Significant differences 
are represented as different letters above bars (Tukey multiple comparison, α = 
0.05). 

Figure 4.3: Extract total phosphorus (µg P g-1 soil) measured by molybdate colorimetry. 
Mean extraction efficiency (%) is presented for each soil Samples are represented as 
individual points (n=3) with horizontal bars indicating mean ± SEM. Results of one-way 
ANOVA are inset. Significant differences are represented as different letters above 
bars (Tukey multiple comparison, α = 0.05). 
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4.4.4 Colorimetric measurement of MRP and phytase-labile P 

Absolute concentration of orthophosphate and phytate was measured colorimetrically 

as MRP and phytase-labile P. The difference between total extractable P and the sum of 

MRP and phytase-labile P was designated as ‘residual P’ (Figure 4.4A). There was a 

statistically significant difference between MRP concentrations in soil extracts (One-way 

ANOVA, p<0.0001). Values for MRP concentration were significantly different between 

Spen Farm soils, with absolute concentration of extractable MRP increasing from lowest 

in SAra at 210 µg P g-1 to greatest at 421 µg P g-1 in SPig (Tukey multiple comparisons 

test, α=0.05). There was no significant difference between the absolute concentration 

of MRP in WCal and WAc, which were the lowest of all soils tested at 80 and 72 µg P g-1 

of extracted soil respectively (Tukey multiple comparisons test, α=0.05; Figure 4.4A). 

There was also a significant difference between absolute concentrations of phytase-

labile P in soil extracts (One-way ANOVA, p<0.0001). Phytase-labile P was greatest in 

WAc, WCal and SPas at 149, 138 and 132 µg P g-1 extracted soil. SPig contained an 

intermediate level of 93 µg P g-1, with the lowest value of all soils found in SAra at 56 µg 

P g-1 (Tukey multiple comparisons test, α=0.05). There was also a statistically significant 

difference in residual P concentration between soils, increasing from lowest at 70 µg P 

g-1 in SAra < SPig < SPas < WAc to the highest concentration in WCal at 260 µg P g-1 (One-

way ANOVA, p<0.0001; Tukey multiple comparisons test, α=0.05; Figure 4.4A). 

There was a significant difference in the proportional contribution of MRP to total 

extractable P between all Spen Farm soils (One-way ANOVA, p<0.0001). MRP was found 

to constitute the largest P fraction in each Spen soil, increasing in the order SPas < SAra 

< SPig and making up 47, 62.6 & 68.8% of total extractable P respectively (Tukey multiple 

comparisons test, α=0.05; Figure 4.4B). There was a significant reduction in the 

proportion of MRP from Spen soils to Wardlow soils, but no significant difference was 

found between the two Wardlow soils, in which MRP constituted 16.8 and 17.3% of total 

extractable P in WAc and WCal respectively (Tukey multiple comparisons test, α=0.05). 

There was a significant difference in the proportions of phytase-labile P (One-way 

ANOVA, p<0.0001), which was greatest in WAc soil at 35.5%, decreasing through WAc > 

WCal > SPas > SAra > SPig, in which it made up 15.3% of total extractable P (Tukey 

multiple comparisons test, α=0.05; Figure 4.4B). The residual P fraction was greatest in  
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Figure 4.4: A: Mean absolute concentrations of P fractions in soils measured colorimetrically 
(µg P g-1 extracted soil ± SEM, n=3). Total extractable P is presented above each bar. B: Mean 
concentrations of P fractions in soils as a proportion of total extractable P (% ± SEM, n=3). 
Results of one-way ANOVA are shown for each P fraction. Results of Tukey multiple 
comparison test for each fraction are shown, with means to the right of bars (α = 0.05). 
Different letters indicate a significant difference between values for that P fraction. 
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Figure 4.5: Integrals of 31P NMR peaks relative to the largest of: A. MDP (Spen); B. Orthophosphate 
(Spen); C. Phytate (Spen); D. MDP (Wardlow); E. Orthophosphate (Wardlow) and F. Phytate 
(Wardlow), with increasing delay times. For MDP and Orthophosphate, relative integrals for the 
single peaks produced by each compound are presented, for phytate, the mean relative integral 
of the four phytate peaks ± SEM is presented. No error bars are present in the maximum integral 
as each replicate was set to 100. 
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WCal at 54.3% of total extractable P, which was closely followed by WAc at 47.2%. In 

Spen soils, SPas had the greatest fraction of residual P at 28.6%, with SAra and SPig 

containing 20.8 and 15.9% residual P respectively (One-way ANOVA, p<0.0001; Tukey 

multiple comparisons test, α=0.05; Figure 4.4B). 

4.4.5 31P NMR Optimisation 

Before soil NMR spectra were integrated, an optimisation procedure was undertaken to 

calculate the proportion of the total signal that is produced using a 1s delay time, 

relative to the maximum signal produced when compounds can relax fully at longer 

delay times. A spiked sample from a Spen soil and a Wardlow soil were analysed with 

100 scans at delay times of 1, 2, 5, 10, 20, 30 and 40s, and for each compound, integrals 

were measured and presented as a percentage of the largest measured according to the 

Figure 4.6: Example spectrum of spiked soil extract. Red: Sample SAra1; and Black: 
SAra1 spiked with 5µL of 5mM phytic acid sodium salt hydrate and 10µL of 7.25mM 
sodium dihydrogen orthophosphate. Integration of original and spiked sample 
enabled the calculation of percentage recovery. In total, three soil extracts (SAra, 
SPas and WCal) were spiked in this way. Mean percentage ± SD is presented in the 
figure (n=3).  
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method of Robertson, (2018) (Figure 4.5). At 1s, the MDP peak represents 87% and 75% 

of the total signal measured with delay time of 40s for Spen and Wardlow soil 

respectively (Figure 4.5, A & D). For orthophosphate, the peak produced with 1s delay 

time represents just 45% and 40% of the total potential signal for Spen and Wardlow 

soils (Figure 4.5, B & E). At 1s delay time, the phytate signal produced represents 76% 

and 77% of the total expected signal for Spen and Wardlow soil respectively (Figure 4.5, 

C & F). Spike-recovery analysis of three soils (SAra, SPas & WCal) revealed a mean 

recovery for spiked orthophosphate at 107.8 ± 5.1%, and for phytate at 94.6 ± 10.4%. 

(Figure 4.6) 

4.4.6 31P NMR Determination of Soil Orthophosphate and Phytate 

A single spectrum for each soil is presented in Figure 4.7 along with a spectrum for a 

phytic acid sodium salt hydrate standard. Spectra for all replicates are presented in 

Appendix B. In all soils, the orthophosphate peak at 6.02 - 5.85 ppm was large and well 

separated from other peaks. The four phytate peaks could be clearly seen for all extracts, 

apart from SAra where signal:noise ratio was low. In these spectra, peaks could be seen 

when intensity scale was increased for integration. In all extracts, the first phytate peak 

at 5.7 - 5.65 ppm was used for integration and multiplied by six. This is because this peak 

lies outside of the characteristic ‘humic P’ broad peak that exists in soils within the 

monoester area (Figure 4.7), meaning that the potential for overestimation is reduced. 

As well as the four characteristic phytate peaks, a large single peak was observed in all 

spectra at 3.95 - 3.85 ppm, which is tentatively identified as the stereoisomer of phytate, 

scyllo-inositol hexakisphosphate (Turner & Richardson, 2004). 

4.4.6.1 Orthophosphate-P 

There was a strong positive linear relationship between levels of orthophosphate 

measured by 31P NMR, and MRP measured colorimetrically (R2 = 0.95, p<0.0001; Figure 

4.8A). According to 31P NMR analysis of extracts, there is a significant difference in the 

absolute concentration of orthophosphate between extracts of different soils (One-way 

ANOVA, p<0.0001; Figures 4.9 & 4.10A). There was no significant difference in 

orthophosphate-P between the two Wardlow soils, which had lower concentrations 

than Spen Farm soils (Tukey multiple comparisons test, α=0.05). Within the three Spen 
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Farm soils, there was a significant difference between each of the soils, with average 

orthophosphate concentrations increasing from 253 µg P g-1  in SAra to 401 µg P g-1  in 

SPas, and peaking at 538  µg P g-1 extracted soil in SPig (Tukey multiple comparisons test, 

α=0.05; Figure 4.9 & 4.10A). As a proportion of total extractable P, there was no 

significant difference between the orthophosphate fraction in Spen soils, which made 

up between 75-88%. In Wardlow soils, the orthophosphate fraction made up 

approximately 32% of total extractable P in both WAc and WCal (Tukey multiple 

comparisons test, α=0.05; Figure 4.10B). 

Figure 4.7: Selected 31P NMR spectra of soil extracts between 6.5ppm and 2.6ppm. A 
phytate standard is included to indicate phytate peaks. Soil phytate was integrated 
using the first phytate peak, as this was at sufficient distance to avoid distortion by 
the large orthophosphate peak, and avoided the large humic peak seen in SPas, WAc 
and WCal between 5.4ppm and 4ppm. Dashed lines are overlaid to indicate baselines. 
Spectra are shown at the same intensity for each soil. SAra intensity was increased 
for peak identification. Spectra for all samples are presented in Appendix B. 
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Figure 4.8: Linear regression of A: Phosphate-P of soil extracts measured by molybdate 
colorimetry and 31P NMR; and B: Phytate-P measured colorimetrically as phytase-labile 
P and by 31P NMR. Points represent single samples. R2 and p values presented on graphs. 
Where a linear relationship exists, the equation of the regression line is presented. 
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4.4.6.2 Phytate-P 

There was no linear relationship observed between phytate-P data obtained 

colorimetrically as phytase-labile P and by 31P NMR (R2 = 0.175, p = 0.1208; Figure 4.8B). 

There was a statistically significant difference in absolute phytate concentration 

between soils according to 31P NMR analysis (One-way ANOVA; p<0.005; Figures 4.10A 

& 4.11). Phytate-P was lowest in SAra with an average phytate-P concentration of just 8 

µg P g-1 extracted soil, increasing through WCal < SPas < WAc to a greatest concentration 

of 47 µg P g-1 in SPig (Tukey multiple comparisons test, α=0.05; Figures 4.10A & 4.11). As 

a proportion of total extractable P, the phytate-P fraction was smallest in SAra at just 

2.4%. This increased from WCal < SPas < SPig to WAc, which had the greatest mean 

proportion of phytate-P at 8.7% (Tukey multiple comparisons test, α=0.05; Figure 

4.10B).  

Figure 4.9: Concentration of orthophosphate-P measured by 31P NMR of soil 
extracts, expressed as µg P g-1 dry weight of soil. Samples are represented as 
individual points (n=3) with horizontal bars indicating mean ± SEM. Results of one-
way ANOVA are inset. Significant differences are represented as different letters 
above bars (Tukey multiple comparison, α = 0.05). 
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Figure 4.10: A: Mean absolute concentrations of P fractions in soil extracts measured by 31P 
NMR (µg P g-1 extracted soil ± SEM, n=3). Total extractable P is presented above each bar. B: 
Mean concentrations of P fractions in soils as a proportion of total extractable P (% ± SEM, 
n=3). Results of one-way ANOVA are shown for each P fraction. Results of Tukey multiple 
comparison test for each fraction are shown with means to the right of bars (α = 0.05). 
Different letters indicate a significant difference between values for that P fraction. 
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4.4.6.3 Residual-P 

The residual-P fraction was calculated as the P remaining after the subtraction of 

orthophosphate-P and phytate-P from total extractable P. There was a significant 

difference in residual-P concentration between soils (One-way ANOVA, p<0.0001; Figure 

4.10A). However, there was no significant difference between the absolute residual-P of 

individual Spen soils, nor between the two Wardlow soils, but Wardlow soils were 

comprised of a significantly higher concentration of residual-P than Spen soils, at 

between 249-298 µg P g-1 extracted soil (Tukey multiple comparisons test, α=0.05). As a 

proportion of total extractable P, residual-P is lowest in SPig at 4.2%. Residual P is 

approximately 20% in SAra and SPas but comprises a much higher 60-62% of total 

extractable P in Wardlow soils (Figure 4.10B). 

 

 

 

Figure 4.11: Concentration of phytate-P measured by 31P NMR of soil extracts, 
expressed as µg P g-1 dry weight of soil. Samples are represented as individual 
points (n=3) with horizontal bars indicating mean ± SEM. Results of one-way 
ANOVA are inset. Significant differences are represented as different letters above 
bars (Tukey multiple comparison, α = 0.05). 
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4.5 Discussion  

This is the first study to use a combination of colorimetric analysis and solution 31P NMR 

to determine the concentrations and proportions of phytate and orthophosphate in a 

variety of British agricultural soils and natural acidic and calcareous grassland soils. 

Large differences in P fractions were observed between the agricultural and grassland 

soils, indicating that land-use history has a significant impact on P speciation. 

Orthophosphate was found to dominate Spen Farm soils, whereas Wardlow soils were 

instead dominated by organic P, with orthophosphate making up only 32% of 

extractable P. This likely reflects a more natural state in Wardlow soils relative to Spen 

soils, where intensive agricultural practices have disrupted natural soil P cycling. 

Application of pig manure, and a cessation in cultivation since its use as an arable soil 

seems to have caused a recovery in soil organic matter in SPig soil, accompanied by an 

increase in PT, orthophosphate and phytate concentrations. The observed differences in 

P speciation in SPig relative to SAra supports the hypothesis that phytate-P derived from 

organic inputs accumulates in soil. 

4.5.1 Soil pH & organic matter 

Within Spen Farm soils, SAra and SPas soil pH was found to be near neutral, with pH 

values of 6.94 and 7.1 respectively. The SPig soil, which had been a permanent arable 

soil prior to three successive years as a pig pen before sampling, was more acidic than 

SAra and SPas at pH 5.6. Although the SPig soil was not sampled prior to its transition 

from arable land to pig pen, the fact that this soil is appreciably more acidic than the 

nearby arable soil suggests that its conversion and resulting recipience of pig excreta 

has caused a reduction in pH of the topsoil. A similar trend was reported by de Oliveira 

et al., (2014), who found that pig slurry application reduced pH of the top layer of an 

arable soil, suggesting that this could be due to increased organic acid production from 

the biodegradation of applied organic matter. Its therefore possible that the increased 

acidity of SPig soil compared to SAra is caused by microbial degradation of the organic 

matter excreted onto SPig soils. SAra had by far the lowest organic matter content of all 

soils, at just 4.36% by mass, which is likely to be a symptom of the intensive treatment 

of the soil. The repeated growth and harvest of annual crops means that little organic 
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matter is returned to arable soil in plant residues. Frequent tillage also aerates the soil, 

increasing the rate of decomposition of organic matter, as well as disrupting aggregates 

which can expose previously inaccessible organic matter to microbial degradation 

(McLauchlan, 2006). It’s probable that the cessation of arable farming on the SPig soil 

and the resulting lack of tillage, as well input of pig excreta are the underlying causes of 

the elevated organic matter content in this soil, and it’s recovery is remarkable 

considering it has occurred over only three years. As a permanent grassland, with an 

absence of tillage and regular grazing, it is unsurprising that SPas had the greatest 

organic matter in Spen soils. 

In Wardlow soils, organic matter content was much greater, between 29.57% and 

35.96% by mass in WCal and WAc soils. In the same soils, pH was 6.54 in WCal and 4.25 

in WAc. Organic matter is much greater in these soils due to the natural state of the 

grasslands relative to Spen farm soils, with no recorded cultivation of the soil, and light 

grazing by sheep and cattle. This means there are few outputs from the soil, enabling 

the natural accumulation of soil organic matter via inputs from plant material. Such a 

stark difference in the pH of the adjacent grasslands at Wardlow is primarily due to the 

difference in soil thickness. The WCal grassland soil is a 5-10cm deep soil meaning that 

the shallow limestone bedrock has a significant influence on soil pH, whereas in the WAc 

grassland, the soil depth reaches 70cm, with the limestone bedrock having little to no 

effect on the pH in the surface layer (Basto et al., 2015). 

The availability of phosphate compounds to plants and microbes in the soil is highly 

dependent on the soil pH. The generally accepted view is that on a scale of soil pH 

between pH 3 and pH 9, there are two points of maximum P solubility at approximately 

pH 4.5 and pH 6.5 (Appendix C; Penn & Camberato, 2019). According to this model, at 

very low pH (<pH 4), much of the soil P is fixed in association with iron. Between pH 5 

and pH 6, P is predominantly fixed by aluminium, and above pH 7, P is increasingly fixed 

by calcium in the soil. P can be removed from the soil solution into the labile and non-

labile pools by a variety of mechanisms. These processes are very similar for both 

inorganic phosphates and organic phosphates like phytate, however the strength of 

phytate sorption is greater than that of the orthophosphate anion, owing to the number 

of orthophosphate moieties that are able to interact with a surface (Gerke, 2015). By 
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testing a range of inositol phosphates with varied degrees of phosphorylation, 

McKercher & Anderson, (1989) showed that sorption capacity for inositol phosphates 

increases with the number of phosphate esters bound within the compound, and 

competitive isotherm studies have further shown that phytate can competitively desorb 

phosphate bound to the soil solid phase (Berg & Joern, 2006). 

The negatively charged phosphate anion can associate with a positively charged surface 

such as those of Fe and Al oxides and hydroxides via anion exchange (Penn & Camberato, 

2019). At low pH, these surfaces have a positive charge, which decreases with increasing 

solution pH, meaning that the surface can retain less anionic phosphate. P adsorption 

can also occur with Al and Fe oxides and hydroxides, and the edges of aluminosilicate 

clay minerals via ligand exchange. Unlike anion exchange, this mechanism does not 

depend on the surface charge, and instead involves a strong covalent bond between the 

phosphate and surface metal ions, in which the phosphate moiety displaces either an 

H2O or OH- group. This mechanism is favoured at lower pH, as the surface functional 

groups tend to carry H2O groups rather than OH- groups, which are less easily displaced. 

OH- groups are also more competitive for surfaces than the phosphate anion, so with 

increasing pH and hence increasing OH- concentration, the frequency of phosphate 

ligand exchange decreases (Penn & Camberato, 2019). 

At higher pH, and in soils with appreciable concentrations of calcium, precipitation of 

calcium phosphate compounds occurs when the solution becomes saturated with 

dissolved P and Ca2+ (Penn & Camberato, 2019). At high pH, calcium phosphates are 

insoluble, and effectively remove phosphate from solution into the non-labile pool, 

rendering it unavailable for uptake until it is dissolved by a reduction in soil pH. 

Phosphates can also precipitate with Fe and Al when pH is very low, and the 

concentration of phosphates are very high. Decreased pH promotes the dissolution of 

Fe and Al oxides and hydroxides by hydrolysis resulting in free Fe3+ and Al3+ ions in 

solution which can then interact directly with phosphate to produce insoluble Fe and Al 

phosphates (Penn & Camberato, 2019). 

According to this model, in the neutral SAra and SPas soils, at pH 6.94 and 7.10 

respectively, P solubility is likely to be increasingly influenced by calcium concentration, 
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and thus phosphate and phytate may be more bound within calcium phosphates. In the 

SPig soil, at the more acidic pH 5.38, P sorption is more likely influenced by anion- and 

ligand-exchange with Fe and Al oxides and hydroxides. Interestingly, the WAc and WCal 

soils, at pH 4.36 and pH 6.54 respectively, each sit at one of the two points of maximal 

P solubility, at pH 4.5 and pH 6.5 (Penn & Camberato, 2019). However, in the Wardlow 

soils, P solubility may be further impacted by the vastly greater organic matter content. 

Orthophosphate and phytate in the soil solution bind to humic surfaces via Fe or Al 

bridging cations, and in the case of phytate, can bind very strongly due to the interaction 

of multiple phosphate groups. Over time, phytate can become incorporated into the 

humic matrix, affording it protection from mobilisation and rendering it all but non-

labile. This pool of immobilised phytate is not easily extracted with current methods, 

and is often speculated to comprise part of a so called humic peak that is often observed 

in solution 31P NMR spectra of soil samples (Doolette et al., 2010). 

4.5.2 Soil total phosphorus & extraction efficiency 

PT varied greatly between soils. Within Spen Farm soils, PT was lowest in SAra, slightly 

higher in SPas, and much higher in SPig (Figure 4.2). Within the SAra soil, it is likely that 

soil PT varies widely throughout the year, due to fertiliser inputs and uptake by intensive 

cropping. Samples were taken in the autumn of 2018, two months after the 

simultaneous sowing of a crop of Winter Wheat, and application of phosphate fertiliser 

at a rate of 63.67 kg ha-1, meaning that much of the soil P may have been absorbed by 

germinating crops. In SPas, a permanent pasture, soils receive nutrient input from 

grazing cattle and sheep, and there is colloquial evidence for an application of pig slurry 

in 2016 (Robertson, 2018). Pasture fields at Spen Farm are also mown up to twice a year 

for silage which, along with grazing, is the only significant nutrient output from the soil. 

It is unsurprising that the SPig soil had the highest levels of PT of all soils. Swine manure 

is high in P, with a PT concentrations of 10.4 mg P g-1  and 14.62 mg P g-1 measured by 

Liang et al., (2018) and Turner, (2004) respectively. Since its transition from an arable 

field to pig pen in 2016, inputs to the soil have come from this high P swine manure, 

with outputs minimised due to the low plant biomass within the pig pens, and an 

absence of harvesting. 



Chapter 4: Phytate in Soil 

 

123 
 

Of the soils measured in this study, WAc soil was found to have the lowest PT, slightly 

lower than was found in SAra soil. WCal contained more P than WAc and had 

comparable levels to SPas soil from Spen. Light grazing of the grasslands by cattle and 

sheep may present an input of P to the soil via excreta, but this is expected to be small 

and relatively similar between the two grasslands. The difference in PT concentrations 

between the adjacent grasslands may be attributed again to the soil depth, as well as 

the biomass cycling. In the WCal soil, with a shallow depth of up to 10cm, the limestone 

bedrock has a greater influence on the soil chemistry than in the WAc grassland, where 

soil depth can reach 70cm. Weathering of exposed bedrock in the WCal grassland may 

therefore lead to a slow accumulation in soil PT over time, which would have a smaller 

impact in the top layers of the WAc soil. Furthermore, WAc soils support a greater 

above-ground biomass, which will in turn lead to greater uptake of P from the soil, 

explaining the difference in PT observed. 

Extraction efficiency of soils was found to range between 43.9% and 60.8% of soil PT, 

which is a much lower recovery than was found for sludge samples in Chapter 3. 

Excluding WAc, the calcareous nature of the soils studied might explain this low rate of 

recovery. Turner et al., (2003b) reported recovery values between 12-45% of soil PT in a 

range of calcareous arable soils. In calcareous soils, P compounds can precipitate with 

calcium ions to form insoluble calcium phosphate salts. When extracted in alkaline 

solvents, such as the 0.25M NaOH + 0.05M EDTA solvent used in this work, these 

precipitates remain insoluble, meaning that they are not efficiently extracted from the 

soil. However, this doesn’t explain the low extraction efficiency from WAc soil. With 

these rates of recovery, the total extractable P concentrations ranged between a low of 

335.6 µg P g-1 of extracted soil in SAra, and high of 612.2 µg P g-1 of extracted soil in SPig 

(Figure 4.3). 

4.5.3 Soil 31P NMR optimisation 

Due to the low P concentration of soil extracts, to generate an acceptable signal to noise 

ratio in solution 31P NMR spectra, a total of 16,384 scans were performed per sample, 

meaning that a short delay time of 1s was required for acceptable analysis times. 

Correction factors were calculated for both soils to account for the underestimation of 
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peak integrals that are generated with an insufficient 1s delay time. MDP represented 

87% and 75% of the full signal in Spen (SPas) and Wardlow (WCal) soil extracts 

respectively. Orthophosphate, a smaller compound with a longer T1 time (Robertson, 

2018), represented 45% and 40% of the full signal, with phytate representing 76 and 

77% of the full signal for Spen and Wardlow soils respectively. The relative integral at 1s 

for MDP and orthophosphate is greater in Spen soil than Wardlow soil, indicating that 

in the Spen extract, molecules could relax at a slightly faster rate. It’s possible that this 

was caused by a higher concentration of paramagnetic ions (eg. Fe3+, Mn2+, Co2+ & Cu2+) 

in the Spen extract, which are known to reduce the time required for relaxation (Cade-

Menun & Liu, 2014), thereby increasing the signal at 1s delay relative to the fully relaxed 

signal. 

When analysed by 31P NMR, the recovery of orthophosphate-P and phytate-P spiked 

into soil extracts stood at 107.8 ± 5.1%, and 94.6 ± 10.4% respectively (Figure 4.6), 

showing that the 31P NMR analysis coupled with the delay time correction provides an 

accurate quantification of orthophosphate-P and phytate-P in soil extracts from both 

sampling locations.  

4.5.4 Colorimetric analysis of soil P 

According to the colorimetric data, SAra had the lowest concentration of 

orthophosphate, calculated as MRP, in the Spen Farm soil extracts, and was closely 

followed by SPas, with SPig having by far the greatest concentration. However, SPas had 

the lowest MRP as a proportion of total extractable P at 47%, with SAra and SPig extracts 

containing 62.6 and 68.8% orthophosphate-P respectively. In Wardlow soils, absolute 

concentrations of MRP were significantly lower than those of Spen Farm soils, and 

orthophosphate made up approximately 17% of total extractable P in both Wardlow 

soils (Figure 4.4 A & B). Despite the existence of a positive linear relationship between 

the colorimetric and 31P NMR data for orthophosphate, the colorimetric values were 

consistently lower than those of 31P NMR (Figure 4.8A), an issue that wasn’t observed in 

sludge extracts in Chapter 2. This discrepancy could be explained by the tendency of 

phosphate to associate with humic substances. Molybdate colorimetry measures free 

orthophosphate in solution, but some orthophosphate is bound within humic-metal 
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complexes in soil, and a proportion of this is not hydrolysed by the acidity of the 

colorimetric assay, so cannot react with ammonium molybdate in solution and hence is 

not measured colorimetrically (Turner et al., 2005a; Gerke, 2010). This leads therefore 

to an underestimation of orthophosphate-P in samples containing high levels of humic 

substances. It is telling that SAra soils showed a lower degree of underestimation than 

other soils (Figure 4.8A), as the organic matter content is lowest in this soil, meaning 

that there is a lower concentration of humic substances with which orthophosphate 

could complex. 

Colorimetric determination indicated that phytase-labile P was relatively abundant in 

soil extracts, making up between 15.3 and 24.4% of total extractable P in Spen soils, and 

28.9-35.5% in Wardlow soils. SAra had the lowest absolute concentration, followed by 

SPig, with the greatest concentration in Spen soils found in SPas with over double the 

amount of phytase-labile P of SAra. Absolute concentrations in Wardlow soils were 

similar to those found in SPas, at 138 and 149 µg P g-1 soil. However, as described in 

Chapter 3, section 3.5.4.3, the reliability of these results is questionable when compared 

to the results obtained by 31P NMR on the same extract samples, as phytate can be 

overestimated due to the tendency of phytase enzymes to catalyse the 

dephosphorylation of not only phytate, but other P compounds too (Oh et al., 2004). 

There was also no significant linear relationship between phytate concentrations 

calculated by the two methods (Figure 4.8B). Coupled with the spike-recovery data 

carried out on 31P NMR samples (Figure 4.6), this suggests that 31P NMR provides a more 

accurate and reliable method for phytate determination than phytase hydrolysis. 

However, a message that can be taken from the colorimetric data is that, proportionally, 

the pool of phytase-labile P is smaller in arable (SAra) or recently arable soils (SPig), than 

in soils with higher organic matter content, which indicates that the current or past 

intensive treatment of these soils has caused them to have a lower concentration and 

variety of P compounds than more natural grassland soils.  
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4.5.5 Solution 31P NMR analysis of soil P 

4.5.5.1 Major features of soil 31P NMR spectra 

Due to the much lower P concentration of soil, signal to noise ratio in 31P NMR spectra 

of soil extracts was lower than was observed in sludge extracts (Figure 4.7). Peaks were 

clearly visible in all spectra apart from SAra where, due to the very low phytate 

concentration, potential peaks were visible only when the intensity scale was increased. 

In SAra, a spiked sample was used to confirm the existence and identity of the phytate 

peak used for integration (Figure 4.6). For all extracts, the first phytate peak, 

representing the phosphate group at carbon-2 of the inositol ring, was used for 

integration and calculation of phytate. This overcomes the potential overestimation of 

phytate that can be caused by the existence of a broad peak underlying the 

orthophosphate monoester region of the spectra, a feature which can be clearly seen in 

SPas, WAc and WCal spectra (Figure 4.7). A broad monoester peak is commonly 

observed in 31P NMR spectra of soil extracts, and made up 14-23% of total extractable P 

in a calcareous soil studied by Doolette et al., (2010). There has been much discussion 

over the identity of the unresolved molecules that make up this broad peak, with various 

authors describing it as monoester P associated with humic compounds (Doolette et al., 

2010), large molecular weight materials (Jarosch et al., 2015) and soil organic matter 

(McLaren et al., 2014). A recent investigation of the molecular structure of the broad 

peak compounds, based on their transverse relaxation (T2) times in 31P NMR, found that 

the broad peak decayed rapidly compared to sharper peaks in the monoester region, 

indicating the presence of high molecular weight macromolecules, with which 

phosphate monoesters are associated (McLaren et al., 2019). It is notable that in the 31P 

NMR spectra of SAra and SPig, in which organic matter content is lowest due to the 

intensive treatment of the soil, this broad macromolecular peak is far less apparent than 

in the soils with higher organic matter content (Figure 4.7).  

A further notable feature of spectra for all soil extracts was the presence of a sharp peak 

at ~3.9 ppm (Figure 4.7), which was tentatively assigned to the stereoisomer of phytate, 

scyllo-inositol hexakisphosphate (scyllo-IHP), based on the peak library produced by 

(Cade-Menun, 2015). Whilst scyllo-IHP is relatively abundant in soils, and is regularly 
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identified in 31P NMR spectra, little is known about its origin and behaviour in the soil 

(Turner & Richardson, 2004). It often produces a clear strong peak in spectra as, unlike 

phytate, the chemical environment around each phosphate group is identical, meaning 

that the single scyllo-IHP peak represents all 6 phosphate groups in the molecule. 

Although scyllo-IHP concentration was not measured in this work, we can see from 

figure 4.7 that peak size is smallest in SAra, relatively similar in SPig and WCal, and 

greatest in WAc and SPas, and seems to make up a significant proportion of extractable 

P in each soil. Little is known about the origin or bioavailability of scyllo-IHP in soil, but 

evidence from phytase assays suggests that it has a degree of resistance to phytase 

hydrolysis owing to the lack of an axial phosphate group (Cosgrove, 1966). However, 

when Turner et al., (2005b) analysed scyllo-IHP in pasture soils, they found ryegrass 

growth reduced its concentration in nutrient limited soils, but increased its 

concentrations in nutrient rich soils, suggesting that under P-limitation, organisms that 

can degrade scyllo-IHP are favoured, whereas in nutrient rich soils, microbial synthesis 

of scyllo-IHP is favoured (Turner et al., 2005b). If scyllo-IHP is readily degraded by the 

phytase enzyme used in this chapter, it may also partially explain the observed 

overestimation of phytate measured as phytase-labile P. 

4.5.5.2 Spen Farm Soils 

31P NMR data showed consistently higher concentrations of orthophosphate, and lower 

levels of phytate-P than the colorimetric approach (Figure 4.10A). In Spen farm soils, 

orthophosphate constituted the majority of P in all extracts, making up between 74.6 – 

88.1% of total extractable P. Phytate concentration was lowest in SAra, making up just 

2.4% of total extractable P, with SPig containing the greatest phytate concentration in 

Spen soils, making up a proportion of total extractable P three times greater than that 

of SAra. Despite the overall low PT concentration found in arable soil, the dominance of 

orthophosphate in this soil was expected due to the intensive use of this land for 

cropping and the regular application of inorganic mineral phosphate fertiliser. In an 

analysis of soils conducted by Stutter et al., (2015), arable soils were found to contain 

an average orthophosphate-P concentration of 695 ± 328 µg P g-1, making up an average 

74% of total NaOH-EDTA extractable P. The SAra soils, containing an average of 253 µg 

orthophosphate-P g-1 are much less orthophosphate-rich, but extracts proportionally 
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contain over 75% orthophosphate-P. Whilst the soils sampled by Stutter et al., (2015) 

were sampled in spring 2008, no information is provided as to whether this was before 

or after application of P fertilisers to the soil. SAra soils were sampled in November 2018, 

following the sowing of a crop of Winter Wheat. The field had received an input of triple 

superphosphate fertiliser in early August at a rate of 63.67 kg P2O5 ha-1 (Dr. George 

Sorensen, personal communication), so the very low phosphate concentration detected 

by 31P NMR is surprising. However, with plants having grown on the fertilised soil for 

three months, there was likely to have been significant absorbance of fertiliser P by 

young plants, and there is also the possibility that phosphate had become precipitated 

in alkaline salts, which would be under-represented in alkaline extracts due to their 

insolubility. SAra contained the lowest concentration of phytate in Spen soils, at just 8 

µg P g-1, which made up just 2.4% of total extractable P. With regular harvests, and 

application of inorganic P fertilisers, there is likely to be very little input of phytate to 

arable soils from plant residue and manure, and there is no evidence for manure 

applications to this field. Further, conventional arable practices do not promote the 

persistence or accumulation of organic phosphates in soil, as tillage is known to decrease 

the organic matter content by dispersing soil aggregates and aerating the soil, 

promoting microbial degradation (McLauchlan, 2006). It’s also a possibility that, as the 

SAra soil seems so P-limited, over the fallow winter months there is a competitive 

advantage for soil microbiota that can metabolize P from organic sources due to P 

limitation, meaning that levels of organic P, including phytate may be depleted year on 

year. 

Soil total P and total extractable P were greater in SPas than SAra, and absolute 

concentrations of orthophosphate-P and phytate-P were both significantly greater than 

those of SAra. However, the proportional contributions of both orthophosphate and 

phytate were not significantly different to those of SAra, with 74.6% of total extractable 

P present as orthophosphate-P, and 6.3% present as phytate-P. In the intensive 

grassland environment of a permanent pasture field, it is perhaps surprising that organic 

P compounds do not make up a greater proportion of the total extractable P. In pasture 

soils, past work has shown the organic P fraction to dominate. Turner et al., (2003b) 

used solution 31P NMR to characterise the P speciation in 29 UK pasture soils, finding 
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that orthophosphate monoesters were the dominant P forms, constituting 29-60% of 

extractable P. In a similar study, Stutter et al., (2015) measured orthophosphate 

monoesters making up between 17-36% of extractable P in 10 intensive grassland soils 

in which orthophosphate-P made up an average of just 39% of extractable P. The greater 

presence of organic P observed in these studies is likely to result from the less intensive 

land use of these soils. An absence of regular cultivation, as well lower outputs from 

crop harvests means that organic P can more readily persist and accumulate in the soil. 

It is estimated that between 60-95% of P absorbed by plants in grazed pastures is 

returned to the soil in plant residue and animal excreta, and between 30-60% of P in 

plants exists in organic form (Condron et al., 2005). Higher organic P in the pasture soils 

mentioned above may therefore result from low output, and regular input of organic P. 

However, in this work, pasture soil was found to be dominated by orthophosphate-P, 

with just 6.3% made up of phytate-P, and 19% assigned as ‘residual’ P, which is likely to 

be comprised of unmeasured orthophosphate monoesters, diesters, polyphosphates 

and any P associated with humic macromolecules. The reason for the lower than 

expected values of organic P, and higher than expected values of orthophosphate is 

unclear, but there is colloquial evidence that SPas has received applications of pig slurry 

from the onsite pig facility at Spen in the past (Robertson, 2018). Data for the amount 

and frequency of application is not available, but pig manure is known to be highly 

concentrated in orthophosphate, with concentrations of 7272.9 µg P g-1 measured by 

Liang et al., (2018), and 11,200 µg P g-1 measured by Turner, (2004) making up 

approximately 90% of extractable P in both studies. If the pasture soil has received 

applications of pig slurry in the past, this might explain the dominance of 

orthophosphate over organic P in this soil. 

Having received a high continuous application of pig manure from its use as a pig pen, 

SPig soil unsurprisingly contains the highest concentration of total P, orthophosphate-P 

and phytate-P of all the soils analysed. With an average phytate-P concentration of 

680.7 µg P g-1, making up 8.5% of extractable P (Liang et al., 2018), pig manure is rich in 

phytate, due to their predominantly grain-based diet, and inefficient digestion by 

phytase enzymes (Abioye et al., 2014). Proportionally, SPig is dominated by 

orthophosphate-P, which makes up over 88% of extractable P, and also contains the 
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highest proportion of phytate-P of Spen soils, at the expense of the ‘residual P’ fraction. 

With P outputs from this soil reduced to a minimum due to the observed lack of plant 

biomass in the SPig field, continual inputs of orthophosphate-P and phytate-P to this 

field in pig excreta are the likely cause of this accumulation. Prior to 2016, SPig had been 

an arable field since at least 2001 (Table 4.1), but soil was unfortunately not sampled 

prior to its conversion. If SAra is considered an acceptable proxy soil for comparison, 

then in three years since pig pen conversion, SPig has seen an 82% increase in soil PT 

concentration, a 113% increase in orthophosphate-P concentration, and a near 5x 

increase in phytate-P concentration compared to SAra.  

4.5.5.3 Wardlow Soils 

The P speciation of Wardlow soils was vastly different to those of Spen Farm soils (Figure 

4.10A), but between WAc and WCal, the only significant difference observed was for soil 

total P, and total extractable P, with no significant differences observed for absolute 

concentrations or proportions of orthophosphate-P, phytate-P or residual-P. 

Orthophosphate-P concentration in these soils is lower than in Spen soils, and makes up 

approximately 32% of total extractable P. Phytate concentrations were similar in these 

soils, making up 8.7 and 5.3% of extractable P in WAc and WCal respectively. Extractable 

P is instead dominated by the ‘residual P’ fraction, which in this study is comprised of all 

soil P other than orthophosphate and phytate, so includes other orthophosphate 

monoesters, diesters, phosphonates and inorganic polyphosphates, for which specific 

concentrations were not measured. The dominance of the organic P fraction in Wardlow 

soils, which in this work is calculated as non-orthophosphate-P, is reflective of these soils 

as extensively grazed grasslands, in a more natural state than Spen Farm soils. These 

soils receive minimal P inputs from excreta, and have minimal output from grazing, so 

the majority of P cycling occurs through plant P uptake and subsequent soil 

replenishment with organic P from plant litter. Organic P in this soil is likely to be heavily 

influenced by the soil microbial population. Bünemann et al., (2012) showed that 

microbial uptake and immobilisation of P dominates P fluxes in grassland soils with low 

P inputs. The finding that extensive grassland soils contain greater concentrations of 

diester-P and polyphosphates, which are indicative of high P turnover and an active 

microbial population, supports this conclusion (Stutter et al., 2015). Despite this 
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microbial immobilisation of inorganic P, P-limited grasslands often exhibit high levels of 

biodiversity (Lambers et al., 2010), and recent work on the Wardlow calcareous 

grassland has demonstrated that co-occurring grassland plant species are able to 

acquire P from varied P sources, including diester-P (DNA), soluble orthophosphate and 

calcium bound phosphates to varying extents (Phoenix et al., in press). Although phytate 

was not analysed in this study, its relative abundance in Wardlow soils suggests that it 

may play an important role alongside the ‘residual P’ fraction in plant P-acquisition in P-

limited soils. 

4.5.6 P Accumulation of phytate in pig pen soil 

The results obtained from 31P NMR analysis of Spen soils tentatively suggest that phytate 

can accumulate in previously arable soils that receive P inputs from monogastric pig 

manure. If the P concentrations found in SAra can be assumed to be representative of 

the SPig soil prior to its conversion from permanent arable soil in 2016, then the 

cessation of intensive arable practices and application of pig manure has almost doubled 

organic matter levels, and has increased PT, orthophosphate and phytate concentrations 

by 82%, 113% and 489% respectively. Pig manure was measured by Liang et al., (2018) 

to contain a PT concentration of 10,400 µg P g-1, and orthophosphate and phytate made 

up 90.7% and 8.5% of total extractable P respectively. Whilst this total P concentration 

is lower than that found in anaerobically digested sludge in Chapter 3, the proportion of 

orthophosphate and phytate found in digested sludge, at 83.4% and 4.5% of extractable 

P, is remarkably similar to pig manure. Its therefore probable that when applied to 

arable soils, anaerobically digested sludge behaves much in the same way as pig excreta, 

increasing overall P concentrations, and increasing the proportion of phytate-P in the 

soil.  

The potential for phytate accumulation in soils is likely to be dependent on many factors, 

including abiotic stabilisation, the microbial processes of immobilisation and 

mineralisation, soil pH, organic matter content and the abundance of P sorption sites 

(Stutter et al., 2015; Dou et al., 2009). Microbial mineralisation of phytate via the 

production of exogenous phytase enzymes is promoted in response to P deficiency in 

soil (Richardson & Simpson, 2011). However, in SPig where phytate has been applied 
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alongside large concentrations of more labile orthophosphate, this microbial 

degradation may be suppressed. Furthermore, competitive isotherm studies in 

controlled conditions have shown that phytate is strongly and preferentially sorbed in 

soil compared to glucose-6-phosphate, ATP and orthophosphate, and may even 

compete with orthophosphate for sorption sites when applied in low concentrations 

(Berg & Joern, 2006). Saturation of P sorption sites by phytate in soil could culminate in 

elevated P run-off to water bodies, where it can then contribute to eutrophication (Dou 

et al., 2009). Accumulation of phytate from application of pig manure and anaerobically 

digested sludge therefore presents two problems, the first due to its potential to 

promote environmental P pollution and eutrophication, and the second, the likely 

avoidable loss of phytate-P from the agricultural P cycle due to its strong and 

irretrievable sorption to the soil. It therefore stands to reason that the elimination of 

phytate from anaerobically digested sludge amendments would be beneficial for P 

resource recovery and environmental protection, and the use of exogenous phytase 

enzymes for its dephosphorylation may be a solution. 
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4.6 Conclusions 

Overall, this work has highlighted the stark difference in soil P speciation between 

farmed soils and natural grassland soils in the UK, and that there is large variation within 

farmed soils depending on their land use history. 31P NMR analysis has revealed that 

farmed soils are dominated by inorganic orthophosphate, whereas extensively grazed 

grassland soils exhibit much greater organic matter and are instead dominated by 

organic phosphates, which may indicate greater microbial influence on soil P dynamics 

and greater soil health.  

The addition of monogastric pig manure in SPig has caused a small but significant 

recovery in soil organic matter, accompanied by an increase in PT, and concentrations 

and proportions of orthophosphate and phytate over three years since its conversion 

from arable soil, when SAra soil is used for comparison. With the similarity in P 

composition between pig manure and anaerobically digested sludge from human waste, 

it is likely that a similar accumulation would be seen in soils amended with sludge. 

Ideally, this would be confirmed with future work to assess changing P speciation in 

sludge-amended soils over a number of years. However, the evidence presented in this 

chapter strongly suggests that phytate can accumulate in amended soils, which may 

represent both wastage of valuable P resources, and an environmental risk from the 

elevated potential for runoff and eutrophication. The use of phytase enzymes could 

present an opportunity to address this problem, and the following chapter will look into 

the dephosphorylation of phytate by one such commercially available enzyme, to assess 

its potential for the breakdown of phytate in environmental samples. 
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5: Phytase-mediated liberation of phytoavailable 

phosphate from phytate in a model substrate 

 

5.1 Summary 

In order to reduce the need for inputs of unsustainable chemical P fertilisers to arable 

land, strategies to provide phytoavailable orthophosphate from stabilised P in soils and 

amendments are required. Phytate is commonly identified as the most abundant 

organic P compound in soil extracts, so is a prime candidate compound for such 

mobilisation. One approach involves the inoculation of soils and manures with phytase-

producing microbial strains, but this suffers from poor long-term persistence of 

inoculant strains. Alternatively, genetic engineering can be used to introduce or improve 

phytase exudation from the roots of plants. While this approach has had some recent 

success, there remain legislative and social barriers to the use of transgenic crops in food 

production. Microbial phytase enzymes are now produced on a commercial scale for use 

as supplements in the diets of monogastric livestock, but their application as potential 

bio-fertilisers is not well-studied. 

In this chapter, the performance of a commercially produced, microbially-derived 

phytase enzyme was assessed for its use in the dephosphorylation of phytate and 

provision of phytoavailable orthophosphate to plants grown in model substrates. Due 

to the tendency of phytase activity to be lost in soils due to the adsorption of both 

phytate and phytase to the soil solid phase, enzyme performance was assessed in two 

substrates, one containing a mixture of sand and peat, and one with a higher adsorption 

capacity containing clay, sand and peat. Overall, no consistent evidence was found to 

support the hypothesis that the treatment of phytate-fertilised substrates with phytase 

would result in phytate dephosphorylation, provision of phytoavailable P to plants, and 

improved plant performance. This was the case in both substrates, indicating that 

phytase activity was lost in both substrates regardless of clay content, most likely due 

to the adsorption of both phytate and phytase to the substrate solid phase. 
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5.2 Introduction 

5.2.1 Phytate dephosphorylation by phytases in environmental samples 

Anaerobic digestion of sewage sludge is purported to lead to mineralisation of key 

nutrients, such as N and P, making them bio-available as potential fertilisers. In contrast 

to this received wisdom, it was shown in in Chapter 3 that phytate is still present in the 

anaerobically digested sludge that is commonly spread to arable land. Phytate applied 

to the soil in such organic amendments may become preferentially stabilised due to its 

high charge density and is often identified in soil extracts as the most abundant organic 

P compound (Jørgensen et al., 2015). Moreover, the prior use of land for rearing 

monogastric animals can generate high residual levels of soil phytate, for example in pig 

pens (Chapter 4). Consequently, it is now clear that phytate concentration in the soil can 

depend on land-use history. As part of a future sustainable and efficient model for the 

use of limited P resources, there will be a need for strategies that enable the 

mobilisation and mineralisation of P from stabilised phytate in the soil, in order to 

reduce the use of unsustainable chemical P fertilisers.  

Some approaches have attempted to increase the ability of a soil to mineralise phytate-

P via inoculation of manure or soil with phytase-producing microbes, and commercial 

bioinoculants designed to exploit soil legacy P are already in existence (Owen et al., 

2015). Menezes-Blackburn et al., (2016) inoculated cattle manure with a phytase-

producing Bacillus species, and found that inoculated manure had a greater 

concentration of inorganic orthophosphate than uninoculated manures. However, the 

survival of bio-inoculants is a major obstacle to their widespread use. Whilst inoculation 

can provide an initial abundance of beneficial microbes, they often have poor survival 

and are outcompeted by the native soil microorganisms (Martínez-Viveros et al., 2010; 

Menezes-Blackburn et al., 2017). This was observed in the above cattle manure study of 

Menezes-Blackburn et al., (2016), in which the prevalence of their Bacillus sp. inoculum 

decreased over the six day incubation due to competition with the natural manure 

microbiota. 

An alternative to microbial inoculants is the enhancement of crops for increased phytase 

exudation from roots. Most plants have intrinsic P mobilising traits, but there is an 
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assumption within the literature that in modern crops, these traits have become either 

insufficiently expressed or even lost due to the successive breeding of crops in high 

nutrient environments with the application of fertilisers (Menezes-Blackburn et al., 

2017). Studies such as that by George et al., (2005b), in which Nicotiana tabacum plants 

were genetically modified to express Aspergillus niger phytase, have had some success. 

In this study, transgenic plants were found to accumulate 3.7-fold more P than wildtype 

controls when grown on sterile agar. This effect was lost when plants were grown on P-

deficient soil, but was regained somewhat when soils were amended with phytate, 

indicating that a limiting factor is the availability of phytate as a substrate for the enzyme 

(George et al., 2005b). Since then, with increased understanding of rhizosphere 

biochemistry has come an appreciation of the role of low molecular weight (LMW) 

organic acids such as citrate, which are exuded by both plants and microbes to mobilise 

phytate that has become adsorbed within the soil by occupying soil sorption sites 

(Richardson et al., 2009). Recent work has shown that N. tabacum plants engineered to 

express both phytase and citrate exudation accumulated more P from a P-limited soil 

than plants expressing either alone (Giles et al., 2017). Despite the promise of this 

approach, there remains large legislative and societal obstacles to the use of genetically 

modified crops, particularly in Europe, and wider collaborations between academia and 

social and political scientists will be required to overcome these before they can be 

widely adopted (Menezes-Blackburn et al., 2017; Horton et al., 2017). 

Microbial phytase enzymes have been isolated and are commonly produced 

commercially for use as supplements to aid phytate digestion in the grain-based diets of 

monogastric livestock (Jorquera et al., 2008). Despite their widespread availability, there 

has been relatively little work investigating their activity when applied to organic 

matrices such as manure and soil. Menezes-Blackburn et al., (2014) found that 

amending soil with a cattle manure treated with a stabilised feed-additive phytase 

enzyme resulted in a significant increase in soil phytoavailable P, and increased plant P 

concentrations by 39%. Similarly, Gujar et al., (2013) found that when added to a 

phytate-amended soil, A. niger phytase supplementation reduced soil phytate content 

by 30%, and simultaneously increased phytoavailable phosphate levels by 1.18%. 

However, the addition of enzymes directly to the soil can result in their rapid 
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immobilisation via adsorption to soil solid phase constituents such as clays, metals and 

metal oxides, which when coupled with the tendency of phytate to similarly adsorb, can 

result in a rapid loss of enzyme activity (George et al., 2005a).  

5.2.2 Aims and Objectives 

Microbial phytase enzymes are widely commercially available, yet are under-studied 

with respect to their ability for use as a biofertilizer in crop production. The aim of this 

chapter was therefore to assess the performance of a commercially available microbially 

derived feed-supplement phytase enzyme for the provision of phytoavailable phosphate 

from phytate in model substrates with varied adsorptive capacities. To test whether the 

performance of the enzyme was affected by adsorption to the substrate solid phase, 

two substrates were used, the first containing a mixture of 50% quartz sand and 50% 

peat, and the second with an increased sorption capacity containing 40% quartz sand, 

10% bentonite clay, and 50% peat. Spring onion plants were treated with a nutrient 

solution containing either no P, orthophosphate-P or phytate-P, with half in each 

treatment provided with a dose of phytase enzyme following fertilisation. Plants were 

then analysed for total biomass, total P uptake and P concentration, and substrates 

analysed for both total and phytoavailable P following harvest. 

P treatment was expected to have a major effect on overall plant performance, with 

plants treated with phosphate showing the greatest P uptake, concentration and 

biomass, and those receiving no P having the lowest P uptake, concentration and 

biomass, and there was expected to be no effect of the phytase enzyme within these 

treatments. Clay content in the substrate could also have an overall effect on plant 

performance due to the tendency of P to adsorb to clay surfaces, so plants in the 10% 

clay substrate were considered likely to show a lower P uptake, P concentration and 

biomass compared to those in 0% clay substrate. Within phytate-treated plants, it was 

hypothesised that the application of phytase would cause a degree of phytate 

dephosphorylation in the non-clay substrate, resulting in increased biomass, total P 

uptake, and P concentration in plants, along with an increase in phytoavailable P in the 

substrate compared to plants receiving no phytase. It was postulated that this increased 

P uptake from the soil could result in decreased substrate PT compared to substrates 
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receiving no enzyme, as phytate-P cannot be absorbed by plants without prior 

dephosphorylation.  Any effect of the enzyme in 0% clay substrate was expected to be 

depressed or absent in the 10% clay substrate, in which greater adsorption of both 

phytate and phytase would result in the loss of enzyme activity.  
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5.3 Methods 

5.3.1 Experimental set-up 

A fully factorial greenhouse experiment was designed to test ability of a commercial 

phytase enzyme for liberating phosphate from phytate spiked in a model soil substrate, 

and to test whether substrate clay content might affect this. Spring onion plants were 

grown in 150cm3 of one of two substrates (Figure 5.1). The first substrate (‘0% Clay’) 

contained (by volume) 50% Irish Peat Moss and 50% quartz sand, and the second 

substrate (‘10% Clay’) contained 50% Irish Peat Moss, 40% quartz sand, and 10% 

Bentonite clay (Honeywell Fluka) by volume. Substrates were balanced by mass of the 

organic Irish peat moss fraction but differed in total dry mass equivalent. 150cm3 of ‘0% 

Clay’ contained approximately 127.5g substrate (dry mass per pot), whereas 150cm3 of 

‘10% Clay’ contained approximately 107g (dry mass per pot) owing to clay having a lower 

mass than the sand it replaced. Nutrient content is expressed as mass per pot, rather 

than mass per gram of substrate. The two substrates were tested for available P 

concentration (See Section 5.5.3) prior to seedling transplant. ‘0% Clay’ contained a total 

of 1034µg of phytoavailable P per pot, and ‘10% Clay’ contained 1511µg of 

phytoavailable P per pot, indicating that the bentonite clay contained a phosphate 

impurity. To balance available P budgets in the experiment, pots containing ‘0% Clay’ 

Figure 5.1: Schematic diagram of the experimental set up. Plant in two clay treatments were 
treated with one of three phosphorus treatments. Within each phosphorus treatment, half of 
plants were treated with phytase enzyme, half were not. 
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received 477 µg P per pot as 19.1mL of 25 µg P mL-1 sodium dihydrogen orthophosphate, 

and were left for 5 days prior to receiving transplanted seedlings. 

Spring onion seeds (var. White Lisbon; Mr Fothergills Seeds, UK) were sown in 100% Irish 

peat moss at a depth of 1.5cm. 7 days after first germination, the sixty strongest 

seedlings were transplanted equally into 60 individual pots containing either substrate. 

Plants were watered with UHP water every 2-3 days as required. One week following 

transplantation, to promote P limitation, pots were each provided with 20mL of a 

modified nitrogen (N) and potassium (K)-rich Hoagland’s nutrient solution containing no 

P (No P; Table 5.1). All nutrient solutions were adjusted to pH 4.5 via the dropwise 

addition of 1M H2SO4.  

Plants were grown in a greenhouse chamber at the Arthur Willis Environment Centre, 

University of Sheffield, with a 16-hour day length, daytime temperature of 20°C and 

night-time temperature of 15°C. 42 days following germination, plants in each substrate 

were split into three sub-groups according to the nutrient treatment they were to 

receive (Figure 5.1). Nutrient treatments consisted of three modified Hoagland’s 

solutions (No P (negative control), phosphate-P (positive control) and phytate-P; Table 

5.1). Each nutrient solution was balanced for NPK with a molar ratio of 15:3:8, apart 

from No-P which was 15:0:8. 20mL of No P contained 0 µg P, phosphate-P contained 

1858 µg P as sodium dihydrogen orthophosphate, and phytate-P contained 1858 µg of 

phytase-labile P as phytic acid dipotassium salt (Santa Cruz Biotechnology, Germany; 

Table 5.1). As phytate dephosphorylation by the enzyme is incomplete, releasing 5 of 

the 6 phosphate groups, and giving a final product of myo-inositol monophosphate, 

phytate concentration was increased in order to balance the phytase-labile P in 

‘phytate-P’ with the phytoavailable orthophosphate in ‘phosphate-P’ solution. Pots each 

received 20mL of their respective nutrient solution at 42 days and were left for three 

days before the addition of enzyme treatments.  Substrate pH was measured in pots of 

surplus substrate without plants, which had been treated in an identical manner to the 

experimental substrates. pH was measured following nutrient treatment, according to 

the method outlined in Chapter 4, section 4.2.2 (Hendershot et al., 2008). pH of 0% clay 

was measured at pH 4.25 ± 0.01, and pH of 10% clay was measured at pH 4.93 ± 0.01. 
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Half the pots within each P-treatment group in each substrate then received 20mL of 50 

FTU mL-1 phytase enzyme (Ronozyme HiPhos, DSM Nutritional Products, Switzerland) or 

20mL of denatured enzyme at the same concentration. Enzyme was denatured by 

autoclaving in a Prestige 2100 Benchtop autoclave with an 11 minute hold cycle at 121°C 

under 15psi of pressure. The enzyme is a commercially produced Citrobacter braakki 

phytase expressed in Aspergillus oryzae and is used as a feed additive for monogastric 

livestock under the name RONOZYME HiPhos (DSM Agricultural Products, Switzerland). 

C. braakii is an enterobacterium, with the enzyme having a broad activity over the range 

of pH 2 – 6 (Brejnholt et al., 2011; Lichtenberg et al., 2011), but an optimal range of at 

least 80% optimal activity between pH 3 and pH 4.5 (Menezes-Blackburn et al., 2015).  

 

 

Table 5.1: Modified Hoagland’s nutrient solutions for plant phosphorus treatments. All 
solutions contained 1mL L-1 of micronutrient solution providing 0.5ppm Boron, 0.5ppm 
Manganese, 0.05ppm Zinc, 0.02ppm Copper & 0.01ppm Molybdenum 

Treatment Macronutrient 
salt  

Concentration 
(g L-1) 

Nitrogen 
(µg 20mL-1) 

Phosphorus 
(µg 20 mL-1) 

Potassium 
(µg 20 mL-1) 

 
 

No P 
Molar ratio: 

15:0:8 
 
  

KNO3   0.505 1401 - 3910 

Ca(NO3)2 0.820 2801 - - 

KCl 0.224 - - 2346 

MgSO4 0.241 - - - 

 Total: 4202 0 6256 

 
 

Phosphate-P 
Molar ratio: 

15:3:8 
  

KNO3 0.505 1401 - 3910 

Ca(NO3)2 0.820 2801 - - 

KH2PO4 0.408 - 1858 2346 

MgSO4 0.241 - - - 

 Total: 4202 1858 6256 

 
 

Phytate-P 
Molar ratio: 

15:3:8 
 
  

KNO3 0.505 1401 - 3910 

Ca(NO3)2 0.820 2801 - - 

KCl 0.134 - - 1408 

MgSO4 0.241 - - - 

K2-Phytate 0.442 - 1858 938 

 Total: 4202 1858 6256 
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5.3.2 Sample Processing 

Plants were grown for 14 days following enzyme treatment before harvest. Plants were 

harvested by separating shoots from roots at the base of the bulb. Roots were then 

separated from the substrate over a 5mm sieve and washed clean. Roots and shoots 

were placed in individual paper envelopes and dried at 80°C for 3 days. Dried root and 

shoot samples were weighed, then placed into 2mL extraction tubes with a small ball-

bearing for homogenisation. Milling of samples was performed on a QUIAGEN 

TissueLyser for 5 minutes. 

Substrates were placed in tinfoil vessels and placed in a fume cupboard for 5 days to air-

dry. Once dried, substrates were weighed and milled to pass a 2mm sieve in a Fritsch 

Pulverisette Ball Mill. A 1g subsample of each milled substrate was dried at 80°C for 3 

days to determine the residual moisture content of air-dried substrates.  

5.5.3 Sample Analysis 

Air-dried milled root and shoot samples and final substrates were subject to acid 

digestion and total P determination using a modified version of the Murphy & Riley, 

(1962) molybdate blue colorimetric assay as described in Chapter 3, section 3.3.3. For 

root and shoot samples, due to the high P concentration in plant tissue, just 20mg of 

milled sample was digested in 1mL of concentrated H2SO4 and H2O2, followed by P 

determination. 

Sodium bicarbonate extractable P was calculated both before the experiment and after 

as a measure of substrate available P according to the method of Olsen et al., (1954). 1g 

samples of air-dried substrate were extracted for 30 minutes in 20mL of 0.5M NaHCO3 

adjusted to pH 8.5 on a reciprocating shaker at 120 strokes per minute. Extracts were 

then filtered through Whatman No. 40 filter paper into clean 50mL falcon tubes. 

Phosphorus content of the extracts was determined using a modified version of the 

molybdate blue colorimetric assay (Murphy & Riley, 1962). For each sample, a 4mL 

cuvette was prepared containing 0.5mL extract, 0.5mL developer solution containing 

ammonium molybdate antimony potassium tartrate in 2M H2SO4, 0.2mL of 0.1M L-

ascorbic acid, and 2.6mL UHP. Absorbance was measured after 40 minutes at 882nm on 

a Cecil CE 1020 spectrophotometer. Blank cuvettes were prepared alongside samples in 
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which 0.1M L-ascorbic acid was replaced with UHP. Absorbance was again measured at 

882nm after 40 minutes to measure the contribution of the extract colour to the 

absorbance reading. 

5.3.4 Statistical analyses  

The effect of clay content, P treatment and enzyme treatment on the measured 

variables of plant biomass, total plant P uptake, plant P concentration, substrate 

phytoavailable P and substrate total P was investigated using three-way ANOVAs (α = 

0.05). A series of two-way ANOVAs were then run on the phytate-treated samples to 

test for an effect of, or interaction between, clay treatment and phytase treatment. 

Finally, in each substrate, the single effect of enzyme addition on phytate-treated plants 

was assessed using unpaired students t-tests (α = 0.05). Statistical analyses were 

performed in SPSS Statistics v.23 (IBM Corp, Armonk, USA). Figures were produced in 

GraphPad Prism 7.04 (GraphPad Software Inc, San Diego, USA). 
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5.4 Results 

5.4.1 Plant Biomass 

Clay treatment was the only factor to have a significant effect on overall plant biomass, 

with plants grown in 10% clay substrate having a significantly greater biomass at harvest 

than those grown in 0% clay substrate. There was no significant effect of P treatment or 

enzyme treatment, and no two-way or three-way interactions between treatments 

(Three-way ANOVA; α = 0.05; Figure 5.2; Table 5.2). In phytate-treated plants alone, 

there was a significant effect of clay treatment on plant biomass, but no independent 

significant effect of enzyme treatment. However, there was a significant interaction 

between clay and enzyme treatment (Two-way ANOVA, α = 0.05; Table 5.3A). Students 

t-tests revealed that there was no significant difference between biomass of phytate 

treated plants in 0% clay, but in 10% clay, phytate-treated plants that received no 

enzyme treatment had a greater biomass than those that received phytase (Unpaired t-

test, p < 0.05; Figure 5.2). 

5.4.2 Total Plant P uptake 

There was a statistically significant effect of P treatment on total plant P uptake, with 

plants that received P in the form of inorganic orthophosphate exhibiting the greatest 

uptake in both clay treatments (Figure 5.3, Table 5.4). There was also a significant effect 

of clay treatment on P uptake, and a two-way interaction between the two factors. In 

0% clay substrate, plants receiving ‘No P’ contained more P than those grown in 10% 

clay. Plants receiving phosphate-P contained similar amounts of P in both clay 

treatments, but plants receiving phytate-P absorbed more P when grown in 0% clay 

substrate than in 10% clay substrate. There was no overall significant effect of enzyme 

treatment on total absorbed P, as well as no two-way interactions involving enzyme 

treatment. No three-way interaction between treatments was present. (Three-way 

ANOVA; α = 0.05; Figure 5.3; Table 5.4). In phytate-treated plants, there was a significant 

effect of clay treatment on total plant P uptake, but no significant effect of enzyme, and 

no two-way clay-enzyme interaction (Two-way ANOVA, α = 0.05; Table 5.3B). This was 

confirmed by unpaired student t-tests in phytate-treated plants in each substrate, which  
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Figure 5.2: The effect of clay content, phosphorus treatment and enzyme addition on final 
plant biomass. The results of a three-way ANOVA to test the effect of treatments and their 
interactions is presented in Table 5.2. Points represent individual plants (n = 4-5). Horizontal 
lines represent means ± SEM. The results of unpaired t-tests for phytate-treated plants with 
and without enzyme in each substrate are shown above phytate columns, (n.s) = not 
significant, (*) = significant at p < 0.05. 

Table 5.2: Results of three-way ANOVA for final plant biomass 

Source Type III Sum of 
Squares 

df Mean 
Square 

F p value 

Clay 0.420 1 0.420 64.406 <0.001* 

Phosphorus 0.004 2 0.002 0.320 0.728 

Enzyme 0.015 1 0.015 2.336 0.134 

Clay × Phosphorus 0.015 2 0.007 1.146 0.328 

Clay × Enzyme 0.019 1 0.019 2.903 0.096 

Phosphorus × Enzyme 0.004 2 0.002 0.297 0.745 

Clay × Phosphorus × Enzyme 0.031 2 0.016 2.383 0.104 

Residual 0.280 43 0.007 
  

Total 8.704 55 
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revealed no significant difference in total plant P uptake between plants that received 

enzyme and those that did not (Unpaired t-test, p > 0.05; Figure 5.3). 

5.4.3 Plant P Concentration 

Clay treatment had a significant effect on plant P concentration, with plants grown in 

10% clay having a lower P concentration than those grown in 0% clay. Phosphorus 

treatment also had a significant effect, with plants receiving P as orthophosphate having 

the greatest P concentrations within each clay treatment. There was no significant effect 

of enzyme treatment, and no two-way or three-way interaction between treatments 

(Three-way ANOVA; α = 0.05; Figure 5.4; Table 5.5). Within the phytate-treated plants, 

there was a significant effect of clay on plant P concentration, but again no significant 

effect of enzyme, and no two-way interaction (Two-way ANOVA, α = 0.05; Table 5.3C). 

However, an unpaired t-test revealed that there was a significant  

Table 5.3: Results of two-way ANOVA for measured parameters in phytate-treated plants. 
Significant factors or interactions are highlighted with an asterisk (*), α=0.050. 

 Source Type III Sum 
of Squares 

df Mean Square F p value 

A 
Plant Biomass 

Clay 0.079 1 0.079 12.920 <0.050* 
Enzyme 0.014 1 0.014 2.330 0.148 
Clay × 
Enzyme 0.037 1 0.037 5.998 <0.050* 
Residual 0.091 15 0.006   

B 
Plant P 
Uptake 

Clay 1.538 × 106 1 1.538 × 106 60.760 <0.001* 
Enzyme 4.68 × 102 1 4.68 × 102 0.018 0.894 
Clay × 
Enzyme 1.535 × 103 1 1.535 × 103 0.067 0.809 
Residual 3.797 × 105 15 2.531 × 104   

C 
Plant P 
Concentration 

Clay 3.271 × 107 1 3.271 × 107 109.800 <0.001* 
Enzyme 1.462 × 104 1 1.462 × 104 0.049 0.828 
Clay × 
Enzyme 1.090 × 106 1 1.090 × 106 3.661 0.075 
Residual 4.468 × 106 15 2.979 × 105   

D 
Substrate  
phyto-
available P 

Clay 1.936 × 105 1 1.936 × 105 20.930 <0.001* 
Enzyme 3.476 × 104 1 3.476 × 104 3.757 0.072 
Clay × 
Enzyme 6.377 × 103 1 6.377 × 103 0.689 0.419 
Residual 1.387 × 105 15 9.251 × 103   

E 
Substrate 
Total 
Phosphorus 

Clay 2.108 × 106 1 2.108 × 106 7.615 <0.050* 

Enzyme 1.807 × 106  1 1.807 × 106  6.528 <0.050* 

Clay × 
Enzyme 2.656 × 103 1 2.656 × 103 

 
0.010 

 
0.923 

Residual 4.153 × 106 15 2.769 × 105   
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Table 5.4: Results of three-way ANOVA for total plant P uptake. Significant factors or 
interactions are highlighted with an asterisk (*), α=0.050. 

Source Type III Sum of 
Squares 

df Mean Square F p value 

Clay 1.677 × 106 1 1.677 × 106 37.043 <0.001* 

Phosphorus 4.484 × 106 2 2.242 × 106 49.503 <0.001* 

Enzyme 2.038 × 103 1 2.038 × 103 0.045 0.833 

Clay × Phosphorus 4.670 × 105 2 2.335 × 105 5.156 <0.050* 

Clay × Enzyme 5.853 × 102 1 5.853 × 102 0.013 0.910 

Phosphorus × Enzyme 3.597 × 103 2 1.798 × 103 0.040 0.961 

Clay × Phosphorus × 
Enzyme 

7.159 × 104 2 3.579 × 104 0.790 0.460 

Error 1.947 × 106 43 4.529 × 104 
  

Total 7.886 × 107 55 
   

 

Figure 5.3: The effect of clay content, phosphorus treatment and enzyme addition on total 
plant P uptake. The results of a three-way ANOVA to test the effect of treatments and their 
interactions is presented in Table 5.4. Points represent individual plants (n = 4-5). Horizontal 
lines represent means ± SEM. The results of unpaired t-tests for phytate-treated plants with 
and without enzyme in each substrate are shown above phytate columns, (n.s) = not 
significant, (*) = significant at p < 0.05. 
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Table 5.5: Results of three-way ANOVA for plant P concentration. Significant factors or 
interactions are highlighted with an asterisk (*), α=0.05. 

Source Type III Sum 
of Squares 

df Mean Square F p value 

Clay 9.167 × 107 1 9.167 × 107 254.778 <0.001* 

Phosphorus 2.782 × 107 2 1.391 × 107 38.667 <0.001* 

Enzyme 1.289 × 105 1 1.289 × 105 0.358 0.553 

Clay × Phosphorus 1.989 × 104 2 9.947 × 103 0.028 0.973 

Clay × Enzyme 1.062 × 106 1 1.062 × 106 2.953 0.093 

Phosphorus × Enzyme 1.368 × 105 2 6.845 × 104 0.190 0.827 

Clay × Phosphorus × 
Enzyme 

3.971 × 105 2 1.986 × 105 0.552 0.580 

Error 1.547 × 107 43 3.598 × 105 
  

Total 7.454 × 108 55 
   

 

Figure 5.4: The effect of clay content, phosphorus treatment and enzyme addition on plant 
P concentration. The results of a three-way ANOVA to test the effect of treatments and their 
interactions is presented in Table 5.5. Points represent individual plants (n = 4-5). Horizontal 
lines represent means ± SEM. The results of unpaired t-tests for phytate-treated plants with 
and without enzyme in each substrate are shown above phytate columns, (n.s) = not 
significant, (*) = significant at p < 0.05. 
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Figure 5.5: The effect of clay content, phosphorus treatment and enzyme addition on 
substrate phytoavailable P. The results of a three-way ANOVA to test the effect of treatments 
and their interactions is presented in Table 5.6. Points represent individual plants (n = 4-5). 
Horizontal lines represent means ± SEM. The results of unpaired t-tests for phytate-treated 
plants with and without enzyme in each substrate are shown above phytate columns, (n.s) = 
not significant, (*) = significant at p < 0.05. 

Table 5.6: Results of three-way ANOVA for substrate phytoavailable P. Significant factors 
or interactions are highlighted with an asterisk (*), α=0.05. 

Source Type III Sum 
of Squares 

df Mean Square F p value 

Clay 6.308 × 105 1 6.308 × 105 45.979 <0.001* 

Phosphorus 4.322 × 106 2 2.161 × 106 157.511 <0.001* 

Enzyme 3.049 × 104 1 3.049 × 104 2.222 0.143 

Clay × Phosphorus 1.278 × 104 2 6.388 × 103 0.466 0.631 

Clay × Enzyme 2.251 × 102 1 2.251 × 102 0.016 0.899 

Phosphorus × Enzyme 3.489 × 104 2 1.745 × 104 1.272 0.291 

Clay × Phosphorus × Enzyme 6.005 × 104 2 3.002 × 104 2.189 0.124 

Error 5.899 × 105 43 1.372 × 104     

Total 3.569 × 107 55       
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difference between phytate treated plants in 10% clay substrate, with plants receiving 

enzyme having a greater P concentration than those without enzyme (Unpaired t-test, 

p < 0.05; Figure 5.4), though this effect was not mirrored in the 0% clay substrate (Figure 

5.4).   

5.4.4 Substrate phytoavailable P 

Clay treatment had a statistically significant effect on substrate bicarbonate-extractable 

(phytoavailable) P, with phytoavailable P slightly lower in 10% clay substrate than in 0% 

clay substrate. Phosphorus treatment also had a significant effect on phytoavailable P, 

with substrates receiving phosphate-P containing more phytoavailable P than those 

receiving either no P or phytate-P. There was no significant interaction between clay and 

P treatment, with no difference in the effect of P treatment between the two clay 

treatments. Furthermore, there was no significant effect of enzyme treatment on 

substrate phytoavailable P, and no significant two-way or three-way interactions 

between treatments (Three-way ANOVA; α = 0.05; Figure 5.5; Table 5.6). In phytate-

treated pots, only clay had a significant effect on substrate phytoavailable P, with no 

effect of enzyme treatment, and no two-way interaction (Two-way ANOVA, α = 0.05; 

Table 5.3D). This was confirmed in unpaired t-tests, which showed there was no 

significant difference in phytoavailable P in phytate-treated substrates that received 

enzyme or no enzyme.  

5.4.5 Substrate total P 

Clay treatment had a significant effect on final substrate PT, with PT greater overall in 

10% clay substrates. As mentioned in section 5.3.1, PT of substrates was greater in 10% 

clay owing to a P impurity in the clay. However, substrates were balanced for 

phytoavailable P rather than total P content, so this clay effect is to be expected. 

Phosphorus treatment also had a significant effect on substrate PT, with substrates 

receiving P in either phosphate or phytate form having greater PT than substrates 

receiving no P, which is to be expected. Overall, no significant effect of enzyme addition 

was found, and again, no significant two-way or three-way interactions between 

treatments were found for substrate PT (Three-way ANOVA; α = 0.05; Figure 5.6; Table 

5.7). Within the phytate treated plants, there was a significant effect of clay treatment 

and enzyme treatment on substrate PT, but no interaction  
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Table 5.7: Results of three-way ANOVA for substrate total P. Significant factors or 
interactions are highlighted with an asterisk (*), α=0.05. 

Source Type III Sum of 
Squares 

df Mean Square F p value 

Clay 1.208 × 107 1 1.208 × 107 23.590 <0.001* 

Phosphorus 1.831 × 107 2 9.157 × 106 17.888 <0.001* 
Enzyme 3.366 × 105 1 3.366 × 105 0.658 0.422 
Clay × Phosphorus 1.041 × 106 2 5.206 × 105 1.017 0.370 
Clay × Enzyme 7.475 × 104 1 7.475 × 104 0.146 0.704 
Phosphorus × 
Enzyme 1.608 × 106 2 8.039 × 105 1.570 0.220 

Clay × Phosphorus × 
Enzyme 3.570 × 105 2 1.785 × 107 0.349 0.708 

Error 2.201 × 107 43 5.119 × 105     

Total 3.731 × 109 55       
 

Figure 5.6: The effect of clay content, phosphorus treatment and enzyme addition on 
substrate total P. The results of a three-way ANOVA to test the effect of treatments and their 
interactions is presented in Table 5.7. Points represent individual plants (n = 4-5). Horizontal 
lines represent means ± SEM. The results of unpaired t-tests for phytate-treated plants with 
and without enzyme in each substrate are shown above phytate columns, (n.s) = not 
significant, (*) = significant at p < 0.05. 



Chapter 5: Phytase-mediated liberation of phytate-P 

 

153 
 

between these factors (Table 5.3). From Figure 5.6, there appears to be a trend in 

phytate-treated plants in both substrates whereby PT of enzyme-treated substrate is 

greater than non-enzyme substrate. However, unpaired t-tests suggest that these 

differences are not significant (Figure 5.6, p > 0.05). 
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5.5 Discussion 

This experiment is the first to attempt to investigate the application of a commercially 

available phytase enzyme for the mobilisation of phytate-P in controlled artificial soil 

substrates with varying clay content. Overall, it was found that both clay content and P 

fertiliser had a major effect on plant growth over all treatments, however any effect of 

phytase treatment was inconsistent. 

Phytase treatment was only expected to have an effect in plants treated with phytate. 

Within phytate-fertilised plants, whilst some significant effects of enzyme were found, 

these are generally inconsistent and do not support the hypothesis that phytase 

application would result in phytate dephosphorylation. Instead, it is possible that both 

phytate and phytase have become adsorbed within the substrate, resulting in a lack of 

phytase activity and phosphate liberation in either clay treatment.  

5.5.1 Overall effects of clay, phosphorus and enzyme treatments 

A series of three-way ANOVAs were used to look at the overall effects of clay, P and 

enzyme treatments on plant performance parameters and substrate P. The only factors 

to have a significant effect on overall plant performance were clay treatment and P 

treatments. Plants grown in 10% clay substrate had a greater overall biomass than those 

grown on 0% clay substrate (Figure 5.2). Concurrently, clay treatment had a significant 

effect on plant total P uptake, with plants in 10% clay absorbing a slightly lower amount 

of P than those in 0% clay across all treatments (Figure 5.3). This resulted in plants grown 

in 10% clay having a substantially lower P concentration in their biomass than those in 

0% clay.  

The substrates were balanced for phytoavailable P, and took up relatively similar 

amounts, so the stark difference in final biomass between the substrates is intriguing. 

It’s possible that this difference could have been caused by an elevated macronutrient 

content introduced with clay. Substrate nutrient content was only measured for 

phytoavailable P prior to the experiment, but it is possible that there was an elevated 

concentration of N and K in clay substrates that enabled more vigorous growth, although 

all plants received an input of ‘No P’ nutrient solution at the beginning of the experiment 

providing N and K to encourage P limitation. Alternatively, plants in 10% clay may have 
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benefitted from the increased water holding capacity of that substrate. Clay soils have 

a higher water holding capacity than sandy soils due to the large surface area created 

by their fine particulate structure (Mana et al., 2017). Whilst pots received the same 

amount of water every 2-3 days, and were not droughted, the 0% clay substrate was 

likely to be less water retentive, and experienced greater evaporation than the 10% clay 

substrate.  

However, the most likely cause of the stark difference in biomass between plants grown 

in the two substrates is the difference in substrate pH. Peat moss is naturally acidic, with 

pH commonly between 3.2 and 4.0 due predominantly to cation exchange with the soil 

solution, in which the moss absorbs cations including calcium and magnesium, whilst 

releasing H+ ions into the soil solution (Clymo, 1984). The 0% clay substrate used in this 

experiment contained a mix of 50% sand and 50% peat moss and had a pH of 4.25. This 

is a highly acidic pH and may have inadvertently depressed the growth of the spring 

onion plants. At this pH, plants can suffer from toxicity due to high concentrations of H+ 

and Al3+ ions in the soil, which can cause root growth inhibition and nutrient deficiencies 

(Kobayashi et al., 2013). In mineral soils, aluminium toxicity is dominant as the acidic pH 

liberates free Al3+ ions into the soil solution. In organic soils, and in the 0% clay substrate 

with high organic matter content, toxicity is more likely caused by a high concentration 

of H+ ions, and the lack of significant buffering capacity in these soils means that in some 

cases, pH can fall to below pH 3. In this experiment, the addition of 10% bentonite clay 

increased the substrate pH to 4.93. It is likely that this was caused by the addition of 

calcium carbonates, oxides and hydroxides to the substrate as impurities within the clay. 

When these dissolve in the acidic conditions, free OH- and HCO3
- ions react with and 

remove free H+ from the soil solution, reducing acidity of the soil solution. Ca2+ ions also 

act to reduce the negative charge of the root plasma membrane, thereby reducing 

electrostatic attraction of Al3+ cations, and can therefore reduce the toxicity caused by 

high Al3+ concentrations in the soil solution (Kobayashi et al., 2013). Furthermore, whilst 

many plant species are adapted to life in acidic soils, in a study of pH optima of a range 

of crop species, Islam et al., (1980) found an optimal pH between pH 5.5 and 6.5 at which 

all plants exhibited near optimal growth. For onion crops in particular, Kane et al., (2006) 

reported that those grown at pH 6.5 yielded significantly greater edible biomass than 
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those grown at pH 5.8, indicating that for onions, a near-neutral soil pH is optimal for 

biomass production.  

It is unsurprising that P treatment had a significant effect on total P uptake and plant P 

concentration, owing to the inclusion of phosphate-P treatment as a positive control. As 

phosphate is immediately phytoavailable, it was expected that plants receiving this 

treatment would have a greater P uptake than other treatments, with the potential 

exception of phytate-fertilised plants treated with phytase. A curious result, however, is 

the significant two-way interaction between clay treatment and P treatment on total P 

uptake (Table 5.5, Figure 5.4). This result owes to the seemingly elevated P uptake in 

phytate treated plants in 0% clay substrate relative to their counterparts in 10% clay 

substrate (Figure 5.3). The fact that this effect was observed regardless of enzyme 

treatment is unexpected, as enzyme treated phytate-receiving plants were expected to 

show greater P concentration than non-enzyme treated plants. A potential explanation 

could be contamination of the phytate treatment with phytoavailable orthophosphate, 

though this is unlikely owing to the absence of the same effect in 10% clay substrate. 

Alternatively, elevated P uptake in these treatments could be caused by microbial 

degradation of phytate-P in 0% clay. Substrates were not sterilised prior to this 

experiment in order to avoid a potential negative effect on enzyme activity due to the 

dissolution of tannins from the sphagnum peat during autoclaving. Tannins such as 

lignin-like phenolics are found in high concentration in the partially degraded organic 

matter of peat, and when solubilised are able to inactivate extracellular enzymes 

(Bengtsson et al., 2018). Therefore, it is possible that phytase-producing microbes are 

present in the substrates, and are able to exude microbial phytase enzymes to 

dephosphorylate phytate in the 0% clay substrate. In this substrate, added phytate is 

assumed to become less strongly bound than in the 10% clay substrate, where the highly 

charged phytate molecules interact strongly with clay surfaces lending them physical 

protection from enzymatic degradation (Doolette, 2010). If microbial degradation is 

indeed occurring, then the physical protection provided in the 10% clay substrate might 

explain the absence of the same microbial effect in that substrate. Phytase-producing 

microbes can also exude metabolites such as LMW organic acids that lower the pH 

within the soil microenvironment, making phytate more readily soluble and creating 
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more optimal conditions for enzymatic dephosphorylation (Drouillon & Merckx, 2003). 

However, if there was a microbial phytase effect occurring, this should also be reflected 

by an increase in phytoavailable phosphate in the substrate. No difference was observed 

for this parameter between substrates treated with ‘No P’ and ‘Phytate-P’ in either clay 

treatment (Figure 5.5), and there was no significant interaction between clay treatment 

and P treatment for this factor. Lacking this evidence, and without further work to 

quantify the naturally occurring microbial phytase activity of the substrates, it cannot be 

comprehensively concluded that microbial phytases are to blame for the discrepancy in 

total P uptake in phytate-treated plants.  

Substrate phytoavailable P was measured as bicarbonate-extractable P. Both clay 

treatment and P treatment independently had a significant effect on phytoavailable P, 

but there was no interaction, and again no enzyme effect (Figure 5.5, Table 5.6). 10% 

clay substrates had a lower phytoavailable-P across all treatments than 0% clay 

substrates, which could be due either to greater P uptake by plants in that substrate, 

and lower P lability due to its binding to the clay surfaces in that substrate. Phosphorus 

treatment had a significant effect owing to the increased phytoavailable P of the 

phosphate-P treatment, but contrary to the hypothesis that enzyme treatment would 

increase phytoavailable P, no increase was found in phytate-P treated plants that 

received phytase compared to those without enzyme, in either substrate.  

Finally, there was a significant overall effect of clay treatment and P treatment on 

substrate total P (Figure 5.6, Table 5.7). However, these effects are easily explained, as 

despite being balanced for phytoavailable P, 10% clay substrates had a greater total P 

content at the beginning of the experiment due to P contamination within the clay. This 

has translated to greater total P content at the end of the experiment across all 

treatments within the 10% clay substrate. Phosphate-P and phytate-P treated 

substrates also had greater total P than those receiving the ‘No P’ treatment, which is 

to be expected.  

5.5.2 Effect of Clay and Enzyme in phytate-treated plants 

An effect of enzyme treatment would only be expected to occur in substrates that have 

been fertilised with phytate. In order to assess the enzyme effect in these substrates 
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alone, a series of two-way ANOVAs were run to test for an interaction between clay and 

enzyme, and a series of t-tests were run within each clay treatment to test for 

differences caused by the enzyme alone.  

The results of a series of two-way ANOVAs are presented in Table 5.3 A-E. For all 

parameters measured, there was an independent significant effect of clay treatment, 

but no independent significant effect of enzyme treatment, apart from for substrate 

total P. However, there was a significant interaction between clay and enzyme 

treatment on the biomass of phytate treated plants (Table 5.3 A), meaning that there 

was an effect of enzyme in one substrate that was not replicated in the other. Further 

investigation was carried out using unpaired t-tests on phytate treated plants in each 

substrate, revealing that in the 10% clay substrate, there was a significant difference in 

biomass between enzyme and no-enzyme treatments, but rather surprisingly it was the 

plants receiving no enzyme that had a greater biomass than those that did receive 

phytase (Figure 5.2). It is unclear why this is the case, as any enzyme effect would be 

expected to increase biomass via the release of phytoavailable P, rather than negatively 

affect growth. In the same plants, there was no significant difference in plant P uptake 

(Figure 5.3), but there was a significant difference in plant P concentration, with enzyme-

treated plants having a greater P concentration than non-enzyme treated plants (Figure 

5.4; unpaired t-test, p<0.05). Due to the lack of any difference in total P uptake, rather 

than an enzyme effect here, it’s probable that the difference in P concentration is 

instead caused by the difference in total biomass between these plants. In other words, 

enzyme treated plants have a greater P concentration because they have a smaller 

biomass than non-enzyme plants yet absorbed the same amount of P from the soil, but 

the reason for this difference in biomass remains unclear. 

In this experiment, it was hypothesized that the application of phytase enzyme to 

phytate-treated substrates would result in its dephosphorylation, causing a modest 

increase in plant biomass, P uptake, and plant P concentration, and increasing 

phytoavailable P levels in substrates. This effect was expected to be depressed or absent 

in the 10% clay substrate due to the potential for adsorption of both phytate and 

phytase to clay surfaces, inhibiting dephosphorylation. However, the only treatment 

that exhibited the expected effect was that of plant P concentration in 10% clay 
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substrate (Figure 5.4), and for the reasons stated above, this is likely to be due to the 

difference in biomass, rather than any enzyme effect, as there was no difference in P 

uptake from the substrate, and no increase in bioavailable substrate P resulting from 

the enzyme treatment.  

In phytate-treated plants, both clay type and enzyme addition had a significant effect on 

substrate total P (Table 5.3 E). In Figure 5.6 there is a trend for increased total P in 

phytate-treated plants that received phytase. However, in both substrates, no 

significant difference was found between enzyme and non-enzyme treated plants in 

either substrates when analysed by unpaired t-tests, likely due to the low replication. 

The trend for increased substrate total P in enzyme-treated plants is unexpected 

however, as if the enzyme was dephosphorylating phytate, then phytoavailable P in the 

soil should be increased and P uptake from the soil should be increased, which would 

result in a reduction in overall substrate total P. 

Overall, these results suggest that simply adding a soluble commercial phytase to the 

substrates did not result in significant dephosphorylation of phytate and subsequent 

release of phytoavailable phosphate, regardless of the substrate clay content. Two main 

factors govern the activity of the phytase enzyme in substrates and soil. The first is the 

availability of phytate for enzymatic dephosphorylation, that is, whether the phytate is 

free or easily mobilised in soil solution or is strongly bound within the substrate matrix 

and therefore unavailable for dephosphorylation. The second is the favourability of the 

complex substrate environment for the persistence and performance of the active 

enzyme. For example, phytase enzymes may also become adsorbed to surfaces in the 

substrate, can be inhibited by interactions with organic components like lignin and 

tannins in the soil solution, or can be degraded by microbes and protease enzymes. The 

fact that no evidence of phytate dephosphorylation has been found in this experiment 

likely owes to one or both of these factors, and these are discussed further in the 

following sections.   

5.5.3 Phytate adsorption 

With a high charge density from its six phosphate moieties, phytate can interact strongly 

with the soil solid phase via surface complexation with organic matter, metal cations, 
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and clay minerals. McKercher & Anderson, (1989) showed that the adsorption of 

phytate is stronger than that of orthophosphate, and that even the adsorption of inositol 

trisphosphate was greater, indicating that the strength of adsorption is related to the 

degree of phosphorylation. In this experiment, substrates were designed to differ in 

phytate-binding capacity due to the inclusion of a substrate containing 10% clay in place 

of quartz sand. Clays have a fine particulate structure, with an average particle diameter 

of 2µm and thus have a very high surface area in soils (Ulusoy et al., 2003). The bentonite 

clay used in this experiment is dominated by montmorillonite clay minerals, which are 

common in soils and sediments (Grim & Kulbicki, 1961). Clays are generally layered 

structures, and bentonite in particular is made up of octahedral sheets of aluminium, 

sandwiched between tetrahedral sheets of silica (Grim & Kulbicki, 1961; Hebbar et al., 

2014). The silicate layers in the structure give bentonite an overall negative charge, but 

this is offset by the association of exchangeable cations with the clay surfaces (Hebbar 

et al., 2014). Phytate and orthophosphate, carrying negative charges, can form 

complexes with unsaturated aluminium cations at the edge of the octahedral sheets via 

electrostatic interaction (Shang et al., 2013), and also adsorb to specific exchange spots 

that have unbalanced charges (e.g. excess aluminium) within the lattice structure 

(Ulusoy et al., 2003). As phytate carries six phosphate moieties, a single molecule can 

form multiple interactions, which explains its greater adsorption capacity.  

As well as clays, phytate can adsorb strongly to iron and aluminium oxides in the soil via 

ligand exchange with the H2O and -OH groups on the surface of minerals (Celi & Barberis, 

2006). The interaction with these metal oxides involves multiple phosphate groups, and 

those that aren’t bound impart a strong negative charge on the complex, which can 

impede the approach of other molecules by electrostatic repulsion (Shang et al., 1990). 

The abundance of calcium in the soil also has a major impact on phytate immobilisation, 

as phytate can both adsorb to, and precipitate with calcium to form insoluble salts (Celi 

et al., 2000). Finally, phytates in soils can be retained by organic matter via direct 

adsorption to the surface, or via polyvalent bridging cations to form organic matter-

metal-phytate complexes (Celi & Barberis, 2006). The association of P with metal cations 

at the humic surface is similar to the association of P with Al and Fe oxides, whereby the 
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orthophosphate anion replaces -OH or H2O groups bound to the cations via ligand 

exchange (Gerke, 2010). 

In this experiment, to make the substrates more representative of real soil systems, 

phytate-P nutrient solution was applied three days prior to the phytase treatment to 

allow the stabilisation and interaction of phytate within the substrate to occur, and 

phytate was expected to form stronger associations in 10% clay substrates due to the 

increased adsorptive capacity provided by the clay. However, it’s possible that during 

this stabilisation period, phytate has become largely removed from the substrate 

solution via surface interactions in both substrates, and hence no effect of enzyme 

application was observed in either. A study by Gujar et al., (2013) reported a 76% 

increase in P assimilation of wheat plants compared to controls when phytate fertilized 

soils were treated with phytase, but a caveat of this work is that phytase was applied to 

soil immediately after phytate application, meaning that the potential limitations of soil-

phytate interactions on the reaction were much reduced, a situation that does not 

reflect natural soil dynamics. In contrast to that study, it’s possible that in this 

experiment, much of the phytate applied in the nutrient solution has become bound to 

the organic matter in the peat fraction of the 0% clay substrate, and the enzyme is 

therefore unable commence dephosphorylation.  

Phytase-producing microbes in soil environments are able to overcome this phytate 

limitation to a degree via the exudation of LMW organic acids into the soil environment 

(Huang et al., 2003), which can remobilise bound phytate into the soil solution via the 

exchange of their carboxyl functional groups with adsorbed phosphate moieties 

(Waithaisong et al., 2015). LMW organic acids can also release phosphate groups from 

organic matter by dissolving humic molecules and by competing for sorption sites with 

phosphate groups via ligand exchange, and P is more easily mobilised from its 

interaction with organic matter than it is with metal oxides (Gerke, 2010). With the 

application of phytase in this experiment, there was no concurrent manipulation of 

LMW organic acid concentration, so any phytate that is adsorbed is unlikely to be 

efficiently dephosphorylated in the presence of the enzyme alone. 

5.5.4 Phytase enzymes in soil & substrate matrices 
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Enzymes show an affinity for the interface between soil solid and solution phases due 

to both intermolecular and intramolecular forces generated by the structural properties 

of their complex amino acid chains (Quiquampoix et al., 2002), and these properties also 

make them susceptible to adsorption to soil surfaces. As with phytate, the large surface 

area of clays, and heterogenous surfaces of organic matter are likely to be the main 

surfaces with which extracellular enzymes associate.  

Clay-enzyme interactions can take many forms. Firstly, strong electrostatic interactions 

can occur between hydroxyl groups at the edges of clays and charged groups in the 

amino acid side chains of enzymes (Quiquampoix et al., 2002). Additionally, weaker van 

der Waals interactions may occur when enzymes approach clay molecules, in which the 

charge distribution of the molecules can vary to produce polarity and net electrostatic 

attraction between the two (Quiquampoix et al., 2002). Hydrophobic interactions may 

also provide strong adsorption of proteins to clays despite the hydrophilic nature of clay 

surfaces. The exchange of hydrophilic cations that are associated with the clay surface 

exposes the hydrophobic silica sheet, with which the hydrophobic amino acid groups 

can thus interact (Quiquampoix et al., 2002). Enzymes also interact with soil organic 

matter and humic substances, and the heterogenous nature of organic matter can lend 

itself to adsorption by providing an abundance of macropores in which enzymes can 

become embedded (Yang & Chen, 2017). Interactions may occur via hydrogen bonding 

(George et al., 2006), for example between acidic protons in humic tannins and polar 

amino acid side chains (McRae et al., 2010), or alternatively via the formation of strong 

and irreversible covalent bonds (George et al., 2006).  

Adsorption can have negative consequences for enzyme activity due to the removal of 

the enzyme from the soil solution, and enzymes can subsequently become deactivated 

and denatured. Adsorption can, however, also provide protection for enzymes within 

soil, maintaining their activity and longevity in the soil environment (Naidja et al., 2000). 

George et al., (2005a) assessed the behaviour of an Aspergillus niger phytase when 

applied to three soils with different sorption capacities. When added to a soil 

suspension, phytase activity was largely lost within ten minutes in all soil types, whereas 

activity was maintained in non-soil controls, suggesting that phytase was rapidly 

inactivated by soil constituents. However, phytase activity was found to be recoverable 
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from the soil solid phase, and actually decayed at a slower rate than in non-soil controls. 

Enzymes can be metabolised by microbes as nutrient sources, and adsorption can 

provide some protection against this and the action of proteases. Degradation involves 

conformational change of the enzyme, and takes place at exposed amino acid structures 

on the enzyme surface, so adsorption provides some protection for the enzyme by 

limiting the access of degradative substances via steric hinderance (George et al., 2006). 

Interestingly, different phytase enzymes exhibit varying levels of susceptibility to 

microbial degradation, as George et al., (2007) demonstrated when a Peniophora lycii 

phytase was active for longer in sterile soil compared to unsterile soil, whereas an 

Aspergillus niger phytase was unaffected by microbial presence.  

In this experiment, any effect of enzyme addition was expected to be depressed in 10% 

clay substrate, due to the greater surface area and strong adsorptive properties of the 

clay. This adsorption to mineral soil surfaces can cause conformational changes in the 

enzyme, leading to unfolding of the protein and deactivation of the enzyme (George et 

al., 2005a; Leprince & Quiquampoix, 1996). However, no effect of enzyme addition was 

found in either soil, so phytase could be becoming readily immobilised in the organic 

matter of the 0% clay substrate too. Yang & Chen, (2017) measured the distribution of 

phytase activity in soil and found that the phytase-sorption capacity of soils containing 

both clay and organic matter was 2-5 times greater than the same soils following the 

removal of clay. However, their results also indicated that the adsorptive capacity of 

organic matter alone was greater than that of clay alone. This stronger adsorption has 

been attributed to the greater heterogeneity of organic matter surfaces and the relative 

abundance of macropores in which enzymes can embed (Yang & Chen, 2017; Naidja et 

al., 2000). It therefore stands to reason that in this experiment, phytase that was added 

to the substrates could have become adsorbed by the organic matter of the peat 

fraction, which made up 50% by volume in each substrate. Despite the increased 

adsorptive capacity of the combined organic matter and clay mixture in 10% clay 

substrate, the adsorptive capacity of 0% clay substrate may have been sufficient to bind 

the phytase added, masking any effect of clay content on enzyme activity. 

The phytase enzyme used in this experiment was a commercially available phytase 

isolated from the enterobacterium Citrobacter braakii, and expressed in Aspergillus 
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oryzae, and as such is optimal for use in the digestive tract of monogastric livestock 

(Pontoppidan et al., 2012). The resilience of phytase enzymes to adsorption in soil 

matrices seems to be dependent on their natural functional environments. For example, 

an intracellular wheat germ phytase was found to be completely inhibited by adsorption 

to clay, whereas two extracellular phytases from Aspergillus niger and Hebeloma 

cylindrosporum were able to retain catalytic properties, regardless of their degree of 

adsorption (Matumoto-Pintro & Quiquampoix, 1997). Whilst the C. braakii phytase used 

in this experiment is an extracellular enzyme, its properties are optimal for its survival 

in the gastrointestinal tract of monogastric animals, a quite different chemical 

environment to soils. The active pH range of the C. braakii phytase is broad, between 

pH 2 - 6, but is optimal between pH 3 - 4.5 (Menezes-Blackburn et al., 2015), which is 

close to the pH range measured for both substrates (0% clay: pH 4.25; 10% clay: pH 

4.93). However, many possible factors in the substrate, such as the adsorptive capacity 

of the substrate constituents, the presence of inhibitory tannins and metal cations, and 

the susceptibility of the enzyme to degradation by microbes and protease enzymes may 

have all negatively impacted the ability of this phytase enzyme in the catalysis of phytate 

degradation.  
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5.6 Conclusions 

This experiment attempted to assess the performance of a commercially available 

phytase enzyme on the provision of phytoavailable phosphate from phytate in model 

soil substrates that varied in adsorptive capacity. However, no effect of enzyme 

treatment was found on plant performance, P uptake or substrate available P. There are 

many possible reasons for this result, none of which are mutually exclusive.  Firstly, the 

highly acidic pH of the 0% clay substrate likely depressed growth of these plants when 

compared to those grown in 10% clay, which benefitted from a less acidic substrate pH 

due to the addition of calcium within the clay. It’s quite possible that this growth 

depression masked any potential advantage these plants had over their 10% clay 

counterparts, had there been an effect of clay content on the mobility of phytate or the 

enzyme in the substrate solution. In follow-up experiments, the pH of the 0% clay 

substrate could be raised via the addition of lime to match the pH of the 10% clay 

substrate which should serve to alleviate the inhibitory effect on 0% clay plants.  

Phytate may have been removed from the substrate solution via adsorption or 

precipitation interactions with organic matter, clay minerals, and metal cations. The 

enzyme may also have experienced adsorption, which may have caused temporary or 

destructive inactivation. Alternatively, the enzyme may have experienced inhibition 

from substrate constituents including tannins or metal cations, or the chemical 

environment within the substrates may simply have not been conducive to enzyme 

catalysis of phytate dephosphorylation, due to the enzyme being optimal for use in the 

gastrointestinal tract of monogastric livestock. Taken together, it can be concluded that 

the simple addition of this commercial extracellular phytase enzyme is ineffective for 

phytate degradation in this model substrate environment, which is a simple matrix in 

comparison to the complex heterogenous nature of soil.  

Plant roots and microbes exude LMW organic acids alongside phosphatase enzymes in 

response to P limitation, with LMW organic acids increasing phytate mobilisation via 

ligand exchange with the soil solid phase (Drouillon & Merckx, 2003). In future 

experiments, it would be valuable to investigate whether the addition of LMW organic 

acids to substrates alongside phytase would benefit dephosphorylation by remobilising 
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phytate into the substrate solution phase. If the enzyme is also becoming adsorbed, the 

addition of LMW organic acids may also improve enzyme solubility, as has been 

demonstrated with acid phosphatase enzymes (Huang et al., 2003). Adjustment of the 

substrate pH may also positively affect phytase solubility, as George et al., (2005a) 

suggested that the slightly less acidic microenvironment of rhizosphere soil was able to 

maintain phytase activity in solution due to changes in the electrostatic interactions 

between proteins and soil solids. 

Finally, widely available and cheaply produced commercially available phytase enzymes 

are predominantly used in the gastrointestinal tract of livestock, and as such are likely 

sub-optimal for use in soil or substrate environments. Future work may benefit from the 

use of enzyme isolates from soil microbes, which are likely to exhibit more suitable 

properties for performance in soils. 
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6: General Discussion 

6.1 Phosphorus Sustainability 

P is increasingly recognised as a scarce resource and one which is used inefficiently in 

agricultural systems. There is approximately 259 years of phosphate rock supply 

remaining, but demand is increasing annually, and this estimate has been revised down 

from approximately 300 years in 2016 due to increasing demand (Blackwell et al., 2019). 

Morocco alone controls 71% of the global phosphate rock reserves (Jasinski, 2019), and 

this monopoly raises concerns considering recent geopolitical instability in the region, 

and the fact that much of these reserves are located in Western Sahara, which Morocco 

has illegally occupied since the late 20th century (Blackwell et al., 2019).  

Current anthropogenic use of P is a largely linear process (Figure 6.1A), with vast 

amounts of chemical fertiliser P spread to land each year. Depending on the type of soil 

and its health, it is estimated that just 8% of this fertiliser P is absorbed by crops 

(Blackwell et al., 2019), with the remainder stabilised in soil or lost to water bodies, 

contributing to eutrophication and hypoxia (Cordell et al., 2009). Once crops are 

harvested and consumed, much of the absorbed P passes into animal manure and 

human excreta, with a calculation based on P flows developed by Cordell et al., (2009) 

approximating that 54% of P in manure and excreta is lost to the wider environment in 

landfill, non-arable soils or water bodies every year. These P losses, along with the 

stabilisation of P in soil in plant-unavailable forms, result in the insufficient 

replenishment of soils with P, meaning that the fraction of freely dissolved 

phytoavailable orthophosphate is depleted annually, and requires further inputs of 

fertiliser P to maintain subsequent crop yields.  

In response to the potential scarcity of P and the effect of its inefficient use on future 

food security, much work over the past decade has sought to develop strategies to close 

the anthropogenic P cycle, to recycle and reuse P resources, and reduce the requirement 

for chemical P inputs in order to maintain or increase yields. A schematic is presented in 

Figure 6.1B envisaging a more sustainable anthropogenic P cycle. Such a system would 

involve refinement of chemical fertiliser dosing, with a greater understanding of the P 

requirements of specific crops in order to feed the plant, rather than the soil (Blackwell  
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Figure 6.1: Current and future anthropogenic P cycles. Black arrows represent anthropogenic 
flows of P, Blue arrows represent natural flows of P. A: The current linearised anthropogenic 
P cycle. Large amounts of phosphate fertiliser are spread on land to increase crop harvests, 
with large amounts of P permanently lost from the cycle to the wider environment. B: A more 
efficient and sustainable anthropogenic P cycle. Small amounts of phosphate fertiliser are 
spread to land based on optimal crop requirements. Losses after consumption are minimised 
with nutrients largely returned to arable land. Soil management practices are improved to 
maintain soil health and minimise soil erosion. A greater understanding of microbial P cycling 
and engineering of rhizosphere processes enable greater mineralisation of accumulated 
unavailable P to provide phytoavailable phosphate. 

A 

B 
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et al., 2019). Stemming the loss of organic wastes such as manure and excreta, and also 

food waste and animal by-products (Darch et al., 2019) to the wider environment and 

instead directing it to P deficient soils, would retain P within the food production cycle 

and replenish soils with other valuable nutrients and organic materials, simultaneously 

improving soil health and reducing losses by soil erosion. Finally, a greater 

understanding of rhizosphere soil biochemical and physical processes will enable the 

engineering and manipulation of natural mineralisation processes to increase the 

mobilisation of stabilised soil P to phytoavailable dissolved inorganic forms, further 

reducing the requirement for inputs of exogenous chemical P fertilisers (Figure 6.1B). 

 

This thesis focussed on the organic P compound phytate, which is a compound 

synthesised in plants as the main P storage compound in grains (Gerke, 2015). Phytate 

is not efficiently digested by humans or other monogastric animals and so can pass into 

excreta, which can then enter the soil in organic amendments. However, phytate is not 

available for uptake by plants, and due to its high recalcitrance in the soil, it is often the 

most abundant organic P compound identified by 31P NMR in soil extracts (Jørgensen et 

al., 2015). Its widespread presence in organic amendments and soils therefore makes 

phytate a prime candidate for strategies that aim to remobilise phytoavailable 

phosphate from stabilised P for crops. 

In the UK, the majority of anaerobically digested sewage sludge is applied to agricultural 

land (DEFRA, 2012), but whether phytate, which can make up 34-54% of the P content 

in human faeces (Joung et al., 2007), can survive the sludge treatment process to 

comprise a significant proportion of sludge total P was unclear until now. When in the 

soil, the effect of land-use history on the concentration of phytate and its tendency to 

accumulate is not fully understood. If phytate does accumulate, then there is scope for 

the use of biofertilisation strategies, namely the use of phytase enzymes, to drive the 

mobilisation and use of phytate-P by crops, which could reduce the need for the 

application of chemical phosphate fertilisers, improving the efficiency of P use and 

sustainability. This General Discussion will bring together the main findings presented in 

this thesis to address the following research questions: 
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1. Is phytate present in sewage sludge, does it persist through the stages of a modern 

advanced anaerobic digestion sludge treatment process, and does it constitute a 

substantial fraction of total P in the final sludge ‘cake’ that is spread on land? 

2. How does the land-use history of agricultural and grassland soils affect the 

concentrations of phytate in soil? Does phytate accumulate in a previously arable 

soil that has been converted to a pen housing monogastric swine? 

3. Can a commercially available feed-supplement phytase enzyme be used to release 

phytoavailable phosphate from phytate in a simple soil substrate, and how does 

clay content affect this ability? 

 

6.2 Evaluating and optimising the available analytical methods for 

quantifying different chemical species of P 

While solution 31P NMR has over the past two decades become the field standard 

method for P analysis in environmental samples, and has significantly advanced our 

knowledge of P speciation and quantification in these samples (Cade-Menun & Liu, 

2014), this method does have limitations. 31P NMR can suffer from issues of sensitivity 

and resolution, particularly if P forms are present in low concentrations, which results 

in long analysis times to increase signal to noise ratios, and means that these less 

abundant P forms are often overlooked. With this in mind, there is growing interest in 

the development of more sensitive techniques that can be used to identify and quantify 

these compounds, which include the lower inositol phosphates (IP5-IP1) that are 

produced by the enzymatic hydrolysis of phosphate from phytate. In Chapter 2, the use 

of Electrospray ionisation time-of-flight Mass Spectrometry (ESI-ToF-MS) was 

investigated to assess its value in the analysis of phytate and the lower IPs in mixed 

samples. Whilst this method was able to detect lower IPs at their specific m/z ratios, 

significant dissociation of phytate was encountered during ESI that produced fragment 

ions sharing coincidental m/z ratios with true lower IPs, making their quantitation 

impossible. Other papers have tried to optimise the ESI step by varying either the cone 

voltage (Cooper et al., 2006), or source voltage (McIntyre et al., 2017), and in Chapter 2, 

fragmentation was indeed decreased by optimisation of both, but it could not be 
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eliminated. It is apparent that fragmentation is likely a universal feature of phytate 

analysis in ESI-ToF-MS, which therefore precludes the simultaneous analysis of multiple 

inositol phosphates in a sample. However, if IPs can be separated prior to their analysis 

by mass spectrometry, then any appearance of peaks at coincidental m/z ratios with 

lower IPs could be identified as fragment ions with confidence. A very recent paper by 

McIntyre et al., (2019) has demonstrated the quantification of phytate in NaOH-EDTA 

extracts of soil samples in this way, by purifying phytate using anion-exchange 

chromatography and detection with ESI-ToF MS. They found good correlation between 

quantification with their method and with 31P NMR, along with an improved detection 

limit of 0.7mg P kg-1 relative to >10mg P kg-1 with 31P NMR. Whether this method can be 

extended to the quantification of lower IPs remains to be seen, but this work highlights 

the promise of Mass Spectrometry for the sensitive analysis of P in environmental 

samples.  

Solution 31P NMR analysis was instead used to quantify phytate and orthophosphate in 

sludge and soil extracts in Chapters 3 & 4. Over 16,000 scans were used to improve the 

signal to noise ratio of spectra, so a relaxation delay time of 1s was necessary to keep 

the analysis time to a manageable 8 hours. However, when using a 1 second relaxation 

delay time, P nuclei within different compounds in the sample are unable to relax fully 

to thermal equilibrium after pulsing, and relax to different degrees, with P nuclei in 

larger molecules (e.g. phytate) able to relax to a greater degree than those in small 

molecules (e.g. orthophosphate). This means that the peaks generated in the spectra do 

not quantitatively represent their respective compounds, with smaller compounds 

underestimated relative to larger (Cade-Menun & Liu, 2014). Using long relaxation delay 

times can ensure that all P relaxes to thermal equilibrium, but this can lead to long 

analysis times. For example, McLaren et al., (2015) used relaxation delay times of up to 

36s between scans of a soil extract to permit full orthophosphate relaxation, resulting 

in analysis times reaching 32 hours. However, such long analysis time makes 31P NMR a 

low throughput and expensive procedure and would not have been suitable for use in 

this project. Instead, to ensure accurate quantitative analysis of soil extracts when using 

a low, 1 second relaxation time, a preliminary analysis building upon on the procedure 

developed by Robertson, (2018) was carried out to calculate a correction factor for 
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underestimated peaks. This involved measuring the peaks of a sample spiked with 

orthophosphate and phytate over a range of increasing relaxation times to calculate the 

maximum peak area that could be achieved when fully relaxed. Peaks measured at 1s 

delay times could be then scaled-up to these ratios to correct for the insufficient signals 

generated. This procedure was carried out in both Chapters 3 & 4 and was verified in 

each using a spike recovery assay. In sludge, using this method, an average recovery of 

103.78 ± 2.14% and 104.77 ± 5.17% was achieved for spiked orthophosphate and spiked 

phytate respectively. In soils, an average recovery of 107.8 ± 5.1% and 94.6 ± 10.4% was 

achieved for spiked orthophosphate and spiked phytate respectively, suggesting that 

this method enables an increased signal to noise ratio without loss of accuracy. This 

method is uncommon in experiments involving solution 31P NMR, but as was shown in 

this thesis, it is useful for experiments which aim to quantify a small number of 

compounds to a high degree of accuracy, and will be particularly advantageous for the 

analysis of ‘dirty’ samples such as soil and sludge which often suffer from poor spectral 

resolution. The increase in signal to noise ratio that is produced by analysing a sample 

over a very high number of short scans results in a high resolution 31P NMR spectrum 

with clearly defined peaks, which when interpreted with the pre-determined correction 

factor, allows highly accurate quantification of specific compounds within a shorter 

analysis time.  

6.3 Phytate survives anaerobic sludge treatment 

As part of a closed anthropogenic P cycle, P contained in organic wastes should be 

efficiently recycled back to the soil to stem the leakage of P and its permanent loss to 

the wider environment. There is a wealth of work that has studied and quantified the P 

forms in manure (Cade-Menun, 2005; Giles & Cade-Menun, 2014; Cade-Menun, 2011), 

and this is widely accepted as a source of nutrients for the soil, but less work has been 

carried out on human waste. With phytate-P making up between 24-54% of human 

faecal P (Joung et al., 2007), it was hypothesized that phytate would make up a large 

proportion of P in sewage sludge prior to its treatment. In the UK, human excreta is often 

treated in advanced wastewater treatment processes, which generate large amounts of 

sludge that undergo anaerobic digestion in order to reduce its mass, and extract energy 

in the form of methane. Since the enforcement of the EU Urban Wastewater Treatment 
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Directive in 1999, the vast majority of treated sludge is returned to arable land (DEFRA, 

2012). However, the P speciation and contribution of phytate to sludge P is not well 

studied. Anaerobically digested sludge has been shown to be dominated by 

orthophosphate, and there is some evidence that phytate persists through digestion 

(Annaheim et al., 2015; Smith et al., 2006). If phytate is also abundant, then when 

applied to soil, it may be unavailable for absorption by plants and may preferentially 

accumulate, representing somewhat of a dead-end for the cycling of P.  

In Chapter 3, using solution 31P NMR it was shown that phytate is present in sewage 

sludge, and persists throughout an advanced anaerobic sludge treatment process to 

make up 4.5% of total P in the final dewatered sewage sludge cake. The analysis of total 

P, orthophosphate and phytate concentrations in Chapter 3 provides a clear picture of 

the overall P dynamics through the system. Total P becomes successively more 

concentrated through the process, and is most concentrated in digested sludge, before 

falling slightly with dewatering in the final cake. Orthophosphate P is by far the most 

dominant P form throughout the process, making up close to 80% of total P throughout, 

whilst the proportion of phytate remains relatively stable, making up an average 4.7% 

of total P throughout. The apparent survival of phytate in this process is supported by 

the work of Smith et al., (2006) and Annaheim et al., (2015), who found phytate in 

anaerobically digested sewage sludges at approximately 10% of total P. The lower 

proportion of phytate in this study is likely representative of lower phytate levels in the 

wastewater solids at the beginning of the process, as there was no major loss of phytate 

at any treatment stage. Li et al., (2019) measured P speciation in sludge before and after 

anaerobic digestion. Interestingly, they found that orthophosphate monoesters were 

completely lost during anaerobic digestion. Whilst phytate was not specifically 

measured, it may be that phytate was absent or at very low concentrations in their 

samples, with other monoesters being eliminated during the digestion process. 

Furthermore, it is possible that the sensitivity and resolution of their spectra were not 

sufficient for phytate identification and quantification as signal to noise ratios are very 

low. 

The finding that phytate persists through anaerobic sludge treatment is important 

considering that according to DEFRA, (2012) 79% of sludge is spread on land in the UK. 



Chapter 6: General Discussion 

 

174 
 

By this estimate, and the concentration of phytate found in cake in Chapter 3, 947 

tonnes of phytate-P is spread on UK soil annually from sludge application. That is 

equivalent to 1.15% of the 81,968 tonnes of P applied to UK soils as chemical fertilisers 

in 2017 (FAO, 2019). Whilst this seems an insignificant amount, it is important due to 

the behaviour of phytate in the soil. When phytate is applied to soils, the high charge 

density afforded to the molecule by its six phosphate groups means that it has a 

tendency to become preferentially stabilised in soil and can accumulate by forming 

strong interactions with soil P sorption sites (Menezes-Blackburn et al., 2013). Indeed, it 

was shown in Chapter 4 that a previously arable soil that had been converted to a pig 

pen, and thus received large inputs of monogastric pig manure, had a phytate 

concentration almost six times greater than that of a nearby permanently arable soil. 

This recalcitrance has negative impacts, because the saturation of P-sorption sites in the 

soil by phytate can lead to decreased retention of P applied to soils in fertilisers 

(Sharpley, 1995; Kleinman, 2017), which in turn can lead to leaching of P into water 

bodies and eutrophication. Furthermore, the application of phytate to soil in this way 

represents an inefficient use of P resources, as P is applied in a form unavailable for 

uptake by crops. A potential approach to alleviating this issue could be to apply an 

intervention step following sludge digestion and prior to its land application, in which 

phytase enzymes could be used to dephosphorylate phytate to eliminate its application 

to soil. However, there are numerous obstacles to this approach, the first being that a 

large part of the P in digested sludge is adsorbed within the sludge solids with metals 

such as aluminium and iron, or is precipitated with calcium (Shober et al., 2006; Ajiboye 

et al., 2007), and is therefore likely to be poorly available as a substrate for a phytase 

enzyme. This idea is supported in Chapter 3 by the fact that very little phytate was lost 

from digested sludge during its dewatering, indicating that little phytate was dissolved 

in solution (Figure 3.12). Secondly, the chemical environment within sludge is likely to 

be unfavourable for phytase activity. For example, Igamnazarov et al., (1999) showed 

that 2mM concentrations of Cu2+ and Fe3+ reduced the activity of Bacterium sp. phytase 

to 8% and 29% of their initial activity respectively. Heavy metals in the digested sludge 

are present in high concentrations due to the reduction of organic mass during AD 

(Gerardi, 2003), so these may inhibit any phytase enzyme that is applied. A further 

consideration is whether the benefits of mobilising such a small fraction of P, when 83% 
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of P is already present as orthophosphate, would outweigh the cost of both the phytase 

enzyme and the infrastructure that would be required for its use. Finally, there is the 

question of who would bear these costs, as farmers are unlikely to be willing to pay for 

this intervention when the orthophosphate concentration in sludge is already so high. 

Overall, if the concentration of phytate in sludge measured in Chapter 3 is 

representative of concentrations throughout the UK, then such an intervention is 

unlikely to be feasible, meaning that this phytate fraction is destined to be applied to 

soils. Further work to measure phytate concentrations in both pre- and post-AD sludges 

at multiple locations would be useful to measure the locational variation in sludge 

phytate concentration, and whether it varies according to the size of the population 

served by the WWTP. For example, it may be the case that phytate concentrations are 

greater in WWTPs that serve a greater proportion of households relative to industry, in 

which case, a phytase-based intervention may prove more valuable in certain situations 

than in others. Furthermore, despite the potentially unfavourable conditions for 

phytase-mediated dephosphorylation of phytate within the sludge treatment process, a 

lab-based experiment, in which an external commercial phytase enzyme or phytase-

producing microbe was introduced to sludge in a bench-top AD treatment process, has 

not been carried out before, and may yet have an effect on phytate concentrations at 

the end of the process.  

6.4 Land use has a major effect on soil P and phytate concentrations 

The accumulation of phytate in the soil is not universal and is likely to be influenced by 

many factors. For example, the application of phytate to calcareous soils in solution 

(Doolette et al., 2010) and in manure (Leytem et al., 2006) did not result in its 

preferential accumulation in soil over a number of weeks, whereas in other soils, 

manure applications have been shown to increase phytate concentrations (Gatiboni & 

Brunetto, 2013; Hansen et al., 2004). In Chapter 4, phytate and orthophosphate 

concentrations were measured in a range of agricultural and grassland soils to assess 

the effect of land-use on P speciation and phytate accumulation. Agricultural soils, which 

included a permanently arable soil, a pasture soil and a pig pen soil, were dominated by 

orthophosphate, whereas grassland soils were dominated by the ‘residual P’, which was 

P other than orthophosphate or phytate. These differences were mirrored by soil 
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organic matter content, which made up between 29.5 - 36% of grassland soil, but only 

between 4.3 – 12.4% of agricultural soils. 

Among the agricultural soils, arable soils surprisingly had the lowest total P 

concentration, which increased in pasture soil, and was greatest in the pig pen soil. 

Arable soil also had the lowest phytate concentration of all soils, which is symptomatic 

of its intensive use over the past 20 years. The soil has received only chemical fertiliser 

inputs, and is harvested and cultivated regularly, disrupting the natural cycling of P. 

Pasture soil was expected to contain a greater proportion of organic P forms, including 

phytate. However, it was similarly dominated by orthophosphate, which made up 

almost 75% of total P in this soil, with phytate making up 6.3%. The most interesting 

finding was that of the pig pen soil. This soil had been a permanently arable soil prior to 

its conversion to a pig pen three years prior to sampling, in which time, it had received 

no chemical fertilisers, experienced no cultivation, and produced no crops for harvest. 

Receiving nutrient inputs only from pig manure, this soil had the greatest total P content, 

along with the greatest orthophosphate and phytate content of all soils analysed. The 

pig pen soil contained almost six-fold more phytate than the permanently arable soil. 

Pigs are monogastric animals and cannot produce their own phytase enzymes to break 

down phytate in the gut, but do harbour phytase-producing microflora in their hindgut 

that degrade phytate to a degree (Dersjant-Li et al., 2015). Liang et al., (2018) found pig 

manure to contain a P concentration of 10,400 µg P g-1, made up of 90.7% 

orthophosphate-P, and 8.5% phytate-P. Whilst it cannot be unequivocally confirmed, it 

is highly likely that prior to its conversion, P content of this soil more closely resembled 

that of the arable soil, and therefore the current high phytate content of the pig pen soil 

results from an accumulation of phytate from manure inputs since its conversion. 

Whether this accumulation is representative of what happens to phytate applied to 

arable soil remains to be seen. Annaheim et al., (2015) found no evidence of 

accumulation of organic P forms including phytate from 62 years of manure and dried 

sewage sludge applications to conventionally managed arable soil. Whilst Chapter 4 may 

indicate accumulation of phytate in the pig pen, this soil is no longer subject to the 

intensive cultivation and crop harvesting of an arable soil, so may favour accumulation 

over degradation. Further experiments using real human sludge on agricultural soils 
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would provide more conclusive evidence for the accumulation of phytate following soil 

amendment than was possible in Chapter 4. Ideally, these experiments would assess the 

changing P dynamics following sludge application over both the short-term, and over a 

period of years. Whilst pig manure was successfully used as a proxy in this thesis, there 

may be key differences between the mobility of P in manure and AD sludge matrices, 

and these could have major impacts on the ability of plants to access any added P. 

Furthermore, long term studies with AD sludge would enable further research on the 

unintended consequences of sludge application, such as the co-addition of 

pharmaceutical compounds or heavy metal contaminants, which at high concentrations 

can be toxic to microbial populations, and can be absorbed and accumulated by plants 

from where they may enter the food chain (Haynes et al., 2009). 

6.5 Phytase catalytic activity is lost when applied directly to substrate 

Despite the uncertainty around the factors that affect phytate accumulation, it remains 

true that phytate is often identified in 31P NMR as the most abundant organic P 

compound in soil extracts (Cade-Menun et al., 2010; Liu et al., 2018). In order to reduce 

the requirement for chemical P fertiliser applications in sustainable systems, techniques 

will be necessary to increase the mineralisation of soil P that is stabilised and thus 

unavailable for absorption by plants. Many of the strategies in development involve the 

genetic manipulation of plants to improve the exudation of phytate-hydrolysing 

enzymes, phytases, from roots. Whilst this has seen some success (Giles et al., 2017), 

there are currently political and social limitations to the use of genetically engineered 

crops (Lei et al., 2013), particularly in Europe. An alternative solution could be the 

application of phytase enzymes directly to the soil. Phytase enzymes are already 

produced on a commercial scale to supplement the grain-based feed of monogastric 

livestock and have reduced both the need for supplemental inputs of phosphate to diets, 

and can reduce levels of P in monogastric excreta by 30-50% (Jorquera et al., 2008). In 

Chapter 5, an experiment was designed to test the ability of one such commercially 

produced phytase enzyme to dephosphorylate phytate in the setting of an artificial soil 

substrate, and further, to assess the effect of clay content on its performance. However, 

there were no consistent effects of the enzyme observed in either substrate on 

parameters including biomass, P uptake and substrate available P, which indicated that 
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phytase activity was lost in both substrates. It is probable that this was due to adsorption 

of the phytate or the enzyme to the substrate solid phase, regardless of clay content. 

Similar loss of activity has been observed in other approaches to phytase application. 

For example, when Nicotiana tabacum plants were engineered to express a fungal 

extracellular Aspergillus niger phytase, plants grown in sterile phytase-rich agar 

accumulated 3.7 fold more P than control plants, but this advantage was lost when 

plants were grown in P-deficient soil (George et al., 2005b). Greater understanding of 

rhizosphere chemistry has revealed that low molecular weight organic acids such as 

citrate can play a key complementary role in soil phytase activity, by mobilising phytate 

via ligand exchange with soil sorption sites. Recently, Giles et al., (2017) showed that N. 

tabacum plants engineered to express both phytase and citrate from their roots 

accumulated more P than plants expressing only one of the two traits, demonstrating 

the importance of low molecular weight organic acids for enzyme activity. Many 

commercial phytases, such as that used in this thesis, have an optimal activity at acidic 

pH (Menezes-Blackburn et al., 2014). Organic acid exudation in plants has been shown 

to cause reductions in rhizosphere soil pH (Adeleke et al., 2017), so their exudation may 

also provide more optimal biochemical conditions for phytase activity in soils. In future 

experiments, it would therefore be interesting to investigate whether co-application of 

one or more low molecular-weight organic acid with phytase would have a positive 

effect on enzyme activity by decreasing the adsorption of both enzyme and phytate in 

the substrate.  

In this experiment, the pH of the two substrates differed according to the clay content, 

with the 0% clay substrate having a very low pH of 4.25, and the 10% clay substrate 

having a higher pH at 4.93. The clay content of the substrate was found to have a 

significant effect on the biomass of plants, with those grown in 10% clay consistently 

having greater biomass. It is possible that this difference was caused by the elevated 

substrate pH, and this may have masked any beneficial effect of the enzyme treatment 

on plant performance. Despite the lack of any significant observed effect of the 

commercial phytase enzyme on plant growth, further experiments are warranted to 

observe it’s performance in substrates of the same pH, where the baseline biomass of 

plants is the same, and where any effect of the enzyme, or lack thereof, could be more 
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easily observed. Experiments could also be undertaken on substrates in the absence of 

plants to investigate the behaviour of phytate in substrate or soil systems. Substrates or 

soils could be treated with a known amount of phytate, the concentration of which could 

be measured by solution 31P NMR, before soils are incubated with phytase, and again 

analysed for phytate concentration to observe any enzyme-induced change. This would 

remove the reliance on plant-performance indicators and provide direct quantitative 

data on any effect of the enzyme. This could then be followed up by varying substrate 

conditions such as pH, adsorptive capacity, organic acid concentration, clay and organic 

matter content to understand how these factors influence phytase dynamics. 

Alternatively, in a plant-based system, plants could be fertilised with a 33P radiolabelled 

phytate prior to phytase addition, after which simple radio-imaging and scintillation 

counting could be used to measure plant uptake of 33P following phytate 

dephosphorylation by phytase. This would require the generation of pure radiolabelled 

phytate free from phosphate contamination, which could be achieved by 

chromatographic or anion exchange separation following it’s synthesis according to the 

methods described by either Robertson, (2018), or Whitfield et al., (2018). 

Furthermore, future experiments may benefit from investigating the use of a range of 

phytase enzymes for phytate dephosphorylation in soils and substrates. The phytase 

enzyme used in this thesis was provided by DSM Nutritional Products, and is derived 

from the enterobacterium Citrobacter braakii for use in the dephosphorylation of 

phytate in the gut of monogastric livestock. Whilst the active pH range of this phytase is 

broad, between pH 2 – 6, and is optimal between pH 3 – 4.5 (Menezes-Blackburn et al., 

2015), the complex and heterogenous conditions of the soil may inhibit the activity of 

enzymes not optimised for those conditions. Greater success may therefore be achieved 

by using phytase enzymes that have been isolated from soil-based microbes.  

6.6 Conclusion  

The recycling of P in organic wastes to arable land is an essential component of a 

sustainable model for agriculture. This thesis has shown that anaerobically digested 

sludge is P-rich and dominated by orthophosphate, but contains a substantial amount 

of phytate, which is spread to land in organic amendments. It was also shown that soil 
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P speciation varies with land-use history, with agricultural soils dominated by 

orthophosphate, but more natural grassland soils dominated by organic P forms. 

Conventional land management has depleted arable soil of phytate, but recovery and 

accumulation of phytate seems to occur when these land management practices are 

ceased and soil is amended with swine manure, which is accompanied by a recovery in 

soil organic matter. Long-term experiments are required to assess whether this is also 

the case when arable soils are amended with anaerobically digested sludge, and 

whether phytate accumulation is affected by the conventional cultivation, cropping and 

harvesting processes characteristic of these soils. 

A key contribution to reducing requirements for chemical P fertiliser inputs is the 

mobilisation of stabilised, plant-unavailable P that is already in the soil. With phytate 

often identified as the most abundant organic P form in soil extracts by solution 31P 

NMR, biofertilisation strategies involving the enzyme phytase are likely to prove pivotal 

for phytate mineralisation in soil, mirroring the established success of phytases as 

supplements for the grain-based feed of monogastric livestock. Many strategies are 

currently in development for this use, including the genetic engineering of crops for 

increased phytase exudation from roots (Giles et al., 2017), or the inoculation of 

manures and soils with phytase-producing microbes (Menezes-Blackburn et al., 2016). 

In this thesis, the direct application of a commercially available phytase enzyme was 

found to be ineffective for phytate dephosphorylation in a soil-like substrate, likely due 

to adsorption of phytate and phytase to the substrate solid-phase. A greater 

understanding of the rhizosphere biochemistry has elucidated the key role that low 

molecular weight organic acids play in the maintenance of both enzyme and phytate in 

solution, so future experiments involving the complementary application of these may 

yield improved results.  

Regarding the wider development of sustainable and efficient use of P resources, there 

is a need firstly for more accurate and extensive testing of soil P levels, and greater 

understanding of optimal crop-specific P requirements, so that P can be applied to soil 

in a needs-based manner (Blackwell et al., 2019). Further efforts are also required to 

identify opportunities for nutrient recovery and recycling. Whilst manure and sludge are 

commonly recognised as straightforward intervention points, recent work has shown 
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that a fertiliser product derived from abattoir waste can provide comparable or 

improved yields versus a rock phosphate derived fertiliser (Darch et al., 2019), 

highlighting that there are opportunities for nutrient recovery in all corners of the food 

production industry. Furthermore, whilst a large amount of valuable scientific research 

has been undertaken, the integration of new strategies and biotechnology into a 

sustainable and efficient agricultural model will require a system-wide approach with 

input from all of the stakeholders involved in food production and consumption, to 

ensure that both societal and environmental concerns are addressed (Horton et al., 

2017). For example, the use of genetically engineered crops is a complex societal and 

political issue, meaning that the integration of crop varieties engineered for increased 

phytase and organic acid exudation will require input from all parties to understand and 

overcome these obstacles. Such integrated thinking will furthermore enable the use of 

advanced life cycle analyses on proposed sustainable models (Horton et al., 2017; 

Goucher et al., 2017), which may highlight areas in which further research is required, 

and may help to mitigate adverse unintended consequences that may be encountered 

upon the application of new strategies. 

This thesis contributes to our understanding of phytate dynamics in sewage sludge and 

soil, and how phytase enzymes could be used in future to enable its mobilisation for 

crop P nutrition, thereby reducing inputs of unsustainable phosphate fertilisers. 

However, a huge amount of work remains to be undertaken across academic, industrial 

and societal realms in pursuit of sustainable food production. With the human 

population increasing, and phosphate rock reserves becoming rapidly depleted, time is 

of the essence.   
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Appendix A 

Solution 31P NMR Spectra of Sludge Extracts 

 

 

  

Figure A.1: Solution 31P NMR spectra of 0.25M NaOH + 0.05M EDTA extracts of 

Primary Sludge (PS; n=3). Spectrum is presented between 8 – 0 ppm. Inset: Close-up 

of the orthophosphate monoester region with phytate peaks. Na-phytate (Black) is 

included for reference. Orthophosphate was measured by integration of the single 

phosphate peak (~5.8 ppm), and Phytate was measured by integration of the second 

phytate peak (~4.75 – 4.7 ppm) with comparison to an internal standard of 4mM 

methylene diphosphonate (MDP; not shown). 100mg of extract was dissolved in 1mL 

of a mix containing 9 volumes 1M NaOH + 0.1M EDTA, and 1 volume 4mM MDP in 

D2O. For PS-1 and PS-2 samples, 100uL of this was then diluted to 1mL in the same 

solution. For PS-3 analysis, and all subsequent analyses, 200µL of suspension was 

diluted to 1mL to increase signal:noise ratio. 
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Figure A.2: Solution 31P NMR spectra of 0.25M NaOH + 0.05M EDTA extracts of 

Secondary Sludge (SS; n=3). Spectrum is presented between 8 – 0 ppm. Inset: Close-

up of the orthophosphate monoester region with phytate peaks. Na-phytate (Black) 

is included for reference. Orthophosphate was measured by integration of the single 

phosphate peak (~5.8 ppm), and Phytate was measured by integration of the second 

phytate peak (~4.75 – 4.7 ppm) with comparison to an internal standard of 4mM 

methylene diphosphonate (MDP; not shown). 100mg of extract was dissolved in 1mL 

of a mix containing 9 volumes 1M NaOH + 0.1M EDTA, and 1 volume 4mM MDP in 

D2O, and 200µL of suspension was diluted to 1mL. 
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Figure A.3: Solution 31P NMR spectra of 0.25M NaOH + 0.05M EDTA extracts of 

Digester Feed (DF; n=3). Spectrum is presented between 8 – 0 ppm. Inset: Close-up 

of the orthophosphate monoester region with phytate peaks. Na-phytate (Black) is 

included for reference. Orthophosphate was measured by integration of the single 

phosphate peak (~5.8 ppm), and Phytate was measured by integration of the second 

phytate peak (~4.75 – 4.7 ppm) with comparison to an internal standard of 4mM 

methylene diphosphonate (MDP; not shown). 100mg of extract was dissolved in 1mL 

of a mix containing 9 volumes 1M NaOH + 0.1M EDTA, and 1 volume 4mM MDP in 

D2O, and 200µL of suspension was diluted to 1mL. 
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Figure A.4: Solution 31P NMR spectra of 0.25M NaOH + 0.05M EDTA extracts of 

Digested Sludge (DS; n=3). Spectrum is presented between 8 – 0 ppm. Inset: Close-

up of the orthophosphate monoester region with phytate peaks. Na-phytate (Black) 

is included for reference. Orthophosphate was measured by integration of the single 

phosphate peak (~5.8 ppm), and Phytate was measured by integration of the second 

phytate peak (~4.75 – 4.7 ppm) with comparison to an internal standard of 4mM 

methylene diphosphonate (MDP; not shown). 100mg of extract was dissolved in 1mL 

of a mix containing 9 volumes 1M NaOH + 0.1M EDTA, and 1 volume 4mM MDP in 

D2O, and 200µL of suspension was diluted to 1mL. 
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Figure A.5: Solution 31P NMR spectra of 0.25M NaOH + 0.05M EDTA extracts of cake 

(CK; n=3). Spectrum is presented between 8 – 0 ppm. Inset: Close-up of the 

orthophosphate monoester region with phytate peaks. Na-phytate (Black) is 

included for reference. Orthophosphate was measured by integration of the single 

phosphate peak (~5.8 ppm), and Phytate was measured by integration of the second 

phytate peak (~4.75 – 4.7 ppm) with comparison to an internal standard of 4mM 

methylene diphosphonate (MDP; not shown). 100mg of extract was dissolved in 1mL 

of a mix containing 9 volumes 1M NaOH + 0.1M EDTA, and 1 volume 4mM MDP in 

D2O, and 200µL of suspension was diluted to 1mL. Signal:Noise ratio is vastly 

improved in these spectra due to an upgrade NMR apparatus from a mag1 console 

to AvII console. 
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Appendix B   

Solution 31P NMR Spectra of Soil Extracts 

 

  

Figure B.1: Solution 31P NMR spectra of 0.25M NaOH + 0.05M EDTA extracts of Spen 

Arable Soil (SAra; n=3). Spectrum is presented between 8 – 0 ppm. Inset: Close-up of 

the orthophosphate monoester region with phytate peaks. Na-phytate (Black) is 

included for reference. Orthophosphate was measured by integration of the single 

phosphate peak (~5.9 ppm), and Phytate was measured by integration of the first 

phytate peak (~5.7 ppm) with comparison to an internal standard of 4mM methylene 

diphosphonate (MDP; not shown). 100mg of extract was dissolved in 1mL of a mix 

containing 9 volumes 1M NaOH + 0.1M EDTA, and 1 volume 4mM MDP in D2O. 
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Figure B.2: Solution 31P NMR spectra of 0.25M NaOH + 0.05M EDTA extracts of Spen 

Pasture Soil (SPas; n=3). Spectrum is presented between 8 – 0 ppm. Inset: Close-up 

of the orthophosphate monoester region with phytate peaks. Na-phytate (Black) is 

included for reference. Orthophosphate was measured by integration of the single 

phosphate peak (~5.9 ppm), and Phytate was measured by integration of the first 

phytate peak (~5.7 ppm) with comparison to an internal standard of 4mM methylene 

diphosphonate (MDP; not shown). 100mg of extract was dissolved in 1mL of a mix 

containing 9 volumes 1M NaOH + 0.1M EDTA, and 1 volume 4mM MDP in D2O. 
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Figure B.3: Solution 31P NMR spectra of 0.25M NaOH + 0.05M EDTA extracts of Spen 

Pig Pen Soil (SPig; n=3). Spectrum is presented between 8 – 0 ppm. Inset: Close-up 

of the orthophosphate monoester region with phytate peaks. Na-phytate (Black) is 

included for reference. Orthophosphate was measured by integration of the single 

phosphate peak (~5.9 ppm), and Phytate was measured by integration of the first 

phytate peak (~5.7 ppm) with comparison to an internal standard of 4mM methylene 

diphosphonate (MDP; not shown). 100mg of extract was dissolved in 1mL of a mix 

containing 9 volumes 1M NaOH + 0.1M EDTA, and 1 volume 4mM MDP in D2O. 
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Figure B.4: Solution 31P NMR spectra of 0.25M NaOH + 0.05M EDTA extracts of 

Wardlow Acid Soil (WAc; n=3). Spectrum is presented between 8 – 0 ppm. Inset: 

Close-up of the orthophosphate monoester region with phytate peaks. Na-phytate 

(Black) is included for reference. Orthophosphate was measured by integration of the 

single phosphate peak (~5.9 ppm), and Phytate was measured by integration of the 

first phytate peak (~5.7 ppm) with comparison to an internal standard of 4mM 

methylene diphosphonate (MDP; not shown). 100mg of extract was dissolved in 1mL 

of a mix containing 9 volumes 1M NaOH + 0.1M EDTA, and 1 volume 4mM MDP in 

D2O. 
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Figure B.5: Solution 31P NMR spectra of 0.25M NaOH + 0.05M EDTA extracts of 

Wardlow Calcareous Soil (WCal; n=3). Spectrum is presented between 8 – 0 ppm. 

Inset: Close-up of the orthophosphate monoester region with phytate peaks. Na-

phytate (Black) is included for reference. Orthophosphate was measured by 

integration of the single phosphate peak (~5.9 ppm), and Phytate was measured by 

integration of the first phytate peak (~5.7 ppm) with comparison to an internal 

standard of 4mM methylene diphosphonate (MDP; not shown). 100mg of extract 

was dissolved in 1mL of a mix containing 9 volumes 1M NaOH + 0.1M EDTA, and 1 

volume 4mM MDP in D2O. 
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Appendix C   

 

Figure C: A generalised qualitative schematic of the availability of soil P between pH 

3 and pH 9. Figure adapted from Penn & Camberato, (2019) 


