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Abstract 

In this work 3 minimalist bio-inspired foraging algorithms based on C. elegans’ chemotaxis 
and foraging behaviour were developed and investigated. The main goal of the work is to 
apply the algorithms to robots with limited sensing capabilities. The refined versions of 
these algorithms were developed and optimised in 22 different environments. The results 
were processed using a novel set of techniques presented here, named Genotype 
Clustering. The results lead to two distinct conclusions, one practical and one more 
academic. From a practical perspective, the results suggest that, when suitably tuned, 
minimalist C. elegans-inspired foraging algorithms can lead to effective navigation to 
unknown targets even in the presence of repellents and under the influence of a significant 
sensor noise. From an academic perspective, the work demonstrates that even simple 
models can serve as an interesting and informative testbed for exploring fundamental 
evolutionary principles. The simulated robots were grounded in real hardware parameters, 
aiming at future application of the foraging algorithms in real robots. Another 
achievement of the project was the development of the simulation framework that 
provides a simple yet flexible program for the development and optimisation of 
behavioural algorithms. 
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Chapter 1 
Introduction 

Some great problems require small solutions. Small scale robots may one day be the best 
way to solve big problems: air pollution, crop pollination, repairing organs or blood 
vessels, healing wounds, detecting and targeting cancer cells, pathogens, or infections are 
just some of the examples. Recent developments in robotics, electronics and smart 
materials are blazing the way for a new generation of robots: simpler, smaller, and able to 
act either as individuals or as a swarm. With reduced size and cost, and increased 
capabilities, these robots might be able to tackle problems that are still too expensive, 
difficult, or even unfeasible for humans or existing robots. 

In the open environment, some of the tasks that could be performed by a new class of 
low-cost minimalistic autonomous robots would be: detecting and/or neutralizing 
pollutants, harmful organisms or chemicals in the environment1–7, actuating in hazardous 
environments8,9, monitoring natural systems7,10, exploring the sea11, pollinating plants12, or 
even colonising other planets. In the human body, some applications would be: delivering 
drugs13–16, targeting cancer cells, infections, or pathogens, monitoring health conditions 
and health indicators17, removing biofilm from surfaces18, patching up wounds, and 
performing micro-surgeries19,20. 

Some of the limitations these robots would face are those that arise due to the constraints 
of its hardware, software and embodiment, and those regarding production costs, as some 
of these robots would be expendable, or semi-disposable. Another key limitation relates to 
energy supplies, as some small and/or disposable applications would not suit traditional 
batteries - either because of payload limitations or because of toxic components in the 
most common batteries. One solution for that is the development of solutions allowing 
the robots to harvest energy from the available sources in the environment: light, wind, 
wave power, sugars17, biomass, and micro-organisms are some alternatives. One example 
of the use of biomass and microorganisms to power small devices is the technology of 
Microbial Fuel Cells (MFCs). MFCs use living microorganisms (electrochemically-active 
bacteria) to convert organic fuels into electricity21. 

As a technology under development, the capacity of generating power of MFCs and 
similar components is still limited. However, when combined with developments towards 
miniaturization of electronic components and advances in smart materials and 
manufacturing techniques14,15,18,20,22–28, these components could give power to minimalistic 
autonomous robots, capable of harvesting energy while performing tasks out in the 
environment. For certain environments and applications, by feeding on the pollutants 
they are built to eradicate, robots would be able to economize this task. In a recently 
published work, the researchers successfully developed a robot prototype that consumes 
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the pollutants it is designed to eradicate and uses them as an energy source5. In a similar 
approach, recent advances successfully used glucose to power micro-devices, envisioning 
the application of such technology in micro-robots to monitor blood sugar17. 

The capacity to harvest energy from biomass and other sources available in the 
environment, combined with cheap and disposable robots, is laying the groundwork for 
autonomous robots that would behave less like machines, and more like living beings - 
able to feed, perform tasks and eventually decompose or complete their cycle. Across 
evolution, living beings have evolved ways to find food, even in harsh environments. 
From single-cell organisms to complex animals, one of the most basic needs is to feed and, 
with the exception of autotrophs, such tasks usually involve movement, behavioural, and 
foraging strategies. For those organisms that actively move, foraging also encompasses the 
trade-off of spending energy to acquire energy29–31. In that context, looking for inspiration 
in biology is a prolific way to design - and evolve - technological solutions32–38. 

Regarding the problem of minimalistic energy-harvesting mobile autonomous robots, a 
perfect example to look to for inspiration is that of the free-living roundworm 
Caenorhabditis elegans, one of the first organisms to have its genome and connectome 
fully mapped. Despite its remarkable simplicity, C. elegans displays a considerable 
repertoire of behaviour including foraging, mating, feeding and threat avoidance, as well 
as rudimentary learning, memory and social behaviour39–47. Its foraging strategy emerges 
from the interaction of simple sensory information and limited body movements - a 
combination of runs and turns of varying speed and direction. 

Computer models and simulations provide methods for the investigation of natural 
processes, systems, animal behaviour, among others. These are some of the approaches 
used in the field of Artificial Life (A-Life). A-Life does not focus on building perfect 
models of life (as in Biological Sciences), but rather to capture the most general and 
relevant aspects of a given system and implement them in a simulation48,49. The aim of 
the field is not necessarily only to recreate systems as they are, but also as they could be. 
A-Life combined with biomimetics and optimisation might provide useful insights and 
tools for robotics and for the development of algorithms. 

The main drive to produce this type of algorithm is that a model based on an organism 
as simple as C. elegans lays the groundwork for similarly simple autonomous robots, 
capable of performing tasks with minimal, or no human supervision or intervention. 

The foraging task was chosen as the testbed for the algorithms, as to remain autonomous 
a robot must be able to conserve and replenish its batteries. Furthermore, by basing the 
algorithm testing around the foraging task, robots not only tackle the problem of foraging 
for energy, but also how to cover large areas with minimal sensing and decision making 
capabilities.  
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This work is an investigation in Artificial Life about Evolution and differentiation of 
species in response to environmental constraints in the context of minimalist bio-inspired 
behavioural algorithms. The algorithms, inspired by C. elegans’ chemotaxis and foraging 
behaviour, are aimed to be applied to a future class of autonomous mobile robots, with 
energy harvesting capabilities. The results obtained from these studies are expected to 
contribute to the fields of Robotics, Artificial Life, Biological Sciences, Biomimetics, and 
Optimisation.  

1.1. Aims and Objectives 

The aims of this research are presented as follows: 

To develop and optimise foraging algorithms inspired by the behaviour of C. elegans, for 
autonomous minimalist mobile robots.  

To define a testbed for the problem of foraging energy and avoiding threats in unknown 
environments. 

To test and apply evolutionary algorithms for optimisation to optimise the parameters of 
the Foraging Algorithms for a given set of environments, furthermore to obtain the best 
solutions for each environment. 

To develop methods to identify, group and classify these best solutions found for each 
problem by applying concepts from Biology, Evolution, and differentiation of species. 

To contribute to biological sciences by providing biomimetic foraging algorithms that 
may be useful for studying chemotactic behaviour in C. elegans and eventually other 
species. 

The specific objectives are to: 

- Create a model that captures the most relevant aspects of C. elegans’ foraging 
behaviour; 

- Develop optimizable foraging algorithms that could be deployed into minimalist 
robots, capable of working with a single sensor input; 

- Create a program to simulate robots using custom behavioural algorithms to 
forage resources; 

- Create standard virtual environments as a testbed for foraging algorithms; 
- Deploy the foraging algorithms into virtual robots with specifications grounded in 

real hardware; 
- Identify the best suited Evolutionary Algorithms for the optimisation problem 

defined; 
- Optimise the foraging algorithms using evolutionary algorithms; 
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- Identify patterns in the best optimisation solutions utilising clustering techniques 
and group them into species, by genetic similarity.  

1.2. Contributions 

This work is the first to develop and test biomimetic foraging algorithms based on C. 
elegans into autonomous robots that were simulated in a virtual set of environments, and 
contributes to the fields of Artificial Life and Robotics by proposing standard problems to 
test foraging algorithms. It also contributes to the fields of Biological Sciences and 
Biomimetics by creating minimalistic models of C. elegans foraging behaviour (Figure 
1.1). These models are optimisable and show how very simple models with very few 
parameters can solve the problem of finding attractants and avoid repellents in unknown 
environments.  

This work is also the first to propose the use of clustering techniques to identify and 
classify the solutions optimised with evolutionary algorithms, and contributes to the field 
of Evolutionary Computation and Optimisation by proposing a new method to identify 
and classify diversity among evolved solutions. 

 

Figure 1.1 Mapping multidisciplinary interactions between several fields/areas involved in this 
research. 
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1.3. Applications 

Given the transdisciplinarity of this work, the literature review will be organised in two 
chapters, one focusing on the synthetic aspects of the field being explored, the other 
dealing with the natural aspects. Chapter 2 covers the topics of Artificial Life, Artificial 
Intelligence and Robotics while Chapter 3 covers the topics related to Ecology, Movement 
and Behaviour of animals. 

Over the course of my research, I designed six foraging algorithms inspired by the 
behaviour of C. elegans and these were tested over 10 series of experiments. As this work 
intersects with several fields and many of them are novel, there are no standard problems 
or methods for evaluating robots utilising foraging algorithms. For that reason, I had to 
both develop a tailored simulation platform and define standard problems to evaluate the 
performance of the algorithms. That was done by creating the settings and procedures to 
generate a set of controlled environments in which the experiments would be performed. 

Coding a simulation program, implementing optimisation with evolutionary algorithms, 
defining the optimisation problem and the heuristics, and finally designing the algorithms 
was certainly not trivial and therefore it was only after seven of the ten series of 
experiments that I was able to fine-tune the methods and consolidate an experimental 
setup. The processes, issues and results that emerged from these seven initial experiment 
series were essential in defining the algorithm design and the optimisation problems. The 
outcomes of these experiment series also account for the robustness achieved in the later 
series, and very often will explain the reasoning behind the methods, techniques and other 
design and optimisation decisions adopted later in this work.  

Given the nature of this work, the entirety of Chapter 4 is focused on these series of 
experiments, and also the three early foraging algorithms. This is included with the aim 
of clarifying the chain of decisions which led to the final methods, and also to offer 
guidance on the issues which were overcome during this period for further research.  

The consolidated methods for simulating, optimising, and processing the results of the 
three refined algorithms, along with three later experiment series, are presented in 
Chapter 5. 

The three refined foraging algorithms inspired by C. elegans behaviour are presented 
separately, in Chapters 6, 7, and 8. The analysis of the results and the discussion about 
each refined foraging algorithm are presented in the corresponding chapter. Chapter 9 
presents the results of a performance comparison between the three refined algorithms. 

A general discussion and conclusions are presented in Chapter 10. 
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Chapter 2 
Literature Review in Artificial Life, Artificial Intelligence 

and Robotics 

2.1. Artificial Life 

Artificial life, or A-Life for short, is a field of research that is notable for the 
multidisciplinarity in its core. Gathering knowledge from Biology, Computer Sciences, 
Mathematics, Chemistry, Behaviourism, and Robotics, amongst others, the purpose of 
artificial life studies is double-fold: through simulating biological systems in various scales 
- molecular, cellular, organismal and population - it may provide researchers with a better 
understanding of the mechanics of said systems in the context of their natural occurrence, 
as well as enable them to employ these mechanics in human-made applications not 
necessarily related to life sciences. With the insights provided by creating and studying 
artificial living systems designers, computer scientists and even theoretical 
mathematicians are able to explore a large gamut of possible solutions for varied problems 
in an efficient and timely manner. It is the role of the researcher to identify fit candidates 
out of the countless solutions evolved by the natural world to replicate, analyse and 
convert their inner workings into practical benefits for the application at hand50. 

One of the most important contributors to the field, the physicist Christopher Langton, 
proposed the name Artificial Life in 198751 at a workshop he organized while working at 
the Los Alamos National Laboratory. The event was intended to bring together 
researchers from various fields interested in the control and repeatability offered by 
programmed simulations, instead of the random sampling and extensive observation 
typical of biological studies52.  Langton saw in computational simulations a tool able to 
substitute an entire bio-focused lab. Using computers as “one simple-to-master piece of 
experimental equipment”53 made possible doing away with the considerable assortment of 
specialized apparatus necessary for wet-lab analysis. This way it would be possible to try 
and synthesize systems analogous to living systems so they could be studied in a more 
efficient and better defined manner. 

Many years before the field got its name, some very notable researchers were already 
setting the foundation of what would be eventually known as Artificial Life. Pioneer 
William Grey Walter achieved in 1949 the kind of life-like system defined by Langton 
with his hardware-centric, analogue tortoises. Two years later Alan Turing was the first 
to investigate biological growth patterns using digital computer simulations53. 

In this initial research Turing used the first commercial general-purpose digital computer, 
the Ferranti Mark I. He set out to build his simulations as soon as the newly available 
machine was installed in the Computing Machine Laboratory at the Victoria University 
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of Manchester, where he worked at the time54. Programming the Mark I was not an issue, 
since Turing was himself involved with the development of this computer and was already 
familiar with it, so he got to work right away. The hypothesis he wanted to simulate was 
also already somewhat developed, being his personal take on the ongoing work of 
zoologist D’Arcy Thompson. Thompson’s idea was that biological forms were actually a 
direct effect of chemical diffusion and interactions at the molecular level, replicated and 
spatially amplified by the growth of the system. Just like inorganic forms display fractals 
and repetitive patterns as a result of chemical interactions ruled by the laws of physics, 
this mathematical ruling also inevitably emerges in biology55. Both Thompson and Turing 
investigated the astoundingly common occurrence of the Fibonacci series in the 
distribution of elements in botany and zoology. Turing also had an special interest in the 
structural organization of the starting point of most living forms: embryos. Turing called 
“chemical embryology” the hypothesis he experimented on with the Mark I, and it was 
the beginning of modern concepts like morphogenesis - the origin of the shapes of organic 
systems and living beings -, the reaction-diffusion model - one that can accurately 
simulate the formation of visual patterns such as the spots on leopards, stripes on giraffes, 
and distribution of scales on reptiles -, and even neural networks, that would only become 
commonplace decades later. 

Ranging from the investigation of physiology, and the detailed biophysics and 
biochemistry involved in living systems, through cellular and tissue scale, up to whole-
organism dynamics, artificial life studies can be classified by the support they happen on. 
The division of support media tends to be closely related to the scale and level of 
organization of the systems under scrutiny. The three main classes of medium employed 
are wetware, software, and hardware, and the connection between the scale and medium, 
ranging from molecular to populational, follows a very practical logic, as follows50. 

When simulations take place in petri dishes - wetware -, having molecules in suspension 
as their basic building blocks, it is called Wet A-Life. The experiments developed at this 
scale are the closest to natural systems, but are also the slowest to develop, mainly due to 
their time scale being defined by the direct participation of a human operator in each of 
the processes, plus the necessity of waiting for the intended reactions to occur. The most 
common application of this class of A-Life is to artificially produce, evaluate and select 
RNA molecules by their capacity of realizing useful work, usually catalysis of various 
reactions of interest. The working principle in this case is directly linked to statistical 
mechanics and chemical kinetics, and based on the slew of molecular interactions that can 
be expected from any practical volume of analytes. A series of more than a thousand 
RNA variants is put into a solution containing the substrates for the intended reaction. If 
any of the trillions of copies of these RNA strands is able to catalyse the reaction in 
question, it will eventually do so, given the sheer amount of chemical interactions taking 
place per second in each experiment run. From there, the experiment follows as a sort of 
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artificial evolutionary selection. The more successful strands are recovered from the 
solution, mutations are introduced to their code, the resulting variants are replicated in 
bulk and tested again. The cycle is then repeated, and each cycle is akin to a generation 
in the evolutionary process of a molecular population, until the desired properties are 
selected56. 

The wet technique sheds light into the possibilities stemming from randomly generating 
and subsequently selecting something so complex and versatile as a molecule. Because of 
the open-ended quality of this style of study, the insights achievable are applicable to 
objective, manufacture-oriented ends, as well as to theoretical questions like the “RNA 
World” theory for the origin of life57. 

When simulations happen in a software environment, the most common and cheap way 
to run them, it is called Soft A-Life. The earliest Soft A-Life was the cellular automata 
(CA), having the first example been presented by physicist, mathematician, and 
computer engineer John Von Neumann in his lecture at the Hixon Symposium, in 1951. 
There, he proposed a definition for an automaton: any machine or program that could 
behave in a way that took inputs from the environment and combined it with its own 
code or build somehow to produce change - growth - in a series of steps throughout its 
running time. He also noted that these simple rules are, in a reductionist view, actually 
what natural living creatures do. That is the basic concept of the CA - a simulation of 
relatively simple organisms distributed in a colony-like manner making decisions based on 
their programming and external conditions in sequential steps, growing, replicating and, 
eventually, dying. The first CA was built by Von Neumann and Stanislay Ulam and 
consisted of thousands of cells capable of displaying 29 distinct states, a massively 
complex example of CAs, even to this day. The result was a program capable of, among 
other feats, replicate while keeping a copy of its original code that could be output when 
needed. In the infancy of digital computing, their program was able to survive, mutate 
and reproduce, effectively simulating open-ended evolution. Even while the structure of 
DNA was yet to be fully understood, a computer could, indeed, be used as a petri dish58. 

The next class of artificial life regards simulations run directly on hardware, which may 
vary greatly in complexity. A comparison between modern autonomous vehicles and those 
discussed in the literature review - Tilden’s minimalistic BEAM automata, or even Grey 
Walter’s seminal tortoises - exemplify the range of challenges present in design, 
implementation, and the resulting functionalities. From the hardware basis, this class is 
called Hard A-Life, and can be considered as one interpretation of the field of Robotics. 

The strongest focus of the hard A-Life class is in the simulation of individual living 
beings, and for good reason. When dealing on this scale, a curious synergy enables 
massive decrease in the task of setting up the simulation, at the same time it incidentally 
generates a leap in quality of results. Consider the procedure of replicating the behaviour 
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of a single life form in a complex environment: if one was to finely model and simulate 
the vastly complex chemistry, mechanics and physiology of said organism, all while 
simultaneously modelling and validating the even more complex environment in which 
the simulation is to run, the computational resources needed would simply be out of the 
technological capabilities of mankind for the foreseeable future. This can be anticipated 
due to the immense intricacy of the target environment - the real world - and its 
potentially infinite properties and the interactions between them - physical, chemical, 
structural, mechanical, to mention a few. Add to this already gargantuan equation the 
noise and uncertainties of reality and it only becomes more clear that simulating this 
scale is non-trivial50. 

A solution to this was proposed by Rodney Brooks in 1986, and it was called the 
Subsumption Architecture59. While Brooks’ work is discussed in greater detail in the 
literature review section, for the current explanation it suffices to mention that this 
architecture simply does away with the heavy lifting of creating a symbolic representation 
of the ambient, substituting it for an even better alternative: the real world itself. By 
doing an analogous change to the modelling of the organism, from computer code to 
actual electromechanical build, one can leave the world building to the electronic 
detection made in real time by various layers of sensors and instead focus on fine-tuning 
the interaction between these layers. Instead of arising from a complex control system, 
complexity derives from the complex environment. Because of all these benefits, it is 
possible to quickly and effectively experiment with multiple robotic variants with 
different bases and objectives60. 

This nomenclature is, not surprisingly, reminiscent of the in-silico, in-vitro, and in-vivo 
classification style common in artificial and natural life sciences61, serving a similar 
purpose but with each simulation substrate being fully useful in itself, instead of a step to 
an ultimate goal of applying the results to living tissues or creatures. 

Another noteworthy aspect of the A-Life field is the philosophical questions that arise 
when dealing with the very definition of what is life. Von Neumann had already pointed 
at the fact that at the base of behaviours exhibited by natural living organisms are, 
indeed, simple rules. Researchers must, then, deal with the implications of such 
definitions on the future of studies in A-Life, since its fundamental tools - programs that 
emulate survival abilities found in living beings - are expected only to grow in complexity 
and approximation to their real counterparts. The notion of these simulations becoming 
indistinguishable from biological, naturally occurring life has been predicted and 
discussed, and from this discussion arose two lines of thought, called Strong A-Life and 
Weak A-Life. Further, the discussion includes the question if such division is positive or 
just the kind of unproductive detour expected of the beginnings of a science field62. 



- 12 - 

The Strong notion is closely related to the Strong AI concept, in that it describes life as 
something immaterial, be it intelligent life and its essential components - namely 
consciousness, self-awareness, and free will - or the electronic analogue to the smallest, 
simplest forms of life - the self-replicating computer viruses63. 

According to this logic, life is an abstract concept, a pattern of instructions in space-time 
, and can exist no matter the substrate, and the consequence of this is a challenging yet 
rich discussion around the meaning of life and the ethics of A-Life research. This 
discussion is expected to become particularly relevant when technology reaches the point 
of producing an artificial consciousness that cannot be told apart from our own. For now 
notions are still mostly philosophical, and the proposal of definitions to artificial life in 
terms like “prosthetically controlled thought experiments of indefinite complexity” set the 
tone62. 

Conversely, according to the Weak A-Life reasoning the simulations can never truly be 
real life, a status exclusive to biochemical, wet-systems. From this point of view any 
simulation in the context of A-Life is just another tool for better understanding nature. 

2.2. Minimalist Robots 

The field of minimal robotics was defined in its beginnings by the employment of almost 
bare-bones designs, often based entirely on discrete analogue components. One of the 
pioneering works combining AI and robotics was developed by William Grey Walter 
around 195064,65. Being originally a neurophysiologist, Walter was particularly interested 
in the properties of the brain and their relation to the multitude of behaviours observed 
in living beings. Influenced by recent findings related to the wiring between neurons, 
which also give rise to the concept of artificial neural networks, Grey Walter started his 
work in the field of robotics with the development of autonomous robots able to mimic 
animal behaviours. His famous Tortoise Robots were built around 1950 and consisted of 
simple sensors and two vacuum tubes controlled by electric circuitry. Elmer and Elsie 
(acronym names for two of his M. speculatrix) were some of the first built and 
exhaustively experimented robots (Figure 2.1). 
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Figure 2.1 M. speculatrix robots created by Grey Walter. 

(A) chasing a light source, (B) Without cover, exposing its circuits and (C) in an experiment 
interacting with a mirror and driving itself to charging station. Source: Hoggett66,67. 

In Walter’s book “The Living Brain” he proposed a list of lifelike behaviours such as: 
propensity to explore the environment (speculation), positive or negative tropism, 
distinction between effective and ineffective behaviour (discernment), a tendency to seek 
out the most favourable conditions, among others64,66–68. 

With a simple combination of sensors and actuators, Walter was able to implement a 
small set of actions that, combined, lead to more complex behaviours. As discussed by 
Owen Holland64, this work was a great contribution to the field, but some of the 
observable behaviours of the tortoises may have been misinterpreted by Walter when in 
fact some were just a matter of luck. 

Furthermore the field of minimalist robotics had in Valentino Braitenberg one of its most 
prolific thinkers. The Italian-born neuroscientist saw in computers a way to model, in a 
simplified manner, the extremely complex connections found between neurons. His work 
in this field began in the late 1940’s and his 1984 book Vehicles: Experiments in Synthetic 
Psychology describes the fundamentals of minimalist robot design69. 

Braitenberg’s minimal intelligence model is based on the concept of very simple vehicles 
composed of analogue sensors directly wired to motors. As a way to mimic the most basic 
form of energy-seeking behaviour in simple organisms, such as bacteria, the sensors 
initially employed in his practical examples are light sensitive, enabling the concept 
vehicles to perform phototaxis. The fundamental design has one sensor and one motor 
directly connected so that when light is detected by the sensor it causes a directly 
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proportional acceleration to be applied to the vehicle by the motor. This mono-sensor, 
mono-motor design may accelerate when exposed to a light source, effectively “fleeing” 
when in a lit environment, only stopping when its sensor enters darkness again. This most 
basic setup is devoid of much control and has little practical application besides 
illustrating the concept, and has behaviours only as complex as a single-cell organism. 
Taking one step further in complexity, Valentino proposes a vehicle displaying bilateral 
symmetry of its components, with two motors, each connected to a wheel, and a pair of 
light-sensitive sensors wired in a “straight” manner, as in the sensor on the right side of 
the robot is wired to the right-hand motor and wheel assembly. Note that the increase in 
motor capabilities is also present in the directionality of its sensory input. This robot will 
display a certain behaviour when exposed to a light source: the side closer to the source 
will accelerate more, resulting in the robot turning away from the light. The result of this 
wiring scheme is that the robot will accelerate as fleeing from the light, instead of simply 
fleeing from the lit environment. 

If the wiring was to be crossed, so that the right side sensor affects the left-hand side 
motor assembly, the vehicle would steer into the light source, in a behaviour akin to 
seeking. This simple difference in design causes a significant and seemingly complex 
change of behaviour, and in the examples given only the simplest vehicle designs are 
described. 

Further exploration of the concept of Braitenberg’s vehicles include the use of multiple 
types of input sensors, and as many kinds of electrical and logical connections made 
between themselves and various actuators used for whole-body movements, body-part 
movement, and skills such as jumping, striking, swallowing, and hundreds more 
complicated in bodily nature and objective. 

 

Figure 2.2 Braitenberg’s vehicles. Source: Braitenberg69. 

Braitenberg also explores the use of non-linear equations to control the relationship 
between sensing and acting in his robots. When taking into account delays such as the 
friction that must be overcome for an electrical motor to produce movement, he likens the 
observed behaviour - more complex and, thus, harder to distinguish from the interaction 
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of an organic life form to its physical environment - to instincts, decisions and will. 
Patterns he called love, liking, fear, and aggression, arise from the interaction of simple 
rules very similar to the result of simple neurons acting in a network. The names given to 
these patterns are similar to the ones defined by William Grey Walter. This analytical 
reduction equates to a form of reverse engineering of the working structures of living 
brains and can be very useful in the construction of the simple set of rules that comprises 
a foraging algorithm. 

When considering how a robot locates itself in an environment and perceives the world 
around it, the expression behaviour-based translates into a design paradigm that made a 
whole new generation of simple robots possible. Building on the sensor-motor relations 
proposed by Braitenberg and the seemingly intelligent yet simpler tortoises of Grey 
Walter, the field of behaviour-based robotics had a great contributor in Rodney Brooks. 

Taking inspiration from the biological world, Brooks proposed a new robotic architecture 
in which the artificial intelligence driving the machine did not have to build a detailed 
model of the world it had to navigate to, then, plan and act accordingly. Instead of high 
power, intricate AI with a generic scope that has to plan into the future, he envisioned a 
reaction-based way of navigating that he called the Subsumption Architecture. This 
architecture equates to what today is known as narrow or weak AI and describes a low 
intelligence that is very specific and very efficient at the single task it tackles, rather than 
a higher intelligence that has a generalist approach to problem-solving. A comparison 
fitting for putting in perspective the difference between the two kinds of intelligence 
would be the scale and scope of a machine vision and sorting AI - very specific and, 
therefore, narrow - and one on par with the human brain - capable of reading unknown 
environments and situations, future planning, and manipulation of high level symbols 
typical of an artificial general intelligence, or even sentience and consciousness, that 
would put it above a simple computer program and define a strong AI 70–72. 

More than a robot building technique, the Subsumption Architecture requires a change in 
the whole design mindset, changing the primary abstraction used to define the world to 
be navigated. Instead of definite states, the world must be defined as a series of tasks, to 
which the robot must respond by doing the “right thing”. In more technical terms, 
instead of defining artificial intelligence as the AI ability of manipulating meaningful 
symbols that define the environment - an approach based on the Symbol System 
Hypothesis - the controlling AI must be able to perform in a direct sensing-acting manner, 
without the use of a representation language or other medium for understanding the 
world - it is, thus, based on the Physical Ground Hypothesis73. 

To design a robot with Subsumption Architecture, various routines of instructions to 
solving very specific tasks - single behaviours - are encapsulated by a human designer and 
are programmed in layers to be activated in the right circumstances, as defined by the 
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robot’s sensors. At the same time, they must suppress certain other routines, that may be 
opposite, contradictory or simply pertain to a different behaviour context. From the 
computational standpoint, these instructions are often remarkably fast, sometimes 
consisting of simple vector additions and countdown timers. The high energy efficiency of 
this architecture is also very appropriate for minimal, mobile robots. A major design 
requirement is that there are enough routines to cover the whole of the robot’s operation 
in the intended environment and the inclusion of the proper cross-routine suppressions. 
Infinite loops are avoided structurally since all instructions are based on finite state 
machines which can be augmented with timing elements. From the resulting interaction 
of basic behaviours emerge new ones, often unexpected and higher in complexity, 
apparent cognitive level and life-likeness74–76. 

Brooks’ idea that a robot does not need to plan ahead, but can navigate by simply 
sensing its way and dealing with obstacles as it goes, is at the core of a discussion on how 
to implement AI in robots. His reaction-based robots fared better in navigational tasks 
than predecessors like the Stanford Cart77, which was based on a world-building and 
planning AI, even though they were much simpler in their representation of the world. 
The argument later formalized by Brooks is that: “The world is its own best model. It is 
always exactly up to date. It always has every detail there is to be known. The trick is to 
sense it appropriately and often enough”75. 

From the biomimetic standpoint, the Subsumption Architecture mimics the functioning of 
animal intelligence in the same layered way it developed from bacteria to human beings: 
the primitive layers of the system - involved in basic physiological functions common to 
man and bacteria, for example - do not have to keep track of a large trove of processes 
pertaining to higher functions, such as cognition and consciousness. In computing terms 
the main implication of a reaction-based approach is the reduction of the computing 
power and memory size necessary for the robot to operate: it does not need to compute 
high-level symbols for representing the world or numerous steps of planning, and it does 
not need to keep track of changing parameters to track its own state, be it position, 
attitude, speed, etc75. 

Another example of this logic is presented as a move from A to B problem. The proposal 
is that a tight sensor-motor feedback loops is established, having the environment as the 
medium for such a loop. When a robot must navigate between points A and B, if a 
sufficient amount of data is fed into the AI, activating the appropriate subset of 
instructions, the navigation should happen smoothly and more importantly, adaptatively. 
The quality (signal to noise ratio) and quantity of data (frequency of sensor reads) 
captured by the robot is only half the equation, though. The other half, the instructions 
applied in decoding such data, can be developed by hand or evolutionary algorithms but 
must be encapsulated by a human74. 
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The definition of encapsulated behaviour first appears in the work of Karl Sims, Evolved 
Virtual Creatures (EVCs) and consists of the selection and segregation of certain control 
skills evolved through genetic algorithms as a way to keep them from being lost in the 
procedure of mutation between generations of virtual organisms. This approach requires 
human interference in the selection of the skills to keep and how they interact among 
themselves, and their encapsulation means that they will be maintained and built upon 
by consecutive generations and simulations, effectively directing the simulated evolution 
towards a certain goal. This method is discussed in greater depth in the section 
Evolutionary Robotics78–82. 

The field of BEAM robotics (BEAM being an acronym for Biology, Electronics, 
Aesthetics and Mechanics) takes another route to the bio-inspired minimalistic robotics. 
Based on a control concept composed by the Nv Neuron and the Nv Network and 
proposed by Mark. A. Tilden, this approach simulates neurons firing in sequence to 
achieve varying levels of reaction-based behavioural complexity. 

The basic electronic structure of the Nv Neuron - “Nv” standing for “Nervous” - is 
composed of a capacitor, a resistor and an inverter. These neuron models work by 
discharging the capacitor through the resistor, resulting in a gradual decrease of the 
capacitor voltage. After this delayed discharge through the resistor, the voltage drops to a 
value that trips the inverter and triggers the next neuron, resulting in an oscillating 
voltage. This basic implementation is useful in a myriad of ways, and when combined 
with actuators enables the use of cyclical back-and-forth, in-and-out, left-and-right and 
similar aspects of movement and behaviour in a robot with a remarkably low component 
count83. 

Another principle of BEAM robotics is a periphery-to-core system structure. Tilden 
proposed an approach similar to Brooks’ Subsumption Architecture. In his design theory 
he referred to the high-complexity real world as the Fractal World, which could be 
directly navigated in an adaptive way by soft machines based on a Biomorphic 
Architecture. 

Tilden’s architecture can be divided into two main systems. The first is a mechanical 
periphery comprising of legs and sensors that are physically compliant, literally soft and, 
therefore, well suited in handling the noisy interface with the complex terrains that 
constitute most environments. The second component is the electronic neuron core, 
cyclical in nature yet calibrated to receive interference from the peripheral system and 
change its own output slightly. The use of legs instead of wheels came naturally, as they 
can more easily be designed to perform sensorial tasks by changing their shape in regards 
to the environmental context. 

The analogue nature of this design logic is evident in the continuous aspect of both elastic 
deformations suffered by legs, sensors, and the voltage, electrical charge and resistance 
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variation in the electronics of the core. The resulting machine employs its entirety in the 
computing of a fractal, unknown world84,85. 

Also, the word “soft” refers to the reactive and dynamic type of navigation BEAM bots 
are capable of, in clear contrast to robots hardwired to work from lookup tables, 
branching logic and other more conventional programming techniques. 

Another strong focus of this field is on recycling e-waste for mechanical and electrical 
components. Since the automatons generally work well with the crudest of sensorial 
signals - physical contact - it is not rare to see implementations of paper clips, guitar 
strings, or even the leads of electronic components as sensors. The design possibilities are 
endless while maintaining low build costs and posing as a fun challenge for the many 
educators and hobbyists involved in this field83. 

2.3. Autonomous Mobile Robots 

Autonomous robots are those able to perform some task or behaviour without external 
assistance. The degree of freedom such a robot displays is variable and depends on several 
factors that define its context of operation. The range of operational situations is notable, 
including stationary factory pick-and-place applications, the small but highly specialized 
context of spacecrafts, the comparatively infinite freedom of a long-ranging autonomous 
aerial vehicle and the critical activity of explosive devices disposal. These widely varied 
application environments are also one of the main motivations for the development of this 
field of robotics, in that it is not always desirable - or possible - to have a human operator 
in close enough proximity to exert control.  

Presently most autonomous robots with complex navigational abilities are, in reality, very 
specialized vehicles - such as unmanned aerial vehicles, ocean-going vessels, and wheeled 
land vehicles - instead of bio-inspired robots that mimic the physiology and locomotive 
mechanics of organic beings. This means that there is a stronger focus on optimizing AI 
and sensorial tools to the operation of already proven-and-true concepts, as in 
autonomously driving a common car, the likes of which can be seen in cities and streets 
daily. However, terms such as autonomous foraging - the search for an energy source akin 
to a living being searching for food - exist in the artificial intelligence and robotics fields, 
indicating that it may be a matter of time until the rise of new designs, materials and 
building techniques lead to the creation of truly autonomous artificial life. 

In direct relation to the physical context of the robot are two of the most critical aspects 
of its operation: remote control and power input. While fixed assemblies - such as the 
industrial welding robots found in automobile factories or pick-and-place bots in the 
electronics industry - allow for direct power from the grid as well as backup generators, 
however most autonomous mobile robots must carry a power source. 
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The issue of control is similar in nature, as a mobile robot cannot be connected to an 
external processing unit and must perform all sensing, navigation, actuator control and 
decision making operations onboard. Equally, it must carry some sort of communications 
apparatus to provide telemetry and grant human input when necessary. These 
fundamental challenges in the development of autonomous mobile robots will be discussed 
in the following section. 

2.3.1. A Matter of Control 

To be truly autonomous, a mobile robot must perform - independently from any external 
control - a series of procedures related to keeping its energy reserves, and do so regularly 
to achieve continued survival. The seeming opposition between autonomy and control is 
cleared when the definition of control is expanded to high and low forms of control. High 
level control refers to the definition of tasks and objectives a robot must perform, and 
until AI research reaches the point of conscious and curious robots, this type of control is 
exclusively human. Lower levels of control, on the other hand, consist of the direct 
operation of the machinery integrating the robot (e.g. driving a motor, reading a sensor, 
etc.) and the decision-making involved in modifying a previously defined step of operation 
(e.g. changing course to avoid an obstacle, abandoning a task to return to a recharging 
station, etc.). These processes occur internally and are the kind of continuous control a 
robot must exercise to be classified as autonomous86. 

This issue is highlighted in the extreme application of robotics in extra-planetary 
exploration. In this setting, the robot must operate in unmapped environments, under 
extreme atmospheric and radiation conditions, and at distances far too great for real-time 
operation. Some specialized designs, namely NASA’s Mars rovers MER-A (Spirit, active 
2004-2010) and MER-B (Opportunity, active 2004-2018), do account for human 
intervention and decision-making, but are able to autonomously map terrain in the 
appropriate spatial resolution with its onboard sensors and compute locally the optimal 
path to a given destination while avoiding obstacles. A further expansion of these 
capabilities is currently underway by the international space program ExoMars, whose 
rover is designed to combine absolute positioning data based on solar positioning, with 
relative positioning obtained by stereo cameras on the ground. This combination makes 
the robot especially suited for navigational tasks. 

2.3.2. A Matter of Power 

One of the main issues with portable electricity sources is that of specific energy. This 
concept refers to the relation between the net amount of energy obtainable from a power 
source - measured in Joules - in relation to its mass - measured in grams. Another useful 
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concept can be derived from the specific energy in relation to the physical properties of 
the power source, namely the volume, which defines the energy density. The latter is 
especially useful in mobile applications that must account for the extra mass of the 
energy source and its impact on mobility, autonomy (in the sense of distance travelled 
per charge), physical size of the vehicle, and feasibility of the mechanical design for any 
given application. Further, these properties of the fuel itself or power source units (PSUs) 
may be used to calculate the absolute power rating of a mobile robot in performing its 
intended tasks. 

One critical aspect of the power issue is that energy released from different substances 
vary greatly, as it is the result from different types of reactions. From most to least 
energetically dense, these reactions are: nuclear, chemical, electrochemical and electrical. 
Directly or indirectly, all these reactions are employed in some type of autonomous 
vehicle by means of several power collecting and storing technologies. Most present-day 
robotics operate electronically and rely on electrical signals for control and power, making 
electrochemical batteries the most common portable source of electricity. The term 
battery includes several architectures and form-factors, which generate power from 
electrochemical reactions between their component materials. This energy cycle differs 
notably from the chemical nature of energy storage in most living organisms, which is 
derived from the metabolic breakdown of various biomolecules and, consequently, more 
dense and better suited for mobility. For its direct impact on the development of mobile 
robotics - among other mobile technologies such as transportation, IOT, and personal 
computing - the field of battery architecture is of utter relevance, and novel and more 
energy-dense technologies are in constant research87. 

Regarding vehicles and mobile bots, PSUs generally consist of a battery bank that may 
be implemented in a discharge-only manner that requires an interruption of operation for 
recharging, or coupled to onboard devices that allow for on-the-fly recharging, most 
commonly solar cells. Other technologies such as radioisotope thermoelectric generators 
(RTGs), fuel cells and alternators can also be used as onboard recharge methods or as 
standalone PSUs. The many configurations possible point to the complexity of the 
matter, as each PSU has its strengths and limitations, explored next. 

RTGs, having a working principle based on the conversion of heat from nuclear decay 
reactions into electricity, are able to deliver steady high-power for long operational 
periods without maintenance, with both factors affected by the radioactive fuel employed. 
The selection of the fuel is a research field of its own and takes into account the types of 
radioactive decay displayed by a given isotope, its power density and half-life. Alpha 
decay is better suited for this application for being more easily absorbed and converted 
into thermal radiation, while beta decay can emit gamma and X-ray secondary radiation 
and imposes the need of heavy shielding in the PSU design. The power density of 
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radioactive fuels is inversely proportional to their half-life, resulting in a design dilemma: 
longer operational periods equal lower power ratings. This issue becomes even more 
relevant in regards to their niche application in spacecraft. Given the high costs related to 
manufacturing, storing and working with radioactive materials, this is the only current 
application of the technology. It is not uncommon for space probes to travel for years 
before reaching their destination, and the RTG must remain operational for this period 
and beyond, while still being able to power as many scientific experiments and sensors as 
feasible to better make use of the travel time, launch costs and the specific launch 
windows for rendezvous with selected space bodies. One recent example was NASA’s New 
Horizons mission, launched in 2006 with a primary mission of studying the Pluto system, 
achieved in 2015. Commonly used isotopes may have an extreme range of half-life versus 
energy release ratios: Plutonium-238, for example, has a power density of 0.54 W/g and a 
half-life of 87.7 years and has been extensively used in the form of plutonium oxide as 
RTG fuel in recent space probes. In contrast, the short-lived Polonium-210 has a power 
density of 140 W/g and a half-life of only 138 days. The RTG powering the New Horizons 
probe employs 9.75 kg of plutonium oxide and had a power rating of 245.7W at launch, 
202 W by the time it reached Pluto and is expected to be able to transmit until the 
2030’s due to the 3.5 W (0.8%) annual drop in power output. Opposite to the benefits is 
the notoriously low efficiency of this system: its fuel outputs approximately 4400 W of 
thermal power, of which less than 9% are converted to electrical power88,89. 

These types of onboard generators are currently limited to extreme or niche applications 
such as satellites, space probes, and remote facilities, due to their higher cost. Similarly to 
cases in which solar panels are used, this combination of battery bank and generator 
allow for extended operational periods while reducing risks related to refuelling with 
liquid combustible or corroding chemicals, the logistics involved in setting up and 
maintaining refuelling stations, the temperature and positional issues related to internal 
combustion engines, the absence of moving parts, besides the benefits of powering the 
complete robot - including control electronics, sensors and data transmitters - from a 
single source89. 

Following nuclear reactions in descending order of released energy come chemical 
reactions. Fuels in this category include some of the most energetically dense in modern 
daily use, and include substances from mineral, organic and synthetic sources. Energy can 
be extracted from these sources by means of combustion - which, being an oxidation 
reaction, requires and consumes oxygen in the process - and in-vivo metabolism - more 
specifically complex multi-step catabolic reactions, themselves including oxidation 
reactions. 

The omnipresence of oxidation reactions gives rise to the common point to animal and 
plant metabolism: respiration. In parallel, apparatus meant to chemically extract energy 
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from consumable fuels must account for the necessary oxidation process. Space-faring 
engines are a notable example in that they must carry tanks filled with pure oxygen or 
other oxygen-containing molecule suitable as oxidizer. The purposeful injection of an 
oxidizer enables the reaction otherwise impossible in space vacuum, even if the fuel would 
combust with little to no extra cost in Earth’s oxygen-rich atmosphere. 

But oxygen is not the single complicating factor. Combustible fuels can be found in 
gaseous, liquid and solid states, making their density disparities extremely relevant, 
moreso in the field of mobile robots. Because of this disparity, specific energy and energy 
density of a substance are not directly proportional, requiring careful consideration in 
regards to the practicality of onboard storage and transport of each fuel. A clear example 
is the relation between energy outputs of Hydrogen and Methane combustion. Hydrogen 
combustion is the chemical reaction of highest energy output per unit mass, with a net 
specific energy of 119.93 kJ/g (1atm, 25oC). All reactions cited here refer to the LHV - 
Lower Heating Value -, or the usable energy provided by the combustion after 
subtracting the latent heat of vaporization of any vapour in the reaction products. Due to 
its extremely low density, hydrogen has a net energy density of only 10,050 kJ/m3 (1atm, 
15oC). Compare these figures to those of the second most energetic combustible gas, the 
ubiquitous hydrocarbon Methane, that has a net specific energy of 50.02 kJ/g (1atm, 
25oC) and a net energy density of 32,560 kJ/m3 (1atm, 15oC). Even if hydrogen is 
intrinsically more energetic, the relation between the densities make Methane more 
energetic per volume, when under the same conditions. The effective impact in design is a 
fuel tank three times smaller when using the less energetic Methane fuel, while 
maintaining the energetic autonomy granted if hydrogen was used. This example does not 
take into consideration the machinery required to produce work from the mentioned fuels, 
focusing on tank size for the sake of simplicity, but it is clear that for mobile robot 
designs - especially compact and airborne ones - the impact is far from negligible90,91. 

Liquid chemical fuels have greater energy densities, around three times higher than 
hydrogen, and pose handling and storage issues far less complex. Internal combustion 
engines are able to operate with a number of fuels and, for their large scale utilisation and 
long time since first being developed, are well understood and more easily serviceable. For 
onboard computing, navigation, and communications, though, the kinetic energy 
produced by these engines still must be converted into electricity. One common way to 
address this is by using alternators and dynamos - generators able to convert mechanical 
energy from a rotating engine shaft into alternating and direct current, respectively -, a 
practice implemented in passenger and cargo vehicles worldwide. Future mobile robotic 
systems also mix chemical fuels and electronics, pointing to the volumetric efficiency of 
chemical reactions. Notable examples include the cargo-bearing, self-navigating Big Dog, 
which is powered by a gasoline engine, and the speed-focused WildCat, which is able to 
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run on four legs at up to 32 km/h with a Methanol engine and hydraulic actuators. Both 
systems are under development by United States-based company Boston Dynamics. 

Electrochemical reactions enable today’s standard for mobile bots: batteries. These come 
in many sizes, shapes, weights, and energy storage capacity, and the trade-off between 
volume and capacity constitutes one of the biggest conundrums related to modern mobile 
electronics design. 

Battery types are generally categorized by the chemical components responsible for the 
movement of electrons that characterize this technology. Many types have been developed 
over the years, especially since the inception of the first rechargeable batteries in the 
1850’s. Those were based on the reaction between a concentrated sulphuric acid solution 
and plates made of metallic lead and lead dioxide for the negative and positive electrodes 
of a galvanic cell, respectively. Today the term cell refers to the basic voltage-producing 
component of any type of multi-cell batteries. In the case of a lead-acid cell the reaction 
responsible for the electric current flow is based on the conversion of both electrodes into 
lead sulphate, which generates H+ ions and free electrons on the negative plate and 
consumes H+ ions and electrons on the positive plate. The reaction rate is self-regulating 
as the electrons produced on the negative side charge the plate, causing it to attract H+ 
ions and thereby creating an insulating layer if the solution is undisturbed. When 
electrons are allowed to flow (by connecting the battery to an electric load, for example) 
the reaction resumes at the same rate that electrons are sourced to the positive plate. 
There, the reaction between lead oxide and sulphate ions consume electrons and H+ ions, 
resulting in the formation of water molecules and the dilution of the acid electrolyte. This 
generates a concentration gradient of sulphuric acid inside the cell and the formation of 
convection currents, passively replenishing the electrolyte around the electrodes. The 
creation of the highly energetic H-O bonds found in the water molecule is the driving 
force of this type of battery. This cell is reversible, meaning that the system can be 
reverted to the original state - recharged - by reconverting the lead sulphate of both 
electrodes in the discharged state back to their original compositions. This is done by 
applying an electromotive force of reversed polarity to that of the cell, while varying the 
voltage to account for varying levels of conductivity displayed by the system. Non-
rechargeable cells are known as primary cells, while rechargeable ones are referred to as 
secondary cells92. 

Even after more than a century from their initial implementation, lead-acid batteries are 
still in widespread use. This is due to their low cost and ability to provide short high-
current outputs, useful for the operation of the starter motors of motor vehicles 
worldwide. Because of their ubiquity, capability of recharging, and relatively simple 
chemistry, they make for a reasonable illustration of some of the more advanced concepts 
regarding battery selection for designing mobile robots, the main interest of this work. 
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The electrical potential generated by the lead-acid chemistry is of 2.05 Volts per cell, and 
multiple cells can be connected in series to provide the appropriate voltages and in 
parallel to provide the required capacities for various applications. Each chemistry have a 
characteristic cell voltage and multi-cell battery modules can be configured according to 
standard voltages of modern microelectronic components (eg.: 3.3V, 9V, 12V), while 
multiple modules connected in parallel make battery packs applicable to high-power 
applications such as personal transportation and backup sourcing in case of power grid 
failures and blackouts. Besides varying in voltage, batteries also vary largely in total 
capacity and discharge rates. The relation between these values can be expressed as a C-
rate, a single number that provides a useful measure of capacity at a given discharge rate. 
A 1C rate indicates that the designed discharge rate for a given battery will discharge it 
completely in 1 hour, so that a battery with a capacity of 100Amp-hours (Ah) can be 
discharged at a 100 A current without being damaged. Further, a battery of the same 
capacity but having a 5C rate could be discharged at 500 A, or if having a 0.5C could be 
discharged at 50 A, and so forth. Higher C-rates entail lower capacities dues to Power 
also is a factor of battery design and depends on chemistry and packaging. If power 
instead of capacity is the critical aspect of a design, the E-rate is a useful ratio: it 
indicates how much power any given battery can provide in 1 hour93,94. 

Some other common chemistries are Lithium-Ion (Li-ion), Lithium-Polymer (Li-po), 
Nickel-Cadmium (NiCd), Nickel-Metal Hydride (Ni-MH), Zinc-Air, and Nickel-Iron (Ni-
Fe), among many others. In most secondary cell designs an electrolyte, usually in liquid 
or gel form, is necessary to mediate the electron flow inside the cell, allow for the 
inversion of the reaction during recharge, and equalize ionic gradients formed by reactions 
at the electrodes. That is not the case of primary cells, as they only go through one 
discharge cycle. Some technologies allow for continued use after this first discharge by 
means of mechanical recharging. Such is the case of zinc-air primary cells. These cells use 
a pellet or paste of zinc powder and aqueous potassium hydroxide as anode, oxidizing zinc 
with atmospheric oxygen to produce power. Once depleted, the anode can be replaced by 
removing zinc oxide formed during discharge and replenishing it with metallic zinc and 
electrolyte93,95. 

Specific to the field of mobile robotics, the ideal combination of battery features is 
defined, among other things, by the electrical load of motors and actuators, sensors and 
processing units, plus physical requirements dependant on the type of medium or terrain 
to be transposed - ground, liquid bodies at varying depths, aerial spaces at varying 
altitudes, or even deep vacuum. In accordance to the concepts previously discussed in 
regards to other energy sources, a robotics engineer or vehicle designer must consider how 
much energy can a battery provide, at the same time making sure that cell chemistry, 
packaging, weight and volume are appropriate for the particular design at hand. Even 
though specific energies and energy densities of cells can be calculated, they are not the 
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most useful way to synthesize the energetic capabilities of these power sources. In light of 
the complexity of any galvanic cell, their efficiencies are always lower than the theoretical 
output of their reactions - a battery is, in fact, a whole electronic circuit with internal 
electrical resistance, subjected to heat stress, having components that may accelerate or 
hamper physical processes like ionic and mass diffusion, and that may be susceptible to 
external contamination or improper use. Because of this, the effective measures of energy 
that can be stored and released by a battery to accomplish any given workload are the 
specific power and the power density. 

In the realm of mechanical systems design, the physical properties of batteries also play a 
significant role. In UAV design, for example, chassis weight reduction is one of the main 
constraints. All other components maintained this translates into higher energy efficiency 
as the lower weights of static structures equals a better power/weight ratio. This effect 
becomes even more pronounced for multi-rotor builds like multicopters, VTOL (vertical 
take-off and landing) vehicles and hybrids capable of vertical launch and fixed-wing 
continuous flight, in which several components must be scaled in unison to account for 
higher lift power, and the change must be applied symmetrically throughout the chassis. 
The basic example is the propeller-motor-ESC (Electronic Speed Controller) combination: 
since these designs are built around fixed-pitch propellers, the differential lift necessary 
for attitude control of the vehicle is a factor of propeller speed. In order to operate in an 
RPM range that still provides enough headspace for the increase in lift necessary for 
manoeuvring, it is necessary to completely change the propellers if a higher payload is in 
order. As the propeller grows in mass or pitch, it eventually requires a more powerful 
motor for correct operation. Since the power of brushless motors common to this 
application is a direct factor of the electrical current range in which it operates, swapping 
the motor generally requires updating the ESCs to provide appropriate, higher current. 
All these changes must be applied to every lift point of the vehicle, usually ranging from 
2 to 8, and incur considerable cost. 

As design considerations go further, once troublesome properties of the battery pack 
employed can be turned into strengths. When strategically positioned, batteries can work, 
for example, as ballasts for aquatic and aerial robots, increasing stability. The insight of 
employing batteries as precisely positioned weights is also visible in complex walking 
robots, such as the platform used by Iida et al96 for studying 4-legged robot rapid-
locomotion. In this case, the weight of a battery was used in the morphological design 
and for tuning the body dynamics of the robot as a whole, enabling the use of a minimal 
control scheme to achieve stable gaits. The authors point to the importance of mechanical 
dynamics in adaptive locomotion and the related control systems. A notable example of 
adaptive locomotion emerged twelve years later, as Honda publicly announced its Riding 
Assist-e, an electric motorbike capable of balancing itself when at low speeds and of 
autonomously following a person at walking speed. The feature is useful for manoeuvring 
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in tight or crowded spaces and for providing safety and comfort to the rider during 
transitions between moving and stopped states. Its design purposely keeps its batteries in 
the lowest portion of the vehicle’s body as a simple way to lower the centre of gravity 
and increase stability. At the same time, the front wheel assembly is morphologically 
dynamic, being able to change the fork angle to provide a larger, more stable wheelbase. 
The self-balancing control technology employed is based on the company’s previous 
product research, namely the ASIMO bipedal robot. 

Thus, the matter of power must be met with well-informed and deliberate decisions in the 
design of both physical and simulated robots, as to ensure feasibility and modelling 
relevance, respectively. The impact of such considerations is also discussed in greater 
depth in later sections. 

2.4. Evolutionary Robotics 

Evolutionary Robotics (ER) is described by Doncieux et al97 as an area in the field of 
Robotics consisting of four main approaches, as follows: “(a) ER as an automatic 
parameter tuning procedure, which is the most mature application and is used to solve 
real robotics problem, (b) evolutionary-aided design, which may benefit the designer as an 
efficient tool to build robotic systems (c) ER for online adaptation, i.e. continuous 
adaptation to changing environment or robot features and (d) automatic synthesis, which 
corresponds to the automatic design of a mechatronic device and its control system”97. 

The evolutionary concepts may be applied to ER according to three basic perspectives: a) 
as the evolution of behaviour and control, the robot’s “artificial brain”; b) as the 
evolution of physical body parts or c) as the co-evolution between body and brain. This 
third concept was first proposed by Karl Sims in 1994 when he presented the cutting-edge 
project Evolving Virtual Creatures (EVC) that deeply grounded the latter development 
on Evolutionary Robotics even now, more than two decades later78,98. 

2.4.1. Early Works 

The structural concept of the EVC was named by Karl Sims as connections and nodes, 
where the morphology of the creatures is built from a recursive set of procedural 
instructions encoded by the virtual individual’s genotype78,98. This system allows for 
variation of phenotypes across generations while still adhering to a standardization for 
programming simplicity (Figure 2.3). 
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Figure 2.3 Three example creatures generated from procedural instructions encoded in the 
Genotype (and decoded into a Phenotype). 

Left: graph of procedures. Right column: 3D representation of each genotype in the left 
column. Source: Sims78. 

As the body of the creature may constantly change, most traditional approaches to 
control would not be able to address such diversity. In order to handle different 
morphologies, the control of each joint is embodied in the more external body segment. 
Each joint also had an embedded neural node linked to the nodes of the adjacent parts 
and to the Central Nervous System - allowing each body segment to have a certain degree 
of autonomy (Fig. 2.3 and 2.4). 

The parts of the body were equipped with three basic types of sensors: joint angle 
sensors, contact sensors (on each face of the body segment), and photosensors (any three 
together are capable of providing direction to the light). The sensory inputs are processed 
by neural circuits constituted of neurons (nested neural nodes), where each neural node 
performs a single function, where the available set of functions is composed of the 
following: sum, product, divide, sum-threshold, greater-than, sign-of, min, max, abs, if, 
interpolate, sin, cos, tan, log, exp, sigmoid, integrate, differentiate, smooth, memory, 
oscillate-wave, and oscillate-saw. Actions are performed by effectors connected to either 
neurons or to sensors from which they receive a value. This value is scaled by a constant 
value and then outputted as a movement of the body part. 
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Figure 2.4 Diagram of hierarchy and articulation of body parts in the decision process of control 
described by Karl Sims78 

Each neural node is embedded in the body part it is responsible for controlling.  

The neural circuitry of individuals is a result of the wiring of the central neural system to 
the decentralized neural nodes, embedded on the body parts. 

The evolution of behaviour was achieved by placing the creatures in a dynamically 
simulated virtual world and applying traditional methods from Evolutionary 
Computation. The methods for measuring fitness would be relative to the intended task, 
such as swimming, walking, jumping or following (an object). The fittest individuals of 
the population are allowed to breed and/or mutate, giving rise to the next generation. 
Across successive processes of selection, the fittest individuals’ optimised behaviours 
emerged. 

2.4.2. Recent Works 

Given the complexity addressed by Sims when evolving body and behaviour together, 
especially if considering the available computational resources at the time, arguably some 
sorts of simplifications had to be adopted. 

During the years following the publication of EVC by Sims, several researchers took the 
model some steps further by incrementing the original EVC model by adding complexity, 
physical accuracy, control, or improving evolutionary steps and procedures. 

2.4.2.1. Open-ended ESP 

A novel methodological approach on Evolutionary Robotics was first presented and 
successfully implemented by Lessin et al79. The open-ended method ESP, named after its 
three components Encapsulation, Syllabus and Pandemonium, intends to allow complex 
behaviours to emerge from the simulation of evolving virtual creatures. Similar to Sim’s 
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EVC, Lessin’s virtual creatures are intended to develop locomotor skills through 
simultaneously evolving body and control from a finite set of body parts and ‘neural’ 
mathematical operations79–82. The step ahead comes with the further human-assisted steps 
that work on consolidating learned skills and preserving them across the next steps. 

Encapsulation: This method preserves learned skills ensuring they will persist 
throughout evolution by encapsulating both the control skills (neural nodes) and 
the corresponding body structures. Besides locking the controlling system of the 
new skill, this human performed procedure adds sigma nodes that multiply 
input(s) and output(s) working similarly to a switcher and tuning knob (Figure 
2.5). 

Syllabus: The (human designed) syllabus consists on a hierarchically ordered set of 
skills from simple to complex levels aimed at assisting the evolutionary process by 
dividing it into steps. In the model described by Lessin et al80 the creatures are 
meant to develop basic (low level) skills first to move forward. By gradually 
raising the complexity of tasks the system sets attainable goals and allows for the 
mastering of each particular skill, which will later be required to achieve further 
complex goals. This ordering of steps is also required for optimising time and 
computational costs. We may point out, however, that this tool must be carefully 
approached since over-mechanistic paths may trap diversity, eventually leading to 
ordinary results. 

Pandemonium: The third important procedure implemented in ESP is 
Pandemonium, on which the Syllabus designer has to pick abilities that are 
mutually exclusive, configuring them as a pandemonium relationship to each other 
(e.g.: left and right turn). This tool prevents decentralized controllers within the 
creatures from sabotaging themselves (Figure 2.6). 
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Figure 2.5 Illustration of an encapsulation process of a control system described by Lessin et al80. 

(a) artificially evolved neural nodes before encapsulation. (b) wiring of the neural nodes after 
encapsulation: sigma and multiplier units are added to the model in order to permit 
modulation. Source: Lessin et al80 

 

Figure 2.6 Example of Syllabus implemented by Lessin et al80. 

The complexity of elements grows bottom up. Complex actions often require more basic 
actions (straight line arrows). Self-excluding actions are classified as pandemonium 
relationships (red dotted lines). The learning order (orange “n” circle) does not have to 
necessarily follow the syllabus from the bottom up. Source: Lessin et al80. 
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A further development for the ESP method80 implements an extra step after the 
development of skills when the creatures are again allowed to evolve their bodies as long 
as already learnt skills are not lost and their efficiency is not decreased. This novel step 
presented successful results ranging from slight but fruitful adjustments in the body 
(Figure 2.7) to very substantial changes in the body, further increasing diversity (Figure 
2.8). 

 
Figure 2.7 The Extended ESP method implements an extra step in which artificial animals are 

allowed to evolve their bodies after the evolution of the control system. 

This step may result into small but significant improvement towards a “fine tuning” of the 
shape. This figure shows an individual before (a) and after (b) this process. Source: Lessin et 
al80. 

 

 
Figure 2.8 The Extended ESP method80 implements an extra step in which artificial animals are 

allowed to evolve their bodies after the evolution of the control system. 

A controlling mechanism prevents the species to lose already learnt abilities or to have their 
efficiency reduced. Figure shows an initially evolved creature’s body (a) with subtle (b), more 
obvious (c) and dramatic (d) body changes, as a result of the late step for morphological 
improving. Source: Lessin et al80. 
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2.5. Artificial Intelligence and Optimisation 

Artificial Intelligence (AI) was a term coined by John McCarthy in 1955 in reference to 
the study and development of intelligent systems, able to mimic brain abilities such as 
planning, problem-solving, and reasoning99,100. The seeds of the field date back to the 
years 1940-1950 especially with McCulloch and Pitts’ Boolean Circuit Model of Brain, in 
1943, and Turing’s Computing Machinery and Intelligence, in 1950. 

The excitement about AI grew up in the years 1950-1970 with the development of the 
early AI programs such as Samuel’s checkers program, Newell & Simon’s Logic Theorist, 
Gelernter’s Geometry Engine, in 1950 and Robinson’s complete algorithm for logical 
reasoning, in 1965. Soon in the years from 1970 to 1980 knowledge-based systems started 
being built and the high expectations on the field lead to a boom on industry. From late 
1980’s, however, the AI industry experienced a cold shower from the realization that the 
available technological tools were incapable of supporting the development of the 
ambitious plans of the time. The exponential growth of data with the increasingly 
noticeable emergence of the Information Age also required a new approach to AI. The 
paradigm shift came in the 1990’s with the early development of AI systems supported by 
Statistics99,100. 

Historically, AI has been defined by four approaches: Thinking Humanly, Acting 
Humanly, Thinking Rationally, and Acting Rationally. The human-centred approach 
intends to recreate human-like behaviours based on empirical observations and 
hypotheses. The success of a model is measured in terms of its similarity to human 
cognition or behavioura 101. Rationalist approaches, on the other hand, involve a 
combination between Logic, Mathematics and Engineering, with its performance 
measured based on how close it is from the ideal100,102. 

2.5.1. Intelligent Agents 

Modern approaches to Artificial Intelligence are centred in the concept of the Agent, a 
computational entity that acts based on internal and environmental states. The AI agent 
is expected to examine the given conditions and autonomously act in a way to maximise 
the expected outcomes - this is the definition of a Rational Agent100. 

An Agent must be capable of perceiving its Environment through Sensors and act upon 
this same environment using Actuators. The function or behaviour of an agent is 

 
a The most traditional test for evaluating AI systems intended to act humanly was developed by Alan Turing 
in 1950 and remains relevant even 60 year later. The AI system passes the test if, after asking some questions, 
a human interrogator is still not able to determine whether it is a computer or a human who is writing the 
answers101. 
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implemented as the Agent Program. The Agent may keep track of internal information 
about such as its own condition (e.g. battery level) and external data input - known by 
the term Percept. The combination of internal and input information composes the 
agent’s State29. 

The theory behind the behaviour expected from Intelligent Agents look simple at first 
sight. However, real-world applications often deal with increasing levels of uncertainty in 
which estimating the outcomes of actions must not be that simple. Diverse approaches 
have been developed in order to address the increasing complexity presented by different 
systems, ranging from simple responses to the current stimuli through to memory-based 
decision processes. 

Agents can be either Reflex or Planning Agents depending on its procedures to plan and 
take actions. Reflex Agents choose their actions based on their internal state and their 
current perception of the environment. This type of Agent can have a model of the 
environment based on states and keep track of their actions in the past and even learn 
from them. However, the concept of Reflex Agents refers to the fact that they do not 
consider the future consequences of their acts. Planning Agents, on the other hand, plan 
ahead and take actions based on their possible consequences in the future. The modelling 
of agent’s possible actions and the estimated outcomes of each particular action is based 
on mathematical and statistical models that can generally be optimized with the 
implementation of fitness evaluation29. 

At this point it is important to highlight the important distinction between the actual 
performance of an Agent, and its own measure of performance. The actual performance 
could only be measured when all the conditions of the Environment are known, whilst the 
measured performance by the agent itself is nothing but another component of its state of 
learning plan. In a real problem, measuring the actual performance of an AI agent would 
be often hard when not impossible. Given the need of assessing the performance of 
Agents, a considerable part of the development is made in simulated environments. The 
computer-controlled simulation may provide different scenarios such as varying 
distributions of resources given, for example, by different Test Functions (Benchmark 
Functions, or Artificial Landscapes), where all the conditions are known103. 

2.5.2. Problem-solving with AI 

Search problems are the core of AI, usually involving a starting state, a set of possible 
steps (world states), and a Goal. Search problems are usually represented by means of a 
State Space Graph, where each possibility (node) is only represented once and connected 
to all the possible next steps. SSGs may be expanded into Search Trees: starting from the 
very top that represents the starting state, each tree node is linked to its fringe: a set of 
the possible next steps. As the complexity of a problem increases, the tree size will follow 
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- leading eventually to infinite-sized trees. Thus, this graphical tool is only applicable on 
solving simple problems with few possible states104. 

 

Figure 2.9 Two representations of a same search problem through State Space Graph and Search 
Tree. 

Understanding search problems and methods for solving them may require graphical tools 
to explore the concepts. Some useful graphical tools are State Space Graphs and Search 
Trees - mathematical representations of a search problem (Figure 2.9). 

Since its early days the field of Artificial Intelligence has been involved in the 
development of search methods as the framework of problem-solving basically composed 
by two perspectives: the traditional Neat AI and the newer Scruffy AI100,102,104. 

Neat AI approaches the problem from a top-down perspective, grounded in logical 
processes that rationally explain why the problem-solving system works. This paradigm 
comprises two basic groups of search strategies, Uninformed (Blind) and Informed 
(Heuristic) search. The first group refers to search algorithms that are given no further 
information about the problem other than if the goal was reached or not. Effective but 
usually costly, these search methods could be improved by the addition of Heuristics, a 
method to equip the algorithms with information about where the goals could be by 
estimating how close a state is to the goal100,102,104. 

Although Neat AI may provide precise and optimal solutions, this approach becomes 
costly in terms of computer power, and ultimately unmanageable, as the complexity of 
problems increase. In this context, the newer concept of Metaheuristics leads the field 
towards a big leap forward on the pursuit of solutions for multi-dimensional and complex 
problems. This new paradigm, named Scruffy AI, came up with alternative search 
methods relying on probabilistic and stochastic methods able to find near-optimal 
solutions with a reasonable cost of resources100,102,104. 
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2.5.2.1. Search Algorithms 

Neat AI: Uninformed (“Blind”) Search: The traditional approaches on Uninformed 
Search consist on organizing the problem in a search tree and later expand it according to 
some criteria, being the strategies classified into: Depth-First Search, Breadth-First 
Search and Uniform-Cost Search100,102,104. 

Depth-First Search starts from the very top of a tree, arbitrarily expanding a node 
in the current fringe at each iteration until it finds a dead end or the goal. When 
the goal is reached the algorithm stops. This algorithm is relatively efficient on 
returning a solution, but it does not consider other possible solutions neither the 
cost values so it will not necessarily find the optimal solution for a problem100,102,104. 

Breadth-First Search starts from the top and explores the whole fringe of each 
node at each iteration until it finds a solution. The solution found will be the least 
costly, but this algorithm will probably take a long time to run100,102,104. 

Uniform-Cost Search evaluates each node of the fringe according to the cost to 
take it (e.g. distance from the current node), named path cost function, g(n). The 
algorithm will go deep from less to more costly paths until it finds the optimal 
solution, considering not just the number of steps taken to find the solution but 
also the cost associated to each of100,102,104. 

Neat AI: Informed (Heuristics) Search: As the term suggests, in this search strategy 
the programs are equipped with evaluative tools built according to specific knowledge 
about the problem. The core concept underlying Informed Search methods is Heuristics: a 
mathematical technique aimed at estimating how close each step/state is to the 
solution100,102,104. 

While in non-heuristic methods the algorithms would just be able to evaluate whether or 
not a goal has been achieved, in heuristic-based methods the agents have a clue as to how 
close the solution might be. Naturally, the better the heuristic is, the higher the efficiency 
will be. Thus, an essential concept is the idea of Admissibility of a Heuristics: optimistic 
(admissible) heuristics aim at slowing down bad plans while still leaving some degree of 
freedom for the agent to find the optimal path. When true costs are overestimated as in 
pessimistic (inadmissible) heuristics, good plans may be trapped thus breaking optimality 
of the algorithm100,102,104. 

The main methods on Informed Search are Greedy Best-first Search and A* Search, this 
latter combines Greedy Search and Uniform-cost Search being capable of always finding 
the Optimal Solution. 

Greedy Best-first Search (or simply Greedy Search) is another instance of Tree-
Search and/or Graph-Search algorithms with the application of the heuristic 
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function as the evaluation function. Starting from the top, this algorithm evaluates 
each node on a fringe, expanding the one that looks closer to the goal. When 
correctly applied, this method may quickly find a good solution, however it does 
not necessarily find the cheapest solution100,102,104. 

A* Search (pronounced “A-star”) combines the efficiency of Greedy Best-first 
Search on quickly finding a solution with the optimality of Uniform-Cost Search. 
For A* Search algorithms the evaluation function, or cost function applied consists 
on a combination between the heuristic function and the path cost 
measurement100,102,104. 

Scruffy AI: Natural Computing: The interdisciplinary field of Natural Computing 
encompasses different aims and approaches, being usually described as having three 
related fields: Computationally Motivated Biology, Computing with Biology and 
Biologically Inspired Computing100,102,104. 

Computationally Motivated Biology, as the name suggests, aims at better 
understanding biological systems by means of computational tools. This field is 
focused on the simulation of natural phenomena rather than developing 
mathematical or engineering tools and is closely related to those of Bioinformatics 
and Computational Biology100. 

Computing with Biology addresses the study of biological substrates or platforms, 
such as molecules or DNA, as an alternative for implementing computation. 

Biologically Inspired Computation aims at finding solutions to computation 
problems by applying procedures and processes abstracted from nature. 

Scruffy AI: Computational Intelligence: 

Computational Intelligence is a subfield of Artificial Intelligence aiming at developing 
adaptive and intelligent systems. Some of the main disciplines composing the field are: 
Evolutionary Computation, Swarm Intelligence, Fuzzy Intelligence, Artificial Immune 
Systems and Artificial Neural Networks102,104–106. 

Evolutionary Computation aims at mimicking aspects of biological evolution by 
natural selection described by neo-Darwinian Theory of Natural Evolution. Some 
of the most popular evolutionary algorithms are Genetic Algorithms and 
Differential Evolution, often applied for optimisation with multiple objectives. 
Genetic Algorithms are based on divergence and convergence of solutions resulting 
from mating and mutation procedures across generations. Some of the main tools 
and procedures applied by GAs are breeding, mutation and elitism. Differential 
Evolution employs most of the methods of GA but modifies the mating procedures 
and introduces criteria for incorporating or not incorporating the new individual in 
the next generation102,104–106. 
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Swarm Intelligence algorithms were developed based on the solutions emerging 
from collective behaviour of a group of individuals. The two most popular 
paradigms in this category are Particle Swarm Optimisation (PSO) and Ant 
Colony Optimisation (ACO). PSO imitates collectives such as bird flocks and fish 
shoals, where the emerging behaviour surpasses the simple movement of each 
particle (animal) individually. ACO emulates the social behaviour and 
communication among insects to find shorter paths to a solution. Similar to 
searching individuals from an ant colony releasing and following pheromone trails 
(that evaporate over time), artificial agents on this algorithm end up 
concentrating on the most efficient paths102,104–106. 

Artificial Neural Networks (or simply Neural Networks) is a Machine Learning 
model aimed at mimicking the biological evidences explaining the natural learning 
abilities and the wiring in the brain, through the formation of neuronal paths. 
Neural Network algorithms are often applied to function approximation and 
pattern recognition in adaptive learning systems102,104–106. 

Fuzzy Intelligence is a reasoning strategy founded on fuzzy logic, in which 
variables and truth values may be expressed as a range of values from 0 to 1, 
varying from completely false to completely true, rather than pure definitions of 
true or false in Boolean Logic (either 0 or 1). Fuzzy Intelligence is often applied in 
control systems, classification and learning systems102,104–106. 

Artificial Immune Systems are inspired by biological theories and models that 
explain the adaptive behaviour of mammalian immune systems. Being robust and 
effective as vertebrate nervous system, immune systems are, though, decentralized 
and have the property of self-organisation. Some of the traditional AIS algorithms 
are: Clonal Selection, Negative Selection, Immune Networks and Dendritic 
Cells102,104–106. 
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Chapter 3 
Literature Review in Ecology, Movement and Behaviour 

3.1. Animal Behaviour and Movement Ecology 

All organisms move at some stage of their life cycle; from protozoans to huge whales. 
Even the organisms and organic structures which are unable to actively move (e.g. 
bacteria, viruses and plant seeds) depend on the movement of the media to succeed107. 
Some species from the Phylum Cnidaria can even alternate between sessile polyps and 
swimming medusae among generations - a phenomenon denominated metagenesis. 
Considering the dynamics of flow in liquid environments sessile life seems to be more 
fruitful in aquatic systems107 being these the only environments where we find sessile 
animals (Phylum Animalia). 

At first sight active movement seems to be a superior ability and yet plants are ancient, 
successful, and essential forms of life. Reduced movement may be an advantageous 
strategy to avoid energy expenditure as long as it meets the species’ energy requirements. 
As primary producers on grazing food webs plants synthesize biomass from energy and 
nutrients obtained from sunlight, air, water and soil. Similarly, in a detrital food chain, 
bacteria and fungi break down dead organic matter transforming it into biomass and 
passing it ahead to the other trophicb levels. The abundant and relatively constant 
availability of the above-mentioned resources explains the widespread distribution of 
vegetation, bacteria and fungi all around the globe even in extreme environmentsc, with a 
few exceptions. 

Besides a simple proof of success, the widespread distribution of autotrophicd individuals 
is nonetheless one of the reasons behind the diversity of species. Considering the energy 
loss along food webs the amount of biomass will deeply decrease on each new trophic 
level. In a simplified picture the food web biomass could be represented by a pyramid 
with a large base. In other words: the larger the ground-level of the pyramid is the higher 
the pyramid can be31,108 (Figure 3.1). 

 
b Trophic level refers to the role each species or group of species performs in a food web. 
c Tundra is the coldest terrestrial biome, characterized by average temperatures of 6ºC. 
d The individuals in the basis of the food webs which produce biomass from inorganic or dead organic matter. 
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Figure 3.1 Population Growth Model and Energy Pyramid. 

Left: Population Growth Model: populations of living organisms tend to grow exponentially 
however, the carrying capacity of the environment limits population growth to logistic. Right: 
Production of Biomass and Energy Transfer along the Energy Pyramid model - from primary 
producers to primary consumers and decomposers to secondary and tertiary consumers. 
Source: Created by author based on References31,108. 

In general terms, the higher the animal is the food web the larger its habitat has to be in 
order to meet its needed dietary requirements. The size of the habitat will also be 
influenced by the animal’s size, physiology, feeding habits (herbivore, carnivore, 
omnivore), and biomechanical properties. Among others, the above-mentioned properties 
are encompassed by the concept of Carrying Capacity of the environment which consists 
of a limiting factor for the growth of the population explaining why population dynamics 
draws a logistic curve rather than exponential31. 

Attending its basic metabolic needs (such as obtaining food and water) is definitely a 
main motivator for animal movement, but there are other motivators such as the 
individual’s will towards mating. Feeding and mating can be thus considered the two 
major and common life-lasting challenges for individuals and therefore for species. The 
biological necessity of interactions or “encounters” do not explain why movement first 
emerged in nature but certainly explain why moving animals may move30.  

Apart from the encounter-driven movements, other factors driving animal’s movements 
are: avoiding threats and/or predators, regulating the body’s homeostasis on a daily basis 
or avoiding major seasonal events such as harsh winters, hot summers, or dry seasons. 

In spite of being the manner by which moving animals obtain nutrients, moving is an 
energy-consuming task itself, leading to a trade-off. This situation led ecologists to 
develop the concept of Optimal Foraging Theory (OFT), back in 1966. The idea is 
grounded on the hypothesis that the evolutionary survival of moving species is based in 
part on the individual’s ability to forage for resources and to encounter mates. The most 
efficient (fittest) behaviours, measured by the energy or nutrient intake per unit of effort, 
are thus expected to have been selected29–31. 
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3.1.1. Basic Concepts and Terminology 

Animal’s movement can be observed on the most diverse, sometimes surprising, scales: 
from bees performing a waggle dance within a beehive, through mammals foraging locally 
and then homing to feed their offspring, to cross-continental migrations completed yearly 
by certain species of birds. In order to ensure the understanding and to improve the 
quality of debate most authors highlight the importance of the organization of commonly 
used terms in the field.  

Hansson and Åkesson107 propose a broad terminology for movement consisting of: 
Movement, Dispersal, Migration, Homing, and Foraging Movements (Table 3.1). 
Expanding this previous categorization system, similar schemes of animal movement are 
proposed by Fox et al109 and Dingle110, as can be seen in Table 3.2 and Table 3, 
respectively. Dingle110 proposes a third category for movements not under control of the 
organisms encompassing both Accidental Displacement classified by Fox et al109 as “not 
directly responsive to resources or home range” (Table 3.3). 

Table 3.1 Basic terminology for animal movement proposed by Hansson and Åkesson107. 

Movement 
Individuals or populations (or parts of populations) that change position at 
any temporal or spatial scale. Movement includes all other ways of 
displacement. 

Dispersal 
Individuals or populations (or parts of populations) that move to reach new 
areas, but do not return. 

Migration 

Individuals or populations (or parts of populations) that move between two 
well-defined habitats on a temporally (reasonably) predictable basis. Migration 
includes, e.g., the seasonal migrations of birds between wintering and 
reproduction areas, fish migrations from lakes to streams, but also the once-a-
lifetime migration of eels from freshwaters to their natal marine habitat to 
spawn and then die. 

Homing Refers to when an animal returns to a known goal, e.g. its home. 

Foraging 
movements 

Individuals that move between resting places, nest sites, etc., and feeding 
grounds in a temporally reasonably predictable way, e.g. bees moving from 
flower fields to the hive or bird parents feeding their nestlings. These types of 
movements are difficult to distinguish from migration, but generally occur at a 
shorter time scale. The most striking difficulty when distinguishing between 
migration and feeding movements is the very well known diel vertical 
migrations (DVM) of aquatic zooplankton. This type of movements may 
actually fit better as feeding movement or as diel vertical movements than as 
actual migration. However, the term diel vertical migration is so established as 
a research area that any attempts to re-categorize it would lead to a 
revolution. Hence, in order to avoid such responses, we will here adopt the 
traditional view while noting the difficulties with such distinctions. 
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Table 3.2 Classification of animal movement proposed by Fox et al109: 
MOVEMENT CHARACTERISTICS EXAMPLES 

Movements that are home-range or resource-directed 

A. Station keeping Movement keeps organism in home range.  

  1. Kineses Changes in rate of movement or turning. Planarian in shadow. 

  2. Taxes Directed movement in response to a stimulus. Upwind flight of moth in 
pheromone "plume". 

  3. Foraging Movement in search of resources. Ceases when 
resource encountered. 

Search for food, mate, 
shelter, oviposition site; 
parasite or parasitoid host 
seeking. 

  4. Commuting Periodic (often daily) forages in search of 
resources. Ceases when resource encountered. 

Albatrosses foraging; vertical 
"'migration" of plankton. 

  5. Territorial Behaviour 
Movement and agonistic behaviour directed 
toward intruders in territory. Ceases when intruder 
leaves. 

Many. 

B. Ranging Movement over an area so as to explore it. 
Ceases when new home range/territory is found. 

Dispersal of some mammals; 
"natal dispersal'' of birds. 

Movements not directly responsive to resources or home range 

A. Migration 
Undistracted movement with cessation primed by 
movement itself. Responses to resources / home 
range suspended or suppressed. 

Annual journeys of birds, 
insects etc. Flight of aphids 
to new hosts. Transport of 
some seeds to germination 
sites. 

B. Accidental Displacement 
Organism does not initiate movement. 
Ceases when leaves transporting 
vehicle. 

Storm vagrancy. 

 

Table 3.3 Classification of movement in nature proposed by Dingle110  
MOVEMENT CHARACTERISTICS EXAMPLES 

Movements home range or resource-directed 

Station keeping 
Movements keeping organism in home 
range 

 

    • Kineses Changes in rate of movement or turning Moth in a pheromone "plume”. 

    • Taxes 
Directed movement toward a stimulus 
source 

Insect moving toward a light (positive 
phototaxis) 

    • Foraging 
Movement in search of resources; 
movement stops when resource 
encountered 

Movement in search of food, mate 
nesting or oviposition site (animals); 
modular growth (plants, corals) 

    • Commuting 

Movement in search of resources on a 
regular short-term basis (usually daily or a 
few days); ceases when resource 
encountered 

Albatross foraging; vertical migration 
in plankton 

Territorial Behaviour 
Patrolling territorial boundary, agonistic: 
response to neighbours and/or intruders 
(stops when intruder leaves) 

Many examples across taxa 

Ranging 
Movement over a habitat to explore it; 
ceases when suitable home range located 

"Dispersal" of some mammals; natal 
dispersal" of birds; parasite host 
seeking 

Movements not directly responsive to resources or home range 

Migration 

Undistracted movement to new habitat; 
cessation promoted by movement itself. 
Responses to resources or home range 
suspended or suppressed 

Annual flights of birds to breeding 
grounds; flight of aphids to new hosts; 
movements to breed of diadromous 
fish; "dispersal" of some seeds 
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Movements not under control of organism 

Accidental Displacement 
Organism does not initiate movement. 
Movement stops when organism leaves 
transporting vehicle 

Storm vagrancy 

“Assisted Migration” or 
Assisted transport 

Accidental or deliberate anthropogenic 
movement 

Horticultural or weedy introductions; 
biological control species; conservation 
introductions 

3.1.2. Movement Ecology 

The interdisciplinary field of Movement Ecology aims at investigating the factors 
underlying the movements of organisms as well as the trajectories and resulting patterns, 
among other topics. Some of the motivations for the increasing interest in this field are 
empirical observations pointing to the existence of patterns in organisms’ movements, 
from rudimentary protozoans to human beings30. 

Random walks and biological encounters are described as reaction-diffusion processes, 
composed of a diffusive component (e.g. exploratory searches) and a reactive component 
arising from the interaction with other system elements (e.g. chasing prey). As pointed by 
Viswanathan et al30 diffusive and reactive processes fundamentally diverge from each 
other, being guided by different rules. Diffusive processes are linear and could lead to 
patterns such as Brownian, Random walks, Lévy walks or Lévy Flights (Figure 3.2) 
whilst Reactive processes rely on interactions with the environment, leading to nonlinear 
effects. Taking into account the distinction between these two processes could be essential 
when analysing animal tracking data in order to obtain a tagged dataset. According to 
the some of the most prominent works on the area of animal movement, the field tracking 
data of animals usually results in cumulative probability distributions other than the 
traditional Gaussian (Normal) and Brownian (Uniform), being Lévy Walk, a specific 
Power Law distribution, the most common. 

 

Figure 3.2 Three stochastic moving patterns given by different distributions: Lévy Walks, Gaussian 
and Uniform.  

It is possible that almost all the trajectories of animals would be at some level permeated 
by interactions with non-desired or even facilitators of the movement. Some forest 
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animals will have to avoid physical obstacles such as trees in their way, while the 
movements of animals of arboreal locomotion will be dependent on the distribution of 
these trees. In the same way, tracking the movements of fishes in a river has to take into 
account the water movement as in a study developed by Sparrevohn et al111. 

Beyond the statistical processing of the results, a major challenge still lies in the 
preliminary stage of data acquisition. Although it is evolving fast, the available 
technology still does not allow researchers to track a large number of species, such as 
small insects or ground burrowing animals due to the size, weight, or signalling 
requirements of transmitters. 

Against all odds, several researches had been successfully undertaken with the outcomes 
revealing similar results. 

3.1.2.1. Tracking Animal Movement 

In the field of animal movement, the recent advances in technologies for tracking (such as 
micro and nanotechnology combined with wireless and satellite communication protocols) 
made possible to build long-lasting tracking devices capable of keeping track of animal 
movements across different scales. Animal movement ranges from small movements such 
as of termites inside a termite mound, or the daily flights of bees looking for nectar, to 
large-scale movements, across countries or even continents, such as sea turtles on coastal 
environments or large migratory leaps of migratory birds. Beyond the new possibility of 
tracking what in the past would seem impossible, increasing resolution and time scale on 
tracking experiments lead to new discoveries about interactions among groups or 
species111,112. 

Pigeon flocks, for example, were found to have consistent leadership hierarchies with 
some individuals influencing the collective movement decisions more than others113. Sheep 
groups on the other hand were shown to respond to global group structures rather than 
local cues114. The possibility of tracking a bigger number of individuals also revealed a 
considerable diversity in foraging and niche exploration among individuals from the same 
group or species115. Big tracking data also revealed dynamics of interaction, habitat use 
and patterns of organization among different groups of a same species or from different 
species, such as territoriality116 or space partitioning117–119. 

3.1.2.2. Migration 

Usually in order to avoid starvation, extreme temperatures or to find more suitable 
environments to breed, migration is a ubiquitous behaviour in nature. It has been 
reported in mammals, birds, fishes, reptiles, amphibians, molluscs, arthropods, and 
surprisingly even in algal protists107. 
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Migration also occurs over diverse scales ranging from the outstanding journey of Arctic 
terns (Sterna paradise) flying from high Arctic to South Pole, to the daily vertical 
migrations of zooplanktons consisting of few meters107. Some migrations can also take 
more than the individual lifespan to be completed such as the transgenerational migration 
of the painted lady butterfly (Vanessa cardui) that takes six generations to complete a 
cycle from Europe to Africa and back again107. 

The migratory behaviour of individuals may also vary among the same population and in 
some extreme cases a certain population can be composed of both migrants and entirely 
resident individuals, what is referred to as Partial Migration107. There are three registered 
types of seasonal partial migration: fractions of the group may share the same habitat on 
either breeding season or non-breeding season, or in a third case some fraction of the 
group may skip spawning in certain years thus not coinciding necessarily with the other 
fraction of the population. Another within-population migratory pattern named 
Differential Migration describes the variation on timing or destination of fractions of the 
same population. 

Hansson and Åkesson107 illustrate the concept of the three main patterns of latitudinal 
population movements performed by different populations of the same species: chain 
migration, leapfrog migration and telescopic migration. Some animal populations may 
also migrate regularly in a seasonal cycle but from time to time vary their migratory path 
according to other major environmental changes ruled by longer periods of time. 

The journey size is not necessarily proportional to the size of the animal. However, as it 
involves the ability to navigate and to move in an optimised manner, the animal’s 
physiology and biomechanics will naturally play a strategic role. 

The migration phenomena can be generally explained as a behavioural strategy to deal 
with drastic weather changes (beyond the physiological limits of the animal) or with an 
increased competition due to limited resources (forcing poor competitors to seasonally 
search for new places). For those that remain in the site, physiological differences may 
account for their ability to deal with extreme changes, allowing the individuals to survive 
in dry, hot, or cold environments. Similarly, physiological and body adaptations enable 
individuals to endure exhausting migration journeys to escape the seasonal variation. 
Ability or luck on finding best paths and sites to migrate may also be rewarded by 
evolution as well as timing to get to a certain breeding point. The ones that arrive early 
pick the best breeding sites and promote the evolutionary survival of their genotypes. 

3.1.3. Animal Navigation and Orientation 

Understanding animal movement from small to large scale requires a comprehension of 
sensory mechanisms of orientation and navigation, and mind maps - abstract 
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representations of space inside animal’s brains. Some of the questions about how animals 
find their way have been asked and investigated for centuries, but other advances in this 
field could only be made recently with the improvement and availability of long-lasting 
global tracking resources. Although advances have been made there is still much to be yet 
discovered. As an example, some of the navigational mechanisms (e.g.: Magnetic Sense) 
have already been identified but the receptors behind them still remain not fully known. 

3.1.3.1. Navigation 

Navigation describes the process of moving from one place to another - which may be 
performed by accessing mental land representations, and on external cues given by 
sensory apparatus or “biological compasses” of orientation (Figure 3.3).  

Some cognitive abilities such as path integration (dead reckoning) may help animals to 
orientate themselves, even for those which experiments suggest not relying on maps for 
navigation. Among the animals that do not have the ability to build mental land maps, 
some have been proven to navigate following sequential lists of steps based on self-
generated movements tracked, updated by environmental cues through path integration 
(Figure 3.3). 

 

Figure 3.3 Diagram of biological mechanisms involved in animal navigation. 
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Navigating presumes a pair of origin (relevant or not) and destination (known or not). 
Animal’s cognitive capacity and sensorial features will provide them with the ability to 
navigate utilizing maps (mosaic or gradient) and orientation mechanisms such as biological 
compasses and sensorial cues. The cognitive mechanism of path integration (dead reckoning) 
improves the navigational ability of an organism’s by either updating internal maps or 
readjusting the route according to previously known environmental clues. 

Some animals are born with innate information about where to go, as shown by 
experiments with socially isolated birds, while some others use learning abilities to 
perceive and record places of interest such as immediate or long-lasting food and water 
resources, nesting sites, dangerous places, and so on. 

3.1.3.2. Orientation 

Some of the sensory mechanisms identified as being involved in animal orientation are 
organized by Hansson and Åkesson107 into Biological Compasses and Sensorial Cues 
(Table 3.4). Biological Compasses enable animals to geographically orientate themselves, 
in a global reference frame, based on geological and atmospheric features such as the 
position of the sun and stars, light polarization of the sun on the atmosphere and on 
Earth’s magnetic field. Beyond that, Sensorial Cues such as odours, visible features (e.g.: 
landmarks) and the tracking of self-generated movements provide vector information 
between places that may be used for homing, visiting known places or for path 
integration (dead reckoning). 

It has been reported in the literature that several animals possess more than one 
mechanism of orientation that may be either used alone or in combination. 

Table 3.4 Classification of animal orientation mechanism. Organised by author based on Hansson 
and Åkesson107. 

Biological Compasses 

A. Time-compensated Sun compass  
B. Skylight polarization compass  

C. Star compass  

D. Magnetic compass 
Sensorial Cues / Sensors 

A. Odours 
B. Visual Cues  

C. [Tracking of] self-generated movements 

 

3.1.3.2.1. Time-compensated Sun Compass 

This type of biological compass provides a directional information from the combination 
of the position of the sun and the time of the day given by the animal’s circadian clock. 
Time-compensated Sun Compasses are widespread across the animal kingdom, being 
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reported in several species of birds and in diurnal insect species such as honeybees, desert 
ants and migratory butterflies107. 

3.1.3.2.2. Magnetic Compass 

 

Figure 3.4 Diagram of natural magnetic field lines on Earth, highlighting the singularities of 
geographic and magnetic hemispheres. 

Left: a simplified illustration of the magnetic field around the Earth from magnetic south to 
magnetic north pole. Right: illustration of the inclination of magnetic field vectors on 
magnetic north (top right) and south (bottom right) poles. 

Some of the main mechanisms by which the Earth’s magnetic field can be measured in 
terms of strength are magnetic induction, magnetic particles and magnetically sensitive 
biochemical reactions. Animals have been found to make use of the latter two processes 
by means of both ferromineral-based magnetoreception and radical-pair-based 
magnetoreception107. Magnetic-based biological compasses provides not only the clue for 
the North but also (and possibly more importantly) the sense of the latitudinal position 
of the animal, as the magnetic inclination decreases nearing Equator (Figure 3.4). 

3.1.3.2.3. Skylight Polarization Compass 

When light enters the atmosphere some rays may be scattered by molecules of air, water, 
dust or aerosol that are smaller than its wavelength. The degree of polarization will vary 
according to the angle that incident light rays reach the atmosphere, resulting in a 
polarized light pattern of the sky. This pattern is visible through specialized optical 
equipment and is also perceived by several animals that take advantage of this ability to 
obtain directional geographical information107,120,121. 
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Figure 3.5 Key components and mechanism of Skylight Polarized Compasses. 

(a) Single-scattering Rayleigh model of skylight polarization. The orientation of black lines 
indicate E-vector angles relative to solar elevation and the thickness of the line indicates the 
degree of linear polarization (b) E-vector angles during different times of the day. (c) Degree 
of polarization at different solar elevations observable by animal eyes. Source of A, B and C: 
Horvath120. d) 3D and top view of Polarized Light cues at sunrise E) 3D and top view of 
Polarized Light cues at sunset e) The variation of Polarized Light cues across the day is used 
to calibrate the skylight polarized compass day after day. Source of D, E and F: Muheim121. 

Similar to the previously described compass this type of biological compass must also 
compensate the polarized light pattern according to time change along the day and also 
to variations in altitude (Figure 3.5). Compared to time-compensated sun compass, this 
mechanism has the benefit of being available even when the sun is obscured by clouds, as 
long as some blue sky is still visible107,120. 

3.1.3.2.4. Star Compass 

Similar to human-made instruments of navigation, several species of nocturnal and 
migratory birds have been identified as using star reference for orientation. Experimental 
evidence supports that star patterns are learnt by young birds and may be further 
involved in three systems: to define the animal’s geographical position; as a part of time-
compensated star compass; or to define geographical north from the position of the stars 
according to the rotational point (Figure 3.6)107  
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Figure 3.6 Star compass mechanism explained. 

Accurate coordinates are obtained by compensating the rotation of the star map according to 
animal’s internal time clock. Source: Hansson and Åkesson107. 

3.1.3.3. Spatial Representations and Maps 

Both orientation methods and navigation may rely on internal spatial representations 
resembling more or less what we call maps. So far two basic types of maps and its subsets 
are described by Hansson and Åkesson107, as in Table 3.5: 

Table 3.5 Classification of animal spatial representation. Organised by author based on Hansson 
and Åkesson107. 

Mosaic Maps 

A. Basic Mosaic Maps  

B. Combined Mosaic and Cognitive Maps  

Gradient Maps 

A. Mono-coordinate Gradient Maps 

B. Bi-coordinate Gradient Maps (combination of two mono-coordinate maps)  

Mosaic Maps are based on the spatial and geometric relationships between home and 
landscape features surrounding it. Thus, each mosaic map will be as big as the territory 
explored by each individual and the catalogued landmarks on it. The basic concept of 
mosaic maps was first proposed by Hans G. Wallraff in 1974122 and encompasses the 
paired linking between home and any other targets or landmarks (Figure 3.7). Going 
beyond it has been speculated that some animals could be able to expand the complexity 
of Basic Mosaic Maps in Cognitive Maps, by learning or deducing geo-spatial 
relationships among already known landmarks. Through this skill the animal would be 
capable of making novel shortcuts between locations, but finding evidence for this ability 
has proven difficult107,123. 
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Figure 3.7 Diagram representing how home range, targets and landmarks are believed to be 
symbolically represented in an animal’s mind through mosaic maps. 

Gradient Maps, on the other hand, are based on the gradient variation (ideally 
perpendicularly oriented) of a particular feature along the space. Two feature gradients 
(disposed in different orientation) may be combined in a Bi-coordinate Gradient Map 
such as in global avian navigation relying on both geomagnetic inclination and field 
strength (Figure 3.8). Furthermore, as in Mosaic Maps, Gradient Maps may be built from 
local experience by learning suitable features to track for later recording107. 

The possibilities of animal navigation based on bi-coordinate maps relying exclusively in 
geomagnetic sense were analysed by Bostrom et al124 for different regions of the Earth. 
The study investigated areas around the planet where two gradient maps (total 
geomagnetic field intensity - TGFI, and geomagnetic field inclination - GFI) could be 
combined into a bi-coordinate map (Figure 3.9). Each mono-coordinate (gradient) map 
was first represented as isolines on the map (Figure 3.9a) and the angle between the 
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isolines from different layers (TGFI and GFI) was utilised as a criteria to map high and 
low resolution areas (Figure 3.9b). 

 

Figure 3.8 Diagram of two different mono-coordinate maps (1 axis) and their combination into a 
composite bi-coordinate map for navigation. 

The areas in which the angle between the isolines were equal or greater than 60º were 
considered of high resolution and those in which the angle between the isolines ranged 
from 15º to 60º were labelled as low resolution. Regions with angles below 15º were 
considered insufficient for navigation utilising only the combination of these two 
geomagnetic gradient maps analysed. 
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Figure 3.9 Two gradient maps combined into a bi-coordinate map. 

A) The map shows blue isolines for total geomagnetic field intensity (µT) and red isolines for 
geomagnetic field inclination (º) in latitudes between 70ºN and 70ºS, in Mercator projection. 
B) The angle between the isolines on the map in (A) (geomagnetic field intensity and 
geomagnetic field inclination) was utilised as a criterion on evaluating the possibility of 
composing bi-coordinate gradient maps. Green indicates high resolution mapping in which the 
angle between the isolines is equal or greater than 60º. Yellow indicates low resolution 
mapping in which the angle between the isolines ranges from 15º to 60º. Red indicates areas in 
which mapping is not possible. C) Mercator projection map showing navigable and non-
navigable regions of the planet utilising bi-coordinate gradient maps composed of geomagnetic 
field intensity and geomagnetic field inclination. Source: adapted from Bostrom et al124. 

3.1.3.4. Path Integration (Dead Reckoning) 

Given the imprecision of sensory methods combined to changes in the environment and 
possible movements beyond the animal's control, such as accidental displacements, 
cognitive abilities such as path integration may provide an excellent tool for successful 
navigation. On performing path integration (dead reckoning), by combining sensorial cues 
to previously known information, animals can keep a continuously updated record of their 
current position, adjusting their route from time to time and getting rid of incidental 
disturbances or imprecision125. 
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Collett and Graham125 describe two different kinds of path integration system. The first 
method regards the animals with fixed dwelling which perform a path integration based 
on the reference of their nest, hive or other fixed origin point. In this method the animal 
stores radial vectors with the origin in its nest. The second method regards the animals 
without a fixed dwelling that rely on either visual or non-visual landmarks. In this latter 
method the animal stores a network in which vectors with size (distance) and direction 
connect different places (Figure 3.10). 

 

Figure 3.10 Two different kinds of path integration systems described by Collett and Graham125. 

First type (left) describe animals with fixed dwelling that store a beam of radial vectors 
originated in their dwelling. Second type (right) describe animals without a fixed dwelling that 
are capable of performing path integration with visible or non-visible landmarks, creating a 
network of vectors connecting places. Source: Collett and Graham125. 

3.2. Mathematical Models of Behaviour 

Mathematical Models are abstractions of real life problems, systems or events which are 
useful for applications such as: 

- explaining complex processes; 
- identifying variables involved in complex processes 
- modelling future scenarios; 
- recreating current or past scenarios; 
- simulating consequences of changes in variables. 

Since they are abstractions of real-world situations, building models requires the ability to 
see the big picture of a complex system but also to determine which variables are most 
relevant to it. The required input data for a model must match, to some extent, the 
available, collectable or measurable data. If a model requires too much information 
chances are that no one would actually be able to provide it. Houston and McNamara29 
recommend beginning from simple models capable of providing an understanding of the 
underlying logic. These models may be developed further and incrementally until they 
reach a complexity compatible with the modelled situation.  
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A higher complexity in mathematical models does not necessarily result, however, in a 
higher quality or accuracy, as Viswanathan et al30 emphasize: “Despite this ‘coarse 
graining,’ these [simplified] models lead to statistically robust results, precisely because 
they do not depend on the particular biological implementation of the search mechanisms. 
There is a long tradition in statistical physics in which apparently simple models lead to 
remarkably good agreement with experiment (e.g., the Ising model of ferromagnetic phase 
transitions)”30. 

3.2.1. Foraging Behaviour and the Optimal Foraging Theory 

An animal’s movement can be observed on the most diverse, sometimes surprising, scales: 
from bees performing a waggle dance within a beehive, through mammals foraging locally 
and then homing to feed their offspring, to cross-continental migrations completed yearly 
by certain species of birds. All organisms move at some stage of their life cycle; from 
protozoans to huge whales. Even the organisms and organic structures which are unable 
to actively move (e.g. bacteria, viruses and plant seeds) depend on the movement of the 
fluid to succeed29. As it may seem like a superior ability at first glance, active movement 
is not necessarily better. Plants, for instance, are some of the most ancient and successful 
forms of life. Locomotor systems involved in active movement demand energy to run and, 
in this context, reduced movement may also be an advantageous strategy to avoid energy 
expenditure. Among the animals with such ability, obtaining food and water, mating and 
avoiding predators are some of the main motivators to move. Feeding and mating can be 
thus considered the two major and common life-lasting challenges for genomes and so as 
for all species30. 

The model assumes that food is distributed into several homogeneous patches of different 
quality levels. Consider for instance a forager finding a food patch after some time 
travelling: the quality of the resource and handling time would enable drawing a curve of 
cumulative energy gain (Figure 3.11) and its rate of return (Figure 3.11b). In order to 
find the optimal time when energy return would be maximised the model of Marginal 
Value Theorem (MVT) can be applied with the OFT. The optimal time feeding on this 
resource can be projected by tracing a tangent line beginning on the time when the travel 
started31 (Figure 3.11c). 
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Figure 3.11 Optimal Foraging Theory and Marginal Value Theorem exemplified in charts. 

A) Shows the cumulative energy gain curve (red line) and the time spent traveling to the 
patch (t) in a hypothetical foraging travel. B) The rate of energy return at a particular time 
(e.g. B) can be calculated by drawing a line from origin (time 0) to the corresponding point of 
the curve at the desired time. The slope of the line (A-B) gives the rate. C) brings energy 
return rate calculated from three different moments. The optimal time to leave the patch 
(Topt) is when the energy return rate line (blue line) has the highest slope, tangent to the 
cumulative energy gain curve (red line). Turquoise and purple lines represent two other energy 
return rates calculated at times T1 and T2, respectively. Source: Smith and Smith31. 

3.3. The Roundworm Caenorhabditis elegans 

Caenorhabditis elegans is a free-living roundworm of remarkable simplicity and present in 
most of the continents (Figure 3.12). In 1963, Sydney Brenner proposed its adoption as a 
model organism for the investigation of neural development in animals, as this is one of 
the simplest living organisms with a nervous system. Since then, C. elegans has been 
extensively studied, being the first multicellular organism to have its whole genome 
sequenced and its neuronal wiring diagram completed. The study of the species provides 
clues on the rudimentary functioning of body, brain and behaviour41–45.  
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Figure 3.12 C. elegans anatomy and distribution. 

(A) adult C. elegans individual. Source: <https://sites.psu.edu/>. (B) Petri dish with C. 
elegans individuals, that can be observed in more detail in (C). Source: Emmons45 .  D) 
Worldwide distribution of C. elegans’ species. Source: Frezal and Felix44  

There are two sexes of individuals of the species: males and hermaphrodites, the latter 
being more often studied as it is possible to obtain genetically identical populations from 
self-fertilization. 

The nervous system of hermaphrodite individuals is composed by 302 neuronse, 60 of each 
are sensory and 113 are motor neurons. The neural system is composed by nerve ring, 
head and tail ganglia, dorsal and ventral nerve cords, and a few lateral neurons. C. 
elegans’ perception of its environment is mediated by mechanical stimuli, temperature, 
and chemical cues, accomplished through 24 sensillar organs, and several sensory 
neurons41–43. 

Four muscle bands along the length of the animal control dorsal and ventral bending, and 
with the exception of its head, the nematode is not able to bend left of right. The animal 
is capable of crawling in solid media and swimming in liquid media, either forward or 

 

e Against 385 neurons in male individuals (of which 91 are sex-specific). Hermaphrodite individuals 
have only 8 sex-specific neurons. 
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backward. As undulatory movements occur from dorsoventral waving, moving individuals 
lie on their left or right39,126–128. 

Despite the simplicity of its anatomy, C. elegans displays a considerable repertoire of 
behaviour, including foraging, feeding, escaping and avoiding threats, sensory responses to 
stimuli, as well as learning and memory, mating, and social behaviour39,40. 

3.3.1. Movement Tracking and Models of Exploratory 
Behaviour 

The exploratory behaviour of C. elegans emerges from a close interaction of sensory and 
motor neurons, with a few interneuronal relays in between. The organism moves towards 
more favourable surroundings by chemotaxis, thermotaxis, and/or aerotaxis, and evade 
noxious or harmful conditions through avoid or escape behaviours. A total of 60 ciliated 
sensory neurons compose different sensory systems of the animal and are distributed in 
tasks like chemosensation (gustation or olfaction), thermosensation, mechanosensation 
and proprioception. Most of the sensory neurons are concentrated in the head and tail 
ganglia, being another few distributed alongside the animal. 

The exploratory behaviour of C. elegans can be decomposed in simple steps as forward 
and backward movements, turns, and reversals, that can be coupled into more complex 
movements39–41,129,130. In the present work, we adopt the classification in Gray et al39: 

- Head Swings: basic component of C. elegans movement (Figure 3.21B); 
- Forward movement: sinusoidal movement with shallow or deep bends, created 

by dorsoventral flexing; 
- Turn: general term for change in direction, usually in forward motion; occurs 

when head swings are stronger in either the ventral or dorsal directions; large 
head swings result in rapid turns, whereas successive gently head swings result in 
a gradual curving; 

- Omega Turns: sharp turns in which the head nearly touches the tail, or a 
reorientation of > 135º in single head swing (Figure 3.13A, B and C); 

- Reversal: deliberate reorientation movement, composed by head swings; 
- Short Reversals: combination of 1 or 2 head swings (Figure 3.13B); 
- Long Reversals: combination of 3 or more head swings (Figure 3.21B); 
- Pirouettes: a Reversal, most commonly long, coupled with an Omega Turn 

(Figure 3.13B); 

Several works investigating C. elegans’ exploratory behaviour identified pattern 
variations according to: the presence or absence of food; its (short-term) memory about 
the environment; and its internal state of hunger39–41,130. Gray et al39 identify three distinct 
states: Feeding (Dwelling), Local Search, and Dispersal: 



- 58 - 

- Feeding (on food): animals move forward slowly and reverse frequently (mostly 
in short reversals) - in a pattern called dwelling. Reversal movements are usually 
followed by short turn angles. 

- Local Search (well fed worms, 1-12’ off food): the frequency of short reversals 
decreases 10- to 20-fold immediately after the animals being removed from food 
(Figure 3.13E). Similar in magnitude, is the increasing in frequency of long 
reversals and omega turns (Figure 3.13E). Speed is also increased by an 
approximated 10-fold, compared to the average speed on food. 

- Dispersal (starved worms, 35-40’ off food): animals keep a high speed but reduce 
the frequency of all reversals (long and short) and of omega turns. This 
combination results in long and relatively straight patterns, allowing the 
individuals to disperse and forage distant paths of food. 

 

Figure 3.13 C. elegans movement tracking and statistics. 

(A) Illustration of a C. elegans individual performing an Omega Turn (iv) after finding an 
obstacle in (ii). Source: Broekmans et al131. (B) Reversal movements captured in microscope: 
(r1) short reversal with one head swing, (r2) short reversal with two head swings, (R3) long 
reversal with three head swings, (R4) long reversal with four head swings followed by an 
Omega Turn. Source: Gray et al39; ‘D’ and ‘V’ indicates, respectively, the dorsal and the 
ventral sides of the animal. (C) Percentage of Omega Turns isolated or coupled with reversals. 
(D) Experimental conditions in which Gray et al39 investigated C. elegans behaviour. (E) 
Frequency of Short or Long Reversals, and Omega Turns during the first 32 minutes of the  
experiments39. 
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Part III 

Materials and Methods  
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Part III of this work is focused on the Methods and Methodological Developments. 

- Chapter 4 presents the early series of experiments, and also the three early 
foraging algorithms. This is included with the aim of clarifying the chain of 
decisions which led to the final methods, and also to offer guidance on the issues 
which were overcome during this period for further research. 

- Chapter 5 presents the consolidated methods for simulating, optimising, and 
processing the results of the three refined algorithms, along with three later 
experiment series. The three refined algorithms will be presented in Chapters 6, 7, 
8, and 9. 
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Chapter 4 
Early Experiments and Methodological Developments 

In this work, a total of 6 foraging algorithms were developed and tested. The first 3 
(SAT-4.3, SAT-4.1, and AT-5) were tested along 7 series of experiments (A-G) and laid 
the foundation for the three refined foraging algorithms (AT-6, ATRP-8, and ATRP-7) 
(Figure 4.1). The results of the experiments with these early models are essential to 
explain the pathway to consolidated Experiment Design, Materials and Methods (Chapter 
5), and to the 3 refined algorithms (Chapters 6, 7, and 8). For that reason, these early 
models and the experiments series with them will be presented along this chapter, aiming 
to fill the gaps and provide support to the comprehension of the experimental methods 
and algorithm design choices that will be presented over the chapters 5, 6, 7, and 8. 

This chapter describes the methodological developments in the design, experiment, 
optimisation, and analysis of the C. elegans-based foraging algorithms. Here I will cover 
the main aspects of the 10 series of experiments of multiparameter optimisation with 
Evolutionary Algorithms (EAs) aimed at calibrating the Foraging Algorithms created. 
These 10 series of experiments were labelled from A to J, and are summarized in Table 
4.1. 

Series A-F consisted of experiments and optimisation cycles that contributed to the 
improvement of: 

- The Simulation Platform, entirety coded for the purpose of this research; 
- The Programs for running Optimisation with Evolutionary Algorithms: The first 

version I coded in its entirety (Series A and B), and the second version was 
adapted from an open-source program for Matlab, that offered a more robust yet 
flexible solution; 

- The EAs and the EA parameters used for the Optimisation (population/pool size, 
mutation rate, elitism, etc); 

- The objectives and costs to be optimised, as well as the techniques of estimating 
and measuring them; 

- The range of each optimizable parameter, that should be wide enough not to 
restrict the algorithm, but short fitted enough to allow a better resolution and so 
the optimisation does not ‘waste’ time with values too far from optimal. 

These series of experiments (A-F) also provided a better understanding of the limits of 
the Foraging Algorithm and of the environments to be optimised (i.e.: minimum and 
maximum sizes of the field and minimum and maximum qualities of the light sources). 

Series G-J implemented the same optimisation methods and model of costs and consisted 
of experiments with 4 different Foraging Algorithms.  
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The objectives, methods, and results of series of experiments A-G will be presented and 
discussed in sections 4.1, 4.2, and 4.3: 

- Section 4.1 covers the algorithm design, and describes some of the early and 
rudimentary models that led to the 3 refined algorithms. 

- Section 4.2 details the mechanics of the Simulation Platform, as well as the tested 
environments and the robotic hardware simulated. 

- Section 4.3 describes the methods and improvements in optimisation, covering the 
evolution of the optimisation problem, calibration and validation experiments. 

The refined experimental design, materials and methods will be presented and the 
optimisation problem will be defined formally in chapter 5. Experiment series H-J will be 
presented and discussed in depth in chapters 6, 7, and 8. 

Table 4.1 Summary of all experiment series indicating the version of the algorithms used, the 
number of input parameters controlling the algorithm, the number of objectives, the total 
number of function evaluations (number of runs), and the respective sections describing it in 
the present document. 

EXPERIMENT 

FORAGING 
ALGORITHM 

OPTIMISATION 
NUMBER OF 
FUNCTION 

EVALUATIONS 

SECTIONS 
CONTAINING 

DESCRIPTION & 
RESULTS 

SERIES SUBSET 
INPUT 

PARAMETERS 
OBJECTIVES 

A  SAT-4.1 5 1 (Fitness) 33,240 4 
B  SAT-4.1 5 1 (Fitness) 108,440 4 
C  SAT-4.1 5 1 (Fitness) 66,600 4 
D  AT-5 5 3 175,744 4 

E 

E.1 

AT-5 5 3 910,322 4 E.2 

E.3 

F  AT-5 5 3 58,740 4 

G 

G.1 

AT-5 5 3 767,241 4 G.2 

G.3 

G.4 

H 

H.1 

AT-6 6 3 250,703 5 & 6 H.2 

H.3 

I 

I.1 

ATRP-8 8 3 197,850 5 & 7 I.2 

I.3 

J 

J.1 

ATRP-7 7 3 54,614 5 & 8 J.2 

J.3 
     2,624,694  
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Figure 4.1 Summary of all the experimental and refined algorithms presented in this work, as well 
as the input parameters (genes), function modules and the optimisation outputs (fitness or 
costs). 

4.1. Methodological Developments in Foraging Algorithm 
Design 

This section will describe rudimentary models of Foraging Algorithms implemented at 
early stages of this research (SAT-4.3, SAT-4.1, and AT-5) and that laid the ground for 
the three refined foraging algorithms (AT-6, ATRP-8, and ATRP-7) (Figure 4.1). 

Early Models SAT-4.3 and SAT-4.1 (adapted from it) are State-based Foraging 
Algorithms, and AT-5 is a Reflex-agent Foraging Algorithm. These three models will be 
covered in the present section (4.1), and the three refined algorithms will be presented 
individually, in chapters 6, 7, and 8. 
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4.1.1. Early Model: State-based Foraging Algorithm (SAT-
4.3) 

This model represents the foraging behaviour of C. elegans based on environmental 
conditions and a rudimentary state hungriness, in this case derived from the battery level. 
This model also implemented a rudimentary reproductive behaviour, in which any agent 
with a certain level of energy stored would lay an egg. The eggs would not hatch nor 
generate new robots, but were instead a tool to measure the performance of each robot, as 
they represented the accomplishment of a task (Figure 4.2). When an agent collects a 
favourable amount of energy (higher than the Reproductive Threshold), one egg is laid, 
and a certain amount of energy is subtracted from their battery. Laid eggs do not 
generate new individuals (for simplification purposes), but the number is kept in each 
agent’s inventory. 

The sensory capabilities of the agents (robots) are limited to a single sensor, capable of 
sensing the intensity of light at the spot and only recording the current and the last 
measurement. The presence of food is visually represented as light spots of varying 
intensities, according to their quality. In order to save time and to obtain a greater 
number of samples, each simulation runs with a group of clones that do not interact with 
each other. At the end, the fitness was calculated based on the average of the 
population.  

The simulation occurs during a time T, scaled by time steps. The graphic console permits 
the observation of the interaction of the agents in the field, the number of eggs laid by 
each clone and the dead agents that ran out of battery. 

 

Figure 4.2 Screenshots of the first simulation model. 

Left: two-dimensional field with light spots (white gradients) and Reflex agents (red dots). 
Right: status console with the battery levels of all the 100 robots (top) and the number of eggs 
laid (bottom). 
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Speed is updated by a speed modulator, increasing or decreasing according to the raw 
value of light conditions detected in the environment. The modulation of speed is 
inversely proportional to the raw value of light detected: high light intensities result in 
decreasing the speed (dwelling and local search), whereas low light intensities increase it 
(dispersal) (Fig. 4.3 and 4.4). When judging the relevance of the variation in the intensity 
of the light (compared to the previous time step), agents use the state variable Quality 
Threshold (Figure 4.3). A rudimentary memory variable was implemented as the Quality 
Standards variable, that constantly records and updates the highest and the average 
levels of light ever found by the agent. This register helps the setting of quality standards 
for future exploration in the environment, especially when maximum and average 
conditions of a source are not fully known. The variation in Speed is intensified according 
to the internal state variable Hungriness, dynamically adjusted according to the input 
parameter Hunger Threshold and proportionally to the battery level (Figure 4.3). 

At each time step, the agent can either keep or change its direction. When the agent 
detects an increase in the light intensity (i.e. it is approaching a light source), the 
probability of turning decreases. Similarly, when a decrease in light, or no light, is 
detected, the probability of turning increases (Figure 4.4). 

A turn happens when a random number (from a uniform distribution between 0 and 1) is 
lower than the variable Probability of Turn. The Probability of Turn of an agent in each 
time step is adjusted based on the input parameters Base Probability of Turn and 
Probability Multiplier, and according to the improvement or decline in light conditions 
detected in the environment (light gradient). The direction is updated by 180º ± a 
random (uniform) value between 0 and the Variability of Angle parameter value (Figure 
4.4). Variability of Angle defines the wideness of the angle an agent can turn at once. The 
agents are allowed to turn both ways and the exact angle is randomly picked. 
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Figure 4.3 Diagram of behavioural parameters ruling the rudimentary state-dependant foraging 
algorithm SAT-4.3. 
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Figure 4.4 Diagram of Agents' behaviour moving towards and away from a sensory cue, and in the 
absence of a sensory cue. 

In the event of an increasing level of light (top row), agents tend to keep the same direction 
and reduce their speed. In the event of a decreasing sensory cue (bottom row, left), the speed is 
increased and the probability of turn increases. In the absence of the sensory cue (bottom row, 
right) (i.e. extinguished light cue) both speed and probability of direction change increase. 

4.1.1.1. Module Encapsulation and Multi-parameter 
optimisation 

As part of the early experiments, the program has been re-written with the aim of saving 
computational resources and achieving modularity.  The routines associated with 
Reasoning and Behaviour have been organised and encapsulated as functions or 
subroutines. Another big step was the normalization of the input parameters (and later of 
the cost parameters) to better fit the tools for multi-parameter optimisation. This step 
was taken carefully in order to prevent or minimise any loss in “resolution” in the 
numbers: during the conversion of the real parameter value to its normalized version, 
efforts were made so that the normalized version allows a wide variation within a realistic 
range of values. 
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All these developments made it possible for the present algorithm to be optimised. This 
version of the Foraging Algorithm was used in 3 series of experiments with evolutionary 
algorithms for optimisation (Series A, B, and C, that will be described in Section 4.3). 

Aiming at saving computational resources at that point, parameters Hunger Threshold 
and Reproduction Threshold were set to fixed values. To differentiate it from the full 
implementation (SAT-4.3, encompassing all the 7 parameters), we refer to it as SAT-4.1 

4.1.2. Early Model: Reflex-agent Foraging Algorithm (AT-5) 

This foraging algorithm (AT-5) kept the main aspects of the previous algorithms (SAT-
4.3 and SAT-4.1, presented in the previous section), however without the internal state 
variables and the input parameters related to them (Figure 4.5). Another key difference 
from the previous models is that the speed modulator is no longer linear, but controlled 
by a sigmoid function. A few versions of sigmoid controllers were tested - taking from 1 to 
4 controller parameters (plus the variable with light/attractant intensity), resulting in 
more or less flexible sigmoid curves. The function with 2 optimizable input parameters 
was chosen for this and the subsequent experiments. 

Foraging Algorithm AT-5 was used in four series of experiments (Series D, E, F, and G). 
The main aspects of it will be covered along the next lines, and the results of the above-
mentioned series of experiments will be covered in Section 4.3. 

The foraging algorithm inspired by C. elegans chemotaxis is composed of two key 
behaviours: runs and turns, controlled by a set of five parameters (g1:5), also referred to in 
this work as the ‘DNA’, being: Base Probability of Turning (BaseProb: g1), Probability 
Multiplier (PMult: g2), Variability of Angle (VarAngle: g3), Speed Sigmoid Controller 𝛼 
(Sig𝛼: g4) and Speed Sigmoid Controller 𝛽 (Sig𝛽: g5) (Table 4.2). 

Table 4.2 Set of input parameters (genome) for the C. elegans' bio-inspired minimalist algorithm 
AT-5 

GENE PARAMETER APPLICATION 

g1 BaseProb Sets the base probability of turning, in the absence of any change in sensed light level 

g2 PMult Sets the multiplier (divisor) of the base turning probability when light decreases (increases) 

g3 VarAngle Controls the variability of the angle of a turn; 

g4 Sigα Sets the steepness of the sigmoid curve that controls speed according to the sensor reading 

g5 Sigβ Defines the offset of the sigmoid curve that controls speed according to the sensor reading 

 

At each time step, an agent adjusts its speed and turn probability according to its sensor 
reading and possibly makes a turn. The agent’s battery level is updated according to the 



- 69 - 

light level it is currently exposed to (iin), as well as how much was spent on moving (iout) 
and running basic systems (iBMR): 

𝐵𝑎𝑡$
% = 𝐵𝑎𝑡$−1

% + (𝐿𝑖𝑔ℎ𝑡$
[-,/] × 𝑖max

34 ) − 𝑆𝑝𝑒𝑒𝑑$
% × 𝑖max

:;$ − 𝑖<=%   [4.1] 

Also at each time step, the simulation program updates robots’ positions, checks for 
extinguished light spots (replacing them with new ones if necessary) and checks which 
robots are ‘alive’ – a robot permanently ‘dies’ if its battery is depleted. 

The reasoning process on each time step (t) starts when the agent acquires the sensor 
reading (𝑆𝑒𝑛𝑠𝑉𝑎𝑙$%) for light intensity (Light) at its current position [x,y]. The sensor 
reading (𝑆𝑒𝑛𝑠𝑉𝑎𝑙$%) is obtained from the actual amount of Light available in the Robot’s 
position, added by a uniform random number between 0 and 1 (RandNum) scaled to the 
sensor noise (Equation 4.2). ∆𝑆𝑒𝑛𝑠𝑉𝑎𝑙$% is then obtained from the current and previous 
sensor readings in order to calculate the probability of the robot to turn (𝑃𝑇𝑢𝑟𝑛$

%) 
(Equation 4.3). 

𝑆𝑒𝑛𝑠𝑉𝑎𝑙$% =  𝐿𝑖𝑔ℎ𝑡$
[-,/] + 𝑅𝑎𝑛𝑑𝑁𝑢𝑚 ×  𝑆𝑒𝑛𝑠𝑁𝑜𝑖𝑠𝑒  [4.2] 

∆𝑆𝑒𝑛𝑠𝑉𝑎𝑙$% = 𝑆𝑒𝑛𝑠𝑉𝑎𝑙$% − 𝑆𝑒𝑛𝑠𝑉𝑎𝑙$−1
%   [4.3] 

If ∆𝑆𝑒𝑛𝑠𝑉𝑎𝑙$% is sufficiently positive, 𝑃𝑇𝑢𝑟𝑛$
% decreases, whereas if it is sufficiently 

negative, 𝑃𝑇𝑢𝑟𝑛$
% increases. If the current and previous values are approximately equal, 

𝑃𝑇𝑢𝑟𝑛$
% maintains the value of BaseProb (Figure 4.5). 

Once 𝑃𝑇𝑢𝑟𝑛$
% is set, a random number (0 to 1, uniform) is generated and, if it is less 

than or equal to 𝑃𝑇𝑢𝑟𝑛$
%, the robot will perform a turn (Figure 4.5). When performing a 

turn, the yaw (Δθ) will be calculated using another uniform random number between -1 
and 1 (RandNum), according to Equation 4.4. 

∆𝜃$
% = 180° + (𝑉𝑎𝑟𝐴𝑛𝑔𝑙𝑒 ×  𝑅𝑎𝑛𝑑𝑁𝑢𝑚)  [4.4] 

Also, speed is modulated by an inverse logistic function, controlled by the combination of 
the current sensor reading and the input parameters Sig𝛼 and Sig𝛽, according to Equation 
4.5. 

𝑆𝑝𝑒𝑒𝑑$
% = 1 −  1

1+(N
OPQR× (OSTUVWXY

Z−OPQ[)
)
 ×  𝑉{\]-}  [4.5] 

As the behaviour of the agent is modulated without reference to any internal state 
variables, this is classified as a reflex-agent model. 
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Figure 4.5 Diagram of the reasoning process on Foraging Algorithm AT-5. 

4.2. Methodological Developments in Simulation Design 

This section covers an overview of the methods and techniques designed for the 
realization of the experiments with the C. elegans-based foraging algorithms. The 
mechanics of the Simulation Platform, as well as the tested environments and the robotic 
hardware simulated, will be explained. 

Simulated environments capable of recreating key aspects of the real world play an 
important role in reducing costs and time spent on the development of robotic 
applications. At the same time, these platforms also permit rigid control and isolation of 
variables, as well as robust performance measurements132. 

The initial plan proposed the simulation and evolution of bio-inspired robot lineages with 
the use of Evolutionary Algorithms for Optimisation (EAs). The settings for EAs, as well 
as the number of generations and of individuals per generation, may vary according to 
the complexity of the problem and to the number of costs and input parameters. As it 
turns out, for the complexity of the Foraging Algorithms developed during the course of 
this research, a single optimisation for each environment required from 8,000 to 30,000 
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function calls (section 4.3). Hence, the simulation of the foraging algorithms in more 
complex platforms (ie: Gazebo, v-rep, ARGoS) has proven impractical as some of these 
use excessive computational resources and time for the simulation of physical aspects 
(secondary to the present work), being unable to provide the necessary performance in 
the steps implementation, calibration and optimization of the models. 

Thus, it was necessary to develop a specific platform for the implementation of algorithms 
and for simulating and evolving artificial intelligence agents in different scenarios. The 
simulation platform was developed allocating the maximum amount of computational 
resources in the simulation and evaluation, whereas implementing aspects related to 
physics, locomotion and control motor in a simplified way. 

The computational processing time could not be estimated with precision at the 
beginning of the work, considering that it is proportional to several factors such as 
hardware and software performance and the complexity of simulation and optimization. 
The simulation increases in complexity according to the scenario, number of agents, 
virtual time and calculations performed by the [reasoning] algorithm. Similarly, the time 
taken by each optimization cycle varies mainly as a function of the optimization 
algorithm and the number of input variables and goals. 

The program I developed using Matlab is capable of: 

- Creating, storing and simulating simple environments (2D fields with attractant 
and/or repellent sources); 

- Generating, distributing and storing states and variables of virtual robots 
(simulation agents); 

- Allowing the implementation of other foraging algorithms; 
allowing multi-parameter optimisation by inputting parameters and outputting 
costs (as well as other results); 

- Allowing a rigid control of the conditions of the environments, what is essential 
for the optimisation; 

- Connecting to any Optimisation program compatible with Matlab. 

4.2.1. Simulation Platform and Virtual Environments 

The simulated environments consist of squared fields of variable size (user input), 
supplied with attractant or attractant combined with repellent light spots. The light 
spots are shaped as Gaussian Bells and spread from centre to radius (Figure 4.6). The 
position, intensity and duration of each light spot is randomly generated according to 
environmental settings: x and y limits, minimum and maximum intensity, minimum 
and maximum duration. Their number, position, intensity and duration are unknown by 
the robots. Attractant light sources are the only resource available for recharging the 
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robot’s batteries, and repellent sources (if existing) cause damage to the robot and deplete 
their batteries. Failing the purpose to find attractant sources, or contracting too much 
damage, results on the “death” of the agent. A conceptual representation of the 
simulations can be seen in Figure 4.6. 

 

 

 

Figure 4.6 Conceptual sketch of the elements of the simulation. 

Left: field with attractants only. Right: field with attractants and repellents. Illustration 
purposes only. 

A constant number of light spots are placed in the field, in randomly assigned positions, 
and each one has a specific intensity and duration parameters. In environments with 
attractant and repellent sources, the repellent sources are clustered around the 
attractants, thus forcing a trade-off (Figure 4.6). 

Each simulation runs during a virtual time T. In the beginning, a number of robots (Rn), 
with the same parameter setting (genome), are placed in random positions on the 
simulation field. There is no interaction between the robots and the purpose of running 
the simulation with a population of “clones” is to increase the sampling for each 
parameter setting (Figure 4.7). 

Each robot of the simulation is equipped with a single light sensor that is only capable of 
measuring the intensity of light in the exact spot the robot is. In the implemented 
simulation, light is the only resource available to recharge the robot’s batteries. In terms 
of movement, the robots are only limited by the maximum speed, moving in all directions 
and capable of performing turns from 0 to 360 degrees. The field boundaries are wrapped, 
therefore eliminating the need to manage obstacles. 

The refined model of objectives and costs evaluate the robots for accomplishing three 
objectives: 

- Remaining alive for the longest time possible; 
- Store as much energy as possible in their batteries up to the end of the 

simulation; 
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- Explore the maximum area of the field. For optimisation purposes, the 
battery limit has been disabled (to increase the resolution of Objective 2). 

The performance of each DNA is assessed according to 3 objectives, outputted in the 
form of Cost variables at the end. 

 

Figure 4.7 Dynamics of Robots (pink dots) and Lights (white glowing spots) in an example 
simulation. 

The level of difficulty of each environment was assessed by the Light Index - a method 
created to calculate the overall light available in a simulation. The Light Index consists of 
the total light available in the field, averaged over time and space. The Light Index is a 
measure of the density of light in a certain environment over time. For environments with 
attractants and repellents, the light index is calculated separately for each stimuli. 
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4.2.1.1. Environments with Attractants Only (experiment 
Series G and H) 

For the set of experiments with algorithms AT-5 (Sections 4.1.2) and AT-6 (Chapter 6), 
on environments with attractants only, all the environments were supplied with 6 light 
spots of radius 5m, lasting 1 to 3 hours each. When a light spot reaches its duration limit, 
it disappears from the field, being instantly replaced by a new one, with new random 
parameters of position, intensity and duration. Low intensities of light may not be enough 
to provide energy at the same rate as the battery is consumed, even when the robots are 
not moving (i.e. intensity below 20%). Some of the light spots will then become traps for 
the robots and it is expected that their genomes will evolve to avoid them. For this 
reason, environments with average or poor availability of resources may offer an extra 
challenge for the robots when compared to the ones rich in resources. 

4.2.1.2. Environments with Clustered Attractants and 
Repellents (experiment Series I) 

For the set of experiments with algorithm ATRP-8 (Chapter 7), in environments with 
attractants and repellents, all environments were supplied with 6 light clusters with one 
attractant source in the centre and ten repellent sources circling it. The radius of the 
attractant is 5m, and the radius of the repellents is 1.8m. This was found to be the 
optimum radius as due to the nature of the Gaussian curves used, for both attractants 
and repellents, any larger diameter of repellent could still affect even the most successful 
robots which found the centre of the attractant. The distance of the repellents from the 
centre of the cluster (and also the centre of the attractant) varies randomly between 7m 
and 10m. Each cluster lasts for a random period of time between 1 and 3 hours. 

When a light spot reaches its duration limit, it disappears from the field, being instantly 
replaced by a new one, with new random parameters of position, intensity and duration 
(Figure 4.7). Low intensities of light may not be enough to provide energy at the same 
rate as the battery is consumed, even when the robots are stationary (i.e. intensity below 
20%). Some of the light spots will then become traps for the robots and it is expected 
that their genomes will evolve to avoid them. For this reason, environments with average 
or poor availability of resources may offer an extra challenge for the robots when 
compared to the ones rich in resources. 

Repellent sources also have a Gaussian or bell curve shape and are clustered around 
Attractants. The intensity of these sources is proportional to the attractant which they 
surround, therefore the stronger the attractant the stronger the repellent which surrounds 
it. Repellent sources are harmful and drain the robot’s battery, each unit of repellent 
causes 40 times more damage to the battery than an attractant of the same intensity 
would be able to charge it. 
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4.2.1.3. Environments with Clustered Attractants and Repellents 
with  varying intensity (experiment Series J) 

These environments are a variation of the environments presented in the previous section 
(regular Environments with Clustered Attractants and Repellents) and were used in the 
experiments with algorithm ATRP-7 (Chapter 8). In these environments, the intensity of 
the attractants (AT) and repellents (RP) was individually modulated, resulting in 4 
environment variations, presented in Table 4.3. 

Table 4.3 Four environment variations of MA with Clustered Attractants and Repellents, with 
varying intensity. 

ENVIRONMENT 
Intensity of Attractants Intensity of Repellents 

Field Size & Quality Intensity AT-RP 

MA 
(225-avg) 

ar [1 1] 1x 1x 

Ar [5 1] 5x 1x 

AR [5 5] 5x 5x 

aR [1 5] 1x 5x 
 

4.2.1.4. Virtual Robots’ Hardware 

The foraging algorithm is embedded as the behavioural module of a virtual agent (robot), 
capable of moving freely around a field in which light sources are placed. 

As the simulation is grounded on real hardware specifications, systems running the robot 
depend on energy stored in the battery. During each time step, the battery is consumed 
by a fixed amount taken to keep the sensing and processing hardware functioning (Basal 
Metabolic Rate), and a typically larger amount proportional to the speed at which the 
robot is moving. 

The robots’ batteries would be recharged by attractant light sources, and depleted 
according to their exposure to repellents. The maximum level a repellent will drain is 
40A. 

Both attractant and repellent sources are detected by a single sensor each, and as a way 
to keep the model realistic, that sensor is not 100% precise, hence every reading is 
impacted by a random value representing the sensor noise. In the experiment series A-J, 
three values of sensor noise were tested: 1%, 0.5% and 0% (no noise). 

The initial charge of the robots’ batteries varied in different experiment series (100%, 
40%, or 20%), as well as the cost for running all basic systems, that was initially set to 
0.2A, and later adjusted to 0.1A.  
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Any robot with enough energy to keep its hardware running is counted as alive; this 
status is changed to dead as the battery level reaches zero. Once dead, a robot will not 
perform any movement, or absorb energy to recharge its battery until the end of the 
simulation. 

Table 4.4 List of robot parameters, their respective functions and standard simulation values 
ROBOT PARAMETER UNIT APPLICATION 

𝑉max  m/s Maximum locomotion velocity 

𝑖max
34  amps (A) Optimum solar current 

𝑖max
:;$  amps (A) Motor draw at maximum power 

𝐵𝑀𝑅 amps (A) Basal Metabolic Rate: cost of running systems when not moving 

𝐵𝑎𝑡max  Ah Battery capacity 

𝐵𝑎𝑡𝐶ℎ𝑎𝑟𝑔𝑒 % Initial battery charge 

𝑆𝑒𝑛𝑠𝑁𝑜𝑖𝑠𝑒 % Sensor Noise 
 

For the set of experiments presented, the hardware settings of all the robots were kept 
the same: the battery capacity is 6Ah, the optimum input current is 1A and the 
maximum output (motor current) is 1.4A. 

The virtual robots are capable of moving forward at variable speed and turning to any 
direction (0-360˚), and are equipped with a single light sensor, a battery, and a solar 
panel. Aiming at future application on physical platforms, all the robot’s parameters are 
grounded in real hardware (Table 4.4). 

4.3. Methodological Developments in Optimisation and 
Genetic Analysis 

This section will describe the early experiments and advances leading to the definition of: 

- The techniques for adapting the algorithms and the simulation program to the 
optimisation with evolutionary algorithms; 

- The optimisation problem; 
- Best suited EAs for the optimisation problem; 
- Techniques for evaluating the performance of the robots in order to compose a 

model of objectives (and costs) to be optimised. 
- Environmental settings that would be different enough to give rise to genetic 

variability in the solutions; 
- Methods, tools and techniques to preserve and identify genetic variability among 

the solutions evolved; 
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4.3.1. Multiparameter Optimisation with Evolutionary 
Algorithms 

The initial attempts to utilise Evolutionary Algorithms (EAs) to optimise the input 
parameters of the Foraging Algorithms developed in the present work occurred in Series 
A and B. Besides the Foraging Algorithm and the Simulation Framework developed by 
the author, these experiments also utilised a program to perform optimisation with EAs 
developed by the author. From Series C to J, the program to optimise with EAs was 
replaced by an open-source program named FEX-GODLIKEf, that offered more flexibility 
and control over the optimisation settings. Some initial modifications were made to the 
original code of the program in order to allow more experimental data to be collected. 
This improved version was the same used for all the experiments after Series G. 

A more stable experimental design could only be achieved after experiment series E and 
F, which broadly explored the limits of the algorithm regarding the range of parameters 
and costs, field area and quality of resources available, as well as simulation and robot 
settings, such as Time Step Size, duration of the simulation, battery size and initial 
charge. 

4.3.2. Foraging Algorithms and Models of Cost 

Series A-C tested a state-based version of C. elegans Foraging Algorithm, SAT-4.1, with 
5 parameters (Tables 4.5, 4.6, and 4.7). In this beta version, the behaviour of the robot 
would be controlled by the 5 input parameters, and dependant on its internal state and 
on the conditions of the environment. Depending on the charging status of the robot’s 
battery they would lay an egg (representing the execution of a task, as explained in 
Section 4.1.1). Also, depending on how low their battery charging level was, their foraging 
behaviour would be modified. This algorithm is explained in depth on the Section 4.1.1. 
Also, for these experiments, the objectives of the optimisation were combined in a single 
Fitness Function (FF), that outputs a single number encompassing the following: number 
of living robots at the end of the simulation; total energy collected and stored by the 
remaining living robots, and the number of eggs laid during the simulation. Three 
different combinations and calculation methods for each of these values were tested over 
series A to C. Having a unique Fitness Function speeds up the optimisation process, 
however, it might force premature decisions about the importance of each objective in 
relation to the others and will sometimes lead to optimisations. Also, having a single FF 

 

f FEX-GODLIKE is available at <https://github.com/rodyo/FEX-GODLIKE>. Copyright © 
2018, Rody Oldenhuis. Copyright © 2006, Joachim Vandekerckhove. All rights reserved. 
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makes it infeasible to decompose the fitness value and to analyse its components 
separately afterwards. 

Series D-G tested a reflex-agent foraging algorithm, AT-5, with 5 input parameters. 
Unlike SAT-4.1, the decision process of the robots running the algorithm is based only on 
the conditions of the environment, ignoring any internal state. In this new simulation 
model, the robotic agents are no longer set to “lay eggs” (representing the execution of a 
task), but instead evaluated by the amount of energy that they collected over the course 
of the simulation. Another key difference of that series compared to previous series was 
that instead of a single Fitness Function summarizing many metrics, the parameters were 
optimised for independent objectives. On Series D, four objectives were evaluated: 
number of individuals alive at the end of the simulation; total of energy collected; total 
remaining energy at the end of the simulation; and total energy spent. On Series E and F, 
three objectives were optimised: number of individuals alive at the end of the simulation; 
remaining energy stored in the robots’ batteries; and the area of the field explored by the 
robots. On Series G-J, a new and definitive set of three objectives was optimised: the 
survival rate of the robots in all the time steps; the remaining energy in the robots’ 
batteries at the end of the simulation; and the ratio of the area of the field explored by 
the robots. The experiments from series G-J test four different Foraging Algorithms (AT-
5, AT-6, ATRP-8, and ATRP-7, respectively), but utilise the same model of costs, and 
the results are therefore comparable. 

4.3.3. Experiment Series A, B, and C (Foraging Algorithm 
SAT-4.1)  

In Series of experiments A, B, and C, eight Field Sizes (100, 140, 150, 170, 175, 200, 225, 
and 250) and two variations of resource quality (Rich and Average) were tested. In terms 
of optimisation, two EAs were implemented into two programs, then evaluated, as 
described earlier in this chapter. The experiments were an attempt to test the basic 
functioning of the simulation framework and of the heuristics model. 

In experiment series A, the optimisation for Environments 100R, 170R and 140A resulted 
in very similar Costs (Table 4.5). Also, contrary to expectations, the minimised cost for 
140R was lower than that of 100R. These results raised questions about the quality of the 
EA chosen for the optimisation (DE), the implementation of the EA itself, as well as of 
the methods for calculating Fitness. 
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Table 4.5 Results of experiment Series A. Minimised Cost was obtained from the Fitness 
Function. 
Column “Number of Function Evaluations” indicates the number of runs. 

OPTIMISATION SIM. ROBOT ENVIRONMENT 
Number of Function 

Evaluations 
Minimised 

Cost 
EA Pool Size 

Time 
Step 

Sensor 
Noise 

Field 
Size 

Quality of 
Resources 

DE 100 20 1% 

100 

R 

10,200 183.8 

140 12,720 137.7 

170 10,320 186.6 

140 A 10,920 183.8 

     TOTAL: 33,240  
 

 

Table 4.6 Results of experiment Series B. Minimised Cost was obtained from the Fitness 
Function. 
Results highlighted in red represent issues on Fitness Estimation and conversion to Cost. 
Absent results (represented with a Dash) indicate simulations that crashed. 

OPTIMISATION SIM. ROBOT ENVIRONMENT 
Number of Function 

Evaluations Minimised Cost 
EA Pool Size Time 

Step 
Sensor 
Noise 

Field 
Size 

Quality of 
Resources 

GA 100 20 1% 

100 

R 

6,700 108.1 
150 9,500 145.7 
175 5,300 198.0 
200 8,200 4,781.3 
225 7,000 447.8 
250 13,200 618.9 

GA 100 20 1% 

100 

A 

12,120 132.4 
150 12,000 191.2 
175 10,320 362.0 
200 14,400 99,620,260,807.1 
225 9,700 99,616,434,374.0 
250 - - 

     TOTAL: 108,440  
 

 

A new series of experiments (Series B) was conducted after a few corrections in the 
simulation program and on some methods of estimating costs, as well as the 
implementation of a different EA (GA). Overall, the results for most of the environments 
appeared to have improved, there was a clearer variation of costs according to the size of 
the environment and the quality of resources available, as was expected (Table 4.6). A 
major issue with some of the optimisation results appeared in 200R, 200A, and on 225A, 
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highly discrepant costs from the rest of the environments tested presented, despite their 
number of function calls being similar to the others (Table 4.6). 

In experiment series C a new program for Optimisation with EAs was tested (FEX-
GODLIKE) and since GA seemed to have provided good results on Series B, the same 
EA was maintained in series C. The issues resulting in costs out of the expected range in 
experiment series B were also identified and fixed. The results obtained in Series C 
seemed to be compatible with the variation in size and resource quality of the 
environments (Table 4.7). The new optimisation program used in series C also seemed to 
be quicker and more robust than that tested in Series A and B and was used on the 
experiment series to come. 

Table 4.7 Results of experiment Series C. Minimised Cost was obtained from the Fitness 
Function. 

OPTIMISATION SIM. ROBOT ENVIRONMENT 
Number of Function 

Evaluations 
Minimised 

Cost EA Pool Size 
Time 
Step 

Sensor 
Noise 

Field 
Size 

Quality of 
Resources 

GA 100 20 1% 

150 

R 

5,400 566.9 

175 8,900 585.2 

200 6,900 654.0 

225 12,400 807.1 

250 7,400 858.5 

GA 100 20 1% 

150 

A 

7,400 655.1 

175 10,500 774.9 

200 7,700 890.2 
     TOTAL: 66,600  

 

 

4.3.4. Experiment Series E and F (Foraging Algorithm AT-5) 

These series of experiments contributed for: 

- The definition of the best suited EAs for the optimisation problem, through a 
comparison between three classic EAs: Genetic Algorithms, Differential 
Evolution, and Particle Swarm Optimisation; 

- The calibration of the parameters to control the EAs, as well as general 
optimisation parameters such as stopping criteria and boundaries.  

- The definition of standard environment sizes and availability of resources; 
- The definition of simulation settings, such as the Time Step. 

4.3.4.1. Experiment Series E: Subsets E1 and E2 
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These experimental sub-sets aimed at finding the best suited Evolutionary Algorithms 
and parameter settings for this particular problem. Regarding the Simulated 
Environments, three field sizes were tested (150, 250, and 280), and two levels of 
Resource Quality: Rich and Average. In terms of Optimisation settings, three EAs were 
tested: Genetic Algorithm (GA), Differential Evolution (DE), and Particle Swarm 
Optimisation (PSO). Different Pool Sizes (the total number of individuals composing each 
generation) were also tested, being: 100, 200, 400, and 800 (Tables 4.8 and 4.9). 

For comparison's sake I made adjustments to the following parameters: 

- For Field Size 150 Rich in resources, I tested 2 Pool Size settings: 100 and 200. 
For each Pool Size number. 

- For Field Size 250, I tested both Rich and Average resource qualities, both with 
a Pool Size 200. For each resource quality setting, 

- For Field Size 250 with Average resource quality, I tested three Pool Sizes: 100, 
200, and 400. For each Pool Size. 

- For Field Size 280 and a Pool Size 200, I tested both Rich and Average resource 
quality parameters. For each resource quality setting. 

- For every combination between Field Size, Resource Quality, and Pool Size, all 3 
EAs (GA, DE, PSO) were tested 

This allowed me to gain a better understanding of the range of costs and the limits of the 
application of C. elegans’ inspired Behavioural Algorithm regarding the area and resource 
availability. 

More tests were performed in Environment 250A than in the other environments, since it 
had an average size and resource quality and the results were expected to be extrapolated 
to both easier and harder environments. 

In Experiment Series E - Subset E1, three Field Sizes were tested (150, 250, and 280), 
and two Quality of Resources (Rich and Average). For some variations of environments, 
different Pool Sizes were also tested (100, 200, and 400). For each combination of 
environment type and Pool Size, all three EAs were tested (GA, DE, and PSO). A 
compilation of the experiments in Subset E1 is presented in Table 4.8. 

All the optimisation cycles for Field Size 150 with Rich quality resources resulted in Cost 
1 minimised to zero. 
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Table 4.8 Compilation of experiments (Series E, Subset E1) with different parameter settings 
for optimisation with EAs 

ENVIRONMENT OPTIMISATION Number of 
Function 

Evaluations 

Minimised 
Cost 1 

Minimised 
Cost 2 

Minimised 
Cost 3 Field 

Size 
Quality of 
Resources 

Pool Size EA 

150 R 

100 

GA 33,397 0.000 0.997 0.967 

DE 31,690 0.000 0.997 0.967 

PSO 4,003 0.000 0.998 0.967 

200 

GA 33,398 0.000 0.997 0.967 

DE 32,063 0.000 0.997 0.967 

PSO 8,604 0.000 0.998 0.967 

250 

R 200 

GA 33,400 0.022 0.998 0.954 

DE 32,513 0.034 0.999 0.944 

PSO 4,007 0.147 0.999 0.944 

A 100 

GA 33,398 0.183 1.000 0.944 

DE 29,353 0.196 1.000 0.944 

PSO 2,237 0.459 1.000 0.944 

A 200 

GA 33,399 0.198 1.000 0.944 

DE 30,867 0.163 0.999 0.944 

PSO 3,185 0.352 1.000 0.944 

A 400 

GA 33,599 0.189 1.000 0.944 

DE - - - - 

PSO 10,355 0.300 1.000 0.944 

280 

R 200 

GA 33,400 0.138 0.999 0.944 

DE 4,856 0.159 0.999 0.935 

PSO 3,604 0.359 1.000 0.936 

A 200 

GA 33,400 0.381 0.999 0.935 

DE 32,383 0.349 1.000 0.935 

PSO 3,281 0.596 1.000 0.936 

TOTAL: 500,392    
 

As can be seen in Table 4.8 and Fig. 4.8, 4.9, and 4.10, in all of the environments (except 
the ones with Field Size 150), optimisations with PSO converged too early, achieving 
worse results than the other EAs tested. Two instances for comparison of the three EAs 
in identical environmental conditions and Pool Size settings can be seen in detail in Fig. 
4.9 and 4.10. In both, PSO converged much earlier, while GA and DE achieved very 
similar results. 

In light of the variance of the results achieved between GA and DE compared to PSO, it 
was decided that as a further experiment with PSO using a larger Pool Size would be 
tested. 

Experiment Series E - Subset E2 extended the previous investigation (Subset E1) by 
adding an extra Field Size (320), to explore the limits of the Foraging Algorithm and by 
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testing a Pool Size of 800 for PSO, as in the previous Series (E2), most of the 
Optimisations with PSO seemed to have converged early. 

As the Optimisation with EAs is stochastic, in this Series, I also aimed at validating the 
consistency of the results obtained on each optimisation cycle by running replicas of the 
optimisation cycles. The comparison between two different optimisation cycles under 
identical environmental and optimisation parameter settings also shed light on possible 
stochasticity artefacts, as well as on the importance of tuning the optimisation 
parameters to the best possible settings for the next experimental steps. The results of 
Subset E2 are presented in Table 4.9. 

Further comparisons may also be drawn between the following variations: 

- For Field Size 150 Rich in resources optimising with DE with Pool Size 100, I 
ran 2 independent optimisation cycles (with different random seeds). 

- For Field Size 250 Average in resources optimising with GA with Pool Size 100, 
I ran 2 independent optimisation cycles (with different random seeds). 

- For Field Size 280 Rich optimised with PSO, I compared three Pool Sizes: 200, 
400, and 800. 

- For the new Field Size 320 Rich optimised with GA, I compared two Pool Sizes: 
100, and 200. Another instance of Field Size 320 with Average resource quality 
was also optimised by using PSO. 

- PSO was tested on the optimisation for three different Field Sizes (250, 280, 
320), all with Pool Size 400. 
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Table 4.9 Compilation of experiments (Series E, Subset E2) with different parameter settings 
for optimisation with EAs. Lines shaded in grey indicate results from previous subsets, 
presented again for comparison. 

ENVIRONMENT OPTIMISATION Number of 
Function 

Evaluations 

Minimised 
Cost 1 

Minimised 
Cost 2 

Minimised 
Cost 3 Field 

Size 
Quality of 
Resources 

Pool Size EA 

150 R 100 DE 
31,690 0.000 0.997 0.967 

30,839 0.000 0.997 0.967 

250 A 100 GA 
33,398 0.183 1.000 0.944 

33,399 0.547 1.000 0.997 

320 R 
100 

GA 
33,391 0.317 1.000 0.927 

200 33,397 0.296 1.000 0.927 

280 R 

200 

PSO 

3,604 0.359 1.000 0.936 

400 - - - - 

800 20,471 0.313 1.000 0.935 

250 
A 400 PSO 

10,355 0.300 1.000 0.944 

320 8,145 0.661 1.000 0.929 

TOTAL: 238,689    
 

Results and Discussion 

Increasing the Pool Size for PSO seemed to have slightly improved the minimum cost 
achieved by it for this particular problem. In 250A, it improved from ~0.459 to ~0.352 
and ~0.300 (pool size 100, 200, and 400, respectively). However, even with this 
improvement, the quality of results was still not satisfactory when compared with the 
other EAs tested (GA and DE, that achieved ~0.183 and ~0.163, respectively). As can be 
seen in Figure 4.8, both of the PSO optimisations for Environment 280R converged too 
early - after 18 (light blue line) and 25 (navy blue line) generations. 

Optimisations with GA and DE achieved the best results of the three EAs (Fig. 4.8, 4.9, 
4.10, and 4.11), and in most of these cases, both GA and DE ran for a similar number of 
generations. However, it came to our attention that in one of these cases (280R), DE 
achieved very similar results to GA after only 25 generations (Figure 4.11). This specific 
optimisation with DE had to be interrupted earlier due to hardware restrictions. 
However, as the DE algorithm achieved good results, even in such a short span of 
generations, it was decided that the matter should be further investigated. 

Regarding GA, an interesting fact was noticed in the comparison of optimisation cycles 
for Environment 250A (Figure 4.12) in which two highly discrepant results were found for 
optimisations using Pool Size 100: while one of the optimisations minimised Cost 1 to 
~0.183 (orange line), another instance only minimised it to ~0.546 (yellow line). This is 
likely due to the local minima problem. One of the factors contributing to this might be 
that the individuals of the first generation did not acquire a broad enough sample of the 
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solution space as the minimum Cost 1 for this generation is ~0.790 (yellow line) - a value 
much higher than the ~0.658 found in the other optimisation (orange line), and that those 
found by the other optimisation cycles in the same environment, but with different pool 
sizes: ~0.552 (green line), and ~0.503 (blue line). This was a one-time event in all the 
experiments. 

 

Figure 4.8 Comparison of optimisation cycles for environments of Field Size 250 with Average 
resource quality, optimised with GA, DE, and PSO, using a Pool Sizes of 100, 200, and 400. 

 

Figure 4.9 One instance of the experiments presented in Table 6.1: comparison of the minimisation 
of Cost 1 across Generations in 3 Evolutionary Algorithms (GA, DE, and PSO) using a Pool 
Size of 100 in the same environment (Field Size 250 with Average resource quality). 
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Figure 4.10 One instance of the experiments presented in Table 4.8: comparison of the minimisation 
of Cost 1 across Generations in 3 Evolutionary Algorithms (GA, DE, and PSO) using a Pool 
Size of 200 in the same environment (Field Size 250 with Average resource quality). 

 

Figure 4.11 Comparison of optimisation cycles for environments of Field Size 280 with Rich resource 
quality, optimised with GA, DE, and PSO, using mixed Pool Sizes of 100, 200, and 800. 
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Figure 4.12 Comparison of optimisation cycles for environments of Field Size 250 with Average 
resource quality, optimised with GA, using Pool Sizes of 100, 200, 400. 

4.3.4.2. Experiment Series E, Subset E3 

In this subset of experiments I intended to compare different Field Sizes and investigate 
the limits of the environmental models - to find the most challenging environments for 
the robots to attempt and evolve within. A compilation of the tests and results is 
presented in Table 4.10. 
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Table 4.10 Compilation of experiments (Series E - Subset E3) with varying Environment 
parameters and constant optimisation with EAs. 
Lines shaded in grey indicate results from previous subsets, presented again for 
comparison. 

OPTIMISATION ENVIRONMENT Number of 
Function 

Evaluations 

Minimised 
Cost 1 

Minimised 
Cost 2 

Minimised 
Cost 3 EA Pool Size 

Field 
Size 

Quality of 
Resources 

GA 100 

150 
R 33,397 0.000 0.997 0.967 

A 33,399 0.000 0.998 0.967 

200 
R 33,400 0.000 0.998 0.954 

A 33,397 0.035 0.999 0.954 

250 
R 33,400 0.022 0.998 0.954 

A 33,398 0.183 1.000 0.944 

280 
R 33,394 0.134 0.999 0.936 

A - - - - 

320 
R 33,391 0.317 1.000 0.927 

A 33,391 0.510 1.000 0.929 

TOTAL: 300,567  
 

Results and Discussion 

After running the experiments, it was noted that even in the most challenging 
environment tested, with Field Size 320 and Average Resource Quality (320 A), the 
optimisation still managed to minimise Cost 1 to 0.510 (Table 4.10, Figure 4.13). 

Furthermore, the results for environments of Field Size 150R, 200R, and 150A were very 
similar (Table 4.10). It was therefore decided to make the difference between 
Environments more noticeable, and to further explore the limits of the algorithm on 
prolonging the robots lifespan in more challenging environments. 

It was decided that within future experiments there would be only 3 variations of Field 
Size (Small, Medium, and Large), and that a new variation of Resource Quality would be 
tested, resulting in a total of 3 resource quality parameters: Rich, Average and Poor. 

As these experiments (Series E3) ran before the end of Series E2, and with the purpose of 
saving computational resources, a GA was used for the optimisation, this was comparable 
to series E1 and E2 as the majority of these series ran the GA. Furthermore as this series 
was run, before the E2 series completed, the superiority of DE was still unclear. For 
further experiments, though, DE was chosen as the EA to run the following optimisation 
cycles of the research, as it seemed capable of achieving better results faster than the 
other EAs tested. 
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Figure 4.13 Comparison of optimisation cycles for environments of Field Size 150, 200, 250, 280, 
and 320 with Rich resource quality, and 150, 200, 250, and 320 with Average resource quality. 
All of them were optimised with GA using a Pool Size of 100. 

4.3.4.3. Experiment series F 

Here I will cover the methods and results of experiment series F, that compared different 
values for Time Step Size. This series aimed at testing variations/disturbances in Costs 
occurred when running the simulation with different Time Step Size values, as well as 
detecting the limits of the Foraging Algorithm on the current simulation framework 
regarding the frequency in which the behavioural decisions are made.  

Time Step Size (TSS) is the minimum Unit of the Virtual Time. Virtual time is the 
amount of time passed in the simulation (which is different from the time the simulation 
actually takes to run on a computer). In the framework I built for my simulations, the 
value of the Time Step Size can be understood as the virtual time interval (in seconds) in 
which robots would engage in the decision process, the robots would run the algorithm to 
make decisions each time step. Time Step Size 1 would mean they make a decision every 
second; value 4, they would make a decision every 4 seconds; and value 0.5, every half a 
second. 

This experiment series was of particular importance because: Running a full cycle of 
optimisation would usually take about 30,000 function calls and at this point of the 
research, each full simulation from Series E would take no less than 30 seconds 
(considering 100 robots simulated on a medium-sized field during a virtual time of 24 
hours, with Time Step Size 20). The point of these experiments was to discover how 
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much would be compromised in the simulation results by using larger Time Step Sizes (as 
the simulation would lose “resolution” with higher values of Time Step Size). As it is an 
aim of this word that the code would be made available for other researchers, it seemed 
important to make sure the program would run on regular computers.  

Experiment Design, Results and Discussion 

Using the same models of environments and Costs of Series E, the best 80 DNAs evolved 
in each environment (of Series E) were used for the experiments of the present series. A 
total of 44 values of Time Step Size (ranging from 0.0001 to 7500) were tested in 1,335 
random variations of 2 environments: the first with Field Size 150 and Rich quality of 
resources (150R), and the second with Field Size 250 with Average quality of resources 
(250A). The Results obtained with each TSS were later compared to those obtained in 
the same environment using TSS 1 (which was considered to be the reference value for 
TSS) (Figure 4.14). The value Cost 3 is affected by both smaller and larger TSS, for two 
different reasons: as Cost 3 calculates how many spots on a field the robot has visited, so 
, naturally, with more time steps, the number of unique visited spots (with different x 
and y coordinates) is expected to increase, and so, in simulations with lower numbers of 
TSS, the number of spots visited will be naturally lower. For further versions of the 
program, the method for calculating Cost 3 has been improved to allow more fidelity in 
simulations in which the Time Step Size has been altered. 

An unexpected outcome of this Series of experiments was that it revealed an issue with 
the method of calculating Cost 2 (that became evident on the test results for environment 
250A). The issue was solved on further versions of the Simulation program. 

Time Steps of integer values up to 20 presented fairly accurate results for all the Costs, as 
the mean squared error was below 0.05 in all cases (after the issue with Cost 2 was 
sorted) (Figure 4.9). For Cost 1 only, regardless, it was decided that on further 
experiments Time Step Size 1 should be preferred over other alternatives whenever 
possible. During the realisation of Series E of experiments, several issues related to both 
hardware and software caused the optimisation cycles to crash and that resulted in the 
loss of data (as can be seen on Tables 4.6, 4.8, 4.9, and 4.10). In Series E, a full cycle of 
optimisation would take approximately 16 days, running in parallel on 9 computers (one 
for each environment). Within the following experiment series, some modules of the 
simulation and optimisation programs have been re-written, in order to export 
preliminary results and therefore prevent data loss. Some other modules have also been 
created for the program as to allow the re-starting of optimisations that crashed. 
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Figure 4.14 Comparison of results obtained with different Time Step Size values for Costs 1 to 3. 
The variation is measured in mean squared distance from the reference value (Time Step Size 
of value 1). 

Top: Results obtained for Environment 250A. The blue vertical line indicates TSS 1 (reference 
value). Bottom: Results obtained for Environment 150R; The values tested (x axis) were: 
0.0001, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 
3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 20, 25, 50, 75, 100, 250, 500, 750, 1000, 2500, 
5000, and 7500. 

4.3.5. Experiment Series G (Foraging Algorithm AT-5) 

In this series of experiments (Series G), the parameters of Algorithm AT-5 were 
optimised for 9 variations of environments: SR, MR, LR, SA, MA, LA, SP, MP, and LP. 
Robots running the Foraging Algorithm AT-5 were tested with three sensor noise 
settings: 1%, 0.5%, and no sensor noise (Table 4.11). 

The results obtained in all 9 environments were compared amongst each other, and to 
those obtained with three different sensor noise values: 
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- Value 1% is a realistic sensor noise value. 
- Value 0% (no sensor noise) was tested as a proof of concept for the Foraging 

Algorithm itself, given that no sensor noise would represent ideal conditions for a 
robot to operate, however that is not very realistic. 

- Value 0.5% was tested after the experiments with no sensor noise achieved 
outstanding results (in all the environments, the cost was reduced to zero), and 
aimed at providing a better comprehension of how the Foraging Algorithm was 
affected by different hardware conditions. 

To make the experiments viable in terms of the computation time required, the 
simulation program used on the previous experiment series had to be drastically 
remodelled. This remodelling involved changes on the format the data is stored 
(privileging tables), avoidance of For Loops whenever possible, pre-allocation of variables, 
interruption of the simulation in case all the robots die, and encapsulation of functions 
and operations related to the plotting and recording of the simulation. The optimisation 
of the code presented a considerable improvement in the computational time required for 
each simulation and the average time per function call dropped from 218 to 36 seconds 
(considering 100 robots/samples running with time step size 1). 

In this set of experiments, each optimisation cycle took between 1 and 25 days, and the 
optimisation for each environment ran in parallel on a different computer. As for this step 
18 computers were made available enabling me to run the optimisations for 1% and 0% 
noise in parallel and as some of the optimisations would finish earlier (usually the ones in 
more challenging environments). I also managed to run several replicas of the 
optimisation for some environments. At the end of this stage, the replicas with the best 
results were considered. 

The first batch of experiments evolved solutions for the 9 environments running in virtual 
robots which sensor noise was 1%. As a validation step for the algorithm itself, and for 
the hardware settings used in the virtual robots, a second batch of optimisation 
experiments ran in the same environment types, but with robots with sensor noise 0%. 
The results for this batch of experiments (9 environments and sensor noise 0%) exceeded 
expectations, and in all 9 environments, all 100 robots managed to complete the entire 
simulation time (24 virtual hours). 

As such a small sensor noise seemed to have changed the results so drastically, a third 
batch of optimisations tested robots with sensor noise 0.5% and the results of these three 
optimisation steps (with sensor noise 1%, 0.5%, and 0%) were compared (Table 4.11). 
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Table 4.11 Summary of the parameters and main results of the experiments in Series G, subset 
G.1: Optimisation of Foraging Algorithm AT-5 in 9 environments (SR, MR, LR, SA, MA, 
LA, SP, MP, and LP) with attractants only, for robots equipped with sensors with sensor 
noise of values 1%, 0.5%, and 0%. The Number of Function Evaluations indicates how 
many times the simulations ran.  

ROBOT ENVIRONMENT 
Number of 
Function 

Evaluations 
Minim. 
Cost 1 

Minim. 
Cost 2 

Minim. 
Cost 3 

Non- 
Dominated 
Solutions 

Density of 
Resources / 
Light Index 

(AT) 
Sensor 
Noise 

Quality of 
Resources 

Field 
Size 

1% 

R 
S 9,253 0.000 0.729 0.657 116 42.4716 
M 11,313 0.147 0.916 0.854 15 19.0452 
L 23,153 0.530 0.988 0.938 5 10.6179 

A 
S 13,445 0.179 0.943 0.725 39 27.3432 
M 31,946 0.634 0.996 0.911 28 12.2613 
L 32,097 0.696 0.999 0.957 18 6.8358 

P 
S 24,493 0.505 0.999 0.838 67 13.6716 
M 5,112 0.666 1.000 0.931 32 6.1306 
L 6,228 0.735 1.000 0.962 15 3.4179 

0.5% 

R 
S 33,219 0.000 0.683 0.639 48 42.4716 
M 32,852 0.029 0.847 0.841 57 19.0452 
L 30,413 0.386 0.972 0.925 8 10.6179 

A 
S 25,035 0.037 0.882 0.697 51 27.3432 
M 30,402 0.478 0.989 0.893 10 12.2613 
L 32,091 0.690 0.998 0.953 41 6.8358 

P 
S 20,016 0.504 0.999 0.842 68 13.6716 
M 3,240 0.697 1.000 0.932 10 6.1306 
L 1,143 0.817 1.000 0.964 5 3.4179 

0% 

R 
S 30,653 0.000 0.553 0.632 65 42.4716 
M 23,975 0.000 0.576 0.822 55 19.0452 
L 33,230 0.000 0.638 0.923 50 10.6179 

A 
S 33,183 0.000 0.716 0.648 37 27.3432 
M 33,139 0.000 0.771 0.845 46 12.2613 
L 53,570 0.000 0.622 0.888 51 6.8358 

P 
S 33,212 0.000 0.918 0.796 78 13.6716 
M 59,593 0.000 0.833 0.891 45 6.1306 
L 57,045 0.000 0.842 0.942 37 3.4179 

  TOTAL: 723,051      
 

For this series of experiments, the Robot’s hardware parameter maintained the same 
settings as in Table 4.12. The robots started the simulation with their batteries 40% 
charged. All the optimisations ran until one of the stopping criteria was reached, 
following the default parameters of the FEX-GODLIKE toolbox: 

- 105 function calls; 
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- diversity loss - if the individuals in a certain population evolved to be too similar 
to each other; 

- after 10 generations the cost did not reduce in more than 10-4. 

The results of the three main simulation sets (1%, 0%, and 0.5% Sensor Noise) will be 
presented separately, in the following sections. 

Table 4.12 List of robot parameters, their respective functions and standard simulation values 

ROBOT PARAMETER STANDARD 
VALUE APPLICATION 

𝑉max  0.5m/s Maximum locomotion velocity 

𝑖max
34  1.0A Optimum solar current 

𝑖max
:;$  1.4A Motor draw at maximum power 

𝐵𝑀𝑅 0.2A Basal Metabolic Rate: cost of running systems when not moving 

𝐵𝑎𝑡max  6Ah Battery capacity 

𝐵𝑎𝑡𝐶ℎ𝑎𝑟𝑔𝑒 40% Initial battery charge 
 

4.3.5.1. Experiments with Sensor Noise 1% 

In this set of optimisation cycles for AT-5, in which the robot sensor has 1% noise, the 
best minimised Cost 1 was found in SR, MR, SA, SP, LR, MA, MP, LA, and LP, 
respectively (Table 4.11, Figure 4.15). 

Optimisations MP and LP reached the stopping criteria of diversity loss early, after 21 
and 32 generations, compared to the others. 

When it comes to Cost 2, the environments in which the optimisation achieved the best 
minimised costs were, respectively: SR, MR, SA, LR, MA, LA, SP, MP, and LP (Figure 
4.16). Cost 2 seemed to be in general more sensitive to the quality of light available in the 
field, given that 3 of the 4 best minimised costs were achieved in rich environments, and 
3 of the 3 worst costs were found in environments with poor quality of resources. 

On Cost 3, the environments in which the optimisation achieved the best minimised cost 
were, respectively: SR, SA, SP, MR, MA, MP, LR, LA, and LP (Figure 4.17). Cost 3 
seem to be more sensitive to the size of the field, considering that 3 of the 3 best values 
were found on fields of size small, as well as 3 of the 3 worst results were found in 
environments of size large. As Cost 3 represents the percentage of the field explored by 
the robot, it seems natural that robots exploring smaller environments, even when these 
are more challenging, would do better than those on larger fields. 
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Figure 4.15 Cost 1 (J1) optimised for Behavioural Algorithm AT-5 and robots with sensor noise 1%, 
in 9 environments (SR, MR, LR, SA, MA, LA, SP, MP, and LP), with attractants only. 

 

 

Figure 4.16 Cost 2 (J2) optimised for Behavioural Algorithm AT-5 and robots with sensor noise 1%, 
in 9 environments (SR, MR, LR, SA, MA, LA, SP, MP, and LP), with attractants only. 
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Figure 4.17 Cost 3 (J3) optimised for Behavioural Algorithm AT-5 and robots with sensor noise 1%, 
in 9 environments (SR, MR, LR, SA, MA, LA, SP, MP, and LP), with attractants only. 

4.3.5.2. Experiments with Sensor Noise 0% (no noise) 

As a proof of concept, a version of the algorithm with sensor noise 0%, was deployed and 
optimised for the same set of environments. After only 7 generations, the individuals in 
all 9 environments reduced Cost 1 to zero, meaning that all the agents/robots in the 
simulation were able to discover the light spots quickly and to remain alive during the 
whole simulation (Figure 4.18). 

The best values of Cost 2 were found, respectively, on SR, MR, LA, LR, SA, MA, MP, 
LP, and SP. This sequence confirms the pattern identified in the experiments with Sensor 
Noise 1%, in which the quality of the sources is more important than the size of the field 
(Figure 4.19). 

As for Cost 3, the best values were found, respectively, on SR, SA, SP, MR, MA, LA, 
MP, LR, and LP. This result also confirms the observation that for Cost 3, the size of the 
field matters more than the quality of the resources (Figure 4.20). 
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Figure 4.18 Cost 1 (J1) optimised for Behavioural Algorithm AT-5 and robots with sensor noise 0%, 
in 9 environments (SR, MR, LR, SA, MA, LA, SP, MP, and LP), with attractants only. 

 

Figure 4.19 Cost 2 (J2) optimised for Behavioural Algorithm AT-5 and robots with sensor noise 0%, 
in 9 environments (SR, MR, LR, SA, MA, LA, SP, MP, and LP), with attractants only. 
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Figure 4.20 Cost 3 (J3) optimised for Behavioural Algorithm AT-5 and robots with sensor noise 0%, 
in 9 environments (SR, MR, LR, SA, MA, LA, SP, MP, and LP), with attractants only. 

 

4.3.5.3. Experiments with Sensor Noise 0.5% 

The best results for Cost 1 were found, respectively, on SR, MR, SA, LR, MA, SP, LA, 
MP, and LP (Figure 4.21). These results are mostly consistent with those of the 
experiments with Sensor Noise 1% (SR, MR, SA, SP, LR, MA, MP, LA, and LP), with 
the exception of SP, that improved, from the 6th to the 4th position.  

For Cost 2, the best results were found, respectively, on SR, MR, SA, LR, MA, LA, SP, 
MP, and LP (Figure 4.22). These results also confirm that the quality of the resources are 
more important than the size of the field for Cost 2. 

For Cost 3, the best results (minima) were found, respectively, on SR, SA, MR, SP, MA, 
LR, MP, LA, and LP (Figure 4.23). The results also indicate, as observed previously, that 
the size of the field seem to be more important than the quality of the resources for Cost 
3. 
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Figure 4.21 Cost 1 (J1) optimised for Behavioural Algorithm AT-5 and robots with sensor noise 0.5%, 
in 9 environments (SR, MR, LR, SA, MA, LA, SP, MP, and LP), with attractants only. 

 

 

Figure 4.22 Cost 2 (J2) optimised for Behavioural Algorithm AT-5 and robots with sensor noise 0.5%, 
in 9 environments (SR, MR, LR, SA, MA, LA, SP, MP, and LP), with attractants only. 
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Figure 4.23 - Cost 3 (J3) optimised for Behavioural Algorithm AT-5 and robots with sensor noise 
0.5%, in 9 environments (SR, MR, LR, SA, MA, LA, SP, MP, and LP), with attractants only. 

 

4.3.5.4. Genetic Analysis and Validation Experiments 

The optimisation results obtained in Series G also served as the calibration data for a 
new set of analytical methods proposed in this thesis. The techniques developed consist of 
a series of experiments to verify the validity of the experiments regarding the following 
aspects: 

- Level of difficulty of each environment as a validation method for the optimisation 
step; 

- Ability of the best individuals evolved in one instance of a certain environment 
(e.g.: MR with seed 5420) to survive in other instances of the same environment 
(e.g.: MR with different seeds); 

- Ability of the best individuals evolved in each environment to survive in the other 
8 environments (cross-environment trials); 

The experiments described in this section were only performed with the optimisation 
results for robots with sensor noise 1%, as this is a more realistic scenario in terms of real 
robotics hardware. 

The level of difficulty of each environment was assessed by the Light Index, a measure of 
density of resources available. The resulting Light Index ranking (from the easiest to the 
hardest) is: SR, SA, MR, SP, MA, LR, LA, MP, and LP. Compared to the ranking of 
minimised Cost 1 for simulations with sensor noise 1% (SR, SA, MR, SP, MA, MP, LR, 
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LA, and LP), the only discrepancy is MP, that ranked 6th in cost minimisation, even 
though it seems to be the 8th most difficult environment. Light Index is, however, a 
simplified calculation and therefore might not capture all the important aspects that 
would make an environment harder or easier. 

Table 4.13 - Environments in Series G, with minimised Costs and Light Index values. 
ENVIRONMENT 

Number of Function 
Evaluations 

Minim. 
Cost 1 

Minim. 
Cost 2 

Minim. 
Cost 3 

Density of 
Resources / 
Light Index 

(AT) 
Quality of 
Resources 

Field 
Size 

R 
S 9,253 0.000 0.729 0.657 42.4716 
M 11,313 0.147 0.916 0.854 19.0452 
L 23,153 0.530 0.988 0.938 10.6179 

A 
S 13,445 0.179 0.943 0.725 27.3432 
M 31,946 0.634 0.996 0.911 12.2613 
L 32,097 0.696 0.999 0.957 6.8358 

P 
S 24,493 0.505 0.999 0.838 13.6716 
M 5,112 0.666 1.000 0.931 6.1306 
L 6,228 0.735 1.000 0.962 3.4179 

 

4.3.5.5. Problems and Issues 

Due to a problem in the simulation module the original versions of the environments in 
which the optimisations ran were not saved as expected, nor it was their random seed. 
Although for each unique optimisation cycle all the individuals were tested in the same 
environment (generated by the same unique seed), and therefore the results are valid, the 
reproducibility of the exact conditions of any particular simulation were no longer 
possible (as the random seed of the environment is unknown). Nor would it be possible to 
resume, or force resume, any of the optimisation cycles. In short: each type of 
environment was generated from a unique and unknown seed. Fortunately, though, after 
several crashes experienced in Experiment Series F, the version of the program used on 
Series G saved the main results, that are the inputs (genome) and outputs (costs) for all 
the function calls. 

This issue was discovered after a first attempt to run the Cross-environment Trials (the 
step in which the best solutions/genomes evolved in one environment are tested in the 
other 8 environments) in the optimisations with sensor noise 1%. This way, a few 
adaptations in the simulation program had to be made ensuring that the environment 
instances would be saved beforehand. Also, in order to carry on with the experiments for 
methodological developments, as the optimisation step might take a very long time, the 
best 100 individuals from each environment were simulated again in environments with 
random seed (value 5420). After that point, this random seed was considered the original 
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seed for comparison purposes. Also in order to maintain the reliability of the experiments 
to come, on every Cross-environmental Trials the best solutions of each environment were 
tested in 9 environments: 1 of which would be a repetition of the environment they 
originally evolved in. 

4.3.5.6. Native Environment Replicates 

In order to assess the validity of the parameter optimisation, some extra validation 
experiments were performed to investigate that the optimisation of the input parameters 
of the foraging algorithm did not result in overfitting (when a model or analysis fits too 
closely a particular set of data, failing to fit or to predict future observations). In that 
case, these further validation experiments aimed at confirming that the tuning of the 
parameters fitted not only the particular instance of the environment they were optimised 
in (seed 5420), but also other instances of environments of the same type - same size and 
quality of resources, but generated with different seeds (Figure 4.19). 

For this experiment, 14 four-digit seeds were randomly generated and used to generate 
variations of the default environments tested (Table 4.14). Two of these seeds (S8 and 
S10) have repeating values, as a way to validate the method for generating controlled 
environments. 

Table 4.14 - Default Seed and Validation Seed values. 
Seed Value 

Default / S0 5420 
S1 0132 
S2 0975 
S3 0549 
S4 0332 
S5 1987 
S6 0025 
S7 0102 
S8 2604 
S9 1000 

S10 2604 
S11 1234 
S12 0906 
S13 1307 
S14 0555 

 

The replicate with seed S3 (0549) displayed results with a great variability from the 
original seed S0 (5420) and to the other 9 replicates in all the environments, except in 
SR. The same was observed in SA with seeds S9 and S12 (1000 and 0906). Further 
analysis showed, however, that the total light available during the simulation with seed 
5420 was lower in all the 9 environments than most or all the simulations with other 
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replicate seeds. The Light Index for environment SA with seeds S9 and S12 (1000 and 
0906) was also lower than the others (Figure 4.24). 

These validation experiments also raised attention for the importance of all the 
environments types running the same seed, as there is a clear consistency among different 
environment types running the same seed (Figure 4.24). 

 

Figure 4.24 Minimised Cost1 (solid lines) and Light Index (dashed lines) of the original optimisation 
and all the replicates with alternative seeds. 

Each colour represents the results for the experiment in an environment generated from a 
given seed, and grey represents the original seed (used to generate environments in the 
optimisation step). 

4.3.5.7. Cross-Environment Trials 

In this step the best 25 individuals evolved in each environment were tested outside their 
native environment and the value of Cost 1 could be further minimized in 6 of the 9 
environments. Non-native (alien) populations achieved better results than the native 
populations in SA, SP, MR, MA, LR, LA (Fig. 4.25, 4.26, 4.27). 
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Figure 4.25 Results of the Cross-environment Trials. 

Each line represents the native population of a certain environment and its performance in 
every one of the 9 environments (native and 8 others). The performance is plotted on the y 
axis (minimized cost 1), and along the (9 environments). 

Populations evolved in the easiest environment, SR, outperformed native populations 4 
environments (SA, MA, MR, and LR). The best individuals evolved in the second and 
the third easiest environments, SA and MR, also outperformed native populations in 2 
and in 3 environments, respectively (Fig. 4.25, 4.26). 

Populations evolved in the hardest environment, LP, outperformed the native in 2 
environments (SP and LA). Individuals evolved in the second hardest environment, LA, 
also performed better than the native ones in SP (Fig. 4.25, 4.26). 
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Figure 4.26 Analysis of results of Cross-environment Trials: environments in which non-native 
populations performed better than the native population. 

The two-letter code on top left corner indicates the environment and the coloured lines 
represent the native environment of the populations who performed better than the native. 

Overall, two distinct patterns could be found in data (Figure 4.27): 

- Genomes evolved in SR, SA, MR, MA and LR displayed a highly variant 
pattern; while some the group managed to reduce the costs in the environments 
within the group, their performance was drastically lower (high variance) in 
environments with poor quality of resources (SP, MP and LP). 

- Genomes evolved in SP, MP, LA and LP displayed a more stable pattern; 
lower deviance from the performance of the native populations, even though their 
performance in easier environments (such as SR and MR) was lower than 
expected. 
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Figure 4.27 Performance pattern found in the results of Cross-environment Trials (cross-trials). 

Two performance trends have been identified: solutions evolved in easier (left) and harder 
environments (right). 

As described in section 4.3.5.5 some reproducibility problems occurred in experiment 
series G and although all the individuals from each environment type evolved in the same 
instance of this environment, its random seed is unknown. That means some of the 
results found in the Cross-environment Trials (particularly the ones in which non-native 
species performed better than the native ones) must be a result of the fact that both the 
native and non-native were simulated in a different instance of the original environment. 
As it can be seen in Figure 4.24, although the different instances of the same environment 
type maintain a level of consistency with each other, some costs might vary. 

These results also drew attention to the settings used in the optimisation step. As 
previously mentioned, the convergence of solutions in harder environments (Figure 4.27) 
happened much earlier than the others. This way, it is possible that the combination of 
less forgiving environments with less forgiving optimisation settings might have led to an 
early convergence due to diversity loss. Some optimisation settings have been further 
tuned for the following experiment series (series H, I, and J). 

4.3.5.8. Cross-Environment Trial Replicates 

The experimental step of Cross-Environment Trials were repeated another 10 times (10 
replicates), using alternative random seeds. Each replicate consists of 81 sets of 
experiments, in which the best populations originally evolved are tested in one variation 
of their native environment and in variations of the other 8 environments. 

Similar to the original experiment, the results of each replicate were only compared 
within the same set (i.e.: with the same random seed). The overall performance variation 
observed in the original Cross-Environment Trials (Figure 4.25) could also be observed in 
the replicate experiments (Figure 4.24). The same performance pattern highlighted in 
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Figure 4.27 was also found in the experiments, in which two groups can be distinguished: 
(1) genomes evolved in SR, SA, MR, MA and LR, and (2) genomes evolved in SP, MP, 
LA and LP. 

For the same new variations of also ran some extra validation experiments to make sure 
that the optimisation of the input parameters of the foraging algorithm did not result in 
overfitting - when a model or analysis fits too closely a particular set of data, failing to fit 
or to predict future observations. In this case, these further validation experiments aimed 
at confirming that the tuning of the parameters fitted not only the particular instance of 
the environment they were optimised in (seed 5420), but also other instances of 
environments of the same type - same size and quality of resources, but generated with 
different seeds (Figure 4.28). 

 

 

Figure 4.28 Replicate Minimised Costs (Grey Lines) and Replicate Cross-Environment Trial Results, 
for the best 100 individuals running the behavioural algorithm AT-5 (sensor noise 1%), tested in 
different instances of the 9 environments (SR, MR, LR, SA, MA, LA, SP, MP, and LP) with 
attractants only. 

Each instance was generated using a different random seed. 

 

  



- 108 - 

Genetic Analysis (Genotype Clustering) 

Finally, the clustering algorithm k-means++133 was used to find patterns in the combination 
of the input parameters (genome). The performance of a clustering process can be assessed 
by analysing the accumulated sum of point-to-centroid distances with the Elbow Method, 
as presented in Figure 4.29. Five was chosen as the number of clusters (K=5) as it provided 
a balance between optimal performance and readability of results (Figure 4.30). In order to 
facilitate the present analysis, each cluster will be referred to as a species. 

The best populations from SR, SA, MR, MA, and LR were found to be essentially composed 
by two species: 2 and 5. While species 2 was the majority (more than 70%) in SA, MR, and 
MA, the opposite happened in LR where species 5 composes approximately 75% of the 
population. Species 5 also composed the majority of the population in SR, but in a more 
balanced scenario: 58% (species 5), against 42% of species 2 (Figure 4.30).  

The hardest environment, LP, happened to be the most diverse: despite the predominance 
of species 4 (80%), species 1, 2, and 3 are also present (10%, 4%, and 6%, respectively. The 
second hardest, LA, was the second most diverse, with species 1, 2, and 4. Three different 
species were also found in SA, however one of them (species 1) was found to be only 1% of 
the population (Figure 4.30). 

The lowest diversity was found in SP, being all the best individuals of the species 1. The 
same species (1) was the majority in LA (72%) and MP (52%), sharing LA with species 3 
and 4, and sharing MP with species 3 (Figure 4.30). 

 

Figure 4.29 Accumulated sum of point-to-centroid distances for different numbers of clusters in a 
dataset (K). 

Five elbows in the graphic are indicated by cyan arrows and the red circle indicates the chosen 
number of clusters. 
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Figure 4.30 Results of Genotype Clustering. 

Top: all members of the five clusters plotted into spider plots. Each radial axis of a spider plot 
represents the range of the value of each gene/input parameter (g1:5). Bottom: number of 
members of each cluster on each environment. 
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4.3.5.9. Conclusions 

After these experiments (series A-G) it was decided that in future series, a unique seed 
would be used to generate the environments in which the individuals would be simulated, 
and these environments would be saved beforehand. Second to this, further fine tuning 
would be made to the optimisation settings to prevent diversity loss, such as reducing 
elitism and increasing mutation rates. In future experiments, statistical tools will be applied 
in order to estimate the number of best individuals (best fraction of a population) to be 
selected for genetic analysis. Finally, further validation methods should also be developed 
for validating the clusters, as the graphics for the accumulated sum of point to centroid 
distances frequently contained more than one elbow. 
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Chapter 5 
Experiment Design, Materials and Methods 

In this chapter I will cover the consolidated experimental methods for the three refined 
foraging algorithms: AT-6, ATRP-8, and ATRP-7, assessed in experimental series H, I, and 
J (Table 4.1). Foraging Algorithm AT-6 has behavioural modules prepared to deal with 
attractants only, and takes a vector of 6 numbers as the input parameters to control its 
behaviour. Foraging Algorithms ATRP-8 and ATRP-7 have behavioural modules to deal 
with repellents, and take vectors of 8 and 7 parameters, respectively, as the input 
parameters to control their behaviour. 

The behaviour of the robots (agents) is a result of the interaction between the 
environmental conditions and the combination of the input parameters (g1:n) tuning the 
foraging algorithm, which we called the robot’s genome. The algorithm controls two basic 
movement components - runs and turns - by regulating the speed (and hence energy cost) 
of locomotion and the probability of turning. Speed regulation responds to instantaneous 
light value, while turn probability responds to the change in light value over time. The 
intensity of light perceived by the robots is contaminated by normally-distributed sensor 
noise with variance equal to 1% of the maximum light intensity (aimed at representing the 
imperfection of the dispersion of chemical cues in water or air, as well as the inherent noise 
of real sensor hardware). The details of the foraging algorithms and behavioural modules 
inside it will be explained in detail in Chapters 6, 7, and 8. 

All three refined foraging algorithms were simulated and evolved under similar experimental 
conditions in terms of environments, robot hardware, and optimisation settings. In this 
chapter I will describe the general aspects, materials and methods in common of these 
experiments. Each refined foraging algorithm and its respective experimental results will 
be presented in separate chapters, afterwards. 

First, the algorithm parameters are optimised for each environment with Evolutionary 
Algorithms. Each environment has a different level of difficulty, varying in size, quality 
levels of light sources, and intensity of repellents (for the experiments with repellents). This 
step is supposed to be similar to nature, in which species evolve according to the 
characteristics and constraints of the environments they are in. The best optimised solutions 
for each Environment are, then tested in the other environments and submitted to genetic 
analysis. The following experiments and methods will be described: 

- Creation of experimental environments; 
- Optimisation of solutions for each environment with Evolutionary Algorithms; 
- Selection of the best individuals (solutions) evolved in each Environment; 
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- Tests of solutions evolved in one environment in the other environments (Cross-
Environment Trials); 

- Characterization of evolved solutions (Genotype Clustering). 

5.1. Design of Experiments 
Optimisation: for each Environment (Figure 5.1), a population of solutions was 
obtained with multi-objective optimisation using Evolutionary Algorithms. Differential 
Evolution (DE) was chosen after showing the best results when compared to Genetic 
Algorithms (GA) and Particle Swarm Optimisation (PSO) (Figure 5.2). 

Cross-environmental Trials: the best 100 solutions optimised for each environment 
were then tested in the other 8 (non-native) environments and their performance was 
compared to the native population (Figure 5.3). 

Characterization of Evolved Patterns (Genotype Clustering): This step aimed at 
finding similarities and differences among the best solutions optimised for each 
environment. The best 100 solutions from each environment (adding up to 900 solutions) 
have been combined into a dataset to which the clustering algorithm k-means++ was 
applied133. The investigation aimed at finding patterns on the tuning of the five input 
parameters of the model (g1:5), also referred to as the “genome”. The clusters obtained 
were validated and the origin of its members was analysed (Figure 5.4). 

In experimental series G (AT-5), I also ran some extra validation experiments to make 
sure that the optimisation of the input parameters of the foraging algorithm did not 
result in overfitting - when a model or analysis fits too closely a particular set of data, 
failing to fit or to predict future observations. In this case, these further validation 
experiments aimed at confirming that the tuning of the parameters fitted not only the 
particular instance of the environment they were optimised in, but also other instances of 
environments of the same type (same size and quality of resources, but generated with 
different seeds). The above-mentioned experiments (replicas) as described as follows: 

Native Environment Replicates: As in the optimisation step all of the individuals of 
a given environment were tested under the same conditions (light spots position, duration 
and intensity), another set of experiments was performed to validate the results. The best 
100 solutions of each environment were tested in other 10 instances of the same 
environment, generated by different random seeds, and the results were compared to the 
original seed and to sets of 100 random solutions (Figure 5.5). 

Cross-environmental Trial Replicates: Further validation experiments also 
compared the performance of the best solutions in native and non-native environments 
generated by the same alternative seed (Figure 5.6). 

The results of these experiments (series G) have been presented in Chapter 6. 



- 113 - 

 

Figure 5.1 Diagram of the Main Parameters defining and Environment and the set of 9 Simulated 
Environments of type AT, with attractants only. 

Left: environmental parameters Field Size (small, medium, and large) and Quality of Resources 
(poor, average, and rich). Right: Set of 9 Environments resulting from the combination (3-by-
3) of the environmental parameters. 

 

Figure 5.2 Diagram of the process of Optimization with EA, resulting in 9 different populations of 
solutions evolved for each environment. 



- 114 - 

 

Figure 5.3 Diagram of cross-environment trials. 

 

 

Figure 5.4 Diagram of Genotype Clustering (characterization of evolved patterns). 
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Figure 5.5 Diagram of native environment trials. 

 

 

Figure 5.6 Diagram of repeated cross-environment trials. 

5.1.1. Optimisation Methods and Heuristics 

During the step of Optimisation with Evolutionary Algorithms, the input parameters (g1:n) 
for C. elegans’ Foraging Algorithms are optimised - fine-tuned - for each environment, 
separately. 

Algorithms AT-5, AT-6 and ATRP-8 (series G, H, and I) were optimised for 9 
environments: SR, MR, LR, SA, MA, LA, SP, MP, and LP. Algorithm ATRP-7 was 
optimised for 4 variations of MA: MA51, MA11 (equivalent to MA), MA55, and MA15. 
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Figure 5.7 Overview of the Optimisation of C. elegans Foraging Algorithm (Simulated with the 
Simulation Engine) with Evolutionary Algorithms. 

The Foraging Algorithm takes n input parameters, and the performance of the algorithm (with 
the given parameter setting) is measured by 3 simulation outputs (Costs). 

As in most EAs, the optimisation program starts by creating a population of individuals 
with randomly generated input vectors and evaluating their fitness (performance) through 
one or more objective functions. Individuals are composed essentially by a vector of input 
parameters (to which we also refer as its DNA, genes, or genome) and a vector with one or 
more outputs of one or more evaluated functions (Figure 5.7). This first random population 
composes the first generation of individuals, that will give rise to the next generation, and 
so on. The methods to create a new generation from the previous one vary according to the 
algorithm, and may include elitism (keeping clones of the best individuals), gene 
mixing/shuffling, tournament, mutation, among others. Along the optimisation, it is 
expected that the overall performance of the group will improve, as well as new best 
solutions (best individuals) will be found (Figure 5.8). 

Differential Evolution (DE) algorithm was chosen after a set of experimental optimisation 
cycles comparing the performance of this algorithm and two others: Genetic Algorithm 
(GA) and Particle Swarm Optimisation (PSO)102,134–137. In the context of the optimisation 
problem in this work, DE was able to find lower minima than the other EAs without taking 
much longer than GA (quickest). The number of individuals per generation was set to 200, 
as this number achieved better results in most of the calibration experiments when 
compared to 100, 400 and 800. The number of maximum function evaluations was set to 
100,000, although most optimisation cycles converged before 30,000. Differential Evolution 
specific parameters were set as: 95% probability of a new genome to be inserted in the 
population and -1.5 and 1.5 as lower and upper boundaries of the scaling parameter. 

As a meta-heuristic model, the performance of each parameter setting (DNA) was measured 
according 3 objectives: 
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- Objective 1: average of the number of time steps each robot was alive during the 
simulation, normalized by the total number of time steps. 

- Objective 2: residual energy stored in the battery of all the robots that remain 
alive at the end of the simulation, averaged by the total number of robots. 

- Objective 3: percentage of the field explored by each robot, averaged by the 
number of robots. 

The first objective is the most relevant among the three, representing the capacity of robots 
to survive the environments. The second objective is complementary to the first and was 
introduced as a form of pushing evolution further in environments in which the robots were 
able to survive the entire simulation. The third objective was introduced as a way to 
penalize genomes whose original placement happened to be more favourable. The 
correspondent Costs (J1:3) are obtained by subtracting the normalized objective from 1, 
according to equations. 

Although for the interest of this study Obj1 prevail over the others, all the three objectives 
were treated separately in the optimisation step. The multi-objective approach was 
favoured over the combination of objectives in a single fitness function aiming at improving 
the diversity of the solutions and keeping the resolution of the results for the further steps 
of the study. To do so, the method of Non-Dominated Sorting (NDS)138 was applied to rank 
and compare solutions (genomes) on each generation.  

Non-Dominated Sorting consists of organising the population of solutions into fronts (F1:n) 
composed by sets of non-dominated solutions. A particular solution is said to dominate 
another when it performs better in all of the Objectives. Consider for instance the 
population of solutions in Figure 5.9: the costs J1 and J2 of 13 hypothetical solutions are 
sorted into three fronts (F1 to F3). Each solution was compared against the rest of the 
population as shown in detail (top-right corner): solution C dominates G and H (among 
others) given that costs J1 and J2 are both lower than J1 and J2 of G and H. The same is not 
true when C is compared to D: J1 is lower, but not J2, thus C and D are, mutually, non-
dominated. The fronts (F1:3) are composed by groups of solutions that are, among 
themselves, non-dominated. 
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Figure 5.8 Overview of the process of Optimisation with Evolutionary algorithms, highlighting key 
elements and steps, as well as the correspondent terms used on the present work. 

A and B are specimens from an early (A) and a late (B) stage of the same optimisation cycle 
(SA1). The graphic in the bottom shows the minimization of Cost1 for algorithm AT5 on 
environment SA over 150 generations. (A) [top row]: path of sample #11 (one of the clone 
robots with genome #84) at 0h24’ of the simulation. A [2nd row]: all the samples (pink dots) at 
time 0h21’ of the simulation of genome #84 (10th generation) in SA1. A [3rd row]: every 
generation is composed of 200 individuals, each one having a genome vector (input) and a cost 
vector (simulation output). B [top row]: path of sample #91 (one of the clone robots with 
genome #41) at 0h12’ of the simulation. A [2nd row]: all the samples (pink dots) at time 0h09’ 
of the simulation of genome #84 (10th generation) in SA1. A [3rd row]: every generation is 
composed of 200 individuals, each one having a genome vector (input) and a cost vector 
(simulation output). 
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Figure 5.9 Non-Dominated Sorting: individual solutions are ranked according to their performance 
on all of the Objectives. 

As the simulation of C. elegans foraging algorithm is stochastic, some measures were 
adopted to minimise unwanted noise on the output data. Each simulated instance of an 
environment is created with the same random seed, meaning that the position, intensity 
and duration of every light spot will behave the exact same way every time a different DNA 
is simulated on that environment. Also, the score of each DNA is calculated by averaging 
the scores of 100 samples of robots with the same DNA, starting the simulation in different 
positions (x and y) in the field. 

For simplicity, experiment series I and J did not consider Cost 3 for optimisation, even 
though the values for every function call were registered.  

5.2. Environments 
The virtual environments with attractants only consist of simulated 2D fields populated 
with attractant gaussian light spots of varying peak intensities, which the robots must use 
to recharge their batteries (Figure 5.1). The position of the light spots is unknown by the 
robots and changes randomly throughout the simulation, so they must rely on the temporal 
gradient of local light intensity to tell whether they are moving in an advantageous or 
disadvantageous direction. The included sensor noise means that only relatively steep 
gradients can be reliably sensed, effectively limiting the detection radius of these 
attractants. Environments with attractants and repellents consist of 2D fields populated 
with attractant spots surrounded by smaller repellent spots, which cause damage to the 
robots’ batteries. 

Each simulation includes 50 or 100 identical robots (with the same genome) foraging light 
sources in a virtual environment over a certain period of time. In Series H (and all previous 
series), the number of samples (robots) in each simulation was set to 100. Given the 
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increasing in the time taken for each simulation, in environments with both attractants and 
repellents, the number of samples had to be reduced to 50 in experiment series I and J. 
Each environment is a square field with wrapping boundaries populated with 6 light spots 
of varying intensity and duration. For algorithm AT-6, a set of 3 field sizes and 3 light 
intensity ranges were tested (Figure 5.10). The environments tested contained only 
attractant sources. For algorithm ATRP-8, the same set of 3 field sizes and 3 light intensity 
ranges were tested, this time, containing attractants and repellents (Figure 5.11). For 
algorithm ATRP-7, due to time restrictions, 4 variations of environment MA (with 
attractants and repellents) were tested, being one of the variations (MA11) the equivalent 
of MA, from the experiments with foraging algorithm ATRP-8 (Figure 5.12). 

As the simulation starts, the position of each light spot is randomly assigned, along with 
its intensity (within the range for that environment) and duration. The light intensity at a 
distance from the centre decreases according to a Gaussian curve. Each extinguished light 
spot is replaced by a new random instance so the number of light spots is constant during 
the whole simulation. For use in later analysis, the average amount of light available per 
square meter was calculated at each time step and averaged over the total simulation time 
to obtain the Light Index of each environment. As can be seen in Fig. 5.10, 5.11 and 5.12, 
the generation of the environments have been controlled by a randomly selected seed which 
would remain constant between environments, resulting in an overall consistent set of 
environments. 

Some necessary changes had to be made in the simulation framework to allow the level of 
clustered attractants and repellents to be tuned individually. For that reason, although the 
position is the exact same, as well as the proportional intensity of the clusters (Fig. 5.11 
and 5.12), there may have been some slight variations in the overall level of attractants 
available in the field. For that reason, the results obtained with MA (ATRP) and MA11 
(ATRP) were not directly compared. 

The total simulation time (T=24 hours) is divided into time steps (ts), in which the control 
algorithm is applied. Although each simulation runs with 100 identical robots, there is no 
interaction between them and their reasoning processes are independent of each other. 
Besides making behavioural patterns more visible in the graphical plots, another reason for 
simulating many identical robots is to improve the assessment of a candidate genome by 
averaging individual’s scores. 



- 121 - 

 

Figure 5.10 Set of Environments of type AT, simulated in Series H, with algorithm AT-6 (SR, MR, 
LR, SA, MA, LA, SP, MP, and LP). 
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Figure 5.11 Set of Environments of type AT-RP, simulated in Series I, with algorithm ATRP-8 (SR, 
MR, LR, SA, MA, LA, SP, MP, and LP). 

Attractants (centre) are coloured in cyan, and repellents (particles clustered around the 
attractants) are coloured in red. 
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Figure 5.12 Set of Environments of type AT-RP, simulated in Series J with algorithm ATRP-7. 

All environments are MA, and their subtypes (MA51, MA11, MA55, and MA15) have different 
ratios of the light intensity of the attractant (centre, in cyan), and the repellents (particle 
clusters around the centre, in red). 

 



- 124 - 

 

Figure 5.13 Light Index of the environments. 

All environments are MA, and their subtypes (MA51, MA11, MA55, and MA15) have different 
ratios of the light intensity of the attractant (centre, in cyan), and the repellents (particle 
clusters around the centre, in red). 

5.3. Robot Hardware Settings 
The foraging algorithms were implemented and tested in robots simulated in virtual 
environments, as a requirement for the optimization with evolutionary algorithms. The 
virtual robots are capable of moving forward at variable speed and turning to any direction 
(0-360 ̊), and are equipped with a single light sensor, a battery, and a solar panel. Aiming 
at future application on physical platforms, all the robot’s parameters are grounded in real 
hardware (see table 5.2). 
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Table 5.2 List of robot parameters, their respective functions and standard simulation values 
ROBOT PARAMETER STANDARD VALUE APPLICATION 

𝑉max  0.5m/s Maximum locomotion velocity 

𝑖max
34  1.0A Optimum solar current 

𝑖max
:;$  1.4A Motor draw at maximum power 

𝐵𝑀𝑅 0.2A Basal Metabolic Rate: cost of running systems when not moving 

𝐵𝑎𝑡max  6Ah Battery capacity 

𝐵𝑎𝑡𝐶ℎ𝑎𝑟𝑔𝑒 20% Initial battery charge 

𝑆𝑒𝑛𝑠𝑁𝑜𝑖𝑠𝑒 1% Sensor Noise 

5.4. Characterization of Evolved Genomes 
This step explored the similarities and differences among the best solutions optimised for 
each environment by using clustering techniques to find patterns in the combination of the 
input parameters (genomes). We used the k-means++ algorithm to cluster datasets 
composed by the best genomes from each environment (all grouped together). Four distance 
metrics were also tested: squared Euclidean distance; sum of absolute differences; one minus 
the cosine of the included angle between points (treated as vectors); one minus the sample 
correlation between points (treated as sequences of values). For each of these methods 
combined, we tested k values (number of clusters) from 1 to 20. Each Series of Experiments 
found a specific number of best individuals to be the ideal for this step and that will be 
explained individually, in each of the following chapters. Usually, the best fit for the 
clustering was found around 25 of each environment (225 genomes), at least 20 replicates, 
and up to 500 iterations. 

When applying any clustering method the number of clusters is a key parameter, and using 
too many or too few will make the results uninformative. The quality of any given clustering 
was quantified in terms of the accumulated sum of point-to-centroid distances. When this 
was plotted against cluster number (Fig.4), there was no clear single “elbow” on which to 
base the choice of optimal cluster number. As such, the representativeness of the clusters 
were further quantified based on a comparison between the performance of the individual 
cluster members and the cluster centroid in all 9 environments (Cross-environmental 
Trials). 

The amount of best individuals chosen from each environment is also a key parameter on 
this step, as the sample has to be, at the same time small enough to represent the very best 
individuals but still broad enough to encompass the diversity of genomes present among 
the best solutions. Samples too big also introduced too much noise into the clustering 
results. Some statistical tools have been used to estimate the amount of best individuals to 
be chosen for the genetic analysis step. This decision was made supported by calculations 
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of standard deviation from the minima, by grouping costs and parameter values in 
percentiles, and with the help of graphical tools as box plot diagrams. Hence, the number 
of both the amount of individuals for the analysis and the number of clusters were chosen 
based on statistical relevance and at the same time prioritising clarity in the results. 
Different values of samples were tested for clustering the results of all three foraging 
algorithms and the best results were usually obtained from samples ranging from 10 to 25 
from each environment (adding up to a total of 40 to 225, depending on the number of 
environments). 
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Part IV 

Results 
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Part IV presents the algorithm design and experiment results of the three refined foraging 
algorithms: AT-6, ATRP-8, and ATRP-7, tested over experimental series H, J, and I. 
The content is organised in four chapters: 

- Chapter 6 covers the algorithm design, results and discussion of 
Experiment Series H, assessing the foraging algorithm AT-6 in 
environments with only attractants;  

- Chapter 7 covers the algorithm design, results and discussion of 
Experiment Series I, assessing the foraging algorithm ATRP-8 in 
environments with attractants and repellents in proportional intensity;  

- Chapter 8 covers the algorithm design, results and discussion of 
Experiment Series J, assessing the foraging algorithm ATRP-7 in 
environments with attractants and repellents in varying intensity; 

- Chapter 9 presents a general discussion and comparison of all three refined 
algorithms, as well as the conclusion and future works. 
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Chapter 6 
First Refined Algorithm: AT-6 (Experiment Series H) 

In this chapter, I will present the design of the first refined C. elegans-based Foraging 
Algorithm, AT-6, and the results of experimental series H. The reflex-agent algorithm takes 
6 input parameters and it was optimised in 9 environments (SR, MR, LR, SA, MA, LA, 
SP, MP, and LP), containing attractants only. The EA used was Differential Evolution 
(DE), with a pool size of 200 (Table 6.1). 

Table 6.1 Summary of the parameters and main results of the experiments in Series H, subset 
H.1: Optimisation in 9 environments (SR, MR, LR, SA, MA, LA, SP, MP, and LP) with 
attractants only, for robots equipped with sensors with sensor noise of value 1%. 

OPT. SIM. ROBOT ENVIRONMENT Number of 
Function 

Evaluations 

Minim. 
Cost 1 

Minim. 
Cost 2 

Minim. 
Cost 3 

Non- 
Dominated 
Solutions EA 

Pool 
Size 

Time 
Step 

Sensor 
Noise 

Field 
Size 

Quality of 
Resources 

DE 200 2 1% 

S 
(150) 

R 10,636 0.000 0.673 0.673 75 

A 37,093 0.018 0.869 0.869 13 

P 9,534 0.523 1.000 1.000 8 

M 
(225) 

R 37,699 0.000 0.809 0.809 13 

A 38,256 0.426 0.986 0.986 6 

P 9,844 0.724 1.000 1.000 13 

L 
(300) 

R 32,246 0.253 0.952 0.952 12 

A 40,797 0.671 0.998 0.998 11 

P 12,854 0.719 1.000 1.000 32 

     TOTAL: 228,959     
 

6.1. Algorithm Design 

The foraging algorithm inspired by C. elegans' chemotaxis is composed of two key 
behaviours: runs and turns, controlled by a set of six parameters (g1:6), also referred to in 
this work as the genome, as shown in Table 6.2. 

Table 6.2 - Set of input parameters (genome) for the C. elegans' bio-inspired minimalist 
algorithm AT-6. 

GENE PARAMETER APPLICATION 

g1 VarAngle Controls the variability of the angle of a turn; 

g2 NoiseTol Controls the tolerance of the robot to the variation in sensed light 

g3 BaseProb Sets the base probability of turning, in the absence of any change in sensed light 
level 

g4 PMult Sets the multiplier (divider of the base turning probability when light decreases 
(increases) 
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g5 𝑆𝑖𝑔` Sets the steepness of the sigmoid curve that controls speed according to the sensor 
reading 

g6 𝑆𝑖𝑔𝛽 
Defines the offset of the sigmoid curve that controls speed according to the sensor 
reading 

 

At each time step (t), each Robot (R) adjusts its speed and turn probability according to 
its sensor reading and possibly makes a turn. The agent’s battery level is updated according 
to the intensity of light it is currently exposed to (𝑖34), as well as how much was spent on 
moving (𝑖:;$) and running basic systems (𝑖<=%): 

𝐵𝑎𝑡$
% = 𝐵𝑎𝑡$−1

% + (𝐿𝑖𝑔ℎ𝑡$
[-,/] × 𝑖max

34 ) − 𝑆𝑝𝑒𝑒𝑑$
% × 𝑖max

:;$ − 𝑖<=%  [6.1] 

Also at each time step, the simulation program updates robots’ positions, checks for 
extinguished light spots (replacing them with new ones if necessary) and checks which 
robots are ‘alive’ – a robot permanently ‘dies’ if its battery is depleted (Figure 6.1). 

The reasoning process on each time step (t) starts when the agent acquires the sensor 
reading (𝑆𝑒𝑛𝑠𝑉𝑎𝑙$%) for light intensity (Light) at its current position [x,y], which includes 
some sensor noise [6.2]. ∆𝑆𝑒𝑛𝑠𝑉𝑎𝑙$% is then obtained from the current and previous sensor 
readings (3) in order to calculate the probability of initiating a turn (𝑃𝑇𝑢𝑟𝑛$

%). 

𝑆𝑒𝑛𝑠𝑉𝑎𝑙$% = 𝐿𝑖𝑔ℎ𝑡$
[-,/] + 𝑅𝑎𝑛𝑑𝑁𝑢𝑚 × 𝑆𝑒𝑛𝑠𝑁𝑜𝑖𝑠𝑒  [6.2] 

∆𝑆𝑒𝑛𝑠𝑉𝑎𝑙$% = 𝑆𝑒𝑛𝑠𝑉𝑎𝑙$% −  𝑆𝑒𝑛𝑠𝑉𝑎𝑙$−1
%   [6.3] 

If ΔSensValR
t is sufficiently positive, 𝑃𝑇𝑢𝑟𝑛$

% decreases, whereas if it is sufficiently negative, 
𝑃𝑇𝑢𝑟𝑛$

% increases. If the current and previous values are sufficiently similar (as determined 
by NoiseTol), then 𝑃𝑇𝑢𝑟𝑛$

% maintains the value of BaseProb (Figure 6.1). 

Once 𝑃𝑇𝑢𝑟𝑛$
% is set, a random number (0 to 1) is generated and, if it is less than or equal 

to 𝑃𝑇𝑢𝑟𝑛$
%, the robot will perform a turn (Figure 8.1). When performing a turn, the yaw 

(Δθ) will be calculated using another uniform random number between -1 and 1 
(RandNum), according to: 

∆𝜃$
% = 180° + (𝑉𝑎𝑟𝐴𝑛𝑔𝑙𝑒 × 𝑅𝑎𝑛𝑑𝑁𝑢𝑚)  [6.4] 

Also, speed is modulated by an inverse logistic function, controlled by the combination of 
the current sensor reading and the input parameters Sig𝛼 and Sig𝛽, according to: 

𝑆𝑝𝑒𝑒𝑑$
% = 1 −  1

1+(N
OPQR× (OSTUVWXY

Z−OPQ[)
)
 ×  𝑉{\]-}  [6.5] 

As the behaviour of the agent is modulated without reference to any internal state variables, 
this is classed as a reflex-agent model. 

Originally some early experiments were conducted with noiseless sensors and found that 
the agents were able to survive the entire simulation time in all 9 environments, making 
for rather uninteresting results. It was therefore decided to include substantial sensor noise 
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in all further experiments, which is also more realistic since all real sensors (particularly 
low-cost sensors) are subject to noise. 

 

Figure 6.1 Flowchart of the control algorithm applied at each time step of a simulation. 

Top: an overview of the simulation process. Bottom: detailed flowchart of processes of setting 
direction (left) and setting speed (mid-right). Bottom-right: conceptual illustration of the 
simulation and of the robot. 
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Figure 6.4 The accumulated sum of Point-to-centroid distances for different cluster numbers. 

6.2. Experiment Design 

The 6 input parameters of the algorithm were optimised in 9 environments (SR, MR, LR, 
SA, MA, LA, SP, MP, and LP), containing attractants only. The algorithm was 
implemented in virtual robots with hardware settings as indicated in Table 6.3. Differently 
from the previous experiment series (A-G), in series H and the subsequent series, the robots 
started the simulation with 20% battery charge. The EA used was Differential Evolution 
(DE), with a pool size of 200 and the optimisations ran until one of the stopping criteria 
was reached: 

- 105 function calls; 
- diversity loss - if the individuals in a certain population evolved to be too similar 

to each other; 
- after 10 generations the cost did not reduce in more than 10-4. 

Each simulation ran with 100 robots, meaning that each set of input parameters was tested 
in 100 samples. 
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Table 6.3 List of robot parameters for simulations of series H, their respective functions and 
standard simulation values 

ROBOT PARAMETER STANDARD 
VALUE APPLICATION 

𝑉max  0.5m/s Maximum locomotion velocity 

𝑖max
34  1.0A Optimum solar current 

𝑖max
:;$  1.4A Motor draw at maximum power 

𝐵𝑀𝑅 0.2A Basal Metabolic Rate: cost of running systems when not moving 

𝐵𝑎𝑡max  6Ah Battery capacity 

𝐵𝑎𝑡𝐶ℎ𝑎𝑟𝑔𝑒 20% Initial battery charge 

𝑆𝑒𝑛𝑠𝑁𝑜𝑖𝑠𝑒 1% Sensor Noise 
 

6.3. Results and Discussion 

In this set of optimisation cycles for AT-6, virtual robots running this foraging algorithm 
were evolved in 9 environments containing only attractants. The best solutions found were 
grouped into 6 clusters by genetic similarity. The clusters were validated by comparing the 
results of its members on the cross-trials. 

6.3.1. Optimisation 

In this step, the algorithm’s input parameters (g1:6) were optimised in 9 different 
environments. To keep the results consistent, all the simulated instances of a certain 
environment were exactly the same. All the optimisation cycles converged between 100 and 
200 generations before the maximum number of function calls were reached. 
The minimised values of Cost 1 were found in SR, MR, SA, LR, MA, SP, LA, MP, and 
LP, respectively (Table 6.1, Figure 6.5). 

Optimisations MP, SP, SR, and LP reached the stopping criteria of diversity loss earlier 
than the others: between 54 and 69 generations, whereas the others ran until the 250th 
generation. 

When it comes to Cost 2, the environments in which the optimisation achieved the 
minimised cost were, respectively: SR, MR, SA, LR, MA, LA, SP, MP, and LP (Figure 
6.6). 

For Cost 3, the environments in which the optimisation achieved the minimised cost were, 
respectively: SR, MR, SA, LR, MA, LA, SP, MP, and LP (Figure 6.7). 

There is a strong correlation (-0.83) between the optimised Cost 1 values and Light Index 
for each environment. However, there is some discrepancy in the order (easiest to hardest) 
according to the two metrics. Specifically, the ranking of environments in terms of the 
optimised values of Cost 1 (low to high) is: SR, MR, SA, LR, MA, SP, LA, MP, LP, while 
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the ordering with respect to Light Index (total light available in the field, averaged by time) 
is: SR, SA, MR, SP, MA, LR, LA, MP, LP (Figure 6.8). In general, rich environments 
perform better in practice than their Light Index would predict. This is a logical outcome 
because there are no “traps” (light spots whose peak intensity is too low to provide a net 
positive battery current over and above the current consumption). 
Furthermore, it must be acknowledged that the optimisation process is stochastic so some 
solutions may be local optima (we are investigating this with more experiments). More 
generally, the Light Index may not capture all relevant aspects of the spatio-temporal light 
distribution (we are investigating alternative metrics). 

 

Figure 6.5 Cost 1 (J1) optimised for Behavioural Algorithm AT-6, in 9 environments (SR, MR, LR, 
SA, MA, LA, SP, MP, and LP), with attractants only. 
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Figure 6.6 Cost 2 (J2) optimised for Behavioural Algorithm AT-6, in 9 environments (SR, MR, LR, 
SA, MA, LA, SP, MP, and LP), with attractants only. 

 

 

Figure 6.7 Cost 3 (J3) optimised for Behavioural Algorithm AT-6, in 9 environments (SR, MR, LR, 
SA, MA, LA, SP, MP, and LP), with attractants only. 
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Figure 6.8. Light Index versus the Minimised value of Cost 1 in all Environments. Pearson 
Correlation Coefficient: -0.826; Spearman Correlation Coefficient: -0.9 

6.3.2. Selection of the best individuals 

Figure 6.9 shows the best 9500 unique individuals evolved in the 9 environments using 
Foraging Algorithm AT-6. As can be seen, Cost 1 presents a steep drop in approximately 
the best 100 individuals (Figure 6.9). 

Further experiments explored the variance of Cost 1 in different aliquots of the population 
and values around 25 individuals presented a good combination between diversity (gene 
variance) whilst still retaining a narrow range of Cost 1 values for all environments (Fig. 
6.10, 6.11, 6.12, and 6.13). 

 

Figure 6.9 Cost 1 (J1) of the best 9500 individuals running the behavioural algorithm AT-6, evolved 
in 9 environments (SR, MR, LR, SA, MA, LA, SP, MP, and LP) with attractants only. 
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Figure 6.10 Box plot of the Cost 1 (J1) of the best 9500 individuals evolved running the behavioural 
algorithm AT-6 in 9 environments (SR, MR, LR, SA, MA, LA, SP, MP, and LP) with 
attractants only. 

 

Figure 6.11 Box plot of the Cost 1 (J1) of the best 225 individuals evolved running the behavioural 
algorithm AT-6 in 9 environments (SR, MR, LR, SA, MA, LA, SP, MP, and LP) with 
attractants only. 
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Figure 6.12 Box plot of the values for the input parameters (genes) of the best 9000 individuals 
(1000 from each environment) evolved in SR, MR, LR, SA, MA, LA, SP, MP, and LP, running 
the Foraging Algorithm AT-6. 

 

Figure 6.13 Box plot of the values for the input parameters (genes) of the best 225 individuals (25 
from each environment) evolved in SR, MR, LR, SA, MA, LA, SP, MP, and LP, running the 
Foraging Algorithm AT-6. 
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6.3.3. Cross-Trials 

In a broad view, we can distinguish two basic groups: one composed by species evolved in 
Rich and Average environments, and the other composed by species evolved in Poor 
environments: 

- Genomes evolved in Rich and Average environments exhibit quite similar 
performance across all Rich and Average environments, generally achieving costs 
quite close to those of the native populations in these environments. They all 
performed significantly worse than the native populations and the other group in 
Poor Environments (Figure 6.14). 

- Genomes evolved in Poor environments exhibit quite a similar performance 
in the Poor environments, generally achieving costs quite close to those of the 
native populations, but performing significantly worse than the native populations 
in Rich and Average environments. Surprisingly, the genomes evolved in LP 
outperform the native populations in SP and MP (Figure 6.14). 

 

Figure 6.14 Performance of the best genomes (25 of each environment) in all the 9 environments. 

6.3.4. Genetic Analysis 

In this step, the best 25 individuals from each environment (a total of 225) were tested 
outside their native environment. Each simulated instance of the 9 environments was 
exactly the same as the one used in the optimisation step. 

The same procedure was adopted for each cluster centroid and the clustering scheme was 
chosen based on the accuracy of the results obtained for the cluster centroid and all its 
members (Figure 6.15) 
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Figure 6.15 Compared performance of cluster centroid (black line) and cluster members (colour 
lines), each tested in the 9 environments. 

Clusters obtained from the best 25 genomes evolved in each of the environments (225 in total). 
The tight grouping of the cluster members and cluster centroids indicate that the clustering 
was effective, with each cluster representing class of solution (species). 
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6.3.5. Characterization of Evolved Genomes 

The results of genotype clustering reveal some striking patterns (Figure 6.16, 8.17) (Table 
6.4). Firstly, at most two species feature in each of the 9 environments, with a single species 
present in five of these. It is also noticeable at first glance some pairs of clusters are more 
similar to each other than to the other clusters (1 and 2, 3 and 4, 5 and 6), which will also 
be discussed further ahead. 

The two species from Large Poor (LP) environments (Sp5 and Sp6) appeared to have 
minimised sigmoid position (g6) at the same time that they have maximised sigmoid 
steepness (g5) (the resulting sigmoids are shown in Figure 6.18). Therefore they evolved to 
stop suddenly in partially favourable conditions which other species would not consider 
favourable enough to reduce speed or stop. That explains why they perform more poorly in 
the other environments because they fall into light spots with low intensity (traps), missing 
the better quality food sources available in Rich and Medium environments. 

These two Species (Sp5 and Sp6) have also minimized the value of Base Probability of Turn 
(BaseProb: g3). This, combined with relatively high values of Noise Tolerance (NoiseTol: 
g2), means they have evolved an unexpected strategy where they virtually never turn, 
instead moving straight until they hit a light spot and stop, exploiting the wrapping 
boundaries of the world. It can be observed that in these two species native to LP, the 
values of Probability Multiplier (g4) and Turn Variation (g1) are distributed across a broad 
range (particularly when considering Species 5 and 6 together). This makes sense because 
their evolved strategy means that these genes are irrelevant (because they don’t turn). In 
fact, observation of the simulated behaviour suggests that Species 5 and 6 actually exhibit 
virtually identical behaviour. Given that only genes 1 and 4 are functionally irrelevant, 
they are subject to random genetic drift. The clustering algorithm (which is concerned with 
gene values rather than behaviour) appears to have separated these into two species mainly 
on the basis of high/low values of g4. 

The Large Poor (LP) environment was the only one in which a strategy using no turns at 
all evolved, and as a result the genetic profiles of Species 5 and 6 are strikingly different 
from all others (see Figure 8.16). Focussing on Species 1 to 4, the differences are more 
subtle but still significant. Most notably, when comparing Species 3 and 4 (evolved in Poor 
environments SP and MP) to Species 1 and 2 (evolved in Rich and Average environments), 
there is a striking difference in the sigmoid genes (g5 and g6). Comparing the resulting shapes 
of the sigmoids (Figure 8.18) shows that Species 3 and 4 will stop much more suddenly and 
in lower quality light sources than Species 1 and 2. This is a necessary adaptation to the 
low-quality energy sources available in Poor environments. 

When comparing Species 3 and 4 to each other, the only somewhat significant difference in 
again in the sigmoid genes (g5 and g6). The light intensity required to bring robots to very 
low speeds is similar, but Species 4 has a sharper transition (Figure 8.18). The behavioural 
relevance of this is unclear, and the fact that these two species perform very similarly in 
cross-trials (Figure 8.14) and are both native to MP (although only Species 3 is native to 
SP) suggests that it is minimal. 
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Finally, when comparing Species 1 and 2 the only significant genetic differences are in g4 
and g6 (see Table 6.4). The difference in g6 means that Species 1 (found primarily in Rich 
environments) slows down at somewhat higher light levels than Species 2 (found primarily 
in Average environments), which is a subtle but logical adaptation to higher consistency of 
good quality energy sources found in Rich environments. The fact that Species 1 has a 
somewhat higher value of PMult (g4) is consistent with the fact that Rich environments 
will, on average, have higher intensity light spots and hence steeper light gradients. This 
means that a sensed change in light intensity is more likely to be due to the underlying 
gradient (as opposed to sensor noise), and therefore warrants a stronger effect on turning 
probability. 
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Figure 6.16 Results of Genotype Clustering (Series H: AT-6). 

Top: all members of the six clusters represented as spider plots (coloured lines) and the cluster 
centroid (black lines). Each radial axis of a spider plot represents a value (g1:6) of the input 
vector. Bottom: Distribution of members of each cluster within the population of each 
environment. 
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Figure 6.17 Environmental distribution and DNA composition of species. 

Top: Bar chart with the number of members of each species present on each environment. 
Bottom: Bar chart with DNA composition of each species. 
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Figure 6.18. Variation in the shape of the speed sigmoid function for the centroid of each cluster. 

 

Table 6.4 Decoded Centroid Genome of each species and respective standard deviation 

  
GENE 

g1 g2 g3 g4 g5 g6 

VarAngle NoiseTol BaseProb PMult Sig𝛼 Sig𝛽 

SPECIES 

1 109º 
± 33º 

1.64 
± 0.17 

0.003 
± 0.001 

180.7 
± 29.9 

11.8 
± 4.52 

0.27 
± 0.07 

2 112º 
± 31º 

1.59 
± 0.12 

0.003 
± 0.001 

160.4 
± 38.7 

11.8 
± 3.49 

0.16 
± 0.05 

3 92º 
± 33º 

1.35 
± 0.11 

0.004 
± 0.004 

150.3 
± 61.2 

36.7 
± 26.60 

0.08 
± 0.04 

4 85º 
± 29º 

1.41 
± 0.17 

0.004 
± 0.001 

179.7 
± 19.8 

73.7 
± 24.41 

0.11 
± 0.03 

5 236º 
± 110º 

2.95 
± 1.01 

0.000 
± 0 

169.0 
± 56.8 

91.1 
± 7.06 

0.00 
± 0 

6 298º 
± 52º 

3.62 
± 0.73 

0.000 
± 0 

35.2 
± 27.5 

94.1 
± 4.22 

0.00 
± 0 

  

6.4. Conclusions 

The work replicates, in a very simplified form, the way that modest changes in 
environmental conditions can lead to evolutionary adjustments, while sufficiently extreme 
changes can result in the same building blocks being used in fundamentally different ways 
(see differences between Species 5/6 and 1 to 4). Furthermore, the approach of grouping 
solutions evolved in different environments and then analysing these on the basis of genetic 
(as opposed to behavioural) similarity is novel, to the best of my knowledge, and yielded 
interesting results that aligned very well with behavioural outcomes. 

Optimisations in LR and in MA seem to have converged too early, what is suggested by 
the processes converging before the other processes, and by the pattern of the graphic of 
cost minimization over generations (Figure 6.5). Instead of several smooth transitions 
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between plateaus, Cost1 drastically drops (around generations 20th and 70th, respectively), 
displaying no further relevant evolution - that might indicate the convergence to a local 
optimum and/or a loss in diversity, followed by an Early Convergence. This conclusion is 
also supported by the dissonance between the minimized costs and the Light Index values 
calculated for LR (Figure 6.8). As optimisation results are essential for all subsequent 
experimental steps, future optimisation cycles may encompass at least one replicate (per 
environment) running in parallel, and thus ensuring the best possible set of results for the 
whole process. 

Contrary to what was expected in the Cross-environment experiments, populations evolved 
in the easiest environments were able to outperform native ones in 4 of the 9 environments, 
while the populations evolved in the hardest environments only performed better than the 
native in only 2 of them. This result might be explained by the fact that easier, hence more 
forgiving, environments allow a smoother streamlining process, where individuals with a 
weaker (but acceptable) performance may lead to a successful offspring. Some of the newer 
approaches to Problem-Solving and Evolutionary Algorithms implement strategies to 
slowly update the level of demand/difficulty, as well as elitism and penalties applied to 
individual fitness values. Some of these could improve future processes of Optimization. 

Some of the results obtained in the Native Environment Trial Replicates could be explained 
by the variance of the Light Index. However, it is also likely that the individuals evolved in 
the Optimisation Step also present some level of overfitting for the original instance of the 
environments they evolved in. In future works, the Optimisation Step may benefit from 
evaluating each genome in more than one instance of the environment.  
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Chapter 7 
Second Refined Algorithm: ATRP-8 (Experiment Series I) 

This chapter will present the design of the second refined C. elegans-based Foraging 
Algorithm, ATRP-8, and the results of experimental series I. The 8 input parameters of 
the foraging algorithm were optimised in 9 environments (SR, MR, LR, SA, MA, LA, SP, 
MP, and LP), containing both attractants and repellents (Table 7.1). These environments 
present varying values for combined Light Index values of attractants and repellents (Light 
Index AT+RP), but a constant ratio between them (Light Index AT/RP), as seen in Table 
7.2. 

Table 7.1 Summary of the parameters and main results of the experiments in Series I: 
Optimisation in 9 environments (SR, MR, LR, SA, MA, LA, SP, MP, and LP) with 
attractants and repellents, for robots equipped with sensors with sensor noise of value 1% 

OPT. SIM. ROBOT ENVIRONMENT Number of 
Function 

Evaluations 

Minim. 
Cost 1 

Minim. 
Cost 2 

Minim. 
Cost 3 

Non- 
Dominated 
Solutions EA 

Pool 
Size 

Time 
Step 

Sensor 
Noise 

Quality of 
Resources 

Field 
Size 

DE 200 4 1% 

R 

S 11,506 0.578 0.979 0.964 19 

M 18,060 0.630 0.989 0.973 20 

L 37,638 0.716 0.989 0.987 16 

A 

S 17,386 0.724 0.994 0.958 16 

M 41,540 0.740 0.993 0.978 24 

L 38,599 0.792 0.995 0.987 18 

P 

S 9,120 0.750 1.000 0.962 13 

M 9,965 0.815 1.000 0.981 6 

L 8,168 0.859 1.000 0.988 14 
    TOTAL: 191,982     
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Table 7.2 Simulated environments, minimised Costs and Light Index in Series I, subset I.1 
(Foraging Algorithm ATRP-8). 
ENVIRONMENT 

Minim. 
Cost 1 

Minim. 
Cost 2 

Minim. 
Cost 3 

Light 
Index 
(AT) 

Light 
Index 
(RP) 

Light 
Index 

(AT+RP) 

Light 
Index 

(AT/RP) 
Quality 

of 
Resources 

Field 
Size 

R 

S 0.578 0.979 0.964 68.868 -89.265 -20.397 -0.771 

M 0.630 0.989 0.973 30.885 -40.029 -9.143 -0.772 

L 0.716 0.989 0.987 17.219 -22.316 -5.097 -0.772 

A 

S 0.724 0.994 0.958 47.271 -61.272 -14.001 -0.771 

M 0.740 0.993 0.978 21.200 -27.476 -6.276 -0.772 

L 0.792 0.995 0.987 11.819 -15.318 -3.499 -0.772 

P 

S 0.750 1.000 0.962 23.635 -30.636 -7.001 -0.771 

M 0.815 1.000 0.981 10.600 -13.738 -3.138 -0.772 

L 0.859 1.000 0.988 5.910 -7.659 -1.749 -0.772 
 

 

7.1. Algorithm Design 

The foraging algorithm ATRP-8 extends the foraging algorithm presented in the previous 
chapter. This algorithm is also composed of two key behaviours: runs and turns, controlled 
by a set of eight parameters (g1:8), also referred to in this work as the 'genome', as shown in 
Table 7.3. 

This algorithm encompasses both positive and negative chemotactic behaviours, as the 
agents react to attractant and repellent stimuli distributed in the field. 

Table 7.3 Set of input parameters (genome) for the C. elegans' bio-inspired minimalist algorithm 
for positive and negative chemotaxis in Foraging Algorithm ATRP-8. 

GENE PARAMETER PROCESS APPLICATION 

g1 𝑉𝑎𝑟𝐴𝑛𝑔𝑙𝑒 
Positive and 

Negative 
Chemotaxis 

(both) 

controls the variability of the angle of a turn; 

g2 𝐵𝑎𝑠𝑒𝑃𝑟𝑜𝑏 sets the base probability of turning, in the absence of any change in sensed 
light level 

g3 𝑃𝑀𝑢𝑙𝑡 
sets the multiplier (divisor) of the base turning probability when the level 
of attractant decreases, and the divisor (multiplier) of the base turning 

probability when the level of repellent increases. 

g4 𝑆𝑖𝑔`
b$ Positive 

Chemotaxis 
(Attractants) 

sets the steepness of the sigmoid curve that controls speed according to the 
sensor reading for attractants. 

g5 𝑆𝑖𝑔c
b$ defines the offset of the sigmoid curve that controls speed according to the 

sensor reading for attractants. 

g6 𝑁𝑜𝑖𝑠𝑒𝑇𝑜𝑙 
Positive and 

Negative 
Chemotaxis 

controls the tolerance of the robot to the variation in sensed light 
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(both) 

g7 𝑆𝑖𝑔`
%d Negative 

Chemotaxis 
(Repellents) 

sets the steepness of the sigmoid curve that controls speed according to the 
sensor reading for repellents. 

g8 𝑆𝑖𝑔c
%d 

defines the offset of the sigmoid curve that controls speed according to the 
sensor reading for repellents. 

 

As in the previous experiment series, the battery level of each robot is updated according 
to the intensity of light (attractant) the robot is currently exposed to (𝑖34), as well as how 
much was spent on moving (𝑖:;$) and running basic systems (𝑖<=%): 

𝐵𝑎𝑡$
% =  𝐵𝑎𝑡$−1

% + (𝐿𝑖𝑔ℎ𝑡$
[-,/] ×  𝑖\]-

34 ) − 𝑆𝑝𝑒𝑒𝑑$
% × 𝑖\]-

:;$ − 𝑖<=% [7.1] 

As the environments tested in this series also contain repellents that are harmful, the 
battery is further depleted according to the damage the robot absorbed, as a result of 
getting exposed to repellents: 

𝐵𝑎𝑡$
% =  𝐵𝑎𝑡$

% − (𝑅𝑒𝑝𝑒𝑙𝑙𝑒𝑛𝑡$
[-,/] ×  𝑑𝑚𝑔\]-

34 ) [7.2] 

Also similarly to the previous experiments, the simulation program updates robots’ 
positions, checks for extinguished light spots (replacing them with new ones if necessary) 
and checks which robots are ‘alive’ – a robot permanently ‘dies’ if its battery is depleted. 

The reasoning process on each time step (t) starts when the agent acquires the sensor 
readings for the intensity of Attractants (𝑆𝑒𝑛𝑠𝐴𝑡$

%) and Repellents (𝑆𝑒𝑛𝑠𝑅𝑝$
%) at its 

current position [x,y], obtained from the actual intensity added by a (negative or 
positive) sensor noise, obtained from the multiplication of the set sensor noise 
(𝑆𝑒𝑛𝑠𝑁𝑜𝑖𝑠𝑒) by a uniformly distributed random number between -1 and 1 (RandNum) 
[9.3], [9.4]. ∆𝑆𝑒𝑛𝑠𝐴𝑡𝑡

𝑅 and ∆𝑆𝑒𝑛𝑠𝑅𝑝𝑡
𝑅  are then obtained from the current and previous 

sensor readings [9.5], [9.6] in order to calculate the probability of initiating a turn 
(PTurnR

t).  

𝑆𝑒𝑛𝑠𝐴𝑡$
% = 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑎𝑛𝑡$

[-,/] + 𝑅𝑎𝑛𝑑𝑁𝑢𝑚 ×  𝑆𝑒𝑛𝑠𝑁𝑜𝑖𝑠𝑒  [7.3] 

𝑆𝑒𝑛𝑠𝑅𝑝$
% = 𝑅𝑒𝑝𝑒𝑙𝑙𝑒𝑛𝑡$

[-,/] + 𝑅𝑎𝑛𝑑𝑁𝑢𝑚 ×  𝑆𝑒𝑛𝑠𝑁𝑜𝑖𝑠𝑒  [7.4] 

∆𝑆𝑒𝑛𝑠𝐴𝑡$
% = 𝑆𝑒𝑛𝑠𝐴𝑡$

% −  𝑆𝑒𝑛𝑠𝐴𝑡$−1
%    [7.5] 

∆𝑆𝑒𝑛𝑠𝑅𝑝$
% = 𝑆𝑒𝑛𝑠𝑅𝑝$

% −  𝑆𝑒𝑛𝑠𝑅𝑝$−1
%    [7.6] 

At this point, the calculation will happen separately for attractant and repellent stimuli. 
For attractant stimulus, if ∆𝑆𝑒𝑛𝑠𝑜𝑟𝑆𝑡𝑖𝑚𝑢𝑙𝑖$

% is sufficiently positive, 𝑃𝑇𝑢𝑟𝑛𝐴𝑡$
% decreases, 

whereas if it is sufficiently negative, 𝑃𝑇𝑢𝑟𝑛𝐴𝑡$
% increases. If both current and previous 

values are sufficiently similar (as determined by NoiseTol), then 𝑃𝑇𝑢𝑟𝑛𝐴𝑡$
% maintains the 

value of BaseProb (Fig.9.1). 



- 150 - 

For repellent stimulus, if ∆𝑆𝑒𝑛𝑠𝑜𝑟𝑆𝑡𝑖𝑚𝑢𝑙𝑖$
% is sufficiently positive, 𝑃𝑇𝑢𝑟𝑛𝑅𝑝$

% increases, 
whereas if it is sufficiently negative, 𝑃𝑇𝑢𝑟𝑛𝑅𝑝$

% decreases. If the current and previous values 
are sufficiently similar (as determined by NoiseTol), then 𝑃𝑇𝑢𝑟𝑛𝑅𝑝$

% maintains the value 
of BaseProb (Fig. 9.1). The pseudocode is presented as follows: 

for Attractant Stimulus: 

1    if  (∆𝑆𝑒𝑛𝑠𝐴𝑡$
% > 𝑆𝑒𝑛𝑠𝑁𝑜𝑖𝑠𝑒 ×  𝑁𝑜𝑖𝑠𝑒𝑇𝑜𝑙) then 

2         𝑃𝑇𝑢𝑟𝑛𝐴𝑡$
% = 𝐵𝑎𝑠𝑒𝑃𝑟𝑜𝑏 ÷ 𝑃𝑀𝑢𝑙𝑡 

3    else if (∆𝑆𝑒𝑛𝑠𝐴𝑡$
% < 𝑆𝑒𝑛𝑠𝑁𝑜𝑖𝑠𝑒 ×  𝑁𝑜𝑖𝑠𝑒𝑇𝑜𝑙) then 

4         𝑃𝑇𝑢𝑟𝑛𝐴𝑡$
% = 𝐵𝑎𝑠𝑒𝑃𝑟𝑜𝑏 × 𝑃𝑀𝑢𝑙𝑡 

5    else 
6         𝑃𝑇𝑢𝑟𝑛𝐴𝑡$

% = 𝐵𝑎𝑠𝑒𝑃𝑟𝑜𝑏 
7    end 

 

for Repellent Stimulus: 

1    if  (∆𝑆𝑒𝑛𝑠𝑅𝑝$
% > 𝑆𝑒𝑛𝑠𝑁𝑜𝑖𝑠𝑒 ×  𝑁𝑜𝑖𝑠𝑒𝑇𝑜𝑙) then 

2         𝑃𝑇𝑢𝑟𝑛𝑅𝑝$
% = 𝐵𝑎𝑠𝑒𝑃𝑟𝑜𝑏 × 𝑃𝑀𝑢𝑙𝑡 

3    else if (∆𝑆𝑒𝑛𝑠𝑅𝑝$
% < 𝑆𝑒𝑛𝑠𝑁𝑜𝑖𝑠𝑒 ×  𝑁𝑜𝑖𝑠𝑒𝑇𝑜𝑙) then 

4         𝑃𝑇𝑢𝑟𝑛𝑅𝑝$
% = 𝐵𝑎𝑠𝑒𝑃𝑟𝑜𝑏 ÷ 𝑃𝑀𝑢𝑙𝑡 

5    else 
6         𝑃𝑇𝑢𝑟𝑛𝑅𝑝$

% = 𝐵𝑎𝑠𝑒𝑃𝑟𝑜𝑏 
7    end 

 

The final 𝑃𝑇𝑢𝑟𝑛$
% is rationed by averaging 𝑃𝑇𝑢𝑟𝑛𝐴𝑡$

% and 𝑃𝑇𝑢𝑟𝑛𝑅𝑝$
%. 

As in AT-6 (chapter 8), once 𝑃𝑇𝑢𝑟𝑛$
% is set, a random number (0 to 1) is generated and, 

if it is less than or equal to 𝑃𝑇𝑢𝑟𝑛$
%, the robot will perform a turn (Fig.9.1). When 

performing a turn, the yaw (Δθ) will be calculated using another uniform random number 
between -1 and 1 (RandNum), according to: 

∆𝜃$
% = 180° + (𝑉𝑎𝑟𝐴𝑛𝑔𝑙𝑒 × 𝑅𝑎𝑛𝑑𝑁𝑢𝑚)  [7.7] 

Speed Modulators are calculated separately for Attractant and Repellent stimuli, each using 
its specific set of parameters, as seen in Table 7.2. Similar to algorithm AT-6 (Chapter 8), 
speed is modulated by an inverse logistic function and a logistic function, controlled by the 
combination of the current sensor reading and the pair of input parameters Sig𝛼 and Sig𝛽, 
according to: 

𝑆𝑝𝑒𝑒𝑑𝑀𝑜𝑑𝐴𝑡$
% = 1 −  1

1+(N
OPQRfY× (OSTUfYY

Z−OPQ[)
)
 ×  𝑉\]-   [7.8] 

𝑆𝑝𝑒𝑒𝑑𝑀𝑜𝑑𝑅𝑝$
% = 1 −  1

1+(N
OPQR

Zg× (OSTUZgY
Z−OPQ[)

)
 ×  𝑉\]-  [7.9] 
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The resulting speed is then obtained by averaging the results of equations [7.8] and [7.9]. 

 

Figure 7.1 Flowchart of the control algorithm ATRP-8. 
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Figure 7.2 Diagram of the function outputting the probability of turn and acceleration. The same 
function is used for both attractants and repellents. 

7.2. Simulation and Experiment Design 

The algorithm was evolved for 9 different environments, created from the combination of 
three sizes (small, medium, and large) and three resource quality types (rich, average, and 
poor). The environments are populated with attractants and repellents in a balanced ratio, 
as described in Section 5.2. 

7.3. Results and Discussion 

In this set of optimisation cycles for ATRP-8, virtual robots running this foraging algorithm 
were evolved in 9 environments containing attractants and repellents. The best solutions 
found were grouped into 3 and 7 clusters by genetic similarity. The clusters were validated 
by comparing the results of its members on the cross-trials. 

7.3.1. Parameter Optimisation for Different Environments 

The best values of Cost 1 were found in SR, MR, LR, SA, MA, SP, LA, MP, and LP, 
respectively (Table 7.1, Figure 7.3). 

Optimisation in MP reached the stopping criteria of diversity loss earlier than the others: 
after 60 generations. Optimisations in SP, LP and SR converged before 70 generations, and 
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optimisations in LA, MA, and LR ran for longer than the other optimisations, for more 
than 250 generations. 

When it comes to Cost 2, the environments in which the optimisation achieved the best 
cost were, respectively: SR, LR, MR, MA, SA, LA, SP, MP, and LP (Figure 7.4). 

As it has been mentioned earlier in this chapter, the input parameters were not optimised 
for Cost 3, even though the value of it was registered. The best values found (but not 
optimised) were, respectively: SA, SP, SR, MR, MA, MP, LR, LA, and LP. 

In terms of availability of attractants, measured by the Light Index, the environments with 
more attractant light available are, respectively: SR, SA, MR, SP, MA, LR, LA, MP, and 
LP (Table 7.2). 

Unlike the previous experiment series, in which the minimised costs followed a combination 
of field size and quality of resources, in this series (Series I), the minimised Costs 1 and 2 
are closely related to the quality of resources. 

 

Figure 7.3 Cost 1 (J1) optimised for Behavioural Algorithm ATRP-8, in 9 environments (SR, MR, 
LR, SA, MA, LA, SP, MP, and LP), with attractants and repellents. 
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Figure 7.4 Cost 2 (J2) optimised for Behavioural Algorithm ATRP-8, in 9 environments (SR, MR, 
LR, SA, MA, LA, SP, MP, and LP), with attractants and repellents. 

7.3.2. Selection of the best individuals 

Figure 7.5 shows the best 8000 unique individuals evolved in the 9 environments using 
Foraging Algorithm ATRP-8. As can be seen, Cost 1 presents a steep drop in approximately 
the best 100 individuals (Figure 7.5). 

Further experiments explored the variance of Cost 1 in different aliquots of the population 
and values around 25 individuals presented a good combination between diversity (gene 
variance) whilst still retaining a narrow range of Cost 1 values for all environments (Fig. 
9.6, 9.7, 9.8, and 9.9). This number was also maintained as it matched the number of best 
individuals chosen in the previous experiment series (Series H). 

In all environments, g6 (NoiseTol) converged to a very narrow range. The same happened 
to g3 (VarAngle), as seen in Figure 7.10 and in Table 7.4. 
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Figure 7.5 Cost 1 (J1) of the best 8000 individuals running the behavioural algorithm ATRP-8, 
evolved in 9 environments (SR, MR, LR, SA, MA, LA, SP, MP, and LP) with attractants and 
repellents. 

 

 

Figure 7.6 Box plot of the Cost 1 (J1) of the best 8000 individuals (from each environment) evolved 
running the behavioural algorithm ATRP-8 in 9 environments (SR, MR, LR, SA, MA, LA, SP, 
MP, and LP) with attractants and repellents. 
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Figure 7.7 Box plot of the Cost 1 (J1) of the best 25 individuals (from each environment) evolved 
running the behavioural algorithm ATRP-8 in 9 environments (SR, MR, LR, SA, MA, LA, SP, 
MP, and LP) with attractants and repellents. 

 

Figure 7.8 Box plot of the values for the input parameters (genes) of the best 9000 individuals (100 
from each environment) evolved in SR, MR, LR, SA, MA, LA, SP, MP, and LP, running the 
Foraging Algorithm ATRP-8. 
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Figure 7.9 Box plot of the values for the input parameters (genes) of the best 225 individuals (25 
from each environment) evolved in SR, MR, LR, SA, MA, LA, SP, MP, and LP, running the 
Foraging Algorithm ATRP-8. 

 

Figure 7.10 Box plot of the values for the input parameters (“DNA”) of the best 25 individuals 
evolved in each environment, running the Foraging Algorithm ATRP-8. 
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Table 7.4 Percentiles 25%, 50% (median), and 75% of the gene values of the best 25 individuals 
evolved in each environment with ATRP-8. 
Cells in blue indicate pairs of genes related to Speed Modulation regarding the presence of 
Attractants and the cells in red indicate those related to Repellents. 

ENV. 

GENES 

Percentile g1 g2 g3 g4 g5 g6 g7 g8 

BaseProb PMult VarAngle 𝑆𝑖𝑔`
b$ 𝑆𝑖𝑔c

b$ NoiseTol 𝑆𝑖𝑔`
%d 𝑆𝑖𝑔c

%d 

SR 

0.1184 0.4677 0.1971 0.3169 0.4756 0.0924 0.0603 0.8224 25% 

0.1992 0.5931 0.2103 0.3772 0.4943 0.1093 0.0766 0.8838 50% 

0.4522 0.8151 0.2256 0.4656 0.5119 0.1119 0.0982 0.9344 75% 

MR 

0.0555 0.9112 0.1693 0.6719 0.2556 0.1066 0.0642 0.8928 25% 

0.0703 0.938 0.1875 0.6788 0.2751 0.1106 0.0826 0.9319 50% 

0.0813 0.9782 0.2286 0.8878 0.3014 0.1192 0.095 0.9715 75% 

LR 

0.1287 0.5349 0.1965 0.0566 0.316 0.1111 0.4679 0.2487 25% 

0.1877 0.6005 0.2057 0.0622 0.3574 0.1186 0.5603 0.4021 50% 

0.211 0.6568 0.2203 0.073 0.4318 0.1259 0.6642 0.7342 75% 

SA 

0.0751 0.6804 0.191 0.0472 0.3027 0.1321 0.2237 0.2801 25% 

0.1132 0.8185 0.1978 0.0494 0.3461 0.1382 0.3343 0.385 50% 

0.143 0.8906 0.2048 0.0511 0.4909 0.1421 0.4372 0.4768 75% 

MA 

0.0785 0.5454 0.1558 0.3228 0.1811 0.1313 0.0316 0.4614 25% 

0.1098 0.557 0.1698 0.365 0.2049 0.1405 0.0392 0.6428 50% 

0.155 0.5908 0.1741 0.3879 0.2183 0.1463 0.0448 0.7527 75% 

LA 

0.0936 0.5207 0.2046 0.0673 0.5095 0.136 0.3417 0.5884 25% 

0.1166 0.5336 0.213 0.0753 0.5267 0.1451 0.3923 0.6826 50% 

0.1361 0.5502 0.2195 0.0811 0.5475 0.159 0.4055 0.8037 75% 

SP 

0.096 0.5059 0.1979 0.1466 0.2184 0.1367 0.5321 0.6359 25% 

0.1471 0.5577 0.2227 0.1495 0.2344 0.1439 0.6046 0.8758 50% 

0.2818 0.631 0.3313 0.1518 0.2449 0.151 0.6588 0.9114 75% 

MP 

0.0725 0.4275 0.225 0.1856 0.2608 0.1478 0.302 0.2895 25% 

0.1298 0.6321 0.2608 0.1941 0.2841 0.1641 0.3769 0.3954 50% 

0.1869 0.7196 0.278 0.2143 0.2937 0.1671 0.451 0.5082 75% 

LP 

0.0933 0.4058 0.2604 0.1215 0.1647 0.141 0.6342 0.2157 25% 

0.1113 0.4652 0.2981 0.1242 0.1688 0.1474 0.7678 0.2235 50% 

0.2678 0.4695 0.323 0.1361 0.1908 0.1539 0.7782 0.3729 75% 
 

 

Figure 7.11 shows the shapes of different sigmoid functions evolved in different 
environments, the shape of the sigmoid curve is calculated based on median values of the 
genes of the best 25 individuals. 

LR, SA, and LA have shallower curves for attractants, showing that they adjust their speed 
more slowly when they find attractants. 

SR has a delayed reaction to the presence of attractants, compared with all other 
individuals evolved in other environments. SR, MA and MR have very steep curves, which 
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means they respond to attractants more quickly than the individuals evolved in other 
environments. Likely because they evolved in the richest environments, they specialise in 
locating attractants with high intensity, therefore higher risk may equal higher reward. 
This may be due to the fact that the more intense repellents are clustered around more 
intense attractants, some individuals may have evolved to make use of this pattern. 

SP, MP, MA, and LP respond very quickly to attractants, with environments SP, MP, and 
LP showing shallower curves than MA. Indicating a more gradual response to attractants, 
however not as gradual as LR, SA, and LA. 

In regards to the repellent reactions, MA has the shallowest curve, indicating the most 
gradual response, followed by SR and MR which also show more shallow curves. 

LR, SA, LA, SP, MP and LP, all exhibit steeper curves, indicating a more rapid response 
to repellent stimuli. However, as can be seen in Figure 7.11 the threshold for response to 
repellents is different between the individuals evolved in these environments. SP responds 
more quickly to lower levels of repellents, followed by MP and LR. LP shows the most 
delayed response to repellents only responding when it reaches ~0.75. 

In ATRP-8 the probability of a robot turning (PTurn) is controlled by 2 genes 
simultaneously, genes 1 and 2, which set the base probability of turn and the probability 
multiplier respectively (BaseProb and PMult). PTurn is also affected by noise tolerance 
(g6). Noise tolerance (NoiseTol) converged to a very narrow range, which suggests an 
optimal level of tolerance to variations in the intensity detected by the sensor. Meaning 
that when the sensor noise is 1% and time step size (TSS) is 1, most of the best individuals 
only consider relevant a variation in intensity (ΔLight) higher than ~0.1 (~%1). The 
probability of turn (PTurn) will then be set as a number different from the Base Probability 
of Turn (BaseProb). ATRP-8 is set to reason about attractants and repellents individually 
and later combining and averaging the preliminary probabilities of turn obtained. 
Therefore, the influence of each initial Probability of Turn (PTurnAt and PTurnRp) in the 
Resulting Probability of Turn is 50%. Table 7.5 shows the contribution of each reasoning 
process to the Resulting PTurn. 

All of the best individuals in all environments evolved to have a lower value for gene 1 and 
higher value for gene 2, indicating that they prioritise a decrease in attractants over an 
increase; and an increase in repellents over a decrease. Meaning that they will begin to turn 
back as attractant levels decrease, returning to the centre. In the same way, they are more 
likely to run away as soon as an increase in repellent is detected. 

In environments SR and LR the probability of turn is so certain that the value for just one 
stimulus is above 2, so when combined response to attractants and repellents the resultant 
probability of turn is still above 1, meaning it will turn. 
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Figure 7.11 Sigmoid Function controllers related to Attractants and Repellents for individuals 
evolved in 9 environments (SR, MR, LR, SA, MA, LA, SP, MP, and LP), running the 
Foraging Algorithm ATRP-8. 

Each line represents the shape of the sigmoid function for the median values (of the best 25 
individuals) of genes 4 and 5 (attractants) or 7 and 8 (repellents) in each environment. The 
functions are always calculated using the absolute value of the stimulus and these plots show 
negative values only so the full length of the sigmoid can be seen. The first row shows the 
curves for all the environments combined and the other rows show similar curves grouped, for 
clarity. 
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Figure 7.12 Sigmoid Function controlling the Speed Modulation related to Attractants of the best 
25 individuals evolved in 9 environments (SR, MR, LR, SA, MA, LA, SP, MP, and LP), 
running the Foraging Algorithm ATRP-8. Each line represents one of the 25 best individuals 
evolved in each environment. 

In environments SA SP and MP the probability is between 0.82 and 0.93, meaning that 
although highly likely a turn is not certain. In the remaining environments MR MA LA 
and LP, the probability is always above 0.5, meaning a turn is likely, but again not 
certain. 

This also happened in AT-6, and for the following series of experiments the foraging 
algorithm was adapted so it would have different parameter for attractants and 
repellents. 
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Figure 7.13 Sigmoid Function controlling the Speed Modulation related to Repellents of the best 25 
individuals evolved in 9 environments (SR, MR, LR, SA, MA, LA, SP, MP, and LP), running 
the Foraging Algorithm ATRP-8. Each line represents one of the 25 best individuals evolved in 
each environment. 
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Table 7.5 Resulting values for variable PTurn calculated from the median of the genes of the 
best 25 individuals evolved in each environment with ATRP-8. 
The value ~0.1 (relevant variation in light intensity) is calculated taking into account the 
standard sensor noise (1%), the value of gene 6 (NoiseTol), and the Time Step Size 
(TSS=4). As a high convergence for NoiseTol was achieved, in all the environments the 
reference value for comparing the ΔIntensity against resulted in ~0.1. Values highlighted in 
red show a probability of 100% (certainty) of turning. 
 Contribution for the Resulting PTurn 

Median of 
individuals 
evolved in: 

PTurnAt / 2 PTurnRp / 2 

increase 
(more than ~0.1) 

decrease 
(more than ~0.1) 

else 
increase 

(more than ~0.1) 
decrease 

(more than ~0.1) 
else 

SR 0.000 1.181 0.010 1.181 0.000 0.010 
MR 0.000 0.659 0.004 0.659 0.000 0.004 
LR 0.000 1.127 0.009 1.127 0.000 0.009 
SA 0.000 0.927 0.006 0.927 0.000 0.006 
MA 0.000 0.612 0.005 0.612 0.000 0.005 
LA 0.000 0.622 0.006 0.622 0.000 0.006 
SP 0.000 0.820 0.007 0.820 0.000 0.007 
MP 0.000 0.820 0.006 0.820 0.000 0.006 
LP 0.000 0.518 0.006 0.518 0.000 0.006 

 

7.3.3. Characterization of Evolved Genomes 

In this section I am going to present the clustering for the best 25 individuals evolved in 
each environment in two sections: firstly those organised in 3 clusters, followed by those 
organised in 7 clusters. 

7.3.3.1. 3 Clusters 

This section presents the clustering of the DNA of the best individuals, the characterization 
of the native environments the validation, and the interpretation of the clustering results 
for the best 25 individuals from all 9 environments combined, grouped in 3 clusters with k-
means++ (Fig. 7.14, 7.15, 7.16, 7.17). 

The first grouping of 3 clusters gives a more general overview of the similarities between 
individuals which evolved in different environments. A larger number of clusters would give 
a more detailed view of the behavioural patterns which evolved in these environments, 
however for comparison's sake these 3 clusters group behaviours into the pattern they most 
closely resemble, of course there will be more variance in the data and also outliers, but 
these are exceptions. 

Some of the more distinctive features of this grouping are that gene 4 in the first cluster 
shows a higher value than the other clusters, and a lower value for gene 7. Gene 4 controls 
the steepness of the sigmoid which responds to attractants, whereas gene 7 controls the 
steepness of the sigmoid which responds to repellents. In both cases a steeper curve will 
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indicate a more rapid response. The members of this cluster combine a rapid response to 
attractants with a more gradual response to repellents.  

One difference to note is that in cluster 2 when compared with the other clusters, a lower 
value for gene 5 can be seen, which indicates the threshold for response to attractants is 
lower. Hence they will respond immediately even to weak attractants. However in cluster 
1 the values for gene 8 are higher than the others, which indicates a higher tolerance for 
repellents, meaning they will not react until a certain level of repellent is detected. Cluster 
1 shows better results in richer and smaller environments, especially SR, MR, SA, MA, SP, 
and to some extent MP. 

Cluster 3 is somewhat similar to Cluster 1 and performs well in environments that are at 
the same time richer and smaller. Unlike Cluster 1, it performs more favourably in larger 
richer environments yet the performance in poor environments is less successful. Of the 
three, Cluster 3 is the one that performs least favourably in poor environments. 

Cluster 2 performs better than all three in poor environments, but its performance suffers 
in rich and average environments. While it would be expected in natural environments that 
species evolved with less abundant resources would perform better in both poor and rich 
environments, possibly by becoming more resourceful or better hunters or gatherers, we do 
not see this pattern with the robots. This may be due to the fact that the robots become 
content to settle for resources of lower intensity. 

Cluster 1 performs well in smaller and richer environments, it performed reasonably well in 
MP and SP compared to cluster 3, indicating a more balanced behavioural pattern, however 
it is not as suited to large environments as cluster 3. Cluster one evolved in SR MR MA 
and SA, so that it finds larger environments more challenging is to be expected.  

Cluster 1 evolved in rich environments yet also performs well in poor environments, this 
pattern would not be expected, although from the perspective of 'practice makes perfect' 
this make sense, a species with more experience finding attractants will develop better 
strategies. 

In contrast Cluster 2, which evolved in poor environments, does best in poor environments, 
which is to be expected as this would be considered its 'natural habitat', but its performance 
suffers in rich environments. This could be indicative of less experience in finding 
attractants purely because there were less attractants to find. Due to the nature of the 
optimisation many individuals would die in poor environments before having the 
opportunity to evolve, as these environments are less forgiving. 
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Figure 7.14 Clustering results of the best 25 from each environment (a total of 225), grouped in 3 
clusters using k-means++ and correlation. 

Top row: Each subplot (spider plot) shows the cluster members and centroids. Each axis 
represents one input parameter and the values are distributed centrewise, from 0 to 1. Cluster 
members are plotted in coloured lines, and the centroid is plotted in black. Bottom row: Each 
subplot shows the DNA composition of the members of each cluster, and the respective 
standard deviation. 
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Figure 7.15 Clustering results of the best 25 from each environment (a total of 225), grouped in 3 
clusters using k-means++ and correlation (Series I). 

Each subplot shows the cluster members and centroids. Each vertical axis represents the value 
of Cost1 in one environment. Cost 1 of cluster members are plotted in coloured lines, and Cost 
1 of the centroid is plotted in black. 

 

Figure 7.16 Clustering results of the best 25 from each environment (a total of 225), grouped in 3 
clusters using k-means++ and correlation (Series I). 

Each subplot shows the presence of members from different clusters in each environment. 
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Figure 7.17 Sigmoid Function controllers related to Attractants and Repellents for each cluster in a 
scenario with 3 clusters. 

Each line represents the shape of the sigmoid function for the median values of genes 4 and 5 
(attractants) or 7 and 8 (repellents), for all the cluster members. The functions are always 
calculated using the absolute value of the stimulus and these plots show negative values only 
so the full length of the sigmoid can be seen. 

7.3.3.2. 7 Clusters 

This section presents the clustering of the DNA of the best individuals, the characterization 
of the native environments the validation, and the interpretation of the clustering results 
for the best 25 individuals from all 9 environments combined, grouped in 7 clusters with k-
means++ (Fig. 7.18, 7.19, 7.20, 7.21, 7.22). 

The second grouping to be discussed is that of 7 clusters. This grouping provides a more 
detailed overview of the different strategies evolved in each environment. One reason for 
clustering this data is to show the links between the genes, for example g4 (𝑆𝑖𝑔`

b$) and g5 
(𝑆𝑖𝑔𝛽b$)  which work as a pair to control the sigmoid function to respond to attractants. 

Without this clustering it would not be as clear as to which genes were affecting the 
behaviours, and which genes evolved together. 
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Figure 7.18 Clustering results of the best 25 from each environment (a total of 225), grouped in 7 
clusters using k-means++ and correlation (Series I). 

Each subplot (spider plot) shows the cluster members and centroids. Each axis represents one 
input parameter and the values are distributed centrewise, from 0 to 1. Cluster members are 
plotted in coloured lines, and the centroid is plotted in black. 

Species 1, 2 and 7 have low values of g4 (𝑆𝑖𝑔`
b$), meaning a gradual response to attractants. 

Whereas species 4 and 6 have low values of g7 (𝑆𝑖𝑔`
%d), meaning a gradual response to 

repellents. 
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Species 1, 2, 3, 5, and 7 have higher values of g7, resulting in a steeper curve, meaning a 
rapid response to repellents, with varying thresholds: Species 7, then 1, then 2 and 3, then 
5 (Figure 7.23). 

 

Figure 7.19 - Clustering results of the best 25 from each environment (a total of 225), grouped in 7 
clusters using k-means++ and correlation (Series I). 

Each subplot shows the DNA composition of the members of each cluster and the respective 
standard deviation. 
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Figure 7.20 Clustering results of the best 25 from each environment (a total of 225), grouped in 7 
clusters using k-means++ and correlation (Series I). 

Each subplot shows the cluster members and centroids. Each vertical axis represents the value 
of Cost1 in one environment. Cost 1 of cluster members are plotted in coloured lines, and Cost 
1 of the centroid is plotted in black. 
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Figure 7.21 - Clustering results of the best 25 from each environment (a total of 225), grouped in 7 
clusters using k-means++ and correlation (Series I). 

Each subplot shows the presence of members from different clusters in each environment. 

Members of Cluster 6 are mainly native of SR and MR. Members of Cluster 1 are mainly 
native of SA and LA. Meaning that sometimes in similar environments similar strategies 
evolved. It would be expected that SA and MA would be more similar or even MA and LA, 
however this was not the case. The species evolved in SA is more similar to the one evolved 
in LA than that evolved in MA. It is not unusual that in nature different species will evolve 
similar features even in vastly different locations, for example as Walruses and Manatees 
evolved to have a very similar body shape for swimming and similar features, despite being 
genetically very different, a Walrus's is closer to that of a Wolf and a Manatee's is closer 
to that of an elephant, yet they are physically very similar despite evolving in vastly 
different locations. 
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Figure 7.23 - Sigmoid Function controllers related to Attractants and Repellents for each cluster in 
a scenario with 7 clusters (Series I). 

Each line represents the shape of the sigmoid function for the median values of genes 4 and 5 
(attractants) or 7 and 8 (repellents), for all the cluster members. The functions are always 
calculated using the absolute value of the stimulus and these plots show negative values only 
so the full length of the sigmoid can be seen. The first row shows the curves for all the 
environments combined and the other rows show similar curves grouped, for clarity. 
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7.4. Conclusions 
Within the 9 environments many different strategies evolved. Furthermore, the genetic 
analysis seemed to capture some of the most relevant aspects of the individuals evolved. 
To maintain clarity, the number of species was limited to 7. By forming 7 clusters the 
similarities between strategies and environments became more apparent. 

However, in some cases (Cluster 2 in LR, Cluster 3 in MP, Cluster 4 in MA, Cluster 5 in 
LP, Cluster 6 in MR, and Cluster 7 in SP), the performance of the centroid differed to that 
of the members of the cluster (when tested in all environments, as seen in Figure 7.20). 
This means that each cluster may contain more than one species, which appear similar. 

This algorithm was successful in keeping a significant portion of the group of robots alive 
to the end of the simulation. However, one small issue which was encountered in this series 
of this algorithm was that the robots running it must use the same value for PMult to 
respond to both attractants and repellents, in future experiments it was decided that they 
would have different parameters regarding the probability of turn for attractants and and 
another for repellents. Giving them the opportunity to respond differently to attractants 
and repellents. 
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Chapter 8 
Second Refined Algorithm: ATRP-7 (Experiment Series J) 

In this chapter, I will present the design of the third refined C. elegans-based Foraging 
Algorithm, ATRP-7, and the results of experimental series I. The Foraging Algorithm takes 
7 input parameters which were optimised in 4 environments: MA11, MA51, MA55, and 
MA15 (Table 8.1). These environments are variations of MA, used in experiment series I 
(Chapter 7), and have different values for combined Light Index values of attractants and 
repellents (Light Index AT+RP), as well as different ratios between them (Light Index 
AT/RP), as seen in Table 8.2. 

Table 8.1 Compilation of the experiments of Series J, evolved in 4 different environments 
(MA51, MA11, MA55, and MA15), with attractants and repellents, for robots equipped 
with sensors with sensor noise of value 1%. 

OPT. SIM. ROBOT ENVIRONMENT 
Function 

Eval. 
Minim. 
Cost 1 

Minim. 
Cost 2 

Minim. 
Cost 3 

Non- 
Domin. 

Solutions EA 
Pool 
Size 

Time 
Step 

Sensor 
Noise 

Field Size 
& Quality 

Subtype 

DE 200 4 1% 
MA 

(225-avg) 

MA51 13,635 0.553 0.991 0.960 15 

MA11 14,537 0.659 0.993 0.979 13 

MA55 16,962 0.807 0.995 0.984 14 

MA15 7,144 0.904 1.000 0.982 11 

     TOTAL: 52,278     
 

Table 8.2 Minimised Costs and Light Indexes for the 4 environment subtypes (MA51, MA11, 
MA55, and MA15), used in Experiment Series J. 

ENV. Intensity 
of 

Attract. 

Intensity 
of 

Repell. 

Minim. 
Cost 1 

Minim. 
Cost 2 

Minim. 
Cost 3 

Light 
Index 
(AT) 

Light 
Index 
(RP) 

Light 
Index 

(AT+RP) 

Light 
Index 

(AT/RP) Subtype 

MA51 1x 1x 0.553 0.991 0.960 50.152 -27.476 22.676 -1.825 

MA11 5x 1x 0.659 0.993 0.979 23.396 -27.476 -4.080 -0.852 

MA55 5x 5x 0.807 0.995 0.984 50.152 -65.001 -14.850 -0.772 

MA15 1x 5x 0.904 1.000 0.982 23.396 -65.001 -41.606 -0.360 
 

8.1. Algorithm Design 

The foraging algorithm ATRP-7, inspired by C. elegans' chemotaxis, improves and 
simplifies the foraging algorithm presented in the previous chapter (Chapter 7). This 
algorithm is also composed of two key behaviours: runs and turns, controlled by a set of 
seven parameters (g1:7), also referred to in this work as the 'genome', shown in Table 8.3. 
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This algorithm encompasses both positive and negative chemotactic behaviours, as the 
agents react to attractant and repellent stimuli distributed in the field. 

ATRP-7 is an upgrade of the foraging algorithms developed earlier in this work and there 
are two main differences. The first difference is that the probability multiplier for 
attractants and repellents is set individually by two separate input parameters (genes). The 
second difference is that the two of the input parameters controlling the variability of the 
angle of the turns (VarAngle) and the noise tolerance (NoiseTol) have been suppressed, 
and the values have been fixed to the optimised values found for AT- previous experiments. 
As in previous experiments (Series G, H, and I), a strong convergence could be observed in 
parameters VarAngle and NoiseTol, these two “genes” have been suppressed in this version 
of the foraging algorithm. The values were fixed at the average parameter value obtained 
by the best individuals from the previous series of experiments (VarAngle = 0.20124 and 
NoiseTol = 0.1376). 

Table 8.3 - Set of input parameters (genome) for the C. elegans' bio-inspired minimalist 
algorithm for positive and negative chemotaxis in Foraging Algorithm ATRP-7. 

GENE PARAMETER PROCESS APPLICATION 

g1 𝐵𝑎𝑠𝑒𝑃𝑟𝑜𝑏 
Positive and Negative 

Chemotaxis 
(both) 

sets the base probability of turning, in the absence of any change in 
sensed light level 

g2 𝑃𝑀𝑢𝑙𝑡b$ 
Positive 

Chemotaxis 
(Attractants) 

sets the multiplier (divisor) of the base turning probability when the 
level of attractant decreases (increases) 

g3 𝑆𝑖𝑔`
b$ sets the steepness of the sigmoid curve that controls speed according 

to the sensor reading for attractants. 

g4 𝑆𝑖𝑔c
b$ defines the offset of the sigmoid curve that controls speed according 

to the sensor reading for attractants. 

g5 𝑃𝑀𝑢𝑙𝑡%d 
Negative 

Chemotaxis 
(Repellents) 

sets the divisor (multiplier) of the base turning probability when the 
level of repellent increases (decreases) 

g6 𝑆𝑖𝑔`
%d sets the steepness of the sigmoid curve that controls speed according 

to the sensor reading for repellents. 

g7 𝑆𝑖𝑔c
%d defines the offset of the sigmoid curve that controls speed according 

to the sensor reading for repellents. 

The method for updating the battery level of each robot is the same as described in Chapter 
7, in Equations [7.1] and [7.2]. 

Also similarly to the previous experiments, the simulation program updates the robots’ 
positions, checks for extinguished light spots (replacing them with new ones if necessary) 
and checks which robots are ‘alive’ – a robot permanently ‘dies’ if its battery is depleted. 

The reasoning process on each time step (t) starts when the agent acquires the sensor 
readings for the intensity of Attractants (𝑆𝑒𝑛𝑠𝐴𝑡$

%) and Repellents (𝑆𝑒𝑛𝑠𝑅𝑝$
%) at its 

current position [x,y]. The methods for obtaining sensor reading and for the program to add 
sensor noise are the same as described in Chapter 7. ∆𝑆𝑒𝑛𝑠𝐴𝑡$

% and ∆𝑆𝑒𝑛𝑠𝑅𝑝$
% are then 
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obtained in order to calculate the probability of initiating a turn (𝑃𝑇𝑢𝑟𝑛$
%) according to 

Equations 7.3, 7.4, 7.5, and 7.6. 

As opposed to the previous algorithm (ATRP-8), in ATRP-7 the two probabilities of turn 
(𝑃𝑇𝑢𝑟𝑛𝐴𝑡$

% and 𝑃𝑇𝑢𝑟𝑛𝑅𝑝$
%) are calculated independently with each using a different 

Probability Multiplier (𝑃𝑀𝑢𝑙𝑡b$ and 𝑃𝑀𝑢𝑙𝑡%d), related specifically to attractants or 

repellents, as described in the following pseudocode: 

for Attractant Stimulus: 

1    if  (∆𝑆𝑒𝑛𝑠𝐴𝑡$
% > 𝑆𝑒𝑛𝑠𝑁𝑜𝑖𝑠𝑒 ×  𝑁𝑜𝑖𝑠𝑒𝑇𝑜𝑙) then 

2         𝑃𝑇𝑢𝑟𝑛𝐴𝑡$
% = 𝐵𝑎𝑠𝑒𝑃𝑟𝑜𝑏 ÷ 𝑃𝑀𝑢𝑙𝑡b$ 

3    else if (∆𝑆𝑒𝑛𝑠𝐴𝑡$
% < 𝑆𝑒𝑛𝑠𝑁𝑜𝑖𝑠𝑒 ×  𝑁𝑜𝑖𝑠𝑒𝑇𝑜𝑙) then 

4         𝑃𝑇𝑢𝑟𝑛𝐴𝑡$
% = 𝐵𝑎𝑠𝑒𝑃𝑟𝑜𝑏 × 𝑃𝑀𝑢𝑙𝑡b$ 

5    else 
6         𝑃𝑇𝑢𝑟𝑛𝐴𝑡$

% = 𝐵𝑎𝑠𝑒𝑃𝑟𝑜𝑏 
7    end 

 

for Repellent Stimulus: 

1    if  (∆𝑆𝑒𝑛𝑠𝑅𝑝$
% > 𝑆𝑒𝑛𝑠𝑁𝑜𝑖𝑠𝑒 ×  𝑁𝑜𝑖𝑠𝑒𝑇𝑜𝑙) then 

2         𝑃𝑇𝑢𝑟𝑛𝑅𝑝$
% = 𝐵𝑎𝑠𝑒𝑃𝑟𝑜𝑏 × 𝑃𝑀𝑢𝑙𝑡%d 

3    else if (∆𝑆𝑒𝑛𝑠𝑅𝑝$
% < 𝑆𝑒𝑛𝑠𝑁𝑜𝑖𝑠𝑒 ×  𝑁𝑜𝑖𝑠𝑒𝑇𝑜𝑙) then 

4         𝑃𝑇𝑢𝑟𝑛𝑅𝑝$
% = 𝐵𝑎𝑠𝑒𝑃𝑟𝑜𝑏 ÷ 𝑃𝑀𝑢𝑙𝑡%d 

5    else 
6         𝑃𝑇𝑢𝑟𝑛𝑅𝑝$

% = 𝐵𝑎𝑠𝑒𝑃𝑟𝑜𝑏 
7    end 

 

The final 𝑃𝑇𝑢𝑟𝑛$
% is rationalised by averaging 𝑃𝑇𝑢𝑟𝑛𝐴𝑡$

% and 𝑃𝑇𝑢𝑟𝑛𝑅𝑝$
%. As in AT-6 and 

ATRP-8 (chapters 8 and 9), once 𝑃𝑇𝑢𝑟𝑛$
%  is set, a random number (0 to 1) is generated. 

If the random number is less than or equal to 𝑃𝑇𝑢𝑟𝑛$
%, the robot will perform a turn 

(Fig.10.1). When performing a turn, the yaw (Δθ) will be calculated using another random 
number (between -1 and 1), according to equation [8.7]. 

Similar to algorithms AT-6 and ATRP-8 (Chapters 6 and 7), Speed is calculated by 
averaging the results of two Speed Modulators - calculated separately for Attractant and 
Repellent stimuli, each using its specific set of parameters, as seen in Table 8.3. 
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Figure 8.1 Flowchart of the control algorithm ATRP-7. 

 

Figure 8.2 Diagram of the function outputting the probability of turn and acceleration. The same 
function is used for both attractants and repellents. 
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8.2. Simulation and Experiment Design 

The algorithm was evolved for 4 different environments of Medium Size populated with 
attractants and repellents in different proportions, as described in Section 5.2. 

8.3. Results and Discussion 

In this set of optimisation cycles for ATRP-7, virtual robots running this foraging algorithm 
were optimised for 4 environments of the same size and containing the same number of 
attractants and repellents, but in different proportions. The best solutions found were 
grouped into 3 and 7 clusters by genetic similarity. The clusters were validated by 
comparing the results of its members on the cross-environment trials (cross-trials). 

8.3.1. Parameter Optimisation for Different Environments 

Optimisation in MA15 reached the stopping criteria after 40 generations, whilst in the other 
environments, the optimisations ran for longer than 70 generations (only being interrupted 
due to time restrictions). The best values of Cost 1 were found in MA51, MA11, MA55, 
and MA15, respectively (Table 8.1, Figure 8.3). The same sequence was found for Cost 2 
(Figure 8.4). These results hold a strong correlation with both Combined and Ratio Light 
Index values (Table 8.2). 

As it has been mentioned earlier in this chapter, the input parameters were not optimised 
for Cost 3, even though the value of it was registered. The best values found (but not 
optimised) for Cost 3 are, respectively: MA51, MA11, MA15, and MA55 (Table 8.1, Figure 
8.5). Compared to the results found for Costs 1 and 2 and to the values of the Light Index, 
it was expected that MA15 and MA55 would be inverted. It is possible that the robots in 
MA15 had to explore more of the field before finding attractant spots and this behaviour 
might have led to the values obtained. 
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Figure 8.3 Optimisation of Cost 1 (J1) in 4 environments (MA51, MA11, MA55, and MA15) with 
attractants and repellents in varying intensity ratios (Series J). MA environments have Field 
Size 225 and Average resource quality. Solutions were optimised with DE using a Pool Size of 
200. 

 

 

Figure 8.4 Optimisation of Cost 2 (J2) in 4 environments (MA51, MA11, MA55, and MA15) with 
attractants and repellents in varying intensity ratios. MA environments have Field Size 225 
and Average resource quality. Solutions were optimised with DE using a Pool Size of 200. 
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8.3.2. Selection of the best individuals 

Figure 8.5 shows the best 7000 unique individuals evolved in the 4 environments using 
Foraging Algorithm ATRP-7. As can be seen, Cost 1 presents a steep drop in approximately 
the best 100 individuals (Figure 8.5). 

Further experiments explored the variance of Cost 1 in different aliquots of the population 
and values around 25 individuals presented a good combination between diversity (gene 
variance) whilst still retaining a narrow range of Cost 1 values for all environments (Fig. 
8.7, 8.8, 8.9, and 8.10). This number was also maintained as it matched the number of best 
individuals chosen in the previous experiment series (Series H and Series I). 

 

Figure 8.5 Cost 1 (J1) of the best 7000 individuals running the behavioural algorithm ATRP-7, 
evolved in 4 environments (MA51, MA11, MA55, and MA15) with attractants and repellents 
in varying intensity ratios. 
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Figure 8.7 Box plot of the Cost 1 (J1) of the best 7000 individuals evolved running the behavioural 
algorithm ATRP-7 in 4 environments (MA51, MA11, MA55, and MA15) with attractants and 
repellents in varying intensity ratios. 

 

Figure 8.8 Box plot of the Cost 1 (J1) of the best 25 individuals evolved running the behavioural 
algorithm ATRP-7 in 4 environments (MA51, MA11, MA55, and MA15) with attractants and 
repellents in varying intensity ratios. 
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Figure 8.9 Box plot of the values for the input parameters (genes) of the best 6000 individuals 
(1500 from each environment) evolved in MA51, MA11, MA55, and MA15, running the 
Foraging Algorithm ATRP-7. 

 

Figure 8.10 Box plot of the values for the input parameters (genes) of the best 100 individuals (25 
from each environment) evolved in MA51, MA11, MA55, and MA15, running the Foraging 
Algorithm ATRP-7. 
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Figure 8.11 Box plot of the values for the input parameters (“DNA”) of the best 25 individuals 
evolved in each environment, running the Foraging Algorithm ATRP-7. 

The parameters (genes) of the individuals evolved in MA51, MA11, and MA55 present less 
variance than of those evolved in MA15 (Figure 8.11). This might be due to the difficulty 
of MA15, in which the optimisation probably did not find a unique convergent strategy. 
Hence, the best population evolved in MA15 is more diverse than those evolved in other 
environments. 

Gene 2 (PMultAt) sets the probability multiplier for turning behaviour in the presence of 
attractants and gene 5 (PMultRp) sets the probability multiplier in the presence of repellents. 

The best individuals evolved in MA51 and MA55 tend to have a higher PMultAt (50% of the 
data fitting between ~0.79 and ~0.98), whereas the ones evolved in MA11 and MA15 tend 
to have a medium PMultAt (50% of the data fitting between ~0.47 and ~0.66) (Table 8.4). 

Individuals evolved in MA11 and MA55 have smaller values for g5 (PMultRp), as 50% of the 
data fitting between ~0.05 and ~0.16. In MA51, values of g5 are still small (between ~0.18 
and ~0.34), whereas in MA15, the values are spread in a wider range: 50% of the data fits 
between ~0.32 and ~0.70, and the median is ~0.42 (Table 8.4, Figure 8.11). 
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Genes 3 and 4 control the sigmoid function that modulates the speed according to the 
presence of attractants. This pair of parameters presented itself very differently in different 
environments and in all of them, the range of values was compact (Table 8.4, Figure 8.11). 
Contrary to what was expected as these are the easiest and the hardest, environments 
MA51 and MA15 presented very similar pairs of g3 and g4: both have smaller values for 
both genes (approximately ~0.20 for both genes in MA51 and ~0.10 also for both in MA15). 
In MA11, both genes are also of similar value amongst each other, but with average values 
(median ~0.55 and ~0.43). In MA55, a higher value of g3 is coupled with an average value 
of g4 (median ~0.81 and ~0.41, respectively), as seen in Table 8.4 and Figure 8.11. 

Genes 6 and 7 control the sigmoid function that modulates the speed according to the 
presence of repellents. The optimised values for MA51, MA11, and MA55 are very 
consistent: combining a low value of g6 with a high value of g7. The range for these values 
is also very compact in all three cases. In MA15, the values of g6 are widely spread across 
the range, and the values of g7 are also spread on the top half of the range. For g6, 50% of 
the data is spread between ~0.09 and ~0.62 and for g7, this interval is between ~0.63 and 
~0.82 (Table 8.4, Figure 8.11). 

Table 8.4 Percentiles 25%, 50% (median), and 75% of the gene values of the best 25 individuals 
evolved in each environment with ATRP-7. 
Cells in blue indicate genes related to Attractants and cells in red indicate those related to 
Repellents. 

ENV. 
GENES 

Percentile g1 g2 g3 g4 g5 g6 g7 

BaseProb PMultAt 𝑆𝑖𝑔`
b$ 𝑆𝑖𝑔𝛽b$ PMultRp 𝑆𝑖𝑔`

%d 𝑆𝑖𝑔𝛽
%d 

MA51 
0.040 0.873 0.184 0.188 0.175 0.095 0.958 25% 
0.048 0.943 0.204 0.209 0.275 0.097 0.980 50% 
0.064 0.976 0.220 0.218 0.335 0.103 0.992 75% 

MA11 
0.064 0.493 0.479 0.412 0.057 0.077 0.903 25% 
0.070 0.555 0.544 0.426 0.144 0.080 0.915 50% 
0.079 0.588 0.553 0.435 0.163 0.089 0.922 75% 

MA55 
0.075 0.788 0.788 0.405 0.046 0.068 0.838 25% 
0.088 0.843 0.807 0.408 0.072 0.071 0.844 50% 
0.113 0.939 0.854 0.415 0.087 0.074 0.848 75% 

MA15 
0.190 0.470 0.061 0.020 0.315 0.094 0.634 25% 
0.221 0.559 0.073 0.028 0.425 0.376 0.754 50% 
0.273 0.655 0.084 0.058 0.703 0.624 0.824 75% 

 

 

Figure 8.12 shows the results of sigmoid calculated from the median values of pairs of genes 
3 and 4 (attractants) or 6 and 7 (repellents). The median was obtained from the best 25 
individuals evolved in each environment. 

In regards of attractants, MA15 shows the shallowest curve indicating a more gradual 
response, followed by MA51, which shows a steeper curve than MA15, yet not as steep as 
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MA11 and MA55. The curves for MA11 and MA55 were both steeper than the others, and 
closely resembled one another. This steeper curve pattern indicates a more rapid response 
to attractants. The threshold for MA11 and MA55 appears to be ~0.27, after attractants 
of this intensity are detected speed decreases rapidly. 

 

Figure 8.12 - Sigmoid Function controllers related to Attractants and Repellents for individuals 
evolved in 4 environments (MA51, MA11, MA55, and MA15), running the Foraging Algorithm 
ATRP-7. 

Each line represents the shape of the sigmoid function for the median values (of the best 25 
individuals) of genes 3 and 4 (attractants) or 6 and 7 (repellents) in each environment. The 
functions are always calculated using the absolute value of the stimulus and these plots show 
negative values only so the full length of the sigmoid can be seen. 

In terms of the repellent curves, MA51, MA11, and MA55 all show shallower curves than 
that of MA15, which shows a more extreme curve. Indicating that they (MA51, MA11 and 
MA55) respond more gradually to repellents and also their threshold for response is much 
lower, their speed begins to increase after any sensor reading above 0 is detected. 

MA15 has a higher tolerance for repellents, yet once its threshold is reached its acceleration 
is also much more rapid than the first group. 

The curve for MA15 shows that in the absence of attractants the cruising speed is halved, 
as soon as any level of attractant is detected speed decreases gradually. MA51 also responds 
to any level of attractants with a slightly quicker response than MA15. 

While MA15 shows a rapid response to attractants, its response to repellents is delayed, it 
still maintains a minimum speed. As repellents are clustered around attractants, this riskier 
behaviour may pay off as a repellent source may be disguising an attractant. 

MA11 and MA55 show a higher threshold to respond to attractants, meaning that these 
individuals will maintain a higher speed for a prolonged period of time around attractants. 
This behaviour is coupled with a response to repellent stimuli which results in a gradual 
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increase in speed. A repellent of more than ~0.3 will result in a fight or flight response, 
whereby a robot will either give a final push to reach an attractant, which may be disguised 
by a repellent, or it will flee the repellent with increased speed. In both counts, this flight 
or fight response is also affected by gene 5, which controls the probability multiplier for 
repellents, so it affects the probability of a robot fleeing or pushing through to a possible 
attractant. 

MA55 shows a more gradual response than MA11, indicating a higher tolerance for 
repellents, possibly due to the fact that, although the levels are balanced in MA55, the 
repellents cause more damage to the battery levels than the attractants can charge in the 
same amount of time. Meaning that MA55 is a more challenging environment than MA11, 
this increased difficulty results in a more tolerant behaviour to repellents as by maintaining 
a low speed near repellents, attractants may be discovered. 

Regarding the turning behaviour, in ATRP-7 the probability of turn is set by 3 genes, genes 
1, 2 and 5. Similarly to ATRP-8, the robots evolved to respond to decreasing levels of 
attractants and increasing levels of repellents, meaning they will turn back towards an 
attractant source, and will turn away from a repellent source. Even though in this series of 
experiments the parameters controlling this were set individually for attractants and 
repellents. The individuals evolved in MA15 were the only ones to evolve a definite 
probability of turn, with a resulting value of ~1.23. Similarly in this environment the 
response to repellents is also strong, approximately ~0.94. This is the most challenging of 
all the environments so the robots have evolved to avoid missing an attractant source at 
all costs, considering their scarcity. Also the repellents are so strong in this environment 
that they evolved to almost certainly flee a repellent source.  

In all environments except MA15, the individuals evolved low probabilities (~0.06 to ~0.13) 
of turning back from repellents. 

In MA11 and MA51 the response to attractants are very close in value, ~0.39 and ~0.45, 
respectively, this similarity may be due to the decreased intensity of repellents, and as these 
environments have more abundant attractants compared to repellents, so as they are less 
likely to go without any attractant resources they are more likely to explore further. 

For MA55 the resultant probability of turning in response to attractants is ~0.74, indicating 
that turns are likely. This may be due to the intensity of repellents, as repellents are 
stronger in this field the robots become restricted by them and limit their explorations.  

As can be seen in Figure 8.11 and Table 8.4, individuals evolved in MA15 present more 
variability in the range of some genes (2, 5, 6, and 7) than those evolved in other 
environments. This is especially true for genes 6 and 7, that modulate the speed according 
to the presence of repellents. In all environments except MA15, the range of values of these 
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genes is very compact: ~0.009 and ~0.018 (MA51); ~0.010 and ~0.015 (MA11); 0.006 and 
0.009 (MA55), whereas in MA15 the range is ~ 0.532 and ~0.201 (Figure 8.11, Table 8.4). 

The discussions continued here refer to the median values of the best individuals of each 
environment, however, this is not to say that there were no other successful strategies 
employed in these environments. As can be seen in Figure 8.11 (notice the variance of some 
genes) and in Fig. 8.13 and 8.14, different strategies emerge in the same environment. These 
similar strategies emerging in different environments will be covered in the Genetic 
Analysis. 

 

Figure 8.13 Sigmoid Function controlling the Speed Modulation related to Attractants of the best 
25 individuals evolved in 4 environments (MA51, MA11, MA55, and MA15), running the 
Foraging Algorithm ATRP-7. Each line represents one of the 25 best individuals evolved in 
each environment. 
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Figure 8.14 - Sigmoid Function controlling the Speed Modulation related to Repellents of the best 
25 individuals evolved in 4 environments (MA51, MA11, MA55, and MA15), running the 
Foraging Algorithm ATRP-7. Each line represents one of the 25 best individuals evolved in 
each environment. 

Table 8.5 Resulting values for variable PTurn calculated from the median of the genes of the 
best 25 individuals evolved in each environment with ATRP-7. 
The value ~0.1 (relevant variation in light intensity) is calculated taking into account the 
standard sensor noise (1%), the value of NoiseTol (optimised in previous experiments), and 
the Time Step Size (TSS=4). Values highlighted in red show a probability of 100% 
(certainty) of turning. 

 Contribution for the Resulting PTurn 

Median of 
individuals 
evolved in: 

PTurnAt / 2 PTurnRp / 2 
increase 

(more than 
~0.1) 

decrease 
(more than 

~0.1) 
else 

increase 
(more than 

~0.1) 

decrease 
(more than 

~0.1) 
else 

MA51 0.000 0.455 0.002 0.132 0.000 0.002 
MA11 0.000 0.391 0.004 0.102 0.000 0.004 
MA55 0.000 0.741 0.004 0.063 0.000 0.004 
MA15 0.000 1.233 0.011 0.937 0.000 0.011 
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8.3.3. Characterization of Evolved Genomes 

In this section, I am going to present the clustering for the best 25 individuals evolved in 
each environment in two sections: firstly those organised in 3 clusters, followed by those 
organised in 7 clusters. 

8.3.3.1. 3 Clusters 

This section presents the clustering of the DNA of the best individuals, the characterization 
of the native environments the validation, and the interpretation of the clustering results 
for the best 25 individuals from all 4 environments combined, grouped in 3 clusters with k-
means++ (Fig. 8.15, 8.16, 8.17, 8.18). 

The speed modulating strategy towards repellents is similar on Clusters 1 and 3, and 
characterized by a similar threshold and by a more gradual response than in Cluster 2. 
However, the speed modulating strategy towards attractants in Clusters 1 and 3 differ: in 
Cluster 1, the threshold is lower and the curve is shallower, meaning a gradient response 
starting as soon as any level of attractant is spotted. Whereas Cluster not only has a 
delayed response combined with a steeper curve, meaning that once a certain level of 
attractants is sensed, the robots’ response is rapid. 
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Figure 8.15 Clustering results of the best 25 from each environment (a total of 100), grouped in 3 
clusters using k-means++ and correlation (Series J). 

Top Row: each subplot (spider plot) shows the cluster members and centroids. Each axis 
represents one input parameter and the values are distributed centre wise, from 0 to 1. Cluster 
members are plotted in coloured lines, and the centroid is plotted in black. Bottom row: Each 
subplot shows the DNA composition of the members of each cluster, and the respective 
standard deviation. 
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Figure 8.16 Clustering results of the best 25 from each environment (a total of 100), grouped in 3 
clusters using k-means++ and correlation (Series J). 

Each subplot shows the cluster members and centroids. Each vertical axis represents the value 
of Cost1 in one environment. Cost 1 of cluster members are plotted in coloured lines, and Cost 
1 of the centroid is plotted in black. 

 

 

Figure 8.17 Clustering results of the best 25 from each environment (a total of 100), grouped in 3 
clusters using k-means++ and correlation. Each subplot shows the presence of members from 
different clusters in each environment. 
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Figure 8.18 Sigmoid Function controllers related to Attractants and Repellents for each cluster in a 
scenario with 3 clusters. 

Each line represents the shape of the sigmoid function for the median values of genes 3 and 4 
(attractants) or 6 and 7 (repellents), for all the cluster members. The functions are always 
calculated using the absolute value of the stimulus and these plots show negative values only 
so the full length of the sigmoid can be seen. 

8.3.2.2. 7 Clusters 

This section presents the clustering of the DNA of the best individuals, the characterization 
of the native environments the validation, and the interpretation of the clustering results 
for the best 25 individuals from all 4 environments combined, grouped in 7 clusters with k-
means++ (Fig. 8.19, 8.20, 8.21, 8.22). 

Species 2, 3 and 7 have low values of g3 (𝑆𝑖𝑔`
b$), meaning a gradual response to attractants. 

Species 1, 4, 5, and 6 have evolved steeper curves, with slight variations in slope and 
threshold, meaning a rapid response to attractants once the threshold is reached. Species 
2, 3, 4, and 7 start to react to attractants as soon as the slightest intensity is detected, 
whereas species 5, 1, and 6 display a delayed (but rapid) response. 



- 193 - 

 

Figure 8.19 Clustering results of the best 25 from each environment (a total of 100), grouped in 7 
clusters using k-means++ and correlation. 

Each subplot (spider plot) shows the cluster members and centroids. Each axis represents one 
input parameter and the values are distributed centre wise, from 0 to 1. Cluster members are 
plotted in coloured lines, and the centroid is plotted in black. 

Species 1, 2, 4, 5, and 6 have low values of g6 (𝑆𝑖𝑔`
%d), meaning a gradual response to 

repellents. Species 3 and 7 evolved very steep curves with differing thresholds from one 
another and from the other curves. Species 1, 2, 4, 5 and 6 also have a lower threshold, 
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meaning that they will start to react as soon as any level of repellent is detected. Species 3 
and 7 have higher thresholds, meaning a delayed yet rapid response, once the threshold is 
reached, due to the steepness of the curves. 

 

Figure 8.20 Clustering results of the best 25 from each environment (a total of 100), grouped in 7 
clusters using k-means++ and correlation. 

Each subplot shows the DNA composition of the members of each cluster, and the respective 
standard deviation. 
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Figure 8.21 Clustering results of the best 25 from each environment (a total of 100), grouped in 7 
clusters using k-means++ and correlation (Series J). 

Each subplot shows the cluster members and centroids. Each vertical axis represents the value 
of Cost1 in one environment. Cost 1 of cluster members are plotted in coloured lines, and Cost 
1 of the centroid is plotted in black. 
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Figure 8.22 Clustering results of the best 25 from each environment (a total of 100), grouped in 7 
clusters using k-means++ and correlation. 

Each subplot shows the presence of members from different clusters in each environment. 

 

Figure 8.23 - Sigmoid Function controllers related to Attractants and Repellents for each cluster in 
a scenario with 7 clusters (Series J). 

Each line represents the shape of the sigmoid function for the median values of genes 3 and 4 
(attractants) or 6 and 7 (repellents), for all the cluster members. The functions are always 
calculated using the absolute value of the stimulus and these plots show negative values only 
so the full length of the sigmoid can be seen. 

8.1. Conclusions 

Overall, this algorithm functioned as well and in many cases better than the previous 
algorithms. Furthermore, it was shown to be more flexible given that it out-performed the 
other algorithms in most environments (Figure 8.4). In this case the algorithm benefitted 
from evolving in a more forgiving environment as can be seen in MA55, likely due to the 
algorithm having a longer runtime in terms of generations. Although this foraging algorithm 
did not outperform the others in every scenario, its performance was favourable in all but 
6 environments, out of 22. 

In previous algorithms the probability for turn to attractants and repellents was fixed at 
the same value, however in this version the module for determining the behaviour towards 
attractants is completely separate to that dealing with repellents. 

As can be seen in Table 8.5 the values for controlling attractants and repellents evolved to 
be very different, unlike can be seen in the previous algorithm when these values were 
forced to align. For further development it is important that the modules for dealing with 
different stimuli work independently of each other. Even with a small range of 
environments, using just 4, we could still see different patterns of emergent behaviour, for 
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example using just 7 clusters we were able to find at least 7 different behavioural patterns 
during genetic analysis. 
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Chapter 9 
Comparison between AT-6, ATRP-8, and ATRP-7 

In this step, the best individual evolved in each of the 22 environments was tested on its 
own and in all of the other environments. The results are presented in Figure 9.1, and the 
performance of the individuals running separate foraging algorithms is highlighted in Fig. 
9.2, 9.3, and 9.4. 

 

Figure 9.1 Performance of the best individuals evolved in series H, I, and J (running foraging 
algorithms AT-6, ATRP-8, and ATRP-7) tested in all 22 environments. 

Dotted lines indicate the best individuals evolved using Foraging Algorithm AT-6 in 
environments with attractants only (Series H). Dashed lines indicate the best individuals evolved 
using Foraging Algorithm ATRP-8 in environments with attractants and repellents (Series I). 
Solid lines indicate the best individuals evolved using Foraging Algorithm ATRP-7 in 
environments with attractants and repellents of varying ratios (Series J). 
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Figure 9.2 Highlight of the performance of the best individuals evolved in series H (running foraging 
algorithm AT-6) tested in all 22 environments. 

 

 

Figure 9.3 Highlight of the performance of the best individuals evolved in series I (running foraging 
algorithm ATRP-8) tested in all 22 environments. 
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Figure 9.4 Highlight of the performance of the best individuals evolved in series J (running foraging 
algorithm ATRP-7) tested in all 22 environments. 

The latest algorithm (ATRP-7) outperformed the other two (ATRP-8 and AT-6) in most 
cases when tested within the same environments (Fig. 9.1 and 9.4). However ATRP-8, was 
more successful in the following environments, SP (with attractants only), SA, MA and 
MA15 all with both attractants and repellents (Fig. 9.1 and 9.3). AT-6 only outperformed 
the other algorithms in SA, with attractants only (Fig. 9.1 and 9.2). Although, this may be 
down to chance, as it appears to have outperformed all of the other individuals evolved 
with attractants only. This series of experiments ran with the very best individual (genome) 
from each environment and 20 samples (each robot in a simulation is considered to be one 
sample), the usual number of samples for a series such as this would be 100. 

The results obtained from the individuals running ATRP-7 and evolved in MA51, MA55, 
and to some extent MA11, and for the individuals running ATRP-8 and evolved in LR, 
MR, SR, all have less performance variation, which appears as smoother curves. This 
indicates they are less specialised and behave in a more generalist manner (Figure 9.1, 9.3, 
9.4). 

In general, with the exception of SA, individuals running AT-6 had overall poor 
performance compared to the other algorithms, even in their native environments. This 
would be expected in environments with repellents, as they do not a way to process these 
stimuli. However, it was unexpected that they would be outperformed in their native 
environments, as it happened in LR, MA, SP, MP, and LP. That indicates that the second 
and third refined algorithms (ATRP-8 and ATRP-7) function well even in environments 
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without repellents. The third refined algorithm was tuned with the results for Variability 
of Turn and Noise Tolerance and these parameters were fixed according to the optimised 
values from earlier series of experiments (Series H and I), which may explain, to some 
extent, the success of this algorithm. 

Individuals running ATRP-8 evolved in MA, SP, and MP and those running ATRP-7 
evolved in MA51, MA55, and MA11 performed well in SP with attractants only (reaching 
cost 0). The first group (ATRP-8) is composed of individuals that evolved in environments 
of average difficulty, whereas the second group (ATRP-7) is composed of those evolved in 
the easier environments. For the first group, that might indicate the influence of some of 
the genes in the module that deal with attractants being shared with the module that deals 
with repellents. As in ATRP-7 these modules are independent, the performance is more 
consistent, meaning that the individuals evolved in easier environments perform well in 
other easy environments. 

Those running ATRP-8 evolved in MP and those running ATRP-7 evolved in MA51, 
MA55, and MA11 performed well in SP with attractants only (reaching cost 0), indicating 
they evolved to specialise in finding attractants. 

Those evolved in poor environments with attractants and repellents, (SP MP and LP) 
became more specialised in finding attractants, especially those of low intensity.  

 

  



- 202 - 

Chapter 10 
General Discussion and Conclusions 

The work presented here leads to two distinct conclusions, one practical and one more 
academic. From a practical perspective, the results suggest that, when suitably tuned, 
minimalist C. elegans-inspired foraging algorithms can lead to effective navigation to 
unknown targets even in the presence of significant sensor noise. Furthermore, it suggests 
that this approach could be used to achieve long-term autonomy by allowing robots to seek 
out energy sources in their environments, even in the presence of harmful sources. The 
simulations used realistic physical parameters (speed, battery capacity, current, etc), but 
these results would benefit from validation on real hardware. 

The behavioural modules to detect attractants contained in all three Reflex-agent C. 
elegans Foraging Algorithms have proven to be effective at foraging energy from light spots 
in several field sizes, even with very simple hardware and behavioural algorithms. The 
behavioural algorithms have been proven to be sound, as using a perfect sensor (or the ideal 
hardware) all robots survived the entirety of the simulation (as seen in series G). Further 
experiments considering a realistic hardware approach encompassing sensor noise also 
obtained successful results that were proportional to the difficulty of the environment.  

From an academic perspective, the work demonstrates that even simple models can serve 
as an interesting and informative testbed for exploring fundamental evolutionary principles. 
Despite the refined algorithms having only six to eight free parameters, results 
representative of the evolutionary differentiation of species have been achieved. The work 
replicates, in a simplified and tractable way, how modest changes in environmental 
conditions lead to evolutionary adjustments. When the changes are more substantial, these 
adaptations are akin to differentiation of species. 

As an unexpected outcome of this research, the Genetic Analysis (Genotype Clustering) 
approach displayed promising results as a tool for Optimisation and Evolutionary Robotics. 
As a novel approach, unseen in the literature, the methods will be refined and prepared for 
publication. 

Furthermore, the approach of grouping solutions evolved in different environments and 
then analysing these on the basis of genetic (as opposed to behavioural) similarity is novel, 
to the best of my knowledge, and yielded interesting results that aligned very well with 
behavioural outcomes. 

Overall, the results obtained up to present demonstrate a promising application of bio-
inspired behavioural algorithms on the development of autonomous mobile robots. As all 
three refined algorithms are inspired by a remarkably simple organism, and therefore would 
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not require complex or costly technologies, these results may also contribute to the advance 
of energy-efficiency and low-cost autonomous robots.  

In terms of the methodology, and the results achieved; the clustering and cluster validation 
methods worked very well for the input parameters and for the cross-environment trials in 
the first algorithm, which processes only attractants, likely because it was a more simple 
experiment focused on optimising a single behaviour (seeking attractants). For the second 
and third foraging algorithms (ATRP-8 and ATRP-7), it became more difficult to find 
smaller numbers of clusters which would be representative of the genes and achieve similar 
performance when tested in all the environments. This was somewhat expected, as these 
algorithms have more input parameters and encompass twice the number of behavioural 
modules than the first refined algorithm. This is also likely due to the complexity of the 
environments in which the experiments with these algorithms were performed: in addition 
to the layer of attractants with varying levels of intensity, a layer of harmful repellent spots 
clustered around the attractants was added to the model.  

If attractants and repellents were in existence separately within the same field it is likely 
the complexity would double. However as in this scenario repellents are grouped around 
attractants it becomes much more challenging for the robots to navigate towards the 
attractants without becoming trapped in a repellent source. The attractants are always 
surrounded by harmful sources, forcing robots to balance their behaviour, a small risk may 
result in a better pay off, but a greater risk may drain the robots battery completely (with 
“fatal” consequences). This trade off can be seen in nature, for example an ant leaving the 
nest to look for food would also expose itself to predators, or risk. 

In experiment series I, with ATRP-8, the intensity of repellents is proportional to the 
attractant source they are surrounding. A stronger attractant will be surrounded by 
stronger repellents, so a bigger risk will result in a bigger reward for the robots choosing to 
take this risk. However, this may encourage less natural behavioural patterns, as robots 
will adapt to view strong repellents as a sign of strong attractants and therefore be more 
willing to approach a repellent instead of avoiding it.  

In experiment series J, with ATRP-7, different intensity ratios between attractants and 
repellents have been tested. Not all strong attractants were surrounded by strong repellents. 
Ideally, this scenario in which attractants and repellents of varying intensity ratios are 
clustered together would have been tested on both ATRP-8 and ATRP-7. However, due to 
time restrictions, this was not feasible due to the additional CPU time it would have 
required.  

The MA environment from series I was repeated in series J (as MA11) as a control to 
compare results between series, especially between the foraging algorithms ATRP-8 and 
ATRP-7. These results would otherwise have been less comparable without cross trials in 
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all environments. To save time, one environment was selected to improve the validity and 
track behavioural changes between experiments. 

Finally, ATRP-7 appeared to be the most capable of the refined algorithms, resulting in 
lower costs when compared to ATRP-8 and AT-6. Experiments running ATRP-7 against 
others in MA11 resulted in lower costs in most environments (16 out of 22). Although this 
algorithm was not successful in every single environment, it outperformed the other 
algorithms in most environments. Using a novel combination of methods (which I termed 
genetic analysis) which were developed in this research allows us to analyse the data in a 
more isolated fashion, allowing specific strategies to be examined more closely. Furthermore 
it allowed more than one successful strategy to develop within each environment, proving 
there is more than one way to succeed in these environments, as in nature. 

In terms of the simulation framework; it offers a robust, efficient solution, and regarding 
the computational requirements it can be run on relatively simple machines. The current 
version is still in its early and very simple stages, yet remains flexible enough to produce a 
multitude of qualitatively and quantitatively different environments. 

I consider this framework in and of itself to be a key contribution to the field, as it will 
save researchers countless time. A framework like this was not available to me at the 
start of this research, so I had hoped and considered the introduction of such a framework 
as an option for the standardisation of further algorithms. The simulation framework will 
be a key component of any future work, alongside the algorithms and the genotype 
clustering, as is discussed below. 

10.1. Contributions and Future Work 
Throughout the development of this work it became clear that research in the field of 
Artificial Life is strongly influenced by a host of more specific fields. From biomimetics 
and the tools rooted in design used to reverse engineer organic systems to the 
comprehension of molecular dynamics, electrochemical reactions, software programming, 
and the statistical treatment of data, many areas were involved. It is only natural that 
the ramifications into future work to be developed, both as direct continuation of 
processes here explored and by less obvious by-products, are extremely varied. 

With this in mind, this section lists areas in which some level of work can be developed 
following a process initiated by the research here documented. The type of possible future 
works can be segmented by proximity with the original piece - artificial life, 
computational simulations, biomimetic design and genetic algorithms being some of the 
most direct connections, while robot swarms, animal physiology, biostatistics, and ecology 
studies are more distant applications. Another option is to divide by chronological 
feasibility, for some applications are candidates for immediate implementation, while 
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others exist only in the hypothetical realm as of today - think of robotic interstellar and 
intrabody exploration. 

Beginning with the most direct applications of the ideas initiated by this work, the 
continued work on development of algorithms inspired by animal behaviour is one of the 
most promising tools to be further developed. The analysis and conversion of C. elegans’ 
foraging behaviour into several algorithms made clear that organic systems can have their 
behaviour analysed and thoroughly documented by biological sciences (like zoology, 
ecology, or more specific areas) and then reinterpreted as synthetic behaviours coded into 
a simulation. In a similar fashion to the source material used in this work, the organic 
behavioural patterns may have been already documented, lacking only its conversion into 
algorithms. Considering this, the tools proposed and developed for the analysis of the 
simulated C. elegans could be readily adapted and become even more appealing in 
analysis both for extrapolating observational data as to corroborate it. 

On the same principle, the simulation framework built for the C. elegans algorithm can 
be developed into a modular toolbox for biological analysis, including tools for individual 
and population-based studies. Such a toolbox can be built around combinations of simple 
actions that, when combined, describe in detail the behaviour in focus. This would be an 
evolution from the current algorithm building model, in which the behavioural elements 
are hardcoded into the program, and a direct expansion of the style of documentation 
referenced by this work, which used terms like “omega turns” and “inversions” for 
describing the movements and foraging patterns of C. elegans. If a high level of 
modularity is achieved, the toolbox could become universal enough to also be useful as a 
behavioural documentation assistant, facilitating the investigation and transcribing of 
patterns exhibited by living organisms. Concomitantly, a beneficial result of this software 
design is that for each time the toolbox is employed as documentation assist it produces a 
new entry in an ever-improving library of species upon which to base future simulated 
organisms. 

Still in the computational field, one important outcome from the development of life 
simulations is the better definition of methods for biomimetic analysis and subsequent 
conversion into algorithms. The proper selection of the pertinent parameters to be 
captured by the simulation is intrinsically linked to the efficacy of said simulation. 
Developments on the toolbox and the procedures it entails are bound to generate a better 
comprehension of the priorities in algorithm development. One such development is the 
Genotype Clustering method, developed in this work to characterize the end scenarios 
and results of the simulated evolution processes. The method provided tools to verify the 
specialization of populations of simulated organisms to certain tasks, based on the 
conditions of their simulated world. 
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Finally, advances in the development of the toolbox can be made into open source 
repositories in platforms like github.com and filed under Copyleft distribution guidelines 
to foster collaboration and make it easier for individual, specific tools to be added and 
further elaborated. 

In order to take full advantage of the various possible tools previously discussed, one 
must envision how and where to apply the algorithms they so handily facilitated creating. 
Besides the pure Soft A-Life context, biomimetic algorithms may be used to power 
subsystems of Hard A-Life. For this application, an algorithm is synthetically evolved 
under specific strains, resulting in an optimized solution for that strain type. If the 
algorithm is then structured as an instruction set to control one of the composing systems 
of a mobile robot or any other hardware-based apparatus, it could be switched on 
whenever the bot identifies that strain in the field. Such an architecture can be visualized 
as a modular compartmentalized system that has multiple operational algorithms for each 
subsystem – motor driving, walking gait, radar scanning pattern, odour plume tracking, 
visual processing, wind speed measurement, to name a few – and is able to identify 
ambient conditions and select the appropriate control algorithm for that moment, 
changing it on the fly. The modularity of the resulting autonomously adaptive system can 
cut costs in incremental firmware development by isolating components and developing 
each separately. Rules that define a clear layer hierarchy, like those used in Brooks’ 
Subsumption Architecture, could ensure that no conflicts or incompatibilities arise 
between algorithms that were independently evolved. Some target applications beyond 
mobile autonomous robots include operation of subsystems in manned vehicles that run 
without user input but produce changes in user handling of the craft, like fly-by-wire in 
airplanes, adaptive driving modes and automatic gear shifting in cars and motorcycles, 
and even the development of intuitive controls for niche vehicles like lunar landers, 
jetpacks and powered wingsuits. 

Concerning more unconventional research and industry fields, many of them still require 
some technological advancement to achieve the widespread popularity that comes with 
well understood working principles and low cost. Yet, it is possible to visualize how the 
tools and processes here discussed are applicable to some of them, including those not 
feasible in the foreseeable future. The study of such fields may or may not already employ 
tools from A-Life and robotics, so the applications here proposed ought to be expansive 
and exploratory. Considering the ever expanding technologies upon which these fields are 
built, it is pertinent to divide these application proposals into two groups: one relevant 
for technology already in use or in development, expected to become more universally 
adopted in the near future; the other regarding technology yet to come into fruition, only 
hypothetically explored today, such as advanced medicine, interstellar travel and 
planetary colonization. 
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Microbots working inside the circulatory system or other internal areas of a patient could 
perform microsurgeries on like-sized structures, such as removing blood clots, removing 
varicose veins, installing stents, delivering drugs in finely controlled fashion. One 
promising area is that of specific cell targeting, in which the robots could perform 
controlled chemical releases. The practice of externally induced thermal, mechanical or 
electromagnetic forces is evolving to become a field of medicine with high efficiency, 
relatively low cost, and low incidence of side-effects to the patient. The use of gold 
nanoparticles is one of such solutions currently under development, having been employed 
as transducers of electromagnetic excitation applied from outside the body to disrupt only 
the cells they are in contact with - usually cancerous cells.  

If the microbots are equipped with microbial fuel cells, the ability to harvest energy 
sources from the environment could compound very well with the nutrient rich intra-
bodily ambient. Taking advantage of this, and considering the appropriate sensors are 
developed or miniaturized enough, the robots could provide continuous, real-time 
monitoring of endogenous risk factors, amongst these are: blood contents, like glucose 
levels in diabetic patients, histamine levels in allergic patients, and physical properties 
such as blood pressure, dissolved oxygen, clotting ability and pH. From this point, a 
series of options unfolds: it could be possible to provide immediate intervention in the 
form of insulin or epinephrine release for the diabetes and allergy cases respectively, 
communicate physicochemical aspects relevant for athletes or chronic patients, or 
coordinate several robots in swarm behaviours for physical interventions, to name a few. 
For all these tasks, the combination of simple control algorithms based on foraging 
and/or chemosensing should be able to run the appropriate procedures. 

Besides monitoring endogenous factors, the same logic applies to exogenous pathogens. 
Circulatory microbots could detect toxins from spoiled food, airborne viruses (such as 
zoonotic virus emerging in today’s environment such as SARS, MERS and recently 
SARS-CoV-2) identify metabolites from infectious organisms, and act accordingly by 
releasing the correspondent serum or antidote in the stream, or simply by communicating 
via change in its visual properties, or by sending signals to an external device. Imagine 
being able to use these microbots to cover surfaces and PPE to be able to combat 
pathogens before they come into contact with a vector. 

Perhaps, one day, microbots could be able to identify and promptly synthesize in-situ the 
solutions from the detected pathogens, replicating at a smaller scale the proficiency of a 
living organism’s immune system. Moreover, a bio-inspired algorithm could be the key to 
the complex task of correctly combining the right organic molecules, a process that can be 
favourable when the reactants are abundantly available. 

Another promising microrobotics-related area is swarm sensing - using a swarm of inter-
communicating or independent robots as passive mobile sensors. Some uses include cases 
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such as robots being deployed into bodies of water, or from high altitudes into 
atmospheric systems. After being released in the desired area, the swarm travels through 
space at the same time it collects and relays relevant data. “Passive mobile” refers to the 
fact that, even though the robot is not equipped to apply forces to the environment in 
order to move itself, it is still able to experience motion by being carried, similarly to seed 
pods catching in the breeze or to tumbleweeds traveling through a desert Its design would 
be optimized to make the most of environmental features and phenomena. Sensors like 
accelerometers and gyroscopes could provide relative positioning and acceleration info for 
each robot. When coupled with communication capabilities or some level of spatial 
awareness of other members of the swarm, this method could produce an interesting 
effect: instead of a single sensor probe being moved around space to take sequential 
measurements and generate a 3D point cloud, each robot behaves as one of the data 
points itself, plotting its position through time and space while providing measurements 
by any other sensors onboard. The major difference is that the single probe produces a 
single time series of data points that are distributed through the period necessary for the 
whole measuring operation, while the swarm provides multiple concurrent measurement 
points for each timestep. The relatively fast clock cycle commanding the sensor reading, 
allied to the continuous data logging, takes the plot another step ahead and produces 
something that could be called a dynamic, real-time, or 4D plot. The robots can be 
inserted into the water stream, current, or tide by various means, including being 
individually placed from unmanned aerial or aquatic vehicles as well as dispersed in 
clusters. 

Another proposal is the use of microbots as space probes. When traveling in swarms they 
could provide redundancy of data collected while also acting as data relays for each other. 
The autonomous operation of space probes could use optimized algorithms to cover a vast 
array of possibilities in their operation, therefore increasing mission success chances. This 
case is in accordance with Brooke’s idea60 that, in a context where machine failures 
cannot be accessed for repair, a higher amount of smaller space probes equals a higher 
mission success rate. By employing swarms consisting of thousands of microbots this 
effect can be, itself, optimized. 

To summarise, the applications of this work are as varied as nature itself, and as such 
this research is not meant to be viewed necessarily as a final destination but definitely 
step on the way to a greater use for minimalistic robots. 
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