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Abstract

From atoms to galaxies, symmetry plays a key role in providing structure and

coherence to the laws of nature. The aim of this thesis is to investigate the effects of

symmetry on a variety of liquid crystal systems. Liquid crystals are anisotropic fluids,

in which the rigid and anisotropic constituent molecules have a strong tendency to form

mesophases with long-range orientational order. Within this classification, there exists a

rich variety of distinct mesophases with varying degrees of orientational and positional

order.

Tilted smectic liquid crystal phases, such as the smectic-C phase seen in calamitic

liquid crystals, are usually treated using the assumption of biaxial orthorhombic

symmetry. However, the smectic-C phase has monoclinic symmetry, thereby allowing

a disassociation of the principal optic and dielectric axes based on symmetry and

invariance principles. In this thesis, we demonstrate this by comparing optical and

dielectric measurements for two materials with highly first order direct transitions from

the nematic to the smectic-C phases. The results show a high difference between the

orientations of the principal axes sets, which is interpreted as the existence of two

distinct cone angles for optical and dielectric frequencies.

Dispersion of microparticles in nematic liquid crystals offers novel means for

controlling both their orientation and position through the combination of topology and

external stimuli. In this thesis, we use double emulsions of water droplets inside radial

nematic liquid crystal droplets to form various structures, ranging from linear chains

to three-dimensional fractals. These systems are modelled as a formation of satellite

droplets, distributed around a larger, central core droplet. Furthermore, we extend this

reasoning to explain the formation of fractal structures. We show that a distribution of

droplet sizes plays a key role in determining the symmetry properties of the resulting

geometric structures.

Finally, we disperse cuboid and triangular prism shaped particles in a nematic

liquid crystal. Experimental observations are compared with numerical simulations to

understand the influence of geometry and symmetry on the orientation and position

of the particles, both with and without the application of electric fields. We find that

a particle’s orientation depends on its aspect ratio and the applied voltage for both

particle types. We show that geometric symmetry breaking plays a key role in the
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dynamics, which prompts the field induced rotation of the particles and allows the

triangular prisms to travel perpendicular to the applied electric field.
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Nomenclature and abbreviations

δij Kronecker delta

εijk Levi-Civita symbol

k Boltzmann constant

T Temperature

Tc Critical temperature

Σ Entropy

F Free energy

Z Partition function

E Electric field

V Voltage (electrostatic potential)

P Electric polarisation

P Spontaneous polarisation

D Electric displacement field

χe
ij Electric susceptibility tensor

ε0 Permittivity of free space

εij Relative permittivity tensor

ε̄ Average relative permittivity

∆ε Dielectric anisotropy

∂ε Dielectric biaxiality

no ordinary refractive index

ne extraordinary refractive index

∆n birefringence

H Magnetic field

χm
ij Magnetic susceptibility tensor

χ̄ Average magnetic susceptibility

∆χ Magnetic susceptibility anisotropy

µ0 permeability of free space

v Domain

s Boundary of v

ŝ outward pointing unit normal on s
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S Uniaxial scalar order parameter

P Biaxial scalar order parameter

n Long-axis director

Qij Nematic order tensor

Ki Elastic constants in the vector representation

Li Elastic constants in the tensor representation

wi Anchoring coefficients of the director on s in the vector representation

Wi Anchoring coefficients of the director on s in the tensor representation

A, B, C Landau coefficients

a Smectic layer normal

δ Out of plane tilt of a in a parallel plate capacitor

θc Cone angle in the smectic-C phase

θo Optical cone angle

θε Dielectric cone angle

∂θ Cone angle asymmetry

Nc Characteristic primary orbit capacity of satellites

Θ Angular separation of neighbouring satellites in the same orbit

h Nematic inclusion separation factor

r Ratio of the core to satellite radii and reciprocal fractal scaling factor

D Fractal dimension

L, T , W Particle dimension such that T < L <W

D2D 2D diagonal length of the particle

d Inner separation gap of parallel plate capacitor cells

dc Critical inner separation gap of parallel plate capacitor cells

Φ0 Out of plane tilt angle of rectangular particles

Φ∞0 Asymptote of Φ0 as d/L → ∞

Φ Voltage dependent out of plane tilt angle of the rectangular particles

Vch Characteristic voltage

Φ∞ Asymptote of Φ as V/Vch →∞

BC Boundary condition

NLC Nematic liquid crystal

SmA Smectic-A liquid crystal

SmC Smectic-C liquid crystal
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Iso Isotropic fluid

Cry Crystalline phase

NBC Normal boundary condition

TBC Tangential boundary condition

AC Alternating current

DC Direct current
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Chapter 1

Physics of liquid crystals — an

introduction

1.1 A phase of matter

In a world governed by symmetry and invariance principles, complex mathematical

concepts often realize themselves in seemingly simple physical systems, providing

structure and coherence to the laws of nature. [1] The symmetry of a phase of matter

is central to describing material physical properties, phase transitions and the order

parameters associated with those changes. At a young age we are taught about the three

phases of matter : gases, liquids and solids. As we progress through higher education,

we learn learn that phases sush as plasmas, superfluids and many more exist. Among

them, are liquid crystals — a class of ordered fluids, in which the rigid and anisotropic

constituent molecules have a strong tendency to form mesophases with long-range

orientational order and no or partial positional order. [2]

The first observation of liquid crystals dates back to the mid-19th century, when

Virchow [3] and Mettenheimer [4] observed that the suspension of myelin in water formed

a texture when viewed through a microscope in between crossed polarisers. Although not

recognized at the time, this was a lyotropic liquid crystal, in which the properties depend

on solvent concentration. The more well studied, thermotropic, liquid crystals were first

observed in cholesteryl benzoate by Friedrich Reinitzer in 1888 [5] and first recognized as a

distinct phase of matter by Otto Lehman in 1889 [6]. Unlike their lyotropic counterparts,

thermotropic liquid crystals change their properties with temperature. In this thesis,

we will focus on the properties of several sub-phases of thermotropic liquid crystals.

1



CHAPTER 1. PHYSICS OF LIQUID CRYSTALS 2

1.1.1 Liquid crystal phases

In the simplest and most widely studied liquid crystal phase, the nematic, the constituent

anisotropic molecules exhibit long range orientational order. [2] In such systems, the

molecules have no positional order but share a common pointing direction, described by

headless unit pseudovector n, called the director. Uniaxial nematics have cylindrical

symmetry, which makes n, along with all of its associated physical observable properties,

indistinguishable from –n.

At temperatures below the nematic (or sometimes directly below isotropic) phase,

some materials become more ordered and confine themselves to layers, which behave as

two dimensional fluids. These phases are known as smectics and come in many different

types, depending on their properties. The two most commonly occurring smectic phases

are the smectic-A (SmA) and the smectic-C (SmC) liquid crystals. Both SmA and SmC

phases exhibit long range orientational order, short range positional order within layers

and quasi-long range positional order perpendicular to layers. [2,7] In the SmA phase,

the so called director lies parallel to the layer normal, a, while in the SmC phase, it tilts

away from the layer normal at an angle, θc, known as the cone angle. [2,7] This allows us

to define the director in term of the a and the projection of n onto the layer plane, c,

as n = a + c.

Figure 1.1: Liquid crystal phases. An illustration depicting the degrees of molecular

self-assembly in smectic-C, smectic-A, nematic and isotropic phases with their

corresponding directors and layer normals.
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1.1.2 Symmetry groups

We often associate symmetry with balance and pleasing proportions. The importance of

symmetry is so prominent in our lives that sometimes we imagine symmetry when it is

partially missing. A more precise definition of symmetry can be found in the language

of mathematics and physics. In order to classify the symmetry properties of a particular

system, such as a molecule or a geometrical shape, we need to consider symmetry

operations. When we apply a symmetry operation to a given system with matching

symmetry properties, the result remains indistinguishable from its original state. [8] Each

operation is performed with respect to a symmetry element, all of which must pass

though the same point of the symmetric object. [9] A set of all permissible symmetry

operations forms a mathematical group that describes the symmetry properties of a

given system. The importance of symmetry classification is best illustrated by the Curie

symmetry laws. [10] In essence, a material can exhibit a given physical phenomenon if

and only if its symmetry group is a subset of that of the physical phenomenon. One

of the goals of this thesis is to illustrate the importance of symmetry in liquid crystal

systems. In later chapters, we will demonstrate how simple molecular and geometrical

symmetry arguments can help us explain complex physical phenomena.

If two groups have a homomorphism (a map, preserving group operations and the

identity) which has a homomorphic inverse, the two are said to be isomorphic. [11] When

taking an abstract view of isomorphic groups, they appear to be the same. This allows

the operations to be represented by a group of matrices, isomorphic to the group of

symmetry operations. Furthermore, if A, B, C and the identity, E, are elements of a

group G, the following properties must hold: [11]

1. Closure: If A,B ∈ G, then the product AB ∈ G.

2. Associativity : ∀ A,B,C ∈ G, (AB)C = A(BC).

3. Identity : ∃ E such that EA = AE = A ∀ A ∈ G.

4. Inverse: ∀ A ∈ G, ∃ B = A−1 ∈ G such that A−1A = AA−1 = E.

Since liquid crystals have a high degree of rotational and translational freedom, [12]

point groups are typically used to describe their properties. [13] Point group operations

leave at least one point in an identical position to the original picture. This is know

as the crystallography restriction, which limits the number of groups to 32. [14] Table 1

shows 32 point groups, which are labelled according to Schönflies notation:
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Type Point Goups

non-axial Ci, Cs

cyclic C1, C2, C3, C4, C6

cyclic with horizontal planes C2h, C3h, C4h, C6h

cyclic with vertical planes C2v, C3v, C4v, C6v

dihedral D2, D3, D4, D6

dihedral with horizontal planes D2h, D3h, D4h, D6h

dihedral with planes beween axes D2h, D3h

improper rotation S4, S6

cubic T , Th, Td, O, Oh

Table 1.1: 32 point groups under the crystallography restriction. [15]

• Cn represents nth order cyclic rotation.

• Dn represents nth order rotation with an addition of n C2 axes perpendicular to

it.

• Sn represents nth order improper rotation axis.

• T represents the rotation axes of a tetrahedron, which has three C2 axes and four

C3 axes.

• O represents the rotation axes of a cube, which has three C4 axes, four C3 axes

and six C2 axes.

The additional subscripts are used to indicate additional symmetry elements: σs for

reflection, σi for inversion, σh for horizontal reflection, σv for vertical reflection and σd

for diagonal reflection (through vertical symmetry planes passing between the C2 axes

as opposed to passing through them). In addition to this, there are three continuous

groups for 3D space, falling into the following categories: [15]

• Curie groups have the limit of n→∞.

• Special orthogonal group SO(3) contains all rotations in 3D space.

• Orthogonal group O(3) contains all rotations and reflections in 3D space.

In order of increasing symmetry, these point groups are C∞, C∞v, D∞, C∞h, D∞h,

SO(3) and O(3). [13]
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1.1.3 Application of symmetry groups to liquid crystals

Isotropic fluids, consisting of molecules with no chirality, can be described by the

O(3) symmetry group, as they have an infinite number of C∞ axes and symmetry

planes. When chirality is added to an isotropic fluid, it loses the reflection and inversion

symmetries and the symmetry group reduces to SO(3). [13]

Molecules in the nematic phase have no positional order but are orientated in a

particular direction. To describe the symmetry of this phase, we take a space or time

averaged representation. [12] For uniaxial nematics, this can be represented by a cylinder

whose long axis coincides with the director. From this, we can deduce that the nematic

phase can be described by the D∞h symmetry group. However, when we add chirality

into the system, the nematic phase loses its symmetry planes and the symmetry group

is reduced to D∞ (it still has an infinite number of C2 axes perpendicular to the helical

axis). The same analysis can be performed for all other liquid crystal phases and unique

properties to be obtained. Much like the nematic phase, the uniaxial SmA phase will

have D∞h symmetry and adding chirality to it will reduce the symmetry to D∞.

Recently, there has been much interest in the possibility of biaxial nematic phases and

evidence for biaxial polar SmA phases was found in certain bent-core liquid crystals. [16–22]

The molecular bend angle in these systems further reduces the symmetry of phases they

exhibit leading to biaxial and polar mesophases even though the constituent molecules

are achiral in nature. These phases may have triclinic or monoclinic symmetry, [19,23]

but it is usually assumed that such phases have the highest symmetry D2h and that the

biaxial properties are orthorhombic.

In the smectic-C (SmC) phase, the director is tilted at the cone angle θc with respect

to the layer normal a (see Fig. 1.2). McMillan proposed a model based on dipole-dipole

interactions, where the torque generated by the outbound dipoles causes the molecules

to tilt in the smectic-C phase [24]. A steric model was later proposed by Wulf, which

considered the packing of symmetric molecules and suggested that a zigzag molecular

shape is the primary driving mechanism in the breaking of the symmetry and formation

of tilt within layers [25]. This suggests that, for a system to form a SmC phase, the

aliphatic end-chains of the molecules must be sufficiently long to induce a zigzag shape

but insufficient to make the zigzag negligible. Since the molecules have monoclinic

symmetry (described by the C2h symmetry group), the SmC phase is inherently biaxial.
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Figure 1.2: Local symmetries of the (a) nematic and (b) smectic-C phases. The directors

are indicated with n, the layer normal of the smectic-C phase by a and the corresponding

cone angle by θc. D∞ represents the infinite-fold rotational symmetry of the nematic

phase and C2 represents the two-fold rotational symmetry of the smectic-C phase; both

of which are accompanied by perpendicular mirror planes, σh.

1.1.4 Nematic order parameter

Consider an ensemble of cylindrical molecules with individual symmetry axes n(i) that

follow a distribution function g
(
n(i)
)

= g
(
−n(i)

)
. Since g describes the probability

of molecular orientations on the unit sphere, we can expand it as a series of the real

spherical harmonics

Y m
l (θ, φ) = α(l,m)Pml (cos θ) cos (mφ), (1.1)

Pml represents the associated Legendre polynomials and α(l,m) are the appropriate

normalisation functions. [15] Here, θ represents the angle between a given molecule and

the director, and φ represents the azimuthal orientation of its projection onto the plane

perpendicular to the director. Since g
(
n(i)
)

= g(θ) for uniaxial liquid crystals, our

expansion must only consist of functions with m = 0. This reduces Equation (1.1) to

the Legendre polynomials of degree l on a unit sphere:

P0(cos θ) = 1,

P1(cos θ) = cos θ,

P2(cos θ) =
1

2
(3 cos2θ − 1),
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P3(cos θ) =
1

2
(5 cos3θ − 3 cos θ),

P4(cos θ) =
1

8
(35 cos4θ − 30 cos2θ + 3),

· · · ,

the first seven of which are illustrated in Figure 1.3. Furthermore, we can see that

only even values of l allow the director to retain its head-tail symmetry. Therefore, our

expansion of g(θ) can be expressed as an infinite series of P2l(cos θ)

g(θ) =
∞∑
l=0

4l + 1

2
〈P2l(cos θ)〉P2l(cos θ), (1.2)

where 〈P2l〉 represents the ensemble average of P2l. This makes 〈P2l〉 a natural choice

for defining a series of order parameters that correspond to the contribution of the

above Legendre polynomials to the overall distribution function.

Figure 1.3: Visual representation of the first seven axially symmetric, real, spherical

harmonics (Legendre Polynomials, defined on a unit sphere). The colour map corresponds

to the sign of each function, with blue representing positive values and green representing

negative values.

In practice, obtaining complete measurements of g(θ) is unrealistic due to insufficient

accuracy of the required experiments. One advantage of using Equation (1.2) is that

the first few 〈P2l〉 can be measured using a large variety of techniques, such as nuclear

magnetic resonance (NMR), polarised Raman spectroscopy, [26] X-ray diffraction [27,28]

and many more. [29–33] This allows us to recover a large amount of information about
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the distribution of molecules in liquid crystals to make accurate predictions in molecular

theories. The simplest choice is to use 〈P2〉 as the scalar order parameter (directly

measured by NMR)

S = 〈P2〉 =

∫
S2
P2(cos θ)g(θ) sin θ dφ dθ, (1.3)

where g(θ) is chosen according to minimisation with the free energy constraints.

Figure 1.4 shows the effects of truncating the series from Equation (1.2) at different

values of l on the nematic distribution function. We can see that including a higher

number of terms in the expansion results in a narrower peak. This means that the

simplest approximation of g(θ) typically slightly underestimates the orientational order

parameter of the system.

Figure 1.4: Nematic distribution function. Probability density of individual molecular

orientations in an example nematic nematic system, g2L, as a sum of weighted Legendre

polynomials, truncated at l = L, with 〈P0〉 = 1, 〈P2〉 = 0.66, 〈P4〉 = 0.27, 〈P6〉 = 0.1,

〈P8〉 = 0.03 and 〈P10〉 = 0.00. Experimental measurements from Ref. [28]

1.1.5 Maier-Saupe phase transition

Naturally, we expect that there exists a temperature at which a liquid crystal phase

becomes isotropic. To evaluate the nature of the corresponding phase transition, we
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must perform a stability analysis of the (Helmholtz) free energy,

F = U − TΣ , (1.4)

where U is the internal energy and Σ is the entropy of the system. Let us consider a

system with N molecules, each interacting with M of its neighbours. Consequently,

there will be a total of MN/2 unique pair interactions. For a given pair of neighbouring

molecules, we can expect that there exists some interaction potential, I, that depends

on their relative orientation to each other, given by ψ, and takes the form of

I = −ukT P2(cosψ), (1.5)

where u is a positive dimensionless constant. From this, we can express the total internal

energy of the system as

U =
MN

2
〈I〉 = −MN

2
ukT

〈
P2(cos2ψ)

〉
= −MN

2
ukT

(
3

2

〈
(m · n)2

〉
− 1

2

)
, (1.6)

where m and n are the individual directors of the two molecules in an interacting pair.

If we assume that the neighbouring molecules interact with each other only via their

centres of mass and neglect orientational correlations, 〈niminjmj〉 ≈ 〈mimj〉 〈ninj〉,

then we can simplify this to

U = −MN
2
kTuS2. (1.7)

Similarly, we can expect that a given molecule interacts with the rest of the ensemble

via an effective potential, J , that depends on the molecule’s relative orientation to the

average director, given by θ, that takes the form of

J = −bkT P2(cos θ), (1.8)

where b is the dimensionless energy of state in the mean-field approximation. [7,34–36]

Since the system is in thermodynamic equilibrium, the probability of a molecule existing

in an orientation θ is given by the Boltzmann distribution,

g(θ) =
1

Z
exp (bP2(cos θ)), (1.9)

where Z is the partition function, given by

Z =

∫
S2

exp (bP2(cos θ)) sin θ dθ dφ. (1.10)
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This allows us to express the entropy of an individual molecule as Σi = −k ln g(θ).

Furthermore, we can now rewrite the scalar order parameter in the following way

S =
1

Z

∫
S2
P2(cos θ) exp (bP2(cos θ)) sin θ dθ dφ =

∫ 1

0
(3x2 − 1) exp

(
3bx2

2

)
dx

2

∫ 1

0
exp

(
3bx2

2

)
dx

.

(1.11)

While not necessarily helpful analytically, we can (slightly) simplify this function to

S =
1

2b

 √
6b exp (3b/2)

√
π erfi

(√
3b/2

) − 1

− 1

2
, (1.12)

where erfi (·) is the imaginary error function, which requires numerical integration.

By considering the limiting cases of Equation (1.12), we can see that S ∈ (−0.5, 1)

for b ∈ (−∞,∞) and S = 0 for b = 0. Furthermore, we can find the inverse of this

function, b(S), to help visualise g(θ) on a unit sphere. A set of examples is shown in

Figure 1.5, where g(θ) is visualised for S = −0.4, S = 0 and S = 0.6. As expected,

when S = 0, the orientation of the molecules is distributed in such a way that the

director cannot exist, which manifests itself when S > 0. We can also see a less intuitive

system for S < 0. Here, the average orientation of the molecules is perpendicular to the

director, while maintaining a random azimuthal distribution to ensure its uniqueness.

Figure 1.5: Visual representation of the statistical distribution of 500 molecular

orientations on a unit sphere for S = −0.4, S = 0 and S = 0.6.

Following this, we can write Equation (1.4) as

F = −MN
2
kTuS2 − TN 〈Σi〉

= −MN
2
kTuS2 +NkT 〈ln g(θ)〉
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= NkT

(
−M

2
uS2 + bS − lnZ

)
, (1.13)

where S and Z are functions of b. Existence of energetic minima of the system in the

nematic phase can be ensured by letting the derivative of F with respect to b,

∂F

∂b
= NkT

(
−MuS

∂S

∂b
+ b

∂S

∂b
+ S − 1

Z

∂Z

∂b

)
= NkT

(
b−MuS

)
∂S

∂b
, (1.14)

vanish. From this, we find that b = MuS, which allows us to express the free energy of

the system as

F = NkT

(
bS

2
− lnZ

)
. (1.15)

The free energy of the nematic phase can be evaluated as a function of S and compared

to that of the isotropic phase, where F (S=0)=−NkT ln 4π. This allows us to deduce

that the nematic phase is stable for S > 0.43, where the free energy of the nematic phase

falls below that of the isotropic phase. [34] Therefore, when a fluid experiences a phase

transition from an isotropic state to a nematic state, the scalar order parameter has a

discontinuous jump from 0 to 0.43 — a first order phase transition. This is illustrated

in Figure 1.6.

Figure 1.6: Maier-Saupe representation of the thermodynamic free energy. Free energy,

F , of the nematic phase (blue) and the isotropic phase (green) as a function of the

nematic scalar order parameter, S. Globally stable solutions are indicated by solid lines.
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1.2 Continuum description

1.2.1 Nematic order tensor

So far, we have considered the defining features of nematic liquid crystal phases in the

form of the director and the scalar order parameter by assuming cylindrical symmetry.

In principle, we can construct a cuboid-shaped eigenframe by considering a set of three

mutually orthogonal directors, l, m and n, to represent a biaxial nematic phase. To

describe these properties in the continuum sense, we can represent the nematic phase

by a traceless order tensor

Qij = liljλ1 +mimjλ2 + ninjλ3, (1.16)

where λk are the eigenvalues of the system. Since Qij is traceless, we can simplify the

above expression to

Qij = S

(
ninj −

δij
3

)
+
P

3

(
mimj − lilj

)
, (1.17)

where S = 3
2λ3 is the uniaxial order parameter, given by Equation (1.3), P = 3

2(λ3+2λ2)

the biaxial order parameter and δij is the Kronecker delta. [2,13,37,38] Both S and P can

vary as a function of temperature and local distortion of the director. For simplicity,

we will assume that all physical properties of nematic liquid crystals have cylindrical

symmetry and that P = 0. This is a common assumption in the vast majority of

studies, excluding those that specifically focus on studying biaxial effects and defect

cores. However, we will discuss biaxiality and its effects on the physical properties of

SmC liquid crystals.

1.2.2 Landau phase transition

An alternative way of characterising phase transitions and equilibrium properties of

liquid crystals is to consider a phenomenological thermodynamic free energy density, ft,

as a Taylor series expansion of the order parameters. This can express this as

ft = f0 +
1

2
AQijQij +

1

3
BQijQjkQki +

1

4
C(QijQij)

2 +O(Q5), (1.18)

where f0 is a reference state and A, B and C are functions of temperature and pressure.

This method was first introduced by Lev Landau and is known as the Landau theory of

phase transitions. [39,40] We can assume that if the system is under constant pressure
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and close to the phase transition temperature, TC, then A = a(T − T−), where T− is

the supercooling temperature. To ensure that the free energy is bounded from below, it

is necessary to have a positive fourth order coefficient, C > 0. In the previous section

we have established that the nematic-isotropic phase transition is of the first order kind.

Therefore, we must incorporate a non-zero value of B. From this, we can see that the

expansion of ft up to the fourth power of S is necessary and sufficient for describing

the uniaxial nematic phase from a phenomenological point of view.

Figure 1.7: Landau representation of the thermodynamic free energy density, ft, as

a function of the uniaxial scalar order parameter, S, for a selection of temperatures,

T . Here, TC, T− and T+ represent the phase transition temperature, the supercooling

temperature and the superheating temperature, respectively.

Evaluating the stationary points of Equation (1.18) allows us to find the equilibrium

(or bulk) scalar order parameter to be

Se =
−B +

√
B2 − 24AC

4C
. (1.19)

Comparing ft(Se) to the trivial solution and performing the second derivative test for

each of the characteristic temperatures allows us to determine the stability properties

of the system. [2] From this, we can see that the nematic phase is globally stable for

A < A(TC) = B2

27C , metastable for A(TC) ≤ A ≤ A(T+) = B2

24C and does not exist

for A > A(T+), where T+ is the superheating temperature. For A < 0, a negative
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order parameter distribution (see Figure 1.5) becomes locally stable with respect to S

(unstable with respect to P ), although the stationary point at S > 0 corresponds to the

global minimum of the system. The dependence of f on T and S is shown in Figure 1.7,

which illustrates its above mentioned special cases.

1.2.3 Elasticity

As a direct consequence of their anisotropic nature, liquid crystals exhibit elastic

resistance to deformations of the director field. This manifests itself as a distortion

free energy density, fd, consisting of a set of deformation modes, weighted by their

corresponding elastic constants (typically measured in pN). It should be noted that liquid

crystals are also highly susceptible to flows and elasticity is coupled to the Navier-Stokes

equations, [38,41] which will not be studied in this thesis.

The most natural way to construct fd is to consider the vector representation of

the director and analyse its primary deformation modes. The first step is to assume a

uniform director field, and add a small perturbation by expanding it as a Taylor series

of its spatial gradients, ni(x) = ni(0) + ni,j(0)xj +O(|x|2), where ni,j = ∂ni/∂xj . By

penalising distortion, we can write down an expression for its free energy contribution

as

fd = kiai +
1

2
Kijaiaj + . . . ,

where ki and Kij represent elastic constants and ai represents the vectorisation of ni,j .

Through a series of symmetry arguments for uniaxial nematics, this can be reduced

to [42]

fd =
1

2
K1(∇ · n)2 +

1

2
K2

(
n · (∇× n)

)2
+

1

2
K3

(
n× (∇× n)

)2
− 1

2
K4∇ ·

(
n(∇ · n) + n× (∇× n)

)
. (1.20)

The first three terms of Equation (1.20) correspond to the primary deformation modes

in liquid crystals and commonly known as splay, twist and bend, which are illustrated

in Figure 1.8. The term corresponding to K4 is typically labeled as saddle-splay and

consists of the splay, twist and biaxial splay deformation modes. [43] Due to the fact

that it can be transformed into a surface integral using the Divergence theorem, its

contribution to the bulk is often assumed to be minimal, especially with strong anchoring

on the boundary conditions (BCs). Because of this, and the lack of any substantial

experimental measurements, K4 is typically omitted from liquid crystal models.
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Figure 1.8: Elastic deformations in liquid crystal systems. Illustration of the splay, twist

and bend deformation modes of the director in nematic liquid crystals.

The above representation of the elastic free energy has many advantages, ranging

from those in finding analytical solutions to having relatively quick numerical solving

times. However, the its main drawback is that it does not allow us to study systems with

changes in the order parameter or those that require n and −n to be indistinguishable.

For modeling such systems, it is best to consider the order tensor variant of the distortion

free energy

fd =
1

2
L1(Qij,k)

2 +
1

2
L2Qij,jQik,k +

1

2
L3QlkQij,lQij,k +

1

2
L4Qik,jQij,k, (1.21)

where Li are elastic constants. [37,38,44,45] For uniaxial systems, the elastic constants

between the two representations are related via a linear mapping:
L1

L2

L3

L4

 =
1

S2
e


−1

6
1
2

1
6 0

1 −1 0 −1

− 1
2Se

0 1
2Se

0

0 0 0 1




K1

K2

K3

K4

 . (1.22)

While there is no easy way to visualise its deformation modes, the order tensor

representation of the free energy allows us to model a more complete set of physical

phenomena in liquid crystals.

Similar analysis can be performed for the other liquid crystal phases by considering

their most prominent deformation modes and penalising them by a corresponding set of

elastic constants. For example, in the smectic C phase, the distortion free energy density

can be described by a function of a, c and their (co-dependent) spatial gradients. [41,46]

We can expect that it is significantly easier to deform c, which acts as a polar director

within each layer, than the layers. For this reason, it is common to assume that the
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layers remain unchanged in device-friendly operation modes, which we will do later in

this thesis.

1.2.4 Boundary conditions

One of the defining features of liquid crystal materials is their responsiveness to BCs. In

simple cases, a Dirichlet BC can be imposed on a boundary. This defines the preferred

orientation of the director, n = (cosφ sin θ, sinφ sin θ, cos θ), as well as the preferred

order parameter for the order tensor, Qij = S (ninj − δij/3). Since the LC has to match

these conditions exactly, this is typically refereed to as a strong anchoring of the director.

In practice, we can expect that the anchoring strength is strongly dependent on the

material properties of both the LC and the material that is in contact with it. Therefore,

the orientation of the director is held in the preferred orientation by a finite physical

force, which can be overcome by an external disturbance or by the elasticity of the LC

itself. [2]

The anisotropic shape of the molecules allows us to control where the director is

pointing at the surrounding surfaces by coating them with an alignment layer of some

suitable material, such as a polymer. The energetic contribution of the surface alignment

then extends throughout the bulk of the liquid crystal in order to minimise the overall

energy of the system, governed by the viscoelastic properties of the system. In the

majority of cases, the surfaces can be coated with a polymer layer to achieve tangential

boundary conditions (TBC). However, the random nature of the polymer chains causes

this alignment to be degenerate. Homogeneous alignment can be achieved by rubbing

the polymer layer with a velvet cloth in the desired direction, which is commonly

referred to as the rubbing direction. This causes local reorientation of the polymer

chains, which then interact with the liquid crystal to give a preferred alignment direction.

For normal boundary conditions (NBC), where the director points perpendicular to the

glass surface, the surfaces can be coated using surfactants and detergents (or in some

cases polymers). These BCs are illustrated in Figure 1.9. These are the most common

alignment techniques for studying liquid crystals, but other means of alignment exist,

such as the use of photosensitive polymers. [7]

Any resistance to reorientation at a given surface, s, can be expressed as an integral

of a surface free energy density, fs. In the simplest form, we can express fs (to the
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Figure 1.9: Liquid crystal boundary conditions. A schematic diagram, showing common

alignment techniques for achieving tangential (left) and normal (right) boundary

conditions (BCs) of liquid crystal molecules on glass surfaces. Tangential BCs: rubbing

the polymer surface realigns the random chains to point along the rubbing direction,

along which the energy of liquid crystal molecules due to orientation is minimized.

Normal BCs: polar head groups of surfactants adhere to the glass surface and the

aliphatic tails (usually) provide the alignment for liquid crystal molecules.

leading order) as

fs =
1

2
ws

(
1− (n · n̄)2

)
=

1

2
ws (1− nin̄injn̄j) , (1.23)

where ws is the anchoring strength and n̄ is the preferred director at the surface. [47]

For surfaces with normal BCs, this reduces to 1
2ws sin2 θ, where θ is measured from the

outward pointing unit normal to the surface s. To achieve degenerate tangential BCs,

Equation (1.23) can be modified to

fs =
1

2
ws(n · ŝ)2 =

1

2
ws (niŝinj ŝj) =

1

2
ws cos2 θ. (1.24)

where ŝ is the outward pointing unit normal to the surface s. In general, the director can

experience different resistances to azimuthal and polar reorientations at its bounding

surfaces. To account for this, Equation (1.23) can be decomposed into separate φ and θ

contributions with individual anchoring strengths, wφ and wθ, respectively.

Similarly, we have

fs =
1

2
Ws

(
Qij −Q s

ij

)2
(1.25)

for the tensor representation, where Ws is the anchoring strength and Q s
ij is the

preferred order tensor at the surface. [48] In this case, to achieve normal BCs, set



CHAPTER 1. PHYSICS OF LIQUID CRYSTALS 18

Q s
ij = Ss(ŝiŝj − δij/3), where where Ss is the preferred order parameter at the surface.

Degenerate tangential BCs can be achieved with

fs = Wθ

(
Q̃ij − Q̃⊥ij

)2
+WS

(
Q̃2
ij − S2

s

)2
, (1.26)

where Q̃ij = Qij +Sδij/3, Q̃⊥ij = (δik− ŝiŝk)Q̃kl(δlj− ŝlŝj), Wθ is the anchoring strength

that brings the director to a tangential configuration and WS is responsible for S

achieving its equilibrium value. [49] An example colour map of the degenerate tangential

fs is shown in Figure 1.10 for Wθ = WS and Ss = Se = 0.6, which shows a clear

minimum at θ = π/2 and S = Se.

Figure 1.10: Free energy density of tangential boundary conditions. Colour map of the

surface free energy density, fs, illustrating the effects of breaking tangential boundary

conditions (θ = π/2) and changes in the order parameter, S. The upper part of the

colour map corresponds to S > 0 and the lower part corresponds to S < 0, while the

polar angle of the director from the unit normal to the surface, θ, ranges between −π/2

and +π/2. When S = 0, fs is independent of θ.

1.2.5 Electric fields

In dielectric fluids, such as liquid crystals, the molecules carry charges that are free

to move around the immediate space of the individual molecules in the presence of

an external electric field, E. However, they cannot flow through the material on a

macroscopic level, as they do in electric conductors such as metals, salts and plasmas.
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When the charges are displaced from their equilibrium positions (in the opposite

direction to E), dielectric materials acquire electric polarisation, P. To account for this

contribution in Gauss’ law, an electric displacement field,

Di = ε0Ei + Pi = ε0(δij + χ e
ij)Ej = ε0εijEj , (1.27)

is introduced, where ε0 = 8.854 pF/m is the permittivity of free space, χ e
ij is the electric

susceptibility tensor and εij is the relative dielectric permittivity tensor.

The anisotropic nature of liquid crystals extends its effects to its dielectric properties,

which manifests itself in the form of an anisotropic eigenframe of εij . In turn, an external

electric field creates a dielectric torque on the director, −D×E, whose effect can be

expressed as an electrostatic free energy density fe = −
∫

D · dE. In other words, if the

electric field is strong enough to overcome the combined effects of elasticity and BCs

in a given liquid crystal system, the director will change its orientation to minimise

its total free energy. If we assume that εij and Qij share the same eigenframe and the

system is uniaxial, we have

fe = −1

2
ε0 (ε⊥δij + ∆εninj)EiEj = −1

2
ε0

(
ε̄δij +

∆ε

Se
Qij

)
EiEj , (1.28)

where ε⊥ and ε‖ correspond to the eigenvalues of εij perpendicular and parallel to

the director, respectively, ε̄ = (2ε⊥ + ε‖)/3 is the average relative permittivity and

∆ε = ε‖ − ε⊥ is the relative dielectric anisotropy. In general, εij has three distinct

eigenvalues εk with their corresponding eigenvectors e(k) and the eigenframes of εij and

Qij do not necessarily coincide.

So far, we have assumed that the director and all of its associated physical properties

are invariant under inversion. However, some systems form phases with reduced

symmetry that exhibit an additional spontaneous polarisation, P, whose strength is

determined by the molecule’s intrinsic dipole moment. This results in an additional

contribution to electrostatic free energy density, given by

f+e = fe − PiEi. (1.29)

In most cases, the molecules are able to arrange themselves into pairs with opposite

dipole orientations (sometimes referred to as dipole-dipole correlation) and cancel out the

effect of spontaneous polarisation. Therefore, it is necessary for an additional symmetry

breaking feature to exist in the liquid crystal system. Since P can be characterised by
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Figure 1.11: Parallel plate capacitor filled with a nematic liquid crystal. A schematic

diagram, illustrating the effect of an external electric field, E, on the orientation of

the liquid crystal molecules with positive dielectric anisotropy, ∆ε, in a parallel plate

capacitor system.

the C∞v point group, a given liquid crystal phase can exhibit spontaneous polarisation

if and only if its symmetry defining point group is a subset of C∞v (see Section 1.1.2).

In nematics, this can be achieved by composing the phase from pear-shaped or

banana-shaped molecules and the effect of P can be seen whenever the director

is in a flexed configuration. For this reason, this is commonly referred to as the

flexoelectricity. [50]

Meeting the symmetry requirements for spontaneous polarisation is much easier in

the SmC phase. This can be done by introducing chirality (indicated by the * symbol)

into the system to reduce its symmetry group to C2.
[2] This removes any possibility

of polarisation-reducing pairs and allows the existence of P in the direction of the C2

axis (defined by a× c) in the ferroelectic SmC* phase. [51] When we look at the bulk of

the SmC* phase, the contribution of P from each layer cancels out. This is because

the helical nature of the SmC* phase increases its global symmetry to D∞. The helix

can be unwound by applying an external electric field (deformed helix mode) [52] or

by constricting the material in a device with a sufficiently thin inner separation gap

(surface stabilised state) [53]. Similarly to the the nematic phase, it is possible to achieve

a ferroelectric SmC (and in some special cases, SmA) phase without chirality by using

banana-shaped molecules to achieve the C2 symmetry group. [54]
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1.2.6 Magnetic fields

Similarly, we can expect that liquid crystals can be magnetised by external magnetic

fields, H and have anisotropic magnetic susceptibility, χm
ij . By making the same

assumption as with the electrostatic case, we can express the magnetic contribution to

the free energy density as

fm = −1

2
µ0 (χ⊥δij + ∆χninj)HiHj = −1

2
µ0

(
χ̄δij +

∆χ

Se
Qij

)
HiHj , (1.30)

where µ0 = 1.257 µH/m is the permeability of free space, χ⊥ and χ‖ correspond to

the eigenvalues of χm
ij perpendicular and parallel to the director, respectively, χ̄ =

(2χ⊥ + χ‖)/3 is the average relative permittivity and ∆χ = χ‖ − χ⊥ is the magnetic

susceptibility anisotropy. In most cases, electric fields provide a much more feasible

means of controlling liquid crystals than their magnetic field counterparts. This section

was included for completeness and magnetic fields will not be considered in the subsequent

chapters of this thesis.

1.2.7 Topological defects

Topology is a study of geometrical properties that are preserved by continuous deformations

and is mostly associated with pure mathematics. [55] However, it provides coherence

to many physical phenomena that are not always abstract, including cosmology, [56]

topological insulators [57] and flow fields in fluid mechanics. [58]

Much like normal mathematical vector fields, director fields are strongly influenced

by geometry, BCs and topological rules. [38,59–61] To illustrate this, let us consider a

spherical nematic droplet with radial BCs in its equilibrium state. As we approach the

cenre of the domain, we observe that the droplet must contain a radial-like singularity

in the director field [62,63] (cf. sink/source in fluid mechanics). Since liquid crystals are

comprised of real molecules, singularities in the director field manifest themselves as

small isolated regions (typically of the order of tens of nm) with localised melting to the

isotropic phase, where S = 0 (assuming that any induced biaxiality [64] is negligible).

Singularities of this nature are comonly referred to as topological defects and are

described by a property known as the topological charge q. This is a measure of the

number of turns made by n in a closed loop or surface around an isolated singularity and

remains invariant in a closed system with Dirichlet BCs. [38,55,65] In general, topological

defects can appear as point-like hedgehogs and disclination lines in liquid crystal



CHAPTER 1. PHYSICS OF LIQUID CRYSTALS 22

domains and their bounding surfaces. It is worth noting that surface-bound hedgehogs

are commonly known as boojums. In principle, topological defects in the form of

disclination sheets can appear in 3D nematic domains, but these are typically unstable

and the director relaxes into one of the lower energy counterparts. A selection of 2D

examples is illustrated in Figure 1.12, where all defects can be treated as cross-sections

of disclination lines and q is characterised by the winding number of the director. Due to

the head-tail symmetry of the director, topological defects with half-integer charges can

exist in nematic liquid crystals. On the other hand, only defects with integer charges can

exist in SmC liquid crystals, because c is not indistinguishable from -c (when ignoring

sheet dislocations, twist grain boundaries and other defects associated with layers).

Figure 1.12: Illustration of a selection of 2D topological defects, accompanied by the

corresponding director fields.

Existing topological defects cannot be removed from the system without breaking

topological rules (or BCs), but they can be continuously deformed into topologically

equivalent structures. [55,60,61,63] For example, a +1 hedgehog is equivalent to a disclination

loop with a cross-sectional charge of +1/2. Figure 1.13 illustrates the topological

equivalence of topological defects on surfaces of different three-dimensional geometric

shapes with tangential BCs. Similarly, if we forcefully introduce a defect into a liquid

crystal system, the director field will adapt by creating an accompanying defect of

opposite topological charge. [60,61,63] An early commercial adopter of this feature in
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liquid crystal devices is the Zenithal Bistable Display, [66,67] in which the process of

creation and annihilation of nematic defects at structured surfaces is used as a means of

switching between two stable configurations of the director. The defects are electrically

induced at the point of inflexion on the vertical edges of a grating surface and then

separated using the polar response that arises from strong elastic deformations due to

the inherent flexoelectricity of the nematic phase [50,68]

Figure 1.13: Nematic director field and topological defects on particles’ surfaces.

Illustration showing the topological equivalence of the nematic director fields (black

arrows and streamlines) on the surfaces of different 3D geometric shapes with tangential

boundary conditions and the corresponding possibilities of the resulting topological

defects (blue volumes). This results in two +1 topological defects that move as far

away as possible from each other to minimise elastic distortion. Each +1 defect is

topologically equivalent to two +1/2 defects, which are also observed experimentally.

The sum of all individual topological charges, q, on a given surface, s, must equal to

its Euler characteristic, χ(s), which is equal to 2 for a 2-sphere and other topologically

equivalent shapes.

1.3 Solving liquid crystal problems

1.3.1 Minimisation

From the second law of thermodynamics, we know that a closed system with constant

entropy seeks a stable equilibrium. In other words, the total free energy of the system
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must be minimised. Let us now consider a system in which the total free energy, F ,

can be described by an integral of some energy density function f (x, y(x), y′(x)) over a

domain v, such that

F =

∫
v
f
(
x, y, y′

)
dx. (1.31)

Let us assume that y minimises F and consider a small perturbation y + εỹ, where ε

is small and ỹ is a continuous function of x. The perturbation must also maintain the

original BCs of the system, which requires that ỹ = 0 on the boundary of v. To find the

governing equations of the system, we can start by considering the first variation of the

above integral,

δF =

[
d

dε

∫
v
f(x, y + εỹ, y′ + εỹ′) dx

]
ε=0

, (1.32)

and letting it vanish to ensure that an extremum is achieved. By Leibniz’ rule, we have

δF =

∫
v

[
∂

∂ε
f(x, y + εỹ, y′ + εỹ′)

]
ε=0

dx. (1.33)

By setting δF = 0, we directly achieve the weak form of the governing equations for

our system with ỹ acting as the test function. To find the strong form of the governing

equations, we must analyse δF further by expanding its derivatives and using integration

by parts:

δF =

∫
v

(
∂f

∂y
ỹ +

∂f

∂y′
ỹ′
)

dx =

[
∂f

∂y′
ỹ

]
v

+

∫
v

(
∂f

∂y
− d

dx

∂f

∂y′

)
ỹ dx. (1.34)

From this, we can see that δF vanishes for all ỹ if and only if the final integrand of

(1.34) is equal to zero everywhere in v, resulting in the Euler-Lagrange equation

∂f

∂y
− d

dx

∂f

∂y′
= 0. (1.35)

Equations (1.33) and (1.35) are equivalent and can be generalised to multi-dimensional,

multi-variable systems with higher derivatives. [15] The strong form allows us to find

analytical solutions for simple systems and acts as a powerful tool in solving many

physical problems. However, it also requires smoothness and continuity of its solutions

at every point of the domain, which can sometimes become its weakness. This can

be due to the complexity of the BCs, lack of local smoothness of the physical effects

or computational cost associated with the number of variables that are required to

construct an suitable approximation. On the other hand, the weak form relaxes the

requirements to be met in the integral sense, which can sometimes make more physical

sense than the strong form solutions.



CHAPTER 1. PHYSICS OF LIQUID CRYSTALS 25

1.3.2 Analytical solutions

As we build up our expression for the free energy of a liquid crystal system, the degree

of difficulty involved in solving the problem analytically considerably increases. Beyond

a selection of special cases, it quickly becomes impossible to find analytical solutions. A

common way to simplify the equations is to use a single elastic constant approximation,

in which K1 = K2 = K3 = K, K4 = 0 and L1 = L = K
6S2 . While this is not necessarily

true, it greatly simplifies the governing equations and has proven to be a useful tool in

many studies. In most nematics that are comprised of calamitic molecules, the elastic

constants differ by less than a factor of 2 from each other and so the one constant

approximation provides realistic results (this will be used in Chapter 5). For example,

if we consider a 2D system, the vector representation of fd simplifies to

fd =
1

2
K∇n :∇n =

1

2
K ni,jni,j =

1

2
K (∇φ)2 , (1.36)

where φ is the angular coordinate of the director (measured counterclockwise from

the x-axis in the x-y plane). If there are no other contributions to the free energy

density, we can use Equation (1.35) to find the governing equation for the director. For

Equation (1.36), the result is just the Laplace’s equation for φ:

∇2φ = 0, (1.37)

which we can use to find analytical solutions for simple geometries.

Let us consider a nematic liquid crystal inside a parallel plate capacitor with the

following BCs: φ(y = 0) = φ0 and φ(y = 1) = φ1. In an ideal world, we can expect that

φ will be independent of the x coordinate and only vary as a function of y. Solving

the Laplace’s equation for φ(y) and applying the BCs gives us φ = (φ1 − φ0)y + φ0.

When dealing with slightly more complicated geometries, such as wedges, it is often

easier to solve Equation (1.37) using conformal mapping techniques. [69,70] However,

as the geometry acquires more structure defining features, such as additional corners,

numerical evaluation becomes necessary for obtaining the solutions. [71]

1.3.3 Numerical methods

In modern science, numerical solutions are becoming the dominant approach behind

finding the solutions to the real world problems. While analytical solutions can provide
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us with the outline of the physics behind many liquid crystal systems, numerical methods

are required in the majority of cases.

The two most commonly used numerical techniques in liquid crystal simulations

are the finite difference method (FDM) [72] and the finite element method (FEM), [73]

both of which have their own advantages and disadvantages. The main idea behind

using such techniques is to find an approximate solution of the governing equations by

breaking up the domain into much smaller elements and linking up their individual

solutions to build up the complete picture. From a mathematical point of view, FDM is

much easier to implement. The domain is typically discretised as a regular grid and

the governing equations are replaced by their linearised counterparts. On the other

hand, FEM utilises a more general approach by using polynomials to approximate

local physics, which results in higher quality approximations between elements. The

domain is approximated by a mesh of triangular or tetrahedral elements, which gives us

greater flexibility when defining complicated geometries. In particular, the elements

can be selectively refined in regions that require greater accuracy while maintaining

a coarse mesh elsewhere. Consequently, all boundaries are directly approximated by

the boundaries of the adjacent finite elements, which removes any ambiguity associated

with defining BCs in FDM.

In this thesis, we will use commercial FEM software (COMSOL Multiphysics) to

perform stationary and time-dependent studies on nematic liquid crystal systems. In

Chapters 4 and 5, we will use the multi-variable version of Equation (1.35) in its

multi-dimensional form.

1.3.4 Modelling the parallel plate capacitor

A good but simple example of this is the parallel plate capacitor system from the

previous section. Now that we no longer require the one constant approximation, we

can find out exactly what happens to the director inside a real device. Let us consider a

device with tangential BCs and a constant inner separation gap, d, between the parallel

plate electrodes with a potential difference V , where φ(y = 0) = 0 and φ(y = d) = 0,

filled with E7 liquid crystal. E7 is a commercial liquid crystal mixture that is nematic at

standard room temperature with K1 = 10.8 pN, K2 = 6.5 pN, K3 = 17.5 pN, ε⊥ = 5.2

and ε‖ = 19.2. [74] As before, we can expect that φ is a function of y only. Therefore,

we can exclude the contribution of K2 (twist) from the free energy density. Combining
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Equation (1.20) and Equation (1.28) results in

f =
1

2

(
dφ

dy

)2 (
K1 cos2 φ+K3 sin2 φ

)
− 1

2
ε0
(
ε⊥ + ∆ε sin2 φ

)(dV

dy

)2

, (1.38)

which can be prepared for numerical evaluation using either Equation (1.33) or Equation

(1.35) in their multi-variable form. Plotting a colour map of φ as a function of y and V

can provide us with valuable insight about the physics of such devices. From Figure 1.14,

we can see that φ remains unaffected by the voltage until it reaches a critical value,

Vc. This effect is commonly known as the Frederiks transition, which was originally

studied using magnetic fields. [75] At the critical point, the electrostatic force overpowers

the elastic resistance of the director and φ = 0 becomes unstable. The director begins

to tilt at the midpoint of the system, y = d/2, where the effects of the BCs are least

important.

Figure 1.14: Director orientation in a parallel plate capacitor. Colour map of the

director’s out of plane tilt angle, φ, as a function of voltage, V , and position y ∈ [0, d]

inside a parallel plate capacitor system with E7 liquid crystal and tangential boundary

conditions (φ = 0). Blue colour corresponds to φ = 0, green to φ = π/4 and red to

φ = π/2. (Results were obtained through a finite element method simulation.)

The critical voltage can be found by expressing φ(y) as a Fourier series, subject to

symmetry about the midpoint and the original BCs of the system, and evaluating the

the free energy of the system. Because φ = 0 throughout the system just before the
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critical point, we can assume that E = V/d and only consider the leading term of its

expansion

φ(y) = 0 + φ̃ sin
(πy
d

)
+O(φ̃2), (1.39)

where φ̃� 1. Substituting this into Equation (1.38) and integrating with respect to y

gives

F = F0 +
1

2
φ̃2
∫ d

0

(
π2

d2
K1 cos2

(πy
d

)
− ε∆εE2 sin2

(πy
d

))
dy

= F0 +
d

4
φ̃2
(
π2

d2
K1 − ε0∆εE2

)
, (1.40)

where F0 is the director independent free energy of the system. Beyond the critical

point, F < F0 for all φ̃ and therefore, its multiplier in (1.40) must be negative. From

this, we find that

Vc = Ecd = π

√
K1

ε0|∆ε|
, (1.41)

which matches up with our numerical simulation for E7 exactly, where Vc = 0.93 V.

Of course, we have to first measure the physical properties of liquid crystals before

we can model them numerically. In principle, Figure 1.14 can be created experimentally

using any of a variety of techniques such as fluorescence polarised confocal microscopy, [76]

which requires the addition of a small amount of suitably chosen fluorescent dye. However,

it is significantly easier to measure the effective dielectric permittivity of the system as

a function of voltage and fit the data numerically to extract its principal permittivities

and elastic constants. [77]
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1.4 Thesis road map

In this chapter, we have provided an introduction to the physics of liquid crystals. The

aim of this section is to provide a road map for the rest of the thesis.

In Chapter 2, we will discuss the general experimental methods used to obtain the

results in this thesis.

In Chapter 3, we will consider the effects of monoclinic symmetry on observable

properties of biaxial liquid crystal phases. In particular, we will use the inherent

symmetry properties of the smectic-C phase to measure the disassociation angle of its

optical and dielectric eigenframes.

In Chapter 4, we will use double emulsions of water droplets inside radial nematic

liquid crystal droplets to form various structures, ranging from linear chains to

three-dimensional fractal structures. Through a series of symmetry arguments and

numerical modelling, we will describe the formation mechanism of fractal liquid crystal

colloids. This chapter will introduce the concepts of fractal systems and colloidal

self-assembly in nematic liquid crystals.

In Chapter 5, we will combine experiments with numerical modelling to investigate

effects of geometric symmetry on electrically induced rotation and non-reciprocal motion

of colloidal particles in parallel plate capacitor cells filled with nematic liquid crystals.

Finally, Chapter 6 will provide an overview of the results presented in this thesis by

reviewing the key findings from each chapter and discussing the outlook of future

projects.



Chapter 2

Methodology

2.1 Polarising optical microscopy

When polarised light passes through a birefringent material, it experiences refraction

and splits into two orthogonal components, one parallel to the extraordinary axis of

the material and the other perpendicular to it. Due to the birefringent nature of the

material, the two components will travel through the material at different speeds and

accumulate a phase difference, given by

Γ =
2π

λ
∆nd, (2.1)

where λ is the wavelength of light, ∆n is the birefringence and d is the distance travelled

of through the birefringent material. If the resulting light waves pass through another

polariser, only the components that are parallel to the polariser pass through. Since

most liquid crystals are birefringent, a polarising compound microscope is an essential

tool for most liquid crystal scientists. In general, the sample appears black if its optic

axis is perpendicular to at least one of the crossed polarisers. This allows us to determine

the orientation of the director in Chapter 3 by rotating the sample such that the light

passing through the region of interest is minimised.

Additional optical retarders with a known birefringence are often used in conjunction

with a set of crossed linear polarisers to determine the director’s orientation. Figure 2.1

shows a simulated image of a liquid crystal director profile around two optically isotropic

cylinders with normal BCs between crossed polarisers and a full-waveplate optical

retarder inserted at 45◦ to both polarisers. This adds to the overall retardance of the

system when the extraordinary axis of the optical retarder is parallel to the director

and subtracts when it is perpendicular, which can be used to distinguish between the

30
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two orientations of the director. Birefringence can be measured by inserting a tilting

compensator (usually made from a well characterised birefringent material, such as

rutile) between a set of crossed polarisers such that the projection of its extraordinary

axis is perpendicular to that of the liquid crystal.

Figure 2.1: Director profile around two neighbouring inclusions. Two cylinders between

crossed polarisers with a full wave plate on the left and the corresponding director

profile on the right. Crossed polarisers at South-North and West-East orientations;

full-waveplate at NW-SE orientation of the extraordinary axis. (Results were obtained

through a finite element method simulation.)

2.2 Confocal microscopy

In this thesis we also use confocal microscopy to capture images of three-dimensional

structures with improved resolution in Chapter 4 and confirm the depth of suspended

particles in Chapter 5. In contrast to the conventional microscope design, confocal

microscopes utilise a point source laser to illuminate the sample and an additional

pinhole in front of the detector. Consequently, only the information within a small

distance away from the focal plane is observed by the detector. This allows us to build

up a three-dimensional image by combining a series of two-dimensional slices taken at

different depths of the sample. Figure 2.2 shows the three-dimensional positioning of a

triangular prism that was suspended within a liquid crystal sample, which was doped

with a small amount of Nile red fluorescent dopant. In Chapter 5, we assume that the

suspended particles remain in the centre of the parallel plate cells, which was confirmed

by confocal microscopy. This remains true for a short period of time after filling the
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cells but can be reset by applying an external voltage.

Figure 2.2: Montage of a series of confocal fluorescence images, scanned through the

depth of the sample. Red regions correspond to the florescence of the Nile red dye in

the nematic liquid crystal. Black regions correspond to the suspended triangular prism

within the sample. (Imaging performed with Antariksh Saxena)

2.3 Dielectric spectroscopy

When an alternating current is applied across a dielectric circuit, it follows the path

of lowest impedance, Z. Dielectric response of liquid crystal materials is typically

measured by an impedance analyser as a function of frequency, ω. In practice, this

process measures the combined effects of the individual components that make up the

circuit of a given sample. In the case of the standard parallel plate capacitor cells

(discussed in Section 1.3.4), the total impedance is given by

Zcell = Re +
Ra − iωCaR

2
a

1 + (ωCaRa)
2 +

R− iωCR 2

1 + (ωCR)2
, (2.2)

where Re is resistance of the wires, Ra is the resistance of the alignment layers, Ca is

their capacitance, R is the resistance of the liquid crystal layer and C is its capacitance.

Typically, the empty cell impedance is measured before filling it with a liquid crystal

material. This allow us to isolate the dielectric response of the liquid crystal and measure

its physical properties. In this thesis, we are mostly concerned with measurements of

relative permittivity, ε∗ = ε′ − iε′′, whose real and imaginary components are given by

ε′ =
Im(Z̃)

ωC0

(
Re(Z̃)2 + Im(Z̃)2

) and, ε′′ =
Re(Z̃)

ωC0

(
Re(Z̃)2 + Im(Z̃)2

) , (2.3)
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where Z̃ is the impedance contribution of the liquid crystal and C0 is the empty cell

capacitance. The liquid crystal layer can be treated as a leaky capacitor with an

additional equivalent series resistance that contributes to the loss of the electromagnetic

energy of the system (usually as heat). This can be characterised by a frequency

dependent dissipation factor (dielectric loss), given by ε′′/ε′. Naturally, we aim to

minimise dielectric loss for device friendly applications. This can be achieved by

selecting an appropriate frequency range, which is typically between 1 kHz and 1 MHz

for liquid crystals in devices with ITO conductors. [7,12] In such cases, calculating the

real component of the relative dielectric permittivity is simplified to ε = C/C0.

Figure 2.3: Effective permittivity and optical retardation in a parallel plate capacitor.

Optical and dielectric effects of voltage on the measured dielectric permittivity, ε, as a

function of voltage, V , inside a parallel plate capacitor with uniform tangential BCs and

an inner separation gap of 10 µm, filled with E7 liquid crystal (bottom) accompanied by

the corresponding colour when observed through a cross polarising optical microscope

(top).

Figure 2.3 shows the results of a typical experiment for E7 in a parallel plate

capacitor with uniform tangential BCs and an inner separation gap of 10 µm. As

expected, ε remains at a constant value, equal to ε⊥, until a critical voltage of 0.93 V

is reached. Subsequently, the director begins to rotate within the cell to align with

the electric field, ε increases and tends to an infinite voltage assymptote of ε‖. When
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this process is observed through a cross-polarising optical microscope, we can observe a

corresponding colour sequence from the changing effective birefringence of the sample.

This is illustrated in the top part of Figure 2.3. Here, the retardation was calculated

using numerical integration of ∆n(φ) through the y coordinate of Figure 1.14, with

n⊥ = 1.53 n‖ = 1.76, [78] and evaluated according to the gamma corrected Michel-Lévy

birefringence chart [79] to give a realistic visual representation. This calculation assumes

that reflection, absorption and dispersion of light within the sample are negligible.

However, if the sample is uniformly illuminated by a large light source at normal

incidence (such as the microscope in our example), then the optical retardation can be

tracked through the sample. In such cases, Jones matrices are often used to track the

retardation of light as it passes through the sample. [7]

2.4 Microfluidics

Microfluidics is the most common technique for producing droplets on the micrometre

scale. In Chapter 4, we will use this technique to create double emulsion systems of

small water droplets inside radial nematic droplets. To prevent the nematic droplets

from coalescing and make the formation process easier, as small amount of surfactant is

typically added to the water solution. In our study we add 0.5% (with respect to mass)

of hexadecyltrimethylammonium bromide (CTAB) to purified water to stabilise the

emulsions and provide normal BCs at the interfaces. The flow rate is typically controlled

by a set of high precision syringe pumps that push the fluids through plastic tubes

into the microfluidics device. First, the channel is slowly flooded with the outer fluid,

pushing the air out of the system to ensure that the pressure can be well controlled

by flow rate. Once the system is filled with the outer fluid, the inner fluid is pushed

towards the junction, where the outer fluid flow pinches off the inner fluid into regular

droplets. Each system has its own unique properties and the flow rates are usually

adjusted on the case by case basis to find a stable regime. Following this, the flow rate

of the outer fluid is fixed and the flow rate of the inner fluid is adjusted to achieve the

desired droplet size. Figure 2.4 shows the typical dependence of the microfluidically

generated droplet radius as a function of the flow rate ratio between the inner and

the outer fluids. We can see increasing the flow rate of the inner fluid results in the

creation of larger droplets. The formation process of nematic liquid crystal droplets
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in water is illustrated in Figure 2.5a. This process can be repeated to create double

emulsions by stacking a sequence of junctions with alternating inner and outer fluids or

by using using an inner fluid that already contains the smaller emulsions. Figures 2.5b

and 2.5c show the creation process of double emulsion systems before and after the final

emulsification step, respectively.

Figure 2.4: Radius of microfluidically generated droplets as a function of the flow rate

ratio between the inner and the outer fluids. Outer flow rate was maintained at a

constant value of 25 µL/h. (Data obtained by Clare Verduyn, under the supervision of

Nikita V. Solodkov.)
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Figure 2.5: Microfluidics of double emulsions. Single and double emulsion microfluidics

of E7 and water solution containing a small amount of CTAB surfactant. (a) shows the

creation process of nematic liquid crystal droplets at a typical microfluidics junction. (b)

shows a 4 µm water droplet floating inside a soon to be formed nematic liquid crystal

droplet (observed under crossed polarisers). (c) shows a double emulsion consisting of a

water droplet inside a nematic liquid crystal droplet.



Chapter 3

Effects of monoclinic symmetry

on the properties of biaxial liquid

crystals

This chapter reproduces the study from “Effects of monoclinic symmetry on the

properties of biaxial liquid crystals”, published in Physical Review E, vol. 97, no.

4, p. 042702, 2018, [80] which partially encapsulate the results from “Alignment and

electro-optical properties of SmC* with direct transition to N* phases”, published in

Molecular Crystals and Liquid Crystals, vol. 647, no. 1, p. 162, 2017. [81] Nikita V.

Solodkov and J. Cliff Jones designed the research. Nikita V. Solodkov performed the

research. Mamatha Nagaraj and J. Cliff Jones supervised the project.

3.1 Introduction

Tilted smectic liquid crystal phases such as the smectic-C phase seen in calamitic liquid

crystals are usually treated using the assumption of biaxial orthorhombic symmetry

(D2h and D2). However, the smectic-C phase has monoclinic symmetry (C2h and C2),

thereby allowing disassociation of the principal optic and dielectric axes based on

symmetry and invariance principles, described in Sections 1.1.2 and 1.1.3. The goal of

this work described in this chapter is to present experimental evidence for the effects of

monoclinic symmetry of the SmC phase on its dielectric and optical properties. This is

demonstrated here by comparing optical and dielectric measurements for two materials

with highly first order direct transitions from nematic to smectic-C phases. Additionally,

37
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we measure the extent of monoclinic behavior by interpreting it as a separation of cone

angles for each observable property. The results show a high difference between the

orientations of optical and dielectric eigenframes, which is interpreted as the existence

of two distinct cone angles for optical and dielectric frequencies. Understanding the

symmetry properties of a simple SmC system is a major stepping stone in understanding

monoclinic symmetry in new non-calamitic liquid crystals, such as those with bent cores.

Due to fast switching speeds, ferroelectric smectic-C* materials are important for

fast modulators and LCoS devices, where the dielectric biaxiality influences device

operation, particularly at high voltages. When compared to the dielectric torque

used to switch NLC based devices, the ferroelectric torque is usually much stronger,

allowing much faster switching times at lower voltages. This is because ferroelectric

liquid crystals exhibit a polar response to electric fields, which additionally allows both

the “on” and and the “off” switching mechanisms to be driven electrically. For this

reason, ferroelectric SmC liquid crystals have been used in various applications. [52,53,82].

Electro-optic behavior at high electric fields and frequencies beyond that of ferroelectric

switching is dominated by the dielectric biaxiality. [82,83] Knowing the dielectric biaxiality

is critical for understanding the behavior of devices, from fast electro-optical shutters to

high resolution liquid crystal on silicon spatial light modulators.

3.2 Monoclinic Symmetry and the Dielectric Tensor

Assuming orthorhombic symmetry between optical and permittivity axes allows the

individual permittivity components to be calculated using the combination of optical

and dielectric measurements. [83] This requires permittivity measurements in geometries

with tangential boundary conditions (TBC) and normal boundary conditions (NBC),

εp and εh, respectively. Two similar methods were previously used to calculate the

principal permittivity components in SmC* materials: using electric fields to unwind

the helical structure [84,85] and using surface interactions in devices with sufficiently thin

containment regions to permanently suppress the helix formation [83].

Since the SmC phase has monoclinic symmetry, the principal dielectric axes do not

necessarily coincide with the optical axes. However, all previous measurements of the

biaxial electric permittivities have used the optical cone angle [83,85]. The monoclinic

order parameter will grow continuously from zero below the transition. Hence, the
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dispersion of the symmetry axes will also increase significantly. Thus, differences between

the monoclinic physical properties may be more difficult to measure experimentally. By

continuity principles, the monoclinic properties will appear gradually for second order

transitions (e.g. SmA to SmC) and therefore, monoclinic properties may not have a

significant effect and lie within the experimental error. In such cases, an orthorhombic

approximation is appropriate close to the phase transitions. However, if the phase

transition is highly first order (e.g. NLC to SmC, where the biaxiality has a discontinuous

jump), then we expect the monoclinic properties to have a more pronounced contribution

and monoclinic symmetry must be considered when studying dielectric properties of

such materials.

As the sample is cooled into and through the SmC phase, the smectic layer spacing

typically shrinks, resulting in the layers tilting to a chevron structure in geometries with

tangential BCs. [86] Typical materials that undergo the SmA to SmC phase transition

lead to a ratio of layer tilt δ to the cone angle θc that is roughly constant and around

0.85 [82]. This has been explained using the argument of monoclinic symmetry of the

SmC(*) phase, where the ratio corresponds to that of the steric and polarizability

cone angles. However, in liquid crystals that exhibit a first order NLC to SmC phase

transition directly, layers initially form with an in-plane tilt component in systems

with homogeneous tangential boundary conditions. This is can be approximated by

the steric cone angle, which interacts with the surfaces of the system. The first order

transition leads to less layer shrinkage and correspondingly lower values of δ. In such

cases, asymptotic discontinuities arise whenever a SmC material exhibits layer tilts that

satisfy

δ ≤ δc = arcsin

(
|sin θc|

√
cos 2θc

2− 3 sin2 θc

)
, (3.1)

where δc is the critical layer tilt at which the system of linear equations described in

Ref. [83] becomes linearly dependent, resulting in unphysical solutions. Measurements of

the biaxial permittivities for materials with an NLC to SmC phase sequence have not

been reported before, partly because of this issue.

Consideration of energy conservation and time reversal symmetry can be used to

shown that the dielectric tensor εij is always symmetric. [40,87] Therefore, we can use

the spectral theorem for symmetric matrices, which states that a symmetric matrix is
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always orthogonally diagonalisable [88] such that
ε1 0 0

0 ε2 0

0 0 ε3

 =
(

e(1) e(2) e(3)
)T

εij

(
e(1) e(2) e(3)

)
, (3.2)

where εk are the eigenvalues and e(k) are the eigenvectors of εij , for k = 1, 2, 3. The

eigenvalues of the dielectric tensor are the principal dielectric permittivities and the

eigenvectors are the principal dielectric axes, such that e(3) is the dielectric director.

By applying invariance principles along the C2 axis, we can deduce that there exists a

principal dielectric axis e(2) parallel to C2, which coincides with analogous optic and

other principal axes. The lack of orthorhombic symmetry results in a decoupling of the

eigenvectors of permittivity and optics by rotating one with respect to another about

the common C2 axis. This asymmetry can be interpreted as a difference between the

optical and dielectric cone angles

∂θ = θo − θε, (3.3)

where θo and θε are the cone angles generated by the optical and dielectric axes,

respectively. Figures 3.1 and 3.2 illustrate the diagonalisation process and two cone

angles with respect to the layer normal, respectively, and indicate the principal optical

and permittivity axes. In principle, there can exist a distinct cone angle for every

observable physical property in SmC liquid crystals, such as magnetic susceptibility and

steric alignment. It is also worth noting that ∂θ is likely to be frequency dependent and

have a number of relaxation modes.

3.3 Governing Equations

When measuring relative permittivities of the SmC phase in the laboratory frame of

reference (x, y, z) along the (0, 1, 0) direction, we measure ε = ε22. Without loss of

generality, we can assume that the director is rotated by an angle θc away from z, by

an angle φ around z and by an angle δ around x. For the general monoclinic case, ∂θ is

not known and represents the difference between the optical and dielectric cone angles,

θo and θε, respectively. The result of this is that the measured value of ε consists of

an orthorhombic part εo (the case in which ∂θ = 0) with an additional monoclinic

contribution. In the reference frame of the orthorhombic diagonalisation of εij , we can
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Figure 3.1: Diagonalisation of the relative permittivity tensor. Schematic diagram

illustrating the diagonalisation process of the relative permittivity tensor, εij , in the

orthorhombic case (middle) and the monoclinic case (right).

Figure 3.2: Optical and dielectric cone angles. Schematic representation of the assumed

average molecular configuration of the SmC phase, illustrating the differences between

the principal components of the optical and dielectric axes, indicated by n(k) and e(k)

(for k = 1, 2, 3), respectively. The corresponding cone angles, measured from layer

normal a, are indicated by θo and θε.

express this as

ε =

orthorhombic = εo︷ ︸︸ ︷
ε11 + (ε2 − ε11) cos2 δ cos2 φ+ (ε33 − ε11) sin2 ζ

+2 ε13 sin ζ (cos δ sinφ cos θc + sin δ sin θc)︸ ︷︷ ︸
monoclinic correction

, (3.4)

where the out of plane director tilt, ζ, is given by sin ζ = (cos δ sinφ sin θc − sin δ cos θc).
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A rotation by an angle ∂θ around the C2 axis of the phase diagonalizes the dielectric

tensor. Therefore, we can choose a different cone angle to be θε = θo−∂θ and disassociate

the other two principal dielectric and optical axes, reducing (3.4) to

ε = ε1 + (ε2 − ε1) cos2 δ cos2 φ+ (ε3 − ε1) sin2 ζε, (3.5)

where ζε now has θc = θε, while δ and φ remain the same. Since we have chosen e(2) to

be in the direction of the C2 axis of rotation, ε2 and (ε11 + ε33) are invariant under any

rotation about the C2 axis.

If the material is ferroelectric (see Section 1.2.5), the director can be switched to

the side of the cone in the TBC geometry. Consequently, an additional permittivity

measurement can be made by applying a DC bias to the sample. [82] In the fully switched

position of the director (when the maximal amount of the C2 axis points along the field,

such that φ = 0 and ζε = ζo = δ) the measured permittivity is given by

εf = ε2 cos2 δ + εh sin2 δ, (3.6)

where εp and εh are the permittivities measured in TBC and NBC geometries, respectively.

This allows ε2 to be calculated directly and reduces the problem to the following three

equations:

εh = ε1 sin2 θε + ε3 cos2 θε, (3.7)

εp = ε1
(
1− cos2 δ cos2 φ− sin2 ζε

)
+ ε3 sin2 ζε + ε2 cos2 δ cos2 φ, (3.8)

3 ε̄ = ε1 + ε2 + ε3, (3.9)

where ε̄ is the mean permittivity, which can be extrapolated from the uniaxial and

isotropic phases. [84] Equation (3.6-3.9) can be solved numerically to find a unique

solution for the principal permittivities and the dielectric cone angle. Additionally,

these equations remove the restriction due to the discontinuity for δ ≤ δc and allow us

to calculate relative permittivities for materials with low δ to θc ratios, such as those

with direct NLC to SmC phase transitions. In this study, we assume that the director

remains uniform throughout the depth of system, which is a reasonable approximation

when δ is much smaller than θc. In practice, φ and ζ can vary within the samples if δ is

sufficiently large, such as in materials with a direct SmA to SmC phase transitions.
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3.4 Materials and Methods

In this work, we investigate the dielectric and optical properties of two partially

fluorinated terphenyl liquid crystals with direct NLC to SmC phase transitions, both

of which potentially show highly monoclinic behavior. Compound X [89] has a strong

coupling between the sole dipole moment and the polarizability tensor. On the other

hand, compound Y [90] was chosen because it has multiple dipoles, which are therefore

less likely to be orientated along the eigenvectors of its polarizability tensor. Optically

measured phase transition temperatures for both materials are presented in Figure 3.3.

Figure 3.3: Chemical structures for X [2’,3’-difluoro-4-nonyl-4”-pentyl-1,1’:4’,1”-terphenyl]

and Y [2,2’,3-trifluoro-4-(hexyloxy)-4”-(octyloxy)-1,1’:4’,1”-terphenyl] liquid crystals,

where the phase transition temperatures are shown under the corresponding structures.

Measurements of optical and dielectric properties of X and Y were facilitated by

adding a small amount of the BE8OF2N chiral dopant (0.5% w.r.t. mass). This low

concentration introduces spontaneous polarization (. 5× 10−6 Cm−2 for the studied

temperature ranges), which allows ferroelectric switching in the SmC* phase [2] while

keeping the other physical properties the same as the undoped SmC phase to within

the experimental error range. Measurements were made by studying doped X and

Y in (nominally) 2 µm-spaced TBC (2◦ surface pre-tilt) and NBC devices. Such low

concentrations of the chiral dopant also make the pitch much longer than the selected

cell gaps, which allows the helix to be unwound by the tangentially-aligned surfaces,

forming the surface stabilized state [53]. The samples were cooled from the isotropic

phase at a rate of 1 K/min using a Linkam T95-PE temperature controller with a

resolution of 0.01 K and stabilized for 60 seconds before each set of measurements to
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achieve uniform alignment.

Polarized optical microscopy was used to find the director orientations in TBC devices

by observing optical extinction angles as a function of temperature. At each temperature

increasingly stronger electric fields were applied as square waveforms with corresponding

voltages from 0 V to 10 V using the Aim-TTi TGA1241 arbitrary waveform generator.

The director was switched to both sides of the layer normal interchangeably to determine

the orientation of the in-plane component of the layer normal, as shown in Figure 3.4.

From this, zero voltage β0 and infinite voltage asymptote β∞ extinction angles were

Figure 3.4: Ferroelectric switching of the director in a smectic-C liquid crystal.

Photographs of a ferroelectric smectic-C liquid crystal in a parallel plate capacitor

with homogeneous tangential boundary conditions and an inner separation gap of 2 µm.

External voltage of +9 V was applied in the left image and −9 V was applied in the

right image. Rubbing direction is indicated by r, layer normal is indicated by a and

the director is indicated by n. The average director of the system was aligned to be

perpendicular to one of the crossed polarisers in both cases. Crossed polarisers at

South-North and West-East orientations.

calculated as a function of reduced temperature (both are measured in relation to the

in-plane component of the layer normal). This allowed optical cone angles θo and layer
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tilts δ to be calculated numerically from

cos δ =
cos θo
cosβ0

=
tan θo
tanβ∞

, (3.10)

which can be derived by considering the limiting cases for the relaxed and the fully

switched orientations of the director. [91,92] Figure 3.5 illustrates the optical director

configurations and the corresponding angles that were measured during the process of

characterisation of the SmC* phase.

Figure 3.5: Director configurations in a smectic-C liquid crystal phase. Illustration of

the optical director configurations in the relaxed and the fully switched ferroelectric

smectic-C system in a parallel plate geometry system with an out of plane layer tilt due

to layers assuming a chevron geometry.

After every 1 K interval, measurements of the capacitance and the dielectric loss

were taken with an Agilent E4980A precision LCR meter were performed on TBC

and NBC devices to find εp and εh, respectively. Each set of measurements was taken

by applying an AC voltage of 0.05 V at frequencies ranging from 20 Hz to 2 MHz.

Subsequently, an additional DC voltage bias was applied at ascending magnitudes to the

TBC devices to find the infinite voltage asymptotes of capacitance to find εf, given by

Equation (3.6). Optical measurements were combined with permittivity measurements

to find the dielectric cone angles θε and the principal permittivities ε1, ε2 and ε3 of

X and Y by solving in Equations (3.6-3.9). Figure 3.6(a) and Figure 3.6(b) show ε1,

ε2, ε3, εp, εf, εh and ε̄ as a function of reduced temperature for X and Y, respectively.

Calculated values of θo, θε, δ, β0 and β∞ from optical extinction angle measurements

are shown as a function of the reduced temperature in Figure 3.7(a) and Figure 3.7(b)

for X and Y, respectively.
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Figure 3.6: Dielectric permittivity measurements. Plot of principal permittivities ε1

(closed circle), ε2 (closed square), ε3 (closed diamond), ε̄ (open triangle), εp (open

circle), εf (open square) and εh (open diamond) against the reduced temperature Tc−T

for (a) X and (b) Y. Lines serve as eye guides only. Dielectric data is shown for the

temperatures corresponding to the optical measurements.

Figure 3.7: Angle measurements. Plot of optical cone angle θo (filled square), dielectric

cone angle θε (filled circle), layer tilt δ (filled diamond), zero voltage optical extinction

angle β0 (open upward pointing triangle) and infinite voltage optical extinction angle

β∞ (open downward pointing triangle) against the reduced temperature Tc − T for (a)

X and (b) Y. Lines serve as eye guides only.
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Capacitance scans on SmC* liquid crystals can show two relaxation modes: due to

field induced fluctuations of the azimuthal director (Goldstone mode) at low frequencies

and stretching with respect to the cone’s reference frame (soft mode) at higher frequencies,

the latter occurring particularly close to the phase transition. Due to the first order

nature of NLC to SmC phase transitions, no soft mode was observed in X and Y. On the

other hand, a small degree of the Goldstone mode was expected at low frequencies but

ionic screening was found in practice. For this reason, a frequency of 10 kHz was selected

for calculating dielectric cone angles and principal permittivities of X and Y, where no

azimuthal fluctuations around the cone was observed. Examples of broadband dielectric

spectra at 10 K below the NLC to SmC phase transitions are shown in Figure 3.8(a)

and Figure 3.8(b) for X and Y respectively, where ε′ represents the real component

of dielectric permittivity and ε′′ represents its imaginary component. By evaluating

the dielectric loss factor ε′′/ε′ and ε′, we can see that the static regime occurs around

10 kHz, which was selected for calculations of the main results.

Figure 3.8: Frequency dependence of the dielectric permittivity. Plot of measured

permittivities ε′ (blue lines) and the corresponding dielectric losses ε′′/ε′ (orange lines)

for (a) X and (b) Y at Tc − T = 10 K. Solid lines represent the TBC geometry and the

dashed lines represent the NBC geometry.

3.5 Results and Discussion

A comparison of optical and dielectric measurements for each compound confirms that

there is a difference ∂θ between optical and dielectric cone angles. From Figure 3.9 it

is clear that ∂θ increases as the samples are cooled through the SmC phases, showing
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an increasing degree of disassociation between the principal optical and permittivity

axes. These results show that θε may differ from θo by a considerable amount. As ∂θ

increases, orthorhombic approximations become less appropriate for calculating the

dielectric properties.

Figure 3.9: Disassociation of optical and dielectric cone angles. Plot of the cone angle

difference, ∂θ, against the reduced temperature below the NLC to SmC phase transition,

Tc − T . Open symbols are used for X and closed symbols are used for Y. Lines are

fits to ∂θ = a1(Tc − T )a2 and are used as guides for the eye only, where a1 = 2.6± 0.9,

a2 = 0.39± 0.16 for X and a1 = 14.2± 0.6, a2 = 0.10± 0.02 for Y.

The introduction of monoclinic symmetry does not have a significant effect on

the magnitude of dielectric anisotropy ∆ε, which already exists in the uniaxial phase.

However, dielectric biaxiality ∂ε only appears in biaxial phases, which makes it sensitive

to the monoclinic nature of the molecular shape. Since θε < θo, using an orthorhombic

approximation for a monoclinic molecule will result in an overestimated value of ∂ε.

Consequently, the switching times of ferroelectric SmC materials will show a varying

degree of disagreement between the theoretical estimates and experimental values,

depending on how weak the biaxial order parameters are at a given temperature.

As expected, ∂ε shows a positive correlation with reduced temperature for both

compounds, as shown in Figure 3.10. There is a first order jump of ∂ε at the NLC to

SmC phase transition, which is followed by a roughly linear trend below a temperature
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slightly below the transition corresponding to the point at which the layers become

fixed at the device surfaces. Unlike X, molecules of Y have several polar components,

pointing in different directions, which contribute towards the overall transverse dipole

moment. Thus, we observe higher ∂ε in Y in comparison to those of X. A comparison

of ∂ε to the results obtained from the orthorhombic approximation shows that such an

approximation would result in an overestimation by more than a factor of 2. However, it

is also clear that this comparison is not appropriate, as the orthorhombic approximation

does not allow the governing equations to all be satisfied within experimental error.

Figure 3.10: Dielectric biaxiality. Plot of dielectric biaxiality ∂ε against the reduced

temperature below the NLC to SmC phase transition, Tc − T . Open symbols are used

for X and closed symbols are used for Y. Lines are fits to ∂ε = b1(Tc − T )b2 + b3 and

are used as guides for the eye only, where b1 = (3.9 ± 2.0) × 10−2, b2 = 0.56 ± 0.16,

b3 = (3.9±2.4)×10−2 for X and b1 = (6.6±2.3)×10−2, b2 = 0.74±0.11, b3 = 0.24±0.03

for Y.

In this study, we have assumed that the optical director (indicated by n3 in Figure 3.2)

lies in the plane of the device. However, this is not necessarily the case if the steric axis

does not coincide with the optical director. By simple consideration of the zigzag shape

of the average molecule, we can deduce that the steric cone angle can be lower than

θo. By performing density functional theory simulations in gaussian 09 using B3LYP

method and a 6-31G(d) basis set, while maintaining the general zigzag shape with a
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maximized transverse dipole moment to account for the SmC phase, we can see that

the steric axis differs from the polarizability axes by 4.1◦ for X (net dipole moment of

µ = 6.07× 10−30 Cm) and 4.6◦ for Y (µ = 9.84× 10−30 Cm); (see Figure 3.11). The

result is for individual molecules, which will be affected by the ensemble within the SmC

phase and is only valid when there are no intermolecular interactions. Since the optic

eigenvalues depend on polarizability, while the dielectric eigenvalues also depend on

dipole moment contributions, we expect that the steric axis will deviate from the optics

as the cone angle increases. The analysis can also be performed with the assumption

that the dielectric director (indicated by ε3 in Figure 3.2) lies in the plane of the device

in the TBC geometry. While the dielectric director is much further away from the

steric axis, it provides the other extremum to the solution set. The calculation requires

an adjustment to the optical results and the principal permittivity values. From this,

we see that θo and θε remain within experimental error of each other, while δ has a

significant decrease. Consequently, the angle measurements associated with monoclinic

symmetry can be assumed to have negligible error generated from our assumption of

the steric axis matching that of the optics. However, the effect on δ is more significant,

which means that ∂ε in Figure 3.10 show the upper bound for the actual values. For

this reason, it would be instructive to measure the layer tilt angle directly using X-rays

at a synchrotron source.

3.6 Conclusion

In conclusion, we have investigated monoclinic symmetry of SmC liquid crystals by

showing that a disassociation can exist between the principal optical and dielectric axes

with respect to one another. By applying invariance principles to the SmC phase, we can

see that the eigenvector sets for optics and dielectrics must share at least one common

axis, which must be parallel to the C2 symmetry axis, due to monoclinic symmetry.

The remaining axes need not coincide between optics and dielectrics, resulting in a

disassociation of the two through a unitary rotation around the C2 axis. This was

interpreted as the existence of a dielectric cone angle θε alongside the optic cone angle

θo. This resulted in a new variable, given by the difference between the two cone angles

∂θ, which provides a geometrical scale for monoclinic behavior. Following this, we have

used two liquid crystal compounds with direct NLC to SmC phase transitions to verify
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Figure 3.11: Optimised chemical structures for X and Y liquid crystals. Density

functional theory B3LYP/6-31G(d) minimized energy configurations of X and Y, where

hydrogen, carbon, oxygen (O) and fluorine (F) atoms are represented by white, black

red and cyan spheres, respectively. Blue arrows show the direction of the net dipole

moments given by µX = 6.07 × 10−30 Cm for X and µY = 9.84 × 10−30 Cm for Y.

Magenta arrows represent the average steric axis of each molecule mX for X and mY for

Y. Yellow arrows represent the direction of the principal polarisability axis associated

with the director αX
3 for X and αY

3 for Y.

this hypothesis. Since the nature of the NLC to SmC phase transition is first order,

this resulted in highly pronounced monoclinic properties. The results indicated that

∂θ increased as the samples were cooled to as much as 20◦ for compound Y within the

studied range of 20 K below the NLC to SmC phase transition. On the other hand,

∂θ only increased to roughly half of that for compound X. This suggests that multiple

sources of dipole moment contributions result in a higher degree of monoclinic behavior.

So far, other studies of ferroelectric liquid crystals have assumed D2h symmetry for

calculations of ∂ε, which resulted in overestimated ∂ε and switching speeds. However,

we have shown that monoclinic behavior becomes very important with decreasing

temperatures and even immediately below first order phase transitions. Therefore, this

will be particularly important for future novel devices, such as those using bent core

liquid crystals, which are known to exhibit highly first order behaviour.



Chapter 4

Self-assembly of fractal liquid

crystal colloids

This chapter reproduces the study from “Self-assembly of fractal liquid crystal colloids”,

published in Nature Communications, vol. 10, no. 1, p. 198, 2019. [93] Nikita V. Solodkov

and J. Cliff Jones designed the research and performed confocal microscopy experiments.

Nikita V. Solodkov performed the research. Jung-uk Shim and J. Cliff Jones supervised

the project.

4.1 Introduction

In the previous chapter, we have considered the parallel plate geometry, which is standard

in most device based studies due to its widespread use in commercial applications.

However, there is an increasing interest in other confinement geometries such as

the cylinder and the sphere. Recently, there has been an explosion of interest in

micro-suspensions within nematic liquid crystals, wherein the intrusions self-assemble

into various structures due to the creation of defects in the nematic director fields. [94–100]

This process was first observed by creating water droplets with radial BCs inside

larger nematic droplets, which created linear chains of inclusions. [95] In such systems,

topologically forced hyperbolic defects stabilize the suspensions of particles by forming

topological dipoles with the radial inclusions, which line up in a similar fashion to a

linear array of electric dipoles. [61,96] Similar systems have been observed by adding

micro-particles with pre-determined BCs and locally melting the director field with

laser tweezers to control the formation of structures through manual rearrangement of

52
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inclusions. [101] Other studies, such as Ref., [102] aim to create unique defect combinations

by adding holes to particles, which changes their topological properties.

In this study, we use double emulsion droplets generated in a microfluidics device (see

Section 2.4) and controlled agitation to create multiple water droplets with radial BCs

inside larger radial nematic droplets. We find that the size differences between the water

droplets play a key role in the spontaneous formation of complex three-dimensional (3D)

structures, ranging from linear chains to fractal structures. To explain our observations,

we use numerical analysis to relate the basic formation of colloidal structures in radial

nematic droplets to the solutions of the Thomson problem [103,104] and extend the analogy

to the formation of fractal structures. In contrast to a recent study by Hashemi et

al. [105] that studies the behavior of nematic defects along predetermined fractal shapes,

we observe spontaneous formation of fractal shapes due to the topological and elastic

properties of nematic liquid crystals.

4.2 Methods

Room temperature nematic E7 liquid crystal mixture (from Synthon) and purified

water (containing 0.5% CTAB surfactant) were used to create complex structures inside

liquid crystal droplets. CTAB provides radial alignment and stabilizes the emulsions.

Polydimethylsiloxane was used to create the double emulsion microfluidics devices in

accordance to the methods described in reference. [106] Double emulsions of water in

liquid crystal in water were achieved using a combination of three Harvard Apparatus

PHD ULTRA syringe pumps and controlled shaking. The samples were extracted onto

glass slides, covered with glass covering slips and studied using a Leica 2700 cross

polarizing microscope. Optical microscopy photographs were taken using a Nikon D7100

camera. Counting the number of primary satellites was performed by drying the outer

water phase, which caused the nematic droplets to roll and rotate the structures inside

them. Confocal microscopy was performed with J. Cliff Jones using a Zeiss Elyra PS1

microscope with an alpha Plan-Apochromat 100× oil immersion objective and captured

using an Andor EMCCD detector.

Simulations of nematic director fields were performed using COMSOL 5.3a finite

element analysis software (stationary study) through the minimization of the Frank free
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energy,

F =
1

2

∫
v

(
K1(∇ · n)2 +K2(n · ∇ × n)2 +K3 (n× (∇× n))2

)
dv, (4.1)

with the following values of Frank elastic constants K1 = 10.8 pN, K2 = 6.5 pN and

K3 = 17.5 pN. The domain radius was set to be 30 µm, satellite size was fixed to 1 µm

and r (ratio of the core to satellite radii) was varied from 1 to 10 in 0.1 step increments.

Defect points were cut out from the nematic domains when evaluating the total free

energy.

4.3 Self-assembly of radial inclusions

Consider the domain of a nematic droplet with radial (normal to the surface) BCs. From

topological principles, a director field discontinuity with a charge of +1 is formed inside

it and centralized to minimize the free energy of the system. Adding a smaller inclusion

(such as a particle coated with a surfactant, or a second water droplet) with normal

BCs does not create any additional distortion to the radial director field. Instead, the

inclusion minimizes the free energy by creating a virtual, highly splayed defect at the

centre of the particle and moving the inclusion to the centre of the system. In this

work, we will refer to the first inclusion (water droplet) as the core and additional +1

radial inclusions as satellites, which must be accompanied by −1 hyperbolic defects to

conserve the total topological charge of the system. Figure 4.1 illustrates a possible

creation process of a water droplet at the boundary of the nematic domain and the

continuous formation of the topological dipole.

For illustration purposes we assume that the core always remains at the centroid

of the nematic domain, which is true for the cases of symmetric structures. Once a

satellite enters the director field, elastic forces drag it towards the point of highest

splay, where it enters the core’s primary orbit. All other satellites entering this primary

orbit are attracted to the core but repel each other. This suggests that there exists

some characteristic number of satellites, Nc, beyond which the satellites are unlikely

to enter the primary orbit of the core inclusion. By symmetry, the second satellite

must attach itself on the opposite side of the core to the first, to minimize elastic

distortion. A third satellite then has a choice between readjusting the positions of the

first two satellites and attaching itself to the core or to one of the two existing satellites

co-linearly. Figure 4.2 illustrates the satellite attachment process with linear chains of



CHAPTER 4. FRACTAL LIQUID CRYSTAL COLLOIDS 55

Figure 4.1: Double emulsion formation. Axisymmetric illustration of a possible sequence

of events that may occur near the boundary of the nematic droplets during the shaking

procedure. First, the boundary of a radial nematic droplet (solid black lines) becomes

unstable. In the reference frame of the nematic droplet, this causes the boundary to

be pushed inwards and a pair of disclination loops is created to accommodate the high

elastic distortion of the director profile (dashed black lines). The disclination loops must

originate from the same location to maintain topological continuity. Following this, the

system begins to pinch off the the highly disturbed boundary to create a water droplet

inside the nematic droplet. The disclination loop that is closest to the boundary has a

cross-sectional topological charge of +1/2 (red circles), and helps the pinch off process

by minimising its length. The other disclination loop has a cross-sectional topological

charge of −1/2 (blue circles) and moves in the opposite direction to form a topologically

equivalent hyperbolic hedgehog (green circle). Together with the newly formed inclusion,

the hyperbolic defect creates a topological dipole, which is propelled towards the centre

of the nematic droplet by elastic forces.

satellites extending radially outward from the core. The relative sizes of the droplets

determine the resulting structure. For droplets of similar size, the third and fourth

droplets will become arranged at the tetrahedral angles to the core, and additional

droplets beyond the fourth attach as satellites to the higher orbitals, four per orbital,

to create a characteristic tetrahedral structure.

To determine the maximal orbit capacity, we first need to study the solution sets for

distributions of repulsive points around the boundary of a circle in 2D and on the surface

a sphere in 3D. In 2D systems, primary orbit satellites distribute themselves along the

vertices of regular polygons. Similarly, in 3D the structures follow the solutions to the

Thomson problem (originally used to describe the electronic structure of atoms for the
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Figure 4.2: Structural self-assembly in double emulsion systems with normal boundary

conditions. The largest water droplet (blue) situates itself at the centre of the nematic

droplet and acts as the system’s core inclusion. This allows smaller satellite droplets

(violet) to elastically attach themselves to the core via their accompanying topological

defects (green), making up the primary orbit (magenta). Subsequent satellites can

attach themselves to the primary orbit satellites, making up the secondary orbit (yellow).

superseded “plum-pudding” model), which include some regular polyhedrons. Two

satellites can continue to move closer together until the director reaches a characteristic

distortion (this is equivalent to adding more satellites to the orbit). By symmetry of the

director field, primary orbit satellites share a network of mirror planes and symmetry

axes of rotation (see Figure 4.3). We can see that the highest amount of distortion

in the director field occurs in the plane containing the core and two nearest neighbor

satellites. As the two satellites in the same orbit approach each other, the characteristic

separation point will be reached first in this plane, thereby reducing a 3D problem to

2D.

Each satellite of unitary radius is pulled towards the core of radius r to minimize the

system’s elastic free energy and stabilized at a centre-to-centre separation of (r + 1)h,

where h is the separation factor. Using microfluidically generated inclusions, we measure

that h = 1.24 for E7 liquid crystal at room temperature. This result closely follows the

values determined numerically [107] and experimentally [95,108] for similar materials when

in dipolar chains. Due to the symmetry of the system, we consider two elastic constants:

K1, which opposes the divergence of the director field, and K3, which opposes the

bending of director lines. In our system, K3 is responsible for pushing orbit-equilibrated
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Figure 4.3: Satellite distortion network. (a) Sub-domain of the spherical surface

corresponding to the primary satellite orbit. Large unfilled circles represent satellites,

small filled circles represent symmetry axes of rotation with radial director profiles and

solid lines represent unfolded mirror planes. The plane of highest disturbance (repeated

in the structure) is highlighted in magenta. (b) A slice of the magenta plane from (a),

showing the director lines due to two satellites separated by a polar angle of Θ . (c)

Distortion of the director field in the radial reference frame as a function of the polar

angle between two neighbouring satellites along their orbital path, magenta arc from

(b).

satellites away from each other. On the other hand, K1 restores the director field to the

radial configuration, which allows satellites to be closer to each other. This implies that

there exists a characteristic angular separation of neighbouring satellites Θc, beyond

which no two satellites can come closer without a great cost to the elastic free energy of

the system.
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To determine the characteristic separation of satellites we look at the natural

distortion of the director field that a lone satellite creates. Since we seek the characteristic

value, only the distortion along the orbit needs to be examined, where the repulsion

between adjacent satellites is greatest. At the boundary of the satellite, the distortion is

maximal and decays away exponentially as a function of the polar angle at a rate that

depends on the ratio of the ratio of K1 and K3 elastic constants. Introducing a second

satellite to the same orbit is equivalent to creating a mirror line half way between them,

where the director is fully straightened to the radial configuration. We guess that Θc is

reached at the point where the natural distortion angle from the radial configuration

of the lone satellite reaches a characteristic value of ξc = tan−1(K1/K3). This means

that two satellites can be brought closer together up to the point where their push (K3)

dominant regions touch.

As the core to satellite size ratio r increases, we expect the polar influence of satellites

to become less significant and Θc to decrease with it, allowing a greater number of

satellites to enter the primary orbit. At low values of r, satellites are closer to the

centre of the domain and their natural director profiles closely match each other, which

decreases Θc. On the other hand, the natural director field of the domain becomes

less divergent with increasing orbit size and director lines become more parallel. By

comparing the director field to the electrostatic field lines between two charges, we make

an ansatz of the following form

Θc = 2Θ0 − 2α
ξc√
r

ln

(
ξc
ξ0

)
, (4.2)

where α is constant for a given domain size, Θ0 = 2 arccsc (2h(r + 1)) and ξ0 = (π−Θ0)/2

are the polar and the distortion angles at the boundary of the satellite, respectively.

From this, we can expect that liquid crystals with high K1/K3 ratios will be able

to support more satellites than the ones with low K1/K3 ratios. An example of the

free energy density is illustrated in Figure 4.4, where the isosurfaces corresponding

to f = 1 J/m3 = 1 pN/µm2 are shown in blue for r = 2.5 and r = 5. Here, there

are 8 primary orbit satellites that assemble around the core in a square antiprism

configuration to minimise the total free energy. Each satellite comes with its own

distortion profile, which experiences no significant changes when we increase the core’s

radius. Consequently, this means that their angular influence becomes weaker as r is

increased, which increases the likelihood of additional satellites joining the same orbit.
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Figure 4.4: Square antiprism satellite packing. Illustration of the free energy density in

a numerically simulated system consisting of 8 primary orbit satellites around a central

core, with r = 2.5 (left) and r = 5 (right). White surface corresponds to the boundary

of the core and blue surfaces correspond to a free energy density of 1 J/m3.

4.4 Primary orbit satellite packing

The maximal number of satellites in the primary orbit Nc can be calculated numerically

by comparing Θc with the angles generated by the closest neighbouring vertices of the

Thomson problem solutions. As r tends to infinity, exact solutions of Nc can be found

using the Fejes inequality,

2 sin

(
Θ

2

)
≤

√
4− csc2

(
πN

6(N − 2)

)
, (4.3)

which becomes exact for N = 3, 4, 6, 12 and N → ∞. [103] Due to the dependence

of Θc on r and the associated Thomson problem solution for N , we find that the

relationship between Nc and r is weakly non-linear for small values of r and increases

in a step-function-like fashion. The numerical results indicate that for systems in which

the satellites are identical in size to their cores, triangular configurations are expected

and we may expect tetrahedral structures to form once r reaches 1.1. In practice, there

always exists a small size distribution of water inclusions, which creates enough variation

in r to allow tetrahedral structures. The value of Nc serves as the maximal achievable

number of primary satellites for a given core to satellite ratio of the system. We find

that our ansatz is closely matched by the numerical solution with α = (1.12± 0.01) and
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therefore, can be used as quicker estimation method for Nc as a function of r. This

can be seen in Figure 4.5, which shows the allowed solutions for the primary orbit

satellites alongside a representative selection of experimental results (the selection does

not represent the frequency of occurrence).

Figure 4.5: Primary orbit capacity and packing. Orbit capacity N as a function of the

core to satellite size ratio r illustrating numerical space of possible values (blue shading),

estimated maximal orbit capacity from the ansatz (black line), a representative selection

of experimental results achieved with water in E7 in water double emulsions (circles).

Shapes corresponding to N = 4, N = 6 and N = 50 are shown above the curves.

Our experimental observations of double emulsions formed using microfluidics

indicate that satellite droplets self-assemble into tetrahedral configurations almost

exclusively and lower order configurations are possible but rarely observed. This is

a direct consequence of the fact that the total free energy is minimised when the

nematic droplet the contained structures have spherical symmetry. This introduces an

additional balance between spherical and polyhedral symmetries. Digonal and triangular

configurations are two-dimensional and lack 3D symmetry balance. On the other hand,

the tetrahedral configuration is the lowest order structure with 3D symmetry balance

and is therefore preferred, as observed in double emulsions. To achieve configurations

with two and three primary satellites in 3D nematic droplets, a reduction in symmetry

must be introduced. The digonal configuration can be achieved by forcing the nematic
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droplets to have an ellipsoidal shape during a slow self-assembly process. Following

their assembly, such structures remained stable throughout the observation period (over

a week), due to the stabilizing effects of the topologically imposed hyperbolic defects

separating the inclusions at the centres of the nematic droplets. When the samples were

heated above the nematic to isotropic phase transition temperature, this stabilization

disappeared (due to the lack of a director field) resulting in collapse of the structures

into a single, larger core.

Once a structure is formed inside a nematic droplet, it can be switched into a

different configuration by applying an external field. Here we illustrate this by switching

a tetrahedral structure inside a 3D radial nematic droplet into a lower order state. To

achieve this effect, the droplet was deformed rapidly by applying external pressure to the

observed region of the glass containers (used for observation under the microscope). This

resulted in a large scale redistribution of the water droplets that formed the tetrahedral

structure, followed by the reconstruction into a configuration with the closest energy

minimum. By increasing the agitation, the structure was deformed sufficiently to

reconstruct itself into a 2D shape while still remaining in a spherical 3D nematic droplet.

A comparison between the original and the reformed structures is shown in Figure 4.6.

The resulting structure consisted of a triangular segment with a single linear chain of

satellites. This bears a clear resemblance to the structures seen in 2D nematic droplets

from reference. [95] Heating the sample close to the nematic to isotropic phase transition

temperature reduces the number of birefringence fringes and allows a clearer comparison

with the 2D cases.

Another way to switch the structures is by reducing the dimensionality of the samples.

This can be done by reducing one of the coordinates to a length scale closely comparable

to the inclusion diameter, for example, using a lateral force. Analogous to the 3D

case, the satellites form structures following the vertices of regular polygons. When

a droplet with a 3D structure is collapsed to a (relatively) flat disc, the geometrical

shape is no longer supported by the dimensionality of the space and must collapse into

a 2D configuration. Since Nc(r ≈ 1) = 3, flattening a tetrahedral structure without an

additional bias in a particular dimension can result in a delayed large scale redistribution

of satellite droplets into a triangular structure. However, if a nematic droplet is deformed

into a disc-like shape with a non-circular boundary, it results in a reorientation of the

structure to mimic the geometrical asymmetry formed by the boundary. This is expected,
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Figure 4.6: Switching between primary satellite configurations. Polarized microscopy

images of (a) a nematic droplet with a tetrahedral structure in the centre and (b) the same

nematic droplet after external agitation on the brink of the nematic to isotropic phase

transition. Crossed polarisers at South-North and West-East orientations; full-waveplate

at NW-SE orientation of the extraordinary axis (to confirm radial orientation of the

director field).

as geometrical constraints extend their influence throughout the bulk of the nematic

domain that they contain. To achieve this, a glass plate was freely suspended on the

surface of a sample with radial nematic droplets, containing tetrahedral structures, in

water. Evaporation of the external water resulted in the aggregation and flattening of

the nematic droplets and a collapse of 3D structures formed by the inclusions. As before,

the resulting structures showed digonal, triangular symmetries and their combinations.

An example of this is shown in Figure 4.7, where we can see a combination these shapes,

which form a structure that resembles the shape of the deformed disc-like container.

Increasing r further creates more docking sites in the primary orbit, allowing higher

values of N to be achieved. However, most experimental observations are unlikely to

reach the maximal orbit capacity limit for high r. Instead, each primary orbit satellite

becomes a potential docking site for the nearby dock-seeking satellites, decreasing the

statistical probability of subsequent primary orbit satellite attachments. An example

of this can be seen in Figure 4.8, which shows a confocal microscopy image of a radial

nematic droplet with a structure comprised of 6 primary orbit satellites (forming the

vertices of an octahedron) for r = 3.0± 0.5 (error from pixel size). The corresponding

Nc for this core to satellite ratio from Figure 4.5 is 10± 2, which suggests that the core

had the potential to support up to 4± 2 additional satellites in its primary orbit.
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Figure 4.7: Triangular satellite self-assembly in a parallel plate geometry. Polarized

microscopy image of a nematic droplet in the shape of a deformed disc in 2D space (third

dimension is comparable to inclusion diameter) with normal BCs. Inside the nematic

domain, a 2D structure comprising of linear and triangular segments of inclusions with

radial BCs is formed, mimicking the shape of its container.

Figure 4.8: Octahedral satellite packing. (a) Confocal microscopy image of a radial

nematic droplet showing a structure with 6 primary orbit satellites formed by water

droplets with normal BCs and (b) the corresponding color enhanced image.

4.5 Fractals

Fractal structures are generated by self-similar patterns, consisting of rescaled copies of

themselves. They are often seen in naturally occurring systems, ranging from snowflakes

and seashells to the properties of the human heart, [109] diffusion limited aggregation, [110]

Brownian motion [111] and galaxy distributions [112]. To measure the self-similarity
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properties of fractals, we often use the (Hausdorff) fractal dimension, D, which describes

the scale-independent change in detail of a fractal and its ability to fill space. For a

given fractal pattern consisting of an initiator and a generator that produces n copies

of its previous evolution, each scaled down by a factor of 1/ri, the fractal dimension is

given by
n∑
i=1

r−Di = 1, (4.4)

where i represents the indexing of the individual fractal elements. [113] If the scaling

factor ri is the same for all evolution sites (ri = r), then this equation reduces to

D = log n/ log r. For example, the Cantor set is constructed from by repeatedly

removing the middle third of a line segment at every step of the evolution. This results

in the fractal dimension of log 2/ log 3 ≈ 0.63, which does not have enough information to

fill a 1D space. [113] However, natural fractals often consist of finite number of evolution

steps with irregular generators, which causes the fractal dimension to differ between

evolution levels as well as within them.

In cases such as the one from Figure 4.8, the remaining space in the primary satellite

orbit is not filled due to a small total number of inclusions. When there is a much larger

number of inclusions, another self-assembly process can take over expanding the space

of possibilities to the creation of fractal structures.

As satellites self-assemble into chains that extend radially outwards from the core

(see Figure 4.2), they provide local distortion fields similar to that of the original core

droplet. By symmetry, each droplet in a linear chain of satellites is separated by a series

of warped planes that lie perpendicular to the pointing directions of each chain. Since

the satellites have normal BCs, each separator plane is equivalent to a 2D disc with radial

BCs. This means that a satellite situated between two neighbouring separator planes

can act as a secondary core, which acts as an additional docking space for much smaller

secondary satellites. The self-assembly process of producing secondary satellites is very

similar to that of the initial 3D problem, but now the structures follow the vertices of

regular polyhedrons, centred at a secondary core (cf. Figure 4.7). Figure 4.9 shows

confocal microscopy images (taken from two different perspectives) of a fractal structure

with 2 steps of evolution. The initial arrangement of the primary orbit satellites forms

a tetrahedral base structure with r = 2.0± 0.4, which is extended at three of the four

primary satellite chains into additional secondary structures with deformed triangular

symmetry or r = 2.9± 0.6. Applying equation (4.4) before averaging gives D = 2.1± 0.4
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for the first evolution level and D = 1.0 ± 0.2 range for the second evolution levels.

With the aid of depth based color enhancement, we can clearly see that the structures

are three-dimensional and follow the shapes described by our hypothesis.

Figure 4.9: Fractal satellite packing. Confocal microscopy images showing a

self-assembled fractal structure with 2 steps of evolution, formed by water inclusions

with normal BC inside a radial nematic droplet. Images (a) and (c) show different

orientations of the same structure. Images (b) and (d) show the corresponding visually

enhanced equivalents.

We can extend this analogy further by allowing secondary satellites to act as tertiary

cores for much smaller quaternary satellites, and so on. An example of this can be seen

in Figure 4.10a, which shows a polarizing optical microscopy image of a fractal structure

progressing through several levels of evolving symmetry. The structure consists of a

tetrahedral base of primary satellites (fourth primary chain hidden in the image due

to the viewing angle and the location of the focal plane) and extends into a series of

fractal structures with 3 or more steps of evolution. This suggests that if there exists

a sufficiently large number of inclusions with a wide size distribution inside a radial

nematic droplet, then a fractal structure will form around the core. Evaluating the
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fractal dimension of the first evolution level gives D = 4.1 with an undefined error, due

to its divergence at r = 1. This implies that this fractal generator cannot be sustained

in subsequent evolution steps, as it will overlap itself in space. As expected, the fractal

dimension for the second level has a much lower value of D = 0.9± 0.1. The onset of

fractal formation along the initial satellite chain is determined by the difference between

Nc and N1 (shown in Figure 4.5), as well as the sizes of secondary satellites relative to

potential secondary cores. For example, if the N1 = Nc, then a fractal chain cannot

form on the primary orbit and the fractal onset must happen further along primary

chain. However, if the primary chain terminates at the primary orbit, then a splitting

of the chain can occur (e.g. Figure 4.9).

Figure 4.10: Large scale, complex fractal satellite packing. Polarizing optical microscopy

photographs of (a) a nematic droplet with a fractal colloidal structure (tetrahedral frame

with another arm behind the focal plane) and (b) a nematic droplet (450 micrometer

radius) with an incoherent cascade of fractal structures formed by water inclusions

with normal BCs. Crossed polarisers at South-North and West-East orientations;

full-waveplate at NW-SE orientation of the extraordinary axis (to see the 3D structure

clearly). Retardation difference from the waveplate is screened by the high retardation

due to the thickness of the nematic droplet.

In general, the Hausdorff dimension of a fractal is always greater than its topological

dimension, [112] with lines producing fractals with D > 1 and surfaces producing fractals

with D > 2. In this problem, the fractals are formed by the self-assembly of smooth

spheres that are separated by hyperbolic defects. This means that unlike the Apollonian

sphere packing, in which their surfaces touch and fill all available space, there is no

roughness associated with any of the surfaces of these structures. Instead, the concept of
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fractals manifests itself in the form of the tree-like structures of broken up components,

such that D > 0 (cf. Cantor dust [113] in 3D has D = log 8/ log 3 ≈ 1.89). For a given

evolution level, D describes the statistical distribution of inclusion sizes, as it represents

the logarithmic ratio between the number of satellites and their sizes in relation to

their core. We also observe that equal inclusion sizes have the tendency to form linear

chains and a size jump is required to induce a fractal split. The only exception to this

occurs at the primary core, where the split is symmetry driven. This means that all the

relevant size distributions that are necessary to form fractal structures are described by

the collection of fractal dimensions across the evolution levels in each nematic droplet.

Most of the first evolution structures from Figure 4.5 have fractal dimensions in

the d ∈ (1, 2) range, with a few exceptions close to r = 1. Since random motion is

introduced during the creation of high r systems, fractal structures are also likely to

form, which reduces the potential number of primary orbit satellites, as the branches

extend laterally and push each other away. After each evolution step, both N and r

typically increase, giving secondary evolution fractal dimensions in the D ∈ (0.75, 1.25)

range. Due to the limits of optical resolution, fractal structures with higher orders of

evolution become increasingly difficult to identify. The presence of further iterations

was observed but were not individually distinguishable for accurate measurements.

Additionally, the concept of a director field loses its meaning and becomes undefined

over length scales comparable to the molecular scale. This imposes a lower limit onto

the sizes of satellites and the number of possible fractal evolution steps. Beyond this

point, liquid crystals cannot support topologically stabilized structures. On the other

hand, the effects of BCs on liquid crystals begin to lose coherence over distances larger

than a few hundred µm. In this case, the fractal structures will still form locally but

the directional symmetry will become increasingly less prominent with greater structure

size. Figure 4.10b shows a nematic droplet with a 450 µm radius with an extremely

complex fractal structure consenting of a large cascade of incoherent evolutionary steps.

4.6 Conclusion

In conclusion, we have investigated the properties of spontaneous self-assembly of

geometric structures formed from water inclusion with normal BCs inside radial nematic

liquid crystal droplets. Due to the vector like behavior of nematic liquid crystals,
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all disturbances in the director field are governed by topological rules. We created

permanent disturbances by adding small water droplets with normal BCs to the nematic

droplet domains, which resulted in the formation of stabilizing hyperbolic defects

these emulsions. Our results indicate that in geometrically unbiased nematic droplets,

radial inclusions spontaneously form 3D structures with symmetry properties matching

those described by the solutions to the classical Thomson problem. Using numerical

simulations of the director field, we have shown that the ratio between the core and the

satellite inclusions plays a key role in the resulting shapes of these self-assembled colloidal

structures. We also provide a simple model to describe the maximal capacity of satellites

around the core as a function of their size ratios and the elastic constants of the nematic

liquid crystal. As expected, it suggests that as the ratio between the bend and the splay

elastic constants gets bigger, a core can accommodate more satellites in its primary orbit.

Similarly, a larger core can provide more room for director deformation and therefore, a

higher number of satellites. The most common shape found experimentally consisted of

a core with four dipolar satellite chains extending radially away from it with tetrahedral

symmetry. The shape was then altered by physical agitation of the samples near the

nematic to isotropic phase transition and deformation of spherical droplets to 2D disks

to obtain single linear chains and triangular structures. Following this, we found that

in systems with large distributions of satellite sizes, the colloids self-assembled into

fractal structures. The number of symmetry evolutions depended on the distributions of

satellite sizes. Systems with large distributions were able to achieve several evolutionary

steps, surpassing the resolution of optical microscopy. Due to the length scales of

director fields, the structures formed in nematic liquid crystals have a finite number of

possible fractal evolution steps in the formation process of fractal colloids. This can

be used for designing a variety of photonic structures with different complexity levels.

For example, microfluidics can be used to create a core that accommodate a specific

structure consisting of fluorescent intrusions or gold nano-particles.



Chapter 5

Electrically driven rotation and

non-reciprocal motion of nematic

liquid crystal colloids

The chapter presents a study that was performed in collaboration with Antariksh

Saxena. Nikita V. Solodkov, Antariksh Saxena and J. Cliff Jones designed the research.

Antariksh Saxena performed majority of the experiments with some contributions from

Nikita V. Solodkov. Nikita V. Solodkov performed the analysis and the numerical

simulations. J. Cliff Jones supervised the project.

5.1 Introduction

Deliberate manipulation of colloidal microparticles and nanoparticles offers the material

scientist and application engineer an invaluable tool for controlling functional materials. [114]

Whether in the field of biology, photonics or micro-robotics, the ability to move and

orient solid components within a liquid matrix has enormous potential for a variety of

applications. [97,115–118] A familiar and commercially successful example of this is the

electrophoretic display that is used for e-paper, in which microcapsules containing

a dispersion of bi-coloured nanoparticles are suspended in a polymer matrix. [119]

The nanoparticles are arranged with different zeta-potentials to allow electric field

manipulation of their position within each droplet, thereby allowing an electrically

controllable “ink on paper” appearance. Other possibilities that yet remain visions of

their inventors include the self-assembly of colloidal and emulsion systems with potential

69
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applications for optical computers [120–122] and biological sensors [123,124]. Meeting such

potential, however, will require particles and media that are significantly more functional

than the simple system used for e-paper. One of the more promising approaches is

that of nematic liquid crystal colloids. Recently, there has been a wealth of activity in

using nematic liquid crystals as hosts for colloidal dispersions due to their optical and

electrically controllable and anisotropic nature. [93,101,102,123–131]

As we have already discussed in the previous chapter, NLC colloids are highly

susceptible to topology and BCs that can produce long range gradients in the director

fields and promote the self-assembly of structures with varying complexity, ranging from

linear chains to crystal-like structures [98,101,126,132] and fractals [93,133]. Furthermore,

geometrical properties of the colloids [94,125,128,132,134] as well as that of the bounding

domains [93,135] can have a strong influence on their configurations in NLCs.

In this study, we demonstrate the importance of the geometry of colloidal particles

on their behaviour in NLC hosts and in particular their response to external electric

fields. The systems are studied both numerically and experimentally to distinguish the

key factors that influence the orientation of colloidal particles. A similar set of systems

has been investigated in recent studies by C. Lapointe et al. [125] and Y. Yuan et al. [131]

The first study investigates in-plane and out-of-plane electrical switching properties

of torus-like cuboidal microparticle platelets, while the second study investigates the

spinning of colloidal particles mediated by polarising light. In contrast, our study focuses

on determining the optimal configurations of microparticle platelets as a function of their

aspect ratios and domain sizes. Following this, we use geometrical symmetry breaking

to induce rotation and non-reciprocal motion of colloidal particles in a direction that is

perpendicular to that of the applied electric field. It is worth noting that the emulsion

described in the previous chapter have complex electrical characteristics due to the

high electrical conductivity of water. However, the colloidal particles in this study are

dielectrics, which simplifies the electrical effects of the system.

5.2 Methods

Cuboid and triangular prism shaped particles were created from SU-8 photoresist using a

two-dimensional direct write laser photolithography process (by Antariksh Saxena). [136]

Particles with length L = 15 µm, thickness T = 5 µm and width W = 15 µm (see
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Figure 5.1a) were dispersed into the commercial NLC mixture MLC-6204-000 (Merck

Chemicals Ltd.), which has a highly positive dielectric anisotropy of 29.3 at 25◦C. The

nature of the interaction between SU-8 and the NLC led to degenerate tangential BCs of

the director field at the particles’ surfaces. The system was then studied under various

conditions inside parallel plate capacitor glass cells, with an inner separation gap d and

normal BCs at the surfaces (induced by the SE1211 polyimide alignment layer), and

observed using transmission polarised light microscopy. The devices were studied using

a Leica DM2700P cross-polarising microscope with a ×50 objective and imaged using an

EO-23121C camera (Edmund Optics). Electrical addressing was performed by applying

10 kHz sine waves with increasing voltages using a 33622A (Keysight Technologies)

arbitrary waveform generator across the samples. For the case of dynamic motion, an

additional 0.5 Hz pulse envelope wave was used to switch between the on and off states.

The voltage was monitored using a TDS2014 (Tektronix Inc.) oscilloscope and a 34419A

(Keysight Technologies) digital voltmeter.

Simulations of nematic order tensor were performed using COMSOL 5.4a finite

element analysis software through the minimization of the Landau-de Gennes free energy

F =

∫
v

(
A

2
QijQij +

B

3
QijQjkQki +

C

4
(QijQij)

2 +
L

2
(Qij,k)

2 − 1

2
ε0εijV,iV,j

)
dv

+

∫
s
W
(

(Q̃ij − Q̃⊥ij)2 + (Q̃2
ij − S0)2

)
ds. (5.1)

Due to the complexity of the system, a time-dependent contribution was introduced to

Equation (1.35) of the following form

∂f

∂Qij
− ∂

∂xk

(
∂f

∂Qij,k

)
= −γ ∂Qij

∂t
, (5.2)

where γ = 0.67 Pa·s is the numerical relaxation constant (directly proportional rotational

viscosity) and t is the time coordinate. In our calculations, we set A = −324 kJ/m3,

B = −540 kJ/m3, C = 1800 kJ/m3, L = 12 pN, εij = 3.8 δij for the particles, ε⊥ = 8.4

and ε‖ = 38.1 for the liquid crystal. These values correspond to an equilibrium order

parameter of 0.6 and a nematic correlation length of 4 nm. Tangential BCs with

strong anchoring were achieved by setting W = 1 cJ/m2 = 10−4 pN/µm. Optimal

configurations of the particles were found by simulating 10 s of dynamics, evaluating

the resulting values of F across a range of particle tilt angles and locating the points at

which it was minimised. This procedure was repeated for different values of d and V .



CHAPTER 5. MOTION OF LIQUID CRYSTAL COLLOIDS 72

5.3 Quasistatic orientation

To minimise the free energy of the system, the liquid crystal director field must construct

itself in a way that both satisfies the BCs on the contacting surfaces and minimises the

elastic distortion in the bulk. From this, we can expect that the cuboid will assume

an equilibrium at an angle to the plane of the cell such that there are defects on the

top and bottom corners of the particle. By considering the symmetry properties of the

particles, their orientation can usually be reduced to a single out of plane tilt angle, Φ0,

in a particular vertical plane. For the case of cuboids, we assume that T ≤L≤W and

that the angular orientation occurs in the L-T plane. An example of this is shown in

Figure 5.1b, where we see the optimal orientation of a cuboid shaped particle in the

L-T plane. From the 2D simulations, we observe that Φ0 depends on the particle’s

aspect ratio, L/T , as well as the relative size of the cell gap. For systems in which the

particle’s 2D diagonal length, D2D=
√
L2 + T 2, is greater than d, Φ0 is geometrically

restricted to a certain range, beyond which it is physically impossible for the particle to

tilt, which defines the blocked region in Figure 5.1c. In fact, two such regions exist: one

in which the particle is able to lay in the plane of the cell, where d ∈ [T ,D2D), and the

other in which the particle can stand perpendicular to it, where d ∈ [L,D2D), which is

shown as a secondary region in Figure 5.1c. However, the second possibility becomes

increasingly unlikely as L/T is increased and has not been observed experimentally in

our systems.

As the cell gap is increased, we observe an increase in the optimal tilt angle of

the particles, both experimentally and numerically, which are in good agreement with

each other, within the experimental error range. In 2D simulations, we see that, as

d is increased further, Φ0 quickly tends to an asymptote of Φ∞0 . While an analytical

solution for this problem does not exist, we can describe the behaviour by approximating

it with a suitable function that satisfies the key criteria. Firstly, there must exist a

geometrically imposed characteristic cell gap, dc, beyond which Φ0 changes its course

and tends to Φ∞0 . Additionally, we can deduce that because the function that describes

the boundary of the restricted region has a non-zero gradient at d=T , so should Φ0.

The same argument can be used to show that Φ0 must also have a non-linear increase

below dc. This leads to the following function in the simplest form

Φ0 = (Φ∞0 − α) tanh

((
d− T
dc − T

)2
)

+ α tanh

(
d− T
dc − T

)
, (5.3)
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Figure 5.1: 2D numerical simulations of a cuboid shaped particle’s out of plane tilt in

cells filled with MLC-6204-000 NLC. (a) Schematic illustration of the 2D modelling

plane for a cuboid shaped particle with length L, thickness T and depth W inside a cell

with a cell gap d. (b) Optimal orientation of a particle with tangential BCs (L=15 µm,

T =5 µm) inside a nematic director field with normal BCs on top and bottom surfaces

of the cell (d= 17.5 µm). Local nematic director field orientation is indicated with

black arrows and its out of plane tilt, φ, is shown as a colour map from 0◦ (blue) to

90◦ (red). (c) Out of plane tilt of the same particle, Φ0, as a function of the cell gap, d.

Optimal Φ0 is shown in green circles for 2D numerical simulations and in blue squares

for experimental results. Physically impossible values of Φ0 are indicated by the red

shaded region and the grey dot-dashed indicates the point where the system becomes

geometrically unrestricted (where d is greater than the diagonal size of the particle).

Violet dashed line indicates the infinite cell gap asymptote of 2D particle’s tilt.

where α is a constant that is responsible for the non-zero gradient at d = T . An

example of this behaviour can be seen in Figure 5.1c, which shows the numerical results

of the optimal orientation of a particle with L = 15 µm, T = 5 µm as a function

of d. Equation (2) fits this data with Φ∞0 = (56.0 ± 0.9)◦, α = (8.91 ± 5.69)◦ and

dc=(15.6± 0.3) µm (equal to D2D, considering the effect of the rounded corners) with

an R-squared value of 0.999. By considering the limiting case of d�L, T , we observe

that a pure balance of torques between L and T results in Φ∞0 .arctan
√
L/T , which

is slightly decreased by the cross interactions of the two regions and the outer ends
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of the particle. The full extent of this behaviour can be visualised by considering the

dimensionless version of the system using Equation (5.3). Figure 5.2 illustrates the

dependence of Φ0 as a function of the dimensionless cell gap, d/T , and the dimensionless

length (aspect ratio) of the particle, L/T . However, once d becomes comparable to the

full 3D diagonal length of the particle, the 2D approximation is no longer valid and the

particles assume 3D configurations by also tilting in the W-T plane.

Figure 5.2: 2D out of plane tilt of a cuboid shaped particle in cells filled with

MLC-6204-000 NLC, as a function of the dimensionless cell gap, d/T , and the

dimensionless particle length, L/T . Out of plane tilt of the particle, Φ0, is shown

as a colour map from blue to red. The curve corresponding to the 2D diagonal length

of the particle (and the end of the blocked region) is shown as a black line.

Due to the positive dielectric anisotropy of MLC-6204-000, applying an electric

field across the system will begin to reorient the director to point parallel to the local

voltage gradient. In turn, if L 6=T , this will impose an elastic torque on the particle and

cause it to increase its out of plane tilt. As before, we can construct a function that

closely approximates the solution by considering its key physical characteristics. Akin

to the previous example, there exists a characteristic voltage, Vc, that determines the

function’s inflection point. However, the fact that the director has cylindrical symmetry

implies that the voltage response must be described by a function that is even in V

and has a Φ0 intercept with a gradient of zero. The simplest function to describe this

behaviour is

Φ = (Φ∞ − Φ0)

(
1− exp

(
−
(
V

Vc

)2
))

+ Φ0. (5.4)

To allow maximal reorientation capabilities, d was chosen to be sufficiently large for

Φ to be geometrically unrestricted but not so large that the particles stand up fully in
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the unperturbed state. From our experiments, we find that the cuboids (L=W=15 µm,

T = 5 µm) in d= 17.5 µm cells are initially oriented at an angle of (51 ± 6)◦, which

increases with increasing applied voltage and tends to an asymptote of 90◦ (at infinite

voltage). Equation (3) fits this data with Φ∞= (85.0 ± 1.4)◦, Φ0 = (51.6 ± 1.8)◦ and

Vc =(1.40± 0.14) V with an R-squared value of 0.993. Results for this configuration

are shown in Figure 5.3a, where the experimental data is also closely matched by the

2D simulations (within the experimental error bounds). Individual snapshots of the 2D

simulation, corresponding to a minimised free energy configuration in the L-T plane,

are shown for 0 V, 1 V and 3 V in Figure 5.3b.

Figure 5.3: Experimental and numerical voltage dependence of a particle’s out of plane

tilt in a geometrically unrestricted cell filled with MLC-6204-000 NLC. (a) Optimal tilt

angle of a particle with tangential BCs (L=15 µm, T =5 µm) in a cell (d=17.5 µm)

with normal BCs on top and bottom surfaces. 2D numerical simulation results are shown

in green circles, experimental results are shown in blue squares and the corresponding

experimental fit using Equation 5.4 is show in magenta. (b) Optical microscopy

photographs at 0 V, 1 V, 2 V and 3 V. (c) Numerical simulation results that correspond

to the minimal energy configurations of the system at 0 V, 1 V and 3 V. Local nematic

director field orientation is indicated with black arrows and its out of plane tilt, φ, is

shown as a colour map from 0◦ (blue) to 90◦ (red). Voltage is applied perpendicular to

the parallel plates of the cell (out of plane in (b), top and bottom edges in (c))

Since the system can be described by a balance of torques on the particle, we expect
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that the window of angular operation must depend on L/T . This means that particles

with large aspect ratios will require lower voltages to fully switch, but they will also

have a lower range of possible Φ. On the other hand, the particles with a lower aspect

ratio will have a greater range of possible Φ, but require higher voltages to achieve

the same angular change. Alternatively, tangential BCs on all surfaces can be used to

maximise the range of electrically controllable Φ in devices with d > dc.

5.4 Restricted geometries and non-reciprocal motion

In systems where the particles are geometrically restricted from tilting beyond a certain

angle, there exists an additional elastic counter torque on the particle to that of the

voltage. Consequently, a higher voltage is required to change a given particle’s tilt for

thinner spaced cells. In Figure 5.4a we show that Φ increases with increasing external

voltage and reaches the asymptote that is imposed by the geometry. Equation (5.4) fits

this data with Φ∞=(30.9± 1.1)◦, Φ0=(20.5± 2.1)◦ and Vc=(2.31± 0.70) V with an

R-squared value of 0.857. As the voltage is increased further, Φ remains unchanged.

However, unlike the geometrically unrestricted case, at some point we can expect that

the electric field will overpower the anchoring strength on the particle’s surface and allow

the defects to move around. Once a critical voltage is reached (44 V for cuboids with

L=W = 15 µm, T =5 µm, in MLC-6204-000 filled cells with d=12 µm), we observe

a spontaneous change in the system. The defects break away from the corners/sides

and swim towards the top and bottom faces of the particle (L-W plane), and the tilt

suddenly drops to zero, as shown in Figures 5.4a-c.

While the state shown in Figure 5.4b is an equilibrium state for all systems, it only

becomes stable when d<dc and at high voltages. Therefore, as the voltage is removed,

the defects are guided back to the opposite corners by the free energy gradients and the

particle must return to a tilted state (see Figure 5.1c). Depending on the path that

each defect takes, the particles may also experience some rotation in the L-W plane.

However, due to their geometrical symmetry, cuboid shaped particles tend to remain

in roughly the same location and no motion is induced, as shown in Figures 5.5a and

5.5c. This was not the case for triangular prisms, since while they are topologically

equivalent to cuboids, they don’t have orthogonally opposing corners. When the voltage

is removed, the director field relaxes and the defects move to the corners of the triangle,
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Figure 5.4: Experimental voltage dependence of a particle’s out of plane tilt in a

constricted cell filled with MLC-6204-000 NLC. (a) Tilt angle of a cuboid shaped

particle (L = 15 µm, T =5 µm, W=15 µm) in a cell (d=12 µm) with normal BCs on

top and bottom surfaces. Geometrically restricted tilt angles are indicated by the shaded

red region, experimental results are shown in blue squares and the corresponding fit is

show in magenta. (b and c) Optical polarized microscopy photographs at 40 V and 44 V

of the same particle, showing the transition between tilted (b) and flat (c) orientations

of the particle after passing the critical voltage for defect motion. Voltage is applied

perpendicular to the image plane of (b) and (c). Crossed polarisers at South-North

and West-East orientations with a full wave plate inserted between them at SW-NE

orientation of the slow axis.

as shown in Figures 5.5b and 5.5d. By symmetry, the particle must move in the

opposite direction to the net movement of the defects. Velocity of the particle decays

exponentially from an initial velocity of (117±26) µm/s with a reciprocal decay constant

of (29.6± 2.8) ms. This results in a non-reciprocal displacement of (5.3± 0.8) µm over

the course of (170± 38) ms, which closely matches the centroid to side distance of the

particles’ triangular faces. Following this, the particles experience a drifting motion

that is partially reciprocated by the subsequent tilting of the particles as they assume

an equilibrium orientation at a distance of (0.9 ± 0.3) µm from the endpoint of the

non-reciprocal displacement. An example of this is shown in Figure 5.6.
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Figure 5.5: Dynamics of colloidal particles caused by the motion of topological defects

after the removal of high voltage. (a and b) Schematic diagrams illustrating the motion

of topological defects towards the opposite corners of the top and bottom faces of a

cuboid and a triangular prism shaped particles and the subsequent dynamics of the

particles after the removal of a high external voltage. Due to the direction of motion

of the defects in each case, cuboids rotate along the axis that is perpendicular to the

plane of motion of its topological defects. On the other hand, the net direction of

defects’ motion causes the triangles to swim in the opposite direction. (c and d) Optical

polarized microscopy photographs of a cuboid (L=15 µm, T =5 µm, W=15 µm) and

a triangular prism (15 µm side length, T = 5 µm) shaped particles at 44 V in a cell

with d=12 µm. Motion of the topological defects is indicated by the arrow directions.

Crossed polarisers at South-North and West-East orientations with a full wave plate

inserted between them at SW-NE orientation of the slow axis.

The manifestation of non-reciprocal motion is likely due to the sequence at which

each event occurs in the system. When the particle is in the high tilt state, but the

voltage is insufficient to break the surface anchoring of the defects, it is in close proximity

to the boundaries of the cell (see Figure 5.4a). Since viscous forces are more prominent

closer to the boundaries, the defects move through the reorientation of the director and

the particles can only rotate when the critical voltage is applied, leaving little energy for
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translation. On the other hand, when the particle is in the low tilt state, as shown in

Figure 5.5d, it is far away from all boundaries and translational motion becomes much

easier. Sudden removal of voltage leads to a much slower relaxation of the director and

the decoupling between director reorientation and flow is lost. This allows the particle

to swim first and rotate back to equilibrium later. This means that an on-off sequence

of voltages (above the critical value) can be used to create discretised net motion of the

particles in a particular direction.

Figure 5.6: Image sequence showing positional tracking of a triangular prism. (a) No

external voltage is applied. (b) Particle tilt increases when external voltage (below

the critical value) is applied. (c) Increasing voltage beyond the critical value induces

reorientation of the particle. (d) Highest symmetry axis of the particle fully aligns

with the average electric field direction. (e) Voltage is removed. (f) Symmetric director

configuration becomes unstable and the particle is laterally transposed. (g) Particle

drifts further at a much slower velocity. (h) Particle partially reciprocates the drifting

motion and tilts out of plane to assume an equilibrium state. Path line represents the

positioning of the centroid as a colour coded function of time.

By considering the symmetry properties of the particles, we can deduce that

translational motion should only occur in particles with an odd number of corners

on their shape defining faces (assuming homogeneous thickness and regular convex

polygonal faces). As the number of corners is increased, the maximal distance of

translational motion is decreased. Since the defects are guided by the elastic free energy

gradients to be as far away as possible from each other, equilateral triangular prisms
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have the largest potential for translational motion (conversely, particles with irregular

convex polygonal faces have a reduced travel potential). This can be emphasised by

using hyperbolic triangles with concave edges of equal length, as they will have more

prominent minimal energy paths for the defects to travel along. Furthermore, we can

expect that the direction of motion can be controlled by using hyperbolic triangular

prisms with two of the corners being sharper than the rest to act as designated docking

stations for the defects.

5.5 Conclusion

In conclusion, we have investigated the effects of geometric symmetry on electrically

induced quasi-static and dynamic reorientation and motion of particles with tangential

BCs in NLCs. By considering the balance of torques, we have shown that these particles

tilt at an angle that depends on the aspect ratio of the particles and their relative

size to the cells containing them. Furthermore, the tilt angle can be controlled by

applying an external electric field, through which the particles can assume a fully

standing position in geometrically unrestricted systems. Similar behaviour is found in

geometrically restricted systems. In this case, it is physically impossible for the particles

to tilt beyond a certain angle and increasing the voltage past a critical value breaks the

surface anchoring and allows the defects to relocate to the centres of the top and bottom

faces of the particles. Removing the high voltage causes the defects to travel to the

opposite corners of the particle, which allows it to assume a high tilt state. We observe

that geometry plays a key role in the subsequent motion of the particles. By symmetry,

the centroids of the cuboid shaped particles remain stationary during this process while

the triangular particles are able to move in a direction that is perpendicular to that

of the applied electric field. In fact, this process is non-reciprocal and the triangular

prisms are able to travel forwards in a stop-motion-like fashion when an on-off sequence

of high voltages is applied across the sample. These findings are beginning to show how

both rotation and translation of particles can be controlled through the shape of the

particle and its containment. Work is underway on providing different properties to the

particle faces (including reflectance, fluorescence, absorption, and alignment) to produce

a variety of functional particles controlled through the application of electric fields.
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Discussion

The main focus of this project was to investigate the effects of symmetry on the observable

properties of liquid crystal systems. We start by providing a comprehensive introduction

to the physics of liquid crystal systems and discussing their key characteristics. Following

this, we use smectic-C liquid crystals to illustrate the importance of symmetry in

monoclinic systems and discuss the effects of using orthorhombic approximations.

In the subsequent chapter, we demonstrate the spontaneous self-assembly of fractal

liquid crystal colloids and analyse their formation mechanisms. Finally, we combine

experimental observations with numerical simulations to investigate the effects of

geometry on electrically induced rotation and non-reciprocal motion of nematic liquid

crystal colloids. The goal of this chapter is to provide an overview of this thesis by

reviewing the key findings from each chapter and discussing the outlook of future

projects.

In Chapter 3, we consider the effects of monoclinic symmetry on observable properties

of biaxial liquid crystal phases. The concept of monoclinic symmetry is hypothesised

in other studies, but due to the difficulty in distinguishing its effects experimentally,

it is often overlooked. Here, we utilise the inherent monoclinic symmetry of the

smectic-C phase to demonstrate its effects on the observable properties of the phase.

Through a series of symmetry arguments, we show that the eigenframes of different

physical properties do not necessarily coincide in monoclinic systems. In the case of

the smectic-C phase, this is interpreted as a disassociation of the individual cone angles

that correspond to unique observable properties of the system. This allows us to define

a measure of monoclinic symmetry as the difference between optical and dielectric

cone angles, ∂θ. The results show that smectic-C liquid crystals can exhibit a high

81
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degree of monoclinic symmetry and the dielectric cone angle can differ significantly from

its optical counterpart. In turn, this indicates that other physical properties, such as

dielectric biaxiality and switching speeds, are potentially mischaracterised in studies

that assume orthorhombic symmetry of the smectic-C phase.

The results of our research would benefit from performing X-ray scattering experiments

on our samples to determine the layer tilt as a function of temperature. This would allow

us to disassociate the steric eigenframe from that of optics and dielectrics and provide

us with better cone angle measurements. Furthermore, measuring the cone angles that

correspond to all of the other physical properties would allow us to further understand

the effects of monoclinic symmetry in biaxial liquid crystals. In principle, our method

can be extended to other liquid crystal phases with potential monoclinic symmetry,

such as some nematic ans smectic-A phases consisting of non-calamitic molecules (see

Ref. [19]).

In Chapter 4, we investigate the self-assembly of fractal liquid crystal colloids

in nematic droplets with normal boundary conditions. First, we consider a basic

system, formed by a distribution of small satellite inclusions around a larger core

inclusion. Through a series of symmetry arguments, we show that the satellites distribute

themselves around the primary orbit of the core in configurations that can be described

by the solutions to the Thomson problem. Using numerical simulations of the nematic

director, we show that each satellite comes with its own distortion profile that can be

assumed to be independent of the core to satellite size ratio, r. This suggests that

systems with larger values of r can allow a greater number of satellites to enter the

primary orbit of the system. However, with every docked satellite, the likelihood of

subsequent satellites entering the primary orbit rapidly decreases. These satellites then

attach themselves onto the existing satellites, forming linear chains that extend radially

outwards from the core. Following this, we show that the satellites themselves can act as

secondary cores for smaller satellites and create fractal structures. Experimentally, we

observe fractal structures with up to three (optically distinguishable) steps of evolution.

Furthermore, we find that a distribution of droplet sizes plays a key role in determining

the symmetry properties of the self-assembled structures. We also show that it is

possible to switch between different satellite configurations with external stimuli. The

results are relevant to a variety of inclusions, ranging from colloidal suspensions to

multi-emulsion systems. Such systems have potential applications for novel switchable
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photonic structures as well as providing wider insights into the packing of self-assembled

structures in general.

The goal of this study was to illustrate the mechanisms behind the self-assembly

process of fractal liquid crystal colloids. For simplicity, we assumed that the distances

between the satellites are determined by a size-dependent separation factor (based on

experimental measurements) and modelled the systems using vector representation of the

director. A natural extension to this study is repeat the numerical simulations using the

order tensor representation and determine the optimal core to satellite separation factor

for each configuration. This would allow us to accurately determine the maximal orbit

capacity for each value of r. Furthermore, it would be interesting to investigate more

general cases of our system, such as using conical boundary conditions, non-spherical

inclusions and non-spherical domains.

In Chapter 5, we study effects of geometry on electrically induced rotation and

non-reciprocal motion of colloidal particles in parallel plate capacitor cells filled with

nematic liquid crystals. The systems are modelled using the order tensor representation,

which shows excellent agreement with the corresponding experimental results. We

find that the optimal orientation of the particles is determined by their aspect ratios

and their size relative to the cells containing them. Furthermore, the out of plane tilt

of the particles, Φ, can be controlled by an external electric field. In systems that

allow unrestricted particle rotation, the long axes of the particles are able to fully align

themselves with the external electric field vector (when the voltage is sufficiently large).

However, when the inner separation gap of the containing cells is smaller than the

diagonal length of the particles, Φ is geometrically restricted. In this case, increasing the

voltage beyond its critical value partially breaks the surface anchoring and allows the

defects to relocate to a more symmetric configuration within the system. To minimise

the free energy of the system, the highest symmetry axis of each particle must align

itself with the electric field vector, causing a discontinuous change in Φ to 0. Removing

the voltage causes the system to relax to its original state through the relaxation of the

director to a minimal energy state, which is achieved when the distance between the

defects is maximised. We observe that each particle moves in the opposite direction

to the net motion of its defects, which is governed by the geometric symmetry of the

system. Our results indicate that only particles with an odd number of corners on

their shape defining faces can exhibit translational motion. In fact, the motion appears
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to be non-reciprocal and the particles are able to move in a stop-motion-like fashion.

Furthermore, we propose a possible mechanism based on the sequence of events that

occur within the systems to explain our observations. Our results of have a variety of

potential applications in deliberate manipulation of colloidal particles for engineering

functional materials.

In this study, we successfully model the rotational motion of the particles and

propose empirical functions to describe our results based on key characteristic properties

of our systems. For simplicity, we modelled the dominant cross-section of the particles,

which cannot account for the possible three-dimensional configurations in systems with

larger cell gaps. Additionally, the physical particles resembled truncated pyramids with

trapezoid-like cross-sections, which further promoted alternative configurations. In

principle, the geometry of the particles can be accurately determined with scanning

electron microscopy and directly imported into the simulations. This would allow us

to accurately determine the physics of our specific systems. Furthermore, our systems

can be used to determine the anchoring strengths of materials that promote tangential

boundary conditions by determining the voltages at which the defects are able to leave

their designated corners and comparing them to the corresponding numerical results. In

the study, we determine that equilateral triangular prisms have the highest potential for

non-reciprocal motion and discuss the possibility of using hyperbolic shapes to improve

the consistency of this mechanism. A natural extension to this study is to investigate

this possibility experimentally and numerically using three-dimensional simulations.

Additionally, the non-reciprocal component of our results requires further theoretical

analysis.
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