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Abstract 

Ageing considerably reduces the quality of life with osteoarthritis (OA) being the most 

common age-related degenerative disorder. Whilst majority investigations have 

focussed on cartilage changes in OA, damage in the bone preceding cartilage damage, 

is increasingly being acknowledged. Bone and cartilage arise from progenitor cells 

called mesenchymal stromal cells (MSCs) resident in the bone marrow (BM). It was 

hypothesised that changes in BM MSCs contribute to OA development. It was aimed to 

investigate changes in BM MSCs in healthy ageing and then explore if these changes 

were aggravated in OA using flow cytometry for the CD45lowCD271+ phenotype and 

gene expression. 

 

Minimally-expanded/uncultured MSCs were used to avoid effects of in vitro ageing due 

to culture expansion. BM aspirates from 51 healthy donors (19-89 years old) were 

processed for MSC quantification using colony forming unit fibroblast (CFU-F) assay. 

For OA investigations, MSCs from donors with hip OA (56-83 years old) were recruited. 

Gene expression of MSC multipotentiality genes, genes associated with cell 

senescence and type 1 interferon (IFN1) pathway genes was compared between 

CD45lowCD271+ MSCs and donor-matched control CD45+CD271- haematopoietic 

lineage cells (HLCs).  

 

MSC numbers declined with advancing age as measured by both assays but a more 

prominent decline was noted using CFU-F assay. Colony size and integrated density 

significantly reduced in old donor MSCs indicating age-related decline in MSC 

proliferation. When cultured in media with old donor serum, young and old donor MSCs 

displayed lower proliferation. IL6 expression from old donors displayed 4-fold increase 

in both MSCs and HLCs. IFN1 genes displayed strikingly high expression but no age-

related changes in MSCs. In OA, number of genes displayed significant differences 

including LepR, CXCL12 and IL6 as compared to healthy old donor MSCs. Surface 

marker expression of CD106 and CD295 were found to decline significantly in MSCs 

and a similar trend for CD295 decline was observed in HLCs. Age-related increase in 

IL6 expression was aggravated more notably in MSCs.  

 

In summary, age-related decline was observed in MSC number and proliferative 

capacity while gene and surface marker expression displayed non-significant 

differences as compared to donor-matched HLCs. These data indicate that BM MSCs 

are potentially more resistant to ageing stimuli in vivo compared to other BM resident 

hematopoietic lineage cells. 
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Chapter 1 Introduction 

1.1 Ageing 

Ageing in simple terms, is the process of growing old. This process however has been 

found to be a result of complex changes within an individual. Growing old has 

increasingly been associated with decline in strength, loss of physical fitness and 

increased vulnerability to diseases, all of which eventually lead to a gradual 

deterioration in the quality of life (QOL) (1). Diet, lifestyle, physical activities, heredity, 

epigenetics and environment, all of these factors are believed to contribute to this 

decline in QOL (2, 3). World Health Organisation (WHO) reported in 2018 that the 

“proportion of the world’s population over 60 years old will nearly double from 12% to 

22%” within a span of three decades (4). The report also outlines that by 2020, the 

number of people aged over 60 will outnumber children below the age of 5, suggesting 

a huge shift in the global demographics. The United Nations (UN) estimates over 3 

billion people will be over the age of 60 by 2100, globally (Figure 1.1) (5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Projections of global ageing 

Increase in number of people aged over 60 over the next few decades until 2100, 
adapted from the UN 2017 study (5) 
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In mid-2014, the United Kingdom (UK) was identified as having an ‘ageing population’ 

when the average population age exceeded 40 years old (6). Age UK also points out 

that 37% of the carers for old people are themselves old and over 72% of them have 

reported pain or discomfort while providing care (7). The office of national statistics 

(ONS) predicted in 2017 that by 2039, nearly 74 million of UK population will be over 

the age of 60 (8). The office for budget responsibility predicts that the public spending 

between 2019/20 and 2064/65 will increase by £79 billion to meet the needs of the 

ageing population. 

 

The fact that increasing age has been associated with increased frailty (an elevated 

risk of decline in health and function (6)) has led to an increased interest in 

understanding the mechanisms of age-related changes in the past few decades. In 

2013, a pioneering paper ‘the hallmarks of ageing’ was published summarising nine 

major age-related changes at the cellular and sub-cellular levels. These were grouped 

into main three themes: cellular senescence, genetic instability and stem cell 

exhaustion (9). In combination, all these factors caused an increase in individual’s 

vulnerability towards diseases, loss of control over daily activities and overall increased 

time period in recovering from physical injury.  

 

Considering that increasing age has been linked with several types of cancers, 

cardiovascular and musculoskeletal diseases, loss in cognitive functions and neuro-

degenerative diseases, healthcare experts have introduced a concept of ‘healthy 

ageing’ (10), which WHO experts have defined as ‘the process of developing and 

maintaining the functional ability that enables well-being in older age’ (1). In other 

words, even though ageing has been associated with a number of diseases, it is not a 

disease by itself. It is the natural progression of one’s life. Hence, to understand any 

age-related disease, it is vital to first understand the age-related changes in ‘healthy 

ageing’. 

1.1.1 Theories of ageing 

In biological terms, ageing is a complex process of gradual build-up of numerous 

molecular and cellular damages over time. To better understand the process, a number 

of theories have been postulated over the years to explain different aspects of age-

related differences.  

 

The theory of stem cell exhaustion (SCE) outlines the role of stem cells that drive 

tissue regeneration over an individual’s lifetime. It suggests that there is an age-related 

decline in the number and functionality of the stem cell pool within our bodies that 
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eventually leads to a reduction in body’s ability to regenerate tissues or heal when 

damaged by injury or a disease (9, 11). Stem cells are undifferentiated cells that have 

the potential to differentiate either into any lineage (have total potency or are 

‘totipotent’) or into multiple lineages (‘multipotent’). Most adult stem cells are 

multipotent stem cells (12). Stem cells can be of different origin depending upon the 

tissue source and species they belong to. They can also be categorised as embryonic, 

if sourced from an embryo (ES cells); adult, if sourced from an adult (adult stem cells) 

or can also be induced by reprogramming from mature adult cells to an ES-like state 

(induced pluripotent stem cells, iPSCs) (13). SCE theory of ageing pertains to age-

related changes in adult stem cells. 

 

An age-related decline in the proliferation and regeneration capacities of stem cells has 

been established in the last decade (14) and a number of factors have been proposed 

as contributors. These include deoxyribonucleic acid (DNA) damage and, accumulation 

of toxic metabolites (harmful free radicals) in stem cells themselves and a notable loss 

in the balance between damage and regeneration signals in the surrounding 

microenvironment. Interestingly, one of the main current debates revolves around the 

preferential roles of intrinsic (intracellular) or extrinsic (extracellular) factors on the 

number and basic functions of stem cells. Research focusing on the impact of the 

extrinsic factors within in the stem cell niches (specific anatomies and 

microenvironments within which the stem cells reside) has gained  an increased 

interest owing to parabiosys experiments showing that stem cells in old mice can 

potentially be reversed to be as functional as stem cells in young mice, using systemic 

factors from young mice (15, 16). However, this concept dates back to 1913 when 

Carrel performed experiments to understand ageing of organs with the aim of life 

extension (17). The concept has now gained importance potentially due to an 

increasing ageing population, worldwide. 

 

Damage to the DNA of stem cells is one of intrinsic factors that have been proposed to 

lead to SCE. The theory of DNA damage response (DDR) is among the oldest theories 

aimed at understanding age-related changes at the sub-cellular levels (9, 18, 19). It 

refers to the accumulation of damage in the DNA over time. The structure and integrity 

of DNA continuously gets challenged from both intrinsic factors (for example, 

replication errors and mutations) and extrinsic factors (for example, background 

radiation, cellular microenvironment and reactive oxygen species or ROS), which play 

the role of causative agents of DDR (9). In young people, all the cellular damage/debris 

is automatically eliminated by our body by means of autophagy (engulfment of 

damaged cells and organelles by authophagosomes followed by their degradation by 
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lysosomes (20)), which in older age is shown to becomes less efficient (21). Telomere 

attrition, irreversible arrest in cell cycle (senescence), inadequate response to cellular 

stress are also key factors contributing to DNA damage (22). Interestingly, ROS acts a 

major source of formation of DDR which brings us to the next theory of ageing. 

 

The ROS or the free radical theory was first proposed in 1955 by Harman where he 

suggested that accumulation of cellular damage along with declining integrity of cellular 

components lead to oxidative stress owing to impaired metabolic cycles in old age (23). 

The free radical theory of ageing suggests that damages at the cellular and sub-cellular 

levels are caused by ROS. ROS are generated continuously during regular metabolism 

but are scavenged due to the presence of naturally occurring anti-oxidant molecules 

within our bodies (24). The theory outlines that the accumulation of ROS increases with 

age and overwhelms the ability of protective anti-oxidant molecules to scavenge ROS, 

thus increasing cellular damage and eventually leading to inability of cells to 

regenerate. However, the exact mechanisms that govern age-related changes in 

humans due to ROS are still unknown. Until now, levels of free radicals and anti-

oxidants have been used to estimate the balance between ROS levels and the 

potential anti-oxidant scavengers of ROS but only in culture expanded stem cells (25, 

26).  

 

Recently, ROS, DNA damage and SCE theories have been combined leading to 

various studies investigating age-related changes in hematopoietic stem cells (HSCs) 

within the bone marrow (BM) niche (27, 28). In independent studies, type 1 interferon 

(IFN1) was found to play a role in the clearing of senescent cells (29, 30) and IFN1 

pathway was found to potentially be the link between DNA damage, ROS and ageing 

of HSCs (31). Bone and joint cells are produced and maintained by another type of 

BM-resident adult stem cells (mesenchymal stem/stromal cells (MSCs)) where they co-

exist with HSCs in the same microenvironment. However, the roles of various factors 

like ROS and IFN1, on these stem cells in healthy ageing and age-related 

musculoskeletal conditions, remain unknown and require further investigation.  

 

1.1.2 Age-related conditions – clinical need to understand healthy ageing 

Age-related conditions are a global health burden and combating them is now the 

driving force for many scientists and economists alike. Section 1.1.1 above outlined the 

theories of ageing and potential causes of the age-related damaging effects. In this 

section, some age-related conditions will be discussed in more depth, primarily to 

highlight the debilitating impact they have on the suffering individual’s QOL. In fact, I 



 

22 
 

believe, the co-existence of the numerous theories about the process of ageing, in 

reality, indicates a gap in knowledge on the complexity of ageing and its link to age-

related diseases. However, there is a possibility that in fact, all the theories are 

complementary and/or collectively responsible for the different levels of damages 

(subcellular, cellular and organismal). 

 

There is growing body of evidence that connects different diseases to the process of 

growing old. For example, accumulation of damage over time, via ROS acting at the 

sub cellular and cellular levels have been found to be common between healthy ageing 

and many disease conditions including cancer (18, 32, 33), cardiovascular diseases 

(34-36), neurodegenerative disease (37-39),  as well as diseases of the 

musculoskeletal system (40-42). Figure 1.2 shows how the known factors for age-

related changes can transition to distinct disease conditions, but the main drivers for 

this transition remain unclear.  

 

 

 

 

 

 

 

 

Figure 1.2 Unclear transition from ageing to diseases  

Shared features of ageing and age-related diseases with an unclear path towards 
disease transition (adapted from (43)) 

 

Old age has been linked with many diseases along with the reduction in the QOL of 

older people. Thus, there are scientists who not only consider ageing to be a 

degenerative disease (44), but also propose that ageing must officially be classified as 

a disease by the International classification of disease (ICD) (43, 45). The ICD is the 

classification used by WHO for epidemiology studies and health care management 

globally, the 11th revision being the most updated version (ICD-11). It is a tool that aids 

the monitoring of occurrence of diseases to better understand the healthcare condition 

in countries and among populations. Ageing was not classified as separate disease in 
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ICD-11 and rightly so, as the concept of ‘ageing is a disease’ is controversial owing to 

the fact that it is a natural progression of every living being.  

 

In fact, some scientists believe that we begin to ‘age’ right from our conception, even 

before birth. The process is simply broken down into phases of birth, growth, 

maturation, adulthood and old age. This idea has been further promoted by Allison et. 

al who found that pregnant rodents that were treated with anti-oxidants, had off-springs 

that grew old slower than those whose mothers were not given any anti-oxidants (46), 

suggesting that ageing begins from the moment we are conceived. While advanced 

age leads to considerable frailty, not every old person is frail. These variations are due 

to the different environmental factors, genetic make-up and life styles that individuals 

lead.  

 

Among the diseases associated with old age, diseases of the musculo-skeletal system 

impacting the bones and joints may be considered the most incapacitating diseases 

worldwide. The WHO reports that osteoarthritis (OA) is the most common degenerative 

disease in older population (47). While the disease has primarily been described as the 

degeneration of cartilage with negative impact on the other joint tissues, recent 

evidence suggests that the damage to bone plays a key role in the disease progression 

(48). The disease has largely been identified by degenerating cartilage, stiffness and 

pain. Increasingly along with these, subchondral bone sclerosis, bone marrow lesions, 

increase in bone volume but low mineralisation due abnormal bone remodelling 

(explained in section 1.1.4) have gained recognition as hallmarks of the disease (49, 

50), even though the debate as to if these hallmarks are the causes or the effects, are 

still active. 

1.1.3 Bone and bone marrow  

The skeletal system consists of bones, cartilage, tendons, ligaments and connective 

tissues. It forms the framework of our bodies and provides us with basic structure and 

support. Apart from protecting our internal organs, it is also responsible for our 

locomotion in daily lives. Bones in particular perform mechanical functions along with 

serving as the reservoir for the hematopoietic marrow and a reserve for calcium. At this 

given point of time there are 16,334 active clinical trials globally that are aimed to 

restore bone and bone related conditions (51).  

 

Structurally, the bone contains inorganic mineral depot and organic extracellular matrix, 

lipids and water. The organic components include abundant quantities of collagen, 

proteoglycans, glycolipids and different types of cells. The inorganic component of the 
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bone is majorly hydroxyapatite (Ca10(PO4)6(OH2)) (52). The composition involving both, 

the organic and inorganic components enable the bone to have both, mechanical 

strength as well as flexibility for movement. The inside of the bone is a very dynamic 

environment with various types of cells residing and interacting with one another. The 

bone marrow (BM) within the bone is also where stem cells reside, making it one of the 

most important organs in the body.  

 

The BM exists within the trabecular spaces in the cancellous bones (such as the iliac 

crest or IC) and in the medullary cavities of the long (cortical) bones. It is contained by 

the exterior (cortex) of the bone and includes a complex mesh of blood vessels, cells 

and fatty tissue. This micro-environment within the bone forms the ‘niche’, where BM 

stem cells reside (53). As mentioned, the BM houses two types of adult stem cells and 

their progenies: HSCs and MSCs. HSCs originate in the aorta-gonad-mesonephors 

(AGM) region in the embryo and migrate to the liver and then to BM  (54-56), where 

they reside and self-renew for the rest of the adult life. BM HSCs give rise to progenitor 

cells of both lymphoid as well as myeloid lineages. Lymphoid progenitor cells further 

give rise to natural killer (NK) cells, T lymphocytes and B lymphocytes. Myeloid 

progenitor cells on the other hand, give rise to monocytes/macrophages, eosinophils, 

basophils, neutrophils, erythrocytes and platelets. 

 

HSCs residing in their BM niche replenish billions of cells every day while maintaining 

themselves over decades, a process known as haematopoiesis (57). The BM or the 

stem cell niche is the microenvironment within which these stem cells reside. The niche 

is known to provide the appropriate conditions, growth factors, temperature, oxygen 

levels to enhance and maintain the cells and their functions within the BM, making it an 

important factor for stem cell formation, function and survival (56). Within the BM or the 

stem cell niche, MSCs also exist which originate from the mesoderm and the neural 

crest, which is a transient embryonic tissue (58).  

 

It has been reported that neural crest cells would migrate to different locations through 

the blood stream including the BM where their arrival would coincide with the arrival of 

HSCs. They continued to be there until adulthood and supported HSCs. There have 

also been reports of these neural crest cells travelling through developing nerves rather 

than via bloodstream. What is definitely known is that regardless of their embryonic 

origins, BM resident MSCs can give rise to bone, fat and cartilage lineages. For MSCs 

specifically, the BM niche can be divided into endosteal and perivascular based on the 

anatomical location within the microenvironment. Endosteal niche is located around the 

bone lining in proximity with bone formation cells (osteoblasts), whereas the 
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perivascular niche is located near the sinusoidal vessel within the BM cavity (59, 60).  

In mice, MSCs have been also topographically linked to CXC motif chemokine 12 

(CXCL12) abundant reticular (CAR) cells that form a network of stromal cells 

connecting endosteal and perivascular niches. MSCs residing at the endosteal niche 

are most likely to be directly involved in the process of bone remodelling (58). 

1.1.4 Bone remodelling and age-related bone loss 

To maintain the integrity of the bone, about 10% of the bone is believed to be 

remodelled each year (61). The process of bone remodelling involves a balance 

between old bone removal and new bone formation. However, with increasing age, the 

rate of new bone formation has been found to fall behind the rate of old bone removal 

leading to the eventual decline in bone formation and reduced functionalities of the 

bone (62). The mechanisms underlying bone remodelling have been extensively 

studied and have revealed the involvement of the RANKL (Receptor activator of 

nuclear factor kΒ ligand)/OPG (Osteoprotegerin) pathway (63). 

 

The cells directly involved in bone remodelling process are osteoblasts (the bone 

forming cells), osteoclasts (the bone resorption cells) and osteocytes, which are fully 

mature  bone cells  embedded within the mineralised matrix (64). Osteoblasts are 

derived from MSCs and are the effector cells largely known for their ability to produce 

bone matrix by the secretion of alkaline phosphatase, type 1 collagen, proteoglycans, 

osteocalcin and osteopontin. They are short-lived and exist and function in clusters 

along the bone surface. Some of the osteoblasts mature over time and get embedded 

within the matrix of the bone to eventually become osteocytes (64). Over the years, 

osteoblasts have been extensively studied in relation to their contribution to age-related 

bone loss and age-related bone diseases (65, 66).  

 

Osteocytes are the most abundant cells embedded deep inside the bone matrix and 

their half-life is estimated to be around 25 years (67). Owing to their deep seated 

location (Figure 1.3), isolation and investigation of these cells pose technical 

challenges. Thus, most of the osteocyte investigations in humans have largely been 

based on histology of stained and fixed specimens or using gene expression for 

osteocyte-specific transcripts. Osteocytes are considered to be the final differentiated 

cells of the osteoblast lineage that eventually perish as a result of apoptosis/necrosis or 

autophagy (68). By gene expression, osteocytes have classically been identified by the 

expression of sclerostin (SOST), matrix extracellular phosphogylcoprotein (MEPE), 

dentin matric acidic phosphoprotein 1 (DMP1) and phosphate regulating neutral 

endopeptidase X-linked (PHEX) (69). Osteocytes have also been acknowledged as 
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‘mechanostat’ of the bone that sense and respond to mechanical stress by sending 

signals to osteoblasts and osteoclasts, as well as MSCs, on the bone surface and 

modulate bone remodelling (70). 

 

Osteoclasts are the cells that are responsible for the process of resorption of bone. 

These are multinucleated cells that are derived from the mononuclear progenitors of 

the myeloid lineage from HSCs, that also give rise to macrophages. Discovered back in 

1837, they possess a unique ‘ruffled border’ that is formed by complex finger-like 

projections from the cytoplasmic membrane, which isolate area under the cells to 

release high concentration of acid to dissolve bone mineral (71). The acidic 

environment is achieved by the transfer of H+ and Cl- ions across the borders of the 

ruffles to ensure the dissolution of the non-organic component of the bone to bring 

about bone resorption (72). They are typically identified due to the presence of tartrate 

resistant acid phosphatase (TRAP) by immunohistochemistry (71).  

 

Dysregulation of osteoclast activity can lead to both increased bone mass (if there is 

reduced development or function of osteoclasts) or decreased bone mass (in case of 

their increased development or function). For the purpose of bone remodelling, the 

progenitors of osteoclasts are recruited to the surface of the bone, where they mature 

to form a multinucleated osteoclast, then perform resorption functions and eventually 

die via apoptosis (73).  

 

The process of bone remodelling is brought about by a number of soluble factors that 

recruit the above mentioned cells for executing the process. The key players of this 

process are RANKL, RANK and OPG. RANKL is a protein produced by the osteoblasts 

as well as MSCs, which binds to its receptor RANK on the surface of osteoclast 

progenitors. The binding of RANKL to RANK is essential for the formation and function 

of osteoclasts (71). The formed osteoclasts then begin to resorb the old bone leaving 

behind a portion of the bone pit known as ‘howship’s lacunae’ exposed. Osteoclasts 

eventually undergo apoptosis to end resorption (74). Osteoblasts, then form new bone 

in the bone pit left behind by the osteoclasts for bone formation. OPG, the natural 

decoy receptor for RANKL is also expressed by osteoblasts and MSCs (69). When 

OPG binds to RANKL, the latter is no longer available for binding to RANK on 

osteoclast progenitors and therefore it stops the formation of any further osteoclasts 

(Figure 1.3). 
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Figure 1.3 Bone remodelling  

Figure indicating the different cells involved in the process of bone remodelling. Green 
spindle shaped cells are MSCs that develop into osteoblasts (shown in orange cells 
with blue nucleus) that are associated with bone formation.  Osteoclast precursors give 
rise to osteoclasts (shown in orange multinucleated cells with ruffled borders) that are 
involved with bone resorption. RANK-RANKL binding brings about the process of 
osteoclast formation which will be stopped if OPG (Decoy receptor of RANKL) binds to 
RANK instead (adapted from (75) ) 
 

Bone-remodelling process is therefore tightly regulated and balanced. However, with 

increasing age, this balance appears to be lost and the rate of bone resorption seems 

to exceed the rate of new bone formation leading to age-related bone loss (65). Why 

bone formation rate is reduced in old age remains unclear but it can be speculated that 

it can be due to a decrease in the number or function of osteoblast progenitors, the 

MSCs. 

 

Age-related bone loss comprises of a gradual decline in bone mass and strength in 

both, men and women. Clinically, it is seen as an increase in non-traumatic, low energy 
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fractures in people of older age, especially over the age of 60. Bone loss can be 

measured as lower bone mineral density (BMD), bone volume (BV) and bone thickness 

(BT) on quantitative computed tomography (QCT) and in dual energy X-ray 

absorptiometry (DXA) scans. Of note, age-related bone loss is higher in women after 

menopause as compared to age-matched men (76, 77). It is also believed that women 

begin to lose bone earlier than men and at a greater rate as compared to men, 

potentially due to the role of sex hormones (78, 79). 

 

The age-related bone loss has also been observed parallel to an increase in the 

adipose content within the BM. In fact, age-related shift from bone formation to fat 

formation is potentially the best known age-related change in the BM associated with 

bone loss (80). With the knowledge that bone is a very complex and dynamic organ, it 

can be said that these age-related changes in bone are potentially a combination of 

changes in many cells inside the bone, as well as soluble factors they produce. The 

reduction of growth factors like insulin growth factor (IGF) which is an important 

regulator of osteoblast proliferation and differentiation in the bone matrix in older age 

suggests that the BM microenvironment too plays a part in age-related bone loss (81). 

The bone cells directly involved in the bone remodelling process are mature and fully-

differentiated cells. However, the progenitors of osteoblasts (MSCs) are interestingly, 

also the progenitors of the fat cells within the BM. Thus, a better understanding of age-

related changes in BM MSCs is essential for uncovering the cellular mechanisms of 

age-related bone loss and their contribution to age-related skeletal diseases such as 

OA. 

1.2 MSCs 

1.2.1 Definition, characterisation and CD45-CD271+ phenotype  

Mesenchymal stromal cells primarily originate from the mesodermal lineage in the 

embryo and in the neural crest as outlined in section 1.1.3. MSCs are plastic adherent, 

give rise to bone, fat and cartilage tissues (tri-lineage differentiation potential) and are 

positive for cell surface cluster of differentiation (CD) markers of CD73, CD90 and 

CD105 (82). They were first discovered by Friedenstein et. al in 1970s when he found 

a population of cells within the BM that was highly proliferative, adherent to plastic and 

formed colonies of fibroblasts when seeded at low density (83). Hence, due to the 

growth of these cells as colonies of fibroblasts, they came to be known initially as 

colony forming unit-fibroblasts (CFU-F). The CFU-F assay remains to date, the most 

accepted method for MSC quantification. Since their discovery, MSCs gained a lot of 

interest due to their tri-lineage differentiation potential as well as immune-modulating 
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abilities (84). MSCs have been subsequently isolated from other tissue sources 

including bone marrow, adipose tissue, synovial tissue and fluid and umbilical cord (85, 

86), but these MSCs remain outside the scope of this thesis.  

 

As of now there are globally over 1150 clinical trials that utilise  MSCs for applications 

varying from the regeneration of the liver (GCT no: 0101062750) to the treatment of 

broncho-pulmonary dysplasia (GCT no:0103683935) (51). Among all the potential 

sources of MSCs, BM remains the most preferred choice for in vitro expansion and 

further application in clinical settings. This is possibly because the BM is the first and 

most reliable described MSC source, even though the frequency of MSCs in the BM is 

very low and ranges between 0.01-0.001% of total nucleated cells (87). Thus they 

usually need to be enriched and cultured in vitro for separating them from other cells 

and in order to obtain sufficient number of MSCs for clinical applications.  

 

In spite of the growing interest in MSCs, there remain discrepancies in the definition of 

these cells. The source of the MSCs, the technique used for their isolation, laboratory 

conditions and many other factors add to this discrepancy. As lack of uniformity can 

give different results for the same experiments in different laboratories or clinical trials, 

there is a need to identify key factors to help define MSCs better. 

 

In 2006, the International society for cellular therapy (ISCT) outlined three minimal 

criteria for defining MSCs in culture. First, MSCs should adhere to plastic, second they 

should be positive for the expression of CD73, CD90 and CD105 and not expressing 

CD45 (pan–leukocyte marker), CD34 (common HSC marker), CD14, CD11b, CD79a, 

CD19 and human leukocyte antigen (HLA) class II. The final criteria for MSCs is their 

tri-lineage differentiation capacity in vitro. For these differentiation assays, plastic 

adherent cells are grown in culture in medium containing factors for osteogenic, 

adipogenic and chondrogenic differentiation for 2-3 weeks. For osteogenic 

differentiation, the level of the enzyme alkaline phosphatase (ALP) found in high 

quantities in bone and Von Kossa or alizarin red stains indicative of calcium deposition 

from developing osteoblasts is quantified (82). For adipogenic assay, the level of oil red 

stain (that stains fat) is measured and for chondrogenic assay, a pellet is formed which 

is then weighed and the amount of glycosaminoglycans (GAGs, indicative of 

chondrocytes) is quantified (88). 

 

While the criteria specified by ISCT have significantly contributed to ensuring the 

uniformity for defining MSCs, there are many factors that were not clearly addressed by 

the ISCT. To begin with, the first criteria of defining MSCs is the ability of the cell to 
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adhere to plastic. MSCs are not the only plastic adherent cells – fibroblasts, epithelial 

cells, endothelial cells and many others - are also adherent to plastic. The next criteria 

includes the expression of CD73, CD90 and CD105. Even though the ISCT panel has 

long been used for the characterisation of MSCs (82, 89) and they (CD73, CD90 and 

CD105) remain largely stable through in vitro cultures, it has often been criticised due 

to the lack of their cell specificity and due to their presence on other types of cells. For 

example, CD73 and CD105 were found to be expressed by dermal fibroblasts (90, 91)  

and in umbilical vein endothelial cells (92, 93). CD90 too has been found to be 

expressed on many other cell types in the BM, hence paving way for the need of a 

more suitable BM MSC marker. CD90 (Thy 1) is known to mediate cell to cell adhesion 

and is involved in the adhesion of monocytes and leucocytes to endothelial cells and 

fibroblasts (94). Also, it is a recognised marker for embryonic stem cells (95). Thus, 

simply combining the first two criteria, the test for ensuring that cells are MSC is 

unreliable. While some of these markers have been known to decline with in vitro 

culture expansion (96, 97), the investigations of age-related differences of these 

surface markers have not provided any conclusive results. 

 

The final criterion is MSC tri-lineage differentiation ability, in vitro. While this criterion 

focusses on the differentiating ability in vitro, it critically misses out on the quantitative 

evaluation of native or uncultured MSC. Also, culturing MSCs have been shown to alter 

their properties, even at passage zero (P0, cultured but not yet passaged). If the 

criteria have been assigned to cells that adhere to plastic, it automatically means that 

they do not define native MSC that are freshly obtained and are uncultured. Changes in 

cell size, granularity and morphology (98, 99), surface marker expression (97) and 

gene expression (99) have been shown to alter as a result of in vitro culturing. These 

changes have been referred to MSC ‘in vitro ageing’ or ageing induced by culturing 

cells in non-physiological conditions (100), and are further discusses below in section 

1.2.2.  

 

Schneider and Mitsui were first to investigate ‘in vitro ageing’ using cultured fibroblasts 

from young and old donors (101). They found significant difference between fibroblasts 

from young and old donors with respect to cell proliferation, in vitro life span and 

senescence. They concluded that using cultured cells from young and old donors is a 

suitable model for investigating age-related changes in cells prior to culture. While the 

cells used were cultured therefore not devoid of manipulation, their study indicated that 

in vitro culture expansion sensitises cells to two-dimensional (2D) conditions therefore 

early stages of culture expansion better represent the state of cells in vivo compared to 

late stages.  
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Owing to lack of clarity in defining uncultured BM MSCs using ISCT criteria, several 

attempts have been made to investigate surface markers that reliably define them and 

can be used for their isolation prior to culturing. Mesenchymal stem cell antigen 1 

(MSCA-1) and CD271 have been proposed to be positive specific markers of MSCs 

(94, 102). Historically, Stro-1 was the first surface marker found to be specific for BM 

MSCs (103).  However, Stro-1 was found to be cross reactive with erythroblasts (103)  

and thus it was used to enrich/identify MSCs in combination with other molecules such 

as CD106 and CD146 (104) or with platelet derived growth factor receptors alpha and 

beta (PDGFR and (105, 106) 

 

CD271 or Low-affinity nerve growth factor receptor (LNGFR) belongs to the tumour 

necrosis factor receptor super family and has been used as a  marker for BM MSCs by 

several independent research groups in the last two decades. CD271 is also known by 

the name of p75 neurotrophin receptor and was among the first receptors of its family 

to be characterised. It has also been suggested to be involved with the functions of cell 

survival and is suggested to be present in abundance during the growth phase (107). 

The phenotype CD45lowCD271+ has been shown to provide best specificity for BM 

MSCs compared to other candidate markers or their combinations (108, 109). In 

contrast to CD73, CD105 or CD90, CD271 is absent on fibroblasts indicating its least 

cross-reactivity with non-MSC adherent cells.  

 

The CD45lowCD271+ phenotype has also shown to fulfil all the three ISCT criteria 

needed to define an MSC, that is, the in vivo expression of CD73, CD90 and CD105, 

plastic adhesion and formation of colonies, as well as tri-lineage differentiation 

following minimal cultivation (110, 111). CD271 has thus become a marker of choice 

for phenotyping BM MSCs. However, using CD45 as a negative marker or using other 

known markers like CD106, CD146 along with CD271 provides better characterisation 

of BM MSCs (112).  

 

1.2.2 Age-related changes in MSCs  

Age-related changes in cultured cells are measured using various techniques as large 

numbers of cells are available for investigation. Quantification of cell numbers (96, 

113), telomere length (114), cell proliferative capacity (115), senescence (116), 

resistance to oxidative stress (117), metabolism (118), alterations in differentiation 

potential (80, 119) are some of the methods that have commonly been employed for 

studying age-related changes in cultured MSCs. As seen from the literature, these 
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investigations have been most commonly performed using cultured MSCs from young 

and old human donors. However, the effect of passaging on cells’ behaviour have not 

been commonly considered.  

 

Amongst animal models, Caenorhabditis Elegans or C.Elegans (phylum nematode, 

round worms with simple/non existing organ systems) has been widely studied owing 

to its primitive organ system, ease of use and short life-span which enables 

investigation of age-related changes in the organism during the whole course of its life 

span (120). However, to understand ageing in humans better, physiologically advanced 

animals like mice, naked mole rats, rhesus macques (primates) as well as dogs and 

cats have been used as models (121). Studies like these have immensely contributed 

to our understanding of age-related differences. Nevertheless, due to ethical 

considerations, similar experiments cannot be performed in healthy, functional humans. 

Thus, investigations involving age-related differences in young and old donors remain 

limited to use of (majorly) culture expanded and rarely, uncultured cells. Next sections 

will outline the main considerations for the study of age-related changes in human BM 

MSCs using cultured and uncultured cells.  

1.2.2.1 MSC ageing in vitro (passage dependent) 

As mentioned, age-related changes in human BM MSCs have been historically studied 

using culture expanded MSCs. However, it hasn’t been commonly considered that all 

primary cultured and plastic adherent cells ‘age’ in vitro as a result of rapid cell division 

(98, 101). As MSCs are plastic adherent cells, their in vitro ageing on tissue culture 

flasks and similar consumables is relatively well understood and has been studied 

using proliferation, migration and differentiation assays (98, 122), as well as telomere 

length (114), senescence assays (99) and gene transcripts measurements (99). A 

decline in the proliferative capacities of serially-passaged BM MSCs has been 

observed in various studies (114, 123) along with a change in the expression of certain 

surface markers with in vitro ageing (97). CD106 and CD146 have been associated 

with young or aged MSCs based on culture expansion in vitro. CD106 has been shown 

to either decline in expression (124), increase in expression (125) or to have random 

oscillations (123) with in vitro passaging. CD146 has been shown to decline in serial 

passages with culture expansion (124). CD295 has been shown to be higher in cells 

expanded in culture along with higher levels of Annexin-V indicating increased 

apoptosis in MSCs of later passages (126). Morphologically, MSCs have been reported 

to increase in size, appear more flattened and granulated when expanded in vitro. 

Mauney et al. found about 10-fold increase in the size when they compared cells in late 
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stages with cells in the initial stages of culture expansion (127) along with an increase 

in cell granularity (99) indicative of in vitro ageing and replicative senescence.  

 

Cells in the later passages are known to show greater positivity for senescence, 

indicated by assays like SA--gal (128, 129). Senescence is generally defined as an 

irreversible arrest of cell proliferation (130) and over the years various methods have 

been used to identify senescent MSCs in culture (131).Apart from all of the differences 

mentioned above, the shift towards adipogenic differentiation from osteogenic 

differentiation has also been shown when MSCs were cultured in vitro. Bonab et al. in 

2006 have shown that when donor MSCs are cultured over time in vitro, then both, 

their osteogenic and adipogenic potential decline after 5-8 passages (98).  

 

This clearly suggests that in vitro differentiation studies are more indicative of 

replicative senescence that has accumulated over time rather than resembling the 

actual differentiation capacity of MSCs in vivo towards any lineage. The compromised 

ability of MSCs in later passages to undergo osteogenic differentiation was also 

recently shown by Yang et al. by gene expression (123) and by other researchers 

using in vitro differentiation assays (132, 133). Even though there are reports that have 

shown a decline in in vitro adipogenic potential with increasing MSC culture (99), the 

presence of a ‘fatty marrow’ with advancing age (134) suggests toward an increasing 

adipogenic differentiation of BM MSCs in vivo. 

1.2.2.2 MSC ageing in vitro: donor age dependent 

Summarised evidence from literature outlined in the previous section were performed 

using BM MSCs from early and late passages. The loss of surface some markers or an 

increase in cell size that have been observed during this exaggerated ageing process, 

lead to a hypothesis that similar changes may occur in older donor MSCs in vivo.    

 

This section focuses on studies that were performed on BM MSCs from young and old 

human donors at the same passage, in order to mimic their age-related changes in 

vivo, a little better. A number of studies observed a decline in osteogenic potential 

(135, 136) and telomere lengths in MSCs from older donors compared to younger 

donors  from the same ‘culture age’ (114). With respect to surface markers, an up-

regulation CD264 (137), CD106 (138) and CD295 (126) has been reported from 

cultured cells of older donors when compared to cultured cells of young donors. 

Increased production of ROS along with an increase in the proportion of senescent 

cells was also observed in cultured cells of older donors as opposed to the cultured 

cells from younger donors (96).   
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Stenderup et al. examined the various aspects of MSC ageing using cultured cells from 

young (18-29 years old) and (68-81 years old) donors and found an age-related decline 

in the life span of MSCs from older donors (129). Another age-related difference 

observed when MSCs were cultured was the decline in number of MSCs with 

advancing age, potentially indicating that higher proportion of MSCs in older donors 

were senescent (139). These findings suggested that there might be an age-related 

decline in the number of MSCs in vivo potentially due to increased ROS levels, which 

should also be quantified in uncultured cells.   

1.2.2.3 MSC ageing in vivo: animal models 

Our understanding of age-related changes in uncultured MSCs majorly comes from 

animal studies. A number of species have been used to understand broader ageing 

processes in vivo using Caenorhabditis elegans (or C.elegans due to short life-span) 

(140), rodents, naked mole rats and primates (121). Investigations specifically 

regarding the ageing of MSCs have most commonly been restricted to rodents owing to 

feasibility and ease of handling (141). Among these, the shift from osteogenic to 

adipogenic differentiation was shown in the 1990s in senescence-accelerated mice–P6 

(SAMP6) by Takahashi et al. (142). These mice developed osteoporosis within a few 

months after birth suggesting that MSC senescence could lead to the imbalance 

between bone and fat differentiation. 

 

In earlier studies using cultured MSCs, BM MSCs of old C57BL/6 mice (20-26 months 

old) were found to produce higher amount of fat compared to younger (6-8 months old) 

mice (143). BM MSCs from the old female Wistar rats (56 weeks) had increased 

senescence and apoptosis, reduction in proliferative capacity and a decline in bone 

markers as compared to young (3 weeks) rats (144). Interestingly, the authors did not 

find any increase in MSC adipogenesis in the old rats when compared to young rats. 

They found lower number of CFU-Fs in old rats, which was also observed by Katsara 

and co-workers in adult mice (>3 months) in comparison to young (<1 month) mice 

(145) and by Josephson and colleagues in old (52 weeks) mice compared to young (12 

weeks) and old (146). Studies investigating BM MSCs from young (4 months) and old 

(15 months) Sprague Dawley rats, found lower tri-differentiation potential in old rat BM 

MSCs compared to BM MSCs from young rats. The study also observed an age-

related decline in the presence of Connexin43 (Cx43) in BM MSCs, (147) which is the 

most abundant gap junction for intercellular interaction within the bone (148).  
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In another extensive study, rat BM MSCs were culture expanded to passage 100 and 

various experiments were carried out to understand the link between in vitro ageing 

and chronological ageing of these animals.  BM MSCs from old (12 months) Sprague 

Dawley rats were compared to young (3 weeks) rats (149) and the results showed that 

the MSC migration potential and anti-oxidant capacity were the only parameters that 

decline in both, in vitro and chronological ageing. The osteogenic differentiation 

potential, cell morphology, senescence markers and the expression of genes 

associated with MSC differentiation showed significant changes only in in vitro ageing. 

Authors concluded that chronological ageing and in vitro MSC ageing are distinct 

processes (149). However, based on accumulated evidence from all presented animal 

studies, it is possible to hypothesise that in vitro MSC ageing (passage dependent) 

represents an exaggerated ageing process, some features of which (for example, a 

loss of some surface markers) can be detected in MSCs in vivo. Animal studies have 

also indicated towards a decline in the number and proliferative capacity of BM MSCs, 

mainly in rodents. 

1.3 Osteoarthritis 

1.3.1 Epidemiology 

Osteoarthritis (OA) is among the most incapacitating degenerative diseases in the 

world. In the United States, it is the most common joint disorder and 10% of men and 

13% of women over the age of 60 suffer from OA (150). It is also cited as the most 

common rheumatic condition with a huge impact on population and demographics, 

worldwide (151). Of the 291 conditions examined in the global burden of diseases 

(GBD) study, hip and knee OA are ranked the 11th major contributor, just after diabetes 

and falls (151).  Incidentally, it is also the most common reason for total hip and knee 

replacement (152).  

 

The global cost of OA has been estimated to be very high.  Chen et al., described total 

costs as direct costs (medication, surgery), indirect costs (loss of productivity, absence 

from work) and intangible losses (suffering, decreased QOL and depression). In 2012 

in the UK  alone, just the direct OA costs were recorded as 168 million for drug 

therapies and 872 million for joint replacement surgeries (153). The direct and indirect 

costs of other studies in America and Europe have also revealed considerable amount 

of cost incurred due to OA. As for intangible loss, the level of anxiety, depression and 

loss in personal morale along with decline in QOL is unimaginable (154). And, this 

impacts not only the patient suffering from OA, but also  close family members and the 

loved ones of the patient. 
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Considering the global burden OA imposes, it has been classified under the diseases 

of the musculoskeletal system in four further subparts in the ICD by the WHO. The four 

major categories of OA in the ICD-11 include OA of the hip, OA of the knee, OA of the 

wrist and hand and OA of other joints. Each of these categories are then further 

subdivided on the basis of the cause/origin. These are primary, post traumatic, 

secondary and unspecified causes. 

 

Unfortunately, by the time a patient is diagnosed with the disease, the condition has 

usually progressed considerably. This means, that by the time, the patient has come to 

the doctor with complaints of pain and stiffness, chances are, the patient will certainly 

be given pain relief drugs for pain management and suggested lifestyle changes with 

immediate effect. The other outcome is that the patient will need surgery. Tissue 

engineering applications have seen an increased interest owing to the possibility of 

minimal invasion for joint repair and many biomaterial scaffolds are now available in the 

market (155); however, the attempts are far from becoming the first choice of therapy 

on a global scale. The diamond concept (156) of tissue regeneration requiring a 

scaffold, cells, growth factors and mechanical strength of a given tissue engineering 

platform often faces challenges to be translated from ‘bench to bed’ successfully (157).  

1.3.2 Current understanding of OA 

OA is a degenerative disease that may have several underlying causes. Pain in joints 

is the key symptom for medical attention. WHO’s scientific group on rheumatic 

diseases estimates that 10% of the world’s population aged 60 years or older have 

significant clinical problems that could be attributed to OA (158). 

 

Commonly recognised by stiffness and pain in joints, on pain persistence, radiological 

examination involves measuring joint space narrowing and the presence of 

osteophytes., thinner cartilage lining and inflammation in the area of pain. While there 

are different techniques for imaging in OA, the technique of magnetic resonance 

imaging (MRI) has become a very useful method owing to its ability to evaluate the 

pathology in structures that are not easily visible in traditional radiographies (159). Due 

to these observations, initially, OA was approached as the disease of the cartilage. 

However, it has been recognised as a degenerative disease of the joint owing to the 

involvement of the cartilage, bone, synovium as well as meniscus and ligaments (160). 

 

In a study in 2008 by Quintana and Azkarte, the authors found the prevalence of hip 

and knee OA in older population (161). Obesity (162, 163), genetics (164), mechanical 
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stress (165), physical trauma and age (166), all have been associated with the 

progression of the disease. While it is understood that over 45% of men and 55% of 

women over the age of 60 are likely to face OA, it is also established that factors like 

diet, lifestyle, physical exercise, genetics and environment also play an important role. 

A number of common factors have been suggested to link old age and OA. These 

include loss of normal bone structure and increased stiffness in joints (167), oxidative 

stress due to ROS (168), cellular senescence (169) and reduced QOL (170) outlining 

that OA is complex and multifactorial. However, majority of these links have been found 

using cultured chondrocytes and investigations using bone cells remain minimal. 

Considering OA is multifactorial and the number of links found between ageing and 

OA, one may hypothesise that these age-related factors are potentially exacerbated in 

OA patients (Figure 1.4).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Age-related factors that can potentially contribute to OA 
 

 

The most common way to define OA radiographically is by the use of Kellgren-

Lawrence (K/L) radiographic scoring method that defines OA ranging from grades 0-4 

depending on the level of severity, presence of osteophytes and joint deformity in 

general. While a school of thought believes that it is the secretion of pro-inflammatory 

factors that leads to the degradation of the ECM in cartilage and eventually leads to 

bone remodelling in OA; another school of thought supports the hypothesis that 

subchondral bone remodelling and joint inflammation precedes the articular 

degeneration in OA (171). Another fact supporting our lack of understanding of OA 

pathophysiology is the presence of over a million scientific publications on 

‘Osteoarthritis’ in google scholar and the disease still being a major health care burden 
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across the globe with pain management and surgery as the last medical interventions 

available to patients.  

 

Due to the fact that OA is a multi-factorial disease involving articular cartilage, the 

subchondral bone as well as the synovium and synovial fluid, the exact mechanisms of 

the degradative events up to now have been difficult to dissect. Largely, the 

development of OA may be segregated as ageing dependent processes and ageing 

independent processes. Ageing dependent processes include the wear and tear 

mechanisms, such as age-related changes in cartilage matrix, loss of viable 

chondrocytes due to apoptosis and increase in age-related chondrocyte senescence. 

As mentioned, age-related process within OA subchondral bone, including MSCs 

however, remain poorly understood (172). Ageing independent processes include the 

processes of mechanical load and physical injury, genetic and environmental factors 

along with stress on lifestyle and obesity which impact individuals, irrespective of their 

age.  

 

Current approaches for treatment of OA include pharmacological approaches using 

medication for pain relief like non-steroidal anti-inflammatory drugs (NSAIDs) and 

others (173) and non-pharmacological approaches. These include surgeries, physical 

alternatives like orthosis, insoles and foot wear (174), changes in lifestyle (175), use of 

physiotherapy (176) and an increase in the use of tissue engineering with MSCs (155) 

for the treatment of OA. Lifestyle changes have also been shown to prevent and 

potentially reduce the occurrence of OA (177). OA of the hip is the leading cause of the 

hip replacements in the elderly (178) and with projections of an ageing population 

worldwide, the incidence of hip replacement in only expected to increase. Thus to 

investigate the factors in ageing that may be aggravated in OA, samples of hip OA 

patients were investigated in this thesis.  

 

This project first aimed at investigating changes in number, gene and surface marker 

expression of BM MSCs in healthy ageing. The same parameters would then be 

examined in MSCs from donors with hip OA to appreciate any trends in healthy ageing 

that would be further aggravated in OA. 

 

1.4 Hypotheses and objectives 

Hypotheses: 

 

1) There is an age-related decline in the number of BM MSCs in humans.  
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2) There are age-related differences in the levels of expression of multipotentiality 

genes, genes associated with senescence and IFN1 pathway in uncultured old 

donor MSCs compared to young donor MSCs. 

3) These age-related differences are further aggravated in uncultured MSCs of 

patients with primary OA, a major age-related musculoskeletal condition. 

 

Objectives: 

 

1) To quantify the number of BM MSCs across the broad age range (19-89 years 

old) and between  young (19-40 years old), intermediate group (41-59 years 

old) and old (60-89 years old) donors, using the CFU-F assay and the 

CD45lowCD271+ phenotype. 

2) To investigate the level of expression multipotentiality genes, genes associated 

with senescence and IFN1 pathway in uncultured BM MSCs (CD45lowCD271+) 

from young (19-40 years old) and old (60-89 years old)  donors. 

3) To investigate the level of expression of multipotentiality genes, genes 

associated with senescence and IFN1 pathway in uncultured BM MSCs 

(CD45lowCD271+) in patients with primary hip OA.  
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Chapter 2 Materials and methods 

The methods described in this chapter were performed in experiments presented in 

more than one results chapter. The methods specific to a result chapter have been 

described in the respective methods section of that chapter. List of reagents, 

consumables, equipments, softwares used, prepared solutions are listed in Appendix 2 

Table 1, 2, 3, 4, 5 respectively. 

2.1 Age groups distribution 

The term ageing or defining at what age someone can be called old is more than often, 

subjective. While many references focussed on ageing refer to ‘old’ as the age of 60 

and above (Figure 1.1) globally (5), skeletal ageing become noticeable around the fifth 

decade of life (62, 96). In both cases, there are individuals, whose biological age 

(defined as how young their bodies are, how physically active their organs are) do not 

match their chronological age (actual age in years) (179). Thus to examine age-related 

changes in BM MSCs in human adults, in this project, three age groups were 

investigated: young (19-40 years old); intermediate age group (41-59 years old) and 

old (60-89 years old).  

 

In order to investigate and understand differences in old donors relative to young, this 

PhD included donors beginning from adulthood (>18 years old). Paediatric donors (<18 

years old) were excluded from this study as they are in early stages of growth which 

includes elongation of bones, sexual development and reaching skeletal maturity (180). 

Considering this, an obvious difference would be expected in factors like the number of 

MSCs and gene expression of osteogenic differentiations in old (>60 years old) donors 

when compared to young, eventually leading to a bias. While an adult over the age of 

18 is considered to have attained skeletal maturity, the age of 40 has been suggested 

to start displaying a decline in BMD (62). Incidence of fractures and bone associated 

conditions become prevalent around the age of 60 and thus 60 and above was chosen 

as the cut-off for old donors (1, 181). 

 

Based on the evidence presented above, it can be proposed that in order to 

understand the process of ageing in BM MSCs that is relevant to their in vivo biological 

ageing, MSCs from human donors must be used prior to any culture expansion. This 

will avoid the changes in the cells induced artificially through passaging and cultivation-

induced replicative senescence. When cultivation cannot be avoided (such as in CFU-F 

assay), it should be reduced to a minimum. Based on these considerations, uncultured 
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or minimally-cultured MSCs will be used in this thesis for the purpose of investigating 

age-related changes in human BM MSCs in vivo. 

 

2.2  Ethical approval  

Ethical approval for the collection of human tissue samples was obtained from 

Yorkshire and Humberside National Research Ethics Committee (ethics reference 

06/Q1206/127 for bone marrow aspirate (BMA) collection, 14/YH/0087 for femoral 

head (FH) collection and 04/Q1206/107 for the collection of blood from healthy 

volunteers (Appendix 5). Participants’ details and sample distribution across different 

study arms are presented in separate tables outlined in Appendix 1.   

2.3 Donor selection and sample processing 

The age range for the three groups were as follows: 19-40 years old were referred to 

as the young age group, 41-59 years old were indicated as donors of the intermediate 

age, and 60-89 years old were referred to as the old age group. The ages of recruited 

OA donors were between 56-83 years old. 

 
Human BM aspirates (BMA) were collected in 4ml Ethylenediaminetetraacetic acid 

(EDTA) tubes from the iliac crest (IC) of patients undergoing surgeries for fracture 

fixation or for removal of metal work in Leeds General Infirmary, Major Trauma Unit. 

The patients were reported as otherwise healthy. BMA was collected from n=58 

donors; 30 males and 28 females with the age range of 19 to 89 years old, median age 

of 47.5 years old. BMA median volume was 8 ml (range 4-24ml). 

 

In the laboratory, BMA was first passed through a sterile nylon mesh 70m cell strainer 

to exclude small clots, if any. The total aspirate volume was recorded and collected in a 

50ml sterile falcon tube. Enumeration of MSCs was performed using CFU-F assay 

explained in Chapter 3 (Appendix 1, Table 1) and flow cytometry (Appendix 1, Table 2) 

on fresh samples (n=51 and n=32, respectively) followed by experiment for testing 

resistance to oxidative stress (Appendix 1 Table 2) the next day. The remaining sample 

was then processed for freezing (section 2.3) for testing MSC proliferation in the 

presence of human serum (Appendix 1, Table 1) explained in Chapter 3 or for use in 

cell sorting followed by gene expression (Appendix 1, Tables 2 and 3).  

 

FHs from OA donors (Appendix 1, Table 4)  was collected, processed and frozen by 

Dragos Ilas according to the published methods (182, 183). In brief, frozen cells from 
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the femoral head were defrosted, stained and then processed for cell sorting as 

explained in section 2.3  and 2.5 below. 

 

2.4 Cell freezing and defrosting 

For freezing of the nucleated cells (NCs), BMA was treated with ammonium chloride 

(NH4Cl) solution (BMA: NH4Cl=1:8, v/v) for 10 minutes at room temperature (RT) for 

the lysis of erythrocytes and then centrifuged at 650g for 5 minutes at RT to pellet NCs. 

The supernatant was discarded and the cell pellet was washed twice with PBS to 

remove any remaining traces of NH4Cl. The pellet was then re-suspended in 5-10ml of 

Dulbecco’s minimum essential medium (DMEM) supplemented with 10% Fetal calf 

serum (FCS).  

 

The number of NCs were counted using a haemocytometer by mixing 10l of cell 

suspension with 10l of trypan blue dye. At least 2 large squares with 16 grids each 

were counted and the average count was multiplied by 104, the dilution factor for trypan 

blue and the total volume of cell suspension (for example, 56x104 x 2 (dilution factor for 

trypan blue) x 5ml (total volume of suspension)). The cells were centrifuged again at 

650g for 5 minutes at RT. The supernatant was discarded and the cells were re-

suspended in the required volume of freezing medium (FM) (Appendix 2, Table 5). 10-

20x106 cells were frozen in each cryovial in 1ml of FM, labelled and first stored in -80℃ 

freezer for at least 24 hours followed by transfer into liquid nitrogen for future use. 

 

To revive frozen cells for future experiments, vials were defrosted in water bath (37C) 

and the cell suspension was added to 15ml falcon tubes. Thawing medium (TM) was 

prepared by adding 20l DNAse to 20ml of complete medium to prevent accumulation 

of cells into clumps due to released DNA from damaged cells. 5ml TM was added for 

every ml of defrosted cell suspension drop by drop. Cells were pelleted at 600g for 5 

minutes at RT to remove DMSO and were slowly re-suspended in TM up to desired 

volume. For any study using these cells, if a clump was observed at any given point of 

time, the cell suspension was filtered using 70m cell strainer to obtain a homogenous 

cell suspension. 

2.5 MSC Enrichment using Anti-Fibroblast microbeads 

MSCs are a rare population in the BMA (87, 108) and the MSC enrichment step is 

needed prior to fluorescent activated cell sorting (FACS) to pre-enrich MSC thus saving 

time and cost of cell sorting. Enrichment of MSCs was performed by three different 

methods in the first year of this project including Low-affinity nerve growth factor or 
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(LNGFR) beads and RosetteSep cocktail, and owing to no differences in the 

proportions and absolute numbers of enriched MSCs obtained, the most feasible 

method of using Anti-Fibroblast (A-Fib) microbeads was chosen for future experiments. 

A-Fib beads are magnetically conjugated to anti-D7-Fib antibody allowing MSCs as D7-

Fib positive cells (108) to be retained in the column during separation and hence 

isolating them from D7-Fib negative cells. 

 

For this, defrosted NCs were pelleted at 650g for 5 minutes at RT and were re-

suspended in 500l to 1ml of MACS buffer (Appendix 2, Table 5) to achieve average 

concentration of 1x107 cells/ml as per the manufacturer’s instructions. 40l of A-Fib 

beads per 107 cells was added to the cell suspension, mixed well and incubated at RT 

for 30 minutes. The cell-bead suspension was next washed with 1-2ml of MACS buffer 

and centrifuged at 650g for 5 minutes at RT. The supernatant was carefully removed 

and the cells were re-suspended in1.5-2ml of MACS buffer. The cell suspension was 

passed through a cell strainer to ensure that there were no clumps. 

 

MACS column was positioned in multi-stand with the MACS Separators attached, 

these are powerful magnets and MACS columns amplify the magnetic field by nearly 

10,000 folds. MACS buffer alone was first run through the column to prime the column 

before adding the cell suspension carefully. The fraction of cells retained in the column 

included the magnetically labelled cells while the cells leaving the column (negative 

fraction) did not contain the magnetic beads. The column was washed with 2-4ml of 

MACS buffer to wash out residual negative cells and the negative fraction was 

collected in a 15ml sterile tube.  

 

Once the negative fraction had been collected, the column was removed from the 

magnetic field and placed on top of a separate 15ml sterile tube. 2-3 ml of MACS buffer 

was added into the column and the bead-labelled cells (positive fraction) were collected 

by firmly pushing the plunger into the column.  

2.6 Flow cytometry and Fluorescence activated cell sorting (FACS) 

2.6.1 Principle of flow cytometry 

 
Flow cytometry is the technique that uses fluid dynamics (flow) to study and quantify or 

measure (metry) the different properties of cells (cyto) within a heterogeneous cell 

population (184). It has five key components that include the sample, fluidics, optics, 

detectors and output. The core of the instrument is the fluidic system consisting of the 
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flow chamber with sheath fluid and pressurised lines, both of which are responsible for 

the transportation of the particles, or in this thesis, cells (185). Excitation optics include 

lenses which help to direct and focus the other segment of the excitation optics, the 

lasers. The lasers produce light using high voltage electricity. The point at which the 

stream of cells interacts with the laser is known as the interrogation point. It is also the 

point where the optics detect the light scattering (186). At the interrogation point, the 

light emitted by cells is collected by the collection lens and passed through dichoric 

mirrors (mirrors with separate reflection/transmission property at two different 

wavelengths) and filters that ensure the wavelengths of specific lights to be detected by 

their respective detectors.  

 

The light that travels along the path of the laser is in the forward direction and is 

assembled by collecting lens as ‘forwards scatter’ or FSC. FSC is indicative of the cell 

size or surface area and is the result of diffraction of light. The light then travels to the 

photodiodes which is responsible for the conversion of light into electronic signals to be 

recorded by the computer system (185). When light comes in contact with cells and 

refracts or reflects and is collected at 90 degrees to the laser, the scattering pattern is 

called ‘side scatter’ or SSC. SSC is indicative of granularity and the internal complexity 

of cells. (185). The light signals captured by both photo diodes and photomultiplier are 

converted to electronic currents which travel to the amplifier to be converted into 

voltage pulse. This analogue measure is further amplified by linear and logarithmic 

amplifiers, converted into digital signals by digital converters which may then be used 

to produce histograms or plots for data representation (185). 

2.6.2 FACS 

This is where the use of fluorescent labelling comes in, which combines the 

functionality of the flow cytometers with fluorescent labelled antibodies used to stain 

cells. These florescence labelled antibodies can bind to specific cell types and help in 

distinguishing different types of cells from a heterogeneous mixture of cells. The 

distance between the absorption and emission maxima (peak) in the spectra of a 

fluorochrome is known as ‘Stoke’s shift’. The higher the Stoke’s shift, the greater is the 

separation between the absorbance and the emission of a given fluorochrome (187). 

 

The total photons being absorbed by a fluorochrome are associated with the excitation 

wavelength. Thus, while FITC is known to absorb light at 400-550 nm, its highest 

absorbance is usually at 490nm at which it absorbs more photons ensuring that the 

emission will be more intense (187). Using the fluorochromes and the principle of 

dynamic light scattering, some flow cytometers can segregate labelled cells from a 
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heterogeneous cell population. This is referred to as cell sorting.  When fluorochrome 

labelled cells pass the laser beam, they are excited by the correct wavelength of the 

laser light. After excitation, the emitted light is directed towards emission filters allowing 

for the detection of multiple fluorochromes emitted by a cell. 

 

The fluorochromes used are usually for cell surface staining or for intracellular staining. 

Selection of the appropriate fluorochromes for a given study is essential and the panel 

of fluorochromes to be used is dependent upon the aims of the study. In this thesis, 

different fluorochromes were used to identify and enumerate MSCs using the 

CD45lowCD271+ phenotype (Table 2.1). The same phenotype formed the base of cell 

sorting into two separate populations of MSCs (CD45lowCD271+) and HLCs 

(CD45+CD271-). Studies investigating levels of potential age-related surface markers 

and for detecting oxidative stress in young and old donor uncultured BM MSCs were 

performed using fluorescent antibodies and dyes listed in table 2.1. 

2.6.3 Sample preparation and cell staining for cell sorting 

Vial containing FH digest was defrosted in TM, cells were counted and distributed in 10 

tubes to be used for cell sorter instrument settings (8 tubes) and cell sorting (2 tubes). 

Owing to significantly smaller numbers of MSCs in BMA compared to FH digests (182), 

FH cells were used for setting of the machine for unstained cells, isotype controls and 

spectral compensation. These procedures were performed by the technical staff of the 

Flow Cytometry and Imaging Facility in St.James’s University Hospital. Cell sorting was 

usually performed using two BMA samples (from one young and one old donor) on a 

single day, in addition to a FH sample.  

 

For sorting, the enriched cells from BM samples were counted and distributed equally 

into 2 tubes, one to be stained with CD271 PEVio770, CD45 V450, CD106 PE and 

CD295 APC combination and another one for CD271 PEVio770, CD45 V450, CD146 

PE and Cx43 APC (Table 2.1). Violet laser (405 nm excitation) was used for the V450 

fluorochrome, blue laser (488 nm excitation) was used for PE, PECy7 and PEVio770 

and PerCP fluorochromes and the red laser (633 or 640 nm excitation) was used for 

APC as indicated below in table 2.1.  

 

Average cell numbers for isotype controls were 3x105 while for tubes with cells for 

sorting, contained up to 3x106 cells. Both, FH and BM cells were centrifuged to form a 

pellet. The supernatant was discarded and the cells were re-suspended in 100l of 

FACS buffer. The cells were then treated with Fc block for 10minutes to prevent non-

specific binding. 
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The cells were subsequently incubated with the antibodies in dark for 15 minutes. After 

staining, the cells were washed in FACS buffer, re-suspended in 500l of the same 

buffer and passed through the filtered-cap flow cytometry tubes to remove the 

presence of any cellular clumps. Finally, 10l 7-aminoactinomycin D (7-AAD) was 

added to all tubes containing cells (except unstained) to distinguish between live and 

dead cells and run through the FACS machine. The list of antibodies and their 

volumes, isotype control antibodies and their volumes used is summarized in Table 

2.1.  

 

 

 



Table 2.1 List of antibodies, isotype controls and their volumes used for various flow cytometry investigations 

 
 
 

 

 

 

 

 

 

 

 

 

 

MSC: CD45lowCD271+ cells, HLC: CD45+CD271- cells,  *data presented in Chapter 4, #data presented in Chapter  6

Experiment Cells 
Antibodies  

/dye 
Instrument Excitation 

(nm) 
Laser  
used 

Emission 
(nm) 

Isotype 
control 

Vol (l) 

Enumeration* 

MSCs CD271 APC  650 633 660 IgG1 20 

MSCs CD45 PECy7 LSR II 496 488 785 IgG1 20 

MSCs 7-AAD PerCP  482 488 647 NA  10 

ROS 
production* 

MSCs CD271 PEVio770  488 488 775 IgG1 20 

MSCs CD45 V450 LSR II 404 405 448 IgG1 20 

MSCs CellROX FITC  508 488 525  NA 2 

MSCs Sytox APC  640 633 658  NA 2 

FACS*,# 

MSCs and HLCs CD271 PEVio770  488 488 775 IgG1 20 

MSCs and HLCs CD45 V450  404 405 448 IgG1 20 

MSCs and HLCs CD106 PE BD Cell sorter 565 488 575 IgG1 20 

MSCs and HLCs CD295 APC  650 640 660 IgG2a 10 

MSCs and HLCs CD146 PE  565 488 575 IgG1 10 

MSCs and HLCs Cx43 APC  650 640 660 IgG2b 10 

MSCs and HLCs 7-AAD PerCP  482 488 647 NA  10 



 

2.6.4 FACS and sample collection 

Once instrument settings were adjusted, stained samples were sorted to collect 

CD45lowCD271+ cells (MSCs) and CD45+CD271low cells (HLCs) which would be the 

control population for the population of interest (MSCs) (188). While sorting, data was 

simultaneously acquired for the selected surface markers of interest – CD106/Vascular 

Cell Adhesion Molecule (VCAM-1), CD295/Leptin receptor (LepR), CD146/ Melanoma 

Cell Adhesion Molecule (MCAM) and Connexin43/ gap junction- (Cx43/GJA-1). Sorted 

cells were collected into 1.5ml eppendorf tubes containing 350l Buffer RL (Appendix 

2, Table 1) that has guanidinium salts for lysing cells and exposing the genomic 

contents (189). The salts also ensure the inhibition of RNAse to prevent the 

degradation of RNA into smaller components. The eppendorfs were frozen at -80C 

until further use. 

2.6.5 FACS data analysis  

Data from FACS was analysed using FlowJo software (version 10). The gating strategy 

and the histograms for each of the surface markers are shown in the respective 

chapters. First, the raw files were loaded on to the workspace and each tube within a 

given experiment was analysed in detail. Dot plot display was chosen to better 

visualise the cells of interest. 7-AAD negative cells were gated as live cells. Using this 

live cell gate, the cells with the phenotypes CD45lowCD271+ (MSC) and CD45+CD271low 

(HLC) were identified. On each of these cell phenotypes, the expression of surface 

markers (CD106, CD295, Cx43 and CD146) was analysed using respective histogram 

displays. MFI was recorded for each of the surface markers for MSCs and HLCs for all 

samples. The MFI values were then compared and analysed for any differences in 

relation to donor age or the presence of OA, as described in Chapter 4 and Chapter 6, 

respectively. 

2.7 Gene expression 

Genes are the fundamental unit of heredity and information about a person at the 

genetic level. Measurement of the expression of genes have long been used to identify 

differentially expressed genes in diseases or other anomalies. To understand if there 

are any differentially expressed genes in old donor MSCs as compared to young donor 

MSCs, or in OA, gene expression experiments were carried out using sorted 

CD45lowCD271+ MSCs and CD45highCD271- HLCs as the control.  
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2.7.1 Principle  

Polymerase chain reaction (PCR) may be defined as a chain reaction that occurs to 

increase the final product exponentially with the help of an enzyme polymerase. Thus 

the reaction enables the production of billions of copies of DNA from a single copy of 

DNA. The essential components needed for the production of billions of copies from a 

single reaction include the enzyme, primers, DNA template and nucleotides. Initially, 

the technique was developed for DNA but was soon applied to RNA as well. However, 

the technique is qualitative, consumes time for the preparation of gels using hazardous 

chemicals, is limited in terms of number of samples and allows the detection of the 

amplified product only after the end of all the cycles. 

 

Quantitative PCR (qPCR) technique is built on the same basic principles of PCR but 

has several advantages. Not only is the method quantitative but the reaction can be 

quantified at every step of amplification. This is achieved by the use of fluorescence 

labelled probes (in this thesis, TaqMan probes). The fluorescent labelled probes have a 

fluorophore that is not active in the beginning of the reaction as it is attached with a 

quencher. As the reaction proceeds, the fluorochrome on the 5’ end and the quencher 

on the 3’ end of the TaqMan assay (in this thesis FAM-MGB respectively) are 

separated by taq DNA polymerase. This separation activates the fluorochrome which is 

now fluorescent ensuring the amplification dependent increase in the fluorescence is 

tracked and measured by the amplification curve. The sample preparation does not 

involve the assembly of gels using hazardous materials and allows a large number of 

sample reactions at the same time (generally up to 386 samples). These factors make 

qPCR a preferred technique to quantify gene expression over normal PCR. 

2.7.2 Fluidigm and Integrated fluid circuits (IFCs) 

Due to the population of interest MSCs being a rare population, it was vital to use a 

method for gene expression that would allow high quality and consistent outputs even 

with input of sample with low cDNA concentration. Gene expression analysis in sorted 

MSCs and HLCs were performed using integrated fluid circuits (IFC) chip technology 

which is based on the principles of microfluidics. These devices are based on the 

principle of qPCR but allow further miniaturization and integration of liquid handling 

components on a single chip. Such microfluidic devices utilise technology that 

combines networks of channels (fluid lines of extremely small dimension (10-6m)), 

chambers (holding extremely small volumes of liquids (10-9l)) and Nanoflex valves (that 

can withstand very high pressure (175mmHg)) in a single chip (190). IFC chips allow 

reactions with small quantities of cDNA and TaqMan primers carrying out numerous 

PCR reactions (for example up to >9000 reactions for IFC96*96) depending on the size 
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of the chip, all at once. These chips are aimed at high throughput data collection and 

analysis of biological samples with low concentration of starting materials.  

 

Two types of IFC chips were used in this thesis based on the number of genes 

investigated. The Flex SixTM  chip (Section 4.2) was used for performing gene 

expression in Chapter 4 which investigated 12 genes, owing to the 12 segments in 

each of the 6 compartments of the chip. For investigation of genes in Chapter 5, 2 of 

48.48 chips (Section 5.2) were used to examine 96 genes. At one time in one 48.48 

chip, 2,304 reactions were carried out. The difference between the two chips used lies 

in the number of assays and samples that may be run and the final volume of reaction 

mixtures. The concept, principle and application remains the same. A simple flowchart 

(Figure 2.1) shows the steps that were followed from the sample preparation to the 

gene expression data generation, irrespective of the chip used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Flow-diagram indicating the steps followed for obtaining gene 
expression data throughout the thesis 

2.7.3 Sample preparation 

As indicated in section 2.3, frozen NCs from young and old donor cohorts (Appendix 1, 

Tables 2 and 3) were defrosted and then subjected to cell sorting based on 

CD45lowCD271+ and CD45+CD271- phenotypes for MSCs and HLCs, respectively. HLC 

fraction included BMA cells of the hematopoietic lineage and served as a control to 

study specificity of the selected panel of genes to MSCs. Cell counts were recorded for 
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each population fraction. The cells were collected in the RL buffer (lysis buffer) in an 

eppendorf and the cell lysates were then kept at -80 until further use. 

2.7.4 RNA extraction 

To minimise the degradation of RNA, the working bench was wiped with RNAse away. 

RNA extraction was performed using Norgen single cells RNA isolation kit (Appendix 2, 

Table 1) which uses the column technique for better yield owing to the low number of 

cells in the fraction of interest (range: 647–22,229 with a median of 4,694 

CD45lowCD271+ MSC). The technique essentially utilises spin column chromatography 

using resins as the separation matrix which ensures the purification of RNA without the 

use of phenol or chloroform (189). 

 

Frozen cell lysates were defrosted on ice and 200l of 100% ethanol was added to 

each lysate for every 350l of the sample volume. The mix of cell lysate and ethanol 

was then gently mixed by vortexing for 10 seconds. The mix was added to a column 

contained inside a collection tube and centrifuged for 2 minutes at a speed 3,500g at 

15C. This ensures the binding of the RNA to the resin column while proteins are 

eliminated in the flow-through liquid (189). The flow-through was discarded and the 

column was washed with 400l of wash solution by centrifugation for 1 minute at 

14,000g to ensure the removal of any remaining impurities. 

 

Genomic DNA digestion ensures the removal of any DNA contamination that was not 

eliminated in the previous steps and could lead to false positives and lower detection 

sensitivity in samples. It was performed by adding 100l of DNAse I digestion mix 

(DNAse I and DNAse I reaction buffer) to the column containing the RNA and 

centrifuged for 1 minute at 14,000g ensuring the entire volume had passed through the 

column. The flow-through was added back onto the column and the column was 

incubated for 15 minutes at RT. Following incubation, the column was washed twice 

with 400l of wash solution by centrifuging for 1 minute at maximum speed. The flow-

through was discarded and the column was centrifuged twice to thoroughly dry the 

resin.  

 

The dry column was placed in a new elution tube and 12l of elution solution was 

carefully added (drop-wise) to the centre of the column and incubated for 2-3 minutes 

to allow the hydration of RNA attached to the column. The column was centrifuged for 

1 minute at 200g followed by 1 minute at 14,000g to ensure that the elution solution 

had passed through pulling the purified RNA along with it. The column was then 

discarded and the concentration of the eluted RNA was measured using Nanodrop. 
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Nanodrop measures the amount of a variety of molecules including nucleic acids based 

on the principle that different molecules can absorb lights at different wavelengths 

(spectrophotometry). Proteins were measured at 280nm, nucleic acids (sample of 

interest) at 260nm and organic compounds at 230mn. The eluted RNA was quantified 

by recording the generated concentration of the RNA in ng/l by the 

spectrophotometer. The purity of the RNA samples was checked using the 260/230 

ratio indicative of presence of impurities belonging to organic compounds for values 

below 2 and the 260/280 ratio indicative of protein impurities in the RNA sample below 

1.8. The extracted and quantified RNA was then placed in -80C until further use. 

2.7.5 Reverse transcription (Rt) for cDNA preparation 

Rt is needed to convert single stranded RNA to cDNA. The Rt component mix was 

prepared by mixing 14l of Rt master mix and 28l of nuclease free water. Rt master 

mix contains all the components required to prepare cDNA which include 

deoxyribonucleotide triphosphates (dNTPs), mix of oligo-dTs and random primers, 

RNAse inhibitor and reverse transcriptase along with buffers. The dNTPs act as the 

building blocks for the new strand being built, the primers direct the synthesis of the 

strand, RNAse inhibitor prevents the degradation of RNA in the process and reverse 

transcriptase is the enzyme that is needed for Rt for cDNA preparation. 3l of the Rt 

mix was added to each well in a 96-well plate followed by 2l RNA sample to each well 

making the total volume 5l. The plate was sealed, mixed by vortexing, centrifuged and 

placed in the thermocycler for the reverse transcription using following the settings: 5 

minutes at 25C, 30 minutes at 42C, 5 minutes at 85C and then hold at 4C, for 

approximately 50 minutes. The produced cDNA (5l) was then stored at -20C for 

future use. 

2.7.6 Pre-amplification 

As  BM MSCs are a rare population, the number of cells (CD45lowCD271+) obtained 

after cell sorting were relatively low (section 2.6.4) and so was the concentration of the 

RNA from these cells (5.6-32.5 ng/l with a median of 11.55ng/l). Limited quantities of 

RNA and cDNA often restrict gene expression analysis, ultimately generating no results 

(191). Thus to ensure detectable levels of starting material (cDNA), pre-amplification 

(PA) step was needed. This is basically a qPCR with limited cycles before the actual 

qPCR begins (192). The limited number of cycles (usually 10-18) ensure the 

amplification of cDNA without significant bias. PA allows for amplification for up to 96 

target genes and a pool of primers is prepared form the same gene expression assays 

that are to be used for the qPCR (191). PA is an established method and is 

increasingly being used for similar work (193).  
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TaqMan assays used in different study arms are indicated in respective chapters. For 

PA, pooled TaqMan assay mix was prepared by mixing 2l of each TaqMan assay 

(indicated in respective chapters) and the final volume was made up to 200l using 

nuclease-free water. Next, 1l of PA master mix was added to 1.25l of the prepared 

pooled TaqMan assay, 1.5l of nuclease-free water and 1.25l of cDNA prepared 

(section 2.6.5). Total volume of 5l was transferred to individual wells in a 96-well plate 

in a pre-determined sequence. The plate was carefully sealed and the samples were 

pre-amplified on the thermocycler using 18-cycle protocol (2 minutes at 95C, 15 

seconds at 95C, 4 minutes at 60C and then hold at 4C). The sample were then 

prepared for qPCR in Fluidigm. 18-cycle PA is the recommended number of cycles for 

samples with a concentration range of 5-20ng of RNA (193). The PA samples were 

diluted with 15l Tris-EDTA (TE) buffer and then loaded on the IFC chip for qPCR on 

the same day. 

2.7.7 Sample run 

qPCR was performed using Fluidigm Flexsix™ IFC and 48.48 IFC. Flex SixTM chip has 

6 independent compartments. Each compartment has 12 assay and 12 sample inlets. 

Each compartment can be run independently as a separate experimental run or 

simultaneously. Before the first run on the chip, the complete volume (150l) control 

line fluid was carefully added to the accumulator region only, pushing past the spring 

for the purpose of priming the chip. The 48.48 chip is a single-use chip and needs to 

primed using the control fluid just as in the Flex SixTM chip. For both the chips during 

priming, the barrier plugs were kept on and the chip was placed in their respective 

priming instrument and the prime script was run for 15 minutes.  

 

After priming, the chip was removed from the machine and the barrier plugs of the 

compartments intended for use were removed. For the assays, 2l of each TaqMan 

assay and 2l of assay loading buffer were mixed and 3l from this mix was added to 

the 12 wells in the assay compartment in a pre-determined sequence. Similarly, the 

sample mix was prepared by adding 28l of TaqMan universal master mix, 2.8l of 

sample loading buffer and 1.8l of pre-amplified cDNA, and 3l of the sample mix was 

added to each well in the sample side of the compartment. The volumes used for 48.48 

chip are indicated in Chapter 5, section 5.2. 
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2.7.8 Data collection, analysis and presentation 

The qPCR run was performed on the BioMark™ HD System with the ‘Data collection’ 

software and GE Flex SixTM Standard cycling protocol (35-40 cycles) for approximately 

60 minutes cycles. Owing to the large number of reactions that can occur 

simultaneously within extremely small volume (10-9 l) in a single run, it surpasses the 

other quantitative assays for qPCR (193).  After completion of the run, IFC was 

removed from the Biomark and the post run script was run for 5 minutes on IFC 

Controller HX to relax the valves. This allows the unused compartments to be used in 

further experiments within a span of 3 months. ‘Biomark Real-Time PCR Analysis’ 

software was used for the analysis of the data. First, the cycle threshold (Ct values) 

were generated for each gene using the software for analysis and the data was 

exported to Microsoft excel for further calculations. The data were then normalised with 

hypoxanthine-guanine phosphoribosyl transferase 1 (HPRT1) as the housekeeping 

gene to generate the Ct values for each gene using the formula [Ct target gene - Ct 

housekeeping gene]. Finally, the Ct values were converted to ‘relative expression’ for each 

gene using the formula [2-Ct] and the values were compared between young and old 

donor cohorts, or in OA cells and age-matched controls, in both MSC and HLC 

populations.  

 

Cluster and Treeview softwares were used to generate clusters of gene expression for 

the samples and observe any trends between the expression of genes in 

CD45lowCD271+ MSCs and CD45highCD271- HLCs. The softwares were also used to 

get an overview of gene expression data distribution across the entire donor cohort. 

Grey squares in clusters represent data that was below detection. Comparative 

investigations between young and old donors or old donors and OA patients were 

analysed using GraphPad Prism software (version7.0a).  

2.8 Data presentation and Statistical analysis 

Various data representation techniques were used for displaying the results obtained. 

Cluster analysis was used to observe any differences in gene expression across the 

entire donor cohorts. Dot plots were used to indicate individual values, frequency 

distribution curves were used to display the data frequency across a range. Bar graphs 

were used to indicate the results of a subgroup, histograms were used to indicate MFI 

generated using flow cytometry. 

 
Statistical analysis and graphs preparation were performed using GraphPad Prism 

software. The distribution of the data was assessed using the Shapiro-Wilk and 

Kolmogorov-Smirnov tests for normality. As the data were found to be non-parametric, 
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and unpaired, Mann-Whitney U test was used to compare data between young and old 

donor groups, or between MSC and HLC fractions. The tests used for each experiment 

are specified in the respective chapters. For all data, p value of <0.05 was considered 

significant (*p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001). 
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Chapter 3 Proliferative capacity of human BM MSC from using 

colony the forming unit-fibroblast (CFU-F) assay  

3.1 Introduction 

As stated in the general introduction (section 1.2.1), BM aspirate from the iliac crest 

(IC) is a reliable source for MSCs but they exist as a rare population with a frequency 

between 0.01-0.001% of nucleated cells (87, 108). CFU-F assay has been the oldest 

method for counting the number of MSCs ever since its discovery by Friedenstein and 

colleagues (194). MSCs are enumerated by counting the number of single cell derived 

colonies that are formed on petri dishes based on first, their ability of adhering to plastic 

and second, their ability to proliferate into a complete colony. Each colony is 

representative of a single MSC and it takes up to two weeks before the colonies can be 

visualised. In spite of it being a time consuming method, it is still performed today and 

remains the most feasible way to enumerate MSCs based on plastic adhesion. Flow 

cytometry based methods and phenotypes used for enumeration of MSCs will be 

discussed in Chapter 4. The plastic adherent cells that are not proliferative, either do 

not form a colony or will form a colony with very few cells. To ensure that a single MSC 

derived colony that was counted as a colony was a true representation of its 

proliferative capacity, a group of at least 50 cells was considered a colony in this 

project (195). Thus, each colony from the CFU-F assay represented a single MSC. 

 

3.1.1 Previous studies investigating age-related changes in number of human 

BM MSCs based on CFU-F assay 

Several groups have performed CFU-F experiments to examine the age-related 

changes in number of MSCs. These experiments have yielded inconclusive results with 

some of them showing a decline (96, 114, 132) while some not showing any age-

related difference (113, 196, 197) in the number of colonies. This can be due to the 

lack of uniformity in laboratory protocols used for the CFU-F assay. Table 3.1 lists 

investigations in the number of MSCs as observed in cultured cells and in uncultured 

cells. From Table 3.1, it can be seen that many of the studies for investigating the age-

related changes in number of MSCs using CFU-F assay have been performed on 

cultured cells. When grown in cultures, in vitro ageing sets in within the MSCs (98, 

114), as stated in section 1.2.2, which is not representative of uncultured cells in vivo 

(100). Thus, the actual biological age-related difference in number of native MSCs 

requires further elucidation.  
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Table 3.1 List of previous studies investigating age-related change in the number of BM MSCs counted by CFU-F assay 

 

 

 

 

 

 

 

 

 

BM: Bone marrow, BMA: Bone marrow aspirate, O: Old, Y: Young, PA: Plastic adhesion, DC: Density centrifugation -MEM: Alpha – Minimum 
essential medium, DMEM: Dulbecco’s minimum essential medium, FCS: Foetal calf serum, ND: Not defined, NS: Non significant 

 
 
When uncultured cells have been used, different methods in extraction of BMA, further processing of the aspirate for MSC isolation, and using 

different media, culture conditions as well as colony definition and scoring criteria can all explain the variation in the results (Table 3.1). 

 
 

MSC source Age (years) Isolation Media Colony 
definition 

CFU-F  Ref 

Trabecular BM  14-87;              
no groups 

PA -MEM+      
10%FCS 

> 1mm  in 
diameter 

No change (113) 

BM from iliac 
crest 

Y: 22-44;           
O: 66-74 

DC -MEM+      
10%FCS 

>16 cells No change (197) 

BM from iliac 
crest 

Y: 0-18;            
O: 59-75 

DC DMEM+ 
10%FCS 

ND Decline (114) 

BM from iliac 
crest 

Y: 19-40;          
O: >40 

DC DMEM+ 
10%FCS 

>50 cells Decline (96) 

BM Y: 6m-16y;      
O: 29-76 

PA -MEM+      
20%FCS  

ND NS decline (198) 

BMA 1-52; no groups DC DMEM+ 
20%FCS 

>50 cells No change (199) 
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3.1.2 Previous studies investigating age-related changes in colony area and 

density in human BM MSCs based on CFU-F assay 

While CFU-F assay has commonly been used to count MSCs, few studies have also 

analysed the colony area and fewer studies have evaluated the colony density as a 

measurement of proliferative capacity of MSCs. Ultimately, the number of studies 

correlating colony area and density to donor age are sparse (listed below in Table 3.2). 

Colony area measures how big a colony is and larger colony areas have been 

associated with younger donor samples (132). However, the variations in the methods 

adapted in independent laboratories and donor variation, make it difficult to come to a 

consensus with respect to age-related changes in colony area.  

 

Even though colony area measures how big the colony is, it does not take into account 

the density of cells within a colony. The denser a colony, the more the number of cells 

that will be closely packed within a colony, indicating higher proliferative rates of colony 

initiating MSCs. As per my knowledge, there has been only one study that has 

mentioned colony density in relation to donor age in uncultured BM MSCs (Table 3.2). 

The study used uncultured cells that observed no change in colony density (200) but 

they did not present the data for the same.  

 

Quantification of colony size has either been performed by comparing diameters of the 

colonies or by comparing the area of colonies in millimetre square (mm2) or related 

units (132, 201). Quantification of density of a colony is relatively more challenging 

considering the variation in sizes of the colonies, the patterns of cells in which they may 

overlap making it difficult to calculate the density. This is potentially why, only 2 studies 

have mentioned density of colonies in their studies and only one of them reported 

qualitative observations (Table 3.2). This indicates that a study of BM MSC colony area 

and density, using a large cohort of donors, is needed. 
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Table 3.2 List of previous studies investigating age-related changes in colony 
area and density of human BM MSCs 
 

BM: Bone marrow, Y: Young, O: Old, UC: uncultured, NR: Not reported, NC: No 

change 

 

3.1.3 Significance of microenvironment in MSC proliferation 

As mentioned previously (in section 3.1.2) CFU-F assay can not only directly measure 

the number of MSCs from a donor, but it also gives  information about the proliferative 

capacity of these MSCs. MSCs from BMA in vivo exist within a complex matrix 

composed of other types of cells and various other soluble and extracellular matrix 

factors forming its own micro-environment (Figure 1.3). Stenderup et al. investigated 

the in vivo bone forming capacity of human MSCs obtained from 5 young (24-30 years 

old) and 5 old (71-81 years old) donors in immuno-deficient mice. Interestingly, they 

found that the bone forming capacity was maintained even in the MSCs obtained from 

old donors (202). This could be due to the fact that mouse microenvironment was able 

to boost the function of human MSCs from old donors. 

 

Microenvironment includes various factors that guide the cells to their fates. Factors 

like extracellular matrix (ECM), other non-cellular components like soluble proteins, 

growth factors present in the serum have all known to influence the direction of adult 

stem cells. Presence of growth factors, conditioned media from older donors (139) as 

well as serum from older donors (203) have been shown to have an inhibitory effect on 

culture of MSCs as compared to the effect of growth factors, conditioned media and 

serum from young donors. These investigations suggested that the microenvironment 

of old donors also contribute to age-related effects in the cells of older donors. These 

components play an important role in MSC fate decisions with respect to proliferation, 

differentiation, migration as well as molecular interactions with other cells.  However, 

the investigation of how these factors influence the area or density of an MSC colony 

MSC 
source 

Age     
(years) 

Cultured 
Colony size 

criteria 

 Change 
in colony 

area 

Change 
in colony 
density 

Ref 

Trabecular 
BM  

14-87; 
no 

groups 
UC NR Decline 

NC      
(no data) 

(113) 

Vertebral 
spine BM 

Y: 3-36;   
O: 41-70 

UC  
(cadavers) 

Y-10.23mm2; 
O- 8.23 mm2  

Decline NR (132) 

BM from 
iliac crest 

Y: 22-44; 
O: 66-74 

UC 
Y- 7.2mm2;              
O- 6.1 mm2  

  NC NR (197) 
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and thus the proliferative capacity of MSCs within the CFU-F assay, remains 

unexplored. 

 

Autologous serum flows from blood vessels to the BM where MSCs reside, therefore in 

vivo MSCs from older donors are continuously exposed to ‘old donor’ serum and vice 

versa for young donors. Keeping this in mind, several studies have investigated the 

effect of autologous serum on the proliferative capacity of MSCs, but this has been 

performed only on culture expanded MSCs (203, 204). Furthermore, such studies have 

been performed for various aims primarily, finding a human alternative to foetal calf 

serum for supporting MSC expansion, differentiation and proliferation (205, 206). Only 

limited studies have used human serum aimed at investigating age-related changes 

(203), and none in CFU-F assays from uncultured BM MSCs. 

 

This chapter aimed at investigating the age-related changes in the number of BM 

MSCs using the CFU-F assay. The same assay would be used to investigate the 

proliferative capacity of BM MSCs from young and old donors by further dissecting the 

CFU-F assay. The proliferative capacities of BM MSCs from young and old donors 

would also be investigated when exposed to young and old serum to understand the 

role of microenvironment (serum) in MSc proliferation. 

3.1.4 Hypotheses and objectives 

Hypotheses: 
 

1. The number of MSCs measured by CFU-F assay declines with donor age. 

2. The proliferative capacity of MSCs measured by colony area and density 

declines with donor age. 

3. The proliferative capacity of MSCs measured by colony area and density is 

lower when exposed to serum from older donors. 

4. Subjecting old donor MSCs to media supplemented with young donor serum 

will increase their proliferative capacity. 

 
Objectives: 
 

1. To enumerate BM MSCs by CFU-F assay. 

2. To investigate the proliferative capacity of MSCs using CFU-F assay. 

3. To test the proliferative capacity of MSCs grown in media supplemented with 

young and old human serum. 

4. To compare the proliferative capacity of old donor MSCs grown in young and 

old human serum. 



 

61 
 

3.2 Methods 

3.2.1 Donor selection 

BMA was collected from donors undergoing surgeries for fracture fixation or for 

removal of metal work in Leeds General Infirmary, Major Trauma Unit in 4ml EDTA 

tubes as outlined in section 2.2.2. Donors were reported as otherwise healthy and were 

aged between 19-89 years old (median age=48) with n=27 males and n=24 females 

with a total of n=51 donors. 

3.2.2 Enumeration of MSCs using CFU-F assay 

CFU-F assay was performed as previously optimised in our laboratory (111, 207). To 

perform CFU-F assay, 80l of freshly collected and filtered BMA was added into 

duplicate 60mm petri dishes containing 4ml of StemMACS (SM) MSC expansion 

medium. It was later adapted to 200l of BMA in duplicate 100mm petri dishes 

containing 10ml of SM medium to obtain more colonies per dish. Following BMA and 

SM medium mixing, dishes were placed in the incubator in 37C and 5%CO2 and 

maintained in culture for two weeks. After 48 hours, the dishes were gently washed 

twice with 10ml of Phosphate buffer saline (PBS) using sterile stripette and 10ml of 

fresh SM medium was added. Half medium change was performed for these dishes 

twice a week and the dishes were checked for the growth of colonies under the 

inverted microscope. On the 14th day, the medium was aspirated completely and the 

cells were fixed for an hour using 10ml of 3.7% formaldehyde prepared previously 

(Appendix 2). The dishes were then stained with methylene blue stain for one hour and 

washed carefully to visualize the colonies. The stained dishes were allowed to air dry, 

then scanned using the Infinity scanner at 1200dpi resolution. Images of the cells within 

the colonies were captured using microscope equipped with the Infinity Analyze 

software. A colony was defined as consisting of at least 50 cells (207). The colonies in 

each duplicate dishes were manually counted (Figure 3.1) and CFU-F/ml was 

calculated according to the formula ((1000l x average number of colonies from 2 

dishes)/200l) and then averaged.  

 
Figure 3.1 illustrates duplicate CFU-F dishes with colonies grown from BM aspirates 

from representative donors from each age group as outlined in section 1.2.3. ImageJ 

software was used to investigate the colony area and density which are together 

indicative of the proliferative capacity of MSCs (201, 208).  
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Figure 3.1 Duplicate dishes containing colonies from each age group. 

The dishes in the figure illustrate colonies after staining with methylene blue on day 14. 
The numbers on the top right of every panel indicate the number of colonies counted in 

each dish. 
 
 

3.2.3 Colony area analysis 

To investigate age-related differences in MSC colony area, dishes were chosen from 

the young and old donor groups. Initially, CFU-F dishes from 10 young and 10 old 

donors were selected for analysis using ImageJ. Visually, colonies of various sizes 

were observed in CFU-F dishes from both young and old donors (Figure 3.1), and 

there was no clear evidence for separate groups of large or small colonies, as 

categorised by Gothard et al. (201).  

 

The images of scanned dishes were converted to ‘grey-scale’ to be recognized by 

ImageJ software and then measurements for colony area was performed. By default, 

ImageJ measures area in (pixel)2. The measurement was then calibrated for millimeter2 

(mm2) and the software generated an outline for each of the colonies. To avoid the 

influence of the background disturbances and to minimize software error (for example, 

by counting two close colonies as one), the colonies on the edges of the dish and two 

or more colonies that almost merged as one, were given an outline manually. This 

enabled the measurement of colony areas for each individual colony. Details about the 

samples, on which colony area analysis was performed can be found in Table 1, 

Appendix 1.   
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Upon initial analysis of colony area, it was observed that the data for colony area was 

not normally distributed (Figure 3.2). In some donors, dishes contained numerous 

colonies including very large colonies (for example; donors: 31/F and 62/M). It was 

decided that selection of CFU-F dishes with low number of colonies would potentially 

miss out on these rare large colonies leading to a biased analysis of colony areas. 

Thus, dishes with a minimum of 25 colonies were chosen for the final analysis of 

colony area and density (Figure 3.2). 

 

 

Figure 3.2 Initial studies to evaluate difference in colony area in 10 young and old 
donors. 

 
Dots indicate individual colonies and horizontal lines indicate median values from 
young donors (top panel) and old donors (bottom panel). Age/Sex of the donors is 
indicated within brackets. 
 
The final colony area studies were performed on dishes from n=7 young and n=7 old 

donors that had generated 25-60 colonies per dish. The results  were analysed for 

young and old donor groups using different approaches as discussed in section 3.3.2. 
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3.2.4 Colony integrated density (ID) analysis 

The data for colony ID was generated along with the data for colony area for all 

colonies from the same 7 young and 7 old donors, for which the colony area had been 

calculated. The ID was measured by the software (area * mean grey value) for each of 

the colonies. The value of ID was always generated by the software, irrespective of the 

outline for areas done automatically or manually. The values for colony area and ID 

were generated simultaneously.  Once the data for colony area and ID were recorded, 

the data were compared between young and old donor groups. 

 

3.2.5 Serum collection and preparation of medium with human serum 

To generate human serum, 30 ml of blood was collected in 6 ml serum clot activator 

tubes from 4 young and 4 old healthy donors after obtaining their consent. The tubes 

contain silica micro particles coated along the inside of the tubes that activate clotting 

of blood. Once the blood was collected, the tubes were agitated for 5 seconds to allow 

the homogenous mixing of the blood with the coated silica micro particles. The mix was 

allowed to stand for 30 minutes and then centrifuged at 2000g for 15 minutes. This 

allowed the separation of the serum from the cells which was seen as a clear bilayer. 

The serum from the upper segment of the separated mix was collected carefully to 

avoid extraction of cells. However, if a small quantity of cells was extracted due to the 

proximity of the two liquids at the separating junction, the mix was further centrifuged in 

1.5ml eppendorfs to ensure complete separation of serum from the cells. This was 

done for blood from each donor. Subsequently sera from four young donors (equal 

volumes) were pooled together to generate stocks of ‘young’ serum (YS). Similarly, 

‘old’ serum (OS) was also prepared and both YS and OS were then aliquoted in 1ml 

vials and frozen at -20o. Media containing either 10%YS or 10%OS were prepared 

fresh using DMEM as the basal media and supplemented with 1% Penicillin-

Streptomycin for each experiment. Optimisation experiments were performed using 

serum from a single young donor for the ease of availability of young healthy donors.  

 

3.2.6 Experimental design for investigating MSC colony formation in human 

serum   

The aim of these experiments was to investigate how young and old donor MSCs 

responded to young and old donor microenvironment (represented by YS and OS), in 

comparison to SM, as well as how their colony numbers, areas and densities were 

affected when grown in ‘old’ human serum (OS) compared to ‘young’ human serum 
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(YS). These experiments were performed using frozen cells (for freezing and thawing, 

refer to section 2.2) from 6 and 4 donors from ‘young’ and ‘old’ groups, respectively 

(Appendix 1, Table 1).  

3.2.6.1 Medium optimisation 

To test the effect of ‘young’ and ‘old’ human serum on MSCs, it was important to 

ensure the right controls for the experiments. The first medium chosen as a positive 

control was SM medium that is industrially optimised for isolation, adhesion and growth 

of MSCs from BMA. However, the serum in SM is foetal calf serum (FCS) but it does 

not specify the type of basal media used.  

 

As the aim of this experiment was to test the effect of human serum on the colony-

forming capacity of BM MSCs, it was important to have a positive control with human 

serum supplement added to a known basal media. Mesencult supplement or Mcult is a 

human serum supplement that is optimized for isolation of MSCs in vitro. Thus, it was 

chosen as another positive control added at a concentration of 10% in basal 

Dulbecco’s minimum essential medium (DMEM). DMEM with standard FCS (not 

optimised for MSCs growth) was used as negative control. All the media were 

supplemented with respective serum and 1% penicillin/streptomycin antibiotic. 

3.2.6.2 Experimental design for control media evaluation 

Frozen NCs (predicted to generate approximately 25-30 colonies based on the initial 

CFU-F assays, (Figure 3.2) were defrosted at 37C in thawing medium (TM, Appendix 

2). The cell suspension was centrifuged to remove the DMSO from the suspension and 

was re-suspended in TM. The cells were then equally divided into 12 60-mm dishes (3 

for each of the medium of choice, Figure 3.3) containing 4 ml SM for an initial 48-hour 

attachment period.  

 

Subsequently, the media was removed, the non-adherent cells were washed with PBS 

and complete media changes were performed as follows: 3 dishes were supplemented 

with  4 ml SM (control), 3 other dishes with 4 ml DMEM/10%YS, 3 other dishes with 

DMEM+10%Mcult and 3 final dishes with 4ml of DMEM/10%FCS. The dishes were 

then placed at 37C and 5%CO2 for 2 weeks, and half medium changes were 

performed using the respective media twice a week. On day 14, all media were 

aspirated and for each condition, two dishes were stained with methylene blue to 

visualise the colonies, while the adherent cells from the third dish were lifted off using 

trypsin (Appendix 2) and counted. The stained dishes were allowed to air dry and then 

analysed for colony area and density, as described in the above section.The steps 
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involved in selection of appropriate donors and the criteria in testing the effect of MSC 

colony formation in human serum are shown in a flowchart format in Figure 3.3 

followed by the representation of medium change for all conditions in Figure 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Flowchart demonstrating the steps and crucial parameters involved in 
the selection of donors for testing MSC colony formation in human serum. 

Steps have been written as a flow chart to simplify the complexity of factors that were 
involved in executing the plan of the experiment with human serum. NCs: nucleated 
cells, TM: thawing medium, SM: StemMACS media, DMEM: Dulbecco’s minimum 
essential medium, FCS: Foetal calf serum, MCult: Mesencult supplement, YS: young 
serum 
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Figure 3.4 Optimisation of controls for testing the proliferation of MSCs in human 
serum 

Equal number of defrosted MSCs were plated in 60mm petri dishes for 48 hours in SM 
medium to ensure uniform adhesion of MSCs in all dishes. After 48 hours, SM medium 
was aspirated and the corresponding medium was added (shown in the coloured 
panel). Half medium change was peformed twice in a week and on day 14, 2 dishes 
from each medium condition were stained and one was trypsinised for obtaining cell 
counts. 

 

3.2.6.3 Final experimental design 

The final experimental design included pooled YS and OS from n=4 donors from each 

group. As the optimisation experiments were performed from a single young donor, 

serum for final experiments were pooled to avoid bias. Observation from results from 

optimisation experiments (discussed further and shown in Figure 3.10) lead to 

finalisation of 3 serum conditions for the experiments shown in Figure 3.5. This 

included the use of SM, DMEM+10%YS (pooled) and DMEM+10%OS (pooled). 
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Figure 3.5 Optimised conditions and medium controls for testing MSC colony-
forming capacity in human serum. 

 

3.2.7 Statistical tests 

Statistical analysis and graphics were performed using GraphPad Prism software 

(version 7.0a). The normal distribution of the data was assessed using the Shapiro-

Wilk and Kolmogorov-Smirnov tests for normality. As no data were found to be 

normally distributed, Mann-Whitney test and Kruskal-Wallis test with Dunn’s correction 

for multiple comparisons were used to compare two and three groups, respectively. 

Spearman test was used to analyse correlations. The results were considered 

significant at p value of <0.05. 

 

3.3 Results 

3.3.1 Age-related changes in number of CFU-F 

As mentioned in section 3.2.2, the colonies were visualised after staining the cells with 

methylene blue solution on day 14. Initial observation included scanning the petri 

dishes for images and manual counting of the colonies. There was no age-related 

pattern observed in terms of colony size in general when colonies were counted 



 

69 
 

indicating different types of colonies existed even within the duplicate dishes of a single 

donor (Figure 3.1).  

 
Once all the colonies were visualised and counted, the data for n=51 donors (n=27 

males, n=24 females), was compiled and then correlated with donor age (Figure 3.6A). 

There was a significant age-related decline (p=0.0153) in the number of colonies. 

While there were donors with a relatively higher number of colonies among the older 

donors, an overall decline in the number of colonies (indicative of MSCs) was evident 

from the figure.  

 
 

 
 

 

 

 

 

Figure 3.6 Age-related changes in number of CFU-F 

(A) Age-related change in the number of CFU-F per ml of BMA across entire donor age 
range (n=51) and (B) in between age groups. Each dot indicates individual donor, 
black dots represent male donors and empty circles represent female donors. The 
black line on the left indicates the slope and the on the right, the median values. 
Spearman non-parametric test was performed for A and Kruskal-wallis test with Dunn’s 
correction was performed for B, *p<0.05. 

 
When the number of colonies was segregated based on the donor age groups (Figure 

3.6B), a decline of over 3-folds (p=0.0245) was found between young donors 

(median=163 CFU-F/ml) and donors of intermediate age group (median=53 CFU-F/ml). 

When young and old donors (median=38 CFU-F/ml) were compared, a decline of over 

4-folds (p=0.0512) was observed. It must be noted that while the overall median was 

the lowest in the older donors, the decline was the steepest between young donors and 

donors of intermediate age group. This indicted towards the considerable decline in the 

number of MSCs in the donors who are over the age of 40. The decline in the number 

of colonies continued after 60s as well, however, some of the donors over the age of 

60 were also observed to have relatively large number of CFU-Fs suggesting young 

biological age in terms of MSCs despite belonging to the old chronological age group. 
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To understand if there were age-related changes with respect to gender, male and 

female donors were split and analysed separately for age-related correlations 

(Appendix 3, supplementary Figure 3.1A and C). There was a significant decline found 

in males (p=0.0319; r=-0.41) and a non-significant decline in females (p=0.128; r=-

0.32). To understand the variation in each gender, they were further split into three age 

groups (Appendix 3, supplementary Figure 3.1B and D). The trend for decline in males 

and females was found to be similar to  3.6A above. However, owing to the limited 

number of donors in old males and intermediate group females, it was decided to keep 

the focus on age-related changes without segregating data for males and females 

further in the thesis.  

3.3.2 Age-related changes in colony area  

Until now, data from this chapter has established that there is significant decline in the 

number of colonies (indicative of number of MSCs) with increased donor age. While 

counting colonies and analysing them, colonies of different sizes were observed 

(Figure 3.7A). From literature, it was known that each colony is indicative of a single 

MSC and that colony area and colony morphology has the potential to indicate the 

proliferative capacity of MSCs (201, 208). However, none of these studies had 

measured the colony area on uncultured MSCs in relation to age ranging from 20-89 

years old or quantified colony density. While the general idea related to the decline in 

sizes of MSC colonies has been linked with lower MSC proliferation in aged donors 

(132, 144), investigations on age-related differences in colony density have not been 

performed. 

 

CFU-F dishes from 14 donors (n=7 young and n=7 old) containing a minimum of 25 

colonies each were scanned. The scanned images of the dishes were analysed for 

colony area as described in section 3.2.3 and all colonies from each age group were 

combined to increase the statistical power of the analysis. The comparison of colony 

area between all colonies from young donors (n=321) and all colonies from old donors 

(n=266) suggested that the area of colonies in old donors (median=10.3 mm2) was 

significantly 10% lower (p=0.0289) than the area of colonies in young donors 

(median=11.2 mm2) (Figure 3.7 B). However, it was not clear if the decline in the 

colony area was due to a predominant loss of the larger colonies or due to a shift from 

large to small colonies in old donors.  
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Figure 3.7 Age-related changes in colony area 

(A) Presence of different sizes of colonies from a single donor CFU-F dish (B) 
Comparison of colony areas between all colonies from 7 young (321 colonies) and 7 
old (266 colonies) donors. Each dot indicates a single colony with median values 
indicated in horizontal lines (C) Frequency distribution of colony area of young donors 
(black curve) and old donors (grey curve). *p<0.05, Mann-Whitney U test. 

 
 

To investigate if there is a loss of bigger colonies in old donors, a frequency distribution 

curve was generated for the colony areas of both young and old donor MSCs (Figure 

3.7C). The range of colonies was set in gaps (referred to as ‘bin centres’ in GraphPad 
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Prism) of 5mm2 in order to analyse the differences in sizes as small as 5mm2. The 

frequency distribution of colony areas was next performed using GraphPad Prism 

software by generating a non-linear fit line based on modal values of pre-defined bin 

widths of 5 mm2. This analysis revealed unimodal colony area distributions in both 

young and old cohorts, however, a prominent shift towards smaller colonies was 

observed in the old group. The frequency distribution in the figure shows a tendency of 

young donors to have larger colony areas whereas, the data from old donors indicate a 

shift towards smaller colonies with colony areas less than 10 mm2. To segregate the 

colonies as ‘large’ or ‘small’, the median of all 587 colonies from both groups of donors 

(median=10.64 mm2) was used as the cut off limit.  

 

3.3.3 Age-related changes in  colony integrated density  

Colony density data was collected along with the colony area by ImageJ software and 

was measured in integrated density (ID) units. It was calculated as a product of the 

area and the mean grey value of a colony. The high mean grey value reflects the 

closeness of the cells that are stained within the colony, while zero grey value indicates 

un-stained empty space, that is, space with no cells. The greater the contact between 

the cells within a colony, the greater would be the mean grey value of the colony. 

 

It was hypothesised that the colonies with the highest IDs would be the biggest and the 

most dense (indicating the most highly proliferative MSCs) categorised by Oreffo and 

colleagues in 2013 as ‘large dense colonies’ (201). Conversely, the colonies with the 

lowest IDs would be equivalent to the ‘small sparse’ colonies (208), indicating the least 

proliferative MSCs. The first comparison was performed between the ID of all colonies 

from young donors (n=321) and all colonies from old donors (n=266) (Figure 3.8A). The 

comparison indicated a significantly 32% lower (p<0.0001) ID of colonies in old donors 

(median=1116 units) as compared to the ID of colonies in young donors (median=1643 

units). The next comparison was performed between all the small colonies (area less 

than median area of 10.64 mm2 described in the section above) from both young and 

old donors with all the large colonies from both young and old donors (Figure 3.8B). 

The data indicated a significant drop (p<0.0001) of over 3-folds in the ID of small 

colonies (median=777 units) when compared to the ID of large colonies (median=2661 

units). As the formula for ID was (area*mean grey value), both, the contact between the 

cells in a colony and the area of the colony are directly proportional to the actual ID 

calculated. The fact that the larger colonies generated higher values for ID than small 

colonies, it was therefore expected and indicated that such segregation may provide 

further insights on the proliferation potentials of MSCs from Y and O donors. 
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Figure 3.8 Age-related changes in colony ID 

(A) Comparison of colony ID of all colonies from young and old donors  (B) 
Comparison of all small and large colonies from both age groups based on median 
area (C) Comparison of ID of small colonies in young and old donors (D) Comparison 
of ID of large colonies in young and old donors. Black dots represent young donors 
(n=7) and grey dots indicate old donors (n=7). Median values in all the figures is 
represented by the black horizontal line.**p<0.01 and ****p<0.0001, Mann-Whitney U 
test 

 
To further understand if the ID of each colony type (large or small) had similar age-

related trends, the colony ID data for small colonies was first compared between young 

and old donors (Figure 3.8C). The ID of small colonies from old donors (median=563 

units) was significantly lower (p<0.0001) than the ID of colonies from young donors 

(median=981 units). Similar comparison was applied to large colonies for the two age 

groups (Figure 3.8D) and a similar trend of lower ID (p=0.0029) was observed in old 

donors (median=2325 units) as compared to the ID of large colonies in young donors 

(median=2850 units). The difference in ID was however greater in the small colonies 

(1.7-folds) as compared to large colonies (1.2-folds). This suggested that there were 

proportionally more small sparse colonies in old donors, rather than less large dense 

colonies. Irrespective of the colony size, if they were from young donors, they had 

higher colony area and ID indicating their higher potential to proliferate as compared to 

colonies from old donors. 
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3.3.4 Proliferation of MSCs in human serum conditions 

3.3.4.1 Optimisation experiments 

The first step of testing the hypothesis that the proliferative capacity of MSCs is further 

reduced in ‘aged’ microenvironment was to ensure that the right controls were being 

used for comparison. Section 3.2.6 outlines the choices of medium used and the 

rationale behind these choices. To identify the best control(s),  young donors with more 

than 100 CFU-Fs/ml from fresh BMA and with over 107 frozen cells (Figure 3.3) were 

selected to generate approximately 25-30 colonies in 12 dishes each (3 dishes for each 

of the four different media). Young serum (YS - from 1 young male) was used to 

optimise the controls as it was more practicable and also because the volume of old 

serum (OS) was limited owing to rarity of the donors in this age group and so it was 

saved for the main experiment. Once the young donor cells were added to the dishes 

and the medium was changed as shown in Figure 3.4, after 14 days, dishes were 

stained and the number of colonies were counted.  

 
Figure 3.9 shows the results of the optimisation experiment where the dishes 

containing cells in DMEM+10%FCS on top panel and in DMEM+10%Mcult (bottom 

panel) did not have visible colonies. While there were groups or clusters of cells seen 

in both – DMEM+10%FCS and DMEM+10%Mcult, they had less than 50 cells to be 

considered as a colony for colony analysis. This was repeated with two other donors 

and the observation for both DMEM with FCS or Mcult was consistent throughout the 

three experiments. The cell count in dishes containing either DMEM with FCS or with 

Mcult also consistently revealed fewer or no cells at all (range 0-2 colonies per dish as 

compared to 30-60 colonies per dish in SM). 
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Figure 3.9 Selection of control media 

Top and bottom panel (outlined in red) medium conditions did not generate colonies 
resulting in their elimiation and finalising SM as the positive control. Numbers on the 
top right corner of every dish indicate the number of colonies in each dish. 
 

Colonies were expected in SM as it is commercially optimised for the adhesion, growth 

and proliferation of cultured and uncultured MSCs in vitro and was shown to generate 

colonies in previous experiments (section 3.2.1). Number of colonies counted in SM 

were greater than those in DMEM+10%YS. However, colonies in the latter appeared 

larger in size as compared to the colonies grown in SM. Mcult is also optimised for 

adhesion, growth and proliferation of MSCs but only for cultured cells. This could 

explain the absence of colonies in this experiment with uncultured cells. 

DMEM+10%FCS has previously been used to grow MSCs and compare with human 
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serum (206). However, the lot used for this experiment was not specifically selected for 

uncultured MSC growth. This can explain the lack of colonies from uncultured BMA. 

 

Based on these observations, only SM was chosen as the positive control for 

subsequent experiments. It can be argued that DMEM+10%FCS could have been still 

kept as negative control. However, keeping in mind that the number of MSCs declined 

in older donors (section 3.3.1) and the number of frozen cells required to set up these 

experiments (9 dishes x 25-60 colonies per dish), it was decided to finalise the 

experimental set up on 3 sets of conditions: human young serum, human old serum 

and SM and not perform negative controls. 

 

3.3.4.2 Proliferation of MSCs in media supplemented with human serum 

The aims of following experiments were to test if there was a decline in the most 

proliferative MSCs when grown in media containing old serum and also to evaluate the 

rejuvenation potential of growing old donor MSCs in young serum as compared to 

growing in old serum. 

 
As the number of old donors was limited and so were their number of MSCs in most 

cases, the old donors with 30 CFU-Fs/ml and above were considered for this 

experiment. Additionally, all of the frozen cells from the old donors were plated as 

described in section 3.2.5. Altogether, the colony formation from NCs from n=6 young 

donors and n=9 old donors was evaluated. As expected, seeding old samples that had 

less than 100 CFU-F/ml and less than 107 frozen NCs did not yield any colonies and 

thus could not be considered for further analysis. The results of the donors that 

generated colonies have been presented and discussed in detail in the sections below.  
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Figure 3.10 Representative donors colonies in all 3 conditions 

Top panel shows the scanned image of the stained dishes following culture in SM 
medium followed by media supplemented with 10%YS in the centre panel and in media 
supplemented with 10%OS in the bottom panel. Left side indicate representative 
dishes from a young donor and the right side indicate dishes from an old donor. The 
numbers on the top right corner of the dishes indicate the number of colonies in each 
dish. 

 
 

Figure 3.10 (left side) shows colonies obtained from young donor following culture in 

SM, media supplemented with 10%YS and media supplemented with 10%OS. In SM 

(top panel), 36 and 34 colonies were observed. Comparing these colonies with those 

obtained in media containing human serum (10%YS or 10%OS), they were fewer in 

number as well as appeared smaller in size. Colonies from young donor MSCs grown 

in media supplemented with YS appeared merged due to larger colonies in close 

proximity. Colonies of varying sizes were observed in all 3 conditions. 
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Figure 3.10 (right side) shows colonies obtained from old donor following culture in SM, 

media supplemented with 10%YS and media supplemented with 10%OS. In SM (top 

panel), 36 and 61 colonies were observed. Comparing these colonies with those 

obtained in media containing human serum (10%YS or 10%OS), they appeared 

smaller in size. However, colonies in SM were more than the number of colonies 

obtained from human serum, especially in media supplemented with OS (bottom 

panel). Colonies grown in media supplemented with YS appeared larger than colonies 

obtained from other 2 conditions. Colonies of varying sizes were observed in all 3 

conditions. 

 
Visually, Figure 3.10 suggests that the colonies are generally bigger in size in media 

containing human serum as compared to SM. While the difference between the 

number of colonies or their sizes was not strikingly evident between YS and OS, the 

general observation of larger colonies seen by the naked eye remained constant for all 

young donors (n=6) in YS as compared to SM (Figure 3.10).  

 

Using SM as the positive control, all the data for colony area from young and old donor 

MSCs grown in media supplemented with 10%YS or 10%OS were compared to SM. 

To confirm if the colonies grown in media supplemented with YS were actually denser 

than those grown in SM or in media supplemented with OS, the ID of all the colonies 

were also quantified. Due to the observation that SM generated good number of 

colonies but smaller in size and media in YS demonstrated otherwise, one of the 3 

dishes from each condition was trypsinised and counted to complement the ID data. 
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Figure 3.11 Colony and cell counts of young and old donor MSCs seeded in 
dishes with SM, media supplemented with YS and media supplemented with OS 

(A) Number of CFU-Fs as counted from stained dishes in young donors (left) and old 
donors (right) grown in SM, media supplemented with YS and media supplemented 
with OS (B) Cell counts from the third dish in young donors (left) and old donors (right) 
grown in SM, media supplemented with YS and media supplemented with OS. Bars 
indicate median and error bars indicate interquartile range. n=6 young donors and n=4 
old donors. 
 

Figure 3.11 represents the colony-forming capacity of young and old donor MSCs in 

SM, media supplemented with YS and media supplemented with OS. The data in 

Figure 3.11A shows no significant difference in the number of colonies between young 

and old donors grown in any of the 3 conditions. However, while the total number of 

colonies remained similar in SM, a non-significant decline in old donor MSCs was 

observed in both, media supplemented with YS and media supplemented with OS 

human serum conditions. 
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The cells counted from the third dish (Figure 3.11 B) showed interesting additional 

trends. First, a trend for decline in the number of cells in media supplemented with OS 

was observed in both young and old donor MSCs compared to their growth in SM and 

YS conditions, in spite of plating equal number of cells in all conditions for each donor. 

This suggested that there were colonies with fewer cells in OS conditions when 

compared to SM and YS conditions. This was further tested by evaluating the colony 

areas and IDs using methods described in section 3.2.3 and 3.2.4.  

 

Figure 3.12 shows the comparison between colony areas of young and old donor 

MSCs in the 3 conditions, along with the frequency distribution of the colony areas. 

Figure 3.12 A, left panel represents the colony areas of all colonies from young donors 

grown in SM, media supplemented with YS and in media supplemented with OS. For 

young donors, YS conditions had produced the largest colonies with median area of 

11.89mm2. This was significantly higher than observed for the colonies grown in OS 

conditions (median area=11.08mm2, p=0.0062) or SM conditions (median 

area=8.42mm2, p<0.0001). Interestingly, the colonies grown in OS were also 

significantly larger than those grown in SM (p=0.0016).  

 

Frequency distribution of colonies from young donor MSCs (Figure 3.12 A, right panel) 

grown in SM (dashed line) peaked in between 5-10 and 10-15 mm2 area boundaries 

indicating that most frequent colonies in SM were more within this boundary. 

Frequency distributions of colonies from young donors MSCs grown in media 

supplemented with YS or OS did not show much difference, consistent with their 

median values being very close, as mentioned above. Both the curves appeared to 

have similar range of large and small colonies indicated by the nearly overlapping 

pattern of the black and grey line. As mentioned, the frequency distribution curve of the 

colonies from the same donors grown in SM appeared to have a strong shift towards 

the colonies of smaller size. 
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Figure 3.12 The analysis of colony area in SM, media supplemented with YS and 
media supplemented with OS 

(A) Comparison of colony areas in young donors (n=6, left) in SM (n=345 colonies), in 
media supplemented with YS (n=286 colonies) and in media supplemented with OS 
(n=301 colonies). Frequency distribution of colony area (right) based on bin centres of 
5 mm2 of colonies from young donors grown in SM (dashed line), media supplemented 
with YS (solid line) and media supplemented with OS (dotted line) (B) Comparison of 
colony areas in old donors (n=4, left) in SM (n=241 colonies), in media supplemented 
with YS (n=175 colonies) and in media supplemented with OS (n=165 colonies). 
Frequency distribution of colony area (right) based on bin centres of 5 mm2 of colonies 
from young donors grown in SM (dashed line), media supplemented with YS (solid line) 
and media supplemented with OS (dotted line). Median is indicated by black horizontal 
line. Data was considered significant when *p<0.05, **p<0.01, ****p<0.0001, Kruskal-
Wallis test with Dunn’s correction. 

 
Figure 3.12 B represents the colony areas of all colonies from old donors grown in SM, 

media supplemented with YS and in media supplemented with OS. For old donors too, 

YS conditions had produced the largest colonies with median area of 11.19 mm2. This 

was significantly higher than for the colonies grown in OS conditions (median 

area=8.38 mm2, p=0.0141). While there was no difference found between the colony 

area of colonies grown in SM (median area=10.14 mm2) and colonies grown in media 

supplemented with YS, median area of colonies in SM was significantly larger than the 
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colonies grown in media supplemented with OS (p=0.0215). Thus, in old donor MSCs, 

colonies grown in OS showed the lowest colony areas.  

 

Frequency distribution of colonies from old donors in SM (dashed line) once again 

peaked in near 10-15 mm2 area indicating that most of the colonies in SM were 

relatively small in size. However, very different from results in young donors, colonies 

from old donors in media supplemented with OS shifted further towards the left 

indicating the presence of colonies smaller in size than those grown in SM (Figure 

3.12B, right panel). As expected, colonies grown in media supplemented with YS 

demonstrated a prominent shift to the right (larger colonies), almost as seen in young 

donors (Figure 3.12A, right panel).  

 

Overall, this section showed that in young donor MSCs, colonies grown in SM are 

significantly smaller in size, while those grown in media supplemented with YS or OS 

do not show any differences in size indicating that OS does not have a detrimental 

effect on the growth of young donor MSCs. However, old donor MSCs grown in media 

supplemented with OS generated the colonies of the smallest size. Very interestingly, 

the same old donor MSCs, when grown in media supplemented with YS, formed bigger 

colonies. The frequency of colonies grown in media supplemented with YS generally 

showed a shift towards larger colonies in MSCs from both young and old donors. 

These data indicated that YS supplementation had a positive effect on the colony size 

from old donor MSCs. 

 

3.3.4.3 Age-related differences in colony ID in MSCs grown in SM, media 

supplemented with YS and media supplemented with OS 

Next, to understand the age-related differences in density of the colonies, the IDs of the 

colonies were then analysed for MSCs grown in all the 3 conditions. Colonies from 

young donors and old donors were segregated as small or large based on the median 

area of all colonies (colonies grown in media supplemented with YS and with OS) from 

young as well as old donors (9.4 mm2). Colony area evaluation in human serum 

suggested an age-related decline when MSCs were exposed to OS and this was 

observed for young donor MSCs as well as for old donor MSCs. Next, the data 

acquired for colony ID from ImageJ was analysed for small and large colonies, first in 

young donors and then in old donors. It was hypothesised that a similar trend for 

decline in colony ID would be seen in OS conditions, and particularly for old donor 

MSCs as compared to when they were grown in media supplemented with YS. All 
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colonies were segregated into small and large based on the median area of all colonies 

(grown in all conditions and  from young as well as old donors, 9.4 mm2).  

 

Figure 3.13A represents colony IDs for small colonies from young donors grown in SM, 

media supplemented with YS and media supplemented with OS. Small colonies grown 

in media supplemented with YS had the highest IDs (median=1110 units) which was 

significantly higher than the IDs of colonies grown in SM (median=937 units, p=0.0208) 

or media supplemented with OS (median=887 units, p=0.0003). Even though the IDs of 

colonies grown in media supplemented with OS were the lowest, it was not statistically 

significantly lower than IDs of colonies in SM. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 ID of colonies from young donors MSCs grown in SM, media 
supplemented with YS and media supplemented with OS 

(A) ID of small colonies in SM (n= 156 colonies), in media supplemented with YS 
(n=108 colonies)  and in media supplemented with OS (n=129 colonies) (B) ID of large 
colonies in SM (n=153 colonies) in media supplemented with YS  (n=191 colonies) and 
in media supplemented with OS (n=172 colonies). Each dot represents a single colony 
and the median is indicated by black horizontal line across the data set. *p<0.05, 
**p<0.01, ***p<0.001 and ****p<0.0001, , Kruskal-Wallis test with Dunn’s correction. 
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Similar trend was observed for the large colonies from young donors (Figure 3.13 B) 

showing a significantly higher ID in colonies grown in YS (median=2598 units) as 

compared to the colonies grown in SM (median=2047 units, p=0.0080) or in media 

supplemented with OS (median=2200 units, p<0.0001). Altogether, the data presented 

in Figure 3.13 indicated that in young donors, OS conditions induced a significant 

decline in the ID of colonies as compared to those grown in SM and YS. This was true 

for both, small as well as large colonies. This implied that proliferation of MSCs was the 

lowest when grown in media supplemented with OS and the highest when grown in 

media supplemented with YS. Using colony ID as an indication of MSC proliferation, it 

can be concluded that growing MSCs in OS conditions reduced MSC proliferation 

capacity, and this was observed for both, large and small areas. 

 

 
 
 

 

 

 

 

 

 

 

Figure 3.14 ID of colonies from old donors MSCs grown in SM, media 
supplemented with YS and media supplemented with OS 

(A) ID of small colonies in SM (n=103 colonies), in media supplemented with YS (n=76 
colonies) and in media supplemented with OS (n=98 colonies). (B) ID of large colonies 
in SM (n=138 colonies) in media supplemented with YS (n=99 colonies) and in media 
supplemented with OS (n=67 colonies). Each dot represents a single colony and the 
median is indicated by black horizontal line across the data set. p<0.05*, , Kruskal-
Wallis test with Dunn’s correction. 
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Small colonies from old donors did not show any significant difference between the ID 

of colonies grown in SM, YS or OS (Figure 3.14A). However, the IDs remained lower in 

OS conditions (median=1062 units) compared to YS conditions (median=1105 units) 

while being the lowest in SM (median=937 units). 

 

For the large colonies grown from old donor MSCs (Figure 3.14B), the IDs of colonies 

grown in media supplemented with YS (median=2729 units) were significantly higher 

than the IDs of colonies grown in SM (median=2441 units p=0.0170) and non-

significantly higher that the IDs of colonies grown in OS (median=2501 units).  This 

indicated that, while media supplemented with YS encouraged the proliferation of 

MSCs from old donors, the effects were small and statistical significance was not 

achieved. ID analysis of colonies from both young and old donors confirmed that 

growing MSCs in aged serum induced a decline in the overall proliferation capacity of 

MSCs (Figure 3.13 and 3.14). The data also indicated that proliferation capacity of 

MSCs in old donors could be slightly improved when grown in media supplemented 

with YS as compared OS (Figure 3.14B). The trends for a change were the same for 

large and small colonies suggesting that YS or OS factors were  equally affecting all 

colony types and were therefore not specific to small or large colonies.  

 

3.4 Discussion 

Literature regarding age-related differences in BM MSCs with respect to their numbers 

has been controversial (Table 3.1). Furthermore, while the number of CFU-Fs have 

been evaluated for counting MSCs, the size of the colonies has been discussed less 

often and their density, rarely. In this thesis, it was hypothesised that the number of 

MSCs in the BM shows an age-related decline. Additionally, the colony size and colony 

density measured were also hypothesized to show an age-related decline with the loss 

of the most proliferative MSCs that in this assay, formed the  largest and densest 

colonies. Furthermore, it was hypothesised that MSC ‘niche’, modelled here with the 

use of human serum, would additionally impact on MSC colony formation, leading to 

smaller and less dense colonies when grown in old donor serum. 

 

The data presented in this chapter showed a significant age-related decline in the 

number of MSCs quantified by CFU-F assay,  confirming our hypothesis and indicating 

an age-related decline in BM MSCs in vivo. Furthermore, the MSCs from older donors 

had significantly lower proliferative capacity than younger donor MSCs as indicated by 

colony area and colony ID analysis. The potential of human serum to support 

proliferation of MSCs was clearly demonstrated in the presented experiments with 
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human serum and confirmed previous studies with culture expanded MSCs (206, 209). 

The colony area and colony ID results from human serum experiments indicated that 

‘aged’ serum (OS) provided conditions for lower proliferative capacity of MSCs, from 

both young and old donors. Finally, colony area and ID results indicated a  possibility 

for using young serum to potentially rejuvenate MSCs from old donors, by making 

CFU-F colonies significantly bigger and slightly more dense.  

 

CFU-F assay has been performed by many groups to investigate the change in the 

numbers of MSCs. However, the techniques of cell isolation, media used and other 

factors have varied in different laboratories (Table 3.1). Fewer groups (including our 

group) have performed the CFU-F assay on fresh BMA to detect the age-related 

changes in number of MSCs. The results of the current study indicated a significant 

age-related decline in the number of MSCs (Figure 3.6A), a 4-fold decline in MSC 

numbers between the young donors (163 colonies/ml BMA) and old donors (38 

colonies/ml BMA) using CFU-F assay (Figure 3.6B). These data in principle support 

previous data by Stolzing et al. (96) where they have shown a significant 4-fold decline 

in MSC numbers between paediatric (0-20 years old, median of 100 colonies/ml) and 

adult donors (21-40 years old, median of 25 colonies/ml) by CFU-F assay. However, 

the groups used in these two studies were different, spanning an age range of 5-55 

years old in the Stolzing et al., study and 19-89 years old in the present thesis. The 

numerical difference in the number of colonies in the common 40-60 years old age 

group in both the studies could be due to the fact that Stolzing et al., plated 5 x 104 

cells/well for CFU-F assay while fresh BMA was used for the current study. Even 

though the trend of age-related decline in the number of MSCs is common in both the 

studies, there is notable difference in the age range of donor age used, CFU-F plating 

method and in the number of donors recruited in the studies. Stolzing et. al showed a 

prominent drop in MSCs after the completion of skeletal growth which is also observed 

in the present study.  

 

D’Ippolito et al., performed similar studies and found a significant decline in the number 

of colonies (66.2 + 9.6 per 106 cells) in young (3-36 years old) donors as compared to 

old (41-70 years old) donors (14.7 + 2.6 per 106 cells) (132).  However, they used 

vertebral BM and counted CFU-ALP (alkaline-phosphatase positive), which could 

explain the variation in the number of colonies. Muschler et al., performed age 

correlations studies on iliac crest BMA and also counted CFU-ALP, and found a 

significant age-related decline in the number of CFU-ALP for both the genders. They 

also found a decline in the number of CFU-ALP per 106 NCs, sharper in females from 

13 to 27 in female age groups as compared to  17 to 38 in the male age groups (210). 
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Using a smaller cohort of patients, similar trend was recently observed by our group 

with a significant decline in the number of colonies in females as compared to a non-

significant decline in males, across the whole age range between 22 and 80 years old 

(111). Both these studies were in contrast to the gender related data obtained in this 

project. However, owing to the lower number of female donors in the young and 

intermediate groups and lower number of males in the old donor groups (Appendix 3, 

supplementary Figure 3.1), no firm conclusions can be made in terms of  age-related 

declines in the number of MSCs in separate genders. An equal number of donors from 

both the genders in each age group (minimum n=10) will be required for a firmer 

conclusion. 

 

The present results indicating a decline in the number of MSCs is in contrast to work 

done previously by Justessen et al., where they found no significant difference in the 

number of MSCs in normal conditions with respect to both, age and gender (196). They 

found a significant difference in the MSC colony number with age only in those treated 

with osteogenic medium (4+/-4 colonies of seeded 100,000cells/cm2 NCs for young 

donors aged 18-42 and 2+/-4 of seeded NCs for old donors aged 66-78). This study 

also used density centrifugation for erythrocyte removal, scored colonies with 16 or 

more cells in healthy donors and in osteoporosis patients, in contrast to this study 

where NH4Cl was used for erythrocyte lysis, colonies with only more than 50 cells were 

scored and only healthy donors were recruited.  

 

Jing Li and team used uncultured cells from BM of donors aged 1-52 years old and 

found no age-related decline in the number of colonies. In contrast, this study analysed 

uncultured BM MSCs from adults ranging from 19-89 years old and categorised donors 

in 3 age groups. It used direct BM plating technique which prevented the loss of cells 

that occurs in centrifugation. It also used a media that was standardised for growing 

uncultured BM MSCs along with ensuring that a colony always had >50 cells. Overall, 

in this study, a significant age-related decline was observed in the number of colonies 

obtained from uncultured BM MSCs with advancing age and a 4-fold decline in old 

donors (>60 years old) when compared to young donors (<40 years old). Importantly, 

the decline in the number of MSCs was notable from the age of 40 years old and not 

60 years old as expected. While the numerical value was the lowest in old donors, the 

decline was the steepest in the intermediate age group suggesting the skeletal ageing 

in vivo begins in the fifth decade of life. The other important observation was the 

presence of old donors with a relatively higher number of MSCs as compared to the 

others in the same age group, which was comparable to MSC numbers obtained from 

young donors. This suggested that in vivo, these old donors (with high number of 
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MSCs) potentially had a younger ‘biological age’ in comparison to others with the same 

chronological age (same age group). 

 

Colony area and colony ID were analysed next to evaluate the age-related differences 

in the proliferative capacity of MSCs. Age-related changes in proliferative capacities of 

MSCs have been studied by different methods using cell proliferation assays, 

cumulative population doublings calculations and population doubling time in cultured 

MSCs. Some have shown an age-related decline in MSC proliferation (211) and others, 

not shown a difference (197). As mentioned in this thesis Introduction (section 1.2.2), 

such studies are limited by the fact that cultured MSCs undergo passage-dependent in 

vitro ageing process that can over exaggerate or negate any age-related changes in 

MSCs in vivo. On the other hand, the  studies that have investigated MSC proliferation 

capacity prior to passaging are very limited. While they have measured colony area 

and the cellular contact between the cells in the colony (201), these factors have not 

been studied in relation to age-related changes. Therefore, the data from this study on 

any differences in colony sizes and IDs in relation to donor age are entirely novel. 

 

Gothard et al., proposed a segregation of BM MSC colonies into large (>2.5mm 

diameter) and small (< 2.5mm diameter) based on median diameter chosen form the 

entire diameter range observed. They also segregated colonies as dense or sparse 

based on cellular contact confluency within a colony. High cell contact (>80%) was 

defined as dense and low cell contact (<80%) was defined as sparse colony. In the 

present study, different sizes of colonies were observed, which did not indicate a clear 

visual segregation by size or density, and generated a unimodal distribution following 

frequency distribution analysis by the GraphPad software (Figure 3.7A). To make a fair 

comparison with the Gothard et al. study, in this study, the colonies were segregated 

based on the median area from all the colonies (10.64mm2) obtained from ImageJ 

software analysis which was equivalent to average diameter of 3.76mm. The diameter 

was larger than the average colony diameter described in Gothard et al. study and the 

area was similar to colony areas presented in D’Ippolito study (10.23mm2 for young 

donors, 8.64 mm2 for old donors (132)).  

 

Even though colony area measures the size of the colony indicating the spread of the 

cells, it does not measure the density of the cells within a colony. A colony can be large 

and dense or large and sparse as defined by Gothard et al., 2013. A large dense 

colony has more cells that are in close contact with each other indicating high 

proliferation and a small sparse colony will have fewer cells that are comparatively less 

compact in their cellular contact. A large dense colony will thus be derived from an 
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MSC with high proliferative capacity and a small sparse colony will originate from the 

least proliferative or pre-senescent MSCs (208). Hence the area of a colony alone is 

not a true indicator of the proliferative capacity of the MSCs and the colony ID, which is 

a combined measure of area and density, is thus an improved measure of the 

proliferative capacity of the MSCs. As listed in Table 3.2, only 2 studies have 

mentioned colony density in their studies. While one of them found no age-related 

difference in their research using uncultured cells (200) (data was not shown), the more 

recent study using cultured cells by Travis et al., in 2017 observed an age-related 

decline in the colony density visually (no quantification) (139). 

 

ImageJ analysis of colony area and ID in this study helped to generate numerical ID 

values for all the colonies. The median values obtained from the analysis of colony 

area measured for all the colonies were used to categorize the colonies as large or 

small and then compare their ID in young and old donors. The results indicated a 

significantly higher ID of all colonies in young donors as compared to old donors 

(p<0.0001) (Figure 3.8A). Small and large colonies were observed in both, young and 

old donors but young donor colonies always had higher ID irrespective of the size of 

the colony (Figure 3.8C and D). The decline in IDs was more prominent in small 

colonies than in large colonies suggesting that old donor MSCs generate proportionally 

more small sparse colonies than proportionally less large dense colonies. This was 

opposite to the original hypothesis of fewer large dense colonies originating from most 

proliferative cells in old donor BM. These are important new data that highly-

proliferative MSC remain to be present in old donor BM. 

 

The presented data confirms the concept of decrease in the rate of MSC proliferation 

with increase in donor age in uncultured cells (212). The analysis of colony area and 

density has been previously done only by Gothard et al., (201), but they did not 

investigate these parameters on a large number of colonies with respect to donor age. 

Furthermore, no CFU-F study, as per my knowledge, has dissected the CFU-F assay 

at the single colony level to understand the age-related changes in colony area and ID 

making data from this chapter novel, in comparison to others to study age-related 

changes in proliferation of minimally cultured individual MSCs. Once the age-related 

decline in colony area and ID were established, next it was hypothesised that colony 

area and ID of MSCs when exposed to old donor serum (OS) will show an age-related 

decline as compared to media supplemented with YS. The other hypothesis with 

exciting potential applications was to test if the presence of young microenvironment 

(media supplemented with YS) could reduce the loss of proliferative capacity seen in 

old donor MSCs.  In vitro, MSCs are grown in rather artificial conditions that differ from 
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their native conditions in vivo (100). To mirror the biological conditions of old donors, 

media supplemented with old and young donor serum was used instead of standard 

media supplemented with FCS. Preliminary experiments established optimal conditions 

and controls for these investigations, and established that human serum supported 

colony formation from MSCs better than negative control FCS (Figure 3.9). 

 

In this study, a decline in proliferative capacity of MSCs from both young and old 

donors was observed when they were grown in media supplemented with OS. Using 

both colony area and colony ID as parameters to measure MSC proliferation at single-

colony level, the data suggested that the use of OS negatively impacted the 

proliferative capacity of MSCs as seen by the presence of lower frequency of large 

colonies and higher frequency of small colonies in Figure 3.13 and 3.14. This was also 

shown by the low colony ID in young donors when grown in OS in Figure 3.13. This 

can be explained by the increase of ROS in cells as shown in a rat model (117) and by 

the presence pro-inflammatory factors (213) in OS that inhibit proliferation and 

eventually lead to MSC senescence. Increased levels of pro-inflammatory cytokines 

and SASP have been associated with increased age in human donors (214-216). 

Similar investigation in serum from human donors used for culturing young and old 

donor MSCs in this thesis, will help to explain the loss of proliferative capacity of MSCs 

from old donors. It will also provide evidence for the impact of aged microenvironment 

(SASP released from aged cells in medium containing human serum) in vivo.  

 

Abdullah and colleagues studied the effect of aged serum on hMSC-tert cell line and 

found that the gene expression of MSC multipotentiality markers in old serum was 

significantly lower (p<0.01) than the cells grown in young serum emphasising the 

impact of aged microenvironment on MSC-like cells (203). Josephson and colleagues 

performed experiments in mice and found a significant decline in the number of 

colonies from young (12 weeks) animal grown in serum from middle-aged (52 weeks) 

animals. They found an increase of SASP in MSCs grown in serum from middle aged 

animals (146). Quantification of pro-inflammatory cytokines and SASP molecules (like 

IL6, IL8, TNF, Tp53) from the media of old donor MSCs would further explain the loss 

of proliferative capacity of MSCs in OS. Additionally, proliferation of old donor MSCs 

grown in media supplemented with YS could be only slightly improved (limited 

rejuvenation). Human serum was used to reflect physiological conditions in vivo and 

indicated towards limited rejuvenation of old donor MSCs in YS. Serum is the fluid that 

remains after removal of all the clotting factors. The use of other human supplements 

like PL (platelet lysate) could potentially display stronger rejuvenation, owing to the 

presence of clotting factors (217). PL is a cell free lysate prepared by disruption of 
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platelets by freeze/thawing. Investigations using PL have shown that the osteogenic 

differentiation of MSCs  grown in young donor PL was more pronounced as compared 

to their differentiation when grown in PL from old donors (217, 218). 

 

The concept of MSC rejuvenation with culture in YS was not as pronounced in the 

present experiments, but positive trends were observed. The colony area 

measurements of old donor MSCs showed a trend for significantly bigger colonies 

when grown in media supplemented with YS as compared to OS (Figure 3.12B). Also a 

trend for higher ID of colonies from old donors grown in YS as compared to OS was 

found (Figure 3.14B). The fact that colony area was increased more than colony ID can 

be explained by the fact that YS increased cell migration out of the colony more than 

cell proliferation, this can be also useful for MSC function in vivo. This hypothesis can 

be further tested by using holographic microscopy by monitoring of cellular movement 

in real time (219). Growing old donor cells on extracellular matrix derived from younger 

donors as shown previously (139, 220), could also demonstrate noteworthy 

conclusions with possible clinical applications of rejuvenation. Overall, the present data 

indicate that exposing old donor MSCs to supplements (serum, PL, extracellular 

matrix– collagen fibres and proteins) from young donors can help aged MSC not lose 

their proliferative capacity any further, and possibly improve their migration capacity. 

Treatment of uncultured MSCs with anti-oxidants prior to clinical use (46), use of 

senolytic drugs that target senescent cells using MSC ageing surface markers (221) 

along with use of supplements to provide a ‘young’ microenvironment could also aid 

rejuvenation and delay the process of ageing.   

 

In conclusion, this chapter has shown a significant age-related decline in the number of 

BM MSCs in older donors compared to young resolving the existing controversy. 

Colonies from the CFU-F assays showed a significant age-related decline in their area 

and ID. For the first time, colony sizes and densities were quantified (measured in ID) 

along with colony area alone and correlated with donor age, and showed  an age-

related decline in the proliferative capacity of individual MSCs from old donors. The 

proliferative capacity of  young and old donor MSCs were also investigated in more 

physiological conditions with human serum to mirror in vivo conditions in which MSCs 

reside. OS negatively impacted the proliferative capacity of young and old donor MSCs 

and exposing old donor cells to YS stopped further loss in their proliferative capacity. 

These data, for the first time, suggest the importance of the microenvironment (MSC 

niche) in their functions and showing that both intrinsic and extrinsic factors should be 

considered in MSC ageing studies. 
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Chapter 4 Investigating age-related changes in human BM MSC 

using the CD45lowCD271+ phenotype  

In the previous chapter, age-related changes in number and proliferative capacity of 

BM MSCs were investigated using the classical colony-forming assay. The results 

showed a significant decrease in MSC numbers across the whole age range (19-89 

years old) (section 3.3.1), as well as their reduced proliferative capacity measured by 

colonies’ integrated density (section 3.3.3). Reduced proliferative capacity was also 

observed in MSCs when they were grown in media supplemented with old donor serum 

as compared to media supplemented with young donor serum. This chapter will 

explore any potential changes in BM MSC gene expression with a focus on the 

molecules involved in MSC multipotentiality. For this, uncultured BM MSCs were sorted 

based on the CD45lowCD271+ phenotype, as previously described (109, 188, 222) and 

gene expression in young (19-40 years old) and old (60-89 years old) donor MSCs 

were investigated and compared.  

4.1 Introduction  

The identification and characterisation of uncultured BM MSCs has been previously 

performed using flow cytometry and a number of surface markers including Stro-1 

(133, 197), SSEA-4 (139, 223), MSCA-1 (224) and others, outlined in section 1.2.1. 

Over the years, new markers such as CD140a (225), CD140b (226), CD146 (227), and 

CD295 (228) have also been proposed, sometimes as single markers but usually in 

combination with ISCT panel markers (105, 229) for ensuring appropriate identification 

of BM MSCs. 

 

CD271 or Low affinity nerve growth factor (LNGFR) was proposed as a very specific 

BM MSC marker in 2002 (108, 230). The combination of CD45 (pan-hematopoietic 

lineage cell marker) and CD271 was later proven to be most useful for the identification 

of BM MSCs, as it provided the highest resolution and the least cross-reactivity with 

other BM cells. Since then, CD45lowCD271+ phenotype has been used by many 

independent laboratories where CD271 was consistently found to be present in BM 

MSCs making it a preferred choice for studying uncultured BM MSCs (109, 231, 232). 

In one study, Torales and colleagues carried out flow cytometry and compared the 

percentage of cells that expressed CD73, CD90, and CD105, and were negative for 

CD45 and CD34, with the percentage of cells that were CD271+ (233). They found that 

while the traditional ISCT panel showed an average 0.54% of mononuclear cells as 

putative MSCs, CD271+ alone was highly specific and 0.53% of BM cells expressed 

CD271. Nevertheless, the work from our laboratory (234), as well as others (109) 
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showed that the addition of CD45 as a ‘negative’ gating marker is necessary for a 

clearer MSC identification, and the removal of CD271low ‘passenger’ cells that appear 

to be of a hematopoietic origin (233). 

 

Considering that CD45lowCD271+ cell phenotype has been extensively used for 

identification of BM MSCs (section 1.2.1), this phenotype was chosen to be used in this 

chapter to further investigate age-related changes in the numbers and the gene 

expression in native BM MSCs without any culture manipulations. As shown in the 

previous chapter, the age-related decline in the number of BM MSCs quantified using 

the CFU-F assay was significant (Section 3.3.1), however, the CFU-F assay remains 

culture-dependent. It was thus logical to explore whether the same decline would be 

observed using flow cytometry, with no culturing steps involved, and to evaluate the 

results obtained by both methods. This is of particular importance as the studies that 

have investigated age-related changes in number of BM MSCs using flow cytometry 

methods remain limited (Table 4.1).   

 

Table 4.1 includes studies that have investigated the age-related changes in number or 

percentage of BM MSCs using flow cytometry. While most of the studies (4 out of 6) 

have indicated a decline in the number of BM MSCs with increasing age,  a number of 

variations can be observed. This includes disparities in grouping methods of ‘young’ 

and ‘old’, additionally, differences in cell isolation techniques and the markers used to 

identify BM MSCs were most notable. Interestingly, large donor variation is another 

factor that must be considered, especially when dealing with uncultured cells (235, 

236). 
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Table 4.1 Previous studies examining age-related changes in the number of BM MSCs measured using flow cytometry 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

BM: bone marrow, BMA: bone marrow aspirate, Y: young, I: intermediate, O: old, F: females 

Source of MSCs Age groups Markers used 
Age related 

change 
Ref 

BM from iliac crest Y: 22-44;   O: 66-74 STRO-1 No change 
(197) 

 

Femoral head BM Y:<50;    I:50-65; O:>65 STRO-1 No change (237) 

BM  13-80; Y:<45 Multiple Decline (97) 

Femoral neck bone Y:28-31;     O:80-97 
CD271+    
SSEA-4+ 

Decline (223) 

BMA 22-80; no groups 
CD45low 

CD271high 
Decline         
(F only) 

(111) 

Iliac crest bone 
graft 

24-89; Y:<50;  O:>50 
CD45low 

CD271high 
Decline (146) 
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4.1.1 Candidate MSC multipotentiality genes 

As mentioned in section 1.2.2, the adipogenic bias of aged BM MSCs is among the 

most established age-related changes described to date. Table 4.2 lists previous 

studies that have investigated the shift from osteogenic to adipogenic differentiation in 

MSCs in aged donors. Of importance, all these investigations have been performed 

using cultured MSCs. The disruption in bone formation has been suggested to be due 

to the impaired ability of MSCs towards osteogenic differentiation in older donors. This 

loss in bone formation is compensated by excessive adipocyte formation. Different 

pathways and molecules have been suggested to be responsible for this shift, 

however, the exact mechanism is not yet completely understood. Of note, bone 

homeostasis is not only a result of bone formation, but also of bone resorption (section 

1.1.4).  In one study, an age-related increase in the expression of a bone resorption 

molecule RANKL in pre-adipocytes along with an increase in osteoclastogenesis, was 

observed within the BM (238). In part age-related bone loss is brought about by 

disruption of bone resorption, described in section 1.1.4. 

 

Apart from the shift towards adipogenic differentiation and bone remodelling, the other 

factor that is potentially affected by older age in MSCs, is their communication with 

other BM cells with the use of trophic factors including chemokines. CXCL12 (C-X-C 

motif chemokine 12) is one such chemokine known to be critical to maintain the HSC 

pool within the BM (239, 240) as well as being involved in MSC migration and 

apoptosis (241). CXCL12 is regulated by Cx43 and Cx45 (242), where Cx43 is the 

most common gap junction within the bone (148). However, age-related changes in 

CXCL12 production by native BM MSCs remain unexplored. In terms of direct cellular 

interactions, connexins are intercellular communication molecules and as an entire 

family of molecules, have been suggested to have an age-related decline in many 

tissues with a potential link to human ageing and cancer (243). Both of these molecules 

will be discussed further in 4.1.1.5. 

 

As BM MSCs are very rare cells (87), the numbers of purified cells are not sufficient to 

perform standard differentiation assays, which normally use a range of 2x105-2x106 

cells/ assay (108). Therefore, gene expression in CD45lowCD271+ cells was studied as 

the first step to explore their differentiation and cell communication potentials. 

4.1.1.1 Osteogenic-lineage transcripts 

RUNX2 (Runt related transcription factor 2) is the master regulator of bone formation 

and belongs to RUNX family of transcription factors (TFs). All molecules of this family 
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share a common runt domain. RUNX2 is the earliest indicator of osteogenic 

differentiation and is also known to tightly regulate chondrocyte hypertrophy and 

vascular invasion of developing skeletons. In MSCs, levels of RUNX2 expression have 

been mainly investigated to detect their osteogenic differentiation capacity and MSC 

commitment towards osteo-progenitor lineage (244). With respect to age-related 

changes, overexpression of RUNX2 has been suggested to contribute to bone 

resorption in osteoblastic lineage cells by increasing RANKL expression (245). 

However, when narrowing to MSCs from human donors, investigations are sparse. In 

older donors, the expression of RUNX2 has either been observed to decrease or have 

no change in cultured MSCs providing no substantial evidence for age-related 

differences in uncultured MSCs (Table 4.2). Nevertheless, it could be hypothesised that 

it may be reduced based on the idea of ‘MSC adipogenic bias’ with advancing age. 
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Table 4.2 Previous studies investigating age-related differences in osteogenic, adipogenic and bone remodelling molecules in culture 
expanded MSCs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BM: Bone marrow, IC: Iliac crest, Y: young O: old, A:adult,  *: investigated at protein level

Function Source of cells/ 
MSCs 

Age groups Genes tested Age related changes Reference 

Osteogenic 
differentiation 

BM from humans 17-90; 
Y:<50; O:>50 

RUNX2 Decreased (133) 

BMA from IC in 
humans 

Y:<50; A:50-
65 ; O:>65 

RUNX2, OC, ALP, 
OPN 

No changes in RUNX2 (246) 

Bone graft from IC Y:18-49; 
O:>50 

RUNX2, OC, ALP, 
OPN 

No changes in RUNX2 (247) 

Adipogenic 
differentiation 

BMA from IC in 
humans 

13-80; no 
group 

LPL, PPAR- No changes in PPAR- (97) 

Human ACL Y:17-27;       
O:69-79 

LPL, PPAR- No changes in PPAR- (248) 

BM from   iliac spine Y: 18-42;           
O: 66-78 

PPAR- No changes (196) 

Bone from IC 
7-78; no 

group 
Leptin receptor 

CD295 
Increased (126)* 

Bone remodelling 

BM from humans Y:<50; O:>55 RANKL, OPG RANKL increased, 
OPG decreased 

(249) 

BM from humans Y:<55; O:>55 RANKL RANKL increased in 
females 

(250) 
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SPARC (Secreted protein acidic and rich in cysteine) or more commonly known as 

‘Osteonectin’ is a non-structural matricellular glycoprotein in the bone that binds 

calcium. It is secreted by osteoblasts and pre-osteoblasts during bone formation and is 

needed for bone calcification (251). Both, over expression (252) and selective deletion 

of SPARC (253) have been associated with impaired motility, suggesting that its 

normal functioning is vital for bone growth and development. With respect to MSCs, the 

precursors of osteoblasts, it is not surprising that MSCs too express certain levels of 

SPARC, shown previously by our group (188). Its role in the functions outlined above 

suggests that it plays an important part in the MSC transition towards the osteogenic 

lineage. It is thus expected with increasing age, as the fat content increases with a 

compromise in bone formation, the levels of SPARC potentially decline. However, the 

number of studies investigating this also remain limited, with no study to date 

investigating any changes in its expression in uncultured MSCs. Interestingly, our 

previous study using cultured MSCs have shown that SPARC expression significantly 

increased in late-passage, pre-senescent MSCs (222) therefore the present evidence 

on the association of with MSC ageing or senescence remains controversial. 

 

SFRP1 (Secreted frizzled related protein 1) is a member of the SFRP family of 

molecules containing cysteine rich glycoproteins, homologous to the putative Wnt 

(wingless integrated)-binding site of the frizzled proteins (fzd receptors). It acts as a 

soluble modulator of the Wnt signalling pathway. Wnt signalling pathway is a major 

pathway involved in skeletal development, bone mass regulation and is often regarded 

integral for osteogenesis (254). SFRP1 is well known as a Wnt antagonist that acts by 

directly binding to Wnt proteins, making it a target for therapeutic approaches for bone 

remodelling and repair. SFRP1 has been extensively explored in bone and bone-

forming cells (254). The deletion of SFRP1 reduced osteoblast and osteocyte 

apoptosis in vivo and proliferation and differentiation capacity of  osteoblasts in vitro in 

mice (255). It has also been reported to block osteoblast induced osteoclastogenesis 

by inhibiting RANKL dependant osteoclast formation (256). SFRP1 was also found to 

suppress Wnt signalling in an immortalised osteoblast cell line (257). Overall, previous 

studies indicate that SFRP1 inhibits osteoblast formation and their coupling with 

osteoclasts. Based on these findings, SFRP1 inhibitors were developed as potential 

therapies with the aim of increasing bone formation (258). While their potency has 

been tested in vitro, in vivo efficacy in appropriate animal models or in human cells are 

yet to be examined.  
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The effect of age on SFRP1 expression has not been extensively studied to date. 

Rauner and co-workers investigated the level of expression of SFRP1 in the 

osteoblasts of young (6w), adult (6mo) and old (18mo) male C57BL/6J mice and found 

a significant age-related decline (259). Considering the above stated findings and the 

fact that the gene has been found on osteoblastic lineage, it can be hypothesised that 

MSCs, expression of SFRP1 could show an age-related decline. Indeed, this was 

observed in our previous study where SFRP1 displayed an age-related decline in BM 

CD45lowCD271+, cells but this was observed in paediatric donors compared to adult 

donors (188). 

 

Owing to their involvement in MSC osteogenic differentiation, these three transcripts 

were selected for investigating age-related differences in uncultured MSCs in relation 

to their osteogenic differentiation potential. 

4.1.1.2 Adipogenic-lineage transcripts 

An increase in the transcripts associated with adipogenesis have been observed in 

MSCs aged in vitro (section 1.2.2) or in aged animals in vivo (80, 143, 260). Among 

many transcripts, an increase in PPAR- (Peroxisome proliferator activated receptor-

gamma) and FABP4 (fatty acid binding protein 4) expression has been associated with 

the adipogenic differentiation of MSCs (261). LepR (Leptin receptor) plays an important 

role in bone-fat balance (262, 263) and its expression was shown to decline in 

uncultured cells by our group previously (188). However their donor range included 

paediatric samples and the oldest donor was 72 years old. Age-related changes in 

adults and in donors aged above 75, with respect to expression of these transcripts in 

uncultured MSCs is yet to be explored.  

 

PPAR- gene encodes a molecule termed the PPAR-receptor. There are two 

different isoforms of the protein, named PPAR-1 and PPAR-2 that exist due to 

alternative splicing of the gene. While PPAR-1 is expressed in various cell types 

including osteoblasts, PPAR-2 is restricted to adipocytes including those within the BM 

(264). The receptor is found in abundance not only in adipose cells but also in pre-

adipogenic cells, endothelial cells and vascular smooth cells (265). Owing to its 

requirement in adipose tissue formation, PPAR- is considered a key regulator of 

adipogenic differentiation. PPAR- in MSCs can be both, anti-osteogenic and pro-

adipogenic, therefore it can play the role of osteoblastic/adipogenic ‘switch’ (266). It 

has thus been described to show ‘tremendous potential in novel strategies for bone 

tissue engineering and clinical applications’ (267). As mentioned above, there is 

published evidence of increased expression of PPAR- in cultured MSCs from aged 
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donors as well as in cells aged in vitro through culture expansion (143). Based on 

previous literature , it was hypothesised that there would be an age-related increase in 

the expression of PPAR-in native BM MSCs from older donors.  

 

Leptin receptor (LepR) is another transcript for which there is an increasing body of 

evidence on its role in the bone-fat balance (262, 263). LepR gene encodes for the 

surface receptor for leptin, a hormone secreted by adipocytes and known to regulate 

body weight and metabolism (268, 269). To understand the gene encoding for leptin 

receptor, it is worth taking a step back to understand the role of leptin. 

 

Leptin is an adipokine predominantly produced by adipose cells and is known to 

contribute to energy balance by acting on hunger/satiety centres located in the 

hypothalamus (270, 271). Its level increases with weight gain and decreases with 

reduced weight (272). The adipokine has also been shown to be secreted by skeletal 

muscles and bone cells and is an established growth factor for muscle and bone in 

early life (268). The receptor for the leptin adipokine (CD295) has been shown to be 

present in musculo-skeletal tissues (263). Initially, it was thought that leptin hormone 

contributed to age–related decline in bone mass via the hypothalamus and the beta-

adrenergic receptors (273). However, more recent studies suggest that the hormone 

may have a more direct role on bone lineage cells including MSCs (274).  However, the 

role of CD295, the leptin receptor in MSC differentiation to bone is not very well 

understood. With respect to ageing, Laschober and colleagues showed an age-related 

increase in the level of expression of LepR at the protein level (CD295) in BM MSCs 

(126). Their study also indicated that the CD295 positive BM MSCs in old donor MSCs 

were more apoptotic than young donor MSCs, quantified using Annexin-V staining. On 

the other hand, our group has previously shown an age-related decline of LepR gene 

expression in CD45lowCD271+ cells in a small number of donors (n=8) (188). We 

therefore hypothesised an age-related difference in the transcript of this gene in native 

BM MSCs from old donors. 

 

FABP4 belongs to the FABP (fatty acid binding protein) family of transport proteins that 

are responsible for the transfer of fat or lipophilic molecules across the cellular 

membranes and is a well-established marker for differentiated adipocytes (275). It was 

first detected in adipose tissues and mature adipocytes and has also been termed as 

adipocyte P2 (ap2) due to similarity with myelin P2 protein (276), which is also a part of 

the FABP family. It is highly expressed during adipogenic differentiation of MSCs and is 

transcriptionally controlled by PPAR- agonists, fatty acids and insulin. With respect to 

MSCs, FABP4 has been detected in high levels in MSCs expanded in culture over a 
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period of 21 days undergoing adipogenic differentiation in parallel to the expression of 

PPAR-(277). Based on these findings, an age-related increase in its expression in 

uncultured BM MSCs was hypothesised.  

4.1.1.3 Oxidative stress in MSCs and anti-oxidant enzyme SOD3 

Presence of reactive oxygen species (ROS) has been suggested as one of the 

potential drivers of the adipogenic bias of MSCs (278, 279). ROS are by-products of 

metabolism inside a cell, mitochondria being the major site of ROS production. 

Oxidative stress is the consequence of an excessive ROS production and limited 

activity of antioxidant enzymes to balance the negative impacts of ROS. A decline in 

the anti-oxidant enzymes with increasing age leads to reduced capacity of scavenging 

of ROS (280). Excessive ROS causes accumulation of DNA damage leading to cellular 

senescence in ageing and associated diseases (281). This ultimately drives the cell 

onto the apoptosis path and is believed to be one of the major causes of age-related 

differences in MSCs. 

 

During metabolism, ROS intermediate molecules like superoxide and peroxides are 

formed as a part of cell metabolism. These intermediate ROS products are scavenged 

by anti-oxidants enzymes like superoxide dismutase (SOD) and glutathione peroxidase 

catalase (Gx) to prevent the interaction of ROS with lipid membranes and proteins 

within the body (282). SOD converts superoxide ion to hydrogen peroxide, which is 

further converted into water and oxygen molecules under catalase and glutathione 

peroxidase activities (282). 

 

Anti-oxidants thus play an important role in critically maintaining the appropriate ROS 

levels. SOD or superoxidedismuatse form the first line of defence in scavenging the 

superoxide molecule (283). ‘Dismutation’ by definition is a redox reaction that involves 

the formation of two products of different oxidation states from a single molecule of 

intermediate oxidation state. Superoxide molecule (O2
-) has a negative charge which 

causes it to react with lipids and proteins nearby causing damage. SOD thus gets its 

name from the function of carrying out ‘dismutation’ of superoxide molecule to 

hydrogen peroxide (H2O2). H2O2 further is scavenged by Gx into water and oxygen 

molecule. SOD enzymes include SOD1, SOD2 or SOD3. SOD1, also known as 

Copper/Zinc SOD (Cu/Zn SOD) is mainly located in the cytosol of the cells. SOD2 is 

also known Manganese-SOD (Mn-SOD) is majorly located in the mitochondria of cells. 

As mitochondria is the major site of ATP production, SOD2 has been investigated in a 

large number of studies to understand the impact of this anti-oxidant enzyme in 

oxidative stress (283). 
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SOD3 is also known as extracellular SOD (EC-SOD) and gets its name from its 

location. SOD3 has been shown to be secreted by MSCs (284), while SOD2 and SOD1 

do not have any such cellular specificity. Due to its location, it is the only SOD that 

scavenges ROS in the extracellular compartment of cells and catalyses the dismutation 

of superoxide molecule. Within the BM, MSCs exist within a hypoxic BM niche with 

oxygen concentrations as low as 2-8% O2 (285). Culture expansion in artificial 

conditions automatically expose these cells to a ‘hyperoxic’ condition but it is usually 

referred to as ‘normoxic’ or normal oxygen concentration due to the widespread 

practice of in vitro expansion. An increase in the oxidative stress in MSCs has often 

been suggested as a potential cause for the senescence and their adipogenic bias in 

vitro (278, 286).   

 

Mohd Ali and colleagues compared the proliferative capacities of BM MSCs from young 

(<30) and old (>60) donors in hypoxic (5% O2) and normoxic (20% O2) conditions. They 

found that MSCs from older donors demonstrated reduced proliferative and 

differentiation abilities along with increase in cellular senescence. Interestingly, they 

found that MSCs cultured under hypoxic conditions in both age groups were able to 

demonstrate enhanced self-renewal and proliferative capacity (287). Another study 

investigated the changes in SOD3 at the mRNA and protein level during differentiation 

of cultured BM MSCs. The study found significantly higher levels of SOD3 during 

adipogenesis, lower levels during chondrogenesis but no difference during 

osteogenesis (288).  

 

Considering that increased adipogenic differentiation bias is also age-related (section 

1.1.4) and that increase in oxidative stress is among the oldest theories of ageing 

(section 1.1.1), it can be said that SOD3 may be affected in old donors. However, more 

clarity in how it alters in uncultured BM MSCs in old donors is required. It may be 

hypothesised that the level of ROS in old donor MSCs will be greater and the levels of 

anti-oxidant enzyme SOD3 in old donor MSCs will be lower than in young donor MSCs. 

4.1.1.4 Transcripts associated with bone remodelling 

Bone remodelling is a tightly regulated mechanism, which under normal conditions 

perfectly balances the rate of bone resorption by osteoclasts and the bone formation by 

osteoblasts. The bone remodelling cascade and the different cells involved was 

described in detail in section 1.1.4.  
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RANKL (Receptor activator of nuclear factor kappa beta ligand) is expressed by 

osteoblasts and binds to its target RANK that is expressed by osteoclast progenitors 

(64, 74). RANKL is a type II membrane protein from the tumour necrosis factor (TNF) 

super family. It is a homotrimeric protein and exists in both, soluble and membrane 

form. However, the soluble form is known to have lesser ability to form osteoclasts 

(289). MSCs have been known to contribute towards both, bone resorption by 

expression of RANKL and bone formation as precursors of bone forming cells (290). 

While culture expanded MSCs are able to express RANKL and have been shown to 

contribute to osteoclastogenesis (291), its expression in MSCs in relation to in vitro 

ageing remains controversial (Table 4.2) and in uncultured MSC, unexplored.  

 

RANK (Receptor activator of nuclear factor kappa beta) is the receptor for its ligand, 

the RANKL and is also designated TNFRSF11A. RANK is expressed on the surface of 

osteoclast precursors and RANKL binding to RANK initiates the process of osteoclast 

formation. It is expressed on osteoclast precursors (292) which upon maturation form 

bone resorbing osteoclasts. However, osteoclast formation takes place only after the 

activation of TNF associated receptor factor 6 (TRAF6) signalling (293). This then 

mediates the MAPK/NF-Kb pathway which eventually brings about osteoclastogenesis.   

 

OPG (Osteoprotegerin or Tumour necrosis factor super family member 11B/ 

TNFSFR11B) is expressed widely by a number of cells and is the natural 

decoy/inhibitor of RANKL. If OPG (instead of RANKL) binds to RANK, then osteoclast 

formation stops and bone resorption does not take place. It is highly expressed in 

tissues including osteoblasts, pre-osteoblasts and other cells of the bone lineage in the 

BM (71). It also belongs to the TNF receptor superfamily but is different from the other 

members as a secreted protein that does not contain a trans-membrane domain (294).  

 

An age-related increase in RANKL and decrease in OPG in MSCs was hypothesised, 

potentially contributing to increased bone resorption rates in vivo, accounting for the 

age-related bone loss in old age. 

4.1.1.5 Transcripts associated with cellular interactions 

CXCL12 (Chemokine motif 12 also known as SDF-1 or stromal derived factor-1) is a 

major chemokine facilitating the chemotaxis of HSCs, MSCs and other BM cells (295). 

It is a member of a large family of chemokines that are structurally related. It binds to 

its receptor CXCR4 on target cells and is known for its role in the maintenance of the 

hematopoietic compartment of the BM niche (239, 240) and in chemotaxis of MSCs 

(296). In the BM, CXCL12 is expressed by osteoblasts and endothelial cells as well as 
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stromal cells lining the endosteal surface (297). Most HSCs within the BM are usually 

in contact with cells expressing high amounts of CXCL12 which have been named 

CXCL12-abundant reticular cells (or CAR cells) in mice (239). CXCL12 is key to 

maintain the healthy pool of HSCs. The counterpart of CAR cells in human BM are 

likely to be adventitial reticular cells, topographically overlapping with CD45lowCD271+ 

MSCs (298). 

 

In addition to its support for hematopoietic cell activities, such as their retention and 

egression from the BM, CXCL12-CXCR4 signalling axis has also been implicated in the 

processes related to osteoclast recruitment, chemotaxis and bone resorption (299). 

There are also reports describing the impact of CXCL12-CXCR4 signalling in 

metastases of breast cancer, lung cancer and some hematopoietic malignancies to the 

bone (300). 

 

 Investigation in culture expanded MSCs to understand any differences with the 

advancement of in vitro ageing, to the best of my knowledge, does not yet exist. The 

information regarding the levels of its expression before culturing MSCs, also remain 

limited. Our group found very high levels of CXCL12 expression in uncultured CD45-

CD271+ BM MSCs as compared to CD45+CD271-  HLCs but there was no age-related 

differences observed with 8 donors. As red (hematopoietic) marrow is replaced by 

yellow (fatty) marrow as a function of age, it was hypothesised that there could 

potentially be an age-related decrease in the levels of CXCL12 in uncultured BM MSCs 

from aged individuals. 

 

Among the connexins, Connexin43 (Cx43) is the most abundant gap junction protein in 

bone cells, mainly associated with the intercellular interaction between osteocytes and 

osteoblasts (148). It is essential for intercellular interaction, normal bone formation and 

for the viability of osteocytes (301). As the main gap junction in mature bone-lineage 

cells, it is therefore an important molecule to investigate with respect to in vivo MSCs. 

In the BM, MSCs interact with each other forming an intricate net or scaffold upon 

which other BM cells including HSCs reside, these networks are facilitated by Cx43 

gap junctions. The gap junctions also regulate the transcription of CXCL12 in  a cell 

contact dependant manner (242). 

 

Previous studies investigating age-related differences in the expression of Cx43 have 

found a significant decline in native CD45lowCD271+ BM MSCs (188). Studies in human 

derived cultured expanded MSCs to investigate changes with in vitro ageing do not 

exist. With respect to animal studies, Donahue’s group have investigated the 
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significance of Cx43 in bone formation and skeletal homeostasis in rats. They have 

found no age-related differences in Cx43 gene expression in cultured BM MSCs (302). 

Although the data remains controversial, these studies present Cx43 a potential 

molecule affected by age in native BM MSCs (303).  

 

At the protein level, Cx43 or gap junction protein alpha 1 (GJA1) is an intercellular 

membrane spanning channel that mediates direct exchange of small molecules, ions, 

nucleotides between neighbouring cells. The role of Cx43 in skeletal metabolism and 

homeostasis is now well established as gap junction intercellular communication 

(GJIC) (304).  In relation to the bone, a growing body of evidence exists on the 

importance of Cx43 in modulating bone cells to respond to mechanical signals and 

growth factors to enable bone healing post fracture (148, 305). Absence or reduced 

Cx43 function have been associated with reduced levels of osteogenic genes (306) 

and reduced level of osteoclast formation leading to decreased bone resorption (307). 

These findings have established that Cx43 is vital for growth, development and 

maintenance of healthy bone health. Owing to the various important roles played by 

this molecule in the BM, Cx43 was chosen to be tested at both, the gene and protein 

levels and was hypothesised to display an age-related decline in BM MSCs in this 

project.  

4.1.2 Candidate age-specific surface makers  

The knowledge of age-specific markers for uncultured BM MSCs remains limited, 

especially when investigating BM MSCs from young and aged human donors. It has 

been shown in various studies that BM MSCs from younger donors have good 

therapeutic potential. However, the use of BM MSCs from older donors for clinical 

applications usually requires further in depth investigation. Identifying a candidate 

surface marker that could differentiate young from old donor MSCs could be next 

considered as a marker to indicate the ageing status of native MSCs before further 

investigations.  

 

The previous chapter showed that there is a decline in the proliferative capacity of BM 

MSCs from old donors, irrespective of whether they formed large or small colonies. 

Identification of a marker that could indicate low-proliferative (aged) MSCs, would be 

very useful for cell sorting to remove these poorly proliferative cells before clinical and 

therapeutic applications of MSCs.  
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4.1.2.1 CD106 

CD106 also known as vascular cell adhesion molecule (VCAM-1) is a cytokine-

inducible cell surface protein capable of mediating adhesion and immunomodulation 

(308, 309). It is a member of the immunoglobulin family and is expressed on BM MSCs 

(Table 4.3). However, the level of expression in human BM MSCs has shown 

considerable experimental variation, whereby decreasing expression (182), increasing 

expression (125) and random alternations (123) have been shown with in vitro culture 

expansion.  

Thus the information on what happens to the expression of CD106 with in vitro ageing 

remains controversial. Cellular adhesion, T cell activation and recruitment of 

lymphocytes at the site inflammation is known to be mediated by CD106. CD106 also 

plays an important role in MSC mediated immune-suppression (310). Considering that 

MSC display their immune-regulatory properties using cell-to-cell adhesion (311) and a 

general decline in the immune-suppression potential of BM MSCs with age (303), it 

was hypothesised that the expression of CD106 would display an age-related decline. 

4.1.1.6 CD146 

CD146 or Melanoma cell adhesion molecule (MCAM) is a 113kDa cell adhesion 

molecule which was originally described as an endothelial cell marker (312). It is also 

expressed in a variety of cells including lymphocytes (313). With respect to BM, CD146 

identifies the population of the perivascular MSCs (314).  A 2011 study by Tormin et 

al., showed that native BM MSCs with both phenotypes CD45lowCD271+CD146+ and 

CD45-CD271+CD146- formed comparable number of colonies in the CFU-F assay and 

generated similar cultures in vitro with similar cell morphology, FACS and gene 

expression profiles (227). In terms of their location, CD45lowCD271+146+ cells were 

found in the perivascular region whereas CD45lowCD271+146- cells were present as 

bone lining cells.  

 

With respect to age-related changes, a few studies listed in Table 4.3, have shown 

down regulation of the marker in culture. Previous work from our laboratory has shown 

a decline during in vitro MSC ageing in the expression of CD146, as well as CD106 

(182). Siegel and co-workers found an age-related decline in the geometric mean of 

CD146 expressing BM MSCs. However, no data  on the expression of CD146 in 

uncultured BM MSCs in relation to donor age is available. Based on previous evidence 

of decline in expression of CD146 in culture expanded BM MSCs (Table 4.3),  it was 

hypothesised that CD146 displays an age-related decrease in the expression in old 

donors. 
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The aim of this chapter was to investigate any age-related changes in the number of 

uncultured BM MSCs using the CD45lowCD271+ phenotype in flow cytometry. The 

same phenotype would be used to segregate MSCs (CD45lowCD271+) and HLCs 

(CD45+CD271-) cells and investigate any age-related changes in multipotential gene 

and surface marker expression. 
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Table 4.3 Previous studies investigating candidate age-specific surface markers 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BMA: Bone marrow aspirate, IC: Iliac crest, T: teenage, YA: young adults,  AA: ageing adults, I: intermediate, O:old,  NA: not applicable

Surface 
marker 

Source 
of MSCs 

Age groups 
Passage/ 
donor age 
dependant 

Isolation  Medium  
Passage/ Age-
related change 

Ref 

CD106 

BMA 2-61 
Passage 

dependant 
Density 

centrifugation 

NH 
expansion 
medium 

Decreased  (182) 

IC 
T:0-20; YA:20-
40; AA:40-60; 

O:>60 

Donor age 
dependant 

Plastic 
adhesion 

MEM 
+20%FCS 

Increased (138) 

BMA 
13-80;  Y:<45;    
I:45-65; O:>65          

Donor age 
dependant 

Density 
centrifugation 

Mesencult Decreased  (97) 

 
BMA 2-61 

Passage 
dependant 

Density 
centrifugation 

NH 
expansion 
medium 

Decreased  (182) 

 CD146 BMA 
13-80;  Y:<45;    
I:45-65; O:>65          

Donor age 
dependant 

Density 
centrifugation 

Mesencult Decreased (97) 

  BM NA  
Passage 

dependant 
Plastic 

adhesion 
DMEM+ 
10%FCS 

Decreased (123) 
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4.1.2 Hypotheses and Objectives 

Hypotheses: 
 
1. The number of CD45lowCD271+ uncultured BM MSCs demonstrates an age-related 

decline. 

2. The transcripts for osteogenic and adipogenic differentiation measured in 

CD45lowCD271+ BM MSCs demonstrate an age-related decline and increase, 

respectively. 

3. The level of ROS in CD45lowCD271+ BM MSC increases and the expression of anti-

oxidant enzyme SOD3 decreases with increasing age. 

4. The transcripts for bone remodelling measured in CD45lowCD271+ BM MSCs 

demonstrate an age-related bias for bone resorption over bone formation.  

5. The transcripts related to cellular interactions measured in CD45lowCD271+ BM 

MSCs demonstrate an age-related decline. 

6. The candidate surface markers measured by flow cytometry show age-related 

decrease. 

 

Objectives: 
 
1. To enumerate uncultured BM MSCs by flow cytometry using the CD45lowCD271+ 

phenotype across a broad donor age range. 

2. To measure transcripts associated with MSC osteogenic (RUNX2, SPARC, SFRP1) 

and adipogenic differentiation (PPAR-, FABP4, LepR) in CD45lowCD271+ BM MSCs in 

young and old donor groups.  

3. To quantify ROS and to examine the expression of anti-oxidant enzyme SOD3 in 

CD45lowCD271+ BM MSCs in young and old donors.  

4. To test the transcripts associated with bone remodelling (RANK, RANKL, OPG) in 

CD45lowCD271+ BM MSCs in young and old donors.  

5. To test transcripts associated with cellular interactions (CXCL12, Cx43) in 

CD45lowCD271+ BM MSCs in young and old donors.  

6. To investigate the expression of surface markers of CD106, CD295, Cx43 and 

CD146 in CD45lowCD271+ BM MSCs in young and old donors.  
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4.2 Methods 

4.2.1 Donor selection 

Fresh BMA from n=30 donors was used to perform enumeration of BM MSCs using the  

CD45lowCD271+ phenotype. Frozen BMA from a total of n=20 donors (10 young and 10 

old donors) were used for gene expression and surface marker expression 

experiments. Donors used in this chapter were n=10 young donors (19-40 years old, 

median age=27 years old) and n=10 old donors (59-89 years old, median age=68 

years old). Samples were defrosted as outlined in section 2.3 of the thesis and the 

exclusion criteria remained the same as described previously in section 3.2.1 

 

4.2.2 Native MSC enumeration by flow cytometry 

Flow cytometry was used as the method is automated, can be performed with minimal 

manipulation and without any culture expansion. For native BM MSC enumeration, 

100l of fresh BMA was placed in a FACS tube and incubated for 15 minutes at RT 

with the following antibodies: 20l CD271-allophycocyanine (APC) and 10l CD45-

phycoerythrin (PE)-cyanine dye 7 (Cy7); and 10l of 7-Aminoactinomycin D (7-AAD) 

was added to distinguish between live and dead cells. After staining, erythrocytes were 

lysed by using 500l of ammonium chloride (NH4Cl) solution (Appendix 2, Table 2 

Buffers) per the tube for 3-5 minutes at 37ºC. Finally, 50l of Count bright absolute 

counting beads were added at RT after vortexing. The cell and bead suspension (total 

volume 700l) was run using the Beckton Dickinson (BD) LSRII 4 laser flow cytometer. 

 

Unstained and single antibody stained samples were used to optimize the cytometer 

voltage settings and spectral compensation. Isotype controls for the antibodies IgG1 

APC and PE-Cy7 (Appendix 2, Table 2) were used to set the gating strategy on the 

population of interest (MSCs). A minimum of 100 MSCs (CD45lowCD271+ cells) were 

collected for each sample. The acquisition time was dependent on the cellularity of the 

sample. Data analysis and gating strategies were optimized based on the method 

described previously by Cuthbert et. al (207) and also shown in figure 4.1. 
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Figure 4.1 Uncultured BM MSC enumeration by flow cytometry using 
CD45lowCD271+ phenotype 

Gating strategy for enumeration of CD45lowCD271+ MSCs. Forward and side scatter 
plot was used to eliminate debris followed by separation of counting beads and cells 
based on granularity and fluorescence. Then live cells were identified based on 7-AAD 
negativity from where CD45lowCD271+ were identified as MSCs. Figure indicates 
representative donor. 
 

The analysis of the flow cytometry data was performed using the FACS Diva software. 

Cell debris were eliminated based on forward and side scatter and the counting beads 

were distinguished based on their granularity and fluorescence. The dead cells were 

excluded by the uptake of 7-AAD dye. The cell population of interest (MSCs) were 

identified as CD45lowCD271+ and the number of MSCs perl of BMA was calculated 

using the bead manufacturer’s formula [number of live MSC events/number of beads 

events x number of beads per 50l/ total sample volume]. The number of MSCs per l 

was multiplied by 700 to get the total number of MSCs in 100l of BMA which was then 

multiplied by 10 to get the number of MSCs per ml of BMA. 
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4.2.3 Sample preparation and quantification of ROS in uncultured MSCs 

BMA samples from young and old donors were collected as mentioned in section 2.2. 

RBCs were lysed using NH4Cl and 2x106 NCs were added to each of the flow tubes. 

While one tube was not exposed to any chemical, the other tube was exposed to 8mM 

tert-butylhydrogenperoxide (TBHP) for the generation of ROS under extreme oxidative 

stress as per optimised protocol (315). Both tubes were then incubated for an hour at 

37C and 5% CO2. Cells that were not exposed to TBHP served to measure ‘basal’ 

levels of ROS in the MSCs.  

After incubation, the cells were washed with 2ml 1X PBS and centrifuged at 400g for 5 

minutes. The supernatant was discarded and the cells were re-suspended with 100μl of 

medium containing DMEM+10%FBS. The cells were stained with 20μl CD45 V450 and 

20μl of CD271 PE-Vio770 and 2μl of CellROX (FITC) for staining MSCs at the same 

time for 15 minutes. To identify ROS, cells were stained with CellROX which is a non-

fluorescent dye under reduced state but exhibits strong fluorescence upon oxidation 

localized within the cell. Exposure to TBHP causes additional formation of ROS 

resulting in further oxidation which was detected by the dye and measured by flow 

cytometry. The entire process has been summarized in Figure 4.2 below. After 15 

minutes of incubation, the cells were washed with PBS for 5 minutes at 400g. The 

supernatant was discarded and the cells were re-suspended with 100μL of medium 

containing  DMEM+10%FBS. Finally, 2μl of Sytox (APC), dead cell dye was added to 

distinguish live cells from the dead cells and after 15 minutes of incubation, the sample 

was quantified for measurement of ROS using flow cytometry. 

MFI for CellROX that was indicative of the amount of ROS in the sample was recorded 

and compared between pre and post stimulation with TBHP. The values were then 

compared between young and old donors for age-related differences. 
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Figure 4.2 Steps involved in the quantification of ROS in CD45lowCD271+ BM 
MSCs 

 

(A) BMA was treated with ammonium chloride to eliminate RBCs. This was followed by 
treatment of cell suspension with tert-butylhydrogenperoxide (TBHP) or no treatment 
(basal) for an hour in incubator. The cells were then washed, stained with antibodies 
and quantified using flow cytometry. (B) Gating strategy for measuring ROS in 
CD45lowCD271+ MSCs, recently published by Jawhari et al., (315). Forward and side 
scatter plot was used to eliminate debris (left panel) followed by identification of live 
cells using Sytox negativity (middle panel). Live cells were identified as CD45lowCD271+ 
MSCs (C)  Histogram representation of MFI indicating ROS in CD45lowCD271+ MSCs. 
Figure is indicative of representative donor. 
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4.2.4 Cell sorting 

The technique for cell sorting has been described in section 2.4. In brief, frozen 

nucleated BM cells from both donor groups with at least 40x106 frozen cells were 

defrosted using TM (section 2.3). The cell suspension was then centrifuged at 400g for 

5 minutes for the removal of DMSO. The supernatant was discarded and the cells were 

re-suspended in 5 ml of the TM. The MSCs were then enriched using Anti-fibroblast 

microbeads that positively select for cells with D7-fib receptor to enrich the percentage 

of CD45lowCD271+ MSC by positive selection, as previously developed in our laboratory 

(108) and described in section 2.4. 

 

After enrichment, the cells were distributed in 10 tubes for staining. For isotype controls 

tubes, a minimum of 2x105 cells were used for each antibody and for cell sorting, up to 

3x106 cells were used to collect sufficient number of MSCs. The duration of cell sorting 

from setting up the spectral compensation and up to the completion of cell sorting for 3 

samples varied from a minimum of 180 minutes up to a maximum of 270 minutes 

depending upon the cellularity of the samples. As a rare population in the BM, the 

number of CD45lowCD271+ cells collected after sorting ranged from a minimum of 999 

cells to a maximum of 15,000 cells depending on donor age, technical challenges 

during defrosting and cell loss due to enrichment. Simultaneously, a maximum of 

70,000 cells of the control population of CD45+CD271- HLCs were also collected. Their 

collection was usually accomplished within 45-60 minutes owing to the relatively larger 

proportion of these cells within the BMA. The number of HLCs collected was thus 

considerably higher than the number of MSCs collected. 

 

Analysis of flow cytometry data was performed using FlowJo software. Unstained and 

single antibody stained tubes were used as controls. Gating strategy as described by 

Cuthbert et al., (207) was followed to record the number of cells and MFI in a selected 

gate as shown in Figure 4.11. The recorded values of MFI for each surface markers 

were plotted as a dot plot for young donors (black) and old donors (grey) using 

GraphPad Prism with median values to illustrate and compare any difference in the 

MFI. 

4.2.5 Gene expression between young and old donors 

The general method of qPCR has been described in section 2.5. The experiments were 

performed in integrated fluid circuit Flex SixTM  chip (Fluidigm) which has 2 partitions 

with 6 compartments each (Figure 4.2). One side of the chip is for placing the TaqMan 

assays (assays inlet) and the other side is for samples’ cDNA (samples inlet). Each 

compartment can hold up to 12 samples/assays. The compartments are covered using 
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barrier plugs to prevent any external contamination before being used (Figure 4.3, top 

panel). The accumulator is the region where the control fluid is added that eventually 

enables the mobilisation of the assay and the corresponding sample to their reaction 

depot (Figure 4.3, bottom panel) based on the principles of microfluidic technology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Flex SixTM chip showing its different segments as described in the text 
and shown in manufacturer’s protocol 

 

 

The volumes of reagents, assays and samples used have been described in section 

2.5. The TaqMan probes for genes presented in this chapter are shown in Table 4.4 
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below. This technique was chosen over traditional RT-PCR owing to the lower volume 

of sample and low concentrations of RNA needed for the experiment. As mentioned 

earlier, CD45lowCD271+ is a rare population in the BM and numbers of cells obtained 

after cell sorting were as low as 999 cells. The collection and elution of RNA was 

performed to ensure minimal dilution of the RNA content and at the same time to get 

sufficient RNA quantity for performing experiments. The guidelines provided by the 

manufacturers were followed in order to carry out the experiment. 

 

For analysis, Fluidigm software was used to set the Ct values and the expression of 

genes were exported as a Microsoft excel file. In the excel file, first the data was 

normalised with HPRT1 as the housekeeping gene to generate the Ct values for each 

gene using the formula [Ct target gene - Ct housekeeping gene]. Finally, the Ct values were 

converted to ‘relative expression’ for each gene using the formula [2-Ct] and the values 

were compared between young and old donor cohorts. To observe trends across the 

whole donor cohort, cluster analysis was performed using Cluster and Tree view 

softwares. The software generated a cluster in red (+3 units) indicating genes and 

samples with highest expression and green (-3 units) indicating genes and samples 

with comparatively lower expression. Relative expression values closer to the centre of 

the defined range (-3 to +3) were depicted in black and the values that were below 

detection level were depicted in grey (shown further below in Figure 4.6). 

Table 4.4  List of TaqMan probes used for gene expression study in this chapter 
 

Gene symbol   Genes (full name) Assay 

RUNX2 Runt related transcription factor 2 Hs00231692_m1 

SPARC 
Secreted protein acidic and rich in cysteine/ 
Osteonectin 

Hs00277762_m1 

SFRP1 Secreted frizzled related protein 1 Hs00610060_m1 

PPAR-ɣ    
Peroxisome proliferator activated receptor - 
gamma 

Hs01115513_m1 

FABP4   Fatty acid binding protein 4 Hs00609791_m1 

LepR Leptin Receptor, encoding CD295 protein Hs00174492_m1 

SOD3 Superoxide dismutase 3 Hs04973910_s1 

TFNSF11A/RANK Receptor activator of nuclear factor kappa-B Hs00921372_m1 

TNFSF11/RANKL 
Receptor activator of nuclear factor kappa-B 
Ligand 

Hs01092186_m1 

TNFRSF11B/OPG Osteoprotegerin Hs00900360_m1 

Cx43 Connexin43  Hs00748445_s1 

CXCL12 C-X-C motif chemokine 12 Hs00171022_m1 

HPRT1 
Hypoxanthine phosphoribosyl transferase 
(housekeeping) 

Hs99999909_m1 

 

https://www.thermofisher.com/taqman-gene-expression/product/Hs04973910_s1?CID=&ICID=&subtype=
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4.2.6 Statistical analysis 

The normal distribution of the data was assessed using the Shapiro-Wilk and 

Kolmogorov-Smirnov tests for normality. Cluster analysis was used to observe any 

differences in gene expression across the entire donor cohort. Statistical analysis and 

graphics were performed using GraphPad Prism software (version 7.0a). As no data 

were found to be normally distributed, Kruskal-Wallis test with Dunn’s correction was 

used for multiple comparisons, Wilcoxon rank test was performed for paired data and 

Mann-Whitney test was performed for unpaired data. Spearman test was used to 

analyse correlations. The results were considered significant at p value of <0.05. 

 

4.3 Results 

4.3.1 Age-related changes in the number of CD45lowCD271+ cells  

Using the CD45lowCD271+ phenotype for native BM MSCs, their numbers were 

quantified for n=30 (10 young, 11 intermediate age, 9 old) donors. Once data collection 

was completed, the numbers of MSCs were correlated with the age of the donors. The 

correlation showed an age-related decline in the number of MSCs. However, the 

decline was non-significant (p=0.21). 

 

 

 

 

 

 

 

 

Figure 4.4 Enumeration of MSCs by flow cytometry 

(A) Age-related correlation of number of MSCs (CD45lowCD271+ cells) measured by 
flow cytometry. (B) Age-related change in number of MSCs between the age groups. 
Data were compared using Kruskal-Wallis with Dunn’s correction. Each dot represents 
an individual donor. Black line in A indicates slope and in B indicate median values for 
number of cells per milliliter of BM 

 
When the same data was divided into age groups (Figure 4.4B, right panel), a steeper 

decline was observed in the number of cells per ml of aspirate in intermediate age 

group (median=1326) as compared to the young donor group (median=5339) than in 
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the donors of the old age group (median=3006) compared to the young donor group. 

This was in agreement with the CFU-F findings where the number of MSCs showed a 

considerable decline commencing form the 5th decade of life. The trend was similar as 

seen in the number of MSCs detected by the CFU-F assay (as shown previously on 

Figure 3.4) but the changes in the number of MSCs measured by flow cytometry were 

found to be non-significant. This could be due to the fact that not all CD45lowCD271+ 

cells identified by flow cytometry may attach to plastic and proliferate into a colony of 

more than 50 cells.  

 

To find how many cells identified by CD45lowCD271+ phenotype could potentially form a 

colony, the number of MSCs counted by CFU-F assay and by CD45lowCD271+ 

phenotype in donor matched samples were compared (Table 4.5). Across the whole 

age range, the ratio CD45lowCD271+/CFU-F suggested that 1 in every 38 

CD45lowCD271+ cell (median value) detected by flow cytometry would form a colony in 

our laboratory conditions. However, the ratio of CD45lowCD271+/CFU-F was found to be 

1 in 26 in young donors, 1 in 27 in the donors of intermediate age and 1 in 73 in old 

donors (Table 4.5).  

 

       Table 4.5 Comparison of number of MSC by CFU-F and flow cytometry 
 

 

Parameters  
19-40 years 

old  
41-60 years 

old 
 61-89 

years old Median 

CFU-F (colonies/ml, 
medians) 206 (n=19) 48 (n=18) 41 (n=15) 81 

CD45lowCD271+ (cells/ml, 
medians) 5339 (n=10) 1326 (n=11) 3006 (n=9) 3094 

Ratio (CD45lowCD271+/ CFU-
F, medians) 25.92 27.63 73.32 38.20 

 
 

This suggested that the number of colony forming MSCs within CD45lowCD271+  cell 

phenotype declines with age. This supported data on colony IDs presented in section 

3.3.3 indicating that MSC proliferative capacity declines with age. The next step was to 

investigate any age-related changes in the transcripts chosen to reflect their 

multipotential functions.  

 

4.3.2 MSC specificity of the selected genes 

Prior to the investigation of any age-related changes in uncultured BM MSCs, the MSC 

specificity of the chosen transcripts was tested by comparing their expression with 
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CD45+CD271-  HLCs. The list of genes included transcripts for osteogenic 

differentiation (RUNX2, SPARC, SFRP-1), adipogenic differentiation and bone-fat 

balance (FABP4, PPAR- and LepR), bone remodelling (RANK, RANKL and OPG), 

and cell communication (CXCL12 and Cx43). All of the transcripts were tested for their 

level of expression in both MSCs and HLCs and a high level of specificity for MSCs 

was observed for all the molecules in both young and old donors combined, as shown 

in the cluster analysis in Figure 4.5.  

 

The cluster analysis clearly grouped all the MSCs on the left hand side and the donor 

matched HLCs on the right hand side (Figure 4.5). Interestingly, within each of the 

populations of MSCs and HLCs, there was no segregation associated with the donor 

age. Both, young and old donors were placed randomly by the algorithm of the cluster 

analysis within the cell subset specific clusters. The grey boxes indicate samples that 

were below detection. In the figure below, it can be seen that RANK was expressed in 

very few MSCs in MSCs while OPG, SFRP1 and SOD3 and were almost absent in 

MSCs. The fold changes and p values indicating the specificity of the individual 

transcripts for MSCs are shown in Table 4.6.  

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Cluster analysis of multipotentiality transcripts in MSCs and HLCs  

MSCs form the left side of the cluster and HLCs form the right side of the cluster. Grey 
squares indicate values that were below detection and black areas indicate values that 
were closest to the middle of the range (-3 to +3). Dendogram on the top indicate 
donors and the genes investigated are shown to the right of the cluster. 
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Table 4.6 Median fold increase in the expression  of multipotentiality genes in 
MSCs compared to HLCs  

 

Transcript Young donors Old donors 

 
Fold difference p value Fold difference p value 

RUNX2 2.5 0.0541 3.2 0.0002 

SPARC 139.5 0.0002 557 <0.0001 

SFRP-1 ND in HLCs NA ND in HLCs NA 

PPAR- 55.2 0.0019 154.6 <0.0001 

FABP4 269.2 0.0012 122.1 <0.0001 

LepR 245.3 0.0002 2050 0.0002 

SOD3 ND in HLCs NA ND in HLCs NA 

RANKL 103.8 0.0003 24.2 0.0047 

RANK 1.6 NS 10.8 NS 

OPG ND in HLCs NA ND in HLCs NA 

Cx43 21.3 0.0047 11.3 0.0005 

CXCL12 63428 0.0002 56182.2 <0.0001 

Gene expression levels were measured relative to HPRT1. MSCs: Mesenchymal 
stromal cells, HLCs: Hematopoietic lineage cells, ND: not detected, NA: Not Applicable, 

NS: Non significant, Mann-Whitney U test 

 
 

4.3.3 Age-related differences in osteogenic and adipogenic genes in MSCs  

After establishing MSC specificity of the selected transcripts, the next investigation 

involved comparing the transcripts levels reflecting multipotentiality of MSCs between 

young (19-40 years old) and old (59-89 years old) age groups. The median fold 

differences for each of the transcripts between young and old groups are shown in 

Table 4.7 below. A minimum of n=8 donors in young and old group were tested for 

each transcript. 
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Table 4.7 Median expression levels and fold differences in selected genes in 
CD45lowCD271+MSCs and CD45+CD271-HLCs between young and old donor 

groups 

 
 

Population Transcript 
Medians 

in YD 
Medians 

in OD 

Fold 
difference 

(O/Y) p value 

MSCs 

RUNX2 1.40 1.10 0.79 NS 

SPARC 17.41 20.51 1.18 NS 

SFRP1 1.41 2.76 1.96 NS 

PPAR- 2.60 6.20 2.38 NS 

FABP4 1.71 1.76 1.03 NS 

LepR 1.93 4.12 2.13 NS 

SOD3 0.58 0.29 0.50 NS 

RANKL 0.16 0.35 2.19 NS 

OPG 0.99 2.43 2.45 NS 

RANK 1.36 0.76 0.56 NS 

CXCL12 1051.00 1554.00 1.48 NS 

Cx43 36.64 31.54 0.86 NS 

HLCs 

RUNX2 0.56 0.34 0.61 NS 

SPARC 0.12 0.03 0.25 0.0281 

SFRP1 ND ND NA NA 

FABP4 0.006 0.014 2.33 NS 

PPAR- 0.05 0.04 0.85 NS 

LepR 0.0080 0.002 0.25 NS 

SOD3 ND ND NA NA 

RANKL 0.0016 0.0146 9.13 0.0047 

OPG ND ND NA NA 

RANK 0.10 0.07 0.71 NS 

CXCL12 0.02 0.03 1.69 NS 

Cx43 1.72 2.78 1.62 NS 

 
 

 
Gene expression levels were measured relative to HPRT1. MSCs: Mesenchymal 

stromal cells, HLCs: Hematopoietic lineage cells, YD: Young donors, OD: Old donors, 
ND: not detected, NA: Not Applicable, NS: Non significant; Mann-Whitney U test 

 

 

Relative expression of RUNX2, SPARC and SFRP-1 in MSCs showed no statistical 

difference between young and old donor groups (Figure 4.6).  However, while the 

expression of RUNX2 and SPARC remained largely the same based on the median 

values, SFRP-1 was expressed nearly 2-fold higher in old donors MSCs compared to 

young donors MSCs (Table 4.7). Taken together, transcripts for osteogenic 
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differentiation in BM MSCs from old donors did not show significant differences in their 

expression compared to young donor MSCs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Expression of osteogenic and adipogenic transcripts in MSCs from 
young and old donors  

(A) Expression of RUNX2, SPARC and SFRP-1 in MSCs. (B) Expression of PPAR-, 
FABP4 and LepR in MSCs. Young and old donors are indicated in black and grey dots, 
respectively. Horizontal lines indicate median values. 

 

 
For the selected adipogenic transcripts, PPAR- showed 2-fold higher expression in 

old donors but FABP4 did not show any age-related differences (Figure 4.6 and Table 

4.7). The level of LepR also was 2-fold higher in old donors however the differences 

failed to reach statistical significance (Figure 4.6 and Table 4.7). Overall, data for 

selected adipogenic molecules in uncultured BM MSCs indicated a potential trend for 

increase in some transcripts which merits further investigations in a larger cohort of 

donors. Interestingly, small increases in PPAR and LepR were not mirrored by similar 

increases in FABP4. 
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4.3.4 Resistance to oxidative stress 

Resistance to MSC to oxidative stress was measured by quantification of basal 

intracellular ROS in CD45lowCD271+ cells by flow cytometry as well as ROS generated 

by exposing MSCs to TBHP using methods previously established in our group (315). It 

was hypothesised that the levels of basal ROS and ROS generated using TBHP would 

display an age-related increase in MSCs. To potentially explain any differences in 

ROS, the expression of the anti-oxidant enzyme SOD3 was also quantified by qPCR. 

SOD3 expression levels were expected to display an age-related decline that could 

explain the increase in ROS with advancing age. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 4.7 Measurement of ROS and anti-oxidant enzyme SOD3 gene in MSCs 
from young and old donors 

(A) Increase in ROS before and after stimulation with TBHP measured by CellROX 
median fluorescent intensities (MFI) in young donors (left) and old donors (right), 
Wilcoxon rank sum test. (B) Comparison of ROS levels between young and old donors 
before stimulation with TBHP (left) and after stimulation (right). (C) Comparison of 
expression of anti-oxidant enzyme SOD3 in young and old donors by gene expression. 
Young and old donors are indicated in black and grey dots, respectively. Wilcoxon rank 
sum test, *p<0.05. 
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Comparing stimulated and unstimulated levels of ROS in young and old donor MSCs 

(Figure 4.7A) showed a significant increase in stimulated state indicating that the 

exposure to TBHP led to the production of more free oxygen radicals that were 

detected as higher levels of CellROX. After showing that ROS can be measured by this 

method in MSCs before and after stimulation, basal levels of ROS were first compared 

between young and old donors. The basal levels of ROS is indicative of the inherent 

mitochondrial activity in cells and showed no difference in old donor MSCs compared 

to young donor MSCs (Figure 4.7B, left panel). When the level of ROS was quantified 

in the stimulated state, indicating a cells ability to combat extreme oxidative stress, 

there was similarly no statistically significant difference (Figure 4.7B, right). However, 

there was a 2-fold decline in the level of stimulated ROS when old donor MSCs were 

compared to young donor MSCs, based on median values (Figure 4.7B, right panel) 

and the expected increase in ROs was not observed. 

 

SOD3 the anti-oxidant enzyme is the first line of defence in presence of harmful ROS 

and is known to be  specifically secreted by MSCs. To investigate if this gene declined 

with advancing age,  its expression was compared between young and old donor 

MSCs using qPCR. Here again, the difference was not statistically significant but the 

level of SOD3 transcript was 2-fold lower in old donor MSCs (Figure 4.7C).  

 

4.3.5 Age-related differences in bone remodelling and cellular interaction genes 

in MSCs 

The transcripts associated with bone remodelling also showed no statistically 

significant differences between young and old donor MSCs. As seen from the cluster 

analysis (Figure 4.5) RANK expression was specific for HLCs and barely detected in 

MSCs. This was expected, as RANK is expressed primarily on T cells (section 1.1.4) 

(63, 316). In contrast to RANK, MSCs from old donors showed an over 2-fold increase 

in the expression of both, RANKL and OPG, as compared to young donors (Table 4.6). 

Of note, RANKL was detected in only 6 out of the 8 donors MSCs and OPG was 

detected in 7 out of 8 donors MSCs.  

 

Overall, even though statistical significance was not achieved, there was a trend 

indicating an age-related increase in RANKL and OPG, in uncultured BM MSCs from 

old donors (Figure 4.8). 
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Figure 4.8 Expression of transcripts associated with bone remodelling and 
cellular interactions in MSCs from young and old donors 

(A) Expression of RANK, RANKL and OPG  (B) Expression of CXCL12 and Cx43. 
Young and old donors are shown in black are grey dots, respectively. Horizontal lines 
across the data indicate median values. 

  
The transcripts associated with cellular interactions were next investigated. CXCL12 is 

involved in chemotaxis of cells within the BM (section 4.1.1.5), and its expression level 

was among the highest in CD45lowCD271+ MSCs in comparison to other transcripts as 

seen in the cluster (Figure 4.5) suggesting its presence in high quantities in uncultured 

BM MSCs. No difference in the level of its expression was found between young and 

old donors (Figure 4.8B, left panel). Cx43 is involved in intercellular interactions in cells 

within BM (section 4.1.1.5) and also showed no age-related differences in its gene 

expression levels in CD45lowCD271+ MSCs.  

 

4.3.6 Age-related differences in selected gene transcripts in HLCs  

The HLCs were sorted as CD45+CD271-cells and included the lymphoid and myeloid 

cell lineages (188, 222). In this project, donor matched CD45+CD271- cells served as a 

control group for uncultured BM MSCs. As shown in Figure 4.5, the specificity of the 
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A 

 
B 

chosen transcripts was very high for MSCs, with the exception of RANK. However, with 

prior knowledge, that most of these transcripts are also expressed by other cells (even 

if at the low levels, section 4.1.1) their gene expression was next investigated in HLCs 

and compared between young and old donor groups. 

 

For osteogenic transcripts, while RUNX2 and SPARC were detected in low levels in 

HLCs, the expression of SFRP1 was below detection in HLCs further illustrating 

selectivity of these genes for MSCs. There was 1.6-fold age-related decline in the 

expression of RUNX2, however not statistically significant, and SPARC (4-fold, 

p=0.0281) in older donors HLCs (Figure 4.9A)  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Expression of genes associated with osteogenic and adipogenic 
differentiation in HLCs from young and old donors 

(A) Expression of RUNX2, SPARC and SFRP1  (B) expression of PPAR-, FABP4 and 
LepR. Horizontal lines across the data indicate medians. Young and old donors are 
shown in black are grey dots, respectively. p< 0.05*, Mann-Whitney U test. 

 
The transcripts related to adipogenic differentiation and bone-fat balance were next 

analysed. All three transcripts were detected in higher levels in MSCs compared to 

donor matched HLCs, as seen in cluster (Figure 4.5). PPAR- did not show any age-

related trends in the HLCs. FABP4 exhibited a slight trend towards an age-related 
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increase, whereas LepR displayed considerable 4-fold age-related decline in HLCs, 

which narrowly missed statistical significance (Table 4.6, p=0.0541).  

 
Bone remodelling transcripts were next scrutinised (Figure 4.10A). RANKL showed a 

significant 9-fold increase (p=0.0047) in old donor HLCs. As mentioned, OPG was not 

detected in HLCs (confirming it’s high-level specificity for MSCs). The last group of 

genes to be investigated in HLCs were those involved in cellular interactions. Both the 

genes, CXCL12 and Cx43 were detected in young and old donor HLCs but showed no 

difference in expression (Figure 4.10B).  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Expression of transcripts associated with bone remodelling and 
cellular interactions in HLCs from young and old donors 

(A) Expression of RANK, RANKL and OPG. (B) Expression of CXCL12 and Cx43. 
Horizontal lines across the data indicate medians. Young and old donors are shown in 
black are grey dots, respectively. p < 0.01**, Mann-Whitney U test. 

 
 
 
 

 
 



 

128 
 

Similar to the observations in MSCs, the expression of all transcripts in HLCs exhibited 

large donor variation within the same age group. Altogether, there were no statistically 

significant differences observed in transcript expression levels in young and old donor 

HLCs for most transcripts, with the exception of SPARC which decreased and RANKL 

which increased in old donors. This was in contrast to MSCs, in which only a trend for 

increase in PPAR-, LepR, RANKL and OPG was found in older donors.  

 

Two of these transcripts were also investigated at the protein level (LepR/CD295 and 

Cx43) along with other potential MSC age-related surface molecules CD106 and 

CD146 (section 4.1.2). The next section includes the results obtained from the 

investigation of these surface markers in uncultured BM MSCs and control HLCs. 

 

4.3.7 Expression of the selected surface markers on MSCs 

Frozen-thawed nucleated cells from young and old donors (Appendix 1, Table 2) were 

processed for native MSC isolation and characterisation using the CD45lowCD271+ 

phenotype. As a control population, CD45+CD271- cell fraction (HLCs) that contained 

the lymphoid and myeloid lineage cells was also analysed (188). First, the specificity of 

the selected surface markers for MSCs (CD45lowCD271+ cells) was tested. For the 

measurement of the surface marker expression the median fluorescent intensity (MFI) 

was used. Representative histograms from each donor group are shown in Figure 4.11. 
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Figure 4.11 Quantification of surface marker expression in BM MSCs and in 
HLCs 

 

(A) Gating strategy for identification of live cells based on 7-AAD negativity followed by 
CD271 and CD45 gating for the selection of populations of interest (MSC and HLCs) 
(B) Histograms for individual surface markers in MSCs and HLCs from representative 
donor. Numbers in the top-right corner indicate MFI. 
 

The MFI of each surface marker was first compared between MSCs and HLCs. Figure 

4.11 below shows the expression of each surface molecule in donor matched MSCs 

and HLCs from all young and old donors, combined.  
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Figure 4.12 Expression of candidate age-specific surface markers on MSCs and 
HLCs from all donors combined 

(A) Expression of CD106 (B) Expression of CD295 (C) Expression of CD146 (D) 
Expression of Cx43. Each panel shows the expression of the respective marker in 
MSCs and HLCs in donor-matched cells. Each dot represents an individual donor. 
*p<0.05 and ****p<0.0001, Wilcoxon rank sum test 

 
 

All surface markers were expressed in significantly higher levels in MSCs compared to 

HLCs from all donors. The differences in CD106 (p<0.0001), CD295 (p<0.0001) and 

CD146 (p<0.0001) were highly significant indicating very high specificity for MSCs. 

CD106 and CD295 showed the highest specificity in terms of fold differences (10-fold 

each, Figure 4.12A and B), followed by CD146 (nearly 4-fold, Figure 4.12C). While 

Cx43 showed the lowest fold differences between expression in MSCs and HLCs (less 

than 2-fold) and the p value (p=0.0266), but remained significantly specific for MSCs, 

nevertheless (Figure 4.12D).  

 

The expression of CD295 in MSCs was the  highest (ranging between 101 and 103 

MFI) while the expression of CD146 and Cx43 were the lowest, both of which were 

below 102 MFI. All antibodies were used at the manufacturer’s recommended 

concentrations. CD295 and Cx43 specificity at the protein level was also reflected at 
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the gene level (Figure 4.5 and Figure 4.11, Table 4.6) suggesting consistency in 

techniques used and results obtained. 

4.3.8 Age-related differences in selected surface markers in MSCs 

Expression of all four surface markers was then compared between young and old 

donors, in MSCs and then HLCs separately. No difference in the expression levels in 

any of the markers in MSCs was found between young and old donors (Figure 4.13). 

Large donor variation was observed in the expression of these markers within each 

donor group. 

 

 
 

 

 

 

 

 

 

 

 
 
 
 
 

 

 

Figure 4.13 Expression of candidate age-related surface markers in MSCs from 
young and old donors 

(A) Expression of CD106 (B) Expression of CD295 (C) Expression of CD146 (D) 
Expression of Cx43. Young  and old donors are represented by black and grey dots, 
respectively. Each dot represents an individual donor. Horizontal lines across the data 
represent median values. 

 
 

Neither of the markers demonstrated any trends when compared between young and 

old donor MSCs suggesting no age-related difference in the expression of these 

markers in uncultured BM MSC. The expression of these markers were then 

investigated in young and old donor HLCs. 
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4.3.9 Age-related differences in selected surface markers in HLCs 

Expression of the four surface markers in HLCs also displayed no age-related 

difference in their expression  as shown in figure 4.14 below.  

 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

 

Figure 4.14 Expression of candidate age-related surface markers in MSCs from 
young and old donors 

(A) Expression of CD106 (B) Expression of CD295 (C) Expression of CD146 (D) 
Expression of Cx43. Young  and old donors are represented by black and grey dots, 
respectively. Each dot represents an individual donor. Horizontal lines across the data 
represent median values. 

 

 
Even in HLCs, the surface markers showed no differences in the level of expression in 

young and old donors. Overall, section 4.3.7 to 4.3.9 displayed significantly higher 

expression of surface markers in MSCs than in HLCs. With respect to age-related 

differences, the expression of these age-specific markers displayed no age-related 

differences or trends in either of the cell types (MSCs and in HLCs).  
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4.4 Discussion 

In this chapter, an age-related decline in the number of CD45lowCD271+ native BM 

MSCs using flow cytometry was established confirming the results from previous 

chapter based on the CFU-F assay. Gene expression of all the selected molecules 

(apart from RANK) showed very high specificity for MSCs as compared to HLCs. The 

osteogenic transcripts’ expression showed no age-related trends in MSCs. Adipogenic 

transcripts also did not reach significance between young and old groups but displayed 

a non-significant 2-fold increase in the expression LepR and PPAR- in the old donor 

group. Interestingly, unlike in the MSCs, LepR displayed a significant 2-fold decrease in 

the HLCs. Quantification of ROS and anti-oxidant enzyme SOD3 gene expression also 

did not show any statistically significant difference in old donors, however, the level of 

SOD3 detected in old donors as well as the stimulated level of ROS detected in old 

donors, declined by 2-folds. Transcripts for cellular interactions also did not show any 

age-related changes in the MSCs or the HLCs. Similarly, surface marker expression 

exhibited no difference between young and old donor groups and each surface marker 

was significantly higher-expressed on MSCs compared to HLCs. 

 

Flow cytometry data revealed a trend for native BM MSC to decline with age. However, 

the decline was not as significant as indicated by the CFU-F assay.  Flow cytometry 

analysis depends upon the gating strategy which can be subjective. However, the 

analysis and gating strategy used in this study were the same as previously published 

by our group (111, 234). As shown in previous studies (111, 207), not every 

CD45lowCD271+ cell forms a colony in standard CFU-F conditions, and consistent with 

these publications, flow cytometry data revealed higher number of MSCs per ml of 

BMA compared to CFU-F assay. The age-related decline was lower as measured by 

flow cytometry possibly because it identifies all the CD45lowCD271+ cells as MSCs, 

irrespective of their ability to proliferate into a colony from a single cell; while a colony 

having less than 50 cells was not scored as a colony in the CFU-F assay. Overall, the 

data on BM MSC enumeration by flow cytometry in this study confirmed their age-

related decline as measured by CFU-F assay. This has not been shown before when 

other surface markers for uncultured MSCs were used (237).  

 

Use of CD45lowCD271+ cells for enumerating MSCs has been established on fresh BM 

cells before and used by our group (111, 207) and the data was compared to the total 

colony area showing a positive correlation. The studies however did not look into age-

related differences in MSC number by both CFU-F and flow cytometry. Recently, our 

group also measured CD45lowCD271+ cells by flow cytometry and CFU-F assay and 

observed an age-related decline in females but not in males by both assays (111). 
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However, the study was aimed at comparison of two flow cytometry techniques for 

evaluation of CD45lowCD271+ MSCs and was not specifically focussed on age- or 

gender-related differences. Furthermore, it used a smaller cohort of donors ranging 

from 22-80 years old. In agreement with data presented in this chapter, recently, 

Josephson and co-workers also showed a decline in CD45lowCD271+ cells by flow 

cytometry when compared across the entire age range (24-89 years old) as well as 

between young (<50 years) and old (>50) donors (146). However, their group 

definitions were different and they were not able to show the bigger drop in MSCs 

occurring from early 40s rather than later in life (from 60s). 

 

A group of transcripts was next chosen to explore if various functions in MSCs may be 

affected by donor age. Many of the molecules have been previously shown to be 

specific for MSC by our group (188). In fact, an age-related decline in LepR and 

SFRP1 was observed in our previous study using a cohort of patients with ages 

ranging from 2 to 74 years old. This was not seen in this study with uncultured BM 

MSCs, most likely due to different age-range of this study that did not include paediatric 

donors, as in the former.  

 

In this project, there were no or non-significant age-related trends in the transcripts 

related to osteogenic and adipogenic differentiation. Based on previous studies, the 

general consensus has been that there is an age-related decline in the osteogenic 

potential of MSCs paralleled to an increase in their adipogenic potential (Table 4.2). 

Studies that supported this concept have been based on in vivo assays by examining 

trabecular bone volume, bone mineral density (BMD), total bone volume and marrow 

adipocyte content. These parameters have been discussed in the introduction in 

section 1.1.4. These studies provide robust in vivo data supporting the process of ‘age-

related bone loss’ and increased bias towards marrow adipogenicity, and formed the 

foundation of our initial hypothesis for reduced osteogenic and increased adipogenic 

commitment of uncultured BM MSCs. As these cells were not expanded in culture, they 

better represent the in vivo MSCs in BM, making the data novel and reliable. 

 

However, in vitro data relating to both donor-related and passage-related MSC ageing 

in terms of their osteogenesis remained controversial. Yang and co-workers in 2018 

compared the differentiation potential of BM MSCs between passage 4 and passage 8 

(123). They tested the differentiation potential using both, in vitro differentiation assay 

and by using gene expression of classic osteogenic and adipogenic markers (RUNX2 

and PPAR- respectively). They found that cells from passage 8 were able to maintain 

the adipogenic potential, but the osteogenic potential was higher in passage 4 MSCs. It 
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was concluded that the process of adipogenic differentiation is ‘better preserved’ in BM 

MSCs than osteogenic differentiation and the growth medium had a strong impact on 

their differentiation potential, further highlighting the limitation of using cultured MSCs in 

MSC ageing studies. The present data using a limited number of transcripts have not 

provided strong evidence for any bias in MSCs, however interesting trends in PPAR- 

in particular were observed that supported our original hypothesis. Similar investigation 

of osteogenic and adipogenic molecules at the protein level using with more donors 

would help to understand the age-related shift towards adipogenic differentiation in 

bone in vivo. 

 

Another molecule that plays a role in osteogenic-adipogenic balance in the BM is LepR 

or CD295. In this project, LepR was tested at both the transcript and protein levels. By 

both techniques, LepR showed a trend for a two-fold increase in MSCs from old 

donors. Before discussing the biological relevance of this data, it is important to note 

that  CD295 was proven to be the most specific of the all tested molecules for human 

CD45lowCD271+ MSCs (10-fold higher in MFI compared to control HLCs). Yue and 

colleagues published a paper on LepR+ BM MSCs in mice showing that LepR is not 

needed for the maintenance of MSCs but acts on MSCs to inhibit osteogenesis and 

promote adipogenesis (262). They also found that the mice fed with a high fat diet not 

only had increased levels of plasma Leptin, but their bone-lineage progenitors formed 

significantly lower CFU-Fs in comparison to the mice that were not fed the high fat diet. 

This indicated that high serum Leptin may directly inhibit MSC colony formation ability. 

This was the first study that had connected intake of high fat diet with the impact of 

LepR+ cells on the regeneration ability of these cells. However, as only adult mice 

(6mo) were used, no correlations with donor age could be made in this study.  

 

In 2009, Laschober and co-workers studied the expression of CD295 by flow cytometry 

in cultured BM MSC obtained from donors aged between 7-78 years old without any 

age grouping. Their findings suggested that CD295 was up-regulated in the ‘dying 

cells’ marked by Annexin V (marker for cell death by apoptosis) and that it was found to 

be higher in old donor BM MSC cultures. They suggested that CD295 is an 

indicator/marker for apoptotic cells (which are higher in old donor cultures) in BM MSCs 

(126).  

 

The data from the present study showed a tendency of both, the receptor expression 

and the gene encoding for the receptor to increase in BM MSCs in older donors, but 

the differences failed to reach statistical significance. A similar trend was observed for 

the adipogenic molecule PPAR-. Should this be statistically confirmed in a larger 
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cohort study, CD295 expression should be further tested for predicting the adipogenic 

fate of BM MSCs in vivo. Even though the change was not significant, it must be noted 

that these experiments were performed with nearly no laboratory manipulation of donor 

MSCs precluding any artefacts due to in vitro culture conditions and thus better 

reflecting MSC age-related changes in vivo. The present findings are interesting and 

complement previous studies showing that its ligand, the hormone Leptin itself, shows 

an age-related increase in its blood levels (317). This may lead to an overall 

enhancement of Leptin signalling in MSCs and negatively affect their colony-formation 

potential. 

 

Knowledge in the increased adipogenic bias of BM MSCs in vivo and its potential link 

to age-related changes of BM MSCs is vital for developing new treatment for diabetes, 

obesity, osteoarthritis and osteoporosis, the risks of which are much higher in the aged 

population. The risk of obesity is higher for new-borns that are born to obese mothers 

and the MSCs from these babies show a greater potential to become adipogenic (318). 

While the exact mechanism for MSC fate decisions remains to be discovered, literature 

from past and present projects shed new light on the topic. Future investigations should 

include obese and non-obese donor cohorts, which quantify both circulating Leptin 

levels along with LepR from BM MSCs at the gene and protein level. These future 

studies will help to dissect the age-related and diet/obesity-related changes in bone 

homeostasis due to Leptin and its impact of age-related skeletal disease like 

osteoarthritis. 

 

As previously stated (section 4.1.1.3), several studies have reported increased ROS 

during adipogenic differentiation of MSCs as compared to osteogenic differentiation. 

Accumulation of ROS is also one of the main features of aged cells (281). Based on 

these considerations, this project investigated the levels of ROS and the expression of 

anti-oxidant enzyme SOD3 in BM MSCs in young and old donors. SOD3 transcript was 

highly specific to MSCs and was not detected in HLCs (Table 4.6). Therefore we 

expected an age-related increase in the level of ROS in old donors, parallel to a 

decrease in SOD3.  

 

Even though the results were not statistically significant, the decline in the induced 

levels of ROS in old donor MSCs as compared to young donor MSCs, was 

unexpected. A 2-fold decline was observed in the expression of SOD3 in old donor 

MSCs but it did not reach statistical significance. Recently, Agrahari et al., found that 

MSCs engineered to overexpress SOD3 were better adapted for survival under serum 

starved conditions, possibly due to enhanced autophagy (319). Culture expanded 
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MSCs from old donors (96) as well as long-term cultured BM MSCs have shown to 

possess lower levels of anti-oxidants such as SODs, as well as increased vulnerability 

to oxidative stress (320, 321). However, measurement of active ROS and anti-oxidant 

enzyme expression in uncultured BM MSCs has not been carried out before, making 

the data from this chapter very novel.  

 

Overall, with respect to the idea that MSCs display an age-related bias towards 

adipogenic differentiation and there is increased ROS in older donors, this chapter 

suggests no or only subtle differences in uncultured BM MSCs. While larger donor 

group numbers could potentially display statistically significant results, the data 

suggests that at the transcript level, BM MSCs are not necessarily or strongly biased 

towards adipogenic differentiation. An additional sample set previously treated in 

hypoxic conditions or with anti-oxidant before inducing oxidative stress in BM MSCs 

would help explain the decline in both ROS levels and SOD3 as seen this project. 

Additionally, exploring other anti-oxidant molecules like Gx, SOD1 and SOD2 at gene 

and protein levels would also help in understanding age-related differences in dealing 

with oxidative stress.  

 

In regards to bone remodelling transcripts, subtle non-significant increases in both 

RANKL and OPG in old donors were found. Principally, increased levels of RANKL 

suggest increased bone resorption, therefore the obtained data are contradictory but 

remain interesting in relation to BM MSC adipogenesis. The idea that increased BM 

adipogenesis and bone remodelling are inter-related and impact each other is not 

completely new. The evidence for this has been furnished in Takeshita et. al who 

suggested that the increased BM adipogenesis is linked to the age-related increased 

expression of RANKL (238). They used uncultured whole BM cells from mice and 

isolated stromal cells and macrophages. They found increased osteoclastogenesis in 

adipogenic marrow cultures from aged mice, indicating increased bone resorption and 

adipogenic bias in vivo. They also found an increase in the expression of PPAR- and 

other adipogenesis related markers with a 3-fold age-related increase in the level of 

RANKL in whole BM cells. Investigating macrophages from human donors will provide 

with more comprehensive knowledge about age-related differences in bone 

remodelling within the BM. 

 

Apart from testing this on uncultured cells, they also used murine BM stromal cell line 

ST2. The baseline expression of RANKL in this cell line was low and the level of OPG 

expression was very high. When the cell line was subjected to adipogenic 

differentiation, the level of RANKL increased and OPG decreased, completely 
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reversing their expression levels. While this study confirmed the age-related adipogenic 

bias and increased bone resorption in C57BL/6 mice aged 2 months (young) and 2 

years (old), animal studies are often criticised for the lack of IVIVC (in vitro in vivo 

correlation) with humans. This is because organ systems and genetic makeup of 

animals are not identical to humans. In the presented study, the RANKL increase in old 

donor MSCs was expected, but OPG increase was unexpected highlighting such 

differences between animals and humans. 

 

The transcripts associated with cellular interaction have also shown no age-related 

changes in the present study. Recent examination by Gomariz and co-workers, 

suggested that CAR and sinusoidal endothelial cells within the BM compartment of 

mice remain mostly unaltered and show no age-related difference when inspected for 

quantitative and structural analysis (322). While they did note an insignificant age-

related decline in the number of CARs in old mice (20-24 months old) compared to 

young (8-12 weeks old) mice, the difference was minor suggesting that CXCL12 

abundant (CAR) cells remain largely preserved in old age. Interestingly, they defined 

CAR cells by the CD295+ phenotype, which confirms similar cell identity to MSCs as 

identified in the present study. While there were a good number of studies outlining the 

CXCL12-CXCR4 signalling and its potential role in BM homeostasis in mice (239, 240), 

it is difficult to find many studies aimed at investigating age-related changes in this 

chemokine in cultured or uncultured human BM MSCs. Against our original hypothesis, 

the data presented in this chapter displayed no age-related decline in the expression of 

CXCL12. Considering the high levels at which CXCL12 is expressed, detection and 

quantification of the transcript in large number of donors should not be a hurdle and will 

be interesting as the present data indicate a very subtle age-related increase of 

CXCL12 expression in BM MSCs.  

 

With respect to Cx43, the most abundant connexin within bone, no age-related 

differences were found in this study both at transcript and protein levels. Kar et al., 

showed age-related decline in mouse osteocytes (323) and more recently,  Davis and 

colleagues have suggested that microRNA21 (miR21) is potentially responsible for this 

osteocyte Cx43-mediated age-related bone loss (305). Cx43 in osteoblasts has been 

shown to play an important role in bone remodelling by controlling both bone resorption 

and bone formation (324) and another study suggested that Cx43 in bone development 

acts in coordination with RUNX2 (325). All of the aforementioned studies were 

performed on differentiated cells, suggesting that techniques for detecting age-related 

changes in uncultured progenitors are often not attempted and need validation in 

humans.  
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Cx43 has been also implicated in controlling the damaging effects of ROS within the 

stem cell niche. Grayson et al., observed a significant increase in the Cx43 

immunocytochemistry staining in human BM MSCs cultured in hypoxic conditions. 

They suggested that Cx43 potentially contributes to maintaining MSC proliferation and 

‘stemness’ (326). On a similar line of thought, Ishikawa et al have shown the protective 

role of Cx43 for HSCs within the BM of mice. They suggested that Cx43 mediates the 

transfer of ROS from HSCs to the stromal cells within the BM thus protecting HSCs 

from damage. Similarly, Kar and colleagues had shown that Cx43 contributes to the 

protection of osteocytes against oxidative stress (323).  

 

Based on these studies, our proposed hypothesis was for an age-related decline in 

Cx43 in uncultured BM MSCs. However, the investigation at both, transcript and 

protein level did not reveal any age-related differences. Examination of the molecule 

using a different technique may be needed to further strengthen our conclusion of no 

age-related differences. Owing to the presence of Cx43 at cellular junctions, 

immunostaining techniques or the use of confocal microscopy that has labelled Cx43 at 

cellular junctions would be a useful tool to investigate and quantify the intensities of 

stains between young and old donor MSCs. 

 

Investigations of multipotentiality genes in HLCs displayed a significant decline in 

SPARC and a significant increase in RANKL in old donors. SPARC is also known to be 

an immunomodulatory molecule and thus it is not unexpected to observe an age-

related decline in SPARC in HLCs (316). RANKL, as mentioned earlier is expressed on 

T cells (316). An increase in RANKL suggests increased bone resorption. Higher bone 

resorption with advancing age is expected owing to overall age-related bone loss that 

has been established in literature (62, 81). The data presented in this chapter with 

respect to gene expression in HLCs was thus expected and supported the decline in 

immunomodulatory properties and increasing bone resorption observed with advancing 

age. 

 

With regards to surface markers, CD106 and CD146 were chosen based on previous 

evidence of their altered expression in in vitro aged MSCs (Table 4.3). For CD106, the 

results were far from conclusive, with all the studies reported very high donor variation, 

even within the same age groups (123). Liu et. al used human BM MSC cell lines and 

found significant downregulation of CD106, at both transcript and protein levels, when 

cells were expanded in vitro (327). In contrast, Laschober and co-workers found an 

upregulation of CD106 at both transcript and protein levels in donors aged over 60 
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years old (138). They also found that CD106 was highly expressed in MSCs when 

exposed to inflammatory cytokines TNF- or IFN- (138). Other studies have linked 

CD106 in MSCs with various immune and inflammation related changes (311, 328), 

suggesting a potential link between CD106 and inflamm-ageing within BM niches. 

Finally, Siegel and co-workers found a significant age-related decline in CD106 across 

a broad age range (20-80 years old) (97). 

 

Since the literature pertaining to cultured MSCs remained contradictory, it was 

interesting to investigate CD106 expression in uncultured MSCs. The current study 

showed no age-related difference in the level of CD106 expression in uncultured 

CD45lowCD271+ BM MSCs. In agreement with previous studies, this study too found 

the highest donor variation in the expression of CD106 compared to other markers. In 

future, investigations in larger number of donors and at the protein level will further 

increase our understanding. 

 

Similar to CD106, CD146 expression on CD45lowCD271+ MSCs in the present study 

also showed no age-related differences. This is in contrast to cultured MSC data, which 

commonly showed passage- or donor-age related decline. For example, Siegel et. al  

found a donor age-related decline in CD146  expression in BM MSCs at passage 1 

(97). More recently, Yang and co-workers examined CD146 expression in culture 

expanded BM MSCs between passages 4 and 8 and found a passage-related decline 

in its level expression (123). In contrast, Hagmann and co-workers did not observe any 

age-related change in the expression of CD146 in culture expanded MSCs (329). Only 

one study looked at the CD146 MSC expression in vivo and found that the 

CD271+CD146+ cells were reduced in frequency in old donors (>55 years old) 

compared to young donors (19-55 years old)  (229).  

 
In conclusion, the present data on CD106 and CD146 suggests that using culture-

expanded MSC data for the search of MSC ‘ageing’ marker in vivo is unlikely to be very 

fruitful. Other methods, for example using cell surface proteomic approach (330) and 

combining histological staining with flow cytometry for quantifying cell surface target 

proteins present on senescent MSCs (331) are more likely to provide interesting data 

(131). 
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Chapter 5 Expression of type 1 interferon (IFN1) and 

senescence genes in human BM MSCs  

The previous chapter described a non-significant age-related decline in number of BM 

MSCs measured using the CD45lowCD271+ phenotype and also examined differences 

between young and old donor MSCs in level of ROS, anti-oxidant enzyme SOD3 

transcript, and selected multipotentiality genes and surface markers. Investigation of 

SOD3 in MSCs from old donors interestingly revealed a two-fold decline but differences 

were not statistically significant. Similarly, some trends were observed in the 

expression of PPAR-, LepR, RANKL and OPG (over 2-fold increase in older donors), 

however they too did not reach statistical significance. Unlike MSCs, HLCs displayed a 

4-fold decline in osteogenic gene SPARC and 10-fold increase in bone remodelling 

gene RANKL in old donors, both of which were statistically significant. This indicated 

towards the fact that age-related gene expression differences for multipotentiality and 

possibly other genes could be more pronounced in HLCs as compared to MSCs. 

 

Age-related changes in HSCs and their lineages are better understood owing to the 

larger number of investigations performed as compared to MSCs. Among these age-

related changes, the decrease in lymphoid cells and increase in myeloid cells (myeloid 

skewing), loss in proliferation and increased DNA-damage in old donors have been 

well documented (332-334). The theories explaining these differences in aged HSCs 

are the same that describe MSC ageing (DNA damage, ROS accumulation, increased 

senescence and others, as explained in section 1.1.1). More recently, the IFN1 

pathway has attracted an increasing interest as a potential link between DNA-damage 

response (DDR), oxidative stress, senescence and ageing in HSCs (335, 336).  

 

As mentioned, HSCs are the progenitors for HLCs which eventually give rise to 

lymphoid and myeloid lineages. Considering that HSCs give rise to HLCs and that 

these cells share the same BM niche with MSCs, this chapter aims at investigating new 

exploratory genes emerging from the HSC ‘ageing’ field and including those associated 

with senescence and the IFN1 pathway, in MSCs as well as in HLCs. As in the 

previous chapter, this chapter also explores any age-related changes in the expression 

of these genes in uncultured cells and compares young donor and old donor cohorts. 

Finally, the chapter also aimed at inspecting if  age-related changes were more 

pronounced in HLCs compared to MSCs, as observed in the previous chapter. 
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5.1 Introduction  

Due to the relatively higher number of studies in HSCs, age-related differences in this 

cell type have been explored to a greater extent than for MSCs. Previous investigations 

in HSCs, have revealed an age-related increase in the myeloid lineage cells along with 

a decline in HSC proliferative capacity (337). The tendency to produce less lymphoid 

lineage cells and more myeloid lineage cells is known as ‘myeloid skewing’  and 

potentially contributes to age-related increase in vulnerability to infections (332). 

Interestingly, the hypothesised mechanisms of these changes that include DNA 

damage, stem cell exhaustion and the effects of ROS (28, 338) are no different from 

the hypothesised mechanisms of age-related differences in MSCs that were described 

in Chapter 1 Section 1.1.1 in theories of ageing. Considering that both MSCs and 

HSCs reside within the same BM niche (section 1.1.3), it is possible that these 

damaging factors act on both cell populations (339).     

5.1.1 Senescence, SASP and age-related bone loss  

Residing within the same niche, MSCs are known to support activities of HSCs 

including their myeloid and erythroid differentiation and early lymphopoiesis (340). 

MSCs reside together with other cells in a regulated BM niche that helps maintain the 

functioning of the microenvironment (Chapter 1, section 1.1.4). MSCs are also known 

to directly and indirectly modulate and control T cell responses (341) and to inhibit the 

proliferation and differentiation of B cells (342, 343).  

 

With advancing age and accumulation of ROS and DNA damage in ageing cells, an 

increasing number of BM cells become senescent (344). Senescence is the state of 

irreversible growth arrest and is a regulated response to cellular insults like ROS and 

DNA damage (345). Senescent cells have been identified by various methods including 

an increase in SA--gal, Prelamin A, cell surface lipids like Lipofuscin, Tp53, critically 

short telomeres as well as differences in gene methylation patterns (131). Tp53 is a 

transcription factor well known for its function in cell-cycle, DNA-repair, and inducing 

cell growth as well as apoptosis (346, 347). While the presence of Tp53 is vital for 

maintenance of cells including BM MSCs (348), excessive levels of the transcription 

factor are known to be detrimental to healthy ageing (346). Aligned with this, our group 

found an age-dependant increase in the levels of Tp53 quantified by flow cytometry in 

culture expanded BM MSCs (96). Considering the aforementioned knowledge, Tp53 

was hypothesised to be expressed in higher quantities in old donor cells as compared 

to young donor cells. 
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Along with increase in ROS and DNA damage, senescence is also characterised by 

the senescence associated secretory phenotype (SASP) (130), which includes the 

release of pro-inflammatory cytokines (like IL6, IL8) and metalloproteinases (MMPs) 

from senescent cells (345), and can then induce senescence and inflammatory 

responses in neighbouring cells (131). Senescent MSCs release higher amount of 

SASP, which reduces the multifunctionality of MSCs (80, 349) as well as accelerates 

the rate of ageing in younger cells (350). Interestingly, the level of serum IL6 has more 

than often been found to be higher in older donors as well as in donors with age-related 

diseases (214, 351, 352) and is an accepted marker of SASP and inflamm-ageing. 

Inflamm-ageing is defined as inflammation associated with increasing age and age-

associated diseases and is explained further below (215, 353). With respect to MSCs, 

over-expression of IL6 has been shown to disrupt their role in maintaining HSC 

functionality and homeostasis (354). Thus in this project, the expression of IL6 was 

hypothesised to display an age-related increase in both cell populations. 

 

IL7 is essential for B cell development, survival and proliferation (355) and has long 

been known to be secreted in high quantities by BM MSCs (356). While it is not 

classified as a pro-inflammatory marker, its role in supporting B cell development in the 

BM and thus contributing to BM niche homeostasis makes it an important cytokine to 

investigate. In culture expanded BM cells, IL7 activity was found to drop dramatically in 

old mice (357) while in synovial fluid of old human donors, the level of IL7 was found to 

increase (358). Thus, in spite of knowing that IL7 is majorly produced by BM MSCs and 

its role in B cell formation and development, what happens to its levels in relation to 

advancing age remains unclear. Knowing that B cells functionalities decline with 

increasing age even though the change in number remains debateable (359), it was 

hypothesised that IL7 expression will show an age-related decline in both cell types. 

 

Along with IL6, IL8 too has been identified as an indicator of SASP (360, 361). While 

the number of investigations in relation to ageing are relatively fewer for IL8 compared 

to IL6, it is a known pro-inflammatory marker associated with high stress levels, is 

increased proportionately with age in urine samples (362) and in cancer patients (363). 

In BM MSCs co-cultured with colorectal cancer cells, IL8 production was found to 

enhance the proliferation tumour angiogenesis (364). Thus in this project, the 

expression of IL8 was hypothesised to be higher in old donor cells as compared to 

young donor cells. 

 

Within the bone, increase in SASP has been shown to correlate with advancing age in 

myeloid as well as in osteoblastic cells of aged mice (24 months) when compared to 
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young mice (6 months) (365). Increased senescence, adipogenic shift of MSC 

differentiation, increased oxidative stress are all associated with age-related factors 

giving rise to increased levels of inflammation, which is now referred to as ‘inflamm-

ageing’ (353). Inflamm-ageing conceptually postulates that increasing age is 

associated with an intrinsic decline of the proliferation potential of immune cells, their 

increased senescence and DNA damage. This is accompanied with the reduction of 

protective extrinsic mechanisms within the cellular microenvironment that aim at 

removal of senescent cells and accumulated damage, that is, autophagy (366). As 

mentioned in section 1.1.1, autophagy is the body’s internal mechanism for the removal 

of senescent cells and damaged cell organelles by lysosome degradation. This is 

known to prevent the accumulation of DNA damage in the young and healthy (21). 

However, with the passage of time and increasing age, efficiency of autophagy 

declines. This means that the body’s inherent capacity to identify and eliminate 

senescent cells/damaged organelles, also declines (21).  

 

As autophagy declines, the number of senescent cells increase and so does the 

accumulation of damaged cells and organelles. These senescent cells release pro-

inflammatory cytokines and growth factors (SASP), that ultimately contribute to 

inflamm-ageing (366). Expectedly, the understanding of senescence, autophagy, 

inflamm-ageing and their contribution in age-related diseases, makes senescence a 

promising target for anti-ageing strategies (366). These strategies may use seno-

therapeutics aimed at removal of senescent cells by killing senescent cells (senolytics), 

or by modulating SASP (senomorphics) or by the clearance of senescent cells 

mediated by the body’s immune system (seno-inflammation) (367). While senescence 

and SASP can indicate ‘ageing’ when they increase in body, anti-ageing genes also 

play an equally important role in maintaining ‘youthful’ characteristics of cells (368).  

 

Sirt6 is an anti-ageing gene (369) recognised for regulating DNA breaks and damage 

repair (370) and its over-expression was found to expand the lifespan of male mice 

(371). In human dermal fibroblasts, an age-related decline in the expression of Sirt6 

was observed along with higher resistance towards reprogramming. However, the 

addition of Sirt6 in old donors dermal fibroblasts (>50 years old) was found to enhance 

the reprogramming efficiency (372). In relation to MSCs, Sirt6 has been shown to 

regulate osteogenic differentiation of BM MSCs in rats (373) and to protect embryonic 

MSCs from oxidative stress characterised by dysregulated redox metabolism in Sirt6-/- 

human MSC cell lines (374). Another study in 2016 found that knocking out Sirt6  gene 

accelerates the process of senescence in human BM MSCs (375). From all of the 
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aforementioned observations, the expression of Sirt6 was hypothesised to show an 

age-related decline in both cell populations. 

 

Investigations with another anti-ageing gene Klotho (Kl) have shown that its 

overexpression leads to extended life-span (376), while its mutations lead to decreased 

lifespan in mice (377) and promoted the process of ageing by damaging telomerase 

activity (378). The Klotho protein (379) was found to be inversely correlated with 

increasing age in the serum of human donors (380). Considering these findings, it is 

not surprising that genetically modified BM MSCs expressing Kl has been patented 

aimed at cell based therapies for many age-related diseases in humans (381). 

Interestingly, the potential mechanism of Kl to reduce senescence and extend life-span 

has been thought to be via the Tp53/p21 pathway (382). With this collective 

knowledge, it was hypothesised that there would be a decline in the expression of Kl in 

cells form older donors as compared to young donors. 

5.1.2 Type 1 Interferons (IFN1) 

IFNs are a group of cytokines that are known to elicit pleotropic biological effects  such 

as immuno-modulation and cell differentiation (383). They were initially recognised for 

their interference with viral replication, however other broad range of properties beyond 

their antiviral actions have been recognised recently in various cell types including 

fibroblasts, dendritic cells and HSCs (384). In stem cells in particular, they have been 

known to play a role in differentiation, immune-modulation, and their anti-proliferative 

potentials (385). IFNs may be activated due the presence of extrinsic factors like 

virus/infection or due the presence of intrinsic stress factors leading to DNA damage. 

 

In health, the levels of type 1 IFNs and IFN responses are fine-tuned to maintain the 

immune homeostasis between protection against viruses (386) and its toxic effects, 

which are widely associated with pathological conditions such as autoimmune diseases 

(i.e. Systemic lupus erythematosus or SLE) (387), chronic infection (388) and cancers 

(389). IFN1 binds to its receptor that is heterodimeric cell surface receptor, consisting 

of two transmembrane spanning subunits IFNAR1 and IFNAR2. Most cells types are 

known to express the receptor (390) including fibroblasts, dendritic cells, and peripheral 

blood cells including monocytes (391).  

 

The canonical signalling pathway involves IFN1 production and binding to the IFNAR. 

The receptor is phosphorylated and triggers downstream signal transduction cascade 

via activation of Janus kinases 1 (JAK) and non-receptor tyrosine kinase 2 

(TYK2), which then induces phosphorylation of transcription factors STAT1 and 
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STAT2. Phosphorylated STAT1 and STAT2 dimerise, dissociate from IFNAR2 and 

form a trimolecular complex with IFN regulatory factor 9 (IRF9) known as Interferon 

stimulated gene factor 3 (ISGF3) (392, 393). This complex then translocates to the 

nucleus where it binds to DNA sequence motif known as IFN stimulated response 

elements (ISRE) to eventually activate the transcription of a wide range of IFN 

regulated genes, also known as the IRGs, in an autocrine and paracrine way (Figure 

5.1, top panel).  

 

Recently, a study from our group examined the immune-modulating property of MSCs 

from cancellous bone fragments on CD3/CD28- stimulated CD4+ T cells. It found a 

‘dose dependant suppression of CD4 T-cell proliferation’ along with an increase in the 

levels of TGF in co-cultures (316). It also identified a list of candidate genes that 

potentially were responsible for eliciting MSC immunomodulation. Interestingly, many 

transcripts belonged to the IFN1 responsive family of genes, raising interest in 

understanding age-related differences in the expression of these genes in uncultured 

BM MSCs and HLCs, and their potential link to inflamm-ageing.  

 

In an early study in 1984, the levels of IFN1 secreted from mononuclear cells were 

shown to decline in donors aged over 50 (394). In contrast, study in 2011 described 

DDR-induced expression of IFN genes after double stranded DNA breaks were 

introduced in HeLa cell lines (395). An intracellular molecule STING was increasingly 

becoming the core molecule mediating IFN expression induced by DDR (396). In 

health, DNA remains localised to the nucleus or the mitochondria. Thus, the presence 

of the DNA in the cytoplasm of the cell is expected to trigger DDR. In 2013, cGAS was 

found to detect the presence of the DNA in the cytoplasm and undergo conformational 

change. This conformational change in cGAS could now convert ATPs to the second 

messenger cyclic GMP-AMP (cGAMP) (397) which is a high affinity ligand to the 

adaptor protein stimulator of IFN genes (STING) (398). STING translocates from the 

endoplasmic reticulum to the golgi bodies which activates IFN regulatory factor 3 

(IRF3) which leads to the production of IFN1 (399). 

 

Based on this evidence, the cGAS-cGAMP-STING pathway has been reported to be 

the link between inflammation-based DDR, senescence as well as cancer (399). 

Considering that the presence of extrinsic/intrinsic stress factors illicit IFN1 response 

via STING, cGAS-STING-IFN1 pathway has been proposed as one of the pathways for 

autophagy (400-402). As mentioned, there has been an increased interest in 

unravelling the links between DDR, ROS, cell senescence and IFN1 signalling in HSC 

(30, 403), that share the same niche with the MSCs, giving a strong rationale to study 
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these molecules in MSCs (Figure 5.1, bottom panel). Furthermore, the connection 

between DNA damage and the ATM-BID-MTCH2 pathway has been recently proposed 

to mediate the negative impact of  ROS in HSCs (31). In HSCs from a mouse model 

deficient for Mixed Lineage Leukemia 5 or MLL5), BID (BH3 interacting domain) 

regulated mitochondrial ROS in DNA damage pathway downstream IFN1 signalling. 

Another protein - MTCH2 (mitochondrial carrier homolog 2) - protected cells from 

oxidative stress-induced death, and BID which is the precursor of MTCH2 in the ATM 

(ataxia telangiectasia mutated kinase)-BID pathway, worked as a MTCH2 antagonist 

(404).  

 

Figure 5.1 IFN1 signal 

activation and signalling pathway associated with ROS and intrinsic factors 

(adapted from (393) and (31)) 

 
(A) Left: General IFN1 signalling pathway activation by extrinsic factors. IFN1 binds to 
its receptor and conformational changes begin the cascade of phosphorylation of 
STAT1 and STAT2 to form ISGF3 that ultimately leads to IFN response elements in the 
nucleus. Right: IFN1 may also be activated by intrinsic factors like cytoplasmic DNA 
written in red.  (B) Intrinsic factors leading to IFN1 response in MSCs: Intrinsic ROS 
causes DNA damage which leaks out of nucleus and becomes cytosolic DNA. This 
hypothetically activates IFN1 signalling, potentially leading to mitochondrial ROS. 
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Under low level of DNA damage, ATM through BID phosphorylation, reduces the level 

of BID and consequently, the level of ROS in HSCs. However, during DNA damage; 

loss of BID phosphorylation directs it toward the mitochondria and results in massive 

ROS production by interacting with MTCH2 (403). To date these investigations have 

not been performed on human cells. Moreover, the presence of ATM-BID-MTCH2 

pathway molecules in MSCs has not been explored before. Because HSCs and MSCs 

coexist in BM niche, this pathway may be potentially affected in MSCs exposed to 

oxidative stress and DNA damage (both previously associated with age-related 

changes).  

 

The role of IFNs and related signalling pathways in the complex and dynamic interplay 

between MSCs and HLCs in the BM niche remains unexplored. Taking the work from 

our group that recently found the expression of many IRGs in MSCs, forward along 

with some more exploratory transcripts related to senescence and anti-ageing, this 

chapter examined age-related changes in these transcripts in MSCs and HLCs. It was 

expected that DNA damage and senescence associated genes could potentially be 

higher in old donor cells, and possibly more in HLCs than in MSCs. List of analysed 

transcripts is shown in Table 5.1. Furthermore, considering that IFN1 signalling has 

been more commonly linked to innate immune cells, which are derived from HSCs, it 

was hypothesised that genes associated with IFN1 pathway would be expressed in 

higher levels in HLCs as compared to MSCs. Moreover, senescence and SASP genes 

were hypothesised to increase in older donors in MSCs and in HLCs. Age-related 

changes in anti-ageing genes, IFN receptors as well as IFN-associated genes would 

also be expected to be more pronounced in HLCs as compared to MSCs. 

 

This chapter aimed at exploring if uncultured BM MSCs expressed any IFN1 

responsive genes in comparison to HLCs along with the expression of senescence 

associated genes. The chapter also aimed at investigating any age-related changes in 

these genes in both MSCs and in HLCs. 
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5.1.3 Hypothesis and objectives 

The following hypotheses and aims were postulated for this chapter 
 
Hypotheses: 
   

1. Senescence and SASP associated genes display an increased expression in 

old donor cells, with greater increase in BM HLCs than in BM MSCs. Anti-

ageing genes display the opposite trend. 

2. Both BM MSCs and HLCs express the exploratory genes from the IFN1 

responsive family of genes, but their expression is higher in HLCs, including 

selected molecules linking IFN pathway with DNA damage, ROS and 

senescence. 

3. These exploratory transcripts would show age-related decline in cells from older 

donors, with possibly higher declines in HLCs as compared to BM MSCs. 

 

Objectives: 
 

1. To quantify the expression of senescence, SASP and anti-ageing genes in 

uncultured BM CD45lowCD271+ MSCs and CD45+CD271- HLCs from young and 

old donors. 

2. To compare the expression of exploratory genes linking IFN pathway with DNA 

damage, ROS and senescence in uncultured BM MSCs and HLCs. 

3. To investigate the age-related changes in these exploratory genes in uncultured 

BM MSCs and HLCs. 

5.2 Methods 

5.2.1 Donor selection 

A total of n=12 donor BM cells, 6 young (19-40 years old, median age=27 years old) 

and 6 old (59-89 years old, median age=68 years old) were used for investigation in 

this chapter. The description of donor samples used in this chapter have been outlined 

in Appendix 1, Table 3. 

 

5.2.2 Gene expression for exploratory transcripts analysis 

The general method has been described in section 2.5. Briefly, frozen nucleated cells 

from BM of donors were defrosted (Section 2.3), enriched using anti-fibroblast beads 

(Section 2.4) and then sorted to collect CD45low CD271+ MSCs and CD45+CD271- 

HLCs and frozen in lysis buffer at -80ºC for further use. Next, these cell lysates were 

defrosted and the RNA was extracted (Section 2.6.4). The RNA was then reverse 

transcribed to cDNA (Section 2.6.5), pre-amplified for 18 cycles (Section 2.6.6) and 
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then qPCR was performed on BioMark™ (Section 2.6.7) using 48.48 dynamic array 

(Figure 5.2). The principle of these reactions are the same as those described in 

Section 2.6, but this chip accommodates up to 48 candidate genes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 48.48 gene chip outlay 
 

The quantification was performed during analysis wherein the Ct values for each gene 

of interest were normalised to Ct value of HPRT1 as the housekeeping gene to 

generate the Ct values for each gene using the formula [Ct target gene- Ct housekeeping gene]. 

Finally, the Ct values were converted to ‘relative expression’ for each gene using the 

formula [2-Ct] and the values were compared between young and old donors for both 

BM cell populations (MSCs and HLCs). 

5.2.3 Statistical analysis 

Cluster analysis was used to observe any differences in gene expression across the 

entire donor cohort. Statistical analysis and graphics were performed using GraphPad 

Prism software (version 7.0a). The normal distribution of the data was assessed using 

the Shapiro-Wilk and Kolmogorov-Smirnov tests for normality. As data were found to 

be not normally distributed, Mann-Whitney U test was performed for unmatched data. 

The results were considered significant at p value of <0.05. 
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5.3 Results 

5.3.1 The expression of all exploratory transcripts in BM MSCs and HLCs 

The expression of transcripts for type 1 IFNs, IFN Receptors and IRGs, as well as 

genes associated with IFN1>BID>ROS pathway and senescence, was investigated in 

sorted uncultured BM MSCs and HLCs, based on the CD45low CD271+ and 

CD45+CD271-  phenotypes, as described in the previous chapter for the whole donor 

cohort. Cluster analysis of gene expression data revealed the presence of two distinct 

clusters  for MSCs and HLCs, with the exception of one sample (Figure 5.3). High 

variation in gene expression between the donors was noted, but surprisingly, an overall 

pattern of higher expression (more red colour) in s compared to HLCs was found. The 

higher expressed IRGs in MSCs relative to MSCs included IFITM1, IFITM3, IFI27, 

SERPING and IRGs with higher expression in HLCs included RGS1, IL8  and BID 

(Figure 5.3).  

 

The statistical analysis including the fold differences in the expression of gene shown in 

figures are shown in Table 5.1. The median values and differences between 

expression in MSCs and HLCs of the complete list of genes is shown in Appendix 4, 

Table 5.1. 
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Figure 5.3 Expression of exploratory genes in MSCs and HLCs  

 
Expression of IFNA1, IFNB1, IFN receptors, IRGs, genes associated with 
IFN1>BID>ROS pathway, senescence and other exploratory genes grouped by cluster 
as MSCs (left) and HLCs (right). Colour key in shown at the bottom right of the figure. 
Grey squares indicate gene expression values that were below detection. 
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5.3.1.1 Analysis of expression of senescence and anti-ageing associated genes 

in MSCs and HLCs 

 

For the whole donor cohort, analysis of transcripts associated with senescence and 

anti-ageing showed that Tp53 and Sirt6 displayed no statistically significant differences 

(p<0.05 for both genes) between MSCs and HLCs, although Sirt6 had slightly higher 

expression in MSCs as compared to HLCs (2.86-fold). However, the expression of Kl 

was significantly (25-fold) higher in MSCs (p=0.0083) as compared to HLCs (Figure 

5.4). In combination, the pattern of expression for all three genes indicated a possibility 

for stronger anti-ageing defence mechanisms in MSCs compared to HLCs. 

 

 

 

 

 

 

Figure 5.4 Expression of senescence and anti-ageing genes in MSCs and HLCs  

Expression of Tp53, Sirt6 and Kl in donors in MSCs and HLCs. Horizontal line across 
data set indicates median values. p<0.01**, Mann-Whitney U test. 

5.3.1.2 Analysis of expression of SASP-associated genes in MSCs and HLCs 

Two out of three SASP cytokine genes were also differentially expressed between 

MSCs and HLCs. Cytokine IL6 showed no difference in expression between the two 

cell populations (Figure 5.5). As expected, IL7 displayed significantly higher expression 

in MSCs (p=0.0005) in comparison to HLCs, and IL8 displayed higher expression in 

HLCs (p=0.0022) as compared to MSCs.  

 

 

 

 

 

 

Figure 5.5 Expression of SASP-associated cytokines in MSCs and HLCs 

Expression of IL6, IL7 and IL8 in MSCs and HLCs. Horizontal line across data set 
indicates median values. p<0.01** and p<0.001***, Mann-Whitney U test. 
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5.3.1.3 Expression of IFN1, IFN Receptors and IRGs in MSCs and HLCs 

 
Expression of IFNA1 and IFNB1 did not show differences in their expression levels 

between MSCs and HLCs (Figure 5.6A). Very interestingly, the levels of expression of 

IFNAR1 and IFNAR2 showed a significantly higher expression in MSCs (p=0.0018 and 

p=0.0332, respectively) compared to HLCs (Figure 5.6B), which was unexpected, 

given their expression was historically linked to immune-lineage cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Expression of IFNA, IFNB and IFNA receptor genes in MSCs and in 
HLCs 

(A) Expression of IFNA1and IFNB1 in MSCs and HLCs. (B) Expression of IFNAR1 
and IFNAR2 in MSCs and HLCs. Horizontal line across data set indicates median 
values. p<0.05* and p<0.01**, Mann-Whitney U test. 
 

Among the IRGs, many of them including USP12, IFITM1 and IFITM3, displayed higher 

expression levels in MSCs (Figure 5.7). Similarly, there were genes including PRDM1, 

LAIR and CASP1 that were significantly higher expressed in HLCs (Figure 5.8). 

Overall, and as indicated by the cluster analysis shown in Figure 5.3, a higher 

proportion of the genes displayed significantly higher expression in MSCs than in 

HLCs. This was unexpected, given IFN1 gene expression was historically linked to the 

immune-lineage cells. 
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Figure 5.7 Genes displaying significantly higher expression in MSCs than in 
HLCs  

Expression of most significantly differentially expressed genes in MSCs over HLCs. 
Horizontal line across data set indicates median values. p<0.01**, p<0.001*** and 
p<0.0001****, Mann-Whitney U test. 
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Figure 5.8 Genes displaying significantly higher expression in HLCs than in 
MSCs  

Expression of most significantly differentially expressed genes in HLCs over MSCs. 
Horizontal line across data set indicates median values. p<0.05*, Mann-Whitney U test. 
 

5.3.1.4 Analysis of expression of genes involved in IFN1>BID>ROS pathway 

As discussed in the introduction to this chapter, damage to the DNA due to external or 

internal factors is known to activate IFN1 signalling via STING, IRF3 and STAT1 

through IFNA receptors. This has eventually been shown to mobilize BID, which exerts 

its expression via MTCH2, which is the mitochondrial receptor for BID. Mobilisation of 

BID has been shown to lead to accumulation of mitochondrial ROS leading to 

functional defects and senescence in the HSCs. Because HSCs give rise to HLCs and 

MSCs coexist with HSCs in the BM niche, it was thus in the interest of this project to 

investigate whether this pathway is also engaged in MSCs. 
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Figure 5.9 Expression of genes associated with IFN1>BID>ROS pathway in MSCs 
and HLCs 

Expression of STING, IRF3 and STAT1 (top panel), BID and MTCH2 (bottom panel) in 
each group. Horizontal line indicates median values. p<0.05*, Mann-Whitney U test. 

 
 
Both IFNAR1 and IFNAR2, displayed higher expression levels in MSCs as shown in 

figure 5.6B. STING showed no significant difference in expression between MSCs and 

HLCs although a trend for higher levels in MSCs was noted (Table 5.1). IRF3 and 

STAT1 displayed higher expression levels in MSCs as compared to HLCs (p=0.0205 

and p=0.0242 respectively, Figure 5.9, top panel). BID displayed significantly higher 

(p=0.0188) expression in HLCs as compared to MSCs while MTCH2 showed no 

differences (Figure 5.9, bottom panel).  
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 Table 5.1 Medians of expression of genes shown in Figures 5.4 to 5.6 and 5.9 in 
MSCs, HLCs, fold differences and their p values 

 

 
NS: Non-significant, Gene expression is normalised to HPRT1, Mann-Whitney U test. 

 

Overall, this gene expression pattern potentially indicated a higher level of constitutive 

IFN1 signalling in MSCs, as well as their possession of the necessary molecular 

machinery to combat oxidative damage via IFN1>BID>ROS pathway. 

5.3.2 Age-related differences in IFN1 signalling pathway related genes 

The median values for each gene shown in the figures below in young and old donors, 

the fold difference with advancing age and their p values are indicated in Table 5.2 and 

Table 5.3. Similar tables for the all the exploratory genes are shown in Appendix 4, 

Table 5.2 and 5.3 for age-related differences in MSCs and in HLCs, respectively 

5.3.2.1 Age-related differences in the expression of senescence and anti-ageing 

associated genes in MSCs and HLCs 

Senescence-associated gene Tp53 and anti-ageing genes of Kl and Sirt6 did not show 

any differences between young and old donor MSCs (Figure 5.10A). In HLCs, the 

expression of all of these genes declined in old donors (Figure 5.10B) with Tp53 

showing a statistically significant decline (p=0.0043). At least in relation to anti-ageing 

genes, these data indicated a possibility for stronger ‘ageing-resistance’ molecular 

mechanisms in MSCs compared to HLCs. 

Function Gene 
Median 
(MSCs) 

Median 
(HLCs) 

 Fold 
difference 

(MSCs/HLCs) p value 

IFN1 and 
receptors 

IFNA1 6.97 3.01 2.32 NS 

IFNB1 1.50 1.59 0.95 NS 

IFNAR1 4.28 0.88 4.86 0.0018 

IFNAR2 5.82 1.84 3.16 0.0332 

IFN1-BID-
MTCH2 
pathway 

STING 2.64 1.54 1.72 0.0684 

IRF3 2.051 1.90 1.08 0.0242 

STAT1 4.33 2.26 1.92 0.0205 

BID 0.21 1 0.21 0.0188 

MTCH2 1.43 1.06 1.35 NS 

Anti-ageing 
and 

senescence 

Kl 0.51 0.02 25.50 0.0083 

Sirt6 0.50 0.17 2.86 NS 

Tp53 2.5 1.59 1.57 NS 

SASP 

IL6 0.15 0.27 0.56 NS 

IL7 1.48 0.016 93.73 0.0005 

IL8 2.92 67.21 0.04 0.0022 
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Figure 5.10 Expression of senescence and anti-ageing genes 

(A) Expression of Tp53, Sirt6 and Kl in young and old donors MSCs (B) Expression of 
Tp53, Sirt6 and Kl in young and old donor HLCs. Young and old donors are indicated in 
black and grey dots, respectively. Horizontal line across data set indicates median 
values. p<0.01**, Mann-Whitney U test. 
 

5.3.2.2 Age-related differences in SASP-associated cytokine transcripts in 

MSCs and HLCs 

 
IL6 transcript levels were found to be 4-fold higher in old donor MSCs as compared to 

MSCs from young donors however the differences failed to reach statistical 

significance. IL7 and IL8 did not show any difference between young and old donor 

MSCs either (Figure 5.11A). In HLCs, IL6 transcript was similarly nearly 4-fold higher in 

from old donors as compared to young donors however the differences did not reach 

statistical significance. IL7 showed a slight decline and IL8 did not show any difference 

between young and old donor HLCs (Figure 5.11B). 
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Figure 5.11 Expression of cytokines 

(A) Expression of IL6, IL7 and IL8 in young and old donor MSCs. (B) Expression of IL6, 
IL7 and IL8 in young and old donor HLCs. Young and old donors are indicated in black 
and grey dots, respectively. Horizontal line across data set indicates median values.  
 

5.3.2.3 Age-related differences in IFN1, IFN Receptors and IRGs in MSCs and 

HLCs  

 
Cluster analysis between young and old donor MSCs revealed no patterns for 

differences in type 1 IFN, IFN receptors, IRGs and cytokines. Similarly, investigation of 

differences between young and old donor HLCs using cluster analysis also revealed no 

particular trends.  

 

IFNA, IFNB and IFNAR transcript levels showed no significant differences or particular 

trends between young and old donors MSCs (Figure 5.12A). However, in HLCs, some 

differences were significant. IFNA1 transcript levels displayed a trend for over 2-fold 

increase in old donors HLCs compared to young donors. IFNB1 showed no differences 

between young and old donor HLCs (Figure 5.12B). IFNAR1 and IFNAR2 transcript 

levels showed declines in their expression in old donor HLCs, which was statistically 

significant for IFNAR2 (p=0.041, Figure 5.9B).  
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Figure 5.12 Expression of IFNA, IFNB and IFNA receptor genes 

(A) Expression of IFNA1 and IFNB1 (top panel) and IFNAR1 and IFNR2 (bottom panel) 
in young and old donor MSCs (B) Expression of IFNA1and IFNB1 (top panel) and 
IFNAR1 and IFNAR2 (bottom panel) in young and old donor HLCs. Young and old 
donors are indicated in black and grey dots, respectively. Horizontal line across data 
set indicates median values. p<0.05*, Mann-Whitney U test. 
 

Out of all the exploratory IRGs, RNF213 was the only gene that showed statistically 

significant lower expression in MSCs from old donors as compared to young donors 

(p=0.041, Figure 5.13A).  In the HLCs, more IRGs displayed significant decline in old 

donors (Figure 5.13B) and Appendix 4, Table 2. This potentially indicted reduced IFN1 

signalling in old donor HLCs, which wasn’t the case for old donor MSCs. 
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Figure 5.13 Expression of genes displaying statistical age-related differences 

(A) Expression of differentially expressed genes in MSCs in young and old donors and 
(B) Expression of differentially expressed genes in in HLCs in young and old donors. 
Young and old donors are indicated in black and grey dots, respectively. Horizontal line 
across data set indicates median values. p<0.05* and p<0.01**, Mann-Whitney U test. 
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5.3.2.4 Age-related differences in genes associated with IFN1>BID>ROS 

pathway  

 
The analysis of genes associated with the IFN1>BID>ROS pathway also revealed 

interesting findings. Again, investigation in MSCs did not show any significant age-

related differences, although STAT1, IRF3 and STING showed a trend for an increase 

in MSCs from old donors. BID expression demonstrated a non-significant, nearly 3-fold 

decline in old donor MSCs (Figure 5.14A).   

 

Interestingly, investigation of expression of the same genes in young and old donor 

HLCs revealed different results. While STAT1 expression showed no difference, IRF3 

displayed a significant decline in old donors HLCs (p=0.033) (Figure 5.14B). Significant 

declines in old donor HLCs were also seen for MTCH2 and STING expression 

(p=0.0152 and p=0.041, respectively) while BID did not show any age-related 

differences.  

 

Altogether, investigation of IFN1 family of genes, SASP cytokine genes and other 

genes linking IFN pathway and cell senescence did not reveal any significant 

differences between young and old donor MSCs, except for RNF213 gene, which is an 

IRG with yet unknown function. While expression of these genes in MSCs did not show 

any age-related differences, the same genes in HLCs revealed interesting expression 

patterns. In particular, IFNAR2, many IRGs and genes linking IFN1 pathway with ROS 

and cell senescence displayed a decrease in their expression in old donor HLCs. 

Altogether, these data indicated a potential reduction in constitutive IFN1 signalling in 

old donor HLCs but not in old donor MSCs.  

 
 

 

 



 

164 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14 Expression of genes associated with IFN1>BID>ROS pathway 

(A) Expression of STING, IRF3, STAT1,BID and MTCH2 in young and old donor MSCs 
(B) Expression of STING, IRF3, STAT1,BID and MTCH2 in young and old donor 
MSCs. Young and old donors are indicated in black and grey dots, respectively. 
Horizontal line across data set indicates median values. p<0.05*, Mann-Whitney U test 
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Table 5.2 Exploratory genes, age-related fold differences and their p values in 
MSCs 

Gene 
Medians 
(young) 

Medians  
(old) 

Age-related 
difference*  p value 

IFNA1 5.136 9.15 1.78 NS 

IFNB1 1.247 1.725 1.38 NS 

IFNAR1 4.278 4.757 1.11 NS 

IFNAR2 5.82 5.76 0.99 NS 

STING 2.63 4.88 1.86 NS 

IRF3 1.946 3.13 1.61 NS 

STAT1 3.42 5.16 1.51 NS 

BID 0.3 0.11 0.37 NS 

MTCH2 1.43 1.27 0.89 NS 

Kl 0.51 0.48 0.94 NS 

Sirt6 0.506 0.406 0.80 NS 

Tp53 2.25 2.88 1.28 NS 

IL6 0.05 0.2 4.00 NS 

IL7 1.481 1.169 0.79 NS 

IL8 2.24 5.14 2.29 NS 

 

*Age-related difference calculated by median expression in old donor/median in young 
donor. NS: Non-significant, Gene expression is normalised to HPRT1. Mann-Whitney U 
test 

Table 5.3 Exploratory genes, age-related fold differences and their p values in 
HLCs 

Genes 
Median 
(young) 

Median  
(old) 

Age-related 
difference* p value 

IFNA1 0.295 7.443 25.23 NS 

IFNB1 1.53 1.591 1.04 NS 

IFNAR1 1.1 0.48 0.44 NS 

IFNAR2 2.75 1.38 0.50 0.041 

STING 2.293 1.033 0.45 0.026 

IRF3 1.561 0.66 0.42 0.0411 

STAT1 2.17 2.4 1.11 NS 

BID 1 1.03 1.03 NS 

MTCH2 1.61 0.79 0.49 0.0152 

Kl 0.04 0.011 0.28 NS 

Sirt6 0.28 0.15 0.54 NS 

Tp53 2.93 1.21 0.41 0.0043 

IL6 0.16 0.6 3.75 NS 

IL7 0.038 0.013 0.34 NS 

IL8 46.47 67.21 1.45 NS 

 
*Age-related difference calculated by median expression in old donor/median in young 
donor. NS: Non-significant, Gene expression is normalised to HPRT1. Mann-Whitney U 
test. 
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5.4 Discussion 

This chapter presents novel data with respect to the presence and expression of genes 

associated with senescence, SASP and anti-ageing genes in uncultured BM MSCs. 

There were no differences observed in their expression between young and old donor 

MSCs but all their expression declined in HLCs with Tp53 displaying a significant 

decline in expression. In SASP, while IL6 showed a non-significant increase in old 

donors in both MSCs as well as in HLCs, IL7 and IL8 showed no particular differences 

in old donors in both, MSCs as well as in HLCs 

 

With respect to a the exploratory IFN1 family of genes, a number of novel findings were 

observed. Firstly, a large number of genes were found to be differentially expressed. 

Second, there were more highly expressed genes in MSCs over HLCs rather than the 

other way around, which was unexpected. This indicated towards the potential 

immune-related functions of BM MSC via IFN1 pathway as indicated by cancellous 

bone MSCs previously (316), that will require further explorations. Interestingly, IFNA1, 

IFNB1 and the IFNA receptors, were expressed significantly higher in MSCs as 

compared to HLCs. Genes involved in the IFN1>BID>ROS pathway (403) also 

revealed interesting trends with STAT1 and IRF3 indicating greater expression in 

MSCs, while BID displayed higher expression in HLCs as compared to MSCs and this 

supported the hypothesis of this chapter (31). Among the senescence associated and 

anti-ageing genes, Kl displayed higher expression in MSCs in comparison to HLCs. 

Finally, in cytokines, IL7 displayed higher expression in MSCs as compared to HLCs 

and IL8 displayed otherwise. 

 

When compared for age-related differences; IFNA1, IFNB1 and IFNA receptors 

showed no differences in MSCs, but IFNAR2 displayed a significant decline in HLCs 

from old donors. The only IRG that showed an age-related difference in MSCs was 

RNF213, while a number of IRGs were found to display a decline in their expression in 

HLCs. Analysis of genes involved in the IFN1>BID>ROS pathway also showed no 

changes in expression between young and old donors in MSCs, while in HLCs, STAT1, 

IRF3 and MTCH2 displayed a significant decline in expression between young and old 

donors. 

 

A recent study investigating the effect of retrotransposon (RT) in human fibroblasts 

found that the RT in human (long-interspersed element-1 or L1) becomes 

transcriptionally depressed in senescent cells which activates IFN1 response (336). 

The senescent cells were prepared by culturing them in vitro until their proliferation 

ceased. They found a high percentage (68%, 57 out of all the 84 tested genes) to be 
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highly upregulated in senescent cells which were IRG or associated with the IFN1 

signalling.  

 

Over 30 of these genes were also tested in this thesis but in relation to age in 

uncultured BM MSCs and did no observe any age-related grouping in cluster analysis. 

Also, while other studies found a number of IFN1 associated genes to be upregulated 

in replicative senescent cells (336), this thesis found a significant decline in only one of 

the IFN1 associated genes in MSCs. This could be due to the fact that firstly, the cells 

described in this thesis were MSCs and not skin fibroblasts and secondly, the MSCs 

and HLCs used in this thesis were uncultured and did not undergo replicative 

senescence by in vitro culture expansion.  

 

The same study also examined the presence of L1 in aged mice and found a significant 

increase in IFN1 associated genes. They treated old mice with nucleoside reverse 

transcriptase inhibitors known to antagonise the effect of L1 reverse transcriptase. In 

doing so, they observed that not only did the IFN1 associated genes showed a 

downregulation but the SASP pro-inflammatory state was also alleviated. Their in vivo 

mice study thus linked senescence to ageing in mice. The only SASP gene that was 

found to increase in this project was IL6 while Tp53 and IFN1 associated genes were 

mainly found to decline in older donors, unlike in the above mentioned study. Similar 

treatments using nucleoside reverse transcriptase inhibitors in uncultured BM cells in a 

larger number of donors could shed light on the senescence profile of BM cells in 

association with IFN1. 

 

In this project MSCs did not display any difference in the level of expression of any of 

the above genes between young and old donors except RNF213 that showed a 

significant decline. RNF213 or ring finger protein has also been known as ‘mysterin’ 

owing to the lack of knowledge curated about this gene. It is known as the causative 

gene for Moyamoya disease which is a disease of blocked arteries within the brain. 

The disease is more prevalent in East Asian countries of Japan, Korea and China and 

is more common in women (405). Not much is known about the gene and more 

exploratory studies are needed to reveal its function in MSCs, as well as in HLCs.  

 

There were a good number of transcripts with over 2-fold age-related differences in 

MSCs. For example, pro-inflammatory cytokines IL6 and IL8 were found to be 4-fold 

and 2-fold higher in the old donors MSCs as compared to young donors, respectively. 

Of note, while literature suggests that IL6 is higher by 2-4 fold in older donors (MSCs), 

much higher the fold difference is suggested to be in circulating levels of this cytokine 
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in old donors with chronic inflammation (406). Age-related differences were more 

prevalent in the HLCs, wherein genes like IFN regulatory factor 2 and 9 (IRF2 and 

IRF9) and cyclin D2 (CCND2) displayed a significant decline in old donor HLCs. Similar 

decline in IRGs has been observed in the peripheral blood mononuclear cells in older 

donors (394).  

 

BID and MTCH2 regulate the oxidative metabolic state of HSC and thus manage their 

oxidative stress, which was discovered not too long ago. The hypothesised mechanism 

behind it was described by Gross et al., in 2017 where DNA damage in the nucleus 

lead to accumulation of ROS in mitochondria via the IFN>BID>MTCH2 pathway. HSCs 

as a population have extensively been studied for understanding their biology and 

ultimately for use in several cell therapies. Not only did this project confirm the 

expression of these transcripts but also compared it between young and old donor 

MSCs. While no age-related differences were observed in MSCs, there was a 

significant age-related decline in MTCH2 observed in the HLCs.   

 

An age-related decline in IFN1 signature genes was also observed in activated CD4+ T 

cells from donors of older age (65-85 years old) as compared to younger donors (20-35 

years old) when investigated in cells isolated from peripheral blood mononuclear cells 

(407). Considering that IFN1 are an integral part of the innate immune system that is 

responsible for triggering responses in bacterial and viral infections, it may suggest that 

the decline in IFN1 in old age compromises their ability to respond to these infections. 

With the knowledge that DDR can activate IFN1 signalling and that DNA damage 

increases in the older age, it may also explain the reduced ability of recognising this 

damage in older donors owing to the decline in IFN signature genes. Even though the 

number of investigation of IFN1 on MSCs remain limited, the existing studies have 

shown the presence of IRGs in culture expanded BM MSCs. The study also showed an 

increase in the number and size of colonies when BM MSCs were treated with 

monoclonal antibody against the IFNAR1 chain of human type 1 (385).  

 

The transcripts associated with anti-ageing and senescence namely Kl, Sirt6 and Tp53 

showed no age-related differences in uncultured BM MSCs. Kl has been a well-known 

anti-ageing gene, the absence or deletion of which observed ageing-like syndrome in 

mice. In general, overexpression of Kl has been observed to increase lifespan, 

whereas repressing the transcript has been associated with premature ageing. Tp53 is 

crucial for DNA repair and induction of apoptosis and senescence and has previously 

been shown to be increased in MSCs from old donors (96). Age-related decline in Tp53 

in HLCs potentially indicates decline in autophagy ability of cells. 
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A study in 2016 aimed at identifying senescent cells within mice bone 

microenvironment and performed varying investigations in T cells, B cells, myeloid 

cells, MSCs, osteoblasts as well as in osteocytes of young (6mo) and old (24mo) mice 

(365). They observed an increase in senescence and SASP profile in old mice. While 

P16 increased in all the cell types, Tp53 was highly expressed in osteocytes and 

myeloid cells and not in MSCs. However, in this thesis, Tp53 was found to expressed 

higher in MSCs as compared to HLCs and declined in older donors in both MSCs and 

in HLCs which was unexpected as Tp53 increases in old senescent cells (408).  

 

With respect to studies in humans, De Oliveira found that Kl down-regulation induced 

premature senescence in human fibroblasts and downregulation of p53 in Kl 

attenuated cells restored normal growth in the cells (382). Overall their study 

demonstrated that Kl regulated cellular senescence via the p53/p21 pathway 

highlighting on the anti-ageing role of Kl. More recently, Zhang et al., found that 

addition of Kl protein to MSC cell lines, attenuated their osteogenic differentiation ability 

(409). Another human study examined the serum of healthy volunteers and found that 

Kl declined with increasing age. Their study had a broad range of donor age (0.1-88 

years old) including toddlers as well as old donors. While they did observe a decline in 

Kl across the entire age range, they segregated their young and old groups age <17 as 

young donors and over 20 years old as old donors (380). The specificity of the Kl in 

MSCs has never been showed before making the data from this project very novel. As 

an anti-ageing gene, this transcript could potentially be used to understand ageing in 

vivo in MSCs. 

 

Along with Kl, Sirt6 is another transcript that is recognised for its anti-ageing potential, 

the deficiency of which has been associated with age-associated degenerative 

processes (410). It is known to be expressed in BM MSCs and Sun and colleagues 

found that while its knockout has resulted in decreased osteogenic differentiation and 

proliferation, its overexpression increased osteogenesis in mice (373). They also found 

that Sirt6 was doing so via partial suppression of the NF-kb pathway in old mice. Zhang 

et al., also found the Sirt6 promoted osteogenic differentiation in mice (411), however, 

their results contradicted the results of Sun and colleagues, and demonstrated the 

involvement of the BMP pathway instead. Around the same time, another study that 

generated MSCs from human embryonic stem cells found that Sirt6 played a protective 

role against ROS in MSCs (374). They found that cells that were depleted of Sirt6 not 

only were more susceptible to accelerated degeneration but were also more vulnerable 

to the negative impacts of ROS. Considering these findings, we expected an age-
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related decline in the expression of Sirt6 in uncultured MSCs but did not observe any 

differences in this project.  

 

Taken together, the anti-ageing transcripts and transcripts associated with senescence 

showed significant differences in HLCs, but no difference in MSCs. This was as 

expected in the hypothesis suggesting the MSCs in vivo are relatively more resilient to 

ROS and DNA damage in comparison to HLCs. Previous investigations of these 

transcripts in uncultured MSCs is sparse, making data from this thesis novel.  

 

Among the cytokines, IL6 showed no significant difference in its expression level 

between MSCs and HLCs. This was unexpected as IL6 has closely been associated 

with inflammation (351). In contrast, IL7 exhibited very high expression levels in MSCs 

and IL8 displayed higher expression in HLCs. IL6 has been a well-known indicator of 

inflamm-ageing and has been reported to be higher in old donors and significantly 

higher in old donor with inflammation (406). Thus it was no surprise that the expression 

of IL6 was found to be higher in old donors in both cell types, MSCs and HLCs. IL6 and 

IL8 are also associated with SASP and have been shown to increase in MSCs that 

were DNA damaged (354). However, that study was based on MSCs and HSCs in co-

culture conditions. In this thesis, the expression of IL7 showed no age-related 

differences in either cell populations while IL8 displayed a non-significant increase in 

HLCs.  

 

Considering that both HSCs and MSCs originate within the BM (section 1.3.1), they are 

bound to impact each other. The protective role of MSCs in preventing HSCs from 

ROS with the help of Cx43 has already been discussed in section 4.4. It is a well-

known fact that age-related changes of increased adipogenesis in MSCs and shift 

towards myeloid lineage (myeloid skewing, section 1.3.1) in HSCs occur within the 

same BM niche. However, as the two belong to different stem cells types, they have 

often been examined separately. Among the few scientists to have linked the two and 

acknowledge the relationship, were Kovtonyuk and colleagues in their 2016 study 

(412). Referring to previous studies, they outlined that adipocytes negatively impacted 

HSC functions supporting B-cell lymphopoiesis. As adipogenesis increased in old age, 

there is a high possibility that it enhanced the process of age-related myeloid skewing 

in old individuals.  

 

In summary, this chapter was the first to quantify the expression level of IFN1 

associated and other genes in uncultured BM cells. Interestingly, a large number of 

genes were found to be highly expressed in MSCs as compared to HLCs and this 
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finding is novel. Furthermore, a number of genes also displayed age-related 

differences, more in HLCs than in MSCs, and displayed the potential link to DNA 

damage, IFN1, aging, senescence  and oxidative stress. HLCs appear more vulnerable 

to age-related damage at cellular level as compared to MSCs in vivo. Future work 

would involve exploring the protein levels and functions of the genes that displayed 

significantly higher expression in MSCs than in HLCs. Ideally, this would require 

recruitment of a larger donor cohort and controls including investigation of cells that 

were exposed to extreme oxidative stress prior to analysis of gene and protein 

expression. Correlation of this data with DNA damage performed by comet assay and 

senescence assay from the same donors would provide extremely useful links between 

IFN1, ageing, ROS, DNA damage and senescence. 
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Chapter 6 Gene and surface marker expression of human BM 

MSCs in hip osteoarthritis 

6.1 Introduction 

Osteoarthritis (OA) is a classic age-related degenerative disease which, some 

researchers think, is inevitable in old age. It is by far the most common joint disease in 

the world. It leads to a poor QOL by causing debilitating pain in the joint which in turn 

impacts  gait, all of which reduces the daily functions (100). In spite of considerable 

variation in the definition of the condition, age has been an underlying factor for most of 

the cases observed (413). While the frequency of OA incidences have been found to 

increase with age, it is known that not all old people suffer from the disease (414). 

Increasing age does however, escalates the chances of someone suffering from OA 

due to decrease in body immunity and accumulation of damage at the cellular level 

including MSCs (100). 

 

Section 1.3 of this thesis outlined that the impact of OA is not only confined to the 

patients but also affects the family members and the economy in general, considering 

the high rate of occurrence of the disease, globally. While OA may have different 

aetiology and be caused by various factors like lifestyle, mechanical load on the joints, 

genetics, environmental factors, physical damage and injury; the management of the 

disease usually involves the same approach. This indicates our lack of understanding 

in the disease, especially in terms of its pathophysiology at the in vivo cellular level. 

The other example supporting our lack of understanding of the disease are many 

different theories of OA development and disease progression, which vary between 

research scholars and OA clinical experts alike.  

 

Early detection of the disease can significantly prevent and/or alleviate the pain and the 

poor QOL in patients, before it gets to the point where surgery is the only option 

available. This outlines the need for an increase in the intensity of basic research and 

applied science research for early OA diagnostics. The last decade has seen a rise in 

the idea that OA is not a single disease, but a culmination of a number of progressive 

conditions. One of these conditions may indeed be the premature ageing of bone 

resident MSCs, leading to altered bone homeostasis and the inability of the 

subchondral bone to support cartilage nutrition and shock absorbance properties (415, 

416). To better understand these individual contributing factors and their pathologies, a 

number of OA animal models that mimic different aspects of the disease in humans 

have been developed (417). Similar to the animal models used for understanding the 
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ageing of MSCs (or even ageing in general), animal models of OA too are varied in 

several parameters. A number of models exist, each of which have their own 

advantages, limitations and their applicability for OA ageing studies is discussed below. 

6.1.1 Hip OA  

In the last 15 years, the aetiology of hip OA has been proposed as different to knee 

OA. While a number of factors like sex, obesity, genetics, occupation and local injuries 

are known to contribute to the progression of OA (418), age has strongly been 

associated with hip OA displaying a sharp increase of incidence from 0.7% in people 

aged 40-45 to 14% in people aged over 85 (419). Many of the strategies provided for 

hip OA management have been derived from those developed for knee OA. This has 

been due to the higher prevalence of knee OA worldwide and due the fact that knee 

OA is relatively easier to image, scan and analyse as compared to OA of the hip (420).  

 

Pain and stiffness in the hips are the first symptoms of OA. Diagnosis of hip OA is 

either by radiographic evidence or by clinical examination or a combination of both. 

Radiographically, K/L scale (section 1.1.5) is used to determine the extent of the 

damage in the hip joint. Higher K/L score indicates greater extent of bone and cartilage 

damage including osteophyte formation, narrowing of joint space and subchondral 

bone sclerosis (421). In spite of radiographic evidence providing significant information 

about OA of the hip, it has often been criticised when used by itself for the diagnosis of 

OA. There is strong evidence in the literature that suggests that not every patient with 

hip pain has radiographic  signs of OA. Also, most elderly patients with higher risk of 

hip OA did not show its evidence by radiography (422). Another study in 2013 

‘compared the sensitivity of physical examination with radiographs’ in the diagnosis of 

clinically significant hip OA. Interestingly, they found that physical examination was 

significantly more accurate in diagnosis of hip OA as compared to radiography (423). 

 

Treatment of OA of the hip does not follow an approach any different from that of OA of 

another part of the body. Despite of the different theories/hypotheses existing around 

the progression of the disease, the treatment is fundamentally symptomatic. Use of 

NSAIDS, pain management and changes in lifestyle is often suggested to the patients 

(424). These include pharmacological intervention similar to those described earlier in 

section 1.1.5 along with other medications such as anti-resorptives (425). NSAIDs work 

by inhibiting cyclooxygenase 2 (COX2) which blocks the production of prostaglandins 

(PGs) at sites of inflammation and tissue damage (426) while anti-resorptives, as the 

name suggests, function largely by supressing bone resorption. 
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Unfortunately, most of the cases of a detected hip OA often result in a much invasive 

hip replacement surgery. The extent of hip damage is what determines whether or not 

an adult needs to undergo the hip replacement surgery. The surgically added hip 

implant usually stays intact for up to 15 years, after which there might be a revision 

surgery. The revision surgery often has poorer impact on supporting the patient after 5 

years of revision as compared to the primary total hip replacement (THR) surgery. THR 

with metal-on-polyethylene bearing surfaces remain the gold standard for the treatment 

of end-stage hip OA. It provides good relief from pain along with steady longevity as 

observed across patients (427). 

 

From the literature presented in the above two sections, it is evident that a better 

understanding of hip OA pathophysiology, including the ‘age component’ of the 

disease, could have a significant socioeconomic impact, and that there is no suitable 

animal models faithfully replicating its progression in humans. The study of MSCs in hip 

OA joints, and comparing their characteristics to MSCs from healthy aged individuals 

may shed new light on the progression of this condition potentially leading to new 

therapies. 

6.1.2 Senescence, SASP, ROS and OA 

Senescence is a process of irreversible growth arrest that has been observed in ageing 

cells, and has been outlined in this thesis in sections 1.2.2 and 5.1.1. Considering OA 

has been associated with older age, a number of studies have investigated cell 

senescence in OA (428) largely focussing on OA cartilage (429). The presence of 

senescent cells and the associated secretory phenotype has been found to be 

significantly higher in OA cartilage compared to healthy cartilage. The SASP detected 

in OA has largely been attributed to pro-inflammatory cytokines like IL1, IL6 and IL8, 

and matrix metalloproteinases (MMPs) (430). The initiating factors are believed to be 

increased DNA damage (431) due to increased ROS (432, 433) leading to increased 

inflammatory mediators. The presence of senescence in OA is further confirmed by the 

development of OA-like condition in mice that were injected with senescent fibroblasts 

in their knees (434). 

 

Basic research has steadily contributed to our knowledge of the multi-factorial aspects 

of OA including the role of age-related senescence (428) and inflammation in the 

disease pathogenesis (435). Even though the pieces of the puzzle of OA and 

senescence are far from complete, there has been significant increase in our 

understanding of the two. The fact that both, senescence and OA are multifactorial and 

need more research at the cellular level, challenge the process of collection of relevant 
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evidence in spite of the hypothesised potential link between the two. Nevertheless, 

there is a growing body of evidence connecting the impact of cell senescence to 

primarily degenerative diseases, like OA.  

 

IL6 has been shown to be expressed in high quantities in the serum of patients with OA 

(436, 437). The Chingford study (Livshits et al., 2009) on middle aged British women 

with radiographic knee OA (RKOA, K/L grade>2) confirmed that higher circulating 

levels of IL6 in obese patients were indicators for potential OA in future. They found 

that first, the circulating levels of IL6 in patients with RKOA were consistently higher 

than in non-OA donors, which increased proportionally with increase in OA severity, 

and second, that the levels of IL6 increased with increasing BMI (437). Thus, they 

suggested that higher BMI and increasing serum levels of IL6 are both predictive 

biomarkers of RKOA and outlined the need for future research on IL6 in OA. This study 

importantly highlighted the impact of lifestyle (obesity) as a contributor to the disease.  

 

Obesity results in an increased load on joints along with the secretion of adipogenic 

factors (like adipokines, adipogenic hormones) that mediate inflammatory responses. 

Also, the fact that there is a well-known shift from muscle mass and bone formation 

towards increased adipogenic tissue formation also suggests that obesity contributes to 

both, inflamm-ageing and OA. Another factor that crops up when discussing adipogenic 

factors and OA, is the presence of harmful reactive oxygen species (ROS) as data from 

previous research indicates that ROS may be key contributor to the adipogenic bias of 

MSCs at the expense of their osteogenic potential (438). 

 

The role of ROS in most diseases has been found to be fundamental, owing to the fact 

that ROS is a by-product of cellular metabolism. It has been closely linked to a number 

of diseases occurring in almost every organ in the human body (281). This is expected 

as every organ is made of functionalised tissues which are basically, groups of highly 

specialised cells. As it may be expected, ROS has been found to be a key contributor 

of age-related articular cartilage degradation, which has been a major evidence 

correlating ageing to OA (439-441). In particular, ROS was suggested to contribute to 

the loss of proliferative capacities of chondrocytes, senescence of chondrocytes, and 

increase in the production of inflammatory markers along with an increase in oxidative 

stress in OA cartilage (441, 442).  

 

Alterations in cartilage proteoglycans and other proteins within the cartilage matrix 

have been discussed at length in several publications over the last two decades (443, 

444). The increase in alterations that eventually lead to the drastic increase in ROS 
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within cells has been thought to be due to the imbalance of natural anti-oxidants in the 

body (section 4.1.1.3.) Considering this imbalance, several research groups have 

assessed ROS damage by quantifying ROS in OA samples or by measuring the anti-

oxidant enzymes within the cells (445-447). Theoretically, an increase in the ROS 

levels in OA  (433) is expected to be accompanied by a decrease in the levels of anti-

oxidant enzymes (446, 447) that ultimately lead to genomic instability and cell 

senescence of chondrocytes (448).  

 

Regan and colleagues examined the levels of extracellular SOD (SOD3) in the 

cartilage of hip OA patients by ELISA and found a 4-fold decline in the levels of the 

SOD3 in OA donors (445). Similarly, other studies have confirmed the decline in the 

levels of the different naturally occurring anti-oxidant enzymes in OA, but for all of 

these studies, the focus has been on cartilage/ chondrocytes (449, 450). Altogether, 

evidences discussed above suggest that age and lifestyle choices taken together may 

play an important role in OA pathogenesis. These changes manifest themselves as 

inflamm-ageing and oxidative stress that lead to cellular senescence, which in itself 

may be a strong contributor to OA. While current research focuses mostly on 

chondrocytes, similar processes may also occur in MSCs residing in the underlying 

subchondral bone.  

 

Results from previous chapter indicated the potential involvement of certain IFN1 

transcripts in age-related changes within the BM niche. It was thus worth examining if 

these IFN1 pathway transcripts have any role in OA pathogenesis, even though there 

has been no such investigation so far. Interestingly, in Lupus, an auto-inflammatory 

disease extensively studied for the role of IFN1 in its progression, BM MSCs have been 

shown to be senescent and express altered IFN1 signature. Based on the outlined 

literature evidence, it could be hypothesised that not only chondrocytes, but also MSCs 

from OA patients could possess an increased expression of senescence and SASP 

associated genes,  compared to non-OA old age donors. On the other hand, the 

expression of anti-ageing genes Kl and Sirt6 could be lower. With respect to IFN1 and 

associated genes, there are no studies that have investigated them with respect to OA. 

A number of studies, however, have indicated an association between increased IFN 

signalling in Lupus with increased MSC senescence in the disease, which may also 

take place in OA MSCs (387, 391, 451).   

6.1.3 Changes in MSC multipotentiality genes in MSCs from OA donors 
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Previous investigations of age-related changes in OA have focussed on the articular 

cartilage where the first noticeable physiological alterations of OA have been 

historically found. Only relatively recently, OA has begun to be acknowledged as a 

disease of the entire joint including considerable changes in the subchondral bone 

(452), as well as cartilage (outlined in section 6.1). The limited research performed on 

primary OA guinea pig model indicated that alterations in microstructures of 

subchondral trabecular bone pointed towards changes in the bone  preceding the 

visible changes in the cartilage (171). However, investigations performed on human 

bone/bone cells and consequently, the data available for human bone cells including 

MSCs remains very limited.  

 

A recent study from our laboratory has established that the numbers of MSCs 

measured by both CFU-F assay and flow cytometry was significantly higher in OA-

affected bone (in bone marrow lesions, BML) as compared to a less affected bone in 

hip OA patients. Compared to non-BML MSCs, the proliferative capacity of BML-MSCs 

was lower, and they had altered  expression levels of bone remodelling molecules 

RANKL and OPG (183). While this was the first study to demonstrate numerical, 

topographical, gene expression and functional alterations in MSCs from OA hips, these 

examinations were performed on culture expanded MSCs. Furthermore, no study has 

been yet performed to compare gene expression profiles of MSCs from OA patients 

with age-matched healthy individuals. 

 
A subsequent study from our group has shown increased expression of bone lineage-

related transcripts RUNX2, OPG and SPARC in hip OA MSCs compared to healthy 

bone (69), however while their OA MSC donors were in the age-range of 55-89 years 

old, their healthy controls ranged from a much younger 38 years old up to 93 years old 

and not age-matched (section 1.3.1).  

 

This chapter aimed at exploring MSC multipotentiality genes, senescence and anti-

ageing genes, IFN1 genes and other exploratory genes previously explored in Chapter 

4 and Chapter 5, in uncultured MSCs from OA donors compared to MSCs from a 

cohort of age-matched healthy old donors. The investigation was also performed to find 

whether genes that displayed age-related trends in the previous two chapters were 

further aggravated in OA. 

 

The list of transcripts chosen for investigation in this chapter is presented in Table 6.1 

including available literature indicating any alterations in these molecules in OA 

patients.  
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Table 6.1 List of genes investigated for study in MSCs from OA donors 

 

Gene Gene (full name) 
Evidence 

in OA 

RUNX2 Runt-related transcription factor 2  (69, 453) 

SPARC Secreted Protein Acidic And Rich in Cysteine       (69) 

SFRP1 Secreted frizzled-related protein 1   

PPAR- Peroxisome proliferator activated receptor gamma (69)  

FABP4 Fatty acid binding protein 4 (69)  

LepR Leptin receptor/CD295      (454) 

SOD3 Superoxidedismuatse 3 (445)  

RANKL Ligand for Receptor Activator of Nuclear factor-Kappa B  (69)  

OPG Osteoprotegerin (69)  

RANK Receptor Activator of Nuclear factor-Kappa B    

CXCL12 C-X-C motif chemokine ligand 12 (455, 456)  

Cx43 Connexin43  (457) 

IFNA1 Interferon alpha 1   

IFNB1 Interferon beta 1   

IFNAR1 Interferon alpha receptor 1   

IFNAR2 Interferon alpha receptor 2   

STING Stimulator of interferon genes   

IRF3 Interferon regulatory factor 3   

STAT1 Signal transducer and activator or transcription 1   

BID BH3 interacting domain   

MTCH2 Mitochondrial carrier homolog 2   

Kl Klotho (409)  

Sirt6 Sirtuin 6 (458, 459)  

Tp53 Tumour protein 53 (460)  

IL6 Interleukin 6 (437, 461)  

IL7 Interleukin 7   

IL8 Interleukin 8   

                      

List of transcripts investigated and discussed in this chapter. The top panel includes 
MSC multipotentiality genes and the bottom panel includes exploratory genes that were 
investigated in chapter 5 and will be explored in this chapter.  

 

6.1.4 Changes in age-related surface markers in MSCs from OA donors 

Among the age-specific surface markers discussed previously in this project (Chapter 

4), CD106 expression levels on OA synovial fibroblasts has been reported to be highly 

elevated as compared to non OA synovial fibroblasts (462).  Schett and colleagues in 

2009, examined the level of CD106 in the serum from control and hip OA donors and 

found significantly higher levels of CD106 in the OA donors (463). Not too long after 

that, Pulsatelli and colleagues found that the serum levels of VCAM-1/CD106 were 
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significantly higher in donors with erosive hand OA compared to non OA hands (464). 

Another study showed that the levels of serum CD106 was an indication of the number 

of joints affected by OA (465). More recently, a study investigated CD106 in hip OA 

and found no significant increase in men or women or in the total population  with 

respect to the CD106 levels (466). Serum CD106 could be shed from many different 

cell types inside the body, and no study has yet explored CD106 expression on 

uncultured hip OA MSCs or HLCs. Based on this evidence, it was hypothesised that 

expression of CD106 levels on hip OA MSCs or HLCs would be higher in OA. 

 

The growing evidence connecting obesity to OA in the last two decades has witnessed 

an increased interest in the hormone Leptin and its potential contribution to OA (467). 

However, the hormone Leptin has been studied considerably more than its receptor. 

An increase in both, the levels of the hormone leptin and its receptor CD295 in the 

synovial fluid (468), subchondral osteoblasts (469) and cartilage of OA patients has 

been observed, correlating positively with the severity of the disease (454). More 

recently, Voultaneeho et al., in 2014 and Moqi Yan and colleagues in 2018 have found 

leptin with its receptor contribute to obesity in OA development (470). Voultaneeho et 

al., suggested that in an obese person, there is an unbalanced leptin signalling which 

results in an increased production of pro-inflammatory factors (270). Their work, in 

some way connects Leptin to OA along with the pro-inflammatory factors which have 

often been associated with inflamm-ageing. Co-incidentally on similar lines, Stannus 

and co-workers investigated the ‘association between Leptin, IL6 and radiographic hip 

OA in older people’ (471). While they did not mention the term ‘inflamm-ageing’ in their 

article, their data set forms the baseline for future studies to investigate the association 

between OA, obesity and inflamm-ageing. Based on all the evidence, it was 

hypothesised that Leptin receptor/CD295 levels in OA MSCs would be increased. 

 

Cx43 was another surface marker that was investigated in this project due to its high 

prevalence on bone cells and related functionalities (section 4.1.3.3). Apart from being 

closely associated with intercellular interactions within bone cells, Cx43 has also been 

identified as a crucial player for cell communication in OA. Andrew and colleagues in 

2004, found that the number of gap junctions in synovial biopsies of OA donors were 

increased (4-fold) as compared to the non OA donors (472). In 2014, Gupta et al., 

showed that the overexpression of Cx43 in human synovial fibroblast cell lines 

enhanced the expression of genes associated with inflammation in OA and a decrease 

in the expression of Cx43 in these cells, reduced the expression of many of the 

catabolic and inflammatory genes (473). In agreement, Casagrande and colleagues 

found a significantly higher level of Cx43 in the cartilage of shoulder OA patients 
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compared to healthy controls. Higher levels of Cx43 at the protein level were also 

observed in human chondrocytes (457). In another investigation, Shichomura et al., 

compared the levels of Cx43 in patients with RA, OA and in healthy controls (474). In 

contrast to the above mentioned studies, they found that Cx43 was ‘hardly detected’ in 

patients with OA. Based on this evidence Cx43 was expected to be most likely 

elevated in OA MSCs. 

 

CD146 or MCAM, as discussed previously (Chapter 4) has been used to define MSCs 

in a number of human tissues (227, 229). The sparse data available for this marker and 

how its expression alters with the progression of OA, suggests that CD146 positivity 

was an indication of late stage OA (475). However, another study did not find any other 

major differences between OA patients and controls with respect to CD146 expression 

(476). More recently, another group examined the MSCs from synovial fluid of OA 

patients and found a significant increase in the number of colonies and colonies of 

larger diameter from OA donors (477). They also inspected the levels of CD146 in both 

control and OA MSCs by flow cytometry, but found no difference in its expression. 

Based on this contradicting evidence, CD146 expression on OA BM MSCs was 

expected to be similar to age-matched healthy MSCs and display no OA-related 

differences. 

 

The investigations on cellular senescence in OA remain largely limited to cartilage and 

chondrocytes and information on bone cells in OA related senescence has a long way 

to go before catching up with the amount of information available on cartilage. Obesity, 

DNA damage, senescence, ROS - all of these factors appear to play a key role in OA, 

therefore any alterations in the signalling molecules connecting these pathways  in OA 

MSCs would be a highly novel finding. 

 

This chapter aimed at investigating the expression of all the genes in Chapter 4 and 5 

and the surface markers in MSCs and HLCs from hips of OA donors, in comparison to 

healthy ageing to explore any trends of healthy ageing that could be further aggravated 

in OA. 
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6.1.5 Hypotheses and objectives 

The following hypotheses and aims were postulated for this chapter 
 
Hypotheses: 
 
1. The transcripts for BM MSC osteogenic and adipogenic differentiation potential, 

stromal functions and bone remodelling, in CD45lowCD271+ MSCs are altered in OA 

patients compared to age-matched healthy individuals. 

2. The transcripts related to senescence and IFN1 pathways in CD45lowCD271+ MSCs 

are altered in OA patients, with possible increases in senescence and IFN1 related 

genes as compared to age-matched healthy individuals. 

3. Surface markers CD106, CD295, CD146 and Cx43 are altered in OA patients, with 

possible increases in CD106 and Cx43 as compared to age-matched healthy 

individuals. 

4. Based on findings from the previous chapter, that HLCs were more susceptible to 

age-related differences than MSCs, OA-related trends in CD45+CD271- HLCs were 

expected to be more pronounced compared to MSCs. 

 

Objectives: 
 
1. To quantify the level of transcripts indicating BM MSC osteogenic and adipogenic 

differentiation potentials, stromal functions and bone remodelling, in MSCs from OA 

patients by qPCR and compare with old donor MSCs. 

2. To quantify the level of transcripts related to senescence and IFN1 pathway in BM 

MSCs and HLCs from OA patients by qPCR and compare with old donor MSCs. 

3.  To quantify surface markers CD106, CD295, CD146 and Cx43 in MSCs from OA 

patients by flow cytometry and compare with old donor MSCs. 

6.2 Methods 

6.2.1 Donor selection 

Appendix 2, Table 4 outlines OA samples used. The donor cohort included 5 males 

and 8 females ranging from 56-83 years old with a median age of 74. Exclusion criteria 

included any history of cancers, previous surgery of the hip or any other disorder 

directly affecting the bone. As these donors were mostly above the age of 60, they 

were more likely to have primary (non-traumatic) hip OA. The FHs once obtained after 

surgery, were digested in collagenase for 4 hours and frozen by a colleague (183). 
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6.2.2 Cell sorting 

Frozen vials with up to 106 nucleated cells from digested OA FHs were defrosted using 

TM (section 2.2) and washed with PBS for the elimination of any residual DMSO 

(section 2.4). Once washed, cells were counted and distributed into FACS tubes and 

stained (refer section 2.5, Table 2.1). Owing to the large number of MSCs in the FH 

digest (183), the cells from FHs were used not only for the purpose of OA MSC and 

HLC sorting, but also for instrument setting for MSCs from BMA. 

 

 For this purpose, these cells were used as both unstained cells and cells stained with 

isotype controls to establish the sorting gates for positively-stained cell populations. In 

contrast to rare BM MSCs, these cells did not undergo any enrichment (section 2.4) 

prior to cell sorting. This experimental design helped to preserve rare healthy MSCs for 

sorting (as none were wasted for instrument settings) and ensured consistency as 

healthy and OA MSCs were always sorted on the same day. The cells were treated 

with a blocking buffer for 10 minutes followed by staining with respective antibody or 

isotype control (section 2.5, Table 2.1). 

 

 In the end, 7-AAD was added to the cells and they were then passed through a filter-

capped FACS tube to prevent any cellular aggregates to avoid blocking of the flow 

channel. The instrument settings and the isotype controls were set as explained in 

section 2.4 and the sorted cells were collected directly into a tube containing lysis 

buffer. The populations collected included the same two populations of CD45lowCD271+ 

(MSCs) and CD45+CD271- (HLCs) as previously described for healthy BM MSCs 

(section 2.4).The gating strategy and the histograms for single markers are shown in 

Figure 6.2 below 
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Figure 6.1 Quantification of surface marker expression in OA FH MSCs and HLCs 

(A) Gating strategy for identification of live cells based on 7-AAD negativity followed by 
CD271 and CD45 gating for the selection of populations of interest (MSC and HLCs) 
(B) Histograms for individual surface markers from representative donors in MSCs and 
HLCs from representative donor. Numbers in the top-right corner indicate MFI. 

 

6.2.3 Gene expression 

Transcripts were investigated (Table 6.1) out of which the first 12 were MSC 

multipotentiality transcripts and the next 9 were associated with senescence and anti-

ageing, IFN1 pathway, and ROS. The procedures followed for the quantification of 

MSC multipotentiality transcripts has previously been described in Section 2.5. In brief, 

RNA was extracted from cell lysates (obtained from cell sorts) and stored in -80C until 

further use. 2μl of RNA was reversely transcribed to cDNA which was stored in -20C 

until further use. All samples were then preamplified in the thermocycler using 18 

cycles and were stored at −20°C before processing on the BioMark HD. Quantitative 

PCR was performed using Fluidigm Flex Six™ (MSC multipotentiality genes) and 

48.48 IFC (genes associated with senescence and anti-ageing, IFN1 pathway, and 

ROS) on BioMark HD. Samples and assays were loaded into the reaction chambers 

of the Flex SixTM using the IFC Controller HX, and then transferred to the BioMark 

HD for qPCR (95 °C for 10 min; 40 cycles of 95 °C for 15 seconds and 60 °C for 
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60 sec). The Ct values for genes of interest were normalised to the endogenous control 

HPRT1 using the formula [Ct = Ct target gene- Ct housekeeping gene] and relative expression 

was calculated as 2-Ct and used for statistical analysis.  

6.2.4 Statistical analysis 

Cluster analysis was used to observe any differences in gene expression across the 

entire donor cohort. Statistical analysis and graphics were performed using GraphPad 

Prism software (version 7.0a). The normal distribution of the data was assessed using 

the Shapiro-Wilk and Kolmogorov-Smirnov tests for normality. As no data were found 

to be normally distributed, Wilcoxon rank sum test were performed for paired data and 

Mann-Whitney test was performed for unpaired data. The results were considered 

significant at p value <0.05. 

6.3 Results 

The results presented below include evaluation of the MSC multipotentiality gene 

expression, as first described in chapter 4 (section 4.3) followed by a panel of the 

exploratory genes, that were covered in chapter 5 (section 5.3). OA patients (median 

age 74 years old, range 56-83), were compared to the healthy old donor group (median 

age 68, range 61-89), as described in section 3.3.1. Number of MSCs sorted from 

control healthy donors ranged from 999 to10,000 cells (median 4,700 cells) and an 

average 70,000 MSCs were sorted from OA FHs. HLCs from healthy old donors and 

OA patients were collected from a minimum of 50,000 cells up to a maximum of 70,000 

cells. 

6.3.1 Differences in the expression of multipotentiality genes between OA 

MSCs and healthy old donor MSCs 

First, the expression of genes indicating MSC multipotentiality was compared in MSCs 

from clinically diagnosed hip OA patients and healthy old donor MSCs (Figure 6.3, 

Table 6.1, top panel).  
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Figure 6.2 Expression of genes associated with MSC multipotential functions in 
MSCs from healthy old donors and OA patients  

(A) Expression of RUNX2, SPARC and SFRP-1,  (B) Expression of PPAR-, FABP4 
and LepR, (C) Expression of RANK, RANKL and OPG (D) Expression of CXCL12, 
Cx43 and SOD3. Healthy old donors and OA patients are indicated in grey dots and 
black empty circles, respectively. Horizontal line across data indicate median values. 
p<0.001*** and p<0.0001****, Mann-Whitney U test. 
 

With respect to osteogenic transcripts, there was no significant differences in the level 

of their expression between OA and old donor MSCs. Expression of RUNX2 was 2.43-

fold higher in OA patients and expression of SFRP1 was 4-fold lower in OA patients but 

the differences failed to reach statistical significance (p=0.062). Expression of SPARC 

was similar (Figure 6.3A).  
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Next, the transcripts associated with adipogenic differentiation and bone-fat balance 

were examined. Both LepR and PPAR- showed significant decline (55-fold, p<0.0001 

and 16-fold, p<0.0001, respectively) in OA MSCs compared to healthy old donor 

MSCs. FABP4 showed a tendency of lower expression in OA MSCs (2.5-fold), 

however, the differences failed to reach statistical significance. Overall, all the three 

transcripts displayed a decline in OA patients indicating a decline in the formation of 

adipose tissue in OA patients as compared to healthy old donors (Figure 6.3B). 

 

There was a non-significant decline in the expression of RANKL and a significant 

decline (10-fold) in OPG  expression in OA patients as compared to healthy old donors 

(Figure 6.3C) potentially indicating changes in the rate of bone remodelling in OA 

patients. Among the transcripts associated with MSC stromal function, Cx43 showed 

no difference in expression between OA patients and healthy old donors but CXCL12 

was found to be significantly 58-fold lower (p<0.0001) in OA patients (Figure 6.3D). 

This indicated that the stromal functions in MSCs from OA donors were potentially 

impaired as compared to MSCs from healthy old donors. The expression of SOD3 was 

found to increase by 2-fold in OA MSCs as compared to MSCs from healthy old 

donors. While this was unexpected, future evaluation of this gene along with ROS 

quantification in FH MSCs would help in gaining better understanding of oxidative 

stress in uncultured BM MSCs. 

 

Overall, these data potentially indicated a lesser impairment in the osteogenic capacity 

of OA MSCs, compared to their other functions (such as adipogenesis and stromal 

support).    

6.3.2 Differences in the expression of multipotentiality genes between OA HLCs 

and healthy old donor HLCs  

 
The investigation of transcripts associated with MSC osteogenic differentiation in HLCs 

is indicated in Figure 6.4 and the median values for the same is outlined in Table 6.1, 

bottom panel. No differences were observed in the expression of RUNX2 and a 

significant 13-fold increase in the expression of SPARC (p=0.0003) in OA HLCs 

compared to healthy old donors HLCs (Figure 6.4A). Adipogenic transcripts LepR and 

PPAR- did not display any difference in OA HLCs compared to old donors HLCs, but 

FABP4 showed significantly 8-fold higher levels in OA HLCs (p=0.0409), which is 

exactly the opposite trend to that observed in the MSCs (Figure 6.4B). 
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With respect to bone remodelling transcripts, RANK and RANKL showed no difference 

in HLC expression levels between healthy old donors and OA patients. OPG was not 

detected in healthy old donors, therefore it could be reasonably assumed that its 

expression in OA donors HLCs was elevated (Figure 6.4C).  

 

When the transcripts associated with MSC stromal support were investigated, there 

was no significant differences in the HLC levels of either Cx43 or CXCL12 transcripts 

between OA patients and healthy old donors. Nevertheless, the expression of CXCL12 

was found to be 2-fold higher in OA HLCs whereas, expression of Cx43 was 2-fold 

lower in OA HLCs as compared to HLCs from healthy old donors (Figure 6.4D). 

 

 Differences in multifunctionality genes in OA were not aggravated from ageing and 

thus were only associated with OA. Increase in the expression of SOD3 in both MSCs 

and in HLCs in OA was unexpected as OA is often associated with declined SOD3 and 

increased ROS (446). This suggests need for future work including the detection of 

ROS from uncultured OA donors alongside the quantification of  a larger panel of anti-

oxidant enzymes. 
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Figure 6.3 Expression of genes associated with MSC multipotential functions in 
HLCs from healthy old donors and OA patients  

(A) Expression of RUNX2, SPARC and SFRP-1,  (B) Expression of PPAR-, FABP4 
and LepR, (C) Expression of RANK, RANKL and OPG (D) Expression of CXCL12, 
Cx43 and SOD3. Healthy old donors and OA patients are indicated in grey dots and 
black empty circles, respectively. Horizontal line across data indicate median values. 
p<0.001* and p<0.0001***, Mann-Whitney U test. 
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Overall, HLCs displayed a different pattern of differences to MSCs between OA 

patients and healthy old donors. Fold differences and p values of all of the above 

mentioned transcripts in healthy old donors and OA patients are shown in Table 6.1 

and 6.2 

Table 6.1 Differences in the expression of MSC multipotentiality genes in OA 
MSCs and HLCs as compared to healthy old donors 

 

Cells Genes 
Medians in 

Old 
Medians in 

OA 
Fold 

difference* 
p value 

MSCs 

RUNX2 1.09 2.65 2.43 NS 

SPARC 20.51 24.54 1.20 NS 

SFRP1 2.83 0.71 0.25 NS 

PPAR- 6.20 0.37 0.06 <0.0001 

FABP4 1.77 0.69 0.39 NS 

LepR 4.13 0.07 0.02 <0.0001 

SOD3 0.29 0.66 2.28 NS 

RANKL 0.35 0.20 0.56 NS 

OPG 2.44 0.25 0.10 0.0008 

RANK ND ND NA NA 

CXCL12 1554.00 26.19 0.02 <0.0001 

Cx43 31.55 24.51 0.78 NS 

HLCs 

RUNX2 0.35 0.33 0.95 NS 

SPARC 0.04 0.51 13.86 0.0003 

SFRP1 ND 0.002 NA NA 

FABP4 0.0145 0.1175 8.12 0.0409 

PPAR- 0.04 0.02 0.48 NS 

LepR 0.0023 0.0023 0.99 NS 

SOD3 ND 0.009 NA NA 

RANKL 0.35 0.19 0.54 NS 

OPG ND 0.09 NA NA 

RANK 0.10 0.07 0.71 NS 

CXCL12 0.03 0.06 2.21 NS 

Cx43 2.79 1.05 0.38 NS 

 
Top panel of genes include expression of MSC multipotentiality genes in MSCs and the 

bottom panel includes expression of HLCs . All expressions are relative to HPRT1, 

Mann-Whitney U test. * Medians in OA/ medians in old, NS: non-significant 

 

6.3.3 OA related differences in the expression of senescence, SASP and IFN 

pathway related genes in MSCs and HLCs 

An overall cluster analysis of all exploratory genes revealed some segregation of MSCs 

and HLCs within FH samples, but not as clear as seen in section 5.3.1, Figure 5.3. 
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Figure 6.4 Cluster analysis of exploratory genes in OA samples in MSCs 
and HLCs 

 
Expression of IFNA1, IFNB1, IFN receptors, IRGs, genes associated with 
IFN1>BID>ROS pathway, senescence and other exploratory genes grouped by cluster 
analysis. Dendogram on the top indicate samples and dendogram on the right indicates 
genes . Colour key in shown at the bottom right of the figure. Grey squares indicate 
gene expression values that were below detection. 
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The median values for complete list of genes and differences in old healthy donors and 

OA patients is presented in Appendix 4, Tables 6.1 and 6.2 for gene expression in 

MSCs and HLCs, respectively. 

 

With respect to senescence and anti-ageing genes, the following results were obtained. 

Irrespective of the cell population, the anti-ageing gene Kl expression decreased by 

4.8-fold in MSCs and by 5.5-fold in HLCs in OA patients as compared to healthy old 

donors. MSCs from OA patients showed over 3-fold decline in Tp53 but no change in 

OA HLCs was observed. The expression of Sirt6 remained unchanged in both OA 

MSCs and HLCs. High level of donor variation was observed in the expression of Kl in 

OA patient samples in both, MSCs and in HLCs, and none of these trends were found 

to be statistically significant (Figure 6.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Expression of senescence and anti-ageing genes in MSCs and HLCs 
from healthy old donors and OA patients 

 

(A) Expression of Tp53, Sirt6 and Kl in MSCs. Grey dots indicate old donors and empty 

circles indicate OA patients. (B) Expression ofTp53, Sirt6 and Kl in HLCs. Healthy old 

donors and OA patients are indicated in grey dots and black empty circles, 

respectively. Horizontal line across data set indicates median values.  

 

When the expression of SASP-associated cytokines was analysed, IL6 displayed a 

significant 132-fold increase in OA MSCs (p=0.0101) and also showed a 6-fold 
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increase in HLCs (not significant), these trends were consistent with its hypothesised 

changes in OA. IL7 showed a non-significant 5-fold decline in MSCs and no change in 

HLCs. IL8 did not reach statistical significance but showed opposite trends in MSCs 

and HLCs. While in MSC, it displayed nearly 8-fold increase in OA, in HLCs it had a 

nearly 4-fold decline (Figure 6.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Expression of SASP-associated cytokines in MSCs and HLCs from 

healthy old donors and OA patients 

 

(A) Expression of IL6, IL7 and IL8 in MSCs, (B) Expression of IL6, IL7 and IL8 in HLCs. 
Healthy old donors and OA patients are indicated in grey dots and black empty circles, 
respectively. Horizontal line across data set indicates median values. p<0.05*, Mann-
Whitney U test. 
 

 
Overall, anti-ageing genes and senescence associated genes did not display any 

significant OA-related differences even though Kl declined in OA patients as displayed 

in both cell populations. SASP associated cytokine genes displayed significant 

increase in OA MSCs and a non-significant increase in HLCs.  
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Table 6.2 Differences in the expression of genes associated with IFN1 pathway, 
ROS, anti-ageing and senescence, in OA MSCs and HLCs as compared to 

healthy old donors 

 

Cells Genes 
Medians 

in Old 
Medians 

in OA 
Fold 

difference* 
p value 

MSCs 

IFNA1 9.15 2.23 0.24 NS 

IFNB1 1.72 0.27 0.16 NS 

IFNAR1 4.75 1.26 0.27 NS 

IFNAR2 5.76 1.36 0.24 0.041 

STING 4.88 1.25 0.26 NS 

IRF3 3.13 0.85 0.27 0.051 

STAT1 5.16 1.47 0.28 0.0221 

BID 0.11 0.47 4.27 NS 

MTCH2 1.27 0.47 0.37 NS 

Kl 0.48 0.1 0.21 NS 

Sirt6 0.4 0.3 0.75 NS 

Tp53 2.88 0.81 0.28 NS 

IL6 0.2 26.37 131.85 0.0101 

IL7 1.17 0.22 0.19 NS 

IL8 5.14 40.45 7.87 NS 

HLCs 

IFNA1 7.44 1.17 0.16 NS 

IFNB1 1.59 0.39 0.25 NS 

IFNAR1 0.48 0.65 1.35 NS 

IFNAR2 1.38 0.66 0.48 0.035 

STING 1.033 0.457 0.44 NS 

IRF3 0.66 0.43 0.65 NS 

STAT1 2.4 1.57 0.65 NS 

BID 1.032 0.62 0.60 NS 

MTCH2 0.79 0.34 0.43 NS 

Kl 0.011 0.002 0.18 NS 

Sirt6 0.15 0.1 0.67 NS 

Tp53 1.21 0.75 0.62 NS 

IL6 0.59 3.92 6.64 NS 

IL7 0.013 0.015 1.15 NS 

IL8  67.21  27.35 0.41   NS 

 
Top panel of genes include expression of MSC multipotentiality genes in MSCs and the 

bottom panel includes expression of HLCs . All expressions are relative to HPRT1, 

Mann-Whitney U test. * Medians in OA/ medians in old, NS: non-significant. 

 
Differences in IFNA1, IFNB1 and IFNA receptors were next analysed for understanding 

OA associated changes in relation to old age (Figure 6.5). In OA patients, IFNA1 

showed a non-significant decline (4-fold and 6-fold) in MSCs and HLCs, respectively. 

IFNB1 showed similar trends with 6- and 4-fold declines in OA MSCs and HLCs, 
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respectively. IFNAR1 showed a 3-fold decline in OA MSCs but its expression was 

unaltered in OA HLCs. IFNAR2 showed a statistically significant decline in both MSCs 

(p=0.041) and HLCs (p=0.035) in patients with OA in comparison with old donors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.7 Expression of IFNA, IFNB and IFNA receptor genes in MSCs and HLCs 
from healthy old donors and OA patients 

 (A) Expression of IFNA1 and IFNB1 (top panel) and IFNAR1 and IFNR2 (bottom 
panel) in MSCs (B) Expression of IFNA1 and IFNB1 (top panel) and IFNAR1 and 
IFNAR2 (bottom panel) in HLCs. Healthy old donors and OA patients are indicated in 
grey dots and black empty circles, respectively. Horizontal line across data set 
indicates median. p<0.05*, Mann-Whitney U test. 
 

Among the IRGs, a number of genes were found to be differentially expressed in both 

MSCs and in HLCs in OA patients compared to old donor populations. Figure 6.9 
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below shows some of the differentially expressed genes in MSCs. While most of the 

genes declined in OA patients, ISG20, LAMP3 and IFI27 were significantly higher in 

OA patients  MSCs. The medians, fold differences and statistical significance (if 

p<0.05) of all the investigated genes are shown in Table 6.2 and Appendix 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 Genes expression of IRGs in OA MSCs compared to MSCs from 
healthy old donors  

Examples of differentially expressed IRGs in MSCs from OA donors compared to 
healthy old donors. Healthy old donors and OA patients are indicated in grey dots and 
black empty circles, respectively. Horizontal line across data set indicates median. 
p<0.05* and p<0.01**, Mann-Whitney U test. 

 
 
Figure 6.10 displays examples of genes that were differentially expressed in HLCs in 

OA patients as compared to healthy old donors. Interestingly, CASP1, ISG20 and 

LAIR1 were  differentially expressed in OA patients irrespective of the population 

examined (ISG20 was higher in OA and CASP1 and LAIR1 were lower in OA). 
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Figure 6.9 Genes expression of IRGs in OA HLCs compared to HLCs from 
healthy old donors  

Examples of differentially expressed IRGs in HLCs from OA donors compared to 
healthy old donors. Healthy old donors and OA patients are indicated in grey dots and 
black empty circles, respectively. Horizontal line across data set indicates median. 
p<0.05* and p<0.01**, Mann-Whitney U test. 

 
The genes associated with the IFN1>BID>ROS pathway were next investigated for any 

differences in OA patients as compared to healthy old donors. In MSCs, all the genes 

except BID displayed a decline in OA with STAT1 showing a significant decline 

(p=0.0221). However, in HLCs, the trends for decline were more subtle, even though a 

minor decline stayed constant for almost all the genes (Figure 6.11). 
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Figure 6.10 Expression of genes associated with IFN1>BID>ROS pathway in 

MSCs and HLCs from healthy old donors and OA patients 

 

(A) Expression of STING, STAT1 and IRF3 (top panel) and BID, MTCH2 (bottom 

panel) in MSCs,  (B)  Expression of STING, STAT1 and IRF3 (top panel) and BID, 

MTCH2 (bottom panel) in HLCs. Healthy old donors and OA patients are indicated in 

grey dots and black empty circles, respectively. Horizontal line across data set 

indicates median values. p<0.05* , Mann-Whitney U test. 
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In summary, section 6.3.3 investigated differences in exploratory gene expression 

including anti-ageing and IFN1>BID>ROS pathway genes, anti-ageing, SASP and 

cytokines, and identified novel molecules that displayed significant differences in their 

expression in OA MSCs. IFNAR2 declined significantly in OA MSCs along with a 

number of IRGs and STAT1, a downstream molecule through which IFNs induce the 

expression of IRGs. As expected, IL6 increased significantly in OA while anti-ageing 

gene Kl decreased by nearly 5-fold in OA patients. Altogether, these expression 

patterns indicated a possibility for a reduced IFN1 signalling in OA MSCs, which could 

further impact on their potency and senescence status. 

6.3.4 Biomarkers of age-related OA 

In the course of this study, a number of genes that displayed a trend towards age-

related differences, were also found to have a similar and aggravated trend in OA. 

While the expression of some of these genes was found to decline with both increasing 

age and OA, the others showed an increase in their expression. In MSCs, the statistical 

significance in these ‘aggravated’ genes was only observed for IL6 (Figure 6.12A), 

while more such genes were found in HLCs. In itself, this indicated that MSCs were 

more resistant to ageing and OA, compared to HLCs (Figure 6.12B). This section 

discusses the genes in both cell populations that have displayed distinct trends and 

statistical significance with respect to age-related differences that were further 

exacerbated in OA. 

 

The on transcript that displayed a distinct age-related increase followed by a further 

increase in OA MSCs was IL6 (p=0.0005), as shown in Figure 6.12A. Genes that 

displayed a age-related decrease followed by a further decrease in expression in OA 

HLCs included the anti-ageing gene Sirt6 (p=0.02), senescence associated Tp53 

(p<0.0001). Interestingly, IFNAR2 (p=0.0026) also displayed and age and OA-related 

decrease in HLCs, potentially suggesting an overall decline in the IFN1 cascade with 

advancing age, that is aggravated in OA. Thus, it was not surprising that the stimulator 

of IFN genes or STING was also found to display an age-and OA-related decline 

(p=0.008) along with MTCH2 (p=0.0019) , all shown in Figure 6.12B. 
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Figure 6.11 Expression of genes that displayed age-related differences that were 
further exacerbated in OA 

 

 (A) Expression of IL6 in MSCs (B) Expression of RANKL, Sirt6, Tp53, IFNAR2, STING 
and MTCH2 in HLCs. Young donors, old donors and OA patients are indicated by black 
dots, grey dots and empty black circles, respectively. The black line indicates median 
values. *p<0.05, **p<0.01 and ****p<0.0001, Kruskal-wallis test with Dunn’s correction. 
 

Overall, this section outlines the potential markers of age-related OA reflecting the in 

vivo BM niche in uncultured BM MSCs and in HLCs. Further examination of these 

genes at both gene and protein level in a larger donor cohort would be extremely useful 

in translating these genes as biomarkers.  

 

6.3.5 Differences in surface marker expression in OA MSCs and HLCs 

compared to healthy old donors 

 
While none of the surface markers displayed any age-related changes in MSCs 

(Chapter 4, figure 4.14), CD106 and CD295 showed a significant decrease (4-fold, 

p=0.0003 and 4-fold, p=0.0043, Figure 6.13A and B, respectively) in their expression in 
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OA MSCs as compared to old donors MSCs. Expression of CD146 and Cx43 remained 

unchanged (Figure 6.13C and D). Interestingly, the decline in LepR both at the 

transcript level as well as in the protein level was found to be consistent and 

statistically significant, suggesting an imbalance between osteogenic and adipogenic 

differentiation abilities in patients with OA.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 6.12 Surface marker expression in MSCs from healthy old donors and OA 
donors 

(A) CD106 (B) CD295 (C) CD146 and (D) Cx43 from old healthy donors and OA 
patients. Healthy old donors and OA patients are indicated in grey dots and black 
empty circles, respectively. Horizontal line across data indicate median values. *p<0.05 
and ***p<0.001, Mann-Whitney U test. 
 

 
Following comparisons in MSCs, surface marker expression was investigated in HLCs. 

CD106 and CD146 displayed a trend for increased expression in HLCs (2-fold in each) 

but the differences failed to reach significance. CD295 and Cx43 on the other hand, 

displayed a decline in expression in OA patients, but again failed to reach significance 

(2-fold each) (Figure 6.14). CD295 was found to decline in both MSCs as well as in 

HLCs. 
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Figure 6.13 Surface marker expression in HLCs from healthy old donors and OA 
donors 

(A) CD106 (B) CD295 (C) CD146 and (D) Cx43 from old healthy donors and OA 
patients. Healthy old donors and OA patients are indicated in grey dots and black 
empty circles, respectively. Horizontal line across data indicate median values. 

 
 
Overall, compared to healthy aged MSCs, MSCs from OA patients displayed a 

significant decline in PPAR-, LepR, OPG and CXCL12 expression. None of these 

changes could  be described as ‘aggravated ageing’ since all of these genes showed 

no age-related differences in healthy donor MSCs (section 4.4.3). LepR was also 

investigated at the protein level and a similar significant decline was confirmed in OA 

patients. This was also unique to OA since no age-related changes in LepR/CD295 

were found in healthy  old donors (section 4.3.5). Furthermore, like CD295, CD106 was 

another protein that displayed a very significant decline in MSCs from OA patients, 

which was likely to be associated with other local or systemic factors contributing to OA 

since no age-related differences in its expression were found in the previous chapter 

(section 4.3.5). 

 

In OA HLCs, anti-ageing genes Sirt6 and Kl, declined significantly and the expression 

of IFN-related genes of IFNAR2, STING, MTCH2 and IRF3 also declined significantly. 
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These genes were found to decline in healthy ageing as well. From these findings, it is 

tempting to speculate that in HLCs, age-related trends particularly in relation to IFN 

pathway, are further exacerbated in OA. But this is not the case for MSCs.  

Interestingly, the pro-inflammatory and SASP-associated cytokine IL6 transcript was 

found to increase by over 100-fold in OA MSCs and by 7-fold in OA HLCs. IL6 

expression also increased by 4-fold in healthy ageing in both MSCs and HLCs (section 

5.3.1). As IL6 was found to increase in healthy ageing and further aggravated in OA, in 

both MSCs and HLCs, it would be a good biomarker of age-related OA. 

 

6.4 Discussion 

The results from this chapter reveal very interesting alterations in MSCs from OA FH 

bone compared to healthy aged BM MSCs. Gene expression results indicated a 

decline in the adipogenic potential of MSCs from OA FHs, no alteration in the levels of 

osteogenic differentiation transcripts and a significant decline (nearly 10-fold) in the 

expression of OPG in MSCs from OA patients. A significant decline (60-fold) in the 

level of CXCL12 implicated in cell recruitment was also observed. Interestingly, there 

was no significant change in the transcript encoding an anti-oxidant enzyme SOD3 in 

OA MSCs compared to healthy old donors MSCs. The study of exploratory transcripts 

encoding cytokines revealed an increase in the level of IL6 transcript in OA, as 

expected from literature (461, 478). STAT1 declined in OA patients while no significant 

changes were observed in ageing and senescence associated genes (Kl, Sirt6, Tp53). 

Interestingly, the anti-ageing gene Kl decreased in OA patients by nearly 5-fold but 

statistical significance wasn’t achieved due to high donor variation in its expression 

levels. 

 

Transcripts associated with osteogenic differentiation potential showed no difference in 

OA MSCs compared to healthy old donor MSCs. A recent study from our group (Ilas et 

al., 2019) investigated the level of RUNX2 in BM MSCS from the FH of OA patients 

and found a significant increase in the expression of RUNX2 in MSCs from OA patients 

as compared to MSCs from healthy donors (69). Even though this was the most 

relevant study for comparison with the PhD project, the OA patients were not age-

matched with healthy donors in the Ilas et al., study. In this project, the genes 

associated with osteogenic differentiation showed no difference or non-significant 2-

fold increase (RUNX2) in OA MSCs as compared to healthy old MSCs. Future work 

with genes associated with osteogenic differentiation in OA must firstly consider the 

different stages OA and analyse the gene expression separately. Investigating these 
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molecules at the protein level would further enhance the current understanding of OA 

progression. 

 

The expression of adipogenic transcripts in MSC population in this project suggested a 

decline in the fat forming capacity of MSCs from OA donors. This is in agreement with 

a previous study by Murphy et al. that have shown that the adipogenic potential of 

MSCs from OA donors is compromised. Interestingly, they also found a decline in the 

osteogenic potential of MSCs from OA donors which was not what was observed in this 

project. The variation could be potentially due to the fact that Murphy et al., used 

cultured cells as opposed to uncultured cells as in this project. Also, while they 

measured the differentiation potential of MSCs from OA donors in vitro, in this project, 

the cells were uncultured and hence better represented human OA conditions in vivo. 

Interestingly, another study from our group published in 2016 (183) found no defect in 

the adipogenic differentiation potential of culture-expanded MSCs either. These studies 

too tested the adipogenic potential of MSCs from hip OA donors in vitro under normal 

culture conditions, further highlighting the need to dissect any changes in OA MSCs 

prior plastic adhesion and culture. Overall, the expression of adipogenic transcripts 

were not found to be consistent with the hypothesis that there might be an exaggerated 

increase in OA, possibly due to other factors like lifestyle and obesity that are involved 

in age-related OA but were not accounted for in this project. 

 
Recently, a study from our group investigated the expression of MSC multipotentiality 

transcripts in MSCs from OA FH as compared to the MSCs in healthy donors (69). 

Interestingly, it showed a significant increase in the expression of OPG, RUNX2 and 

SPARC in patients with OA as compared to healthy donors. In this PhD project, the 

trend for RUNX2 expression was found to be consistent with the previous results from 

our group, but the level of SPARC expression was not. Even though the cells used 

were also uncultured CD45lowCD271+ cells, the patient cohorts in Ilas et al., study were 

not as well age-matched. The Ilas et al., study also used a larger panel of osteogenic 

transcripts. While expanding the number of transcripts for investigating multipotential 

functionalities of MSCs would be the way forward, low numbers of CD45lowCD271+ 

MSCs in aged donors  represent a significant limitation for future work. Using 

techniques like RNA seq to compare differentially expressed genes in OA as compared 

to healthy old donors would provide further insight into OA development. 

 

In this project, both RANKL and OPG displayed a decline in MSCs from OA patients as 

compared to healthy old donors. While the decline in OPG was significant, the 

difference in RANKL failed to reach statistical significance. RANKL and OPG are 
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involved in bone remodelling (discussed in Introduction, section 1.1.4 and in Chapter 4, 

section 4.1.1) and have been extensively investigated in OA. More relevant to this 

study, Bitenc Logar and colleagues in 2007 investigated the levels of RANKL, OPG  in 

the trabecular bone samples (uncultured) in OA patients (479). They found a significant 

decline in the levels of RANKL in the samples from OA patients compared to those with 

femoral neck fractures. While they used uncultured samples from donors, they did not 

isolate/purify any cell types for their experiments and studied mixed population of all 

the cell types present within the subchondral bone. The most recent study from our 

laboratory has shown higher OPG levels in OA CD45lowCD271+ MSCs compared to 

healthy OA MSCs whereas RANKL transcript levels were not altered (69). These data 

differ from the findings from this thesis where OPG was significantly lower in OA MSCs. 

This could be due to the fact that the age of healthy old donors and OA patients in Ilas 

et al., paper was not as closely age-matched and included healthy old donors in their 

40s as compared to this thesis where old donors were strictly over 59 years old. 

 

In another study, Upton and co-workers found a significant increase in the levels of 

both RANKL and OPG obtained from grade 2 OA patients compared to grade 0 OA 

using K/L system (480). However, Upton and co-workers had used articular cartilage 

and used IHC for their studies. Kwan et al showed a significant increase in the levels of 

OPG in OA patients cultured osteoblasts with high levels of prostaglandin E2 (PGE2) in 

comparison with OA patients with lower levels of PGE2, but not in comparison with 

healthy donors. In fact, in comparison with healthy donors, the level of OPG was lower 

in both the OA groups but did not show statistical significance. They observed no 

significant differences in the levels RANKL. Considering the MSCs are pre-osteoblasts 

cells, the results from Kwan et al., study are very comparable to that of the current 

project. However, they used cultured (P1) cells making the work in this PhD project 

novel due to the use of uncultured cells for better in vivo correlation of the disease 

progression in humans. 

 

This project also investigated RANKL and OPG in HLCs which showed no differences 

in OA patients for RANKL. OPG was not detected in HLCs from old donors and 

measurable in OA group suggesting a potential for increase. This project thoroughly 

investigated transcripts associated with bone remodelling in two pure BM cell 

populations for understanding bone remodelling processes in OA. This has not been 

done previously, making this project novel. 

 

Transcripts investigated for MSC stromal functions in this study in MSCs and HLCs 

from OA patients included CXCL12 and Cx43. In the present study, there was a 
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significant decline observed in the expression of CXCL12 in MSCs from OA patients as 

compared to MSCs from healthy old donors. However, there was no difference 

observed in the expression of Cx43 in MSCs between OA patients and old donor 

groups. In HLCs, their differences observed were not significant. Cx43 has been shown 

to be increased in synovial cells OA patients (457) and recently, Cx43 has been 

suggested as a therapeutic target to halt OA progression (481). However, both of these 

studies were performed on cartilage and not on bone. 

 

CXCL12 has been previously investigated in OA owing to its role in chemotaxis and 

movement of MSCs and other BM cells and its close links with hematopoietic 

compartment within the BM niche. Previous investigations of CXCL12 in human OA 

patients remain limited and debatable. A study of MSCs from synovial joint of OA 

patients showed that the levels of CXCL12 were much lower in OA as compared to 

those without the disease (456). Conversely, another study suggested that CXCL12 

binding to its receptor CXCR4 contributed to the induction of cartilage degradation in 

OA (455). Even though a part of the study detected higher levels of CXCL12 in the OA 

patients, the model used here was cartilage explants from human OA patients. The 

accumulation of alternating results complicate the process of finalising the underlying 

mechanism that brings about the changes in the levels of CXCL12 in OA. However, 

with respect to OA, a study in 2017 identified CXCL12 as an important indicator of knee 

OA using microarray analysis (482). However, there was no difference in the 

expression of CXCL12 in HLCs in this project. Investigating CXCL12 at the protein 

level along with the gene, in more donors and comparison in different stages of OA 

would allow in better understanding of the gene with disease progression. 

 

LepR was also investigated in this thesis, both at the transcript and the protein level. 

Data from this chapter suggested a significant 55-fold decline in the expression of 

LepR transcript in OA MSCs as compared to healthy old donor MSCs. This trend was 

consistent with the surface marker expression of LepR (CD295) which also displayed a 

significant decline (3-fold) in MSCs from OA donors. This potentially indicated the 

impairment of bone-fat balance in OA bone. Interestingly, there was no difference 

observed in expression of LepR, both at the transcript and at the protein level, in the 

HLCs when compared between OA patients and healthy old donors. 

 

The hormone leptin has been found to have increased expression in the blood, plasma 

(483) and in the synovial fluid of OA patients and has also been shown to correlate 

positively with the severity of the disease (468, 484). In other studies, synovial Leptin 

level has been positively associated with the pain in hip and knee OA in menopausal 
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women (484) as well shown to be directly proportional to BMI in OA patients (485).  A 

review in 2013 further suggested that the missing link between obesity and OA was the 

hormone Leptin (270). Interestingly, Leptin was also found to increase in synovial fluid 

of OA patients and positively correlate with the age of the OA patients (468). Leptin has 

also been associated with increased levels of bone forming markers in OA patients 

(486). This could potentially explain the loss of bone-fat balance in OA, whereby Leptin 

hormone potentially increases and expression of LepR decreases, as seen from data in 

this chapter. One study reported higher levels of both the hormone leptin and its 

receptor in OA, but this was investigated in the cartilage OA patients (454).  

 

Considering all of the above literature, it is clear that a lot of work has been performed 

on the role of Leptin in OA patients consistently reporting elevated levels of Leptin in 

OA patients. However, most of the studies have been focussed on synovial fluid, 

cartilage or serum levels. Expression levels of LepR via which the hormone Leptin 

functions has largely been overlooked and LepR in uncultured MSCs from OA donors 

has not been studied before. Lower levels of LepR in OA MSCs could potentially be a 

reaction to the higher levels of leptin in blood, which has already been suggested as a 

biomarker of the disease. Future work to understand differences in Leptin and its 

receptor in OA would ideally include blood and BM samples from OA patients to 

investigate them together in comparison with healthy old donors. Since there was no 

age-related difference in the expression of CD295 (Chapter4, section 4.3.8), the 

decline in CD295 observed in this chapter is clearly, specific to OA. 

 

Interestingly, there has been an increase in the number of studies associating OA with 

ROS and ageing (487). SOD3 expression in human cartilage is believed to decline in 

the later stages of OA (445). However, this project found a non-significant 2-fold 

increase in the level of SOD3 in OA MSCs as compared to healthy old donor MSCs, 

which was unexpected. The fact that the present study found minor age-related 

difference in ROS measurement and that was complemented by a lack of any major 

difference in SOD3 in BM MSCs (sections 4.3.3), is in line with the observation of no 

aggravated differences in SOD3 in OA MSCs.  This supports the notion that levels of 

ROS and anti-oxidant enzymes quantified in culture expanded MSCs (288) are likely to 

be in a state of induced oxidative stress and do not mirror the oxidative status of MSCs 

in vivo. 

 

Measurement of ROS alongside antioxidant enzymes genes (like Gx, SODs) in 

uncultured MSCs has not been performed before. However, the current study did not 

show any age-related or OA-related differences. Future work should include a larger 
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panel of number of anti-oxidant enzymes (including all the SODs, Gx, Ascorbic acid) 

and perform these measurement in larger number of donors. Culture expanded cells 

are automatically exposed to oxygen concentrations that are significantly higher than in 

the BM niche in vivo, inducing oxidative stress the moment they are cultured in 

laboratory conditions. This could also explain why data from this project (Section 5.3.1) 

did not observe any differences in the level of ROS in young and old donor MSCs 

either.  

 

With respect to the IFNA1, IFNB1 and IFNA receptors, all of these were found to be 

reduced in OA patients with IFNAR2 showing significant decline in both MSCs and 

HLCs. The presence of IFNA receptors has increasingly been associated with 

chondrocytes, synovial fibroblasts (488) and with activities their like mediating immune 

responses and operating various signalling networks within the bone (489). How the 

expression of IFN receptors change with progression of OA is a new field of research, 

but this can modulate binding with IFNs, and influence the immune signalling by 

downstream induction of various IRGs. A number of IRGs were found to be 

differentially expressed in both MSCs and HLCs from OA patients including LAIR1 

(decreased), CASP1 (decreased) and ISG20 (increased). LAIR1 is known as 

leukocyte-associated immunoglobulin-like receptor 1 that has previously been 

proposed as a marker of OA due to significantly higher expression in OA patients 

(490). In this project however, the expression was found to be significantly lower in 

both cell types of OA patients. The difference in trend with the aforementioned 

research could be due to the fact that their source was all cells from the synovial fluid. 

CASP1 or caspase1 has also been shown to be upregulated in OA patients when 

investigated in peripheral blood mononuclear cells (491) or more recently, from 

synovium (492). However, these studies were based on patients identified with knee 

OA and not hip OA, and also explored these molecules in immune cells rather than in 

MSCs. ISG20 very interestingly, unlike other genes in this chapter, indicated a 

significant increase in expression (irrespective of cell type) in OA patients. While there 

is not enough known about the involvement of this gene in OA, data from this project 

merits further investigation. 

 

Analysis of the results of the genes associated with IFN1>BID>ROS pathway revealed 

a non-significant decline in nearly all genes, except for STAT1, which showed a 

significant decline in MSCs from OA donors and a non-significant decline in HLCs from 

OA donors as compared to healthy old donors. A decline in STAT1 was aligned with 

the reduced expression of IFN receptor explained above. A study that compared 

STAT1 in patients with rheumatoid arthritis (RA), OA as well as spondyloarthritis (SpA) 
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found an overall increase in the level of STAT1 in all of the 3 types of arthritis from 

tissue samples at the protein level (493). Another study that compared STAT1 at the 

RNA and the protein level, found that STAT1 was significantly higher in RA as opposed 

to OA patient synovial tissue samples (494). The opposite trends in this project can be 

explained by different tissue sources and techniques. 

 

None of the anti-ageing genes or genes associated with senescence showed any 

significant differences in either of the cell types in OA, with Tp53 showing a non-

significant 3.5-fold decline in MSCs from OA patients. Previously, Tp53 downregulation 

has been associated with reduced chondrocyte apoptosis due to strain (460) and 

another study suggested that miR-34a in the human chondrocytes played a vital role in 

OA progression via the Sirt1/p53 signalling pathway, making it a potential therapeutic 

target for OA. Tp53 has also recently been labelled as one of the ‘key genes’ to be 

linked with OA, based on bioinformatics analysis (495).  

 

Not only has Sirt6 been suggested to prevent cellular senescence in chondrocytes 

(458), it has also been proposed as a potential therapeutic target for OA (459). Sirt6 

expression in this project showed no difference in OA MSCs or HLCs as compared to 

healthy old donors. Previous studies have indicated lower expression of Sirt6 not only 

in aged mice but also in mice and humans with OA, as compared to healthy controls 

(496). The study also claimed to protect mice from cartilage damage using Lenti-Sirt6 

intra-articular injection and to reduce chondrocyte senescence. Another study showed 

that inhibition of Sirt6 from human chondrocytes in vitro reduced proliferation, 

increased senescence, DNA damage and telomere dysfunction (497). While there was 

no age-related or OA-related difference found in MSCs or HLCs in Sirt6, Tp53 

demonstrated an age-related decline which was further aggravated in OA (section 

6.3.4) suggesting its role in ageing, senescence as well as in OA. Exploring Tp53 with 

p21 and p16 at gene and protein level in larger number of donors would be extremely 

useful in understanding the role of Tp53 in age-related diseases. 

 

Kl displayed a trend for decline (5-fold) in both MSCs and in HLCs in OA donors 

compared to healthy old donors. Previously, Kl  has been shown to be associated with 

female Caucasian patients with hand OA wherein they found that a genetic variant in 

the gene was related to increased vulnerability towards hand OA (498). They also 

suggested that this association was potentially stemming from bone rather than 

cartilage. Similarly, another study of Kl genetic variants found that this gene was 

closely related to knee OA in Greek population (499). Each of these investigations 

recruited over 200 OA patients from whom peripheral blood sample was examined for 
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the single nucleotide polymorphism in the gene. Very recently, Tilly et al., found that Kl 

expression showed an age-related decline in articular cartilage (500). Although Kl 

expression increased in OA chondrocytes, KL-/- mice did not show any OA-related 

changes. They suggested that Kl potentially modulated pro-inflammatory cytokines in 

OA cartilage. Like Tp53, Kl too displayed an age-related decline in expression which 

was further aggravated in OA, even though the aggravated decline failed to reach 

statistical significance. 

 

Among the cytokines, IL6 showed a significant increase in its expression in MSCs and 

a non-significant increase in HLCs, in OA patients in this project. IL6 is among the most 

well examined cytokines associated with inflammation and ageing, as shown in 

discussion of Chapter 5. Thus it was not surprising to observe significantly higher levels 

of this cytokine transcript in OA. With respect to healthy ageing, there was a 4-fold 

increase in the expression of IL6 in both, MSCs and in HLCs. Previous studies have 

reported elevated levels of IL6 in OA patients, however, most of these studies have 

used blood/serum samples (501) or synovial fluids (461). Therefore, this was the first 

study to investigate IL6 in uncultured MSCs from OA patients and in two cell 

populations from healthy donors (MSCs and HLCs) simultaneously. IL7 is well-known 

cytokine to be secreted by BM MSCs (502). With respect to OA, this project found a 

trend for its decline in OA MSCs and no difference in HLCs. Data on the involvement of 

IL7 in OA is limited and to the best of my knowledge, has not yet been available on 

uncultured BM MSCs. Considering that IL7 plays an important role in cell proliferation 

and maturation of lymphoid cells along with having therapeutic potential as shown in a 

recent diabetic rat model (503), further investigations on IL7 would be interesting. 

 

Among the surface markers, CD106 and CD295 were found to be significantly lower in 

OA MSCs in this project. Previously, CD106/VCAM-1 measured using ELISA from 

blood of OA patients who underwent surgery (n=60) revealed a very significant 

increase as compared to patients who did not undergo surgery (n=852) (463). Based 

on the findings that VCAM-1 levels are elevated in severe OA from the previous study, 

a very recent study investigated the serum levels of VCAM-1 in patients with hip OA 

(n=100) (466). They found a non-significant 8% increase in the levels of VCAM in 

patients with hip OA, and concluded that VCAM-1 was not able to distinguish severe 

OA from age and sex-matched controls. Interestingly, both these studies have tables 

that indicate BMIs in patients with severe OA to be significantly higher as compared to 

their control, potentially indicating a disruption in their bone-fat balance. In HLCs, while 

there was no difference in CD106, the trend for CD295 stayed the same as in MSCs, it 

displayed a non-significant decline. The different cell source and measuring VCAM-1 
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released protein as opposed to transcript in this study, explain the opposite results as 

compared to the findings in this thesis.  

 

Cx43 and CD146 did not show any differences in young and old donors (Section 4.3.4) 

and neither in MSCs from OA donors. They are expressed on uncultured MSCs and 

definitely play important functions, however, a larger cohort of donors must be used to 

understand the differences in the level of expression of Cx43 and CD146 in young and 

old donor MSCs as well as in OA. One study focussed on the protein interactions of 

Cx43 with other protein interactors in OA (504). They found over 100 proteins that were 

closely linked with Cx43. Gene ontology data from their OA donors suggested 

maximum interactors of Cx43 related to cell adhesion, nucleolus, calmodulin and 

cytoskeleton from chondrocytes in OA cartilage.  

 

In conclusion, there was a significant decline in adipogenic genes in OA MSCs along 

with a decline in OPG indicating towards increased bone resorption. IFNAR2 also 

declined significantly in OA MSCs which potentially led to the decline in several IRGs in 

OA. This indicated the role of IFNAR2 as a marker in OA. CD106 and CD295 declined 

significantly in BM MSCs suggesting a decline in immune-regulatory properties and 

loss of the bone-fat balance, suggesting these could be potential markers of OA. 

Senescence associated genes did not show any statistically significant differences but 

the age-related Tp53 and Sirt6 expression decline in HLCs was further aggravated in 

OA. Pro-inflammatory marker IL6 displayed an age-related increase in both MSCs and 

in HLCs which was further significantly aggravated in OA. Interestingly, IFNAR2, 

MTCH2 and STING which is the stimulator of IFN genes, both displayed an age-related 

decline followed by an exacerbated decline in OA HLCs. This indicates towards 

potential markers of age-related OA that need further exploration at protein level in a 

larger cohort of donors. 
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Chapter 7 Discussion 

7.1 Key findings 

The aim of this project was to investigate bone resident MSCs in healthy ageing and in 

OA by means of enumeration and gene expression analysis. In most parts, donor-

matched HLCs were used as a control population. A decline in the number and 

proliferative capacity of MSCs was found in healthy ageing.  The genes selected to 

reflect MSC multifunctionality and selected surface markers did not display any 

significant differences in old donor MSCs compared to young donor MSCs, but 

surprisingly, some significant age-related differences, for example in the expression of 

RANKL, SPARC and LepR were observed in HLCs. MSCs and HLCs were 

investigated further for senescence, SASP and IFN1 pathway-related exploratory 

genes and once again, age-related differences were more evident in HLCs as 

compared to MSCs. Finally, investigations in OA suggested a significant decline in 

CXCL12, PPARand LepR expression in MSCs, which for LepR was confirmed at 

the surface protein level by flow cytometry. CD106 also showed a significant decline in 

MSCs from OA patients. Finally, a number of candidate genes (SPARC, Kl, IL6, and 

IL8) were found to display age-related differences in HLCs that were aggravated in OA 

patients, and IL6 showed the same trend in MSCs. These candidate genes should be 

further investigated as potential biomarkers of age-related OA and potentially targeted 

for future therapeutic approaches aimed at slowing down the progression of the 

disease. 

7.2 Clinical relevance  

This project showed a significant age-related decline in the number of BM MSCs 

measured by the classical CFU-F assay along with a significant decline in the 

proliferation potential of MSCs from older donors measured by colony area and 

integrated density (ID) analysis. To understand proliferative capacity of MSCs in 

relatively more ‘natural’ conditions, similar experiments were performed in human 

serum. Growing young donor MSCs in OS conditions resulted in significantly lower 

colony IDs as compared to when these MSCs were grown in YS conditions. The IDs of 

colonies from old donor MSCs were significantly higher when grown in YS when 

compared to OS. This suggested that old donor MSCs could be partially ‘rejuvenated’ 

in terms of their proliferation potential when grown in YS, highlighting the importance of 

cell extrinsic factors in the MSC in vivo niche. Thus, Chapter 3 results supported the 

SCE theory of ageing (section 1.1.1), however, a few of the old donors exhibited MSC 

numbers that were as good as young donors if not better. Overall, this indicated 



 

212 
 

towards a general decline in the number and proliferative capacities of MSCs in older 

population.  

 

However, the presence of old donors with a relatively good number of BM MSCs as 

compared to the other donors in their cohort, indicated that chronological age is a 

shared characteristic but biological age is personal and varies from donor to donor. 

From the clinician point of view, these data suggest that a higher volume of BMA needs 

to be aspirated from old donors to get a similar ‘dose’ of MSCs as compared to young 

donors. And even after a higher ‘dose’ of MSCs, the MSCs may need further 

stimulation and exposure to younger microenvironment in order to be used as a 

successful therapeutic (for fractures and other cell therapies). Rapid quantification of 

the number of CD45low CD271+ cells (111) from the BMA of the donors, MSC fitness 

and measurement in donor serum predicted by oxidation state (320) along with the 

level of pro-inflammatory cytokines like IL6 could help assess the biological age of the 

donor. This will potentially indicate the biological age of the donor cells to help predict 

the ‘dose’ of MSCs needed for a given patient. 

 

Using the CD45lowCD271+ phenotype to identify MSCs, this project showed a non-

significant age-related decline in their numbers. However, this decline has been shown 

to become significant when data from more donors (n=67) were analysed (505). 

Adipogenic bias has been suggested as the most accepted feature of ‘old’ donor 

MSCs, even though some reports of no changes in their differentiation potential, do 

exist. While the exact mechanism for this proposed shift remains unknown, presence of 

ROS in old and damaged cells has often been suggested to be the cause. In this 

project, no differences in the expression of selected osteogenic- and adipogenic-

lineage transcripts were found between young and old donors MSCs. Only some 

trends in the adipogenic bias were visible in old donor MSCs. In support of with this 

finding, when ROS and the level of anti-oxidant enzyme SOD3 were measured in 

MSCs, no significant difference between young and old donors were found. This 

indicated that scientists must be mindful when reporting on ‘age-related’ differences in 

MSCs, considering ‘in vitro’ ageing and ‘in vivo’ ageing may be driven by different 

mechanisms. 

 

Transcripts for bone remodelling and stromal functions also did not display any 

significant age-related differences in MSCs, even though both RANKL and OPG 

increased in old donor MSCs. Surface markers also demonstrated no changes in old 

donor MSCs or in HLCs. Interestingly, RANKL and SPARC both showed significant 

declines not in MSCs, but in HLCs indicating that age-related changes in BM MSCs in 
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vivo are probably more subtle in comparison to the age-related changes in HLCs. This 

finding provided the first evidence that MSCs could be more resistant to age-related 

damages in vivo in comparison to HLCs, even though they may be exposed to the 

same levels of local cellular and intracellular insults such as ROS and DNA damage.  

 

Taking into account recent research suggesting potential links between DNA damage, 

senescence, ROS, IFN1 signalling and ageing in HSCs, the question if DNA damage, 

senescence, ROS and ageing could also be linked to cells of our interest, the MSCs, 

via IFN-signalling, formed the basis of next set of experiments in Chapter 5. This study 

is novel (to the best of my knowledge) to investigate a large number of genes on a 

broad donor age range on uncultured BM MSCs and HLCs using pure cell populations. 

This chapter revealed very interesting findings. Firstly, while senescence and SASP 

associated genes displayed trends towards increased damage in old donor MSCs, they 

did not reach statistical significance. Second, with respect to the expression of IFN1 

and related genes in MSC, some of them unexpectedly displayed very high expression 

in MSCs as compared to HLCs. Next, some novel genes were found to display age-

related differences in HLCs. Interestingly, in this investigation too, only one out of 96 

genes showed a significant decline in MSCs from older donors, further suggesting that 

age-related changes are relatively subtle in MSCs in vivo. However, genes associated 

with IFN1>BID>ROS pathway and senescence associated genes displayed significant 

changes in HLCs. This could be explained by the fact that MSCs are longer living cells 

and may have developed molecular mechanisms to combat ageing, which is not the 

case for HLCs that have shorter life-span. It will be interesting to investigate in the 

future if other long-living bone cells, such as osteocytes, have IFN1>BID>ROS  

signature similar to MSCs. 

 

Finally, investigations in MSCs from OA donors revealed a significant decline in the 

expression of adipogenic transcription factor PPAR-and stromal derived cytokine 

CXCL12 in MSCs. The surface marker CD106 also displayed a significant decline in 

OA donors as compared to healthy old donors and LepR showed a significant decline 

at both gene and protein levels. Many genes associated with IFN1>BID>ROS pathway, 

including IFNR2 and STAT1 were also down-regulated in OA MSCs. Again, OA HLCs 

demonstrated more profound OA-associated changes, some of which were in the same 

direction as noted for normal ageing in HLCs. IL6 was identified as the only gene which 

displayed an aggravated age-related change in both cell populations in OA. Thus, this 

investigation essentially paves the way for identifying novel candidate biomarkers for 

age-related OA. 
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7.3 The ‘bigger picture’ 

A number of genes investigated in this project have been shown by others to be 

associated with ageing/OA and/or other age-related diseases. For example, SPARC 

has been established as a key player in obesity and diabetes which are already been 

considered to be impacted by age (506). Makhluf and colleagues have previously 

shown an age-related decline in the expression of OPG in older OA donors, potentially 

connecting age with OA (507), however the study remained limited in terms of its 

patient cohort, given their youngest donor was 38 years old, when the decline in MSCs 

already take place, as shown in this thesis (Chapter 3) and the bone remodelling 

dynamics begin to shift (96). Another study on human femoral head BM investigated 

the levels of RANKL and OPG in OA patients and found an age-related decline in the 

levels of OPG. They also noticed variation in the levels of OPG in the young donors but 

the old donor cells consistently produced very low levels of OPG. The anti-ageing gene 

Sirt6 was shown to be significantly reduced in the articular chondrocytes of OA patients 

that displayed increased cellular senescence as compared to non OA patients (508). 

Higher levels of IL6 and IL8 was found to be secreted from the synovial of obese OA 

patients as compared to normal weight OA patients (478). 

 

In this context, my PhD has shown a decline in the expression of OPG, LepR, PPAR- 

and SPARC in MSCs from OA patients as compared to MSCs from old donors, 

suggesting a decline in osteogenic as well and adipogenic differentiation. IFNAR2 

declined significantly while IL6 was found to increase significantly indicative of higher 

levels of SASP associated with OA MSCs. With respect to age-related differences that 

were aggravated in OA, the pro-inflammatory cytokine IL6 displayed a significant 

increase in MSCs and the anti-ageing genes of Sirt6 and Kl displayed a decline  in 

HLCs.  

 

There has been an enormous rise in the number of publications aimed at the different 

aspects of OA in the last two decades on the research front which indicates towards 

the increased needs, availability of funding and thirst for knowledge among the medical 

and scientific community. However, very few of these publications have been aimed at 

prevention of the condition, by acting on the aspects of an individual’s life that can be 

controlled (diet, exercise, personal well-being). Healthcare systems globally should aim 

at early prevention of the disease for which early diagnosis is critical. This can be 

achieved by enhancing basic research towards early OA biomarkers to deliver more 

convenient diagnostic tools and better disease-modifying drugs. At the same time, it is 

equally important to spread awareness and educate people early on about the lifestyle 

choices that could prevent the disease altogether.  
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The lack of strong and statistically significant age-related changes in uncultured BM 

MSCs in this project, as compared to the vast majority of literature outlining significant 

age-related differences in terms of MSC proliferation potential, ROS production and 

senescence in cultured MSCs strongly indicate towards two critical issues in 

experimental approach. First, a stronger emphasis should be directed towards the fact 

that culture expanded MSCs used in the majority of previous studies undergo in vitro 

ageing which is not the same as the cell ageing in vivo. In vitro culture forces MSCs to 

adapt to artificial conditions and enhances proliferation, which has an impact on their 

differentiation, ROS production and signalling mechanisms combating senescence. 

Thus, the molecular mechanisms of MSC ageing proposed, based on cultured MSCs 

are more likely to be applicable only to culture expanded MSCs and do not explain the 

mechanisms occurring in MSCs in vivo.  

 

Second, the concept of biological ageing as opposed to chronological ageing (both in 

vivo) needs to be better defined and considered in every research work that attempts to 

explore the complexity of ageing. Chronological age refers to the actual age of a donor 

while the biological age refers to the functionality of the organs (or cells) within the 

donor. Two or more people with the same chronological age can display difference in 

the ‘fitness’ of their organs indicating variation in their ‘biological age’. Obese teenagers 

have been reported to have higher bone age than their peers of same chronological 

age when quantified using physical examinations (509). DW Belsky and co-workers 

found that adults of the same age (38 years old) were growing old at different rates 

described as different ‘pace of ageing’ quantified by using physical functioning, 

cognitive functioning and perceptions of well-being (510). They also suggested that 

investigation of age-related differences in younger (<40 years old) donors may be most 

useful to identify factors that can be quantified as ‘early signs of ageing’. These findings 

bring our attention back to the various parts of thesis, for example large donor-

variations in both ‘young’ and ‘old’ donor groups, confirming that the biological age of a 

person is different to their chronological age and may be determined by diet, exercise, 

lifestyle and well-being.  

 

Biomedical research for ageing at the cellular level, often tends to investigate age-

related differences in phenotypes, genotypes, senescence and other cell functions 

using chronological ages and in vitro assays. With increasing evidence of the impact of 

extrinsic factors like nutrition, diet and lifestyle impacting an alarmingly large number of 

people globally, there is a dire need to shift the approach towards considering these 

factors while designing experiments. While eliminating donors to suit a study design 
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may not be an option for all, having comprehensive knowledge of the donor’s nutrition 

intake, diet, lifestyle and well-being for at least up to 6 months prior to investigation will 

help connect the dots better. This is further emphasised by the WHO defining health as 

the ‘state of complete physical, mental and social wellbeing and not merely the 

absence of a disease’ (1). A growing body of evidence shows that good physical and 

mental health are essential for complete well-being of a person (511, 512), especially in 

the old age (513). While these factors were not accounted for in this thesis, they could 

potentially explain the donor variations that were observed across the experiments 

performed in this project. 

 

Increasingly, more and more online tests are easily available to help determine a 

person’s ‘actual age’ (i.e. biological age), based on diet, exercise, smoking, drinking, 

social and mental well-being, in less than 5 minutes (514, 515). Interestingly, the 

methodologies of these online tests are unclear, there is no known standard or 

normalisation and they regularly provide very different ‘actual age’ of the same person 

who answers questions to different tests. I am personally aged 7, 22 and 38 years old 

in three different online tests! As more researchers focus on ageing studies and 

investigation of age-related diseases like OA, the aim must shift towards considering 

diet, lifestyle and well-being for defining biological age, as well as to consider various 

scenarios and donor variations in their experimental design to make a study more 

comprehensive. This will aid better understanding towards early OA diagnosis and 

eventually sustainable treatment solutions. 

7.4 ‘Comprehensive’ research 

Even with the advancement of science, technology and our knowledge in healthcare 

and ageing, most of OA therapies are still aimed at alleviating the symptoms (pain relief 

for OA) rather than getting to the root of the problem, which is what causes the 

disease. Basic science plays a crucial role in studying cell behaviour, identifying the 

molecular pathways and mechanisms for a given condition. For research that may 

have clinical implications, it is vital that after optimising techniques, the research is 

encouraged to be performed on uncultured cells or using in vitro models (like 3D 

models using organ-on-a-chip or organoids) that can mimic the conditions in vivo. 

Acknowledgement of the fact that biomedical or healthcare research performed with 

human samples will inevitably display ‘donor variation’ in nearly every parameter being 

tested for any given experiment needs to be at the core of research investigating 

ageing and associated diseases like OA. Clinical trials may exclude a certain 

population from their study (for example, obese people) to suit their parameters better, 
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however, that might not be an option for other researchers that have access to a limited 

number of human samples. 

 

Thus, having more information about the diet, exercise, lifestyle and well-being state of 

the donors over at least the last 6 months will help researchers to link various factors 

that link ageing and OA. Ageing is inevitable and an increase in age-related diseases 

and disorders make ‘age’ an important factor in every research. To understand a 

specific disease or disorder, it is usually approached with a finite focus on the topic. 

This approach is essential to narrow down and identify molecules, factors and targets 

for potential therapy for a single disease. When it comes to multi-factorial conditions 

like ageing and OA, the research plan and experimental design should include a 

number of variables and parameters to represent much larger donor populations.  

 

For example, to investigate bone age and OA, sample collection should include not 

only bone samples but also matched sample of peripheral blood from the same donors. 

It would also include designing experiments to not only quantify a receptor (LepR) but 

also the hormone itself (Leptin) to better understand the signal transduction. The same 

should apply to IFN 1 type pathway mediators and SASP-associated molecules. To 

understand early signs of ageing and age-related differences, lifestyle data helping to 

define donor biological age would also provide essential information about potential 

causes (and potential targets) of age-related diseases. With multi-factorial conditions 

like ageing and OA a number of symptoms, parameters, genes and markers may 

overlap, increasing the complexity of the research work. Having more information will 

thus help to extrapolate markers or parameters that require further attention. 

7.5 Study novelty and contribution to the field 

The novelty of this project lies in the use of minimally-manipulated and uncultured 

human donor cells from a large number of donors and combination of a wide variety of 

genes. Biomedical research implementing the use of uncultured cells has strong 

implications and clinical relevance as it better reflects the behaviour and characteristics 

of cells in vivo. Over 50 donor samples were used for examining age-related changes 

in BM MSC numbers with minimum manipulation. Similar cohort-size investigations 

have been performed on cultured MSCs (97), but not on uncultured MSCs. This project 

was also the first of its kind to perform in depth investigation of over 100 genes in two 

uncultured and purified cell populations co-existing with the BM niche – MSCs and 

HLCs. Previous studies from our group have investigated 96 or 48 genes, but the 

cohort sizes were significantly smaller (8 donors (188) and 15 donors (516)), 

respectively. Also, age-related factors were not considered in these studies. 
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For the first time, this project evaluated colony sizes and densities to indicate MSC 

proliferation and heterogeneity in relation to donor age. Previous publications 

investigated different colony types based on sizes but not in relation to donor age (201, 

208) and colony density has never been quantified before. Also for the first time, this 

project studied IFN1 signature in human MSCs, previous studies have only focussed 

on HSCs or immune-lineage cells (335, 391, 392). For the first time, this project has 

shown considerable IRG and IFN1 receptor expression in MSCs, opening up a 

completely new research area on the role of IFN1 signalling in non-immune cells and 

MSCs in particular. At this stage, it can be only speculated that MSCs may use IFN1 

including their receptors and intracellular machinery to combat accumulating DNA 

damage and control senescence, future research is needed to further explore these 

possibilities. 

 

Apart from directing research towards expanding the existing horizon of knowledge on 

ageing and age-related risks that may eventually lead to OA, this project has also 

suggested considering both, chronological age and biological age in biomedical 

research. This project also highlighted the links between general health, ageing and 

risk of age-related OA at the MSCs level aimed at understanding the roles of MSCs in 

these processes. Discussions in each chapter outline the need for comprehensive 

research that must be performed in future to be able to pinpoint to specific factors and 

targets to better understand age-related OA. Finally, this project also provides first 

initial data that MSCs may be more resistant to ageing and damaging insults in vivo, 

compared to HLCs, thus making them a good choice for developing autologous cell 

based therapies. 

7.6 Drawbacks and study limitations 

Working with a rare population of cells without being able to expand them in culture has 

certain limitations. The low number of retrieved cells, particularly MSCs from older 

donors, was always a point of concern with respect to experimental design. As 

established in the beginning of the thesis, to understand ageing in vivo, it is important 

that the cells being used are not artificially aged in vitro. Apart from that, the high 

degree of donor-to-donor variations was something unexpected but was observed 

across all the experiments during the course of this PhD.  This meant that for many 

interesting findings, particularly in relation to gene expressions, the noted trends could 

not be confirmed statistically using the donor numbers available. However these pilot 

data provided important information on the magnitudes of differences and the 

variations within the groups, to enable power calculations for a more comprehensive 
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study. These variations, even with tightly controlled within age groups suggested that 

chronological age may or may not be represent  the biological age of the person. Donor 

differences within the groups (young or old) could be explained by different donor’s 

BMIs, diet and other lifestyle factors, such information was not available for this study. 

Due to ethical approvals available, this project did not include matched blood samples, 

which could have allowed to quantify and compare levels of transcripts in BM cells with 

the corresponding proteins (like Leptin) in the circulation. Overall, only a limited number 

of molecules were investigated at both, the transcript and protein level. 

 

This project also did not perform any tests to evaluate and compare MSC differentiation 

or senescence status between young and old donors, which would be confirmatory to 

the presented gene expression data. Ideally, donor-matched comparisons could be 

done between in vitro cultured and in vivo MSCs. Looking back, quantification of genes 

and surface markers from the intermediate age group could have also been useful as 

well as having more information about the donors’ about lifestyle, medication and 

general well-being. As discussed above, lifestyle and well-being are increasingly being 

associated with age-related diseases and thus, this kind of information would be 

extremely useful in terms of understanding donors’ biological ages.  

7.7 Future Directions 

With the results obtained, it is clear that a larger cohort of patients is needed. However, 

with experiments performed in culture expanded MSCs, due to forced oxidative stress 

conditions, the results are often exaggerated. This can easily lead to scientists going 

ahead with animal studies and eventually to clinical trials, where over 50% of drugs 

have been known to fail (517, 518). It is ironical, that while this is the most exciting era 

for scientific research, biomedical and healthcare based technologies and the potential 

they hold for the future generation, it is also the era, where over 50% of all new drugs 

fail by the time they reach phase III clinical trials. It is also ironical, that even though, a 

human being lives the longest today we could have ever lived before, it also brings 

along with it the reduced quality of life after the age of 60 in most countries, globally. 

Not to forget, while there is a considerable increase in the access to different types of 

cuisines to people everywhere in the global era of networking and travel, 71% of the 

death every year is actually due to lifestyle disease which includes poor choices of diet 

and lifestyle (519).  

 
Taking this project forward would include investigation of the genes that have been 

indicated as potential ‘biomarkers’ (IL6, anti-ageing genes and IFNA receptors) down to 

the protein level in larger number of donors including donors of ages across 20-90 
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(from early adulthood until old age). The last 6-months record about their diet 

(proportions of proteins, carbohydrates, fats, vitamins, minerals and water intake), 

lifestyle (drinking, smoking, exercises and medications) and well-being (questionnaires 

on personal motivation, family-friends-relationships and work life satisfaction) would be 

maintained. Further, classifying OA donors on the basis of the stage of the disease 

would be of critical importance. Comparing the levels of these indicative genes and 

proteins would aid our understanding of changes in these potential biomarkers with 

disease progression. Techniques like single cell RNA seq and the use of 3D models to 

mimic bone cells and the microenvironment (520) will further aid in investigations that 

are representative of changes in vivo. 
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Appendix 1- List of donor cells used across the different arms of 

investigation in this thesis 

Table 1 Donor details for cells used in Chapter 3 

Donors Sex Age CFU-F 
Colony area , 

ID 
CFU-F in 

serum 

PGBM002 M 19 Yes 
  PGBM003 F 63 Yes 
  PGBM004 M 56 Yes 
  PGBM005 F 37 Yes Yes 

 PGBM006 F 52 Yes 
  HOBM010 F 74 Yes 
  PGBM007 F 51 Yes 
  HOBM011 M 24 Yes Yes 

 PGBM008 M 28 Yes Yes 
 HOBM012 M 58 Yes 

  PGBM009 F 68 Yes Yes Yes 
PGBM010 F 73 Yes Yes 

 PGBM011 M 42 Yes 
  PGBM012 M 40 Yes 
  PGBM013 M 42 Yes 
  PGBM014 F 34 Yes 
 

Yes 
PGBM015 F 20 Yes 

 
Yes 

PGBM016 M 19 Yes Yes 
 PGBM017 M 46 Yes 

  PGBM018 F 72 Yes 
  PGBM019 F 72 Yes 
  KMBM020 F 46 Yes 
  JAO1 M 20 Yes 
  KMBM021 M 19 Yes Yes Yes 

HOBM013 M 58 Yes 
  PGBM020 M 49 Yes 
  KMBM027 F 23 Yes 
  PGBM021 M 22 Yes 
  PGBM022 F 49 Yes 
  PGBM023 F 67 Yes 
  PGBM024 M 42 Yes 
  PGBM025 F 38 Yes 
  PGBM026 F 69 Yes 
 

Yes 
PGBM027 F 89 Yes 

  PGBM028 F 76 Yes Yes Yes 
KMBM028 M 59 Yes Yes 

 



 

252 
 

HOBM014 M 44 Yes 
  PGBM029 M 34 Yes 
  PGBM030 F 89 Yes 
  KMBM030 M 25 Yes Yes 

 JAO 25 F 55 Yes Yes Yes 
PGBM031 F 53 Yes 

 
Yes 

PGBM032 M 46 Yes 
  PGBM033 M 23 Yes 
  JAO039 M 26 Yes 
  PGBM034 F 36 Yes 
  HOBM018 M 78 Yes 
  PGBM036 M 54 Yes Yes 

 PGBM037 M 59 Yes Yes 
 PGBM038 F 64 Yes 

  PGBM039 M 29 Yes 
  PGBM040  F 37 Yes Yes Yes 

PGBM041 F 26 Yes 
 

Yes 
PGBM042 M 67 Yes 

  PGBM043 F 89 Yes 
  PGBM044 F 79 Yes 
        

Age-range:19-89 years old, median: 47.5 years old 
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Table 2 Donor details for cells used in Chapter 4 
 

Donors Sex Age 
Enumeration 

by flow 
ROS Enriched 

Cell 
sorting 

MSC 
genes 

PGBM005 F 37 Yes 
 

Yes 
  PGBM006 F 52 Yes 

 
Yes 

  HOBM010 F 74 Yes 
    PGBM007 F 51 Yes 
    HOBM011 M 24 Yes 
    PGBM008 M 28 Yes 
 

Yes 
  PGBM009 F 68 Yes 

    PGBM010 F 73 Yes 
 

Yes Yes Yes 
PGBM011 M 42 Yes 

    PGBM012 M 40 Yes 
    PGBM013 M 42 Yes 
    PGBM014 F 34 Yes 
    PGBM015 F 20 Yes 
    PGBM016 M 19 Yes 
 

Yes Yes Yes 
PGBM017 M 46 Yes 

    PGBM018 F 72 Yes 
    PGBM019 F 72 Yes 
    KMBM020 F 46 Yes 
    JAO1 M 20 Yes 
    KMBM021 M 19 Yes 
    HOBM013 M 58 Yes 
    PGBM020 M 49 Yes 
 

Yes Yes 
 KMBM027 F 23 Yes 

 
Yes Yes Yes 

PGBM021 M 22 Yes 
 

Yes Yes Yes 
PGBM022 F 49 Yes 

    PGBM023 F 67 Yes Yes Yes Yes Yes 
PGBM024 M 42 Yes 

    PGBM025 F 38 Yes Yes Yes Yes Yes 
PGBM026 F 69 Yes Yes Yes Yes Yes 
PGBM027 F 89 Yes Yes Yes Yes Yes 
PGBM028 F 76 Yes Yes Yes Yes Yes 
KMBM028 M 59 Yes 

    HOBM014 M 44 Yes 
    PGBM029 M 34 Yes Yes Yes Yes Yes 

PGBM030 F 89 
 

Yes Yes Yes Yes 
KMBM030 M 25 Yes Yes Yes Yes Yes 

JAO 25 F 55 Yes 
    PGBM031 F 53 Yes 
    PGBM033 M 23 

 
Yes Yes Yes Yes 

PGBM034 F 36 
 

Yes Yes Yes Yes 
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PGBM037 M 59 Yes Yes Yes Yes Yes 
PGBM038 F 64 

  
Yes Yes Yes 

PGBM039 M 29 
 

Yes Yes Yes Yes 
PGBM042 M 67 Yes 

    PGBM047 M 65 
 

Yes 
   RCBM028 M 66 

  
Yes Yes Yes 

GCBM004 F 61 
  

Yes Yes Yes 
TRBM029 F 36 

  
Yes Yes Yes 

 
Age range: 19-89 years old, median: 47.5 years old 
 
 
Table 3 Donor details for cells used in Chapter 5 
 

Donors Sex Age Enrichment 
Cell 

sorting 
Exploratory 

genes 

PGBM005 F 37 Yes 
  PGBM006 F 52 Yes 
  PGBM008 M 28 Yes 
  PGBM010 F 73 Yes Yes Yes 

PGBM016 M 19 Yes Yes Yes 
PGBM020 M 49 Yes Yes 

 KMBM027 F 23 Yes Yes Yes 
PGBM021 M 22 Yes Yes Yes 
PGBM023 F 67 Yes Yes Yes 
PGBM025 F 38 Yes Yes Yes 
PGBM026 F 69 Yes Yes Yes 
PGBM027 F 89 Yes Yes Yes 
PGBM028 F 76 Yes Yes 

 PGBM029 M 34 Yes Yes 
 KMBM030 M 25 Yes Yes Yes 

PGBM033 M 23 Yes Yes Yes 
PGBM034 F 36 Yes Yes Yes 
PGBM037 M 59 Yes Yes Yes 
PGBM038 F 64 Yes Yes Yes 
PGBM039 M 29 Yes Yes Yes 
RCBM028 M 66 Yes Yes Yes 
GCBM004 F 61 Yes Yes Yes 
TRBM029 F 36 Yes Yes 

  
Age range: 19-89 years old, median: 43.5 years old 
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Table 4 Donor details for cells used in Chapter 6 
 

Donors Sex 
 

Age 
Cell 

sorting 
MSC 

genes 
Exploratory 

genes 

DiFHOA003 M  74 Yes 
  DiFHOA008 F  81 Yes 
  DiFHOA014 F  56 Yes Yes Yes 

DiFHOA017 M  68 Yes Yes Yes 
DiFHOA018 F  83 Yes Yes 

 DiFHOA019 F  74 Yes Yes 
 DiFHOA021 F  72 Yes Yes 
 DiFHOA022 F  60 Yes Yes Yes 

DiFHOA024 F  79 Yes Yes Yes 
DiFHOA025 F  79 Yes Yes Yes 
DiFHOA026 M  68 Yes Yes Yes 
DiFHOA027 M  67 Yes Yes 

 DiFHOA029 M  82 Yes Yes Yes 
 
 
Age range: 56-83 years old, median: 74 years old
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Appendix 2 – List of reagents, consumables, equipments, softwares, 

solutions and Taqman probes used throughout the thesis 

Table 1 List of reagents used throughout the thesis  
 
 

Tissue culture Company 

Ammonium Chloride Stem cells Technologies 

Anti-fibroblast beads MACS Miltenyi Biotec 

DMEM Gibco, Life Technologies 

DMSO Sigma 

DNAse Sigma 

EDTA Sigma 

FCS Thermo Fisher 

Formaldehyde Sigma 

MACSelect LNGFR beads MACS Miltenyi Biotec 

Methylene blue Sigma  

PBS Sigma 

Penicillin/Streptomycin Thermo Fisher 

RosetteSep cocktail Stem Cells Technologies 

StemMACS MSC expansion medium MACS Miltenyi Biotec 

Trypan blue Sigma 

Trypsin Sigma 

  Flow cytometry/FACS Company 

7-AAD BD Pharmigen 

Blocking buffer Sigma 

BSA Sigma  

CD106 PE BD Pharmigen 

CD146 PE BD Pharmigen 

CD271 APC MACS Miltenyi Biotec 

CD271 PeVio770 MACS Miltenyi Biotec 

CD295 APC BD Pharmigen 

CD45 PE-Cy7 BD Pharmigen 

CD45 V450 BD Pharmigen 

IgG1 PE BD Pharmigen 

IgG2a APC BD Pharmigen 

IgG2b APC R & D systems 

IgG1 PE Vio 770 MACS Miltenyi Biotec 

CellROX (FITC) Thermo Fisher 

Connexin43 APC R & D systems 

Countbright absolute counting beads Life Technologies 

FCR MACS Miltenyi Biotec 

TBHP Thermo Fisher 
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qPCR Company 

Assay loading buffer Fluidigm 

Elution solution Norgen Biotek 

Nuclease free water Thermo Fisher 

PA master mix Fluidigm 

RL Buffer (lysis buffer) Norgen Biotek 

RNAse away  Thermo Fisher 

Rt mastermix Fluidigm 

Sample loading buffer Fluidigm 

Single cell RNA purfication kit  Norgen Biotek 

Taqman Universal master mix Thermo Fisher 

Washing solution Norgen Biotek 
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Table 2 List of consumables used throughout the thesis  
 

Tissue culture Company 

Cell strainer (70m) BD Falcon 

Cryo vials (1.8ml) Thermo Scientific 

EDTA tubes (4ml) VACUETTE, Griener Bio-one 

Falcon tubes (15 and 50 ml) Corning 

Mr Frosty Freezing container Thermo Scientific 

Petri dishes (60 and 100mm) Corning 

Pipette Tips (10, 200 and 1000l) Rainin 

Stripettes (5,10 and 25ml) Corning 

  Flow cytometry/FACS Company 

FACS tubes Corning 

Magnetic columns and plunger MACS Miltenyi Biotec 

Tubes with cell strainers BD 

  qPCR Company 

48.48 dynamic array IFC Fluidigm 

Collection tubes Norgen Biotek 

Control line fluid Fluidigm 

Eppendorfs (0.5-1.5ml) Eppendorf 

Flex SixTM gene expression IFC Fluidigm 

RNA elution tubes Norgen Biotek 

Single cell RNA spin columns Norgen Biotek 
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Table 3 List of equipments used throughout the thesis  
 
 

Tissue culture Company 

Centrifuge  Eppendorf 
Class II laminar flow biological safety 
cabinet Nuaire 

CO2 Incubator  Incusafe 

Freezer (-80°C) New Brunswick Scientific 

Haemocytometer Improved Neubauer, Hawksley 

Infinity 1 Camera Lumenera 

MACS separator MACS Miltenyi Biotec 

MACS stand MACS Miltenyi Biotec 

Microscope (Scanner) Infinity 1, L3200B 

Microscope (TC) Olympus CKX41 

Nanodrop Spectrophotometer Nanodrop 

Pipetteboy Integra 

Scanner Epson perfection 3590 photo 

Water bath Leica 

  Flow cytometry/FACS Company 

Influx 6 way cell sorter BD Biosciences 

LSRII flow cytometer BD Pharmigen 

Pipettes Gilson 

  qPCR Company 

Biomark HD system Fluidigm 

IFC controller HX Fluidigm 

Thermocycler Applied biosciences 
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Table 4 List of softwares used throughout the thesis  
 

Softwares Company 

Cluster 3.0 Open source 

Data collection software Biomark 

FACS Diva 5.02 BD Biosciences 

FlowJo BD Biosciences 

GraphPad Prism (version 7.0a) GraphPad Software, Inc. 

ImageJ ImageJ 

Infinity analyze and capture Lumenera 

Real-time PCR analysis Biomark 

Tree view Open source 

 
 
 
 
Table 5 List of buffers/reagents prepared and used throughout the thesis  
 

Buffer Preparation 

Ammonium chloride 
17.89g NH4Cl + 2g KCl + 400l  0.5M EDTA 
+200ml distilled Water, pH=8.0 

FACS buffer 

500ml PBS + 0.1%BSA + 0.01%Sodium Azide 

+ 200l of Na EDTA 

Formaldehyde (3.7%) 1ml of 37%formaldehyde + 9 ml PBS 

Freezing medium 10%DMSO + 45%FCS + 45%DMEM 

MACS buffer 500ml PBS+  0.1%BSA + EDTA (2ml) 

Methylene blue 
1%Methylene Blue in10mM borate buffer, 
pH=8.8 

Thawing medium DMEM+10%FCS + 80l DNAse for 50ml  

Wash buffer (for enrichment) PBS+ 2%FCS + 2ml EDTA 
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Appendix 3 – Supplementary Figure 3.1  

 
 

 

 

 

 

 
 

Age-related changes in the number of CFU-Fs in males (top panel) and females 
(bottom panel) 

(A) Age-related change in the number of CFU-F per ml of BMA across entire donor age 
range in males and (B) in between age groups. (C) Age-related change in the number 
of CFU-F per ml of BMA across entire donor age range in females and (D) in between 
age groups.  Each dot indicates individual donor, black dots represent male donors and 
empty circles represent female donors. The black line on the left indicates the slope 
and the on the right, the median values. Spearman non-parametric test was performed 
for A and C and Kruskal-wallis test with Dunn’s correction was performed for B and D.  
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Appendix 4 List of tables indicating expression of exploratory genes 

from Chapter 5 and 6 

All the data was normalised with HPRT1. p<0.05, p<0.01, p<0.001 and p<0.0001, 
Mann-Whitney U test. NA: not-applicable, NS: non-significant 

 
Table 5.1 Medians of expression of exploratory genes in all (young and old 
donors combined) donors compared between MSCs and HLCs 
 

Gene 
Median 
(MSCs) 

Median 
(HLCs) 

 Fold 
difference 

(MSCs/HLCs) p value 

ABCA1 1.17 0.24 4.88 0.0249 

ABCG1 ND 0.058 NA NA 

AICDA ND 0.009 NA NA 

BST2 12.06 4.97 2.43 0.0083 

CASP1 3.06 6.16 0.50 0.0205 

CCL8 0.22 0.072 3.03 0.0591 

CCND2 2.36 0.41 5.68 0.0013 

CEACAM 0.31 0.007 44.29 0.0021 

CHMP5 2.41 0.7 3.44 NS 

CXCL10 0.25 0.40 0.61 NS 

EPSTI1 1.59 0.57 2.79 0.0045 

EIF2AK2 3.81 0.95 3.98 0.0023 

FCGR1B 0.19 1.04 0.18 0.0031 

GBP1 3.4 1.375 2.47 0.078 

GUSB 2.66 3.39 0.78 NS 

HERC5 0.36 0.2 1.80 0.0188 

HPSE 0.09 0.73 0.13 0.0171 

IFI6 3.285 0.438 7.5 0.0145 

IFI16 1.66 0.81 2.06 0.0068 

IFI27 1.55 0.01 155.10 <0.0001 

IFI35 2.68 0.76 3.53 0.0387 

IFI44 3.1 1.01 3.07 0.0205 

IFI44L 1.50 0.31 4.86 0.008 

IFIH1 0.45 0.17 2.65 0.0106 

IFIT1 9.13 3.70 2.46 NS 

IFIT2 1.53 2.67 0.57 NS 

IFIT3 2.69 1.86 1.45 NS 

IFIT5 0.63 0.11 5.75 0.0284 

IFITM1 75.05 6.33 11.86 0.0005 

IFITM3 137.9 3.79 36.39 <0.0001 

IFNG ND ND NA NA 

IL7R 0.09 0.18 0.51 NS 

IRF2 2.48 1.83 1.36 0.0372 

IRF5 0.12 1.28 0.10 0.0157 

IRF7 4.73 4.97 0.95 NS 

IRF9 1.70 0.99 1.72 NS 
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ISG15 0.38 0.55 0.69 NS 

ISG20 0.39 1.12 0.35 NS 

LAIR1 0.43 1.4 0.31 0.0278 

LAMP3 ND ND NA NA 

LRP1 48.92 4.03 12.14 0.0007 

LSCR1 4.12 0.99 4.13 0.0068 

LY6E 24.58 2.4 10.24 <0.0001 

MSR1 0.11 0.20 0.53 NS 

MX1 2.889 1.71 1.69 NS 

NT5C3B 0.56 0.16 3.52 0.0018 

OAS1 0.61 0.13 4.66 NS 

OAS2 1.19 0.67 1.78 0.059 

OAS3 2.55 0.7 3.64 0.0121 

OASL 1.01 0.22 4.61 0.0284 

PHF11 1.79 0.98 1.82 0.0242 

PPIA 14.26 13.66 1.04 NS 

PRDM1 0.51 1.72 0.30 0.0148 

PRDM16 0.18 0.0017 105.29 0.042 

PRKRA 0.87 0.27 3.16 NS 

RGS1 0.621 32.29 0.02 0.0184 

RNF213 3.47 2.64 1.31 NS 

RSAD2 0.43 0.13 3.30 0.0169 

RTP4 0.96 0.08 12.00 0.0036 

SAMD9L 1.67 0.642 2.60 0.0387 

SCARB1 0.59 0.349 1.69 NS 

SERPING 22 0.09 233.30 0.0003 

SIGLEC1 0.13 0.38 0.34 0.0782 

SOCS1 2.55 0.46 5.55 0.0003 

SP100 6.78 3.86 1.76 0.049 

SPATS2L 3.50 0.40 8.66 0.0001 

TAP1 2.23 1.64 1.36 NS 

TGFB 2.93 5.35 0.55 0.0205 

TLR4 1.42 1.44 0.99 NS 

TNF 0.17 3.67 0.05 0.013 

TNFRSRP1 1.043 2.62 0.40 0.0512 

TRIM38 0.793 0.62 1.27 NS 

UBE2L6 11.86 4.5 2.64 0.0083 

UNC93B 2.08 2.75 0.76 NS 

USP18 0.35 0.02 17.50 <0.0001 

XAF1 3.93 3.273 1.20 NS 
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Table 5.2 Medians of expression of exploratory genes between young and old 
donors in MSCs  
 

Gene 
Medians 
(young) 

Medians  
(old) 

Age-related 
difference 

(old/young) p value 

ABCA1 1.11 2.78 2.51 NS 

ABCG1 ND ND NA NA 

AICDA ND ND NA NA 

BST2 12.06 14.6 1.21 NS 

CASP1 3.23 3.05 0.94 NS 

CCL8 0.21 0.26 1.22 NS 

CCND2 2.36 3.57 1.52 NS 

CEACAM 0.1 0.35 3.50 NS 

CHMP5 3.10 1.66 0.54 NS 

CXCL10 0.56 0.16 0.29 NS 

EPSTI1 1.59 1.69 1.06 NS 

EIF2AK2 3.48 3.8 1.09 NS 

FCGR1B 0.05 0.27 5.00 NS 

GBP1 3.173 3.4 1.07 NS 

GUSB 2.98 2.33 0.78 NS 

HERC5 0.53 0.34 0.64 NS 

HPSE 0.11 0.08 0.80 NS 

IFI6 4.36 2.57 0.59 NS 

IFI16 1.54 1.76 1.14 NS 

IFI27 1.26 2.06 1.63 NS 

IFI35 2.68 2.11 0.79 NS 

IFI44 3.83 2.71 0.71 NS 

IFI44L 1.54 1.42 0.92 NS 

IFIH1 0.45 0.43 0.96 NS 

IFIT1 7.04 10.06 1.43 NS 

IFIT2 1.33 1.68 1.26 NS 

IFIT3 1.78 3.4 1.91 NS 

IFIT5 0.63 0.55 0.87 NS 

IFITM1 75.05 81.38 1.08 NS 

IFITM3 139.4 111.9 0.80 NS 

IFNG ND ND NA NA 

IL7R 0.22 0.05 0.24 NS 

IRF2 2.48 2.23 0.90 NS 

IRF5 0.11 0.42 3.91 NS 

IRF7 4.73 4.13 0.87 NS 

IRF9 1.70 1.35 0.79 NS 

ISG15 0.42 0.28 0.67 NS 

ISG20 0.51 0.35 0.69 NS 

LAIR1 0.8 0.43 0.54 NS 

LAMP3 ND ND NA NA 
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LRP1 50.97 38.69 0.76 NS 

LSCR1 4.11 6.41 1.56 NS 

LY6E 24.58 21.34 0.87 NS 

MSR1 0.12 0.05 0.45 NS 

MX1 2.89 2.9 1.00 NS 

NT5C3B 0.47 0.67 1.41 NS 

OAS1 0.68 0.58 0.85 NS 

OAS2 1.52 0.88 0.58 NS 

OAS3 2.72 1.79 0.66 NS 

OASL 1.09 0.82 0.75 NS 

PHF11 2.10 1.76 0.84 NS 

PPIA 15.94 12.03 0.75 NS 

PRDM1 0.21 0.66 3.14 NS 

PRDM16 0.29 0.17 0.6 NS 

PRKRA 0.79 1.1 1.39 NS 

RGS1 0.62 6.11 9.85 NS 

RNF213 4.52 1.88 0.42 0.0411 

RSAD2 0.394 0.47 1.19 NS 

RTP4 0.96 0.71 0.74 NS 

SAMD9L 1.83 0.90 0.50 NS 

SCARB1 0.80 0.20 0.25 NS 

SERPING 21.95 22.85 1.04 NS 

SIGLEC1 0.20 0.13 0.65 NS 

SOCS1 3.79 2.13 0.56 NS 

SP100 6.75 6.78 1.00 NS 

SPATS2L 4.09 3.38 0.83 NS 

TAP1 2.11 2.53 1.20 NS 

TGFB 3.35 2.59 0.77 NS 

TLR4 1.2 2.16 1.80 NS 

TNF 1.58 0.155 0.10 NS 

TNFRSRP1 1.37 0.76 0.55 NS 

TRIM38 0.80 0.73 0.91 NS 

UBE2L6 11.26 12.94 1.15 NS 

UNC93B 2 2.21 1.105 NS 

USP18 0.31 0.36 1.16 NS 

XAF1 5.81 3.03 0.52 NS 
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Table 5.3 Medians of expression of exploratory genes between young and old 
donors in HLCs  
 

Genes 
Median 
(young) 

Median  
(old) 

Age-related 
difference 

(old/young) p value 

ABCA1 0.53 0.16 0.30 NS 

ABCG1 0.07 0.03 0.43 0.0649 

AICDA 0.009 0.01 1.11 NS 

BST2 6.29 3.24 0.51 NS 

CASP1 7.18 4.77 0.66 NS 

CCL8 0.09 0.03 0.42 NS 

CCND2 0.85 0.291 0.34 NS 

CEACAM 0.008 0.003 0.38 0.0667 

CHMP5 0.87 0.63 0.72 NS 

CXCL10 0.58 0.18 0.31 0.0667 

EPSTI1 0.58 0.51 0.88 NS 

EIF2AK2 0.80 1.05 1.30 NS 

FCGR1B 1.05 1.55 1.48 NS 

GBP1 1.67 1.33 0.80 NS 

GUSB 4.49 2.57 0.57 NS 

HERC5 0.22 0.18 0.82 NS 

HPSE 0.73 0.66 0.91 NS 

IFI6 0.87 0.76 0.87 NS 

IFI16 0.31 0.55 1.77 NS 

IFI27 0.014 0.008 0.57 NS 

IFI35 0.93 0.50 0.54 0.0649 

IFI44 1.01 0.87 0.86 NS 

IFI44L 0.31 0.33 1.06 NS 

IFIH1 0.19 0.16 0.84 NS 

IFIT1 2.17 5.73 2.64 NS 

IFIT2 2.51 2.76 1.10 NS 

IFIT3 1.76 1.86 1.06 NS 

IFIT5 0.12 0.058 0.47 0.0411 

IFITM1 18.32 2.22 0.12 NS 

IFITM3 7.15 3.45 0.48 NS 

IFNG ND ND NA NA 

IL7R 0.49 0.09 0.20 0.026 

IRF2 2.09 1.11 0.53 0.0043 

IRF5 1.59 1.08 0.68 NS 

IRF7 6.37 4.97 0.78 NS 

IRF9 1.52 0.62 0.41 0.026 

ISG15 0.4 0.6 1.50 NS 

ISG20 1.18 0.83 0.70 NS 

LAIR1 1.54 1.4 0.91 NS 
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LAMP3 ND ND NA NA 

LRP1 4.65 2.73 0.59 NS 

LSCR1 1.29 0.65 0.50 NS 

LY6E 2.91 1.8 0.62 NS 

MSR1 0.177 0.318 1.80 NS 

MX1 1.71 2.13 1.25 NS 

NT5C3B 0.23 0.09 0.41 NS 

OAS1 0.35 0.05 0.15 NS 

OAS2 0.69 0.22 0.32 NS 

OAS3 0.9 0.49 0.54 NS 

OASL 0.22 0.26 1.18 NS 

PHF11 0.77 1.20 1.55 NS 

PPIA 16.08 12.35 0.77 NS 

PRDM1 2.35 1.4 0.60 NS 

PRDM16 0.0012 ND NA NA 

PRKRA 0.97 0.2 0.21 0.0152 

RGS1 28.47 32.29 1.13 NS 

RNF213 3.01 1.75 0.58 NS 

RSAD2 0.13 0.12 0.92 NS 

RTP4 0.15 0.05 0.33 0.0152 

SAMD9L 0.86 0.47 0.55 NS 

SCARB1 0.431 0.131 0.30 0.0087 

SERPING 0.10 0.08 0.80 NS 

SIGLEC1 0.38 0.35 0.92 NS 

SOCS1 0.72 0.33 0.46 NS 

SP100 4.43 3.27 0.74 NS 

SPATS2L 0.47 0.37 0.79 NS 

TAP1 1.429 1.65 1.15 NS 

TGFB 6.42 4.64 0.72 NS 

TLR4 1.87 0.92 0.49 NS 

TNF 2.98 3.66 1.23 NS 

TNFRSRP1 2.69 2.62 0.97 NS 

TRIM38 0.58 0.68 1.17 NS 

UBE2L6 5.04 4.26 NS NS 

UNC93B 2.9 2.31 0.80 NS 

USP18 0.027 0.025 0.93 NS 

XAF1 3.212 3.61 1.12 NS 
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Table 6.1 Medians of expression of exploratory genes between old donors and 
OA patients in MSCs  
 

Genes 
Medians 

(Old) 
Medians  

(OA) 

Difference 
in OA 

(OA/Old) 
p value 

ABCA1 2.78 2.88 1.04 NS 

ABCG1 0.02 0.21 12.35 NS 

AICDA ND ND NA NA 

BST2 14.60 1.36 0.09 0.0047 

CASP1 3.04 0.53 0.17 0.0012 

CCL8 0.25 0.12 0.48 NS 

CCND2 3.57 2.43 0.68 NS 

CEACAM 0.35 0.02 0.06 0.0221 

CHMP5 1.66 1.78 1.07 NS 

CXCL10 0.16 0.63 3.94 NS 

EPSTI1 1.69 0.31 0.18 0.035 

EIF2AK2 3.81 1.72 0.45 NS 

FCGR1B 0.27 0.00 0.01 0.0476 

GBP1 3.40 3.30 0.97 NS 

GUSB 2.34 0.67 0.29 0.035 

HERC5 0.34 0.20 0.59 NS 

HPSE 0.08 0.06 0.75 NS 

IFI6 2.57 1.45 0.56 NS 

IFI16 1.76 1.16 0.66 NS 

IFI27 2.15 0.82 0.38 0.014 

IFI35 2.11 1.29 0.61 NS 

IFI44 2.71 0.60 0.22 0.0047 

IFI44L 1.43 0.35 0.25 0.0047 

IFIH1 0.42 0.28 0.67 NS 

IFIT1 10.06 3.90 0.39 NS 

IFIT2 1.68 0.64 0.38 NS 

IFIT3 3.40 0.51 0.15 0.014 

IFIT5 0.55 0.26 0.47 NS 

IFITM1 81.38 8.52 0.10 0.014 

IFITM3 111.90 11.60 0.10 0.014 

IFNG ND ND NA NA 

IL7R 0.05 0.19 3.66 NS 

IRF2 2.23 1.11 0.50 NS 

IRF5 0.42 0.01 0.02 NS 

IRF7 4.13 2.48 0.60 NS 

IRF9 1.35 0.88 0.65 NS 

ISG15 0.28 1.56 5.57 NS 

ISG20 0.35 1.17 3.34 0.0424 

LAIR1 0.43 0.13 0.30 0.0303 
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LAMP3 ND ND NA NA 

LRP1 38.69 8.00 0.21 0.0221 

LSCR1 6.41 2.04 0.32 NS 

LY6E 21.34 4.07 0.19 0.0152 

MSR1 0.06 0.11 2.00 NS 

MX1 2.90 1.66 0.57 NS 

NT5C3B 0.67 0.37 0.55 NS 

OAS1 0.58 0.23 0.39 NS 

OAS2 0.88 0.30 0.34 NS 

OAS3 1.80 0.54 0.30 0.014 

OASL 0.82 0.79 0.96 NS 

PHF11 1.76 0.81 0.46 NS 

PPIA 12.03 9.65 0.80 NS 

PRDM1 0.66 0.71 1.08 NS 

PRDM16 0.17 0.11 0.65 NS 

PRKRA 1.10 0.82 0.74 NS 

RGS1 6.12 0.18 0.03 NS 

RNF213 1.88 4.07 2.16 NS 

RSAD2 0.47 0.33 0.70 NS 

RTP4 0.71 0.12 0.17 0.0221 

SAMD9L 0.91 0.58 0.64 NS 

SCARB1 0.20 0.24 1.20 NS 

SERPING 22.85 8.80 0.39 0.0513 

SIGLEC1 0.13 0.01 0.06 NS 

SOCS1 2.13 0.76 0.36 NS 

SP100 6.78 2.99 0.44 NS 

SPATS2L 3.82 2.12 0.55 NS 

TAP1 2.53 1.27 0.50 0.0513 

TGFB 2.59 2.90 1.12 NS 

TLR4 2.16 0.88 0.41 NS 

TNF 0.16 0.60 3.88 NS 

TNFRSRP1 0.76 0.65 0.86 NS 

TRIM38 0.73 0.83 1.14 NS 

UBE2L6 12.94 2.08 0.16 0.014 

UNC93B 2.21 2.37 1.07 NS 

USP18 0.36 0.06 0.17 0.0082 

XAF1 3.03 1.51 0.50 NS 
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Table 6.2 Medians of expression of exploratory genes between old donors and 
OA patients in HLCs  
 

Genes 
Medians 

(Old) 
Medians  

(OA) 

Difference 
in OA 

(OA/Old) 
p value 

ABCA1 0.17 0.59 3.51 0.035 

ABCG1 0.03 0.17 5.28 0.0012 

AICDA 0.01 0.00 0.06 NS 

BST2 3.24 1.44 0.44 0.035 

CASP1 4.77 1.01 0.21 0.0023 

CCL8 0.04 0.02 0.61 NS 

CCND2 0.29 2.29 7.90 0.0022 

CEACAM 0.00 0.01 2.00 NS 

CHMP5 0.60 0.21 0.34 NS 

CXCL10 0.19 0.11 0.58 NS 

EPSTI1 0.51 0.34 0.67 NS 

EIF2AK2 1.05 0.96 0.92 NS 

FCGR1B 1.55 0.07 0.04 0.0012 

GBP1 1.34 0.85 0.63 NS 

GUSB 2.57 0.72 0.28 0.0047 

HERC5 0.18 0.22 1.22 NS 

HPSE 0.66 0.16 0.24 NS 

IFI6 0.55 0.48 0.87 NS 

IFI16 0.76 0.56 0.74 NS 

IFI27 0.01 0.07 8.75 0.0051 

IFI35 0.51 0.29 0.57 NS 

IFI44 0.87 0.37 0.43 NS 

IFI44L 0.33 0.16 0.48 NS 

IFIH1 0.17 0.20 1.20 NS 

IFIT1 5.73 1.50 0.26 0.0734 

IFIT2 2.76 0.49 0.18 0.0513 

IFIT3 1.86 0.76 0.41 NS 

IFIT5 0.06 0.13 2.19 NS 

IFITM1 2.22 9.11 4.10 0.0734 

IFITM3 3.45 2.47 0.72 NS 

IFNG 0.07 1.29 17.42 0.0177 

IL7R 0.09 2.89 32.11 0.0012 

IRF2 1.11 0.65 0.59 NS 

IRF5 1.08 0.14 0.13 0.0012 

IRF7 4.98 3.19 0.64 NS 

IRF9 0.63 0.35 0.56 NS 

ISG15 0.59 0.47 0.80 NS 

ISG20 0.83 5.08 6.12 0.0012 

LAIR1 1.40 0.61 0.44 0.014 

LAMP3 0.01 0.49 40.67 0.0023 

LRP1 2.73 0.31 0.11 NS 

LSCR1 0.65 0.81 1.25 NS 

LY6E 1.80 1.40 0.78 NS 
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MSR1 0.31 0.18 0.58 NS 

MX1 2.13 1.68 0.79 NS 

NT5C3B 0.09 0.07 0.78 NS 

OAS1 0.05 0.02 0.44 NS 

OAS2 0.22 0.44 2.00 NS 

OAS3 0.49 0.65 1.33 NS 

OASL 0.26 0.74 2.85 0.035 

PHF11 1.21 0.86 0.71 NS 

PPIA 12.35 7.68 0.62 NS 

PRDM1 1.40 3.60 2.57 0.0221 

PRDM16 ND ND NA NA 

PRKRA 0.20 0.21 1.05 NS 

RGS1 32.29 21.98 0.68 NS 

RNF213 1.75 2.23 1.27 NS 

RSAD2 0.12 0.32 2.63 NS 

RTP4 0.05 0.03 0.58 NS 

SAMD9L 0.47 0.31 0.66 NS 

SCARB1 0.13 0.05 0.38 NS 

SERPING 0.09 0.09 1.00 NS 

SIGLEC1 0.35 0.09 0.25 0.0087 

SOCS1 0.33 1.03 3.11 NS 

SP100 3.28 2.50 0.76 NS 

SPATS2L 0.37 0.32 0.85 NS 

TAP1 1.65 1.81 1.10 NS 

TGFB 4.64 13.23 2.85 0.014 

TLR4 0.92 0.16 0.17 0.0513 

TNF 3.66 2.16 0.59 NS 

TNFRSRP1 2.62 4.96 1.89 NS 

TRIM38 0.68 0.24 0.35 NS 

UBE2L6 4.26 1.58 0.37 0.035 

UNC93B 2.32 0.51 0.22 0.0012 

USP18 0.03 0.03 1.12 NS 

XAF1 3.61 1.93 0.53 NS 
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