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Abstract 

Oil-based mud (OBM) cuttings are a waste generated during the process of oil well 

drilling. The drilled rocks are removed from deep within the drilled well and pumped to 

the surface. These ‘cuttings’ are a mixture of rocks, mud, water, and oil. Most drilling 

companies store this waste in open yards without specific treatment. The 

environmental regulations in Oman specify that cutting storage should involve isolation 

to prevent contamination of the surface and underground water. This has made OBM 

cutting waste an environmental problem with an associated cost for oil companies. 

OBM cuttings, being rich in calcium oxide, silicon oxide, and aluminum oxide, may be 

a suitable raw material in cement manufacture. Furthermore, the oil content may help 

to reduce fuel use during the calcination and clinkerisation process. In this research, 

OBM cutting waste was analysed and used as a constituent of raw meal in cement 

clinker production. Raw meal mixtures were prepared with increasing OBM content. 

The impact of adding OBM to the resultant clinker was investigated using analytical 

techniques such as XRF, XRD, SEM-EDX, and DSC-TGA, and burnability test. 

OBM cuttings contain dolomite, which increases the rate of carbonate dissociation 

and, hence, contributes to lowering the calcination temperature. However, it also leads 

to a higher free lime content in the resultant clinker, which is a result of the presence 

of trace elements, such as barium. Clinker can be prepared by simply heating OBM 

cuttings at 1200 oC without any additives, with the resulting clinker containing belite 

and a very low free lime content and no alite. Clinker prepared using 12% and 55% 

OBM cuttings had very similar microstructures, chemical composition and properties 

to clinker prepared from the limestone normally used in cement production. However, 

the addition of OBM cutting to the raw meal led to acceptable higher free lime content 

in the resultant clinker. There are many reasons for this, including the role of trace 

elements, especially barium, in destabilizing alite, as demonstrated in this study.  

The hydration behaviour of the prepared cement was studied by many techniques 

such as ICC, STA and mechanical properties. XRD plus SEM-EDX analysis of 

polished cross-sections enabled study of the major hydrate phases. SEM and optical 

microscopy of the clinker was undertaken to understand if there were any significant 

changes to the main phases which may influence the cement hydration behaviour. 

The degree of hydration was obtained and the main hydrated products such as C-S-

H and CH were identified. Hydration behaviour was normal with no significant changes 

observed and no significant differences between the reference sample and industrial 

cement. Thus, OBM cuttings could be used in the manufacture of Portland cement 

clinker, providing a cost-effective, environmentally-friendly way to manage OBM 

cuttings derived from the oil drilling sector.   
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1 Chapter 1: Introduction 

Worldwide cement production was 4.1 billion tonnes in 2017 rising from 1.5 billion 

tonnes 20 years earlier1,2. The vast majority of this cement is produced in Asia, 

specifically China followed by India, with this region accounting for over 80% of global 

production. Furthermore, growth is predicted rise by at least 4% in 20193. 

Gulf Cooperation Council (GCC) countries consist of six countries namely: the 

Kingdom of Saudi Arabia, State of Kuwait, Kingdom of Bahrain, State of Qatar, United 

Arab Emirates, and Sultanate of Oman. In the GCC region, the cement sector has 

grown sharply as a reflection of increasing construction activity in the region. The value 

of current and planned construction projects in the GCC region is approximately 2.41 

Trillion USD4,5. 

The Sultanate of Oman, which has a population of approximately 4 million people6, 

announced a 116 billion USD construction project in 20134. The sustained economic 

activities within the GCC, including considerable infrastructure investment are an 

indication of the size of the cement needed in the GCC region and specifically, in 

Oman. 

Therefore, there is a need to increase cement production capacity, but, it needs to be 

done within the context of increasing environmental awareness. The cement industry 

contributes about 7% to global GHG emissions7,8,9. Furthermore, producing one tonne 

of cement requires the consumption of approximately 1.6 tonnes of raw materials. 

Thus, there is a need to increase the use of waste materials and industrial by-products. 

There has been much research into how the cement industry can utilise such materials 

and much of the research is implemented successfully in the cement industry. 

However, the recycling concept is still not widely implemented in the GCC region. Most 

cement plants in the region are operated with virgin raw materials and fuel. Only a few 

of the region’s cement plants use alternative fuels because fuels such as natural gas, 

diesel, and petcoke are cheap and widely subsidised by the government. However, 

when the price of crude oil fell in 2013, some governments, such as that of Oman, 

began raising the price of natural gas. For example, the price of 1 mmBtu of natural 

gas was fixed at 1.5 USD from 1985 to 2014 and then doubled to 3 USD in 201710,11, 

which led to a reappraisal of energy and raw material use in the GCC’s cement 

industry. 
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Several types of industrial waste are not yet utilised, for example, Oil-Based Mud 

(OBM) cuttings12–19. OBM cuttings are produced during the oil well drilling process and 

contain oil, heavy metals, organic matter and soils. Drilling a single well can produce 

thousands of cubic metres of OBM cuttings20.OBM is classified as a hazardous 

material in Oman21, with special storage specifications enforced by the environmental 

authority7. 

OBM, also known as drilling fluid mud12,13,22, is defined as the carrier of rock cuttings 

from the ground during the drilling process and comes in many forms. The fluid mud’s 

main role is lifting the cuttings to the surface during the drilling process, allowing the 

drilling operation to go deeper into the earth 23–25. Once the cuttings are collected at 

the surface, this mixture of drilling fluid and earth cuttings undergoes a segregation 

process to remove the cuttings so the fluid can be reused in the drilling process. This 

segregation step is repeated until the fluid can no longer be treated and is discarded. 

The discarded fluid is known as fluid-based mud cuttings, the composition of which 

depends on the type of fluid used. The type of selected fluid depends on the geological 

formation of the underground rocks. In many cases, water-based Mud26 is used with 

the addition of oil to enhance the properties of the drilling fluid and optimise the drilling 

process. This fluid is known as oil-based fluid or oil-based mud. The mud discarded 

from this process is known as OBM cuttings and is collected in mud waste pits. The 

OBM cuttings are contaminated with oil, which makes them a potentially hazardous 

waste that should not be released into the environment. 

OBM cuttings have several characteristics that could be utilised in the cement 

industry27. The cuttings all contain calcium, silica, and alumina, which are essential in 

cement manufacturing. Also, the oil content gives the cuttings a calorific value and 

could help reduce fuel demand. From the perspective of the oil industry, using cuttings 

in cement manufacturing will provide an environmentally friendly waste management 

solution for this potentially hazardous waste. This is a welcome solution given the 

estimated 115,000 tonnes of OBM cuttings stored across Oman 28. The reported 

production rate and disposal of OBM cuttings are in the range of 300-500 tonnes per 

day and are expected to grow in coming years29. 

The objective of this study is to establish the effect of using OBM cuttings as raw 

material in cement manufacture, examining the impact on clinker and subsequent 

cement performance. The study provides knowledge of the primary factors that may 
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disturb or enhance the operation and performance of burning during the course of 

clinker preparation. Moreover, this study provides momentum for the oil drilling and 

cement manufacturing sectors to seize a recycling opportunity and maximise the 

utilisation of resources and by-products, such as OBM cuttings.  

The scale of a cement plant means that this study has focussed on laboratory-scale 

production rather than on-site studies at a cement plant scale i.e. typically 60–150 

tonnes per hour. A laboratory investigation allowed for clinker preparation using 

different mix ratios. The obtained clinker was tested via XRD, XRF, SEM-EDX, and 

free lime determination, as well as ground with gypsum using a tube ball mill to 

produce cement. The cement was tested according to appropriate standards (i.e., 

mechanical, physical, and chemical testing).   
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 Chapter 2: Literature Review 

2.1 Industrial Hazardous waste in Oman 

The annual rates of hazardous waste generation in the Sultanate of Oman, including 

industrial waste, healthcare waste, lubricant waste oil, lead acids batteries, Waste 

Electrical and Electronic Equipment (WEEE), and mineral waste, for 2012–2020 are 

presented in Figure 1. Different industrial waste materials are generated in Oman, 

however, although Oman has many environmental regulations, recycling of industrial 

wastes is not practiced in economic scale30. 

The forecast reveals that mineral waste generation is expected to increase sharply to 

more than 200,000 tonnes per year due to the high expectation of planned oil and gas 

exploration projects by Oman Government in the coming years31. Oman's economy is 

highly dependent on the oil and gas sector which comprises about 88% of the country 

GPA. The second large sector is the industrial sector, at 11% of the GPA32. Thus, as 

a result of the industrial activities, more waste generated.   

The pie chart reveals that the four major waste types comprise 86% of Oman’s total 

hazardous industrial waste generation. Each year, 115,000 tonnes of ‘mineral waste’ 

(33%), 98,000 tonnes of ‘oil-waste–liquid and solid’ (28%) 45,000 tonnes of ‘waste 

electrical and electronic equipment’ (WEEE) (13%), and 43,000 tonnes of ‘fly ash dust 

from miscellaneous filter sources’ (12%) are produced. Industrial mineral waste is the 

major waste source in Oman, with approximately 117,000 tonnes per year produced 

by petroleum companies, of which the major content is OBM cutting waste, consisting 

of drilling cuttings, natural sands, and clay contaminated with oil products. It is 

produced as a result of oil well drilling. Currently, OBM cuttings are stored at a site 

with a special storage arrangement without any further treatment or recycling. 
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Figure 1  Industrial hazardous waste generation in Oman. 

Pie chart (top) showing total annual industrial hazardous waste generation in Oman, in tonnes 

per year.  Graph (bottom) showing OBM cuttings produced from 2012 to 2017 and the estimated 

amount of OBM cuttings that will be produced from 2018 to 2020 in Oman28.  
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2.2 OBM waste generated from Oil Drilling Process 

Various types of drilling fluid muds are produced by petroleum and oil drilling 

companies, and they are used as a carrier of rock cuttings from the ground during the 

drilling process. The main role of this fluid mud, as summarised in Figure 2, is lifting 

cuttings to the surface for disposal during the drilling process, which allows the drilling 

operation to go deeper. Once the cuttings are collected at the surface, this mixture of 

drilling fluid and earth cuttings undergoes a segregation process to remove the 

cuttings and allow the fluid to be reused in the drilling process. This segregation step 

is repeated until the fluid can no more be treated and can be discarded. At this stage, 

the fluid is known as fluid-based mud cuttings, the composition of which depends on 

the type. Several types of drilling fluid are used, and in some types, the mixture is used 

along with clay water, seawater or brine. In this case, it is known as water-based mud 

(WBM) or water-fluid mud (WFM). The type of fluid depends on the geological 

formation of the underground rocks. In many cases, WBM is used with the addition of 

oil to enhance the properties of the drilling fluid and optimise the drilling process. This 

fluid is known as oil-based fluid or oil-based mud. The disposed mud from this process 

is known as OBM cuttings, which are collected in a mud waste pit as depicted in Figure 

3. OBM cuttings are contaminated with oil, making them a hazardous waste that 

should not be released into the environment without treatment and purification 33–36. 

 

 

 

Figure 2 The major functions of OBM during the oil-drilling process37. 

  

- Act as a carrier of cuttings from the hole that permits their 
separation at the surface. 

- Maintain the stability of the well bore. 
- Is non-damaging to the producing formation.  
- Is cool and cleans the bit. 
- Prevents the inflow of fluids from the well bore. 
- Be non-hazardous to the environment and personal. 
- Reduce friction between the drill pipe and well bore or casing. 

- Form a thin, low-permeable filter cake. 
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Figure 3 Schematic diagram of an oil well drilling operation. 

 

 
Breuer et al.38 reviewed the potential accumulation of OBM cuttings produced in the 

Northern and Central North Sea as a result of drilling operations in this area. The 

review emphasises that hydrocarbon concentrations in the drilling cuttings remain 

relatively unchanged over time, and the oil content of the cuttings is about 1%. Caen 

et. al.12 describe the replacement of OBM, including synthetic-based fluids and water-

based muds. Approximately 5–10% of the wells drilled worldwide use oil muds. 

However, new drilling fluids have been formulated to replace OBM, including 

polyalphaolefines, glycols, glycerines, and glucosides. These fluids have the 

characterisation of oil-based mud, but less handling is required when compared to 

water-based mud due to their biodegradability. Nevertheless, these fluids have some 
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limitations depending on the well’s conditions and type of formation faced during the 

drilling process.  

Al-Ansary et al.12 conducted an experiment involving the pre-treatment of drilling 

cuttings using a stabilisation/solidification method before the discarded cuttings were 

sent to landfill or re-used in construction projects; the 92/2 and 2000/3 Oslo and Paris 

Commission Decisions prohibit drill cuttings containing more than 1% oil from being 

discharged at sea. Samples of drilling cuttings were collected from the North Sea, 

where an estimated 50,000–80,000 tonnes of drilling cuttings are produced annually. 

The researchers prepared several samples of drill cuttings mixed with binders, 

including Portland cement, lime and blast-furnace slag, microsilica, and magnesium 

oxide cement, to remove the oil content and reduce leachability. The leachability 

results showed a decrease in release of the synthetic drill cuttings to produce a stable, 

inert hazardous waste which was found to meet the United Kingdom’s specifications 

for non-hazardous landfills. Furthermore, the 30% blast-furnace slag with Portland 

cement binder successfully reduced the leached oil concentration.  

Khanpour, et al.39 studied an extraction method using supercritical CO2 to remove the 

oil from OBM. It was found that the best conditions for removing the oil were at a 

temperature of 333 K, pressure of 180 bars, flow rate lower than 0.1 cm3/s, and static 

time of 110 min. SEM and XRD testing confirmed the successful removal of 

contaminants from the drilling mud without significant crystalline modification. 

Eldridge, R.B.33 conducted pilot-plant experiments and separated oil from OBM using 

HFC 134a, which is the commercial name for 1,1,12-tetrafluoroethane, and propane 

for supercritical solvent extraction. The objective of the trial was to reuse the 

contaminated OBM in the drilling operation and provide an economical, 

environmentally friendly recycling solution. The results reveal that the technique is 

technically sound and economically viable.  

Hou et al.40 and Jiang et al.41 successfully used a separation technique to recover oil 

from OBM cuttings using an oil recovery agent consisting of a demulsifier compound 

(15% of the demulsifier AE136 + 15% of the demulsifier AP113) (30%), a coagulant, 

such as CaCl2 or AlCl3 (1.5%), and the flocculant PAM  at a concentration of 0.1% 

(2%). The rate of recovery was found to be greater than 90%, producing recovered oil 
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that met China’s diesel fuel quality standard specifications42 (i.e., GB252-2000 and 

GB/T 19147-2003).  

Amani et al.43  conducted a comparative study of OBM and WBM produced by drilling 

oil wells using high pressure and high-temperature conditions. OBM and WBM both 

have several characteristics that meet the requirements for high pressure and high 

temperature well drilling. This establishes engineering guidelines that could be used 

to decide the most suitable mud for a drilling operation. High temperature and high-

pressure conditions arise when the drilling depth is greater than 4,000 metres, where 

the temperature is about 150 oC and the pressure is 69 MPa. These conditions can 

impact the rheological properties of the mud. Amani et al. suggest using OBM for 

HPHT drilling conditions with temperatures up to 205 oC based on the laboratory 

experiment conducted. 

Young et al.36 used the rotary retort distillation technique for the removal of oil from oil-

based mud (OBM) to facilitate onsite disposal of the waste in offshore oil rigs after 

reducing the oil in the cuttings to environmentally acceptable and safe limits. The 

treatment process was established to process 15 t/h of oil-based cuttings. The 

resultant products were tested for toxicity and metal leachates. The energy 

consumption for an offshore rotary retort distillation unit was estimated; moreover, the 

reliability, minimum environmental impact, wear rate, and safety of the operations were 

analysed. To determine the required specifications for improved operation, a bed 

temperature of 427 ℃ using natural gas fuel was calculated based on the plot of the 

weight ratio of the solids (in percentage) versus the bed temperature of the cuttings. 

A two-stage vapour-recovery system was used to recover the evaporated 

hydrocarbons by means of purging with nitrogen sweep gas to ensure oxygen-free 

atmosphere. Heavier oil and particulates were collected in the first condenser, while 

light oils and water were collected during the second stage. The treated solid waste 

was disposed of directly to the ocean floor after ensuring that it met the environmental 

requirements. The author concluded that this rotary retort distillation process provided 

a mature and highly dependable method with lower energy use for the treatment of 

OBM waste36. 

Abbe et al.44 used a vitrification and sintering/crystallisation process to convert dried 

drill cuttings into amorphous glass. A mixture of dried drill cuttings, sodium, and 

calcium oxide in a weight ratio of 8:1:1 was blended and thermally treated at 
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approximately 1300 ℃ for 5 h, and subsequently cooled to obtain an intermediate 

amorphous solid. This amorphous solids were further treated thermally at 

approximately 750 to 800℃ to produce glass-ceramic. The drill cutting waste used 

contained 60% to 80% solid rocks, 8% organic matter, 6% minerals, and clay with 

used drilling liquids. This vitrification process immobilised the waste owing to the 

melting process favouring the entrainment of potentially hazardous components, 

thereby preventing these from leaching out. The authors tested the properties of the 

produced glass-ceramic for its potential use by studying the hardness, fracture 

strength, fracture toughness, and stability towards leaching. It was concluded that the 

glass-ceramic had almost zero porosity, with attractive mechanical properties for 

possible applications as building material44. 

Oreshkin et al.45 investigated the disposal of drilling waste sludge to produce building 

materials. The mineral composition of the studied drilling sludge mainly consisted of 

quartz and minor quantities of carbonates including calcite, aragonite, dolomite, and 

aragonite. The average particle size was in the range of 20 to 30 mm and constituted 

50% to 60% of the total weight. The introduction of sorbents and cement along with 

drilling sludge rendered harmless building material that could be used in the production 

of brick and small building products. The cement, sorbent, and drilling sludge mixed 

with water could support the system with a high pH (up to 12). Furthermore, the heavy 

metal ions from the drilling sludge passed into insoluble compounds, leading to the 

binding and neutralisation of environmentally toxic heavy metals following subsequent 

curing. This disposal technique enables ecological improvement and can aid in the 

restoration of the natural environment45. 

Hou et al.40 used coagulants and flocculants for oil recovery to enable useful recycling 

and the safe disposal of oil-based drilling fluids containing oil, heavy metals, and 

organic pollutants. A recovery rate of over 90% was achieved, and the quality of the 

recycled oil met the requirement of –10# diesel. In the experiment, the authors used 

compound demulsifier mixtures that were mainly composed of polyoxyethylene poly-

oxypropylene ethyleredi-amines (AE) and polyoxypropylene polyoxyethylene 

polyoxypropylene- five ethylenes six amines (AP) demulsifiers, along with industrial 

coagulants and flocculants. The composition of the oil-recovering agent formula 

recommended by the author was 30% demulsifier compound, 1.5% coagulant, and 

2% flocculant. The residual sludge was used in the construction of a well-site 



12 

 

 

Hilal Saif Al Dhamri  200676958 

cofferdam and the roads of the well site. The concentrations of the oil, chemical oxygen 

demand (COD), and heavy metals were tested in the processed mud and confirmed 

to be within the accepted range. The water used for the treatment process was tested 

after the operation and was found to meet the requirements of general emission levels 

for sewage40. 

Nahmad et al.46 used a combination of chemical, physical, and biological processes 

to treat non-aqueous fluids such as OBM and synthetic-based muds. Total petroleum 

hydrocarbons (TPH) of up to 22% were used for the testing, in which the TPH was 

reduced to less than 1% as per the country regulations for disposal. The team named 

the process Free-RAD© and demonstrated it as an economically superior process for 

dealing with wastes. By using highly reactive free radicals, the complex hydrocarbons 

and organic compounds could be decomposed into lighter molecules such as CO2 and 

H2O. The steps involved in the process comprised hydrocarbon decomposition into 

CO2 and H2O by introducing free radicals, followed by the addition of UV-receptive 

minerals to promote rapid photodecomposition, and finally, the addition of organic 

compost to promote bioaugmentation. The authors concluded that the final threshold 

period for this decontamination process was 22 weeks, and conducted final tests as a 

remediation process to be used for bearing crops46.  

Gogan et al.47 studied the properties of carbonate OBM cuttings (COBMC) as 

activated mineral powder when used as an asphaltic concrete mix for road 

construction following thermal treatment at 340 °C (Gogan et al., 2014). The 

physicochemical properties such as the water content, hydrocarbons, ash, pH, 

density, flash point, and COD were determined for the thermally treated COBMC, and 

based on the results, their suitability for the project was confirmed. According to the 

specified density and strength of the asphaltic concrete mix, the mineral powder 

COBMC was mixed with bitumen in varying proportions, and the team confirmed 7 

wt.% of COBMC as optimal for use. Using the mix, a motor road was laid with a layer 

of 5 cm thick and 6 m wide by means of conventional methods. After one month of 

regular inspection, the team recommend the use of COBMC as a mineral component 

for road construction, which may provide a solution to critical environmental 

problems47. 

A case report by Helmy and Kardena48 discussed significant problems faced by 

Indonesian oil and gas industries regarding environmental management systems 
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towards effective and responsible waste handling, disposal, and the minimisation of 

waste generation to reduce potential harm to health and environmental problems. 

Among the generated wastes, crude oil-contaminated soil, bottom sludge, abandoned 

sludge pits, burial oil sludge, and produced water were considered as the most 

abundant by these authors. Bioremediation and co-processing techniques applied for 

treating oil sludge and produced water included the common practice of gravity-based 

separation and discharge into water bodies. The oil sludge types were characterised 

as oil sludge and oil-contaminated soil, with the standard practice for treatment 

identified as landfarming bioremediation. Laboratory-level data were studied for the 

oily sludge with oil contents up to 320 g TPH/kg soil using different treatment steps 

such as soil washing, biodegradation, and biosurfactant treatments. A significant TPH 

reduction was achieved, with the highest removal efficiency reaching 85%. The 

authors concluded that the lack of established waste management facilities restricts 

proper waste disposal, which can be addressed by constructing the necessary 

facilities. Although this approach is expensive for oil and gas industries in the short 

term, it can minimise long-term liabilities48. 

Mostavi et al.49 investigated the use of drill cuttings as a partial replacement for cement 

in concrete structures. The study considered this approach to be not only cost-

effective, but also as offering the potential to reduce environmental impacts caused by 

waste. Laboratory-level studies were carried out by the team based on the 

compressive strengths of concrete samples and the chemical compositions of the drill 

cuttings used. The results indicated that the replacement of 5% of cement with drill 

cuttings reduced the concrete compressive strength by 10%. A further increase in the 

drill cuttings in the cement concrete by 10%, 15%, and 20% resulted in a strength 

reduction of 20%. Moreover, the effects of additives such as fly ash and silica fume in 

this cement mix were studied, and it was concluded that these materials had a 

significant influence on the compressive strength. The drill cutting particle size 

distribution was studied, and it was found that the maximum grain size was less than 

6 mm, while the coefficients of uniformity and curvature were 8.63 and 1.22, 

respectively, which classified the particles as fine aggregates in accordance with 

ASTM C330 for cement concrete mixes. The test specimens used in the study were 

obtained from five separate batches of concrete, including one control sample and four 

different combinations containing drill cuttings, fly ash, silica fume, and a mixture of 
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silica fume and fly ash. Crushed limestone passed at 100% in No. 3/8-inch sieves was 

used as the coarse aggregate for the study. The authors concluded the optimal mix 

proportion was 20% drill cuttings with 7.5% silica fume and fly ash, which could 

increase the compressive strength by 40%49. 

Shon et al.50 used modified drilling waste material (MDWM) with cement in the 

laboratory as the base-course material in roadway construction. The production of the 

MDWM from drilling waste mud (DWM) involved various steps. In the first step, water 

was separated from the drilling mud, following which centrifuges were used for the 

additional removal of oil contaminants. The second step involved the stabilisation and 

solidification processes using cement as a binder, which reduced the free movement 

and minimised the mobility of the pollutants in the waste. The preferred aggregate-to-

dried DWM ratio for producing the MDWM was 3:1, with 12% of cement kiln dust added 

to the mixture. The laboratory-level investigation, in which the MDWM mixture was 

treated with 3% cement, demonstrated that the material satisfied the requirements for 

Class M base, with 7-day compressive strength and a minimum of 1225 kPa50. 

Drilling waste from oil companies that contains toxic polyaromatic hydrocarbons and 

that was treated using the thermal desorption technique was studied by Piazza et al. 

(2017)51. The drill cuttings treatment using this technique was investigated and 

recommended as the most effective, economical, and environmentally friendly. The 

indirect thermal desorption treatment was not only found to be safer, minimising the 

pollution compared to direct heating, but also allowed for recovery without destroying 

hydrocarbons owing to controlled heating, and the recovered oil was reused for 

producing fresh OBM. The recovery of hydrocarbons and recycling could reduce the 

stress on the environment and avoidable economic loss. Approximately 20,000 bbl of 

oil was recovered using the process, and the endeavour was selected for the Six 

Sigma Green Belt project51. 

Benlamoudi and Abdul Kadir 52 studied the role of petroleum sludge (PS) as a setting 

retarder in cement, replacing conventional gypsum. The CaO and SO3 percentages of 

the PS used in the study were 25.05% and 38.41%, respectively, which aided in 

delaying the flash setting of the cement. Four different samples were prepared by the 

team with PS percentages of 0%, 1%, 3.5% and 5%, along with gypsum and cement 

clinker. Prior to the trial study, the PS collected from the oil drilling field was burned in 

an industrial kiln to eliminate the organic hydrocarbons and then grinded to pass 
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through a 1 mm diameter sieve. As per the guidelines for using inductively coupled 

plasma mass spectroscopy for the leaching behaviour of heavy metals from PS, the 

results did not exceed the regulatory limits for cement, except for the lead, which 

exhibited 149.02 ppm for the maximum percentage of cement produced against the 

statutory limit of 75 ppm. The study concluded that the addition of 5% PS to cement 

could achieve effective results, and can be used as a replacement for gypsum in 

cement grinding52. 

Shon and Estakhri53 used MDWMs and seashells as a base material for road 

construction, and compared the performance with conventional gravel base-course 

material. Experiments were carried out on field-cored samples using non-destructive 

tests including ground penetration radar, falling weight deflectometry, dynamic cone 

penetration, and rusting tests to evaluate the performance. For the cored samples, 

further properties such as the moisture content, dry and wet density, stiffness and 

seismic modulus, unconfined compressive strength, and modulus of rupture were 

evaluated. Using the MDWM waste materials, 91.44 m of roadway was paved for the 

study, and based on the field performance, the author recommended the materials for 

use as embankments, subbase materials, patching materials, base materials for low-

volume roadways, shoulders, and bases for maintenance activities53. 

In their research, Ayati et al.54 investigated the technical feasibility of waste drilling oil 

cuttings into lightweight aggregate (LWA) for construction work. Pre-treated drill 

cuttings were pelletised with the addition of 25 ± 2 wt.% water and formed into 

spherical pellets of 7 and 14 mm in size. Owing to the high concentration of chloride, 

the author recommended washing the pre-treated oil drillings prior to the heat 

treatment process to reduce the leaching effects. The green pellets were then 

subjected to thermal treatment at temperatures between 1160 and 1190 ℃ in a muffle 

furnace at a rate of 10 ℃/min. The produced LWAs were tested for physical properties 

including their water absorption capacity and compressive strength, and a 

mineralogical study was conducted using optical microscopy and X-ray diffractometry. 

The results were compared with the properties of existing commercial products, 

demonstrating a particle density of 1.29 g/cm3, water absorption of 3.6%, and 

compressive strength of 4.4 MPa. The mineralogical study of the LWA confirmed that 

the main composition following thermal treatment was CaMgSi2O6. The authors 
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concluded that an industrial-scale study would be required for commercial 

production54. 

2.3 Shifting from WBM to OBM in Oman 

In Oman, oil production declined gradually from 970,000 barrels per day in 2000 to 

710,000 barrels per day in 200755,56 due to many technical issues encountered during 

the well drilling process. The vertical depth of the well was about 4,500–4,800 metres, 

where tight sandstone and dolomitic limestone with thick mudstone were encountered, 

which caused the bore hole to become unstable57–60. Furthermore, drilling these 

complex formations takes longer, slowing the production rate. After intensive studies, 

the drilling companies implemented several measures to improve the situation, 

including switching from WBM to OBM because this type of geological formation and 

drilling conditions require a higher mud weight to maintain the overbalanced drilling 59–

61. As a result, the drilling time was reduced by 25 days, which saved about 1.25 million 

USD per well 57.  

 

Figure 4 Crude oil production in Oman from 1980 to 2018  

(USEIA and BP 55,56) 

 

2.4 Waste as raw materials for clinker production  

Bernardo et al.62 tested the burnability of kiln feed using OBM cuttings as additives, 

partially replacing limestone and clay in the kiln feed. The test was conducted at the 
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plant scale by preparing two types of kiln feed mixtures and making comparisons to 

clinker produced without OBM cuttings. The kiln was run for 10 days for each mixture. 

The researchers successfully achieved a replacement of 30% of limestone (mixture 1) 

and 44% of clay (mixture 2). The burnability indices (BI*) were 10.7 (mixture 1), 44.2 

(mixture 2), and 19.8 (the reference mixture). According to Bernardo and et al.62, BI 

values lower than 60 indicate very satisfactory burning behaviour. The phase 

composition of the prepared clinker, calculated according to the Bogue formulae, was 

found to be within the range expected for conventional clinker phase composition. In 

addition, the mechanical, physical, and chemical parameters of Portland cement were 

also found within the specified range in the European standard for cement: 

EN197-1:2011. The Bogue formulae calculate approximate clinker contents based on 

chemical analysis. Other methods, such as X-ray diffraction, provide more precise 

results. Nevertheless, Bogue formulae afford fast, easy estimates which may be used 

in the preparation of the mix in clinker preparation. Most cement plants depend highly 

on this calculation. 

The testing of cement properties (mechanical, physical and chemical) are necessary 

to ascertain cement quality, with testing in accordance with standards such as ASTM 

and BS/EN, as presented in Chapter 7 Table 15. During the trial test, the pollutant 

concentration in the exhaust gas for waste-based clinkers was measured and 

compared to the calculated limiting value according to the formula stated in Table 1.  
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Table 1 Pollutant concentration in exhaust gas+ from waste-based clinker62 in mg/Nm3. 

Pollutant 
Mixture 1 Mixture 2 

Measured 
value 

Limiting value 
Measured 

value 
Limiting value 

TSP 22.00 27.46 21.40 24.00 
SO2 0.98 87.07 0.65 79.75 
CO 92.00 98.06 88.00 98.44 
HCl 2.00 4.25 2.50 5.39 
HF 0.70 1.17 0.60 1.34  
Cd+Tl 0.03 0.08 0.04 0.07 
Hg 0.04 0.08 0.03 0.07 
Sb+As+Pb+Cr+Co+
Cu+Mn+Ni+V+Sn 

0.19 0.43 0.29 0.43 

TOC 8.90 9.80 8.20 9.84 

Pollutant Concentration 
According to 62 

 

 𝐶 =
𝐴𝑤𝑎𝑠𝑡𝑒𝐶𝑤𝑎𝑠𝑡𝑒 + 𝐴𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝐴𝑤𝑎𝑠𝑡𝑒 + 𝐴𝑝𝑟𝑜𝑐𝑒𝑠𝑠
 

Awaste : % mass flow rate of the waste 
Cwaste : Pollutant maximum allowable 

concentration in the exhaust gas 
when waste alone is used (Awaste 
=100%; Aprocess =0%) 

Aprocess 
: 

% mass flow rate of the reference 

Cprocess 
: 

Pollutant concentration in the 
exhaust gas measured when no 
waste is used (Awaste =0%; Aprocess 
=100%) 

*BI : the burnability Index, 𝐵𝐼 =
𝐴+𝐵+2𝐶+3𝐷

√𝐴−𝐷
4  , where A,B,C, & D are the free lime content in % wt/wt. in 

raw meal burnt at 1350, 1400, 1450 & 1500 oC respectively. A low BI value indicate good burnability62 
+The fuel used in the cement plant of the study is natural gas only. 

 

Abdul-Waha et al.7 studied the impact of adding OBM on CO2 emissions in a cement 

plant using only natural gas as fuel. The main objective of the study was to determine 

the impact of replacing limestone used in cement manufacturing on carbon dioxide 

gases emissions. The study was completed in three parts. First, the amount of CO2 

emitted from the operation of a known cement plant in Oman was calculated using 

data collected from the plant in 2013, including calcination, fossil fuel combustion, 

power generation, and emissions from activities related to limestone transportation by 

heavy vehicles. Next, limestone was replaced with OBM at different percentages (0–

5%), and the resultant CO2 was calculated for each OBM percentage. Finally, the CO2 

emissions were forecast for each kiln in the plant and CO2 dispersion to the 

surroundings were projected using an advanced integrated modeling system 

comprised of the California PUFF-Weather Research and Forecasting model 

(WRF/CALPUFF*)63–65.  

 

 
*WRF/CALPUFF is a type of simulator software designed and produced by Exponent® and has the ability to 

predict and forecast the air concentrations of various pollutants emitted during the operation of an industry based 
on specific input parameters. 
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Table 2 Total CO2 emissions from plant sources after the addition of OBM7. 

OBM % 0% 1% 2% 3% 4% 5% 

 CO2 emissions per tonne cement (Kg/ tonne) 

Calcination 442.84 437.47 432.11 426.74 421.38 416.01 
Fuel combustion 181.62 181.62 181.62 181.62 181.62 181.62 
Power plant 47.29 47.29 47.29 47.29 47.29 47.29 
Vehicular 1.92 1.92 1.92 1.92 1.92 1.92 

Total* 673.67 668.30 662.94 657.57 652.21 646.84 

*The CO2 emissions are lower than in many reported studies because the cement plant uses only natural gas 
as fuel.  

 

CO2 emissions before and after the OBM cutting addition are shown in Table 2 and 

Table 3. The total amount of CO2 emitted was 673.67 Kg CO2/tonne of produced 

cement. The major source of CO2 emissions (442.84 Kg CO2 /tonne cement, 65.74% 

of other sources) was the calcination step of the raw meal which consists of 

approximately 82.54% limestone. The CO2 emitted due to calcination decreased as 

the OBM percentage increased (Table 2).  

The lowest CO2 emissions were at 5% OBM with 416.01 Kg CO2 per tonne cement. 

The result obtained from the modelled CO2 concentrations in the calcination step using 

the WRF/CALPUFF simulator showed a decrease in CO2 emissions as a result of 

adding OBM cuttings (Figure 5). They concluded that due to high CO2 emissions from 

the cement manufacturing process, mainly from the calcination reaction, adding OBM 

to raw materials in the cement plant could be a viable way to safely dispose of OBM 

cuttings without reducing cement quality7.  

Table 3 Calculation of CO2 emissions from cement-plant sources before and after the 
addition of OBM7. 

OBM 
cutting 

Limestone 
consumption 

Clinker 
production 

CO2 from raw 
meal 

CO2 per 
tonne of 
clinker 

CO2 per tonne 
of cement 

(T per year) (T per year) (T per year) (Kg per T) (Kg per T) 

0% 2,542,301ii 1,875,901 889,805 474.33 442.84 

1% 2,511,502 1,875,901 879,026 468.59 437.47 

2% 2,480,702 1,875,901 868,246 462.84 432.11 

3% 2,449,903 1,875,901 857,466 457.10 426.74 

4% 2,419,103 1,875,901 846,686 451.35 421.38 

5% 2,388,304 1,875,901 835,906 445.60 416.01 

i Loss on ignition at 950 oC is 35%. 
ii This figure is the actual limestone consumption during 2013 collected from Oman Cement Company. 
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Figure 5 CO2 emission concentrations calculated by atmospheric modelling7. 

(Using the WRF/CALPUFF modelling system) 
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Chapter 3 

Description of the problem  
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 Chapter 3: Description of the problem 

3.1 The impact of OBM cutting generated in Oman 

Currently, the options for treating OBM cutting waste are very limited, and it is often 

simply stored in a lined pit, awaiting further treatment. Because OBM cuttings are 

classified as a hazardous waste, the Government of Oman is keen to find a suitable 

waste management solution. Fortunately, the mineralogical composition of OBM 

cutting waste and the presence of organic residues from the crude oil make it 

potentially useful in cement clinker production. In fact, the challenges of cement 

manufacturing in Oman is the raw materials’ chemistry, specifically, the availability of 

raw materials rich in silica. The limestone is high-grade, which means its silica content 

is very low. However, raw meal must be approximately 14% silica, and effective raw 

meal preparation in the cement factory requires silica additives. The most common 

silica-containing raw material used in most cement plants is sand. Quartz is another 

option, widely used in many countries, including Oman. However, the quartz (quartzo-

phillite rock) reserves in Oman are very limited and have very high free silica content, 

and making it reactive requires increased energy consumption. It may also lead to 

operational problems during pyroprocessing due to the higher concentrations of alkalis 

and chloride compared to other raw materials.  

When OBM cuttings, are analysed, they are found to contain significant quantities of 

calcium oxide (CaO) and silicon dioxide (SiO2). They are also saturated with oil and 

residual crude oil. The presence of these inorganic constituents makes drilling waste 

a suitable material for cement manufacturing as they are also the basic oxides required 

in the cement industry, where the cement clinker is made from raw materials of 

limestone (CaCO3) that is rich in calcium oxide (CaO). Hence, theoretically, OBM 

cutting waste can be used as an alternative to lime-based materials for clinker 

production.  

3.1.1 Economic impact 

As predicted by Be`ah Oman 66, it is projected that oil and gas exploration in Oman 

will increase sharply in the coming years, at least until 203067,68. This will cause more 

OBM to be produced, which will lead to more OBM cutting generation. Handling OBM 

cutting is very expensive, requiring special isolated pits. The cost of one pit is about 
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260,000 USD for the storage of about 10,000 tonnes of OBM cuttings29. Treating of 

OBM cutting to remove the contaminated oil is also very expensive. The cost of this 

treatment is in the range of 150–200 USD per tonne, which is too expensive compared 

to disposal in cement manufacture, which only costs 8 USD per tonne10. To date, there 

are no disposal facilities or treatment plants for hazardous materials in Oman. 

3.1.2 Environmental impact 

The emission of greenhouse gases (GHG) is one of the major serious environmental 

pressures on industry to improve operational processes. In Oman, the major source 

of GHG is from the oil and natural gases activities, mainly the result of energy 

extraction, oil drilling, and electricity generation69,70.  

The fast growth of oil and gas activities, rapid industrial growth, and construction 

development in Oman have contributed significantly to increased GHG emissions as 

shown in Figures 6 and 7. Estimated GHG emissions due to natural gas consumption 

or related activities are in the range of 50–400 million m3. However, because of a rapid 

increase in activity involving natural gas, emissions have also increased, beginning in 

1989 and increasing progressively until 2018. Correspondingly, GHG emissions 

associated with oil production and consumption have increased annually as can be 

seen in Figure 6. Consequently, the increase in GHG emissions has impacted daily 

life in Oman. Furthermore, climate change, which is causing more severe heat waves, 

and poorer air quality due to population density are hazardous to the population’s 

general health 70. 

 

Figure 6  CO2 emissions from energy consumption in Oman55,56 
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Figure 7 Gross natural gas production in Oman55,56 

 

3.2 Possible solutions for disposal of OBM cutting in cement 

industries  

The disposal of such a large quantity of this solid drilling waste is expensive as it 

requires a lot of land and causes a number of serious environmental problems. The 

waste can easily contaminate soil and groundwater when the hydrocarbons and other 

chemicals leach into the earth. One promising strategy to reduce the threat of 

hazardous waste and diminish its accumulation in disposal sites is utilising it in other 

industries. From the viewpoint of recycling, this can be considered a sustainable 

approach to waste management and may reduce the amount sent to final disposal. 

The experimental findings of this project are anticipated to play a primary role in 

recycling drilling waste and eliminate the cost of its disposal and, thus, avoid the 

contamination of soil and groundwater in Oman. Therefore, specific attention is paid 

to the use of OBM cutting waste in cement manufacturing as additional raw materials. 

Furthermore, this will result in reducing the consumption of a considerable amount of 

natural resources, such as limestone and natural mineral additives, in Oman. It will be 

a change towards diverting drilling waste from landfills and nil waste disposals, as well 

as a chance to develop cement manufacturing processes that are more sustainable 

and less damaging to the environment.  
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Different types of waste materials can replace primary raw materials in the cement 

industry. This will contribute to economic goals in reducing cost, reducing 

environmental impact and saving natural resources. The economic aspect is reflected 

in reducing the need for additional construction of costly new engineering storage 

areas that have high environmental regulation standards. Other costs are also 

reduced, such as handling, transportation and environmental monitoring. The 

accumulation of OBM cuttings with increasing oil exploration and production will lead 

to increased requirements for constructing new storage facilities. In general, industrial 

waste may be accepted as fuel; additional raw materials must add value to the cement 

manufacturing by generating caloric value as fuel to replace expensive energy or as 

feedstock to replace the raw materials in the cement industry.  

3.3 Use of OBM cuttings as raw materials in clinker manufacturing  

Utilising this drilling waste as a partial substitution for limestone in cement 

manufacturing will reduce the consumption of limestone considerably, thus reducing 

abiotic depletion. Due to the chemical composition of OBM cutting waste, it could, 

theoretically, be used to replace limestone (Table 4) and supplement some of the 

principal elements in the process of clinker phase formation, such as calcium, silicon, 

and aluminum. The calorific value of OBM cutting waste also makes it a valuable 

component in reducing the thermal energy requirement of clinkerisation, which 

reduces the amount of fuel used during clinker manufacturing. 

Table 4 The chemical composition of limestone, quartzo-phillite, and OBM cuttings71  

Oxide 

Limestone*   Quartzo-phillite#   OBM Cutting+ 

Wt./Wt. %   Wt./Wt. %   Wt./Wt. % 

SiO2 5.94 ±1.69  74.25 ±4.84  19.00 ±15.11 

Al203 0.62 ±0.19  5.49 ±0.97  3.66 ±1.96 

Fe2O3 0.51 ±0.18  5.53 ±1.15  1.67 ±0.54 

CaO 50.86 ±0.95  4.01 ±0.95  34.06 ±10.47 

MgO 0.48 ±0.14  4.09 ±1.67  2.94 ±1.07 

SO3 0.13 ±0.10  0.03 ±0.01  1.92 ±0.83 

Na2O 0.05 ±0.01  1.22 ±0.22  0.89 ±0.36 

K2O 0.07 ±0.04  0.68 ±0.16  0.61 ±0.19 

LOI @950  39.51 ±0.93    3.99 ±1.96    34.07 ± 1.10 

* 
# 

+ 

Average 10 samples, Mn2O3 0.02%, TiO2 0.04±0.01% 
Average 13 samples, Mn2O3 0.19 ±0.08%, TiO2 0.51±0.11% 
Average 20 samples, 5.96±3.23 % moisture. 
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The formation of the major clinker phases, such as alite and belite, are controlled by 

the heat conditions, as well as the raw meal chemicals and their physical properties. 

In this study, the raw meal is prepared with different percentages of OBM to investigate 

the effect on clinker quality after replacing raw meal with OBM. Using drilling waste to 

replace a major raw material in cement production is an ideal solution, especially since 

the consumption of limestone is high. For example, the cement plant in Oman has 

been designed for the consumption of approximately 13,000 tonnes of raw materials 

per day. If 1% of the raw material is replaced by drilling waste, then the rate of 

consumption of this waste is approximately 130 tonnes per day, or about 39,000 

tonnes per year, assuming 300 operational days per year.  

The main objective of the proposed research is to study the effect of using drilling 

waste as partial replacements of natural raw materials in a cement plant. The study 

focuses on the use of drilling waste (OBM cuttings) to replace a portion of the raw 

materials used in cement manufacturing. Figure 8 shows the steps involved in 

producing OBM and demonstrates the proposed recycling process in the manufacture 

of different types of cement. In this work, OBM cuttings will be mixed, at different 

proportions, with the raw materials used to produce cement. The effects of this addition 

can be studied by designing and conducting laboratory experiments that will help 

detect how cement performance is impacted by adding this type of waste during the 

manufacturing process. 

This research is based on manufacturing cement in the lab. Drilling waste will be 

added, at varying proportions, that are proportional with the operations and conditions 

of the cement plant in Oman. The influence of this waste addition will be investigated 

to examine its effects on cement products and determine how much OBM cutting 

waste can be added to the raw materials used in the cement industry without affecting 

the product’s quality.  Figure 8 shows different process activities involved in operating 

an oil drilling rig, as well as the generation and handling of OBM cutting72 and the 

cement and concrete manufacturing process73. Three different areas have been 

identified after OBM cutting generation to recycle the waste and facilitate a proper 

environment for processing OBM cuttings and, subsequently, convert it to a product 

as presented in Figure 8. 
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Figure 8  A schematic of the OBM and OBM cuttings disposal cycle as raw material in 
cement manufacturing74 
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After OBM cuttings are generated by an oil well rig, they are transferred to an 

engineered landfill20,16. The landfill is open, exposed to direct sunlight, and is typically 

located in the desert. OBM cuttings are wet because they contain a significant amount 

of oil and water, as shown in Figure 9. At this stage, storage is used to dry OBM 

cuttings and remove the water content by means of the sun and high temperatures in 

the desert. Another option, to accelerate the drying process, is using a drying unit 

where heat is applied to the wet OBM cuttings. This process produces vapor and could 

recover the oil content from OBM cuttings. 

Dry OBM cuttings could be shipped to a cement factory to produce cement clinker. In 

the cement factory, OBM cuttings are added to limestone, as a replacement, at a level 

that produces raw meal within an acceptable range of quality. The first step, after 

mixing them with the raw materials, is grinding. Two common types of raw mill grinding 

are used in cement technology: ball mill grinding and vertical roller mill grinding75,76. 

Ball mill grinding employs dry raw materials. If the raw materials contain moisture 

above 3%, hot dry gas is applied during the grinding step. The maximum water content 

of the raw materials in ball mill grinding is 3–8%77. However, in the vertical roller mill, 

grinding can occur even when the moisture level is high (up to 20%78,79). If OBM 

cuttings are shipped to a cement plant that has a vertical mill, the drying process is 

eliminated or reduced to conserve time and energy. After the grinding step, the 

produced powder, known as raw meal, is homogenised in a homo silo and then 

preheated and calcined in a preheater tower. Next, the calcined raw meal is burned in 

a rotary kiln at 1450 oC and then cooled to yield the clinker. In the final step, the clinker 

is ground with 5% gypsum to produce the final product, Portland cement.  

There are many types of cement with different applications in construction80,79. For 

example, ordinary Portland cement (OPC) and sulfate-resistant cement (SRC) are 

used in the construction industry by mixing cement with different aggregates, 

additives, and water as shown in Figure 8 (v). Buildings are also recycled in cement 

manufacturing; many studies have demonstrated the successful use of raw materials 

derived from demolished buildings in the cement industry 81,82,83,84. 
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Figure 9  Storage sites for OBM cuttings. 

 

Another type of cement, known as Oil Well Cement (OWC) 85,86–88,is a special 

cement89 used for oil well construction. It has different physical properties and 

chemical content compared to construction cement. Is also has greater compressive 
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strength and a longer setting time to meet specific requirements, such as being 

pumped deep in an oil well while drilling and finalising the oil rig. OWC quality plays a 

major role in the oil rig process. The American Petroleum Institute (API) has 

established international specifications and standards for producing OWC suitable for 

the construction of durable casing that supports oil and gas extraction89. 

Linking all the steps—beginning with the process of generating OBM cuttings in the oil 

and gas sector and ending where OBM cuttings are generated—helps provide a full, 

closed-cycle process for recycling the hazardous waste and eliminating the generation 

of by-products. Additionally, the closed cycle provides effective environmental and 

economic solutions where the three different sectors (oil and gas, the cement industry, 

and the concrete sector) are integrated so that an output from one sector becomes an 

input for another sector. 

3.4 Chemistry of the cement manufacturing process 

The Portland cement clinker may be defined as follows, "at least two-thirds of it consist 

of the two calcium silicates, namely tri- and di-calcium silicate, which are richest in 

CaO and can react when mixed with water and harden reasonably rapidly. It is, 

therefore, a hydraulic substance"90. 

Cement is made by mixing four raw materials, specifically, limestone (80%), quartzo-

phyllite (12%), iron ore (5%), and bauxite or kaolin (3%). The raw materials are 

crushed and homogenised using a mixed-bed method, transferred to a raw mill, and 

ground to a fine powder to produce raw meal. The raw meal is stored in a 

homogenising silo in which it is homogenised using air blowers. Figure 10 shows the 

process schematically.  

Next, the raw meal is introduced to a heating tower known as preheater tower, which 

consists of multistage cyclones. The meal is introduced to the top preheater and flows 

into the bottom by gravity against a hot gas flow from the bottom, coming from the 

rotary kiln. The meal is heated gradually through the heat exchange process. In the 

preheater, the calcination of CaCO3 occurs, and CO2 gas is released at about 650 oC 

by the exothermic reaction producing CaO. The calcined meal is taken to the rotary 

kiln and classified into different zones according to the temperature profile of the rotary 

kiln. The first zone is in the range of 900–1100 oC, where the liquid phase is formed, 
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followed by the transition and burning zones, where some other clinker phases, such 

as belite (dicalcium Silicate, C2S) and alite (tricalcium silicate, C3S), are formed at 

about 1400 oC. The output from the rotary kiln falls into the cooler, where the material 

is cooled using air blowers to reduce the temperature of the burned raw meal from 

1400 oC to about 200 oC within one h. The product is called Portland cement clinker, 

and it is stored in large silos. In the next step, the clinker is mixed with 5% gypsum 

(CaSO4.2H2O) and ground in a cement ball mill. The particle size of the resultant 

cement is classified according to the Blaine results. The coarser material is returned 

to the mill for further grinding, and the finer material is transferred to the cement 

storage silos.  

 

Figure 10 Cement manufacturing process 
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Table 5  Major chemical phases in clinker and cement 

Clinker Phase 
Approximate 

Chemical Formula 

Cement 

Industry 

Abbreviation  

Alite Tricalcium silicate 3CaO.SiO2 C3S 

Belite Dicalcium silicate 2CaO.SiO2 C2S 

Aluminate Tricalcium aluminate (Aluminate) 3CaO.Al2O3 C3A 

Ferrite Tetracalcium aluminuoferrite 
(Aluminoferrite) 

4CaO.Al2O3.Fe2O3 C4AF 

Free Lime CaO CaO CaOf 

Figure 11 describes the chain of reactions in the pyro-process and illustrates the 

stages of clinker phase formation, beginning with the raw materials. The first four steps 

mainly concern calcination of the raw meal associated with the release of CO2 and the 

production of reactive lime CaO. At about 1000 oC, which is normally at the first rotary 

kiln portion, C3A is produced, along with a small amount of C2S. As the material 

proceeds along the kiln, the temperature rises, and at about 1280 oC, the iron and 

alumina form the liquid phase, which facilitates the conditions for further C2S formation 

and helps the martial flow smoothly inside the kiln. The liquid phase is also important 

because it establishes a stable coating inside the kiln, which protects the kiln shell in 

the higher temperature zone. Finally, the C2S combines with unreacted lime CaO at a 

high temperature of 1450 oC to form the major clinker phase C3S. 
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Figure 11 Estimated clinker chemical reactions91,92 
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3.5 Common cement types used in Oman 

3.5.1 Ordinary Portland cement (OPC) and sulfate-resisting cement 

(SRC) 

OPC and SRC are two types of construction cement commonly used in Oman. 

Although both cement types undergo the same manufacturing steps, SRC clinker is 

prepared using raw materials with a lower alumina content to maintain a C3A level 

below 5% and meet the ASTM standard for this type of cement. This can be achieved 

by reducing the alumina modulus (AM) while the raw meal is mixed.  

3.5.2  Oil Well Cement (OWC) 

OWC is defined as being based on coarsely ground sulfate-resisting Portland cement 

clinker with one or more retarders (gypsum or lignosulfonates) to give it a long enough 

thickening time to pump cement out at high temperatures and pressures. The amount 

and type of retarder used are dependent on the oil well’s depth93. 

This type of cement is used to construct a hard layer between the oil well casing and 

the surrounding geological formation to prevent the well bore from collapsing. The well 

bore is deep, possibly reaching 6,000 metres, with very high pressure (200 MPa) and 

temperatures (up to 205 oC)94. There are a number of significant roles for OWC in the 

process of oil well production. It protects oil-producing zones from salt water flow 

coming from underground water, prevents collapses, and provides stability to the bore 

hole. Moreover, it protects the well by, for example, preventing corrosion, reducing 

groundwater contamination, having a strong bond, and acting as a secondary 

casing86,87. 

Cement slurry designed for well cementing is a function of various factors that should 

be optimised for successful well operation. These factors include the well bore 

geometry, casing type, formation geography, and specification of the drilling mud 

used86. 

OWC is manufactured the same as conventional types of cement, OPC and SRC. 

However, the quality of the raw materials, in term of chemical composition, is 

controlled to produce the raw meal and specific clinker design. 
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Chapter 4 
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 Chapter 4: Materials and methods 

4.1 Overview of experimental programme 

This investigation, which was planned as described in Figure 12, can be divided into 

five major steps: 

 

(1) collecting the raw materials,  

(2) preparing the raw meal (Rm),  

(3) preparing and characterising the clinker (Ck),  

(4) preparing the cement (Cm), and  

(5) characterising the hydrated cement (HCm). 

 

These steps were defined as such because they follow the same material life cycle 

experienced in the cement industry and cement applications.  Appropriate analyses 

and characterisations were performed at each step. Some of the techniques used, for 

example, XRF, XRD, and SEM, were repeated in more than one stage, but the 

operating conditions and sample preparation procedures remained the same. All of 

the samples were not investigated at each stage; instead, the focus gradually 

progressed through each stage (see Figure 12). 

Because this project has a strong industrial focus, the focus was on practical samples 

that could be made by the cement industry, from an economic standpoint and with a 

chemical composition that meets cement quality specifications. Samples with different 

amounts of OBM cuttings were chosen to observe the changes that occurred with 

increasing OBM content. 
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Figure 12 A schematic diagram showing the overall stages of sample preparation and the 
testing methods used at each stage. 
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4.2 Raw materials 

The raw materials used in the investigation were limestone, quartz-phyllite, iron ore, 

kaolin and oil-based mud cutting (OBM cutting). All raw materials used in this 

investigation apart from kaolin were sampled from Oman Cement whose source is the 

quarry next to the factory. Kaolin was sourced from a quarry located 400 km away 

from cement plant95. All raw materials were sampled after the initial homogenization 

stage (blending beds) where the raw materials went through all the steps of quarrying, 

crushing and stacking (see Figure 13). 

The stacking underwent the usual industrial quality control procedures to ensure 

consistent homogenization of the raw materials before the grinding stage. As a result, 

the particle size of the collected samples was below 25 mm. All raw materials were 

characterized by XRF and XRD when they were received. The OBM cutting was also 

characterized by ICO-OES for the heavy and trace metals, plus moisture and organic 

content determination. For further investigation of OBM cutting, thermogravimetric 

analysis and XRD were performed.  

 

4.2.1 Limestone (Ls) 

Limestone is a major component in cement production due to its CaCO3 content which 

is essential for the formation of the principal clinker component, alite. Oman is rich in 

high-grade limestone, with a CaCO3 content above 95%. This is significant for the 

cement industry since the higher the CaCO3 content, the more flexible can be the mix-

Additive quarry  
(QPh & Irone ore) 

Limestone  
        quarry 

Kaolin quarry 

Limestone mixbed 

QPh mixbed 

Iron ore mixbed 

Kaolin mixbed 

Crusher 

Quality control 

Cross-belt 
on-line 

analyser 

Stacker Re-claimer 

Sampling points 

T
o

 m
ix

in
g

 a
n

d
 g

ri
n

d
in

g
 

Figure 13 Diagram illustrating the sampling points (black points) for the raw materials 
obtained from the cement industry 
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design to meet the targeted specifications of cement e.g. chemical and physical 

properties.  

4.2.2 Quartzo-phillite (QPh) 

An additional raw material essential for cement making is one with a high silica (SiO2) 

content - quartz is one such material. The silica is important for the kiln reactions since 

it will be combined with CaO to form different clinker phases. The Qurtzo-phillite (QPh) 

materials located near the factory in Oman has a silica content which varies from 75% 

to 85% SiO2.  

4.2.3 Iron ore and kaolin 

Iron ore and kaolin are additive materials used to correct the chemistry of raw mix. 

Furthermore, a certain amount of Al2O3 and Fe2O3 are needed to enhance the reaction 

in the kiln, by forming the flux (melting phase) during clinkerization and phase 

formation in the kiln. Iron ore is available in commercial quantities next to the factory 

with medium grade (Fe2O3 content range 40 – 45% wt/wt.).  

Kaolin is transported by trucks to the factory and crushed in the same way as the other 

raw materials. It is an essential source of Al2O3, ranging from 32% to 36% wt/wt95. This 

low content of Al2O3 compared with bauxite would normally not be favored. However, 

because bauxite is not available in Oman, and is therefore more expensive, kaolin is 

used as a replacement96,97.  

In fact, the shift from imported bauxite to kaolin has been shown to be advantageous 

in this application economically and also chemically because of its high silica content 

(40 – 47% wt./wt.)98. 

4.2.4 Oil-Based Mud cutting 

The OBM cutting was obtained from a drilling company in Oman (Petroleum 

Development of Oman, PDO29). The cuttings were sampled from the PDO storage 

yard of OBM cutting storage facility in Qaran Al-Alam (Qran Al-Alam oil field, oil field 

no. 52, operated by Halliburton© Oman) as shown in Figure 9 and Figure 14.  
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Figure 14  The oil well drilling operation diagram 

(Qran Al-Alam oil field, oil field no. 52, operated by Halliburton© Oman)
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4.3 Mix design and samples preparation 

Samples were prepared from dried OBM cutting blended with a number of raw 

materials used in the preparation of raw meal, namely; limestone, quartzo-phillite, iron 

ore and kaolin. The chemical composition of these materials is given in Table 6. These 

compositions of the blends were calculated to give the same phase composition as a 

real Portland cement clinker. Using the Bogue’s calculation, the amount of C3S, C2S, 

C3A and C4AF in raw meal after the heating process were calculated 99,100. 

4.3.1 Mix design 

The aim of the study was to investigate the effect of adding OBM cutting on clinker 

composition and cement performance. The aim was to maximize the OBM content e.g. 

10% and above. The mix design was cautiously made considering the following points: 

- Maximum OBM cutting that could be added to produce clinker meeting standard 

cement specification chemistry and physical properties.  

- Preparing raw meal with lower burnability, or at least the same as the industrial raw 

meal, and so does not required extra fuel to burn considering the overall heavy 

metal content. 

- Use minimum additives in the raw mix design such as iron ore and kaolin. This is 

will contribute on reducing the cost of production as those materials are 30 to 50% 

more expensive than limestone. 

- Use minimum quartzo-phillite (QPh) which is the source of free silica (quartz). 

Quartz is hard to burn101 and needs a higher temperature compared with silica 

coming from other raw materials such as kaolin (clay). 

- Maintain the heavy metal content in the prepared cement.  

For raw material selection for preparation of the right chemistry of the raw mix for the 

clinker production process, a mix calculation was required to get the optimal portion of 

OBM cutting used together with the raw materials. For this, an Excel sheet was used, 

as shown in Figure 15. The composition of the clinker was calculated to provide the 

same phases as the main phases of a real Portland clinker. Using the Bogue’s 

calculation, see below, the theoretical amount of C3S, C2S, C3A and C4AF in raw meal 

after the heating process was calculated102,90.  

The theoretical calculation shows OBM cutting could be added to a maximum 55% to 

produce clinker with the correct OPC specification. The advantage of this mix (RM55% 



42 

 

 

Hilal Saif Al Dhamri  200676958 

as stated in Table 7) is that it was prepared using only 4 raw materials namely; 

limestone, kaolin, iron ore and OBM cutting. There was zero quartzo-phillite in the mix 

and silica supply could be provided by other raw materials. 

 

Bogue’s equations: 

C3S (%) = 4.071·(CaO) – 7.602·(SiO2) – 6.718·(Al2O3) – 1.43·(Fe2O3) Equation 1 

C2S (%) = 2.87·(SiO2) – 0.754·(C3S) Equation 2 

C3A (%) = 2.65·(Al2O3) – 1.692·(Fe2O3) Equation 3 

C4AF (%) = 3.043·(Fe2O3) Equation 4 

 

To ensure the clinker quality, the following composition parameters were controlled. 

Typically, the lime saturation factor (LSF) was defined as 0.92 to 0.96, the silica ratio 

was set to 2.35 to 2.6 and the alumina modului (AM) was set to 0.69 – 1.25 depending 

on the type of clinker to be produced (OPC has AM greater than 1.00, SRC has AM 

0.85 and OWC has AM less than 0.69)103. 
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Figure 15 The mix design program in MS Excel sheet 

 

𝐿𝑆𝐹 =
𝐶𝑎𝑂

2.8 ∙ 𝑆𝑖𝑂2 + 1.18 ∙ 𝐴𝑙2𝑂3 + 0.65 ∙ 𝐹𝑒2𝑂3
 Equation 5 

𝑆𝑀 =
𝑆𝑖𝑂2

𝐴𝑙2𝑂3 + 𝐹𝑒2𝑂3
 Equation 6 

𝐴𝑀 =
𝐴𝑙2𝑂3

𝐹𝑒2𝑂3
 Equation 7 
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Figure 16 Theoretical C3S and C2S contents as a function of OBM cuttings content in raw 
meal. 

Note:  
The two figures show theoretical predicted C3S and C2S contents derived from Bogue’s equations. The 
two graphs were established by changing the % OBM cutting in the raw mix. The two grey shadows 
highlight the % range acceptable and practically possible to achieve. This range is the target in cement 
manufacture known to produce clinker meeting the necessary standard specifications and in 
accordance with Oman Cement Company’s operating quality control setpoints. 

50

60

70

80

90

100

110

120

130

140

150

160

170

180

T
h

e
o
re

ti
c
a
l 

C
3
S

 %
 i
n

 C
li
n

k
e
r

0

5

10

15

20

25

30

35

40

0
.0

0 4 8

1
2

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

4
8

5
2

5
6

6
0

6
4

6
8

7
2

7
6

8
0

8
4

8
8

9
2

9
6

1
0

0

T
h

e
o
re

ti
c
a
l 

C
2
S

 %
 i
n

 C
li
n

k
e
r

% of OBM added in Raw Meal

The % range acceptable and 

practical possible to achieve. This 

concentration range is the 

targeted in cement manufacturing 

to produce clinker that can 

perform and meet the 

specification cement standard.  



45 

 

 

Hilal Saif Al Dhamri  200676958 

Table 6 Chemical composition of the raw materials used in this study. 

 Limestone QPH Kaolin Iron Ore OBM cutting 

Main & minor oxides (% wt./wt.) 

SiO2 3.60 76.30 41.28 18.28 20.90 

Al2O3 0.55 9.20 33.27 10.32 4.74 

Fe2O3 0.40 6.69 6.69 54.00 2.35 

CaO 52.25 5.90 2.18 0.48 31.85 

MgO 0.19 1.46 1.46 1.98 2.22 

SO3 0.04 0.26 0.18 0.12 1.81 

K2O 0.92 0.32 0.28 0.14 0.41 

Na2O 0.06 0.12 0.21 0.18 0.89 

LOI @ 950 oC 41.59 2.42 14.15 9.98 32.70 

Trace oxides (mg/kg) 

BaO - - - - 5500 

Cr2O3 100 200 37000 100 100 

MnO 100 1500 7600 100 300 

Mn2O3 100 - - 100 300 

P2O5 600 900 200 200 1100 

TiO2 100 5400 4300 500 100 

     

Table 6 shows the chemical composition of the raw materials used in this study. The 

trace BaO content in OBM cutting is high compared to that in other raw materials. This 

could be because of the oil content. Also it is noticed that the P2O5 content is high in 

OBM cutting. In addition, kaolin shows high concentrations of Cr2O3 and MnO.  

4.3.2 Raw meal samples (Rm) 

Five raw meal mixtures were prepared by mixing different ratios of raw materials 

according to theoretical mix-design calculations. Raw meal samples were prepared 

with OBM cutting contents from zero (as a control sample) to 55%. A final sample was 

prepared from 100% OBM, with no raw materials added. The samples prepared are 

referred to as RmRef., Rm12, Rm55 and Rm100% respectively. In addition, one sample 

of raw meal was obtained direct from a cement plant. This sample contained no OBM 

cutting and was identified as Rmind and later Ckind. Selected raw meal mixtures are 

given in Table 7. 

The raw meals were prepared and homoginized by grinding the mixture in laboratory 

drum mill (model TNS-50, Siebtechnik). The material fed into the drum mill was 



46 

 

 

Hilal Saif Al Dhamri  200676958 

pulverized by the freely moving grinding media (steel balls ranging in size from 5–50 

mm). As well as size reduction, the grinding process also aided material 

homogenization. The machine has a volume of 55 dm3, runs at 50 rpm, and has a 

grinding media weight capacity of 92 kg. 

In addition to the aforementioned prepared raw meal, and to study the thermal 

behaviour and understand the formation of clinker phases with temperature as a 

function of OBM cutting content, fourteen additional raw meal mixtures (Table 7) were 

prepared by mixing different ratios of raw materials according to the theoretical mix-

design calculation, increasing OBM cutting contents, from zero percent (as control 

sample) up to 55%. A final sample was used comprising 100% OBM, with no raw 

materials added. 

Table 7 Composition of the raw meal mixes for the preparation of Portland clinkers 

Raw meal  Limestone Quartzo-phillite Kaolin Iron OBM cutting   Total 

RmRef.-0% 80.90 11.35 5.65 2.10 0.00  100.00 

Rm0.5% 80.00 12.70 4.70 2.10 0.50  100.00 

Rm1% 80.00 12.70 4.20 2.10 1.00  100.00 

Rm2% 80.00 12.10 3.80 2.10 2.00  100.00 

Rm3% 79.10 10.15 5.65 2.10 3.00  100.00 

Rm5% 77.25 10.00 5.65 2.10 5.00  100.00 

Rm7% 76.60 10.00 4.00 2.40 7.00  100.00 

Rm10% 74.40 9.80 3.70 2.10 10.00  100.00 

Rm12% 72.60 8.60 4.70 2.10 12.00  100.00 

Rm15% 70.40 8.50 4.00 2.10 15.00  100.00 

Rm20% 67.00 6.25 4.65 2.10 20.00  100.00 

Rm30% 60.00 4.50 3.40 2.10 30.00  100.00 

Rm55% 43.00 0.00 0.50 1.50 55.00  100.00 

Rm100% - - - - 100.00   100.00 

 

4.3.3 Clinker samples (Ck) 

Nodules 5-8 mm in diameter were prepared from the raw meal by adding water. After 

drying overnight at 120 oC, the dried raw meals specimens were fired using a platinum 
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dish104 in a static air high-temperature furnace (Carbolite, model RHF 16/3). The 

clinker was prepared according to Al-Dhamri and Melghit97 (Figure 17). The heating 

rate was set at 10 oC/min. The sintering temperature was kept at 1450 oC for 45 

minutes. Immediately after, the samples were cooled to below 100 oC using an air 

blower. 

 

Figure 17 The preparation steps of the Portland clinker and Portland cement in the 
laboratory  

(after Al-Dhamri and Melghitt97) 

 

The heating time of lab clinker preparation was based on the procedure followed for clinker 

preparation in the Oman Cement Company10 laboratory, which is established with accordance 

with the best optimum heating temperature for obtaining complete clinker formation.  
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4.3.4 Cement samples (Cm) 

Cement was prepared by grinding the clinker with gypsum. The grinding time varied 

according to the clinker composition. The known cement standards such as Cement 

Omani Standard105 (OS 7/2001), as well as British and European standards do not 

specify fineness. However, the ASTM (ASTM C 150-99a Type I) does specify the 

minimum requirement106. However, the cement was ground so that the Blaine fineness 

fell within a specified range of 320 ± 50 cm2/g, as followed by the cement industry in 

Oman. All samples were ground to fit the Blaine fineness close to this value. 

The ratio of clinker to gypsum was rounded 6%, as shown in Table 8. The 6% added 

gypsum was calculated using Equation 8, which is the difference between the desired 

% SO3 content of the cement and the % SO3 in the clinker used divided by the % SO3 

content in the gypsum added. The grinding was carried out using laboratory tube ball 

mill (NETZSCH, D-8672, 3Kg grinding capacity). The milling of different clinker 

samples was performed batch wise under identical conditions, which are shown in 

Table 8.  

Table 8 The cement grinding condition 

Sample ID 

Cumulative grinding time   

Time Blaine 
Final 

Blaine 
Particle size 

Gypsum 
added 

Minutes cm2/g cm2/g 45 µm 90 µm % 

CmInd.-0%* - - 318 14.9% 1.5% 5.57  6.00 

CmRef.-0%  

21 280 

335 13.3% 1.4%  6.02  6.00 29 303 

34 335 

Cm-12% 

15 216 

329 14.6% 1.3%  5.97  6.00 25 296 

30 329 

Cm-55% 

15 227 

324 14.1% 1.6% 6.07  6.00 20 256 

30 324 

*This sample was sampled from the cement plant. 

 

The percentage gypsum required for desired SO3 in cement was calculated according 

to the following formula107:  
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𝑥 =
𝑎 − 𝑐

𝑏
× 100 Equation 8 

 

Where: 

x = % gypsum to be added to clinker 

a = desired % SO3 in cement (2.60%) 

b = % SO3 in gypsum (41.86%) 

c = % SO3 in clinker  

(0.08%, 0.10% & 0.06%, CkRef., Ck-12% & Ck-55% respectively)  

 

 

  

4.3.5 Hydrated cement samples (HCm) 

The reactivity of the cement powders was investigated by preparing pastes with 

water/cement ratios of 0.45 to 0.55. The samples were cast in polyethylene vials where 

they underwent curing for 2, 7 and 28 days in a water bath at a temperature of 20o C. 

After the desired hydration time, the hydrated cement samples were cut into ½ mm 

discs using a rotary saw. Hydration was stopped by immersion in isopropanol108 for 24 

hours. The powdered samples were then collected and stored under vacuum until they 

were taken for analysis.  

The ½ mm disks were used for SEM analysis (Figure 18), as described in section 

4.3.4. The powdered portion of the sample was ground further for XRD and DSC-TGA 

analysis.  
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Figure 18 Hydrated cement samples and isopropanol hydration stopping 

  

  
Hydrated 
cement after 7 
days curing, 
cut by saw to ½ 
mm disk, and 
the remainder 
ground for 
hydration 
stopping. 

→ 
Hydrated cement 
hydration stopped 
using isopropanol, 
for cement cured for 
28 days 

½ mm disk 
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4.4 Characterization and testing techniques 

4.4.1 XRF and XRD 

A small portion of this sample was weighed into a platinum crucible and lithium 

metaborate / tetraborate flux added and mixed. The mixture was melted on a fusion 

machine to get a solution which automatically poured to a platinum moulded where it 

was cooled slowly to form a glass bead. The resultant glass bead was used for 

analysis by X-Ray fluorescence (XRF).  

XRF analysis was carried out using a PANalytical Axios Fast spectrometer to 

determine the composition of the main oxides. XRF was performed with fixed detector 

channels working at Argon and Methane gases with 9:1 ratio consecutively. The 

radiation tube is Rhodium (SST-mAX) having power of 50 kV and 40 mA. The samples 

were analysed at vacuum pressure of less than 10 Pascals.  

For powder X-ray diffraction (XRD), the samples were analyzed at room temperature 

using a CubiX3 PANalytical diffractometer, with Cu K radiation operating at 45kV and 

40 mA. The measurements were carried out by step wise scanning method (2 range 

from 10o to 65o) with scanning rate of 0.021o per second and a step time of 14 seconds 

with full run lasting for 50 minutes. The crystalline phases were identified and refined 

using Rietveld refinement available with the HighScore© program from PANalytical.  

4.4.2 Loss on ignition (LOI) and Free lime test 

LOI was determined in an oxidizing atmosphere by igniting a known mass of the 

sample at 950 oC in a platinum crucible in an electrical muffle furnace109. 

The free lime test measures the quantity of residual CaO after heating the raw meal 

to the clinkerisation temperature (1450 oC). However, it is also an indication of the 

burnability of the raw meal when measured at different temperatures - between 1100o 

C and 1550o C. For example, hard burning raw meal has higher free lime content when 

compared with another raw meal sample of different composition110. The free lime 

content in any sample, either clinker or heated raw meal above 1100o C, could be 

measured by XRD. Another method is by titration using the ethylene glycol testing 

method, which is used in cement industries111. In this method, the percentage of free 

lime is obtained by refluxing a known quantity of ground clinker (about 1 g) in an 
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alcoholic solution of ammonium acetate under slow heating to boiling temperature. 

The mixture is filtered and titrated with 0.04 M EDTA to the endpoint112,113.  

4.4.3 Inductively Coupled Plasma (ICP-OES)  

The raw materials (limestone, quartzo-phillite, iorn ore, kaolin and OBM cutting) and 

the prepared clinker samples were tested for determination of the trace and heavy 

elements. A small portion of the sample was weighed into a digestion vessel, to which 

concentrated nitric acid, followed by concentrated hydrochloric acid was then carefully 

added. The mixture was heated at 110 °C for 90 minutes to digest the sample and, 

after cooling, diluted with deionized water. The mixture was filtered to separate any 

remaining solid material, and the supernatant liquid decanted off for analysis. The 

digested sample was analysed for metals using an inductively coupled plasma optical 

emission spectrophotometer (ICP-OES) analytical instrument (Agilent 5110 SVDV) 

with nebulizer flow of 0.70 L/min, plasma flow 12.0 L/min, Stabilization time 6 seconds 

and RF power 1.20 kW.  

The sample was sprayed into an argon plasma at approximately 10000 oC, at which 

temperature of the sample atoms and ions emit light at particular wavelengths 

dependent on the element and the intensity of which is proportional to the 

concentration. Quantification was achieved by comparison of the emission signal for 

each element with prepared metal standards. The concentration of the metals was 

reported in mg/kg. 

4.4.4 SEM-EDX 

The prepared samples such as heated RMs (section 4.3.2), Clinker (CK section 4.3.3), 

and hydrated cement (HCM section 4.3.5) were analysed by SEM-EDX. The aim of 

the SEM analysis was different in each case. The SEM for RMs and clinker samples 

was to identify the formation temperature of various clinker phases by scanning the 

samples that had been burned at different temperatures from 1180 oC up to 1500 oC. 

Also, the method was used to detect the presence of any trace elements. 

SEM of the hydrated cement however was performed to observe the hydration of the 

cement at different time periods (2, 7 and 28 days).  

Polished section specimens were prepared by impregnating samples in epoxy resin 

(mixing ratio 25:3) which was hardened at 40o C for 48 hours. The specimens were 

ground on a rotating wheel with 10 Newton load and 90 RPM using silicon carbide 
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paper (SiC) 600, 1200 and 2500 µm. Next, the specimens were polished using 

diamond paste to 0.25 µm roughness. As a final point before investigation by SEM, 

the specimens were exposed to carbon coating to prevent charging of the sample114.  

The polished sections of the samples were studied in backscattered scanning electron 

(BSE) mode using Carl Zeiss EVO MA15 SEM. The back scattered images of the area 

of interest were obtained at a beam voltage of 15 kV with a working distance of 8 mm, 

while 20 kV was used for the elemental maps.  

4.4.5 DSC-TGA 

The differential scanning calorimetry & thermogravimetric analysis (DSC-TGA) of the 

raw meals (RMind, RMRef., ….. RM100%) was performed using DSC-TGA Universal 

V4.5A TA Instrument (Simultaneous DSC-TGA). The samples were manually ground 

to fine particles and 35 – 36 mg were analyzed using an alumina crucible. The heating 

rate was 10 oC/min, under normal atmospheric condition from 20o C to 1450 oC 115. 

4.4.6 Burnability test 

The term burnability describes the nature of the raw meal and the ease with which the 

principal clinker phases are formed at temperatures of 1450 or 1500 oC 110. It is an 

indication of the mass transfer properties of the constituents of the raw meal. 

Burnability is a function of time and temperature and it is measured by determining the 

free lime content after heating the raw meal for time (t) at temperature (T)116,117.  

CaOf % = f (t,T) 

Burnability can be determined in a number of ways. Firstly, the free lime content can 

be determined with a constant burning time and variable temperatures. Here, rising 

free lime contents equate to low burnability. Alternatively, it can be defined by the time 

taken at constant temperature to achieve a free lime content below 1.5 - 2.0%. 

Increasing times correspond to low burnability. The former method was used in this 

study. The burnability test was conducted for the samples Rmind, RmRef., Rm12%, 

Rm55% and Rm100% by sintering them in laboratory furnace for 45 minutes at five 

different temperatures (1300, 1350, 1400, 1450 and 1500 oC). After sintering, the 

samples were cooled, ground and analyzed by the standard ethylene glycol testing 

method to determine the free lime content 111,118. 
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4.4.7 Petrographic analysis 

Clinker samples were also investigated by optical microscopy. There are various 

approaches to sampling clinker for examination by optical microscopy, and these vary 

according to the purpose of the examination, such as studying kiln operation, 

identifying problems, improving fuel consumption etc. One well known method of 

sampling is that of Hofmänner (1973)119 who recommends sampling in intervals of five 

minutes or less, taking three 2-kg samples, mixing, and quartering down to 500 g. 

However, this step was skipped, as there was insufficient clinker produced in this 

study, and it was judged sufficient to apply the following steps. The clinker sample was 

crushed to 5-mm particles and quartered until an adequate amount remained for resin 

encapsulation in a 25-mm-diameter. Particles were then randomly select from the 

clinker subsequently exposed upon polishing. Each clinker nodule surfaces was first 

flattened by coarse grinding, before the flattened nodule was placed in a plastic vial, 

resting on its flattened surface. The vial was filled with 1:5 araldite mix (one part 

hardener – HY951 and five parts resin CY-230). Next, the vial was placed in a 

desiccator and evacuated, by means of a vacuum pump, for 30-40 minutes. Finally, it 

was put in an oven at 50 ºC for 10 minutes and allowed to cool at room temperature. 

The sample was ready for coarse grinding after breaking the plastic vial120.  

An Ecomat III polisher and grinder, along with automat lapping oil and 120 to 200 mesh 

carborundum powder were used for coarse grinding on a diamond grinding disc – 70 

μm. The final grinding was done by using 600 to 1500 mesh carborundum powder on 

a glass disc. The polishing was done on Metadi II polisher using 9, 6 and 3 micron 

diamond polishing compound on a diamond grinding disc. Polished clinker samples 

were etched to distinguish alite from belite using HF-vapour by cooling the sample to 

10 oC below etching temperature prior to etching121. For viewing the aluminate phase, 

samples were etched using 10% NaOH solution119,122. Polished clinker sections were 

examined using a reflected light microscope (Olympus BX 60).  

4.4.8 Degree of hydration (DoH) 

The ½ mm disks prepared in section 4.3.5 were used to study the degree of hydration 

by SEM-EDS analysis. The polished specimens were prepared using resin 

impregnation method as described in section 4.4.4. The degree of hydration was 

measured by acquiring 30 images at 400x magnification with a working distance of 8 

mm and an acceleration voltage of 15 KeV using SEM Carl Zeiss EVO MA15. The 
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maps were collected using Oxford Xmax SDD detector with 80 mm2 detector. The 

grey-level histogram analysis was done using ImageJ software. 

 

 

(a) 

 
 

(b) 

Figure 19 SEM Micrograph of hydrated cement. 

(a) Cured for 7 days, and its (b) associated grey level histogram 

 

4.4.9 Physical and mechanical testing  

The specific gravity of cement was measured according to the Standard test method 

for density of cement: ASTM C188-16123. The empty dry Le Chatelier flask was filled 

to the mark between 0 and 1 mL with kerosene (recorded as Vi). Then, about 64 g of 

dry cement sample was placed into the flask. The flask was half-filled with kerosene 

and the mixture was stirred with a glass rod. The mixture was being continually stirred, 

adding more kerosene until the flask was filled (recorded as Vf). For each sample, the 
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measurement was repeated four times. The density of cement was calculated 

according to the following equation:  

P = M/Vd Equation 9 

where: 

P = Density of cement, g/cm3 
M = Mass of cement, g 
Vd = Displaced volume of liquid, cm3 
  Vd= Vf - Vi  where Vf is final volume and Vi is initial volume  

 

The surface area of prepared cement samples was measured, as fineness by air 

permeability (Blaine method), by obtaining the time taken for a known amount of air to 

flow through a compressed cement sample bed of specified dimensions and porosity. 

The test was carried under standard conditions at 20o C and humidity not exceeding 

65%, the specific surface of the sample was correlated to t1/2 where ‘t’ was the time 

taken for a known air volume to flow through the pressed cement bed124. 

The setting time and the soundness of the cement pastes (cement-water ratio being 

500 g: 125 ml) were determined according to the European Standard EN 196-3. Vicat 

apparatus was used to determine the setting time by noting the penetration of a needle 

into cement paste until it reached the specified depth. The soundness is determined 

using Le Chatelier apparatus by noting the volume expansion of cement paste as 

indicated by the relative movement of two needles125.  

The compressive strength development of the various cement samples (Cmind, CmRef., 

Cm-12% and Cm-55%) was conducted using mortar samples according to the 

European Standard for Portland cement testing. The cement mortars were prepared 

by mixing cement, standard sand and distilled water with the ratio of 1:3:0.5 

respectively. The standard sand used was supplied by Normensand, conforming to 

ISO 679, EN 196-1 Germany. The cement mortars were prepared by mechanical 

mixing and then compacted in a standard steel mold (dimensions 40 mm x 40 mm x 

160 mm). The specimens in the mold were stored in a moist atmosphere overnight. 

Demolded specimens were stored in a water bath for periods of 2, 7 and 28 days at 

98% relative humidity and 20o C ± 2. After each period, the specimens were tested for 

compressive strength using the compressive machine (made ELE, model ADR-1500) 

with a lab temperature of 22o C ± 2o C and lab humidity of 55% ± 3%. Each strength 

result was an average of three measured data126. 
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4.4.10 Isothermal Conduction Calorimetry  

Isothermal conduction calorimetry (50), ICC, was used to study the hydration process 

of cement by measuring the heat given off by the hydrating cement as a function of 

time. The heat given off by a sample is compared to a reference sample. The reference 

used had the same thermal properties of the sample. Quartz has close specific heat 

capacity to cement (quartz = 0.8 J.g-1.K-1, cement = 0.75 J.g-1.K-1). Six grams of dry 

cement sample were mixed with three ml of distilled water, keeping the water to 

cement ratio of 0.5. The mixing was performed outside the calorimeter. The mix was 

placed in a 20 mL disposable polyethylene ampoule and the measurement was 

performed using TAM Air with eight channel isothermal heat flow calorimeter. The 

container was placed in a chamber which was then placed in water bath at constant 

temperature of 20o C. All samples were prepared after each other and then loaded into 

ATM Air at the same time. The determination testing was set for measuring heat of 

hydration over 28 days. The data obtained was used to establish two type of graphs, 

first heat of flow rate evolved from the cement hydration against the time. And second, 

graph that showing total heat resulted from the hydration against the time127.  

 

 

Figure 20 Overview of the calorimeter setup 

showing two sets of samples: one containing 9g of sample paste and the reference 
sample containing 9g of a quartz analogue.  
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 Chapter 5: Characterisation of OBM and OBM cuttings 

5.1 What is in OBM?  

OBM is a fluid prepared to be used in the oil drilling process. There are several types 

of OBM, and the specific type used depends on different factors, such as the well’s 

depth, geological formation, and ground composition. The ground and geological 

conditions are the basic principles for decision-making regarding the specific type of 

fluid to be used. Some areas, where the shell is an active type that reacts with water 

and unlike condition are formed, which cause the damage to the well during the drilling 

process. In critical conditions, oil is used to replace the water in the fluid. The major 

components of OBM are oil, water, mud, and an additive. It is used because it 

facilitates drilling underground where the temperature and pressure are excessively 

high.  

The basic components of OBM: 

1- Basic fluids, such as oil or diesel. 

2- Mud, a solid part of the fluid, which consists of water, clay, and sand.  

3- Additives, which control the properties of OBM, such as weight (specific gravity 

or density), viscosity, fluid loss, and chemical reactivities. 

Diesel is banned from use in Oman by law 46 to meet the environmental rules and 

regulations agreed to in the 1980s regarding the use of oil containing aromatic 

compounds, such as oil-based drilling fluids 128,129. Diesel is 5–10% polyaromatic 

hydrocarbons (PAH)130 so falls under the hazardous waste category and has a highly 

toxic impact. Low-toxicity oil synthetics are formulated and known as nonaqueous 

drilling fluids. The reported lethal concentration (LC50) for the aquatic toxicity of 

nonaqueous-based fluids is 1560 – 7131131 mg/L, tested on an amphipod species 

called Corophium volutator. Diesel-based OBM’s LC50 is 840132 mg/L when tested on 

the same species and, according to the United States’ Environmental Protection 

Agency (EPA), its drops to 639133 mg/L when tested on Leptocheirus plumulosus, 

another amphipod species.  

A few examples of base oils used in Oman in the preparation of OBM and their toxicity 

are as follows:  
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- Mineral oil of alkanes (paraffin) is oil that has carbon-hydrogen single bonds with 

a carbon chain link of C10 to C22. This type of oil has lower toxicity and higher 

viscosity, but it is costly. 

- Mineral oil of Alkenes (olefins) is oil that has a double bond between carbon and 

hydrogen and a carbon chain length of C15 to C18 (linear, iso or blends). This type 

of oil is moderately viscous and moderately cost134. It is also less toxic than diesel-

based OBM.  

The mud in OBM is comprised of inorganic colloids, which are active clay ingredients, 

and has different particles sizes depending on its design.  In Oman, the particle size 

used is fine, in the range of 44–74 µm in sieve size 325135 with a large surface area. 

The mud’s properties are important when selecting the type of OBM. It plays a major 

role in stabilising the well during the drilling process, which depends largely on the 

interaction between OBM and the exposed shale formation. The colloids in the mud 

can be classified into two categories: (1) clay minerals and (2) organic colloids. Clays 

consist of a heterogeneous blend of very fine minerals, such as quartz, feldspars, 

calcite, and pyrites136, and have a mica-type structure in which the flakes are 

composed of small crystal platelets stacked together and facing each other to form a 

unit layer. Each unit layer consists of an octahedral sheet and one or two sheets of 

silica tetrahedra137 as shown in Figure 21. 

 

Figure 21 Schematic mineral structure of clay  

(Grim137 and Darley et al.136) 
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Most drilling companies in Oman use Barite as an additive to control the properties of 

OBM, such as its weight (specific gravity or density), viscosity, fluid loss, and chemical 

reactivities. Barite (BaSO4) is chemically inert and insoluble. Adding Barite gives OBM 

a specific gravity of 4.2–4.5 g/cm3, meeting the API’s specifications138, so its role is a 

weighting agent used to increase the density of OBM as desired based on the well 

conditions. OBM’s density is important because well bore fluid must have an adequate 

density to convey the cuttings to the surface, and it contributes to the stability of the 

bore hole 139 by increasing the pressure exercised by the well bore fluid against the 

surface of the hole140. In addition, higher density results in a higher penetration rate 

during the drilling process141. Other additives are used very infrequently, such as 

calcium carbonate, hematite, ilmenite, and manganese tetroxide. However, barite is 

widely used because it is the most effective and economically feasible. 

5.2 What is in OBM cuttings?  

OBM cuttings are a mixture of OBM and the drilling cuttings produced during the oil 

well drilling process. The variation in chemical analysis of OBM cuttings is very high 

compared to regular raw material obtained from a specific quarry. This is due to the 

nature of the oil drilling location. OBM cutting analyses obtained from different 

literature are summarised inTables 9 and 10.  

The chemical analysis of the major and minor oxides show some consistency on 

oxides important to the cement industry. The concentrations of SiO2 and calcium 

carbonate (as CaO) fall within the cement raw materials specification as additional 

additives rather than major constituents. 

The XRD analysis of the OBM cuttings obtained and shown in Figure 22 concludes 

that the OBM contains mainly calcite (CaCO3), dolomite (CaMg(CO3)2), quartz (SiO2), 

iron oxide (Fe2O3) and Barite (BaSO3). 

In the XRD and chemical composition, most analyses show that the OBM cuttings are 

a heterogeneous mixed material composed of a few major types: gravel, limestone, 

clay and shale. The gravel and limestone are cuttings from the oil drilling process that 

contaminate the circulated material and become part of the OBM cutting. Limestone 

(calcite) and clay are added during the preparation of the OBM. Shale is of low CaO 

content (below 40%) and high SiO2 content (above 20%)76. The alumina content in 
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OBM cuttings is probably coming from the clay that used in OBM preparation. The 

major mineral in clay is alumina in the form of aluminium silicates. In some cases, as 

shown in Table 9, this content is above 10%. Alumina is present in many forms, such 

as bauxite, gibbsite and kaolinite 142. However, the OBM cutting used in this study has 

a lower alumina content (4.47% wt.).  

 

Figure 22 X-ray diffraction pattern of OBM cutting 

 
The XRD (Figure 22) and chemical analysis also showed the presence of Barium in the 

OBM cuttings in a form of barite (barium sulphate, BaSO4). The major source of barite 

is the preparation of the OBM used during the oil well drilling process. It is used as an 

additive (known in drilling engineering as weight material or a weighting agent) and 

has a major role in the drilling process. The weight material is added in the preparation 

of OBM to develop a mud system that yields good well stability. Density, or mass per 

unit volume, is one factor controlled by this material during the well engineer’s mix 

design. The wellbore OBM must have adequate density to transfer the cuttings to the 

surface during the drilling process140. Besides increasing density, the weight material 
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also creates sufficient hydrostatic pressure in the hole and minimizes OBM slurry loss 

by forming a thick filter cake on the walls of the well.  

Example of economic weight material are powdered minerals of barite, calcite or 

hematite. Barite is an inert and insoluble chemical compound with a specific gravity of 

4.2–4.4 and hardness 2.3–3.5. It is the most economic material widely used as 

weighting material in the well drilling process140,143.  

OBM cuttings also contain heavy and trace metals from several sources in very low 

concentrations. These are mainly from the additives used or from the cutting and the 

crude oil. PDO specifies the maximum permissible metal concentration in by-products 

(drilling waste) generated as a result of oil drilling operations. These include 

contaminated sludge, soil, WBM cuttings and OBM cuttings144,145. The metal 

concentration must be within the specified limits in order for the material to be disposed 

of in engineered landfills or other facilities subject to approval from the environmental 

authority in Oman. When comparing the limits of the PDO and API guidelines, few 

metals are not specified by PDO, such as As and Ba; only the metal Se is not specified 

in API. The limits given in the PDO specifications and API guidelines are similar. The 

OBM cuttings obtained in this study have metal contents that fall below the limits 

specified by PDO.  

The trace element content (also known as potentially toxic elements, PTE146) in OBM 

cuttings is reported in Table 10 and presented in Figure 24. Because barite is a 

common minerals in the OBM used, BaO levels were high in the OBM cuttings. These 

were much higher than when compared with other results reported for OBM cuttings 

in the literature44,52,54 as could be seen in Table 10.Other trace elements could result 

from contamination by the oil used to replace the water base in the preparation of the 

OBM slurry before pumping the mud in the drilling hole. 

API has developed criteria for drilling waste based on well-developed scientific 

information147, stated in Table 10. trace metals in the studied OBM cuttings were much 

lower than the limits specified by the API guidelines147. The concentrations of As, Cd, 

Cu and Ni are 9.8, 1, 18 and 3.3 mg/Kg respectively, which indicates that the OBM 

used meets the environmental requirement for use of oil-based fluid, and thus reflects 

lower trace elements that threaten the environment. In addition, the highest 

concentrated trace element is barium, which still shows a lower concentration than the 
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stated limits of API at only 5,500 mg/Kg, against the 180,000 mg/Kg maximum limit 

from API. Other elements of environmental concern, zinc and lead, are 107.6 and 32.8 

mg/Kg, respectively. This was similar to the conclusion of many studies of OBM 

cutting, which reported 102.4 mg/Kg (Ayati et al. 54) and 125 mg/Kg (Abbe et al. 44) for 

zinc and 38.5 mg/Kg (Ayati et al. 54) for lead. In addition, P2O5 is known to retard 

cement and potentially, in combination with SO3, to stabilize belite148.  

Table 9 OBM cuttings major and minor chemical composition from different sources 
(%wt.) 

Reference 45 54 52 27 71 44 This study 

SiO2 44.85 41.18 5.47 38.5 17.64 47.60 20.90 

Al2O3 14.19 12.75 1.29 9.9 2.36 13.54 4.74 

Fe2O3 7.49 3.29 0.56 4.1 1.23 6.34 2.35 

CaO 17.51 14.95 25.05 13.0 28.17 2.78 31.85 

MgO 1.76 7.34 3.47 3.6 3.64 2.31 2.22 

SO3 3.11 - 38.41 5.0 3.96 - 1.81 

K2O 2.69 2.53 0.27 1.7 0.56 2.33 0.41 

Na2O 1.05 17.32 3.29 1.1 1.48 1.17 0.89 

Cl 1.29   0.31 1.23  0.01 

LOI  8.2  22.9 19.35 11.63 32.70 

Moisture    14.5 2.30 17  

NCV*    633  633 - 

BaO 4.98     11.39  

TiO2 1.08     0.65 0.10 

*Net caloric value in kcal/kg OBM cutting 

Table 10 OBM cuttings trace & heavy elements analysis (mg/Kg, dry solid) 44,52,54 

R
e
fe

re
n
c
e
 

54 52 44 
This 
study 

PDO 
specification145 API  

guidline147 
Maximum permissible 

concentration 

As 11.8 - 11.8 9.8 NS* 41 

Ba 32.02 - - 5500 NS 180,000 

Cd - 0.44 0.3 1 20 26 

Cr 74.3 0.48 116 100 1000 1,500 

Cu 23.9 3.43 32.9 18 1000 750 

Hg - - - 0.2 10 17 

Ni 36.0 0.34 65 3.3 300 210 

Pb 38.5 149.02 11.2 32.8 1000 300 

Se - - - 3.4 50 NS 

Zn 102.4 0.20 125 107.6 3000 1,400 

*NS: not specified 
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Figure 23 The chemical composition (major oxides) of OBM cuttings  

(average of 20 samples) 

 
 

 

Figure 24 The trace and heavy elements content of OBM cuttings  

(average of 20 samples)  
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The effect of OBM cuttings on the clinkerisation process  
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 Chapter 6: The effect of OBM cuttings on the clinkerisation process 

6.1 Clinker phase formation  

XRD patterns reveal changes in clinker phase composition as a function of the OBM 

cutting content. The main phases in all the investigated clinkers are reported in Figure 

25, namely alite (C3S), belite (C2S), tricalcium aluminate (C3A) and ferrite (C4AF). The 

concentrations of alite and belite versus OBM cutting content are reported in Figure 

26. This figure shows the results from both the Rietveld refinement of the XRD patterns 

and theoretical calculations based on Bogue equations Table 11. 

  

 

Figure 25  XRD patterns of the prepared clinkers. 

 

There were no discernible changes in the alite or belite polymorph with OBM cutting 

content (Figure 25). However, the levels of alite and belite formed were dependent on 

the OBM cutting content (Figure 26). This result was not predicted by the Bogue 
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calculations, but the Rietveld refinement data showed a gradually decreasing alite 

content (and corresponding increasing belite content) with increasing OBM cutting 

content. Indeed, it is noteworthy that the Bogue calculations underestimated the alite 

content and overestimated the belite content at OBM cutting content up to 5%.  

While the industrial clinker showed the highest levels of alite, adding OBM cuttings to 

the reference raw meal led to increased alite content. It was not until the OBM cutting 

level was over 15% that the alite content dropped below that observed for Ckref. These 

differences could be explained while exploring the other parameters, such as the 

influence of trace element content, raw material characterisations, and OBM cuttings’ 

behaviour. However, the reference clinker sintering conditions were likely different to 

those of the industrial clinker produced in a real cement kiln, for example the absence 

of mixing under lab conditions.  

 

Figure 26 Clinker phase contents derived from Rietveld analysis and Bogue calculations. 

Rietveld analysis (thick, black line)  
Bogue calculations (grey, dotted line) 
 

 
 
 



69 

 

 

Hilal Saif Al Dhamri  200676958 

 

 

 

Table 11 Chemical oxide and clinker phase composition of the prepared clinker  

 Ckind. CkRef. Ck-12% Ck-55% Ck-100% 

Major oxides (% wt./wt.) 

SiO2 22.19 22.58 21.79 21.88 32.49 

CaO 65.45 65.32 65.87 65.68 51.55 

Al2O3 4.06 5.46 5.37 5.02 7.82 

Fe2O3 4.07 3.86 3.82 3.88 3.88 

LOI @950 oC 0.25 0.12 0.07 0.06 0.04 

Minor oxides (% wt./wt.) 

MgO 0.78 0.81 1.24 1.43 1.66 

SO3 1.40 0.30 0.83 1.57 0.33 

Na2O 0.25 0.32 0.35 0.34 0.20 

K2O 0.39 0.25 0.07 0.02 0.11 

Trace oxides (×100 mg/kg) 

BaO - - 23 85 115 

Cr2O3  12 11 7 6 5 

MnO 4 5 4 4 4 

P2O5 9 12 11 12 12 

TiO2 24 32 28 20 20 

Clinker Module factors 

LSF 92.53 90.5 94.33 94.22 48.45 

SM 2.46 2.42 2.37 2.46 2.95 

AM 1.22 1.41 1.41 1.29 2.02 

Clinker main phases (%) by Bogue149,93 

C3S 64.66 52.06 60.97 61.78 - 

C2S 14.93 25.55 16.57 16.21 <36.63 

C3A 3.87 7.94 7.77 6.74 14.16 

C4AF 12.39 11.75 11.62 11.81 11.80 
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6.2 CaCO3 decomposition 

Thermal analyses of various raw meal samples showed that the calcination 

temperature decreased with OBM cutting content increases. Calcite decomposition 

occurred at 817 oC when no OBM was in the sample, falling consistently with 

increasing OBM cutting content until the OBM cutting alone (Rm100%) showed 

decomposition at 763 oC. The greater than 50 oC decomposition temperature 

difference between limestone and OBM cuttings is of interest. To understand why the 

addition of OBM cutting reduces the calcination temperature, it is important to study 

the nature of the calcite in OBM cuttings and compare it with that in the limestone. 

Many studies150–154 have reported limestone reactivity and linked it to the calcite 

structure. Different grain sizes155 and impurities within the limestone can cause 

variations in the limestone’s textural and mineralogical properties and, subsequently, 

influence the calcination temperature156. This may also influence both the 

crystallisation temperature in different phases of the clinker formation and free lime 

content in the produced clinker117,157. It has also been reported that the presence of 

dolomite in limestone helps speed up the calcite decomposition rate157. 

In 1962, Dunham158 established a systematic classification scheme for carbonate 

sedimentary rocks. Initially known as the ‘Dunham Classification’, it was later modified 

by Embry and Kloven159–161 to include coarse-grained limestone and became known 

as the ‘modified Dunham Classification’. It has become the most commonly used 

classification in petrographic thin sections for identifying and distinguishing different 

types of limestone based on the grain-size, ratio, shape and microstructure.  

The Dunham classification divides limestone into six sub-classes based on the 

presence or absence of mud supporting the carbonate grains, the grain content, and 

nature of the matrix during deposition. Limestone may be further defined by two sub-

groups: (1) grain-supported limestone and (2) mud-supported limestone. This division 

depends on the percentage of the grains (known as allochems) or mud matrix (known 

as orthochems). Grain-supported limestone is characterised by a texture with little or 

no lime mud but an abundant framework of grains that support each other, while the 

mud-supported limestone consists of grains floating in a muddy, mainly calcitic 

matrix162.  
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Analyses of petrographic thin sections of the limestone used here shows calcite 

crystals of a depositional texture, with no regular shape and unevenly distributed 

without common direction, (Figure 27). The grains are coarse (>3mm) and compact 

with no void space between calcite crystals, appearing flat and with some fractures. 

This limestone can be classified as crystalline limestone according to the Dunham 

classification158.  

The OBM cuttings, meanwhile, show different petrography, with the calcite being mud-

supported with loosely packed grains and high porosity. The clay grains are mostly 

present as developed clusters and immersed in oil. Lath-shaped plagioclase grains 

with sharp grain margins are also present as shown in Figure 27 (c) & (d). The calcite 

show round sub-millimetre grains, which are highly brittle and fragile in nature. Later 

XRD analyses of OBM cuttings show the presence of dolomite. Therefore, the OBM 

cuttings’ classification can be considered be a mix between two or three types of 

limestone, falling between mudstone and Wake stone. However, the classification is 

certainly different from the limestone used in this research.  

These differences help explain the lower decomposition temperature of OBM cuttings 

compared to limestone. First, OBM cuttings contain dolomite, while none is present in 

the limestone. Dolomite in limestone lowers the decomposition temperature of the 

calcination process.  Marinoni163 showed that limestone decomposition starts with the 

rapid dissociation of dolomite in the first few min, followed by calcite decomposition. 

Dolomite dissociation occurs in a single step without a calcite intermediate phase. This 

suggests that the presence of dolomite reduces the calcination activation 

energy117,157,163. Marinoni157 proposed that limestone dissociation starts with dolomite 

decomposition, resulting in the formation of grain cracks due to the CaMg(CO3)2 

structure, increasing the surface area, allowing CO2 diffusion157,153,164. 

The lower decomposition temperature in OBM cuttings may also be related to the 

calcite texture therein, which differs from the calcite in limestone as explained above. 

Finally, OBM cuttings are more porous than limestone, allowing more surface area for 

heat transfer. As seen petrographically, the calcite grains float in the mud, with larger 

spaces between grains than in the limestone (Figures 28 [c] & [d]). 

Similar results were obtained by Marinoni et al157 and Galimberti et al117 when studying 

the thermal decomposition and burnability of limestone used to manufacture  industrial 
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cement clinker. Using different limestone sources revealed that the texture of mud-

supported limestone had a strong impact on the calcite decomposition temperature 

and its decomposition rate. According to the Dunham calcite classification160,161, raw 

meal where the limestone is of grain-supported origin is more reactive. 

 

Figure 27  Limestone and OBM cutting petrography analysis 

 

The calcite grain size also has an effect on both the rate of decomposition and the 

temperature at which decomposition occurs. Coarser grains show higher 

decomposition temperatures and lower rates of decomposition91, as illustrated in 

Table 12. 
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Table 12 The effect of calcite grain size on the dissociation of limestone  
(according to Chatterjee 91) 
 
 

 
 

The effect of particle size was confirmed by grinding the limestone for 5 min and then 

obtaining two fractions: one passing a 212-micron sieve and one passing a 63-micron 

sieve. These two fractions were compared against ground OBM cuttings passing 

through a 212-micron sieve. The particle size distributions of the three resultant 

materials are comparable to materials used in a cement plant and are shown in Figure 

28, along with thermogravimetric analysis (TGA) of the three samples. The finer 

limestone decomposed at a lower temperature than the standard limestone, with OBM 

cuttings decomposing at an even lower temperature. Thus, the lower decomposition 

temperature of OBM cuttings may be explained by the finer calcite grains (Figures 28 

[c] & [d]) and the presence of dolomite. The calculated activation energies (Ea) of 

CaCO3 decomposition for limestone and OBM cutting are 154.43 J.mol-1 and 181.46 

J.mol-1 respectively (Figure 29), confirming the observations made by Chatterjee et 

al.91. 

 
 

 
 
 

 

 

 

 

 

 

Crystallinity Grain size, mm 
Relative rate of 

dissociation 

Relative 
dissociation 
temperature 

Very coarse grained > 1.00 Lowest Highest 
Coarse grained 1.00 – 0.50   
Medium grained 0.5 – 0.25   
Fine grained 0.25 – 0.10   
Very fine grained 0.10 – 0.01   
Microcrystalline  < 0.01 Highest Lowest 
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Figure 28 Particle-size distribution (top) and decomposition temperature (below) of fine-
limestone, limestone, and OBM cutting. 
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Figure 29 Activation energy values of CaCO3 decomposition reactions in limestone and 
OBM cutting. 

 

6.3 Burnability 

Figure 30 shows the burnability data obtained in this study. Figure 30 (a) shows the 

data obtained from cement industry raw meal (RmInd.) and the reference raw meal 

prepared in the laboratory (RmRef.). The free lime content for both mixes fell with 

increasing temperature. However, the free lime content of RmInd was always greater 

than that of RmRef, with the difference between the two decreasing with increasing 

temperature, until the difference was minimal at 1400 oC and above. The higher free 

lime content for RmInd could be due to its higher LSF, i.e. 92.53 compared to 90.50 for 

RmRef. Thus, there is more CaO to be consumed during clinkering. This is supported 

by the convergence of the two data sets with increasing temperature. Both mixes 

showing similar burnability behavior validates the use of the reference raw meal in 

comparisons with raw meal prepared using OBM cutting. 

Figure 30 (b) shows the burnability results for RmRef plus raw meal prepared using 

12%, 55% and 100% OBM cuttings. Despite the falling free lime contents with 

increasing temperature, there was an increase in free lime with increasing OBM cutting 

content, suggesting harder burnability. However, this did not apply to the sample 
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prepared from 100% OBM cutting. This sample showed very easy burning behaviour 

(Figure 30 c). The free lime dropped significantly, even at 1300 oC (0.2% free lime), 

then showing only 0.02% free lime content when heating at 1500 oC. However, as 

shown by XRD analysis (Figure 31), when burned at 1200 oC, the 100% OBM cutting 

showed belite formation and a very low free lime content. Higher temperatures still led 

to no alite formation due to there being no CaO remaining, as shown in Figure 31. This 

was confirmed by SEM-EDX analysis (Figure 32), where no alite was observed. The 

absence of alite can easily be understood in terms of the LSF, which at 48.45 was 

considerably lower than for all of the other samples.  

The consumption of calcium oxide to form C2S at temperatures below 1300 oC 

explains the low free lime concentrations in the Ck-100. While Clk-55 contains more 

calcium oxide (e.g. higher LSF factor), part of it reacts to form C2S while some remains 

to react with C2S to form C3S at higher temperatures (above 1450 oC). This 

thermodynamic chemical reaction is reversible, meaning that when the temperature 

drops, the C3S decomposes to free lime and C2S, especially if the cooling process is 

slow, resulting in increased the free lime content in the clinker burned at a higher 

temperature if the clinker is not quenched (rapid cooling). 

Figures 34 to 36 show the SEM analysis of raw meal burned at different temperatures 

to study clinker phase formation at each temperature (e.g. 1200 to 1500 oC). The 

observation of each SEM images are presented within the figure. Also the EDX images 

of corresponding SEM images are shown in Figures 37 to 41. 
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Figure 30 The burnability tests of the raw meal at different burning temperatures. 
 
Top: reference sample vs. industrial raw meal 
Bottom: reference sample vs. raw meals with 12%, 55% and 100% OBM cuttings  
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Figure 31 XRD pattern of the different raw meal samples burned at different temperatures. 

The arrows show the free lime peak at 2theta =37.36 o, the highest intensity when calcined 
at 1450 oC is for the raw meal prepared with 55% OBM cutting. 
 

 

 

 

Figure 32  100% OBM cuttings clinker. 

Left: Clinker sample (100% OBM cutting) after burning at 1450 oC in platinum crucible for 30 
minutes.  

Right: SEM image analysis of the same clinker sample. 
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Figure 33 The SEM analysis of RmRef burned at four different temperatures. 
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Figure 34 The SEM analysis of Rm-12 burned at four different temperatures. 
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Figure 35 The SEM analysis of Rm-55 burned at four different temperatures. 
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Figure 36 EDX analysis for RmInd showing clinker microstructure development with 
increasing temperature. 

 
Figure 37 EDX analysis for RmRef showing clinker microstructure development with 

increasing temperature. 
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Figure 38 EDX analysis for Rm-12 showing clinker microstructure development with 
increasing temperature. 

 

Figure 39 EDX analysis for Rm-55 showing clinker microstructure development with 
increasing temperature. 
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Figure 40 EDX analysis for Rm-100 showing clinker microstructure development with 
increasing temperature. 

6.4 The XRD and TGA  

XRD and TGA were used to measure clinker phase composition and obtain 

information on the changes in clinkerization during the heating process. Thermal 

analysis (Figure 41) showed that all of the changes occurring during the heating 

process, including CaCO3 decomposition, belite formation, liquid phase and alite 

formation (liquid phase sintering) shifted to lower temperatures as the OBM cutting 

content of the raw meal increased.  

The effect of OBM cutting on CaCO3 decomposition temperature was described 

earlier, but the effect on other phases is described below. At higher temperature 

(above 1338 oC)165 the liquid phase develops. This comprises mainly Al2O3 and Fe2O3 

bearing phases. These are essential fluxes, lowering the energy required for 

completing the clinkerization process. When melting commences, the liquid content 

can increase significantly, up to 15 – 25% 165. The presence of other minor oxides 

such as SO3, MgO and alkalis can have an influence by lowering the energy required 

to form the flux. In this study RMInd showed the presence of a liquid phase from 1334 
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oC, very close to temperature of liquid phase reported in the literature 165. However, 

RMRef showed temperature of formation of the liquid phase from 1331 oC which also 

close to industrial sample. However, with increasing OBM cutting content, the liquid 

phase formed at ever lower temperatures, decreasing to 1320 oC with 55% OBM 

cutting and 1263 oC when 100% OBM cutting was clinkerised. This could be attributed 

to the present of minor oxides from the OBM cutting, as shown in Figure 42. 

Additionally, periclase was found in the liquid phase when 100% OBM was used, with 

10.75% MgO determined in the liquid phase (Figure 33). 

 

Figure 41 Temperatures of calcite decomposition and major phase formation with increasing 
OBM cuttings content.  

The temperatures were determined by DTA. The trend lines are moving averages. 
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Figure 42 Minor oxide contents in prepared raw meal 

 

The decreasing temperature for the onset of liquid phase formation with increasing 

OBM cutting content also influenced the sintering temperature. The role of the liquid 

phase at this stage is very important and critical to the clinkerization mechanism. The 

liquid wets the solid grains, forming an interpenetrating film 165. This has two main 

functions: 1) its surface tension pulls the solid grains together, serving to form clinker 

nodules. 2) It also eases transport of the main oxides in the liquid phase during the 

sintering stage and aids formation of alite and belite. The lower temperature for the 

onset of liquid phase formation, due to the presence of the minor oxides, impacts also 

on the sintering temperature, which were too close for RmRef and Rm12 at 1434 oC 

and 1431 oC respectively. However, the sintering temperature felling to 1424 oC for 

Rm55. The liquid phase (flux) plays a major role in facilitating the chemical reactions 

to form the major clinker phases such as C2S and C3S. Sufficient liquid phase is 

required to wet reactants and thereafter the rate of formation of desired clinker phases 

is limited largely by liquid phase diffusion165.  

The clinker sample made with 100% OBM cutting, CK100%, showed formation of 

belite at 1200 oC, as indicated by XRD and SEM-EDX analysis. At higher 

temperatures, no further new phases were formed. The CK-100% at 1450 oC showed 
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belite grains swimming in a high melt content (Figure 32), a result of the high 

concentration of Al2O3 and Fe2O3 % in the mix. 

6.5 The Effect of Barium on Clinkerization 

As shown above, the incorporation of OBM cutting had a slight, yet noticeable effect 

on clinker composition. Initial elemental analysis of the raw materials showed that a 

number of trace elements were present in the OBM cuttings (Table 6), while the 

presence of some trace elements plays a major role on clinker phase formation166–173. 

This was thus investigated further, with particular focus on the barium content which 

was present in high quantities in the OBM cuttings and subsequently in clinkers 

prepared with higher levels of OBM cuttings.  

In RmRef, the belite and liquid phase formation temperature was 1284 and 1331 oC 

respectively, but these fell upon incorporation of OBM cutting. SEM-EDX and and ICP 

analysis (Table 13) both showed an increase in barium content with increasing OBM 

cutting content. Furthermore, SEM-EDX analysis revealed the distribution of barium 

through the clinker phases. The highest barium concentration was found in the liquid 

phase. 

Table 13  BaO content of each phase in each experimental clinker 

Sample  CkInd CkRef. Ck12 Ck55 Ck100 

Alite - - 0.35 0.42 -* 

Belite - - 0.25 1.98 6.40 

Liquid phases - - 2.57 2.46 14.32 

*no alite observed in Ck100. 

 

The effect of barium on phase composition is related to the free lime content. An 

increased free lime content indicates reduced burnability and incomplete formation of 

the main clinker phases. This is due either to alite formation being discouraged or 

decomposition to CaO and belite being promoted. As stated earlier, the addition of 

OBM cuttings decreased burnability and the free lime contents increased (Figure 43). 

With the OBM cuttings containing 0.85 wt% BaO, the barium content of the clinker 
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increases with increasing OBM cutting content. It has repeatedly been shown that BaO 

has a negative influence on alite formation, thus increasing the free lime content. 

Kolovos et al.168,174 studied the effect of raw meal BaO content on the reactivity of the 

CaO-SiO2-Al2O3-Fe2O3 system. They noticed that the addition of 1% BaO to the raw 

meal then sintering at 1200 oC and 1450 oC led to an increase in free lime compared 

with the reference sample. This BaO was then shown, by SEM analysis, to concentrate 

in the melting phase of the clinker.  

Other studies175,176,177,168,148 have also reported on the impact of barium on 

clinkerisation reactions. These mostly confirm that the free lime content increases with 

barium content, and that barium is mainly concentrated in the melting phase. 

Furthermore, Zezulova et al.175, in addition to showing high BaO contents in the 

melting phase, also reported higher concentrations of BaO in belite than alite. This is 

possibly caused by the crystal lattices of alite and belite, with the belite structure being 

more accommodating of foreign ions175,178. 

  

Figure 43 The free lime content for each clinker sample 

6.6 Clinker morphology  

Clinker morphology and chemical composition was then studied by SEM/BSE imaging 

and EDX analysis. Below 1250 oC, clinkerization proceeded through solid-solid 

reactions, in the absence of the liquid phases. These reactions occurred at the original 

phase boundary between the solids179, leading to the formation of belite, see Figure 

44 A1. This happens through diffusion of the CaO on the SiO2 surface as could be 
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seen in the SEM-EDX in the reference clinker sample CkRef. and the industrial sample 

CkInd which are shown in Figure 44 A1 and B1. EDX analysis revealed a cluster of SiO2 

surrounded by the CaO. This led to belite formation, which is known to form between 

900 oC and 1250 oC 180,181 with the precise formation temperature defined by a number 

of factors, such as minor compounds166,168,170,173,182,183, particle sizes184 and retention 

time104. 

The raw meal containing 12% OBM cutting showed some formation of alite at 1350 oC 

(Figure 44 A1). Free lime was present in clusters, but belite was not observed. The 

co-existence of alite and free lime without belite suggest that no further alite could be 

formed, irrespective of temperature, because no belite is available to react with any 

free lime. Figure 45 shows the SEM images with EDX mapping for Ck100% heated at 

three different temperatures; 1300, 1350 and 1400 oC. At all temperatures, belite was 

the dominant phase, showing rounded to regular edges. XRD patterns from Ck100% 

heated to 1000 oC showed formation predominantly of belite, plus free lime (Figure 

46). However, upon heating to 1300 oC there was no evidence of free lime in either 

the XRD patterns nor the SEM images. The same was observed when the temperature 

was raised further, to 1350oC. While temperatures above 1400 oC would normally be 

expected to yield alite, the lack of free lime in the Ck100% sample meant that alite 

formation was not expected. XRD analysis confirmed the absence of alite. Finally, 

EDX mapping revealed the concentration of magnesium and barium in the liquid 

phase, at all temperatures (Figure 47 B1 & B2), with the formation of C3A and ferrite.  
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Figure 44 SEM-EDX microstructural analysis of clinker samples burned at 1180 oC.  

a) CaO, b) SiO2 c) Fe2O3, Formation of belite by solid-solid reactions. 
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Figure 45 SEM-EDX microstructural analysis of clinker samples burned from 100% OBM. 
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Figure 46 XRD of OBM cutting when heated to different temperatures. 
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Figure 47  SEM-EDX microstructural analysis of clinker samples prepared by adding 12% 

and 55% OBM cutting. 
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6.7 Petrography Study of the Clinker  

The clinker samples were also analysed by optical microscopy. Table 14 summarises 

the data obtained from the petrographic thin sections. As observed by optical 

microscopy, increased OBM cutting content led to an increased liquid phase content 

and a slight reduction in alite content. Changes were also seen in both maximum and 

average grain sizes. With increasing OBM cutting content there was a clear decrease 

in belite grain size, while conversely free lime grains increased in size. There was also 

a slight reduction in the size of the C4AF grains with increasing OBM cutting content.  

The granulomteric composition analysis is clearly indicate that the raw mix of all the 

samples is rich in Al and Fe component. These two components mainly participate in 

the early stages of phase formation consuming the calcium Aluminate component. 

Hence, in C3S phase amount, very slight variation could develop in all the three 

samples.  

Table 14  The granulomteric composition analysis of the prepared clinker 

Phase 
% 

Granulometry Max               
( in µm) 

Granulometry Average    
 ( in µm) 

CkRef. Ck12 Ck55 CkRef. Ck12 Ck55 CkRef. Ck12 Ck55 

C3S 58 56 54 72 73 70 34 35 33 

C2S 23 21 22 76 68 64 38 32 29 

CaOfree lime 1 1 2 36 38 40 17 19 22 

C3A 12 16 17 26 29 28 14 15 13 

C4AF 6 6 5 20 18 16 9 8 7 

 
The clinker phases in CkRef. were moderately developed and homogeneously 

distributed. Porosity was high and the majority of alite grains were hexagonal to 

pseudo hexagonal in shape, with sharp grain boundaries. Many polygonal alite grains 

were also present, with numerous inclusions present in larger alite grains. Most of 

these inclusions were globular belite grains.  

Sub-micron alite grains were often present on the edges of alite phenocrysts in the 

reference clinker sample CkRef. (Figure 48 [a]) with quite large variations in alite grain 

size (Figures 49 [b], [c] and [d]). Fused alite grains were also observed (Figure 48 [b]) 

while the formation of sub-micron belite grains and C3A grains of various shapes and 

sizes was seen (Figure 48 [b]). 
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Figure 48  Photomicrographs of clinker CkRef. 

Ck12 showed moderate development of the various clinker phases, with an 

inhomogeneous distribution and a high porosity. There was also a marked increase in 

the amount of liquid phase present compared to CkRef. The majority of the alite grains 

were pseudo hexagonal with rough profiles (Figure 49 [a]). Fine grained polygonal 

belite grains were commonly observed on the edges of alite grains (Figure 49 [b]) 

present in various polymorphic forms as small clusters and surrounded by liquid 

phase. Many polygonal alite grains185 also developed in the clinker (Figure 49 [e]) with 

no change in alite grain size.  

Sub-micro sized grains of both alite and belite developed on the edges of alite 

phenocrysts (Figure 49 [c]). Most of the belite grains were well-developed (Figure 49 

[e]) with smooth grain edges. In several instances, liquid phase (Figure 49 [d] and [e]) 

remained on the edges of rounded belite grains. There was considerable variation in 

belite grain size. 
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The phases in Ck55 were moderately developed and inhomogeneously distributed, 

with the majority of the alite grains being hexagonal to pseudo hexagonal180,186–188, 

with sharp grain boundaries (Figures 51 [a], [b] and [c]). Numerous polygonal alite 

grains189 had also developed . In addition, numerous globular190 belite inclusions 

(Figure 50 [d]) were present in alite phenocrysts.  

It could also be seen that the transformation of belite into alite did not reach equilibrium 

(Figures 51 [e] and [f]). There were also many fused alite grains in all the nodules. This 

indicates a large variation in carbonate composition in the raw mix119. Significantly, the 

percentage of fused alite grains increased with increasing OBM cutting content. This 

supports the observations made earlier regarding the nature of the carbonate in the 

limestone and OBM cutting. 

 

Figure 49  Photomicrographs of clinker Ck12 
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Figure 50  Photomicrographs of clinker Ck55 
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 Chapter 7: The effect of OBM cutting on cement properties and hydration 

The previous chapter showed that Portland cement clinker could be produced with 

OBM cutting included within the raw meal. However, it is also important to understand 

the cement hydration behaviour of the resultant clinker.  

To obtain comparable results, the cement clinker was ground to a similar fineness and 

blended with the same quality and quantity of gypsum. This allowed an understanding 

as to whether OBM cutting ratio had an impact on cement hydration.  

Cement hydration was studied by many techniques such as isothermal conduction 

calorimetry (ICC) and simultaneous thermal analysis (STA). The mechanical strength 

was determined and compared with the standard specification implemented in Oman 

(OS7/2001). Also, the physical testing such as setting time, Blaine, soundness and 

density were measured. Using XRD complemented with SEM-EDX analyses of 

polished cross-sections, the major hydrate phases were studied. The SEM of the 

clinker was also observed to understand if there were any significant changes to the 

microstructure of the main phases, which may influence the cement hydration 

behaviour. The degree of hydration (DoH) was obtained by applying grey level 

segmentation based on the histogram of BSE images to quantify elements in polished 

section of cement samples using SEM-BSE analytical technique. Finally, the main 

hydrated products such as C-S-H and CH were identified and correlated to other 

findings, if any. 

7.1 Physical and mechanical properties 

Oman has its own cement standard105 (OS 7/2001) which specify only one type of 

cement, namely that used for general construction purposes and specified in many 

other standards such as BS/EN 191 (197-1 for type I) and ASTM 106,192 (C 150 type I). 

The cement types are defined by their chemical composition and physical/mechanical 

performance which are presented in  

Table 15.  
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Table 15 Summary for the OPC standards: Oman Standard105, BS EN191 and ASTM192 

 
 

Max Min Max Min Min

SiO2 % -- -- -- -- --

Al2O3 % -- -- -- -- --

Fe2O3 % -- -- -- -- --

CaO % -- -- -- -- --

MgO % 6.00 -- 5.00* -- --

Na2O % -- -- -- -- --

K2O % -- -- -- -- --

IR % 1.50 -- 5.00 -- --

LOI % 3.00 -- 5.00 -- 3.00
+

3.50
$ --

3.00 3.50
C3A  =< 8% C3A > 8%

Cl % 0.10 -- 0.10 -- --

Alkalies % 0.60 -- 0.60 -- --

C3S % -- -- -- -- --

C2S % -- -- -- -- --

C3A % 9.00 -- -- -- --

C4AF % -- -- -- -- --

% -- -- -- -- --

-- -- -- -- --

-- -- -- -- --

-- -- -- --

Blaine -- -- -- -- 280

Air content 

volume
% -- -- -- --

10 mm -- 10 mm -- --

-- 60 -- 60 45.00

600 -- -- -- --

-- -- -- -- --

-- 10.00 -- 10.00 12.00
2 days 2 days 3 days

-- -- -- -- 19.00

-- 42.50 62.50 42.50 --

  *MgO% content in Portland clinker used for manufacturing cement

2/3 days*

0
+
 grinded without limestone addition

3
$
 grinded with limestone addition

28 days --
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--
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Soundness 0.80 % _

N/mm
2

N/mm
2 MPa

Heat of Hydration     

in KJ/Kg (7days)
--

AM --
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2
/Kg --

Setting 

time in 

Minutes

Initial --

Final 375

LSF --

SM --

--

2C3A+C4AF --

--

--

0.6

--

--

--SO3 % 3.50 -- 3.50 --

--

0.75

6.00

--

--

--

--

--

Max

OS  7/2001
BS EN 197-1-2011 

CEM I 42.5N

ASTM C150/150m-18 

Type I
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The chemical composition limits in OS are similar to those in BS/EN standard except 

regarding MgO, insoluble residue (IR), and C3A content. In addition, OS specifies the 

range of cement LSF and AM factors.  The OS has more restrictions when compared 

to BS/EN. For example, the highest allowed IR and C3A in the cement are 1.5% and 

9.00% respectively. Prescription of low IR value in OS compared to BS/EN limits the 

ratio of additives such as limestone during cement grinding process to below 3%. In 

contrast, 5% of additives (such as limestone) could be added during clinker grinding 

in BS/EN standard. In addition, IR is essential parameter to control the quality of 

gypsum. The lower quality (purity) of gypsum the higher % of IR which impacts the 

strength of cement and setting time. Also, it may require high quality of clinker in term 

of C3S content and low free lime content to keep the IR result within allowable values 

and maintain 28 day strength above 42.5 N/mm2. Since the OBM cutting is added as 

part of the raw materials, it has no effect on the ratio of clinker and additives used 

during the grinding and production of cement. The cement obtained using the OBM 

cutting is meeting the standard requirement and fulfilling the chemical and 

physical/mechanical limits used in all samples obtained (e.g. 12 and 55%)as shown in 

Table 16.  

The soundness (expansion test) of the prepared cement increased as OBM cutting 

content increased (Table 16). Higher expansion could be due to several reasons, such 

as i) high free lime content in clinker (above 2%) or ii) high MgO content in cement 

(above 3%)149. The free lime contents in all samples were kept below 2% (Figure 43), 

thus this is probably not a reason for higher expansion results. Therefore, the 

significant contribution for the expansion may be attributed to the presence of a high 

concentration of MgO (periclase) in cement prepared with higher OBM cutting contents 

in the raw meal. The prepared cement showed MgO levels below the maximum limits 

in standards (OS 7/2001, BS EN 197-1 and ASTM C 150-99a Type I) 

The MgO that is not combined in clinker phases appears as periclase193–195. Most 

specifications limits MgO in cement in the range 3-6 %162. In some standards, including 

European ones, periclase (MgO) is limited to 5% maximum because of its potential 

expansive reactions with aggregates163. Higher contents in cement lead to long-term 

expansion.  This is because of the slow hydration companied with expansion in 

concrete at late ages according to the following chemical reaction149, 197.  

𝑀𝑔𝑂 (𝑝𝑒𝑟𝑖𝑐𝑙𝑎𝑠𝑒) + 𝐻2𝑂   →   𝑀𝑔(𝑂𝐻)2  (𝑏𝑟𝑢𝑐𝑖𝑡𝑒) 
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The source of MgO in the cement is likely the clinker as a result of its high 

concentration in the raw materials. Limestone can contain magnesium in many forms, 

such as dolomite (CaMg(CO3)2. Alternatively, it may be found as magnesite 

(MgCO3)193. In addition, other sources could be from the grinding media during the 

grinding process in a ball mill, or MgO contamination from added additives during 

cement grinding such as limestone and gypsum. Since all parameters were similar 

during testing and sample preparation, the only difference is the OBM cutting % in 

each sample. The MgO % in the as-received OBM cutting is 2.22%, which is the 

highest of all the raw materials, as shown in Table 6. The magnesium was present as 

dolomite in the OBM cutting found, as seen from the XRD analysis presented in Figure 

22. The MgO content in the clinker samples increased, as shown in the previous 

chapter in Figure 42.  

Hence, higher soundness in the cement sample of 55 % OBM cutting is more likely 

due to the higher content of MgO coming from OBM cutting. The SEM-EDX analysis 

also confirms the presence of MgO in cements prepared with 30% and above OBM 

cutting (Figure 51). The energy-dispersive X-ray spectroscopy (EDS) confirmed the 

presence of periclase, as shown in the spectra c & f in Figure 51. Seen in the figure 

as black and grey polygonal and circular clusters shape with clear borders.  

According to the literature, this could be explained because Mg2+ can replace Ca2+ in 

major clinker phases such as C3S and C2S when MgO concentration in the raw meal 

is up to 1.5%198. Also, it has been reported that C2S, C3A, and C4AF can incorporate 

in its crystal lattice up to 0.5, 2 and 4.4% MgO respectively149,199. At equilibrium, the 

solubilities of MgO in the liquid phase is much higher than the concentrations of MgO 

replacement, which is reported in the range of 5 - 5.5%. The highest quantity of MgO 

that can be incorporated within clinker phases is dependent on the quantity of liquid 

phase formed, and the clinkerization temperature. The higher the clinkerization 

temperature, the more MgO is dissolved in the liquid phase and hence the higher 

amount of MgO crystallising as periclase at the cooling stage114. Therefore, periclase 

is formed during the clinker burning process in the thermal decomposition reaction of 

magnesium-containing carbonates such as dolomite (CaMgCO3) and magnesite 

(MgCO3). This partly dissolves in the liquid phase as temperature increases and some 

remains within clinker phases such as C3S and C2S. In fact, the SEM EDX shows MgO 

largely within the liquid phase as shown in Figure 51 d. Particles of MgO grains are 
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within the liquid phase, in agreement with the literature198,149,199. The fineness of the 

raw meal influences the distribution of MgO between the liquid phases and clinker 

phases of the raw meal166–169. 

 

Figure 51 SEM images and EDS spectra of clinker samples containing 30% (a, b & d) and 
55% (d, e & f) OBM cuttings. 
 
The black and dark grey particles represent MgO.  
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Blaine (or fineness) and particle size was purposely kept consistent during clinker lab 

grinding to remain within the industry standard and meet the OS, i.e. falling in the 

range 319 – 329 m2/Kg. This helped to ensure that any differences were due to 

changes in hydration chemistry.  

Setting time results are presented in Table 16 and show no significant change between 

the samples with OBM cutting and the reference sample. The initial setting time is 137 

minutes for the reference sample and 126 minutes and 131 minutes for the 12% and 

55% OBM cutting, respectively. The results therefore meet the OS specification. 

Density is obtained for the purpose to be used in the calculation of the hydration 

degree. It is in fact, not a strictly a quality parameter in cement manufacturing. The 

density of Portland cement is ranging between 3.10 – 3.25 g/mL197. The cement 

prepared has the density as shown in Table 16. 

 

Table 16 Physical test results for the prepared cement 

 
*OS: Omani Standard for Portland cement production105 
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An indirect measure of cement hydration is the development of compressive strength, 

where standards stipulate mortar test specimens arranged, cured and tested 

according to the testing standard. There are three factors responsible for developing 

the strength. Namely formation of hydrated phases, non-hydrated residual and 

porosity. Compressive strengths were measured on mortars cured at 20 oC in a 

distilled water chamber.  

Compressive strength increased with hydration for 2, 7 and 28 days, as shown in 

Figure 52. At two days, the two reference samples (CmInd and CmRef) showed slightly 

lower strengths than the OBM cutting cement ones (12% and 55%). By 7 days, the 

strengths of all samples increased and the OBM-containing remained slightly stronger 

than the reference samples. At 28 days, Cmt-12% was the strongest, with no 

significant difference between others. With alite being the principal phase responsible 

for later-age strength, given the minimal difference in alite contents Table 11between 

the samples, the similarity in performance is not surprising. 

 

Figure 52 Compressive strength development over time of the prepared cement. 

 

It is possible that the slight variations in Blaine fineness could explain the slight 

differences in strength. Fineness plays a dominant role in compressive strength 

development, with higher fineness leading to higher strength due to cement grains 

having more surface area exposed during hydration203. 
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There was a linear correlation between 28 day compressive strength and Blaine 

fineness, with an R2 of 0.9795 as shown in Figure 53. Thus, the slight difference in 

strength may be explained by variations in cement fineness only and the incorporation 

of OBM cutting within the clinker does not appear to affect strength development. The 

cement sample with 12% and 55% OBM cutting shows 28 day compressive strength 

that conforming to the Omani standard and other international cement standard such 

as EN/BS. 

 

Figure 53 Blaine fineness vs compressive strength. 

 

There is a wide range of factors that affect the compressive strength of cement, 

especially in the early period, including the fineness of cement, the ratio of gypsum 

(calcium sulfate), the chemical composition, and the water-to-cement ratio. It is noted 

that the reference sample CmRef is the least in compressive strength compared to other 

samples, with the exception of the industrial sample CmInd. There is no apparent 

reason for this difference in  strength results. Still, it is noted that the results of the 

examination are very close, and this difference in results may be the result of 

laboratory errors. 
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7.2 Hydration and microstructure 

The major microstructure of hardened cement paste could be summarised as 

comprising five main features197 as mentioned below and explained chemically by 

the subsequent equations.  

- Calcium silicate hydrate (C-S-H) comprising about 50% of the paste.  

- Calcium hydroxide, Ca(OH)2 (known also as portlandite) is the second 

product formed during hydration, comprising about 12% of the paste. 

- Monosulfate hydrates and it is derivatives, comprising about 13%. 

- Pores contributing about 20% of the paste volume. 

- Anhydrous clinker phases which constitute about 5%.   

3𝐶𝑎𝑂. 𝑆𝑖𝑂2 + 5.3𝐻2𝑂 → 1.7𝐶𝑎𝑂. 𝑆𝑖𝑂2. 4𝐻2𝑂 + 1.3𝐶𝑎(𝑂𝐻)2 Equation 10 

 

2𝐶𝑎𝑂. 𝑆𝑖𝑂2 + 4.3𝐻2𝑂 → 1.7𝐶𝑎𝑂. 𝑆𝑖𝑂2. 4𝐻2𝑂 + 0.3𝐶𝑎(𝑂𝐻)2 Equation 11 

The composition calcium-silicate-hydrate (C-S-H) is assumed to be 

1.7CaO.SiO2.4H2O in Equation 10 and Equation 11, however, the ratio of Ca/Si varies 

between 0.83 – 2.00 depend on many factors such as water ratio204.  

Ettringite is a calcium sulphoaluminate hydrate complex compound, 

3CaO.Al2O3.3CaSO4.32H2O, which has composition of hexagonal prismatic shape. 

The octahedral column is consist of [Al(OH)6]3- linked to [Ca6.Al2(OH)12]6+.[3SO4
2-

.26H2O]6- while in between the columns are linked by water and sulphate. The water 

between the column is lost at above 100 oC while the water from the dihydroxylation 

of aluminium hydroxide is lost at temperature range from 200 – 400 oC205.  

Figures 54 to 57 show the SEM images of Portland cement samples hydrated for 2, 7 

and 28 days. Respective XRD plots are shown in Figures 58 to 61. The micrographs 

show a combination of the features described above. Anhydrous material appears 

white while pores are black. The hydrate phases appear grey. After two days the 

pastes are dominated by anhydrous material and pores, although hydrates could be 

seen. The most commonly observed hydrates are portlandite (CH), with a light grey 

colour, and outer product C-S-H, with a dark grey colour. At later ages, namely seven 

days hydration, the inner product C-S-H further increased in presence and encircled 

the hydrated larger grains. With increasing hydration, the total pore is reduced. 

Eventually, after 28 days hydration, all investigated cement samples showed similar 
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microstructures, as illustrated by the SEM images and XRD plots. The major clinker 

phases are consumed, with corresponding increases in different hydration products. 

XRD showed that ettringite reduced over time, with no observation of monocarbonate 

nor monosulfate formation. It is expected to observe no formation of monocarbonate 

(AFm) in all hydrated cement samples including reference and industrial sample 

because the monocarbonate results from the hydration of C3A with CaCO3 from 

limestone that added in the cement during the grinding206. However, in this research, 

the cement prepared has no limestone added. Therefore, the hydration process will 

not expose to CaCO3, hence no monocarbonate formed expected during the hydration 

process. 

The amount of ettringite in hydrated cement is depend on the ratio of gypsum to C3A 

content. At low ratio (3/2)207, AFt is formed at early hydration and then convert to 

monoslfate phase (AFm). When gypsum to C3A ratio is high, the monosulfate is 

unlikely to be formed208. 

There was no significant effect on the crystal phases formed upon hydration at 2, 7 

and 28 days, despite the greater potential of magnesite (MgCO3) formation which is 

observed in samples Cm-12% and Cm-55% as shown in Figure 60 and Figure 61. In 

all investigated samples the AFm (Ettringite) is formed which is visible at 2 days 

hydration, while no formation observed in all investigated cement sample for Aft 

(monocarboaluminate nor monosulfate) at all hydration ages. The formation of AFt is 

highly depend on the C3A content in cement. With high C3A content in cement, the 

monocarboaluminate appears at early age of hydration, probably is visible on 7 days 

of hydration209. 

The analysis by optical microscopy for the clinker phases analysis (Table 14) shows 

an increase in C3A content as the OBM cutting increase. The C3A content in CkRef., 

Ck12 and Ck55 are 12, 16 and 17% respectively.  
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Figure 54 SEM image of CmtInd hydrated for 2, 7 and 28 days 
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Figure 55 SEM image of CmtRef hydrated for 2, 7 and 28 days 
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Figure 56 SEM image of Cmt12% hydrated for 2, 7 and 28 days 
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Figure 57 SEM image of Cmt55% hydrated for 2, 7 and 28 days 
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Figure 58 XRD analysis of anhydrous CmInd and up to 28 days.  

W/C ratio 0.45 

 

 

Figure 59  SEM and XRD analysis of anhydrous CmRef. and up to 28 days.  

W/C ratio 0.45 
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Figure 60 SEM and XRD analysis of anhydrous Cm-12% and up to 28 days.  

W/C ratio 0.45 

 

Figure 61 SEM and XRD analysis of anhydrous Cm-55% and up to 28 days.  

W/C ratio 0.45 
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Figures 63 and 64 further highlight depletion of the clinker phases during hydration 

and formation of new crystalline hydrate phases. In all samples AFm phases were not 

detected. The XRD patterns for all hydrated cement samples showed similar 

behaviour. Ettringite (AFt) and C4AF were observed with the intensity of reflections 

from the latter diminishing with time. Between 2 to 28 days the intensity of the main 

clinker phase reflections decrease with growth in reflections due to hydrates. The 

amount of AFt formed depends on the ratio of sulphates (added during grinding) and 

the C3A content of the clinker. At high ratio of C3A to CaSO3.2H2O, the AFt is unlikely 

to convert to AFm208. In this investigation, the % of gypsum added during the cement 

grinding of all samples are fixed at about 6% as mentioned in Table 8 in Section 4.3.4. 

The XRD results is confirming that AFm is not observed in all ages of cement 

hydration. The rate of reaction between calcium sulfate and C3A depends on the C3A 

polymorph and concentration (C3A cubic, orthorhombic or monoclinic modification). 

However, all polymorphs undergo the same reaction. The initial hydration reaction is 

that between C3A and calcium sulfate in the presence of water which releases 

significant heat according to the reaction below210–212.  

C3A +  3CaSO3. 2H2O + 26H2O → 3CaO. Al2O3. 3CaSO4. 32H2O Equation 12 

After all the calcium sulfate has been consumed, any unreacted C3A will react with the 

AFt and be converted to AFm210,211. 

2C3A + CaO. Al2O3. 3CaSO4. 32H2O + 4H2O

→ 3CaO. Al2O3. CaSO4. 12H2O 
Equation 13 

As seen from Table 11, the C3A content calculated according to Bogue formula in 

clinker samples Ref, 12% and 55% are 7.94, 7.77 and 6.74 % respectively. Connecting 

the results obtained from XRD of hydrated cement and the C3A content in clinker which 

showed no indication of AFm formation in the hydrated cement in all samples, 

therefore, the C3A seems to be consumed to produce the AFt only. It is possibly that 

there is no C3A left after the formation of AFt and hence no additional heat released 

after the first hydration reaction completed. This is could be an explanation for the 

similarity of the heat rate shown for the all samples.  

The hydration reaction of C3S is associated with formation of calcium hydroxide (CH) 

which precipitates in the form of portlandite and is dispersed within the hardened 
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paste213. The XRD patterns for the hydrated cement (Figure 63) clearly indicates the 

formation of CH in all samples, with growing intensity as the time passes.  

 

 

Figure 62 XRD Patterns from 8 to14o 2θ showing ettringite formation and the C4AF peak. 

 

 

Figure 63 XRD Patterns from 31 to 35o  2θ. 

7.3 Thermal Analysis (STA) 

Figure 64 shows the DTG of hydrated cement for 28 days.  The results obtained show 

two dehydroxylation reactions at around 465 oC. Brucite (Mg(OH)2) and portlandite 

(Ca(OH)2) decomposes to oxide and water at about 420 and 460 oC respectively115. 

The decomposition temperature seen in all hydrated cement samples could be 
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recognised to decomposition of portlandite. However, the small shoulder adjust to the 

portlandite peak at 460 oC is unlikely to be brucite. The XRD patterns of the cement at 

all hydrated ages dose not show any present of formation of brucite. If this was brucite, 

than would expect to observe a more prevalent peak with increasing OBM cutting 

content in the DTA analysis at 420 oC as per the literature115. It is more likely that it is 

microcrystalline formed during hydration.  
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Figure 64 DTA plots from 20 to 950 oC for 2, 7 and 28 day pastes.  
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7.4 Heat of hydration by ICC 

As soon as water comes into contact with cement, hydration starts and heat is released 

according to the reaction occurring. Different clinker phases release different amount 

of heat during their hydration197,213. The most heat evolved is upon hydration of C3S.  

Cement goes through five stages during the hydration, as shown in in Figure 65. There 

is an initial reaction lasting a few minutes (0-15 minutes) in which the calcium ions 

dissolve in water. This is followed by an induction period lasting from 15 minutes to 4 

hours where the overall rate of hydration slows down there is minimal heat released. 

There then follows the acceleration period (4-8 hours) where the main exothermic 

peak occurs as a result of alite hydration and formation of calcium silicate hydrate (C-

S-H) and portlandite (CH). Finally, there is a deceleration period (8-24 hours) where 

hydration continues, but slowly. 

 

Figure 65 An example of different stages of cement hydration based on heat evolution. 
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Isothermal calorimetry was conducted to determine the hydration kinetics. Figure 66 

and Table 17 show the heat evolution over 21 days for each sample. There was 

generally no significant difference in the time to onset of the acceleration period 

(Figure 66). All the results showed one main peak, associated with alite hydration to 

form calcium silicate hydrate (C-S-H) and portlandite (CH). The highest peak is for the 

cement containing 55% OBM cutting; appearing after 11.02 hours. The second highest 

peak is for Cm-12%; after 11.63 hours. Followed by CmRef. and CmInd. at 11.88 and 

12.12 hours respectively. Then, the heat rate slowed down gradually and reached very 

low values within few days.  

It has been reported in the literature214, but not seen in this investigation, that a 

shoulder can appear on the tailing edge of the main peak, due to AFt formation. A 

second shoulder can also appear due to conversion of AFt to AFm213.  

In terms of total heat evolution, there were very little difference between the four 

cement samples. However, during the first 12 hours of hydration there were slight 

differences in heat evolution, there being a more intense peak, at shorter time with 

increasing OBM cutting content. Compared to CmtRef, relative heat release from 

samples Cm-12% and Cm-55% were 116% and 129% respectively.  

Over the next 24 hours, all samples showed a decrease in heat evolution, in line with 

the literature215 as the hydration reaction entered the deceleration stage. The upper 

part Figure 66 shows the total heat evolved for the 4 samples investigated. The total 

heat released was in the range 247 to 256 J/g at 21 days with maximum 3% difference 

with the industrial sample. There is no much to compare, since all results shows very 

close values from each other and compering with the reference and industrial cement.  

It is difficult to draw conclusions from the ICC analysis due to the large convergence 

of results. And it seems that all the cement samples give very similar results, without 

any clear differences in the heat released upon hydration. Thus, it may be concluded 

that the inclusion of OBM cuttings in cement raw meal gives properties very close to 

the reference cement (CmRef) and industrial cement (CmInd). 
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Table 17  The main heat results from ICC test. 

Cement 
paste 

Age of hydration peak  Intensity of hydration peak  
Total heat evolved 

(after 21 days of hydration) 

Measured* 
(hrs) 

Relative 
value (%) 

Measured* 
(mW/g) 

Relative value (%) 
Measured* 

(J/g) 
Relative values 

(%) 

       

CmRef. 11.88 ±1.47 1  1.71 ±1.47 1  256.00 ±1.47 1 

CmInd 12.12 ±2.03 1.02  1.67 ±2.03 0.98  247.41 ±2.03 0.97 

Cm-12% 11.63 ±1.30 0.98  1.98 ±1.30 1.16  254.33 ±1.30 0.99 

Cm-55% 11.02 ±1.40 0.93  2.2 ±1.40 1.29  252.66 ±1.40 0.99 

*Measurement of three independent samples, Measurement error is standard division (SD). 
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Figure 66 Isothermal Calorimetry results showing rate of heat evolution and total cumulative heat to 21 days
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7.5 Degree of hydration (DoH) 

Degree of hydration (DoH) can be defined as the fraction of Portland cement that has 

fully reacted with water216. The volume segment of a specified phase is identical to the 

average surface portion in a 2D microstructure if the number of sections analysed is 

large enough to be statistically representative217. It is therefore possible to apply grey 

level segmentation based on the histogram of BSE images to quantify features in 

polished section of cement samples114.  

Figure 67 shows the degree of hydration (DoH) calculated by measuring the variation 

in area of the anhydrous component over time218. The standard error (SE) is used to 

estimate the error in measurement rather than the standard deviation (SD) among the 

images which are reported in Appendix 10. The SE calculated according to the 

following equation. 

SE =
SD

√n
    (n = number of images measured) 

At all ages up to 28 days, the Cmind samples exhibited a higher degree of hydration, 

as seen in Figure 67. Except for at 2 days where hydration was lower than the 

reference sample. This is expected due to that the industrial cement is prepared under 

different conditions than the laboratory cement (including better homogenisation, 

consistence quality, using grinding aids etc). Further, the DoH of Cm-12% and Cm-

55% after 2 days curing was found respectively 62.03 and 59.30 % which are lower 

when compared with the reference sample (66.03%). The Cm-55% showed a 

marginally lower degree of hydration at all ages than the other samples, while the 

reference sample showed the highest degree of hydration at all ages. The cement with 

OBM cutting generally showed slightly lower degrees of hydration than the reference 

cement. The compressive strength and CH content are demonstrated in Figures 70 

and 71.The degree of hydration, based on the compressive strength and CH results, 

did not improve in cement that prepared using OBM cutting. Although, compressive 

strength of Cm-12% at 28 days increase when compared with other results, still, all 

DoH results at 28 days fall within  5% difference  range considering the standard errors 

is less than 1%. Additionally, as demonstrated earlier in section 5.3 that alite content 

in clinker decreasing as the OBM cuttings content increasing (Figure 26). In parallel, 

the DoH in hydrated cement is decreasing as the OBM cutting increases. This is likely 
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have a direct impact of degree of hydration of the prepared cement suggesting that 

continued clinker phase hydration was minimal as the OBM cutting increases.  

 

 

Figure 67 Degree of hydration obtained by SEM BSE vs time 
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Chapter 8 

Impact of using OBM cuttings in cement industries  
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 Chapter 8: Impact of usings OBM cutting in cement industry 

8.1 Recycling in non-cement industry 

In March 2017, a treatment concept was introduced in Oman that utilized OBM cuttings 

to a small degree. The OBM cuttings are treated in the Aero Thermal Dissolution Unit36 

(ATDU). The treatment recovers the oil from OBM cuttings by heating the OBM 

cuttings to about 400oC under atmospheric conditions, as illustrated in Figure 68. This 

treatment creates three main products: oil, water and solid OBM cuttings. The 

recovered oil is reused in the OBM preparation plant. About 200 Ltr. can be used in 

the OBM preparation. The ATDU process can recover just under 1 wt% of OBM 

cuttings as oil. This is because the optimum temperature balance between water 

evaporation and oil recovery is approximately 400 oC. The water produced from the 

recycling process is stored in an open lagoon. The majority of solid OBM cuttings, with 

moisture below 0.01%, is stored in a special landfill without further utilization or 

treatment. However, this method of treatment using the ATDU does not completely 

solve the problem. The by-product of the treatment process remains the same; it 

requires special handling and storing in an engineered storage yard that can protect 

the ground from any spillage. It is especially harmful to the environment because the 

material is extremely fine and difficult to handle, as can be seen in Figure 69. It needs 

a closed handling system to prevent dust emissions. Figure 70 shows the quantities 

of OBM cuttings treated in the ATDU for a period of two years with the recovered oil 

quantities. The recovered oil is used again to prepare fresh OBM for drilling operations.  

There are some difficulties for treating the OBM cutting using this unit, which include:  

- The effort of recycling is too high compared to the output. The recovered oil is 

only 1% under ideal operating conditions.  

- The operating cost is too high compared with the economic value of the output.  

- The by-product from this treatment is still considered a hazardous material that 

must be handled in accordance with the regulations regarding environmental 

and health conditions. 

- The gas emissions caused by heating to a low temperature (400oC), when 

compared to the burning temperature in a cement kiln, are not enough to break 
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down all the hydrocarbons to CO2 and water. The exhaust gases are expected 

to have higher unburned hydrocarbon contents. 

 

 

Figure 68 Aero Thermal Dissolution Unit (ATDU) for thermal treatment of OBM 
cuttings. 

 
  

OBM production 
plant 

OBM major 
ingredient: 
- Oil 

- Mud 

- Water 

- Chemicals 

 

OBM cutting 

storage 

Treatment Plant 

ATDU 

Recovered oil 

Water 

Dry OBM cutting 

OBM cutting 

storage  

Water storage  

Heating up to 400 oC 

< 1% 

about 200 
Ltr. per day 

recovered 

oil 

 

Oil drilling 
operation 

Other 
additives/chemicals 
added on-site 

5 – 20 % 

> 80% 

Transported 

Transported 



128 

 

 

Hilal Saif Al Dhamri  200676958 

 
 
 
 

 

Figure 69 Two types of OBM cuttings collected from storage yard. 

(a) Treated OBM cuttings in ATDU, and (b) untreated OBM cuttings  

 

The cost of separating and recycling the oil is summarised in Table 18. In option one, 

the OBM cutting is treated by the ATDU oil recovery method. In option two, it is used 

as raw material in cement clinker manufacturing. The third option combines options 

one and two so that the raw OBM cutting from drilling operations goes directly to the 

ATDU unit for oil recovery. The output of the OBM cutting from the ATDU is then 

recycled as raw material through the cement manufacturing process. The cost of 

option one is about 195 OMR per tonne of OBM cutting to recover 1% of oil for each 

tonne of treated OBM cutting. This includes the cost of transporting materials from the 

drilling field to the treatment plant. The recovered oil also has costs of handling, 

transporting and mixing with fresh oil.  

After considering all these costs, when comparing the feasibility of recycling OBM 

cuttings by the ATDU or utilizing it as raw material in cement manufacturing, the latter 

is clearly more feasible and requires less effort. However, the OBM cutting produced 

from the ATDU is attractive for further study as a raw material in cement manufacturing 

and an additive in cement grinding. The OBM cutting contain clay that comes from the 

ground during the drilling process; if thermally treated, this clay could be converted to 

material that has pozzolanic behaviour in cement hydration. 

  

(a)                                    (b) 
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Table 18 Cost calculation for OBM cuttings recycling options 

(S. Al-Aghbari, personal communications, May 7th 2019)  

Item 

Option 1 Option 2 Options 1+2 

Oil recovery 
As raw material 

in clinker 
production 

 
1) Oil recovery 
2) As raw 

material in 
cement 
production 

Capital investment, OMR 250,000 175,000 425,000 

Operation and Maintenance, 
OMR/T 

100 15 85 

Transportation OMR/T 25 15 20 

Storage, OMR/T 5 - - 

Cost of oil recovered*, 
OMR/T 

-10 - -10 

Storage of treated OBM 
cuttings, OMR/T 

75 - - 

Handling & feeding of OBM 
cuttings 

High Low Moderate  

Environmental monitoring High High High 

Total 195 OMR/T 30 OMR/T 125 OMR/T 

*Each 1 T OBM cuttings give 1% oil which is about 1 Kg oil. The price of 1Kg oil is 10 OMR. Therefore, the saving 
from oil recovery is 10 OMR for recycling of each tonne of OBM cuttings. The currency 1 OMR is equal to 2.6 USD 
at the time of calculation.
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Figure 70 Quantities of treated OBM cuttings using ATDU and oil recovered29
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8.2 Oman Cement Company case 

The Oman Cement Company produces 2.6 million tonnes of cement annually. It 

requires about 2.47 million tonnes of clinker (5% additives + 95% clinker). About 4.1 

million tonnes of raw materials required annually for clinker consumption. Furthermore, 

an extension of this factory to a new location219 in Oman will require even more raw 

materials. The present factory has three production kilns line. kiln 1 and 2 is producing 

2,700 and 2,000 tonne per day clinker respectively. Kiln 3 is producing 4,000 tonne 

per day equivalent to 1.2 million tonne annually (considering 300 days operation 

annually). The annual requirement of raw materials for kiln line 3 is about 2 million 

tonne. The volume of OBM cuttings expected to be produced by 2020 (as shown in 

Table 19) is double the present production rate which is sufficient to be 100 % 

consumed by cement industry in Oman if 12% of OBM cutting is used to replace raw 

materials. 

Table 19 The estimated OBM cutting production and the rate of growth 

Year 
Production,  

×1000 T 
Rate growing,  
×1000  TPY 

% growing 

2013 60 10 17% 

2014 67 7.5 11% 

2015 75 7.5 10% 

2016 95 20 21% 

2017 115 20 17% 

2018* 147 32.5 22% 

2019* 172 25 14% 

2020* 201 29 14% 

Average 109.33 18.94 15.75 

*Estimated quantities  
 

Three important aspects of handling OBM cuttings must be considered when deciding 

whether to use them in cement manufacture. First, they must be transported from the 

generation site at the oil well field to the cement factory. Although internationally and, 

according to their OBM Safety Data Sheet, OBM cuttings are not regulated as a 

dangerous good. However, in Oman, the Ministry of Environment and Climate Affairs 

does classify them as a dangerous material. Hence, all aspects of managing OBM 

cuttings must be performed in accordance with the procedures required for dangerous 

substances. To ensure OBM cuttings are transported safely and avoid spilling them 

on the ground during transportation, the truck must (1) have an open top and a 
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container that is sealed without any gaps to avoid leaching and (2) carry no more than 

30 tonnes of OBM cuttings at any given time. Handling the cuttings after they arrive at 

the cement factory is also regulated to avoid environmental problems, such as soil and 

water pollution. Once the truck arrives at the cement plant, the OBM cuttings are 

unloaded onto a concreted area adjacent to the raw material feeding point. 

There are several suggestions regarding feeding point of OBM cuttings in cement 

plant. First, OBM cuttings should be mixed with limestone before they are sent to the 

crusher (mixed with limestone and then combined with other raw materials, such as 

quartzo-phillite, iron ore, and kaolin) as shown Figure 71. After being mixed, ground, 

and homogenised, the OBM cuttings become raw meal that is (1) introduced to the 

heating system at the pre-heater tower from the top and (2) calcined at about 850 oC 

at the stage before entering the kiln. As the raw meal is falling by gravity into the pre-

heater tower, a flow of hot gases is directed against the flow of the material. These 

gases are directed to the baghouse for filtration and to remove dust, and then they are 

released as exhaust from the chimney Figure 72. The gases are mainly CO2 produced 

during the calcination process and fuel burning. At the top of the pre-heater tower, 

hydrocarbons from the OBM cuttings are initially exposed to temperatures in the range 

of 280–350 oC. However, this temperature range is not hot enough for the complete 

combustion of the hydrocarbons, which may lead to an increase in the amount of 

unburned compounds, such as hydrocarbons, NOx, and SOx, released into the 

atmosphere220.However, the concentration of unburned compounds depends on the 

kiln system’s many operational conditions and the chemistry of the raw materials. 

The second suggestion (introducing OBM cutting at the calciner) is an extension of the 

first and has several advantages and disadvantages. For example, a higher 

percentage of OBM cuttings could be utilised because the hydrocarbons can undergo 

complete combustion at higher temperatures in the calciner. The release of unburned 

compounds is expected to be reduced because the exhaust gases take a longer 

path79. However, this step requires a special conveyor system and feeding system that 

can control the amount of OBM cuttings introduced to the calciner integrated with the 

quality control system. This option is expected to limit the amount of OBM cuttings that 

can be utilised. In addition, technical consideration to be taken during the kiln 

operation. Possible variations in several parameters during the feeding of OBM cutting 

through the calciner include moisture content, flame shape changing and calciner rise 
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in carbon monoxide221. The arrangement for feeding through the calciner is illustrated 

in Figure 73. 

 

 

 

 

Figure 71 Main source of emissions from the cement kiln system. 
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Figure 72 Proposed feeding points of OBM cutting. 

 

Figure 73 Arrangement for feeding OBM cutting at the calciner. 

(after Mouayed M. 222) 

 

8.3 Impact of introducing OBM cutting to Oman Cement Company 

as additional raw material 

The Oman Cement Company plant is located very close to high-quality limestone 

containing 90–95% pure CaCO3 with sufficient reserves to produce cement clinker for 

at least 100 years. Furthermore, the plant is adjacent to two additional raw materials, 
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iron ore and quartzo-phillite (QPh). However, QPh has two limitations. First, it has a 

high free silica content, which makes it difficult to grind223 and so increases the cost. 

Second, the reserve of QPh is very small and insufficient for future production needs, 

which will require the company to search for an alternative substitute sources. In 

addition, while its purity can be considered a positive, the limestone in Oman Cement 

Company quarry is deficient in alumina (Al2O3 content in limestone 0.62 %wt. ±0.19, 

[Appendix 15B]), requiring the company to use an expensive alumina source material 

as a corrective raw material, such as bauxite or kaolin. Bauxite does not occur naturally 

in Oman, so is imported. However, kaolin is available in limited quantities, but the 

reserves are located far from the plant. The cost of kaolin (mining and transportation) 

is ten times the cost of limestone, which makes the raw material costly10,97. 

Introducing alternative material to the Oman Cement Company plant, such as OBM 

cuttings, may provide material that supports the raw material currently being used. The 

chemical composition and characteristics of OBM cuttings are an advantage and could 

replace QPh. The Rm-55% sample, which contains 55% OBM cuttings, would be ideal 

for cement manufacturing. It has zero QPh and minimum kaolin consumption (0.50% 

kaolin). The reference sample of the raw meal contains 4.70% kaolin, which means 

OBM cuttings have almost 9-times less kaolin. The industrial raw meal sample 

contains about 5.65% kaolin. Furthermore, the iron ore % needed in the raw mix to 

prepare the Rm-55% also dropped to 1.50% (Table 7) 

Table 7. This approach should be viewed favourably by the cement plant as it would 

save the company operational and raw material costs.  The cement prepared from raw 

material that contains the highest percentage of OBM cuttings (i.e., 55%) meets the 

clinker manufacturing requirements. Furthermore, the calcination temperature 

required to decompose CaCO3 decreases as the OBM cuttings are added and, thus, 

reduces fuel consumption. In fact, 60% of fuel consumption in the clinkerisation 

process occurs during calcination224. Thus, less fuel would be needed, which would 

have a direct impact on decreasing the plant’s CO2 emissions225,226 and lowering the 

production cost. However, looking considering the quantity of OBM cutting produced 

from the oil filed, seeing the oil operation growth in coming years, the amount of OBM 

cutting is not sufficient to sustain cement production using OBM cutting at 55% level. 

Consequently, 12% could be a better choice.   
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 Chapter 9  Summary discussion 

9.1 Introduction 

OBM cuttings are wastes from the oil drilling process and are polluted with oil, making 

them a potentially hazardous waste that should not be released into the environment. 

OBM cuttings have numerous characteristics that could be utilised in the cement 

industry. The cuttings all contain oxides which are essential in cement manufacture. 

Utilization of cuttings in cement manufacture will provide an environmentally friendly 

waste management solution for this potentially hazardous waste. 

The objective of this study was to create background knowledge concerning the effect 

of using OBM cuttings as raw material in cement manufacture. This study provides 

momentum for the oil and cement sectors to seize a recycling opportunity and 

maximise the utilisation of resources and by-products, such as OBM cuttings. 

Clinker was prepared in a laboratory with different OBM cutting contents. The resultant 

clinker was tested by XRD, XRF, SEM-EDX, and for free lime. The clinkers were 

ground with gypsum using a tube ball mill to produce cement. The cement was tested 

according to appropriate standards (i.e., mechanical, physical, and chemical testing) 

and, in addition, the hydration behaviour was investigated by (ICC) and (STA).  

9.2 OBM cutting 

XRD analysis of the OBM cuttings found that the OBM contains mainly calcite 

(CaCO3), dolomite (CaMg(CO3)2), quartz (SiO2), iron oxide (Fe2O3) and barite 

(BaSO3). 

In addition, the analyses showed that the OBM cuttings are a heterogeneous mixed 

material composed of a few major types: gravel, limestone, clay and shale. The gravel 

and limestone are cuttings from the oil drilling process that contaminate the 

recirculated material and become part of the OBM cutting. Limestone (calcite) and clay 

are added during the preparation of the OBM. Shale is of low CaO content (below 

40%) and high SiO2 content (above 20%). The alumina content in OBM cuttings 

probably arises from the clay used in OBM preparation. Clay is a major source of 

aluminium in the form of aluminosilicates. 
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Analysis also showed the presence of barium in the OBM cuttings as barite (barium 

sulphate, BaSO4). The major source of barite is the preparation of the OBM used 

during the oil well drilling process. OBM cuttings likewise contain heavy and trace 

metals from several sources in very low concentrations. These are mainly from the 

use of additives or from the cutting and the crude oil. The OBM cuttings obtained in 

this study have metal contents that fall below the limits specified by Petroleum 

Development Oman (PDO). 

9.3 The effect of OBM cutting on the clinkerization process 

The main phases in all the investigated clinkers were alite (C3S), belite (C2S), 

tricalcium aluminate (C3A) and ferrite (C4AF). There were no noticeable changes in 

the alite or belite polymorph with changes in OBM cutting content. However, the levels 

of alite and belite formed were dependent on the OBM cutting content. This result was 

not predicted by the Bogue calculations, but the Rietveld refinement data showed a 

gradually decreasing alite content and corresponding increasing belite content with 

increasing OBM cutting content.  

Thermal analyses of various raw meal samples showed that the calcination 

temperature (CaCO3 decomposition temperature) decreased with increasing OBM 

cutting content. Calcite decomposition occurred at 817 oC when no OBM was present, 

falling consistently with increasing OBM cutting content until the OBM cutting alone 

(Rm100%) showed decomposition at 763 oC.  

Analyses of petrographic thin sections of the limestone used here shows calcite 

crystals of a depositional texture, with no regular shape and unevenly distributed 

without common direction. The grains are coarse (>3mm) and compact with no void 

space between calcite crystals, appearing flat and with some fractures. This limestone 

can be classified as crystalline limestone according to the Dunham classification158.  

The OBM cuttings, meanwhile, show different petrography, with the calcite being mud-

supported with loosely packed grains and high porosity. The clay grains are mostly 

present as developed clusters and immersed in oil. Lath-shaped plagioclase grains 

with sharp grain margins are also present. The calcite show round sub-millimetre 

grains, which are highly brittle and fragile in nature. XRD analyses of OBM cuttings 

show the presence of dolomite. Therefore, the OBM cuttings’ classification can be 

considered be a mix between two or three types of limestone, falling between 
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mudstone and Wake stone. However, the classification is certainly different from the 

limestone used in this research.  

Literature showed that limestone decomposition starts with the rapid dissociation of 

dolomite in the first few min, followed by calcite decomposition. Dolomite dissociation 

occurs in a single step without a calcite intermediate phase. This suggests that the 

presence of dolomite reduces the calcination activation energy. It is proposed that 

limestone dissociation starts with dolomite decomposition, resulting in the formation of 

grain cracks due to the CaMg(CO3)2 structure, growing the surface area, allowing CO2 

diffusion. 

The lower decomposition temperature in OBM cuttings may also be related to the 

calcite texture therein, which differs from the calcite in limestone as explained above. 

Finally, OBM cuttings are more porous than limestone, allowing more surface area for 

heat transfer. As seen petrographically, the calcite grains float in the mud, with larger 

spaces between grains than in the limestone. 

The calcite grain size also has an effect on both the rate of decomposition and the 

temperature at which decomposition occurs. Coarser grains show higher 

decomposition temperatures and lower rates of decomposition. 

The burnability of raw meal was investigated. The results show that the free lime 

content for raw meal obtained from industrial (RmInd.) and the one prepared in lab 

(RmRef.) mixes fell with increasing temperature. However, the free lime content of RmInd 

was always greater than that of RmRef, with the difference between the two decreasing 

with increasing temperature, until the difference was minimal at 1400 oC and above. 

The higher free lime content for RmInd could be due to its higher LSF, i.e. 92.53 

compared to 90.50 for RmRef. Thus, there is more CaO to be consumed during 

clinkering. This is supported by the convergence of the two data sets with increasing 

temperature. Both mixes showing similar burnability behaviour validates the use of the 

reference raw meal in comparisons with raw meal prepared using OBM cutting. 

The burnability results for RmRef plus raw meal prepared using 12%, 55% and 100% 

OBM cuttings showed that, despite the falling free lime contents with increasing 

temperature, there was an increase in free lime with increasing OBM cutting content, 

suggesting harder burnability. However, this did not apply to the sample prepared from 

100% OBM cutting. This sample showed very easy burning behaviour. The free lime 
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dropped significantly, even at 1300 oC (0.2% free lime), then showing only 0.02% free 

lime content when heating at 1500 oC. However, when burned at 1200 oC, the 100% 

OBM cutting showed belite formation and a very low free lime content. Higher 

temperatures still led to no alite formation due to there being no CaO remaining. 

Instead, belite grains were within a high melt content, a result of the high concentration 

of Al2O3 and Fe2O3 % in the mix. The absence of alite can easily be understood in 

terms of the LSF, which at 48.45 was considerably lower than for all of the other 

samples.  

In RmRef, the belite and liquid phase formation temperature was 1284 and 1331 oC 

respectively, but these fell upon incorporation of OBM cutting. SEM-EDX and ICP 

analysis both showed an increase in barium content with increasing OBM cutting 

content. Furthermore, SEM-EDX analysis revealed the distribution of barium through 

the clinker phases, with the highest concentration found in the liquid phase. 

The effect of barium on phase composition is related to the free lime content. An 

increased free lime content indicates reduced burnability and incomplete formation of 

the main clinker phases. This is possibly due to alite formation being destabilized. The 

addition of OBM cutting decreased burnability and the free lime contents increased. 

With the OBM cutting containing 0.85 wt% BaO, the barium content of the clinker 

increases with increasing OBM cutting content. BaO has a negative influence on alite 

formation, thus increasing the free lime content. This is in line with many 

studies175,176,177,168,148 showing that the free lime content increases with barium 

content, and that barium is mainly concentrated in the melting phase.  

9.4 The effect of OBM cutting on the cement properties and 

hydration 

Cement hydration was studied by a number of techniques. The mechanical strength 

was determined and compared with the standard specification implemented in Oman 

(OS7/2001). Also, the physical testing such as setting time, Blaine, soundness and 

density were measured. Using XRD complemented by SEM-EDX analyses of polished 

cross-sections, the major hydrate phases were studied. SEM was also used to 

understand if there were any significant changes in the microstructure. 

The chemical composition limits in OS are similar to those in BS/EN standard except 

regarding MgO, insoluble residue (IR), and C3A content. In addition, OS specifies the 
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range of cement LSF and AM factors. The cement produced using the OBM cutting 

meets the standard requirement and fulfils the chemical and physical/mechanical 

limits.   

The soundness of the prepared cement increased as OBM cutting content increased. 

Higher expansion could be due to several reasons, such as i) high free lime content in 

clinker (above 2%) or ii) high MgO content in cement (above 3%). The free lime 

contents in all samples were kept below 2%. The significant contribution for the 

expansion may be attributed to the presence of a high concentration of MgO 

(periclase) in cement prepared with higher OBM cutting contents in the raw meal.  

Hence, higher soundness in the cement sample of 55 % OBM cutting is more likely 

due to the higher content of MgO coming from OBM cutting. The SEM-EDX analysis 

also confirms the presence of MgO in cements prepared with 30% and above OBM 

cutting. Setting time results show no significant change between the samples with 

OBM cutting and the reference sample.  

Compressive strength results increased with hydration for 2, 7 and 28 days. At two 

days, the two reference samples (CmInd and CmRef) showed slightly lower strengths 

than the samples prepared with OBM cutting (12% and 55%). By 7 days, the strengths 

of all samples increased and the OBM-containing samples remained slightly stronger 

than the reference samples. At 28 days, Cmt-12% was the strongest, with no 

significant difference between others. With alite being the principal phase responsible 

for later-age strength, given the minimal difference in alite contents between the 

samples, the similarity in performance is not surprising. It is possible that the slight 

variations in Blaine fineness could explain the slight differences in strength. Fineness 

plays a dominant role in compressive strength development, with higher fineness 

leading to higher strength due to cement grains having more surface area exposed 

during hydration. 

There was no significant effect on the crystal phases formed upon hydration, despite 

the greater potential of magnesite (MgCO3) formation. In all investigated samples AFm 

(ettringite) was present at 2 days hydration, while no AFm formation was observed in 

any samples. The formation of AFt is highly dependent on the C3A content in cement. 

With high C3A contents, the monocarboaluminate appears at early age of hydration, 

often within 7 days of hydration209. 
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The optical microscopy analysis showed an increase in C3A content as the OBM 

cutting increased. The C3A content in CkRef., Ck12 and Ck55 are 12, 16 and 17% 

respectively. However, AFm phases were not detected. The XRD patterns for all 

hydrated cement samples showed similar behaviour. Ettringite (AFt) and C4AF were 

observed with the intensity of reflections from the latter diminishing with time. Between 

2 to 28 days the intensity of the main clinker phase reflections decreased with growth 

of reflections due to hydrates. The amount of AFt formed depends on the ratio of 

sulphates (added during grinding) and the C3A content of the clinker. At high ratio of 

C3A to CaSO3.2H2O, the AFt is unlikely to convert to AFm. In this investigation, the % 

of gypsum added during the cement grinding was fixed at about 6% for all samples.  

The C3A content calculated according to Bogue formula in clinker samples Ref, 12% 

and 55% are 7.94, 7.77 and 6.74 % respectively, with no change in polymorph (which 

is known to affect the rate of hydration). Therefore, the absence of AFm can be 

explained by the increasing sulphate to aluminate ratio in the cement. Furthermore, 

the absence of the AFt → AFm conversion means that no additional heat is released 

after the first hydration reaction is completed. This is could be an explanation for the 

similarity of the heat rate shown for the all samples.  

The hydration reaction of C3S is associated with formation of calcium hydroxide (CH) 

which precipitates in the form of portlandite and is dispersed within the hardened 

paste. The XRD patterns for the hydrated cement clearly indicates the formation of CH 

in all samples, with growing intensity as the time passes.  

Isothermal calorimetry (ICC) was conducted to determine the hydration kinetics. There 

was generally no significant difference in the time to onset of the acceleration period. 

All the results showed one main peak, associated with alite hydration to form calcium 

silicate hydrate (C-S-H) and portlandite (CH). The highest peak is for the cement 

containing 55% OBM cutting; appearing after 11.02 hours. The second highest peak 

is for Cm-12%; after 11.63 hours. Followed by CmRef. and CmInd. at 11.88 and 12.12 

hours respectively. Then, the heat rate slowed down gradually and reached very low 

values within few days.  

The total heat released was in the range 247 to 256 J/g at 21 days with maximum 3% 

difference with the industrial sample. This confirms the similarity in behaviour of the 

various cements.  
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At 7 and 28 days, the Cmind samples exhibited a higher degree of hydration (DoH), but 

at 2 days hydration was lower than the reference sample. This is likely due to variation 

in cement preparation, e.g. the use of industrial grinding with grinding aids. 

Additionally, the DoH of Cm-12% and Cm-55% after 2 days curing were found 

respectively 62.03 and 59.30 % which are lower when compared with the reference 

sample (66.03%). The Cm-55% showed a marginally lower degree of hydration at all 

ages than the other samples, while the reference sample showed the highest degree 

of hydration at all ages.  

9.5 Impact of using OBM cutting in cement industries 

Three important aspects of handling OBM cuttings must be considered when deciding 

whether to use them in cement manufacture.  

i- They must be transported from the generation site at the oil well field to the 

cement factory. Although internationally and, according to their OBM Safety 

Data Sheet, OBM cuttings are not regulated as a dangerous good. However, 

in Oman, the Ministry of Environment and Climate Affairs does classify them 

as a dangerous material. Hence, all aspects of managing OBM cuttings 

must be performed in accordance with the procedures required for 

dangerous substances.  

ii- The truck must (1) have an open top and a container that is sealed without 

any gaps to avoid leaching and (2) carry no more than 30 tonnes of OBM 

cuttings at any given time.  

iii- Once the truck arrives at the cement plant, the OBM cuttings are unloaded 

onto a concreted area adjacent to the raw material feeding point. 

There are several suggestions regarding feeding point of OBM cuttings in cement plant 

as following:  

- OBM cuttings should be mixed with limestone before they are sent to the 

crusher. After being mixed, ground, and homogenised, the OBM cuttings 

become raw meal that is (1) introduced to the heating system at the pre-heater 

tower from the top and (2) calcined at about 850 oC at the stage before entering 

the kiln.  
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- The second suggestion (introducing OBM cutting at the calciner) is an 

extension of the first and has several advantages and disadvantages. For 

example, a higher percentage of OBM cuttings could be utilised because the 

hydrocarbons can undergo complete combustion at higher temperatures in the 

calciner. The release of unburned compounds is expected to be reduced 

because the exhaust gases take a longer path. This option is expected to limit 

the amount of OBM cuttings that can be utilised. In addition, technical 

consideration to be taken during the kiln operation. Possible variations in 

several parameters during the feeding of OBM cutting through the calciner 

include moisture content, flame shape changing and calciner rise in carbon 

monoxide.  
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 Chapter 10: Conclusions and further work 

10.1 Conclusions 

The hydration behaviour of the cement prepared with and without OBM cutting has 

been studied by many techniques such as ICC, STA and mechanical properties. Using 

XRD complemented with SEM-EDX analyses of polished sections, the major hydrate 

phases were studied. The SEM and optical microscopy of the clinker was also used 

to understand if there are any significant changes to the microstructure and main 

phases, which may influence hydration. The degree of hydration was obtained and the 

main hydration products such as C-S-H and CH were identified.  

After heating and burning the raw meal of different OBM cutting ratios, and Portland 

cement clinker obtained, the clinker phases formed in all samples having the required 

composition of main clinker phases that essential to complete the hydration process 

stages in like to normal cement. To obtained comparable results, the cement clinker 

ground at similar fixed condition, physical parameters and gypsum quality and 

quantity. This allow to understand if OBM cutting ratio has impact on the cement 

behaviour hydration. The technique adopted in this study for the investigation, is to 

understand whether OBM cutting has any substantial impact that could interrupt 

manufacturing of cement using OBM cutting as an additional raw material. The results 

obtained show that the hydration behaviour as normal with no significant change 

observed and no distinguished change comparing to the reference sample and 

industrial cement. The progress of hydration of cement prepared for the ones with 

OBM cutting and comparing to the reference and industrial cement are following 

similar hydration behaviour. 

Clinker prepared using OBM waste had very similar properties to clinker prepared from 

the limestone normally used in cement production. These results demonstrate that 

OBM cutting could be recycled in the manufacture of Portland cement clinker. This 

could present an opportunity for re-use of OBM cutting waste and solve an 

environmental problem. This will also reduce the cost of cement production. The main 

result in this study are as follows:  
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- The addition of OBM cutting lowers the calcination temperature. This is 

because the calcite in OBM cutting has a smaller grain size than that in the 

limestone.  

- Furthermore, the OBM cutting contained some dololimte (CaMg(CO3)2). This 

increases the rate of carbonate dissociation and so also contributed to the 

lowering of the calcination temperature. 

- However, the addition of OBM cutting to the raw meal led to a higher free lime 

content in the resultant clinker. There are many reasons for this, but the role of 

trace elements, especially barium, in destabilizing alite has been demonstrated 

here.  

- While it would likely have no commercial potential, clinker could be prepared by 

just heating OBM cutting at 1200 oC, without any addition. The XRD and SEM-

EDX analysis of the resultant clinker showed formation of belite with a very low 

free lime content and no alite formation. 

- There are several benefits that could be gained from the successful recycling 

of OBM cuttings in cement manufacture. The OBM cuttings provide a source of 

fuel. They also reduce the consumption of natural resources. In oil drilling 

operations, the reuse of OBM cuttings in cement production provides an 

environmentally-friendly waste management solution for large quantities of 

OBM cuttings, reducing landfill by effective recycling of waste, without the need 

for any pre-treatment.  

- The inclusion of ca. 12% OBM cuttings in raw meal for cement manufacture 

has no significant effect on clinker composition. Thus, this provides a cost-

effective, environmentally-friendly route for the management of OBM cuttings 

derived from the oil industry. 

- Introducing alternative material to the Oman Cement Company plant, such as 

OBM cuttings, may provide material that supports the raw material currently 

being used. 

10.2 Further work 

The results of this thesis can help to improve the quality control of the cement 

production using OBM cutting as an additional raw material. The lower burnability 

behaviour of the raw meal that contain OBM cutting could be further explored to 
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produce clinker with less fuel consumption. However, the impurities present in OBM 

cutting could be additional studied to explore the method and ways for preparing the 

raw meal that fit to be used in cement manufacturing. A pilot investigation at cement 

kiln plant is essential to study the actual characteristic of the clinker produced using 

OBM cuttings and likewise to measure the main stack gaseous emissions, i.e. carbon 

monoxide (CO), sulphur oxides (SOx), nitrogen oxides (NOx), hydrocarbons (H/C), 

hydrogen sulphide (H2S), volatile organic compounds (VOCs), particulate matter 

(PMs) and substances of environmental concern (e.g. Hg, Cd, Pb, etc) 

The pilot investigation could extend to test the produced clinker and cement. Similarly, 

it is worth comparing the differences between the clinker and cement prepared in the 

laboratory with that produced from a real-kiln. This would highlight potential 

differernces between the different scales of production, for example in the duration of 

the clinkering process. 

Furthermore, it would be worth studying the potential of using OBM cuttings lfor other 

purposes in the cement industry such as to replace additives (e.g. pozzlana and fly 

ash). Also, to study thermal treatment of OBM cuttings and observe the effect on it is 

properties. 
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 Appendices 

Appendix 1 
Percentage mixing of the raw materials for preparation of raw meal  
Appendix 1  Percentage mixing of the raw materials for the preparation of raw meal 

Raw meal  Limestone Quartzo-phillite Kaolin Iron OBM cuttings   Total 

RmRef.-0% 80.90 11.35 5.65 2.10 -  100.00 

Rm½% 80.00 12.70 4.70 2.10 0.50  100.00 

Rm1% 80.00 12.70 4.20 2.10 1.00  100.00 

Rm2% 80.00 12.10 3.80 2.10 2.00  100.00 

Rm3% 79.10 10.15 5.65 2.10 3.00  100.00 

Rm5% 77.25 10.00 5.65 2.10 5.00  100.00 

Rm7% 76.60 10.00 4.00 2.40 7.00  100.00 

Rm10% 74.40 9.80 3.70 2.10 10.00  100.00 

Rm12% 72.60 8.60 4.70 2.10 12.00  100.00 

Rm15% 70.40 8.50 4.00 2.10 15.00  100.00 

Rm20% 67.00 6.25 4.65 2.10 20.00  100.00 

Rm30% 60.00 4.50 3.40 2.10 30.00  100.00 

Rm55% 43.00 0.00 0.50 1.50 55.00  100.00 

Rm100% - - - - 100.00   100.00 
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Appendix 2 
The clinker prepared chemical analysis and calculated mineral composition 
Appendix 2 The clinker prepared chemical analysis and calculated mineral composition  

 
OBM 

cuttings
% 

CKind CKRef. CK½ CK1 CK2 CK3 CK5 CK7 CK10 CK12 CK15 CK20 CK30 CK55 CK100 

0 0 0.5 1 2 3 5 7 10 12 15 20 30 55 100 

SiO2 23.50 24.49 24.67 24.49 23.81 23.50 23.50 22.90 23.27 23.03 23.33 22.46 22.43 22.24 34.49 

Al2O3 5.82 5.51 5.55 5.32 5.82 5.82 5.82 5.30 5.27 5.76 5.59 5.95 5.74 5.21 7.82 

Fe2O3 4.71 4.77 4.79 4.77 4.71 4.71 4.71 5.01 4.71 4.74 4.77 4.75 4.78 4.19 3.88 

CaO 71.08 70.40 70.66 70.91 71.08 71.08 71.08 70.86 70.51 69.93 69.57 69.07 68.07 66.01 52.55 

MgO 0.62 0.65 0.67 0.68 0.62 0.62 0.62 0.84 0.92 0.97 1.06 1.18 1.48 2.20 3.66 

K2O 1.31 1.30 1.31 1.31 1.31 1.31 1.31 1.28 1.27 1.25 1.23 1.21 1.15 1.03 0.68 

Na2O 0.14 0.14 0.15 0.15 0.14 0.14 0.14 0.23 0.27 0.30 0.34 0.41 0.54 0.86 1.47 

LOI 57.52 56.75 57.02 57.18 57.52 57.52 57.52 57.99 57.98 57.98 57.94 58.35 58.61 59.54 53.96 

LSF 93.71 89.92 89.63 90.82 92.66 93.71 93.71 96.11 94.58 93.89 92.62 94.46 93.50 92.65 48.45 

SM 2.23 2.38 2.39 2.43 2.26 2.23 2.23 2.22 2.33 2.19 2.25 2.10 2.13 2.36 2.95 

AM 1.23 1.15 1.16 1.12 1.23 1.23 1.23 1.06 1.12 1.22 1.17 1.25 1.20 1.24 2.02 

Calculated mineral composition using Bogue equations  

C3S 64.56 56.23 55.65 59.47 62.21 64.56 64.56 70.77 66.87 62.84 60.02 61.73 58.47 53.92 0.00 

C2S 18.67 27.80 28.73 25.36 21.32 18.67 18.67 12.26 16.27 18.62 21.60 17.83 20.21 23.08 <36.63 

C3A 7.44 6.53 6.60 6.04 7.44 7.44 7.44 5.56 5.99 7.25 6.74 7.74 7.12 6.72 14.16 

C4AF 14.34 14.52 14.58 14.51 14.34 14.34 14.34 15.24 14.35 14.41 14.50 14.44 14.56 12.76 11.80 

LP 29.61 28.85 29.03 28.33 29.61 29.61 29.61 28.99 28.37 29.93 29.60 30.79 30.62 28.69 37.41 
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Appendix 3 
Free lime content in % (wt./wt.) repeated test of the prepared clinker samples 
 
Appendix 3 Free lime in % (wt./wt.) repeated test of the clinker samples 

  analysis 1 analysis 2 analysis 3 analysis 4 analysis 5 analysis 6 Average 

Ckind. 0.78 0.70 0.64 0.89 0.76 0.77 0.76 ±0.08 

CkRef. 0.31 0.71 0.64 0.28 0.22 0.54 0.45 ±0.21 

Ck -12% 1.10 1.20 1.01 1.05 0.76 1.30 1.07 ±0.18 

Ck -55% 1.33 1.29 1.47 1.96 1.75 1.41 1.54 ±0.26 
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Appendix 4 
Burnability test for Raw mix prepared with OBM cuttings 
Appendix 4 Burnability test for raw mix prepared with OBM cutting 

 RMind-0% RMRef.-0% RM12% 

oC* Record-1 Record-2 Average Record-1 Record-2 Average Record-1 Record-2 Average 

1300 11.5 12.26 11.88 ±0.54 7.95 9.13 8.54 ±0.83 8.00 9.54 8.77 ±1.09 

1350 2.77 3.25 3.01 ±0.34 2.04 1.86 1.95 ±0.13 3.80 3.9 3.85 ±0.07 

1400 1.43 0.87 1.15 ±0.40 1.03 0.95 0.99 ±0.06 2.33 2.59 2.46 ±0.18 

1450 0.88 0.38 0.63 ±0.35 0.60 0.40 0.50 ±0.14 2.45 2.35 2.40 ±0.07 

1500 0.25 0.13 0.19 ±0.08 0.17 0.17 0.17 ±0.00 1.01 1.07 1.04 ±0.04 

*heating the raw meal for 45 minutes 
 
 

 

 RM55% RM100% 

oC* Record-1 Record-2 Average Record-1 Record-2 Average 

1300 9.75 9.29 9.52 ±0.33 0.19 0.20 0.20 ±0.01 

1350 7.06 6.04 6.55 ±0.72 0.14 0.11 0.13 ±0.02 

1400 5.10 5.24 5.17 ±0.10 0.05 0.06 0.06 ±0.01 

1450 3.57 2.87 3.22 ±0.49 0.03 0.03 0.03 ±0.00 

1500 2.32 2.86 2.59 ±0.38 0.02 0.02 0.02 ±0.00 

*heating the raw meal for 45 minutes 
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Appendix 5 
Calculations of activation energy of decomposition of limestone and OBM cuttings 
Appendix 5  Calculations of activation energy of decomposition of limestone and OBM cutting 

Temperature  
(oC/min) 

Temperature 
(K/min) 

Temperature (oC) Temperature (K) 
1/Temperature 

(K) 
1/Temperature  

x103 
ln K in oC 

Limestone 

5 278.15 765.60 1038.75 0.000962696 0.962695548 1.609 

10 283.15 804.14 1077.29 0.000928255 0.928255159 2.303 

15 288.15 829.50 1102.65 0.000906906 0.906906090 2.708 

20 293.15 853.96 1127.11 0.000887225 0.887224849 2.996 

OBM cuttings  

5 278.15 730.30 1003.45 0.000996562 0.996561862 1.609 

10 283.15 763.84 1036.99 0.000964329 0.964329454 2.303 

15 288.15 776.79 1049.94 0.000952435 0.952435377 2.708 

20 293.15 800.75 1273.15 0.003660992 3.660992129 2.996 
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Appendix 6 
TGA of OBM cuttings and limestone in four different heating rates (5, 10, 15 and 20 
oC/mint.) 
Top graph: OMB cuttings and below graph: limestone 
Appendix 6 TGA of OBM cutting and limestone in four different heating rates 
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Appendix 7 
Particle size distribution for the cement samples 
Appendix 7 Particle size distribution for the cement samples 

 
 

More particle sizes in the range 100 – 200 µm in the order CmRef. > Cm-12% > Cm-55%. 
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Appendix 8 
Cement density measurement  
Appendix 8 Cement density measurement  

Standard test method for density of Cement: ASTM C188-16 

Cmind.      

Test No. Vi Vf Vd D  Sample weight = 64 grams 

1 0.300 20.700 20.400 3.137  Vi Initial volume in mL  

2 0.400 20.900 20.500 3.122  Vf Final volume in mL  

3 0.800 21.200 20.400 3.137  Vd (Vf-Vi), Volume displacement in mL 

4 0.000 20.400 20.400 3.137  
   D =

Weight of sample in grams

Vd
 

Average 3.133  

      

CmRef. (zero OBM cutting) 

Test No. Vi Vf Vd D 

1 0.800 21.200 20.400 3.137 

2 0.000 20.400 20.400 3.137 

3 0.600 21.000 20.400 3.137 

4 0.300 20.800 20.500 3.122 

Average 3.133 

     

Cm12 

Test No. Vi Vf Vd D 

1 0.300 20.800 20.500 3.122 

2 0.400 20.900 20.500 3.122 

3 0.900 21.400 20.500 3.122  Le Chatelier flask 

4 0.300 20.900 20.600 3.107      

Ave 3.118      

          

Cm55      

Test No. Vi Vf Vd D      

1 0.400 21.000 20.600 3.107      

2 0.200 20.800 20.600 3.107      

3 0.400 21.000 20.600 3.107      

4 0.200 20.700 20.500 3.122      

Average 3.111      

 
 
 
 
 

Density, g/ml 
 

Cmind.-0% 3.133 ±0.008 

CmRef.-0% 3.133 ±0.008 

Cm12% 3.118 ±0.008 

Cm55% 3.111 ±0.008 
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Appendix 9 
Cement Blaine test measurement  
Appendix 9 Cement Blaine measurement 

  

Blaine Fineness, m2/Kg 

Analysis 
1 

Analysis 
2 

Analysis 
3 

Analysis 
4 

Analysis 
5 

Analysis 
6 

Average 

Cmind.-0% Industrial 319 319 318 320 319 317 319 ±1.03 

CmRef.-0% 
Zero 
OBM 

326 325 323 324 322 327 325 ±1.87 

Cm12% 
12 % 
OBM 

327 328 329 329 329 329 329 ±0.84 

Cm55% 
55 % 
OBM 

324 324 324 323 325 325 324 ±0.75 

 
 
Appendix 10 
Degree of hydration obtained by SEM BSE 

Appendix 10 Degree of hydration % (DoH) obtained by SEM BSE 

  



169 

 

 

Hilal Saif Al Dhamri  200676958 

 
Appendix 10 
Compressive strength measurement for the cement sample obtained from cement 
industry CmInd 
Appendix 11 Compressive strength measurement for the CmInd 

Table 10A For 2 days strength 
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Average 

Machine 
reading, N 

32.00 31.00 30.00 32.00 32.00 31.00 31.50 ±0.71 

Compressive 
strength*,  

N/mm2 
20.00 19.38 18.75 20.00 20.00 19.38 19.69 ±0.44 

 
Table 10B For 7 days strength 
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Average 

Machine 
reading, N 

56 57 54 54 51 50 50.50 ±0.71 

Compressive 
strength*,  

N/mm2 
35.00 35.63 33.75 33.75 31.88 31.25 31.56 ±0.44 

 
Table 10C For 28 days strength 
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Average 

Machine 
reading, N 

75 74 75 76 76 75 75.67 ±0.58 

Compressive 
strength*,  

N/mm2 
46.88 46.25 46.88 47.50 47.50 46.88 47.29 ±0.36 

 
* Compressive strength calculated as per the equation below:  

 

Compressive strength =
maximum load applied to the cube (N)

cube surface area (1.6mm2)
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Appendix 11 
STA analysis of hydrated cement 
Appendix 12 STA analysis of hydrated cement 
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Appendix 12 
XRD analysis of hydrated cement samples for 2, 7 and 28 days.  

(Water ratio 0.45) 

A  
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Appendix 13 
Raw mix design of the prepared raw meal 
Appendix 13  The hydration product obtained from STA analysis 
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Appendix 14A 
Clinker preparation in lab 
Appendix 14 Clinker preparation photos 
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Appendix 14B 
Clinker preparation in lab 
 

  

The prepared clinker after burning in the furnace and placed in a tray for cooling 

under ambient lab temperature. 

Safety procuration: Must ware: 

- safety google that suitable for watching material at 1450 
o
C.   

- Heat resistance long sleeve gloves.  
- Safety shoes. 
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Appendix 14C 
Clinker preparation in lab (continuo)  
 

 
  

Raw meal before 

burning  

Clinker prepared by 

burning the raw 

meal   
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Appendix 15 
Chemical analysis of raw materials  
Appendix 15 Raw materials chemical analysis 

Appendix 15A: Chemical analysis of Quartzo-phillite %wt./wt, (repeated 13 independent samples) 
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Average 

SiO2 81.97 74.50 68.64 71.68 81.23 69.66 82.01 74.08 71.27 74.43 75.83 71.63 68.30 74.25 ±4.84 

Al2O3 3.09 5.88 6.71 6.42 4.86 6.57 4.97 5.61 6.14 5.87 4.90 5.01 5.39 5.49 ±0.97 

Fe2O3 2.62 5.79 6.65 6.28 4.48 6.92 4.61 5.41 5.93 5.55 5.12 5.93 6.56 5.53 ±1.15 

CaO 5.47 4.37 5.12 4.55 2.69 4.73 3.28 4.52 4.24 4.00 2.23 3.20 3.78 4.01 ±0.95 

MgO 3.99 3.26 3.42 3.37 2.66 3.50 2.37 3.12 3.62 3.22 6.43 6.73 7.55 4.09 ±1.67 

SO3 0.02 0.02 0.05 0.02 0.02 0.03 0.02 0.02 0.03 0.04 0.02 0.03 0.02 0.03 ±0.01 

Na2O 0.87 1.33 1.54 1.53 1.07 1.57 1.20 1.25 1.29 1.20 1.03 0.98 1.07 1.22 ±0.22 

K2O 0.18 0.70 0.75 0.76 0.71 0.62 0.59 0.71 0.76 0.76 0.80 0.77 0.75 0.68 ±0.16 

Mn2O3 0.43 0.18 0.15 0.15 0.17 0.15 0.23 0.18 0.22 0.16 0.16 0.18 0.17 0.19 ±0.08 

TiO2 0.27 0.56 0.64 0.61 0.40 0.65 0.45 0.53 0.57 0.54 0.42 0.50 0.55 0.51 ±0.11 

LOI @950 1.104 3.419 6.344 4.624 1.716 5.623 0.273 4.565 5.946 4.239 3.059 5.052 5.866 3.99 ±1.96 
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Appendix 15B: Chemical analysis of limestone %wt./wt, (repeated 10 independent samples) 
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Average 

SiO2 5.18 6.28 3.25 4.71 8.57 5.41 6.89 8.59 4.91 5.56 5.94 ±1.69 

Al2O3 0.48 0.99 0.58 0.65 0.89 0.38 0.57 0.45 0.54 0.64 0.62 ±0.19 

Fe2O3 0.51 0.86 0.64 0.50 0.66 0.32 0.31 0.30 0.49 0.47 0.51 ±0.18 

CaO 50.97 50.10 52.05 51.55 49.05 50.70 50.84 49.97 51.92 51.47 50.86 ±0.95 

MgO 0.46 0.63 0.45 0.42 0.50 0.37 0.32 0.38 0.48 0.80 0.48 ±0.14 

SO3 0.10 0.39 0.13 0.07 0.13 0.08 0.08 0.08 0.11 0.09 0.13 ±0.10 

Na2O 0.04 0.05 0.04 0.03 0.04 0.04 0.04 0.05 0.05 0.08 0.05 ±0.01 

K2O 0.03 0.13 0.09 0.10 0.11 0.03 0.03 0.04 0.04 0.08 0.07 ±0.04 

Mn2O3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 ±0.00 

TiO2 0.03 0.06 0.03 0.04 0.07 0.03 0.04 0.03 0.04 0.04 0.04 ±0.01 

LOI@950 oC 42.18 40.48 42.72 41.9 39.96 42.61 40.86 40.09 41.4 40.75 41.295 ±1.02 
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Appendix 15C: Chemical analysis of OBM cutting %wt./wt, (repeated 20 independent samples) 
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SiO2 9.75 15.71 1.2 42.85 21.46 12.56 18.99 25.74 57.42 54.84 10.91 11.12 10.84 12.16 11.94 11.62 

Al2O3 2.45 4.58 0.57 3.17 7.65 4.56 6.25 8.83 4.02 4.27 2.59 2.51 2.52 2.59 2.65 2.6 

Fe2O3 1.42 1.8 0.72 1.13 1.45 1.02 1.69 3.55 1.52 1.67 1.62 1.71 1.68 1.65 1.91 1.81 

CaO 38.74 34 47.18 25.23 35.56 41.56 32.35 25.19 7.19 7.08 39.11 37.92 39.14 38.81 39.05 38.92 

MgO 3.45 4.4 1.89 1.42 1.99 1.25 3.25 2.19 1.01 1.37 3.81 3.65 3.55 3.45 3.62 3.69 

SO3 2.19 1.34 2.17 0.45 0.86 2.15 1.85 2.32 0.18 0.24 2.42 2.52 2.66 2.41 2.25 2.32 

Na2O 0.86 0.82 0.98 0.89 0.78 0.87 0.9 0.88 2.3 1.22 0.81 0.77 0.69 0.65 0.74 0.78 

K2O 0.72 0.7 0.26 0.24 0.42 0.46 0.39 0.53 0.93 0.91 0.76 0.74 0.55 0.65 0.59 0.59 

LOI@950 oC 39.48 36.4 44.15 23.5 28.85 34.56 33.29 30.03 22.06 22.91 37.24 37.92 37.65 36.76 36.51 36.75 

H2O 4.35 1.78 15.6 9.35 4.99 6.25 5.55 5.24 0.90 1.04 7.40 7.12 9.80 6.50 5.20 6.80 
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Average 

SiO2 12.49 12.35 13.01 13.12 19.00 ±15.11 

Al2O3 2.65 2.55 2.71 3.42 3.66 ±1.96 

Fe2O3 1.79 1.82 1.95 1.47 1.67 ±0.54 

CaO 38.61 38.95 39.42 37.12 34.06 ±10.47 

MgO 3.58 3.66 3.78 3.77 2.94 ±1.07 

SO3 2.58 2.65 2.56 2.21 1.92 ±0.83 

Na2O 0.7 0.68 0.87 0.68 0.89 ±0.36 

K2O 0.65 0.6 0.78 0.69 0.61 ±0.19 

LOI@950 oC 36.01 35.95 34.29 37.04 34.07 ±5.78 

H2O 5.20 5.10 6.12 4.98 5.96 ±3.23 
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Appendix 15D: Chemical analysis of iron ore %wt./wt, (repeated 11 independent samples) 
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Average 

SiO2 25.91 28.44 19.54 17.46 12.24 15.89 10.21 19.43 13.23 24.39 11.61 18.03 ±6.16 

Al2O3 7.10 7.57 8.60 6.93 6.57 5.64 6.75 6.24 6.54 6.81 5.96 6.79 ±0.80 

Fe2O3 47.33 43.44 50.82 51.76 54.24 51.21 57.14 53.97 59.29 47.44 53.35 51.82 ±4.56 

CaO 2.14 1.78 1.72 1.96 1.82 2.32 1.55 1.24 1.01 2.73 1.81 1.83 ±0.48 

MgO 2.75 2.59 1.91 2.15 1.47 1.53 1.26 2.05 1.32 2.29 1.39 1.88 ±0.53 

SO3 0.11 0.09 0.08 0.1 0.08 0.18 0.12 0.07 0.08 0.27 0.13 0.12 ±0.06 

Na2O 0.42 0.44 0.38 0.36 0.34 0.34 0.32 0.37 0.31 0.44 0.32 0.37 ±0.05 

K2O 0.25 0.27 0.31 0.26 0.19 0.15 0.09 0.17 0.11 0.32 0.14 0.21 ±0.08 

Mn2O3 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 ±0.00 

TiO2 0.15 0.16 0.17 0.15 0.15 0.12 0.17 0.13 0.13 0.15 0.14 0.15 ±0.02 

LOI@950 oC 13.69 15.07 16.72 18.72 22.75 22.47 22.24 16.18 17.83 15.01 25.00 18.66 ±3.84 
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Appendix 15E: Chemical analysis of kaolin %wt./wt, (repeated 13 independent samples) 
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Average 

SiO2 42.10 40.77 42.66 41.355 42.138 42.439 42.728 42.332 41.805 42.501 42.997 42.684 42.541 42.24 ±0.61 

Al2O3 33.81 32.60 32.11 33.078 33.53 32.788 34.074 33.671 33.05 32.275 32.491 33.256 32.19 33.00 ±0.65 

Fe2O3 8.35 6.95 6.186 8.598 8.016 6.755 6.453 8.011 8.267 5.789 8.39 7.71 9.51 7.61 ±1.09 

CaO 1.06 3.64 3.102 2.202 0.756 2.213 1.507 0.743 1.302 2.507 1.271 1.568 0.614 1.73 ±0.94 

MgO 0.43 0.39 0.643 0.45 0.532 0.469 0.6 0.488 0.44 0.777 0.555 0.432 0.443 0.51 ±0.11 

SO3 0.06 0.06 0.15 0.075 0.083 0.117 0.173 0.126 0.11 0.207 0.078 0.051 0.032 0.10 ±0.05 

Na2O 0.33 0.32 0.363 0.383 0.397 0.324 0.362 0.369 0.371 0.355 0.351 0.329 0.328 0.35 ±0.02 

K2O 0.18 0.17 0.217 0.187 0.182 0.186 0.203 0.185 0.186 0.195 0.193 0.19 0.192 0.19 ±0.01 

LOI 13.50 14.92 14.415 13.523 14.217 14.567 13.756 13.929 14.321 15.249 13.532 13.638 14.007 14.12 ±0.56 
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Appendix 16 
Agreement between Oman Cement Company and OBM cuttings generator company in 
Oman 
Appendix 16 Agreement between Oman Cement Company and Petroleum Development Oman Company as a result of this 
study. 

 
 
  

Agreement has been sign between Petroleum Development Oman, PDO 

(OBM cuttings generator) and Oman Cement Company, OCC (OBM 

cuttings disposer) for conducting a plant pilot trail after considering the 

results and endorsement obtained in this thesis study. 

(Source: https://www.omandaily.om/?p=708518 ) 

 

 

Phototgraph:  
Front left : Musalam Al-Mandhry – Production Chemistry Manager, PDO 
Front right: Hilal Al Dhamri – General Manager Manufacturing, OCC 
Back from left: Said Al Adwai, Nasser Al-Alwai, Dr. Sultan Al-Shethani, Salim Al-Hajri, Shwket 
Bahat, Nasser Al Amri.  

https://www.omandaily.om/?p=708518
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Appendix 17 
Photos for the visit to oil drilling field (Qaran Al-Alam, Oman) 
 
Appendix 17 Photos for the sit to oil drilling site 

 
  

Oil drilling filed visit and collection of information about the OBM cuttings at 
each generation step.  
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Appendix 18 
Published papers, conferences papers and posters  
 
 
Hilal S. Al Dhamri, Sabah A. Abdul-Wahab, Costas Velis, Leon Black, Oil-based mud cutting as 
an additional raw material in clinker production, Journal of Hazardous Materials, Volume 384, 
2020, 121022, doi.org/10.1016/j.jhazmat.2019.121022. 
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Sabah A. Abdul-Wahab, Hilal Al-Dhamri, Ganesh Ram, Leon Black, The use of oil-based mud 
cuttings as an alternative raw material to produce high sulfate-resistant oil well cement, 
Journal of Cleaner Production, 2020, 122207, doi.org/10.1016/j.jclepro.2020.122207. 
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Hilal Al-Dhamri, Sabah A. Abdul-Wahab, Ganesh Ram, Abdulaziz Al-Moqbali, Leon Black 
“Microstructure of Clinker prepared using different ratio of OBM cutting as raw material” 
Proceedings of the 15th International Congress of the Chemistry of Cement, Prague September 
2019. 
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Hilal Al-Dhamri, Leon Black, Sabah A. Abdul-Wahab, “Oil-Based Mud Cutting as an Additional 
Raw Materials in Clinker Production: The Impact on Phase Composition”, Proceedings of the 
14th International Congress of the Chemistry of Cement, Beijing 2015. 
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H. Saif Al-Dhamri and Leon Black “Use of Oil-Based Mud Cutting Waste in Cement 
Clinker Manufacturing” In: Bernal, SA and Provis, JL, (eds.) 34th  Cement and Concrete 
Science Conference, 14-17 Sep 2014, Sheffield, UK., pp. 427-430, 2014. 
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Appendix 19 
Photos during the PhD study at University of Leeds 
 

 
 

 
 

Oil drilling field during collecting OBM cuttings in Oman 
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Competing for Adam Neville Prize for the best national PhD in the field 

of cement and concrete. 30 Oct 2019 

 

Source: https://eps.leeds.ac.uk/faculty-engineering-physical-sciences/news/article/5597/the-adam-neville-prize-
awarded-for-best-phd-in-cement-and-concrete 

 

 

https://eps.leeds.ac.uk/faculty-engineering-physical-sciences/news/article/5597/the-adam-neville-prize-awarded-for-best-phd-in-cement-and-concrete
https://eps.leeds.ac.uk/faculty-engineering-physical-sciences/news/article/5597/the-adam-neville-prize-awarded-for-best-phd-in-cement-and-concrete
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Proceedings of the 15th International 
Congress of the Chemistry of 

Cement,  
Prague September 2019. 

Proceedings of the 14th International 
Congress of the Chemistry of 

Cement,  
Beijing 2015. 

 
 
 

 
 

34th Cement and Concrete Science Conference, 14-17 Sep 2014, Sheffield, UK. 
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With Professor Fredrik Glasser at 
University of Sheffield during the 34th  
Cement & Concrete Science 
Conference. 

 
 

 

With Prof. Leon Black, my PhD supervisor. Picture during the Congress of the 
Chemistry of Cement, Prague September 2019. 
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