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Abstract
Power systems worldwide are undergoing major transformation to enable a

low-carbon future. These developments require new procedures for advanced

control to ensure a stable and efficient system operation. Consensus-based

distributed secondary frequency control schemes have the potential to ensure

real-time frequency restoration and economic dispatch simultaneously in fu-

ture power systems with significant contribution of renewable energy sources.

However, owing to their distributed nature, these control schemes critically de-

pend on communication between different controlled units. Thus, robustness

against communication uncertainty is crucial for their reliable operation.

In this work, control design and stability analysis of delay-robust second-

ary frequency control in next-generation power systems are studied. The main

contributions of the present thesis can be summarised as follows: (i) A design

procedure for a consensus-based secondary frequency controller in microgrids

is proposed that ensures robustness with respect to heterogeneous fast-varying

communication delays and simultaneously provides the option to trade off

the L2-gain performance against the number of required communication links;

(ii) The conditions for robust stability of a consensus-based frequency control

scheme applied to a power system model with second-order turbine-governor

dynamics in the presence of heterogeneous time-varying communication delays

and dynamic communication topology are derived; (iii) The performance of

the proposed consensus-based secondary frequency controller is analysed in a

detailed model capturing the dynamic behaviour of a real system. The results

provide insights to the robustness of the closed-loop system with respect to

unmodelled (voltage and higher-order generator) dynamics as well as commu-

nication delays.
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AGC automatic generation control
AVR automatic voltage regulator

DAE Differential-Algebraic Equation
DC direct current
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HV high voltage
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LK Lyapunov-Krasovskii
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LV low voltage
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PE power electronics

RAMSES RApid Multithreaded Simulation of Electric power Systems
RES renewable energy resource

SG synchronous machine



Contents

Declaration ii

Abstract v

Acknowledgements vi

Abbreviations vii

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The conventional power system . . . . . . . . . . . . . . 1

1.1.2 Getting smart . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Overview of frequency control . . . . . . . . . . . . . . . 4

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Preliminaries in power systems and control theory 14

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Preliminaries in power systems . . . . . . . . . . . . . . . . . . . 15

2.2.1 Reduced power systems model . . . . . . . . . . . . . . . 15



Contents ix

2.2.1.1 Modeling of synchronous generators . . . . . . 15

2.2.1.1.1 Swing equation . . . . . . . . . . . . . 15

2.2.1.1.2 Turbine-governor dynamics . . . . . . 17

2.2.1.2 Simplified power network model . . . . . . . . . 17

2.2.2 Microgrid model . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2.1 Grid-forming inverter model . . . . . . . . . . . 19

2.2.2.2 Microgrid network model . . . . . . . . . . . . 21

2.3 Preliminaries in control theory . . . . . . . . . . . . . . . . . . . 22

2.3.1 Stability of time-delay systems . . . . . . . . . . . . . . . 22

2.3.1.1 General Lyapunov-Krasovskii theorem . . . . . 24

2.3.1.2 Choosing an appropriate Lyapunov-Krasovskii

functional . . . . . . . . . . . . . . . . . . . . . 26

2.3.1.2.1 Interval time-varying delay . . . . . . . 26

2.3.1.3 Bounded techniques . . . . . . . . . . . . . . . 27

2.3.1.3.1 Jensen’s Inequality . . . . . . . . . . . 27

2.3.1.3.2 A reciprocally convex approach . . . . 28

2.3.1.4 The descriptor method . . . . . . . . . . . . . . 29

2.3.2 Algebraic graph theory . . . . . . . . . . . . . . . . . . . 30

2.3.3 Consensus protocol . . . . . . . . . . . . . . . . . . . . . 31

2.3.4 L2-Gain of dissipative systems . . . . . . . . . . . . . . . 33

3 Delay-robust distributed secondary frequency control design

for microgrids 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Distributed secondary frequency control in microgrid . . . . . . 36

3.2.1 Objectives and distributed control scheme . . . . . . . . 36

3.2.2 Closed-loop system . . . . . . . . . . . . . . . . . . . . . 39

3.3 Controller synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Coordinate transformation and error system . . . . . . . 40

3.3.2 Problem statement . . . . . . . . . . . . . . . . . . . . . 44

3.3.3 Main result . . . . . . . . . . . . . . . . . . . . . . . . . 45



Contents x

3.4 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 System description . . . . . . . . . . . . . . . . . . . . . 56

3.4.2 Scenario 1: Heterogeneous communication delays . . . . 57

3.4.3 Scenario 2: Uniform communication delay (τr =

τ andh0 = 0) . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Conditions for delay-robust consensus-based frequency control

in power systems 68

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Optimal consensus-based frequency control in power systems . . 69

4.2.1 Communication uncertainties: Time-varying delays and

dynamic communication network . . . . . . . . . . . . . 70

4.3 Robust stability in the presence of communication uncertainties 72

4.3.1 Coordinate transformation and reduction . . . . . . . . . 72

4.3.2 Error system . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.3 Main result . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Delay-Robust Distributed Secondary Frequency Control: A

Case Study 86

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Test system descriptions . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Delay-robust stability condition . . . . . . . . . . . . . . . . . . 89

5.4 Implementation of secondary frequency controller . . . . . . . . 90

5.4.1 Case 1: Tripping of 300MW generator g2 in the North

area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.2 Case 2: Tripping of 750MW generator g8 in the North

area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.3 Case 3: Loss of major corridor line . . . . . . . . . . . . 94



Contents xi

5.4.4 Discussion and summary . . . . . . . . . . . . . . . . . . 96

6 General Conclusions 98

6.1 Summary of work and main contributions . . . . . . . . . . . . 98

6.2 Directions for future work . . . . . . . . . . . . . . . . . . . . . 100

Bibliography 103



List of Figures

1.1 Power system evolution . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Synchronous machine model . . . . . . . . . . . . . . . . . . . . 16

3.1 Example of undirected connected graph . . . . . . . . . . . . . . 38

3.2 Schematic representation of islanded Subnetwork 1 of the

CIGRE benchmark MV network . . . . . . . . . . . . . . . . . 56

3.3 Frequency convergence at bus 9b for different values of κ. . . . . 59

3.4 Simulation results of the system (3.3.9) with κ = 0.4656 and

γ = 3.7092, after being subjected to sinusoidal disturbances . . . 61

3.5 Simulation results of the system (3.3.9) with κ= 0.4656 and γ =

3.7092, after being subjected to disturbances: a step disturbance

is applied to the electrical layer, while white noise is applied in

the communication layer . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Number of non-zero elements of Z for different values of γ . . . 63

3.7 Sparsity pattern of L for different values of γ . . . . . . . . . . . 63

3.8 The convergence of the state p for generation unit 9b (i = 6)

with different numbers of communication links . . . . . . . . . . 64

3.9 Simulation results with κ= 2.6792 , γ = 0.9637, and h= 100ms . 66

3.10 Number of non-zero elements of Z for different values of γ . . . 66

4.1 Kundur’s two-area-four-machine test system . . . . . . . . . . . 82

4.2 Simulation results with κ= 17.4898, h1 = 0.1s, h2 = 0.5s. . . . . 84

5.1 Schematic representation of the Nordic test system . . . . . . . 88



List of Figures xiii

5.2 Flowchart of selection of the controller’s parameters. . . . . . . 91

5.3 The feasibility map of condition (4.3.9) with different maximum

communication delays. . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Case 1: Frequency deviation . . . . . . . . . . . . . . . . . . . . 92

5.5 Case 2: Frequency deviation . . . . . . . . . . . . . . . . . . . . 93

5.6 Case 2: Bus voltage deviation at bus 1044 in Central area . . . 94

5.7 Case 2: Total active power output from the participating gen-

erators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.8 Case 2: Convergence of controller outputs . . . . . . . . . . . . 95

5.9 Case 3: Frequency deviation . . . . . . . . . . . . . . . . . . . . 95

5.10 Case 3: Bus voltage of bus 1044 in Central area . . . . . . . . . 96

5.11 Case 3: Total active power output from the participating gen-

erators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



List of Tables

3.1 Results for κ and γ obtained from solving the optimization prob-

lem (3.3.12) in ‘Design step 1’ for different values of α and β . . 60

5.1 Comparison between the employed models in the control design

and stability analysis and case study of this Chapter . . . . . . 87

5.2 The Participating generators . . . . . . . . . . . . . . . . . . . . 90



Chapter 1

Introduction

1.1 Motivation

1.1.1 The conventional power system

The history of power systems goes back to 1882 when Tomas Edison built

the first direct current (DC) power system consisting of a generator, cable,

loads [1]. From that time, the evolution of the power grid influenced by the

economic and political factors has continued through small alternating current

(AC) power systems to the current large-interconnected power systems [1, 2],

see Fig 1.1.

Conventional power systems worldwide share the same basic hierarchical

structure. This structure is mainly comprised of [1, 3]: (i) power plants that

include different types of generation sources gas, coal, and nuclear; (ii) trans-

mission system that transfers the power from the generation side to the load

side; (iii) Costumers Load. The generation sources are connected to the high

voltage (HV) level and mostly are thermal power plants [4]. Furthermore,

transmission and distribution systems and the customers’ loads are mainly

located at the medium voltage (MV) and low voltage (LV) levels, as shown

in Fig. 1.1. Power systems are seeing a growing demand to integrate more

renewable energy resources (RESs) for a more sustainable, low-carbon future.

The increasing penetration of economical and environmentally friendly RESs

introduces enormous challenges for conventional power systems operation and
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Conventional power 
system

Next-generation 
power system

~
=

~
=

~
=

Figure 1.1: Power system evolution

control due to the following facts [5–8]:

i) Most RESs are small-scale distributed generation units (DGUs) , which

are connected to the MV and LV levels via power electronics (PE) con-

verters, as shown in Fig 1.1. Consequently, the replacement of a few

bulk conventional fossil fuels based power plants with a large number

of small-scale DGUs significantly increases the complexity of balancing

demand and generation in real-time [9].

ii) Most of the RESs are DC sources, and therefore DC/AC converters (in-

verters) are usually required to interface the generation units to an AC

network. In such scenarios, it is essential to recognize that the inverters’

physical dynamics significantly differ from conventional synchronous gen-

erator dynamics [10] and the increasing integration of inverter-interfaced

units results in reduced system inertia leading to low-inertia power sys-

tems.

Conventional power systems are being stressed by the above facts, which
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was not considered when most of them were built. The next generation-power

systems, also known as smart grids [3, 5, 6], are expected to address these

challenges and assure a more reliable, environmentally friendly, and robust

grid.

1.1.2 Getting smart

There is a trend in the power industry and many governments to believe that

smart grid technology is the key solution to the challenges mentioned above in

the power system [6, 11]. In order for the grid to become smart, it is required

to have the ability to merge communication technology and data information

with power systems. Moreover, the smart grid is expected to address the

following features [6].

• The ability to smoothly host any kind of generation units (rotational

synchronous generators and inverter-interfaced units) while being robust

against both physical and cyber disturbance events.

• The ability to operate economically and improve the security and quality

of supply.

The notion of next-generation power system, i.e., smart grid, does not

request a replacement of the current power system rather than a modification of

its capabilities. The latter motivates the concept of microgrids (MGs). A MG

is a small-scale power system, which is composed of a combination of DGUs,

energy storage devices and loads at the distribution level [5]. MGs can be

either connected to the main grid through a point of common coupling (PCC)

or operated autonomously, i.e., in islanded mode [5, 12]. Thus, future power

systems could be operated as a cell-structure of interconnected MGs [13].

Based on the above facts about smart grids, communication technology

is considered as one of the most important components in power systems.

Employing communication networks in power system applications introduces

issues linked to communication uncertainties such as time delays, which lead
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to complicating the control design and may even deteriorate the system per-

formance [14]. Among these challenges, robust frequency regulation is a very

fundamental operational objective of next-generation power systems to which

the present thesis is dedicated.

1.1.3 Overview of frequency control
The paramount principle in power systems is to maintain the balance between

generation and load. If any imbalance occurs resulting, for instance, from

sudden loads connected (or disconnected) or generating units tripped, the

frequency deviates from its nominal value. If the frequency deviates by an

unacceptable amount, then the protection system will be triggered, causing

cascaded tripping of the generation units that might lead to a blackout [9].

The task of preserving the frequency close to the nominal value (and thus

achieving the system power balance) is called frequency control. This task is

traditionally achieved by hierarchical control layers: primary, secondary, and

tertiary control [1].

• Primary control. The primary layer is performed through the gov-

ernors of the turbine in the synchronous machine (SG) to increase (or

decrease) the injection power to achieve the power balance between gen-

erations and demands. This controller is a fully decentralized controller

with the time response between milliseconds to seconds. However, a well-

known drawback of primary control is a steady-state frequency deviation

from its nominal [15].

• Secondary control. The objective of this control layer is to adjust

the active power setpoints to compensate for the steady-state frequency

deviation. This controller is usually deployed via a centralized automatic

generation control (AGC). To perform this task, the employment of a

communication network is required, and its time response ranges between

30 seconds and 15 minutes [16].

• Tertiary control. The tertiary control layer is a centralized control
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layer that is mainly concerned with the energy management.

The resilience of future power systems is limited by the reliance of cent-

ralized approaches on a single control centre; thus, making them vulnerable

to single-point failures. In addition, the need to minimize the complexity of

communication infrastructures to achieve better scalability makes centralized

schemes inefficient [17]. These challenges can be addressed with the use of new,

distributed, schemes, which have advantages over centralized ones [18, 19]. The

function of the distribution scheme requires exchanging information between

neighbours. Thus, ensuring robustness with respect to communication un-

certainties is mandatory [20, 21]. The main objectives of this thesis are as

follows:

i) To investigate the problem of delay-robust distributed secondary fre-

quency control in MGs and its corresponding challenges: the shape of

communication topology and disturbance attenuation.

ii) To explore the problem of robust stability analysis of a distributed sec-

ondary frequency control power system model with second-order turbine-

governor dynamics in the presence of heterogeneous time-varying com-

munication delays and dynamic communication topology.

With regard to the first objective, as discussed in 1.1.2, the MG is a

critical element in the next-generation power systems. Moreover, since most

of the generation units in MG are inverter-based units [22], the frequency

regulation has to be provided by units within the MGs in the island mode.

Hence, the problems of frequency become remarkably significant in MG. In

addition, the deployment of communication technology in the distributed sec-

ondary frequency control introduces new challenges such as communication

delays, disturbances attenuation, and communication shape. Those challenges

will be considered in the present work and extensively discussed.

Similarly, in the bulk power systems, increasing the integration of RESs

complicates the operation and control of the power systems and introduced
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new challenges as well as the challenges coming from utilizing the commu-

nication network in the secondary frequency control. Since the SGs are the

dominant units in power systems, the control design and analysis of the second-

ary frequency controller should take higher-order turbine-governor dynamics

explicitly into consideration [23, 24]. Thus, both aspects of communication

uncertainties and the higher-order model of SG will be jointly addressed and

studied in the present thesis.

In order to achieve the above objectives, the load model used in the ana-

lysis presented in this thesis is the constant impedance. A simplified load model

is commonly used in power system studies [1, Chapter 7] and can be described

using algebraic equations. This can be justified by the fact that a constant im-

pedance load can equivalently represent any constant power load for constant

voltage amplitudes [14], i.e., P =GV 2 (please refer to Section2.2.1.2).

1.2 Contributions
The main contributions of the present thesis are:

i) A novel synthesis for consensus-based secondary frequency controllers

in MGs is proposed in the form of a convex optimization problem with

linear matrix inequality (LMI) constraints. The latter jointly considers

the objectives of delay robustness, bounded L2-gain performance for dis-

turbance attenuation (i.e., the maximum energy amplification ratio of

the system) and sparsity of the communication network. Compared

to an analysis based on linearization, the proposed design criterion is

equilibrium-independent (besides the usual requirement that the station-

ary angle differences do not exceed |π2 |). Thus if it is feasible, the desired

performance specifications hold true in a wide range of operating condi-

tions. The proposed design criterion is derived based on the Lyapunov-

Krasovskii (LK) and descriptor methods [25, 26]. Compared to related

work [14], combining the descriptor method with the LK method is es-

sential to be able to obtain a controller synthesis in terms of linear matrix
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inequalitys (LMIs) which can be evaluated with efficient numerical meth-

ods [27].

ii) The derivation of sufficient delay-dependent conditions which guaran-

tee robust stability of higher-order power system dynamics equipped

with a consensus-based secondary frequency control scheme is proposed.

Compared to existing work [14, 24, 28], the proposed method simul-

taneously accounts for second-order turbine-governor dynamics as well

as time-varying communication uncertainties. Following [25, 26, 29–31],

the latter are represented by heterogeneous fast-varying delays together

with a dynamic communication network. The presence of higher-order

(non-passive) and time-varying dynamics significantly complicates the

stability analysis. However, if not accounted for in the analysis their

presence may lead to instability, see, e.g., the example in [24] showing

instability for power systems with non-passive second-order turbine gov-

ernor dynamics. Furthermore unlike the Lyapunov functions employed

in [24, 28], the present result is established by constructing a strict com-

mon Lyapunov-Krasovskii functional (LKF) for the nonlinear higher-

order power system dynamics.

iii) For the first time, an extensive case study that evaluates the performance

of a consensus-based secondary frequency control scheme on a realistic,

full-detailed, medium-scale power system under the explicit considera-

tion of communication delays are provided. Furthermore, it is empiric-

ally shown that the conditions for delay robustness established in Con-

tribution (ii) also guarantee robust stability in the presence of additional

unmodelled dynamics. Compared to the related work [18, 28], the case

study not only verifies the steady-state frequency restoration with eco-

nomic dispatch (where all generation units produce identical marginal

costs) but, also, explores the impact of communication delays as well

as the interaction of the proposed controller with unmodelled dynamics

in the synthesis phase as well as unmodelled voltage phenomena. The
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case study are performed on the Nordic test system [32] and simulated

with the software RApid Multithreaded Simulation of Electric power

Systems (RAMSES) [33].

1.3 Related work
Maintaining a reliable and efficient operation of large scale power systems is

becoming increasingly challenging due to the high penetration of RESs [5].

The latter leads to higher and faster varying power imbalances. Therefore,

one of the most critical control challenges in next-generation power systems

is frequency regulation. Since the next-generation power systems are cyber-

physical systems incorporating both power systems and communication tech-

nology, this will allow developing advanced control methodology for frequency

regulation [17, 19]. Thus, the main architectures for performing a secondary

frequency control can either be centralized or distributed.

The function of the conventional centralized secondary frequency control

termed AGC is described as follows. The area control error is transmitted

to the data centre to be analyzed. Then new setpoints are broadcasted to

each generator to compensate for the steady-state frequency deviation by in-

creasing or reducing the power output [4, 34]. For a proper design of AGC

and the following stability analysis, it is mandatory to take into account the

communication uncertainties such as communication delays [35–38]. Stability

analysis of communication delay is given in [35, 39] associated with simulation

analysis in a full detailed model. Furthermore, the controller design of PID-

type AGC in the deregulated system is presented in [40]. Another application

of delay-robust AGC in a shipboard MG is considered in [41].

The deployment of the centralized control structure in the next-generation

power system may raise concerns with regard to the scalability, flexibility and

robustness of the control system [18, 19]. Besides being subjected to one point

of failure, in large-scale power systems the cost and complexity associated with

communication links can also become a problem. Moreover, in the MGs setting
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usually distributed algorithms are preferred for secondary control tasks, due

to the dispersed nature of generation units [14, 17]. As a consequence, there

is a need for transforming the control structure of the power system from

a centralized scheme to a distributed architecture. Essentially, the available

concepts of distributed frequency controller can be classified into two groups.

i) Primal-dual gradient-based algorithms [42–44]: The main advantages

of primal-dual approaches are that generic convex cost functions for the

generators and capacity constraints can be considered in the design. Yet,

a key drawback is that exact information on the actual load demand

needs to be available, which is a stringent requirement in practice (see

also the discussion in [42]).

ii) Consensus-based approaches [24, 28, 45–47]: In practice, the consensus-

based controller is simpler to implement than the primal-dual algorithm

and also does not require prior knowledge of the actual load demand nor

the generator parameters and power flows.

Furthermore, consensus-based control can guarantee an optimal steady-state

resource allocation (with standard quadratic generation cost functions). The

work in this thesis considers consensus-based algorithms for secondary fre-

quency control which rely on peer-to-peer communication where each gen-

eration unit exchanges information with neighbouring participating generat-

ors [31].

Most existing results for stability of consensus-based frequency controllers

are limited to generator dynamics modeled by the swing equation and assume

ideal communication [45–47]. There are several exceptions, for example the

work in [24, 28] where higher-order turbine-governor dynamics are considered

and the work in [14] where the impact of communication uncertainties on

the control performance is analysed. The latter is of paramount importance,

since any distributed control scheme relies on information exchange between

generators. Thus, guaranteeing robustness with respect to communication
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uncertainties, such as delays, message losses and link failures [20, 21], is essen-

tial to further promote a practical implementation of consensus-based control

schemes in power systems. For the same reason, more realistic generator mod-

els need to be considered. Note that the inclusion of second-order turbine

governor dynamics is used in many related stability studies on classical AGC

[36, 40, 48–51].

In recent years, consensus-based secondary frequency control experience

increasing prominence in MGs [52–57]. Delay-robustness of consensus-based

secondary controllers in MGs has been investigated in [58–62], but the ana-

lysis is either limited to a linearized (small-signal) model or does not consider

the electrical dynamics and is partially restricted to constant delays. In [14],

stability conditions for a distributed averaging secondary frequency controller

in power system have been derived under consideration of fast-varying time-

delays and a dynamic communication topology, but the (nominal) communic-

ation topology is assumed to be fixed a priori and no external perturbations

are considered. In addition to communication uncertainties, the electrical dy-

namics of the MG are also continuously exposed to perturbations, for example,

load demand and renewable generations.

Bounded input-output performance of linearized models of secondary con-

trolled MG has been considered using the H2-norm in [56] and the H∞-norm

in [63, 64]. A very similar setup for bulk power systems with distributed

frequency control is employed in [55], where in addition to minimizing the

H2-norm, the sparsity of the communication network is also promoted. The

interaction between the cyber and physical layers of a related primal-dual dis-

tributed secondary control scheme has recently been explored in [65] by using a

linearized power system model with uniform inertia and damping coefficients.

In summary, in the MG setting, the aspects of delay robustness, disturb-

ance attenuation and communication topology design have to some extent been

considered in the literature, but mainly on an individual basis and by using

linearized MG models. In particular, there are no available approaches, which
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jointly address all three aspects. Yet clearly from a practical point of view, the

development of holistic design criteria, which takes into account the physical

and cyber layers of the system, is highly desirable to further facilitate a robust

and efficient implementation of consensus-based secondary controllers in MGs.

This motivates the work in Chapter 3.

Furthermore, beside the work [66] with constant delays, to the best of the

author’s knowledge there is no existent work on the literature that provide

stability conditions for nonlinear higher-order power system dynamics in the

presence of both heterogeneous time-varying communication delays and dy-

namic communication topology. This motivates the work in Chapters 4 and 5.
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1.5 Thesis Outline
• Chapter 2: In this chapter, the reduced model for electrical power

systems used in this thesis is detailed. Furthermore, a suitable model of

a MG is introduced for the purpose of designing the secondary frequency

control in MGs. In addition, the mathematical background on stability

analysis for the time-delay systems, used to establish most of the results

in this work, is presented. Finally, some basics of algebraic graph theory,

consensus protocols, and L2-gain of dissipative systems are recalled.

• Chapter 3: The work in this chapter aims to provide a delay-robust

design procedure for distributed secondary frequency controller in MGs.

First, the consensus-based secondary control law in the MG model is in-

troduced. Then, coordinate transformation and reduction, which are es-

sential for the proposed controller synthesis, and the problem statement

are provided. After that, the controller synthesis ensuring robustness

with respect to heterogeneous fast-varying delays as well as disturbance

rejection, while minimizing the number of communication links is pro-

posed. Finally, a numerical example to demonstrate the effectiveness of

the proposed approach is given.

• Chapter 4: This chapter is focused on the stability of the distrib-

uted secondary frequency controller in the presence of communication

uncertainties in power systems. First, some preliminaries on optimal

consensus-based frequency control and communication uncertainties are

recalled. Next, since the turbine-governor dynamics are considered in

this chapter, a novel coordinate transformation and reduction compared

to [14] are proposed. Then, the robust stability analysis based on a strict

LKF is presented and followed by a numerical example to demonstrate

the effectiveness of the proposed approach.

• Chapter 5: This Chapter focuses on analysing the performance of the

secondary frequency controller under communication delays in a full-
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detailed model using the well-known Nordic system. First, a simplified

version of the delay-robust stability conditions is developed to be im-

plemented in the case study. Next, the implementation procedure of

the secondary frequency controller is proposed. Then, to evaluate the

efficacy of the stability conditions and investigate the controller beha-

vior, two scenarios are considered. Finally, a discussion about the found

results is given.

• Chapter 6: In this chapter, the contribution of this thesis is summarized

and some plans for future work are suggested.



Chapter 2

Preliminaries in power systems

and control theory

This chapter is organized as follows. First, the basic notation within the

thesis is introduced in Section 2.1. Then, a comprehensive overview of the em-

ployed models of power systems and MGs are given in Section 2.2. Moreover,

Section 2.3 provides the required mathematical background to establish the

analysis within the provide work and ease the readability of this thesis.

2.1 Notation
The set of real numbers is denoted by R. It is convenient to define R≥0 :=

{x ∈ R|x ≥ 0}, R>0 := {x ∈ R|x > 0} and R<0 := {x ∈ R|x < 0}. For a set V,

|V| denotes its cardinality and [V]k denotes the set of all subsets of V that

contain k elements. Let x := col(xi) ∈ Rn denote a vector with entries xi for

i = 1, . . . ,n, 1n the vector with all entries equal to one, In the n×n identity

matrix, 0 a zero matrix of appropriate dimensions and diag(ai), i = 1, . . . ,n,

an n×n diagonal matrix with diagonal entries ai ∈ R. For A ∈ Rn×n, A > 0

(A < 0) means that A is symmetric positive (negative) definite. The lower-

diagonal elements of a symmetric matrix are denoted by ∗. The Euclidean

norm of a vector x ∈ Rn is denoted by ‖x‖2. W [−h,0], h ∈ R>0, denotes the

Banach space of absolutely continuous functions φ : [−h,0]→ Rn, h ∈ R>0,

with φ̇ ∈ L2(−h,0)n and with the norms ‖φ‖c = maxθ∈[a,b] |φ(θ)| and ‖φ‖W =
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maxθ∈[a,b] |φ(θ)|+
(∫ 0
−h φ̇

2dθ
)0.5

. Also, ∇f denotes the gradient of a function

f : Rn→ R.

2.2 Preliminaries in power systems
This section describes the reduced models, used in this thesis, for both power

systems and MGs. The introduced models are associated with related essential

assumptions and mathematics descriptions.

2.2.1 Reduced power systems model
For the secondary frequency control development in this thesis, a reduced

model of the power system, which is comprised of only SG, is introduced. The

contents of the model consist of a synchronous generator model as well as a

network model. The presented modeling is based on standard textbooks in

power systems [1, 4, 67–69].

2.2.1.1 Modeling of synchronous generators

The considered dynamics of synchronous machines in this subsection are as

follows, see also Fig 2.1. First, the electro-mechanical equation (swing equa-

tion) that describes the relationship between electrical and mechanical power is

derived. Then, as the mechanical power is the output of the prime mover, the

dynamics of the turbine-governor that accompanies the synchronous machine

is discussed.

2.2.1.1.1 Swing equation

The main components of a SG are the stator and the rotor [1]. When the

unbalance occurs between the mechanical and electromagnetic torques, the

net torques leads to acceleration or deceleration of the rotor. This can be

described by applying Newtons’ second law on the i−th SG as [70]

Mmi θ̈+Ddi
θ̇ = τmechi

− τeleci
, (2.2.1)

where Mmi ∈ R>0 is moment of inertia of the rotor shaft, θi : R≥0→ R is the

rotor angle, τmechi
∈ R and τeleci

∈ R are the mechanical torque and the elec-
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Figure 2.1: Synchronous machine model

tromagnetic torque, respectively. Moreover, Ddi
∈ R>0 denotes the damping

coefficient (accounts for the mechanical rotational loss due to windage and

friction). Furthermore, the angular velocity of the rotor shaft is

ωi = θ̇i. (2.2.2)

Moreover, in steady-state, the angular velocity converges to the synchronous

speed ωsm, and the mechanical torque can be expressed as

τmechi
=Ddi

ωsm+ τeleci
, (2.2.3)

It is convenient to work with the power rather than the torque, therefore, by

multiplying the both side of (2.2.1) by ωsm, applying Pmi = ωsmτmechi
and

Pi = ωsmτeleci
and defining Mi = Mmiωsm and Di = Ddi

ωsm, (2.2.1) can be

rewritten as follows

Miθ̈+Diθ̇ = Pmi−Pi, (2.2.4)

Finally, in standard stability analysis, it is more convenient to replace (2.2.4)

by the following two first-order equations:

θ̇i = ωi,
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Miω̇i =−Diωi−Pi+Pmi . (2.2.5)

Since Pmi is the output of the turbine-governor system, next a standard second-

order turbine-governor dynamics are introduced.

2.2.1.1.2 Turbine-governor dynamics

The speed of a synchronous generator is determined by the speed of the prime

mover which directly affects the input Pmi . One of the well-known prime

movers used extensively throughout the world is the steam turbine. The speed

of the steam turbine is controlled by the speed governor that senses the speed

deviation and converts it into an appropriate valve action [68]. It is common

in stability analyses to use a simplified model for the steam turbine-governor

model to facilitate the stability analysis such as the TGOV1 model [71]. In the

present work, a modified version of the TGOV1 [68] is used where Pm remains

a state in the synchronous machine model, and PS will become a state when

the governor is added. As shown in Fig 2.1, the physical dynamics of the steam

turbine-governor can be written as

TmiṖmi =−Pmi +Psi ,

TsiṖsi =−Psi−K
−1
i ωri +pi,

(2.2.6)

where Psi : R≥0→ R is the steam power, ωri = θ̇i−ωd is the relative frequency

with ωd ∈ R≥0 being the desired (nominal) network frequency and pi : R≥0→ R

is the secondary control signal. Furthermore, Ki ∈ R, Tmi ∈ R and Tsi ∈ R

denote the droop gain, governor time and turbine time constant, respectively.

2.2.1.2 Simplified power network model

Following the typical approach in power system studies, it is assumed that

the loads are constant impedences. This results in modeling the power system

network as a set of Differential-Algebraic Equations (DAEs). The power net-

work, in this thesis, is represented by using the Kron-reduction method [72]

to eliminate the algebraic equations and obtain a set of differential equations.
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Furthermore, the power network is described as a connected and undirected

graph with a set of nodes N = {1,2, . . . ,n}. It is assumed that at each node a

generator is connected and a phase angle θi : R≥0→ R and ωri are assigned to

each unit i ∈N. Moreover, the following standard assumptions in secondary

frequency control are made [23, 35, 73]:

i) The voltage amplitudes V ∈ Rn≥0 at all nodes are constant.

ii) The transmission line impedances are purely inductive [1].

iii) The effect of reactive power is neglected.

With these assumptions, two nodes i and k are connected via a non-zero sus-

ceptance Bik ∈ R<0. If there is no line between i and k, then Bik = 0. The

set of neighboring nodes of node i is denoted by Ni = {k ∈N|Bik = 0}. To

represent the closed-loop power system compactly, it is convenient to define

the following vectors θ = col(θi) and ω = col(ωi). Then, the active power flow

can be written as follows P : Rn→ Rn,

P (θ) =∇U(θ),

where the potential function U : Rn→ R is given by

U(θ) =−
∑

{i,k}∈[N]2
|Bik|ViVk cos(θik). (2.2.7)

Let Pm : R≥0→Rn, Ps : R≥0→Rn and p : R≥0→Rn and, furthermore, define

the diagonal and positive definite matrices D ∈ Rn×n, M ∈ Rn×n, K ∈ Rn×n,

Tm ∈ Rn×n and Ts ∈ Rn×n. Then, by combining (2.2.5), (2.2.6) with (2.2.7)

the dynamics of the simplified power network can be compactly written as [74,

Chapter 4]

θ̇ = ωr,

Mω̇r =−Dωr−∇U(θ)−GV 2 +P dm+Pm,
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TmṖm =−Pm+Ps,

TsṖs =−Ps−K−1ωr +p, (2.2.8)

where GV 2 represents (constant active power) the loads, G= col(Gii) ∈ Rn≥0

where Gii ∈ R≥0 is the shunt conductance at the i-th node, and P dm ∈ Rn≥0

denotes the vector of nominal power injection setpoints.

2.2.2 Microgrid model

In the present subsection, a MG with mixed generation pool consisting of rota-

tional and electronic interfaced units is considered. In the previous subsection,

the model of the SG is introduced. Thus this subsection will focus on inverter-

based generators model. Since the work in this thesis focuses on frequency

control, the inverters are modeled such that they provide a synchronous fre-

quency, i.e., a grid-forming mode. The presented modeling is based on the

following references [12, 22, 75]

2.2.2.1 Grid-forming inverter model

A suitable model for the grid-forming inverter is employed to be utilized in the

control design of the secondary frequency controller in MG, see Chapter 3. The

dynamics model of the used grid-forming inverter can be classified as follows:

ii) The inner control loop and the output filter dynamics:

The inner control loop consists of cascaded voltage and current control-

lers to generate the reference voltage signal. Let xIi
: R≥0→ Rm be the

state, denote its input signal by vref i
: R≥0→ R3 and suppose its out-

put signal is vabci
. Furthermore, let the grid-side current be given by

iabci
: R≥0 → R3. Let fi : Rm×R3×R3 → Rm and hi : Rm×R3 → R3

denote continuously differentiable functions and υi ∈R≥0 denotes a time

constant of the dynamics xIi
.

i) The outer control loop dynamics:

This layer consists of active and reactive power controllers, which



2.2. Preliminaries in power systems 20

provide the output voltage angle and magnitude reference by adjust-

ing the predefined setpoints according to a measured power imbalance.

Let zIi
: R≥0 → Rp denotes the state signal of outer control loop and

uIi
: R≥0→ Rq its input signal. Furthermore, let gi : Rp×Rq → Rp and

wi : Rp×Rq→ R3 be continuously differentiable functions.

Thus, the overall inverter dynamics inner control, output filter (the first line),

and outer control system (the second line) can be represented as follows:

żIi
= gi(ZI ,uI),

υiẋIi
= fi(xIi

,wi(ZIi
,uIi

), iabci
),

vabci
= hi(xIi

,wi(ZIi
,uIi

)).

(2.2.9)

Assumption 2.2.1. υi = 0 in (2.2.9). Then, vabci
= wi(ZIi

,uIi
).

Assumption 2.2.1 can be interpreted as the voltage and the current con-

trollers are ideal and lead to fast and error-free tracking of the references. By

using Assumption 2.2.1, the model (2.2.9) can be reduced to only outer control

loop dynamics

żIi
= gi(ZI ,uI),

vabci
= hi(ZI ,uI).

(2.2.10)

As stated in Section 2.2.2, both SGs, and inverter-based units are considered

when modelling the MGs. Thus, to establish a suitable model of the inverter-

based units, following [22], the subsequent model is used assuming a constant

voltage, and the active power output is measured through a filter

θ̇i = ωi = uωi ,

τpiṖ
m
i =−Pmi +Pi,

(2.2.11)

where uωi : R≥0→ R is control signal, Pi is the active power injection of the

inverter, Pmi : R≥0→ R is the measured value with τpi ∈ R>0 being the time

constant of the low pass filter. With regard to primary control, it is assumed
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that all units are equipped with the standard frequency droop controller [1,

76, 77]. Thus, uωi in (2.2.11) can be expressed as

uωi = ωi = ωd−kpi(Pmi −P di ), (2.2.12)

where kpi ∈R>0 is the frequency droop gain, and P di ∈R is the desired setpoint.

Differentiating ωi in (2.2.12) with respect to time and using Pmi in (2.2.12)

yields

ω̇i =−kpiṖ
m
i = kpi

τpi

(−Pmi +Pi),

τpiω̇ =−(ω−ωd)−kpi(Pi+P di ).
(2.2.13)

Then by using (2.2.13) with (2.2.11) the dynamics of the i-th inverter can be

introduced as follows

θ̇i = ωi,

τpiω̇i =−(ωi−ωd)−kpi(Pi+P di ).
(2.2.14)

Note that the dynamics of the inverter in (2.2.14) mimic the behavior of an

SG [22, 78]. In practice, the implementation of droop control in the inverter-

based generator experimentally does not require any mechanical devices; how-

ever, the controller is applied in digital signal processors [79].

2.2.2.2 Microgrid network model

In this section, a suitable model of MG is considered with same assump-

tions in section 2.2.1.2 being applied in here. As MG is small-scale power

system with heterogeneous generation pool (rotational synchronous generat-

ors and inverter-interfaced units), the set of network nodes are denoted by

N = NI ∪NSG, where NI = {1, . . . ,n1}, which represent inverter-based gener-

ators, NSG = {(n1 + 1), . . . ,n}, which represent synchronous generators, with

n≥ 1. The assumption of purely inductive lines is admissible in microgrid ana-

lysis, since the inverter output impedance is typically highly inductive [52, 80].
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Then, the MG dynamics with considering the secondary frequency controller

p are compactly given by [77, 80]

θ̇ = ω,

Mω̇ =−D(ω−1nω
d)−∇U(θ) +P net +p,

(2.2.15)

where D=diag(Di)∈Rn>0 is the matrix of (inverse) droop coefficients, where

for any inverter-interfaced unit D = 1
kpi

, ωd ∈ R>0 is the reference frequency

and p :R≥0→Rn is the secondary frequency control input. Moreover, the

matrix of (virtual) inertia coefficients is given by M =diag(Mi)∈Rn>0, where

for any inverter-interfaced unit Mi=τpiDi. In addition, P net is given by P net=

col(P di −GiiV 2
i ), where P di ∈ R denotes the active power set point and GiiV 2

i ,

Gii∈R≥0, represents the active power demand at the i-th node. Note that

P di = P dm in (2.2.8). Furthermore, the turbine-governor dynamics of the SG in

(2.2.8) are assumed to be ideal and represented by their corresponding steady-

state equations [12, 81].

2.3 Preliminaries in control theory
This section is organized as follows. A brief introduction to the stability of

time-delay systems is given in Subsection 2.3.1. Algebraic graph theory and

consensus protocols are reviewed in Subsection 2.3.2 and Subsection 2.3.3,

respectively. Finally, the L2-gain of dissipative systems is recalled in Subsec-

tion 2.3.4.

2.3.1 Stability of time-delay systems
As discussed in Chapter 1, the employment of the communication network

is mandatory in distributed consensus-based secondary frequency controller.

Besides all the advantages of communication technology, it can introduce addi-

tional vulnerabilities to the system, one of the most prominent being commu-

nication delays. More specifically, in network-based control, sending a signal

through communication channels is subject to delays. These delays are com-

prised of communication delays (transmission delays, propagation delays, pro-
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cessing delays, and queuing delays [82, 83]) and delays caused by the sample-

and-hold function of control variables. In this work, the communication time-

delays under consideration are the aggregation of the delays of information

transmitted to the receiver and the time taken for the receiver to start acting

on it. Since the presence of communication delays influences the system per-

formance and can even lead to instability [84], taking such delays into account

is necessary in order to design a well-functioning secondary frequency con-

troller. The analysis of the time-delay systems falls into two main groups:

Frequency domain analysis and time domain analysis. The frequency do-

main analysis is based on the eigenvalues analysis and an approximation of

the solution of the characteristic equation is required [85]. This approach is

not applicable to the case of time-varying delays. Yet, time-varying delays

are ubiquitous in sampled data networked control systems [25, 26], such as

consensus-based secondary frequency control. The reasons for this are the joint

presence of digital controls and continuous physical dynamics as well as the

fact that network access and propagation delays typically depend on the com-

munication network congestion and are, hence, time-varying [30]. Therefore,

following standard practice in sampled-data and networked control systems,

in the present work the communication delays are represented by bounded,

time-dependent functions [25, 26]. As a consequence, the resulting dynamical

system is non-autonomous, which implies that an eigenvalue-based stability

analysis is inconclusive [86]. The time domain analysis based on the LK the-

ory in combination with a LMI approach [25, 26] is the alternative approach

that is employed in this work.

Studying the time-delay systems has been an active topic for a long time,

but a new set of significant results has been introduced in 21th century such as

these remarkable results [87–89]. In this subsection, the LK theorem is stated.

Then, an overview of the methodology to analyze time-delay systems which

will be used in this thesis is explained. The presented contents are strongly

oriented on [25, 26, 90].
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2.3.1.1 General Lyapunov-Krasovskii theorem

In control systems without time-delays, Lyapunov method is an efficient ap-

proach to study the stability of an equilibrium point of a dynamical system [86].

However, in the case of considering time delays, LK approach is generally

used [26, 91]. Consider the following:

ẋ(t) = f(t,xt), t≥ t0 (2.3.1)

where f : R×C[−h,0]→ Rn is continuous in both arguments and is locally

Lipschitz continuous in the second argument and xt = x(t+φ), φ ∈ [−h,0] and

h∈R>0. Moreover, it is assumed that f(t,0) = 0 ensures that (2.3.1) possesses

a trivial solution x(t) = 01.

Definition 2.3.1 ([26]). The trivial solution of (2.3.1) is

• uniformly (in t0) stable if, for ∀t0 ∈ R and ∀ε > 0, there is δ = δ(ε) > 0

such that

‖xto‖c < δ⇒ |x(t)|< ε, ∀t≥ t0.

• uniformly asymptotically stable if it is uniformly stable and there exists

a δa > 0 such that for any η > 0 there exists a T (δa,η) such that

‖xto‖c < δa⇒ |x(t)|< η, ∀t≥ t0 +T (δa,η) and t0 ∈ R.

The system is uniformly asymptotically stable if its trivial solution is

uniformly asymptotically stable.

Let V : R×C[−h,0]→ R be a continuous functional, and let xτ (t,φ) be

the solution of (2.3.1) at time τ ≥ t with the initial condition xt = φ. The time

derivative of V along (2.3.1) is given by

V̇ (t,φ) = lim sup
∆t→0+

1
∆t [V (t+ ∆t,xt+∆t(t,φ))−V (t,φ)] (2.3.2)

1Without loss of generality, by applying a change of variables, any nontrivial solution
can be reduced to trivial solution.
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Now, LK theorem is ready to state.

Theorem 2.3.2 (Lyaponuv-Krasovskii theorem [26]). Suppose f : R ×

C[−h,0] → Rn maps R×(bounded sets in C[-h,0]) into bounded sets of Rn

and that u,v,w : R≥0→ R≥0 are continuous nondecreasing functions u(s) and

v(s) are positive for s > 0, and u(0)=v(0)=0. The trivial solution of (2.3.1) is

uniformly stable if there exists a continuous functional V :R×C[−h,0]→R>0,

u(|φ(0)|)≤ V (t,φ)≤ v(‖φ‖c), (2.3.3)

and such that its derivation along (2.3.1) is non-positive in the sense that

V̇ (t,φ)≤−w(|φ(0)|) (2.3.4)

If w(s)> 0 for s> 0, then the trivial solution is uniformly asymptotically stable.

Theorem 2.3.2 can be extended to involve the state derivation in the

LKF, i.e, V : R×W [−h,0]×L2(−h,0)→ R≥0. Then the inequalities in The-

orem 2.3.2 become

u(|x(t)|)≤ V (t,xt, ẋt)≤ v(‖xt‖W ),

V̇ (t,xt, ẋt)≤−w(|x(t)|).
(2.3.5)

In the rest of this section, an overview of the methods and techniques used

in this thesis to derive control design procedures or stability conditions in the

thesis is provided. Consider the following general linear time-invariant system

ẋ(t) = Ax(t) +A1x(t− τ(t)), (2.3.6)

where x : R≥0→ Rn is the state vector, A ∈ Rn×n, A1 ∈ Rn×n are constant

matrices and τ : R≥0→ [0,h], h ∈R≥0, denotes the time delay. The reason for

using the linear system (2.3.6) is to focus on the part with time delay and using

a quadratic term to the non-delayed part, see (2.3.7). The subsequent content

will be focusing on the two main aspects of the time-delay system analysis
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which are choosing the appropriate LKF and the used bounding techniques.

2.3.1.2 Choosing an appropriate Lyapunov-Krasovskii functional

Different LKF forms will be briefly discussed. In the beginning, a well-known

LKF that will be used in the subsequent analysis is given by [90, 92–94]:

V (t) =x>(t)Px(t) +
∫ t

t−τ(t)
x>(s)Qx(s)ds+

∫ t

t−h
x>(s)Sx(s)ds

+h

∫ 0

−h

∫ t

t+θ
ẋ>(s)Rẋ(s)dsdθ

(2.3.7)

where P ∈Rn×n, S ∈Rn×n, R∈Rn×n, Q∈Rn×n are positive definite matrices.

Remark 2.3.3. Setting S = R = 0 in (2.3.7) leads to delay-independent sta-

bility conditions. However, this analysis is very conservative, especially with

small delays, and will not be considered in this thesis [26].

Remark 2.3.4. The functional (2.3.7) with Q = 0 results in delay-dependent

conditions for systems with fast-varying delays, i.e., there are no restrictions

on the properties of the time derivative of τ(t) [25, 26].

2.3.1.2.1 Interval time-varying delay

The previous analyses are accounted only for the delay with τ ∈ [0,h]. However,

in some scenarios, the communication delays are modeled as interval delays

where a lower bound for the delay is h0 6= 0, i.e, τ ∈ [h0,h1], and 0≤ h0 ≤ h1.

In order to account for the interval delays, the LKF will be modified as fol-

lows [26]:

V (t) = V1 +V2 +V3,

V1 = x>(t)Px,

V2 =
∫ t

t−h0

x>(s)S0x(s)ds+
∫ t−h0

t−h1

x>(s)S1x(s)ds,

V3 = h0

∫ 0

−h0

∫ t

t+θ
ẋ>(s)R0ẋ(s)dsdθ+ (h1−h0)

∫ −h0

−h1

∫ t

t+θ
ẋ>(s)R1ẋ(s)dsdθ

(2.3.8)
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where P ∈ Rn×n, S1 ∈ Rn×n, S2 ∈ Rn×n, R1 ∈ Rn×n, R2 ∈ Rn×n, are positive

definite matrices. As will be shown in Chapter3 2 and 3, considering the

interval delay leads to less conservative results.

2.3.1.3 Bounded techniques

The result of the derivative of the LKF (2.3.7) by using the Leibniz integral

rule 1 is

V̇ = 2x>(t)Px(t) +x>(t)Sx(t)−x>(t−h)Sx(t−h) +h2ẋ(t)Rẋ(t)

−h
∫ t

t−h
ẋ>(s)Rẋ(s)ds

(2.3.10)

In order to convert the integral parts

−h
∫ t

t−h
ẋ>(s)Rẋ(s)ds=−h

∫ t

t−τ(t)
ẋ>(s)Rẋ(s)ds−h

∫ t−τ(t)

t−h
ẋ>(s)Rẋ(s)ds

(2.3.11)

into suitable LMI, various bounding techniques are utilized to reduce the con-

servatism of the resulting conditions. The following techniques are used in this

work.

2.3.1.3.1 Jensen’s Inequality

Proposition 2.3.5 (Jensen’s Inequality [26]). For any matrix R=R> ∈Rn×n,

h ∈ R, and a vector function x : [−h,0]→ Rnsuch that the integrations con-

cerned are well-defined, the following holds:

∫ 0

−h
x>(u)Rx(u)du≥ 1

h

∫ 0

−h
x(u)>duR

∫ 0

−h
x(u)du. (2.3.12)

Applying the inequality in (2.3.12) to the terms in (2.3.11) yields

−h
∫ t

t−τ(t)
ẋ>(s)Rẋ(s)ds≤ −h

τ(t)

[
x(t)−x(t− τ(t))

]>
R
[
x(t)−x(t− τ(t))

]
,

1Leibniz’s rule

d

dx

(∫ b(x)

a(x)
f(x,t)dt

)
= f(x,b(x)) d

dx
b(x)−f(x,a(x)) d

dx
a(x) +

∫ b(x)

a(x)

∂

∂x
f(x,t)dt (2.3.9)
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−h
∫ t−τ(t)

t−h
ẋ>(s)Rẋ(s)ds≤ −h

h− τ(t)[
x(t− τ(t))−x(t−h)

]>
R
[
x(t− τ(t))−x(t−h)

]
. (2.3.13)

Then, the value of the term −h
∫ t
t−h ẋ(s)>Rẋ(s)ds can be written as follows

−h
∫ t

t−h
ẋ>(s)Rẋ(s)ds=η̄>

−hτ R 0

0 −h
h−τ(t)R

 η̄, (2.3.14)

where

η̄=col(x(t)−x(t− τ(t)),x(t− τ(t))−x(t−h)) .

The above leads to non-convex conditions and conservative results. To over-

come such results, the following technique will be implemented.

2.3.1.3.2 A reciprocally convex approach

Lemma 2.3.6. [26] For any positive definite matrices R1...n ∈ Rn×n, e1...n ∈

Rn, and Sij ∈ Rn×n and positive αi where
∑
αi = 1 such that

Ri Sij

∗ Rj

≥ 0, (2.3.15)

the following inequality holds

N∑
i=1

1
αi
eTi Riei ≥


e1

e2
...

eN



T 
R1 S12 . . . S1N

∗ R2 . . . S1N

∗ ∗ . . . ...

∗ ∗ . . . RN




e1

e2
...

eN

 . (2.3.16)

Now, define e1 = x(t)− x(t− τ), e2 = x(t− τ)− x(t− h), α1 = −τ
h , and

α2 = −h+τ
h . The expression in (2.3.14) can be rewritten using (2.3.16) as follow

−h
∫ t

t−h
ẋ>(s)Rẋ(s)ds≤− η̄>

R S12

∗ R

 η̄, (2.3.17)
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2.3.1.4 The descriptor method

The descriptor method is an efficient tool to perform a stability analysis of the

time-delay system [88]. Consider the following model transformation

ẋ(t) = z(t), 0 =−z(t) +Ax(t) +A1x(t− τ). (2.3.18)

Thus, the system in (2.3.6) can be rewritten as

E ˙̄x(t) = Āx̄(t) + Ā1x̄(t− τ), (2.3.19)

where

x̄=

x(t)

z(t)

 , E =

I 0

0 0

 , Ā=

0 I

A −I

 , Ā1 =

0 0

0 A1

 ,
and x̄(t− τ) =

 0

x(t− τ)

 . (2.3.20)

Then, the used LKF in (2.3.7) is modified as follows

V (t) = x̄>(t)EPx̄(t) +
∫ t

t−τ(t)
x>(s)Qx(s)ds+

∫ t

t−h
x>(s)Sx(s)ds

+h

∫ 0

−h

∫ t

t+θ
ẋ>(s)Rẋ(s)dsdθ.

(2.3.21)

The P matrix in (2.3.21) is defined as P =

P 0

P2 P3

, where P2 ∈ Rn×n and

P3 ∈ Rn×n are slack variables. Then, the time derivative of the first part

of (2.3.21) yields

d

dt
x̄>(t)EPx̄(t) = 2x>Px+ 2[x>P>2 + ẋ>P>3 ][Ax+A1x(t− τ)− ẋ]. (2.3.22)

By choosing P3 = εP2 where ε ∈ R>0 is a tuning parameter and considering ẋ

as a state, we can obtain an efficient control design tool, see Chapter 3.
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2.3.2 Algebraic graph theory
A communication network is essential for the implementation of the distributed

frequency controller. The standard modeling approach for communication-

based networks in the control community is through algebraic graph theory [31,

53]. Therefore, some notation and fundamentals information about algebraic

graph theory are recalled in this subsection.

An undirected weighted graph of order n is a triple G = (V,E, z), with

set of nodes V = {1, . . . ,n}, set of undirected edges E⊆ [V]2, E = {e1, . . . , em},

m= |E| and weight function z : E→R≥0. In the present thesis, two approaches

are employed to define the Laplacian matrix as follows.

i) By associating an arbitrary ordering to the edges, the node-edge incid-

ence matrix B ∈ R|V|×|E| of an undirected graph is defined element-wise

as bil = 1, if node i is the source of the l-th edge el, bil = −1, if i is the

sink of el and bil = 0 otherwise. The Laplacian matrix of an undirected

weighted graph is given by [95, 96]

L = BZB>, Z = diag(zl) , (2.3.23)

where zl ≥ 0 is the weight of the l-th edge, l = 1, . . . ,m.

The definition in (2.3.23) will be employed for the design of a distributed

secondary frequency controller in MGs where the weights of the edge are

treated as variables, for more information see Chapter 3.

ii) The entries of the adjacency matrix A ∈ R|N|×|N| are defined as aik = 1

if there is an edge between nodes i and k and aik = 0 otherwise. The

degree of a node is given by di =
∑|N|

k=1aik. With D= diag(di)∈R|N|×|N|,

the Laplacian matrix of an undirected graph is defined as

L = D−A. (2.3.24)

The formula of the Laplacina matrix in (2.3.24) will be utilized for the
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stability analysis of distributed secondary frequency controller in power

systems, for more information see Chapter 4.

An ordered sequence of nodes such that any pair of consecutive nodes in

the sequence is connected by an edge is called a path. An undirected graph G

is called connected if for all pairs {i,k} ∈ [V]2 there exists a path from i to k.

The Laplacian matrix L of an undirected graph is positive semidefinite with a

simple zero eigenvalue if and only if the graph is connected. The corresponding

right eigenvector to this simple zero eigenvalue is 1n, i.e., L1n = 0n [96]. We

refer the reader to [95, 96] for further information on graph theory.

2.3.3 Consensus protocol

Consensus algorithms are promising control schemes for secondary control

tasks in next-generation power systems, as discussed in Chapter 1. Thus,

this subsection is devoted to introducing the consensus protocol. To achieve

consensus in network systems means that all agents reach an agreement upon

a certain quantity of interest that depends on the state of all agents [31].

Moreover, the consensus protocol (or algorithm) is characterized as a process

that specifies the information exchange between the agent and all of its neigh-

bors on the network [31]. A crucial feature of consensus protocols is that they

are distributed protocols where a central communication is not required.

Consider an undirected weighted network topology represented by

G = (V,E, z). Moreover, suppose that the graph is connected. Then the

typical continuous consensus algorithm of the i−th agent with xi : R≥0→ R

being the state of the agent is described by [31]

ẋ=
n∑
j=1

aij(xj−xi), (2.3.25)

where aij is the (j, i)-th entry of the adjacency matrix A. Furthermore, the

dynamics in (2.3.25) can be compactly written in matrix form as

ẋ=−Lx, (2.3.26)
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where x= col(xi) ∈Rn and L is the Laplacian matrix of the graph. Moreover,

let x(t,x0) denote the solution of (2.3.26) with initial condition x0 ∈Rn. Then,

the algorithm (2.3.26) asymptotically solves an average-consensus problem [31],

i.e.,

lim
t→∞

x(t,x0) = α1n, α = 1
|n|
∑
i∼n

xi(0). (2.3.27)

In the present work, an extension of the protocol (2.3.26) is the weighted

average consensus protocol given by [31]

ẋ=−KLx, (2.3.28)

where K ∈ Rn×n is a positive definite diagonal matrix.

Consensus protocols are distributed protocols, and peer-to-peer commu-

nication between participating units is essential for their implementation [31].

In any real-world setting, the information is not propagating through the net-

work under ideal conditions. Therefore in any practical situation, the inform-

ation exchange between agent i and its neighbour agent j will be affected by

communication delay τ . Consequently, the consensus algorithm is modified to

incorporate the communication delay as follows [31]

ẋ=−KLx(t− τ). (2.3.29)

The loss of information, e.g., due to package losses or link failures, is modeled

via a dynamic communication network with switched communication topology

Gσ(t) [29–31, 97]. Here, σ : R≥0→M is a switching signal, M = {1,2, . . . ,ν},

ν ∈ R>0, is an index set and {G1,G2, . . . ,Gν} denotes the set of finite network

topologies. We denote by L` = L(G`) the Laplacian matrix corresponding to

the index ` = σ(t) ∈M and by E` the corresponding set of edges. As done in

[14, 29, 31, 97], we assume that the communication topology Gσ(t) is undir-

ected and connected for all t ∈ R≥0. The consensus algorithm with switched
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communication topology is given by

ẋ=−KL`x(t). (2.3.30)

2.3.4 L2-Gain of dissipative systems

The content of this subsection briefly recalls some standard results on dissip-

ative systems based on [86, 98]. Consider the state space system

Σ :

 ẋ = f(x,u),

y = h(x,u)
, (2.3.31)

with x ∈ Rn, u ∈ Rm and y ∈ Rp.

A signal u : R≥0→ Rm is in L2 if its L2-norm ‖u‖L2 , given by

‖u‖L2 =

√∫ ∞
0

u>(t)u(t)dt,

is finite. The extended L2-space L2e is defined by

L2e = {u |uτe ∈ L2∀τe ∈ [0,∞)},

where uτe , τe ∈ [0,∞), is the truncation of u defined by

uτe =

u(t), 0≤ t≤ τe

0, t > τe

.

The following notions are employed in this thesis.

Definition 2.3.7. The state space system Σ is said to have finite L2-gain if

there exist finite nonnegative constants γ and b, such that for all τe ≥ 0 and

for all u ∈ L2e,

‖yτe‖L2 ≤ γ‖uτe‖L2 + b.

Definition 2.3.8. The state space system Σ is dissipative with respect to the
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supply rate s : Rm×Rq→R if there exists a function S : Rn→R≥0, called the

storage function, such that for all t1 ≥ t0 and all input functions u,

S(x(t1))≤ S(x(t0)) +
∫ t1

t0

s(u(t),y(t))dt.

Definition 2.3.9. The state space system Σ has a L2-gain less than or equal

to γ if it is dissipative with respect to the supply rate s(u,y) = 1
2(γ2‖u‖22−‖y‖22).

The L2-gain of Σ is defined as γ(Σ) = inf{γ |Σ has L2-gain≤ γ}.

Based on [86, Definition 6.2], differently from the above definition, the

following notion of a small-signal L2-gain with u ∈ L2e is employed.

Definition 2.3.10. The state space system Σ has a small-signal L2-gain less

than or equal to γ if it is dissipative with respect to the supply rate s(u,y) =
1
2(γ2‖u‖22−‖y‖22) for all u ∈ Lm2 with sup0≤t≤τe

‖uτe‖2 ≤ r for some positive

real constant r.



Chapter 3

Delay-robust distributed

secondary frequency control

design for microgrids

3.1 Introduction

As discussed in Chapter 1, one of the main objectives of the present thesis is

a synthesis of distributed secondary frequency controllers in MGs. A suitable

model of MG, to be used in this Chapter, has been developed in Chapter 2.

Build upon this model, a control design is proposed such that delay robustness,

disturbance attenuation, and communication topology design are addressed.

The work of this Chapter is motivated by the fact that the development of

holistic design criteria, which takes into account the physical and cyber layers

of the system, is highly desirable to further facilitate a robust and efficient

implementation of consensus-based secondary controllers in MGs.
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3.2 Distributed secondary frequency control

in microgrid

3.2.1 Objectives and distributed control scheme

Suppose that the solutions of the system (2.2.15) evolve along a motion with

constant frequency ωs = 1nω∗, ω∗ ∈ R. Then,

1>nMω̇s = 0 ⇒ ω∗ = ωd+ 1>nP
net + 1>n u

∗

1>nD1n
, (3.2.1)

where the fact that 1>n∇U(θ) = 0 has been used. A standard requirement

in power system operation is that in steady-state ω∗ = ωd, i.e., the network

synchronizes to the nominal frequency [1, 76]. However, in practice, the load

demands GiiV 2
i contained in P net in (2.2.15) are unknown and thus, typically,

1>nP
net 6= 0. Therefore, the control inputs u∗ have the task to compensate this

power imbalance such that indeed ω∗ = ωd, see (3.2.1). This task is termed

secondary frequency control [1, 76].

The work in the present chapter aims at achieving this classical secondary

control objective by simultaneously allocating the stationary secondary control

injections in an optimal fashion, i.e. by solving an economic dispatch problem

online. Therefore, the following optimization problem [45] is introduced:

min
u∗

1
2(u∗)>Au∗,

subject to 1>nP
net + 1>n u

∗ = 0,
(3.2.2)

where A= diag(Aii) ∈ Rn×n is a diagonal positive definite weighting matrix.

Hence, the cost function is quadratic and strictly convex. It can be seen

from (3.2.1) that satisfying the constraint in (3.2.2) guarantees steady-state

frequency restoration.

Let K ∈ Rn×n>0 be a diagonal feedback gain matrix and L ∈ Rn×n be the

Laplacian matrix of an undirected and connected graph with incidence matrix
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B and diagonal matrix of nonnegative edge weights Z, see (2.3.23). Consider

the distributed secondary frequency control [14, 52, 99]

u=−p,

ṗ=K(ω−1nω
d)−KALAp.

(3.2.3)

It has been shown in [46, 47], that the control (3.2.3) restores the frequency to

its nominal value, while ensuring economic optimality in a synchronized state

if A is formulated by economic considerations., i.e.,

Aiiu
s
i = Akku

s
k ∀i ∈N, ∀k ∈N.

As discussed in Chapter 2, there will always be a certain minimum commu-

nication delay between different agents, i.e., in the present case generation

units [100]. As a consequence, the information sent from node i to node k

over the edge {i,k} is affected by communication delay that is modeled by an

interval (or non-small) delay [26]

τik : R≥0→ [h0ik
,h1ik

],

with upper and lower bounds 0 ≤ h0ik
≤ h1ik

. In addition, the subsequent

analysis also accounts for asymmetric delays, i.e., τik 6= τki. The corresponding

control error eik is then computed as [29, 31]

eik(t) = Aiipi(t− τik(t))−Akkpk(t− τik(t)). (3.2.4)

To obtain a compact representation of the closed-loop system, the matrices

B̄r ∈ R|V|×|E|, r = 1, . . . ,2m are introduced, where m = |E| is the number of

edges of the undirected graph. Since it is allowed for τik(t) 6= τki(t), 2m

matrices B̄r are required to represent all delayed information flows in the

network. The matrices B̄r are defined as follows. If node i is the source of the

r-th edge {i,k} and the information flow is affected by the delay τr(t) = τik(t),
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Figure 3.1: Example of undirected connected graph

then b̄ir = 1 and all other entries of B̄r are zero. If node i is the sink of the r-th

edge {i,k} and the information flow is affected by the delay τr(t) = τik(t), then

b̄ir = −1 and all other entries of B̄r are zero. Hence, the Laplacian matrix

can be obtained by
2m∑
r=1

B̄rZB
> = L,

and by introducing

Tr = B̄rZB
>, (3.2.5)

the control law in (3.2.3) can be written compactly as

ṗ=K(ω−1nω
d)−KA

( 2m∑
r=1

TrAp(t− τr)
)
. (3.2.6)

Hence, given (3.2.3), the distributed secondary control design problem

requires determining the matrices K and Z. This problem is addressed in the

present Chapter.

As the term Tr is playing an important rule in the controller low (3.2.6),

the following example serves to help to understand how to construct this term.

Example 3.2.1. Consider an undirected and connected graph with 3 nodes, 2

undirected edges and a weighting matrix Z= diag(1,1,1), as shown in figure 3.1.

Moreover, consider 4 different delays τr, r = 1, . . . ,4. Then, the matrices B̄r

and B can be represented as

B =

1 −1 0

0 1 −1

> , B̄1 =

1 0 0

0 0 0

> , B̄2 =

0 −1 0

0 0 0

> ,
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B̄3 =

0 0 0

0 1 0

> , B̄4 =

0 0 0

0 0 −1

> ,
Using (3.2.5) leads to

T1 =


1 −1 0

0 0 0

0 0 0

 T2 =


0 0 0

−1 1 0

0 0 0

 T3 =


0 0 0

0 1 −1

0 0 0

 T4 =


0 0 0

0 0 0

0 −1 1


By using

∑2m
r=1Br = B, tha Laplacian matrix can be obtained as follows

2m∑
r=1

B̄rZB
> =

2m∑
r=1

T̄r = L =


1 −1 0

−1 2 −1

0 −1 1


,3.2.2 Closed-loop system
Combining (2.2.15) with (3.2.3) yields

θ̇ = ω,

Mω̇ =−D(ω−1nω
d)−∇U(θ) +P net−p,

ṗ=K(ω−1nω
d)−KA

( 2m∑
r=1

TrAp(t− τr)
)
.

(3.2.7)

For the subsequent controller synthesis, the following notion is useful, see also

[14, 80].

Definition 3.2.2. The system (3.2.7) admits a synchronized motion if it has

a solution for all t≥ 0 of the form

θs(t) = θs0 +ωst, ωs = ω∗1n, ps ∈ Rn,

where ω∗ ∈ R and θs0 ∈ Rn are such that

|θs0,i− θs0,k|<
π

2 ∀i ∈N, ∀k ∈Ni.
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It has been shown in [46, 47, 99] that the system (3.2.7) possesses at most

one synchronized motion col(θs,ωs,ps) which is not affected by the existence

of time-delay. This motion also fulfills the identical marginal cost require-

ment (3.2.4) and is described by

us =−ps, ps = λA−11n, λ= 1>n p
net

1>nA−11n
. (3.2.8)

The objective of this Chapter is to develop a design procedure for the

consensus-based secondary frequency controller (3.2.6) that ensures robustness

with respect to heterogeneous fast-varying communication delays. Meanwhile,

the proposed synthesis provides the option to achieve a trade-off between the

L2-gain performance and the number of required communication links.

3.3 Controller synthesis

3.3.1 Coordinate transformation and error system

Following the approach in [14], a coordinate transformation and reduction

are performed that are instrumental to the proposed synthesis. Let K = κK,

where K ∈Rn×n is a diagonal matrix with positive diagonal entries and κ > 0

is a parameter. Note that the fact that
∑2m

r=1Tr1n = L1n = 0n leads to an

invariant subspace in the p-variables, which highly complicates the design of a

strict LKF for the dynamics (3.2.7). Thus, to develop the controller synthesis

in the presence of heterogeneous fast-varying delays the following coordinate

transformation with p̄∈Rn−1 and ζ ∈R is employed to eliminate this invariant

subspace p̄
ζ

= W>(κK)−
1
2p, W =

[
W 1√

µK
− 1

2A−11n
]
, (3.3.1)

where W ∈ Rn×(n−1) is chosen such that W>K−
1
2A−11n = 0n−1 and µ =

‖K− 1
2A−11n‖22. Hence, the column vectors of W form an orthonormal basis

that is orthogonal to K−
1
2A−11n. Thus, the transformation matrix W ∈Rn×n
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is orthogonal, i.e.,

WW> =WW>+ 1
µ
K−

1
2A−11n1>nK

− 1
2A−1 = In. (3.3.2)

From (3.3.1) ζ is given by

ζ = κ−
1
2

√
µ

1>nA
−1K−1p. (3.3.3)

By using (3.2.7) together with the fact
∑2m

r=1Tr1n = 0n, the following is ob-

tained

ζ̇ = κ
1
2
√
µ

1>nA
−1(ω−1nω

d),

which by integrating with respect to time and recalling (3.3.3) yields

ζ = κ
1
2
√
µ

1>nA
−1(θ− θ0−1nω

dt+κ−1K−1p0) = κ
1
2
√
µ

1>nA
−1
(
θ−1nω

dt
)

+ ζ̄0,

(3.3.4)

where

ζ̄0 = κ
1
2
√
µ

1>nA
−1 (κ−1K−1p0− θ0

)
. (3.3.5)

Thus,

p=(κK)
1
2 Wp̄+ 1

√
µ

(κK)
1
2 K−

1
2A−11nζ,

=(κK)
1
2 Wp̄+ κ

µ
A−11n1>nA

−1(θ−1nω
dt) + κ

1
2
√
µ
A−11nζ̄0,

and

p(t− τr) =(κK)
1
2 Wp̄(t− τr) + 1

√
µ

(κK)
1
2 K−

1
2A−11nζ(t− τr),

r = 1, . . . ,2m. By using (3.3.1) and following the procedure in [14, Section

3.2], the closed-loop system (3.2.7) in new reduced order coordinates can be
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represented by

θ̇ =ω,

Mω̇ =−D(ω−1nω
d) +P net−∇U(θ)− (κK)

1
2 Wp̄

− κ
µ
A−11n1>nA

−1(θ−1nω
dt)− κ

1
2
√
µ
A−11nζ̄0,

˙̄p=κ
1
2W>K

1
2 (ω−1nω

d)−κW>K
1
2A

( 2m∑
r=1

TrAK
1
2Wp̄(t− τr)

)
, (3.3.6)

where the variable ζ in (3.3.1) has been expressed in terms of θ, ωd, θ0 and p0,

see (3.3.4). The following assumption is made [14, 80].

Assumption 3.3.1. The system (3.3.6) possesses a synchronized motion.

With Assumption 3.3.1, the error states are defined as follows

ω̃ = ω−ωs, θ̃ =
(
θ0− θs0 +

∫ t

0
ω̃(τ)dτ

)
,

p̃= p̄− p̄s, x= col(θ̃, ω̃, p̃).

Since one of the key contributions of this Chapter is to provide a controller

synthesis that is explicitly robust with respect to exogenous perturbations (in

terms of the system’s L2-gain), the output performance is stated before rep-

resenting the closed-loop system in the reduced error coordinate. It is assumed

that both the communication and electrical layers are exposed to disturbances

dω : R≥0→ Rn, dω ∈ Ln2e, dp : R≥0→ Rn−1, dp ∈ Ln−1
2e , respectively. Inspired

by [55], the performance output of the closed-loop system is defined as

y =

W 1
2

1 ω̃

W
1
2

2 p̃

 ,
where the weighting matrix

W1 =M > 0, (3.3.7)
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accounts for the system’s kinetic energy and the matrix

W2 =W>K
1
2 W̄2K

1
2W, W̄2 = In−

1
1>nA−11n

A−
1
2 1n1>nA

− 1
2 , (3.3.8)

quantifies the deviation of the controller states (in error coordinates) from their

average (scaled by κ−1A
1
2 ).

Then, the error system corresponding to (3.3.6) is given by

˙̃θ =ω̃,

M ˙̃ω =−Dω̃−∇U(θ̃+ θs) +∇U(θs)− (κK)
1
2Wp̃− 1

µ
κA−11n1>nA

−1θ̃+dω,

˙̃p=κ
1
2W>K

1
2 ω̃−κW>K

1
2A

( 2m∑
r=1

TrAK
1
2Wp̃(t− τr)

)
+dp,

y =

W 1
2

1 ω̃

W
1
2

2 p̃

 , d=

dω
dp

 . (3.3.9)

Moreover, with Assumption 3.3.1, the system (3.3.9) has an equilibrium point

xs = col(θ̃s, ω̃s, p̃s) at the origin. Recall that ωs and ps are uniquely given

by (3.2.8). Hence, for any fixed ζ̄0 asymptotic stability of xs implies that any

solution col(θ,ω,p) of the original system (3.2.7) with an initial condition that

satisfies

ζ̄0 = κ
1
2
√
µ

1>nA
−1 (κ−1K−1p0− θ0

)
,

converges to a synchronized motion col(θs,ωs,ps) with initial angles satisfying

ζ̄0 = κ
1
2
√
µ

1>nA
−1 (κ−1K−1ps− θs0

)
.

This applies for any value of ζ̄0. Moreover, the dynamics in (3.3.9) are inde-

pendent of ζ̄0. Consequently, xs being asymptotically stable implies that all

solutions of the original system (3.2.7) converge to a synchronized motion.
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3.3.2 Problem statement
The desired robustness properties are accounted for in our approach by using

the LK and descriptor methods together with a L2-gain dissipation inequal-

ity for time-delay systems, see Definition 2.3.8 and [Chapters 4 and 5][26].

Compared to [26] these methods applied to the nonlinear system (3.3.9).

The number of communication links could be minimized by means of

the 0-norm of the vector Z1m, i.e., ‖Z1m‖0 = {number ofzi|zi 6= 0} (recall

from (2.3.23) that Z ≥ 0 is a diagonal matrix). Yet, the difficulty in using

this approach is that the problem is non-convex. Hence, to overcome the non-

convexity, the `1-norm ‖Z1m‖1 =
∑m

i=1 |zi| is often used as a convex relaxation

of the 0-norm [101–104]. This is motivated by the fact the `1-norm is the convex

envelope of the 0-norm and therefore its best convex relaxation [103, 104]. To

further improve this relaxation, the reweighted `1-norm ‖WZZ1m‖1 can be

used [104], where the entries of the diagonal matrix WZ are chosen as

wZ,i = (zi+υ)−1, i= 1, . . . ,m, (3.3.10)

with υ being a small positive number. This, however, implies that an iterative

scheme is needed, since the assigned values of the weighting matrix WZ depend

on the solution of the optimization problem.

The above discussion leads to the following problem formulation.

Problem 3.3.2. Consider the system (3.3.9) with Assumption 3.3.1. Determ-

ine κ and Z, such that given h0r ∈ R>0, h1r ∈ R>0 with h0r ≤ τr(t) ≤ h1r ,

r = 1, . . . ,2m,

• xs = 03n−1 is a uniformly asymptotically stable equilibrium point of the

system (3.3.9),

• the system (3.3.9) is dissipative with respect to the supply rate s(d,y) =
1
2(γ2‖d‖22−‖y‖22), where d and y are given in (3.3.9),

• and the number of communication links is minimized, i.e., minZ≥0 trace(Z).
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3.3.3 Main result

To present the main result, it is convenient to introduce the scaled matrix

of edge weights and the corresponding scaled interconnection matrices of the

communication network, i.e.,

Z̄ = κZ, T̄r =W>K
1
2AB̄rZ̄B

>AK
1
2W. (3.3.11)

Proposition 3.3.3. Consider the system (3.3.9) with Assumption 3.3.1. Re-

call the weighting matrices W1 and W2 given in (3.3.7) and (3.3.8), respect-

ively. Fix constants 0 ≤ h0r ≤ h1r , r = 1, . . . ,2m, K > 0 and ε > 0 as well as

weighting parameters α > 0, β > 0 and a diagonal weighting matrix WZ > 0.

Suppose that there exist parameters γ̄ > 0 and κ̄ > 0 and matrices Z̄≥ 0, P > 0,

R0r > 0, R1r > 0, S0r > 0, S1r > 0 and S12r , such that the following optimiza-

tion problem is feasible:

min
γ̄,κ̄,Z̄

α γ̄−β κ̄+ trace
(
WZZ̄

)
subject to

QH =

QH1 QH2

∗ QH3

< 0,

(3.3.12)

where

QH1 =



−D+ 1
2W1 0 1

2εκ̄K
1
2W 0 0 0

∗ Qh22 P − 1
2In−1 Qh24 Qh25 0

∗ ∗ Qh33 0 Qh35 0

∗ ∗ ∗ Qh44 Qh45 S12

∗ ∗ ∗ ∗ Qh55 Qh56

∗ ∗ ∗ ∗ ∗ Qh66


,

QH2 =

1
2In 0 0 0 0 0

0 1
2In−1

ε
2In−1 0 0 0

> ,
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QH3 =

−1
2 γ̄In 0

∗ −1
2 γ̄In−1


S0 = blockdiag(S0r), R0 = blockdiag(R0r), S1 = blockdiag(S1r),

R1 = blockdiag(R1r), S12 = blockdiag(S12r),

Qh22 =
2m∑
r=1

S0r −
2m∑
r=1

R0r + 1
2W2, Qh24 =

[
R01 . . .R02m

]
,

Qh25 =
[
−1

2 T̄1, . . . ,−
1
2 T̄2m

]
, Qh33 =−εIn−1+

2m∑
r=1

h2
0r
R0r +

2m∑
r=1

(h1r−h0r)2R1r ,

Qh35 =
[
−ε2 T̄1, . . . ,−

ε

2 T̄2m
]

Qh44 =−S0 +S1−R0−R1,

Qh45 =Qh56 =R1−S12, QH55 =−2R1 +S12 +S>12, Qh66 =−R1−S1,

with T̄r being defined in (3.3.11) and

R1 S12

∗ R1

≥ 0. (3.3.13)

Choose the controller parameters as

κ= κ̄2, Tr = 1
κ
B̄rZB>. (3.3.14)

Then, for all τr(t) ∈ [h0r ,h1r ], the origin is a locally uniformly asymptotically

stable equilibrium point of the system (3.3.9) and the system has a small-signal

L2-gain less than or equal to γ =
√
γ̄ with respect to the supply rate s(d,y) =

1
2
(
γ2‖d‖22−‖y‖22

)
, where d and y are given in (3.3.9).

Proof. The proof is established by combining ideas of the related stability

analysis conducted in [14] with the control design approach using the descriptor

method, which has been applied previously to linear time-delay systems, see,

e.g., [26]. By noting that the delay appears only in p̃, consider the LKF

V (x, ẋ, t) = V1 +
2m∑
r=1

V2r ,
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V1 = 1
2 ω̃
>(t)Mω̃(t) +U(θ̃(t) + θs)−∇U(θs)>θ̃(t) + p̃>(t)P p̃(t)

+ κ

2µ(1>nA−1θ̃(t))2 + εω̃>(t)M1n1>nA
−1θ̃(t)

+ εω̃>(t)AM
(
∇U(θ̃(t) + θs)−∇U(θs)

)
,

V2r =
∫ t

t−h0r

p̃>(s)S0r p̃(s)ds+
∫ t−h0r

t−h1r

p̃>(s)S1r p̃(s)ds

+h0r

∫ 0

−h0r

∫ t

t+φ
˙̃p>(s)R0r

˙̃p(s)dsdφ+ (h1r −h0r)
∫ −h0r

−h1r

∫ t

t+φ
˙̃p>(s)R1r ˙̃p(s)dsdφ,

(3.3.15)

where ε > 0, P > 0, S0r > 0, S1r > 0, R0r > 0, and R1r > 0.

The function V1 consists of the traditional kinetic and potential energy

terms ω̃>Mω̃ and U(θ̃(t)+θs), respectively, together with a Bregman term to

center the Lyapunov function [54] as well as a quadratic term in the reduced

controller states p̃. Furthermore, a Chetaev-type cross term between ω̃ and

θ̃ is added, which - as shown in the sequel - is essential to ensure that V̇ is

strictly negative definite. The function V2r are designed to account for the

presence of interval fast-varying communication delays [26].

The first step is to show that V in (3.3.15) is strict locally positive definite.

The gradient of V1 is given by

∇V1 =


v1

Mω̃+ εAM(∇U(θ̃+ θs)−∇U(θs)) + εM1n1>nA
−1θ̃

2P p̃

 , (3.3.16)

with

v1 =∇U(θ̃+ θs)−∇U(θs) + ε∇2U(θ̃+ θs)>MAω̃+ κ

µ
(A−11n1>nA

−1)θ̃

+ εA−11n1>nMω̃,

Clearly, at the equilibrium point xs = 03n−1, ∇V1 = 03n−1. Moreover the



3.3. Controller synthesis 48

Hessian of V1 evaluated at xs is given by

∇2V1|xs =


∇2U(θs) + κ

µA
−11n1>nA

−1 v12 0

∗ M 0

∗ ∗ 1
2In−1

 , (3.3.17)

where

v12 = εAM∇2U(θs) + εM1n1>nA
−1. (3.3.18)

It is known that with Assumption 3.3.1, ∇2U(θs) is a Laplacian matrix with

ker(∇2U(θs)) = span(1n) [14, 80]. Furthermore, A−11n1>nA
−1 is a positive

semidefinite matrix and ker(A−11n1>nA
−1)∩ker(∇2U(θs)) = 0n. In addition,

M is a diagonal matrix with positive diagonal entries. Thus, all block-diagonal

entries of ∇2V1|xs are positive definite. This implies that there is a sufficiently

small ε∗ > 0 such that for all ε ∈]0, ε∗], ∇2V1|xs > 0. Furthermore, S0r , S1r,

R0r , and R1r in V2r are positive definite matrices. Therefore, xs is a strict

minimum of V .

Recall that the objective here is to design controller gains, such that the

L2-gain of the system (3.3.9) is minimized while also ensuring delay robust-

ness. By using [26, Lemma 4.3], this translates to the following constrained

optimization problem

minγ

subject to

V̇ (x, ẋ, t)−1
2
(
γ2‖d(t)‖22−‖y(t)‖22

)
≤−%

(
‖x(t)‖22+‖d(t)‖22

)
,

where V̇ denotes the time-derivative of the LKF V in (3.3.15) and % is some

positive constant. Differentiating V yields

V̇ =V̇1 +
2m∑
r=1

V̇2r ,
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V̇1 =− ω̃>Dω̃−κ
1
2 ω̃>K

1
2Wp̃+ ω̃>dω + p̃>P ˙̃p+ ˙̃p>P p̃+ εω̃>AM∇2U(θ̃+ θs)ω̃

− εω̃>DA
(
∇U(θ̃+ θs)−∇U(θs)

)
+ εd>ωA

(
∇U(θ̃+ θs)−∇U(θs)

)
− εp̃>W>(κK)

1
2A
(
∇U(θ̃+ θs)−∇U(θs)

)
− ε
(
∇U(θ̃+ θ∗)−∇U(θs)

)>
A
(
∇U(θ̃+ θs)−∇U(θs)

)
+ εω̃>M1n1>nA

−1ω̃− εω̃>D1n1>nA
−1θ̃− εp̃>W>(κK)

1
2 1n1>nA

−1θ̃

+ εd>ω1n1>nA
−1θ̃− εκ

µ
θ̃>A−11n1>nA

−11n1>nA
−1θ̃,

V̇2r =p̃>(t)S0r p̃(t)−p̃>(t−h0r)(S0r −S1r) p̃(t−h0r)− p̃>(t−h1r)S1r p̃(t−h1r)

+ ˙̃p>(t)
(
h2

0r
R0r + (h1r −h0r)2R1r

) ˙̃p(t)

−h0r

∫ t

t−h0r

˙̃p>(s)R0r
˙̃p(s)ds− (h1r −h0r)

∫ t−h0r

t−h1r

˙̃p>(s)R1r
˙̃p(s)ds.

(3.3.19)

Since under the conditions of the proposition 3.3.3, the second LMI in (3.3.12)

is feasible, applying Jensen’s inequality together with Lemma 3.3 in [26], see

also [105], gives

−h0r

∫ t

t−h0r

˙̃p>(s)R0r
˙̃p(s)ds≤−

[
p̃(t)− p̃(t−h0r)

]>
R0r

[
p̃(t)− p̃(t−h0r)

]
,

and, likewise,

−(h1r −h0r)
∫ t−h0r

t−h1r

˙̃p>(s)R1r
˙̃p(s)ds

≤−

p̃(t−h0r)−p̃(t− τr(t))

p̃(t− τr(t))−p̃(t−h1r)

>R1r S12r

∗ R1r

p̃(t−h0r)−p̃(t− τr(t))

p̃(t− τr(t))−p̃(t−h1r)

 ,

Next, the descriptor method is applied, see [26, Chapter 3] and 2.3.1.4.

Let P2 and P3 be matrix variables and add the expression

0 = 2
[
p̃>P>2 + ˙̃p>P>3

][
κ

1
2W>K

1
2 ω̃
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−κW>K
1
2A

( 2m∑
r=1

TrAK
1
2Wp̃(t− τr(t))

)
+dp− ˙̃p

]
,

to (3.3.3). Furthermore, by defining

ξ =col
((
∇U(θ̃+ θs)−∇U(θs)

)
,
(

1n1>nA
−1θ̃
)
, ω̃, p̃, ˙̃p,ξ1, ξ2, ξ3,dω,dp

)
,

ξ1 =col(p̃(t−h01), . . . , p̃(t−h02m)) ,

ξ2 =col(p̃(t− τ1(t)), . . . , p̃(t− τ2m(t))) ,

ξ3 =col(p̃(t−h11), . . . , p̃(t−h12m)) ,

selecting P2 = 1
2In−1 and P3 = εP2 = ε

2In−1 with ε > 0, recalling T̄r in (3.3.11)

and defining κ̄= κ
1
2 and γ̄ = γ2, The following can be obtained

V̇ − 1
2
(
γ2‖d‖22−‖y‖22

)
≤ ξ>

0 0

∗ QH

+ εΞH

ξ, (3.3.20)

where

QH =

QH1 QH2

∗ QH3

 (3.3.21)

QH1 =



−D+ 0.5W1
1
2(κK) 1

2 (−W + 2WP2) (κK) 1
2WP3 0 0 0

∗ Qh22 P −P>2 Qh24 Qh25 0

∗ ∗ Qh33 0 Qh35 0

∗ ∗ ∗ Qh44 Qh45 S12

∗ ∗ ∗ ∗ Qh55 Qh56

∗ ∗ ∗ ∗ ∗ Qh66


,

QH2 =

1
2In 0 0 0 0 0

0 P>2 P>3 0 0 0

> ,
QH3 =

−1
2 γ̄In 0

∗ −1
2 γ̄In−1


(3.3.22)
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with

S0 = blockdiag(S0r), R0 = blockdiag(R0r), S1 = blockdiag(S1r),

R1 = blockdiag(R1r), S12 = blockdiag(S12r),

Qh22 =
2m∑
r=1

S0r −
2m∑
r=1

R0r + 1
2W2, Qh24 =

[
R01 . . .R02m

]
,

Qh25 =
[
Q̄h25,1 , . . . , Q̄h25,2m

]
, Q̄h25,r

=−κP>2 W>K
1
2ATrAK

1
2W,

Qh33 =−P>3 −P3+
2m∑
r=1

(
h2

0r
R0r + (h1r −h0r)2R1r

)
,

Qh35 =
[
Q̄h35,1 , . . . , Q̄h35,2m

]
, Q̄h35,r

=−κP>3 W>K
1
2ATrAK

1
2W,

Qh44 =−S0 +S1−R0−R1, QH45 = Qh56 =R1−S12,

Qh66 =−S1−R1

and

ΞH =



−A 0 −1
2AD −1

2A(κK) 1
2W 0 0 0 0 1

2A 0

∗ −κ
µA
−1 −1

2D −1
2(κK) 1

2W 0 0 0 0 1
2In 0

∗ ∗ 1
2E33 0 0 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0



,

where
E33 =AM∇2U(θ̃+ θs) +∇2U(θ̃+ θs)MA+M1n1>nA

−1 +A−11n1>nM.
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Under the standing assumptions, QH < 0. Furthermore, the upper 2× 2

block of ΞH is negative definite. Thus, by invoking [14, Lemma 11], it is

concluded that the matrix sum in (3.3.20) is negative definite for some small

ε > 0. Consequently,

V̇ (x, ẋ, t)− 1
2
(
γ2‖d(t)‖2−‖y(t)‖2

)
≤−%

(
‖x(t)‖22 +‖d(t)‖22

)
,

for some ε ∈ R>0 and % ∈ R>0. By invoking [26, Lemma 4.3] it is concluded

that the origin of the system (3.3.9) is locally uniformly asymptotically stable

and that the system has a small-signal L2-gain less than or equal to γ =
√
γ̄.

To conclude the proof, note that the matrix QH in (3.3.12) is a LMI in

the controller variables κ̄ and L̄ as well as in the auxiliary variables γ̄, R, S12

and S with additional (fixed) tuning parameter ε. The matrix QH1 in the LMI

in (3.3.12) corresponds to the delay-robustness and the shape of the communic-

ation network, while the rest are for including L2-gain performance. Therefore,

sparsity of the communication network can be included in the control design

by augmenting the cost function in the optimization problem (3.3.12) with the

term trace
(
Z̄
)
. This yields the convex optimization problem (3.3.12), where

additional weighting factors have been included to trade off L2-gain perform-

ance (α) against frequency error convergence1 (β) and communication efforts

(WZ). ���

Remark 3.3.4. The proposed control synthesis in Proposition 3.3.3 is stated

in the form of a standard optimization problem, i.e.

min
x
f(x)

subject to A(x,y)< 0,

1In the author’s experience, with β = 0 the numerical value of κ̄ resulting from the
optimization problem is typically very small. This is explained by the fact that κ̄ only
appears in a positive off-diagonal term in QH in (3.3.12). Yet, when tested in simulations
it turns out that a minimum value of κ̄ is required to drive the frequency error to zero, thus
justifying the choice β > 0.
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with decision variables x and y and A represents a linear matrix inequality in

x and y. Moreover, the subjected LMIs in (3.3.12) result in controller paramet-

ers to ensure delay-robust stability and disturbance attenuation and minimize

the number of communication links. The influence of parameters in the cost

function is shown in the numerical example.

Remark 3.3.5. With regard to the feasibility of the optimization problem

(3.3.12) we see from the definition of the matrix QH in (3.3.12) that for any

given h0r , h1r , r= 1, . . . ,2m, choosing ε� 0, κ̄� 1 (positive off-diagonal term)

and ‖Z̄‖ � 1 (positive off-diagonal term), ensures that there always exists

γ̄� 1 (positive on-diagonal term with negative sign) such that QH < 0. Hence,

the optimization problem can always be parametrized, such that a feasible

solution exists. However, we can also see from (3.3.12) that with increasing

value of h1r , the achievable L2-gain performance is likely to deteriorate, which

is to be expected (as in the considered system (3.3.9) delays deteriorate the

performance).

Remark 3.3.6. The optimization problem (3.3.12) has been derived such

that it is linear and convex in both the objective function and the constraints.

Hence, it can be solved efficiently using standard numerical methods [106, 107],

also for large-scale problems.

Remark 3.3.7. In order to obtain the minimum number of communication

links, the optimization problem (3.3.12) is solved for a number of iterations,

in each of which the weight matrix WZ is updated. Hence, in each of these

iterations the conditions of Proposition 3.3.3 are satisfied, see the numerical

example for more details.

The proposed control design in (3.3.12) can be further reduced and in-

troduced in a simpler way, if a uniform delay is considered, i.e., h0r = 0,

τr(t) = τ(t) ∈ [0,h], h1r = h, r = 1, . . . ,2m. This leads to representing the

closed-loop system (3.3.9) as follows

˙̃θ = ω̃,
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M ˙̃ω =−Dω̃−∇U(θ̃+ θs) +∇U(θs)− (κK)
1
2Wp̃− 1

µ
κA−11n1>nA

−1θ̃+dω,

˙̃p= κ
1
2W>K

1
2 ω̃−κW>K

1
2ALAK

1
2Wp̃(t− τ) +dp,

y =

W 1
2

1 ω̃

W
1
2

2 p̃

 , d=

dω
dp

 . (3.3.23)

Furthermore, the terms in (3.3.11) can also be rewritten as

Z̄ = κZ, L̄ = K
1
2ABZ̄B>AK

1
2 . (3.3.24)

The subsequent corollary provides a design criterion in the case of uniform

communication delay.

Corollary 3.3.8 (Uniform communication delay). Consider the system

(3.3.23) with Assumption 3.3.1. Recall the weighting matrices W1 and W2

given in (3.3.7) and (3.3.8). Fix h≥ 0, K > 0 and ε > 0 as well as weighting

parameters α > 0, β > 0 and a diagonal weighting matrix WZ > 0. Suppose

that there exist parameters κ̄ > 0 and matrices Z̄ ≥ 0, R > 0, S > 0 and S12,

such that the following optimization problem is feasible:

min
γ̄,κ̄,Z̄

α γ̄−β κ̄+ trace
(
WZZ̄

)
subject to

Qu =



−D+ 1
2W1 0 Qu13 0 0 1

2In 0

∗ Qu22 −1
4In−1 S12 Qu25 0 1

2In−1

∗ ∗ Qu33 0 Qu35 0 1
4εIn−1

∗ ∗ ∗ −S−R R−S>12 0 0

∗ ∗ ∗ ∗ Qu55 0 0

∗ ∗ ∗ ∗ ∗ −1
2 γ̄In 0

∗ ∗ ∗ ∗ ∗ ∗ −1
2 γ̄In−1


< 0,

R S12

∗ R

≥ 0, (3.3.25)
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where

Qu13 =1
4εκ̄K

1
2W, Qu22 = S−R+ 1

2W2, Qu25 =R−S12−
1
2W

>L̄W,

Qu33 =− 1
2εIn−1 +h2R, Qu35 =−1

4εW
>L̄W, Qu55 =−2R+S12 +S>12.

Choose the controller parameters as

κ= κ̄2, L = 1
κ
BZ̄B>. (3.3.26)

Then, for all τ(t)∈ [0,h], the origin is a locally uniformly asymptotically stable

equilibrium point of the system (3.3.23) and the system has a small-signal L2-

gain less than or equal to γ =
√
γ̄ with respect to the supply rate s(d,y) =

1
2
(
γ2‖d‖22−‖y‖22

)
, where d and y are given in (3.3.23).

Proof. The same approach as the proof of Proposition 3.3.3 is used expect the

communication delay is model as a uniform delay with h0r = 0. Consequently,

set h1r = h, τr(t) = τ(t)∈ [0,h], and accordingly let S0 = 0, R0 = 0, S1 =S, R1 =

R, and P = In in (3.3.15). Then, setting ε = 0 in (3.3.15) and differentiating

V yields

V̇ =− ω̃>(t)Dω̃(t)− 1
2κ

1
2 ω̃>(t)K

1
2Wp̃(t) + ω̃>(t)dω(t) + 1

2 p̃
>(t)dp(t)

+h2 ˙̃p>(t)R ˙̃p(t) + p̃>(t)Sp̃(t)− κ2 p̃
>(t)W>K

1
2ALAK

1
2Wp̃(t− τ)

−h
∫ t

t−h
˙̃p>(s)R ˙̃p(s)ds−p̃>(t−h)Sp̃(t−h). (3.3.27)

Then, apply Jensen’s inequality (2.3.12) together with (2.3.17) and add

the expression

0 = 0.5
[
p̃(t)>+ ε ˙̃p>(t)

][
κ

1
2W>K

1
2 ω̃(t)

−κW>K
1
2ALAK

1
2Wp̃(t− τ(t)) +dp(t)− ˙̃p(t)

]
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Figure 3.2: 20kV MV CIGRE benchmark microgrid with 11 main buses and
inverter-interfaced units of type: photovoltaic (PV), fuel cell (FC),
battery, combined heat and power (CHP) FC, and wind turbine. The
controlled units are located at buses 4, 5b, 5c, 6, 7, 9b, 9c, 10b, 10c
and 11. PCC denotes the point of common coupling to the main grid.

to (3.3.27). Furthermore, by recalling L̄ in (3.3.24) and defining

κ̄= κ
1
2 , γ̄ = γ2,

the matrix Qu in (3.3.8) can be obtained. Following the Proposition 3.3.3

proof, for some ε ∈ R>0, it is straightforward to show that the origin of the

system (3.3.23) is locally uniformly asymptotically stable and that the system

has a small-signal L2-gain less than or equal to γ =
√
γ̄.

���

3.4 Numerical example
The performance of the proposed controller synthesis and the inherent design

trade-off between the maximum guaranteed L2-gain and the sparsity of the

communication network are illustrated via numerical experiments on the three-

phase islanded Subnetwork 1 of the CIGRE benchmark MV network [108, 109]

shown in Fig. 3.2.

3.4.1 System description
The system contains 11 main buses and a total of 15 distributed generation

units. The values of the network parameters are mainly taken from [108, 109].
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Similarly to [80], the following modifications are made compared to the original

system in [109]. At bus 9b, an inverter-interfaced combined heat and power

(CHP) fuel cell (FC) is used instead of the CHP diesel generator. Moreover,

the power ratings of the controllable generation units (CHPs, batteries, FC,

PVs) are scaled by a factor 4 to be able to meet the load demand of the system

in islanded mode. To integrate the PV units at buses 4, 6, 7 and 11 in the

frequency control, it is assumed that they are operated at 70% of their actual

maximum power point and, thus, can increase or decrease their generation.

Hence, the system in Fig. 3.2 has a total of ten controllable generation units

of which four are PVs at buses 4 (i = 1), 6 (i = 4), 7 (i = 5)and 11 (i = 10),

two are batteries at buses 5b (i = 2) and 10b (i = 8), two are FCs in house-

holds at buses 5c (i = 3) and 10c (i = 9) and two are FC CHPs at buses 9b

(i= 6) and 9c (i= 7). The power ratings of the inverters in per unit (pu) are

SNi = [0.0168,0.5053,0.0278,0.0253,0.0253,0.2611,0.1785,0.1684,0.0118,

0.0084]. It is also assumed that all controllable units are equipped with fre-

quency droop control and the network is modelled by (3.2.7). We set K = κD

whereD= diag(0.084,2.526,0.139,0.126,0.126,1.305, 0.893,0.842,0.059,0.042).

Non-controlled generation units are connected at buses 3 and 8. The

loads in the network represent industrial and household loads. Their data is

specified in [109, Table 1]. Moreover, the largest R/X ratio in the reduced

admittance matrix is less than 0.3. Thus, the assumption of dominantly in-

ductive admittances is satisfied. The numerical implementation is conducted

on a machine featuring an Intel Core i5-6400 with 16GB of RAM and us-

ing Matlab (R2018b), Yalmip (version 09-02-2018) [107] and the solver Mosek

(version 8.1.0.51) [110]. For the present simulations, the fast-varying delays

are generated by using the rate transition and variable time delay blocks in

Matlab/Simulink with a sampling time Tsam = 2ms.

3.4.2 Scenario 1: Heterogeneous communication delays

To carry out the secondary control design, i.e., to solve the optimization

problem (3.3.12) and following the associated analysis, it is assumed that
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the communication between different units is affected by heterogenous fast-

varying delays. To this end, the network is divided into four different

groups of generation units based on the geographical distances between them,

see Fig. 3.2. Then it is assumed that the communication amongst units

within the same group is affected by a lower time delay than that between

units from different groups (since these are located further apart). Thus,

we consider delays h01 = 150ms ≤ τ1(t) ≤ h11 = 200ms between the gener-

ators 4, 5b, 5c, 11, h02 = 200ms≤ τ2(t)≤ h12 = 250ms between 9b, 9c, 10b,

10c, h03 = 100ms ≤ τ3(t) ≤ h13 = 150ms between the generators 6 and 7.

Moreover, the maximum delay between the remaining nodes in the network

is h04 = 450ms≤ τ4(t)≤ h14 = 500ms. Furthermore, the matrix A is chosen as

A= diag(SNi )−1 and ε= 0.3.

Recall that the objective function of the proposed controller synthesis

in (3.3.12) is parametrized in terms of the weightings α, β and WZ. To il-

lustrate the effects which these different weighting parameters have on the

resulting secondary frequency controller and on the closed-loop performance,

a two-step case study is pursued. In the first design step, the influence of α

and β is illustrated on the relation of the feedback gain κ and the estimated

L2-gain γ. This is done without enforcing any additional sparsity require-

ments on the communication topology (i.e., WZ = 0). As a result of this first

design step, a nominal controller parametrization along with a nominal es-

timate for the L2-gain is identified. These nominal values are then used as

references for the second design step, which explores the impact of reducing

the number of communication links on the L2-gain performance. Remark that

during all design steps, robustness with respect to the specified heterogeneous

fast-varying delays τ1(t), . . . , τ4(t) is guaranteed (as long as the optimization

problem (3.3.12) is feasible).

Design step 1. In the first step, different values of α and β with WZ = 0

are considered. The main purpose of this stage is to illustrate the necessity to

include β 6= 0 in the problem (3.3.12). Hence, to start with, set β = 0 and solve
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Figure 3.3: Frequency convergence at bus 9b for different values of κ. The lines
correspond to: κ= 1.122×10−9 ’– .’, κ= 1.1676 ’ –’, κ= 0.1844 ’· · · ’,
κ= 0.0217 ’–.’, κ= 0.4656 ’- -’

the optimization problem (3.3.12). The design problem is feasible, but yields

a value for κ close to zero, which leads to a rather slow convergence of the

frequency to its nominal value, see Fig. 3.3. This undesired behavior can be

alleviated by setting β > 0, when solving (3.3.12). Furthermore, on the other

extreme, setting α = 0 leads to a higher value of κ, but a much larger upper

estimate of the L2-gain γ, which indicates a degradation of the robustness

properties of the closed-loop system with respect to external perturbations.

Consequently, in order to obtain a controller parametrization, which simultan-

eously yields fast frequency convergence and robustness α > 0 and β > 0 have

to be chosen. Further results for κ and γ are given in Table 3.1 for differ-

ent values of α and β. The frequency convergence for the different cases in

Table 3.1 is shown for the unit at bus 9b in Fig. 3.3.

Since all scenarios in Table 3.1 with α 6= 0 and β 6= 0 have very similar

L2-gain performances, the closed-loop system is simulated by using the largest

feedback gain, i.e., κ= 0.4656 and γ = 3.7092, for two disturbance scenarios.

In the first scenario, the system is being subjected to sinusoidal disturbances

dω = dp = 0.2sin(12.57t) [pu] in both the electrical and communication layers

for t∈ [1,2], which can be interpreted as possible oscillations due to harmonics

or load variations. The resulting system trajectories are shown in Fig. 3.4,
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Table 3.1: Results for κ and γ obtained from solving the optimization problem
(3.3.12) in ‘Design step 1’ for different values of α and β

α 1 0 1 3 1
β 0 1 1 1 3
γ 3.6325 123.598 3.6614 3.6358 3.7092
κ 1.12×10−9 1.1676 0.1844 0.0217 0.4656

Number of
communication
links (with
WZ = 0)

45 27 28 37 21

from which it can be seen that the system returns to the original equilibrium

point after the disturbances vanish. In the second disturbance scenario, a

step disturbance in active power of magnitude 0.1 [pu] starting at t = 1s and

lasting until t = 3s is applied to the electrical layer, while simultaneously a

white noise disturbance signal is applied to the communication layer. The

behavior of the system trajectories is depicted in Fig. 3.5. Also in this case,

the system trajectories remain bounded and converge to the equilibrium after

the disturbances have vanished.

The number of required communication links is also given in Table 3.1. It

can be seen that with increasing magnitude of κ, the number of required links

tends to decrease from 45 to around 21. Since the shape of the communication

topology is a very important aspect when implementing the secondary control

law (3.2.6), the next design step seeks to further explore its impact on the

closed-loop performance.

Design step 2. In light of the above observations, we select γ∗ = 3.7092

and κ∗ = 0.4656 as a benchmark. Then, the controller is redesigned with

the aim of minimizing the number of communication links while preserving

robustness with respect to heterogeneous time-varying delays. Fixing κ∗ and

γ∗ corresponds to setting α = β = 0 in (3.3.12). The weighting matrix WZ is

determined by using the reweighted `1-norm approach [104], see also (3.3.10).

After solving the optimization problem (3.3.12) for up to 10 iterations, in each
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Figure 3.4: Simulation results of the system (3.3.9) with κ = 0.4656 and γ =
3.7092, after being subjected to sinusoidal disturbances: dω = dp =
0.2sin(12.57t) [pu] for t ∈ [1,2].
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Figure 3.5: Simulation results of the system (3.3.9) with κ= 0.4656 and γ= 3.7092,
after being subjected to disturbances: a step disturbance of magnitude
0.1 [pu] is applied to the electrical layer, while white noise is applied
in the communication layer for t ∈ [1,3].
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of which the weight matrix WZ is updated, we obtain a controller with 17

communication links with the same L2-gain performance as in the case of 21

communication links.

To further investigate the trade-off between the L2-gain performance and

the required communication efforts, we successively degrade the required L2-

performance ( by increasing the value of γ∗) and then compute the necessary

number of communication links by solving the optimization problem (3.3.12).

It is found that by increasing the value of the performance index γ by less

than 10% of γ∗, the number of communication links is further reduced from

17 to 12, see Fig. 3.6, which are only 3 more links than the 9 required to

ensure connectivity of the communication network. Hence, it is concluded

that the proposed controller synthesis (3.3.12) is well-suited to obtain practical

parametrizations of the control law (3.2.3) that exhibit both good robustness

properties and low communication requirements.

By evaluating the evolution of the non-zero entries in the Laplacian matrix

L, illustrated in the plots in Fig. 3.6, it is found that the controller weighting

matrix A seems to have a significant impact on the sparsity pattern. Namely,

the unit at node 5b (i= 2) with the smallest entry aii (largest power SNi )

has the largest initial degree1 and also preserves that degree with increasing

weight on the sparsity. Compared to this, the generation unit i = 10, which

has the largest weight aii, has from the start only a degree of 1. Meanwhile,

the degree of the remaining nodes is being reduced with increasing weight

on the sparsity. Thereby, it is observed that the communication links between

generation units with larger weights aii (i= 1,3,5,9,10) disappear first. Hence,

with A= diag(SNi )−1 this implies that the larger generation units tend to have

a higher degree of connectivity.

The subsequent analysis is directed to further investigate how the control-

ler parameters affect the convergence speed of the closed-loop system (3.3.9).

To do so, the analysis focuses on the behavior of the controller state p. Since A
1In an unweighted graph without self-loops, the degree of a node corresponds to the

number of edges attached to it.
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Figure 3.6: Number of non-zero elements of Z for different values of γ. The number
of required communication links in the case of γ∗ = 3.7092 is 17.
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Figure 3.7: Sparsity pattern of L for different values of γ. The figure represent
units at buses 4 (i = 1), 5b (i = 2), 5c (i = 3), 6 (i = 4), 7 (i = 5), 9b
(i= 6), 9c (i= 7), 10b (i= 8), 10c (i= 9) and 11 (i= 10).
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is fixed by economic considerations and K = κK where K is fixed, the remain-

ing degrees of freedom in the control design are κ and L. The effect of κ on

the convergence speed has already been studied in design step 1 (see Table 3.1

and Fig 3.3). Thus, it is now investigated how the sparsity of L affects the

convergence speed. Based on the present numerical experiments, the controller

states of all generation units exhibit a very similar behavior with regard to the

convergence speed in dependency of the sparsity of L. Therefore, generation

unit 9b (i= 6) used as an illustrative example, since as shown in Fig. 3.8, that

unit has access to different numbers of communication links in the different

topologies obtained during the design. From simulations (with the same initial

condition), it is observed that the convergence speed is only slightly reduced

with increasing sparsity of L, see Fig. 3.8. Based on the author experience, the

magnitude of κ has a more significant influence on the convergence speed than

the shape of the communication network. This also motivated the inclusion of

κ in the cost function of the optimization problem (3.3.12).
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3.4.3 Scenario 2: Uniform communication delay (τr =

τ andh0 = 0)

In this simulation scenario, the design procedure for the distributed second-

ary frequency controller (3.3.8) is evaluated. The matrix A is chosen as

A = diag(ai) where a = col(0.21,0.28,0.56,0.18,0.18, 0.26,0.4,0.19,0.3,0.24)

(per unit values). The same two design steps in scenario 1 are performed.

In the first step with setting α= β = 1, a nominal feedback gain of κ= 2.6792

and a nominal bound for the L2-gain of γ∗= 0.9637 are obtained. The results in

Fig. 3.9 illustrate the convergence of the system trajectories to a synchronized

motion after being subjected to external perturbations. Furthermore, after

performing the second design step and as expected, the obtained results show

a trade-off between the value of γ and the number of non-zero off-diagonal

entries of the matrix Z, see Fig. 3.10. Note that in all cases, robustness with

respect to fast-varying delays τ(t)≤ h is guaranteed.

Recall that the design approach leading to (3.3.8) is based on the

descriptor method with fixed tuning parameter ε. The latter could poten-

tially introduce some conservativeness. Thus to improve the estimation of the

L2-gain, the optimization problem (3.3.8) is solved, and the obtained values for

κ and L are implemented in a modified version of the conditions for stability

analysis derived in [14] that incorporates the L2-gain performance. The result-

ing performance index γ with the analysis conditions in [14] is only 9.5% lower

than the γ∗ obtained via (3.3.8). Hence, in the present case the descriptor

method does not introduce significantly more conservativeness, while provid-

ing the advantage that κ and L are free design variables (in the analysis in

[14] they are treated as constant parameters).

Finally, the conditions proposed in (3.3.12) are compared with those de-

rived in (3.3.8). To this end, the same parameters as in 3.4.3 are used, consid-

ering a uniform fast-varying delay τr(t) = τ(t) with the difference of setting set

h0 ≤ τ(t)≤ h1 and h0 = 50ms instead of h0 = 0 as in (3.3.8). By employing the

values of κ and γ as used in 3.4.3 and solving the optimization problem (3.3.12),
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Figure 3.9: Simulation results with κ= 2.6792 , γ = 0.9637, and h= 100ms
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Figure 3.10: Number of non-zero elements of Z for different values of γ. The
number of required communication links in the case of γ∗ = 0.9637 is
34.

the obtained result is an admissible upper bound for the communication delay

of h1new = 134 ms, which corresponds to 1.34h1 with h1 being the maximum

admissible delay obtained in 3.4.3. This shows that the proposed control syn-

thesis with interval time-varying delays derived in (3.3.12) permits to obtain

significantly improved stability guarantees.
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3.5 Summary
Consensus algorithms are promising control schemes for secondary control in

MGs. Since consensus algorithms are distributed protocols, communication

efforts, disturbance attenuation and robustness with respect to time delays

are significant factors for the control design and closed-loop performance. The

work in this chapter has jointly addressed these three challenges by propos-

ing a design approach for a consensus-based secondary frequency controller in

MGs that guarantees robustness with respect to uniform and heterogeneous

fast-varying delays and simultaneously permits to trade off finite L2-gain per-

formance against the sparsity of the required communication network. More

precisely, both the LKF and the descriptor methods have been applied to de-

velop a controller synthesis in the form of a constraint convex optimization

problem. The proposed synthesis guarantees uniform local asymptotic sta-

bility for any operating point satisfying the usual safety requirement of the

equilibrium phase angle differences being contained in an arc of length π
2 .

Furthermore, the relevance of the provided weighting parameters on the

resulting closed-loop behavior has been illustrated via a two-step design case

study based on the CIGRE benchmark MV distribution network. The numer-

ical results show that the proposed approach can be used to identify minimal

communication topologies, while at the same time guaranteeing desired delay

robustness and disturbance attenuation properties. In addition, it has been

shown how the weighting factors have to be chosen to facilitate a trade-off

between the L2-performance and the required communication efforts.



Chapter 4

Conditions for delay-robust

consensus-based frequency

control in power systems

4.1 Introduction

This Chapter focuses on the stability of the power system operated with the

consensus-based distributed secondary frequency controller in the presence of

the communication uncertainties. In the previous Chapter, for the purpose of

the controller synthesis in MG, a reduced-order model (limited to the swing

equation) was used to represent a heterogeneous generation pool containing

rotational synchronous generators and inverter-interfaced units. The previous

model fits precisely in the case of MGs to provide a sufficient design procedure

for the controller gain and the communication topology. Furthermore, a more

realistic higher-order generator model with second-order turbine-governor dy-

namics is considered in this Chapter. The presence of higher-order and time-

varying dynamics significantly complicates the stability analysis, and if they

are not accounted for in the stability analysis, their presence may lead to in-

stability [24]. Therefore, the work in this Chapter is devoted to addressing the

previous challenges.
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4.2 Optimal consensus-based frequency con-

trol in power systems
Differently from the previous Chapter, the model in this Chapter focuses on

the stability conditions for power system where the majority of the generation

units are SGs. To motivate the need for a consensus-based secondary control

law, the steady-state frequency deviation of the system (2.2.8) will be studied.

Similar to (3.2.1), suppose the solution of the system (2.2.8) converges to a

synchronous motion with ωsr = 1nω∗r and constants ω∗r , P sm and P ss . Then, ω∗r
is obtained from

1>nMω̇s = 1>n TmṖ
s
m = 1>n TsṖ

s
s = 0

as

ω∗r = −1>nGV
2 + 1>nP

d
m+ 1>n p

s

1>nD1n+ 1>nK−11n
,

Recall that in order to achieve a zero frequency deviation, the following should

be hold −1>nGV
2 +1>nP

d
m+1>n p

s = 0. Thus, The objective of the the controller

p is to perform classical secondary control task and meanwhile ensuring the

economic dispatch, see section 3.2.1.

As discussed in 2.2.1.1.2, Pm is controlled via a turbine-governor system.

Thus, a suitable distributed consensus-based secondary frequency controller,

such that the stationary solutions P sm of the closed-loop power system corres-

pond to optimal solutions of (3.2.2) is introduced. Inspired by [24, 28], the

following consensus-based secondary frequency control scheme is considered

Tpṗ=−p+Pm− (In−K−1)ωr−ALAp, (4.2.1)

where the controller (4.2.1) is associated with an undirected connected com-

munication network represented by the Laplacian matrix L ∈ Rn×n enabling

distributed information exchange between the generators. Furthermore, the

diagonal positive definite matrix Tp ∈ Rn×n denotes the controller time con-

stants. It has been shown in [24, 28, 45], that - if appropriately tuned - the
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control (4.2.1) is able to restore the frequency to its nominal value, that is,

limt→∞ ‖ωi−ωd‖ = 0 for all i ∈ N. In addition, it was shown in [28, 45] that

in steady-state P sm = ps and that the power injections of all generation units

satisfy the identical marginal cost requirement, i.e.,

AiiP
s
m,i = AkkP

s
m,k ∀i ∈N, ∀k ∈N. (4.2.2)

Remark 4.2.1. The controller (3.2.3) is simpler to implement than the con-

troller in (4.2.1) since it only requires local frequency and exchanged marginal

cost. However, the controller (4.2.1) has the advantage of inclusive higher-

order dynamics by employing additional generation output information.

4.2.1 Communication uncertainties: Time-varying

delays and dynamic communication network

In this Chapter, conditions under which the closed-loop power system dynam-

ics are robust with respect to the practically most relevant communication un-

certainties, namely message delays, and information loss [20, 21] are derived.

With regard to communication delays, similar to Chapter 3, a time-varying

bounded communication delay τik : R≥0→ [h0ik
,h1ik

], h0ik
∈ R≥0, h1ik

∈ R≥0,

affects the information flow from node i to node k is assumed. Furthermore,

the loss of information, e.g., due to package losses or link failures, is modeled

via a dynamic communication network with switched communication topology,

where L` = L(G`), see 2.3.3. It is also assumed that the delays between two

connected nodes are not affected by the switches in topology.

To derive the closed-loop system representation of (2.2.8) and (4.2.1) with

communication uncertainties, following [14], the matrices L`,m, m= 1, . . . ,2Ē,

Ē= max`=σ(t)∈M |E`|, is introduced with nonzero entries l`,m,ii = 1, l`,m,ik =−1,

if in the `-th communication topology node i is connected to node k and all
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other entries are zero. Hence,

L` =
2Ē∑
m=1

L`,m.

Furthermore, the vector x = col(Pm,Ps,p) ∈ R3n is defined as well as the

matrices

T = blkdiag(Tm,Ts,Tp), Ā= blkdiag(A,A,A), (4.2.3)

Φ =


In −In 0

0 In −In
−In 0 In

 (4.2.4)

and

Ψ`,m = Āblkdiag
(
0,0,L`,m

)
Ā. (4.2.5)

Then, by combining (2.2.8) with (4.2.1), the closed-loop dynamics with delays

and dynamic communication network can be compactly written as

θ̇ = ωr,

Mω̇r =−Dωr−∇U(θ)−GV 2 +P dm+
[
In 0n×2n

]
x,

T ẋ=−Φx−

 2Ē∑
m=1

Ψ`,mx(t− τm)

−


0

K−1

In−K−1

ωr.
(4.2.6)

Remark 4.2.2. The power system model employed in the related work [14] is

derived under the assumptions that ‖Tm‖p � ‖M‖p and ‖Ts‖p � ‖M‖p, see

also (4.2.3), where ‖ · ‖p denotes a matrix p-norm. Then, by invoking singu-

lar perturbation arguments the slow dynamics corresponding to the turbine-

governor system in (4.2.6) can be represented by their corresponding steady-

state equations [12, 81]. However, even though these parameter assumptions

are prevalent in the control community, for many practical power plants they

are not satisfied, see, e.g., the examples in [24, 40] and in Section 4.4. As a

consequence, the turbine-governor dynamics are usually modeled explicitly in
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the related power systems literature on load frequency control [36, 40, 48–51].

These facts are the main motivation to extend the analysis in [14] to the model

(4.2.6) in the present work. Due to the resulting higher-order dynamics differ-

ent coordinate transformation and reduction steps than those employed in [14]

are required to construct a strict LKF for the system (4.2.6). This problem is

addressed in the next section.

4.3 Robust stability in the presence of com-

munication uncertainties

4.3.1 Coordinate transformation and reduction

In order to establish the main stability result, a coordinate transformation

and reduction that are essential to construct the proposed strict LKF in Sec-

tion 4.3.3 is introduced. This step is motivated by the following property of

the matrix family

Φ +
2Ē∑
m=1

Ψ`,m, `= σ(t) ∈M,

which reveals an invariant subspace in the x-dynamics of the closed-loop power

system model (4.2.6).

Lemma 4.3.1. Consider the matrices Ā in (4.2.3), Φ in (4.2.4) and Ψ`,m in

(4.2.5). For any v ∈ R3n \{αĀ−113n}, α ∈ R,

v>

1
2

(
Φ + Φ>

)
+

2Ē∑
m=1

Ψ`,m

v > 0. (4.3.1)

Proof. To establish the claim, it is convenient to write the symmetric part of

Φ as Φ̃11 Φ̃12

∗ In

= 1
2

(
Φ + Φ>

)
,
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with

Φ̃11 =

 In −1
2In

−1
2In In

 , Φ̃12 =−1
2

In
In

 .
Clearly, Φ̃11 > 0 and

In− Φ̃>12Φ̃−1
11 Φ̃12 = 0.

Hence, the Schur complement implies that 1
2
(
Φ + Φ>

)
≥ 0 and since Φ̃11 > 0,

in addition, v> 1
2
(
Φ + Φ>

)
v > 0 for all v = col(v1,v2,0n), v1 ∈Rn, v2 ∈Rn, v 6=

03n. Moreover, for any `= σ(t)∈M, L` is a Laplacian matrix of an undirected

and connected graph. Hence,

v>3 AL`Av3 > 0 ∀v3 ∈ Rn \{αA−11n}, α ∈ R.

The established facts imply that for any `= σ(t) ∈M, the matrix sum

1
2

(
Φ + Φ>

)
+

2Ē∑
m=1

Ψ`,m

is positive semidefinite and that (4.3.1) is satisfied with equality if and only if

v3 = αA−11n. In order for1
2

(
Φ + Φ>

)
+

2Ē∑
m=1

Ψ`,m

v = 03n

to be satisfied for some v = col(v1,v2,v3) with v3 = αA−11n, then v1 and v2

have to satisfy

v1−
1
2v2−α

1
2A
−11n = 0n,

−1
2v1 +v2−α

1
2A
−11n = 0n,

−1
2v1−

1
2v2 +αA−11n = 0n.
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By using the second equation, v2 can be expressed as

v2 = 1
2v1 +α

1
2A
−11n.

Moreover, by substituting the value of v2 in the third equation, v1 = αA−11n

is obtained, which gives v2 = αA−11n, completing the proof. ���

In light of Lemma 4.3.1 and inspired by [14, 29, 97], consider the change

of coordinates  x̄
ζd

= W>d T
1
2x, Wd =

[
Wd

1√
µT

1
2 Ā−113n

]
, (4.3.2)

where Wd ∈ R3n×3n−1, Ā is given in (4.2.3), µd = ‖T 1
2 Ā−113n‖22, Wd is chosen

such that W>d T
1
2 Ā−113n = 03n−1 and the transformation matrix Wd ∈R3n×3n

is orthogonal, i.e., WdW
>
d = I3n. Thus, x̄ is a projection of x on the subspace

orthogonal to T
1
2 Ā−113n scaled by T

1
2 . The proposed change of coordinate

in (4.3.2) has an advantage over the one in (3.3.1) that it permits the incor-

poration of higher-order dynamics.

From (4.3.2) we have that

ζd(x) = 1
√
µd

1>3nĀ
−1T

1
2T

1
2x= 1

√
µd

1>3nĀ
−1Tx. (4.3.3)

Using (4.2.6) together with the fact 1>3nĀ
−1Φ`,m = 03n leads to

ζ̇d(x) = 1
√
µd

1>3nĀ
−1T ẋ=− 1

√
µd

1>nA
−1ωr,

which by integrating with respect to time and recalling (4.2.6) and (4.3.3)

yields

ζd(x) =− 1
√
µd

1>nA
−1θ+ ζd0 , (4.3.4)
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where

ζd0 = 1
√
µd

1>nA
−1θ0 + 1

√
µd

1>3nĀ
−1Tx0.

Furthermore,

x= T−
1
2Wd

 x̄
ζd

= T−
1
2Wdx̄−

1
µd
Ā−113n

(
1>nA

−1θ−µdζd0

)
.

Hence,

˙̄x=W>d T
1
2 ẋ=−W>d T−

1
2 ΦT−

1
2Wdx̄−W>d T−

1
2

 2Ē∑
m=1

Ψ`,mT
− 1

2Wdx̄(t− τm)



−W>d T−
1
2


0

K−1

In−K−1

ωr,

where the facts ΦĀ−113n = 03n and Ψ`,mĀ
−113n = 03n has been used.

By substituting ζd by (4.3.4), the overall closed loop system (4.2.6) can

be expressed in the reduced order coordinates as

θ̇ =ωr,

Mω̇r =−Dωr−∇U(θ)−GV 2 +P dm+
[
In 0n×2n

]
T−

1
2Wdx̄

− 1
µ
A−11n(1>nA−1θ−µdζd0),

˙̄x=−W>d T−
1
2 ΦT−

1
2Wdx̄−W>d T−

1
2


0

K−1

In−K−1

ωr

−W>d T−
1
2

 2Ē∑
m=1

Ψ`,mT
− 1

2Wdx̄(t− τm)

 . (4.3.5)
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4.3.2 Error system

The following standard assumption is made on existence of a synchronous

motion satisfying the usual security constraint on the stationary phase angle

differences [14, 24, 28].

Assumption 4.3.2. The system (4.3.1) possesses a synchronous motion

col(θs,0n, x̄s) ∈ R5n−1, such that

|θsi − θsk|<
π

2 ∀i ∈N, ∀k ∈Ni.

With Assumption 4.3.2, the error states are defined as follows,

θ̃ = θ− θs, x̃= x̄− x̄s, z = col(θ̃,ωr, x̃) ∈ R5n−1.

The dynamics (4.3.1) expressed in the error coordinates are given by

˙̃θ = ωr,

Mω̇r=−Dωr−∇U(θ̃+θs)+∇U(θs)+
[
In 0n×2n

]
T−

1
2Wdx̃−

1
µ
A−11>n 1nA

−1θ̃,

˙̃x=−W>d T−
1
2 ΦT−

1
2Wdx̃−W>d T−

1
2


0

K−1

In−K−1

ωr

−W>d T−
1
2

 2Ē∑
m=1

Ψ`,mT
− 1

2Wdx̃(t− τm)

 .
(4.3.6)

Following the analysis in Chapter 3 and with Assumption 4.3.2, the system

(4.3.6) has an equilibrium point zs at the origin. Furthermore, asymptotic

stability of zs implies that any solution col(θ,ωr,x) of the original system
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(4.2.6) with an initial condition that satisfies

ζd0 = 1
√
µd

1>nA
−1θ0 + 1

√
µd

1>3nĀ
−1Tx0

converges to an equilibrium col(θs,0n,xs). This applies for any value of ζd0 .

Moreover, the dynamics in (4.3.6) are independent of ζd. Consequently, zs

being asymptotically stable implies that all solutions of the original system

(4.2.6) converge to an equilibrium point.

4.3.3 Main result

To present the main result, it is convenient to define the following two matrices

Φ̄ =W>d T
− 1

2 ΦT−
1
2Wd, (4.3.7)

Ψ̄`,m =W>d T
− 1

2 Ψ`,mT
− 1

2Wd. (4.3.8)

Note that Lemma 4.3.1 implies that Φ̄+
∑2Ē

m=1 Ψ̄`,m > 0, which is essential to

derive a strict LKF for the dynamics (4.3.6) and, thus, establish the result

below.

Proposition 4.3.3. Consider the system (4.3.6) with Assumption 4.3.2. Fix

A, K, L, T and D as well as h0m ∈ R>0, h1m ∈ R>0, m = 1, . . . ,2Ē. Sup-

pose that for all Ψ`,m defined in (4.3.8), ` = 1, . . . , |M|, there exist matrices

R1m > 0 ∈ R(3n−1)×(3n−1), S1m > 0∈R(3n−1)×(3n−1), R2m > 0 ∈ R(3n−1)×(3n−1),

S2m > 0 ∈ R(3n−1)×(3n−1), P > 0 ∈ R(3n−1)×(3n−1), P2 ∈ R(3n−1)×(3n−1),

P3 ∈ R(3n−1)×(3n−1), and S12,m ∈ R(3n−1)×(3n−1) satisfying

Q =



−D Q12 Q13 0n×(3n−1) 0n×(3n−1) 0n×(3n−1)

∗ Q22 Q23 Q24 Q25 0n×(3n−1)

∗ ∗ Q33 0 Q35 0n×(3n−1)

∗ ∗ ∗ Q44 R2−S12 S12

∗ ∗ ∗ ∗ Q55 R2−S12

∗ ∗ ∗ ∗ ∗ −S2−R2


< 0, (4.3.9)
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where

S1 = blockdiag(S1m), R1 = blockdiag(R1m), S2 = blockdiag(S2m),

R2 = blockdiag(R2m), S12 = blockdiag(S12m),

Q12 = 1
2

[
In 0n×2n

]
T−

1
2Wd−

[
0 K−1 In−K−1

]
T−

1
2WdP2,

Q13 =−
[
0 K−1 In−K−1

]
T−

1
2WdP3,

Q22 =−P>2 Φ̄− Φ̄>P2 +
2Ē∑
k=1

S1k
−

2Ē∑
k=1

R1k
,

Q23 =−Φ̄>P3 +P −P>2 , Q24 =
[
R01 . . .R02m

]
Q25 =

[
Q̄25,1 . . . Q̄25,2Ē

]
,

Q̄25,m =−P>2 Ψ̄`,m, Q33 =−P3−P>3 +
2Ē∑
k=1

h2
0k
R1k

+
2Ē∑
k=1

(h1k
−h0k

)2R2k
,

Q35 =
[
Q̄35,1 . . . Q̄35,2Ē

]
, Q̄35,m =−P>3 Ψ̄`,m, Q44 =−S1 +S2−R1−R2

Q55 =−2R2 +S12 +S>12

as well as R2 S12

∗ R2

≥ 0. (4.3.10)

Then, for all τm(t)∈ [h0m ,h1m ] the origin is a locally uniformly asymptotically

stable equilibrium point of the system (4.3.6).

Proof. By noting that the delay only appears in x̃ and inspired by [14, 24, 26]

consider the LKF with ε ∈ R>0,

V = V1 +
2Ē∑
m=1

V2m,

V1 = 1
2ω
>
r Mωr +U(θ̃+ θs)−∇U(θs)>θ̃+ x̃>Px̃+ εω>r M1n1>nA

−1θ̃

+ 1
2µ(1>nA−1θ̃)2 + εω>r AM

(
∇U(θ̃+ θs)−∇U(θs)

)
,

V2m =
∫ t

t−h0m

x̃>(s)S0mx̃(s)ds+
∫ t−h0m

t−h1m

x̃>(s)S1mx̃(s)ds

+h0m

∫ 0

−h0m

∫ t

t+φ
˙̃x>(s)R0m

˙̃x(s)dsdφ
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+ (h1m−h0m)
∫ −h0m

−h1m

∫ t

t+φ
˙̃x>(s)R1m

˙̃x(s)dsdφ. (4.3.11)

To establish the claim, it is first shown that the above LKF is locally positive

definite. The gradient function of V1 is given by

∇V1 =


∇v1

Mωr + εAM(∇U(θ̃+ θs)−∇U(θs)) + εM1n1>nA
−1θ̃

2Px̃

 ,

where

∇v1 =∇U(θ̃+ θs)−∇U(θs) + ε∇2U(θ̃+ θs)>MAωr + 1
µ

(A−11n1>nA
−1)θ̃

+ εA−11n1>nMωr.

Clearly, at the origin ∇V1|zs = 05n−1. Moreover the Hessian of V1 evaluated

at zs is given by

∇2V1|zs =


∇2v11 ∇2v12 0n×(3n−1)

∗ M 0n×(3n−1)

∗ ∗ 2P

 ,

where

∇2v11 =∇2U(θs) + 1
µ
A−11n1>nA

−1,

∇2v12 = εAM∇2U(θs) + εM1n1>nA
−1.

Similar to the approach in the proof of the proposition 3.3.8, it is easy to show

that all block-diagonal entries of ∇2V1|zs are positive definite. Moreover, S0m ,

S1m , R0m and R1m in V2m are positive definite matrices. Therefore, zs is a

strict minimum of V.
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Then the time derivatives of V1 and V2m are given by

V̇1 =−ω>r Dωr +ω>r

[
In 0n×2n

]
T−

1
2Wdx̃+ 2 ˙̃x>Px̃+ εω̃>r AM∇2U(θ̃+ θs)ω̃r

− εω̃>r DA
(
∇U(θ̃+ θs)−∇U(θs)

)
+ εω̃>r M1n1>nA

−1ω̃r

− εx̃>W>d T−
1
2

 In

02n×n

A(∇U(θ̃+ θs)−∇U(θs)
)

− ε
(
∇U(θ̃+ θ∗)−∇U(θs)

)>
A
(
∇U(θ̃+ θs)−∇U(θs)

)
− εω̃>r D1n1>nA

−1θ̃− εx̃>W>d T−
1
2

 In

02n×n

1n1>nA
−1θ̃

− ε

µ
θ̃>A−11n1>nA

−11n1>nA
−1θ̃,

V̇2m =x̃>S0mx̃− x̃>(t−h0m)(S0m−S1m)x̃(t−h0m)− x̃>(t−h1m)S1mx̃(t−h1m)

+ ˙̃x>
(
h2

0m
R0m + (hm−h0m)2R1m

) ˙̃x−h0m

∫ t

t−h0m

˙̃x>(s)R0m
˙̃x(s)ds

− (h1m−h0m)
∫ t−h0m

t−h1m

˙̃x>(s)R1m
˙̃x(s)ds. (4.3.12)

Furthermore, since (4.3.10) is satisfied by assumption, applying Jensen’s

inequality together with [26, Lemma 3.3], see 2.3.1.3, yields

−h0m

∫ t

t−h0m

˙̃x>(s)R0m
˙̃x(s)ds≤−

[
x̃(t)− x̃(t−h0m)

]>
R0m

[
x̃(t)− x̃(t−h0m)

]
,

− (h1m−h0m)
∫ t−h0m

t−h1m

˙̃x(s)>R1m
˙̃x(s)ds≤−η>m

R1m S12,m

∗ R1m

ηm,
(4.3.13)

where ηm = col(x̃(t−h0m)− x̃(t− τm), x̃(t− τm)− x̃(t−h1m))

Next, the descriptor method is applied, see 2.3.1.4, i.e.,

0 = 2
[
x̃>P>2 + ˙̃x>P>3

]−W>d T− 1
2


0

K−1

In−K−1

ωr−W>d T− 1
2 ΦT−

1
2Wdx̃
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−W>d T−
1
2

 2Ē∑
m=1

Ψ`,mT
− 1

2Wdx̃(t− τm)

− ˙̃x

 . (4.3.14)

By summing over (4.3.13), adding (4.3.14) together with (4.3.12), and

recalling Φ̄ in (4.3.7) and Ψ̄`,m in (4.3.8), the following is obtained

V̇ ≤ ξ>
0 0

∗ Q

+ εΞd

ξ, (4.3.15)

where

ξ = col
(
ωr, x̃, ˙̃x,ξ1, ξ2

)
, ξ1 = col

(
x̃(t−h01), . . . , x̃(t−h02Ē

)
)
,

ξ2 = col
(
x̃(t− τ1), . . . , x̃(t− τ2Ē)

)
, ξ3 = col

(
x̃(t−h11), . . . , x̃(t−h12Ē

)
)
,

Ξd=



−A 0 −1
2AD −1

2A
[
In 0n×2n

]
T−

1
2Wd 0 0 0

∗ −κ
µA
−1 −1

2D −1
2

[
In 0n×2n

]
T−

1
2Wd 0 0 0

∗ ∗ 1
2E33 0 0 0 0

∗ ∗ ∗ 0 0 0 0

∗ ∗ 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0

∗ ∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ ∗ 0



,

where

E33 =AM∇2U(θ̃+ θs) +∇2U(θ̃+ θs)MA+M1n1>nA
−1 +A−11n1>nM.

and Q is defined in (4.3.9).

Under the standing assumptions, Q < 0. Furthermore, the upper 2× 2

block of Ξd is negative definite. Thus, by invoking [14, Lemma 11], it is

concluded that the matrix sum in (4.3.15) is negative definite for some small
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Figure 4.1: Kundur’s two-area-four-machine test system taken from [1, Example
12.6] and the four employed topologies of the switched communication
network.

ε > 0. Consequently,

V̇ ≤−ν
(
‖x‖22

)
for some (sufficiently small) ε ∈ R>0 and ν ∈ R>0. By invoking [26, Lemma

4.3], the origin of the system (4.3.6) is locally uniformly asymptotically stable.

���

Remark 4.3.4. The proposed stability condition (4.3.9), (4.3.10) is valid for

any turbine-governor system that can be modeled as linear dynamics as long

as Lemma 4.3.1 is satisfied.

4.4 Numerical example
The efficacy of the stability condition in Proposition 4.3.3 is evaluated via a

benchmark example based on Kundur’s four-machine-two-area test system [1],

see Fig. 4.1. This example has also been used in [14], where a related analysis is

conducted for a power system model in which the generator dynamics are solely
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represented by the swing equation. The model used in [14] can be obtained

from (4.2.6) by setting TmṖm = TsṖs = 0n for all t≥ 0, which yields

Pm =−K−1ω+p,

Tpṗ=−Inωr−
2Ē∑
m=1

AL`,mAp(t− τm),
(4.4.1)

with angle and frequency dynamics as in (4.2.6).

The values of the main system parameters are given in [1] with

M = diag(13.00,13.00,12.35,12.35). The following modifications are made:

damping coefficients Di = 2.3 pu and droop gains Ki = 0.05 pu (with re-

spect to the rated machine powers SG,i = [700,700,719,700], i = 1, . . . ,4).

Also, the steam turbine is introduced as well as the governor time constants

Tm = diag(0.125,0.1,0.125,0.11) and Ts = diag(3.6,1.8,2.25,4.5). Clearly, the

assumption ‖Ts‖p� ‖M‖p is not satisfied, see Remark 4.2.2. It is remarked

that in the literature values for Ts,i and Tm,i up to 5−10 s are reported [40, 50].

With regard to the communication uncertainties, four different communic-

ation topologies are considered, see Fig. 4.1. Furthermore, a fast-varying delay

τm(t) = τ(t) with h0 = 0.1s ≤ τ(t) ≤ h1 = 0.5 s in (4.2.6) is considered. This

delay is implemented as a piecewise continuous function with 2 ms sampling

time.

The performance of the stability conditions given in Proposition 4.3.3 for

the higher-order power system model (4.2.6) is compared with those derived in

[14] for the reduced-order model (4.4.1) with h1 = 0. To this end, as in [14], the

controller time constants is set to Tp= 1
0.05κA, where κ>0 is a free tuning para-

meter. For the given h2, the maximum κ obtained via the stability conditions

provided in [14] is κ̄ = 16.0678. Compared to this, the conditions of Proposi-

tion 4.3.3 are satisfied for κ̂= 0.902κ̄= 14.4932. This shows that the conditions

of Proposition 4.3.3 do not introduce significant restrictions with regard to the

admissible feedback gain, while they have the additional benefit of also guaran-

teeing stability in the presence of (non-passive) higher-order turbine-governor
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Figure 4.2: Simulation results with κ= 17.4898, h1 = 0.1s, h2 = 0.5s.

dynamics. Note that, even without delays or a switched communication net-

work, disregarding these higher-order dynamics can lead to instability, see,

e.g., the example in [24]. Furthermore, the proposed condition (4.3.9) with

interval delays, is also compared with with [14]. By setting h0 = 0.1s instead

of h0 = 0 and solving (4.3.9), the obtained result is κ̂inter = 1.0843κ̄= 17.4898.

This confirms that the proposed stability analysis with considering interval

time-varying delays results in relatively improved stability conditions. The

analysis is further confirmed in simulation. The results in Fig. 4.2 show that

the system trajectories converge to an equilibrium point for κ = 17.4898 with

0.1s≤ τ ≤ 0.5 s and the communication topologies are randomly switched every
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5 s. Thus, despite the presence of communication uncertainties, the secondary

frequency control objectives are achieved.

4.5 Summary
In this chapter, a robust stability analysis for a power system model with dis-

tributed consensus-based frequency control considering second-order turbine-

governor dynamics, as well as heterogeneous fast-varying delays and time-

varying communication topologies, has been performed. The analysis was

conducted by introducing a novel coordinate transformation, which is instru-

mental to subsequently construct a strict LKF for the closed-loop power system

dynamics. Moreover, both the LKF and the descriptor methods have been ap-

plied to develop robust stability conditions in the form of LMIs. The efficacy

of the derived conditions has been illustrated via a numerical example. The ex-

ample also shows that the proposed conditions, including the turbine-governor

dynamics, do not result in more conservative result compare to the condition

for the reduced-order model in [14].



Chapter 5

Delay-Robust Distributed

Secondary Frequency Control:

A Case Study

5.1 Introduction

The focus of the previous Chapter was on providing delay-robust stability

conditions for consensus-based secondary frequency controllers. The stand-

ard practice in designing a secondary frequency controller and analysing the

stability of the system is to use a reduced power system mode to provide a

rigorous mathematical analysis [14, 23, 45, 65]. Furthermore, the numerical

example provided in Chapter 4 was based on the reduced model, and it illus-

trated the effectiveness of the proposed robust stability conditions. However,

when it comes to practical implementation, there is always the question of how

the controller performs in the presence of unmodelled dynamics that have not

been captured by the modelling assumptions used for the control design or sta-

bility analysis. Therefore, this chapter provides for the first time an extensive

case study that evaluates the performance of a consensus-based secondary fre-

quency control scheme on a realistic, full-detailed, medium-scale power system

while explicitly considering communication delays

The employed model in this chapter consists of detailed models of SG with
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Table 5.1: Comparison between the employed models in the control design and
stability analysis and case study of this Chapter

Control design and stability analysis Case study
Generator model (swing equation
and turbine-governor dynamics)

Generator model (6th order model
with Exciter, AVR and PSS)

Kron-reduced model Full network model
Lossless lines Full π-model lines (lossy lines)

Decoupling between frequency
and voltage dynamics

(constant voltage)

Coupling between frequency
and voltage dynamics

(variable voltages)
– Voltage sensitive loads

a full network model rather than the Kron-reduced model. Furthermore, the

transmission lines are modeled as a π-model line with lossy lines. In addition,

the voltage at all the buses is considered to be variable instead of constant,

as considered for the case described in Chapter 4. Table 5.1 summarizes the

differences between the employed model in the control design and stability

analysis in Chapter 4 and the model described in this Chapter. Testing the

delay-robust stability conditions in such a system is crucial in order to illustrate

the efficacy of the conditions and the proposed assumptions.

Compared to related works [18, 28], the case study is not only limited to

verify the steady-state frequency restoration with an economic dispatch but

also explores the impact of communication delays as well as the interaction of

the controller with unmodeled voltage phenomena.

5.2 Test system descriptions
In this Section, the well-known Nordic system is used [32], as sketched in

Fig. 5.1. The system consists of three areas: North, Central, and South,

with an equivalent external system connected to the North. It consists of

74 buses, 102 lines, and 42 transformers (20 of them equipped with On-Load

Tap Changers). In addition, there are 20 generators throughout the system

in which the North has hydro generation and the central/south has thermal

generation, both of which are represented by dynamic synchronous machine

models with relevant excitation, power system stabilisers and governors with
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Figure 5.1: Schematic representation of the Nordic test system taken from [32].
The distributed control is implemented at five generators (g6, g7, g14,
g15, and g16). g2 is used in case 1 and g8 and branch 4032-4044 are
used in cases 2 and 3, respectively.
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varied parameters based on the generator type. Finally, the distribution loads

are represented with voltage-sensitive, restorative models. All the dynamic

models are detailed in [32]. An N −1 insecure operating point is used to

analyze the controller performance. The primary frequency control is mainly

carried out by the hydro generators in the North and Equiv areas (g20 is

an equivalent generator and with a large participates the most in primary

frequency control). Generator g13 is a synchronous condenser.

Two scenarios are considered in the case study presented in this Chapter:

• In the first scenario, consisting of Case 1, the effectiveness of the pro-

posed delay-robust stability conditions in Chapter 4 (more specifically,

Corollary 5.3.1) is tested. This is investigated by tripping a generator

in the detailed dynamic system, leading to a frequency deviation, and

checking the performance of the employed controller.

• The main purpose of the second scenario, consisting of Case 2 and Case 3,

is to illustrate the interplay between the controller (4.2.1) and unmod-

elled voltage phenomena. This is implemented by tripping a large gen-

erator and losing a major corridor line.

5.3 Delay-robust stability condition
A constant uniform communication delay is considered with constant commu-

nication topology. Thus, by setting `= 1 in (4.3.8), the term in (4.3.8) can be

rewritten as

Ψ̄ =W>d T
− 1

2 ΨT−
1
2Wd. (5.3.1)

We then employ the following result for designing the gains of the controller

in (4.2.6), the proof of which is given in Chapter 4.

Corollary 5.3.1. Consider the system (4.2.6). Fix A, K, L, T and D as

well as τ ∈R>0. Suppose that for all Ψ̄ defined in (5.3.1), there exist matrices

R > 0 ∈ R(3n−1)×(3n−1), S > 0 ∈ R(3n−1)×(3n−1), P > 0 ∈ R(3n−1)×(3n−1), P2 ∈
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Table 5.2: The Participating generators

Generator No. Location Capacity (MW)
G6 Central 468
G7 Central 234
G14 Central 819
G15 Central 1404
G16 Central 819

R(3n−1)×(3n−1), P3 > 0 ∈ R(3n−1)×(3n−1) satisfying

Qd =


−D Qd12 Qd13 0n×(3n−1)

∗ Qd22 −Φ̄>P3 +P −P>2 R−P>2 Ψ̄

∗ ∗ −P3−P>3 +R −P>3 Ψ̄

∗ ∗ ∗ −S−R

< 0, (5.3.2)

where

Qd12 = 1
2

[
In 0n×2n

]
T−

1
2Wd−

[
0 K−1 In−K−1

]
T−

1
2WdP2,

Qd13 =−
[
0 K−1 In−K−1

]
T−

1
2WdP3, Qd22 =−P>2 Φ̄− Φ̄>P2 +S−R.

Then, the equilibrium point col(θs,0n,xs) ∈R5n is locally uniformly asymptot-

ically stable of the system (4.3.6).

5.4 Implementation of secondary frequency

controller
In this section, the gain of the distributed secondary frequency control-

ler (4.2.1) for the described test system is chosen based on 5.3. The distributed

control is implemented at five of the thermal generators in the Central area (g6,

g7, g14, g15, and g16) with the modified TGOV1 governor described by (2.2.6)

and (4.2.1). Table 5.2 shows the information about the participating generat-

ors.

Moreover, for the communication network topology shown in Fig. 5.1 and

a maximum communication delay of 200 ms, the controller parameters Tp
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Figure 5.2: Flowchart of selection of the controller’s parameters.

are selected as follows. First, the matrix L in (4.2.1) is formed based on

the communication network topology and the matrix A in (4.2.1) is selected

based on the generator marginal costs. Then, the controller time constants are

defined as Tp = 1
0.04κA, where 0.04 is the droop gain for the primary control, κ∈

R>0 is a tuning parameter and the communication delay is set to the maximum

allowed τ = 200ms. Then, we select a large initial value of κ (that is, a small Tp
and fast-acting controller) and decrease its value until the the conditions (5.3.2)

become feasible. This procedure gives us the fastest acting controller that

satisfies the delay-robustness conditions. This process is summarised by the

flowchart in Fig. 5.2. Moreover, this choice of TP allows that generators with

small cost coefficients (i.e., small Aii) will react faster than the ones with

large cost coefficients (i.e., large Aii). Fig. 5.3 provides a feasibility map of the

stability analysis conditions in (5.3.2) for the specific test system for different

time delays and tuning parameter κ. The conditions are feasible in the shaded

regions.

The feasibility of the analysis conditions (5.3.2) were implemented in

MATLAB using Yalmip [107] and Mosek [110] while all the dynamic simu-

lations below were carried out using the simulation software RAMSES [33].
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Figure 5.3: The feasibility map of condition (4.3.9) with different maximum com-
munication delays.
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Figure 5.4: Case 1: Frequency deviation

5.4.1 Case 1: Tripping of 300MW generator g2 in the

North area

In this case, the 300MW thermal generator g2 is tripped at t= 100s in the

North area. This results in a load-generation unbalance hence leads to the

frequency deviating from its nominal value (∆ω). Consequently, the primary

frequency response and the distributed secondary frequency controller from

the participated generators are triggered. The frequency response is shown in

Fig. 5.4, both with and without the proposed secondary frequency controller.

It can be seen that in both variants the system is stable after the primary

responses. The plot of the frequency without the controller (4.2.1) shows the

frequency does not return to its nominal value. The proposed controller quickly

restores the frequency to its nominal value, as desired.

Furthermore, to investigate the conservativeness of the proposed condition

in Corollary 5.3.1, the value of κ, i.e. the response speed of the controller, is
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Figure 5.5: Case 2: Frequency deviation

increased, while the value of the communication delays τ = 200ms is fixed. The

performance of the system starts to significantly deteriorate from κ̂= 1.68κ

until the system completely collapses at κ̂= 1.79κ, as shown in Fig. 5.4. It

is observed that the conditions in Proposition 5.3.1 are rather conservative

for the considered scenario. Yet as discussed in [14], this may be explained

by the fact that the conditions in Corollary 5.3.1 are equilibrium-independent

and, hence, they are more conservative for equilibria with smaller phase angle

differences (which is the case in the present scenario), but fairly accurate if the

equilibrium phase angle differences are larger.

5.4.2 Case 2: Tripping of 750MW generator g8 in the

North area

Similar to the previous case, this case tests the controller when a larger thermal

generator, g8, with an active power production of 750MW, is tripped in the

North area of the system at t= 100s. Due to the larger generator size, this

will lead to a system collapse at t≈ 240s without additional control as shown

in Fig. 5.5. The generation lost in the North causes depressed voltages in

the Central area. As the voltages are restored (due to the combined effect

of generator automatic voltage regulator (AVR) and on load tap changerss

(OLTCs) actions), so is the load power consumption. The combined effect

leads to a long-term voltage collapse [111], as shown in Fig. 5.6. Furthermore,

Fig. 5.7 illustrates that there is an initial spike of increased power production

during the primary reserves, followed by loss of power and a subsequent system
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Figure 5.6: Case 2: Bus voltage deviation at bus 1044 in Central area
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Figure 5.7: Case 2: Total active power output from the participating generators

collapse. The mechanism is detailed in [32].

When the secondary frequency controller is used, the active power injected

in the Central area as a response to the under-frequency deviation, stabilises

the system and restores the frequency to its nominal value, as shown in Fig. 5.5.

This can also be seen in Fig. 5.7 wherein the total active power output of the

generators participating in the secondary frequency control is shown.

As discussed in Chapter 4, the purpose of the controller (4.2.1) is to

restore the frequency to its nominal value and ensure economic optimality.

Fig. 5.8 shows the controller exchanged variables reaching consensus (identical

marginal costs) in steady state after small deviations (see Fig. 5.8, zoom)

immediately after the disturbance.

5.4.3 Case 3: Loss of major corridor line

In the considered test system, active power is transferred from the North area

(where most of the generators are located) to the Central area (where most of
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Figure 5.9: Case 3: Frequency deviation

the load is located). In this case, branch 4032-4044 located in the main corridor

linking the Central and the North areas of the system is tripped. This event

limits the ability of the transmission system to evacuate power to the Central

area. This leads to a surplus of power in the North and a deficiency in the

Central area resulting in an initial over-frequency (see Fig. 5.9) accompanied

with depressed voltages in the Central area (see Fig. 5.10). Thereafter, the

voltages in the Central area start being restored (along with the load power

demand) and the frequency decreases below the nominal value.

Case 3 leads to a long-term voltage collapse, driven by the load restoration

and the generator over-excitation limits. However, it can be seen from Figs. 5.9

and 5.10 that the proposed controller accelerates the system collapse.
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Figure 5.11: Case 3: Total active power output from the participating generators

The reason for the accelerated collapse is that the secondary controller

reacts to the initial over-frequency by reducing the output power of the par-

ticipating generators. Therefore, the power injected in the Central area is

reduced, leading to a further reduction in bus voltages and thus accelerating

the system collapse. Fig. 5.11 shows the total active power output of the

generators participating in the secondary frequency control.

5.4.4 Discussion and summary

The three cases above show the performance of the proposed controller under

different operating conditions. In Case 1, a frequency problem is initiated due

to the tripping of a generator. In this case, the dynamics are dominated by

the generator and governor frequency response (2.2.8) and the behaviour of

the controller is exemplar. Furthermore the delay-robust stability conditions

derived in Chapter 4 and employed in the present Chapter (see Corollary 5.3.1)
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have proven to be very effective in this scenario, despite the presence of un-

modelled system dynamics.

In Cases 2 and 3, the frequency dynamics initiated by the disturbance

strongly interact with the long-term voltage dynamics driven by the load res-

toration mechanisms and the generator limits, leading to a complex dynamical

interplay. This voltage-driven behaviour is not modelled in the controller ana-

lysis and, as the case study reveals, results in unforeseen system behaviour.

In Case 2, the long-term voltage dynamics coincide with an under-frequency

excursion, thus the controller response supports the system restoration by in-

jecting more active power in the Central area. On the contrary, the behaviour

of the controller in Case 3 leads to an accelerated system collapse due to the

over-frequency excursion right after the disturbance that reduces the power

injected in the Central area, thus further depressing the voltages.

Overall the presented case study analysis demonstrates that the proposed

consensus-based secondary frequency control law (4.2.1) provides a flexible al-

ternative to the standard AGC with the advantages of a fully distributed im-

plementation and of combining frequency restoration with economic dispatch

in real-time. The latter property may, e.g., also be used to enable peer-to-peer

electricity markets [112].

However, the present investigations show that the decoupling assumption

between frequency and voltage dynamics can degrade the system’s perform-

ance in pronounced voltage dynamics following a disturbance. This decoup-

ling assumption, which is usually invoked when designing secondary frequency

controllers [24, 28, 35, 42, 113] is made based on the physical weak coupling

between the power and the voltage [1]. Nevertheless, in some systems, such as

the given case study, this assumption can be violated. It is thus essential to be

cautious when implementing the controller without considering such additional

dynamics, in order to avoid deteriorating the overall system stability.



Chapter 6

General Conclusions

6.1 Summary of work and main contributions
Consensus algorithms are promising control schemes for secondary frequency

control in next generation power systems. In this thesis, stability analysis and

controller synthesis for delay-robust consensus-based secondary frequency con-

troller were proposed and evaluated. The main contributions are summarized

below:

• Chapter 3 jointly addressed the challenges of communication efforts, dis-

turbance attenuation and robustness with respect to time delays. A

design approach for a consensus-based secondary frequency controller

in MGs was proposed that guarantees robustness with respect to uni-

form and heterogeneous fast-varying delays and simultaneously permits

to trade off finite L2-gain performance against the sparsity of the re-

quired communication network. More precisely, both the LKF and the

descriptor methods were applied to develop a controller synthesis in the

form of a constraint convex optimization problem. The proposed syn-

thesis guarantees uniform local asymptotic stability for any operating

point satisfying the usual safety requirement of the equilibrium phase

angle differences being contained in an arc of length π
2 . Furthermore, the

relevance of the provided weighting parameters on the resulting closed-

loop behaviour was illustrated via a two-step design case study based
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on the CIGRE benchmark MV distribution network. The numerical res-

ults show that the proposed approach can be used to identify minimal

communication topologies, while at the same time guaranteeing desired

delay robustness and disturbance attenuation properties. In addition, it

was explained how the weighting factors have to be chosen to facilitate a

trade-off between the L2-performance and the required communication

efforts.

• The work in Chapter 3 was directed toward the MG model wherein, the

DGU dominates the generation units; in this case, a reduced-model lim-

ited to swing equation was employed. In Chapter 4, the delay robust

stability conditions were proposed where second-order turbine-governor

dynamics, heterogeneous fast-varying delays, and time-varying commu-

nication topologies were considered. This was addressed first by em-

ploying a novel coordinate transformation, which was instrumental in

a subsequently construction of a strict LKF for the closed-loop power

system dynamics. Then, similar to the description provided in the pre-

vious Chapter 3, both the LKF and descriptor methods were applied to

develop robust stability conditions in the form of LMIs.

• Chapter 5 further investigated the performance of a consensus-based sec-

ondary frequency control via a case study on a detailed dynamic model

of the Nordic test system. Two main aspects of interest were the robust-

ness with respect to communication delays and unmodelled (voltage and

higher-order generator) dynamics. Therefore, the controller was designed

according to the delay-robust stability conditions derived in Chapter 4. It

was found that in the event of generator outages, steady-state frequency

restoration was achieved in an optimal manner also in the presence of

communication delays and unmodelled dynamics. Thus, it was deduced

that the conditions proposed in Chapter 4 were efficient. However, it was

also shown that when complex voltage dynamics – not modelled in the

control analysis phase – dominate the system behaviour, the controller
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might behave in an unexpected manner (stabilising or accelerating the

system collapse).

6.2 Directions for future work
Possible extensions of the present PhD thesis are briefly described below:

• The proposed theoretical analysis in Chapters 3 and 4 is based on the

standard assumptions in secondary frequency control. One of these as-

sumptions is constant voltage at all the buses. However, the assumption

of constant voltage could lead to deteriorate the overall performance as

showed in Chapter 5. Thus, an extension of this study should investig-

ate relaxing this assumption and considering the voltage dynamics in the

controller design stage that might affect the controller and further com-

plicate the controller developments. In addition to considering voltage

dynamics, generator location and network topology also constitute im-

portant aspects to improve the system resilience and robustness against

complex dynamic phenomena further.

• The reduced model in Chapter 3 is limited to a swing equation to incor-

porate both generation units: SG and converter-based unit. Thus, an

interesting extension is to consider a high-order model consisting of the

converter-based unit with all the controller dynamics, combined with

SGs using the model employed in chapter 4. The latter also leads to

complication of the stability condition and the controller synthesis.

• The work in this thesis is assuming the same communication delay affects

both local and transmitted signals in the secondary frequency controller.

Therefore, a possible extension of this work is to consider a more practical

model to study the impact of the communication delays where these

delays affect the transmitted signal through the communication network,

with no impact of time delays on local information [114–116]. By using

the definition of the Laplacian matrix in (2.3.24), the controller dynamics
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in (3.2.3) and (4.2.1) can be expressed as

ṗ=K(ω−1nω
d)−KQDQp+KQAQp(t− τ(t)),

Tpṗ=−p+Pm− (1−K−1)ωr−QDQp+QAQp(t− τ(t)).
(6.2.1)

Then, the coordinate transformation and reductions in (3.3.1) and (4.3.2)

are not usefull any more. This will lead to complicate the stability ana-

lysis and the controller synthesis. Investigating this new approach to

tackle the problem and building up a new LKF jointly constitute a prom-

ising field of research.

• Another relevant direction for future research is the extension of the case

study described in Chapter 5. This can be achieved by implementing a

realistic communication layer with heterogeneous time-varying commu-

nication delays and investigating the performance of the controller under

cyber-attacks. These aspects were not considered in the case study, and

they critically rely on the existence of reliable data on the communic-

ation infrastructure. In addition, a comprehensive comparison between

the performance of the distributed consensus based controller with the

standard centralized AGC under communication delays is an interesting

extension of the case study. This would require a similar approach of

delay-robust stabiity conditions in Chapter 4 to be implemented in the

case of AGC to achieve similar tuning criteria.

• The design procedure of the distributed secondary frequency controller

in MG, in Chapter 3, was evaluated through simulation analysis. It is

of interest to extend the results to validate the proposed design criterion

experimentally.

• Another extension of the proposed work is to further investigate the

applications of time-delay stability analysis and control design in MG

and bulk power system. A well-known application is wide-area control

in low-inertia power system. The effect of communication delays appears
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when the information flows from the i-th node to the WAMC center and

vice versa. Therefore, the proposed approach explained in this work is

considered a powerful tool to tackle this problem.
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