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Abstract 

 
The incorporation of bismuth (Bi) into GaAs creates many potentials in different areas of 

technology such as telecommunications, spintronics and photovoltaics applications. The 

ability for GaAsBi to reach 1 eV bandgap is highly anticipated in solar cells industry as an 

alternative to replace InGaAs in achieving higher efficiency multi-junction solar cells. 

Although it is known that the growth of Bi-based material is challenging, the characterisations 

of this material device will help in providing its properties and open up opportunity for 

improvement and development. 

 

A series of GaAsBi/GaAs multiple quantum well p-i-n diodes was grown using molecular 

beam epitaxy and the material characterisations are presented in this thesis.  From the electrical 

characterisations, the current-voltage measurements of the devices demonstrate good diode 

behaviours with clear differences in dark current value between strained and strain-relaxed 

devices. Meanwhile, the reverse bias current-voltage measurements show the dominance of 

reverse leakage current for all devices.  

 

The devices also experience hole trapping in the valence band, causing poor carrier extractions 

when light is absorbed during photocurrent measurements. Carrier enhancement can be 

achieved by applying slight reverse bias when the measurement was taken. Besides that, the 

absorption coefficient of the devices was confirmed to be similar with other work. Finally, the 

device’s performance under solar illuminator is lower compared to InGaAs/GaAsP strained-

balanced multiple-quantum well device due to its poor value of open-circuit voltage and it has 

higher bandgap offset compared to GaAs. 

 

Overall, these results suggest than GaAsBi/GaAs multiple quantum well(s) do have a lot of 

room for improvement especially on growth, structure and strain level of the material. If these 

components can be catered, GaAsBi can be a competitive alternative for 1 eV junction in 

multiple junction solar cells.  
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Chapter 1: Introduction 

1.1 Solar Cell for Renewable Energy  

1.1.1 Renewable and Non-Renewable Energy 

Demand in industry to have a long-lasting energy supply to humankind is leading to a very 

intense research and study on many renewable and non-renewable resources. A race between 

renewable energy such as sunlight, wind and tides and non-renewable energy like natural gas, 

oil and coal in becoming the main energy source to the world has become very competitive. In 

addition to that, debates between professionals on switching from current non-renewable 

energy source to renewable energy source becomes more frequent for the past few years.  This 

is due to the limitation that we have from the non-renewable resources especially oil and natural 

gas. It takes a very long time to be replenished and usually leave behind by-products such as 

carbon dioxide (CO2), carbon monoxide (CO) and lead that cause damages to the environment. 

The burning of fossil fuels especially leads to the formation of CO2 which climatologist believe 

to be the main reason for global warming issue. 

 

There are several advantages of renewable energy compared to non-renewable energy. They 

are sustainable and never runs out. It can be quickly replenished over time too. Besides that, 

they are clean as they produce little or no waste products, unlike the by-product of fossil fuels 

like carbon dioxide, sulphur dioxide and other chemical pollutants that can harm the 

environment. With these benefits, it gives a very little impact to the environment and avoid 

greenhouse effect leading to global warming. The operating cost for energy generation is lower 

in a long run too. This is applied to a non-moving renewable technology such as photovoltaic 

panel due to less maintenance needed. Somehow, other renewable energy requires a high 

maintenance cost. For example, wind turbine normally runs in a harsh environment and corrode 

easily which require regular servicing to keep everything working efficiently. The renewable 

energy projects also can bring economic benefits because most projects are located outside 

main city like solar energy collection A new spacious area will be open and this require more 

local services.  

 

However, the renewable energy is facing the difficulty in generating same quantities of energy 

as large as traditional fossil fuel generators. One of the best solutions is to have a balance of 

many different power sources. Reliability is also another disadvantage of renewable energy. 
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The unpredictable and inconsistency of natural resources makes it difficult to estimate how 

much energy production. If the resources are unavailable, the capacity to generate energy from 

them also will be unavailable. For this thesis, the interest is on solar energy as a potential 

renewable energy resource and other alternatives of renewable energy will not be discussed 

after this.  

1.1.2 Solar Energy 

Solar energy is one of the highly anticipated renewable energy that can replace fossil fuel 

energy and non-renewable energy. This is due to its ability to directly convert the solar energy 

consist of light and heat into other type of energy such as electricity. The Sun radiates a large 

amount of energy every day and the planet absorb some of it. The remainder however, is 

dissipated when it is reaching the Earth or being reflected back out into the space. The focus 

will be on the photovoltaics cells that convert light energy to electricity. Meanwhile, solar 

thermal technology, where heat energy is used is not studied here.  

 

The advantages of solar energy are; it is limitless, it reduces the use of fossil fuels and most 

importantly, non-polluting. In avoidance to global warming, these characteristics of solar 

energy is very promising and demanding. However, depending on the location of the collection 

point, day of the year and time of the day, the amount of energy collected will vary. The average 

annual solar irradiance around the world shows that the irradiation reached the Earth mostly at 

near the equator. It is also an unreliable technology during the night or on cloudy weather. 

Besides that, the technology to date is expensive and require a large surface to collect a useful 

amount of solar energy. Despite the drawback, solar energy has been commercially available 

for more than 15 years especially in the major markets lead by Germany with 31% of the total 

photovoltaic market, followed by Italy and China and the number of installations are seven 

times more than in 2010’s.[1] 

 

Commonly, solar energy is used for space and terrestrial applications. Space applications are 

operated with concentrated cells. Cost also is not the main issue as long as the efficiency can 

be increased by minimising the weight of the optics used. Vice versa, for terrestrial 

applications, cost is the main issue. If the cost is higher than the cell’s energy recovery, it will 

not be worthwhile to use it.  
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The Sun has the original surface temperature of ~5,800 K and its characteristic can be 

approximated by a blackbody spectrum peaking at visible wavelength. With the known size of 

the Sun and the distance between the Sun and the Earth, the spectral irradiance or intensity can 

be determined by calculating it using Planck’s law. Figure 1.1 shows the blackbody spectrum 

at 5,800 K normalised to a total power density of the sunlight spectrum when it reaches outside 

the atmosphere (AM0) and after it reaches the earth (AM1.5) which are 1,366.1 W.m-2 and 

1,000 W.m-2, respectively.[2]  

 

Figure 1.1: Normalised blackbody (BB) spectrums indicated with black lines compared to the 

solar spectrum at the top of atmosphere (red line) and at sea level (blue line). Image taken 

from [2].  

 

1.1.3 Solar Cells 

The theoretical maximum efficiency of a solar cells can be calculated from Carnot efficiency, 

which is the operation of heat engine between two temperatures.[3] In this case, it is between 

the temperature of the Sun and the Earth. It is shown that the efficiency of solar cell can never 

be 100% because of the finite difference between the Sun’s temperature and the solar cell. 

There are also other loss mechanisms that affect and actually reduce the efficiency of the solar 

cells. 
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Two main losses caused by the solar cell are the transmission losses and thermalisation losses.  

For a solar cell with specific bandgap, any photon below the bandgap will not be absorbed by 

the cell causing transmission losses. Meanwhile, thermalisation losses occur when the photon 

above the bandgap generate electron-hole pairs and they thermalised to the band edges. There 

are needs in balancing these two losses because changing the bandgap will decrease the effect 

of one, while increasing the effect of another. Therefore, it is important to optimise the value 

of bandgap to achieve maximum efficiency of the solar cell. In depth discussion on solar cell 

processes can be found in Section 2.3.5. 

 

1.2 Technology and Demands in Solar Cell Industry 

This sub-section is to understand the general concept of the different generations and current 

demand in industry for solar cells. Solar cell technology has been classified to three main 

groups, known as the three generations of solar cells. First generation solar cells consist of 

single junction solar cells made of silicon. Second generation cells are made of organic cells 

and thin-films. The third-generation cells are the research goal, consisting of advanced 

technology-related such as hot carrier solar cells, intermediate band solar cells, multi-junction 

solar cells and multiple quantum wells solar cells. The different generations have different 

efficiencies and production costs.[4-6]  

 

Figure 1.2 shows the three generations of solar cells and their comparison in term of cost and 

efficiency. The horizontal axis represents the cost of the solar module. By including the cost 

of packaging and mounting, the cost can be twice the value. In addition to that, the dotted 

slopes indicate the cost per unit power. The steeper the slope of dotted line, the cheaper it can 

get. Meanwhile, the vertical axis is the theoretical percent efficiency of the solar cell. The 

horizontal dashed line is the Shockley-Queisser limit line. It is the power conversion limit from 

radiation into electrical power achievable by single junction solar cell which starts from 31% 

and can be up to 41% depending on the concentration ratio. Besides that, thermodynamic limit 

of a solar cell (which is not shown on the figure) is between 67-87%. This parameter is used to 

determine the power conversion limit for third generation solar cells, depending on the 

concentration ratio too.[7] 
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Figure 1.2: Three generations of solar cells with the representation of cost per square meter 

and percent efficiency. Dashed lines with different gradient value show the cost per unit of 

efficiency, where the third-generation solar cells show the smallest value compared to the 

other two generations. Image taken from [8].  

 

1.2.1 First Generation Solar Cells 

First generation solar cells are made of different type of silicon and they make up almost 85% 

of the current commercial market.[9] However, they lose the efficiency at higher operating 

temperatures. As seen in Figure 1.2, the cost in dollar per square meter is larger compared to 

other generations while their efficiency is limited by the Shockley-Queisser limit. For example, 

a high purity single silicon crystal wafer is generally made by the Czochralski process, which 

is an expensive process due to batch process involving high temperature, long times and 

mechanically slicing wafers from the ingot.  
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1.2.2 Second Generation Solar Cells 

Second generation solar cells include thin films and organic solar cell. The materials are 

cheaper than first generation solar cells because they use less quality material, fewer processing 

steps and manufacturing technology is simpler. However, the efficiency is limited. Thin films 

such as amorphous silicon cells, nanocrystalline silicon and cadmium telluride (CdTe) are 

light-weighted and flexible thus of great interest for application on portable photovoltaic, 

window tinting and building material. Besides that, organic solar cells can be deposited through 

spray coating. The drawback of this coating is performance degradation over time due to 

reaction with water and oxygen from the surroundings. According to big companies that 

invested in this technology such as First Solar and Venture Capital Firms, it is more challenging 

to obtain CdTe. This is because, although it has good efficiency at a competitive price, the 

nature of the material is harmful and toxic. More researches are needed to increase the 

operating efficiency as well as mitigating the hazard from the material.[10] 

1.2.3 Third Generation Solar Cells 

Third generation solar cells have the ability to dramatically improve the percent efficiency 

while maintaining low costs. There is a lot of ongoing research under solar companies and 

universities to find the best method to improve and actually exceed the single junction 

efficiency. For examples, research on nanotubes antennas are successfully developed and 

tested in the laboratories at MIT.[11] Prototypes of silicon wire photovoltaic cells are also 

developed at CalTech.[12] The designs used in this generation are generally made of carrier 

multiplication technique, hot carrier cells, multi-junction cells or tandem and multiple quantum 

well solar cells. 

 

Carrier multiplication technique  Carrier multiplication is a process where a single 

photon absorption will lead to the excitations of multiple electrons from valance band to 

conduction band. In theory, one photon is able to create one electron-hole pair across the band 

gap. For a material with carrier multiplication, high energy photons can excite more than one 

electron across the band gap and therefore, increase the solar cell efficiency.[13] 
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Figure 1.3: Carrier multiplication technique by using impact ionisation process initialised by 

an electron gaining photon energy. Electrons (black circle) are swept to positive x-direction 

while holes (white circle) drift to negative x- direction. 

 

Hot carrier cells  Hot carrier cells has the special design that allows the material 

contact to be energy-selective so that the high energy carriers or ‘hot carriers’ can be collected 

before they lost most of their energy as heat. As the result, the energies are not lost due to 

thermalisation like how conventional solar cell normally works.  

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Band diagram of hot carrier solar cells. The ‘hot carriers’ remain in the 

absorber and are extracted through the narrow band energy ESCs before they thermalised to 

the band edges. ESCs is the energy selective contacts.[14] 

 

Figure 1.4 shows the illustration for a typical band diagram of a hot carrier cell.[14] Hot carriers 

transfer their energy to the material very fast, normally sub-picosecond times. To address this 
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challenge, an optimal configuration and design structure is needed to ensure this method is 

competitive compared to other third generation solar cell structure.[15] 

 

Multi-junction cells   Another current development in third generation solar 

cell is multi-junction solar cells. A number of semiconductor material systems with different 

bandgap value to each other are stacked together to allow photon absorption and collection at 

different part of the solar spectrum. By using this method, thermalisation and sub-band gap 

transmission losses can be minimised. Therefore, the limiting efficiency can be maximised. 

This type of solar cell can be monolithically grown or mechanically stacked for it to be 

operated. Each design has its own technological challenge that limits the efficiency.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: 4-junction InGaP/GaAs/InGaAs/Ge terrestrial concentrator solar cell cross 

section. 

 

Figure 1.5 shows the cross section of a commercial 4-junctions solar cell. Unlike mechanical 

stack of multi-junction solar cell, the epitaxial growth of multi-junction solar cells requires 

different material to be deposited on top of each other with the highest band gap material at top 

surface and lowest band gap material is at the bottom. This is because the material will be 

transparent to the photons that will be absorbed in the lower bandgap material underneath it. 

In addition to that, it is limited by the sub-cell that generates the lowest current. Therefore, the 

InGaP  1.82 eV 

GaAs  1.42 eV

 eV 

InGaAs 0.94 eV

 eV 

Ge  0.67 eV

 eV 

InGaAs buffer 

Back contact 

Tunnel junction

 eV 

Tunnel junction

 eV 

Tunnel junction

 eV 
Nucleation

 eV 

Ge substrate 

Top contact Anti-reflection coating 



19 
 

current value of each of the designed junctions has to be equal, this is known as ‘current 

matching’. This can be achieved by the optimisation of the depletion width of the solar cells 

and careful choice of semiconductors to adjust the amount of absorption in each junction 

 

The maximum limiting efficiency of a multi-junction solar cell is usually determined by the 

number of junction and the matching of the lattice structures. Theoretically, high number of 

junctions will increase the maximum efficiency as it can cover wider range of solar spectrum. 

For example, under 1,000 x AM1.5 solar spectrum; single junction solar cell has maximum 

theoretical efficiency of 37% and a 36-junction solar cell increases the theoretical efficiency 

up to 72%.[16] For infinite number of junctions, the theoretical efficiency for the solar cell is 

86.8%.[17] However, it is not easy to obtain matched junctions. This is because, strains 

introduced to the layers will increase and may reduce the efficiency of the solar cell. Current 

highest efficiency for multi-junction solar cell reported by National Renewable Energy 

Laboratory (NREL) is a 6-junction AlGaInP/AlGaAs/GaAs/InGaAs/InGaAs/InGaAs 

metamorphic solar cell with 47.1±2.6 % solar conversion efficiency and 39.2% 1-Sun global 

efficiency.[18, 19]   

 

Multiple quantum well solar cells  The remainder of this thesis will cover mainly 

about multiple quantum well (MQW) semiconductor structure and the outline here is for 

completeness. Extensive discussion on MQW solar cell will be in Chapter 2. The incorporation 

of MQW into multi-junction solar cells is one of the methods to alter the absorption edge of 

the junctions. Basically, photons with energy equal to the ground state of the wells are 

absorbed, producing carriers. With the built-in field in the junction, the carriers that sit at the 

ground state of the well will be thermally excited out of the wells and are collected producing 

the photocurrent.[20]  
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1.3 1 eV Material System 

1.3.1 Rainbow of Choices  

The efficiency of multiple junction solar cells is predicted to be at the optimum value by placing 

a 1 eV junction lattice-matched material system in a three-junction solar cell or replacing 

InGaAs on top of Ge for a four-junction solar cell.[21-23] The modelling of ideal three- and 

four-junction solar cell has been studied by Kurtz et al. showing the theoretical efficiencies 

calculated for both space and terrestrial applications. The 1 eV-material as the fourth junction 

inserted to the multi-junction solar cells also has been predicted to achieve more than 50% 

efficiencies under concentration.[24] Since there is no binary III-V material with this bandgap, 

it is necessary to look for a suitable semiconductor material where the band gap can be adjusted.  

 

One of the ways to achieve strain compensating structures while trying to achieve 1 eV 

bandgap is by the application of strain-balanced material structure such as InGaAs/GaAsP 

MQWs.[25-28] However, InGaAs/GaAsP MQW has bandgap down to 1.28 eV only before the 

mismatch strain is introduced. Another way is by replacing Ge bottom layer from the 

InGaP/InGaAs/Ge design with InGaAs or CuInSe2 (both with 1 eV bandgap), and it is expected 

to see higher efficiency solar cell from the structure. 

 

Besides that, inverted metamorphic (IMM) layers from III-V materials also have the potential 

to increase the efficiency of solar cells. The IMM layers work by growing the lattice-matched 

top junctions on the substrate first before the lowest bandgap layer. After the growth, a handle 

is mounted to the layer and the substrate is removed by using etching procedure. By using this 

process, it can reduce the level of defects, preserve the device quality from the metamorphic 

layer and increase the efficiency. The drawback from this technology is, the processing 

requirement of IMM device is more complex than the conventional solar cells.[29-31]  

 

In addition to that, the incorporation of dilute nitride only into GaAs has the capability to extend 

the emission wavelength and reduce the bandgap by 125 meV/% of nitrogen(N).[32] The 

interaction between the conduction band and the nitrogen resonant level leads to the reduction 

of the conduction band minimum thus, contribute to this large bandgap reduction. The optical 

bowing coefficient for GaAsN is on the order of 10 eV and strongly dependent on the nitrogen 

composition.[33] This coefficient value is large compared to the typical bowing coefficient for 
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other material systems such as InGaAs, GaAsSb and InGaSb which are on the order of 0.1 eV 

and independent of composition.  

 

Incorporation of nitrogen into InGaAs producing a 1 eV junction of InGaAsN, also has been 

done by Friedman et al.[34] The maximum output power obtained by the device can reach 

between 61% to 66% from the ideal power but the internal quantum efficiency is very low. 

Incorporating ~3% nitrogen and ~8% antimony into GaAs forming GaAsNSb with a bandgap 

of 1 eV and also lattice-matched with GaAs also has been studied by several groups. [35, 36] 

This composition introduces no or very little strain into the solar cell junctions but the 

performance may be limited by the surface recombination of the junction and diffusion length 

of the device.  One of the challenges while dealing with the incorporation of dilute nitride is the 

high quality nitride is very difficult to grow due to large difference in lattice constant and 

thermal expansion coefficient.[37] Photoluminescence efficiency, minority carrier diffusion 

length and electron mobility are greatly affected by the nitrogen incorporation because it is 

normally grown at lower growth temperature compared to other semiconductor devices. 

 

Another material system that potentially becomes a way to achieve 1 eV energy bandgap is the 

combination of bismuth (Bi) and nitrogen into GaAs to create GaAsBiN. Sweeney et al. predict 

the potential that GaAsBiN has by using band anti-crossing theory modelling.[38, 39] The 

addition of bismuth to GaAs leads to an interaction with the valence band and addition of 

nitrogen leads to an interaction with the conduction band. Therefore, by introducing small 

percentage of both elements into GaAs, a lattice-matched system with a large bandgap 

reduction below the GaAs bandgap can be achieved. 
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Figure 1.6: Bandgap bowing for GaAsN and GaAsBi. Image taken from [39]. 

From Figure 1.6, by balancing both elements, it is expected to result in lower strain value 

because it can be lattice-matched with GaAs when combining them in a quad-alloy. There are 

other publications on the theoretical model calculation, band structure and first principle 

calculations of band anti-crossing modelling too, such as by Nacer et al. [40] and Habchi et al. 

[41]. Although there are not many publications on the actual growth of this material system 

due to its highly-challenging growth condition, Yoshimoto et al. successfully did the growth 

of GaAsBiN using a Molecular Beam Epitaxy machine for the first time in 2004 [42] and its 

optical properties were published in 2006 [43] and 2007 [44].  

1.3.2 GaAsBi for Device Sources and Detectors 

For the past decades, bismuth is gaining a lot of interest in electronics industry especially from 

III-V semiconductor alloy group and are seen to be a promising material for developing new 

optoelectronic devices. Bismuth incorporated material systems are relatively new research 

compared to other compounds. A small fraction of bismuth introduced to an alloy is proven to 

have the ability to reduce the energy bandgap of a material allowing it to operate at longer 

wavelength and suitable for high speed electronics application. The semiconductor bandgap 

decreases by a rate of ~84 meV/ % bismuth compared to other element such as indium and 

antimony with reduction of 16 meV/% and 21 meV/%, respectively.[32] In comparison with 
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nitrogen, bismuth shows interaction at valence band (i.e increase in the valence band 

maximum) and expected to maintain the electron mobility at conduction band. [45]  

 

Several groups have reported bismuth incorporated in many III-V semiconductor materials 

such as InAsBi [46], InSbBi [47], GaSbBi [48] and others. In this report, we are concentrating 

the incorporation of bismuth in GaAs to achieve a bandgap of at least 1 eV from the original 

GaAs bandgap of 1.42 eV. In the late 90’s, K Oe (1998) from Japan is the first to successfully 

incorporate 2.4% of bismuth into GaAs.[49] Further investigation of GaAsBi can be found in 

[50] and [51] stating the temperature insensitive characteristic when bismuth is incorporated 

into GaAs. Tixier et al. published the first paper on the growth of GaAsBi epilayers by using 

the MBE machine and the author was able to incorporate the bismuth content up to 3.1% at 

low substrate temperature down to 380°C. As the result, the PL peak energy is reduced as the 

bismuth content is increased. [32]  

 

The continuation of S Tixier’s paper was published by S Francoeur (2003) from the same 

group.[52] The author is the first to talk about bandgap dependency of GaAsBi with bismuth 

content up to 3.6% and has the opposite opinion with K Oe (1998) about the sensitivity of the 

bandgap of GaAsBi to temperature compared to GaAs. The same author also talked about the 

bismuth impurities in GaAs and provide evidence that GaAsBi is an isoelectronic alloy.[53] 

Isoelectronic impurity can create noticeable localised states in the band gap when the alloy is 

at low temperature with low concentration. Other work on optimising the growth of GaAsBi 

was also reported in [54-56].  

 

Other research on GaAsBi used as LEDs and lasers have been published too. This material can 

form the active region in these light-emitting structures either through electroluminescence 

(EL) or photoluminescence (PL). Moreover, the relative temperature independency of the 

energy bandgap makes it suitable for semiconductor lasers because the emitted wavelength is 

nearly constant when the temperature varies.[49] The characterisations of GaAsBi LED 

emitting at 987 nm have been reported by R.B Lewis et al on 2009.[57] The recombination 

mechanisms of the LEDs were later reported by the same group stating that the emission 

efficiency of the device reduces as the temperature increase due to the domination of non-

radiative recombination in the LEDs.[58] Besides that, Ludewig et al. has reported the work 

on electrically pumped GaAsBi of Bi=2.2% single quantum well laser grown by MOVPE [59] 
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and the absorption coefficient of GaAsBi layers grown at different temperature specifically for 

optoelectronic terahertz devices has been investigated by Bertulis et al.[60] Extensive 

characterisations from GaAsBi has been extensively done by other groups too such as in [61] 

and [62]. 

  

Other than device source-type material, GaAsBi also is of interest as a detector such as for mid-

infrared photosensitive detectors although not much on solar cell-based applications. The 

industry demand to increase the efficiency in the triple-junction InGaP/GaAs/Ge solar cell 

could be increased by adding fourth junction with a 1eV bandgap. A simulation study was 

conducted to prove that it easy to achieve this desired bandgap by putting around 6% of Bi into 

GaAs with only 0.7% strain on GaAs.[63, 64] It has a significantly lower strain compared to 

growing 1 eV In0.27Ga0.73As on GaAs, which was 1.9%.[30] Hunter et al. has reported the 

electrical and absorption characteristics of GaAsBi/GaAs bulk diode in the near infrared with 

6% Bi.[65]  

The early study of InGaAs/GaAs MQW strained-devices have been studied.[66] It shows that 

the devices can be grown up to a certain critical thickness with acceptable level of strain. The 

material is later improved by introducing strain-balancing process, producing InGaAs/GaAsP 

MQW for multijunction solar cells.[25] Since Bi has the ability to reduce the bandgap value 

with less strain level, this becomes the vision for GaAsBi MQW to replace InGaAs for a triple 

or quad-junction solar cells. It is also suggested that well numbers have to be more than 50 to 

maximise absorption in photovoltaic applications.[67] The highest number of wells for 

GaAsBi/GaAs MQW that has been reported before this work is 24 wells.[68]  

In this work, the electrical and opto-electronic properties of strained GaAsBi/GaAs MQW 

devices are studied. The electrical characterisations including current-voltage measurements 

and capacitance-voltage measurements have been performed. Besides that, the opto-electronic 

characterisations such as photocurrent measurements and illuminated current-voltage 

measurements have been done too. A strain-balanced material system is used to compare the 

material quality of the devices.  
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1.4 Thesis Overview  

This chapter in summary has outlined the interest in the Sun as a source of renewable energy, 

different generations of solar cells available to date and the needs in 1 eV junction solar cells. 

In this thesis, optical, electrical and opto-electronic characterisations of MQW p-i-n diodes 

containing undoped GaAsBi wells with GaAs barriers layers are explored to study the potential 

of GaAsBi for solar cell applications for 1eV junction in a multi-junction solar cell.  

Chapter 2 gives an overview on the theoretical concepts of III-V semiconductors and solar 

cells. This includes the formation of semiconductor band structure and how diode equation 

works. Then, the III-V lattice structure formation is also discussed including the effects of 

adding bismuth. Lastly, the concept of the MQW is explained with the effect of strain and 

strain relaxation on the structure.  

Then, Chapter 3 will focus on the experimental methods used to obtain all the scientific data in 

this thesis. The optical characterisation specifically on the photoluminescence setup are 

discussed and followed by the device fabrication process to attain the electrical contact on the 

material. Then, the setup for electrical characterisations including current-voltage (I-V) and 

capacitance-voltage (C-V) measurements and opto-electronic characterisations focusing on the 

photocurrent measurement and I-V measurement under illumination are explained. 

The result on electrical characterisations of the devices at room temperature is discussed in 

Chapter 4. First, previous work reported including optical and structural characterisations by 

people from the same group as the author is presented. Then, the C-V measurement with doping 

profile, I-V under dark condition measurement in forward and reverse bias for the devices were 

presented. The ideality factor and other I-V parameters are tabulated and discussed later in the 

chapter.  

After that, Chapter 5 is the discussion on the opto-electronic characterisations which comprises 

photocurrent measurements and I-V measurements using a solar simulator. These results are 

important to identify the potential for GaAsBi as a solar cell and also to understand this material 

system before it is introduced into strain balanced structures.  

Lastly, Chapter 6 summarises all of the work done in this report and outlines the suggestions 

for possible future work.  
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Chapter 2: Background Theory 
 

2.1 Band Structure in Semiconductors 

 

2.1.1 Atoms and their Electronic States 

In quantum mechanics, every individual atom consists of electron occupies discrete energy 

levels. The electrons in solids also have to obey the Pauli exclusion principle where only one 

electron (with particular angular momentum, magnetic quantum number and direction of spin 

values) is allowed to moves around the atom’s nucleus in a quantum state, and it will occupy 

the lowest available energy level. Figure 2.1 shows the electron energy in one atom where the 

potential energy functions as a barrier to bind the electrons to the nucleus. The lower states’ 

electrons are more strongly bound to the nucleus.  

 

 

 

 

 

 

 

 

 

 

Figure 2.1: 1-D model of electron energy in one atom where n is the level of the electron. 

Lower n-level has stronger force attached to the nucleus. As the number of n increase, the 

electrons are more loosely bound to the nucleus.  

 

When the atoms are brought together in a solid, the interaction between atoms causes their 

orbitals to overlap. To avoid the atoms disobeying the Pauli exclusion principle, the energy 

levels ‘splits’, change its levels and this lowers the potential energy barrier. As the number of 

atoms increases, more ‘splitting’ will occur between the atoms and this will form an energy 

band structure for the material.  
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2.1.2 Energy Bands in Semiconductors 

 

Energy band structure are formed when there is a valence band and a conduction band separated 

by a value of energy gap, called as the band gap. The band gap is the forbidden gap or level 

between valence band and conduction band where no electrons are allowed to exist. The valence 

band is the highest filled band of any atom in which electrons are bound to atoms, while in the 

conduction band electrons are free to move after they are excited from the valence band. 

Depending on the value of energy gap that appears between these two bands, there are three 

categories to distinguish the material type which are metal, insulator and semiconductor. 

 

Metals   Valence and conduction bands overlap and electrons are free to move to 

higher empty levels. At 0 K, they remain conductive because the conduction band is partially 

filled with moving electrons. Good conductors such as copper (Cu), gold (Au), iron (Fe) and 

Aluminium (Al) are used mostly in electrical circuits and systems.  

 

Insulators  Insulators have relatively large bandgap compared to metals and 

semiconductors. They require a large amount of energy to excite electrons from the valence 

band to the conduction band. Examples of insulators are sodium chloride (NaCl), Aluminium 

oxide (Al2O3) and diamond (C) they are normally used as dielectrics in capacitors or act as 

insulation between conductors. 

 

Semiconductors Semiconductors fall in a category between insulators and metals. At 0 

K, a pure semiconductor behaves as an insulator and as temperature increases, there is a finite 

possibility that some of the electrons in valence band are excited to the conduction band. 

Electrons that are bound in valence band may obtain enough energy sourced from heat or light 

and the bound electrons will break free and can be excited to the conduction band. Silicon (Si), 

germanium (Ge), Gallium Arsenide (GaAs) and Indium Phosphide (InP) are semiconductor 

materials that are widely used in transistors, diodes, microprocessors etc. This chapter will 

extensively discuss semiconductors.  Figure 2.2 shows the band structure in crystalline solids 

for different classes of material as discussed above. 
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Figure 2.2: Simplified band structure for (a) metal, (b) insulator and (c) semiconductor. Grey 

blocks indicate conduction band and black blocks indicate valence band. The gap between 

these two blocks shows how much energy is needed to move an electron from valence band to 

conduction band. 

2.2 Crystalline Semiconductor 

 

2.2.1 The Fermi Level 

 

Fermi-Dirac function is a statistical method to define a distribution function and behavior of 

electrons in term of a probability value. This is because it is more applicable to find the average 

behavior instead of calculating the real value of motions. Fermi level, 𝐸𝐹 is related to the value 

of probability of an electron state of energy, 𝐸 being occupied and it has values between zero 

and one. The probability function can be obtained by using the equation below, 

 

𝑃(𝐸) =
1

1+𝑒𝑥𝑝(
𝐸−𝐸𝐹

𝑘𝑇
)
    (Equation 2.1) 

 

where Boltzmann constant, 𝑘 = 1.38 × 10-23 JK-1 and 𝑇 is the temperature in Kelvin.  
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Figure 2.3: Fermi-Dirac probability for electron-hole pairs at 0 K (black line) and at finite 

temperature (red line) where some electron (e-) near 𝐸𝐹 acquire enough thermal energy and 

have 𝐸 > 𝐸𝐹 leaving behind holes (h+). 

 

As seen in Figure 2.3, at 0K, the probabilities of an electron occupying a level above and below 

𝐸𝐹 are zero and one, respectively and as the temperature increases, the probability of electrons 

having energy more than fermi level (𝐸 > 𝐸𝐹) will increase. In an intrinsic semiconductor, 𝐸𝐹 

is halfway between the valence band and the conduction band as every free electron leave 

behind a free hole. 

 

𝐸𝐹 can be modified by introducing external atoms into the lattice structure. Depending on the 

number of electrons in the outermost shell of an element, the external atoms, often referred to 

as the dopant can be categorised into two types, donor and acceptor. A donor or n-type dopant 

has more electrons in the outer shell than the atom it is introduced to while an acceptor or p-

type dopant has less electrons. The energy levels of donor or acceptor are usually very close to 

the conduction band or valence band, respectively. As the dopant gains enough energy, they 

are able to donate an electron (hole) to the conduction band (valence band) and the carriers are 

free to move. In summary, Figure 2.4 shows the band diagram for intrinsic semiconductor, n-

type semiconductor and p-type semiconductor.  
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Figure 2.4: Band diagram for intrinsic, n-type and p-type semiconductor. Blue dashed line 

indicates the fermi level position between the conduction band and valence band.   

 

2.2.2 The p-n Junction 

 

A p-n diode is a construction of a semiconductor diode where a p-type semiconductor and an 

n-type semiconductor are brought together side by side to form a junction. In reality, it is not 

possible to do bring them together side by side because the bonds at the interface will not join 

perfectly to each other. This is different when the layer structures of a device are produced by 

the process of growth or diffusion of the layers on top of each. This p-n junction explanation is 

aimed to understand the physics behind it and how they interact “upon contact”.  

 

There are four major components of carrier or current flow that exist in the junction. They are 

majority hole current from p, 𝐽ℎ𝑝 , minority hole current from n, 𝐽ℎ𝑛 majority electron current 

from n, 𝐽𝑒𝑛 and minority electron current from p, 𝐽𝑒𝑝. These currents flow according to its way 

to restore equilibrium in the junction, where these current components sum to form a total 

current of zero. The majority carriers (𝐽ℎ𝑝 or 𝐽𝑒𝑛) from each side will flow across the junction 

into the empty states on the opposite side resulting in diffusion current. As the electrons leave 

the n-region, they leave behind positive donor charges and as holes leave the p-region, they 

leave negative acceptor charges. As the results, an electric field is built up across the junction 

due to these charges and this causes a drift current due to minority carriers (𝐽ℎ𝑛 or 𝐽𝑒𝑝) flowing 

in opposite direction to the diffusion flow. The electric field will keep building up until the net 

current is zero; where the diffusion current is equal to drift current and the 𝐸𝐹 of p-type and n-

type is aligned. Note that the 𝐸𝐹 level is now the same for both junctions. Figure 2.5 shows the 

p-n junction when they are brought together and at zero bias voltage.   
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Figure 2.5: p-n junction upon contact and at zero bias voltage. The arrows show the 

direction of carrier flow. 𝐸𝑐 and  𝐸𝑣 are the conduction band and valence band, respectively.  

The majority carriers, 𝐽ℎ𝑝 and 𝐽𝑒𝑛 allows diffusion current and the minority carriers, 𝐽ℎ𝑛 and 

𝐽𝑒𝑝 contribute to drift current at the junction. 

 

The state of equilibrium in the p-n junction can be altered by applying an external bias voltage, 

𝑉 across the junction. As seen in Figure 2.6 (a), by applying forward bias into the device, more 

majority carriers are allowed to flow across the junction because the depletion width is 

decreased as the total built-in potential, 𝑉𝑏𝑖 is reduced. As a result, the diffusion current is 

dominating the total diode current and is no longer equal to the drift current.  

 

On the other hand, applying reverse bias allows the 𝑉𝑏𝑖 value to be increased, increasing the 

energy barrier and not allowing the majority carriers to flow through it. Therefore, no diffusion 

current is flowing across the junction. Very small minority carriers flow across the junction and 

are swept by the electric field. The carriers gain energy from thermal generation of electron-

hole pairs in or near the depletion region in reverse bias, therefore they depend primarily on 

temperature. The process is shown in Figure 2.6 (b). 

  

p-type n-type 
- - 
- - 
- - 

+ 
+ 
+ 

Vbi 

𝐸𝑐 

𝐸𝑣 
 

𝐸𝐹 
 

𝐽𝑒𝑛 

𝐽ℎ𝑝 

𝐽𝑒𝑝 

𝐽ℎ𝑛 

𝑥 



38 
 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

(b)  

 

Figure 2.6: (a) p-n junction under forward and (b) p-n junction under reverse bias. Note that 

under these conditions, the fermi level is discontinuous.  
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2.2.3 Diode Equation 

 

The exponential current-voltage equation of an ideal diode is called the Shockley equation or 

known as the diode equation. The ideality of this equation is based on a few assumptions. First, 

the built-in potential and applied voltages are only supported inside the depletion layer and 

anything outside that is assume to be neutral. Secondly, the Boltzmann approximation of the 

carrier concentration throughout the depletion layer is valid. Besides that, it is assumed that the 

injected minority carrier concentrations are small compared to the majority carrier 

concentrations. Lastly, electron and hole currents are constant throughout the depletion layer 

as no generation-recombination current is present inside the layer.[1] 

 

 

Figure 2.7: Current-Voltage characteristics of a practical Silicon diode. Image taken from 

[1]. Different components indicate different mechanism is dominating the I-V characteristics 

of the diode.  

 

Practically, the current-voltage characteristics consist of several parts where at higher voltage 

value, in both forward and reverse; the current value deviates from ideal diode equation. Figure 

2.7 shows the current-voltage characteristics for both ideal and practical Si diodes in forward 
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and reverse bias. It can be seen that a non-linear curve in forward bias is obtained from the 

practical Si diode due to different component. (a) shows generation-recombination current 

region takes place, (b) the domination of diffusion current, (c) is the high-injection region where 

minority carrier concentrations start to become comparable to majority carrier concentrations, 

(d) is when series resistance effect comes in. Meanwhile, (e) is the reverse leakage current due 

to generation-recombination and surface effects.[1] 

 

The diode equation is generally presented as shown in Equation 2.2,  

 

𝐽𝑑 = 𝐽𝑂 [𝑒𝑥𝑝 (
𝑞𝑉

𝑛𝑘𝑇
) − 1]   (Equation 2.2) 

 

where 𝐽𝑑 is the forward diode current flow through the junction, 𝐽𝑂 is the saturation current 

across the junction, 𝑞 is the electron charge = 1.6 × 10-19 C, 𝑉 is the bias voltage applied, 𝑛 is 

the ideality factor, 𝑘 is Boltzmann’s constant and 𝑇 is the temperature in Kelvin. The diode 

equation from Equation 2.2 also can be re-written as Equation 2.3 due to the presence of a series 

resistance, 𝑅𝑠, if any. 

𝐽𝑑 = 𝐽𝑂 [𝑒𝑥𝑝 (
𝑞(𝑉−𝐽𝑓𝑅𝑠)

𝑛𝑘𝑇
)]   (Equation 2.3) 

 

where 𝐽𝑓 is the value of forward dark current. 𝑅𝑠 will cause a voltage drop when the current is 

sufficiently high and it lowers the effective applied voltage across the diode. This problem can 

be mitigated by having a heavy doped cladding layer or metal deposition on semiconductor to 

obtain a low resistance ohmic contact. More explanation of the formulation of the diode 

equation will be given in Chapter 4.  

Apart from p-n diode, another diode of interest is a p-i-n diode. The difference between these 

two diodes is p-i-n diode has an intrinsic or undoped semiconductor region in between p-type 

semiconductor and n-type semiconductor. This is to provide alternative working characteristics 

that cannot be achieved by using a p-n junction. For example, by having the intrinsic layer in 

the diode, the quantum efficiency of the diode can be increase. Besides that, its breakdown 

voltage also increased and can be used for high-voltage application.  The p-i-n diode follow 

the diode equation at low frequency signals and behave like a perfect resistor at high frequency 

signals.[2]  



41 
 

2.3 Photo-carrier Generation and Recombination 

2.3.1 Absorption of Light 

Absorption of light is a way to allows carriers to move from valence band to free conduction 

band region creating current other than thermal excitation process. When light is radiated on 

the diode, the photons of similar or greater than the bandgap energy of the diode is being 

absorbed. Equation 2.4 is the relationship between the photon energy, 𝐸 and wavelength of 

light, 𝜆, 

 

𝐸 =
ℎ𝑐

𝜆
    (Equation 2.4) 

 

where ℎ is Planck’s constant and 𝑐 is the speed of light. Figure 2.8 shows the illustration of 

carrier absorption and collection after the electron-hole pairs are created when photon falls onto 

a p-i-n diode. Absorption process is straightforward in i-region, or the carriers from the p or n 

regions have to diffuse into i-region before the charges is swept and creating electric current.   

 

 

 

 

Figure 2.8: Photon absorption and carrier collection process in a p-i-n diode under when 

photon energy is applied to it. 
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Light that travels into the diode before its being absorbed is determined by the value of 

absorption coefficient, α. Different material has different α value; low α means poor absorption 

by the diode, and vice versa. Figure 2.9 shows the α for several semiconductor materials at 

room temperature. From the figure, it is shown that the value of α is not always constant and 

depends greatly on wavelength. Each material has its own wavelength cut-off, 𝜆𝑐 and any 

absorption at wavelength longer than 𝜆𝑐 is too small to give a comparable value of α due to 

insufficient energy to excite an electron from valence band to conduction band. 

 

Figure 2.9: Absorption coefficients for Ge, Si and various III-V semiconductor materials. 

(Data adapted from [1]) 

 

Figure 2.10 shows the absorption of light mechanism for a direct and indirect bandgap material. 

Absorption of light in a direct bandgap material allows simple promotion with negligible 

momentum change of carriers from valence band maximum to conduction band minimum due 

to its properties of having lowest point of conduction band that aligns with the highest point of 

the valence band in k-space. Meanwhile, an indirect bandgap material requires phonon energy 

and interaction with lattice to have a change in momentum in order to promote carriers from 

valence band to conduction band. Therefore, the probability of photons being absorbed in direct 

bandgap materials is higher than in indirect bandgap materials because the electron-hole pairs 

are generated without the momentum energy assisted from phonon. 
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Figure 2.10: E-k diagram for a direct (top) and indirect (bottom) bandgap semiconductor. 

The relationship between 𝛼 and energy bandgap, 𝐸𝑔 in direct and indirect bandgap material are 

given in Equation 2.5 and 2.6, respectively,  

𝛼 = 𝐴(𝐸 − 𝐸𝑔)
1/2

    (Equation 2.5) 

𝛼 = 𝐴(𝐸 − 𝐸𝑔)
2
    (Equation 2.6) 

where 𝐴 is a constant. 
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2.3.2 Emission of Light 

 

In contrary to the absorption of light, emission of light occurs when the electrons in the 

conduction band recombine with the holes in valence band emitting photons. The electron-hole 

pair created from the absorbed light will undergo scattering events and recombine at the energy 

band corresponds to the material bandgap. As the result, a photon with energy equal to the 

energy bandgap of the material is emitted. This is called radiative recombination process and it 

is usually happening in direct bandgap semiconductors. Non-radiative recombination also can 

happen in a semiconductor where potential energy is converted to other form of energy instead 

of photons. The radiative and non-radiative recombination processes in a classical 

semiconductor determine the intensity of light emission. The dominancy of carrier 

recombination mechanism(s) can be described by the rate equation as shown in Equation 2.7 

[1], 

 

𝑑𝑛

𝑑𝑡
= 𝐺 −

𝑛

𝜏𝑛𝑟
− 𝐵𝑛𝑝    (Equation 2.7) 

 

where 𝐺 is the carrier generation rate, 𝜏𝑛𝑟 is the non-radiative recombination lifetime, 𝐵 is the 

radiative recombination coefficient and 𝑛 and 𝑝 are electron and hole concentrations, 

respectively.  

 

Figure 2.11: Different type of recombination processes. Process (a) is a radiative band to 

band recombination, (b) recombination through defects and (c) Auger recombination. (b) and 

(c) are the examples of non-radiative recombination. 
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From Figure 2.11 (a), the energy absorption from the incident energy such as light source, 

injected currents or heat energy will cause the electron in the valence band to be excited to the 

conduction band and creates an electron-hole pair. The high energy electron in conduction band 

then will undergo scattering, losses energy and it will sit at the lowest band state. When the 

electron reaches this location, it will recombine with the available hole and release a photon 

equal to energy bandgap.  

 

Other than radiative band-to-band recombination, other type of recombination processes may 

occur inside the band that are non-radiative, which means no photons are given out from the 

recombination. They are able to recombination through defect states and Auger recombination. 

Figure 2.11 (b) shows the defect states recombination or also known as Shockley-Read-Hall 

(SRH) recombination. The recombination via defect states will release energy in form of heat 

or lattice vibration. It can occur when there are growth defects in the materials such as 

dislocations of atoms, point defects or impurities presence during the growth such as carbon 

and oxygen.  

 

There are different Auger recombination processes that can occur in a material band depending 

on the nature of the transition and the carrier concentration. The processes such as direct Auger 

or phonon-assisted Auger recombination occur when there is a three-body collision event. 

Figure 2.11 (c) shows a direct Auger recombination. This type of recombination occurs when 

the electron recombines with the hole in valence band but the energy released is not in the form 

of a photon. The energy is transferred to or absorbed by a third carrier. Another electron or hole 

can be excited to a higher level in the conduction band or deeper in the valence band, 

respectively.  The highly excited carrier then sits at the edge of the conduction band or the 

valence band after the excess energy is lost in form of phonons. This type of recombination 

usually occurs when high numbers of carriers are created when a high incident energy is 

absorbed.  
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2.3.3 Semiconductor Opto-Electronic Devices 

 

In this work, the application of the diode equation to semiconductor opto-electronic devices 

(working as emitters and detectors, specifically in solar cell applications) is discussed. 

Generally, semiconductor emitter devices such as LEDs and lasers work by injecting electrons 

and holes across the band structure semiconductor junction under forward bias, where they will 

recombine with the majority carriers. The recombination process produces photons of energy 

that is equal to the bandgap and emission occurs. For LED, spontaneous emission from InAs 

which has wavelength of 3,800 nm is used for environmental monitoring and GaN with blue 

ultraviolet wavelength of 340-590 nm is applied for DVD player reader. Meanwhile, laser has 

a feedback mechanism that amplifies stimulated emission when threshold current is met. The 

photons created are also identical in energy, coherent with each other and therefore the laser’s 

emitted linewidth is narrower than that of an LED. For examples, InGaP-based laser pointers 

generate red light.  

 

For semiconductor detector devices like photodiode and solar cell, they work by absorbing the 

light that falls onto the diode and create electron-hole pairs producing electrical current. The 

minimum energy needed to create the pair is equal to the band gap of the semiconductor. A 

photodiode is widely used as sensors and detectors due to its small size, fast response time and 

low power consumption.  Different types of photodiodes such as p-i-n, avalanche and Schottky 

photodiodes are designed to work in reverse bias condition. Besides that, solar cell also can be 

treated as a photodiode due to its ability to convert light into photocurrent. The difference 

between normal photodiode and solar cell is that solar cell operates in forward bias condition. 

In-depth explanation about solar cell is discussed in the next sub-section. Figure 2.12 shows 

the region of operation for opto-electronic devices at four different I-V quadrants.  
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Figure 2.12: Different quadrants of operating region for all opto-electronic devices 

mentioned above. The second quadrant in the figure is the unphysical region for any 

electronic device and nothing works in the region.  

 

2.3.4 Solar Cells 

In a full closed-circuit diode, the photocurrent, 𝐼𝐿 generates voltage and forward biases the 

diode. Then, a forward diode current begins to flow in the opposite direction to the 

photocurrent. The total current can be expressed as follows, 

 

𝐼 = 𝐼𝑑 − 𝐼𝐿    (Equation 2.8) 

 

𝐼 = 𝐼0 [𝑒𝑥𝑝 (
𝑒𝑉

𝑛𝑘𝑇
) − 1] − 𝐼𝐿   (Equation 2.9) 

 

By knowing the value of dark current from 𝐼𝑑 , the actual 𝐼𝐿 created by the devices can be 

determined. The simplified solar cell equivalent circuit is as shown in Figure 2.13, showing the 

opposite direction of both currents. 

 

I II 

III IV 
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Figure 2.13: Equivalent circuit of an ideal solar cell under illumination. 

 

There are two main parameters that involve in determining the solar cell characteristic for a 

diode; short circuit current, 𝐼𝑆𝐶  and open circuit voltage, 𝑉𝑂𝐶. From Equation 2.9, assuming that 

dark current at zero bias is absent, total current is equal to 𝐼𝐿 only and its value increase 

proportionally with light intensity. Meanwhile, 𝑉𝑂𝐶 is the value of voltage when 𝐼𝑑 and 𝐼𝐿  value 

is the same, or simply expressed as when the total current is zero. The typical operating region 

for a solar cell falls at the fourth quadrant of I-V characteristics.  

 

Figure 2.14: I-V characteristics for diode under dark condition and under illumination. At 

reverse voltage, the current is constant and forward current increase exponentially with 

voltage. 𝑉𝑚𝑎𝑥 and 𝐼𝑚𝑎𝑥 are the maximum voltage and maximum current of the solar cell, 

respectively. 

V (Load) 

𝐼𝐿 𝐼𝑑 

(Vmax, Imax) 
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Figure 2.14 shows the I-V characteristics comparison for an ideal diode in dark condition and 

under illumination. The magnitude of 𝐼𝐿 created depends on the intensity of the light that falls 

onto the diode. If the intensity is higher, the I-V curve is shifted downwards and the values of 

𝑉𝑂𝐶 and 𝐼𝑆𝐶  is increased. Ideally, the value of maximum voltage, 𝑉𝑚𝑎𝑥 and maximum current, 

𝐼𝑚𝑎𝑥 from the solar cell power output have to be very close to 𝑉𝑂𝐶 and 𝐼𝑆𝐶 , respectively. The 

measure of this quality is called as the fill factor (FF) which is a ratio of the maximum power 

output and the “ideal” power output.  

𝑃𝑚𝑎𝑥 = 𝐼𝑚𝑎𝑥 × 𝑉𝑚𝑎𝑥    (Equation 2.10) 

𝐹𝑖𝑙𝑙 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑉𝑚𝑎𝑥×𝐼𝑚𝑎𝑥

𝑉𝑂𝐶×𝐼𝑆𝐶
    (Equation 2.11) 

2.4 III-V Semiconductor Material Systems 

As mentioned in previous chapter, single junction silicon is widely used in solar cell industry 

and at the same time, multi-junction solar cell consists of different layer of material systems 

are fast-developed to compete with the readily available technology. In this section, we will 

focus on the development of III-V semiconductor material as one of the potential next 

generation technologies for solar cells.  

 

2.4.1 Lattice Structure Formation 

 

Group 

III IV V 
Period 

 

2 B C N 

3 Al Si P 

4 Ga Ge As 

5 In Sn Sb 

6 Tl Pb Bi 

 

Figure 2.15: Simplified periodic table of group III, IV and V.  
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Figure 2.15 shows the simplified periodic table and elements in group III, IV and V (renamed 

as 13, 14 and 15 as reported in [3]) which is the group of interest in this report. Every 

semiconductor material will have its unique energy bandgap value and lattice constant.  

  

Figure 2.16: Lattice constant and energy bandgap value for several III-V semiconductors.  

The bandgaps and lattice constants for several binary III-V semiconductors that are commonly 

studied are shown in Figure 2.16. Lattice constant is a physical parameter used to measure the 

unit cells of a material in a crystal lattice. Most of III-V semiconductors are a diamond lattice 

or called zinc blende structure, which is basically a face-centred-cubic lattice structure with two 

atoms in the base. For example, GaAs is a combination of gallium and arsenic sublattices. Due 

to the equal in length for all three axes in this structure (from its volume), let say a, b and c; the 

lattice constant value can be referred as one vector value only i.e a.  In other word, the lattice 

constant is independent of direction.  

 

2.4.2 Vegard’s Law  

In semiconductor-device applications, it is possible to create a ternary compound by alloying 

two materials with different band gaps and lattice constants. Figure 2.17 shows the alloying 

lines formed when combining two binary semiconductors creating direct or indirect bandgap 

material. As long as it matches the lattice structure, atoms dislocation can be avoided hence 

electrical defects can be minimalised. In addition to that, a good heterostructure junction can 
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still be grown even if the lattice constant is not matched as long as the layer thickness is below 

the maximum layer thickness to hold the interface and avoid relaxation.  

 

Figure 2.17: Lattice constant diagram for III-V semiconductors with the addition to the 

ternary alloying lines. Solid and dashed lines represent direct and indirect bandgap 

materials, respectively. (Image taken from [1])  

Vegard’s Law is a linear dependency of a lattice constant for a semiconductor compound on 

the alloy composition.[4] The advantages of adding more element(s) into a binary compound 

is that more semiconductor compound with different energy bandgap and lattice constant can 

be tailored to suits the demand in any applications needed. For example, from Figure 2.17, for 

GaAs; its lattice constant increase as antimony (Sb), aluminium (Al) or indium (In) is added 

into the compound and decrease as phosphorus (P) is added. The energy bandgap also changes 

with changes in the element composition. It is common to use subscripts to denote the 

percentage or ration of the element concentrations for formed compound i.e 𝐴𝑥𝐵1−𝑥𝐶, where 

𝑥 is a value between zero and one. An empirical approximation of a semiconductor bandgap 

energy based on Vegard’s Law can be expressed as follows: 
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𝐸𝐴𝐵𝐶 = 𝑥𝐸𝐴𝐶 + (1 − 𝑥)𝐸𝐵𝐶 + 𝑥(1 − 𝑥)𝑏  (Equation 2.10) 

 

where 𝐸𝐴𝐵𝐶 is the bandgap of the ternary semiconductor, 𝐸𝐴𝐶 and 𝐸𝐵𝐶 are the bandgaps of the 

end binary compounds 𝐴𝐶 and 𝐵𝐶, respectively, and 𝑏 is the bowing parameter. Bowing 

parameter is a parabolic term that scales the curvature correction needed to form the energy 

bandgap of a semiconductor. There are also unexpected changes in some of the alloying lines 

where the curve is reconstructed due to a change from direct to indirect bandgap material.  

2.4.3 Band Anticrossing Model 

For some combinations of III-V group, Vegard’s Law is not practical. This is due to high value 

of bowing parameter and Equation 2.10 could not predict the bandgap value adequately. To 

mitigate this deviation from this linearity law, several approaches and theoretical explanations 

have been made including dielectric modelling, density functional theory and scaling rule.[5-

8] The most recent modelling called two-level band anti-crossing (BAC) was proposed when 

introducing nitrogen into a host binary compound due to its highly mismatched alloy properties, 

for example, introducing nitrogen into GaAs.[9, 10] The value of the bowing coefficient 

calculated for GaAsN is 25 eV which is very big compared to typical value for ternary 

compound, about less than 1 eV.[11] The coefficient value also varies with nitrogen 

composition unlike most ternary alloys. BAC model assumes that the localised nitrogen states 

interact with the conduction band of GaAs. This model is then later proposed to other highly 

mismatch alloys too such as GaNP.[12, 13]  

2.4.4 Valence Band Anti-Crossing Model 

To form GaAsBi, the binary III-V compound needed are GaAs and GaBi. GaBi is found to be 

a semimetal element that has never been fabricated and only theoretically investigated. From 

the theoretical calculations, it is predicted that GaBi is a semimetal with a bandgap of -0.224eV 

[14] and a lattice constant of 6.324 Å.[15] The bandgap is a negative value due to the band gap 

inversion where the bottom of the conduction band is lower than the top of valence band. 

 

Introduction of bismuth into GaAs producing GaAsBi shows reduction in band-gap value as 

reported in [16] and research studies show that the localised bismuth states have close 

interaction with the valence band and comparatively little  interaction with the conduction 

band.[17]  
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As the pattern in bandgap reduction for GaAsBi shows a large bowing similar to GaAsN, the 

BAC model can be adopted into the calculation and called as the valence band anti-crossing 

(VBAC) model. The splitting occurs at the valence band forming two sub-bands, higher energy 

band edge, 𝐸+ and lower energy band edge, 𝐸− where 𝐸+ is the new valence band maximum. 

The valence band energies can be presented by the equations below, 

 

𝐸±(𝐺𝑎𝐴𝑠𝐵𝑖) = 
𝐸𝑣(𝐺𝑎𝐴𝑠)+𝐸𝐵𝑖±√(𝐸𝑣(𝐺𝑎𝐴𝑠)−𝐸𝐵𝑖)2+4𝑥𝐶𝐵𝑖

2

2
  (Equation 2.11) 

 

𝐸𝑣(𝐺𝑎𝐴𝑠) = −
ℏ2𝑘2

2𝑚∗
   (Equation 2.12) 

 

where 𝐸𝑣(𝐺𝑎𝐴𝑠) is the valence band maximum (VBM) energy for GaAs, 𝐸𝐵𝑖 is the Bi level 

energy, 𝑥 is the Bi fraction, 𝐶𝐵𝑖 is the coupling between the Bi level and the GaAs VBM, ℏ is 

the Planck constant, 𝑘 is the momentum in wavevector and 𝑚∗ is the effective mass of hole. By 

using the value of 𝐶𝐵𝑖 of 1.6 eV and 𝐸𝐵𝑖 of 0.4 eV below the VBM of GaAs from [17], a 

calculated VBAC model can be plotted as shown in Figure 2.18. 

 

 

Figure 2.18: The calculated valence band structure of GaAsBi using the VBAC model for 

different Bi fraction. The VBM of GaAsBi increases as more Bi is introduced to the structure 

therefore reducing the bandgap.  
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A simulation study on bulk GaAsBi has been conducted to prove that it is achievable to obtain 

1 eV bandgap by putting around 6% of Bi into GaAs with only 0.7% strain on GaAs.[18] It has 

a significantly lower strain compared to growing similar bandgap for In0.27Ga0.73As on GaAs, 

which produces 1.9% strain.[19] Simulated performance for single junction GaAsBi solar cell 

also has been calculated and is compared to a Ge solar cell. The GaAsBi cell produces less 𝐼𝑆𝐶   

but better 𝑉𝑂𝐶 value compared to Ge cell. This paper however, uses Vegard’s Law instead of 

VBAC modelling to define the bandgap of the material system.[20]  

 

Besides that, a theoretical calculation done by Khanom et al. shows that the efficiency for quad-

junction solar cell including GaAsBi junction with 6% Bi can achieve up to 52.2% at AM1.5G 

(global) and 56.7% at AM1.5D (direct) under 1SUN condition. The calculation assumes no 

losses from reflection, grid coverage and series resistance.[21] Another simulation study has 

been done by Thomas et al.[22] GaAsBi bulk n-p structure with 6% bismuth is able to gain 

sufficient current to match the other sub-cells but the background doping and minority carrier 

transport could be the drawback for achieving its maximum efficiency.  

Referencing to the absorption coefficient value for bulk GaAsBi from [23], GaAsBi bulk layer 

need to be 1.9 µm thick to obtain a current matched quad-junction cell. However, this may be 

highly challenging to achieve due to the fundamental limit of high background doping caused 

by low growth temperature required by GaAsBi. InGaAs bulk device will also need about the 

same thickness as GaAsBi for a current-matched junction, assuming that the absorption 

coefficient value is the same. To achieve the desired thickness, InGaAs requires more In 

percentage and therefore induce higher level of strain in the structure. To mitigate this problem, 

a multiple quantum wells structure can be applied to delay the onset dislocation by growing the 

material below its critical thicknesses. This application will be discussed in the next section.  
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2.5 Multiple Quantum Well Structures 

2.5.1 Multiple Quantum Wells 

Semiconductors with different energy bandgaps value can form a heterojunction semiconductor 

when they are grown together. One of the applications of heterojunction is to form a quantum 

well. The growth of a quantum well consists of a well ‘sandwiched’ between two barriers where 

the energy bandgap of the barrier, 𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟 is higher than energy bandgap of the well, 𝐸𝑤𝑒𝑙𝑙. 

Several identical wells grown in between barriers are called as multiple quantum wells (MQW).  

 

 

Figure 2.19: Illustration of quantum well with difference in barrier energy bandgap and well 

energy bandgap. L is the well width. The lines in the wells indicate different quantisation 

energy in conduction and valence band.  

 

Figure 2.19 shows the illustration of a quantum well where the well has lowest energy for 

electron well and highest energy for a hole well. Different with bulk, where the electrons/holes 

are free to move in the conduction/valence band in all directions (3-D), the electrons and holes 

are confined in a two-dimensional (2-D) system in a quantum well. The carrier confinement 

energy in a quantum well exists when the well width, L is small and becomes comparable to 

the de Broglie wavelength of the carriers. De Broglie wavelength, 𝜆𝑏 can be determined as,  

 

𝜆𝑏 = ℎ
𝑝⁄     (Equation 2.13) 

 

where ℎ is the Planck constant and 𝑝 is the momentum of the carriers. The carriers in quantum 

well also can be treated as bound particles or as wavefunctions. In a classical theory; for bound 

particles, the carriers can have any energy as long as it is within the well. However, as 

Ewell 
Ebarrier 

Conduction band 

Valence band 

L 

En 

Ep 
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wavefunctions, only certain wavelengths are possible. This is called as quantisation where the 

energy is no longer continuous and the carriers only have discrete energy value within the well. 

The quantisation energy in conduction band, 𝐸𝑛 can be determined by Equation 2.14, 

 

𝐸𝑛 =
𝑛2ℎ2

8𝑚𝐿2
     (Equation 2.14) 

 

where 𝑛 = 1, 2, 3 ….  is the quantisation level, ℎ is the Planck constant, 𝑚 is the effective mess 

of electron, 𝐿 is the well width. The same equation is used for quantisation effect for holes, 𝐸𝑝 

in valence band and only effective mass value is different. As the well width becomes smaller, 

the quantisation energy within the well becomes larger. Unlike MQWs, superlattice structure 

has a very thin barrier and the wavefunctions of the wells can overlap. Due to the ease in 

tunnelling process between the wells, the electrons in superlattice can delocalised. Superlattice 

structure however, will not be further explained in this work. 

 

  

(a)                                                               (b) 

Figure 2.20: (a) shows the layer structure of multiple quantum well p-i-n; (b) band diagram 

for the quantum well p-i-n solar cell. Carriers generation, recombination, escape and capture 

processes occur at the same time. Images taken from [24].  
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Figure 2.20 (a) shows the quantum well p-i-n layer structure. Depending on the thickness of 

barrier and well thickness, different amount of carrier(s) will be collected and it brings to the 

efficiency of the solar cells. Figure 2.20 (b) shows the band diagram for the quantum well p-i-

n solar cell. From this diagram, several processes occur at the same time which are 

photogeneration and recombination processes for both barrier and quantum well, together with 

the carrier capture and escape. At room temperature, most of the quantum well solar cells 

experience the carrier capture and escape processes faster than the competing recombination 

processes. All carriers generated in a quantum well are assumed to escape and contribute to the 

photocurrent.[24]  

 

By introducing quantum well(s) into the device structure, the effective bandgap for energy 

absorption can be altered while carrier energies are maintained at the same time during carrier 

extraction. This was proposed by Barnham et al. in 1990 where the value of short-circuit 

current, 𝐼𝑆𝐶  and open-circuit voltage, 𝑉𝑂𝐶 can be decoupled if quantum wells are introduced 

into the cell.[25] The same author also shows an early investigation on AlGaAs/GaAs MQW 

solar cells where the photo-generated carrier escape from the well resulted in increase of the 

output current, hence increase the efficiency compared to the control cells without the wells 

formed from the barrier material.[26] Another research detailing on the electroluminescence 

(EL) measurements performed in both experiment and modelling for single quantum well 

shows a reduction in quasi Fermi level due to the thermally assisted escape of carriers that is 

irreversible as opposed to the study in Araujo et al.[27] and Ramey et al.[28].[29]  

 

This irreversible carrier escape from the quantum well allows better maximum efficiency 

enhancement compared to bulk cells. Previous study on strained MQW p-i-n device such as 

GaAsP/InGaAs show an increase in photocurrent collected compared to bulk structures hence 

improving the efficiency. However, the electric field across the MQW is incapable of sweeping 

all carriers to create photocurrent if the background doping is too high.[24, 30] Specifically on 

GaAsBi/GaAs MQW p-i-n devices, the investigation of growth and characterisations have been 

taking place since 2008 by several groups such as in [31-34]. 
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2.5.2 Strain and Strain Relaxation 

Strain in Bulk Structure   The relative size of the lattice constant between 

two materials determine the quality of the overall material quality. If the lattice constants are 

match or very similar, for example AlXGa1-XAs and GaAs heterojunctions, the strain introduced 

in the lattice structure will be very small. For heterojunctions with different value of lattice 

constants, strain is introduced to the structure during the growth process. Strain value in bulk 

structure can be interpreted as in Equation 2.15,  

 

𝑆𝑡𝑟𝑎𝑖𝑛, 𝜀 =
𝛼𝐿−𝛼𝑆

𝛼𝑆
    (Equation 2.15) 

 

where 𝛼𝐿 is the lattice constant of the grown layer and 𝛼𝑆 is the lattice constant of the substrate.  

 

There are two types of strain, compressive and tensile. If  𝛼𝐿 is greater than 𝛼𝑆, it is compressive 

strain or positive strain constant and vice versa falls to tensile strain, the negative strain 

constant. Depending on the thickness of the layer growth on the substrate, there will be a critical 

thickness for a given strain. Passing this critical thickness point will cause misfit dislocations 

in the lattice, strain relaxation takes place, which affects the quality of the semiconductor in a 

negative way, mainly linked to an increase in forward dark current.[35] Drigo et al. in his paper 

observed misfit dislocations of InGaAs/GaAs single heterostructures and agrees with 

Matthews-Blakeslee critical thickness value as seen in Figure 2.21. However, there is a 

presence of second critical thickness where further strain relaxation occurs.[36]  

 

Several other studies on critical thickness of heterostructure layers and the substrates have been 

done too, with some of them agree with Matthews-Blakeslee critical thickness [37, 38] and 

some disagree stating that the critical thickness can actually be exceeded before relaxation 

occurs on the structure by using growth interrupt technique where the operation of dislocation 

multiplication mechanisms can be prevented.[39-41] The arguments are understandable 

because different experiment techniques have different sensitivities, either showing individual 

or average dislocations from the material.  
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Figure 2.21: The total MQW thickness in the i-region against average strain value. The 

Matthews-Blakeslee critical thickness for the onset of dislocation propagation shown in black 

dashed line [35] and second critical thickness before strain relaxation occurs according to a 

fit by Drigo et al. is shown in red solid line [36]. Figure is adapted from [42]  

 

Strain in MQW Structure  Strain and strain relaxation study on GaAs/InGaAs 

MQWs p-i-n diodes has been performed by Griffin et al. showing a clear relationship between 

level of dark line density and forward dark current density with the strain involved where both 

phenomena show similar trends with respect to the strain percentages. They are dependent on 

the dislocations density instead of the i-region thickness.[42] The modified Equation 2.15 to fit 

the average strain, 𝜀𝑎𝑣𝑔 value for MQW structure is given by equation below, 

  

𝜀𝑎𝑣𝑔 =
𝛼𝐿−𝛼𝑆

𝛼𝑆
∙

𝑛𝑡𝑋

𝑛𝑡𝑋+(𝑛−1)𝑡𝑏
    (Equation 2.16) 

 

where n is the number of wells, 𝑡𝑋 is the thickness of well and 𝑡𝑏 is the thickness of the 

barrier.[42]  
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Strain Balancing    The idea of having alternate compressive and 

tensile materials grown on a same substrate creating a strained balanced quantum well and 

barrier layers is the main aim for the research in quantum well solar cells. Ideally, infinite 

number of wells can be grown due to the strain free structure, thus making zero-defect growth 

a possibility and it can provide better tuning of the sub-cells of multi-junction solar cells. As a 

result, different band-gap semiconductors can be incorporated as junctions in a solar cell 

without dislocations and a high open-circuit voltage can be maintained. However, the 

discussion on multiple quantum well bismuth-based system in this thesis will be solely on the 

strained materials. It is very useful to understand the mechanism of strained materials first 

before strained-balance materials are studied.  

2.6 Summary 

In conclusion, this chapter talks about the background theory of the work done in this thesis. 

First, the band structures of semiconductor specifically on crystalline semiconductor is 

introduced. Then, the electron distribution function and behaviour are explained. This include 

the change in distribution level when external atoms are introduced and how the bandgap 

behaves when two different doping type semiconductors are brought together at zero and with 

bias. From that, the ideal Shockley diode equation is presented based on current-voltage 

characteristics of a material.  

 

Besides that, this chapter explains the process of a photocarrier generation and recombination, 

including the absorption and emission of light in III-V semiconductor material. In addition to 

that, the applications in semiconductor opto-electronic devices including LED, laser and solar 

cells are discussed. The development of III-V material systems is explained afterwards, 

focusing on the lattice structure and different ways to alter the bandgap by manipulating the 

elements in the system.  The incorporation of Bismuth into GaAs allows bandgap engineering 

and its value is determined by using Valence Band Anti-Crossing model. Lastly, the 

applications of multiple quantum well structure for solar cell are discussed. This include the 

calculation of strain in bulk and MQW structure.  
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Chapter 3: Experimental Methodology 

3.1 Growth: Molecular Beam Epitaxy  

Molecular Beam Epitaxy (MBE) growth is a type of epitaxial growth process that involves the 

deposition of a molecular beam of element(s) onto a crystalline surface. This film deposition 

technique was designed at Bell Laboratories, New Jersey and demonstrated the first GaAs layer 

grown on a GaAs substrate in 1971.[1] The elemental deposition in MBE is done under 

ultrahigh-vacuum (UHV) condition and it has a method of live-monitoring of the growth layer 

to see its growth rate by using a camera installed onto the machine. 

 

Figure 3.1 shows the schematic diagram of the MBE machine used to grow all the samples 

characterised in this report. 

 

Figure 3.1: Schematic diagram of the MBE machine. Image taken from [2].  

Several source crucibles containing different elements including Ga, As and Bi are used to 

grow GaAsBi samples. Each crucible has its own shutter that is used to allow or block the 

molecular beam by opening or closing the source’s crucible, respectively. The beam of each 

element is produced by maintaining the temperature of the crucible at certain temperature to 

evaporate the elements in the crucibles.  
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Different type of substrates will need different heating profile for a given surface temperature. 

For example, a doped substrate contains higher electron density therefore it requires lower 

heater element current value than an undoped substrate to reach the desired temperature. It is 

essential to work closely with the growers to know the growth conditions and layer structure 

for every sample. This is because, the characteristics of the samples and devices are interrelated 

with how they were grown. The growth of devices in this work was performed by the STM-

MBE growth team from the University of Sheffield.  

3.2 Optical Characterisation 

3.2.1 Photoluminescence 

Luminescence is an emission of light by a material or substance due to chemical reactions, light 

energy injection, electronic injection or temperature variation and has been described in section 

2.3.2. Photoluminescence (PL) is a phenomenon that involve the process of energy absorption 

from a light source normally a laser, hence the word ‘photo’, followed by emission of light due 

to the carrier recombination process.  

 

It is a technique used for investigating the quality of a semiconductor material, specifically 

through bulk electronic transitions and electronic transitions at defects.[3] PL is very useful 

because it is a non-destructive process that can identify material properties of the material  such 

as the energy bandgap and inhomogeneity- indicated by the full width at half maximum 

(FWHM). From the energy bandgap value, Bi percentage incorporated into the structure can 

be estimated too. It is also useful to identify the transition of carriers intrinsically and at defects, 

whether the carriers are actively recombining and creating emission when excited by photons 

or whether other features dominate the recombination. One of the disadvantages of PL is that, 

it cannot directly measure the non-radiative recombination intensity in a device.  

 

Figure 3.2 shows the schematic diagram of the experimental setup used for PL measurements. 

The laser used as the excitation source is a continuous-wave 532 nm diode-pumped solid state 

(DPSS) laser with a maximum output power of 2 W at 532 nm and 10 mW at its second order 

wavelength, 1,064 nm. The spot size for the laser used is ~250 µm.  The higher order excitation 

laser is filtered out by using a 350-550 nm bandpass filter to allow only 532 nm wavelength to 

pass through. The laser beam is passed through the chopper, which is set to a frequency of 180 

Hz to produce an alternating laser signal. This frequency is chosen to avoid any unwanted 
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interference from voltage main supply, which is a multiple of 50 Hz to affect the source signal. 

At room temperature, the test sample is placed on an X-Y-Z stage for an accurate positioning 

and focusing.  

 

For low temperature PL measurements, the sample is placed in a closed-cycle helium 

compressor system that can go down to ~15 K. This system consists of a cryostat fitted with a 

cold finger plate connected to a temperature controller. The cryostat body also mounted to an 

X-Y-Z stage for sample positioning. A helium compressor, vacuum pump and water supply are 

the components used to create a low-pressure environment allowing low temperature PL 

measurements to be conducted. The sample is placed on the cold-plate with vacuum grease 

because this type of adhesive is thermally conducting and avoids air being trapped under the 

sample during the low-pressure operation of the cryostat chamber.  

 

 

Figure 3.2: The schematic diagram of photoluminescence setup.  

 

When the excitation laser beam hits the sample, the luminescence signal emitted by the sample 

is collected by the F/1 Cassegrain lens. Note that the lens has to be aligned with the 

monochromator’s optical axis for maximum signal collection. The signal collected is then 

focused and enter the front entrance of the monochromator. The monochromator used in this 

setup is a Horiba iHR550 spectrometer. It has three grating options; (1) 1,200 grooves/mm, (2) 
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900 grooves/mm and (3) 600 grooves/mm with blazes at 330 nm, 850 nm and 1,500 nm, 

respectively. For this work, a 1mm entrance and exit slit size is set and grating 2 is used because 

the wavelength range of interest is between 800 and 1,600 nm.  

 

The PL signals are detected by a 77 K operated-germanium (Ge) detector that can detect signal 

up to 1,700 nm.   To reach this temperature, liquid nitrogen is supplied to cool the detector. The 

signal detected is read by the lock-in amplifier (LIA) that is used as a phase-sensitive detection 

method matched with the chopper frequency to eliminate the unwanted noise and signals from 

surrounding light sources. Various neutral density (ND) filters are used to attenuate any strong 

PL signal intensity detected. A software called Spectramax is used to control the scanning and 

tabulation of data from the LIA. The optimisation of the setup during experimental works are 

regularly performed to minimise errors and for optimum calibration. 

3.3 Device Fabrication 

Device fabrication in this work is a process of depositing metal contacts onto the sample 

surfaces to form positive and negative electrical connections. This is necessary in order to 

perform the device electrical testing. A standard process for p-i-n diodes is applied to all of the 

devices in this work.[4] This includes sample preparation, metallisation, photolithography and 

etching process.  

3.3.1 Sample Preparation 

Sample cleaving  For p-i-n structures, it is important to identify which side is the 

epitaxial or top contact and which is the back side before the cleaving process to ensure correct 

fabrication process. The substrate used in this study is one-sided polished GaAs and epitaxial 

layer were grown on top of the polished ones, therefore it is easier to identify the epitaxial 

layer. Firstly, the 11.8 x 11.4 mm size material is placed on a clean filter paper, epitaxial side 

up. The sample is hold firmly by using a tweezer, then a small line is made starting about 2mm 

from the edge of the sample and scribe towards the edge by using a diamond scriber. The 

sample is turned over onto a clean filter paper and the body of the scriber is used to apply 

pressure in a rolling action above the scribe mark. The sample can be cleaved easily by using 

this method due to its lattice properties. For this step, a large amount of dust may be produced 

and it can cause scratching of the surface. Therefore, it is a good practice to work in an extracted 
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fume cupboard and to use a new filter paper for each stage of cleaving. The other half is kept 

unprocessed for other characterisations, if needed. 

  

3.3.2 Sample cleaning   

 

Sample cleaning is applied to samples to remove any dirt, dust or grease that may left on the 

samples during cleaving process or other fabrication steps. Initial sample cleaning and routine 

cleaning requires similar solvents. The only difference is that for initial cleaning, cotton bud 

can be used because there are no patterns on the unfabricated sample surface. Meanwhile, 

routine cleaning is applied when the sample has surface patterns. The use of cotton bud at 

routine cleaning will cause damage to the pattern and introduce more dirt.  

 

Initial cleaning: 

First the sample is boiled in iso-clean n-butyl acetate for about 30 seconds. Then, the sample 

is taken out and placed on a clean filter paper. Cotton bud is used to firmly wipe the surface 

with technique from centre towards the edge.  The process is repeated for all four directions 

around the sample. After that, the sample is blow dry using nitrogen gun and checked under a 

microscope to identify the cleanliness of it. It is important to not apply too much pressure onto 

the sample when cleaning as it can cause more particles introduced on the surface or may cause 

damage and break to the surface. 

 

Routine cleaning: 

The cleaning sequence for the sample is as follows; first, it is boiled in n-butyl acetate for 30 

seconds, in acetone for 30 seconds and in isopropyl alcohol (IPA) for 30 seconds. Then, the 

sample is taken out from the IPA and placed on a clean filter paper. By using the nitrogen gun, 

the sample is blow dry by using the nitrogen gun as described before. These steps are known 

as ‘three stage cleaning’ because three solvents are required to do the cleaning. 
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3.3.3 Sample Metallisation    

In order to run electrical characterisations to the sample, sample metallisation is the crucial step 

to begin with. Top and back contact are important to ensure there are current flow from positive 

side to negative side- creating a close loop flow of electrons. The metals are loaded in a coil 

basket and deposited onto the sample by using evaporation process using a high vacuum 

evaporator. Evaporation process needs to be in vacuum condition to ensure no oxidation occurs 

to the surface and helps in better deposition of the metal contacts.  

 

Back Contact   The metallisation on the back surface of the sample is done to 

create an ohmic contact. After cleaning the back contact, alloying of the n-type back contact is 

done by using Indium (In) and Germanium (Ge) and then coated by Gold (Au) following the 

recipe of In/Ge/Au of 10mg/10mg/200mg. This step is followed by the heating treatment or 

called as annealing process at 420OC for 90 seconds by using a pre-heated furnace with nitrogen 

gas flow replacing the air in the furnace tube.  

 

Top Contact   Mesa pattern is chosen for this set of samples to maximise the 

optical absorption from the devices. The patterns are ‘printed’ by using ultraviolet (UV) 

photolithography process done in a yellow room. Steps for photolithography process are as 

follow: 

 

The sample is placed on a glass slide with wax to ensure a better grip while handling the sample. 

Then, dehydration bake of the sample is done at 100OC for one minute. After that, a few drops 

of photoresists are used and the sample is spin-coated at a speed of 4000rpm for 30 seconds to 

achieve 2 µm resist thickness. Then, the sample is soft baked at 100OC for one minute to harden 

the resist. The next step is to give exposure of UV light into the coated sample by using a Karl-

Suss mask aligner for 10 seconds to create patterns on the sample. The sample is in close contact 

with the mask surface to obtain accurate repeated pattern onto the device. After that, 

development process is done. The sample is dipped in the developer solution for one minute 

and rinsed with de-ionised water. This is to remove all the unwanted photoresist that have been 

exposed to the UV light and only leave the non-exposed photoresist where the pattern is on for 

the metallisation process.  
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Figure 3.3 (a) shows the steps of photolithography process and Figure 3.3 (b) shows several 

images of sample after photolithography process taken under microscope.  

 

 

 

 

 

 

 

(a) 

 

 

(b) 

Figure 3.3: (a) Photolitography process for the samples and (b) Images of a sample after 

photolithography process. 
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The metallisation of top contact requires a p-type contact and it is done by using a combination 

of Au and zinc (Zn) in the evaporator.  A thin trace of Au about 5 nm is alloyed followed by 

10 mg of Zn and 200 nm of Au. After the metallisation process is completed, the photoresist 

with metal on it is removed by using acetone. This process is called lift-off process. As 

photoresist is reactive towards acetone, it will dissolve in the solvent and eventually lift off the 

unwanted metal coating it too and leaving only metal contact on the desired pattern. Once this 

step is completed, annealing process is done at 360OC for 90 seconds. 

 

3.3.4 Device Isolation   

 

Device isolation is required to define the mesa pattern and provide isolation of the contacts 

from one another. This can be achieved by applying the second stage photolithography and 

etching proces 

1) Second Stage Photolithography 

This process is similar with the first photolithography process described above. The sample is 

cleaned and covered with photoresist except the type of mask is different. The mask used in 

this process covers the area that form the devices and only the photoresist around the mesa 

pattern is removed. The alignment of the mask onto the device pattern in this step is crucial to 

ensure that etching process afterwards is done accurately. There are alignment markings that 

help to align the mask pattern onto the device pattern. After the exposure and development 

process, the sample is etched. 

2) Etching 

Etching process is a process to ‘cut’ the p-i-n devices individually to form many test devices 

on one sample. Etching done in this work uses universal etchant consists of hydrobromic acid 

(HBr), acetic acid (CH3COOH) and potassium dichromate (K2Cr2O7) with 1:1:1 ratio that is 

freshly prepared. This is because, the etch rate of the mixture will decrease over time and the 

process will not be consistent. Etching time for this step is chosen depending on the depth 

needed to ‘cut’ the device layer. For this work, it is needed to etch from the top p-type layers 

down to the n-type layer to ensure accuracy in testing the devices. To determine the depth of 

the sample surface, a surface profiler is used.  After the desired depth is obtained, the 

photoresist that covers the devices can be removed by using acetone. Routine cleaning is 

applied and the device characterisations can be done afterwards. The image of final device 
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under the microscope after it went through all the device fabrication processes is shown in 

Figure 3.4. 

 

Figure 3.4: p-i-n diode image under microscope after undergoing etching process. A black 

ring surrounds the diode shows that there is a different in height from the floor of the mesa, 

indicating etching process has happened.  

3.4 Electrical Characterisation 

3.4.1 Dark Current-Voltage  

One of the fundamental ways to discover the diode behaviour of a material system is by using 

current-voltage (I-V) technique on the device. This measurement is straightforward, applying 

a voltage or current to a device and measuring the current or potential drop across it, 

respectively. Ohm’s law is the simplest representation of an I-V curve with a linear relationship 

between voltage and current. I-V measurement is performed to determine the quality of the 

device as a diode. Dark current traces of the devices were measured by using the I-V setup, in 

which a pico-ammeter was used to supply the voltage and measure the current flow. Different 

sized mesa devices, (200, 100 and 50 µm radii) were measured to calculate the current densities 

for each device. If the current density is independent of the device radius, the current 

domination is from bulk current. If the density is different for each diode size, it is affected by 

the edge leakage current through the less resistive path at the mesa edge.  
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Figure 3.5: HP-4140B pico-ammeter/ DC voltage source. 

 

 

Figure 3.6: Schematic diagram of the I-V measurement setup. 

Room temperature forward and reverse bias dark I-V measurements were taken by using a 

Hewlett-Packard HP4140B pico-ammeter and controlled by software on a PC connected 

through a GPIB cable. A curve tracer is used in the setup to manually check the connection of 

the diode before taking the actual measurement. Figure 3.5 and 3.6 show the pico-ammeter 

used to obtain I-V data in this work and the schematic diagram of the setup used for I-V 

measurements, respectively.  

Several precaution methods were applied while taking I-V measurement to ensure the accuracy 

of the data taken. First, the measurements were carried out in a dark room to prevent optical 
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generation of carriers contributed by ambient light. The measurement scans were current 

limited to avoid overshoot of the current or breakdown damage of the device while taking the 

forward and reverse bias measurements, respectively. Besides that, high resistance coaxial 

cables of more than 1TΩ were used in the setup to minimise the potential difference between 

core and out shield that can result in significant leakage current. Lastly, a vibration-free setup 

table were used to reduce the noise level while taking the measurements.  

 

3.4.2 Current-Voltage under Illumination 

 

 

 

Figure 3.7: I-V under illumination (with solar simulator) setup in the cleanroom 

I-V measurement under illumination was performed to study the performance of a diode as a 

solar cell. The setup as shown in Figure 3.7 has a probe stage comprising a pair of probe arms 

to connect the positive and negative terminals of the diodes. An LED-based solar simulator 

with a 2×2-inch illumination area is placed on top of the probe stage to directly emit 

illumination onto the diode. It is a close-matched AM1.5 spectrum with wavelength range of 

400 to 1,100 nm and has a maximum power density of 110 mW/cm2 equivalent to 1.1 SUN. To 

optimise the illumination, the solar simulator has a head rotation of 360° to move the low power 

red laser (<1 mW) used for alignment purposes. For safety reasons, any reflections and light 

from the illuminator are avoided by the system operators.  
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3.4.3 Capacitance-Voltage  

Capacitance-voltage (C-V) measurements were performed on diodes with different radii by 

biasing the diodes with a DC voltage using an HP 4275A LCR meter. The LCR meter, shown 

in Figure 3.8 is a test instrument to obtain various parameters for a diode such as inductance, 

capacitance, resistance and others by measuring the effective impedance across the diode.  

 

 

Figure 3.8: LCR meter used for C-V measurement. 

The capacitance value for the devices is modelled and obtained by using Equation 3.1, 

 

𝐶 =
𝐼𝐴𝐶

2𝜋𝑓𝑉𝐴𝐶
    (Equation 3.1) 

 

where 𝐼𝐴𝐶 is the AC test signal set by the LCR meter, 𝑉𝐴𝐶 is the AC voltage through the device 

and 𝑓 is the frequency of the test signal. The ideal phase angle difference of 90° is desired 

between 𝐼𝐴𝐶 and 𝑉𝐴𝐶 based on the principle of current leading voltage in a purely capacitive 

circuit. For this work, most of the data collected have a phase angle between 85° and 90°. 

 

There are two types of equivalent circuit models that can be chosen from the equipment; 

parallel and series circuit mode. By choosing the right equivalent circuit mode, accurate 

readings of capacitance can be achieved. Unless the resistance value is zero, the reactance value 

can be different for the devices. Due to having capacitance <1,000 pF for this set of devices, 

any equivalent circuit mode can be used because the difference is negligible. For data 

consistency, parallel circuit mode is chosen throughout the measurements. Besides that, the AC 
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test signal used for the measurement also has to be sufficiently large to be measured accurately 

by the AC voltmeter but small compared to the DC voltage supply. Another way to obtain an 

accurate capacitance value is by using a high value of test frequency to reduce the reactance of 

capacitor. The value of the AC test signal and frequency used for C-V measurements in this 

work is 60 mV and 100 kHz, respectively.  

3.5 Opto-electronic characterisation 

3.5.1 Photocurrent 

The photocurrent measurement setup is shown in Figure 3.9. The light source is a 100 W white 

tungsten lamp and it is spectrally dispersed through a monochromator which is controlled by a 

software system in a PC. The selected wavelength is focused at the exit slit of the 

monochromator and mechanically chopped at 180 Hz. At the same time, the chopping 

frequency is fed to an LIA as a phase locking signal. The diode is also connected in series with 

a load resistor. Besides that, the LIA must be in parallel with the load resistor to ensure that 

only the voltage drop across resistor is fed to the LIA. Depending on the dark current value, 

different values of load resistor can be used during the measurement. The phase sensitive 

locking technique from LIA amplifies the photocurrent signal and at the same time suppresses 

the noise level and dark current. It helps filter out the dark current down to nanoamps and only 

photocurrent signal is detected. Therefore, only the photocurrent generated by the diode will 

be displayed in the control PC.  

 

Figure 3.9: The schematic diagram of photocurrent setup used for measurements.  
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The arbitrary units of the photocurrent spectrum displayed on the control PC is the conversion 

of the LIA reading that reads the voltage drop across the resistor. Depending on the sensitivity 

set on the LIA, the accuracy and precision of the actual photocurrent can be controlled. 

Equation 3.2 shows the relationship between the conversion value of the LIA and the voltage 

drop across the diode while Equation 3.3 is the photocurrent calculation, which is simply a 

modification of Ohm’s Law, 𝑉 = 𝐼𝑅. [5] 

𝐿𝐼𝐴 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 (𝑉) =
𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛

10
× 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  (Equation 3.2) 

𝐼𝑝ℎ =
𝐿𝐼𝐴 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 (𝑉)

0.45×𝑅
    (Equation 3.3) 

where 𝐼𝑝ℎ is the photocurrent value. From photocurrent data, the responsivity of the devices as 

a function of wavelength can be determined. It is a method of identifying the detection 

efficiency of a device and a high value of responsivity is desired when designing a photovoltaic 

cell. The value is obtained by correcting the photocurrent to the system response by using a 

calibrated photodiode. In general, it is the ratio of photocurrent with incident light intensity at 

a particular wavelength and is defined as in Equation 3.4, 

 

𝑅 =
𝐼𝑝ℎ

𝑃
     (Equation 3.4) 

where 𝑅 is the responsivity and 𝑃 is the incident monochromatic light power on the device 

under test.  

 

The actual power for each monochromatic light in the spectrum that falls onto the measured 

device has to be determined because its power is different with the power from the light source. 

This is due to the light passing the monochromator, lenses and mirrors resulting in the 

attenuation of power for different wavelengths. A commercial photodiode (PD) is used to 

obtain the optical power at each wavelength. The PD’s photocurrent is measured and its 

extrapolated responsivity taken from the datasheet are used to calculate the power. From 

Equation 3.4, the optical power at each wavelength can be obtained, as shown in Equation 3.5, 

 

𝑃(𝑃𝐷) =
𝐼𝑝ℎ(𝑃𝐷)

𝑅(𝑃𝐷)
    (Equation 3.5) 
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In this work, an InGaAs FD05D 250 µm radius-sized calibrated photodiode is used due to its 

similarity in range of wavelength detection and active window area. The FD05D photodiode 

responsivity graph is placed in Appendix A.  To work out the responsivity of the device, several 

considerations need to be taken while estimating the power that falls onto it. First, the active 

window area for the devices in this work is 70% of its total area due to the metal contact on 

top of it. In addition to that, the ratio of area between 250 µm radius-sized FD05D and the 200 

µm radius-sized devices is 0.64. Therefore, the total incident power, 𝑃 received by the devices 

is,  

 

𝑃 = 0.7 × 0.64 × 𝑃(𝑃𝐷)   (Equation 3.6) 

 𝑃 = 0.45 × 𝑃(𝑃𝐷)    (Equation 3.7) 

 

The value of incident power obtained can be used to calculate the responsivity of the measured 

devices by using Equation 3.4. 

Monochromator  The monochromator used in this setup is a Horiba Scientific 

iHR320 monochromator. It is a Czerny-Turner monochromator where the polychromatic light 

source is focused after the entrance slit by a collimating mirror. The collimated light is then 

refracted by the diffraction grating to extract individual wavelengths and focused again using 

a concave mirror before it passes the exit slit. Depending on the angle of the grating, 𝜃, a given 

wavelength can be selected. Figure 3.10 shows the general schematic diagram of a Czerny- 

Turner monochromator for the extraction of a single wavelength for photocurrent 

measurement. 

Similar to PL setup, the F-number of the light source has to match the F-number of the 

collimating lenses to give a maximum signal to the devices. The diffraction grating surface has 

saw-tooth shaped grooves with a periodic distance. Choosing the correct grating allows 

maximum throughput for the chosen wavelength range. A grating is classified by its number of 

grooves per unit length, with a specified optimum operating wavelength (blaze wavelength). 

In this work, the monochromator is set at 600 groove/mm grating with blaze wavelength of 

1,000 nm. The usable wavelength range of this grating is 667 nm to 1,500 nm. This follows the 

2/3-3/2 rule of blazed grating, which directly defines the wavelengths range with reasonable 
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efficiency as having the lower limit and upper limit of 2/3 and 3/2 of 𝜆𝑏𝑙𝑎𝑧𝑒𝑑, respectively, any 

wavelength outside this range will have a reduced efficiency.[6]  

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Schematic diagram of a Czerny- Turner monochromator 

3.6 Summary 

In summary, this chapter discuss all the procedures and methodology to obtain experimental 

data and result discussion. First, the growth procedures are briefly explained although the 

author is not involved directly with the growth of the devices. Then, photoluminescence 

measurements procedures at room temperature and low temperature are explained for the 

completeness of the thesis. After that, the device fabrication processes to create metal contact 

on the devices are explained. The processes follow the standard fabrication processing 

guideline recommended by the facility’s cleanroom.  

 

For data collection, the electrical characterisation methodology include current-voltage(I-V) in 

dark condition and capacitance-voltage(C-V) are discussed. Then, the opto-electronic 

characterisation for photocurrent measurements and I-V under illumination of solar simulator 

are explained too. Careful measures are taken in order to achieve highly accurate data and 

ensure optimisation during the data collection.  
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Chapter 4: Electrical Characterisation of GaAsBi/GaAs MQW Devices 

4.1 Introduction 

Electrical characterisation of a material system is used to understand the current-voltage (I-V) 

relationship, which is very important in designing a solar cell. From diode modelling it is 

shown that by adding Bi to GaAs for a 1 eV bandgap, it can potentially allow higher multi-

junction solar cell efficiency.[1] However, in practice the growth conditions for Bi-

incorporation into the layer are challenging. Low growth temperature causes defects and mid-

band traps, thus affecting the quality of the material.[2] As the result, the dark I-V of the devices 

increases, reduces theirs efficiency as solar cells. According to Beaton et al., as the percentage 

of Bi incorporation increases, the carrier mobility in the device is decreased.[3, 4] The carrier 

mobility value is also lower compared to the GaAs mobility reported by Adachi et al.[3, 4] 

 

Several works on dark current density of GaAsBi have been reported. Rockett et al. shows that 

the saturation current density, 𝐽𝑂 is more affected by the defects related to the growth 

temperature compared to the Bi related defects. By lowering the growth temperature, a higher 

Bi percentage can be incorporated to GaAs. However, the minority carrier lifetime is decreased 

due to a higher rate of defect-assisted recombination, which increases the dark current 

density.[5]  

 

A GaAsBi/GaAs multiple quantum wells (MQW) p-i-n diode series consisting of 7 devices 

was grown on (100) GaAs n-type substrates by a molecular beam epitaxy (MBE) machine. 

Each device has a different number of fixed thickness quantum wells, 8nm of GaAsBi with the 

same 3% bismuth content. For the rest of this work, the devices will be called the STC-3X 

devices. While maintaining the total i-region thickness, the GaAs barrier thickness varies with 

the number of wells. The STC-3X devices structure consists of a 200 nm n-type GaAs buffer 

followed by a 200 nm n-type Al0.3Ga0.6As cladding layer and 620 nm of undoped i-region 

GaAsBi/GaAs MQWs. Then, a 600 nm p-type Al0.3Ga0.6As cladding layer is grown on top of 

it followed by a 10 nm p+ GaAs cap. AlGaAs cladding layers are added to the structure to 

improve the thermal stability of the devices.[6] The detailed growth specifications and protocol 

used for these devices have been discussed in [7] and  [8]. The schematic diagram of device 

structures is shown in Figure 4.1.  
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Figure 4.1: Structure of the STC-3X devices characterised in this work. 

 

So far, there is no report on the electrical characterisations of GaAsBi/GaAs quantum wells 

specifically on the dark current density value in forward and reverse bias. In this chapter, the 

electrical characterisation of STC-3X series is investigated in detail. The characterisation 

techniques include capacitance-voltage (C-V) and I-V under dark condition and the results are 

discussed below.  

 

First, for electrical characterisations to be conducted, a series of fabrication processes were 

performed on the devices to allow positive and negative terminal connections. The devices 

comprise repeating patterns of mesa structures with radii of 200 µm, 100 µm, 50 µm and 25 

µm and the patterns can be referred to as “cells”. The cells allow electrical contacts on the 

devices for testing with different option of sizes and mesa pattern. Since electrical testing can 

cause damage and degradation to the structure, it is useful to have many cells so that if one is 

not working or short-circuited, there are still other cells that can be used for testing. This is also 

to ensure uniformity when characterising the devices by sequentially testing different cells. In 

this work, more than five cells of each size are measured for every device and the best results 

are plotted in the result section.  
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The results obtained from the STC-3X devices are compared with those from a strain-balanced 

InGaAs/GaAsP MQW from Quantasol- named QT1897 the structure of which is shown in 

Figure 4.2. This device is used as a comparison to the STC-3X devices due to its ideal 

properties- almost zero strain, as is desired for lattice matched solar cell devices. 

 

0.22 µm p+ Zn GaAs 

43 nm Al0.8Ga0.2As 2 x 1018 p+ C 

0.4 µm 2 x   1018 p+ GaAs 

i-region 

1.67 µm MQW (65 periods) 

17.4nm GaAsP (barrier), 8.3nm InGaAs (well) 

2 µm 4 x 1017 n GaAs 

0.3 µm buffer n+ GaAs 

GaAs n+ substrate 

 

Figure 4.2: Diagram shows the layer structure of QT1879, an InGaAs/GaAsP strain-

balanced MQW consisting of 65 wells with thickness of 8.3 nm each. 

 

4.2 Previous Work on STC-3X 

There are several early works on the structural and optical of this set of devices. They include 

room temperature PL, Nomarski surface profiling, X-Ray diffraction, reciprocal space 

mapping and transmission electron microscopy (TEM).[8, 9]. A brief explanation about the 

reported work is discussed here. The room temperature PL from the STC-3X devices has been 

reported in [8] and is shown in Figure 4.3.  
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Figure 4.3: Room temperature PL for the STC-3X devices.  

 

In summary, there are two distinct regions within the samples as shown in Figure 4.3. One 

region is for QW03 up to QW40, which are considered to be strained, and another region 

including QW54 and QW63 where the devices have undergone strain relaxation. QW54 and 

QW63 show a reduction in PL intensity of about two orders of magnitude compared to the 

other devices. The peak positions are also slightly redshifted, about 56 meV although they are 

expected to have similar peak position due to having the same bismuth content. This condition 

happened due to lattice relaxation in the devices and/or the loss of carrier confinement due to 

having very thin barriers which may not maintain effective quantum confinement. The slight 

variation in peak energies for the samples between QW03 to QW40 is due to small parameter 

variations occurring during growth process, in terms of atomic fluxes, background pressure 

and ambient temperature. They are broadly consistent around a bandgap of 1.11 to 1.15 eV for 

the strained devices.  

 

In addition to that, extensive PL characterisations have been done for STC-3X including low 

temperature PL, power dependent PL and temperature dependent PL. However, the work was 

not concluded in the result chapters. This is because the electrical and opto-electronic 

characterisations have become priority for this thesis.  
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The presence of two regions for these devices are supported by the TEM and Nomarski images. 

The TEM images show a consistent period of quantum wells for all the devices, with a higher 

defect density for QW54 and QW63 compared to the strained devices. The defects for these 

two devices are more noticeable at the interfaces between AlGaAs cladding layer and the 

MQW region, suggesting strain relaxation, but they are absent between QW03 and QW40. The 

calculated well thicknesses as determined from the PL peak energy and the average Bi content 

(from the XRD fitting) are also different from the estimated thicknesses from TEM images. 

Figure 4.4 are the TEM images from QW 20 and QW63 to compare the defect levels between 

strained and strained-relaxed devices in STC-3X series.  

 

 

 

Figure 4.4: TEM images from QW20 (left) and QW63 (right). Bright field (BF) and dark field 

(DF) measurement types were employed for this technique.  

 

The defects seen in the TEM images shows that contamination on the sample surfaces already 

present prior to growth. However, QW20 shows no dislocations at the MQW region interface, 

while QW63 shows dislocation densities at the lower MQW interfaces indicate that the MQW 

region has relaxed. Furthermore, the interface between the MQW region and the upper AlGaAs 

cladding layer also suggests that AlGaAs cladding has relaxed to the relaxed MQW region.[9] 
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Nomarski images from the devices show signs of sub-surface structural damage termed 

crosshatching. Depending on the appearance of the damage lines, the causes can be due to poor 

substrate preparation such as surface cleaning or oxide removal [10] or also can be caused by 

a new structure formed during the rearrangement of the atoms during growth (relaxation). For 

QW03 to QW20, the surface damage lines were random and non-orthogonal, QW40 did show 

some relaxation-induced crosshatching and QW54 and QW63, the crosshatching becomes 

significant and straight density of damage lines can be seen.  

 

Figure 4.5: Nomarski surface profiles for QW20 (left) and QW63 (right).  

 

Figure 4.5 shows the Nomarski images for QW20 and QW63. From the figure, QW20 shows 

surface damage features that coming from the pre-growth process. The visible lines on the 

surface are random and non-orthogonal. Meanwhile, high density metallic droplets and 

structured-orthogonal grids formation can be seen from QW63, showing significant 

contamination on the surface suggests strain relaxation has occur.  

In conclusion, GaAsBi/GaAs MQW p-i-n diodes have been successfully grown by MBE. The 

STC-3X devices show good structural quality and strain relaxation were detected for samples 

more than 40 wells evidenced by the high-density crosshatching from Nomarski images, visible 

dislocations imaged by TEM and intensity attenuation and peak redshift of the PL spectra.  

 

Figure 4.3, 4.4 and 4.5 are the figures taken from [9] with permission and courtesy from the 

original author, Dr. Robert D. Richards.  
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4.3 Capacitance-Voltage (C-V) Measurement  

Room temperature C-V measurements were performed on all STC-3X devices and QT1879 by 

using an LCR meter, as mentioned in Chapter 3.4.3. From C-V data, the unintentional 

background doping density and thickness in the i-region of the devices can be determined. This 

is done by fitting the data with the one-dimensional Poisson equation as discussed later in this 

chapter. The measurements were also repeated on smaller sized cell with radius of 100 µm to 

ensure the capacitance values are scaling with the device’s junction area.  

 

 

(a) 

 

(b) 

Figure 4.6: The C-V and CA-V of (a) QW20 and (b)QW63. 

Figure 4.6 shows the C-V and capacitance per unit area with respect to voltage (CA-V) for 200 

µm and 100 µm radius-sized cells of QW20 and QW63. These two devices are chosen due to 

their characteristics as strained and strain-relaxed devices in the STC-3X series for comparison. 

It is assumed that other devices that were not mentioned here would show a similar trend to 

QW20 QW20 

QW63 QW63 
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these measurements, unless stated. Similar figures for the rest of the devices (QW03, QW05, 

QW10, QW40 and QW54) are placed in Appendix B. From the figure, it is shown that the 

value of CA-V for both QW20 and QW63 scale with area despite their differences as strained 

and strain-relaxed devices. This confirms that bulk capacitance is dominating the measurement 

and other parasitic effects such as stray capacitance or shunt resistance are very small and not 

affecting the capacitance of the devices.  

 

Figure 4.7 shows the CA-V of the STC-3X and QT1879 devices. Slight forward bias and 

reverse bias are applied to the devices during the measurements. The value of reverse voltage 

must not be close to the breakdown voltage value because it can cause a large current to flow 

across the diode and will cause the phase angle to deviate. As a result, the capacitance 

measurement will be less accurate. Therefore, the C-V measurements for STC3X devices were 

performed up to -15 V only after it was confirmed that very small capacitance differences are 

collected towards higher reverse voltages. Meanwhile, C-V for QT1879 was measured up to -

20 V. The value of applied forward bias voltage was also kept below built-in voltage for similar 

reasons as in the reverse voltage case. For this, the forward bias voltage value is up to 0.5 V 

only.  

 

Figure 4.7: CA-V of STC-3X and QT1879. 
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As the forward voltages are applied, the capacitance value increases rapidly. Here, the 

capacitance value may not be as accurate as when the reverse bias is applied, due to the 

fluctuation in phase angle during the measurement. A decrease of capacitance value for all 

devices can be seen from the zero bias to ~ -2 V before they become fairly constant. This is 

because the depletion region in the cladding layers increases slightly as a small reverse bias is 

applied. The doping profile of a device can be tabulated from the C-V data by finding the 

doping density and depletion width of its i-region.[11] First, the doping density can be 

calculated by using the expansion of Poisson’s equation,  

 

𝑑2𝑉

𝑑𝑥2
=

𝑑𝐸𝐹

𝑑𝑥
=

𝜌

𝜀
=

𝑞𝑁

𝜀
    (Equation 4.1) 

 

where 𝑉 is the voltage applied, 𝐸𝐹 is the electric field at the junction, 𝑁 is the doping density, 

𝜀 is the material dielectric constant, 𝜌 and 𝑞 are the charge density and the electron charge, 

respectively. 𝑁 can be presented as acceptor doping density,𝑁𝐴 or donor doping density,𝑁𝐷 

depending whether the junction is p-/n+, or p+/n-, respectively. By integrating 𝐸𝐹 with respect 

to depletion width, 𝑥; the expression is as follows, 

 

𝐸𝐹 =
𝑞𝑁𝐴

𝜀1
𝑥𝑝 =

𝑞𝑁𝐷

𝜀2
𝑥𝑛   (Equation 4.2) 

 

From the well-known capacitance equation, the 𝑥 value for the doping profile can be 

calculated. 

 

𝐶 =
𝜀𝑜𝜀𝑟𝐴

𝑥
    (Equation 4.3) 

 

where 𝐴 is the area of the device, 𝜀0 is the dielectric constant, 𝜀𝑟 relative constant of the 

material. In addition, the value of 𝑥 also can be presented as,[11] 

 

𝑥 = √
2𝜀0𝜀𝑟(𝑉𝑏𝑖∓𝑉)

𝑞𝑁𝐷
    (Equation 4.4) 

 

where 𝑉𝑏𝑖 is the built-in voltage, assuming that the junction is heavily doped on one side, in 

this case heavily n-doped. By combining Equation 4.3 and 4.4 into,  
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1

𝐶2
=

2

𝜀𝑜𝜀𝑟𝐴2𝑞𝑁𝑑
(−𝑉) +

2𝑉𝑏𝑖

𝜀𝑜𝜀𝑟𝐴2𝑞𝑁𝑑
   (Equation 4.5) 

 

this equation becomes a linear function. Differentiating 
1

𝐶2 with respect to its voltage from 

Equation 4.5, the doping density value can be calculated.   

𝑁𝑑 =
2

𝜀𝑜𝜀𝑟𝑒𝐴2
(

𝑑𝑉

𝑑(1
𝐶2⁄ )

)   (Equation 4.6) 

From here, the plotting of 𝑁𝑑 against 𝑥 acquires the estimated thickness of the undoped region 

in the device; for a p-i-n structure.  

 

 

(a) 

 

(b) 

Figure 4.8: Doping profile of (a) QW20 and (b) QW63.  
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The doping profile for QW20 and QW63 at different sized cells are shown in Figure 4.8. The 

ℇ𝑟 used in this work is 12.9, similar to ℇ𝑟 for GaAs. From the figures, different sized cells for 

each device show similar background doping density values and the i-region depletion width 

is within the estimated i-region thickness from the growth specifications. Figures of doping 

profile of different sized cells for other MQW devices are placed in Appendix C.  

From the figure, a peak appears in both data in the middle of their profiles. The peak with 

higher apparent doping density value is caused by the band discontinuities that are usually seen 

in a heterojunction structure where different energy bandgaps are involved. This is due to 

charge accumulation at the smaller bandgap material interface with larger bandgap material. 

Here, the carriers from the doped AlGaAs cladding layer accumulate at the first undoped GaAs 

barrier in the i-region of the structure.  

This condition is also seen in GaAs/AlGaAs MQW structures.[12] For a solar cell, a 

sufficiently large depletion width is desired to ensure a high rate of carrier collection. For 

example, InGaAsN has more than 1 µm depletion width for a 1 eV bandgap material.[13] This 

helps carrier collection and improves the short circuit current. A large depletion width can be 

achieved by decreasing the background doping to a range of between 1014 – 1015 cm-3, which 

is a challenge for GaAsBi devices as they require low growth temperature.  

Figure 4.9 shows the doping profile of STC-3X and QT1879 devices tabulated from the C-V 

data measured at reverse bias in this work. The sharp increase with a measured thickness of 

between 0.55-0.64 µm of the doping densities agree with the intended thickness for i-region of 

these devices which is 0.62 µm for most of the devices. A small variation between measured 

and intended thickness of the devices may be caused by dopant diffusion that occurs during 

the growth. However, QW10 shows a wider estimated depletion width compared to other STC-

3X with 𝑤 = ~0.75 µm. The 20 nm difference from the rest of the devices is due to the slight 

difference in growth condition. QW10 is reported to contain a thicker first barrier than other 

barriers due to an error in growth recipe programming, causing the thicker width.[9]  

 

The measured doping densities for STC-3X devices are all roughly the same, within the range 

of 1.5×1016 cm-3 to 5.5×1016 cm-3. The background doping density values for this work are 

similar to previous work done by the same group, with density values of 1.2×1016 cm-3[14] and 

5×1016 cm-3[15] for 2.1-3.4% and 6% Bi content, respectively. The value of background doping 
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is higher compared to other MQW devices reported such as the InGaAs MQWs reported in 

[16] with ≤ 3 × 1015 cm-3 background doping. Other than Bi-based growth conditions, the 

impurities in the growth chamber and arsenic cell outgassing can also be the factors 

contributing to the higher doping. It is still not clear what the type of background doping in 

this work, but there are several reports on undoped GaAsBi with p-type background doping 

[17, 18] and n-type background doping [14]. 

 

Meanwhile, the doping profile of QT1879 shown is not fully depleted at 0 V. The doping 

density value is roughly one order of magnitude lower than STC-3X devices and the value 

gradually increases as the reverse bias increases until it reaches about ~1.87 µm. Due to the 

thick depletion width in the structure, it requires more potential to fully deplete the i-region. 

Besides that, the depletion width is 200 nm thicker than its intended thickness which is 1.67 

µm. 

 

 

 

Figure 4.9: Doping profile of STC-3X and QT1879 estimated from C-V curves. All the STC-

3X devices are fully depleted at zero bias and the measured depletion widths agree with the 

intended i-region thickness. QW10 shows thicker width due to having different material 

recipe programming set during growth. Meanwhile, QT1879 shows thicker depletion width 

due to having thicker i-region thickness. 
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4.4  Current-Voltage (I-V) Measurement  

 

4.4.1  Forward dark (I-V) Measurement 

 

This sub-section will focus on forward bias I-V characterisation performed in dark conditions. 

Figure 4.10 shows the data of the forward dark current, 𝐼 and dark current density, 𝐽 of QW20 

and QW63 plotted as functions of voltage. The measurements were done on several 200, 100 

and 50 µm radius-sized cells. The raw I-V and J-V graphs with different sizes for other devices 

are placed in Appendix D.  

 

 

(a) 

 

 

(b) 

 

Figure 4.10: I-V (left) and J-V (right) forward bias for (a) QW20 and (b) QW63 at three 

different cell areas. 0.1 mA is the compliance limit set on the picoammeter during the 

measurements. 

 

QW20 QW20 

QW63 QW63 
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The forward current densities from the figures show good area scaling and are consistent 

throughout the measurements, indicating that a bulk, rather than surface, dark current 

mechanism was dominating for each device. The constant regions of the dark current at high 

voltage for both devices are due to the setting of the current compliance which is 100 µA. This 

compliance is set to ensure no overheating or overshoot of current due to high injection during 

the measurements that can cause damage to the cell. The dashed line shown in the J-V graph 

for both devices is the ideality factor fitted to the current density, showing that a consistent 

value is achieved for each sized-devices. The discussion on ideality factor will be discussed 

later in this section.  

The J-V measurements on all STC-3X devices and QT1879 at room temperature are shown in 

Figure 4.11. Here, GaAs is used as another control device to compare the dark current value 

when no Bi is introduced into GaAs. The measurements were done on GaAs bulk devices 

grown by the same group labelled as STF86 and STF87 for 0.2 µm and 1.6 µm i-region 

thicknesses, respectively. In addition to that, J-V data from a GaAs solar cell with a low 𝐽𝑜 

value taken from Kurtz et al. is also extracted and plotted for comparison.[19]  

 

Figure 4.11: Forward J-V measurements for all STC-3X devices and QT1879. Dashed lines 

are the forward J-V for GaAs devices.  
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From Figure 4.11, it is seen that between the STC-3X devices, they are divided into two regions 

of current density. QW03 to QW40 show a similar range of dark current value. Another region 

is for QW54 and QW63 that show higher value of current density. From the graph, the dark 

current of QT1879 is between one and two orders of magnitude lower than those of QW05-

QW40 at around 0.6 V; which is about 5.1 x 10-7 A/cm2 compared to between 2.1 - 9.0 x 10-5 

A/cm2 at that voltage. These are, in turn, more than three orders of magnitude lower than those 

of QW54 and QW63 that have current density value of 7.7 x 10-4 A/cm2 and 1.2 x 10-3 A/cm2, 

respectively.  

 

STF86 and STF87 show higher dark current compared to Kurtz et al. and has similar value 

with QT1879. It is suggested that the as-grown GaAs by the group is not as good as in other 

studies to begin with and therefore it gives some contributions to the high dark current in the 

STC-3X devices. In addition to that, the high dark currents exhibited by QW54 and QW63 are 

potentially due to higher dislocations densities formed during sample growth and they are 

attributed to strain relaxation. It is also seen that the strain level in QW20 and QW40 are enough 

to undergo dislocation propagation, whereas QW03-QW10 have lower level of strain.[8] As 

the dark currents of QW03-QW40 are all at similar values, it is concluded that strain related 

structural defects do not dominate these I-V curves and, therefore, QW03-QW40 are 

representative of the elastically strained GaAsBi material system whereas QW54 and QW63 

are strain-relaxed GaAsBi material system. 

 

From the ideal diode law, the Shockley equation can be presented as, 

 

𝐽𝑑𝑖𝑓𝑓 = 𝐽𝑜 [𝑒𝑥𝑝 (
𝑞𝑉

𝑘𝑇
⁄ ) − 1]  (Equation 4.7) 

 

Where diffusion current, 𝐽𝑑𝑖𝑓𝑓 is the current created due to the electrons and holes diffusion 

with the consideration of Boltzmann relation. The term 𝐽𝑜 which is the value of saturation 

current density can be used to compare electrical properties of a material system. The 𝐽𝑜 term 

is dependent on temperature, related with value of the intrinsic carrier concentration of the 

semiconductor, 𝑛𝑖 and is interpreted as shown in Equation 4.8 [11], 

𝐽𝑂 =
𝑞𝐷𝑝𝑛𝑖

2

𝐿𝑝𝑁𝐷
+

𝑞𝐷𝑛𝑛𝑖
2

𝐿𝑛𝑁𝐴
    (Equation 4.8) 
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Where the carrier diffusion coefficient (𝐷𝑝 for holes and 𝐷𝑛 for electrons) is a parameter 

associated with mobility, and 𝑁𝐷 and 𝑁𝐴 are the concentration for donor and acceptor 

impurities, respectively.  Diffusion length (𝐿𝑝 for holes and  𝐿𝑛 for electrons) is another 

parameter related to mobility with expression of 𝐿𝑃 ≡ √𝐷𝑃𝜏𝑃 and 𝐿𝑛 ≡ √𝐷𝑛𝜏𝑛. Note that 𝜏𝑃 

and 𝜏𝑛 are the minority carrier lifetime for holes and electrons, respectively. 

 

At forward bias, recombination current, 𝐽𝑟𝑒 is another capture process in addition to diffusion 

current. From Shockley-Read-Hall statistic, the dominant recombination process in the 

depletion region occurs with the activation energy of half of the bandgap and 𝐽𝑟𝑒 can be 

expressed as, 

𝐽𝑟𝑒 =
𝑞𝑊𝐷𝑛𝑖

2𝜏
𝑒𝑥𝑝 (

𝑞𝑉

2𝑘𝑇
)    (Equation 4.9) 

 

where 𝑊𝐷 is the depletion layer width, 𝜏 is the carrier lifetime with relationship of 𝜏 =
1

𝜎𝜈𝑡ℎ𝑁𝑡
 

where 𝜎 is conductivity, 𝜈𝑡ℎ is thermal velocity and 𝑁𝑡 is trap density. 𝐽𝑟𝑒 can be created in the 

depletion region due to defects and impurities that cause the formation of energy states in 

forbidden gap.[11] Assuming a one-sided p+-n abrupt junction with 𝑁𝐷 value, the forward 

current, 𝐽𝑓𝑜𝑟𝑤𝑎𝑟𝑑 is the total forward current due to different mechanisms as shown in Equation 

4.10, 

𝐽𝑓𝑜𝑟𝑤𝑎𝑟𝑑 =
𝑞𝐷𝑝𝑛𝑖

2

𝐿𝑝𝑁𝐷
𝑒𝑥𝑝 (

𝑞𝑉

𝑘𝑇
) +

𝑞𝑊𝐷𝑛𝑖

2𝜏
𝑒𝑥𝑝 (

𝑞𝑉

2𝑘𝑇
)   (Equation 4.10) 

This in turn, gives the empirical form of 𝐽𝑓𝑜𝑟𝑤𝑎𝑟𝑑 with the ideality factor, 𝑛.  

𝐽𝑓𝑜𝑟𝑤𝑎𝑟𝑑 ∝ 𝑒𝑥𝑝 (
𝑞𝑉

𝑛𝑘𝑇
)   (Equation 4.11) 

where the value of 𝑛 ranges between 1 and 2. If 𝑛 is 1, the diffusion current is the dominant 

mechanism which is the value desired for opto-electronic devices. On the other hand, if 𝑛 is 2, 

the forward current is dominated by recombination current. 𝑛 can also be between 1 and 2 

showing that both currents are comparable. If the value of 𝑛 is greater than 2, this indicates that 

series resistance has started to dominate the forward current mechanism. The value of 𝑛 can be 

calculated from the slope of the graph in Figure 4.11 and 𝐽𝑂 can be obtained by extrapolation 
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of the linear region from ln 𝐽 to the y-intercept where 𝑉 = 0. Table 4.1 summarises the value 

of 𝐽𝑂 and 𝑛 for all STC-3X and QT1879 devices. 

Devices Saturation current density, 𝐽𝑜 (A/cm2) Ideality factor, n 

QW03 2.63 × 10-9 1.60 

QW05 1.03 × 10-9 1.55 

QW10 6.37 × 10-9 1.65 

QW20 1.35 × 10-8 1.77 

QW40 1.91 × 10-8 1.80 

QW54 1.32 × 10-7 1.70 

QW63 2.80× 10-7 1.80 

QT1879 8.87 × 10-11 1.78 

Table 4.1: Value of saturation current, 𝐽𝑂  and ideality factor, 𝑛 extracted from the measured 

J-V data. The value of ideality factor for each device is valid between ~0.1 and 0.6 V forward 

bias. 

It is shown that the ideality factor of all STC-3X and QT1879 devices is between 1.55 and 1.8, 

which indicates influence from both 𝐽𝑑𝑖𝑓𝑓 and 𝐽𝑟𝑒 mechanisms, with 𝐽𝑟𝑒 as the dominating 

factor at room temperature. This value is smaller compared to other work on GaAsBi MQWs 

that have 𝑛 value of close to or more than 2 and it is independent of the number of wells.[5, 

20, 21] At high bias, ideality factor may deviates from its calculated gradient value. The degree 

of deviation is different depending on how much the series resistance is affecting the 

measurements when high bias is applied. For example- QW54, roughly after 0.6 V; shows a 

non-exponential increase of current with bias with 𝑛 value more than 2. The cause for high 

series resistance is unknown. Other devices do not show significant effects of series resistance 

and their 𝑛 value is still < 2 at high voltages.  

 

The strain-relaxed devices show higher values of 𝐽𝑂 compared to the strained devices. These 

values are expected because relaxed devices have a smaller energy bandgap as previously 

reported.[8] For a semiconductor material with larger bandgap, it is more difficult for carriers 

to escape through the forbidden gap, thermally. From Equation 4.8, 𝐽𝑂 is in relationship with 

𝑛𝑖 and it is also related to energy bandgap and temperature by the expression shown in Equation 

4.12 [11],  
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𝑛𝑖 ∝ 𝑒𝑥𝑝 (−
𝐸𝑔

2𝑘𝑇
)    (Equation 4.12) 

By comparing these two equations, it can be concluded that the value of 𝑛𝑖 is higher when the 

energy bandgap is lower, and this increase the value of 𝐽𝑂. The trend can be observed from 

Figure 4.12. At zero bias, three different ranges can be seen from the graphs showing different 

dark current density- bandgap energy groups. QW03 and QW05 are in the lower dark current 

density-large bandgap energy. QW10-QW40 show intermediate dark current density-bandgap 

energy. Meanwhile, QW54 and QW63 have the higher dark current density with smaller 

bandgap energy compared to others. These ranges indicate that the increase in number of wells 

for the same number of Bi contents increase the dark current due to the increase in defect levels. 

Besides that, the Bi inhomogeneity in the layer also causing different level of strains in the 

devices.  

 

Figure 4.12: Dark current density at 0V and 0.4 V with respect to bandgap energy for STC-

3X devices, QT1879 and GaAs reference devices.  

 

Equation 4.13 can be used to fit the dark current values in Figure 4.12, 

 

𝐽 = 𝐴𝑒𝑥𝑝(−𝐸𝑎/𝑘𝑇)    (Equation 4.13) 
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where A is a constant, 𝑘 is the Boltzmann constant, 𝑇 is the temperature and 𝐸𝑎 is the activation 

energy. It is shown that STC-3X devices dark current data is fitted to the expression at room 

temperature with 𝐸𝑎 value to be equal to 𝐸𝑔 at both 0 V and 0.4 V. The 𝐸𝑔 values are taken 

from the PL peak estimated from previous work.[22] QT1879 and GaAs by Kurtz et al. also 

follows the 𝐸𝑎 = 𝐸𝑔 fitting line. This indicates band-to-band generation current dominates the 

device mechanism which is expected because the devices have lower strain level. Meanwhile, 

GaAs STF87 does not follow the fitting as the dark current is higher than expected. This 

suggests a lower activation energy compared to its bandgap value and is possibly caused by 

the domination of generation process due to emission from deep-level traps instead of band-

to-band generation current.  

4.4.2 Reverse Dark (I-V) Measurement  

 

 

Figure 4.13: Reverse bias J-V of (a) QW20 and (b) QW63 taken from different sized-mesa 

cells. The sudden increase in current density at high reverse bias (>-20 V) indicates that the 

device has reached its breakdown voltage.   

QW20 

QW63 
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It is seen that the values do not scale closely with area. The variation of current density for 

different cells also different for every device. From the figures, both devices show over one 

order of magnitude variation in the dark current values at -10V. This variation can be caused 

by the presence of surface leakage current that is affecting the overall density that is supposed 

to be dominated by bulk current. The surface leakage current can be determined by finding the 

perimeter current density of the devices. From the reverse perimeter current density graph (not 

shown in here), the reverse J-V also not quite scaling with perimeter. This suggests both surface 

and bulk leakage are present at reverse bias. The combination of these leakages is also seen in 

QT1879 where the reverse J-V data does not scale with area (refer appendix E).  

 

Surface leakage current comes from the presence of charge outside the semiconductor layer 

which induce charge in the semiconductor. As the result, a surface depletion region is formed 

and it modifies the junction depletion region causing a current leakage. However, the current 

leakage seen in these devices is not a big issue if the structures are to be functioned as solar 

cells. This is because, solar cells operate at forward bias condition and the effect of surface 

leakage is very small.  If the devices are to be used as photodiode applications, the surface 

leakage can be suppressed by the application of metal passivation to the devices.  

 

Figure 4.14: Reverse dark currents as a function of reverse voltage of STC-3X and QT1879. 

For all the devices, several slopes are identified at different voltage ranges, indicate that 

different domination of reverse bias mechanisms have occur.  
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The reverse dark current density as a function of reverse voltage at room temperature for all 

STC-3X and QT1879 devices are shown in Figure 4.14. Due to the inconsistency in current 

density value at reverse bias, the lowest dark current density value for each device is chosen 

for comparison in the figure. From the figure, the reverse dark current densities are similar for 

QW03 to QW20 which is at about 1×10-7 A/cm2 at zero bias and the values increase a bit higher 

than an order of magnitude for QW40-QW63, roughly 3×10-6 A/cm2. The increase in reverse 

leakage current can be caused by an increase in dislocation density in the devices as the number 

of wells increases, due to strain. QW10 shows a higher value of junction breakdown voltage 

which is roughly 26 V compared to the rest of devices that have breakdown voltages around 

21-22 V. From the log-linear figure, it is seen that the reverse dark currents are made of a 

different combination of current mechanisms. The change in gradients of the dark current 

density for all devices at different reverse voltage show the change in dominating current 

mechanisms as bias is applied. The reverse dark current starts with rapid rise, followed by an 

exponential dependence on voltage before it hits the breakdown voltage.  

 

Ideally, the current density for a diode at reverse bias is a constant value of 𝐽𝑜. However, it is 

not the case in real experimental measurements where other reverse bias mechanisms can 

contribute to the measured current. One of the reverse bias mechanisms that may contribute to 

the increase in reverse dark current with respect to voltage applied is the classic band to band 

tunneling current, 𝐽𝑡𝑢𝑛. In a narrow bandgap semiconductor material, the electrons can tunnel 

from the valence band directly to the conduction band via the forbidden gap. This tunneling of 

electrons commonly occurs when the electric field is sufficiently high. Here, the forbidden gap 

acts as a potential barrier and this mechanism creates a band-to-band tunneling current.[23] 

Equation 4.14 shows the 𝐽𝑡𝑢𝑛 for a material, 

𝐽𝑡𝑢𝑛 =
(2𝑚𝑒)1/2𝑞3𝐹𝑚𝑉

ℎ2𝐸𝑔
1/2 𝑒𝑥𝑝 (−

2𝜋𝛽𝑚𝑒
1/2

𝐸𝑔
3/2

𝑞ℎ𝐹𝑚
)  (Equation 4.14) 

 

where 𝑚𝑒 is the effective mass of electron, 𝑞 is the electronic charge, 𝐹𝑚 is the maximum 

electric field obtained from C-V profiling, 𝑉 is the voltage applied, ℎ is Planck’s constant, 𝐸𝑔 

is the bandgap energy and 𝛽 is the tunneling barrier parameter. The value of 𝑚𝑒 is taken from 

[24] which is 0.06𝑚𝑜 for the effective electron mass and 𝑚𝑜 is the electronic charge mass. 

However, after the calculation of Equation 4.14, the dark current density value is not fitted to 
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the experimental result and the shape does not show a band-to-band tunneling-like curve. One 

of the examples for the non-fittted value can be seen from QW20 reverse bias data in Figure 

4.15. This discount the 𝐽𝑡𝑢𝑛 mechanism and implies the presence of another dark current 

mechanism for the devices. 

 

Figure 4.15: Reverse dark current density for QW20 with band to band tunneling current 

density, 𝐽𝑡𝑢𝑛 mechanism plotted on the same graph. 𝐽𝑡𝑢𝑛 calculated is not fitted to the 

experimental result.   

Another dark current mechanism that may cause the increase in reverse dark current is the trap-

assisted current mechanism, 𝐽𝑇𝐴𝑇. The movement of electron tunneling is different from the 

𝐽𝑡𝑢𝑛 mechanism and its value depends on the trap energy and trap density. First, the electrons 

fill the traps in the bandgap, then move to the conduction band via the traps. Several works 

have proven the presence of 𝐽𝑇𝐴𝑇 especially at the mid-voltage range dark current density.[25, 

26]  

 

𝐽𝑇𝐴𝑇 can be described as shown in Equation 4.15, taken from [27] 

𝐽𝑇𝐴𝑇 =
𝑞2𝑚𝑒𝑉𝑀2𝑁𝑡

8𝜋ℏ3
𝑒𝑥𝑝 (−

4√2𝑚𝑇(𝐸𝑔−𝐸𝑡)
3

3𝑒ℏ𝐹(𝑉)
) (Equation 4.15) 
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where 𝑉 is the reverse bias voltage, 𝑀2 is the matrix element related to the trap potential, 𝑁𝑡 is 

the activated trap density, 𝐸𝑡 is the trap potential within the bandgap. The modified one-

dimensional model for 𝐽𝑇𝐴𝑇 can be expressed as follows [28, 29] 

 

𝐽𝑇𝐴𝑇 = 𝑞𝐴𝑁𝑡𝑊𝑇𝑟𝑎𝑡𝑒     (Equation 4.16) 

 

where, 𝑇𝑟𝑎𝑡𝑒 is the tunneling rate of the carriers and other parameters follow the usual meaning. 

This expression also does not satisfy the reverse dark current obtained, considering the modified 

model is a constant value. 

 

Figure 4.16: Poole-Frenkel equation fitted to the reverse bias J-V of the devices with respect 

to electric field.  

 

In this work, the exponential dependence shown in Figure 4.16 can be fitted by a process called 

as Poole-Frenkel emission where the charge carriers escape from trap centres in electronic 

semiconductors and insulators with the assistance of an electric field. The three-dimensional 

Poole-Frenkel effect can be described as,[30]  

 

𝐽𝑃−𝐹 ≈
𝜎0𝑘𝑇

2𝑞𝑏
[𝑒𝑥𝑝 (

𝑞𝐸𝑓𝑏

𝑘𝑇
) − 1]  (Equation 4.17) 
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where 𝜎0, 𝐸𝑓, and 𝑏 are the low-field conductivity, electric field and radius of the potential 

well, respectively and other symbols denote the usual parameters. The value of 𝐸 is assumed 

to be the total voltage drop across the i-region width. Meanwhile, the value of 𝜎0 and 𝑏 are 

varied to fit the magnitude and slope of the data, respectively.  

The figure shows the reverse J-𝐸𝑓 for all STC-3X and QT1879 devices with the Poole-Frenkel 

equation fitted to them. Except QW40, the Poole-Frenkel equation can be fitted to the reverse 

bias J-V data. It is suggested that QW40 shows anomalous fitting due to its condition of partial 

strain relaxation. There may be other mechanisms that are more dominant compared to Poole-

Frenkel.  

Devices Low field conductivity, 𝜎0 (S/m) Radius of the potential well, 𝑏 (nm) 

QW03 1.9 × 10-10 6.0 

QW05 2.9 × 10-10 6.0 

QW10 1.0 × 10-11 6.0 

QW20 5.5 × 10-10 6.0 

QW40 3.4 × 10-10 6.0 

QW54 2.5 × 10-8 7.8 

QW63 1.0 × 10-8 8.0 

QT1879 2.0 × 10-8 1.6 

Table 4.2: The fitting parameter values used to model Poole-Frenkel emission for STC-3X 

and QT1879 devices.   

 

The parameters used to fit the Poole-Frenkel equation to the reverse bias J-V data are listed in  

2. The values of low field conductivity and radius of the potential wells are distinct between 

the strained and strain-relaxed devices. This effect has also been reported for bulk GaAsBi [31] 

and InGaAsN lattice-matched to GaAs [32] material systems. For now, the physical 

significance in different regions of reverse bias is not clear yet for this set of devices. Different 

gradients from the reverse J-𝐸𝑓 graphs may be caused by a different combination of the 

mechanisms and further study is needed to answer these questions. More in-depth study is 

beyond the scope of this work and will be the suggested as future work. Besides that, 

temperature dependent reverse bias measurements will be needed for modelling and to further 

study the possible mechanisms that dominate the J-V in these devices. 
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4.5 Summary  

GaAsBi/GaAs MQW p-i-n diodes with different numbers of wells ranging from 3 to 63 

quantum wells have been studied and compared with a strain-balanced InGaAs/GaAsP 

quantum well diodes. First, previous works on the STC-3X devices were presented including 

the PL data, TEM and Nomarski images. Then, the C-V measurements were performed on the 

STC-3X and QT1879 devices. It is shown that all STC-3X MQW devices are more than 90% 

depleted when zero bias is applied. The estimated i-region thicknesses for all devices are close 

to their nominal width which is 0.62 µm except QW10 where it shows thicker width, 0.74 µm. 

This is due to a thicker first barrier following an error during the growth process. Relatively 

high background doping values in the i-region compared to other material systems such as 

InGaAN are seen for all STC-3X devices with values ~1016 cm-3 and they are similar to values 

obtained from C-V by other research in Bi-based material.  

 

A good agreement with the current density for each device at forward bias with different radii 

shows that the I-V results are dominated by bulk current mechanism. The value of dark currents 

for strained devices are within two orders of magnitude compared to InGaAs/GaAsP device. 

For relaxed devices, the value of dark current increases indicating strain relaxation occurrence. 

The dark current densities of the STC-3X devices also increase with the decreasing bandgap. 

From the gradient obtained by the energy fitting derivation, the activation energy is seen to be 

equal to the bandgap energy.  

 

Besides that, reverse I-V characterisation was performed. The reverse leakage current seen 

when a reverse bias is applied indicates the dominance of leakage current during the reverse 

process. Several mechanisms are responsible for the reverse bias current with Poole-Frenkel 

emission mechanism fitted as the exponential dependence.  

 

In conclusion, the STC-3X devices behave like conventional III-V semiconductor material, 

showing good rectifying diode-like characteristics with a reasonable ideality factor of between 

1 and 2, with the recombination current mechanism dominating the process. The dark current 

densities for Bi-based devices can be improved by improving the growth conditions, reducing 

the strain levels and by more careful device fabrication.  
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Chapter 5: Opto-Electronic Characterisation of GaAsBi/GaAs MQW 

Devices 

5.1 Introduction  

The opto-electronic characterisation presented in this chapter is important to further understand 

the GaAsBi/GaAs MQW material behaviour and to identify the potential of this Bi-based 

material specifically as a solar cell. So far, there are only a few reports of work done on GaAsBi 

for solar cell applications, such as on its absorption properties due to the research interest in 

other fields, especially in light emitting devices such as lasers and LEDs.[1-3]  

5.2 Photocurrent Measurements 

5.2.1 Measurement testing 

Systematic photocurrent measurements as functions of wavelength were done for the STC-3X 

devices. The measurement setup has been explained in Section 3.5.1. First, the photocurrent 

measurements were done on STC-3X devices without any filter. Here, the photocurrents created 

by the device were due to the photon absorption from monochromatic light and the harmonic 

multiple-order light produced by the monochromator. Then, two types of filters were used: a 

715nm long-pass filter and un-doped GaAs filter. The 715nm filter is used to filter out carrier 

excitation from the AlGaAs cladding layers in the device structures and to avoid any second 

order light absorption from the devices. Meanwhile, the GaAs wafer filter was used to exclude 

absorption from the GaAs barrier and at all shorter wavelengths. This is to allow current created 

due to the carrier excitation from the quantum well only, without stray effects from other 

sources. Different filters are used in measuring the photocurrent of the devices to ensure 

accuracy in obtaining the data and to identify the actual current created in the quantum wells 

when light falls onto the devices.  
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Figure 5.1: Photocurrent measurements of QW20 taken at 0V with no/different filter(s). GaAs 

control device (blue line) is shown for comparison. The graph is divided into 4 regions which 

are (1) AlGaAs cladding layer, (2) GaAs barriers, (3) GaAsBi quantum wells and (4) second 

order photons absorption. 

 

Figure 5.1 shows the photocurrent spectra of QW20 from the STC-3X devices taken with no 

filters and two types of filters stated above. A measurement using the 715nm filter was also 

done for GaAs device for comparison. For this measurement, 200 µm-sized cells are used for 

all the devices because it has the biggest active window. Since the objective lens used in this 

experiment has a focused spot size of ~1mm by 2mm, only a fraction of the incident beam is 

illuminating the cell mesa window. The power of illuminated light can be estimated as 

explained in Section 3.5. For the measurement of QW20 without filter, it is shown that the 

photocurrent spectrum is continuously high, including after the energy bandgap of QW20. Four 

parts can be seen from the spectrum indicating the carriers are created at different regions; (1) 

AlGaAs cladding layer, (2) GaAs barriers, (3) GaAsBi quantum wells and (4) second order 

photons absorption.  

 

At the lower range wavelength at about 500-650 nm, a shoulder can be seen suggesting 

absorption in the AlGaAs cladding layer. This agrees with the AlGaAs with 30% aluminium 

bandgap, which has cut-off wavelength of 674 nm at room temperature.[4] The middle part of 

1 2 3 4 
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the spectrum ranging between 680 nm and 880 nm is the photocurrent created due to GaAs 

barriers. Then, the spectrum range from 880 nm to 1,100 nm is the photocurrent from GaAsBi 

quantum wells and some of the second order diffraction light from the monochromator. After 

about 1,100 nm, the spectrum goes up again suggesting the second order diffraction light is 

absorbed by the device. This means that the photon absorption from the second order diffraction 

(of wavelength of 550 nm onwards) from the monochromator is the cause of carrier excitation 

and photocurrent seen from the device. It is unlikely that the photocurrent is due to the near 

infrared wavelengths because the bandgap of QW20 reported from PL measurement is 1,060 

nm.[5]  

Next, a 715 nm long pass filter is used to measure the photocurrent of QW20. The aim of using 

this filter is to eliminate the second order diffraction. This is also to exclude the light absorption 

from the AlGaAs cladding layer. No photon absorption and associated carrier creation from the 

wavelengths below 715 nm. The spectrum shown consists of the photocurrent from the i-region 

only which contains GaAs barriers and GaAsBi quantum wells. A similar measurement was 

done on a GaAs device with the same filter. It is also clear that the GaAs photocurrent cuts off 

at its band edge around 873 nm. Therefore, it is confirmed that the photocurrents created with 

the use of a 715 nm filter arise from the specified wavelengths to about 1,300 nm without any 

interference.    

After that, a photocurrent measurement was performed using a GaAs filter. The filter used was 

a double side polished un-doped GaAs wafer. The main reason for using this filter is to collect 

photocurrent due to the quantum wells only. Any wavelength below 873 nm did not contribute 

towards the total photocurrent value. The photocurrent roll-off of QW20 for both filters is 

similar in gradient showing that the cut-off wavelength of this device is independent of the 

filter. It is expected to see a very small photocurrent beyond the bandgap. Nevertheless, the 

photocurrent after the bandgap wavelength can still be measured down to almost three orders 

of magnitude (~tenth of pA).  

Figure 5.2 shows the photocurrent measurements for the rest of the STC-3X devices taken with 

no filter, the 715 nm filter and the GaAs filter. Larger-sized images are placed in Appendix F. 

From Figure 5.2 (a) to (f), it is shown that the spectra all agree with the discussion above.  
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(a) QW03    (b) QW05 

 

(c) QW10    (d) QW40 

 

(e) QW54    (f) QW63 

Figure 5.2: Photocurrent spectra of STC-3X devices taken at 0V with no/different 

filter(s) used.  
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In conclusion, it is important that careful measurements are taken to allow high accuracy in 

determining the device quality for future development. This is also to allow accurate bandgap 

measurements to be determined from the cut-off wavelength of the photocurrent. All 

photocurrent data shown after this used the GaAs filter to aid with the understanding of the Bi-

based material system at a longer wavelength range.  

5.2.2 Photocurrent measurements 

 

Firstly, photocurrent measurements were taken at zero bias to study the photocurrent created in 

the presence of the built-in voltage only. Then, a low reverse bias was applied to ensure full 

depletion of the i-region. Slight forward biases are also applied to see the effect of the forward 

diffusion current of the device on the total current while photocurrent measurements are taken. 

Careful measures need to be taken while applying the biases because dark currents may also 

arise and become comparable to the photocurrents during the measurement, especially at the 

absorption band-edge where the photocurrent drops to very low values.  

 

Figure 5.3 shows the photocurrent data for QW20 taken at 0 V, reverse bias and slight forward 

bias at room temperature. Figure (a) has its y-axis plotted in linear scale and (b) is in normalised 

log scale, for easier comparison. 
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(a) 

 

(b) 

Figure 5.3: Photocurrent value at different bias for QW20 shown in (a) y-axis linear scale 

and (b) y-axis log scale normalised to unity. The arrow in figure (b) pointed at the pinch off of 

the spectra where the normalised photocurrent value is the same for all biases before the 

value disperse. This point indicates the cut-off wavelength of the device.  

 

From Figure 5.3 (a), the photocurrent value for QW20 increases from the value at 0 V as reverse 

bias is applied until a saturation value is reached, which is at about -5 V. After about 1,000 nm, 

the photocurrent value starts to drop and its roll-off point is considered to be the absorption 
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band edge value or cut-off wavelength of the devices. About 41±10% carrier enhancement is 

seen when the bias goes from 0 to -5 V between 900-1,060 nm where the flat region is.  

From Figure 5.3 (b), there is a clear pinch off (pointed with the black arrow) in the spectra at 

around 1,053 nm before the photocurrent spectra disperse. The wavelength where all the 

normalised photocurrents are the same before the cross-over denotes the energy bandgap value 

of QW20 and its value agrees with the room temperature PL peak emission reported with 

±10nm difference.[6] The roll-off of the photocurrent after the band edge is the same for zero 

bias and when forward bias is applied except at 0.5 V where the roll-off deviates from the rest. 

The absorption after band edge is related to the tail states of the material and will be discussed 

later in this section. 

 

The main cause for the incomplete carrier extraction at zero bias is carrier trapping in the wells. 

This incomplete exctraction process from GaAsBi based devices also has been seen by Zhou 

et. al.[7]  A similar case has been previously shown for GaInNAs/GaAs MQW p-i-n structures 

where electrons are trapped in the wells.[8] For GaAsBi based material, as opposed to N, the 

bandgap reduction of GaAs due to Bi incorporation is due to a raising of the valence band 

energy.[9, 10] Therefore, it is suggested that holes are being trapped in the wells instead of 

electrons. When a reverse bias is applied, the potential profile of the well changes. This  allows 

the trapped carriers at the ground state of the well to escape with less energy. One method that 

could mitigate this is alloying the GaAsBi with In or N,  so that the total band offset could be 

reduced to avoid carrier trapping in the material. 
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Figure 5.4: Percentage change in depletion width and photocurrent of QW20 relative to zero 

bias. The photocurrent value is taken from the spectrum peak at 970nm.  

 

Figure 5.4 shows the data of the depletion width of QW20 at different voltages taken from its 

C-V measurements, compared with the bias dependent photocurrent value taken at 980nm. Both 

data sets are normalised to 100% at 0 V. From the graph, it is seen that both parameters increase 

in reverse bias and reduction in forward bias. From the C-V data, there is a small contribution 

from the increase in depletion width, about 4% increment when reverse bias is applied at -5 V. 

Meanwhile, from zero bias to -5 V, an increase in photocurrent of more than 40% can be seen. 

Therefore, it is likely that the increase in photocurrent with reverse bias is due to trapped carriers 

escaping with the aid of the electric field and not from the undepleted i-region of the device.  

When a slight forward bias is applied, the photocurrent drops dramatically. The high dark 

current in the device dominates the total current and suppresses the photocurrent created in the 

i-region as forward bias is applied. As a result, photocurrent measurements cannot be conducted 

accurately unless a very high value resistor is used to suppress the dark current.  
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Figure 5.5: Photocurrent measurements of QT1879 at different biases. 

 

For comparison, Figure 5.5 shows the zero, forward and reverse-biased photocurrent 

measurements taken on QT1879. It is seen that as a reverse bias is applied, the photocurrent 

value remains unchanged and complete carrier extraction is observed at 0 V. A reverse bias 

does not enhance the value of the photocurrent as no carriers are trapped in the wells. The drop 

in the photocurrent value in forward bias is also very small and can only be seen after 0.5 V, 

compared to QW20 here it is seen as soon as forward bias is applied. This is due to the lower 

forward dark current in this device and it allows constant generation of photocurrent at forward 

bias. This is consistent with other high quality MQW system such as GaAs/AlGaAs 

MQWs.[11].  

Photocurrent measurements taken for other STC-3X devices are shown in Figure 5.6. They all 

show a similar trend, with reverse bias needed to extract more carriers and slight forward bias 

causing a drop in photocurrent collection in the devices. The full-sized figures are placed in 

Appendix G. 
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(a) QW03    (b) QW05 

 

(c) QW10    (d) QW40 

 
(e) QW54    (f) QW63 

Figure 5.6: Photocurrent spectra at different biases for the rest of STC-3X devices. Different 

peaks seen from the photocurrent spectra are coming from the monochromator system 

response and they disappear after system response correction.  
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Different maximum reverse voltage are applied to the STC-3X devices to saturate the current 

collection, as shown in Table 5.1 together with the carrier enhancement percentages after that 

voltage is applied, 

 

Device QW03 QW05 QW10 QW20 QW40 QW54 QW63 

Maximum reverse 

voltage (V) 
-1 -2 -2 -5 -5 -5 -3 

Carrier 

enhancement (%) 
9.7 21.6 12.4 41.2 52.2 34.5 13.6 

Estimated pinch-

off wavelength  

(±10 nm) 

1040 1046 1080 1057 1048 1100 1096 

Table 5.1: Maximum reverse voltage and carrier enhancement percentages for each of the 

STC-3X devices for maximum photocurrent collection.  

 

Various reverse voltages are needed to enhance carrier collection in the devices, ranging 

between -1 V and -5 V. The photocurrent value in each device can increase up to roughly ~50% 

when bias is applied. The results are validated by data taken from Imperial College London, 

showing similar percentages.[12]  
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(a) 

  

 

 

 

 

 

 

 

 

 

(b) 

Figure 5.7: Photocurrent spectra for STC-3X devices and QT1879 at (a) 0V and (b) reverse 

voltage applied for maximum photocurrent collection. The inset is the normalised intensity of 

the photocurrent for roll-off comparison of photocurrent near its band edge.  
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Figure 5.7 (a) and (b) shows the photocurrent value for all STC-3X and QT1879 devices with 

respect to wavelength taken at zero bias and reverse bias for maximum photocurrent collection, 

respectively. Compared to figure (a), all devices in figure (b), except QT1879 show an increase 

in photocurrent suggesting more collection of current for STC-3X devices when carriers are 

aided by potential energy in escaping the wells.  

It is seen that for the STC-3X devices, as the number of wells increases, the photocurrent value 

also increases. For QW03 – QW40, a similar roll off is seen showing that they share an 

absorption edge at ~1,107 nm (1.12eV). Meanwhile, QW54 and QW63 they show an 

absorption edge at about 1,180 nm (1.05eV). The red-shift that occurs from strained to strain-

relaxed devices is fairly consistent between the photocurrent and room temperature PL data 

with a redshift of 69meV and 64meV for photocurrent and PL, respectively. The bandgap 

reduction is probably mainly caused by the loss of compressive strain in the structure. Besides 

that, the thinner barriers in QW54 and QW63 may allow the formation of mini-bands and at 

the same time could not maintain the effective quantum confinement causing a longer 

wavelength absorption. Photocurrent of QT1879 is showing limitation in its absorption edge 

at about 930 nm (𝐸𝑔 = 1.33 eV) due to its bandgap value.  

 

Figure 5.8: Responsivity spectra for QW20 at different biases.  
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From the photocurrent value and responsivity, 𝑅 shown in Figure 5.8, the quantum efficiency 

can be calculated too. External quantum efficiency, 𝐸𝑄𝐸 is another metric of detection 

efficiency of the devices and it is the ratio of the number of charge carriers produced from an 

incident photon.  

𝐸𝑄𝐸 = 𝑅 × ℎ𝑐
λq⁄     (Equation 5.1) 

where ℎ is Planck’s constant, 𝑐 is the speed of light, 𝑞 is the electron charge and λ is the 

wavelength of the incident photon. Practically, it is not possible to achieve a unity in quantum 

efficiency value due to internal defect-caused phenomena such as surface recombination and 

minority carrier recombination. The 𝐸𝑄𝐸 value can be improved by extending the depletion 

region of the device, thus increasing the number of swept carriers by the electric field and 

decreasing the recombination rate. The value can also be enhanced by including a layer of anti-

reflection coating during the fabrication process. This is to reduce the reflection of the incident 

light at the device-air interface and maximise the photon absorption by the device. The 

absorption of light has been briefly mentioned in Section 2.3.1. Here, to determine the amount 

of light absorbed by a material as a function of material thickness, the Beer-Lambert law is 

applied, assuming that light reflection is negligible.[13] It can be described as, 

𝐴 = 𝐴𝑂𝑒𝑥𝑝(−𝛼𝑥)    (Equation 5.2) 

 

where 𝐴 is the intensity of light after passing through the absorbing material, 𝐴𝑂 is the intensity 

of light incident on the material, α is the material absorption coefficient and 𝑥 is the thickness 

of the material. Assuming that the value of 𝑥 = 1/𝛼 , the light intensity that get through the 

material is decreased by 1/𝑒, about ~63% from the number of absorbed photons. The 𝐸𝑄𝐸 of 

a material is also related to the value of α by the equation, 

 

𝐸𝑄𝐸 = (1 − 𝑅𝑝)[1 − 𝑒𝑥𝑝(−𝛼𝑊)]  (Equation 5.3) 

 

where 𝑅𝑝 is the reflection coefficient of a material and this value is considered while 

calculating the 𝐸𝑄𝐸 due to a fraction of light that has been reflected from the sample surface. 

The value can be deduced by using Fresnel equation where the equation is able to describe the 

ratio of the reflected and transmitted incident light at the interface between two different media; 

in this case, between the air and the surface of the material as shown in Figure 5.9.  
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Figure 5.9: Transmission of light mechanism between air and material interface including 

the angle of incident, reflection and transmission.  

 

From Equation 5.4,  𝑛1 and 𝑛2 are the refractive indices of first and second media, respectively, 

𝜃𝑖  is the angle of incidence, 𝜃𝑡 is the angle of transmission and 𝜃𝑟 is the angle of reflection. 

 

𝑅𝑝 = |
𝑛1 cos 𝜃𝑡−𝑛2 cos 𝜃𝑖

𝑛1 cos 𝜃𝑡+𝑛2 cos 𝜃𝑖
|

2

    (Equation 5.4) 

 

For interfaces between the surface of the device and the air, value of 𝑅𝑝 can be simplified into 

Equation 5.5 assuming that both the incidence and transmission angles are normal to the 

surface of material (𝜃𝑖 = 𝜃𝑡 = 0o) and the refractive index of air is 1, 

 

𝑅𝑝 = |
1−𝑛

1+𝑛
|

2

     (Equation 5.5) 

 

where 𝑛 is the refractive index of the material. Note that value of 𝑛 varies with wavelength and 

temperature. For example, at 300 K, 𝑛 of GaAs at 885 nm and 1,064 nm are 3.6 and 3.48, 

respectively and the value of 𝑛 for the same wavelengths stated reduce to 3.54 and 3.43, 

respectively at 103 K.[14] There is a report on value of 𝑛 for GaAsBi with Bi percentage 

between 0 to 2.6% only and no report on value of 𝑛 for Bi ≥ 3% yet.[15] For this series, the 

value of 𝑛 of GaAs from S. Adachi.[16] Rearranging Equation 5.1 and 5.3 into Equation 5.6, 

value of α can be obtained, 1 ---- 

𝜃𝑖 

𝜃𝑡  

𝜃𝑟 
air 

material 

Light 
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α = (−1
𝑤⁄ )𝑙𝑛 [1 − 𝑅ℎ𝑐

(1 − 𝑅𝑝)λq⁄ ]  (Equation 5.6)    

 

From the responsivity data in Figure 5.8, the α values for QW20 at 0V and -5V are extracted 

and plotted against energy as shown in Figure 5.10. The responsivity and α values for other 

STC-3X devices are placed in Appendix H. 

 

 

Figure 5.10: Absorption coefficients of QW20 at 0V and -5 V. The solid lines are the Urbach 

tails fitted to the data.  

The estimated α values for QW20 shown in Figure 5.10 are plotted against energy instead of 

wavelength for better comparison and discussion. The room temperature absorption 

coefficients of QW20 at its energy bandgap taken from PL, 1.17 eV, are 1.64 × 103 cm-1 and 

2.58 × 103 cm-1 for 0 V and -5 V, respectively. For the same photon energy, this device has a 

lower value of α compared to Ge (α = 1.45 × 104 cm-1)[17] and  InGaAs (α = 2.18 × 104 cm-

1).[16] Overall, the α value above the energy bandgap is within the 104 cm-1 which is within the 

estimated range for III-V semiconductor materials.   

The exponential decay that occurs after the absorption edge can be describe by the Urbach 

effect and this slope is proportional to 𝑘𝑇 for temperatures above the Debye temperature.[18]  

It is an important characteristic because it indicates structural and/or thermal disorder in a 
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material system due to thermal fluctuations in the crystal lattice. Other work on Bi-based 

material systems have reported similar behaviour due to disorder of the material and the tail 

can be extended about <100 meV below the bandgap.[19-22]  

The Urbach effect can be expressed as,[18, 23]  

 

𝛼(ℎ𝑣) = 𝛼𝑔𝑒𝑥𝑝 (
ℎ𝑣−𝐸𝑔

𝐸𝑜
)   (Equation 5.7) 

 

where ℎ𝑣 is the photon energy, 𝛼𝑔 is the absorption coefficient when the photon energy is the 

same as the energy bandgap, 𝐸𝑔 is the energy bandgap and 𝐸𝑜 is the characteristic width of the 

absorption edge. The value of 𝐸𝑜 indicates the material’s state distribution caused by any of 

these conditions: lattice vibrations, structural disorders and impurities.  

 

The values of 𝐸𝑜 of QW20 fitted for 0 V and -5 V are 18 meV and 21 meV, respectively. A 

recent study by Kakuyama et al. shows that the 𝐸𝑜 obtained is 18.4 meV, which is the same 

value as in this study.[24] This is expected due to the similarity in growth temperature value 

(380°C) and Bi percentage in the layer. The 𝐸𝑜 values are also larger compared to the 𝐸𝑜 of 

GaAs which is valued at 12.2 meV.[23] The reason for this increase may be due to the formation 

of Bi-clustering and increased disorder when Bi is introduced to GaAs.[25] The Urbach tailing 

that occurs after the band edge is consistent with the EL and PL emission after the band edge 

observed in other studies too.[26, 27]   
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Figure 5.11: Absorption coefficients, α of STC-3X devices at 0V with comparison of α from 

other studies. (Data extrapolated from [24] and [28] ) 

 

The α of all STC-3X devices are plotted together as shown in Figure 5.11. The results are 

compared with the α value from previous studies. Although the data taken from Kakuyama et 

al. is in terms of 𝐸𝑄𝐸, the line gradient shown in the figure is directly comparable with value 

of α of the devices. From the Urbach fitting, all STC-3X strained devices show as value of 𝐸𝑜= 

18 meV, and the strain-relaxed devices show an 𝐸𝑜 of 17 and 16 meV for QW54 and QW63, 

respectively. The calculated 𝐸𝑜 from Hunter is slightly higher, which is 21 meV.  

It is assumed that the more accurate value of α of STC-3X is from the photocurrent at 0 V, 

although higher extraction of carriers is obtained with reverse bias. This is due to the 

appearance of Franz-Keldysh electroabsorption when reverse bias is applied. This process, also 

known as the Franz Keldysh effect is a phenomenon where photons can be absorbed beyond 

the cut-off wavelength given by the bandgap when an electric field is applied.[29]  

In the presence of an electric field, the electron and hole exponential wavefunctions ‘leak’ into 

the band-gap enabling absorption to occur at energies below the band-gap. The oscillations 

above the bandgap are due to the wavefunction interference. While small uncertainties may 

not matter in normal incidence devices where the absorption thickness is only up to a few 

microns thick, it can lead to significant errors in waveguide devices where the interaction 
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length is much longer. This effect also has been indentified in other materials such as Silicon 

and GaAs.[30, 31] The process can be expressed as shown in Figure 5.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: The schematic diagram of Franz-Keldysh effect in a material under applied 

electric field. Airy-like wavefunction is present in this effect.  

 

Figure 5.13 shows the α for QW20 with bias from 0V to -5 V. The increase in α at 1.15 eV as 

a bias is applied are extracted and plotted in Figure 5.14. This photon energy is chosen due to 

its value being just under the bandgap of QW20. From the figure, it is confirmed that the Franz 

Keldysh effect is present in this material where the absorption varies with applied bias. 

However, this effect will not be discussed further as it is not in the area of interest for this 

research.  
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Figure 5.13: Absorption coefficients as a function of energy of QW20 at reverse biases. 

 

 

Figure 5.14: Absorption coefficients versus reverse bias for QW20 at a photon energy of 1.15 

eV. 
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5.3 I-V under Illumination 

 

I-V under illumination for STC-3X devices and QT1879 were measured with a solar simulator 

as the light source. The photo-excitation in the devices is shown in the fourth I-V quadrant 

where there is positive bias and negative current. This is useful as it gives information about 

the potential for use in solar cells from its parameters; short-circuit current density, 𝐽𝑆𝐶  and 

open-circuit voltage, 𝑉𝑂𝐶. 𝐽𝑆𝐶  is controlled by the quantum efficiency or absorption coefficient. 

This is also interrelated with the minority carrier diffusion lengths, the solar spectrum and 

device junction thickness. This is because the value of current collected under illumination is 

the sum of current created per unit wavelength integrated over the spectral range of interest at 

zero bias i.e the photocurrent. Meanwhile, 𝑉𝑂𝐶 is controlled by the value of  𝐽𝑂, as shown by 

[32], 

𝑉𝑂𝐶 =
𝑘𝑇

𝑞
𝑙𝑛 (

𝐽𝑆𝐶

𝐽𝑜
)    (Equation 5.8) 

 

For this work, the light from the simulator was produced under two conditions, without filter 

and with an undoped GaAs wafer as a filter. The filter is placed above the device under 

examination to block all the wavelengths below the GaAs absorption edge from being absorbed 

by the device. Figure 5.15 (a) and (b) shows the I-V under illumination when no filter and 

GaAs filter were used, respectively. It is seen that the current collected when a GaAs filter is 

used are much lower compared to when measurements were done without the filter. The 𝐽𝑆𝐶  

and 𝑉𝑂𝐶 values for all devices are relatively lower too. The main reason for these values 

reducing by almost ten times compared with the current values without filter is because all the 

wavelengths below 873 nm are not absorbed by the devices and not contributing to the total 

current collected.  
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(a) 

 

(b) 

Figure 5.15: I-V under illumination for STC-3X and QT1879 devices taken at room 

temperature, (a) without any filter and (b) with GaAs filter  
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From Figure 5.15 (b), the GaAsBi devices exhibit 𝑉𝑂𝐶 values between 0.40-0.45 V for the 

strained devices and 0.33-0.34 V for the strain-relaxed devices. Besides that, it can be seen that 

the 𝐽𝑆𝐶  increases as the number of wells increase. As the number of wells increases, the 

absorption of photons is increased and contributes to the value of 𝐽𝑆𝐶 . At reverse bias, the 

current densities appear to be sublinear with respect to the voltage. This suggests that poor 

carrier extraction causes the limitation in photocurrent collection as the number of wells 

increases. Although the C-V profile shows that the devices are more than 90% depleted at zero 

bias, there are still some carriers trapped in the wells and they require an electric field to escape. 

This is proven by photocurrent measurements taken at reverse bias, where higher collection of 

carriers is seen. 

 

Figure 5.16: Comparison between I-V under illumination and total current calculated with 

the nominal solar simulator spectrum for QW20. 

 

To validate the I-V under illumination result, the current created at each wavelength when the 

device absorbs the light from the solar simulator can be calculated. From the responsivity data 

in Figure 5.8 and the solar simulator spectrum from the equipment datasheet, the current 

produced is integrated as a function of wavelength and compared with the value from 

illuminated I-V. The solar simulator spectrum is placed in Appendix I. Figure 5.16 shows a 

very good agreement between the current density value extracted from Figure 5.15 (b) for 

QW20 at different biases compared to the total current density calculated from the responsivity 
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and solar simulator spectrum. The differences are less than 7% between these two data. The 

dark current is seen to be very low at low voltage and only becomes significant after 0.3 V. 

However, the photocurrent value is still dropping as the bias increases. This shows that the 

dark current is not causing the reduction in total current at forward bias at low voltage (as seen 

in Figure 5.15). If the data is interpolated, it is expected to yield a zero-photocurrent value after 

0.55 V forward bias. One of the reasons for the photocurrent reduction is carriers being trapped 

in the deep wells or the localised states in the structures. 

 

Another numerical expression representing the efficacy of a solar cell is its bandgap-voltage 

offset. This is determined by finding the difference between the bandgap voltage, (
𝐸𝑔

𝑞⁄ ) and 

the 𝑉𝑂𝐶. Bandgap-voltage offset is a method to identify the material quality by looking at its 

non-ideal recombination properties. From Equation 5.8, the bandgap-voltage offset for the 

devices can be determined through the equations that follow, 

𝐽𝑜 = 𝑞𝑤𝐵𝑛𝑖
2    (Equation 5.9) 

 

𝑛𝑖
2 = 𝑁𝐶𝑁𝑉𝑒

−𝐸𝑔
𝑘𝑇

⁄
   (Equation 5.10) 

 

Where 𝑤 is the thickness of the material, 𝐵 is the radiative recombination coefficient,  𝑛𝑖 is the 

intrinsic carrier concentration, 𝑁𝐶 and 𝑁𝑉 are the effective density of states in the conduction 

and valence bands, respectively, and other symbols have their usual meaning. This results in 

Equation 5.11,[33] 

𝐸𝑔

𝑞
− 𝑉𝑂𝐶 =

𝑘𝑇

𝑞
𝑙𝑛 (

𝑞𝑤𝐵𝑁𝐶𝑁𝑉

𝐽𝑆𝐶
)  (Equation 5.11) 

Due to the weak bandgap dependence of 𝐵, the offset can be treated as a constant value, and 

non-radiative recombination components can be estimated. A small value of offset is desired 

because the value indicates the closeness of the quasi-Fermi levels to the band edges. The offset 

value also shows the closeness of the voltage in approaching the fundamental radiative 

recombination limit. For a high-quality single-junction GaAs solar cell, the offset is about 0.4 

V with radiative limit of 0.36 V. [33, 34] 
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Figure 5.17: 𝑉𝑂𝐶 for all STC-3X devices with respect to its band gap energy value taken from 

PL. The solid line is the fitted voltage difference for STC-3X devices and the dashed line is 

bandgap offset limit for a high-quality single-junction GaAs solar cell, typically 0.4 V 

difference.[33] 

 

From Figure 5.17, a linear dependence of 𝑉𝑂𝐶 with respect to the bandgap of the devices can 

be seen. The bandgap energy for the devices used in this diagram is taken from the bandgap 

determined from the PL peak energy.[6] The offset value is 0.76 V which is a bit higher 

compared to InGaAsN that has a value of ~0.7 V.[35] The large band offset can be related to 

the hole trapping in the valence band, as seen in InGaAsN where electron trapping occurs. [8, 

36]  
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Parameter QW03 QW05 QW10 QW20 QW40 QW54 QW63 QT1879 

𝐼𝑆𝐶(mA/cm2) 0.10 0.13 0.23 0.30 0.43 0.72 0.91 0.11 

𝑉𝑂𝐶 (V) 0.43 0.44 0.41 0.41 0.41 0.34 0.33 0.64 

𝐼𝑚𝑎𝑥 

(mA/cm2) 
0.09 0.11 0.16 0.18 0.22 0.47 0.65 0.10 

𝑉𝑚𝑎𝑥 (V) 0.34 0.35 0.38 0.38 0.39 0.25 0.25 0.50 

FF (%) 71 67 64 55 48 48 54 71 

Table 5.2: Solar cell characteristics for all STC-3X devices and QT1879. 

 

Table 5.2 summarises the solar cell characteristics for the STC-3X devices and QT1879. The 

values of 𝐼𝑆𝐶 , 𝑉𝑂𝐶, 𝐼𝑚𝑎𝑥 and 𝑉𝑚𝑎𝑥 are extracted from Figure 5.15 (b) and the fill factor (FF) 

values are calculated. From the table, as the number of well increase, the 𝐼𝑆𝐶  value also 

increase. Meanwhile, the 𝑉𝑂𝐶 value are distinct between the strain-devices and strained-

balanced devices where each category shows similar value. Besides that, the strained devices 

show a reduction in fill factor (FF) as the number of wells increases with QW03 shows a 

comparable value of FF to QT1879. The two strain-relaxed devices show a difference of 6% 

in FF value.  

In summary, all the STC-3X devices show absorption of light and photocurrents are created at 

wavelengths longer than GaAs. The devices are divided into two categories, strained and strain-

balanced devices, each category shows significant difference in dark current value and 

absorption properties. Although strained-balanced devices show higher dark current value, its 

short circuit current value are higher compared to strained-devices. If the open circuit voltage 

can be improved, it is expected to see higher value of fill factor indicating better solar cell 

performance.  

A low background doping and long minority carrier diffusion length are the main keys in 

achieving highly efficient carrier collection in a solar cell. Although it is challenging for Bi-

based material due to Bi impurities introduced to the layer, it is highly possible to produce high 

quality material with optimised and careful choices of growth parameters. 
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5.4 Summary 

 
In this chapter, the photocurrent measurements and illuminated IV measurements were 

performed on the STC-3X and QT1879 devices to study the opto-electronic properties in a Bi-

based material. Before real measurements were performed, preliminary checks were 

undertaken by using different long-pass filters when photocurrent measurements were taken. 

It is shown that the filters only allow the expected range of wavelengths to pass and accurate 

outputs are measured.  

Photocurrent measurements were performed at different biases for all STC-3X and QT1879 

devices. Carrier collection enhancement up to almost 53% can be seen when reverse bias is 

applied, while forward bias caused a reduction in carrier collection. Instead of incomplete 

depletion of the i-region of the devices, the carrier enhancement is expected to be caused by 

poor carrier extraction from the quantum wells at zero bias. The carrier trapping is the result 

of the large valence band offset in GaAsBi.  

From the photocurrent value, the device’s responsivity, QE and absorption coefficient can be 

deduced. Absorption coefficient values are comparable with other Bi-based studies. In addition 

to that, the effect of Franz Keldysh where the carriers leak into the range beyond the energy 

bandgap is seen in STC-3X devices. Overall, these devices demonstrate good properties and 

electro absorption up to its cut-off wavelength. This indicates good detectivity at the expected 

wavelength.  

Besides that, illuminated IV measurements were performed at room temperature by using a 

solar simulator. Measurements without and with a GaAs filter show a large reduction in 𝐼𝑆𝐶  for 

devices with a low number of wells and the ratio becomes comparable at higher wells number. 

The bandgap offset calculated shows a high value of offset compared to GaAs and InGaAsN. 

This is caused by the carrier trapping specifically of holes in the valence band. The fill factors 

determined from the illuminated IV measurements show that the value drops as the number of 

wells increases. This is closely related to the strain levels that are present in the devices.  

To acquire good carrier extraction and improve the absorption onset in GaAsBi based devices, 

growth optimisation is needed. The ongoing improvement in understanding of the growth of 

this material system will help GaAsBi to be competitive with existing technologies such as 

strained-balancde InGaAs/GaAsP for device applications especially in solar cell industries.  
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Chapter 6: Conclusions and Future Work 

6.1 Conclusions  

 
In conclusions, a detailed study has been carried out to analyse the properties of a series of p-

i-n GaAsBi/GaAs MQW diodes for the advancement of solar cell technology. The early 

chapters in this thesis explain the introductions of Sun’s properties as renewable energy, the 

generations of solar cells and the importance of 1e V material system in a multiple-junction 

solar cell. Besides that, the III-V semiconductors and its lattice structure formation are 

discussed. Then, the application of multiple-quantum well (MQW) in a material system is 

explained with the effect of strains in the structure. 

  

 After that, the reports on photoluminescence characterisation, TEM and Nomarski imaging 

study have been summarised at the start of the result chapters. The devices were fabricated 

with metal contacts and have been used for electrical and opto-electronic characterisations.  

 

From the electrical characterisations, the C-V measurements show that all MQW devices are 

almost fully depleted at zero bias. The doping density values in the i-region are about ~1016 

cm-3 which is within the reported range for Bi-based materials and is higher compared to other 

material systems. High dark current densities from I-V measurements are mainly due to 

dislocations arising from the increase in strain level in the higher well number structures. 

Another reason for the high dark current densities is the poor growth of GaAs-based in this 

work. Compared to the literature, the as-grown GaAs has higher dark current density. This in 

turn, increase the dark current when Bi is introduced to the layer. Reverse bias dark current 

measurements show that Poole-Frenkel emission may be the main cause for the leakage current 

exponential increase at reverse bias. 

 

For opto-electronic characterisation involving photocurrent measurements and I-V under 

illuminations, the devices show incomplete carrier extraction at zero bias. This is due to hole 

trapping in the wells of the valence band. It is seen that slight reverse bias is needed to ensure 

complete carrier extraction for maximum photocurrent collection. Increases up to ~53% carrier 

enhancement from the MQW devices were obtained when reverse biases were applied. Besides 

that, the MQW devices in this study show better absorption coefficient values. In addition to 

that, absorption below the bandgap was observed, an effect known as the Franz-Keldysh effect. 

However, this effect was not further discussed. Comparing the bandgap values obtained from 
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PL peak and photocurrent cut-off wavelengths, it is concluded that both measurements show 

good agreements with each other. 

 

Based on the results of I-V under illumination, the current produced was reduced by ten times 

when a GaAs filter was used. This is because the wavelengths below the GaAs absorption 

edgewavelength were filtered out and did not contribute to the current. The short circuit 

currents increase with the number of wells and open circuit voltages are similar for strained 

devices and dropped its value for strain-relaxed devices. Besides that, the fill factor that is 

accounted for the behaviour of the devices as solar cell shows decrement in value as the number 

of wells increase for strained devices. Meanwhile, QW63 shows a better fill factor value 

compared to QW54. Lastly, the bandgap offset calculated for the MQW devices show a linear 

dependency- of 0.76 V that is higher compared to GaAs and InGaAsN.  

 

Overall, the introduction of bismuth into GaAs allows the extension to longer wavelength. The 

MQW structures also have been successfully employed up to 63 wells which is much higher 

than the number of wells from other study. The photocurrent collected increases as the number 

of wells increase too. It is seen that only devices with well number more than 40 show the 

strain-relaxation properties. However, the material quality of the devices is degraded due to 

high dark current and poor photocurrent collections at forward bias. Since the devices are 

neither fully strained nor fully strain-relaxed with different level of strains introduced to them, 

it is difficult to estimate the peak wavelength position to a high degree of accuracy. By 

identifying the source of dark current and improving the carrier collection components, a 

better-quality material with higher efficiency can be obtained.  
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6.2 Future Work  

 
Several experimental works are recommended to further investigate the GaAsBi/GaAs MQW 

devices in this study. First, the electrical and opto-electronic temperature-dependent 

measurements on the devices could be performed. These include dark I-V measurements, 

photocurrent measurements and I-V under illumination measurements at below and above 

room temperatures. Low temperature dark I-V and photocurrent measurements can be done to 

identify operating capability and to figure out the activation energy of the material system.  

For high temperature measurements, the dependency of the devices with temperature above 

room temperature can be used to study and investigate relevant properties for concentrator 

photovoltaic (CPV) applications. CPV units focus solar irradiance from a large area onto a 

relatively small solar cell, usually a multi-junction solar cell, reducing the impact of the solar 

cell cost on the total unit cost and improving the photovoltaic efficiency.[1, 2] High 

temperature measurements are of interest due to their matching to the CPV typical operating 

temperature which is about 100°C.[3]  

 

It is also worth performing a systematic study of the atomic ordering in the material as another 

possible cause that could affect the material properties of GaAsBi/GaAs MQWs. This is 

because ordering has been observed in GaAsBi bulk layers and other standard III-V 

semiconductors such as GaAsSb and InAsSb.[4-6] To date, there is no report on the ordering 

of GaAsBi MQWs and its effect on the device performance. 

 

A mixture of contributions toward the overall performance of GaAsBi/GaAs MQW devices 

include well thickness, Bi percentages and degree of strains. If these areas of interests can be 

developed and optimised to improve the electronic properties of GaAsBi devices, the 

photovoltaic performance of GaAsBi MQW will become increasingly competitive with 

InGaAs MQW photovoltaics especially for 1 eV junction solar cell.  
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Appendices 

 

Appendix A: FD05D Responsivity Graph 

 

 

Figure A.1: The graph is taken from InGaAs FD05D specification sheet from Thorlab Inc 

website, Thorlab’s FD05D InGaAs photodiode specification sheet numbered as TTN035395-

S01, Rev D; Oct 10, 2017) 
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Appendix B: C-V and CA-V for STC-3X and QT1879 devices 
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Appendix C: Doping profile for STC-3X and QT1879 devices 
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Appendix D: Forward bias I-V and J-V for STC-3X devices 
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Appendix E: Reverse bias J-V for STC-3X devices 
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Appendix F: Photocurrent of STC-3X devices taken with different filters 
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Appendix G: Photocurrent of STC-3X devices taken at different biases 
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Appendix H: Responsivity and absorption coefficient (with Urbach fitting) of STC-3X 

devices 
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Appendix I: Solar Simulator Spectrum 

 
 

 

Figure I.1: The figure is taken from LSH-7320 LED Solar Simulator Spectrum specification 

sheet from Oriel Instruments, Newport Corp. website, specification sheet numbered as LSH-

7320 REV07 110414 

 


