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Abstract  

Humans are capable of remarkable feats of sensorimotor control, but it is 

a matter of common observation that some individuals are able to far exceed 

the capabilities of the general population in specific tasks. These individuals are 

often labelled experts in their domain, and it is well established that achieving 

such mastery requires many years of training and in some cases, it can be a 

life-long pursuit. In dentistry, we are faced with highly specific challenges with 

time constraints and importantly, all trainees who wish to practice must reach a 

level of expertise that allows them to operate safely with patients. To 

understand the development of expertise in dental training, and thus inform 

training protocols to support learning, this thesis examines the putative 

mechanisms underlying highly skilled performance. Using state of the art haptic 

virtual reality (VR) technology, this thesis first examines fundamental 

differences between experts and novice dentists across a variety of simulated 

dental tasks. We find that learning over a considerable period of time appear to 

be quantitively similar in expert and novice data set. We also found that expert 

performers can use their well-learned sensorimotor skill in a flexible manner to 

solve new tasks, have superior motor economy and shorter planning times. 

Moreover, the recruitment of cognitive control scales with the degree of 

behavioural adjustment following error commission. Having qualitatively and 

quantitively captured differences as a function of expertise, we ask whether 

haptic VR technology can be used to accelerate the learning process. Across 

two experiments, we show that actively manipulating user error during training 

can have a positive impact on learning and that task difficulty levels need to be 

tailored to an individual’s ability for valid and reliable assessments of trainees 

on the way to expertise. Taken together, this work presents a comprehensive 
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examination of dental expertise and highlights the utility of haptic virtual reality 

technology in supporting the transition from novice to expert.  
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Chapter 1 Introduction 

1.1 Overview 

Sensorimotor skills are an essential part of dental practice. The acquisition of 

sensorimotor skills starts early on in the preclinical years and requires continued 

commitment by the practitioner to develop the fine motor skills that allows them 

to precisely control dental instruments and navigate around delicate oral tissues 

in a small, contained oral cavity.  

My own interest in dental educational research started from my personal 

experiences as a dental student at an undergraduate level in King Abdul-Aziz 

University and subsequently at a specialist training level at Queen Mary 

University of London. Reflecting on the undergraduate and postgraduate clinical 

dental education process has made me realise that learning dentistry has been 

one of the most challenging tasks I have undertaken as well as most rewarding. 

It is clear to me that mastering dentistry takes years of practise and hard work, 

both on the part of the student as well as the tutors. It is therefore imperative 

that these efforts be carried out in as efficient a manner as possible. Thus, for 

good progress to be made, it is perhaps more important that a student practices 

well than it is that he or she practises often. To help identify exactly what it 

means to practice well, I set out to identify the characteristic features that set 

apart expert dentists from trainees. Specifically, the experimental chapters in 

this thesis set out to address the two fundamental research questions:  

1. What are the behavioural and cognitive features that are associated 

with the development of expertise? 
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2. How can we use Haptic VR dental simulators to support the 

development of expertise in undergraduate dental students? 

1.2 Outline 

The thesis is structured into nine chapters with six empirical chapters presented 

in the style of manuscripts. In Chapter 2, we explore the relevant literature on 

expertise, focussing on the general principles of sensorimotor skills and how 

technology can be used to enhance learning. This is complemented by a 

focused review of the literature as it relates to the empirical investigations in the 

following chapters. 

In Chapter 3, we perform a longitudinal examination of the performance of 

an expert and novice in dentistry over an extended period of simulated practice 

and examine their learning curves.  

In Chapter 4, we investigate differences in planning and efficiency 

between novice and expert performers in a sensorimotor task.  

Chapter 5 investigates the specificity and transfer of surgical skills 

developed by expert dentists in comparison to laparoscopic surgeons on 

simulated surgical and dental tasks.  

In Chapter 6, we explore whether a pattern of oscillatory brain activity 

known as frontal theta, a potential biomarker for cognitive control processes, 

could be used to differentiate between novice and experienced dental surgeons. 

Chapter 7 and Chapter 8 are concerned with the role of error and task 

difficulty in classification and accelerating learning. In Chapter 7, we manipulate 

task difficulty by increasing the minimum acceptable performance threshold.  
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In Chapter 8, we directly manipulate a drilling task by changing the haptic 

profile of target objects to examine how haptic simulators can be implemented 

to help sensorimotor learning. 

Finally, Chapter 9 provides a general discussion of the findings, discusses 

limitations, presents opportunities for future work. This thesis concludes with a 

consideration of how this body of work has contributed to furthering our 

understanding of the highlighted issues. 
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Chapter 2 Literature Review  

2.1 Overview 

The acquisition of sensorimotor skills is central to safe and effective dentistry 

(Rodger, Tang and White, 2016). As such, trainee dentists undergo intensive 

theoretical and practical training, with fine sensorimotor skills most often learned 

through simulation-based training using a phantom head simulator with plastic 

teeth (Perry et al., 2015). In addition to this emphasis on sensorimotor skills, the 

process of dental education is unique in comparison to other healthcare 

professions for two key reasons.  

First, it is only in dentistry that irreversible procedures are routinely 

undertaken on members of the public by students in the first half of their training 

(Ross, 2004; Leinster, 2009). Dental students start providing supervised 

treatment to real patients relatively early in their career (3rd or 4th year in most 

dental schools) compared to other healthcare professionals. This demands 

clinically acceptable level of highly specific sensorimotor skills, such as hand-

eye-finger coordination, precise instrument handling and other skills to perform 

dental procedures safely and effectively from a very early age.  

Second, dental education requires bespoke clinical training environments 

and does not borrow from other healthcare services (Dental Education at the 

Crossroads: Challenges and Change, 1995) and as such, has developed a 

unique path in supporting students in acquiring the level of expertise required 

safe and efficient practice. 
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Within recent years, the education of dental students has undergone 

several modifications. Some of these changes fundamentally transformed the 

approach towards delivery of information and dissemination of skills (e.g. with 

VR haptic simulators, dental students can have instant, objective, and visual 

feedback that permits enhanced self-assessment) (Buchanan, 2004; 

Jasinevicius et al., 2004). Irrespective of any changes in the dental education, 

however large or small, it remains the case that a graduate dentist should be 

able to make decisions based on qualitative values, to be proficient in diagnosis 

and to be able to devise and execute treatment competently. Indeed, the 

Quality Assurance Agency for Higher Education in Dentistry state:  

“On graduation dental students should have developed a 
holistic view of patient care, accept their professional responsibilities, 
and acknowledge their limitations. They should have demonstrated 
an appropriate level of competence to deal with complex issues both 
systematically and creatively, make sound judgements based on 
available data, and have acquired a commitment to continuing 
professional development” (AAHE, 2002). 
 

To achieve these goals, dental education has, more than any other health 

specialty, been reliant on simulators and technology throughout its history 

(Levine, 2013). While simulation is needed to facilitate the transition into the 

dental clinic and to enhance the students’ experience through inclusion of a 

wide range of simulated patient and cases scenarios (Hollis, Darnell and Hottel, 

2011), these skills are largely contingent on being able to execute treatment 

competently and this requires a core set of sensorimotor abilities.  

This thesis will examine how these abilities develop and manifest in 

expertise and, to provide context, this introductory chapter includes an overview 

of the principles of motor learning as motor learnings an integral component in 
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understanding the processes underlying sensorimotor skill acquisition, 

retention, and transfer to simulated and real environments. The second section 

of this chapter includes an overview of research on technology enhanced 

learning in medicine and dentistry, focussing specifically on simulation. Finally, 

this chapter closes with an overview of the specific dental simulation technology 

implemented in the experimental chapters reported later in this thesis. 
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2.2 Defining Expertise 

Before we move on to the empirical work reported in this thesis on expertise, it 

is worth examining what expertise might mean from various perspectives. The 

Oxford English Dictionary defines expertise as “expert knowledge or skill in a 

particular subject” (Oxford English Dictionary, 2017). This is the most common 

and broadest interpretation and one we encounter in everyday language (e.g. 

Stephen Hawking was an expert physicist while Mozart showed incredible 

expertise in music). Whilst this type of definition is one that is easy to 

understand, providing a formal framework for expertise that can be subjected to 

experimental investigations is a little trickier.  

There are, in fact, many definitions of expertise in the scientific literature. 

Most often, experts are defined by their qualifications and track record 

(Wielinga, Bredeweg and Breuker, 1988). However, this approach has some 

noteworthy weaknesses. In particular, degrees often relate to declarative 

knowledge that is not necessarily the same as procedural experience. Take for 

example the theoretical knowledge acquired in medical schools and compare 

that to the clinical knowledge used in medical practice (Burgman et al., 2011; 

Gobet, 2015).  

 Expertise is also defined through experience and the amount of time an 

individual has spent in a specific domain, with the expert performance being a 

reflection of a long period of deliberate practice (Ericsson, Krampe and Tesch-

Römer, 1993). However, there is a surprisingly weak correlation between 

amount of the time an individual has spent in practice and level of expertise 

(Ericsson and Charness, 1994). For example, recent work has shown that 
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deliberate practice accounts for only 29.9% of the variance in expertise in 

musical skills (Hambrick et al., 2014).  

Gobet defined an expert as “someone who obtains results that are vastly 

superior to those obtained by the majority of the population” (Gobet, 2013, 

2015). This definition can be applied to domains where most individuals have a 

high level of natural ability (e.g. walking- an activity that the majority of healthy 

adults are capable of performing). It can also be applied to experts themselves: 

a super-expert is “somebody whose performance is vastly superior to the 

majority of experts” (Gobet, 2013). 

Finally, expertise might also be defined by the neural and cognitive 

processes underlying performance (Debarnot et al., 2015). Recent insights from 

neuroscience have shown that many brain structures are recruited during task 

performance, but only activity in regions related to domain-specific knowledge 

distinguish experts from novices (Buschkuehl, Jaeggi and Jonides, 2012; Guida 

et al., 2012). Furthermore, compared to novices, experts exhibit a decrease in 

the overall volume of brain activation and this is coupled with a relative 

increased intensity of activation in specific brain regions necessary for the 

execution of the task (Jäncke, Shah and Peters, 2000; Münte, Altenmüller and 

Jäncke, 2002; Lotze et al., 2003). In this way, experts are able to prioritise task 

relevant information, and this may be the product of their superior levels of 

performance. 
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2.3 Principles of Sensorimotor Learning 

Sensorimotor learning is a continuous process that allows us to adapt to new or 

changing environments, acquire new movement skills and perceptive abilities, 

and recover from debilitating conditions (Tresilian, 2012). While the majority of 

the adult human population are able to effectively interact with the environment 

around us using sensorimotor control, there are some contexts, such as 

dentistry, where an exceptionally high degree of sensorimotor skill is required. 

Practising dentistry is a particularly challenging sensorimotor control task as it 

requires exceptional fine motor skills to precisely control an instrument to 

navigate around delicate oral tissue, in a small oral cavity.  

To preface this introduction (and the experimental work in subsequent 

chapters), it is worth making a distinction between some terms. Sensorimotor 

skill, whether it is dentistry or golf is often defined by the quality of movement 

produced by the performer (Tresilian, 2012; Krakauer et al., 2019). 

Sensorimotor performance on the other hand, is an observable attempt to 

perform a motor task that can be influenced by a number of factors such as 

stress (Gheorghe, Panouillères and Walsh, 2018), fatigue (Aune, Ingvaldsen 

and Ettema, 2008), and motivation (Wulf and Lewthwaite, 2016). Finally, 

sensorimotor learning is a set of complex process (perception, cognition and 

action) involving changes in an individual’s internal processes that determine 

the persons capability to perform a motor task (Tresilian, 2012; Krakauer et al., 

2019). 

The relationship between sensorimotor performance and learning may be 

explained by considering the concept of implicit learning and the schema of 

learning stages. Implicit learning is defined as the process by which a learner 
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improves performance by practice until the correct performance of the motor 

skill becomes automatic (Shmuelof, Krakauer and Mazzoni, 2012). These 

concepts of sensorimotor performance and learning are central to Fitts & 

Posner’s 3 stage model of motor learning (Fitts and Posner, 1967). According to 

this, now classic, theory of sensorimotor skill acquisition, learning can be 

divided into three stages: an early cognitive stage, an intermediate associative 

or integrative stage and finally, an automatic or autonomous stage of 

performance.  

To contextualise Fitts & Posner’s model for the present topic, consider 

learning to drill a tooth - a skilled motor task that all dental students learn in their 

preclinical years. The initial cognitive stage is characterised by erratic 

performance as the trainee is required to learn the mechanics of the task (e.g. 

learning to grasp the instruments, how to get the finger support, and which part 

of the tooth to drill and which not). At this stage, performing the task requires 

significant cognitive effort. With prolonged practice, the trainee progresses into 

the integrative stage, at which point performance becomes more refined as the 

learner is able to apply their knowledge (e.g. holding the instrument in the 

correct position, and the student focusing on the caries, checking which part of 

the tooth is to be removed before drilling). The autonomous stage is the stage 

when the task is no longer cognitively demanding, and it can be carried out with 

low cognitive effort.  
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2.3.1 Components of Sensorimotor Learning 

Since Fitts & Posner’s model was first introduced, significant advances have 

been made in understanding the mechanisms involved in sensorimotor learning. 

Researchers who study sensorimotor control have simplified the processes 

involved into four interacting components (Wolpert and Flanagan, 2010).  

The first component in sensorimotor control and learning is the effective 

and efficient extracting of sensory information, which allows the performer to 

determine when, where, and how to use their sensory receptors (Wolpert, 

Diedrichsen and Flanagan, 2011). This gathering of task-relevant sensory 

information is an essential process in which the learner can decipher which 

sensory information to process and how to extract the most relevant information 

in an efficient manner (Wolpert, Diedrichsen and Flanagan, 2011). For example, 

before drilling a tooth with caries lesion, dental students need to gather sensory 

information about the size of the decay, softness of the caries dentin, and 

proximity to the pulp tissue. 

Second, the learner must understand key features of the task such as the 

normal anatomy and biology of the tooth and the oral environment, and how 

that can impact on their action (Braun et al., 2010; Wolpert, Diedrichsen and 

Flanagan, 2011). For example, in drilling a tooth with caries, the student must 

learn the transformation between muscle commands and the motion of the 

drilling bur, learn how to credit errors to different aspects of our performance 

and determine how the context (such as different in density or saliva conditions) 

affects the task.  
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Third, the learner needs to set up different classes of parameter to 

optimize sensorimotor performance. This will generate appropriate motor 

commands to achieve the task goals (for example, optimizing the power with 

which the foot presses the foot-pedal to control the speed of drilling). 

The final component is making effective decisions based on the 

experience. Most sensorimotor tasks involve a sequence of decision-making 

processes based on the gathering of sensory information. This includes when to 

make the next movement and which movement to make. Being able to 

effectively adapt the pressure and power of drilling according to the pulp 

anatomy is a clear example of when this component is necessary (Braun et al., 

2010; Wolpert, Diedrichsen and Flanagan, 2011). 

2.3.2 Learning Signals 

Sensorimotor learning may also be classified by the type of information that the 

motor system uses as a learning signal. This topic is often separated into error-

based learning, reinforcement learning and observational learning (Wolpert, 

Diedrichsen and Flanagan, 2011). These process are central to reducing 

uncertainty to minimise the errors, and maximising performance efficiency 

(Todorov and Jordan, 2002) and we discuss them in more detail next.  

2.3.2.1 Error-based Learning 

Learning from errors is a basic tenet of motor skill acquisition (Miall and 

Wolpert, 1996; Diedrichsen et al., 2010). Simply put, the differences between 

the goal and the actual sensory information (a prediction error) drive changes in 

future action. Specifically, when motor errors are detected by sensory systems, 

this information is used to guide and update motor commands for subsequent 
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motor actions (Seidler et al., 2013). This information not only tells us that we 

missed the goal, but also specifies the particular way in which the target was 

missed. However, to effectively use this information, the nervous system needs 

to correlate the error with respect to each component of the motor command 

(Wolpert and Flanagan, 2010).  

The relationship between feedback and feedforward control can be 

observed during the acquisition of a novel task e.g. learning to use indirect 

vision to drill a tooth. New skills do not have enough of a motor history for an 

accurate forward input, which results in a large prediction error along with jerky 

and inaccurate movements. As the student becomes used to performing the 

action, smaller errors occur and thus, fewer adjustments. Actions become 

faster, smoother, and more accurate as skill level increases (see Chapter 3 for 

an empirical demonstration of this phenomenon). Theoretically speaking, error-

based learning is a highly effective learning process, but once the average error 

is zero it does not provide a mechanism to further improve the performance 

(Wolpert, Diedrichsen and Flanagan, 2011). 

2.3.2.2 Reinforcement Learning 

A second critical signal for sensorimotor learning relates to information 

indicating the relative success and failure of an action. Humans are highly 

capable of tracking the value of sensory input and varying their behaviour on 

the basis of motor history (McDougle et al., 2016). When a sequence of actions 

results in an outcome, how do we determine which actions should get credit for 

the successful outcome? For example, a novice dentist drilling a deep caries 

lesion may try several angles and instruments before cleaning the tooth. Some 
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of those actions may bring it closer to the pulp or to drill into the healthy part, 

while others contribute towards task success. How does the dentist learn which 

actions are optimal and which suboptimal? Reinforcement learning studies 

show how performers can learn to behave so as to maximise the rewards and 

minimise the losses (Wolpert, Diedrichsen and Flanagan, 2011).  

In real-world actions, the underlying cause of an unsuccessful attempt is 

sometimes ambiguous: accidentally drilling into the tooth pulp could occur 

because the dentist made a poor choice about where to drill or failed to properly 

execute the drilling. Thus, learning to act so as to maximise success and 

minimise failure requires the ability to predict future outcome success through 

accurately evaluating current successes and failures (Maia, 2009). 

Reinforcement-learning systems within the brain are capable of resolving these 

problems to optimise behaviour (Mushtaq et al., 2016; McDougle et al., 2019) 

and reinforcement is key to enhancing the consolidation of a motor behaviour 

(Abe et al., 2011; Huang et al., 2011). However, notably, reinforcement signals 

do not give information about the direction of required behavioural change 

(Wolpert, Diedrichsen and Flanagan, 2011). Thus, the sensorimotor system 

needs to try out different possibilities to gradually improve performance. In 

addition, because the signal (the success /failure) provides less information 

than error-based learning, the learning is typically slower (Wolpert, Diedrichsen 

and Flanagan, 2011).  
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2.3.2.3 Observational Learning 

Observation of others is an important source of information in learning 

sensorimotor skills (Wolpert, Diedrichsen and Flanagan, 2011). The learner 

typically requires observing an expert model physically performing a task, after 

which the learner attempts to mimic the action they have just observed. Studies 

have shown that watching another person perform an action engages similar, or 

at least overlapping, sensorimotor representations of the observed action 

(Buccino, Binkofski and Riggio, 2004; Cattaneo and Rizzolatti, 2009). 

Numerous studies have provided evidence that people can learn and extract 

information about what movements to make, and in what sequence, by 

observing other peoples’ actions (Heyes and Foster, 2002). Indeed, some work 

has shown that people can also learn how to compensate their movement 

through observation (Mattar and Gribble, 2005).  

Despite the absence of physical involvement of the motor system in trial 

and error learning during observational learning, this process of sensorimotor 

learning might involve error-based learning as the observer compares the 

prediction to actual outcomes and can use the error to update the sensorimotor 

system (Wolpert, Diedrichsen and Flanagan, 2011; Roberts et al., 2014).  

Observation alone can’t substitute for physically performing the task, but it 

is particularly beneficial when used as an adjunct to actual practice (Weeks and 

Anderson, 2000). Observational learning already plays a significant role in 

healthcare training, through demonstrations of procedures or the opportunity to 

observe surgical or dental procedures in the operating room (Harris et al., 

2018). During observation, the observer tends to produce predictive eye 

movements similar to the performer, by following the objects before they are 
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interacted with (Flanagan and Johansson, 2003), indicating effective gathering 

of sensorimotor information. Additionally, understanding the key features of the 

task has been demonstrated in a learning of hand movement sequences 

(Blandin, Lhuisset and Proteau, 1999). Indeed, task strategies in sensorimotor 

tasks can be learned directly from the performer, leading to improvement in 

decision-making skills (Harris et al., 2018).  

2.3.3 Selection and Execution in Sensorimotor Control 

An important characteristic of skill learning is the improvements in accuracy 

and/or speed that comes with training (Bassett et al., 2015). It is generally 

agreed that this process is the manifestation of a set of a hierarchical processes 

(Diedrichsen and Kornysheva, 2015). At the neural level, movements are 

generated through the interaction of different representational levels in the 

motor cortical neurons, traversing from movement goals (selection level) down 

to the specification of the actual muscle commands (execution level).   

When we attempt a movement, the selection process activates a 

spatiotemporal pattern that is specific for muscle activity (Churchland et al., 

2012). This process is time-consuming because it needs to consider multiple 

factors and then select the most appropriate set of motor actions, or a ‘motor 

primitive’ - a spatiotemporal pattern of muscle activity that occurs across a 

range of complex movements and is encoded in the spinal cord and the primary 

motor cortex (Hick, 1952; Diedrichsen and Kornysheva, 2015). At the execution 

level, stable spatiotemporal patterns of muscle activity are produced with the 

outcome being muscle activity.  
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Central to the idea that sensorimotor skill is hierarchically represented is 

motor chunking (Lashley, 1951). Motor chunking is the “segregation of long 

sequences of movements into subparts, and concatenation of motor responses 

into groups of responses” (Diedrichsen and Kornysheva, 2015). Movements 

that are grouped into one chunk are retrieved faster and more accurately than 

when the selection level triggers them individually, with the advantage that 

acquired chunks can be used in the context of novel sequences. In this context, 

sensorimotor learning means effortful selection of single movement elements to 

their combined fast and accurate production of action. Hierarchical 

representations also allow generalisation and the flexible generation of novel 

behaviours and produce movements using less motor planning or preparation 

time (Wolpert, Diedrichsen and Flanagan, 2011; Diedrichsen and Kornysheva, 

2015). 

2.3.4 Generalisation of Sensorimotor Skill 

Generalisation of a sensorimotor skill, in which the learning of a response in one 

situation influences the response in another can also be defined as the gain (or 

loss) in the capability for responding in a new task (the criterion task) as a 

function of practice or experience on some other task(s) (the transfer tasks), is 

sometimes used as a way of making presumption about basic behavioural 

mechanisms (Schmidt and Young, 1986; Adams, 1987).  

Generalisation is a double-edged sword: if a small behavioural change is 

associated with a large alteration of the learning problem, then generalisation 

from prior learning will interfere with the new task and impair performance 

(Krakauer et al., 2006). For example, when a naïve student drills a tooth using 



 
 

 

19 

indirect vision, he/she has to do it so slowly to avoid unwanted generalization 

from the skilled learned in direct vision drilling. In contrast, an expert dentist can 

learn and access models for direct and indirect drilling independently. 

In the literature, two types of generalisation have been addressed. First, 

the transfer component of generalisation has been investigated by practicing in 

one context and then testing in another (practice in task A→ perform task B), 

finding that transfer depends on two main things, the degree of similarity 

between the training and test episodes and on the ability of using a learned skill 

in a flexible manner. Second, the interference component of generalization has 

been investigated by trying to train participants to acquire and recall different 

motor context (perform task A→ practice in task B→ perform task A) (Adams, 

1987; Krakauer, Ghez and Ghilardi, 2005; Krakauer et al., 2006). 

The topic of transfer becomes important when we want to understand how 

tasks contribute to, or interact with, each other in training situations, and it forms 

the basis of understanding such situations as those involving the use of 

simulators for learning some complex and lifesaving skills (Schmidt and Young, 

1986). This behaviour can be explained by two distinct mechanisms by which 

the sensorimotor system might adjust its control parameters. First, 

generalisation could be a consequence of ‘learning to learn phenomenon” 

(discussed next), and second it could be the product of a smoother selection 

and execution process. Both mechanisms have been observed in sensorimotor 

control tasks showing that human can adapt and readapt to a sequence of 

similar tasks (Braun, Mehring and Wolpert, 2010; Gabriel, 2012; Diedrichsen 

and Kornysheva, 2015).  
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2.3.5 Structural Learning 

Structural learning theory in the sensorimotor domain proposes that the 

characteristic features of a task can be abstracted from a set of examples, with 

the consequence that learning of similar tasks is facilitated (Braun et al., 2010; 

Braun, Mehring and Wolpert, 2010). This “learning to learn” phenomenon is 

driven by reducing the uncertainty of the space that the learner has to search to 

adapt to novel tasks and explains the remarkable ability of humans to quickly 

adapt to new environments. For example, when we learn a motor skill, such as 

roller skating, we are more rapidly able to generalize to a novel task, such as 

ice skating (Braun et al., 2009) in comparison to a novice who has not 

experienced roller skating.  

In human sensorimotor research, studies show that participants who 

practiced walking tasks with a variety of distorting lenses performed better than 

participants practicing with a single distorting lenses on a novel walking task 

that required obstacle avoidance (Cohen, Bloomberg and Mulavara, 2005). 

Similarly, in a visuomotor task, Braun et al have shown that when participants 

are exposed to randomly varying tasks of the same structure, the sensorimotor 

system can extract the structure of the task and reduce the interference in the 

novel task (Braun et al., 2009). These studies have also emphasized the 

importance of variability during training (given that this variability provides the 

learner with more exposure to potentially relevant structures in the task space 

that can be generalised to another related task) as well as explaining the role of 

structural learning in generalisation of sensorimotor skill.  
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2.3.6 Sensorimotor Performance and Learning Measures 

While in common parlance the terms performance and learning are often used 

interchangeably, as mentioned earlier, they are two distinct terms in the field of 

sensorimotor control.  

Performance is differentiated from learning by being defined as an interim 

change in sensorimotor action observed during or after practice. In contrast, 

learning is a set of complex processes (perception, cognition and action) 

associated with practise which lead to relatively permanent changes in the 

capability of producing skilled action (Tresilian, 2012; Shumway-Cook and 

Woollacott, 2014).  

In preclinical dental courses, the purpose of training is not only to improve 

performance during practice, but also to facilitate the learning and transfer of 

the skills. The change in performance, either as an improvement or worsening 

level, might vary over time, which could be as a result of learning or some other 

factors such as motivation, and fatigue. To determine if the improvement is a 

long lasting learning effect, one may perform a retention test that provides a 

measure of the extent to which improvements made during the training phase 

are retained (Tresilian, 2012).  

For the assessment of sensorimotor learning in dentistry there are two 

main approaches (Hauser and Bowen, 2009). The “scoring” approach involves 

measuring the final product without considering the rationale behind the 

student’s operative decisions. For example, a VR dental simulator may provide 

an objective measure of target area removal. This approach is important in 

assessment of sensorimotor skills that require precision and accuracy such as 
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drilling. However, the provision of a percentage or volume of material removed 

inside or outside of a target area might not be a useful metric for the learner. 

This is because it cannot be used to indicate the causes of performance 

problems, which, as discussed earlier, is essential for motor learning (as well as 

for effective instruction) (Towers et al., 2019).  

The “kinematic” approach focusses on the motion of the learner by 

recording the movement of the hand while performing a sensorimotor task (such 

as the path length of the hand movement, smoothness, and velocity). This 

approach could provide an insight into the differences in behaviour between 

skilled and novice practitioners. The latest generation of haptic virtual reality 

systems are capable of providing both scoring and kinematic measurements 

automatically (Perry et al., 2015) and we will make use of both approaches 

throughout the experimental work reported in this thesis. 

2.3.7 Cognitive Control and Sensorimotor Learning 

In this section we shift our focus to the cognitive mechanisms and the brain 

activity changes that underlie learning a sensorimotor skill.  

Cognitive control refers to the processes that permit selection and 

prioritization of information processing in different cognitive domains to reach 

the capacity-limited conscious mind (Rabbi et al., 2009; Wu et al., 2016). In 

experimental psychology, cognitive control is often examined through recording 

the electrical activity generated by the brain and visible on the scalp. The 

observed signal is known as the electroencephalogram or EEG (Rabbi et al., 

2009). EEG can be used to continuously monitor levels of task engagement and 

mental workload in operational environments (Berka et al., 2007; Holm et al., 
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2009). EEG has a very high temporal resolution which allows the capture of 

some physiological changes that co-occur with continuous and intensive 

attention (da Silva, 2013; Cohen, 2017). Recent advances in wireless 

technology have started to make the recording of EEG outside experimental 

psychology laboratories possible. For example, a recent feasibility study used 

wireless EEG to monitor cognitive performance during venous cannulation. 

These authors found that collecting data on cognitive workload using EEG was 

possible and, moreover, brain activity was significantly greater in novice 

participants when compared with expert operators performing the same task 

(Lowe et al., 2016).  

Learning leads to neuronal recruitment – in other words, neurons not 

previously activated by the task become engaged. Early phases of learning are 

associated with increases in overall activity, followed by reductions in activity 

and neural variability in later phases (Minogue and Jones, 2006; Wolpert, 

Diedrichsen and Flanagan, 2011; Peterson and Robertson, 2013; Debarnot et 

al., 2015). However, studies find that brain activity decreases after prolonged 

training (Costa, 2011; Diedrichsen and Kornysheva, 2015). Evidence also 

indicates that the consequences of sensorimotor skill acquisition and practise 

are often accompanied by considerable neuronal reorganisations within the 

motor and sensory brain areas (Jäncke, Shah and Peters, 2000). These signal 

decreases are interpreted as either a sign that a region has stopped to play a 

role in the production of the movement or it is also possible that the region 

continues to perform the same function, but has increased its efficiency and is 

able to use less neural activity (Costa, 2011; Diedrichsen and Kornysheva, 

2015). Recent insights showed that many brain structures are recruited during 
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task performance, but only activity in regions related to domain-specific 

knowledge distinguishes skilled from non-skilled performer (Peterson and 

Robertson, 2013; Debarnot et al., 2015). For example, compared to non-

musicians, professional pianists exhibit a decrease in the overall volume of 

brain activation in the primary and secondary motor area (M1, SMA, pre-SMA, 

and CMA) when performing bimanual and unimanual tapping tasks (Jäncke, 

Shah and Peters, 2000). We examine this relationship between cognitive 

control and performance of a dental task in Chapter 6.  
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2.4 Technology Enhanced Learning 

Technology and learning have become closely intertwined in educational 

contexts. New technologies create learning opportunities that challenge 

traditional learning methods (Collins and Halverson, 2010). There is no doubt 

that in the 21st-century, technology has drastically impacted on education 

(Altbach, Reisberg and Rumbley, 2009). Communication of knowledge, 

distance learning, publication of journals, books, and e-books, and academic 

management are main areas sharing substantial changes according to The 

United Nations Educational, Scientific and Cultural Organization (Altbach, 

Reisberg and Rumbley, 2009). In recent years, the term ‘technology-enhanced 

learning’, or TEL, has become widely used in the UK and adopted by Higher 

Education Funding Council for England (Higher Education Funding Council for 

England, 2009) and the UK Higher Education Academy (HEA, 2009) to describe 

“the application of information and communication technologies to enhance 

teaching and learning” (Kirkwood and Price, 2014; Bayne, 2015). 

Kirkwood and Price (Kirkwood and Price, 2014) characterise the desired 

enhancements that technology can provide for the learner. Technology can 

provide operational improvement by, for example, providing more flexibility for 

students and making the resources accessible anytime. Technology also 

provides qualitative and quantitative changes to the learning experience, for 

example through increasing engagement and achieving improved test scores or 

assessment grades. Indeed, evidence suggests that appropriate use of 

technology is leading to significant improvements in learning, teaching and 

assessment across the sector and this is translating into improved satisfaction, 

retention and achievement (Higher Education Funding Council for England, 
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2009). For example, preliminary data from a virtual plant cell project conducted 

by collaborators of our research group show that the assessment score for 

‘recognising the cell and its components as 3D’ was 31% higher on average for 

students that had access to virtual plant lab, compared to Year 8 students who 

learnt the subject through conventional methods (Virtual Plant Cell Evaluation, 

2019). Finally, emerging technologies clearly provide potential opportunities for 

enhancement and innovation in learning opportunities. 

2.4.1 General Principle of TEL in Healthcare Education 

The use of TEL in healthcare education has greatly expanded in the last decade 

(Thimbleby, 2013), and although there is plenty of evidence that technology 

enhanced learning has a place in dental education, it is often taken for granted 

that technologies can enhance learning without the commensurate evidence 

base to support these claims (Stein et al., 2014). Technologies such as e-

learning, smart phone applications, social media education, simulations and 

simulators, and other technologies provide a potential novel way for healthcare 

students, trainees and staff to acquire, develop and maintain the essential 

clinical and theoretical skills for safe and effective practice (Cook et al., 2011). 

Education, training and the ongoing development of the healthcare students are 

integral to the improvement of patient outcomes, safety and experience. Indeed, 

wherever healthcare is delivered there must be ongoing teaching, learning, and 

evaluation.  

All learners from novices to advanced practitioners can help to shape 

education process for their own needs, guided by general principle and 

qualitative and quantitative feedback data from faculty, clinicians, learners and 
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even simulators. It is likely that technology will continue to reshape education in 

the years to come. Indeed, some authors believe that technology has already 

provoked significant changes in education and that there is a need to embrace 

such changes (Collins and Halverson, 2010). Thus, a framework with six 

principles developed by the UK’s Department of Health (about TEL) was first 

released in 2008. This was followed by an updated version in 2011 which 

reviewed the current provision and use with input from students, trainees and 

staff, providing a guide for the use of TEL in healthcare education (Department 

of Health and Social Care, 2011). The framework focuses on “the use of 

technology as part of a managed learning process, appropriate expert 

supervision of students and trainees, particularly in clinical practice for ensuring 

patient safety” (Figure 2-1). 

 

Figure 2-1 A framework for technology enhanced learning in healthcare education based on 
(Department of Health and Social Care, 2011). 
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The ultimate goal of healthcare technological applications is to equip the 

healthcare providers with the necessary skills for safe and effective patient care. 

Innovative technologies such as simulation and VR, have an important role to 

play as part of improving education. Reviews of postgraduate medical training 

have highlighted that trainees, in certain cases, feel that they are required to act 

beyond their level of competence (Department of Health and Social Care, 

2011). Thus, trainees must have the opportunity to develop and improve their 

clinical skills, through TEL (such as clinical skills laboratories and simulated 

patient environments).  

There is, however, a risk that technological applications are under-utilised. 

Curricula, learning frameworks, and applying principles from sensorimotor 

learning can play an important role in enhancing the implementation of 

innovative technologies. In addition to defining the learning outcomes and the 

assessments, curricula should describe how technological applications can 

support the development of knowledge and skills for each learning outcome 

(Department of Health and Social Care, 2011).  

Before adopting new technologies to support learning there are a number 

of factors that need to be taken into consideration. For example, can they 

improve productivity, and are they adding extra value to the existing way of 

learning? The decisions of healthcare providers to use technological 

applications to support learning must be based on a clear understanding of the 

needs of learners and guided by the available evidence. Chapter 7 and Chapter 

8 of this thesis will investigate how state of the art technology can be 

implemented in the assessment and learning of sensorimotor skill relevant to 

dentistry. 
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2.4.2 Simulators as an Example of TEL 

Simulation is defined as “a methodology that replicates or amplifies real 

experiences with directed experiences using analogous tools or settings that 

imitate real world conditions, with the goal of learning and training, in an 

immersive and interactive mode” (Gaba, 2004; Littlewood, 2011). Simulation in 

healthcare education is not new. In fact, there are reports of simulation being 

used as a learning tool as early as the 19th century (e.g. teaching anatomy). In 

recent years, this has evolved into a distinct educational method (Bradley, 

2006) and has been effectively used for training, assessment, and maintenance 

of various skills across diverse domains especially in complex professions 

which demand a high degree of precision and safety (Issenberg et al., 2005).  

Key to simulation is that it provides a standardised educational 

environment for training, assessment and maintenance of a wide range of skills 

across multiple healthcare disciplines, in a safe and ethical environment that 

enhances learning without jeopardizing patient safety (Gaba, 2004; Okuda et 

al., 2009; Cheng et al., 2016; Sevdalis et al., 2016). This methodology can 

replicate real patient care scenarios in a controlled environment, to achieve pre-

defined learning objectives, using artificial physical models, standardised 

patients or virtual reality devices for the purpose of improvement of individual 

and team performance in a health care system (Littlewood, 2011).  

The majority of simulators in health care education are designed for the 

learning of procedural skills (minimally invasive surgery, obstetrics, tooth 

drilling), or soft skills (or non-technical skills) such as communication skills, 

team work, and decision making (Gaba, 2004). Simulation has become fully 

integrated into the clinical training of undergraduate and postgraduate students 
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as well as for continuing professional development (Issenberg and Scalese, 

2007). Beyond sensorimotor skill learning, simulation is needed to facilitate the 

transition into the clinic, to augment ergonomics and to enhance the students’ 

preclinical experience through inclusion of a wide range of simulated patient 

scenarios emphasising a holistic approach to patient management (Hollis, 

Darnell and Hottel, 2011). Preclinical practice is essential for learning a 

sensorimotor skill and it may take several years to learn all the skills of a 

profession like dentistry. As such, simulation based research has grown 

exponentially in recent years to enhance the learning (Sevdalis et al., 2016).  

From G.V. Black’s giant tooth models and Fergus’s phantom head 

(Mason, 2005) to high fidelity virtual reality simulators and robotics, dental 

education has come a long way in the realism of the preclinical simulation 

experience, which continues to be an integral part of undergraduate dental 

education. Dental student education depends on high functioning teams and 

educators must ensure that technological approaches are used to support 

education process. Patients that are about to undergo a dental procedure want 

the dentist to be well-trained, competent, and experienced so that treatment can 

carried out quickly and effectively (Owen, 2016).  

Today, phantom head simulators with typodont are considered the gold 

standard for undergraduate preclinical teaching, as well as for postgraduate skill 

training in most dental schools around the world (Gottlieb, Vervoorn and 

Buchanan, 2013). The phantom head simulator is a task trainer that facilitates 

the learning of fine sensorimotor skills and tooth preparation and restoration 

procedures in a safe environment (Fugill, 2013). They are reliable educational 

tools of relatively low initial cost that have been in use for a long time (Ben-Gal 
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et al., 2011). However, the plastic teeth used in these mannequins lack the real 

tactile sensation of natural layers of tooth structure (i.e. enamel and dentine) 

and there is a constant need for unit and handpiece technical maintenance as 

well as constant availability of disposable training resources (plastic teeth, burs, 

etc.).  

With the continuous technological advances, computer assisted dental 

simulators have been developed based on virtual reality technology. In these 

systems, computer software is used to create a virtual environment that allows 

users to interact and navigate through similar challenges to those faced in real 

life.  

Furthermore, the advancement of haptic technology has produced a step-

change in the fidelity of VR dental simulators, fundamentally changing the way 

one interacts with virtual objects by providing realistic feel and touch sensation 

(Gottlieb, Vervoorn and Buchanan, 2013).  Haptic VR simulators transfer the 

simulation experience, almost entirely, to the virtual world (i.e. no phantom 

head, plastic teeth, or real handpiece).  

A unique feature of VR simulators is the availability of objective real-time 

feedback on student performance, in addition to the feasibility of iterative 

practice without the need for additional resources (plastic teeth, burs, etc.). 

Evidence is now accumulating that these types of simulators are particularly 

effective for formative assessment and evaluation that is facilitated by 

immediate and post practice feedback (e.g. video recordings), as well as in 

enhancing fine motor skill acquisition rate (Buchanan, 2001; Shahriari-Rad, 

2013; Vervoorn et al., 2015). Compared to traditional simulators, haptic VR 
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simulators have also been reported to enhance the student learning via 

improved hand-eye coordination and self-reflection (Cox et al., 2015) .  

2.4.3 Tactile Sensation in the Human Hand and Haptic Technology  

The “tactile sensation” in humans comprises three main parts - cutaneous, 

kinaesthetic and haptic - depending on site of sensory inputs (Dargahi and 

Najarian, 2004). The cutaneous sense receives sensory inputs from the 

receptors embedded in the skin and provides awareness of the outer surface of 

body. The kinaesthetic sense receives sensory inputs from the receptors within 

muscles, tendons, and joints which provides information about the static and 

dynamic body postures. Haptic sense refers to restoring sense of both tactile 

and force information. The haptic system uses significant information about 

objects and events both from cutaneous and kinesthetic systems. Haptics 

involves both action and reaction which is a two-way transfer of touch 

information to allow both “action for perception” and “perception for action” 

(Hagen et al., 2008; Dahiya et al., 2010; Culmer et al., 2012; Tiwana, Redmond 

and Lovell, 2012).  

In dentistry, we use our tactile information to understand, diagnose and 

treat disease (Macey et al., 2018). Tactile sensing can be defined as a system 

that can measure a given property of an object or contact event, through 

physical contact between the system and the object to extract information such 

as temperature, vibration, softness, texture, shape and composition. A tactile 

sensor may measure one or more of these properties. Detection of a lesion 

using tactile sensors require the acquisition, processing, and display of tactile 

data (Tamè, Azañón and Longo, 2019). Touch can reveal shape (Longo and 
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Haggard, 2011), texture (Johnson and Hsiao, 1992), and other object 

properties. For example, consider the ease with which a dentist is able to 

perform a task such as caries removal. When drilling a tooth, the shape, size, 

location, colour and texture are transmitted to the brain from the sensory 

receptors. If the applied force is too great, the pulp could be perforated. A 

precise force needs to be applied and constant feedback of the measured 

applied forces keeps the pulp intact. In addition, a priori knowledge of the 

tooth’s biophysical properties, such as the hardness of each tooth layer are also 

integrated into the cortical processing used for performing the task. Now, if the 

same task is to be performed using a simulator, then accurate sensory 

feedback is even more critical to provide the necessary feedback to explore and 

interact with objects (Dargahi and Najarian, 2004; Gwilliam et al., 2010; Tiwana, 

Redmond and Lovell, 2012).  

Originally, the word haptic comes from the Greek verb haptikos: to touch, 

implying the ability to touch and manipulate objects. In simulators, haptics is 

used to describe human-environment interaction via the sense of touch 

(Minogue and Jones, 2006). The need for implementing haptic touch has 

increased; especially due to the expectations of the virtual reality simulators. 

Having haptic feedback would enable analysis of tissue characteristics and 

pathological conditions. This interaction involves a two-way flow of data that 

allows the manipulation of the virtual objects in the virtual environment. Through 

force feedback and computer controlled haptic interface, haptic virtual objects 

are created which incorporate both cutaneous and kinaesthetic stimulation 

(Robles-De-La-Torre, 2010; Diego et al., 2012). The haptic interface receives 
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the motor signals followed by the generation of haptic feedback as a response. 

The combined integration of haptic, visual and auditory modalities result in “a 

degree of immersion” which facilitate the manipulation of virtual objects in the 

virtual environment through multiple sensory levels (Mihelj and Podobnik, 

2012).  

These systems are primarily focused on replicating the 'feel' of performing 

procedures, but this does not necessarily translate to efficient training (Roy, 

Bakr and George, 2017). Haptic technology potentially has substantial utility in 

promoting learning by directly manipulating movement (Williams, Tremblay and 

Carnahan, 2016; Clamann and Kaber, 2018), but, thus far, no simulators have 

exploited this potential to accelerating learning. In existing systems, the tasks, 

quality and quantity of haptic feedback are typically generic and at most have 

graded levels of difficulty to be completed in sequential order on the basis of 

subjective (self or teacher) imposed timelines. Recent research suggests that 

learning processes can be accelerated through tailored delivery of haptic 

feedback. Specifically, evidence suggests that whilst performance might be 

enhanced through haptic guidance, haptic forces that disrupt performance 

ultimately benefit learning (Wei et al., 2005; Matsuoka, Brewer and Klatzky, 

2007; Abdollahi et al., 2011; Shirzad and Van Der Loos, 2012). We explore this 

novel application of haptics for motor learning in Chapter 8. 

 

 

 



 
 

 

35 

2.4.4 The Simodont Haptic VR Dental Trainer® 

The Simodont® is one currently available haptic virtual reality dental simulator. 

This simulator was developed through a collaboration between Moog Inc. 

(Nieuw-Vennep, Amsterdam, The Netherlands) a company with expertise in 

flight haptic simulation and the Academic Centre for Dentistry, Amsterdam, the 

Netherlands). It is an educational VR simulator with a 3D display and high-

resolution haptics, allowing the user to use tools to interact with virtual tooth 

models in the virtual space. All of the experiments described in this thesis make 

use of this simulator and, to contextualise that work, a detailed overview of the 

system is provided here.  

2.4.4.1 Simodont® Hardware 

The hardware of this device consists of a small screen (5” size with a 60 Hz 

refresh rate and 800 X 600 resolution) located in front of the trainee so that it 

simulates the patients’ head position. The screen supports a high-resolution 

stereo image facilitated by 3D projection. Magnification (zoom in/out) of the 3D 

display is possible up to 200% with full rotation of the virtual models around in 

the 3D display using the controller.  

Underneath the screen is a physical handpiece with a handle that can be 

used as a virtual dental mirror. A foot pedal is used to activate the handpiece to 

start drilling (Bakker et al., 2010). The speed of the virtual handpiece is 

controlled using the foot pedal. Once the participant presses the foot pedal the 

handpiece operates with realistic air rotor sound and the dental bur starts 

revolving. Once the bur comes in contact with the block or the virtual tooth the 

cutting takes place, providing that the participant presses on a specific area of 

the virtual tooth. When a virtual tooth is cut, multimodal simultaneous visual, 
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audio and tactile feedback are received (De Boer, Wesselink and Vervoorn, 

2013; De Boer et al., 2015).  

To obtain the 3D stereoscopic vision, the simulator is equipped with two 

digital multimedia projectors from LGTM (type HS101, resolution 800X600), 

which operate simultaneously resulting in projection of two images 

superimposed onto the screen through a polarizing filter. The trainee needs to 

wear passive polarised glasses for the image to be perceived as one 3D image, 

(Figure 2-2) shows the components.  

 

Figure 2-2 Simodont® simulator device with labelled components. Original image source from 
Moog (Moog Inc. 2011). 

 

2.4.4.2 Simodont® Software  

The Simodont® software, known as “courseware”, consists of lesson programs 

and modules with range of manual dexterity exercises, clinical operative 

dentistry procedures which includes caries removal, cavity preparation, crown 

and bridge preparation, and access cavity with varied levels of difficulty. The 
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manual dexterity module offers automatic evaluation and records the real-time 

kinematics of student performance and can be seen on the attached computer 

screen (which includes the percentage of the target removed, the percentage of 

errors done to the sides and bottom of the leeway and container of the shape, 

total time, drilling time, and hand movement). Thus, participants are able to 

monitor their progress in real-time.  

The available teeth library is derived from real extracted teeth (De Boer, 

Wesselink and Vervoorn, 2013). The virtual teeth library is expandable and 

editable, allowing for the addition of various shapes and sizes of virtual teeth 

with and without pathology with unlimited practice possibilities using dental 

cases of varied complexities, contributed by educators and researchers in some 

dental schools including ACTA and Leeds School of Dentistry. 

2.4.4.3 The Simodont® Haptic Interface 

The haptic interface provides force feedback based on the admittance control 

paradigm of a robotic arm, Haptic Master, developed by (MOOG). The simulator 

responds to force exerted by the user, leading to a sense that the user is 

interacting with an object of equal mass. The simulation of tooth cutting, and 

collision detection runs via the haptic interface so that the realistic force 

feedback in tooth cutting simulation is computed within only 1 millisecond 

(Bakker et al., 2010). The haptic technology of the system allows for models to 

have varying density which changes the feeling of the interaction between the 

tool and the tooth. Parts of a model with low-density feel soft and are more 

easily removed (less force required) using the drill, and high-density materials 

are harder and require more force from the user to remove. 
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2.5 Summary 

The purpose of this introduction was to prime the reader on (i) core concepts 

related to sensorimotor learning (from a behavioural, cognitive and neural 

perspective); (ii) provide a context in which simulation technology, designed to 

enhance sensorimotor skill acquisition operates; and (ii) finally, provide detailed 

coverage on the simulation technology that will be used in the following 

chapters to capture the processes underlying skilled dentistry and explore how 

such technology can be used to assess and accelerate learning. 
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Chapter 3 Examining the Limits of Learning in Dental Training 

3.1 Abstract 

Introduction: The surgical education literature makes extensive use of 

“learning curves” to identify when a performance plateau has been reached and 

analysis typically stops at this point. But do these plateaus best describe the 

limits of an individual’s capabilities, or are continual improvements possible 

through extended practice? To address this question, we conducted a case 

study with one expert dental surgeon and one novice over 7 months of 

extensive practice.  

Methods: The two participants, matched by age, gender and qualification level 

were asked to repeatedly perform a simple and advanced dental task on a high-

fidelity virtual reality haptic dental simulator every weekday for seven months 

(n= 600 attempts), with their preferred and non-preferred hand. We examined 

whether their learning curves of performance changes (time and error) would be 

best described by an exponential function (indicating continual improvements in 

performance) or a power function (indicating performance tailing off over time). 

Results: An exponential model provided a better fit for the expert (R2 µ= .53, 

range = .339 - 673) and novice (R2  µ = .25, range = .088 - .327) in the 

completion time relative to the power function (expert: R2 µ =.29, range = .14 - 

.338; novice: R2 µ =.173, range = .026 - .288). In contrast, for error rates, the 

power function accounted for more variance for the expert (R2 µ =.219, range = 

.04 -.309) and novice (Power R2 µ =.337, range = .228 - .443) relative to the 
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exponential function (expert: R2 µ = .055, range = .009 -.074; novice: R2  µ = 

.137, range = .123 - .146).  

Conclusion: We found that while participants were unable to lower error 

without compromising time (and thus, this measure was best explained by a 

power law), there were small, ever increasing improvements in completion time 

for both novice and expert. These data show that performance can continue to 

improve long after supposed plateaus have been reached. 
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3.2 Introduction 

There is an old adage that practice makes perfect. Whilst it is obvious to state 

that practice supports learning and, in most cases, produces relatively 

permanent changes in behaviour (Sands, 2017), describing the nature of 

human learning and identifying when perfection might be reached (or, in the 

case of surgery, a threshold level of competence to perform the task safely) is a 

century old discussion.  

Over the previous century, there have been a number of theories of skill 

acquisition that have been proposed to account for the processes underlying 

human learning. Perhaps the most renowned is Fitts and Posner’s (Fitts and 

Posner, 1967) three stage model of skill acquisition. Fitts and Posner proposed 

that the nonlinear changes observed in performance over time are due to 

individuals’ transition from a cognitive stage (where there is a large amount of 

trial and error), through to an associative stage (where actions are much more 

targeted), and then finally, transition into a stage of learning referred to as 

autonomous (where performance appears to be flexible and easy) (Bryan and 

Harter, 1897; Fitts and Posner, 1967; Heathcote, Brown and Mewhort, 2000).  

The first, “cognitive” stage involves the understanding of how to perform 

the task and how to evaluate the performance. This stage is characterised by 

rapid improvements in performance. This is related to the greater room for 

improvement, as the task is completely new, so there will be dramatic changes 

in performance (Fitts and Posner, 1967). As the learner practises, the degree to 

which there is room for improvement becomes smaller (Duong, Gardner and 

Rucker, 2010; Wolpert, Diedrichsen and Flanagan, 2011; Rodger, Tang and 

White, 2016). The associative stage is largely concerned with refining the 
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baseline skills acquired during the cognitive phase. Performance becomes more 

consistent as the learner settles on a strategy. Finally, the autonomous phase 

takes place on a much longer time scale than the previous two phases, in which 

the motor skill become largely automatic and requires very little attention to 

perform (Fitts and Posner, 1967).  

The primary assumption of most contemporary theories of motor skill 

acquisition is that learning is the result of the acquisition of more appropriate 

representations of actions for the desired goal (Newell, 1991; Wolpert and 

Flanagan, 2010). Specifically, the improved performance over time comes from 

the acquisition of prescriptions for action that specify the movement dynamics 

relevant to the task demands (Newell, 1991). 

In healthcare, learning curves have often been used as an assessment 

tool for the adoption of new surgical procedures or technologies (Ramsay et al., 

2002; Dubrowski, 2005; Wulf, Shea and Lewthwaite, 2010; Harrysson et al., 

2014; Ben-Gal et al., 2017). In research designed to demonstrate how learning 

curves can describe proficiency improvements associated with deliberate 

practice of radiograph interpretation, Pusic et al. explored how much practice is 

enough? Pusic et al. used learning curves to identify the inflection point (the 

point at which the rate of learning slows from an initial rapid phase to a slower 

phase during which each successive unit of practice results in less learning) 

(Pusic, Pecaric and Boutis, 2011). Harrysson et al.’s systematic review 

(including 592 studies) of learning curves in minimally invasive surgery shows 

that time and intraoperative outcome are used as metrics in learning curve. 

Time is the most commonly used proxy for the learning curve (508 study, 86%). 
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Intraoperative outcomes were used in (316 study, 53%) (Harrysson et al., 

2014).  

In dentistry, the issue of more critically analysing learning curves surfaced 

recently when Ben-Gal et al. (Ben-Gal et al., 2017) concluded that 12 weeks of 

practice (typically the length of a teaching semester in the UK) was not 

sufficiently long for students’ learning to reach a plateau and thus be able to 

differentiate between students on the basis of their exhibited performance.  

Long before their application in healthcare, learning curves were 

synonymous with a term referred to as the “power law of practice” (Wright, 

1936). The power of law of practice states that the logarithm of the time taken to 

complete a task decreases linearly with the number of attempts made to 

complete said task (Anderson, 1982; Heathcote, Brown and Mewhort, 2000). A 

key theoretical (and practical) implication of the power law of practice is that it 

indicates that performance will eventually tail off to a point where no further 

improvements are possible. More recently, evidence that an exponential 

function may be better describe data from human learning experiments has 

begun to accumulate (Heathcote, Brown and Mewhort, 2000). In contrast to the 

power law, an exponential law indicates that the amount of performance 

improvement gained with each attempt decreases, but that improvements 

(however small) remain possible through extended practice, with a constant 

learning rate relative to the amount left to be learned.  

To examine whether an exponential or power law would best describe the 

processes involved in skill acquisition for dentistry, we asked one novice 

participant with no experience of dental training, and one qualified dentist with 
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extensive experience of clinical practice, to practice daily on a virtual reality 

dental simulator over a period of 7 months.  

We expected that the novice participant would have a higher starting point 

for both time to complete the task, and frequency of errors but would show 

faster learning (due to the greater space for improvement). We also expected to 

find that the expert would be able to more quickly adapt to the task demands, 

with faster times and fewer errors. Our primary focus, however, was after this 

initial steep reduction in performance and how performance varied over a 

protracted period of practice. Specifically, our objective was to identify whether 

the learning curves for these individuals at different ends of the dental training 

spectrum would be best described by an exponential or power law. If the power 

law best described the data, this would indicate participants had reached a limit, 

with further training providing no significant changes in improvement. In 

contrast, if the exponential law best fit the data, it would indicate participants 

were showing (ever smaller) improvements over time.   
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3.3 Materials and Methods 

3.3.1 Participants 

One qualified dentist (male, 32 Years) undertaking a postgraduate degree and a 

non-specialist (an individual with no experience of using handpieces in clinical 

dentistry), matched by age, gender and education level (male, 32 Years) took 

part in the study. Both participants were right-handed and provided informed 

consent. The study was approved by the ethics committees based in the School 

of Psychology at the University of Leeds, United Kingdom (Reference number: 

17-0166; date approved: 30-May-2017). 

3.3.2 Experimental Protocol 

The participants performed two tasks with different levels of complexity. 

The tasks were selected from the manual dexterity module in The Simodont 

Haptic VR Dental Trainer® (Figure 2-2), the virtual reality haptic dental simulator 

described in and elsewhere (Mirghani et al., 2016; Al-Saud et al., 2017). 

 The participants completed the drilling of a simple straight shape task 

(Figure 3-1, a), and a more advanced cross-shape (Figure 3-1, b). Each shape 

comprised three zones: a target zone- which must be removed by the 

participant; Leeway zones (side and bottom) which surrounded the target zone - 

participants were instructed to avoid removing this if possible; and container 

zones (sides and bottom), which were represented by a block surrounding the 

abstract shape that participants were told they must avoid during target 

removal.  

The goal of each trial was to use the connected dental handpiece to 

remove 99% of the target ‘red zone’ in the middle of a block whilst attempting to 
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minimise removal of leeway zones (the ‘safe’ outer areas of the block) as much 

as possible. Real-time feedback on performance was presented on a computer 

monitor attached to the device throughout the task. The feedback information 

included a percentage score for each of the following: target (task completion 

percentage), error scores (leeway bottom, leeway sides, container bottom and 

container sides) and drill time (in seconds). 

To avoid confounding order effects, we counterbalanced the task shape 

and hand order using a Latin squares design that gave us four possible options; 

simple task performed by the preferred hand, advanced task performed by the 

preferred hand, simple task performed by the non-preferred hand, and 

advanced task performed by the non-preferred hand (Figure 3-1, c). The 

participants performed the experimental tasks every weekday for seven months. 

 

 

Figure 3-1 Schematic drawing of the experimental setting and the dental tasks.(a) Straight -
shape simple task. (b) Cross-shape advanced task. (c) The four option (A, B, C, and D) of 
counterbalanced between the task shape and hand order using the Latin squares, each row 
representing the sequence of practice in a day. R is refereed to right hand and L is refereed to 
left hand.  
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3.4 Statistical Analysis 

For data analysis, we measured performance on two outcome variables. Time 

(in seconds) and total error (as a percentage). The total error score was 

calculated as a mean average of the leeway area removed from the side and 

bottom of the block.  

The exponential (Equation 1) and power (Equation 2) equations applied to 

learning curves are of the following general form: 

y = 𝑎 ∗ 𝑒!∗# (1) 

y = 𝑎 ∗ 𝑥! (2) 

Where, (y) is some measure of learning, (e) is the base of the natural 

logarithm (2.718), and (x) is the number of trials of training.  

The equations also contain two free parameters (a and b), which can be 

adjusted for each particular data set. Parameter (a) defines the predicted 

asymptote for performance, capturing a subject's initial performance. Parameter 

(b) is the decay parameter describing the learning rate. We compared the 

amount of variance explained (R2) for each of the models, for each participant 

separately for each task (simple and advanced, for the preferred and non-

preferred hand). We also averaged the (R2) of all the four tasks for each 

participant and compare the value of exponential and power laws (Average 

exponential R2 of the four tasks in comparison to average power R2 of the four 

tasks for each participant). All the analyses were performed using MATLAB 

Version R2017b. 
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3.5 Result  

We first examined the time to complete the task dependent variable in the 

expert participant dataset. We found that overall, the exponential function (R2= 

.53) accounted for more variance than the power function (R2=.29).  

Next, we examined each task, performed by each hand separately. For 

the simple task, performed using the preferred hand, the R2 was .339 for the 

exponential function and .14 for the power function (Figure 3-2, a). Similarly, for 

the simple task performed with the non-preferred hand, the R2 was .557 for the 

exponential function and .305 for the power function (Figure 3-2, b).  

For the advanced task performed with the preferred hand, the R2 was .552 

for the exponential function and .331 for the power function (Figure 3-2, c). For 

the advanced task performed with the non-preferred hand, the R2 was .673 for 

the exponential function and .384 for the power function (Figure 3-2, d). 
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Figure 3-2 The result of the time variable in the expert data set. The grey dots representing the 
daily performance, the yellow line representing the exponential law curve fitting, and the red line 
representing the power law curve fitting (a) the simple task performed with the preferred hand, 
(b) the simple task performed with the non-preferred hand, (c) the advanced task performed 
with the preferred hand, (d) the advanced task performed with the non-preferred hand. 
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The novice dataset results mirrored the expert. The exponential function 

accounted for more variance (R2 = .25) than the power function (R2 = .173) for 

time to complete the task.  

For the simple task performed with the preferred hand, the R2 was .283 for 

the exponential function and .288 for the power function (Figure 3-3, a). For the 

simple task performed by the non-preferred hand, the R2 was .088 for the 

exponential function and .026 for the power function (Figure 3-3, b).  

For the advanced task performed with the preferred hand, the R2 was .302 

for the exponential function and .228 for the power function (Figure 3-3, c). For 

the advanced task performed with the non-preferred hand, the R2 was .327 for 

the exponential function and .153 for the power function (Figure 3-3, d). 
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Figure 3-3 The result of the time variable in the novice data set. The grey dots representing the 
daily performance, the yellow line representing the exponential law curve fitting, and the red line 
representing the power law curve fitting (a) the simple task performed with the preferred hand, 
(b) the simple task performed with the non-preferred hand, (c) the advanced task performed 
with the preferred hand, (d) the advanced task performed with the non-preferred hand. 

 

For the error measurements in the expert data set, in contrast to the time 

variable, the power function (R2 = .219) accounted for more variance than the 

exponential function (R2 = .055). We probed this in more detail by examining the 

separate tasks, performed with each hand.  

For the simple task performed with the preferred hand, the R2 was .095 for 

the exponential function and .309 for the power function (Figure 3-4, a). For the 

simple task performed with the non-preferred hand, the R2 was  .042 for the 

exponential function and .219 for the power function (Figure 3-4, b). For the 

advanced task performed with the preferred hand, the R2 was .009 for the 

exponential function and .040 for the power function (Figure 3-4, c). For the 
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advanced task performed with the non-preferred hand, the R2 was .074 for the 

exponential function and .237 for the power function (Figure 3-4, d).  

 

 

Figure 3-4 The result of the error variable in the expert data set. The grey dots representing the 
daily performance, the yellow line representing the exponential law curve fitting, and the red line 
representing the power law curve fitting  (a) the simple task performed with the preferred hand, 
(b) the simple task performed with the non-preferred hand, (c) the advanced task performed 
with the preferred hand, (d) the advanced task performed with the non-preferred hand. 

 

In the novice data set, the power function also accounted for more 

variance than the exponential function in the error variable. Overall, the average 

R2 was .137 for the exponential function and .337 for the power function. For 

the simple task performed with the preferred hand, the R2 was .123 for the 

exponential function and .285 for the power function (Figure 3-5, a). 
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For the simple task performed with the non-preferred hand, the R2 was 

.138 for the exponential function and .392 for the power function (Figure 3-5, b). 

For the advanced task performed with the preferred hand, the R2 was .141 for 

the exponential function and .228 for the power function (Figure 3-5, c). For the 

advanced task performed with the non-preferred hand, the R2 was .146 for the 

exponential function and .443 for the power function (Figure 3-5, d). 

 

Figure 3-5 The result of the error variable in the novice data set. The grey dots representing the 
daily performance, the yellow line representing the exponential law curve fitting, and the red line 
representing the power law curve fitting  (a) the simple task performed with the preferred hand, 
(b) the simple task performed with the non-preferred hand, (c) the advanced task performed 
with the preferred hand, (d) the advanced task performed with the non-preferred hand. 
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3.6 Discussion  

Learning curves are often used to describe the changes produced through 

practice and, in the healthcare field, used as a tool to evaluate motor learning 

(Harrysson et al., 2014). In the present study, we sought to probe the underlying 

nature of learning curves in order to better understand the relationship between 

practice and learning. Specifically, we asked a novice and expert dentist to 

practise repeatedly on a VR haptic simulator and examined their learning curve 

profiles by asking which of two non-linear functions (power vs. exponential) 

could best account for the data. We reasoned that if a power law was a superior 

fit, this would indicate that performance would hit a ceiling and tail off with no 

further improvements possible (Newell and Rosenbloom, 1981). However, if the 

exponential function provided the best account of the data, it would imply a 

constant learning rate that relatively decreased with further practice.  

Overall, we found that the exponential function accounted for more 

variance than the power function in both the expert and novice data sets, for the 

time variable. In contrast, for the error measure, there was a reversal in pattern, 

with the power function accounting for more variance than the exponential 

function in all conditions. We examine the theoretical and practical implications 

of these results next.  

 Overall, the data from the present study align well with the general law of 

learning for the motor domain (Newell, Liu and Mayer-Kress, 2001). Recently, 

Heathcote et.al examined 40 sets of data representing 7,910 learning series 

from 475 subjects in 24 experiments from a wide range of tasks. When they 

directly compared power and exponential functions as possible forms for a 

general law of practice, they found the exponential functions provided better fits 
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than power functions in all unaveraged data sets (Heathcote, Brown and 

Mewhort, 2000). Our data on time are consistent with these results, with even 

an expert, after prolonged practice, able to continually make improvements over 

time.  

Interestingly, in our case, the power law did provide a better account of the 

error dependent variable. It is worth noting that error is zero-bound and there 

are both physical limits and potentially machine related limits – indeed, recent 

work has shown that even expert performers have non-zero error performance 

on this machine (Wierinck et al., 2007; Mirghani et al., 2016). Given the 

participant instructions to reach a very high level of target completion (i.e. 99%), 

it is unclear whether speed-accuracy trade-offs may be manifesting and 

accounting for these results (Hendee, 2001).  

In the introduction, we described a well-known model of human learning, 

Fitts & Posner’s 3 stage model of skill acquisition and introduced the different 

stages of learning which achieved by the performers as they become able to 

produce movements using less motor planning or preparation time. The time 

taken to perform the task decreases and accuracy improves as the performers 

gain more skill. It is worth inspecting the novice participant data from this 

viewpoint. In the first 40 days of practice, we found a dramatic decrease in the 

time measurements followed by increase in time to complete the task for the 

next 40 days, with a gradual decrease after that. The data from the first 80 days 

align extremely well with the transition from an early stage- which is often 

characterised by inconsistency, hesitation and lack of confidence even with 

improve in performance- through to an associative stage- when performance 

starts to become more accurate and consistent. By the end of the experiment, 
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given how well the participant was able to perform the tasks with their preferred 

hand and their non-preferred hand on both simple and difficult task, it seems 

probable that this stage of performance was characterised by the third and final 

automatic stage of learning.  

Finally, we note that much of the research on human learning has 

employed cross-sectional designs over relatively short durations of time. These 

types of studies are important in finding differences among various groups, 

however, they lack the ability to trace changes within individuals over period of 

time. Whilst extensive long-term practice studies on a small number of 

individuals was the norm in the early stages of experimental psychology 

(Boring, 1954; Smith and Little, 2018), these types of studies are now rarely 

conducted. Despite the small sample sizes that these types of experiments 

often necessitate, there is much value that can be gained from this small-study 

approach when the data are interrogated and interpreted carefully (Hackshaw, 

2009). The case study approach we used in this experiment has allowed us to 

better understand the mathematical relationship between practice and learning 

in a VR dental task. 
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Chapter 4 Differences in Planning and Efficiency as a Function 
of Expertise in a Sensorimotor Dental Surgery Task 

4.1 Abstract 

Aim: Most approaches discriminating between behavioural measures of 

performance focus on error frequency and time to complete a task. Here, we 

explore the value of taking measures of idle time (the difference between time 

spent drilling and time to complete the task) and hand trajectory path length. We 

hypothesise that these measures could provide useful insights into the 

processes involved in planning and efficiency, respectively during the task and 

compare across a group of experienced and novice participants on a dental 

surgery task. 

Methods: We recorded behavioural performance from experienced dental 

students (N=41) enrolled on the dentistry programme the School of Dentistry 

and novice participants (N=38) enrolled on a variety of undergraduate 

programmes including Engineering, Psychology, and Medicine at the University 

of Leeds. Data were recorded while they performed a drilling dental task on a 

high-fidelity virtual reality dental simulator. 

Results: We found differences in idle time [F (1, 77) = 39.49, p <0.0001, ηG2= 

0.283] and path length [F (1, 77) = 43.77, p <0.0001, ηG2= 0.362] across the two 

groups. Novice participants (M = 94, 95% CI = [76.7, 111.2]) took significantly 

more time than experts (M = 27.6, 95% CI = [11, 44.2]) and their hands moved 

over longer distances (M = 2.38, 95% CI = [2.14, 2.63]) relative to experts (M = 

1.27, 95% CI = [1.03, 1.50]). Time correlations revealed a significant positive 
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correlation with path length and idle time in both the novice (p <0.0001) and 

expert groups (p <0.0001). Error correlations revealed a significant positive 

correlation with path length in the novice group [r= .35, n=39, p=.032], and 

positively with idle time in the experienced group whilst completing the task [r= 

.34, n=41, p=.029]. 

Conclusion: The data indicate that experienced performers have superior 

economy and shorter planning times. We propose that idle time and path length 

could be useful adjuncts to the oft-reported metrics of time and error and that 

their inclusion in the dental education training program could be useful for 

mentors in providing more specific guidance to trainees to optimize the learning 

process. 
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4.2 Introduction 

Expert sensorimotor performance requires extensive, intensive training 

(Ericsson and Lehman, 1996; Wierinck et al., 2007). Through this process, 

individuals transition from slow, clumsy movement patterns to highly 

coordinated, fast and efficient execution of goal-directed behaviours (Newell, 

1991; Schmidt and Wrisberg, 2000). Expertise in dental surgery requires a 

particularly unique set of skills that are honed over years of training that allow a 

clinician to create geometrical shapes in small dimensions, with limited 

workspace, visibility and distraction force by the tongue and cheek muscles 

(Dimitrijevic et al., 2011; Gottlieb, Vervoorn and Buchanan, 2013). 

The pre-clinical dental training is fundamental for novice dental students to 

gain familiarity with the dental operations and to master dexterous sensorimotor 

skills (Buchanan, 2001). It may be obvious but is worth stating that on average, 

an expert dentist can perform a dental task more accurately and faster than a 

novice (Wierinck et al., 2007; Suebnukarn et al., 2009). In recent work, we 

showed that when assessing dental students’ performance in virtual reality 

simulators for every one unit increase in training year, performance on the 

composite error score decreased by an unstandardised beta coefficient value of 

0.519 (Mirghani et al., 2016). However, these measurements of the final product 

(error and time) do not consider the performer’s strategy or efficiency while 

performing the task (Schmitz et al., 2014; Towers et al., 2019).  

Idle time and path length are two potential measurements that can be 

used to differentiate between novice and expert performers in the planning and 

efficiency of sensorimotor execution. Idle time is characterized by a lack of 

movement of the performer’s hands and may represent periods of motor 
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planning or decision making (Oropesa et al., 2011, 2013; D’Angelo, Rutherford, 

Ray, Laufer, et al., 2015).  

Examining idle time may reveal more about the relationship between 

sensorimotor performance and learning stage than time to completion alone 

(Fitts and Posner, 1967). Various models of sensorimotor skill acquisition 

propose that as an individual progresses through stages of learning, there is a 

reduction in the cognitive processes related to the sensorimotor planning 

(Wolpert, Diedrichsen and Flanagan, 2011; Tresilian, 2012; Diedrichsen and 

Kornysheva, 2015; Krakauer et al., 2019).  

This adaptive process, the transition from high cognitive demand to low, is 

orchestrated by highly integrated neural circuits (Banks, Mikell and McKhann, 

2014). As a result, performers are able to produce movements with less motor 

planning or preparation time and end up with relatively autonomous 

performance at an execution level (through the formation of a new motor 

primitive in the brain) (Diedrichsen and Kornysheva, 2015). Thus, examining 

those instances where there is planning, but no movement, could be a useful 

avenue for probing learning. 

Beyond planning, there may also be value in delineating motor execution 

(i.e. physical mechanics of movement) by measuring efficiency. Motor efficiency 

can be thought of as the conservation of time and motion and is often defined 

by the path length and, in dentistry, we can think of computing efficiency 

through tracking the total path followed by the tip of the handpiece instrument in 

dimensions x, y and z. There is a large body of research that has shown a 

gradual reduction in movement variability as the accuracy of an action improves 
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(Shumway-Cook and Woollacott, 2014; Komar, Seifert and Thouvarecq, 2016), 

with repeated movements correlated with shorter path lengths (Van Beers, 

2009). In surgery, in specific tasks such as suturing, it has been shown that 

motor efficiency improves with each subsequent trial (D’Angelo, Rutherford, 

Ray, Mason, et al., 2015). This measure of motor efficiency may also provide 

some insight into individual differences in performance (Sparrow, 1983; 

Ericsson, Krampe and Tesch-Römer, 1993).  

As expert performance is characterised by smoothness (and driven by 

relatively automatic selection and execution of sensorimotor commands 

(Krakauer et al., 2019)), we expect to find differences in both planning and 

efficiency of task execution as a function of surgical experience. In this study, 

we asked qualified dentists, and control participants to perform a simulated 

dental task on a high-fidelity virtual reality dental simulator in order to explore 

behavioural differences in these two metrics. We predicted that novices would 

produce a greater error percentage and require longer time to complete the task 

in comparison to experts. Second, we predicted that the experienced group 

would display a greater ability to make appropriate decisions with less idle time, 

as well as completing the task with less path length.  

Finally, to examine whether these measures add any value above and 

beyond time and error, we correlated idle time and path length with error and 

time. We reasoned that weak relationships would indicate that performance in 

idle time and path length cannot be fully accounted for by error and time.  
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4.3 Materials and Methods   

4.3.1 Participants 

Experienced dental students (n=41, Male=16, Female=25, Average age= 30.45, 

SD=±3.77) enrolled on the final year of undergraduate study and in clinical 

postgraduate dentistry programme at the School of Dentistry and novice 

participants with no experience of using handpieces in clinical dentistry (n=38, 

Male=19, Female=19, Average age= 31.97, SD=±7.6) enrolled on different 

programmes (Including; Engineering, Psychology, Medicine) at the University of 

Leeds took part in this study. Data were recorded while they performed a drilling 

dental task on a high-fidelity virtual reality dental simulator. All participants 

expressed a preference to use their right hand for the task. Participants 

provided informed consent and were fully debriefed. The study was approved 

(Reference number: 17-0166; date approved: 30-May-2017) by the ethics 

committees based in School of Psychology at the University of Leeds, United 

Kingdom. 

4.3.2 Experimental Protocol 

Participant performed a drilling task from the manual dexterity module in The 

Simodont Haptic VR Dental Trainer®. A cross shape task was employed which 

consisted of three zones: a target zone which must be removed by the 

participant; Leeway zones (side and bottom) surrounding the target zone which 

the participants were instructed to avoid removing; and the container zones 

(sides and bottom) represented by a block that surrounds the abstract shape 

that participants were also told they must avoid during target removal (Figure 

4-1).  
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The participants were required to complete drilling task which involved the 

use of a dental handpiece to remove the target ‘red zone’ in the middle of a 

block, whilst attempting to minimise removal of leeway zones (the ‘safe’ outer 

areas of the block). Real-time feedback on performance was presented on a 

computer monitor attached to the device throughout the task. The feedback 

information included target percentage, error percentage, and time in seconds. 

Participants were instructed that the aim of the task was to remove 99% of the 

target area “without touching the green and the beige zone as much as they 

could and as fast as possible”. Once this was achieved the participants were 

asked to stop drilling and the data were recorded. 

 

Figure 4-1 Experimental setting and task. (A) Schematic drawing of the VR dental simulator and 
the experimental setting. (B) the cross-shape task, illustrating the location of the target area, the 
leeway and container. 
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4.4 Statistical Analysis 

For statistical analysis, we measured performance on four outcome variables. 

Time (in seconds), total error (as a percentage), idle time (in seconds), and 

pathlength (in meters). The total error score was calculated as an average of 

leeway and container areas removed (side and bottom). The idle time score 

was calculated by subtracting drilling time from total time. 

A One-way ANOVAs were conducted to compare the performance of 

participants on the dental task according to the participant group (novice and 

experienced) for each of the outcome variables (idle time, path length, total 

time, and error). The statistical significance threshold was set at p < .05 and we 

report generalised eta squared (ηG2) as a measure of effect size. We 

considered ηG2= 0.02 to be small, ηG2=0.13 to be medium and ηG2= 0.26 to be a 

large effect size. All statistical analyses were performed using RStudio Version 

1.1.463 (R Foundation for Statistical Computing., 2018). 

Correlation analyses were used to examine the relationship between idle 

time and path length against error rates and time to complete the task for each 

group using Pearson’s correlation. We undertook these correlations to evaluate 

whether the variance in idle time and path length could be captured by more 

commonly used measures of performance (time and error). A comparison of the 

magnitude of correlations was performed where significant correlations were 

found using Hittner, May, and Silver’s (2003) modification of Dunn and Clark’s 

(1969) approach using a back-transformed average Fisher’s Z procedure in 

cocor package in RStudio (Diedenhofen and Musch, 2015).  
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4.5 Result  

As expected, we found a significant effect of group on error rates  [F (1, 77) = 

66.68 , p <0.0001, ηG2= 0.464] (Figure 4-2, A), with percentage error being 

higher in the novice participants (M = 27.5%, 95% CI = [24.9, 30.2]) relative to 

the experienced participants (M = 12.7%, 95% CI = [10.1, 15.2]).  

There was also a significant effect of time, [F (1, 77) = 51.15 , p <0.0001, 

ηG2= 0.399] (Figure 4-2, B), with longer time to complete the task in the novice 

participants (M = 274 seconds, 95% CI = [251, 298]) relative to the experienced 

participants (M = 157 seconds, 95% CI = [134, 179]).  

For the idle time, there was also a significant group effect, [F (1, 77) = 

30.49 , p <0.0001, ηG2= 0.283] (Figure 4-2, C), with idle time higher in the 

novice group (M = 94 seconds, 95% CI = [76.7, 111.2]) relative to the 

experienced group (M = 27.6 seconds, 95% CI = [11, 44.2]). 

Finally, for the path length, we found the same pattern as our other 

behavioural measures, with a large effect of group, [F (1, 77) = 43.77 , p 

<0.0001, ηG2= 0.362] (Figure 4-2, D) and longer path length for novices (M = 

2.38 meters, 95% CI = [2.14, 2.63]) relative to experienced dentists (M = 1.27 

meters, 95% CI = [1.03, 1.5]). 
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Figure 4-2 The differences in outcome variables between groups. The circles represent the 
participants performance, the squares are the mean and the error bars are the stander error. (A) 
A comparison between the performance of each group in the dental task represented the error 
measurement in which the lower the value the better the performance. Notably, the experienced 
group on average performed significantly better than novice group. (B) The time measurement 
(seconds) shows that the experienced group on average performed significantly faster than 
novice group. (C) The idle time graph shows that the experienced group on average complete 
the task with less periods of motor planning or decision making than novice group. (D). A 
comparison between the path length of each group in meter which shows that the experienced 
group on average complete the task with less than half of the novice average path length. 
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Next, we examined the extent to which idle time and path length correlated 

with time to complete the task and error rates. We found a significant positive 

correlation between path length and total time in both the novice group [r= .76, 

n=39, p <0.0001], and expert group [r= .7, n=41, p <0.0001] (Figure 4-3, C). 

Also a significant positive correlation between idle time and total time in both the 

novice group [r= .74, n=39, p <0.0001], and expert group [r= .75, n=41, p 

<0.0001] (Figure 4-3, D).  

There was a significant positive correlation between path length and error 

rates in the novice group [r= .35, n=39, p=.032], but this correlation was weaker 

and not statistically significant in the experienced group [r= .14, n=41, p=.38] 

(Figure 4-3,A).  We note, however, that in a comparison of the two correlations, 

we did not find a statistically significant difference [z = .95, p = 0.337] 

Finally, there was a significant positive correlation between idle time and 

error rates in the experienced group whilst completing the task [r= .34, n=41, 

p=.029], but no relationship emerged for the novice group [r=- .15, n=39, p=.38] 

(Figure 4-3, B). When comparing the magnitude of the two correlations we 

found that these patterns were reliably different to one another [z = -2.154, p = 

.031]. 
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Figure 4-3 Scatterplots summarize the relationship between performance errors with both path 
length and idle time. (A) The correlation between path length and error in the novice group was 
statistically significant, longer path length was positively correlated to higher error percentage. 
(B) The correlation between idle time and error in the experienced group was statistically 
significant, decrease in the idle time was positively correlated to lower error. (C) The correlation 
between path length and total time in both groups was statistically significant, longer path length 
was positively correlated to longer time to complete the task. (D) The correlation between idle 
time and total time in both groups was statistically significant, longer total time to complete the 
task was positively correlated to longer idle time. 

  



 
 

 

69 

4.6  Discussion  

The aim of this study was to identify differences between experienced and 

novice surgeons in the planning and efficiency of sensorimotor execution. We 

found significant differences between experienced individuals and novices in 

error percentage and time variables, with the expert group able to make faster 

and appropriate sensorimotor selection and execution. This by itself was not a 

surprising finding and merely replicates a large body of work on measuring 

differences in motor performance as a function of skill [see (Steinberg et al., 

2007; Ben-Gal et al., 2011, 2013; Suebnukarn et al., 2014; Mirghani et al., 

2016; Corrêa et al., 2017)]. More interesting, however, was the observation of 

differences in idle time and path length of the hand movements.  

 We found that the experienced group had less idle time in comparison to 

novice participants and idle time positively correlated with error rates in the 

experienced group, but interestingly, there was no relationship with error in 

novice participants.  

The weak correlation between idle time and error in the novice group is 

interesting for a number of reasons. First, it indicates a distinction between 

planning and error and thus, suggests that there may be value in using idle time 

as an adjunct performance measure. Second, it suggests that even though 

novice participants take longer in motor planning, they are unable to overcome 

a lack of skill necessary to effectively execute this task. These results are 

consistent with Chambers and Geissberger (Chambers et al., 1997) who 

reported that, when beginners and competent students performed Class II 

cavity preparations, both groups achieved similar clinically acceptable 

preparations. However, beginners spent significantly more time in activities with 



 
 

 

70 

no direct function to the cavity preparation. We propose that understanding 

what participants are doing while not moving their hands might be as important 

as the activities they undertake while drilling (D’Angelo, Rutherford, Ray, Laufer, 

et al., 2015).  

In contrast to idle time, path length has been used extensively in capturing 

surgical performance (Allen et al., 2010; Chmarra et al., 2010), but notably this 

measure is rarely reported in the dental literature (Suebnukarn et al., 2014; 

Towers et al., 2019). We found that the experienced group had smaller path 

lengths upon task completion relative to novices. Interestingly, we found that 

both groups showed a positive correlation between path length and error rates, 

however, this relationship reached statistical significance only in the novice 

group.  

Our results are consistent with previous research showing that the total 

path length parameter is a reliable means of discriminating between different 

levels of experience (Suebnukarn et al., 2014). There are a number of potential 

factors that may be driving these observed differences. One possibility is that 

the novice performer has more informational uncertainty that needs to be 

resolved and thus shows more exploratory behaviour, whereas the expert, 

through prior experience, is able to rapidly hone in on the most relevant sources 

of information and thus arrive at a solution much more rapidly and thus exert 

smoother control (Wolpert, Diedrichsen and Flanagan, 2011; Krakauer et al., 

2019). 

Given that these measures of idle time and path length are (i) under-

utilised in the examination of dental performance; and (ii) cannot be fully 
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explained by the two widely used metrics of error and time, we suggest that the 

inclusion of these measures as adjuncts to time and error could be useful in 

undergraduate education programmes for accurate feedback and competency 

evaluations. We also note that due to duty hour restrictions, combined with the 

increasing complexity of clinical cases, surgeons are required to develop ever-

more specialised skills in increasingly shorter amounts of time (Lewis and 

Klingensmith, 2012). An insight into the planning strategies being employed by 

a trainee, coupled with a measure of their motor efficiency, could help mentors 

better tailor feedback to help optimise learning for an individual.  

  



 
 

 

72 

4.7 Conclusion 

We examine behavioural differences between novice and experienced 

performers in idle time and path length. The data show that expert performers 

produce movements that have superior economy and shorter planning times 

and that these performances measures are useful adjuncts to the oft-reported 

metrics of time and error.  We propose that the addition of these measures in 

the dental education training program could be informative for mentors in 

providing more specific guidance to trainees to optimise the learning process. 
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Chapter 5 The Generalisability of Sensorimotor Skill in 
Healthcare Speciality  

5.1 Abstract 

Aim: One important aspect of a learned sensorimotor behaviour is 

generalisability of this skill to another related but unlearned behaviour. 

Sensorimotor theories play a fundamental role in the understanding of skill 

learning and the underlying flexibility and adaptability of the sensorimotor 

system. We aimed to examine the transfer of sensorimotor skills in healthcare 

specialty by exploring the performance of dentists and laparoscopic surgeons 

on simulated surgical and dental tasks and comparing them against surgically 

naïve, psychology group.  

Methods: We used both a high-fidelity virtual reality dental simulator and a 

validated box laparoscopic simulator to record the performance of all 

participants to assess the transferability of skills between surgeons. Nineteen 

qualified dentists, surgeons and psychologists performed a dental drilling and a 

surgical thread transfer task.  

Results: Both surgeons’ and dentists’ performances were superior to other 

groups in the domains that fall within their specialty and superior to controls in 

the domains that fall outside of their specialty. 

Conclusion: The data confirm that there is a degree of generalisation - as both 

surgeons and dentists perform better at the opposite task than the 

psychologists. This transfer of highly skilled motor learning between healthcare 

specialty confirmed the importance of sensorimotor learning theories in 

understanding of the transfer of skill between specialty. Nevertheless, the two 
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specialised task-simulators detected performance differences across the three 

groups, suggesting that simulators could enable the identification of core skills 

that underpin surgical performance regardless of specialty. The identification of 

such core skills could improve the assessment of prospective surgeons, and 

lead to improved training provision prior to specialisation. 

  



 
 

75 

5.2 Introduction 

If you were stuck between choosing a dentist and a psychologist to perform an 

emergency appendix removal, which one would you opt for? Similarly, for a 

tooth extraction, with no dentist available, would you call upon your social 

scientist friend or a surgeon specialising in Hepato-Pancreato-Biliary 

procedures? Whilst these far-fetched scenarios are unlikely to come into play in 

a health service near you (though a desperate shortage in dentists in the UK 

makes the latter an increasingly likely proposition), answers to these questions 

reveal much about our intuitions on the generalisability of skill.  

From a surface level, it is clear that, although the subject specific 

knowledge required to perform surgery and dentistry are clearly unique, there 

seems to be an overlap in the sensorimotor demands of these professions. Both 

specialties require an integration of high-level medical knowledge to make 

appropriate evidence and experience-based decisions. But competency is also 

dependent on the sensorimotor skill that allows one to successfully execute 

these decisions. Whilst these sensorimotor abilities are trained in very different 

contexts, the extent to which these skills can be extrapolated to novel situations  

could provide an insight into the processes that underlie motor learning (Adams, 

1987; Krakauer et al., 2006).  

Research in psychology has revealed that humans are able to rapidly 

learn tasks where the control parameters require simple input-output 

adjustments by some variable amount (e.g. adaptation to different degrees of 

sensorimotor rotation (Braun et al., 2009)). In some scenarios we display a 

remarkable ability to extract general rules regarding tasks with a similar 

structure, by identifying invariants between different input–output mappings and 

can apply these rules to novel situations- a process referred to as motor 
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structure learning (Braun et al., 2009; Braun, Mehring and Wolpert, 2010; 

Pacheco and Newell, 2018). Indeed, structural learning is clearly manifest in a 

plethora of everyday activities. Perhaps the most popularly cited example of 

structural learning in action comes from Wolpert’s bicycle analogy: ‘When 

someone used to ride only one type of bike for example, racing bike and then 

asked to ride a mountain bike that will require changing in the control parameter 

from a racing bike to a mountain bike. Moreover, if the two bike models are 

close to each other in parameter space, then learning can be fast. Clearly, there 

is another possible way to speed up learning. If we have ridden many different 

types of bicycles, we might have extracted general rules for how the control 

parameters covary for different bicycles. Thus, when we are presented with a 

new task on the same structure, the search is restricted to a subspace of the full 

parameter space (e.g., the control subspace for the class of all bikes), thereby 

speeding up learning (Braun et al., 2009; Braun, Mehring and Wolpert, 2010; 

Turnham, Braun and Wolpert, 2011). 

However, highly skilled motor learning is also marked by a specialisation 

of function- with sensory motor commands developed and refined through 

interaction with, and tailored for, specific environments (Wolpert and Flanagan, 

2010; Krakauer et al., 2019). If a small change in the context is associated with 

a large alteration in the learning task, then generalising from prior leaning could 

also interfere with the new task and impair performance (Krakauer et al., 2006). 

Here, we explore the extent of this transfer-interference phenomenon in the 

context of surgical performance. We asked nineteen qualified dentists, 

surgeons and psychologists (serving as a control group) to perform a series of 

simulated dental and surgical tasks on a validated box laparoscopic surgical 

simulator, and a high-fidelity virtual reality dental simulator.  
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5.3 Materials and Methods   

5.3.1 Participants 

The participants were clinical postgraduate dental students (N = 19, Male= 12, 

Female= 7, with an average of 4.7 ± 1.27 years of experience) enrolled from 

School of Dentistry at the University of Leeds, laparoscopic surgeons (N = 19 

Male= 11, Female= 8 with an average of 5.05 ± 5.79 years of experience) 

enrolled from laparoscopy training course at the University of Leeds, and 

postgraduate psychology students with no experience in surgery and dentistry, 

serving as a control group (N = 19 Male= 8, Female= 11) enrolled from the 

School of Psychology at the University of Leeds. All participants had no 

previous experience of using these simulators. The study followed the tenets of 

the Declaration of Helsinki and was approved by the local Research Ethics 

Committee at the School of Dentistry and School of Psychology, University of 

Leeds, United Kingdom (Reference number: 17-0166; date approved: 30-May-

2017). 

5.3.2 Experimental Protocol 

We used validated high-fidelity virtual reality simulator, The Simodont Haptic VR 

Dental Trainer® and a validated box laparoscopic simulator EoSim® described 

below to assess performance in each domain. For assessing the dental 

performance, a virtual cross geometric shape was employed in this experiment. 

A schematic example of the shapes is shown in (Figure 5-1). The task consisted 

of three zones:  a target zone- which must be removed by the participant; 

Leeway zones (side and bottom) is adherently surrounding the target zone and 

the participants were instructed to avoid removing as possible; and the 

container zones (sides and bottom) represented by a block that surrounds the 
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abstract shape and the participants were also told they must avoid during target 

removal. Furthermore, the participants were informed that the target removal 

percentage is 99%. For assessing surgical performance, a thread transfer task 

was employed to this experiment which involved inserting a thread in 5 pegs 

(holes) within a 10-minute using laparoscopic graspers on both hand (Figure 

5-2). 

5.3.3 EoSim®   

The EoSim (developed by EoSurgical Ltd., Edinburgh, Scotland, United 

Kingdom) is a laparoscopic box trainer system that have been developed to 

train surgeons to acquired advanced skills such as suturing using laparoscopy. 

It is use innovative instrument tracking technology to measure the movement of 

the instruments as the surgeon perform each task. The tracking data is 

converted into performance metrics for each instrument. then it generates both 

kinematic and natural language feedback to help understand the metrics and 

highlight areas for improvement to refine the technique (Hennessey and Hewett, 

2013; Retrosi et al., 2015). It is consisting of a box and inside that box a high 

definition 1080p USB plug-and-play webcam built in with LED light strip built in 

to provide optimal illumination. From outside the box there is three keyholes 

opening for the laparoscopic instruments. The simulator connected to a 

computer by the USB plug and communicate through a software which contain 

the different practice tasks (Figure 5-2). 

The kinematic performance measures provided by EoSim® are: time 

(second), distance (m): a measure of precision of control of the instrument in 

which expert are able to complete the task with lower instrument path distant, 

Speed (mm/s): the rate of movement of the instrument as the distance travelled 

in millimeter divided by the time in seconds, motion smoothness (mm/s3): the 
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continuality or non-intermittency of a movement, independent of its amplitude 

and duration. Intermittency in this context refers to movements that alternately 

decelerate and accelerate, and more intermittency corresponds to unsmooth 

movements (Hennessey and Hewett, 2013; Partridge et al., 2014; Retrosi et al., 

2015). 

 

 

 Figure 5-1 Schematic drawing of the cross-shape dental task (A), and (B) Cross-section 
showing the three layers of the dental task. 

 

 

Figure 5-2 The set-up of the surgical simulator showing the performed surgical task which 
require passing the thread through the pegs.  



 
 

80 

5.4 Statistical Analysis  

For performance assessment, due to the nature difference in the kinematic 

performance measures provided in both task , a z-score of a calculated 

composite measure that captured speed-accuracy trade-offs in performance for 

surgical (𝐶$%&') and dental tasks (𝐶()*+) is used to analyses the results.  The 

dental composite measure was calculated by multiplying the total error by the 

time taken, such that lower scores indicate better performance (Equation 1). 

The surgical composite measure was calculated by multiplying the number of 

incomplete holes (𝑛) plus one by the amount of time taken to complete the task 

within the maximum time period, such that lower scores indicate better 

performance (Equation 2).  

𝐶()*+ = 𝑡()*+ 	× 	𝐸, (1) 

 

𝐶$%&' = 𝑡$%&' 	× 	(𝑛 + 1) (2) 

 

The variables were tested for normality to ensure the data met 

requirements for valid analysis of variance (ANOVA) by Q–Q plots and 

Shapiro–Wilk test (P < 0.05). A repeated measures ANOVA was conducted to 

compare the participants performance according to their group for the z-scored 

composite variables in dental and surgical simulators.   
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5.5 Results 

A two by three analysis of variance conducted to compare the performance of 

participants on the task type (dental and surgical) according to the participants 

group (Surgeons, Dentists, and Controls) for the z-scored composite variables. 

This yielded a significant effect for the groups factor, [F (2, 54) = 18.23, p 

<0.001, ηG2 = 0.25], and non-significant effect for the task type factor, [F (1, 54) 

= 0.00, p = 1.00, ηG2 = 0.00]. However, the interaction effect was significant, F 

(2, 54) = 7.36, p < 0.001, ηG2 = 0.121]. The descriptive analysis of each 

condition can be visualized in (Figure 5-3).  

A series of one-way ANOVA then conducted to decompose the interaction 

by groups. For the controls’ group, analysis of variance showed that the effect 

of task type was not significant, [F (1, 18) = 0.058, p =0.81, ηG2 = 0.0016]. For 

the dentists’ group, analysis of variance showed that the effect of task type was 

significant, [F (1, 18) = 24.52, p =0.0001, ηG2 = 0.348]. For the surgeons’ group, 

analysis of variance showed that the effect of task type was significant, [F (1, 

18) = 9.05, p= 0.007, ηG2 = 0.189].  

Finally, we found that the performance of dentists and surgeons in the 

domains that fall within their specialty are not significantly difference, [F (1, 36) 

= 1.37, p= 0.24, ηG2 = 0.036]. 
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Figure 5-3 A comparison between the performance of each group in the dental and surgical 
tasks. The data is represented as a z-score of the composite error measures in which the lower 
the value the better the performance. The circles represent the participants performance, the 
squares are the mean and the error bars indicate the stander error. A statistically significant 
difference of composite error (negative indicates less composite error) was found across 
groups. Notably, the dentists’ group on average performed better than controls group on the 
surgical task and performed better than controls and surgeons on the dental task. Similarly, the 
surgeons’ group on average performed better than controls group on the dental task and 
performed better than controls and dentists on the surgical task. 
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5.6  Discussion   

Surgical trainees face many challenges in their journey to learn the set of skills 

that are required for practice. Surgical simulation technology has the potential to 

support the learning of these skills and thereby improve the training and 

practise of surgeons. It is necessary to understand the acquisition of surgical 

skills in order to best use simulators and develop an evidence-based curriculum 

with more efficient training programmes.  

In the present study, we identify evidence to support the intuitive notion 

that there are core surgical skills that transcend speciality (a conjecture that has 

support from the field of sensorimotor control and the phenomenon of structural 

learning). There would be great benefit in starting to understand the core skills 

that are common to all surgical specialties. First, this would allow better 

screening of prospective surgical trainees to identify individuals with 

neurological deficits that prevent the acquisition of surgical skills (estimates 

suggest that 5% of the general population have such deficits (Raw et al., 

2019)). Second, it would allow for more efficient training programmes within 

hospital and university settings. Third, it would improve our understanding of the 

fundamental processes that underpin the learning and practice of surgery. This 

would, in turn, allow us to take an evidence-based approach to accelerating the 

acquisition of surgical skills in trainees. 

In sensorimotor research, speed and accuracy are two important aspects 

of evaluating performance but if these measurements analysed separately, 

sometimes lead to contradictory conclusions about the performance 

(Vandierendonck, 2017). To avoid such conflicts, a calculated measure that 

integrate speed and accuracy have been proposed, that collapses the duration 

in seconds and error together in a single kinematic measure with fast and 



 
 

84 

accurate at one end of the continuum and slow and inaccurate at the other end. 

To make these composite measures of the dental and surgical task 

comparable, a z-score of each composite measures were calculated and then 

used as a performance metric for each task.  

In the dental task, this score revealed that dentists’ performance is better 

than controls and surgeons. In the surgical task, this score revealed that 

surgeons’ performance is better than controls and dentists. Nevertheless, it 

shows that surgeons’ performance is better than controls in the dental task and 

dentists’ performance is better than controls in the surgical task. These data 

align well with the current understanding of some of the sensorimotor theories 

like, structural learning “Learning to learn” and hierarchical theories (selection 

and execution) which provide models for explaining how human can adapt and 

readapt to a sequence of similar tasks which lead to smoother and less jerky 

performance in the domains that fall outside of their specialty (Braun, Mehring 

and Wolpert, 2010; Gabriel, 2012; Diedrichsen and Kornysheva, 2015). 

Certainly, a fundamental property of perceptual–sensorimotor skill is the 

precision and consistency of the spatial–temporal control of the arms. For 

example, in learning to drill into plastic teeth, the dental student must come to 

get their hand to the right place, at the right angle, and with the correct force. 

These factors can become highly precise and consistently repeatable (Wolpert, 

Diedrichsen and Flanagan, 2011; Rodger, Tang and White, 2016; Sadnicka et 

al., 2017). Therefore, when practicing a new skill, even if we have been 

informed exactly how to do it, it is often required multiple practices to achieve 

proficient and fluid level of performance. The neural changes after practice  

allow us to accomplish a motor task better which observed as, increase in the 

speed of performance and reduction in the behavioral error (Adams, 1987; 
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Haith and Krakauer, 2018). However, our brain have the ability to do a 

decomposition to the structure of a learned skills leading to faster learning for 

problems sharing a similar structure (Seidler, 2004). 

Here, we argue that this adaptation of surgeons (Dentists and 

Laparoscopic surgeons) to a new task without previous practice on them is 

recorded as reduction of systematic error induced by the perturbation, and this 

occurs through adjustment of an internal model that maps motor commands 

onto predicted sensory outcomes and result in smoother and faster execution of 

the movement with less amount of error (Shmuelof, Krakauer and Mazzoni, 

2012). Explaining these data from a sensorimotor theory prospective give us a 

better understanding of what could be the difference between surgeons 

(Dentists and Laparoscopic surgeons) and controls in the performance of the 

tasks specially the task that fall outside of the surgeon’s domain.  

First, as discussed early in Chapter 1, the movements are generated 

through the interaction of different representational levels, ranging from 

movement goals (selection level) down to the specification of the actual muscle 

commands (execution level). The cognitive processing of task instructions 

occurs at the selection level then the most appropriate set of motor elements is 

mapped to task requirements at the execution level. In surgeons and dentists, 

the skill elements become encoded at an intermediate level within the dynamic 

neural network rather than at the selection level. As a result, the motor elements 

require little explicit or cognitive control to adapt to the new tasks (Sakai, 

Kitaguchi and Hikosaka, 2009; Diedrichsen and Kornysheva, 2015; Sadnicka et 

al., 2017).  

Second, this behavior could also be explained by structural learning theory 

which suggests that characteristic parameters are abstracted from a set of 



 
 

86 

motor behaviours with the consequence that learning of similar tasks is 

facilitated. There are two distinct mechanisms by which the motor system might 

adjust its control parameters. First, fast learning could be a consequence of the 

similarity between the original and final settings of the control parameters. 

Second, as a result of  structural learning, by extracting the common features 

and parameters of a learned sensorimotor skill and exploiting these parameters 

for efficient adaptation in novel tasks (Braun et al., 2009; Braun, Mehring and 

Wolpert, 2010; Pacheco and Newell, 2018). For example, in adaptation to a 

new surgical task, dentists need to extract the common features and 

parameters of a learned skill (like suturing) and exploit that skill for efficient 

adaptation in the laparoscopic surgical task. Therefore, structural learning 

governs ‘learning to learn’ and transfer between tasks with the same task 

structure. (Krakauer, Ghez and Ghilardi, 2005; Krakauer et al., 2006; Shmuelof, 

Krakauer and Mazzoni, 2012).  
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5.7 Conclusion  

Our results demonstrate that both surgeons’ and dentists’ performances were 

superior in the domains that fall within their specialty and superior to controls in 

the domains that fall outside of their specialty. Furthermore, when surgeons and 

dentists perform a task in the domains that fall outside their specialty the motor 

control processes can extract the structure of the task and facilitate interference 

reduction due to their ability to execute a learned and fine sensorimotor skill. 

The data confirm that there is generalisation of skills between healthcare 

specialities in which surgeons and dentists had the ability to use their well-

learned sensorimotor skill in a flexible manner to solve a new task.  
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Chapter 6 Frontal Theta Brain Activity Varies as a Function of 
Surgical Experience and Task Error 

6.1 Abstract 

Aim: Investigations into surgical expertise have almost exclusively focussed on 

overt behavioural characteristics with little consideration of the underlying neural 

processes. Recent advances in neuroimaging technologies e.g. scalp-recorded 

EEG, allow neural processes governing performance to be studied. We used 

EEG to examine whether surgical expertise and task performance could be 

differentiated according to an electrical brain activity signal known as frontal 

theta.  

Methods: Behavioural and EEG data were acquired from dental surgery 

trainees with one (n = 25) and four years of experience (n = 20) while they 

performed low and high difficulty drilling tasks on a virtual reality surgical 

simulator. EEG power in the 4-7 Hz range in frontal electrodes (indexing frontal 

theta- an oscillatory brain activity signal and putative biomarker for cognitive 

control processes) was examined as a function of experience, task difficulty and 

error rate. 

Results: Frontal theta activity was greater for novice participants (dental 

surgery trainees with one years of experience) relative to dental surgery 

trainees with four years of experience, expert participants (p = 0.001) but did 

not vary according to task difficulty (p = 0.15) and there was no experience X 

difficulty interaction (p = 0.87). Brain-behaviour correlations revealed a 

significant negative relationship between frontal theta and error in the 
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experienced group for the difficult task [r = -.594, p = .0058], but no such 

relationship emerged for novice participants.  

Conclusion: We find frontal theta activity differentiates between surgical 

experience but correlates only with error rates for experienced surgeons whilst 

performing difficult tasks. These results provide a novel perspective on the 

relationship between expertise and surgical performance. 
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6.2 Introduction 

Highly skilled surgeons have the ability to monitor and rapidly adapt to changes 

in the environment, appropriately tune into relevant information variables, select 

from a large repertoire of possible sensorimotor commands and execute with a 

smoothness that belies their many years of training (Hall, Ellis and Hamdorf, 

2003; Sadideen et al., 2013; Debarnot et al., 2015; Krakauer et al., 2019). 

Whilst the majority of research on surgical performance has examined the overt 

behavioural characteristics of such expertise (e.g. time to task completion 

(Wierinck et al., 2007)) and subjective measures of mental workload (largely 

examined through post-hoc surveys (Byrne, 2011)), investigations into the 

underlying cognitive mechanisms that mediate the ability to carry out the 

complex sequences of action selection and execution required for surgical 

practice are rare.  

In cognitive neuroscience, the processes involved in goal-directed 

attention, outcome monitoring, executing motor commands and suppressing 

irrelevant motor responses are clustered under the label of “cognitive control” 

(also referred to as “executive function (Mushtaq, Bland and Schaefer, 2011)”).  

One putative neural correlate of cognitive control is a pattern of oscillatory brain 

activity known as “frontal theta”- a signal that can be observed on the scalp 

through electroencephalography (EEG) recordings and quantified by calculating 

signal power in the 4-7 Hz range (Rabbi et al., 2009).  

Frontal theta is considered to be critical in performance monitoring 

(Alexander and Brown, 2011; Van Driel, Ridderinkhof and Cohen, 2012) and 

core to error detection (Ridderinkhof et al., 2004; Van Driel, Ridderinkhof and 

Cohen, 2012)- the key to triggering selection and prioritization of information 

processing (Haith and Krakauer, 2018; Zavala et al., 2018) and subsequent 
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action (Cavanagh et al., 2010; Cavanagh and Shackman, 2015). The 

recruitment of these “top down” control processes is heightened in scenarios 

where automatic processes are insufficient for successful adaptation to the 

current environment (Mushtaq, Bland and Schaefer, 2011), with the prefrontal 

cortex responsible for engaging a broad network of systems involved in goal-

directed actions (Norman and Shallice, 1986; Miller and Cohen, 2001; 

Baddeley, 2003; Braver, Gray and Burgess, 2007; Parcutilo and Luna, 2016). 

Extant theories of skill acquisition often describe a shift from deliberate to 

automatic action selection and execution, with requisite reductions in working 

memory requirements during the performance of a highly practiced action 

(Bassett et al., 2015). A recent unifying framework for theories of cognition and 

action- known as the “Free Energy Principle" proposes that the neocortex 

(involved in higher order functions, such as sensory perception, motor 

commanded and spatial reasoning) constantly makes inferences about the 

world and learns from experiences through the violation of its predictions 

(Friston, 2010). Viewed in this framework, frontal theta activity could serve as 

both a teaching signal for the system to learn that it needs to refine its prediction 

for the future and simultaneously, trigger the cognitive resources required to 

produce adaptive control (Cavanagh and Frank, 2014). A more accurate world 

model would require fewer behavioural adjustments and thus, a reduction in the 

need to recruit cognitive control.  

Predicated on this theory and evidence from neuroscience, we examined 

whether frontal theta activity could be used to distinguish between experienced 

and novice dental surgery trainees on a simulated drilling task carried out on a 

high-fidelity virtual reality simulator. We predicted that, overall, novice 

participants would exhibit greater task-related theta activity, reflecting greater 
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top-down engagement of cognitive control processes relative to their more 

experienced counterparts. Secondly, given that behavioural adaptation following 

prediction error is a hallmark of learning, we expected a relationship between 

performance errors and frontal theta activity.  
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6.3 Materials and Methods 

6.3.1 Participants 

The data used for this study were obtained from undergraduate students of 

School of Dentistry, University of Leeds. The participants were assigned into 

two groups (as per their level of expertise). Forty-five participants were recruited 

with 25 first year dental students (the novice group = 16 females and 9 males, 

Age = 20.32 ± 2.54 years) and 20 fourth year dental students (the experienced 

group ;17 female and 3 male, Age = 23.7 ±0.58 years). All participants were 

right-handed, provided informed consent and were fully debriefed. The study 

was approved by the local Ethics Committee (REF:271016/IM/216) at the 

School of Dentistry, University of Leeds. 

6.3.2 Experimental Protocol 

Participants performed two tasks on The Simodont Haptic VR Dental Trainer® 

with two levels of difficulty. Specifically, participants were asked to drill two 

shapes, with difficulty operationalised as a function of geometric complexity. 

The “low difficulty” task involved drilling a simple straight shape, whilst the “high 

difficulty” task required participants to drill out a cross shaped object.  

Each shape comprised three regions: (i) target - which participants were 

instructed must be removed; (ii) leeway area - which surrounded the target 

region on the sides and bottom (participants were instructed to avoid removing 

as much of this as possible); and (iii) a container area on the sides and bottom 

surrounding the leeway zone and represented as a brown coloured region that 

participants were instructed that they must avoid during drilling (see Figure 6-1, 

A).  
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The goal for participants was drill/cut 99% of the target region whilst 

minimising drilling in the leeway and avoiding the container regions as fast as 

they possibly could. To avoid potentially confounding order effects, we 

counterbalanced the presentation of shape across participants.  

All data collection was carried out in the Dental Simulation suite at the 

University of Leeds. The total duration of the study for each participant was 

approximately 15-20 minutes. All Participants received a 5-10 minutes 

introduction to the simulator and the tasks to be performed. The EEG system 

was placed on participants’ heads according to the manufacturer’s instruction. 

Introduction to the simulator and the tasks to be performed took place after 

installation of the EEG headset and before the recording of any data (Figure 

6-1). The EEG data were recorded continuously during the first dental task until 

the participants achieved the target performance level identified by the dental 

simulator. There was a two-minute break between the first and second task for 

all participants.  

6.4 EEG Acquisition Device 

EEG data were recorded using an Emotiv Epoc+ EEG wireless headset® 

(Emotiv Systems, Inc., San Francisco, CA). This system includes 14 active 

electrodes placed across the  scalp according to the international 10-20 system 

(labelled AF3, AF4, F3, F4, F7, F8, FC5, FC6, P7, P8, T7, T8, O1 and O2) with 

2 reference electrodes placed on mastoids bone behind the ear (CMS-left 

mastoid)/driven right leg (DRL-right mastoid) ground (Figure 6-1, C). The signal 

from each electrode was converted to digital form via a 16-bit analogy to digital 

converter (ADC), with a sampling frequency of 128 Hz. 
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Figure 6-1 (A) Schematic drawing of the experimental setting (B) The drilling tasks: the straight 
shape task is defined as a low level of difficulty whilst the cross shape presents a high level of 
difficulty. (B) Location of the EEG electrodes relative to head position. Analysis focussed on 
channels F7, F8, AF3, AF4, F3, F4.  
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6.5 Data Analyses 

6.5.1 EEG Data Analysis 

As the EEG signals observed on the scalp are inherently noisy, we undertook a 

number of pre-processing steps before statistical analysis (Figure 6-2). Raw 

EEG data were pre-processed for artefact removal and band decomposition 

using EEG BESA® (Brain Electrical Source Analysis) (MEGIS Software GmbH, 

Gräfelfing, Germany). A linear Finite Impulse Response (FIR) filter was used to 

band pass the data between 1 and 20 Hz. Artefacts in the data were eliminated 

using an automatic artefact rejection routine implemented in BESA®. 

Following this, we isolated theta band oscillations (4–7 Hz) from the 

channels in the frontocentral region of the scalp (FC; i.e. channels F7, F8, AF3, 

AF4, F3, F4) and band power was computed every quarter of a second using 

Welch’s method, which estimates the power spectra based on a Fast Fourier 

Transform (FFT) (Welch, 1967; Shaker, 2007).  

Finally, our measure of frontal theta was computed by averaging activity 

across the frontocentral region. This improved the signal-to-noise ratio by 

minimising the impact of any one single channel.  One participant from the 

Novice Group had excessively noisy EEG data, with values more than three 

times the standard deviation of the mean in the high and low difficult tasks and 

was thus excluded from all analyses. 
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Figure 6-2 A flow chart for the pre-processing and filtering the EEG. 

 

6.5.2 Statistical Analysis 

For behaviour, we measured performance on the total error (quantified as 

percentages of drilling in the leeway regions). All measures were tested for 

normality to ensure the data met requirements for valid analysis of variance 

(ANOVA), by Q–Q plots and Shapiro-Wilk test. A 2 x 2 mixed ANOVA was 

conducted to compare performance across expertise (beginners vs. experts) X 

task difficulty (High vs. Low) for each dependent variable. Correlation analyses 

were used to examine the relationship between frontal theta and the amount of 

error in the behavioural data for both the low difficulty and high difficulty task for 

each group using a Pearson correlation. Comparisons of the magnitude of two 

correlations were performed where significant correlation were found using 

Hittner, May, and Silver’s (2003) modification of Dunn and Clark’s (1969) 

approach using a back-transformed average Fisher’s Z procedure in cocor 

package in RStudio (Diedenhofen and Musch, 2015). The statistical significance 

threshold was set at p < .05 and we report generalised eta squared (ηG2) as a 

measure of effect size and considered ηG2 = 0.02 to be small, ηG2 = 0.13 to be 

medium and ηG2 = 0.26 to be a large effect size. All statistical analyses were 

performed using RStudio Version 1.1.463 (R Foundation for Statistical 

Computing., 2018).   
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6.6 Results 

For behavioural performance (Figure 6-3, A), we found a significant effect of 

group [F (1, 42) = 41.18, p < 0.001, ηG2 = 0.41]. As expected, (Mirghani et al., 

2016), error rates were higher for novice participants (M = 16.51, 95% CI = 

[14.99, 18]) relative to the experienced participants (M = 9.68, 95% CI = [8.16, 

11.2]). There was also a significant effect of task difficulty, [F (1, 42) = 5.3, p = 

0.03, ηG2 = 0.04], with more errors occurring in the high difficulty task (M = 13.9, 

95% CI = [12.6, 15.1]) relative to the low difficulty variant (M = 12.3, 95% CI = 

[11, 13.6]). There was no interaction between task difficulty and group, [F (1, 

42) = 0.16, p = 0.69, ηG2 = 0.001].  

For our EEG measure of cognitive control (Figure 6-3, B), we found a 

significant effect of group [F (1, 42) = 12.05, p = 0.001, ηG2 = 0.15], with frontal 

theta activity greater for novice participants (M = 1.23, 95% CI = [1.02, 1.43]) 

relative to experienced participants (M = 0.72, 95% CI = [0.52, 0.93]), indicating 

an increase in the recruitment of cognitive control. However, there was no 

difference across tasks [F (1, 42) = 2.11, p = 0.15, ηG2 = 0.02] and no interaction 

[F (1, 42) = 0.03, p = 0.87, ηG2 < 0.001].  

 



 
 

100 

 

 

Figure 6-3 Group and task related differences in behaviour and neural activity. (A) Experienced 
participants made few errors relative to novice participants and participants made fewer errors 
in the low difficulty task relative to the high difficulty task. (B) On average, the experienced 
group showed lower theta activity relative to novice participants. There was no reliable 
difference in theta activity as a function of task difficulty.  



 
 

101 

Finally, we explored whether the amount of frontal theta activity exhibited 

by participants could be correlated with the amount of behavioural error within 

each of our groups and across the two tasks. We found a significant negative 

correlation between frontal theta activity and behavioural error rates in the 

experienced group whilst completing the high difficulty task (r = -.594, n = 20, p 

= .0058). In other words, smaller behavioural errors were associated with 

greater theta activity whilst higher error rates were correlated with lower theta 

activity in this high difficulty task for expert group. We found no other statistically 

significant relationships (r’s < 0.16; p’s > .46). To examine whether this 

observed relationship between neural activity and task error for our experienced 

group in the high difficulty task was significantly greater than the pattern found 

in the novice group (Figure 6-4), we compared the magnitude of the two 

correlations and confirmed that the patterns were reliably different from one 

another (z = 2.1779, p = 0.0294).  

 

 

Figure 6-4 The relationship between behavioural performance and neural activity. Panel A 
shows no correlation between task error and frontal theta, but the experienced participants in 
the high difficulty task exhibited a strong negative correlation indicating that better performance 
was linked to greater theta activity (Panel B).   
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6.7  Discussion 

Expert surgical performance is marked by seemingly effortless, flexible 

behaviour (Mylopoulos and Regehr, 2011) that typically manifests in smoother 

movements, shorter operating times and fewer errors (Hofstad et al., 2013; 

Uemura et al., 2014). This behaviour is the product of a distributed network of 

neural circuitry that takes a complex sequence of action selection and planned 

motor execution plan and refines over time to ensure smooth and seemingly 

automatic performance (Debarnot et al., 2015; Diedrichsen and Kornysheva, 

2015). However, there have been very few investigations into the neural 

processes linking brain and behaviour in the surgical domain (Bahrami et al., 

2014; Morris et al., 2015; Lowe et al., 2016; Kok et al., 2018), with technological 

constraints limiting the ability to probe the neural underpinnings of surgical 

performance.  

We took advantage of recent advances in wireless EEG technology to 

understand these processes in more detail. We reasoned that a neural signal, 

referred to as frontal theta, a putative marker of cognitive control would 

distinguish between experienced and novice dental students. We hypothesised 

that novice participants would require the recruitment of more cognitive 

resources to carry out the task relative to their more experienced counterparts 

and in line with this expectation, we found an increase in frontal theta activity for 

the novice.  

We also found that the relationship between this signal and error 

correction was specific only to experts when performing difficult tasks. These 

results were not predicted a priori, and the result appears to indicate a reversal 

in the relationship between theta activity and performance and as such it is 

worth considering the nature of this relationship in detail. Here, in contrast to the 
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global pattern in which theta activity was greater for the beginners relative to the 

experts, we found greater theta activity for experts who made fewer errors. To 

understand the processes underlying this phenomenon, consider the example 

of a learner driver stepping into the driving seat for the first time. We can 

imagine that our student is keen to learn and thus extremely attentive to the 

stimuli visible on the road ahead. However, it is also clear that there is a limit to 

the performance levels that could reasonably be expected of our student- 

irrespective of the amount of attentional resources that might be recruited for 

the task. In this context, making the driving conditions more hazardous is 

unlikely to modulate the relationship between cognitive control and performance 

to any reasonable degree, given that performance levels are low and attentional 

allocation is already high. Now contrast this with a more experienced driver, 

fewer attentional resources are required relative to the learner to exercise a 

higher level of performance. But if we heighten the task demands, say through 

poor weather conditions, we can reason that those who make fewer errors are 

also likely to be the individuals with increased allocation of attentional 

resources.  

These results also speak to a more general issue of the relationship 

between expertise and performance. Expert surgeons are often, as in this 

study, considered a homogenous group and their performance benchmarked 

against trainee groups (Chandra et al., 2010; Suebnukarn et al., 2014). The 

present results indicate the existence of a more nuanced perspective on the 

relationship between experts and performance. Whilst on average, their 

performance may be better than trainees (on metrics relating to time and error), 

the performance of any one individual is likely to be modulated by a number of 

factors. Whilst the present data do not speak to causality, they do indicate a 
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correlation between the amount of attentional allocation and performance in 

experienced participants and this may be a factor to consider in future 

comparisons- from experimental design (e.g. motivation and distraction) to 

measurement and statistical analysis (examining heterogeneity within expert 

groups).   

Some limitations of the present work are worth noting: Whilst our sample 

size was comparable to the majority of previous research in this area, future 

research with larger sample sizes that have sufficient power to test the reliability 

of the brain-behaviour relationships identified here would be welcome. Our 

sample also comprised dental surgery trainees who differed in 3 years of 

experience. Exploring these relationships across different levels of experiences 

and specialities will be important in testing the generalisability of these findings.  

Finally, given the increasingly lower costs of EEG technology and the ease 

in which these newer systems can be incorporated within surgical simulation, 

we suggest that the surgical education and performance community could 

benefit from integrating this measure into experiments in conjunction with 

behavioural measures of task performance. 
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6.8 Conclusion 

In this study, we show that frontal theta, a putative marker of cognitive control, 

can differentiate between surgical experience. The data also indicate that frontal 

theta activity scales with the degree of behavioural adjustment following error 

commission only for expert surgeons performing difficult tasks. These results 

point towards a more nuanced interpretation of the relationship between 

expertise and performance- one that may be modulated by cognitive control. 
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Chapter 7 Discriminating Between Surgical Expertise by 
Manipulating Task Difficulty 

7.1 Abstract 

Aim: To be able to distinguish between different levels of skill requires that 

assessments are set at an appropriate level of difficulty. If the task is too hard 

the majority might struggle- a floor effect and if too easy, the majority of 

students might succeed- a ceiling effect. Here, we explore the impact of task 

difficulty as it relates to discriminating between different levels of dental training 

experience. 

Methods: We recorded performance on a drilling task from undergraduate 

dental students (N=296) at the University of Leeds. We retrospectively collected 

data for an easy difficulty task (where participants were instructed to remove 

60% of a target area; year 1 n = 40, year 3 n = 34, year 4 n = 37, and year 5 n = 

39) and prospectively recorded data for a hard difficulty level (where the goal 

was to remove 96% of the target area; year 1 n = 61, year 3 n = 27, year 4 n = 

27, and year 5 n = 30).  

Results: We found a significant interaction between years of dental training and 

task difficulty [F (3, 288) = 7.92, p < 0.0001, ηG2 = 0.076]. In the low difficulty 

condition, there was a smaller difference in comparison to the high difficulty 

condition.  

Conclusion: The results demonstrate that manipulating difficulty level had an 

effect on distinguishing between years of dental expertise. These results 

highlight the importance of setting an optimal difficulty level for discriminatory 

assessment.   
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7.2 Introduction 

Assessments are widely used in dental education to record the academic and 

clinical progress (Manogue, Brown and Foster, 2001; Shahriari-Rad, Cox and 

Woolford, 2017), sensorimotor skill development (Mirghani et al., 2016), 

competency of the students (Evans, 2001) and ultimately determine whether 

individuals are ready to be independent dental practitioners (Patel et al., 2018). 

As such, assessments must be carefully designed to allow for the effective 

evaluation of students against the learning outcomes that require the testing of 

relevant skills (Patel et al., 2018).  

When assessing whether students have acquired a specific preclinical 

dental skill (e.g. caries cavity preparation), a valid and reliable assessment is 

needed to ensure that students who pass this assessment are “competent” and 

can perform the dental procedures accurately and safely, and that students who 

fail need further skill development to reach competency. To achieve this level of 

discriminatory power, the assessment needs to be set at an optimal level of 

difficulty. If we sit the difficulty level of the task too high, the students might 

struggle in performing the task resulting in difficulty in capturing the different 

between them (often referred to as a floor effect (Lewis-Beck, Bryman and 

Futing Liao, 2004)). However, if the task is too easy, then we may suffer from 

the conceptually opposite problem (known as a ceiling effect), with all students 

able to pass the assessment, irrespective of their ability.  

Preclinical dental skills are usually assessed using traditional phantom 

head simulators with typodont cast (Fugill, 2013). While there are standard 

predefined criteria on what might be an acceptable level of performance, this 

relies heavily on subjective evaluation through visual inspection (Manogue, 

Brown and Foster, 2001; Taylor, Grey and Satterthwaite, 2013; Huth et al., 



 
 

109 

2017). Also, tailoring task difficulty according to skill level of the group is critical, 

time consuming and cumbersome process (e.g. study shows that the quality of 

root canal fillings performed by undergraduate students was adversely affected 

by case difficulty if they have less than two year of clinical experience 

(Alsulaimani et al., 2015)).  

In recent years, there has been a proliferation of haptic VR simulation in 

dental schools (Hollis, Darnell and Hottel, 2011; Cook et al., 2015) to 

complement traditional training approaches (Quinn et al., 2003; Urbankova and 

Engebretson, 2011; Shahriari-Rad, Cox and Woolford, 2017; Towers et al., 

2019). An oft-cited advantage of VR simulators is their ability to provide 

objective automated, standardised feedback (Perry et al., 2015). A second, less 

cited, but potentially equally important feature is that one can automate task 

difficulty in a manner that is not possible with traditional teaching methods. 

However, the ease belies a potential pitfall- if implemented poorly, this can 

catastrophic for the validity of an assessment (manifesting in floor or ceiling 

effects).  

To explore how manipulating the level of task difficulty can impact on our 

ability to be able to discriminate between different levels of performance, we 

asked undergraduate dental students with different level of expertise to perform 

a simulated dental task on a high-fidelity virtual reality dental simulator under 

two different levels of difficulty. Participants were exposed to a drilling task that 

required them to remove 96% of a target area (hard), or 60% of the target area 

(easy).  
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We expected to find an interaction between level of difficulty and level of 

expertise. Specifically, we expected the majority of students in the easy task 

would be able to perform the task, which would result in a ceiling effect and thus 

make it difficult to differentiate between different levels of expertise and 

discriminate between the level of skill within the same year group. But a harder 

difficulty level that is still obtainable, should result in the highest levels of 

discriminatory power within and between year groups. 
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7.3 Materials and Methods   

7.3.1 Participants  

We recorded behavioural performance from undergraduate dental students 

(n=296) enrolled on the dentistry programme at the School of Dentistry at the 

University of Leeds. Data were prospectively recorded for the hard difficulty 

level, year 1 (n = 61), year 3 (n = 27), year 4 (n = 27), and year 5 (n= 30). For 

the easy difficulty level, the data were retrospectively extracted, year 1 (n = 40), 

year 3 (n= 34), year 4 (n = 37), and year 5 (n= 39). Participants provided 

informed consent and were fully debriefed. The study was approved 

(REF:271016/IM/216) by the ethics committees based in the School of Dentistry 

at the University of Leeds, United Kingdom. 

7.3.2 Experimental Protocol 

The students were required to complete a cross-shape task which involved the 

use of a dental  handpiece to remove a target ‘red zone’ in the middle of a 

block, whilst attempting to minimise removal of leeway zones (the ‘safe’ outer 

areas of the block) as much as possible (Figure 7-1). Real-time feedback on 

performance was presented on a computer monitor attached to the device 

throughout the task. Participants were instructed that the aim of the task was to 

remove 96% in the hard difficulty level task, and 60% in the easy difficulty level 

task without touching the green and the beige zone as much as possible and as 

fast as possible.  
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Figure 7-1 Experimental setting and task. (A) Schematic drawing of the VR dental simulator and 
the experimental setting. (B) the cross-shape task, illustrating the location of the different zones. 
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7.4 Statistical Analysis 

For statistical analysis, we measured performance on two outcome variables, 

time (in seconds) and total error (as a percentage). The total error score was 

calculated as an average of leeway area removed from the side and bottom of 

the block. A 4 x 2 mixed ANOVA was conducted to compare performance 

across training year (1 vs. 3 vs. 4 vs. 5 years) X difficulty level (hard vs. easy) 

for each dependent variable (time and error). If an interaction was found, then a 

series of one-way ANOVAs were undertaken to decompose the interaction by 

difficulty level (hard vs. easy).  

The statistical significance threshold was set at p < .05 and we report 

generalized eta squared (ηG2) as a measure of effect size and considered ηG2 = 

0.02 to be small, ηG2 = 0.13 to be medium and ηG2 = 0.26 to be a large effect 

size (Olejnik and Algina, 2003; Bakeman, 2005). When a significant main effect 

was observed, Tukey’s corrected post hoc comparisons were performed.  

Finally, to further understand the relationship between motor performance 

and both difficulty level and training year we used the error and time scores and 

regressed this value against training year and difficulty level. This provided a 

model to predict the relationship between independent variables (time and 

error) and dependant variables (training year and difficulty level). All statistical 

analyses were performed using RStudio Version 1.1.463 (R Foundation for 

Statistical Computing., 2018).  
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7.5 Result  

For error rate, we found a significant effect of training year [F (3, 288) = 18.20, p 

< 0.0001, ηG2 = 0.159], with error rates significantly higher in year 1 (M = 21.3, 

95% CI = [20.2, 22.5]) relative to year 3 (M = 17.4, 95% CI = [15.9, 18.9]), year 

4 group (M = 16.4, 95% CI = [15, 17.9]), and year 5 (M = 15.4, 95% CI = [14, 

16.8])  

There was also a significant main effect of difficulty level [F (1, 288) = 

1229.86, p < 0.0001, ηG2 = 0.810], with more errors in the hard difficulty level 

task (M = 29.59, 95% CI = [28.61, 30.57]) relative to the easy difficulty (M = 

5.68, 95% CI = [4.73, 6.62]) (Figure 7-2, A). 

There was also an interaction between training year and difficulty level, [F 

(3, 288) = 7.92, p < 0.0001, ηG2 = 0.076]. One-way ANOVAs were used to 

decompose the interaction by difficulty level.  

For the easy difficulty level task, analysis of variance showed that the 

effect of training year was significant, [F (3, 147) = 4.89, p = 0.002, ηG2 = 0.091], 

Tukey's post hoc indicate that year one group produced higher errors (M = 6.98, 

95% CI = 6.13, 7.84) than only year 3 [(M = 4.93, 95% CI = 4, 5.85), p= .008], 

and year 5 [(M = 4.92, 95% CI = 4.06, 5.79), p=.005] with no other statistically 

significant results.  

For the hard difficulty level, the effect of training year was significant and 

notably larger than the easy difficulty level, [F (3, 141) = 13.83, p < 0.0001, ηG2 

= 0.227], Tukey's post hoc indicate that year 1 group produced significantly 

higher errors (M = 35.7, 95% CI = 33.7, 37.7) than year 3 [(M = 29.9, 95% CI = 

26.8, 32.9), p = 0.0097], year 4 [(M = 27, 95% CI = 24, 30), p < .0001], and year 
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5 [(M = 25.8, 95% CI = 22.9, 28.7, p<.0001] with no other statistically significant 

results.  

For the time measurement, we found a significant effect of training year [F 

(3, 228) = 3.14, p = 0.03, ηG2 = 0.03], Tukey's post hoc indicate that year 1 

group completing the task faster (M = 122, 95% CI = [109, 135]) relative to year 

3 group [(M = 149, 95% CI = 133, 166),p = .05], year 4 group [(M = 149, 95% CI 

= 132, 165), p = .05], and year 5 group [(M = 139, 95% CI = 123, 154), p = .36].  

We also observed a significant effect of difficulty level , [F (1, 288) = 

589.14, p <0.0001, ηG2 = 0.67], with significantly longer time to complete the 

hard difficulty level task (M = 234.9, 95% CI = [223.6, 246.2]) relative to the 

easy (M = 44.3, 95% CI = [33.7, 54.8]), but no interaction between training year 

and difficulty level [F (3, 228) = 1.09, p = 0.35, ηG2= 0.01] (Figure 7-2, B). 

 Finally, multiple linear regression was carried out to investigate the 

relationship between training year, difficulty level and performance error. We 

found that both training year and difficulty level was a statistically significant 

predictor of performance [F (2, 293) = 682.3, p < 0.0001, R2 = 0.823]. For error, 

there was a 1.48% decrease in error for each extra year of training. For each 

extra percentage increase in the difficulty level, the performance on the error 

score increased by .73%. The adjusted R2 value was 0.82 so 82% of the 

variation in performance error can be explained by the model: Error (y) = -35.28 

- 1.48 * (Training year) + 0.728 * (Target area). 

We also used the total time score and regressed this value against training 

year and difficulty level. We found that both training year and difficulty level was 

a statistically significant predictor of performance [F (2, 293) = 275.7, p < 

0.0001, R2 = 0.653]. The regression analysis indicated that for every 1-unit 
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increase in the training year, the performance on the total time score increased 

by 6.39 seconds and for every 1-percentage increase in the difficulty level, the 

performance on the total time score increased by 5.49 seconds. The adjusted 

R2 value was 0.65 so 65% of the variation in time to complete the task can be 

explained by the model: Time (y) = - 320.58 + 6.39 * (Training year) + 5.49 * 

(Target area). 

 

Figure 7-2 Performance outcomes across groups for hard and easy difficulty level. Black dots 
indicate mean and error bars indicate +/-1 S.E.M. Coloured dots indicate participants outcomes 
in the hard difficulty level task, coloured triangles indicate participants outcomes in the easy 
difficulty level task, (A) For the error measurement, both training year and difficulty level have a 
significant effect on the error score with significant interaction (B) For the time measurement, 
both training year and difficulty level have a significant effect on the time score.   
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7.6 Discussion  

For preclinical operative assessment, preparation of typodont teeth is an almost 

universal competency assessment of students prior to allowing them to perform 

procedures on patient (Manogue, Brown and Foster, 2001; Taylor, Grey and 

Satterthwaite, 2013). Thus, there is possibly poor reliability and validity of such 

assessments. Until recently such skills have tended to be assessed in a 

subjective way by the assessors (Evans, 2001). As technology has advanced, 

more sophisticated simulators have been developed for training dental students. 

Haptic virtual reality simulators are an example of such advancement and these 

simulators are able to provide objective assessment of the students’ 

performance. Moreover, task difficulty can, in comparison to phantom heads, be 

more readily adjusted.  

In the present study we explored the effect of manipulating the level of 

difficulty on the ability to detect differences between different levels of skill. In 

order to address this issue, we recorded the performance of undergraduate 

dental students with varied level of expertise in virtual drilling task with two 

different difficulty levels.  

We found an interaction between training year and difficulty level for error 

rates. When the task difficulty was set to a low threshold, all the year groups 

performed relatively well. On average the difference between year 5 group and 

year 1 was only 2% in error when completing the task. On average, the year 5 

group produced less than 5% of error and year 1 produced less than 7% when 

completing the easy difficulty level task. In the hard difficulty level task, the 

differences between year groups become more apparent, with the average 

difference in error rates between year five and year one equal to ~10%. Even 

within the same year group, the hard difficulty task showed more discrimination 
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than the easy one. For example, in the error variable, the standard deviation 

was smaller in the low difficulty task (year 1= ± 2.56, year 3 = ± 3.1, year 4 = ± 

2.96, year 5 = ± 2.34) relative to the hard difficulty task (year 1= ± 8.46, year 3 = 

± 8.23, year 4 = ± 8.27, year 5 = ± 6.14).  

Together, these results point towards the importance of setting an 

optimum level of difficulty when assessing students on their learning and 

performance (Puryer and O’Sullivan, 2015). More broadly, they highlight the 

value of using VR simulation technology, given how readily task difficulty can be 

set by an instructor (either programmatically or by verbal instruction alone- as 

was the case with the present data), relative to phantom heads, where such 

task difficulty scaling is much more ambiguous (and assessment more 

subjective).  

Looking forwards, having a benchmark to set case difficulty in preclinical 

dental simulation tasks would be invaluable in the process of creating valid and 

objective assessments. Such a benchmark would ensure students who pass 

their assessments can undertake the basic preclinical dental procedures safely 

and adequately, while at the same time highlighting students who need further 

practice (Taylor, Grey and Satterthwaite, 2013). However, we note that 

establishing a consensus on the appropriate level of difficulty, in view of the 

complexity in evaluating such an assessment, is not an easy task and would 

require a concerted effort amongst dental educators to reach agreement. 
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7.7 Conclusion  

We aimed to test the influence of manipulating the task difficulty level on the 

performance and assessment of undergraduate dental students. The data show 

that, variations in the level of task difficulty may affect the usefulness of the task 

to capture the differences in performance. Our results show the importance of 

sitting an optimum goal difficulty level in order to have a valid and reliable 

assessment. The implications of this work relate to the evaluation of the use of 

VR dental simulators in the assessment of dental skills. 
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Chapter 8 More Than [a] Feeling: Using Haptics to Facilitate 
Motor Learning in a VR Surgical Simulator 

8.1 Abstract 

Introduction: Haptic virtual reality simulators are increasingly ubiquitous in the 

training of basic surgical motor skills, but the implementation of haptics seems 

to be limited only to delivering “realistic” representations of touch. We propose 

that haptics could also be used to manipulate a user’s interactions with the 

environment by artificially increasing error information to accelerate motor 

learning. We tested whether this novel approach could benefit dental surgery 

training.  

Methods: Sixty-one dental students performed tasks requiring either visual or 

haptic discrimination pre- and post-training on a haptic VR dentistry simulator. 

Participants were subsequently allocated to one of three training conditions: (i) 

an ‘assistance’ group- where participants were provided with haptic support that 

minimised error; (ii) a ‘disruption’ group - where participants trained with 

disruptive [forces that amplified error]; and (iii) a ‘control’ group where uniform 

“homogenous” haptic was provided without artificial haptic intervention. 

Learning (relative to baseline) was examined immediately after training and 

retention assessed 24 hours later.   

Results: Learning was impaired in the assistance group relative to the 

disruption group (p = .003) and control group (p = .02) on the visual 

discrimination task, but there was no difference in retention rates (P = 0.40). On 

the haptic discrimination task, the assistance and disruption group outperformed 

the control group in assessments; learning was impaired in the control group 
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relative to the assistance group (p = .003), and retention was impaired in the 

control group relative to the disruptive group (p = .009).  

Conclusion: We found the error amplification condition was best for learning in 

a visual discrimination task and that assistance and disruption were superior to 

the control group in the haptic discrimination task in both assessments of 

learning and retention. The results demonstrate that manipulating haptic 

information during training can improve learning and retention. More generally, 

the results show how haptics can be incorporated into VR simulators to provide 

more than a sense of touch- by actively manipulating user error to accelerate 

learning.  
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8.2 Introduction 

Successful execution of the majority of dental procedures is only possible 

thanks to the remarkable sense of touch that humans are endowed with 

(Gardner, 2010). With a temporal resolution of 5 milliseconds and a fingertip 

spatial resolution that can be as low as 0.5 mm (Heller and Schiff, 1991), 

surgeons and dentists are able to use the rich data about the physical 

characteristics of objects contacted by the hand and instruments to perform 

millimetre precise procedures (Gallagher et al., 2003; Perry et al., 2015). It is 

the importance of this information source for clinical procedures that has led to 

the increasing implementation of haptic technologies in surgical simulation 

broadly (e.g. robotic surgery; (Culmer et al., 2020)), and, more recently, dental 

training (Soumya and Ramachandra, 2011; Xia, Lopes and Restivo, 2013). 

Haptic VR simulators are designed to present users with a ‘sense of touch’ 

and there is a growing body of evidence demonstrating that these simulators 

can be an effective means of training novice students on basic surgical tasks 

(Sturm et al., 2008; Zendejas et al., 2013; Al-Saud et al., 2016). Indeed, recent 

work conducted by our group, and others, has shown that these simulators can 

display a degree of discriminant validity (being able to distinguish between 

different levels of real-world dental skill (Mirghani et al., 2016; Al-Saud et al., 

2019) and predictive validity (i.e. performance on these measures indicates 

subsequent real-world clinical performance (Hung et al., 2012; Al-Saud et al., 

2019). 

The overarching design philosophy of these systems is that a more faithful 

rendition of the information available to the clinician in the real-world through 

simulation should have carry-over effects from simulation to the real-world 

(Cook et al., 2011; Hamstra et al., 2014). We propose that whilst this is indeed a 
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critical part in engineering effective simulation that transfers to the real-world, it 

presents only a narrow perspective on the potential utility of haptics as it relates 

to the learning of skilled sensorimotor behaviours (Culmer et al., 2020).  

Research on sensorimotor learning through moving in forcefields 

generated by robotic haptic systems has shown that haptics can also be used to 

artificially manipulate interactions with the environment, and thus tailor the 

information available to the user to expedite the learning process (Emken and 

Reinkensmeyer, 2005; Reinkensmeyer and Patton, 2009).   

Two popular approaches to using haptics to manipulate information 

involve using haptics to assist or disrupt task performance. Haptic assistance 

training involves providing artificial forces that guide a user to perform a task 

with little or no physical intervention, thus minimising performance error and 

providing a demonstration of the required movement (Cesqui et al., 2008; 

Sigrist et al., 2013). In contrast, disruption training involves the amplification of 

motor errors via force, either by perturbing movements spatially or temporally, 

or applying a force vector away from the desired trajectory. 

The efficacy of these approaches for promoting skill learning is generally 

considered to vary as a function of expertise. For example, evidence indicates 

that individuals who are unable to perform the fundamental movements for a 

desired action (e.g. in the early stages of stroke recovery) benefit from 

assistance, but once a sufficient level of proficiency has been achieved 

constraining error during the practise of a motor task is ineffective in enhancing 

motor learning (Cesqui et al., 2008; Sigrist et al., 2013). Instead, augmenting 

error and active prospective control to minimise error is a key part of the 

learning process at this stage of recovery (Miall et al., 1993; Wolpert, 

Ghahramani and Jordan, 1995; Wolpert and Kawato, 1998; Emken and 
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Reinkensmeyer, 2005; Reinkensmeyer and Patton, 2009; Van Beers, 2009; 

Wolpert and Flanagan, 2010; Marchal-Crespo et al., 2014; Heuer and Lüttgen, 

2015).  

Predicated on this work, we propose that haptic engines in surgical 

simulators could do more than simply provide a representation of feeling as 

participants interact with the simulated environment. They could also be used to 

artificially increase and reduce error information to promote skill learning. This 

type of application is increasingly commonplace in motor rehabilitation (Wei et 

al., 2005; Matsuoka, Brewer and Klatzky, 2007; Abdollahi et al., 2011; Shirzad 

and Van Der Loos, 2012) but, to our knowledge, has not yet been applied to the 

training of dentists and surgeons.  

In this study we set out to examine whether the provision of artificial haptic 

forces, above and beyond those used to represent objects in the environment, 

could support the learning of basis surgical drilling tasks. We compared 

performance change across three groups: one was provided with mild haptic 

assistance, which minimised training error, whilst another group experienced a 

disruptive force, which amplified error. We included a control group that carried 

out the same task but without any artificial haptic intervention.  

We examined how these interventions influenced motor learning on two 

surgical tasks- one which required the ability to discriminate between different 

material densities in the absence of visual information and a second, which 

presented visual differences, but a homogenous density profile. We predicted 

that, for the visual discrimination task, the disruption group will be outperformed 

in the learning and retention assessments as a result of artificially increasing 

error information. Second, for the haptic discrimination task, we expected that 

learning and retention would be impaired in the control group relative to the 
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disruption and assistance group as a result of practising in a homogenous 

density profile. 
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8.3 Materials and Methods: 

8.3.1 Participants 

Sixty-one first year undergraduate dental students were recruited to the study 

and randomly assigned into three groups. Twenty (12 females and 8 males, 

mean age = 19.1 years, SD = 2.31 years) were assigned as the ‘assistance 

group’ in which they experienced forces designed to constrain their movements 

to reduce error. Twenty (18 females and 2 males, mean age = 19 years, SD = 

2.75 years) were assigned to a ‘disruption group’ in which they experienced 

forces that were designed to increase errors. Finally, twenty-one (20 females 

and 1 male, mean age = 22 years, SD = 5.8 years) were assigned to a control 

group in which they performed dental training tasks without any force 

intervention (a training as usual condition).  

Three participants in the assistance group and two in the disruption group 

expressed a preference to use their left hand for the task, with all others used 

their right hand. All participants provided informed consent and were fully 

briefed. The study was approved by the local Ethics Committee at the School of 

Dentistry, University of Leeds (REF: 271016/IM/216). 
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8.3.2 Experimental Protocol 

 

The experiment was conducted on two consecutive days at The Simodont 

Haptic VR Dental Trainer® skill Laboratory in the School of Dentistry, University 

of Leeds.  

On the first day, participants were introduced to the dental simulator with a 

short overview, followed by a demonstration of the testing procedure. Each 

participant was allowed to try out the device as part of the introduction to 

familiarise themselves with the procedure and the required task. All the tasks 

were performed using a high-speed dental handpiece and diamond bur (FG 

109010).  

A ‘warm-up’ task consisted of a simple straight-line geometric shape with 

the aim of removing 93% of the target zone.  All participants performed this task 

before starting the experiment to ensure a basic skill level was met.  

The experiment on the first day lasted approximately 60-80 minutes in 

total to perform one attempt on the two assessment tasks (novel and distinct 

drilling tasks developed by the research team and uploaded to the Haptic VR 

Simulator, see Assessment Tasks section below) then to practise the training 

task (see training tasks section below) for 30 minutes, and then re-perform both 

assessment tasks.  

We controlled for time rather than attempt to avoid confounding the results 

through trivial differences in training duration.  

On the second day, participants were asked to once again perform the two 

assessment tasks to assess the 24-hour retention in learning. This design 

allowed for the assessment of not only the performance during training, but also 



 
 

129 

the extent that the skills gained in training were transferred to the performance 

in the assessment tasks.  
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8.3.3 Assessment Tasks 

Participant performance was assessed through two novel and distinct drilling 

tasks developed by the research team and uploaded to the Haptic VR Simulator 

(Figure 8-1). In one task, participants had to discriminate between different 

material densities in the absence of visual information to effectively drill through 

the object. We refer to this as the “haptic discrimination” task, because in the 

absence of visual information, participants could only rely on haptic cues to 

complete the task.  

In a second task, participants were provided with visual information which 

indicated which areas of the object needed to be drilled, but there was no 

change in the haptic profile of the object i.e. it had a homogenous density 

profile. We refer to this as a “visual discrimination” task, as in the absence of 

any haptic information, participants could only use visual cues to successfully 

drill through the object. 

All participants performed both tasks three times on both days. On day 1, 

before the training session, participants’ performances on these tasks was 

recorded and used as the baseline performance measure and immediately after 

training, we recorded their post training scores to capture learning. Finally, on 

the second day, we asked participants to perform these tasks again to measure 

retention. We provide more details on the characteristics of these tasks in the 

following sections. 

8.3.3.1 Haptic Discrimination Task 

The haptic discrimination task consisted of two zones: a target zone, an 

amorphous region within the block with a low density (soft), and a container 

zone, surrounding the target with a high density (hard). Here, both zones were 

given the same colour (ensuring that task assesses a participant’s ability to 
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experience and act upon different levels of density they experience when 

drilling).  

A single black dot was placed at the centre of the target area to act as a 

starting point. Participants were not provided with online feedback on the 

percentage of each zone removed and were instructed to drill only the soft 

structure without cutting into the hard zones, to drill as fast as they could and to 

stop when they believed they had removed all the soft area. 

To avoid memorisation of the shape of the area, the haptic model was 

mirrored after training and participants were told the target shape would be 

different. The dimension of the haptic discrimination task block was 1.2 x 1.2 x 

0.38 cm. 

8.3.3.2 Visual Discrimination Task 

The visual discrimination task consisted of three zones: (i) a target zone 

(coloured red) - which participants were instructed must be removed; (ii) leeway 

zones (coloured green) - which surrounded the target zone (on the sides and 

bottom) - participants were instructed to avoid removing this area as much as 

possible; and (iii) the container zones (coloured light brown) - a block that fully 

surrounded the cross that participants were told to avoid during target removal.  

Importantly, this task had a uniform haptic profile (all three zones had the 

same density) to allow for the assessment of purely visuo-motor performance, 

i.e. control of the drill removing areas indicated by target colour alone.  

Participants were given online feedback on the percentage of each zone 

removed and were instructed to remove the target area and avoid leeway and 

container zones as fast as they could and to stop when they removed 96% of 
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the target area. The dimension of the visual discrimination task block was 1.2 x 

1.2 x 0.26 cm. 

8.3.4 Training Tasks 

Three “doughnut” shaped tasks were developed for the simulator. The shape 

consisted of the target, leeway, and container zones as with the visual 

discrimination task. The rationale of choosing the different shape for the training 

tasks versus the assessment tasks was to ensure that the change in 

performance is not due to practice on the same shape, but a more general 

improvement in the ability of performing the tasks.  

The models were designed to provide three different types of training 

(Assistance, Disruption and Control) and differed in their haptic profile, altering 

the forces on the drill as the participant attempted to remove the target zone. 

We describe the structure of these models in the following section.  

8.3.4.1 Assistance 

In the assistance model, the leeway and container zones were made of higher 

density material relative to the target. This had the effect of guiding the drill 

within the target area when moving closer to the edge, making mistakes 

potentially less impactful. It also served as a means of teaching the participant 

which zones should be removed by resisting movements away from the target. 

8.3.4.2 Disruption 

This model was conceptually opposite to the assistance condition. Here, the 

leeway and container zones were made with a lower density material relative to 

the target and the density of the target zone was modified with noise (generated 

from a 3D simplex noise function which includes local patches of high and low 

density). This had the effect of punishing mistakes and amplifying errors, as any 
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movements close to the leeway zone would not be dampened with a force on 

the drill. 

8.3.4.3 Control 

The Control model set the leeway and container zone densities to the same as 

the target zone. This served as the experimental control condition (or training as 

usual) that could be used as a baseline for comparing performance changes 

against.

 

Figure 8-1 Experiment design. Participants performed two baseline assessment tasks (visual 
discrimination task and haptic discrimination task), 30 minutes of repeated training tasks (haptic 
profile assigned based on participant group assignment), then re-performed the same 
assessments (visual discrimination task and haptic discrimination task). Finally, both tasks were 
repeated on the second day to evaluate the retention. The haptic profiles are represented by 
images (bottom two thirds) with the brightness of the pixels indicating the density of the material 
in the model (black = softest, white = hardest). 

  

DiVUXSWiRQ CRQWURl AVViVWaQce

TUaiQiQg
(30 miQ)

RU RU

M
Rd

eO
H

aS
Wic

 S
UR

ÀO
e

ViVXal
diVcUimiQaWiRQ

WaVk

HaSWic
diVcUimiQaWiRQ

WaVk

ViVXal
diVcUimiQaWiRQ

WaVk

ViVXal
diVcUimiQaWiRQ

WaVk

HaSWic
diVcUimiQaWiRQ

WaVk

HaSWic
diVcUimiQaWiRQ

WaVk

BaVeliQe VcRUeV ¬ImmediaWe SRVW-WUaiQiQg¬VcRUeV¬ SecRQd da\ VcRUeV



 
 

134 

8.4 Statistical Analysis 

To capture performance in the visual discrimination task, we calculated 

“weighted error” as the percentage of leeway area removed plus two times the 

percentage of the container area removed, reasoning that there was a greater 

total volume of container, and the instruction given to completely avoid this 

area. In addition to this, we calculated time taken to reach 96% target area 

removed (in line with the instructed goal).  

In the haptic discrimination task, the error was computed as the remaining 

percentage of target area to be removed. Finally, the time taken to complete the 

haptic assessment was used (the assessment ended when participants 

believed they had removed all the target area).  

For the assessment of learning and retention we used analysis of 

covariance (ANCOVA; see (Vickers, 2001) for evidence of its superior statistical 

power in examining differences in learning c.f. ANOVA). Specifically, for 

learning we compared performance differences in the immediate post training 

scores and controlled for initial differences between groups by baseline scores 

as a covariate.  

For retention, we compared the groups’ performance differences on the 

second day scores and controlled for post-training differences between groups 

by using scores at the end of day 1 (the immediate post training scores) as a 

covariate. Tukey-corrected post hoc comparisons were performed where 

significant main effects were found.  
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8.5 Results   

8.5.1  Learning Assessment  

For the error measurement in the visual discrimination task (Figure 8-2, a), a 

one-way ANCOVA [between-subjects factor: group (control, assistance, 

disruptive); covariate: baseline scores], indicated that, after controlling for the 

baseline error, the training group showed a significant difference in the 

immediate post-training error [F(2, 57) = 6.57, p = .002, ηp2 = .18]. The 

assistance group performed significantly worse (Adj M = 50.9, SE = 2.96)  than 

the disruption group (Adj M = 37.0, SE = 2.98), p = .005 and significantly worse 

than control group (Adj M = 38.6, SE = 2.89), p = .01 without significant 

difference between the control and disruption groups (p = .93).  

For the time measurement in the visual discrimination task, group had a 

significant effect on the post-training time [F(2, 57) = 5.15, p = .008, ηp2 = .15]. 

The assistance group (Adj M = 110, SE = 15.2) performed the task significantly 

faster than the disruption group (Adj M = 176, SE = 15.2), p = .008 but this was 

not significantly different to the control group (Adj M = 158, SE = 14.8), p = .06) 

with non-significant differences between control and disruption groups p = .67 

(Figure 8-2, b).  

For the error measurement in the haptic discrimination task (Figure 8-2, c), 

the ANCOVA revealed a main effect of group [F(2, 57) = 5.99, p = .004, ηp2 = 

.17]. The assistance group performed significantly better (Adj M = 21.8, SE = 

4.5) than the control group (Adj M = 43.6, SE = 4.4), p = .003 but non-

significantly to disruption group (Adj M = 35.3, SE = 4.48), p = .09 with non-

significant differences between the control and disruption group (p = .39).  
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For the time measurement in the haptic discrimination task (Figure 8-2d) 

the expected main effect of groups was non-significant [F(2, 57) = 2.40, p = .1, 

ηp2 = .07] (Figure 8-2, d). 

8.5.2 Retention Assessment  

For the retention assessment, we found a non-significant effect of the group on 

the visual discrimination task measurements for error [F(2,57) = .92, P = .40, 

ηp2 = .03] (Figure 8-2a) and time [F(2,57) = .87, P = .42, ηp2 = .03] (Figure 8-2, 

b).  

For the haptic discrimination task (Figure 8-2, c), there was a significant 

effect of group on error [F(2, 57) = 4.63, p = .01, ηp2 = .14]. The disruption 

group (Adj M = 32.7, SE = 4.10) performed significantly better than the control 

group (Adj M = 41.4, SE = 4.20), p = .009), but there was no significant 

difference between the disruption and assistance groups (Adj M = 32, SE = 

4.34), p = .34). There was also no significant difference between the control and 

assistance groups (p = .30).  

For time taken to complete the haptic discrimination task (Figure 8-2, d), 

there was no significant effect of group [F(2,57) = 1.26, P = .29, ηp2 = .04]  
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Figure 8-2 Performance outcomes across groups. Small dots indicate each participants 
performance, large dots indicate mean, and error bars indicate +/-1 S.E.M. (a) For the error 
measurement in the visual discrimination task, the assistance group on average increased their 
error on the learning assessment and interestingly decreased on the retention assessment. (b) 
For the time measurement in the visual discrimination task, the assistance group reduced the 
amount of time taken to complete the task on the learning assessment by over 100 seconds on 
average and significantly increased on the retention assessment. (c) For the error change in the 
haptic discrimination task, a decrease on average of error for all groups on the learning 
assessment and continue to decreased only in the disruption group on the retention 
assessment.(d) For both the learning and retention assessment, the amount of time taken to 
complete the haptic discrimination task was not found to be statistically significant. 
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8.6 Discussion 

In recent years there has been a proliferation of haptic simulators in dentistry. 

These systems are primarily focused on replicating the 'feel' of performing 

procedures, but this does not necessarily translate to efficient training. Haptic 

technology potentially has substantial utility in promoting learning by directly 

manipulating movement (think of a physiotherapist guiding a patient's arm), but, 

thus far, no simulators have exploited this potential to accelerating learning. In 

existing systems, the tasks, quality and quantity of haptic feedback are typically 

generic and at most have graded levels of difficulty to be completed in 

sequential order on the basis of subjective (self or teacher) imposed timelines. 

Recent research suggests that learning processes can be accelerated through 

tailored delivery of haptic feedback. Specifically, evidence suggests that once a 

certain level of proficiency is obtained, augmenting the learning process through 

haptic assistance (i.e. forces that help minimise task-related error) hinders 

learning (Lee and Choi, 2010), whilst paradoxically, forces that push 

participants away from the goal and increase error, help acquisition (Emken and 

Reinkensmeyer, 2005; Reinkensmeyer and Patton, 2009). 

Predicated on these ideas, we sought to examine the potential 

contributions of manipulating task error through haptic assistance and disruption 

on learning in undergraduate dental trainees. We asked participants to 

complete two novel dental drilling tasks – one requiring haptic discrimination, 

with no visual cues and a second requiring visual discrimination, with no haptic 

information.  

For our learning assessment, we found that in the visual discrimination 

task, assistance hindered participants’ ability to reduce the percentage of error 

relative to the control and disruption group. In fact, disruptive forces led to 
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significantly better performance in comparison to the assistance forces. These 

findings are consistent with previous results suggesting that disruptive forces 

might be beneficial for motor learning in comparison with assistance (Emken 

and Reinkensmeyer, 2005; Huang and Shadmehr, 2007; Cesqui et al., 2008; 

Lee and Choi, 2010). This pattern may be explained by considering that during 

training, in order to develop a reliable and adaptable action, the learner needs 

to be able to explore the possible space of actions and outcomes. Making errors 

during practice allows the learner to experience a broad range of perceptual 

motor variables which eventually lead to successful action (Rodger, Tang and 

White, 2016), which may have manifested in the increased learning shown in 

this condition.  

Notably, there was no significant difference between disruption and control 

groups in this task. A potential explanation for this lack of difference may come 

from the fact that the doughnut practice task for the control group and the visual 

discrimination task had uniform density.  

 In the haptic discrimination task, we found that participants who 

experienced more than one haptic profile “more than one level of density” had a 

better ability to distinguish between the hidden soft and hard structures. 

However, the assistance group was the only group that was able to significantly 

remove a higher percentage of the soft structure in the haptic task compared to 

the control group. Once again, we can consider the characteristics of the target 

condition as a potential explanation for lack of difference, but this time between 

the doughnut practice task for the assistance group and the haptic 

discrimination task.  

With regards to retention, we found a non-significant effect of group on the 

visual discrimination task. We believe that this lack of difference may be driven 
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by behavioural de-adaptation of the assistance group. Assistance haptic 

intervention seems to facilitate a strategy of moving fast and making more 

errors (Williams, Tremblay and Carnahan, 2016; Clamann and Kaber, 2018). 

But in our experiment, this seems to be only a short-term effect, as they de-

adapt to become slower and more accurate in the retention performance 

change. Thus, it seems that any improvements at post-test may be accounted 

for, by an adjustment of strategy, i.e. moving more carefully or more recklessly, 

rather than an overall improvement in both speed and accuracy measurements. 

Here, it is also worth considering the clinical implications of this finding. The pre-

clinical task of training students to remove caries safely and effectively is often 

difficult. Our data indicate that for a task that requires high precision, with a 

material that is generally uniform in density (e.g. crown preparation), 30 minutes 

of training may be insufficient to deliver measurable differences to drilling 

accuracy when only visual cues are available.  

In the haptic task, the control group struggled in differentiating between 

the soft and hard structures in comparison to the assistance and disruption 

groups. Interestingly, this time, it was only the disruption group that was able to 

significantly remove a higher percentage of the soft structure in the haptic task 

compared to control group during the retention test, thus suggesting that this 

condition promoted consolidation of learning after 24 hours.  

Work on examining whether the haptic technology present in these 

systems can be used to manipulate movement by providing assistance and/or 

disruptive forces to accelerate motor skill learning is still in its infancy. The 

mechanisms that contribute to the learning benefits facilitated by haptic 

interventions are not fully understood and more fundamental motor learning 

experiments are required. Future research is also required to address the 
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feasibility of integrating multimodal simulation to examine the effect of combined 

the assistance and the disruptive model in skill acquisition.  
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8.7 Conclusion 

In summary, these data indicate that the acquisition and retention of basic 

dental motor skills in novice trainees varies depending on the training method. 

In a visual discrimination task, haptic assistance on its own hinders the 

acquisition of skill in comparison to disruption and control groups. In a haptic 

discrimination task, training on uniform haptic density hinders the acquisition of 

skill in comparison to disruption and assistance groups. These results 

demonstrate the potential utility of using the haptic interface present in VR 

dental simulation to provide more than a sense of touch and use this feature to 

help accelerate learning.  
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Chapter 9 General Discussion and Conclusion 

9.1 Thesis Context 

Before we delve into the specific outcomes from this thesis, it is worth reminding 

ourselves of the context in which this work was undertaken and the overall aims 

and objectives of this project. Central to this thesis is the idea that a multi-modal 

approach is required to identify the fundamental differences between experts. 

We set out to examine this question because we reasoned that, in providing 

insights into the numerous different characterises of experts, we may be able to 

provide trainees and mentors with more tools in their armoury that can be used 

to help students transition towards expertise.  

A second important theme in this thesis was the idea that simulation, and 

specifically Haptic VR simulation, could be an effective means of capturing 

potential individual differences and that these systems could also be used to 

support training and assessment (LeBlanc et al., 2004; Issenberg et al., 2005). 

While simulation in dentistry has been around for almost as long as the 

profession itself, the idea of using virtual reality and haptics is relatively new and 

only made possible in recent years thanks to advances in computing power and 

novel design engineering (Wang et al., 2003; Kim et al., 2005; Yau, Tsou and 

Tsai, 2006; Cao et al., 2007; Rhienmora et al., 2008; Konukseven et al., 2010; 

Tse et al., 2010; Yoshida et al., 2011) along with experimental research 

demonstrating the  validity of these systems (Imber et al., 2003; Steinberg et al., 

2007; Ben-Gal et al., 2011; Urbankova and Engebretson, 2011; Ben-Gal et al., 

2013; Shahriari-Rad, 2013; Suebnukarn et al., 2014; Mirghani et al., 2016, 

2019; Corrêa et al., 2017; Shahriari-Rad, Cox and Woolford, 2017; Al-Saud et 

al., 2019).  
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Despite these important developments, there has been little work on how 

these devices can be used to (i) understand the development of expertise and 

(ii) use such knowledge to accelerate learning. Without such work (and then 

application into real world contexts), we might ask ourselves what the value of 

such endeavours are beyond traditional methods of learning. Do we want 

students to practice more often? Do we want them to practise alone? What 

makes these devices different to phantom heads? A particularly difficult 

question that will need to be navigated over the coming years for almost all 

dental schools across the globe (if they haven’t already tackled it) is whether 

such systems add sufficient value for dental schools to purchase and implement 

them in their curricula.  
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9.2 General Conclusions 

Within the context presented above, the work in this thesis sought to identify the 

fundamental differences between experts and novices in sensorimotor skill at a 

behavioural and cognitive level. We recap some of the main findings from each 

of the experimental chapters next and summarise the main conclusions.  

In Chapter 3, we found that learning over a considerable period of time 

appears to be quantitatively similar for an expert and novice. Interestingly, 

despite extended extensive practice (over 600 attempts across 7 months), both 

our expert and novice continued to make improvements, but error rate 

reductions tailed off. These data re-emphasise the point that acquiring dental 

drilling skills can take many training hours, but also highlight that expertise is a 

moving feast and improvements remain possible long after most research 

studies on the topic stop examining performance.  

Building on these findings, we examined whether there were qualitative 

differences in the strategy employed by experienced and novice dentists. In 

Chapter 4, we found expert participants showed significantly less idle time and 

moved their hands shorter distances to complete drilling tasks relative to 

novices. These data indicate that experienced performers have shorter planning 

times and superior movement economy. We propose that these performance 

metrics could be valuable adjuncts to the commonly used measures of error 

and time in the dental education programme and be useful for mentors/trainers 

in providing tailored feedback to novice students to optimise their learning and 

performance.  

In Chapter 5, we probed the nature of expertise in more detail by asking 

the extent to which expert skill in one domain can be generalised to another. 

We found a degree of generalisation- with surgeons performing better at dental 
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tasks and dentists performing better at surgical tasks than a control group. This 

transfer of highly skilled motor learning between the two healthcare specialties 

is an important finding for understanding the aetiology of skill learning and 

highlights the existence of core skills that underpin surgical performance 

regardless of specialty. The identification of such core skills could improve the 

assessment of prospective surgeons and lead to improved training provision 

prior to specialisation.  

In Chapter 6, we took advantage of recent advances in wireless EEG 

technology to examine neural differences as a function of expertise. We found 

that a putative marker of cognitive control, a signal known as frontal theta, could 

differentiate between skilled performance. We established that novice 

undergraduate dental students require the recruitment of more cognitive 

resources to carry out the same VR drilling task relative to more experienced 

dental students and this could be informative for trainers. Secondly, we found 

that individual differences in frontal theta scaled with performance errors in our 

expert group, which presents a novel explanation for heterogeneity in experts.  

The aforementioned chapters relied extensively on haptic VR simulation 

and it is clear from this work that these technologies have the potential to add 

considerable value above and beyond traditional phantom head simulation. 

Thus, in the final two experimental chapters we sought to formalise these ideas 

by examining ways in which VR dental simulators could be used for assessment 

and training. In Chapter 7, we examined how artificially manipulating task 

difficulty (fundamentally difficult to employ with phantom heads) could impact on 

the performance and assessment of undergraduate dental students. The data 

show that variations in the level of difficulty had an effect on the discriminant 
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validity of assessment and that the ability to tailor difficulty according to skill 

level could be valuable in supporting student learning.  

Finally, In Chapter 8, we sought to examine whether we could take 

advantage of the haptic technology included within dental simulation systems to 

artificially increase error (haptic disruption) or reduce error (haptic assistance) 

information to accelerate motor learning. We found that error amplification 

through haptic disruption was better for learning in a visual discrimination task 

and that both disruption and assistance led to faster learning relative to a 

control group (who followed a standard training protocol). To our knowledge, 

this is the first study in the dental education literature that proposes a means of 

accelerating skill acquisition by manipulating the ways in which the learner 

interacts with a given task. This work provides a novel contribution to a growing 

body of evidence on the value of VR haptic dental simulators in dental 

education.   
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9.3 Limitations and Future Work 

There are some limitations of the current thesis and numerous opportunities to 

build on the present work in future research that must be acknowledged.  

First, it is important to note that the majority of participants in the studies 

reported in this thesis came from a single dental school in the UK and the 

remaining participants were recruited from students enrolled on other courses at 

the University of Leeds. Whilst this sample is likely typical of a UK student 

population, a key theme that has emerged from the work above (particularly 

strong from our work on tailoring assessment difficulty) is that tailoring sessions 

that examine training and performance to an individual’s ability could yield more 

dividends than treating all novices (and indeed experts, as highlighted from our 

EEG analysis) as a homogenous group. This may be particularly important 

when groups vary more extensively e.g. in regions where selection for an 

undergraduate programme follows a less prescriptive approach. 

Perhaps more important for the generalisability of the findings of this work 

is the equipment employed throughout the experimental work in this thesis. We 

used one specific haptic VR simulator for all training and assessment that has 

undergone various examinations to establish its construct and predictive 

validity. Whilst haptic simulators are becoming more commonplace, the extent 

to which these findings can be applied will be dependent on various factors 

including the technical capabilities of these systems and a careful analysis of 

the similarities of tasks and training protocols.  

Finally, it is important to consider some of the experimental design choices 

made in this thesis. We note that the 5 of the six studies in this thesis employed 

a cross-sectional design whilst the 6th study used a longitudinal case study 

approach and that most often the “control” group in our experiments included 
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participants with no experience of dental training. Whilst this was particularly 

useful for eliminating potential confounds such as previous experience and task 

knowledge that could have contaminated the results of our experimental 

manipulations, we were also bound by administrative restrictions and ethical 

considerations that precluded intervention randomized controlled trials with our 

target population. Certainly, providing training to students that may benefit or 

hinder them compared to others brings considerable ethical concerns and these 

issues emerge in all forms of educational research. The longer-term hope is that 

the work presented here can be strengthened with replications and 

demonstrations across different contexts to establish an evidence base that can 

inform the implementation of training that can benefit all students.  

In closing, this thesis has borrowed extensively from experimental 

psychology and existing theories of sensorimotor learning and applied this to 

understanding the nature of expertise in the domain of dental training. We have 

shown some ways in which these ideas may be translated to accelerating 

learning. Coupled with simulation technology, we believe there is great promise 

to build on this work and incorporate principles from sensorimotor learning into 

dental education curriculums across the globe. 
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